
NIST

PUBLICATIONS ADOPTED FOR USE BY
THE FEDERAL GOVERNMENT

PUB 153-1

SEE NOTICE ON INSIDE

X Window System

Version 11

Release 5

X Window System Protocol

Xlib - C Language X Interface

X Toolkit Intrinsics - C Language Interface

Bitmap Distribution Format 2.1

(Notice for Inside Front Cover)

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are
contained in Federal Information Processing Standards Publication
158-1, The User Interface Component of the Applications Portability
Profile. For a complete list of the publications available in the
Federal Information Processing Standards series, write to the
Standards Processing Coordinator (ADP), National Institute of
Standards and Technology, Gaithersburg, MD 20899.

X Window System Protocol

MIT X Consortium Standard

X Version 11, Release 5

Robert W. Scheifler

Massachusetts Institute of Technology

Laboratory for Computer Science

X Window System is a trademark of M.I.T.

Copyright © 1986, 1987, 1988 Massachusetts Institute of Technology

Permission to use, copy, modify, and distribute this document for any purpose and without fee is hereby granted,

provided that the above copyright notice appear in all copies and that both that copyright notice and this permission

notice are retained, and that the name of M.I.T. not be used in advertising or publicity pertaining to this document

without specific, written prior permission. M.I.T. makes no representations about the suitability of this document or

the protocol defined in this document for any purpose. It is provided “as is’’ without express or implied warranty.

Acknowledgments

The primary contributes to the XI1 protocol arc:

Dave Carver (Digital HPW)
Branko Gerovac (Digital HPW)
Jim Gettys (MIT/Project Athena, Digital)
Phil Karlton (Digital WSL)
Scott McGregor (Digital SSG)
Ram Rao (Digital UEG)
David Rosenthal (Sun)
Dave Winchell (Digital UEG)

The implementors of initial server who provided useful input are:

Susan Angebranndt (Digital)
Raymond Drewry (Digital)
Todd Newman (Digital)

The invited reviewers who provided useful input are:

Andrew Cherenson (Berkeley)
Bums Fisher (Digital)
Dan Garfmkcl (HP)
Leo Hourvitz (Next)
Brock Krizan (HP)
David Laidlaw (Stellar)
Dave Mellinger (Interleaf)
Ron Newman (MIT)
John Ousterhout (Berkeley)
Andrew Palay (ITC CMU)
Ralph Swick (MIT)
Craig Taylor (Sun)
Jeffery Vroom (Stellar)

Thanks go to A1 Mento of Digital’s UEG Documentation Group for formatting this document.

This document does not attempt to provide the rationale or pragmatics required to fully under¬
stand the protocol or to place it in perspective within a complete system.

The protocol contains many management mechanisms that are not intended for normal applica¬
tions. Not all mechanisms are needed to build a particular user interface. It is important to
keep in mind that the protocol is intended to provide mechanism, not policy.

Robert W. Scheifler
Massachusetts Institute of Technology
Laboratory for Computer Science

iii

X Protocol XI1, Release 5

Table of Contents

Acknowledgments . iii

1. Protocol Formats. 1

2. Syntactic Conventions. 1

3. Common Types. 2

4. Errors . 4

5. Keyboards . 5

6. Pointers . 6

7. Predefined Atoms. 6

8. Connection Setup . 7

9. Requests. 11

10. Connection Close . 63

11. Events . 64

12. Flow Control and Concurrency. 74

Appendix A - KEYSYM Encoding . 74

Appendix B - Protocol Encoding . 93

Glossary . 138

Index . 146

ii

1. Protocol Formats

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of
four bytes. Every request consists of four bytes of a header (containing the major opcode, the
length field, and a data byte) followed by zero or more additional bytes of data. The length
field defines the total length of the request, including the header. The length field in a request
must equal the minimum length required to contain the request. If the specified length is
smaller or larger than the required length, an error is generated. Unused bytes in a request arc
not required to be zero. Major opcodes 128 through 255 are reserved for extensions. Exten¬
sions are intended to contain multiple requests, so extension requests typically have an addi¬
tional minor opcode encoded in the “spare” data byte in the request header. However, the
placement and interpretation of this minor opcode and of all other fields in extension requests
are not defined by the core protocol. Every request on a given connection is implicitly
assigned a sequence number, starting with one, that is used in replies, errors, and events.

Reply Format

Every reply contains a 32-bit length field expressed in units of four bytes. Every reply consists
of 32 bytes followed by zero or more additional bytes of data, as specified in the length field.
Unused bytes within a reply arc not guaranteed to be zero. Every reply also contains the
least-significant 16 bits of the sequence number of the corresponding request.

Error Format

Error reports are 32 bytes long. Every error includes an 8-bit error code. Error codes 128
through 255 are reserved for extensions. Every error also includes the major and minor
opcodes of the failed request and the least-significant 16 bits of the sequence number of the
request. For the following errors (see section 4), the failing resource ID is also returned:
Colormap, Cursor, Drawable, Font, GContext, IDChoice, Pixmap, and Window. For
Atom errors, the failing atom is returned. For Value errors, the failing value is returned.
Other core errors return no additional data. Unused bytes within an error arc not guaranteed to
be zero.

Event Format

Events are 32 bytes long. Unused bytes within an event are not guaranteed to be zero. Every
event contains an 8-bit type code. The most-significant bit in this code is set if the event was
generated from a SendEvent request. Event codes 64 through 127 are reserved for extensions,
although the core protocol does not define a mechanism for selecting interest in such events.
Every core event (with the exception of KeymapNotify) also contains the least-significant 16
bits of the sequence number of the last request issued by the client that was (or is currently
being) processed by the server.

2. Syntactic Conventions

The rest of this document uses the following syntactic conventions.

• The syntax {...} encloses a set of alternatives.

• The syntax [...] encloses a set of structure components.

• In general, TYPEs are in uppercase and AlternativeValues are capitalized.

• Requests in section 9 are described in the following format:

RequestName
argl: typel

argN: typeN
=>

1

X Protocol XI1, Release 5

result 1: typel

resultM: typeM

Errors: kindl, kindK

Description.

If no => is present in the description, then the request has no reply (it is asynchronous),
although errors may still be reported. If =>+ is used, then one or more replies can be
generated for a single request.

• Events in section 11 are described in the following format:

EventName
value 1: typel

valueN: typeN

Description.

3. Common Types

Name Value

LISTofFOO

BITMASK
LISTofVALUE

OR

WINDOW
PIXMAP
CURSOR
FONT
GCONTEXT
COLORMAP
DRAWABLE

A type name of the form LISTofFOO means a counted list of elements
of type FOO. The size of the length field may vary (it is not neces¬
sarily the same size as a FOO), and in some cases, it may be implicit.
It is fully specified in Appendix B. Except where explicitly noted,
zero-length lists are legal.

The types BITMASK and LISTofVALUE are somewhat special. Vari¬
ous requests contain arguments of the form:
value-mask: BITMASK
value-list: LISTofVALUE
These are used to allow the client to specify a subset of a heterogene¬
ous collection of optional arguments. The value-mask specifies which
arguments arc to be provided; each such argument is assigned a unique
bit position. The representation of the BITMASK will typically con¬
tain more bits than there are defined arguments. The unused bits in the
value-mask must be zero (or the server generates a Value error). The
value-list contains one value for each bit set to 1 in the mask, from
least-significant to most-significant bit in the mask. Each value is
represented with four bytes, but the actual value occupies only the
least-significant bytes as required. The values of the unused bytes do
not matter.

A type of the form “T1 or ... or Tn” means the union of the indicated
types. A single-element type is given as the element without enclosing
braces.
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
WINDOW or PIXMAP

2

X Protocol XI1, Release 5

FONTABLE
ATOM
VISUALID
VALUE
BYTE
INT8
INTI 6
INT32
CARD8
CARD 16
CARD32
TIMESTAMP
BITGRAVITY

WINGRAVITY

BOOL
EVENT

POINTEREVENT

DEVICEEVENT

KEYSYM
KEYCODE
BUTTON
KEYMASK
BUTMASK
KEYBUTMASK
STRING8
STRING 16
CHAR2B
POINT
RECTANGLE

ARC

HOST

FONT or GCONTEXT
32-bit value (top three bits guaranteed to be zero)
32-bit value (top three bits guaranteed to be zero)
32-bit quantity (used only in LISTofVALUE)
8-bit value
8-bit signed integer
16-bit signed integer
32-bit signed integer
8-bit unsigned integer
16-bit unsigned integer
32-bit unsigned integer
CARD32
{Forget, Static, Northwest, North, NorthEast, West, Center,

East, Southwest, South, SouthEast}
{Unmap, Static, Northwest, North, NorthEast, West, Center,

East, Southwest, South, SouthEast}
{True, False}
{KeyPress, KeyRelease, OwnerGrabButton, ButtonPress,

ButtonRelease, EnterWindow, LeaveWindow, PointerMotion,
PointerMotionHint, ButtonlMotion, Button2Motion,
Button3Motion, Button4Motion, Button5Motion, ButtonMotion,
Exposure, VisibilityChange, StructureNotify, ResizeRedirect,
SubstructureNotify, SubstructureRedirect, FocusChange,
PropertyChange, ColormapChange, KeymapState}

{ButtonPress, ButtonRelease, EnterWindow, LeaveWindow,
PointerMotion, PointerMotionHint, ButtonlMotion,
Button2Motion, Button3Motion, Button4Motion,

Button5Motion,
ButtonMotion, KeymapState)

{KeyPress, KeyRelease, ButtonPress, ButtonRelease,
PointerMotion, ButtonlMotion, Button2Motion, Button3Motion,
Button4Motion, Button5Motion, ButtonMotion}

32-bit value (top three bits guaranteed to be zero)
CARD8
CARD8
{Shift, Lock, Control, Modi, Mod2, Mod3, Mod4, Mod5}
(Buttonl, Button2, Button3, Button4, Buttons)
KEYMASK or BUTMASK
LISTofCARD8
LISTofCHAR2B
[bytel, byte2: CARD8]
[x, y: INTI6]
[x, y: INTI6,
width, height: CARD 16]

[x, y: INTI6,
width, height: CARD 16,
anglel, angle2: INT16]

[family: {Internet, DECnet, Chaos)
address: LISTofBYTE]

The [x,y] coordinates of a RECTANGLE specify the upper-left comer.

The primary interpretation of large characters in a STRING 16 is that they are composed of two
bytes used to index a 2-D matrix; hence, the use of CHAR2B rather than CARD16. This
corresponds to the JIS/ISO method of indexing 2-byte characters. It is expected that most

3

X Protocol XI 1, Release 5

large fonts will be defined with 2-byte matrix indexing. For large fonts constructed with linear
indexing, a CHAR2B can be interpreted as a 16-bit number by treating bytel as the most-
significant byte. This means that clients should always transmit such 16-bit character values
most-significant byte first, as the server will never byte-swap CHAR2B quantities.

The length, format, and interpretation of a HOST address are specific to the family (see
ChangeHosts request).

4. Errors

In general, when a request terminates with an error, the request has no side effects (that is,
there is no partial execution). The only requests for which this is not true are ChangeWin-
dowAttributes, ChangeGC, PolyTextS, PolyTextl6, FreeColors, StoreColors, and
ChangeKeyboardControl.

The following error codes result from various requests as follows:

Error Description

Access

Alloc

Atom

Colormap

Cursor

Drawable

Font

An attempt is made to grab a key/button combination already
grabbed by another client.

An attempt is made to free a colormap entry not allocated by the
client, or to free an entry in a colormap that was created with all
entries writable.

An attempt is made to store into a read-only or an unallocated
colormap entry.

An attempt is made to modify the access control list from other
than the local host (or otherwise authorized client).

An attempt is made to select an event type that only one client can
select at a time when another client has already selected it.

The server failed to allocate the requested resource. Note that the
explicit listing of Alloc errors in request only covers allocation
errors at a very coarse level and is not intended to cover all cases
of a server running out of allocation space in the middle of service.
The semantics when a server runs out of allocation space are left
unspecified, but a server may generate an Alloc error on any
request for this reason, and clients should be prepared to receive
such errors and handle or discard them.

A value for an ATOM argument does not name a defined ATOM.

A value for a COLORMAP argument does not name a defined
COLORMAP.

A value for a CURSOR argument does not name a defined CUR¬
SOR.

A value for a DRAWABLE argument does not name a defined
WINDOW or PIXMAP.

A value for a FONT argument does not name a defined FONT.

A value for a FONTABLE argument does not name a defined
FONT or a defined GCONTEXT.

4

X Protocol XI1, Release 5

Error Description

GContext A value for a GCONTEXT argument does not name a defined
GCONTEXT.

IDChoice The value chosen for a resource identifier either is not included in
the range assigned to the client or is already in use.

Implementation The sender does not implement some aspect of the request. A
server that generates this error for a core request is deficient. As
such, this error is not listed for any of the requests, but clients
should be prepared to receive such errors and handle or discard
them.

Length The length of a request is shorter or longer than that required to
minimally contain the arguments.

The length of a request exceeds the maximum length accepted by
the server.

Match An InputOnly window is used as a DRAWABLE.

In a graphics request, the GCONTEXT argument does not have the
same root and depth as the destination DRAWABLE argument.

Some argument (or pair of arguments) has the correct type and
range, but it fails to match in some other way required by the
request.

Name A font or color of the specified name does not exist.

Pixmap A value for a PIXMAP argument does not name a defined PIX¬
MAP.

Request

Value

The major or minor opcode does not specify a valid request.

Some numeric value falls outside the range of values accepted by
the request. Unless a specific range is specified for an argument,
the full range defined by the argument’s type is accepted. Any
argument defined as a set of alternatives typically can generate this
error (due to the encoding).

Window A value for a WINDOW argument does not name a defined WIN¬
DOW.

Note

The Atom, Colormap, Cursor, Drawable, Font, GContext, Pixmap, and
Window errors are also used when the argument type is extended by union with a
set of fixed alternatives, for example, <WINDOW or PointerRoot or None>.

5. Keyboards

A KEYCODE represents a physical (or logical) key. Keycodes lie in the inclusive range
[8,255]. A keycode value carries no intrinsic information, although server implementors may
attempt to encode geometry information (for example, matrix) to be interpreted in a server-
dependent fashion. The mapping between keys and keycodes cannot be changed using the pro¬
tocol.

5

X Protocol XI1, Release 5

A KEYSYM is an encoding of a symbol on the cap of a key. The set of defined KEYSYMs
include the character sets Latin 1, Latin 2, Latin 3, Latin 4, Kana, Arabic, Cyrillic, Greek,
Tech, Special, Publish, APL, and Hebrew as well as a set of symbols common on keyboards
(Return, Help, Tab, and so on). KEYSYMs with the most-significant bit (of the 29 bits) set
are reserved as vendor-specific.

A list of KEYSYMs is associated with each KEYCODE. The list is intended to convey the
set of symbols on the corresponding key. If the list (ignoring trailing NoSymbol entries) is a
single KEYSYM “A'”, then the list is treated as if it were the list "K NoSymbol K NoSym¬
bol”. If the list (ignoring trailing NoSymbol entries) is a pair of KEYSYMs ‘‘Kl K2", then
the list is treated as if it were the list “Kl K2 Kl K2". If the list (ignoring trailing NoSymbol
entries) is a triple of KEYSYMs “Kl K2 K3", then the list is treated as if it were the list “Kl
K2 K3 NoSymbol”. When an explicit “void” element is desired in the list, the value Void-
Symbol can be used.

The first four elements of the list are split into two groups of KEYSYMs. Group 1 contains
the first and second KEYSYMs, Group 2 contains the third and fourth KEYSYMs. Within
each group, if the second element of the group is NoSymbol, then the group should be treated
as if the second element were the same as the first element, except when the first element is an
alphabetic KEYSYM ”K” for which both lowercase and uppercase forms are defined. In that
case, the group should be treated as if the first clement were the lowercase form of “AT” and
the second element were the uppercase form of “A”’.

The standard rules for obtaining a KEYSYM from a KeyPress event make use of only the
Group 1 and Group 2 KEYSYMs; no interpretation of other KEYSYMs in the list is defined.
The modifier state determines which group to use. Switching between groups is controlled by
the KEYSYM named MODE SWITCH, by attaching that KEYSYM to some KEYCODE and
attaching that KEYCODE to any one of the modifiers Modi through Mod5. This modifier is
called the ‘‘group modifier.” For any KEYCODE, Group 1 is used when the group modifier
is off, and Group 2 is used when the group modifier is on.

Within a group, the modifier state determines which KEYSYM to use. The first KEYSYM is
used when the Shift and Lock modifiers arc off. The second KEYSYM is used when the Shift
modifier is on, or when the Lock modifier is on and the second KEYSYM is uppercase alpha¬
betic, or when the Lock modifier is on and is interpreted as ShiftLock. Otherwise, when the
Lock modifier is on and is interpreted as CapsLock, the state of the Shift modifier is applied
first to select a KEYSYM; but if that KEYSYM is lowercase alphabetic, then the correspond¬
ing uppercase KEYSYM is used instead.

The mapping between KEYCODEs and KEYSYMs is not used directly by the server; it is
merely stored for reading and writing by clients.

The KEYMASK modifier named Lock is intended to be mapped to either a CapsLock or a
ShiftLock key, but which one is left as application-specific and/or user-specific. However, it is
suggested that the determination be made according to the associated KEYSYM(s) of the
corresponding KEYCODE.

6. Pointers

Buttons are always numbered starting with one.

7, Predefined Atoms

Predefined atoms are not strictly necessary and may not be useful in all environments, but they
will eliminate many InternAtom requests in most applications. Note that they are predefined
only in the sense of having numeric values, not in the sense of having required semantics. The
core protocol imposes no semantics on these names, but semantics are specified in other X
Consortium standards, such as the Inter-Client Communication Conventions Manual and the X
Logical Font Description Conventions.

6

X Protocol XI1, Release 5

The following names have predefined atom values. Note that uppercase and lowercase matter.

ARC ITALIC ANGLE STRING
ATOM MAX SPACE SUBSCRIPT X
BITMAP MIN SPACE SUBSCRIPT Y
CAP HEIGHT NORM SPACE SUPERSCRIPT X
CARDINAL NOTICE SUPERSCRIPT Y
COLORMAP PIXMAP UNDERLINE POSITION
COPYRIGHT POINT UNDERLINE THICKNESS
CURSOR POINT SIZE VISUALID
CUT BUFFERO PRIMARY WEIGHT
CUT BUFFER 1 QUAD WIDTH WINDOW
CUT BUFFER2 RECTANGLE WM CLASS
CUT BUFFER3 RESOLUTION WM CLIENT MACHINE
CUT BUFFER4 RESOURCE MANAGER WM COMMAND
CUT BUFFER5 RGB BEST MAP WM HINTS
CUT BUFFER6 RGB BLUE MAP WM ICON NAME
CUT BUFFER7 RGB COLOR MAP WM ICON SIZE
DRAWABLE RGB DEFAULT MAP WM NAME
END SPACE RGB GRAY MAP WM NORMAL HINTS
FAMILY NAME RGB GREEN MAP WM SIZE HINTS
FONT RGB RED MAP WM TRANSIENT FOR
FONT NAME SECONDARY WM ZOOM HINTS
FULL NAME STRIKEOUT ASCENT X HEIGHT
INTEGER STRIKEOUT DESCENT

To avoid conflicts with possible future names for which semantics might be imposed (either at
the protocol level or in terms of higher level user interface models), names beginning with an
underscore should be used for atoms that arc private to a particular vendor or organization. To
guarantee no conflicts between vendors and organizations, additional prefixes need to be used.
However, the protocol does not define the mechanism for choosing such prefixes. For names
private to a single application or end user but stored in globally accessible locations, it is sug¬
gested that two leading underscores be used to avoid conflicts with other names.

8. Connection Setup

For remote clients, the X protocol can be built on top of any reliable byte stream.

Connection Initiation

The client must send an initial byte of data to identify the byte order to be employed. The
value of the byte must be octal 102 or 154. The value 102 (ASCII uppercase B) means values
are transmitted most-significant byte first, and value 154 (ASCII lowercase 1) means values are
transmitted least-significant byte first. Except where explicitly noted in the protocol, all 16-bit
and 32-bit quantities sent by the client must be transmitted with this byte order, and all 16-bit
and 32-bit quantities returned by the server will be transmitted with this byte order.

Following the byte-order byte, the client sends the following information at connection setup:

protocol-major-version: CARD 16
protocol-minor-version: CARD 16
authorization-protocol-name: STRING8
authorization-protocol-data: STRING8

The version numbers indicate what version of the protocol the client expects the server to
implement

The authorization name indicates what authorization protocol the client expects the server to
use, and the data is specific to that protocol. Specification of valid authorization mechanisms

7

X Protocol XI1, Release 5

is not part of the core X protocol. It is hoped that eventually one authorization protocol will
be agreed upon. In the meantime, a server that implements a different protocol than the client
expects or that only implements the host-based mechanism may simply ignore this information.
If both name and data strings are empty, this is to be interpreted as “no explicit authoriza¬
tion.”

Server Response

The client receives the following information at connection setup:

success: BOOL
protocol-major-version: CARD 16
protocol-minor-version: CARD 16
length: CARD 16

Length is the amount of additional data to follow, in units of four bytes. The version numbers
are an escape hatch in case future revisions of the protocol are necessary. In general, the
major version would increment for incompatible changes, and the minor version would incre¬
ment for small upward compatible changes. Barring changes, the major version will be 11,
and the minor version will be 0. The protocol version numbers returned indicate the protocol
the server actually supports. This might not equal the version sent by the client. The server
can (but need not) refuse connections from clients that offer a different version than the server
supports. A server can (but need not) support more than one version simultaneously.

The client receives the following additional data if authorization fails:

reason: STRING8

The client receives the following additional data if authorization is accepted:

vendor: STRING 8
release-number: CARD32
resource-id-base, resource-id-mask: CARD32
image-byte-order: (LSBFirst, MSBFirst)
bitmap-scanline-unit: {8, 16, 32}
bitmap-scanline-pad: {8, 16, 32}
bitmap-bit-order: {LeastSignificant, MostSignificant}
pixmap-formats: LISTofFORMAT
roots: LISTofSCREEN
motion-buffer-size: CARD32
maximum-request-length: CARD 16
min-keycode, max-keycode: KEYCODE

where:

FORMAT: [depth: CARD8,
bits-per-pixel: [1,4, 8, 16, 24, 32}
scanline-pad: {8, 16, 32}]

8

X Protocol XI1, Release 5

SCREEN: [root: WINDOW
width-in-pixels, height-in-pixels: CARD16
width-in-millimetcrs, height-in-millimeters: CARD16
allowed-depths: LISTofDEPTH
root-depth: CARD8
root-visual: VISUALID
default-colormap: COLORMAP
white-pixel, black-pixel: CARD32
min-installed-maps, max-installed-maps: CARD16
backing-stores: [Never, WhenMapped, Always}
save-unders: BOOL
current-input-masks: SETofEVENT]

DEPTH: [depth: CARDS
visuals: LISTofVISUALTYPE]

VISUALTYPE: [visual-id: VISUALID
class: [StaticCray, StaticColor, TrueColor, Grayscale,

PseudoColor, DirectColor}
red-mask, green-mask, blue-mask: CARD32
bits-per-rgb-valuc: CARD8
colormap-entries: CARD16]

Server Information

The information that is global to the server is:

The vendor string gives some identification of the owner of the server implementation. The
vendor controls the semantics of the release number.

The resource-id-mask contains a single contiguous set of bits (at least 18). The client allocates
resource IDs for types WINDOW, PIXMAP, CURSOR, FONT, GCONTEXT, and COLOR-
MAP by choosing a value with only some subset of these bits set and ORing it with resource-
id-base. Only values constructed in this way can be used to name newly created resources
over this connection. Resource IDs never have the top three bits set. The client is not res¬
tricted to linear or contiguous allocation of resource IDs. Once an ID has been freed, it can be
reused, but this should not be necessary. An ID must be unique with respect to the IDs of all
other resources, not just other resources of the same type. However, note that the value spaces
of resource identifiers, atoms, visual ids, and keysyms are distinguished by context, and as such,
are not required to be disjoint; for example, a given numeric value might be both a valid win¬
dow ID, a valid atom, and a valid keysym.

Although the server is in general responsible for byte-swapping data to match the client,
images are always transmitted and received in formats (including byte order) specified by the
server. The byte order for images is given by image-byte-order and applies to each scanline
unit in XY format (bitmap format) and to each pixel value in Z format.

A bitmap is represented in scanline order. Each scanline is padded to a multiple of bits as
given by bitmap-scanline-pad. The pad bits are of arbitrary value. The scanline is quantized
in multiples of bits as given by bitmap-scanline-unit. The bitmap-scanline-unit is always less
than or equal to the bitmap-scanline-pad. Within each unit, the leftmost bit in the bitmap is
either the least-significant or most-significant bit in the unit, as given by bitmap-bit-order. If a
pixmap is represented in XY format, each plane is represented as a bitmap, and the planes
appear from most-significant to least-significant in bit order with no padding between planes.

Pixmap-formats contains one entry for each depth value. The entry describes the Z format
used to represent images of that depth. An entry for a depth is included if any screen supports
that depth, and all screens supporting that depth must support only that Z format for that depth.

9

X Protocol XI1, Release 5

In Z format, the pixels are in scanline order, left to right within a scanline. The number of bits
used to hold each pixel is given by bits-per-pixel. Bits-per-pixel may be larger than strictly
required by the depth, in which case the least-significant bits are used to hold the pixmap data,
and the values of die unused high-order bits are undefined. When the bits-per-pixel is 4, the
order of nibbles in the byte is the same as the image byte-order. When the bits-per-pixel is 1,
the format is identical for bitmap format. Each scanline is padded to a multiple of bits as
given by scanline-pad. When bits-per-pixel is 1, this will be identical to bitmap-scanline-pad.

How a pointing device roams the screens is up to the server implementation and is transparent
to the protocol. No geometry is defined among screens.

The server may retain the recent history of pointer motion and do so to a finer granularity than
is reported by MotionNotify events. The GetMotionEvents request makes such history
available. The motion-buffer-size gives the approximate maximum number of elements in the
history buffer.

Maximum-request-length specifies the maximum length of a request accepted by the server, in
4-byte units. That is, length is the maximum value that can appear in the length field of a
request. Requests larger than this maximum generate a Length error, and the server will read
and simply discard the entire request. Maximum-request-length will always be at least 4096
(that is, requests of length up to and including 16384 bytes will be accepted by all servers).

Min-keycode and max-keycode specify the smallest and largest keycode values transmitted by
the server. Min-keycode is never less than 8, and max-keycode is never greater than 255. Not
all keycodes in this range are required to have corresponding keys.

Screen Information

The information that applies per screen is:

The allowed-depths specifies what pixmap and window depths are supported. Pixmaps are
supported for each depth listed, and windows of that depth are supported if at least one visual
type is listed for the depth. A pixmap depth of one is always supported and listed, but win¬
dows of depth one might not be supported. A depth of zero is never listed, but zero-depth
InputOnly windows are always supported.

Root-depth and root-visual specify the depth and visual type of the root window. Width-in¬
pixels and height-in-pixels specify the size of the root window (which cannot be changed).
The class of the root window is always InputOutput. Width-in-millimeters and height-in¬
millimeters can be used to determine the physical size and the aspect ratio.

The default-colormap is the one initially associated with the root window. Qients with
minimal color requirements creating windows of the same depth as the root may want to allo¬
cate from this map by default.

Black-pixel and white-pixel can be used in implementing a monochrome application. These
pixel values are for permanently allocated entries in the default-colormap. The actual RGB
values may be settable on some screens and, in any case, may not actually be black and white.
The names are intended to convey the expected relative intensity of the colors.

The border of the root window is initially a pixmap filled with the black-pixel. The initial
background of the root window is a pixmap filled with some unspecified two-color pattern
using black-pixel and white-pixel.

Min-installed-maps specifies the number of maps that can be guaranteed to be installed simul¬
taneously (with InstallColormap), regardless of the number of entries allocated in each map.
Max-installed-maps specifies the maximum number of maps that might possibly be installed
simultaneously, depending on their allocations. Multiple static-visual colormaps with identical
contents but differing in resource ID should be considered as a single map for the purposes of
this number. For the typical case of a single hardware colormap, both values will be 1.

Backing-stores indicates when the server supports backing stores for this screen, although it
may be storage limited in the number of windows it can support at once. If save-unders is

10

X Protocol XI1, Release 5

True, the server can support the save-under mode in CreateWindow and ChangeWin-
dowAttributes, although again it may be storage limited.

The current-input-events is what GetWindowAttributes would return for the all-event-masks
for the root window.

Visual Information

The information that applies per visual-type is:

A given visual type might be listed for more than one depth or for more than one screen.

For PseudoColor, a pixel value indexes a colormap to produce independent RGB values; the
RGB values can be changed dynamically. Grayscale is treated in the same way as Pseu¬
doColor except which primary drives the screen is undefined; thus, the client should always
store the same value for red, green, and blue in colormaps. For DirectColor, a pixel value is
decomposed into separate RGB subfields, and each subfield separately indexes the colormap
for the corresponding value. The RGB values can be changed dynamically. TrueColor is
treated in the same way as DirectColor except the colormap has predefined read-only RGB
values. These values are server-dependent but provide linear or near-linear increasing ramps in
each primary. StaticCoIor is treated in the same way as PseudoColor except the colormap
has predefined read-only RGB values, which are server-dependent. StaticGray is treated in
the same way as StaticCoIor except the red, green, and blue values are equal for any single
pixel value, resulting in shades of gray. StaticGray with a two-entry colormap can be thought
of as monochrome.

The red-mask, green-mask, and blue-mask arc only defined for DirectColor and TrueColor.
Each has one contiguous set of bits set to 1 with no intersections. Usually each mask has the
same number of bits set to 1.

The bits-per-rgb-value specifics the log base 2 of the number of distinct color intensity values
(individually) of red, green, and blue. This number need not bear any relation to the number
of colormap entries. Actual RGB values arc always passed in the protocol within a 16-bit
spectrum, with 0 being minimum intensity and 65535 being the maximum intensity. On
hardware that provides a linear zero-based intensity ramp, the following relationship exists:

hw-intensity = protocol-intensity / (65536 / total-hw-intensities)

Colormap entries are indexed from 0. The colormap-entries defines the number of available
colormap entries in a newly created colormap. For DirectColor and TrueColor, this will
usually be 2 to the power of the maximum number of bits set to 1 in red-mask, green-mask,
and blue-mask.

9. Requests

CreateWindow

wid, parent: WINDOW
class'. {InputOutput, InputOnly, CopyFromParent}
depth: CARD8
visual: VISUALID or CopyFromParent
x, y: INT16
width, height, border-width: CARD 16
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Alloc, Colormap, Cursor, IDChoice, Match, Pixmap, Value, Window

This request creates an unmapped window and assigns the identifier wid to it.

A class of CopyFromParent means the class is taken from the parent. A depth of zero for
class InputOutput or CopyFromParent means the depth is taken from the parent. A visual
of CopyFromParent means the visual type is taken from the parent. For class InputOutput,

11

X Protocol XI1, Release 5

the visual type and depth must be a combination supported for the screen (or a Match error
results). The depth need not be the same as the parent, but the parent must not be of class
InputOnly (or a Match error results). For class InputOnly, the depth must be zero (or a
Match error results), and the visual must be one supported for the screen (or a Match error
results). However, the parent can have any depth and class.

The server essentially acts as if InputOnly windows do not exist for the purposes of graphics
requests, exposure processing, and VisibilityNotify events. An InputOnly window cannot be
used as a drawable (as a source or destination for graphics requests). InputOnly and Inpu-
tOutput windows act identically in other respects-properties, grabs, input control, and so on.

The coordinate system has the X axis horizontal and the Y axis vertical, with the origin [0, 0]
at the upper left. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
Each window and pixmap has its own coordinate system. For a window, the origin is inside
the border at the inside upper left.

The x and y coordinates for the window are relative to the parent’s origin and specify the posi¬
tion of the upper-left outer comer of the window (not the origin). The width and height
specify the inside size (not including the border) and must be nonzero (or a Value error
results). The border-width for an InputOnly window must be zero (or a Match error results).

The window is placed on top in the stacking order with respect to siblings.

The value-mask and value-list specify attributes of the window that are to be explicitly initial¬
ized. The possible values are:

Attribute Type

background-pixmap PIXMAP or None or ParentRelative
background-pixel CARD32
border-pixmap PIXMAP or CopyFromParent
border-pixel CARD32
bit-gravity BITGRAVITY
win-gravity WINGRAVITY
backing-store (NotUsefuI, WhenMapped, Always}
backing-planes CARD32
backing-pixel CARD32
save-under BOOL
event-mask SETofEVENT
do-not-propagate-mask SETofDEVICEEVENT
override-redirect BOOL
colormap COLORMAP or CopyFromParent
cursor CURSOR or None

The default values when attributes are not explicitly initialized are:

Attribute Default

background-pixmap None
border-pixmap CopyFromParent
bit-gravity Forget
win-gravity Northwest
backing-store NotUsefuI
backing-planes all ones
backing-pixel zero
save-under False

12

X Protocol Xll, Release 5

Attribute Default

event-mask {} (empty set)
do-not-propagate-mask {} (empty set)
override-redirect False
colormap CopyFromParent
cursor None

Only the following attributes arc defined for InputOnly windows:

• win-gravity

• event-mask

• do-not-propagate-mask

• override-redirect

• cursor

It is a Match error to specify any other attributes for InputOnly windows.

If background-pixmap is given, it overrides the default background-pixmap. The background
pixmap and the window must have the same root and the same depth (or a Match error
results). Any size pixmap can be used, although some sizes may be faster than others. If
background None is specified, the window has no defined background. If background Paren-
tRelative is specified, the parent’s background is used, but the window must have the same
depth as the parent (or a Match error results). If the parent has background None, then the
window will also have background None. A copy of the parent’s background is not made.
The parent’s background is reexamined each time the window background is required. If
background-pixel is given, it overrides the default background-pixmap and any background-
pixmap given explicitly, and a pixmap of undefined size filled with background-pixel is used
for the background. Range checking is not performed on the background-pixel value; it is sim¬
ply truncated to the appropriate number of bits. For a ParentRelative background, the back¬
ground tile origin always aligns with the parent’s background tile origin. Otherwise, the back¬
ground tile origin is always the window origin.

When no valid contents are available for regions of a window and the regions are either visible
or the server is maintaining backing store, the server automatically tiles the regions with the
window’s background unless the window has a background of None. If the background is
None, the previous screen contents from other windows of the same depth as the window are
simply left in place if the contents come from the parent of the window or an inferior of the
parent; otherwise, the initial contents of the exposed regions are undefined. Exposure events
are then generated for the regions, even if the background is None.

The border tile origin is always the same as the background tile origin. If border-pixmap is
given, it overrides the default border-pixmap. The border pixmap and the window must have
the same root and the same depth (or a Match error results). Any size pixmap can be used,
although some sizes may be faster than others. If CopyFromParent is given, the parent’s
border pixmap is copied (subsequent changes to the parent’s border attribute do not affect the
child), but the window must have the same depth as the parent (or a Match error results).
The pixmap might be copied by sharing the same pixmap object between the child and parent
or by making a complete copy of the pixmap contents. If border-pixel is given, it overrides
the default border-pixmap and any border-pixmap given explicitly, and a pixmap of undefined
size filled with border-pixel is used for the border. Range checking is not performed on the
border-pixel value; it is simply truncated to the appropriate number of bits.

Output to a window is always clipped to the inside of the window, so that the border is never
affected.

The bit-gravity defines which region of the window should be retained if the window is
resized, and win-gravity defines how the window should be repositioned if the parent is resized

13

X Protocol XI1, Release 5

(see ConfigureWindow request).

A backing-store of WhenMapped advises the server that maintaining contents of obscured
regions when the window is mapped would be beneficial. A backing-store of Always advises
the server that maintaining contents even when the window is unmapped would be beneficial.
In this case, the server may generate an exposure event when the window is created. A value
of NotUseful advises the server that maintaining contents is unnecessary, although a server
may still choose to maintain contents while the window is mapped. Note that if the server
maintains contents, then the server should maintain complete contents not just the region within
the parent boundaries, even if the window is larger than its parent. While the server maintains
contents, exposure events will not normally be generated, but the server may stop maintaining
contents at any time.

If save-under is True, the server is advised that when this window is mapped, saving the con¬
tents of windows it obscures would be beneficial.

When the contents of obscured regions of a window are being maintained, regions obscured by
noninferior windows are included in the destination (and source, when the window is the
source) of graphics requests, but regions obscured by inferior windows are not included.

The backing-planes indicates (with bits set to 1) which bit planes of the window hold dynamic
data that must be preserved in backing-stores and during savc-undcrs. The backing-pixel
specifies what value to use in planes not covered by backing-planes. The server is free to save
only the specified bit planes in the backing-store or save-under and regenerate the remaining
planes with the specified pixel value. Any bits beyond the specified depth of the window in
these values are simply ignored.

The event-mask defines which events the client is interested in for this window (or for some
event types, inferiors of the window). The do-not-propagate-mask defines which events should
not be propagated to ancestor windows when no client has the event type selected in this win¬
dow.

The override-redirect specifies whether map and configure requests on this window should
override a SubstructureRedirect on the parent, typically to inform a window manager not to
tamper with the window.

The colormap specifies the colormap that best reflects the true colors of the window. Servers
capable of supporting multiple hardware colormaps may use this information, and window
managers may use it for InstallColormap requests. The colormap must have the same visual
type and root as the window (or a Match error results). If CopyFromParent is specified, the
parent’s colormap is copied (subsequent changes to the parent’s colormap attribute do not
affect the child). However, the window must have the same visual type as the parent (or a
Match error results), and the parent must not have a colormap of None (or a Match error
results). For an explanation of None, see FreeColormap request. The colormap is copied by
sharing the colormap object between the child and the parent, not by making a complete copy
of the colormap contents.

If a cursor is specified, it will be used whenever the pointer is in the window. If None is
specified, the parent’s cursor will be used when the pointer is in the window, and any change
in the parent’s cursor will cause an immediate change in the displayed cursor.

This request generates a CreateNotify event.

The background and border pixmaps and the cursor may be freed immediately if no further
explicit references to them are to be made.

Subsequent drawing into the background or border pixmap has an undefined effect on the win¬
dow state. The server might or might not make a copy of the pixmap.

ChangeWindowAttributes

window: WINDOW
value-mask: BITMASK

14

X Protocol XI1, Release 5

value-list: LISTofVALUE

Errors: Access, Colormap, Cursor, Match, Pixmap, Value, Window

The value-mask and value-list specify which attributes are to be changed. The values and res¬
trictions are the same as for CreateVVindow.

Setting a new background, whether by background-pixmap or background-pixel, overrides any
previous background. Setting a new border, whether by border-pixel or border-pixmap, over¬
rides any previous border.

Changing the background does not'cause the window contents to be changed. Setting the
border or changing the background such that the border tile origin changes causes the border to
be repainted. Changing the background of a root window to None or Parent Relative restores
the default background pixmap. Changing the border of a root window to CopyFromParent
restores the default border pixmap.

Changing the win-gravity does not affect the current position of the window.

Changing the backing-store of an obscured window to WhenMapped or Always or changing
the backing-planes, backing-pixel, or save-under of a mapped window may have no immediate
effect.

Multiple clients can select input on the same window; their event-masks are disjoint. When an
event is generated, it will be reported to all interested clients. However, only one client at a
time can select for SubstructureRedirect, only one client at a time can select for Resiz-
eRedirect, and only one client at a time can select for ButtonPress. An attempt to violate
these restrictions results in an Access error.

There is only one do-not-propagate-mask for a window, not one per client

Changing the colormap of a window (by defining a new map, not by changing the contents of
the existing map) generates a ColormapNotify event. Changing the colormap of a visible
window might have no immediate effect on the screen (see InstallColormap request).

Changing the cursor of a root window to None restores the default cursor.

The order in which attributes are verified and altered is server-dependent. If an error is gen¬
erated, a subset of the attributes may have been altered.

GetWindowAttributes

window: WINDOW

=>

visual: VISUALID
class: {InputOutput, InputOnly}
bit-gravity: BITGRAVITY
win-gravity: WINGRAVITY
backing-store: {NotUseful, WhenMapped, Always}
backing-planes: CARD32
backing-pixel: CARD32
save-under: BOOL
colormap: COLORMAP or None
map-is-installed: BOOL
map-state: (Unmapped, Unviewable, Viewable)
all-event-masks, your-event-mask: SETofEVENT
do-not-propagate-mask: SETofDEVICEEVENT
override-redirect: BOOL

Errors: Window

This request returns the current attributes of the window. A window is Unviewable if it is
mapped but some ancestor is unmapped. All-cvcnt-masks is the inclusive-OR of all event
masks selected on the window by clients. Your-event-mask is the event mask selected by the

15

X Protocol XI1, Release 5

querying client.

DestroyWindow

window: WINDOW

Errors: Window

If the argument window is mapped, an UnmapWindow request is performed automatically.
The window and all inferiors are then destroyed, and a DestroyNotify event is generated for
each window. The ordering of the DestroyNotify events is such that for any given window,
DestroyNotify is generated on all inferiors of the window before being generated on the win¬
dow itself. The ordering among siblings and across subhierarchies is not otherwise con¬
strained.

Normal exposure processing on formerly obscured windows is performed.

If the window is a root window, this request has no effect.

DestroySubwindows

window: WINDOW

Errors: Window

This request performs a DestroyWindow request on all children of the window, in bottom-to-
top stacking order.

ChangeSaveSet

window: WINDOW
mode: (Insert, Delete}

Errors: Match, Value, Window

This request adds or removes the specified window from the client’s save-set. The window
must have been created by some other client (or a Match error results). For further informa¬
tion about the use of the save-set, see section 10.

When windows are destroyed, the server automatically removes them from the save-set.

Reparent Window

window, parent: WINDOW

x, y: INTI6

Errors: Match, Window

If the window is mapped, an UnmapWindow request is performed automatically first. The
window is then removed from its current position in the hierarchy and is inserted as a child of
the specified parent. The x and y coordinates arc relative to the parent’s origin and specify the
new position of the upper-left outer comer of the window. The window is placed on top in the
stacking order with respect to siblings. A ReparentNotify event is then generated. The
override-redirect attribute of the window is passed on in this event; a value of True indicates
that a window manager should not tamper with this window. Finally, if the window was origi¬
nally mapped, a MapWindow request is performed automatically.

Normal exposure processing on formerly obscured windows is performed. The server might
not generate exposure events for regions from the initial unmap that are immediately obscured
by the final map.

A Match error is generated if:

• The new parent is not on the same screen as the old parent.

• The new parent is the window itself or an inferior of the window.

16

X Protocol XI1, Release 5

• The new parent is InputOnly and the window is not.

• The window has a ParentRelative background, and the new parent is not the same
depth as the window.

MapWindow

window. WINDOW

Errors: Window

If the window is already mapped, this request has no effect.

If the override-redirect attribute of the window is False and some other client has selected
SubstructureRedirect on the parent, then a MapRequest event is generated, but the window
remains unmapped. Otherwise, the window is mapped, and a MapNotify event is generated.

If the window is now viewable and its contents have been discarded, the window is tiled with
its background (if no background is defined, the existing screen contents are not altered), and
zero or more exposure events are generated. If a backing-store has been maintained while the
window was unmapped, no exposure events are generated. If a backing-store will now be
maintained, a full-window exposure is always generated. Otherwise, only visible regions may
be reported. Similar tiling and exposure take place for any newly viewable inferiors.

MapSubwindows

window. WINDOW

Errors: Window

This request performs a MapWindow request on all unmapped children of the window, in
top-to-bottom stacking order.

UnmapWindow

window. WINDOW

Errors: Window

If the window is already unmapped, this request has no effect. Otherwise, the window is
unmapped, and an UnmapNotify event is generated. Normal exposure processing on formerly
obscured windows is performed.

UnmapSubwindows

window: WINDOW

Errors: Window

This request performs an UnmapWindow request on all mapped children of the window, in
bottom-to-top stacking order.

ConfigureWindow

window: WINDOW
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Match, Value, Window

This request changes the configuration of the window. The value-mask and value-list specify
which values are to be given. The possible values are:

Attribute Type

17

X Protocol XI1, Release 5

Attribute Type

X INTI 6

y INTI 6
width CARD 16
height CARD16
border-width CARD 16
sibling WINDOW
stack-mode (Above, Below, Toplf, Bottomlf, Opposite)

The x and y coordinates are relative to the parent’s origin and specify the position of the
upper-left outer comer of the window. The width and height specify the inside size, not
including the border, and must be nonzero (or a Value error results). Those values not
specified are taken from the existing geometry of the window. Note that changing just the
border-width leaves the outer-left comer of the window in a fixed position but moves the abso¬
lute position of the window’s origin. It is a Match error to attempt to make the border-width
of an InputOnly window nonzero.

If the override-redirect attribute of the window is False and some other client has selected
SubstructureRedirect on the parent, a ConfigureRequest event is generated, and no further
processing is performed. Otherwise, the following is performed:

If some other client has selected ResizeRedirect on the window and the inside width or height
of the window is being changed, a ResizeRequest event is generated, and the current inside
width and height are used instead. Note that the override-redirect attnbute of the window has
no effect on ResizeRedirect and that SubstructureRedirect on the parent has precedence
over ResizeRedirect on the window.

The geometry of the window is changed as specified, the window is restacked among siblings,
and a ConfigureNotify event is generated if the state of the window actually changes. If the
inside width or height of the window has actually changed, then children of the window are
affected, according to their win-gravity. Exposure processing is performed on formerly
obscured windows (including the window itself and its inferiors if regions of them were
obscured but now are not). Exposure processing is also performed on any new regions of the
window (as a result of increasing the width or height) and on any regions where window con¬
tents are lost.

If the inside width or height of a window is not changed but the window is moved or its
border is changed, then the contents of the window arc not lost but move with the window.
Changing the inside width or height of the window causes its contents to be moved or lost,
depending on the bit-gravity of the window. It also causes children to be reconfigured,
depending on their win-gravity. For a change of width and height of W and H, we define the
[x, y] pairs as:

Direction Deltas

NorthWest [0,0]
North [W/2, 0]
NorthEast [W, 0]
West [0, H/2]
Center [W/2, H/2]
East [W, H/2]
Southwest [0, H]
South [W/2, H]
SouthEast [W, H]

18

X Protocol XI1, Release 5

When a window with one of these bit-gravities is resized, the corresponding pair defines the
change in position of each pixel in the window. When a window with one of these win-
gravities has its parent window resized, the corresponding pair defines the change in position
of the window within the parent. This repositioning generates a GravityNotify event. Gravi-
tyNotify events are generated after the ConfigureNotify event is generated.

A gravity of Static indicates that the contents or origin should not move relative to the origin
of the root window. If the change in size of the window is coupled with a change in position
of [X, Y], then for bit-gravity the change in position of each pixel is [-X, -Y] and for win-
gravity the change in position of a child when its parent is so resized is [-X, -Y], Note that
Static gravity still only takes effect when the width or height of the window is changed, not
when the window is simply moved.

A bit-gravity of Forget indicates that the window contents are always discarded after a size
change, even if backing-store or save-under has been requested. The window is tiled with its
background (except, if no background is defined, the existing screen contents are not altered)
and zero or more exposure events are generated.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is
permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of Unmap is like Northwest, but the child is also unmapped when the parent
is resized, and an UnmapNotify event is generated. UnmapNotify events are generated after
the ConfigureNotify event is generated.

If a sibling and a stack-mode are specified, the window is restacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, then the window is placed at the top of
the stack.

Bottomlf If the window occludes the sibling, then the window is placed at the bot¬
tom of the stack.

Opposite If the sibling occludes the window, then the window is placed at the top of
the stack. Otherwise, if the window occludes the sibling, then the window
is placed at the bottom of the stack.

If a stack-mode is specified but no sibling is specified, the window is rcstacked as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, then the window is placed at the top
of the stack.

Bottomlf If the window occludes any sibling, then the window is placed at the bot¬
tom of the stack.

Opposite If any sibling occludes the window, then the window is placed at the top
of the stack. Otherwise, if the window occludes any sibling, then the win¬
dow is placed at the bottom of the stack.

It is a Match error if a sibling is specified without a stack-mode or if the window is not actu¬
ally a sibling.

Note that the computations for Bottomlf, Toplf, and Opposite are performed with respect to
the window’s final geometry (as controlled by the other arguments to the request), not to its
initial geometry.

19

X Protocol XI1, Release 5

Attempts to configure a root window have no effect.

CirculateWindow

window: WINDOW
direction: {RaiseLowest, LowerHighest}

Errors: Value, Window

If some other client has selected SubstructureRedirect on the window, then a CirculateRe-
quest event is generated, and no further processing is performed. Otherwise, the following is
performed, and then a CirculateNotify event is generated if the window is actually restacked.

For RaiseLowest, CirculateWindow raises the lowest mapped child (if any) that is occluded
by another child to the top of the stack. For LowerHighest, CirculateWindow lowers the
highest mapped child (if any) that occludes another child to the bottom of the stack. Exposure
processing is performed on formerly obscured windows.

GetGeometry

draw able: DRAW ABLE

=>

root: WINDOW
depth: CARD8
x, y: INTI6
width, height, border-width: CARD16

Errors: Drawable

This request returns the root and current geometry of the drawable. The depth is the number
of bits per pixel for the object. The x, y, and border-width will always be zero for pixmaps.
For a window, the x and y coordinates specify the upper-left outer comer of the window rela¬
tive to its parent’s origin, and the width and height specify the inside size, not including the
border.

It is legal to pass an InputOnly window as a drawable to this request.

QueryTree

window: WINDOW

=>

root: WINDOW
parent: WINDOW or None
children: LISTofWINDOW

Errors: Window

This request returns the root, the parent, and the children of the window. The children are
listed in bottom-to-top stacking order.

InternAtom

name: STRING8
only-if-exists: BOOL

=>

atom: ATOM or None

Errors: Alloc, Value

This request returns the atom for the given name. If only-if-exists is False, then the atom is
created if it does not exist. The string should use the ISO Latin-1 encoding. Uppercase and

20

X Protocol XI1, Release 5

lowercase matter.

The lifetime of an atom is not tied to the interning client. Atoms remain defined until server
reset (see section 10).

GetAtomName

atom: ATOM

=>

name: STRING8

Errors: Atom

This request returns the name for the given atom.

ChangeProperty

window: WINDOW
property, type: ATOM
format: {8, 16, 32}
mode: (Replace, Prepend, Append}
data: LISTofINT8 or LISTofINT16 or LISTofINT32

Errors: Alloc, Atom, Match, Value, Window

This request alters the property for the specified window. The type is uninterpreted by the
server. The format specifies whether the data should be viewed as a list of 8-bit, 16-bit, or
32-bit quantities so that the server can correctly byte-swap as necessary.

If the mode is Replace, the previous property value is discarded. If the mode is Prepend or
Append, then the type and format must match the existing property value (or a Match error
results). If the property is undefined, it is treated as defined with the correct type and format
with zero-length data. For Prepend, the data is tacked on to the beginning of the existing
data, and for Append, it is tacked on to the end of the existing data.

This request generates a PropertyNotify event on the window.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until server reset (see section 10).

The maximum size of a property is server-dependent and may vary dynamically.

DeleteProperty

window: WINDOW
property: ATOM

Errors: Atom, Window

This request deletes the property from the specified window if the property exists and generates
a PropertyNotify event on the window unless the property does not exist.

GetProperty

window: WINDOW
property: ATOM
type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

=>

type: ATOM or None
format: (0, 8, 16, 32}
bytes-after: CARD32

21

X Protocol XI1, Release 5

value: LISTofINT8 or LISToflNT16 or LISTofINT32

Errors: Atom, Value, Window

If the specified property does not exist for the specified window, then the return type is None,
the format and bytes-after are zero, and the value is empty. The delete argument is ignored in
this case. If the specified property exists but its type does not match the specified type, then
the return type is the actual type of the property, the format is the actual format of the property
(never zero), the bytes-after is the length of the property in bytes (even if the format is 16 or
32), and the value is empty. The delete argument is ignored in this case. If the specified pro¬
perty exists and either AnyPropertyType is specified or the specified type matches the actual
type of the property, then the return type is the actual type of the property, the format is the
actual format of the property (never zero), and the bytes-after and value are as follows, given:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

1 = 4* long-offset
T = N - I
L = MINIMUM(T, 4 * long-length)
A = N - (I + L)

The returned value starts at byte index I in the property (indexing from 0), and its length in
bytes is L. However, it is a Value error if long-offset is given such that L is negative. The
value of bytes-after is A, giving the number of trailing unread bytes in the stored property. If
delete is True and the bytes-after is zero, the property is also deleted from the window, and a
PropertyNotify event is generated on the window.

RotateProperties

window: WINDOW
delta: INTI6
properties: LISTofATOM

Errors: Atom, Match, Window

If the property names in the list are viewed as being numbered starting from zero, and there
are N property names in the list, then the value associated with property name I becomes the
value associated with property name (I + delta) mod N, for all I from zero to N - 1. The
effect is to rotate the states by delta places around the virtual ring of property nanies (right for
positive delta, left for negative delta).

If delta mod N is nonzero, a PropertyNotify event is generated for each property in the order
listed.

If an atom occurs more than once in the list or no property with that name is defined for the
window, a Match error is generated. If an Atom or Match error is generated, no properties
are changed.

ListProperties

window: WINDOW

=>

atoms: LISTofATOM

Errors: Window

This request returns the atoms of properties currently defined on the window.

SetSelectionOwner

22

X Protocol XI1, Release 5

selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

This request changes the owner, owner window, and last-change time of the specified selection.
This request has no effect if the specified time is earlier than the current last-change time of
the specified selection or is later than the current server time. Otherwise, the last-change time
is set to die specified time with CurrentTime replaced by the current server time. If the
owner window is specified as None, then the owner of the selection becomes None (that is,
no owner). Otherwise, the owner of the selection becomes the client executing the request. If
the new owner (whether a client or None) is not the same as the current owner and the current
owner is not None, then the current owner is sent a SelectionClear event.

If the client that is the owner of a selection is later terminated (that is, its connection is closed)
or if the owner window it has specified in the request is later destroyed, then the owner of the
selection automatically reverts to None, but the last-change time is not affected.

The selecuon atom is uninterpreted by the server. The owner window is returned by the Get-
SelectionOwner request and is reported in SelectionRequest and SelectionClear events.

Selections are global to the server.

GetSelectionOwner

selection: ATOM

=>

owner: WINDOW or None

Errors: Atom

This request returns the current owner window of the specified selection, if any. If None is
returned, then there is no owner for the selection.

ConvertSelection

selection, target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime

Errors: Atom, Window

If the specified selection has an owner, the server sends a SelectionRequest event to that
owner. If no owner for the specified selection exists, the server generates a SelectionNotify
event to the requestor with property None. The arguments are passed on unchanged in either
of the events.

SendEvent

destination: WINDOW or PointerWindow or InputFocus
propagate: BOOL
event-mask: SETofEVENT
event: <normal-event-format>

Errors: Value, Window

If PointerWindow is specified, destination is replaced with the window that the pointer is in.
If InputFocus is specified and the focus window contains the pointer, destination is replaced
with the window that the pointer is in. Otherwise, destination is replaced with the focus win¬
dow.

23

X Protocol XI1, Release 5

If the event-mask is the empty set, then the event is sent to the client that created the destina¬
tion window. If that client no longer exists, no event is sent.

If propagate is False, then the event is sent to every client selecting on destination any of the
event types in event-mask.

If propagate is True and no clients have selected on destination any of the event types in
event-mask, then destination is replaced with the closest ancestor of destination for which some
client has selected a type in event-mask and no intervening window has that type in its do-
not-propagate-mask. If no such window exists or if the window is an ancestor of the focus
window and InputFocus was originally specified as the destination, then the event is not sent
to any clients. Otherwise, the event is reported to every client selecting on the final destination
any of the types specified in event-mask.

The event code must be one of the core events or one of the events defined by an extension (or
a Value error results) so that the server can correctly byte-swap the contents as necessary.
The contents of the event are otherwise unaltered and unchecked by the server except to force
on the most-significant bit of the event code and to set the sequence number in the event
correctly.

Active grabs are ignored for this request.

GrabPointer

grab-window: WINDOW
owner-events: BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: {Synchronous, Asynchronous}
confine-to: WINDOW or None
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime

=>

status: {Success, AlreadyGrabbed, Frozen, InvalidTirne, NotViewable}

Errors: Cursor, Value, Window

This request actively grabs control of the pointer. Further pointer events are only reported to
the grabbing client. The request overrides any active pointer grab by this client.

If owner-events is False, all generated pointer events arc reported with respect to grab-window
and are only reported if selected by event-mask. If owner-events is True and a generated
pointer event would normally be reported to this client, it is reported normally. Otherwise, the
event is reported with respect to the grab-window and is only reported if selected by event-
mask. For either value of owner-events, unreported events are simply discarded.

If pointer-mode is Asynchronous, pointer event processing continues normally. If the pointer
is currently frozen by this client, then processing of pointer events is resumed. If pointer-mode
is Synchronous, the state of the pointer (as seen by means of the protocol) appears to freeze,
and no further pointer events arc generated by tine server until the grabbing client issues a
releasing AllowEvents request or until the pointer grab is released. Actual pointer changes are
not lost while the pointer is frozen. They arc simply queued for later processing.

If keyboard-mode is Asynchronous, keyboard event processing is unaffected by activation of
the grab. If keyboard-mode is Synchronous, the state of the keyboard (as seen by means of
the protocol) appears to freeze, and no further keyboard events are generated by the server
until the grabbing client issues a releasing AllowEvents request or until the pointer grab is
released. Actual keyboard changes are not lost while the keyboard is frozen. They are simply
queued for later processing.

If a cursor is specified, then it is displayed regardless of what window the pointer is in. If no
cursor is specified, then when the pointer is in grab-window or one of its subwindows, the

24

X Protocol XI1, Release 5

normal cursor for that window is displayed. Otherwise, the cursor for grab-window is
displayed.

If a confine-to window is specified, then the pointer will be restricted to stay contained in that
window. The confine-to window need have no relationship to the grab-window. If the pointer
is not initially in the confine-to window, then it is warped automatically to the closest edge
(and enter/leave events are generated normally) just before the grab activates. If the confine-to
window is subsequently reconfigured, the pointer will be warped automatically as necessary to
keep it contained in the window.

This request generates EnterNotify and LeaveNotify events.

The request fails with status AlreadyGrabbed if the pointer is actively grabbed by some other
client. The request fails with status Frozen if the pointer is frozen by an active grab of
another client. The request fails with status NotViewable if grab-window or confine-to win¬
dow is not viewable or if the confine-to window lies completely outside the boundaries of the
root window. The request fails with status InvalidTime if the specified time is earlier than
the last-pointer-grab time or later than the current server time. Otherwise, the last-pointer-grab
time is set to the specified time, with CurrentTime replaced by the current server time.

UngrabPointer

time: TIMESTAMP or CurrentTime

This request releases the pointer if this client has it actively grabbed (from either GrabPointer
or GrabButton or from a normal button press) and releases any queued events. The request
has no effect if the specified time is earlier than the last-pointer-grab time or is later than the
current server time.

This request generates EnterNotify and LeaveNotify events.

An UngrabPointer request is performed automatically if the event window or confine-to win¬
dow for an active pointer grab becomes not viewable or if window reconfiguration causes the
confine-to window to lie completely outside the boundaries of the root window.

GrabButton

modifiers'. SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW
owner-events'. BOOL
event-mask: SETofPOINTEREVENT
pointer-mode, keyboard-mode: {Synchronous, Asynchronous)
confine-to: WINDOW or None
cursor: CURSOR or None

Errors: Access, Cursor, Value, Window

This request establishes a passive grab. In the future, the pointer is actively grabbed as
described in GrabPointer, the last-pointer-grab time is set to the time at which the button was
pressed (as transmitted in the ButtonPress event), and the ButtonPress event is reported if all
of the following conditions are true:

• The pointer is not grabbed and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys are
logically down.

• The grab-window contains the pointer.

• The confine-to window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor of
grab-window.

25

X Protocol Xll, Release 5

The interpretation of the remaining arguments is the same as for GrabPointer. The active
grab is terminated automatically when the logical state of the pointer has all buttons released,
independent of the logical state of modifier keys. Note that the logical state of a device (as
seen by means of the protocol) may lag the physical state if device event processing is frozen.

This request overrides all previous passive grabs by the same client on the same button/key
combinations on the same window. A modifier of AnyModifier is equivalent to issuing the
request for all possible modifier combinations (including the combination of no modifiers). It
is not required that all specified modifiers have currently assigned keycodes. A button of
AnyButton is equivalent to issuing the request for all possible buttons. Otherwise, it is not
required that the button specified currently be assigned to a physical button.

An Access error is generated if some other client has already issued a GrabButton request
with the same button/key combination on the same window. When using AnyModifier or
AnyButton, the request fails completely (no grabs are established), and an Access error is
generated if there is a conflicting grab for any combination. The request has no effect on an
active grab.

UngrabButton

modifiers: SETofKEYMASK or AnyModifier
button: BUTTON or AnyButton
grab-window: WINDOW

Errors: Value, Window

This request releases the passive button/key combination on the specified window if it was
grabbed by this client. A modifiers argument of AnyModifier is equivalent to issuing the
request for all possible modifier combinations (including the combination of no modifiers). A
button of AnyButton is equivalent to issuing the request for all possible buttons. The request
has no effect on an active grab.

ChangeActivePointerGrab

event-mask: SETofPOINTEREVENT
cursor: CURSOR or None
time: TIMESTAMP or CurrentTime

Errors: Cursor, Value

This request changes the specified dynamic parameters if the pointer is actively grabbed by the
client and the specified time is no earlier than the last-pointcr-grab time and no later than the
current server time. The interpretation of event-mask and cursor are the same as in Grab-
Pointer. This request has no effect on the parameters of any passive grabs established with
GrabButton.

GrabKeyboard

grab-window: WINDOW

owner-events: BOOL
pointer-mode, keyboard-mode: (Synchronous, Asynchronous}
time: TIMESTAMP or CurrentTime

=>

status: (Success, AlreadyGrabbed, Frozen, InvalidTime, NotViewable}

Errors: Value, Window

This request actively grabs control of the keyboard. Further key events are reported only to
the grabbing client. This request overrides any active keyboard grab by this client.

26

X Protocol XI1, Release 5

If owner-events is False, all generated key events are reported with respect to grab-window.
If owner-events is True and if a generated key event would normally be reported to this
client, it is reported normally. Otherwise, the event is reported with respect to the grab-
window. Both KeyPress and KeyRelease events arc always reported, independent of any
event selection made by the client.

If keyboard-mode is Asynchronous, keyboard event processing continues normally. If the
keyboard is currently frozen by this client, then processing of keyboard events is resumed. If
keyboard-mode is Synchronous, the state of the keyboard (as seen by means of the protocol)
appears to freeze. No further keyboard events arc generated by the server until the grabbing
client issues a releasing AllowEvents request or until the keyboard grab is released. Actual
keyboard changes are not lost while the keyboard is frozen. They are simply queued for later
processing.

If pointer-mode is Asynchronous, pointer event processing is unaffected by activation of the
grab. If pointer-mode is Synchronous, the state of the pointer (as seen by means of the proto¬
col) appears to freeze. No further pointer events arc generated by the server until the grabbing
client issues a releasing AllowEvents request or until the keyboard grab is released. Actual
pointer changes are not lost while the pointer is frozen. They are simply queued for later pro¬
cessing.

This request generates Focusln and FocusOut events.

The request fails with status AlreadyGrabbed if the keyboard is actively grabbed by some
other client. The request fails with status Frozen if the keyboard is frozen by an active grab
of another client. The request fails with status NotViewable if grab-window is not viewable.
The request fails with status InvalidTime if the specified time is earlier than the last-
keyboard-grab time or later than the current server time. Otherwise, the last-keyboard-grab
time is set to the specified time with CurrentTime replaced by the current server time.

UngrabKeyboard

time: TIMESTAMP or CurrentTime

This request releases the keyboard if this client has it actively grabbed (as a result of either
GrabKeyboard or GrabKey) and releases any queued events. The request has no effect if
the specified time is earlier than the last-kcyboard-grab lime or is later than the current server
time.

This request generates Focusln and FocusOut events.

An UngrabKeyboard is performed automatically if the event window for an active keyboard
grab becomes not viewable.

GrabKey

key: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnvModifier
grab-window: WINDOW
owner-events: BOOL
pointer-mode, keyboard-mode: (Synchronous, Asynchronous}

Errors: Access, Value, Window

This request establishes a passive grab on the keyboard. In the future, the keyboard is actively
grabbed as described in GrabKeyboard, the last-kcyboard-grab time is set to the time at
which the key was pressed (as transmitted in the KeyPress event), and the KeyPress event is
reported if all of the following conditions arc true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier key) is
logically pressed when the specified modifier keys are logically down, and no other
modifier keys are logically down.

27

X Protocol XI1, Release 5

• Either the grab-window is an ancestor of (or is) the focus window, or the grab-window
is a descendent of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of grab-
window.

The interpretation of the remaining arguments is the same as for GrabKeyboard. The active
grab is terminated automatically when the logical state of the keyboard has the specified key
released, independent of the logical state of modifier keys. Note that the logical state of a dev¬
ice (as seen by means of the protocol) may lag the physical state if device event processing is
frozen.

This request overrides all previous passive grabs by the same client on the same key combina¬
tions on the same window. A modifier of AnyModifier is equivalent to issuing the request
for all possible modifier combinations (including the combination of no modifiers). It is not
required that all modifiers specified have currently assigned keycodes. A key of AnyKey is
equivalent to issuing the request for all possible keycodes. Otherwise, the key must be in the
range specified by min-keycode and max-keycodc in the connection setup (or a Value error
results).

An Access error is generated if some other client has issued a GrabKey with the same key
combination on the same window. When using AnyModifier or AnyKey, the request fails
completely (no grabs are established), and an Access error is generated if there is a conflicting
grab for any combination.

UngrabKey

key: KEYCODE or AnyKey
modifiers: SETofKEYMASK or AnyModifier
grab-window: WINDOW

Errors: Value, Window

This request releases the key combination on the specified window if it was grabbed by this
client. A modifiers argument of AnyModifier is equivalent to issuing the request for all possi¬
ble modifier combinations (including the combination of no modifiers). A key of AnyKey is
equivalent to issuing the request for all possible keycodes. This request has no effect on an
active grab.

AllowEvents

mode: {AsyncPointer, SyncPointer, ReplayPointer, AsyncKeyboard,
SyncKeyboard, ReplayKeyboard, AsyncBoth, SyncBoth }

time: TIMESTAMP or CurrentTime

Errors: Value

This request releases some queued events if the client has caused a device to freeze. The
request has no effect if the specified time is earlier than the last-grab time of the most recent
active grab for the client or if the specified time is later than the current server time.

For AsyncPointer, if the pointer is frozen by the client, pointer event processing continues
normally. If the pointer is frozen twice by the client on behalf of two separate grabs, Async¬
Pointer thaws for both. AsyncPointer has no effect if the pointer is not frozen by the client,
but the pointer need not be grabbed by the client.

For SyncPointer, if the pointer is frozen and actively grabbed by the client, pointer event pro¬
cessing continues normally until the next ButtonPress or ButtonRelease event is reported to
the client, at which time the pointer again appears to freeze. However, if the reported event
causes the pointer grab to be released, then the pointer does not freeze. SyncPointer has no
effect if the pointer is not frozen by the client or if the pointer is not grabbed by the client.

28

X Protocol Xll, Release 5

For ReplayPointer, if the pointer is actively grabbed by the client and is frozen as the result
of an event having been sent to the client (either from the activation of a GrabButton or from
a previous AllowEvents with mode SyncPointer but not from a GrabPointer), then the
pointer grab is released and that event is completely reprocessed, this time ignoring any passive
grabs at or above (towards the root) the grab-window of the grab just released. The request
has no effect if the pointer is not grabbed by the client or if the pointer is not frozen as the
result of an event.

For AsyncKeyboard, if the keyboard is frozen by the client, keyboard event processing con¬
tinues normally. If the keyboard is frozen twice by the client on behalf of two separate grabs,
AsyncKeyboard thaws for both. AsyncKeyboard has no effect if the keyboard is not frozen
by the client, but the keyboard need not be grabbed by the client.

For SyncKeyboard, if the keyboard is frozen and actively grabbed by the client, keyboard
event processing continues normally until the next KeyPress or KeyRelease event is reported
to the client, at which time the keyboard again appears to freeze. However, if the reported
event causes the keyboard grab to be released, then the keyboard does not freeze. SyncKey¬
board has no effect if the keyboard is not frozen by the client or if the keyboard is not
grabbed by the client.

For ReplayKeyboard, if the keyboard is actively grabbed by the client and is frozen as the
result of an event having been sent to the client (cither from the activation of a GrabKey or
from a previous AllowEvents with mode SyncKeyboard but not from a GrabKeyboard),
then the keyboard grab is released and that event is completely reprocessed, this time ignoring
any passive grabs at or above (towards the root) the grab-window of the grab just released.
The request has no effect if the keyboard is not grabbed by the client or if the keyboard is not
frozen as the result of an event.

For SyncBoth, if both pointer and keyboard are frozen by the client, event processing (for
both devices) continues normally until the next ButtonPress, ButtonRelease, KeyPress, or
KeyRelease event is reported to the client for a grabbed device (button event for the pointer,
key event for the keyboard), at which time the devices again appear to freeze. However, if the
reported event causes the grab to be released, then the devices do not freeze (but if the other
device is still grabbed, then a subsequent event for it will still cause both devices to freeze).
SyncBoth has no effect unless both pointer and keyboard arc frozen by the client. If the
pointer or keyboard is frozen twice by the client on behalf of two separate grabs, SyncBoth
thaws for both (but a subsequent freeze for SyncBoth will only freeze each device once).

For AsyncBoth, if the pointer and the keyboard arc frozen by the client, event processing for
both devices continues normally. If a device is frozen twice by the client on behalf of two
separate grabs, AsyncBoth thaws for both. AsyncBoth has no effect unless both pointer and
keyboard are frozen by the client.

AsyncPointer, SyncPointer, and ReplayPointer have no effect on processing of keyboard
events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no effect on process¬
ing of pointer events.

It is possible for both a pointer grab and a keyboard grab to be active simultaneously (by the
same or different clients). When a device is frozen on behalf of either grab, no event process¬
ing is performed for the device. It is possible for a single device to be frozen because of both
grabs. In this case, the freeze must be released on behalf of both grabs before events can
again be processed. If a device is frozen twice by a single client, then a single AllowEvents
releases both.

GrabServer

This request disables processing of requests and close-downs on all connections other than the
one this request arrived on.

29

X Protocol XI1, Release 5

UngrabServer

This request restarts processing of requests and close-downs on other connections.

QueryPointer

window: WINDOW

=>

root: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, win-x, win-y: INTI6
mask: SETofKEYBUTMASK

Errors: Window

The root window the pointer is logically on and the pointer coordinates relative to the root’s
origin are returned. If same-screen is False, then the pointer is not on the same screen as the
argument window, child is None, and win-x and win-y are zero. If same-screen is True, then
win-x and win-y are the pointer coordinates relative to the argument window’s origin, and
child is the child containing the pointer, if any. The current logical state of the modifier keys
and the buttons are also returned. Note that the logical state of a device (as seen by means of
the protocol) may lag the physical state if device event processing is frozen.

GetMotionEvents

start, stop: TIMESTAMP or CurrentTime
window: WINDOW

=>

events: LISTofTIMECOORD

where:

TIMECOORD: [x, y: INTI6
time: TIMESTAMP]

Errors: Window

This request returns all events in the motion history buffer that fall between the specified start
and stop times (inclusive) and that have coordinates that lie within (including borders) the
specified window at its present placement. The x and y coordinates are reported relative to the
origin of the window.

If the start time is later than the stop time or if the start time is in the future, no events are
returned. If the stop time is in the future, it is equivalent to specifying CurrentTime.

TransIateCoordinates

sre-window, dst-window: WINDOW
sre-x, sre-y: INTI6

=>

same-screen: BOOL
child: WINDOW or None
dst-x, dst-y: INTI6

Errors: Window

The sre-x and sre-y coordinates are taken relative to sre-window’s origin and are returned as
dst-x and dst-y coordinates relative to dst-window’s origin. If same-screen is False, then sre-
window and dst-window are on different screens, and dst-x and dst-y are zero. If the

30

X Protocol Xll, Release 5

coordinates are contained in a mapped child of dst-window, then that child is returned.

WarpPointer

src-window: WINDOW or None
dst-window: WINDOW or None
src-x, src-y: INTI6
src-width, src-height: CARD 16
dst-x, dst-y: INTI6

Errors: Window

If dst-window is None, this request moves the pointer by offsets [dst-x, dst-y] relative to the
current position of the pointer. If dst-window is a window, this request moves the pointer to
[dst-x, dst-y] relative to dst-window’s origin. However, if src-window is not None, the move
only takes place if src-window contains the pointer and the pointer is contained in the specified
rectangle of src-window.

The src-x and src-y coordinates are relative to sre-window’s origin. If src-height is zero, it is
replaced with the current height of src-window minus src-y. If src-width is zero, it is replaced
with the current width of src-window minus src-x.

This request cannot be used to move the pointer outside the confme-to window of an active
pointer grab. An attempt will only move the pointer as far as the closest edge of the confine-to
window.

This request will generate events just as if the user had instantaneously moved the pointer.

SetlnputFocus

focus: WINDOW or PointerRoot or None
revert-to: [Parent, PointerRoot, None]
time: TIMESTAMP or CurrentTime

Errors: Match, Value, Window

This request changes the input focus and the last-focus-change time. The request has no effect
if the specified time is earlier than the current last-focus-change time or is later than the current
server time. Otherwise, the last-focus-changc time is set to the specified time with Current-
Time replaced by the current server time.

If None is specified as the focus, all keyboard events are discarded until a new focus window
is set. In this case, the revert-to argument is ignored.

If a window is specified as the focus, it becomes the keyboard’s focus window. If a generated
keyboard event would normally be reported to this window or one of its inferiors, the event is
reported normally. Otherwise, the event is reported with respect to the focus window.

If PointerRoot is specified as the focus, the focus window is dynamically taken to be the root
window of whatever screen the pointer is on at each keyboard event. In this case, the revert-to
argument is ignored.

This request generates Focusln and FocusOut events.

The specified focus window must be viewable at the time of the request (or a Match error
results). If the focus window later becomes not viewable, the new focus window depends on
the revert-to argument. If revert-to is Parent, the focus reverts to the parent (or the closest
viewable ancestor) and the new revert-to value is taken to be None. If revert-to is Pointer-
Root or None, the focus reverts to that value. When the focus reverts, Focusln and Focu¬
sOut events are generated, but the last-focus-changc time is not affected.

GetlnputFocus

31

X Protocol Xll, Release 5

=>

focus: WINDOW or PointerRoot or None
revert-to: {Parent, PointerRoot, None)

This request returns the current focus state.

QueryKeymap

=>

keys: LISTofCARD8

This request returns a bit vector for the logical state of the keyboard. Each bit set to 1 indi¬
cates that the corresponding key is currently pressed. The vector is represented as 32 bytes.
Byte N (from 0) contains the bits for keys 8N to 8N + 7 with the least-significant bit in the
byte representing key 8N. Note that the logical state of a device (as seen by means of the pro¬
tocol) may lag the physical state if device event processing is frozen.

OpenFont

fid:FONT
name: STRING8

Errors: Alloc, IDChoice, Name

This request loads the specified font, if necessary, and associates identifier fid with it. The font
name should use the ISO Latin-1 encoding, and uppercase and lowercase do not matter. The
interpretation of characters “?” (octal value 77) and (octal value 52) in the name is not
defined by the core protocol, but is reserved for future definition. A structured format for font
names is specified in the X Consortium standard X Logical Font Description Conventions.

Fonts are not associated with a particular screen and can be stored as a component of any
graphics context.

CloseFont

font: FONT

Errors: Font

This request deletes the association between the resource ID and the font. The font itself will
be freed when no other resource references it.

QueryFont

font: FONTABLE

=>

font-info: FONTINFO
char-infos: LISTofCHARINFO

where:

FONTINFO: [draw-direction: { LeftToRight, RightToLeft}
min-char-or-byte2, max-char-or-byte2: CARD 16
min-bytel, max-bytel: CARD8
all-chars-exist: BOOL
default-char: CARD 16
min-bounds: CHARINFO
max-bounds: CHARINFO
font-ascent: INTI6
font-descent: INTI6
properties: LISTofFONTPROP]

32

X Protocol XI1, Release 5

FONTPROP: [name: ATOM
value: <32-bit-value>]

CHARINFO: [left-side-bearing: INTI6
right-side-bearing: INTI6
character-width: INTI6
ascent: INTI6
descent: INTI6
attributes: CARD 16]

Errors: Font

This request returns logical information about a font. If a gcontext is given for font, the
currently contained font is used.

The draw-direction is just a hint and indicates whether most char-infos have a positive, Left-
ToRight, or a negative, RightToLeft, character-width metric. The core protocol defines no
support for vertical text.

If min-bytel and max-bytel are both zero, then min-char-or-byte2 specifies the linear character
index corresponding to the first element of char-infos, and max-char-or-byte2 specifies the
linear character index of the last element. If cither min-bytel or max-bytel are nonzero, then
both min-char-or-byte2 and max-char-or-bytc2 will be less than 256, and the 2-byte character
index values corresponding to char-infos element N (counting from 0) are:

bytel = N/D + min-bytel
byte2 = N\D + min-char-or-byte2

where:

D = max-char-or-byte2 - min-char-or-byte2 + 1
/ = integer division
\ = integer modulus

If char-infos has length zero, then min-bounds and max-bounds will be identical, and the
effective char-infos is one filled with this char-info, of length:

L = D * (max-bytel - min-bytel + 1)

That is, all glyphs in the specified linear or matrix range have the same information, as given
by min-bounds (and max-bounds). If all-chars-cxist is True, then all characters in chai-infos
have nonzero bounding boxes.

The default-char specifies the character that will be used when an undefined or nonexistent
character is used. Note that default-char is a CARD16, not CHAR2B. For a font using 2-byte
matrix format, the default-char has bytel in the most-significant byte and byte2 in the least-
significant byte. If the default-char itself specifics an undefined or nonexistent character, then
no printing is performed for an undefined or nonexistent character.

The min-bounds and max-bounds contain the minimum and maximum values of each indivi¬
dual CHARINFO component over all char-infos (ignoring nonexistent characters). The bound¬
ing box of the font (that is, the smallest rectangle enclosing the shape obtained by superimpos¬
ing all characters at the same origin [x,y]) has its upper-left coordinate at:

[x + min-bounds.left-side-bearing, y - max-bounds.ascent]

with a width of:

max-bounds.right-side-bearing - min-bounds.left-side-bearing

and a height of:

max-bounds.ascent + max-bounds.desccnt

33

X Protocol XI1, Release 5

The font-ascent is the logical extent of the font above the baseline and is used for determining
line spacing. Specific characters may extend beyond this. The font-descent is the logical
extent of the font at or below the baseline and is used for determining line spacing. Specific
characters may extend beyond this. If the baseline is at Y-coordinate y, then the logical extent
of the font is inclusive between the Y-coordinatc values (y - font-ascent) and (y + font-descent

- 1).

A font is not guaranteed to have any properties. The interpretation of the property value (for
example, INT32, CARD32) must be derived from a priori knowledge of the property. A basic
set of font properties is specified in the X Consortium standard X Logical Font Description
Conventions.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rectangle
enclosing the character’s shape), described in terms of CHARINFO components, is a rectangle
with its upper-left comer at:

[x + left-side-bearing, y - ascent]

with a width of:

right-side-bearing - left-side-bcaring

and a height of:

ascent + descent

and the origin for the next character is defined lo be:

[x + character-width, y]

Note that the baseline is logically viewed as being just below nondescending characters (when
descent is zero, only pixels with Y-coordinatcs less than y are drawn) and that the origin is
logically viewed as being coincident with the left edge of a nonkemed character (when left-
side-bearing is zero, no pixels with X-coordinatc less than x arc drawn).

Note that CHARINFO metric values can be negative.

A nonexistent character is represented with all CHARINFO components zero.

The interpretation of the per-character attributes field is server-dependent.

QueryTextExtents

font: FONTABLE
string: STRING 16

=>

draw-direction: { LeftToRight, RightToLeft}
font-ascent: INTI6
font-descent: INTI6
overall-ascent: INTI6
overall-descent: INTI6
overall-width: INT32
overall-left: INT32
overall-right: INT32

Errors: Font

This request returns the logical extents of the specified string of characters in the specified font.
If a gcontext is given for font, the currently contained font is used. The draw-direction, font-
ascent, and font-descent are the same as described in QueryFont. The overall-ascent is the
maximum of the ascent metrics of all characters in the string, and the overall-descent is the
maximum of the descent metrics. The overall-width is the sum of the character-width metrics

34

X Protocol XI1, Release 5

of all characters in the string. For each character in the string, let W be the sum of the
character-width metrics of all characters preceding it in the string, let L be the left-side-bearing
metric of the character plus W, and let R be the right-side-bearing metric of the character plus
W. The overall-left is the minimum L of all characters in the string, and the overall-right is
the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, the server will inter¬
pret each CHAR2B as a 16-bit number that has been transmitted most-significant byte first
(that is, bytel of the CHAR2B is taken as the most-significant byte).

Characters with all zero metrics are ignored. If the font has no defined default-char, then
undefined characters in the string are also ignored.

ListFonts

pattern: STRING8
max-names: CARD 16

=>

names: LISTofSTRING8

This request returns a list of available font names (as controlled by the font search path; see
SetFontPath request) that match the pattern. At most, max-names names will be returned.
The pattern should use the ISO Latin-1 encoding, and uppercase and lowercase do not matter.
In the pattern, the “?” character (octal value 77) will match any single character, and the
character (octal value 52) will match any number of characters. The returned names are in
lowercase.

ListFontsWithlnfo

pattern: STRING8
max-names: CARD 16

=>+

name: STRING8
info: FONTINFO
replies-hint: CARD32

where:

FONTINFO: <same type definition as in QueryFont>

This request is similar to ListFonts, but it also returns information about each font. The
information returned for each font is identical to what QueryFont would return except that the
per-character metrics are not returned. Note that this request can generate multiple replies.
With each reply, replies-hint may provide an indication of how many more fonts will be
returned. This number is a hint only and may be larger or smaller than the number of fonts
actually returned. A zero value does not guarantee that no more fonts will be returned. After
the font replies, a reply with a zero-length name is sent to indicate the end of the reply
sequence.

SetFontPath

path: LISTofSTRING8

Errors: Value

This request defines the search path for font lookup. There is only one search path per server,
not one per client. The interpretation of the strings is operating-system-dependent, but the
strings are intended to specify directories to be searched in the order listed.

Setting the path to the empty list restores the default path defined for the server.

35

X Protocol XI1, Release 5

As a side effect of executing this request, the server is guaranteed to flush all cached informa¬
tion about fonts for which there currently are no explicit resource IDs allocated.

The meaning of an error from this request is system specific.

GetFontPath

=>

path: LISTofSTRING8

This request returns the current search path for fonts.

CreatePixmap

pid: PIXMAP
drawable: DRAW ABLE
depth: CARD8
width, height: CARD16

Errors: Alloc, Drawable, IDChoice, Value

This request creates a pixmap and assigns the identifier pid to it. The width and height must
be nonzero (or a Value error results). The depth must be one of the depths supported by the
root of the specified drawable (or a Value error results). The initial contents of the pixmap
are undefined.

It is legal to pass an InputOnly window as a drawable to this request.

FreePixmap

pixmap: PIXMAP

Errors: Pixmap

This request deletes the association between the resource ID and the pixmap. The pixmap
storage will be freed when no other resource references it.

CreateGC

cid: GCONTEXT
drctwable: DRAWABLE
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Alloc, Drawable, Font, IDChoice, Match, Pixmap, Value

This request creates a graphics context and assigns the identifier cid to it. The gcontext can be
used with any destination drawable having the same root and depth as the specified drawable;
use with other drawables results in a Match error.

The value-mask and value-list specify which components are to be explicitly initialized. The
context components are:

Component Type

function

plane-mask
foreground
background
line-width

{Clear, And, AndReverse, Copy, Andlnverted, NoOp, Xor,
Or, Nor, Equiv, Invert, OrReverse, Copylnverted,
Orlnverted, Nand, Set)

CARD32
CARD32
CARD32
CARD16

36

X Protocol XI1, Release 5

Component Type

line-style (Solid, OnOffDash, DoubleDash}
cap-style (NotLast, Butt, Round, Projecting}
join-style (Miter, Round, Bevel}
fill-style (Solid, Tiled, OpaqueStippled, Stippled}
fill-rule {EvenOdd, Winding}
arc-mode (Chord, PieSlice}
tile PIXMAP
stipple PIXMAP
tile-stipple-x-origin INTI 6
tile-stipple-y-origin INTI 6
font FONT
subwindow-mode {ClipByChildren, Includelnferiors}
graphics-exposures BOOL
clip-x-origin INTI 6
clip-y-origin INTI 6
clip-mask PIXMAP or None
dash-offset CARD16
dashes CARD8

In graphics operations, given a source and destination pixel, the result is computed bitwise on
corresponding bits of the pixels; that is, a Boolean operation is performed in each bit plane.
The plane-mask restricts the operation to a subset of planes, so the result is:

((sre FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

Range checking is not performed on the values for foreground, background, or plane-mask.
They are simply truncated to the appropriate number of bits.

The meanings of the functions are:

Function Operation

Clear 0
And sre AND dst
AndReverse sre AND (NOT dst)
Copy sre
Andlnverted (NOT sre) AND dst
NoOp dst
Xor sre XOR dst
Or sre OR dst
Nor (NOT sre) AND (NOT dst)
Equiv (NOT sre) XOR dst
Invert NOT dst
OrReverse sre OR (NOT dst)
Copylnverted NOT sre
Orlnverted (NOT sre) OR dst
Nand (NOT sre) OR (NOT dst)
Set 1

The line-width is measured in pixels and can be greater than or equal to one, a wide line, or
the special value zero, a thin line.

37

X Protocol XI1, Release 5

Wide lines are drawn centered on the path described by the graphics request. Unless otherwise
specified by the join or cap style, the bounding box of a wide line with endpoints [xl, yl], [x2,
y2] and width w is a rectangle with vertices at the following real coordinates:

[xl-(w*sn/2), yl+(w*cs/2)], [xl+(w*sn/2), yl-{w*cs/2)],
[x2-(w*sn/2),.y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

The sn is the sine of the angle of the line and cs is the cosine of the angle of the line. A pixel
is part of the line (and hence drawn) if the center of the pixel is fully inside the bounding box,
which is viewed as having infinitely thin edges. If the center of the pixel is exactly on the
bounding box, it is part of the line if and only if the interior is immediately to its right (x
increasing direction). Pixels with centers on a horizontal edge are a special case and are part
of the line if and only if the interior or the boundary is immediately below (y increasing direc¬
tion) and if the interior or the boundary is immediately to the right (x increasing direction).
Note that this description is a mathematical model describing the pixels that are drawn for a
wide line and does not imply that trigonometry is required to implement such a model. Real
or fixed point arithmetic is recommended for computing the comers of the line endpoints for
lines greater than one pixel in width.

Thin lines (zero line-width) are “one pixel wide” lines drawn using an unspecified, device¬
dependent algorithm. There are only two constraints on this algorithm. First, if a line is
drawn unclipped from [x 1 ,y 1] to [x2,y2] and another line is drawn unclipped from
[xl+dx,yl+dy] to [x2+dx,y2+dy], then a point [x,y] is touched by drawing the first line if and
only if the point [x+dx,y+dy] is touched by drawing the second line. Second, the effective set
of points comprising a line cannot be affected by clipping. Thus, a point is touched in a
clipped line if and only if the point lies inside the clipping region and the point would be
touched by the line when drawn undipped.

Note that a wide line drawn from [xl.yl] to [x2,y2] always draws the same pixels as a wide
line drawn from [x2,y2] to [xl.yl], not counting cap-style and join-style. Implementors are
encouraged to make this property true for Lhin lines, but it is not required. A line-width of
zero may differ from a line-width of one in which pixels arc drawn. In general, drawing a thin
line will be faster than drawing a wide line of width one, but thin lines may not mix well
aesthetically with wide lines because of the different drawing algorithms. If it is desirable to
obtain precise and uniform results across all displays, a client should always use a line-width
of one, rather than a line-width of zero.

The line-style defines which sections of a line arc drawn:

Solid The full path of the line is drawn.

DoubleDash The full path of the line is drawn, but the even dashes are filled differently
than the odd dashes (see fill-style), with Butt cap-style used where even
and odd dashes meet.

OnOffDash Only the even dashes arc drawn, and cap-style applies to all internal ends
of the individual dashes (except NotLast is treated as Butt).

The cap-style defines how the endpoints of a path are drawn:

NotLast The result is equivalent to Butt, except that for a line-width of zero the
final endpoint is not drawn.

Butt The result is square at the endpoint (perpendicular to the slope of the line)
with no projection beyond.

Round The result is a circular arc with its diameter equal to the line-width, cen¬
tered on the endpoint; it is equivalent to Butt for line-width zero.

38

X Protocol XI1, Release 5

Projecting The result is square at the end, but the path continues beyond the endpoint
for a distance equal to half the line-width; it is equivalent to Butt for line-
width zero.

The join-style defines how comers are drawn for wide lines:

Miter The outer edges of the two lines extend to meet at an angle. However, if
the angle is less than 11 degrees, a Bevel join-style is used instead.

Round The result is a circular arc with a diameter equal to the line-width, centered
on the joinpoint.

Bevel The result is Butt endpoint styles, and then the triangular “notch” is
filled.

For a line with coincident endpoints (xl=x2, yl=y2), when the cap-style is applied to both
endpoints, the semantics depends on the line-width and the cap-style:

NotLast thin This is device-dependent, but the desired effect is that nothing is
drawn.

Butt thin This is device-dependent, but the desired effect is that a single
pixel is drawn.

Round thin This is the same as Butt/thin.

Projecting thin This is the same as Butt/thin.

Butt wide Nothing is drawn.

Round wide The closed path is a circle, centered at the endpoint and with a
diameter equal to the line-width.

Projecting wide The closed path is a square, aligned with the coordinate axes, cen¬
tered at the endpoint and with sides equal to the line-width.

For a line with coincident endpoints (xl=x2, yl=y2), when the join-style is applied at one or
both endpoints, the effect is as if the line was removed from the overall path. However, if the
total path consists of (or is reduced to) a single point joined with itself, the effect is the same
as when the cap-style is applied at both endpoints.

The tile/stipple represents an infinite 2D plane, with the tilc/stipple replicated in all dimensions.
When that plane is superimposed on the drawable for use in a graphics operation, the upper
left comer of some instance of the tilc/stipple is at the coordinates within the drawable
specified by the tile/stipple origin. The tile/stipplc and clip origins are interpreted relative to
the origin of whatever destination drawable is specified in a graphics request.

The tile pixmap must have the same root and depth as the gcontext (or a Match error results).
The stipple pixmap must have depth one and must have the same root as the gcontext (or a
Match error results). For fill-style Stippled (but not fill-style OpaqueStippled), the stipple
pattern is tiled in a single plane and acts as an additional clip mask to be ANDed with the
clip-mask. Any size pixmap can be used for tiling or stippling, although some sizes may be
faster to use than others.

The fill-style defines the contents of the source for line, text, and fill requests. For all text and
fill requests (for example, PolyText8, PolyTextl6, PolyFillRectangle, FillPoly, and PolyFil-
lArc) as well as for line requests with line-style Solid, (for example, PolyLine, PoIySeg-
ment, PolyRectangle, PolyArc) and for the even dashes for line requests with line-style
OnOffDash or DoubleDash:

Solid Foreground

39

X Protocol XI1, Release 5

Tiled Tile

OpaqueStippled A tile with the same width and height as stipple but with background
everywhere stipple has a zero and with foreground everywhere stipple
has a one

Stippled Foreground masked by stipple

For the odd dashes for line requests with line-style DoubleDash:

Solid

Tiled

Background

Same as for even dashes

Same as for even dashes

Background masked by stipple

OpaqueStippled

Stippled

The dashes value allowed here is actually a simplified form of the more general patterns that
can be set with SetDashes. Specifying a value of N here is equivalent to specifying the two
element list [N, N] in SetDashes. The value must be nonzero (or a Value error results). The
meaning of dash-offset and dashes are explained in the SetDashes request.

The clip-mask restricts writes to the destination drawablc. Only pixels where the clip-mask has
bits set to 1 are drawn. Pixels are not drawn outside the area covered by the clip-mask or
where the clip-mask has bits set to 0. The clip-mask affects all graphics requests, but it does
not clip sources. The clip-mask origin is interpreted relative to the origin of whatever destina¬
tion drawable is specified in a graphics request. If a pixmap is specified as the clip-mask, it
must have depth 1 and have the same root as the gcontext (or a Match error results). If clip-
mask is None, then pixels are always drawn, regardless of the dip origin. The clip-mask can
also be set with the SetCUpRectangles request.

For ClipByChildren, both source and destination windows are additionally clipped by all
viewable InputOutput children. For Includelnferiors, neither source nor destination window
is clipped by inferiors. Tnis will result in including subwindow contents in the source and
drawing through subwindow boundaries of the destination. The use of Includelnferiors with
a source or destination window of one depth with mapped inferiors of differing depth is not
illegal, but the semantics is undefined by the core protocol.

The fill-rule defines what pixels are inside (that is, are drawn) for paths given in FillPoly
requests. EvenOdd means a point is inside if an infinite ray with the point as origin crosses
the path an odd number of times. For Winding, a point is inside if an infinite ray with the
point as origin crosses an unequal number of clockwise and counterclockwise directed path
segments. A clockwise directed path segment is one that crosses the ray from left to right as
observed from the point. A counter-clockwise segment is one that crosses the ray from right
to left as observed from the point. The case where a directed line segment is coincident with
the ray is uninteresting because one can simply choose a different ray that is not coincident
with a segment.

For both fill rules, a point is infinitely small and the path is an infinitely thin line. A pixel is
inside if the center point of the pixel is inside and the center point is not on the boundary. If
the center point is on the boundary, the pixel is inside if and only if the polygon interior is
immediately to its right (x increasing direction). Pixels with centers along a horizontal edge
are a special case and are inside if and only if the polygon interior is immediately below (y
increasing direction).

The arc-mode controls filling in the PolyFillArc request.

The graphics-exposures flag controls GraphicsExposure event generation for CopyArea and
CopyPlane requests (and any similar requests defined by extensions).

The default component values are:

40

X Protocol XI1, Release 5

Component Default

function Copy
plane-mask all ones
foreground 0
background 1
line-width 0
line-style Solid
cap-style Butt
join-style Miter
fill-style Solid
fill-rule EvenOdd
arc-mode PieSlice
tile Pixmap of unspecified size filled with foreground pixel

(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)

stipple Pixmap of unspecified size filled with ones
tile-stipple-x-origin 0
tile-stipple-y-origin 0
font <server-dependent-font>
subwindow-mode ClipByChildren
graphics-exposures True
clip-x-origin 0
clip-y-origin 0
clip-mask None
dash-offset 0
dashes 4 (that is, the list (4, 4))

Storing a pixmap in a gcontext might or might not result in a copy being made. If the pixmap
is later used as the destination for a graphics request, the change might or might not be
reflected in the gcontext. If the pixmap is used simultaneously in a graphics request as both a
destination and as a tile or stipple, the results arc not defined.

It is quite likely that some amount of gcontext information will be cached in display hardware
and that such hardware can only cache a small number of gcontexts. Given the number and
complexity of components, clients should view switching between gcontexts with nearly identi¬
cal state as significantly more expensive than making minor changes to a single gcontext.

ChangeGC

gc: GCONTEXT
value-mask: BITMASK
value-list: LISTofVALUE

Errors: Alloc, Font, GContext, Match, Pixmap, Value

This request changes components in gc. The value-mask and value-list specify which com¬
ponents are to be changed. The values and restrictions are the same as for CreateGC.

Changing the clip-mask also overrides any previous SetClipRectangles request on the context.
Changing dash-offset or dashes overrides any previous SetDashes request on the context.

The order in which components are verified and altered is server-dependent. If an error is gen¬
erated, a subset of the components may have been altered.

CopyGC

41

X Protocol Xll, Release 5

src-gc, dst-gc: GCONTEXT
value-mask: BITMASK

Errors: Alloc, GContext, Match, Value

This request copies components from src-gc to dst-gc. The value-mask specifies which com¬
ponents to copy, as for CreateGC. The two gcontcxts must have the same root and the same
depth (or a Match error results).

SetDashes

gc: GCONTEXT
dash-offset: CARD 16
dashes: LISTofCARD8

Errors: Alloc, GContext, Value

This request sets dash-offset and dashes in gc for dashed line styles. Dashes cannot be empty
(or a Value error results). Specifying an odd-length list is equivalent to specifying the same
list concatenated with itself to produce an even-length list. The initial and alternating elements
of dashes are the even dashes; the others arc the odd dashes. Each element specifies a dash
length in pixels. All of the elements must be nonzero (or a Value error results). The dash-
offset defines the phase of the pattern, specifying how many pixels into dashes the pattern
should actually begin in any single graphics request. Dashing is continuous through path ele¬
ments combined with a join-style but is reset to the dash-offset between each sequence of
joined lines.

The unit of measure for dashes is the same as in the ordinary coordinate system. Ideally, a
dash length is measured along the slope of the line, but implementations arc only required to
match this ideal for horizontal and vertical lines. Failing the ideal semantics, it is suggested
that the length be measured along the major axis of the line. The major axis is defined as the
x axis for lines drawn at an angle of between -45 and +45 degrees or between 135 and 225
degrees from the x axis. For all other lines, the major axis is the y axis.

SetClipRectangles

gc: GCONTEXT
clip-x-origin, clip-y-origin: INTI6
rectangles: LISTofRECTANGLE
ordering: (UnSorted, YSorted, YXSorted, YXBanded}

Errors: Alloc, GContext, Match, Value

This request changes clip-mask in gc to the specified list of rectangles and sets the clip origin.
Output will be clipped to remain contained within the rectangles. The clip origin is interpreted
relative to the origin of whatever destination drawable is specified in a graphics request. The
rectangle coordinates are interpreted relative to the clip origin. The rectangles should be nonin¬
tersecting, or graphics results will be undefined. Note that the list of rectangles can be empty,
which effectively disables output. This is the opposite of passing None as the clip-mask in
CreateGC and ChangeGC.

If known by the client, ordering relations on the rectangles can be specified with the ordering
argument. This may provide faster operation by the server. If an incorrect ordering is
specified, the server may generate a Match error, but it is not required to do so. If no error is
generated, the graphics results are undefined. UnSorted means that the rectangles are in arbi¬
trary order. YSorted means that the rectangles are nondecrcasing in their Y origin.
YXSorted additionally constrains YSorted order in that all rectangles with an equal Y origin
are nondecreasing in their X origin. YXBanded additionally constrains YXSorted by requir¬
ing that, for every possible Y scanline, all rectangles that include that scanline have identical Y
origins and Y extents.

42

X Protocol XI1, Release 5

FreeGC

gc: GCONTEXT

Errors: GContext

This request deletes the association between the resource ID and the gcontext and destroys the
gcontext.

ClearArea

window: WINDOW
*, y: INTI6
width, height: CARD 16
exposures: BOOL

Errors: Match, Value, Window

The x and y coordinates are relative to the window’s origin and specify the upper-left comer of
the rectangle. If width is zero, it is replaced with the current width of the window minus x. If
height is zero, it is replaced with the current height of the window minus y. If the window has
a defined background tile, the rectangle is tiled with a plane-mask of all ones and function of
Copy and a subwindow-mode of ClipByChildren. If the window has background None, the
contents of the window are not changed. In cither case, if exposures is True, then one or
more exposure events are generated for regions of the rectangle that are either visible or are
being retained in a backing store.

It is a Match error to use an InputOnly window in this request.

CopyArea

src-drawable, dst-drawable: DRAWABLE
gc: GCONTEXT
sre-x, sre-y: INTI6
width, height: CARD16
dst-x, dst-y: INTI6

Errors: Drawable, GContext, Match

This request combines the specified rectangle of src-drawable with the specified rectangle of
dst-drawable. The sre-x and sre-y coordinates arc relative to src-drawable’s origin. The dst-x
and dst-y are relative to dst-drawable’s origin, each pair specifying the upper-left comer of the
rectangle. The src-drawable must have the same root and the same depth as dst-drawable (or a
Match error results).

If regions of the source rectangle are obscured and have not been retained in backing store or
if regions outside the boundaries of the source drawable arc specified, then those regions are
not copied, but the following occurs on all corresponding destination regions that are either
visible or are retained in backing-store. If the dst-drawable is a window with a background
other than None, these corresponding destination regions arc tiled (with plane-mask of all ones
and function Copy) with that background. Regardless of tiling and whether the destination is
a window or a pixmap, if graphics-exposures in gc is True, then GraphicsExposure events
for all corresponding destination regions are generated.

If graphics-exposures is True but no GraphicsExposure events are generated, then a NoEx-
posure event is generated.

GC components: function, plane-mask, subwindow-mode, graphics-exposures, clip-x-origin,
clip-y-origin, clip-mask

CopyPlane

43

X Protocol XI1, Release 5

src-drawable, dst-drawable: DRAWABLE
gc: G CONTEXT
src-x, src-y: INTI6
width, height: CARD 16

tfor-y: INTI6
bit-plane: CARD32

Errors: Drawable, GContext, Match, Value

The src-drawable must have the same root as dst-drawable (or a Match error results), but it
need not have the same depth. The bit-plane must have exactly one bit set to 1 and the value
of bit-plane must be less than 2" where n is the depth of src-drawable (or a Value error
results). Effectively, a pixmap of the same depth as dst-drawable and with size specified by
the source region is formed using the foreground/background pixels in gc (foreground every¬
where the bit-plane in src-drawable contains a bit set to 1, background everywhere the bit-
plane contains a bit set to 0), and the equivalent of a CopyArea is performed, with all the
same exposure semantics. This can also be thought of as using the specified region of the
source bit-plane as a stipple with a fill-style of OpaqueStippled for filling a rectangular area
of the destination.

GC components: function, plane-mask, foreground, background, subwindow-mode, graphics-
exposures, clip-x-origin, clip-y-origin, clip-mask

PolyPoint

drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: (Origin, Previous)
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request combines the foreground pixel in gc with the pixel at each point in the drawable.
The points are drawn in the order listed.

The first point is always relative to the drawablc’s origin. The rest are relative either to that
origin or the previous point, depending on the coordinate-mode.

GC components: function, plane-mask, foreground, subwindow-mode, clip-x-origin, clip-y-
origin, clip-mask

PolyLine

drawable: DRAWABLE
gc: GCONTEXT
coordinate-mode: (Origin, Previous)
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request draws lines between each pair of points (point[i), point[i+l]). The lines are drawn
in the order listed. The lines join correctly at all intermediate points, and if the first and last
points coincide, the first and last lines also join correctly.

For any given line, no pixel is drawn more than once. If thin (zero line-width) lines intersect,
the intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting pixels
are drawn only once, as though the entire PolyLine were a single filled shape.

The first point is always relative to the drawablc’s origin. The rest are relative either to that
origin or the previous point, depending on the coordinate-mode.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

44

X Protocol XI1, Release 5

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
tile-stipple-y-origin, dash-offset, dashes

PolySegment

drawable: DRAW ABLE
gc: GCONTEXT
segments: LISTofSEGMENT

where:

SEGMENT: [xl, yl, x2, y2: INT16]

Errors: Drawable, GContext, Match

For each segment, this request draws a line between [xl, yl] and [x2, y2], The lines are
drawn in the order listed. No joining is performed at coincident endpoints. For any given
line, no pixel is drawn more than once. If lines intersect, the intersecting pixels are drawn
multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, fill-style, subwindow¬
mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tilc-stipple-x-origin,
tile-stipple-y-origin, dash-offset, dashes

PolyRectangle

drawable: DRAWABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

This request draws the outlines of the specified rectangles, as if a five-point PolyLine were
specified for each rectangle:

[x,y] [x+width,y] [x+width,y+hcighi] [x,y+hcighl] [x,y]

The x and y coordinates of each rectangle arc relative to the drawable’s origin and define the
upper-left comer of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn more
than once. If rectangles intersect, the intersecting pixels arc drawn multiple times.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
tile-stipple-y-origin, dash-offset, dashes

PolyArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

This request draws circular or elliptical arcs. Each arc is specified by a rectangle and two
angles. The angles are signed integers in degrees scaled by 64, with positive indicating coun¬
terclockwise motion and negative indicating clockwise motion. The start of the arc is specified
by angle 1 relative to the three-o’clock position from the center of the rectangle, and the path
and extent of the arc is specified by angle2 relative to the start of the arc. If the magnitude of
angle2 is greater than 360 degrees, it is truncated to 360 degrees. The x and y coordinates of

45

X Protocol XI1, Release 5

the rectangle are relative to the origin of the drawablc. For an arc specified as [x,y,w,h,al,a2],
the origin of the major and minor axes is at [x+(w/2),y+(h/2)], and the infinitely thin path
describing the entire circle/ellipse intersects the horizontal axis at [x,y+(h/2)] and [x+w,y+(h/2)J
and intersects the vertical axis at [x+(w/2),y] and [x+(w/2),y+h]. These coordinates can be
fractional; that is, they are not truncated to discrete coordinates. The path should be defined by
the ideal mathematical path. For a wide line with line-width lw, the bounding outlines for
filling are given by the two infinitely thin paths consisting of all points whose perpendicular
distance from the path of the circlc/cllipse is equal to lw/2 (which may be a fractional value).
The cap-style and join-style are applied the same as for a line corresponding to the tangent of
the circle/ellipse at the endpoint.

For an arc specified as [x,y,w,h,al,a2], the angles must be specified in the effectively skewed
coordinate system of the ellipse (for a circle, the angles and coordinate systems are identical).
The relationship between these angles and angles expressed in the normal coordinate system of
the screen (as measured with a protractor) is as follows:

skewed-angle = atan(tan(normal-anglc) * w/h) + adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by
64) in the range [0,2*PI). The atan returns a value in the range [-PI/2,PI/2j. The adjust is:

0 for normal-angle in the range fO,PI/2)
PI for normal-angle in the range [PI/2,(3*PI)/2)
2*PI for normal-angle in the range f(3*PI)/2,2*PI)

The arcs are drawn in the order listed. If the last point in one arc coincides with the first point
in the following arc, the two arcs will join correctly. If the first point in the first arc coincides
with the last point in the last arc, the two arcs will join correctly. For any given arc, no pixel
is drawn more than once. If two arcs join correctly and the line-width is greater than zero and
the arcs intersect, no pixel is drawn more than once. Otherwise, the intersecting pixels of
intersecting arcs are drawn multiple times. Specifying an arc with one endpoint and a clock¬
wise extent draws the same pixels as specifying the other endpoint and an equivalent counter¬
clockwise extent, except as it affects joins.

By specifying one axis to be zero, a horizontal or vertical line can be drawn.

Angles are computed based solely on the coordinate system, ignoring the aspect ratio.

GC components: function, plane-mask, line-width, line-style, cap-style, join-style, fill-style,
subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tilc-stipple-x-origin,
tile-stipple-y-origin, dash-offset, dashes

FillPoly

dr aw able: DRAW ABLE
gc: GCONTEXT
shape: {Complex, Nonconvex, Convex)
coordinate-mode: {Origin, Previous)
points: LISTofPOINT

Errors: Drawable, GContext, Match, Value

This request fills the region closed by the specified path. The path is closed automatically if
the last point in the list does not coincide with the first point. No pixel of the region is drawn
more than once.

The first point is always relative to the drawablc’s origin. The rest are relative either to that
origin or the previous point, depending on the coordinate-mode.

The shape parameter may be used by the server to improve performance. Complex means the
path may self-intersect. Contiguous coincident points in the path are not treated as self-

46

X Protocol XI1, Release 5

intersection.

Nonconvex means the path does not self-intersect, but the shape is not wholly convex. If
known by the client, specifying Nonconvex over Complex may improve performance. If
Nonconvex is specified for a self-intersecting path, the graphics results are undefined.

Convex means that for every pair of points inside the polygon, the line segment connecting
them does not intersect the path. If known by the client, specifying Convex can improve per¬
formance. If Convex is specified for a path that is not convex, the graphics results are
undefined.

GC components: function, plane-mask, fill-style, fill-rule, subwindow-mode, clip-x-origin, clip-
y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
tile-stipple-y-origin

PolyFillRectangle

dr aw able: DRAW ABLE
gc: GCONTEXT
rectangles: LISTofRECTANGLE

Errors: Drawable, GContext, Match

This request fills the specified rectangles, as if a four-point FillPoly were specified for each
rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

The x and y coordinates of each rectangle are relative to the drawable’s origin and define the
upper-left comer of the rectangle.

The rectangles are drawn in the order listed. For any given rectangle, no pixel is drawn more
than once. If rectangles intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, subwindow-mode, clip-x-origin, clip-y-origin,
clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
tile-stipple-y-origin

PolyFillArc

drawable: DRAWABLE
gc: GCONTEXT
arcs: LISTofARC

Errors: Drawable, GContext, Match

For each arc, this request fills the region closed by the infinitely thin path described by the
specified arc and one or two line segments, depending on the arc-mode. For Chord, the sin¬
gle line segment joining the endpoints of the arc is used. For PieSlice, the two line segments
joining the endpoints of the arc with the center point are used. The arcs are as specified in the
PolyArc request.

The arcs are filled in the order listed. For any given arc, no pixel is drawn more than once. If
regions intersect, the intersecting pixels are drawn multiple times.

GC components: function, plane-mask, fill-style, arc-mode, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
tile-stipple-y-origin

47

X Protocol Xll, Release 5

Putlmage

drawable: DRAW ABLE
gc: GCONTEXT
depth: CARD8
width, height: CARD 16
dst-x, dst-y: INTI6
left-pad: CARD8
format: {Bitmap, XYPixmap, ZPixmap}
data: LISTofBYTE

Errors: Drawable, GContext, Match, Value

This request combines an image with a rectangle of the drawable. The dst-x and dst-y coordi¬
nates are relative to the drawable’s origin.

If Bitmap format is used, then depth must be one (or a Match error results), and the image
must be in XY format. The foreground pixel in gc defines the source for bits set to 1 in the
image, and the background pixel defines the source for the bits set to 0.

For XYPixmap and ZPixmap, the depth must match the depth of the drawable (or a Match
error results). For XYPixmap, the image must be sent in XY format. For ZPixmap, the
image must be sent in the Z format defined for the given depth.

The left-pad must be zero for ZPixmap format (or a Match error results). For Bitmap and
XYPixmap format, left-pad must be less than bitmap-scanline-pad as given in the server con¬
nection setup information (or a Match error results). The first left-pad bits in every scanline
are to be ignored by the server. The actual image begins that many bits into the data. The
width argument defines the width of the actual image and does not include left-pad.

GC components: function, plane-mask, subwindow-mode, clip-x-origin, clip-y-origin, clip-mask

GC mode-dependent components: foreground, background

Getlmage

drawable: DRAWABLE
x, y: INT16
width, height: CARD 16
plane-mask: CARD32
format: (XYPixmap, ZPixmap}

=>

depth: CARD8
visual: VISUALID or None
data: LISTofBYTE

Errors: Drawable, Match, Value

This request returns the contents of the given rectangle of the drawable in the given format.
The x and y coordinates are relative to the drawable’s origin and define the upper-left comer of
the rectangle. If XYPixmap is specified, only the bit planes specified in plane-mask are
transmitted, with the planes appearing from most-significant to least-significant in bit order. If
ZPixmap is specified, then bits in all planes not specified in plane-mask are transmitted as
zero. Range checking is not performed on plane-mask; extraneous bits are simply ignored.
The returned depth is as specified when the drawable was created and is the same as a depth
component in a FORMAT structure (in the connection setup), not a bits-per-pixel component
If the drawable is a window, its visual type is returned. If the drawable is a pixmap, the visual
is None.

If the drawable is a pixmap, then the given rectangle must be wholly contained within the pix¬
map (or a Match error results). If the drawable is a window, the window must be viewable,
and it must be the case that, if there were no inferiors or overlapping windows, the specified

48

X Protocol XI1, Release 5

rectangle of the window would be fully visible on the screen and wholly contained within the
outside edges of the window (or a Match error results). Note that the borders of the window
can be included and read with this request. If the window has a backing store, then the
backing-store contents are returned for regions of the window that are obscured by noninferior
windows; otherwise, the returned contents of such obscured regions are undefined. Also
undefined are the returned contents of visible regions of inferiors of different depth than the
specified window. The pointer cursor image is not included in the contents returned.

This request is not general-purpose in the same sense as other graphics-related requests. It is
intended specifically for rudimentary hardcopy support.

PolyText8

drawable: DRAW ABLE
gc: GCONTEXT
x, y: INT16
items’. LISTofTEX'l 11EM8

where:

TEXTITEM8: TEXTELT8 or FONT
TEXTELT8: [delta: INT8

string: STRING8]

Errors: Drawable, Font, GContext, Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline starting
position (the initial character origin). Each text item is processed in turn. A font item causes
the font to be stored in gc and to be used for subsequent text. Switching among fonts does not
affect the next character origin. A text element delta specifies an additional change in the posi¬
tion along the x axis before the string is drawn; the delta is always added to the character ori¬
gin. Each character image, as defined by the font in gc, is treated as an additional mask for a
fill operation on the drawable.

All contained FONTS are always transmitted most-significant byte first.

If a Font error is generated for an item, the previous items may have been drawn.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted as a byte2
value of a CHAR2B with a bytel value of zero.

GC components: function, plane-mask, fill-style, font, subwindow-mode, clip-x-origin, clip-y-
origin, clip-mask

GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin,
tile-stipple-y-origin

PolyTextl6

drawable: DRAWABLE
gc: GCONTEXT
x, y: INT16
items: LISTofTEXTTTEM 16

where:

TEXTTTEM16: TEXTELT16 or FONT
TEXTELT16: [delta: INT8

string: STRING 16]

Errors: Drawable, Font, GContext, Match

This request is similar to PolyText8, except 2-byte (or 16-bit) characters are used. For fonts
defined with linear indexing rather than 2-byte matrix indexing, the server will interpret each

49

X Protocol XI1, Release 5

CHAR2B as a 16-bit number that has been transmitted most-significant byte first (that is, bytel
of the CHAR2B is taken as the most-significant byte).

ImageText8

draw able: DRAW ABLE
gc: GCONTEXT
x, y: INT16
string: STRING 8

Errors: Drawable, GContext, Match

The x and y coordinates are relative to the drawable’s origin and specify the baseline starting
position (the initial character origin). The effect is first to fill a destination rectangle with the
background pixel defined in gc and then to paint the text with the foreground pixel. The
upper-left comer of the filled rectangle is at:

[x, y - font-ascent]

the width is:

overall-width

and the height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as they would be returned by a QueryTex-
tExtents call using gc and string.

The function and fill-style defined in gc are ignored for this request. The effective function is
Copy, and the effective fill-style Solid.

For fonts defined with 2-byte matrix indexing, each STRING8 byte is interpreted as a byte2
value of a CHAR2B with a bytel value of zero.

GC components: plane-mask, foreground, background, font, subwindow-mode, clip-x-origin,
clip-y-origin, clip-mask

ImageTextl6

drawable: DRAWABLE
gc: GCONTEXT
x, y: INTI6
string: STRING 16

Errors: Drawable, GContext, Match

This request is similar to ImageText8, except 2-byte (or 16-bit) characters are used. For fonts
defined with linear indexing rather than 2-byte matrix indexing, the server will interpret each
CHAR2B as a 16-bit number that has been transmitted most-significant byte first (that is, bytel
of the CHAR2B is taken as the most-significant byte).

CreateCoIormap

mid: COLORMAP
visual: VISUALID
window: WINDOW
alloc: {None, All]

Errors: Alloc, IDChoice, Match, Value, Window

This request creates a colormap of the specified visual type for the screen on which the win¬
dow resides and associates the identifier mid with it. The visual type must be one supported

50

X Protocol XI1, Release 5

by the screen (or a Match error results). The initial values of the colormap entries are
undefined for classes Grayscale, PseudoColor, and DirectColor. For StaticGray, Sta-
ticColor, and TrueColor, the entries will have defined values, but those values are specific to
the visual and are not defined by the core protocol. For StaticGray, StaticColor, and
TrueColor, alloc must be specified as None (or a Match error results). For the other
classes, if alloc is None, the colormap initially has no allocated entries, and clients can allocate
entries.

If alloc is All, then the entire colormap is “allocated” writable. The initial values of all allo¬
cated entries are undefined. For GrayScale and PseudoColor, the effect is as if an Alloc-
ColorCells request returned all pixel values from zero to N - 1, where N is the colormap-
entries value in the specified visual. For DirectColor, the effect is as if an AllocColorPlanes
request returned a pixel value of zero and red-mask, green-mask, and blue-mask values con¬
taining the same bits as the corresponding masks in the specified visual. However, in all cases,
none of these entries can be freed with FreeCoIors.

FreeColormap

cmap: COLORMAP

Errors: Colormap

This request deletes the association between the resource ID and the colormap and frees the
colormap storage. If the colormap is an installed map for a screen, it is uninstalled (see Unin-
stallColormap request). If the colormap is defined as the colormap for a window (by means
of CreateWindow or ChangeWindowAttributes), the colormap for the window is changed
to None, and a ColormapNotify event is generated. The protocol docs not define the colors
displayed for a window with a colormap of None.

This request has no effect on a default colormap for a screen.

CopyColormapAndFree

mid, src-cmap: COLORMAP

Errors: Alloc, Colormap, IDChoice

This request creates a colormap of the same visual type and for the same screen as src-cmap,
and it associates identifier mid with it. It also moves all of the client’s existing allocations
from src-cmap to the new colormap with their color values intact and their read-only or writ¬
able characteristics intact, and it frees those entries in src-cmap. Color values in other entries
in the new colormap are undefined. If src-cmap was created by the client with alloc All (see
CreateColormap request), then the new colormap is also created with alloc All, all color
values for all entries are copied from src-cmap, and then all entries in src-cmap are freed. If
src-cmap was not created by the client with alloc All, then the allocations to be moved are all
those pixels and planes that have been allocated by the client using either AllocColor, AIIoc-
NamedColor, AllocColorCells, or AllocColorPlanes and that have not been freed since they
were allocated.

InstallColormap

cmap: COLORMAP

Errors: Colormap

This request makes this colormap an installed map for its screen. All windows associated with
this colormap immediately display with true colors. As a side effect, additional colormaps
might be implicitly installed or uninstalled by the server. Which other colormaps get installed
or uninstalled is server-dependent except that the required list must remain installed.

If cmap is not already an installed map, a ColormapNotify event is generated on every win¬
dow having cmap as an attribute. In addition, for every other colormap that is installed or

51

X Protocol XI1, Release 5

uninstalled as a result of the request, a ColormapNotify event is generated on every window
having that colormap as an attribute.

At any time, there is a subset of the installed maps that are viewed as an ordered list and are
called the required list. The length of the required list is at most M, where M is the min-
installed-maps specified for the screen in the connection setup. The required list is maintained
as follows. When a colormap is an explicit argument to InstallColormap, it is added to the
head of the list; the list is truncated at the tail, if necessary, to keep the length of the list to at
most M. When a colormap is an explicit argument to UninstallColormap and it is in the
required list, it is removed from the list. A colormap is not added to the required list when it
is installed implicitly by the server, and the server cannot implicitly uninstall a colormap that is
in the required list.

Initially the default colormap for a screen is installed (but is not in the required list).

UninstallColormap

cmap: COLORMAP

Errors: Colormap

If cmap is on the required list for its screen (sec InstallColormap request), it is removed from
the list. As a side effect, cmap might be uninstalled, and additional colormaps might be impli¬
citly installed or uninstalled. Which colormaps get installed or uninstalled is server-dependent
except that the required list must remain installed.

If cmap becomes uninstalled, a ColormapNotify event is generated on every window having
cmap as an attribute. In addition, for every other colormap that is installed or uninstalled as a
result of the request, a ColormapNotify event is generated on every window having that
colormap as an attribute.

ListlnstalledColormaps

window. WINDOW

=>

cmaps: LISTofCOLORMAP

Errors: Window

This request returns a list of the currently installed colormaps for the screen of the specified
window. The order of colormaps is not significant, and there is no explicit indication of the
required list (see InstallColormap request).

AllocCoIor

cmap: COLORMAP
red, green, blue: CARD 16

=>

pixel: CARD32
red, green, blue: CARD 16

Errors: Alloc, Colormap

This request allocates a read-only colormap entry corresponding to the closest RGB values pro¬
vided by the hardware. It also returns the pixel and the RGB values actually used. Multiple
clients requesting the same effective RGB values can be assigned the same read-only entry,
allowing entries to be shared.

AllocNamedColor

52

X Protocol XI1, Release 5

cmap: COLORMAP
name: STRINGS

=>

pixel: CARD32
exact-red, exact-green, exact-blue: CARD16
visual-red, visual-green, visual-blue: CARD16

Errors: Alloc, Colormap, Name

This request looks up the named color with respect to the screen associated with the colormap.
Then, it does an AllocColor on cmap. The name should use the ISO Latin-1 encoding, and
uppercase and lowercase do not matter. The exact RGB values specify the true values for the
color, and the visual values specify the values actually used in the colormap.

AllocColorCells

cmap: COLORMAP
colors, planes: CARD 16
contiguous: BOOL

=>

pixels, masks: LISTofCARD32

Errors: Alloc, Colormap, Value

The number of colors must be positive, and the number of planes must be nonnegative (or a
Value error results). If C colors and P planes are requested, then C pixels and P masks are
returned. No mask will have any bits in common with any other mask or with any of the pix¬
els. By ORing together masks and pixels, C*2P distinct pixels can be produced; all of these
are allocated writable by the request. For Grayscale or PseudoColor, each mask will have
exactly one bit set to 1; for DirectColor, each will have exactly three bits set to 1. If contigu¬
ous is True and if all masks are ORed together, a single contiguous set of bits will be formed
for Grayscale or PseudoColor, and three contiguous sets of bits (one within each pixel
subfield) for DirectColor. The RGB values of the allocated entries are undefined.

AllocColorPlanes

cmap: COLORMAP
colors, reds, greens, blues: CARD 16
contiguous: BOOL

=>

pixels: LISTofCARD32
red-mask, green-mask, blue-mask: CARD32

Errors: Alloc, Colormap, Value

The number of colors must be positive, and the reds, greens, and blues must be nonnegative
(or a Value error results). If C colors, R reds, G greens, and B blues are requested, then C
pixels are returned, and the masks have R, G, and B bits set, respectively. If contiguous is
True, then each mask will have a contiguous set of bits. No mask will have any bits in com¬
mon with any other mask or with any of the pixels. For DirectColor, each mask will lie
within the corresponding pixel subfield. By ORing together subsets of masks with pixels,
C*2r*°+b distinct pixels can be produced; all of these are allocated writable by the request.
The initial RGB values of the allocated entries are undefined. In the colormap, there are only
C*2r independent red entries, C*2G independent green entries, and C*2B independent blue
entries. This is true even for PseudoColor. When the colormap entry for a pixel value is
changed using StoreCoIors or StoreNamedColor, the pixel is decomposed according to the
masks and the corresponding independent entries are updated.

53

X Protocol XI1, Release 5

FreeColors

cmap: COLORMAP
pixels: LISTofCARD32
plane-mask: CARD32

Errors: Access, Colormap, Value

The plane-mask should not have any bits in common with any of the pixels. The set of all
pixels is produced by ORing together subsets of plane-mask with the pixels. The request frees
all of these pixels that were allocated by the client (using AllocColor, AIlocNamedColor,
AllocColorCells, and AllocColorPlanes). Note that freeing an individual pixel obtained from
AllocColorPIanes may not actually allow it to be reused until all of its related pixels are also
freed. Similarly, a read-only entry is not actually freed until it has been freed by all clients,
and if a client allocates the same read-only entry multiple times, it must free the entry that
many times before the entry is actually freed.

All specified pixels that are allocated by the client in cmap are freed, even if one or more pix¬
els produce an error. A Value error is generated if a specified pixel is not a valid index into
cmap. An Access error is generated if a specified pixel is not allocated by the client (that is,
is unallocated or is only allocated by another client) or if the colormap was created with all
entries writable (using an alloc value of All in CreateColormap). If more than one pixel is
in error, it is arbitrary as to which pixel is reported.

StoreColors

cmap: COLORMAP
items: LISTofCOLORITEM

where:

COLORITEM: [pixel: CARD32
do-red, do-green, do-blue: BOOL
red, green, blue: CARD16]

Errors: Access, Colormap, Value

This request changes the colormap entries of the specified pixels. The do-red, do-green, and
do-blue fields indicate which components should actually be changed. If the colormap is an
installed map for its screen, the changes are visible immediately.

All specified pixels that are allocated writable in cmap (by any client) are changed, even if one
or more pixels produce an error. A Value error is generated if a specified pixel is not a valid
index into cmap, and an Access error is generated if a specified pixel is unallocated or is allo¬
cated read-only. If more than one pixel is in error, it is arbitrary as to which pixel is reported.

StoreNamedColor

cmap: COLORMAP
pixel: CARD32
name: STRING8
do-red, do-green, do-blue: BOOL

Errors: Access, Colormap, Name, Value

This request looks up the named color with respect to the screen associated with cmap and
then does a StoreColors in cmap. The name should use the ISO Latin-1 encoding, and upper¬
case and lowercase do not matter. The Access and Value errors are the same as in
StoreColors.

QueryColors

54

X Protocol XI1, Release 5

cmap: COLORMAP
pixels: LISTofCARD32

=>

colors: LISTofRGB

where:

RGB: [red, green, blue: CARD16]

Errors: Colormap, Value

This request returns the hardware-specific color values stored in cmap for the specified pixels.
The values returned for an unallocated entry are undefined. A Value error is generated if a
pixel is not a valid index into cmap. If more than one pixel is in error, it is arbitrary as to
which pixel is reported.

LookupColor

cmap: COLORMAP
name: STRING8

=>

exact-red, exact-green, exact-blue: CARD 16
visual-red, visual-green, visual-blue: CARD 16

Errors: Colormap, Name

This request looks up the string name of a color with respect to the screen associated with
cmap and returns both the exact color values and the closest values provided by the hardware
with respect to the visual type of cmap. The name should use the ISO Latin-1 encoding, and
uppercase and lowercase do not matter.

CreateCursor

cid: CURSOR
source: PIXMAP
mask: PIXMAP or None
fore-red, fore-green, fore-blue: CARD 16
back-red, back-green, back-blue: CARD 16
x, y: CARD16

Errors: Alloc, IDChoice, Match, Pixmap

This request creates a cursor and associates identifier cid with it. The foreground and back¬
ground RGB values must be specified, even if the server only has a StaticGray or Grayscale
screen. The foreground is used for the bits set to 1 in the source, and the background is used
for the bits set to 0. Both source and mask (if specified) must have depth one (or a Match
error results), but they can have any root. The mask pixmap defines the shape of the cursor.
That is, the bits set to 1 in the mask define which source pixels will be displayed, and where
the mask has bits set to 0, the corresponding bits of the source pixmap are ignored. If no
mask is given, all pixels of the source are displayed. The mask, if present, must be the same
size as the source (or a Match error results). The x and y coordinates define the hotspot rela¬
tive to the source’s origin and must be a point within the source (or a Match error results).

The components of the cursor may be transformed arbitrarily to meet display limitations.

The pixmaps can be freed immediately if no further explicit references to them are to be made.

Subsequent drawing in the source or mask pixmap has an undefined effect on the cursor. The
server might or might not make a copy of the pixmap.

55

X Protocol XI1, Release 5

CreateGlyphCursor

cid: CURSOR
source-font: FONT
mask-font: FONT or None
source-char, mask-char: CARD 16
fore-red, fore-green, fore-blue: CARD 16
back-red, back-green, back-blue: CARD 16

Errors: Alloc, Font, IDChoice, Value

This request is similar to CreateCursor, except the source and mask bitmaps are obtained
from the specified font glyphs. The source-char must be a defined glyph in source-font, and if
mask-font is given, mask-char must be a defined glyph in mask-font (or a Value error results).
The mask font and character are optional. The origins of the source and mask (if it is defined)
glyphs are positioned coincidently and define the hotspot. The source and mask need not have
the same bounding box metrics, and there is no restriction on the placement of the hotspot rela¬
tive to the bounding boxes. If no mask is given, all pixels of the source are displayed. Note
that source-char and mask-char are CARD 16, not CHAR2B. For 2-byte matrix fonts, the 16-
bit value should be formed with bytel in the most-significant byte and byte2 in the least-
significant byte.

The components of the cursor may be transformed arbitrarily to meet display limitations.

The fonts can be freed immediately if no further explicit references to them are to be made.

FreeCursor

cursor: CURSOR

Errors: Cursor

This request deletes the association between the resource ID and the cursor. The cursor
storage will be freed when no other resource references it.

RecolorCursor

cursor: CURSOR
fore-red, fore-green, fore-blue: CARD 16
back-red, back-green, back-blue: CARD 16

Errors: Cursor

This request changes the color of a cursor. If the cursor is being displayed on a screen, the
change is visible immediately.

Query BestSize

class: (Cursor, Tile, Stipple}
drawable: DRAW ABLE
width, height: CARD16

=>

width, height: CARD 16

Errors: Drawable, Match, Value

This request returns the best size that is closest to the argument size. For Cursor, this is the
largest size that can be fully displayed. For Tile, this is the size that can be tiled fastest. For
Stipple, this is the size that can be stippled fastest.

For Cursor, the drawable indicates the desired screen. For Tile and Stipple, the drawable
indicates the screen and also possibly the window class and depth. An InputOnly window
cannot be used as the drawable for Tile or Stipple (or a Match error results).

56

X Protocol XI1, Release 5

QueryExtension

name: STRING8

=>

present: BOOL
major-opcode: CARD8
first-event: CARD8
first-error: CARD8

This request determines if the named extension is present. If so, the major opcode for the
extension is returned, if it has one. Otherwise, zero is returned. Any minor opcode and the
request formats are specific to the extension. If the extension involves additional event types,
the base event type code is returned. Otherwise, zero is returned. The format of the events is
specific to the extension. If the extension involves additional error codes, the base error code
is returned. Otherwise, zero is returned. The format of additional data in the errors is specific
to the extension.

The extension name should use the ISO Latin-1 encoding, and uppercase and lowercase matter.

ListExtensions

=>

names: LISTofSTRING8

This request returns a list of all extensions supported by the server.

SetModifierMapping

keycodes-per-modifer: CARD8
key codes-. LISTofKEYCODE

=>

status: {Success, Busy, Failed}

Errors: Alloc, Value

This request specifies the keycodes (if any) of the keys to be used as modifiers. The number
of keycodes in the list must be 8*keycodes-per-modifier (or a Length error results). The key-
codes are divided into eight sets, with each set containing keycodes-per-modifier elements.
The sets are assigned to the modifiers Shift, Lock, Control, Modi, Mod2, Mod3, Mod4,
and Mod5, in order. Only nonzero keycode values are used within each set; zero values are
ignored. All of the nonzero keycodes must be in the range specified by min-keycode and
max-keycode in the connection setup (or a Value error results). The order of keycodes within
a set does not matter. If no nonzero values are specified in a set, the use of the corresponding
modifier is disabled, and the modifier bit will always be zero. Otherwise, the modifier bit will
be one whenever at least one of the keys in the corresponding set is in the down position.

A server can impose restrictions on how modifiers can be changed (for example, if certain keys
do not generate up transitions in hardware, if auto-repeat cannot be disabled on certain keys, or
if multiple keys per modifier are not supported). The status reply is Failed if some such res¬
triction is violated, and none of the modifiers is changed.

If the new nonzero keycodes specified for a modifier differ from those currently defined and
any (current or new) keys for that modifier are logically in the down state, then the status reply
is Busy, and none of the modifiers is changed.

This request generates a MappingNotify event on a Success status.

GetModifierMapping

=>

57

X Protocol XI1, Release 5

keycodes-per-modifier: CARD8
keycodes: LISTofKEYCODE

This request returns the keycodes of the keys being used as modifiers. The number of key-
codes in the list is 8*keycodes-per-modifier. The keycodes are divided into eight sets, with
each set containing keycodes-per-modifier elements. The sets are assigned to the modifiers
Shift, Lock, Control, Modi, Mod2, Mod3, Mod4, and Mod5, in order. The keycodes-
per-modifier value is chosen arbitrarily by the server, zeroes are used to fill in unused elements
within each set If only zero values are given in a set, the use of the corresponding modifier
has been disabled. The order of keycodes within each set is chosen arbitrarily by the server.

ChangeKeyboardMapping

first-key code: KEYCODE
keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM

Errors: Alloc, Value

This request defines the symbols for the specified number of keycodes, starting with the
specified keycode. The symbols for keycodes outside this range remained unchanged. The
number of elements in the keysyms list must be a multiple of keysyms-per-keycode (or a
Length error results). The first-keycode must be greater than or equal to min-keycode as
returned in the connection setup (or a Value error results) and:

first-keycode + (keysyms-length / keysyms-per-keycode) - 1
♦

must be less than or equal to max-keycode as returned in the connection setup (or a Value
error results). KEYSYM number N (counting from zero) for keycode K has an index (count¬
ing from zero) of:

(K - first-keycode) * keysyms-per-keycode + N

in keysyms. The keysyms-per-keycode can be chosen arbitrarily by the client to be large
enough to hold all desired symbols. A special KEYSYM value of NoSymbol should be used
to fill in unused elements for individual keycodes. It is legal for NoSymbol to appear in non¬
trailing positions of the effective®list for a keycode.

This request generates a MappingNotify event.

There is no requirement that the server interpret this mapping; it is merely stored for reading
and writing by clients (see section 5).

GetKeyboardMapping

first-keycode: KEYCODE
count: CARD8

=>

keysyms-per-keycode: CARD8
keysyms: LISTofKEYSYM

Errors: Value

This request returns the symbols for the specified number of keycodes, starting with the
specified keycode. The first-keycode must be greater than or equal to min-keycode as returned
in the connection setup (or a Value error results), and:

first-keycode + count - 1

must be less than or equal to max-keycode as returned in the connection setup (or a Value
error results). The number of elements in the keysyms list is:

58

X Protocol XI1, Release 5

count * keysyms-per-keycode

and KEYSYM number N (counting from zero) for keycode K has an index (counting from

zero) of:

(K - first-keycode) * kcysyms-per-kcycodc + N

in keysyms. The keysyms-per-keycode value is chosen arbitrarily by the server to be large
enough to report all requested symbols. A special KEYSYM value of NoSymbol is used to
fill in unused elements for individual kcycodcs.

ChangeKeyboardControl

value-mask: BITMASK
value-list: LISTofVALUE

Errors: Match, Value

This request controls various aspects of the keyboard. The value-mask and value-list specify
which controls are to be changed. The possible values are:

Control Type

key-click-percent I NTS
bell-percent I NTS
bell-pitch INTI 6
bell-duration INTI 6
led CARD8
led-mode (On, Off}
key KEYCODE
auto-repeat-mode (On, Off, Default)

The key-click-percent sets the volume for key clicks between 0 (of!) and 100 (loud) inclusive,
if possible. Setting to -1 restores the default. Other negative values generate a Value error.

The bell-percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive, if
possible. Setting to -1 restores the default. Other negative values generate a Value error.

The bell-pitch sets the pitch (specified in Hz) of the bell, if possible. Setting to -1 restores the
default. Other negative values generate a Value error.

The bell-duration sets the duration of the bell (specified in milliseconds), if possible. Setting to
-1 restores the default. Other negative values generate a Value error.

If both led-mode and led are specified, then the state of that LED is changed, if possible. If
only led-mode is specified, then the state of all LEDs are changed, if possible. At most 32
LEDs, numbered from one, are supported. No standard interpretation of LEDs is defined. It is
a Match error if an led is specified without an led-mode.

If both auto-repeat-mode and key are specified, then the auto-repeat mode of that key is
changed, if possible. If only auto-repeat-mode is specified, then the global auto-repeat mode
for the entire keyboard is changed, if possible, without affecting the per-key settings. It is a
Match error if a key is specified without an auto-repeat-mode. Each key has an individual
mode of whether or not it should auto-repeat and a default setting for that mode. In addition,
there is a global mode of whether auto-repeat should be enabled or not and a default setting for
that mode. When the global mode is On, keys should obey their individual auto-repeat
modes. When the global mode is Off, no keys should auto-repeat. An auto-repeating key
generates alternating KeyPress and KeyRelease events. When a key is used as a modifier, it
is desirable for the key not to auto-repeat, regardless of the auto-repeat setting for that key.

59

X Protocol XI1, Release 5

A bell generator connected with the console but not directly on the keyboard is treated as if it
were part of the keyboard.

The order in which controls are verified and altered is server-dependent. If an error is gen¬
erated, a subset of the controls may have been altered.

GetKeyboardControl

=>

key-click-percent: CARD8
bell-percent: CARD8
bell-pitch: CARD 16
bell-duration: CARD 16
led-mask: CARD32
global-auto-repeat: {On, Off}
auto-repeats: LISTofCARD8

This request returns the current control values for the keyboard. For the LEDs, the least-
significant bit of led-mask corresponds to LED one, and each one bit in led-mask indicates an
LED that is lit. The auto-repeats is a bit vector, each one bit indicates that auto-repeat is
enabled for the corresponding key. The vector is represented as 32 bytes. Byte N (from 0)
contains the bits for keys 8N to 8N + 7, with the least-significant bit in the byte representing
key 8N.

Bell

percent: INT8

Errors: Value

This request rings the bell on the keyboard at a volume relative to the base volume for the key¬
board, if possible. Percent can range from -100 to 100 inclusive (or a Value error results).
The volume at which the bell is rung when percent is nonnegative is:

base - [(base * percent) / 100] + percent

When percent is negative, it is:

base + [(base * percent) / 100]

SetPointerMapping

map: LISTofCARD8

=>

status: [Success, Busy]

Errors: Value

This request sets the mapping of the pointer. Elements of the list are indexed starting from
one. The length of the list must be the same as GetPointerMapping would return (or a
Value error results). The index is a core button number, and the element of the list defines
the effective number.

A zero element disables a button. Elements are not restricted in value by the number of physi¬
cal buttons, but no two elements can have the same nonzero value (or a Value error results).

If any of the buttons to be altered are logically in the down state, the status reply is Busy, and
the mapping is not changed.

This request generates a MappingNotify event on a Success status.

60

X Protocol XI1, Release 5

GetPointerMapping

=>

map: LISTofCARDB

This request returns the current mapping of the pointer. Elements of the list are indexed start¬
ing from one. The length of the list indicates the number of physical buttons.

The nominal mapping for a pointer is the identity mapping: map[i]=i.

ChangePointerControl

do-acceleration, do-threshold: BOOL
acceleration-numerator, acceleration-denominator: INTI6
threshold: INTI6

Errors: Value

This request defines how the pointer moves. The acceleration is a multiplier for movement
expressed as a fraction. For example, specifying 3/1 means the pointer moves three times as
fast as normal. The fraction can be rounded arbitrarily by the server. Acceleration only takes
effect if the pointer moves more than threshold number of pixels at once and only applies to
the amount beyond the threshold. Setting a value to -1 restores the default. Other negative
values generate a Value error, as does a zero value for acceleration-denominator.

GetPointerControI

=>

acceleration-numerator, acceleration-denominator: CARD 16
threshold: CARD 16

This request returns the current acceleration and threshold for the pointer.

SetScreenSaver

timeout, interval: INTI6
prefer-blanking: {Yes, No, Default)
allow-exposures: {Yes, No, Default)

Errors: Value

The timeout and interval are specified in seconds; setting a value to -1 restores the default.
Other negative values generate a Value error. If the timeout value is zero, screen-saver is dis¬
abled (but an activated screen-saver is not deactivated). If the timeout value is nonzero,
screen-saver is enabled. Once screen-saver is enabled, if no input from the keyboard or pointer
is generated for timeout seconds, screen-saver is activated. For each screen, if blanking is pre¬
ferred and the hardware supports video blanking, the screen will simply go blank. Otherwise,
if either exposures are allowed or the screen can be regenerated without sending exposure
events to clients, the screen is changed in a server-dependent fashion to avoid phosphor bum.
Otherwise, the state of the screens does not change, and screen-saver is not activated. At the
next keyboard or pointer input or at the next ForceScreenSaver with mode Reset, screen¬
saver is deactivated, and all screen states are restored.

If the server-dependent screen-saver method is amenable to periodic change, interval serves as
a hint about how long the change period should be, with zero hinting that no periodic change
should be made. Examples of ways to change the screen include scrambling the color map
periodically, moving an icon image about the screen periodically, or tiling the screen with the
root window background tile, randomly reorigined periodically.

GetScreenSaver

61

X Protocol XI1, Release 5

=>

timeout, interval: CARD16
prefer-blanking: {Yes, No}
allow-exposures: {Yes, No}

This request returns the current screen-saver control values.

ForceScreenSaver

mode: {Activate, Reset}

Errors: Value

If the mode is Activate and screen-saver is currently deactivated, then screen-saver is activated
(even if screen-saver has been disabled with a timeout value of zero). If the mode is Reset
and screen-saver is currently enabled, then screen-saver is deactivated (if it was activated), and
the activation timer is reset to its initial state as if device input had just been received.

ChangeHosts

mode: {Insert, Delete}
host: HOST

Errors: Access, Value

This request adds or removes the specified host from the access control list. When the access
control mechanism is enabled and a host attempts to establish a connection to the server, the
host must be in this list, or the server will refuse the connection.

The client must reside on the same host as the server and/or have been granted permission by a
server-dependent method to execute this request (or an Access error results).

An initial access control list can usually be specified, typically by naming a file that the server
reads at startup and reset.

The following address families are defined. A server is not required to support these families
and may support families not listed here. Use of an unsupported family, an improper address
format, or an improper address length within a supported family results in a Value error.

For the Internet family, the address must be four bytes long. The address bytes are in standard
IP order, the server performs no automatic swapping on the address bytes. For a Gass A
address, the network number is the first byte in the address, and the host number is the remain¬
ing three bytes, most-significant byte first. For a Gass B address, the network number is the
first two bytes and the host number is the last two bytes, each most-significant byte first. For a
Gass C address, the network number is the first three bytes, most-significant byte first, and the
last byte is the host number.

For the DECnet family, the server performs no automatic swapping on the address bytes. A
Phase IV address is two bytes long: the first byte contains the least-significant eight bits of the
node number, and the second byte contains the most-significant two bits of the node number in
the least-significant two bits of the byte and the area in the most significant six bits of the byte.

For the Chaos family, the address must be two bytes long. The host number is always the first
byte in the address, and the subnet number is always the second byte. The server performs no
automatic swapping on the address bytes.

ListHosts

=>

mode: {Enabled, Disabled}
hosts: LISTofHOST

This request returns the hosts on the access control list and whether use of the list at connec¬
tion setup is currently enabled or disabled.

62

X Protocol XI1, Release 5

Each HOST is padded to a multiple of four bytes.

SetAccessControl

mode: {Enable, Disable}

Errors: Access, Value

This request enables or disables the use of the access control list at connection setups.

The client must reside on the same host as the server and/or have been granted permission by a
server-dependent method to execute this request (or an Access error results).

SetCloseDownMode

mode: {Destroy, RetainPermanent, RetainTemporary}

Errors: Value

This request defines what will happen to the client’s resources at connection close. A connec¬
tion starts in Destroy mode. The meaning of the close-down mode is described in section 10.

KillClient

resource: CARD32 or AllTemporary

Errors: Value

If a valid resource is specified, KillClient forces a close-down of the client that created the
resource. If the client has already terminated in either RetainPermanent or RetainTem¬
porary mode, all of the client’s resources arc destroyed (see section 10). If AllTemporary is
specified, then the resources of all clients that have terminated in RetainTemporary are des¬
troyed.

NoOperation

This request has no arguments and no results, but the request length field can be nonzero,
which allows the request to be any multiple of four bytes in length. The bytes contained in the
request are uninterpreted by the server.

This request can be used in its minimum four byte form as padding where necessary by client
libraries that find it convenient to force requests to begin on 64-bit boundaries.

10. Connection Close

At connection close, all event selections made by the client arc discarded. If the client has the
pointer actively grabbed, an UngrabPointer is performed. If the client has the keyboard
actively grabbed, an UngrabKeyboard is performed. All passive grabs by the client are
released. If the client has the server grabbed, an UngrabServer is performed. All selections
(see SetSelectionOwner request) owned by the client are disowned. If close-down mode (see
SetCloseDownMode request) is RetainPermanent or RetainTemporary, then all resources
(including colormap entries) allocated by the client arc marked as permanent or temporary,
respectively (but this does not prevent other clients from explicitly destroying them). If the
mode is Destroy, all of the client’s resources are destroyed.

When a client’s resources are destroyed, for each window in the client’s save-set, if the win¬
dow is an inferior of a window created by the client, the save-set window is reparented to the
closest ancestor such that the save-set window is not an inferior of a window created by the
client. If the save-set window is unmapped, a MapWindow request is performed on it (even
if it was not an inferior of a window created by the client). The reparenting leaves unchanged
the absolute coordinates (with respect to the root window) of the upper-left outer comer of the
save-set window. After save-set processing, all windows created by the client are destroyed.
For each nonwindow resource created by the client, the appropriate Free request is performed.

63

X Protocol XI1, Release 5

All colors and colormap entries allocated by the client arc freed.

A server goes through a cycle of having no connections and having some connections. At
every transition to the state of having no connections as a result of a connection closing with a
Destroy close-down mode, the server resets its state as if it had just been started. This starts
by destroying all lingering resources from clients that have terminated in RetainPermanent or
RetainTemporary mode. It additionally includes deleting all but the predefined atom
identifiers, deleting all properties on all root windows, resetting all device maps and attributes
(key click, bell volume, acceleration), resetting the access control list, restoring the standard
root tiles and cursors, restoring the default font path, and restoring the input focus to state
PointerRoot.

Note that closing a connection with a close-down mode of RetainPermanent or RetainTem¬
porary will not cause the server to reset.

11. Events

When a button press is processed with the pointer in some window W and no active pointer
grab is in progress, the ancestors of W are searched from the root down, looking for a passive
grab to activate. If no matching passive grab on the button exists, then an active grab is
started automatically for the client receiving the event, and the last-pointer-grab time is set to
the current server time. The effect is essentially equivalent to a GrabButton with arguments:

Argument Value

event-window Event window
event-mask Client’s selected pointer events on the event win¬

dow
pointer-mode and keyboard-mode Asynchronous
owner-events True if the client has OwnerGrabButton selected

on the event window, otherwise False
confine-to None
cursor None

The grab is terminated automatically when the logical state of the pointer has all buttons
released. UngrabPointer and ChangeActivePointerGrab can both be used to modify the
active grab.

KeyPress
KeyRelease
ButtonPress
ButtonRelease
MotionNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INTI6
detail: <see below>
state: SETofKEYBUTMASK
time: TIMESTAMP

These events are generated either when a key or button logically changes state or when the
pointer logically moves. The generation of these logical changes may lag the physical changes
if device event processing is frozen. Note that KeyPress and KeyRelease are generated for
all keys, even those mapped to modifier bits. The source of the event is the window the
pointer is in. The window the event is reported with respect to is called the event window.

64

X Protocol Xll, Release 5

The event window is found by starting with the source window and looking up the hierarchy
for the first window on which any client has selected interest in the event (provided no inter¬
vening window prohibits event generation by including the event type in its do-not-propagate-
mask). The actual window used for reporting can be modified by active grabs and, in the case
of keyboard events, can be modified by the focus window.

The root is the root window of the source window, and root-x and root-y are the pointer coor¬
dinates relative to root’s origin at the time of the event. Event is the event window. If the
event window is on the same screen as root, then evcnt-x and event-y are the pointer coordi¬
nates relative to the event window’s origin. Otherwise, cvcnt-x and event-y are zero. If the
source window is an inferior of the event window, then child is set to the child of the event
window that is an ancestor of (or is) the source window. Otherwise, it is set to None. The
state component gives the logical state of the buttons and modifier keys just before the event.
The detail component type varies with the event type:

Event Component

KeyPress, Key Release
ButtonPress, ButtonRelease
MotionNotify

KEYCODE
BUTTON
(Normal, Hint}

MotionNotify events are only generated when the motion begins and ends in the window.
The granularity of motion events is not guaranteed, but a client selecting for motion events is
guaranteed to get at least one event when the pointer moves and comes to rest. Selecting
PointerMotion receives events independent of the state of the pointer buttons. By selecting
some subset of Button[l-5]Motion instead, MotionNotify events will only be received when
one or more of the specified buttons are pressed. By selecting ButtonMotion, MotionNotify
events will be received only when at least one button is pressed. The events are always of
type MotionNotify, independent of the selection. If PointerMotionHint is selected, the
server is free to send only one MotionNotify event (with detail Hint) to the client for the
event window until either the key or button state changes, the pointer leaves the event window,
or the client issues a QueryPointer or GetMotionEvents request.

EnterNotify
LeaveNotify

root, event: WINDOW
child: WINDOW or None
same-screen: BOOL
root-x, root-y, event-x, event-y: INTI6
mode: (Normal, Grab, Ungrab}
detail: (Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual}
focus: BOOL
state: SETofKEYBUTMASK
time: TIMESTAMP

If pointer motion or window hierarchy change causes the pointer to be in a different window
than before, EnterNotify and LeaveNotify events are generated instead of a MotionNotify
event. Only clients selecting EnterWindow on a window receive EnterNotify events, and
only clients selecting LeaveWindow receive LeaveNotify events. The pointer position
reported in the event is always the final position, not the initial position of the pointer. The
root is the root window for this position, and root-x and root-y are the pointer coordinates rela¬
tive to root’s origin at the time of the event. Event is the event window. If the event window
is on the same screen as root, then event-x and cvcnt-y are the pointer coordinates relative to
the event window’s origin. Otherwise, evcnt-x and cvcnt-y are zero. In a LeaveNotify event,
if a child of the event window contains the initial position of the pointer, then the child

65

X Protocol XI1, Release 5

component is set to that child. Otherwise, it is None. For an EnterNotify event, if a child of
the event window contains the final pointer position, then the child component is set to that
child. Otherwise, it is None. If the event window is the focus window or an inferior of the
focus window, then focus is True. Otherwise, focus is False.

Normal pointer motion events have mode Normal. Pseudo-motion events when a grab
activates have mode Grab, and pseudo-motion events when a grab deactivates have mode
Ungrab.

All EnterNotify and LeaveNotify events caused by a hierarchy change are generated after
any hierarchy event caused by that change (that is, UnmapNotify, MapNotify,
ConfigureNotify, GravityNotify, CirculateNotify), but the ordering of EnterNotify and
LeaveNotify events with respect to FocusOut, VisibilityNotify, and Expose events is not
constrained.

Normal events are generated as follows:

When the pointer moves from window A to window B and A is an inferior of B:

• LeaveNotify with detail Ancestor is generated on A.

• LeaveNotify with detail Virtual is generated on each window between A and B
exclusive (in that order).

• EnterNotify with detail Inferior is generated on B.

When the pointer moves from window A to window B and B is an inferior of A:

• LeaveNotify with detail Inferior is generated on A.

• EnterNotify with detail Virtual is generated on each window between A and B
exclusive (in that order).

• EnterNotify with detail Ancestor is generated on B.

When the pointer moves from window A to window B and window C is their least common
ancestor:

• LeaveNotify with detail Nonlinear is generated on A.

• LeaveNotify with detail NonlinearVirtual is generated on each window between A and
C exclusive (in that order).

• EnterNotify with detail NonlinearVirtual is generated on each window between C and
B exclusive (in that order).

• EnterNotify with detail Nonlinear is generated on B.

When the pointer moves from window A to window B on different screens:

• LeaveNotify with detail Nonlinear is generated on A.

• If A is not a root window, LeaveNotify with detail NonlinearVirtual is generated on
each window above A up to and including its root (in order).

• If B is not a root window, EnterNotify with detail NonlinearVirtual is generated on
each window from B’s root down to but not including B (in order).

• EnterNotify with detail Nonlinear is generated on B.

When a pointer grab activates (but after any initial warp into a confine-to window and before
generating any actual ButtonPress event that activates the grab), G is the grab-window for the
grab, and P is the window the pointer is in:

• EnterNotify and LeaveNotify events with mode Grab are generated (as for Normal
above) as if the pointer were to suddenly warp from its current position in P to some
position in G. However, the pointer does not warp, and the pointer position is used as
both the initial and final positions for the events.

When a pointer grab deactivates (but after generating any actual ButtonRelease event that
deactivates the grab), G is the grab-window for the grab, and P is the window the pointer is in:

66

X Protocol XI1, Release 5

• EnterNotify and LeaveNotify events with mode Ungrab are generated (as for Normal
above) as if the pointer were to suddenly warp from some position in G to its current
position in P. However, the pointer does not warp, and the current pointer position is
used as both the initial and final positions for the events.

Focusln
FocusOut

event: WINDOW
mode: {Normal, WhileGrabbed, Grab, Ungrab}
detail: (Ancestor, Virtual, Inferior, Nonlinear, NonlinearVirtual, Pointer,

PointerRoot, None}

These events are generated when the input focus changes and are reported to clients selecting
FocusChange on the window. Events generated by SetlnputFocus when the keyboard is not
grabbed have mode Normal. Events generated by SetlnputFocus when the keyboard is
grabbed have mode WhileGrabbed. Events generated when a keyboard grab activates have
mode Grab, and events generated when a keyboard grab deactivates have mode Ungrab.

All FocusOut events caused by a window unmap arc generated after any UnmapNotify
event, but the ordering of FocusOut with respect to generated EnterNotify, LeaveNotify,
VisibilityNotify, and Expose events is not constrained.

Normal and WhileGrabbed events arc generated as follows:

When the focus moves from window A to window B, A is an inferior of B, and the pointer is
in window P:

• FocusOut with detail Ancestor is generated on A.

• FocusOut with detail Virtual is generated on each window between A and B exclusive
(in order).

• Focusln with detail Inferior is generated on B.

• If P is an inferior of B but P is not A or an inferior of A or an ancestor of A, Focusln
with detail Pointer is generated on each window below B down to and including P (in
order).

When the focus moves from window A to window B, B is an inferior of A, and the pointer is
in window P:

• If P is an inferior of A but P is not an inferior of B or an ancestor of B, FocusOut with
detail Pointer is generated on each window from P up to but not including A (in order).

• FocusOut with detail Inferior is generated on A.

• Focusln with detail Virtual is generated on each window between A and B exclusive
(in order).

• Focusln with detail Ancestor is generated on B.

When the focus moves from window A to window B, window C is their least common ances¬
tor, and the pointer is in window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each window
from P up to but not including A (in order).

• FocusOut with detail Nonlinear is generated on A.

• FocusOut with detail NonlinearVirtual is generated on each window between A and C
exclusive (in order).

• Focusln with detail NonlinearVirtual is generated on each window between C and B
exclusive (in order).

• Focusln with detail Nonlinear is generated on B.

67

X Protocol XI1, Release 5

• If P is an inferior of B, Focusln with detail Pointer is generated on each window
below B down to and including P (in order).

When the focus moves from window A to window B on different screens and the pointer is in
window P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each window
from P up to but not including A (in order).

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual is generated on each
window above A up to and including its root (in order).

• If B is not a root window, Focusln with detail NonlinearVirtual is generated on each
window from B’s root down to but not including B (in order).

• Focusln with detail Nonlinear is generated on B.

• If P is an inferior of B, Focusln with detail Pointer is generated on each window
below B down to and including P (in order).

When the focus moves from window A to PointerRoot (or None) and the pointer is in win¬
dow P:

• If P is an inferior of A, FocusOut with detail Pointer is generated on each window
from P up to but not including A (in order).

• FocusOut with detail Nonlinear is generated on A.

• If A is not a root window, FocusOut with detail NonlinearVirtual is generated on each
window above A up to and including its root (in order).

• Focusln with detail PointerRoot (or None) is generated on all root windows.

• If the new focus is PointerRoot, Focusln with detail Pointer is generated on each
window from P’s root down to and including P (in order).

When the focus moves from PointerRoot (or None) to window A and the pointer is in win¬
dow P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is generated on each
window from P up to and including P’s root (in order).

• FocusOut with detail PointerRoot (or None) is generated on all root windows.

• If A is not a root window, Focusln with detail NonlinearVirtual is generated on each
window from A’s root down to but not including A (in order).

• Focusln with detail Nonlinear is generated on A.

• If P is an inferior of A, Focusln with detail Pointer is generated on each window
below A down to and including P (in order).

When the focus moves from PointerRoot to None (or vice versa) and the pointer is in win¬
dow P:

• If the old focus is PointerRoot, FocusOut with detail Pointer is generated on each
window from P up to and including P’s root (in order).

• FocusOut with detail PointerRoot (or None) is generated on all root windows.

• Focusln with detail None (or PointerRoot) is generated on all root windows.

• If the new focus is PointerRoot, Focusln with detail Pointer is generated on each
window from P’s root down to and including P (in order).

When a keyboard grab activates (but before generating any actual KeyPress event that
activates the grab), G is the grab-window for the grab, and F is the current focus:

• Focusln and FocusOut events with mode Grab are generated (as for Normal above)
as if the focus were to change from F to G.

68

X Protocol Xll, Release 5

When a keyboard grab deactivates (but after generating any actual KeyRelease event that
deactivates the grab), G is the grab-window for the grab, and F is the current focus:

• Focusln and FocusOut events with mode Ungrab are generated (as for Normal
above) as if the focus were to change from G to F.

KeymapNotify

keys: LISTofCARD8

The value is a bit vector as described in QueryKeymap. This event is reported to clients
selecting KeymapState on a window and is generated immediately after every EnterNotify
and Focusln.

Expose

window. WINDOW
x, y, width, height: CARD 16
count: CARD 16

This event is reported to clients selecting Exposure on the window. It is generated when no
valid contents are available for regions of a window, and either the regions are visible, the
regions are viewable and the server is (perhaps newly) maintaining backing store on the win¬
dow, or the window is not viewable but the server is (perhaps newly) honoring window’s
backing-store attribute of Always or WhenMapped. The regions are decomposed into an
arbitrary set of rectangles, and an Expose event is generated for each rectangle.

For a given action causing exposure events, the set of events for a given window are
guaranteed to be reported contiguously. If count is zero, then no more Expose events for this
window follow. If count is nonzero, then at least that many more Expose events for this win¬
dow follow (and possibly more).

The x and y coordinates are relative to window’s origin and specify the upper-left comer of a
rectangle. The width and height specify the extent of the rectangle.

Expose events are never generated on InputOnly windows.

All Expose events caused by a hierarchy change arc generated after any hierarchy event
caused by that change (for example, UnmapNotify, MapNotify, ConfigureNotify, Gravi-
tyNotify, CirculateNotify). All Expose events on a given window are generated after any
VisibilityNotify event on that window, but it is not required that all Expose events on all
windows be generated after all Visibilitity events on all windows. The ordering of Expose
events with respect to FocusOut, EnterNotify, and LeaveNotify events is not constrained.

GraphicsExposure

drawable: DRAW ABLE
X, y, width, height: CARD 16
count: CARD16
major-opcode: CARD8
minor-opcode: CARD 16

This event is reported to clients selecting graphics-exposures in a graphics context and is gen¬
erated when a destination region could not be computed due to an obscured or out-of-bounds
source region. All of the regions exposed by a given graphics request are guaranteed to be
reported contiguously. If count is zero then no more GraphicsExposure events for this win¬
dow follow. If count is nonzero, then at least that many more GraphicsExposure events for
this window follow (and possibly more).

The x and y coordinates are relative to drawable’s origin and specify the upper-left comer of a
rectangle. The width and height specify the extent of the rectangle.

69

X Protocol XI1, Release 5

The major and minor opcodes identify the graphics request used. For the core protocol,
major-opcode is always CopyArea or Copy Plane, and minor-opcode is always zero.

NoExposure

draw able: DRAW ABLE
major-opcode: CARD8
minor-opcode: CARD 16

This event is reported to clients selecting graphics-exposures in a graphics context and is gen¬
erated when a graphics request that might produce GraphicsExposure events does not pro¬
duce any. The drawable specifies the destination used for the graphics request.

The major and minor opcodes identify the graphics request used. For the core protocol,
major-opcode is always CopyArea or Copy Plane, and the minor-opcode is always zero.

VisibilityNotify

window: WINDOW
state: {Unobscured, PartiailyObscured, FullyObscured}

This event is reported to clients selecting VisibilityChange on the window. In the following,
the state of the window is calculated ignoring all of the window’s subwindows. When a win¬
dow changes state from partially or fully obscured or not viewable to viewable and completely
unobscured, an event with Unobscured is generated. When a window changes state from
viewable and completely unobscured or not viewable, to viewable and partially obscured, an
event with PartiailyObscured is generated. When a window changes state from viewable and
completely unobscured, from viewable and partially obscured, or from not viewable to view¬
able and fully obscured, an event with FullyObscured is generated.

VisibilityNotify events are never generated on InputOniy windows.

All VisibilityNotify events caused by a hierarchy change are generated after any hierarchy
event caused by that change (for example, UnmapNotify, MapNotify, ConfigureNotify,
GravityNotify, CirculateNotify). Any VisibilityNotify event on a given window is gen¬
erated before any Expose events on that window, but it is not required that all VisibilityNo¬
tify events on all windows be generated before all Expose events on all windows. The order¬
ing of VisibilityNotify events with respect to FocusOut, EnterNotify, and LeaveNotify
events is not constrained.

CreateNotify

parent, window: WINDOW
x, y: INT16
width, height, border-width: CARD 16
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on the parent and is generated
when the window is created. The arguments arc as in the CreateWindow request.

DestroyNotify

event, window: WINDOW

This event is reported to clients selecting StructureNotify on the window and to clients select¬
ing SubstructureNotify on the parent. It is generated when the window is destroyed. The
event is the window on which the event was generated, and the window is the window that is
destroyed.

The ordering of the DestroyNotify events is such that for any given window, DestroyNotify
is generated on all inferiors of the window before being generated on the window itself. The
ordering among siblings and across subhierarchies is not otherwise constrained.

70

X Protocol XI1, Release 5

UnmapNotify

event, window. WINDOW
from-configure: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients select¬
ing SubstructureNotify on the parent. It is generated when the window changes state from
mapped to unmapped. The event is the window on which the event was generated, and the
window is the window that is unmapped. The from-configure flag is True if the event was
generated as a result of the window’s parent being resized when the window itself had a win-
gravity of Unmap.

MapNotify

event, window: WINDOW
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients select¬
ing SubstructureNotify on the parent. It is generated when the window changes state from
unmapped to mapped. The event is the window on which the event was generated, and the
window is the window that is mapped. The override-redirect flag is from the window’s attri¬
bute.

MapRequest

parent, window: WINDOW

This event is reported to the client selecting SubstructureRedirect on the parent and is gen¬
erated when a MapWindow request is issued on an unmapped window with an override-
redirect attribute of False.

ReparentNotify

event, window, parent: WINDOW
x, y: INTI6
override-redirect: BOOL

This event is reported to clients selecting SubstructureNotify on either the old or the new
parent and to clients selecting StructureNotify on the window. It is generated when the win¬
dow is reparented. The event is the window on which the event was generated. The window
is the window that has been rerooted. The parent specifies the new parent. The x and y coor¬
dinates are relative to the new parent’s origin and specify the position of the upper-left outer
comer of the window. The override-redirect flag is from the window’s attribute.

ConfigureNotify

event, window: WINDOW
x, y: INT16
width, height, border-width: CARD 16
above-sibling: WINDOW or None
override-redirect: BOOL

This event is reported to clients selecting StructureNotify on the window and to clients select¬
ing SubstructureNotify on the parent. It is generated when a ConfigureWindow request
actually changes the state of the window. The event is the window on which the event was
generated, and the window is the window that is changed. The x and y coordinates are relative
to the new parent’s origin and specify the position of the upper-left outer comer of the win¬
dow. The width and height specify the inside size, not including the border. If above-sibling
is None, then the window is on the bottom of the stack with respect to siblings. Otherwise,
the window is immediately on top of the specified sibling. The override-redirect flag is from

71

X Protocol XI1, Release 5

the window’s attribute.

GravityNotify

event, window: WINDOW
jt, y: INT16

This event is reported to clients selecting SubstructureNotify on the parent and to clients
selecting StructureNotify on the window. It is generated when a window is moved because
of a change in size of the parent. The event is the window on which the event was generated,
and the window is the window that is moved. The x and y coordinates are relative to the new
parent’s origin and specify the position of the upper-left outer comer of the window.

ResizeRequest

window: WINDOW
width, height: CARD16

This event is reported to the client selecting ResizeRedirect on the window and is generated
when a ConfigureWindow request by some other client on the window attempts to change the
size of the window. The width and height arc the inside size, not including the border.

ConfigureRequest

parent, window: WINDOW
*, y: INTI6
width, height, border-width: CARD 16
sibling: WINDOW or None
stack-mode: (Above, Below, Toplf, Bottomlf, Opposite)
value-mask: BITMASK

This event is reported to the client selecting SubstructureRedirect on the parent and is gen¬
erated when a ConfigureWindow request is issued on the window by some other client. The
value-mask indicates which components were specified in the request. The value-mask and the
corresponding values are reported as given in the request. The remaining values are filled in
from the current geometry of the window, except in the case of sibling and stack-mode, which
are reported as None and Above (respectively) if not given in the request.

CirculateNotify

event, window: WINDOW
place: (Top, Bottom)

This event is reported to clients selecting StructureNotify on the window and to clients select¬
ing SubstructureNotify on the parent. It is generated when the window is actually restacked
from a CirculateWindow request. The event is the window on which the event was gen¬
erated, and the window is the window that is restackcd. If place is Top, the window is now
on top of all siblings. Otherwise, it is below all siblings.

CirculateRequest

parent, window: WINDOW
place: (Top, Bottom)

This event is reported to the client selecting SubstructureRedirect on the parent and is gen¬
erated when a CirculateWindow request is issued on the parent and a window actually needs
to be restacked. The window specifies the window to be rcstacked, and the place specifies
what the new position in the stacking order should be.

72

X Protocol XI1, Release 5

PropertyNotify

window: WINDOW
atom: ATOM
state: {NewValue, Deleted}
time: TIMESTAMP

This event is reported to clients selecting PropertyChange on the window and is generated
with state NewValue when a property of the window is changed using ChangeProperty or
RotateProperties, even when adding zero-length data using ChangeProperty and when
replacing all or part of a property with identical data using ChangeProperty or RotatePro¬
perties. It is generated with state Deleted when a property of the window is deleted using
request DeleteProperty or GetProperty. The timestamp indicates the server time when the
property was changed.

SelectionClear

owner: WINDOW
selection: ATOM
time: TIMESTAMP

This event is reported to the current owner of a selection and is generated when a new owner
is being defined by means of SetSelectionOwner. The timestamp is the last-change time
recorded for the selection. The owner argument is the window that was specified by the
current owner in its SetSelectionOwner request.

SelectionRequest

owner: WINDOW
selection: ATOM
target: ATOM
property: ATOM or None
requestor: WINDOW
time: TIMESTAMP or CurrentTime

This event is reported to the owner of a selection and is generated when a client issues a Con-
vertSelection request. The owner argument is the window that was specified in the SetSelec¬
tionOwner request. The remaining arguments arc as in the ConvertSelection request.

The owner should convert the selection based on the specified target type and send a Selec-
tionNotify back to the requestor. A complete specification for using selections is given in the
X Consortium standard Inter-Client Communication Conventions Manual.

SelectionNotify

requestor: WINDOW
selection, target: ATOM
property: ATOM or None
time: TIMESTAMP or CurrentTime

This event is generated by the server in response to a ConvertSelection request when there is
no owner for the selection. When there is an owner, it should be generated by the owner
using SendEvent. The owner of a selection should send this event to a requestor either when
a selection has been converted and stored as a property or when a selection conversion could
not be performed (indicated with property None).

ColorrnapNotify

window: WINDOW
colormap: COLORMAP or None

73

X Protocol Xll, Release 5

new: BOOL
state: (Installed, Uninstalled}

This event is reported to clients selecting ColormapChange on the window. It is generated
with value True for new when the colormap attribute of the window is changed and is gen¬
erated with value False for new when the colormap of a window is installed or uninstalled. In
either case, the state indicates whether the colormap is currently installed.

MappingNotify

request: (Modifier, Keyboard, Pointer}
first-keycode, count: CARD8

This event is sent to all clients. There is no mechanism to express disinterest in this event.
The detail indicates the kind of change that occurred: Modifiers for a successful
SetModifierMapping, Keyboard fora successful ChangeKeyboardMapping, and Pointer
for a successful SetPointerMapping. If the detail is Keyboard, then first-keycode and count
indicate the range of altered keycodes.

ClientMessage

window: WINDOW
type: ATOM
format: (8, 16, 32}
data: LISTofINT8 or LISTofINT16 or LISTofINT32

This event is only generated by clients using SendEvent. The type specifies how the data is
to be interpreted by the receiving client; the server places no interpretation on the type or the
data. The format specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-
bit quantities, so that the server can correctly byte-swap, as necessary. The data always con¬
sists of either 20 8-bit values or 10 16-bit values or 5 32-bit values, although particular mes¬
sage types might not make use of all of these values.

12. Flow Control and Concurrency

Whenever the server is writing to a given connection, it is permissible for the server to stop
reading from that connection (but if the writing would block, it must continue to service other
connections). The server is not required to buffer more than a single request per connection at
one time. For a given connection to the server, a client can block while reading from the con¬
nection but should undertake to read (events and errors) when writing would block. Failure on
the part of a client to obey this rule could result in a deadlocked connection, although deadlock
is probably unlikely unless either the transport layer has very little buffering or the client
attempts to send large numbers of requests without ever reading replies or checking for errors
and events.

Whether or not a server is implemented with internal concurrency, the overall effect must be as
if individual requests are executed to completion in some serial order, and requests from a
given connection must be executed in delivery order (that is, the total execution order is a
shuffle of the individual streams). The execution of a request includes validating all argu¬
ments, collecting all data for any reply, and generating and queueing all required events. How¬
ever, it does not include the actual transmission of the reply and the events. In addition, the
effect of any other cause that can generate multiple events (for example, activation of a grab or
pointer motion) must effectively generate and queue all required events indivisibly with respect
to all other causes and requests. For a request from a given client, any events destined for that
client that are caused by executing the request must be sent to the client before any reply or
error is sent.

Appendix A

74

X Protocol XI1, Release 5

KEYSYM Encoding

For convenience, KEYSYM values are viewed as split into four bytes:

• Byte 1 (for the purposes of this encoding) is the most-significant 5 bits (because of the
29-bit effective values)

• Byte 2 is the next most-significant 8 bits

• Byte 3 is the next most-significant 8 bits

• Byte 4 is the least-significant 8 bits

There are two special KEYSYM values: NoSymbol and VoidSymbol. They are used to indi¬
cate the absence of symbols (see section 5).

Byte 1 Byte 2 Byte 3 Byte 4 Name

0 0 0 0 NoSymbol
0 255 255 255 VoidSymbol

All other standard KEYSYM values have zero values for bytes 1 and 2. Byte 3 indicates a
character code set, and byte 4 indicates a particular character within that set.

Byte 3 Byte 4

0 Latin 1
1 Latin 2
2 Latin 3
3 Latin 4
4 Kana
5 Arabic
6 Cyrillic
7 Greek
8 Technical
9 Special
10 Publishing
11 APL
12 Hebrew
255 Keyboard

Each character set contains gaps where codes have been removed that were duplicates with
codes in previous character sets (that is, character sets with lesser byte 3 value).

The 94 and 96 character code sets have been moved to occupy the right-hand quadrant
(decimal 129 through 256), so the ASCII subset has a unique encoding across byte 4, which
corresponds to the ASCII character code. However, this cannot be guaranteed with future
registrations and does not apply to all of the Keyboard set.

To the best of our knowledge, the Latin, Kana, Arabic, Cyrillic, Greek, APL, and Hebrew sets
are from the appropriate ISO and/or ECMA international standards. There are no Technical,
Special, or Publishing international standards, so these sets are based on Digital Equipment
Corporation standards.

The ordering between the sets (byte 3) is essentially arbitrary. National and international stan¬
dards bodies were commencing deliberations regarding international 2-byte and 4-byte charac¬
ter sets at the time these keysyms were developed, but we did not know of any proposed lay¬
outs.

75

X Protocol XI1, Release 5

The order may be arbitrary, but it is important in dealing with duplicate coding. As far as pos¬
sible, keysym values (byte 4) follow the character set encoding standards, except for the Greek
and Cyrillic keysyms which are based on early draft standards. In the Latin-1 to Latin-4 sets,
all duplicate glyphs occupy the same code position. However, duplicates between Greek and
Technical do not occupy the same code position. Applications that wish to use the Latin-2,
Latin-3, Latin-4, Greek, Cyrillic, or Technical sets may find it convenient to use arrays to
transform the keysyms.

There is a difference between European and US usage of the names Pilcrow, Paragraph, and
Section, as follows:

US name European name code position in Latin-1

Section sign Paragraph sign 10/07
Paragraph sign Pilcrow sign 11/06

We have adopted the US names (by accident rather than by design).

The Keyboard set is a miscellaneous collection of commonly occurring keys on keyboards.
Within this set, the keypad symbols are generally duplicates of symbols found on keys on the
main part of the keyboard, but they are distinguished here because they often have a distin¬
guishable semantics associated with them.

Keyboards tend to be comparatively standard with respect to the alphanumeric keys, but they
differ radically on the miscellaneous function keys. Many function keys are left over from
early timesharing days or are designed for a specific application. Keyboard layouts from large
manufacturers tend to have lots of keys for every conceivable purpose, whereas small worksta¬
tion manufacturers often add keys that are solely for support of some of their unique func¬
tionality. There are two ways of thinking about how to define keysyms for such a world:

• The Engraving approach

• The Common approach

The Engraving approach is to create a keysym for every unique key engraving. This is
effectively taking the union of all key engravings on all keyboards. For example, some key¬
boards label function keys across the top as FI through Fn, and others label them as PF1
through PFn. These would be different keys under the Engraving approach. Likewise, Lock
would differ from Shift Lock, which is different from the up-arrow symbol that has the effect
of changing lowercase to uppercase. There arc lots of other aliases such as Del, DEL, Delete,
Remove, and so forth. The Engraving approach makes it easy to decide if a new entry should
be added to the keysym set: if it does not exactly match an existing one, then a new one is
created. One estimate is that there would be on the order of 300-500 Keyboard keysyms using
this approach, without counting foreign translations and variations.

The Common approach tries to capture all of the keys present on an interesting number of key¬
boards, folding likely aliases into the same keysym. For example, Del, DEL, and Delete are
all merged into a single keysym. Vendors would be expected to augment the keysym set
(using the vendor-specific encoding space) to include all of their unique keys that were not
included in the standard set. Each vendor decides which of its keys map into the standard
keysyms, which presumably can be overridden by a user. It is more difficult to implement this
approach, because judgment is required about when a sufficient set of keyboards implements
an engraving to justify making it a keysym in the standard set and about which engravings
should be merged into a single keysym. Under this scheme there are an estimated 100-150
keysyms.

Although neither scheme is perfect or elegant, the Common approach has been selected
because it makes it easier to write a portable application. Having the Delete functionality
merged into a single keysym allows an application to implement a deletion function and expect
reasonable bindings on a wide set of workstations. Under the Common approach, application

76

X Protocol XI1, Release 5

writers are still free to look for and interpret vendor-specific keysyms, but because they are in
the extended set, the application developer is more conscious that they are writing the applica¬
tion in a nonportable fashion.

In the listings below, Code Pos is a representation of byte 4 of the KEYSYM value, expressed
as most-significant/least-significant 4-bit values. The Code Pos numbers are for reference only
and do not affect the KEYSYM value. In all cases, the KEYSYM value is:

byte3 * 256 + byte4

Byte
3

Byte
4

Code
Pos

Name Set

000 032 02/00 SPACE Latin-1
000 033 02/01 EXCLAMATION POINT Latin-1
000 034 02/02 QUOTATION MARK Latin-1
000 035 02/03 NUMBER SIGN Latin-1
000 036 02/04 DOLLAR SIGN Latin-1
000 037 02/05 PERCENT SIGN Latin-1
000 038 02/06 AMPERSAND Latin-1
000 039 02/07 APOSTROPHE Latin-1
000 040 02/08 LEFT PARENTHESIS Latin-1
000 041 02/09 RIGHT PARENTHESIS Latin-1
000 042 02/10 ASTERISK Latin-1
000 043 02/11 PLUS SIGN Latin-1
000 044 02/12 COMMA Latin-1
000 045 02/13 MINUS SIGN Latin-1
000 046 02/14 FULL STOP Latin-1
000 047 02/15 SOLIDUS Latin-1
000 048 03/00 DIGIT ZERO Latin-1
000 049 03/01 DIGIT ONE Latin-1
000 050 03/02 DIGIT TWO Latin-1
000 051 03/03 DIGIT THREE Latin-1
000 052 03/04 DIGIT FOUR Latin-1
000 053 03/05 DIGIT FIVE Latin-1
000 054 03/06 DIGIT SIX Latin-1
000 055 03/07 DIGIT SEVEN Latin-1
000 056 03/08 DIGIT EIGHT Latin-1
000 057 03/09 DIGIT NINE Latin-1
000 058 03/10 COLON Latin-1
000 059 03/11 SEMICOLON Latin-1
000 060 03/12 LESS THAN SIGN Latin-1
000 061 03/13 EQUALS SIGN Latin-1
000 062 03/14 GREATER THAN SIGN Latin-1
000 063 03/15 QUESTION MARK Latin-1
000 064 04/00 COMMERCIAL AT Latin-1
000 065 04/01 LATIN CAPITAL LETTER A Latin-1
000 066 04/02 LATIN CAPITAL LETTER B Latin-1
000 067 04/03 LATIN CAPITAL LETTER C Latin-1
000 068 04/04 LATIN CAPITAL LETTER D Latin-1
000 069 04/05 LATIN CAPITAL LETTER E Latin-1
000 070 04/06 LATIN CAPITAL LETTER F Latin-1
000 071 04/07 LATIN CAPITAL LETTER G Latin-1
000 072 04/08 LATIN CAPITAL LETTER H Latin-1
000 073 04/09 LATIN CAPITAL LETTER I Latin-1
000 074 04/10 LATIN CAPITAL LETTER J Latin-1
000 075 04/11 LATIN CAPITAL LETTER K Latin-1
000 076 04/12 LATIN CAPITAL LETTER L Latin-1
000 077 04/13 LATIN CAPITAL LETTER M Latin-1
000 078 04/14 LATIN CAPITAL LETTER N Latin-1
000 079 04/15 LATIN CAPITAL LETTER O Latin-1
000 080 05/00 LATIN CAPITAL LETTER P Latin-1
000 081 05/01 LATIN CAPITAL LETTER Q Latin-1

77

Byte
4

082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

Xll, Release 5

Code
Pos

Name Set

05/02 LATIN CAPITAL LETTER R Latin-1
05/03 LATIN CAPITAL LETTER S Latin-1
05/04 LATIN CAPITAL LETTER T Latin-1
05/05 LATIN CAPITAL LETTER U Latin-1
05/06 LATIN CAPITAL LETTER V Latin-1
05/07 LATIN CAPITAL LETTER W Latin-1
05/08 LATIN CAPITAL LETTER X Latin-1
05/09 LATIN CAPITAL LETTER Y Latin-1
05/10 LATIN CAPITAL LETTER Z Latin-1
05/11 LEFT SQUARE BRACKET Latin-1
05/12 REVERSE SOLIDUS Latin-1
05/13 RIGHT SQUARE BRACKET Latin-1
05/14 CIRCUMFLEX ACCENT Latin-1
05/15 LOW LINE Latin-1
06/00 GRAVE ACCENT Latin-1
06/01 LATIN SMALL LETTER a Latin-1
06/02 LATIN SMALL LETTER b Latin-1
06/03 LATIN SMALL LETTER c Latin-1
06/04 LATIN SMALL LETTER d Latin-1
06/05 LATIN SMALL LETTER e Latin-1
06/06 LATIN SMALL LETTER f Latin-1
06/07 LATIN SMALL LETTER g Latin-1
06/08 LATIN SMALL LETTER h Latin-1
06/09 LATIN SMALL LETTER i Latin-1
06/10 LATIN SMALL LETTER j Latin-1
06/11 LATIN SMALL LETTER k Latin-1
06/12 LATIN SMALL LETTER 1 Latin-1
06/13 LATIN SMALL LETTER m Latin-1
06/14 LATIN SMALL LETTER n Latin-1
06/15 LATIN SMALL LETTER o Latin-1
07/00 LATIN SMALL LETTER p Latin-1
07/01 LATIN SMALL LETTER q Latin-1
07/02 LATIN SMALL LETTER r Latin-1
07/03 LATIN SMALL LETTER s Latin-1
07/04 LATIN SMALL LETTER i Latin-1
07/05 LATIN SMALL LETTER u Latin-1
07/06 LATIN SMALL LETTER v Latin-1
07/07 LATIN SMALL LETTER w Latin-1
07/08 LATIN SMALL LETTER x Latin-1
07/09 LATIN SMALL LETTER y Latin-1
07/10 LATIN SMALL LETTER z Latin-1
07/11 LEFT CURLY BRACKET Latin-1
07/12 VERTICAL LINE Latin-1
07/13 RIGHT CURLY BRACKET Latin-1
07/14 TILDE Latin-1
10/00 NO-BREAK SPACE Latin-1
10/01 INVERTED EXCLAMATION MARK Latin-1
10/02 CENT SIGN Latin-1
10/03 POUND SIGN Latin-1
10/04 CURRENCY SIGN Latin-1
10/05 YEN SIGN Latin-1
10/06 BROKEN VERTICAL BAR Latin-1
10/07 SECTION SIGN Latin-1
10/08 DIAERESIS Latin-1
10/09 COPYRIGHT SIGN Latin-1
10/10 FEMININE ORDINAL INDICATOR Latin-1
10/11 LEFT ANGLE QUOTATION MARK Latin-1
10/12 NOT SIGN Latin-1
10/13 HYPHEN Latin-1
10/14 REGISTERED TRADEMARK SIGN Latin-1
10/15 MACRON Latin-1

78

Byte
4

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

Xll, Release 5

Code Name
Pos

11/00 DEGREE SIGN, RING ABOVE
11/01 PLUS-MINUS SIGN
11/02 SUPERSCRIPT TWO
11/03 SUPERSCRIPT THREE
11/04 ACUTE ACCENT
11/05 MICRO SIGN
11/06 PARAGRAPH SIGN
11/07 MIDDLE DOT
11/08 CEDILLA
11/09 SUPERSCRIPT ONE
11/10 MASCULINE ORDINAL INDICATOR
11/11 RIGHT ANGLE QUOTATION MARK
11/12 VULGAR FRACTION ONE QUARTER
11/13 VULGAR FRACTION ONE HALF
11/14 VULGAR FRACTION THREE QUARTERS
11/15 INVERTED QUESTION MARK
12/00 LATIN CAPITAL LETTER A WITH GRAVE ACCENT
12/01 LATIN CAPITAL LETTER A WITH ACUTE ACCENT
12/02 LATIN CAPITAL LETTER A WITH CIRCUMFLEX ACCENT
12/03 LATIN CAPITAL LETTER A WITH TILDE
12/04 LATIN CAPITAL LETTER A WITH DIAERESIS
12/05 LATIN CAPITAL LETTER A WITH RING ABOVE
12/06 LATIN CAPITAL DIPHTHONG AE
12/07 LATIN CAPITAL LETTER C WITH CEDILLA
12/08 LATIN CAPITAL LETTER E WITH GRAVE ACCENT
12/09 LATIN CAPITAL LETTER E WITH ACUTE ACCENT
12/10 LATIN CAPITAL LETTER E WITH CIRCUMFLEX ACCENT
12/11 LATIN CAPITAL LETTER E WITH DIAERESIS
12/12 LATIN CAPITAL LETTER I WITH GRAVE ACCENT
12/13 LATIN CAPITAL LETTER I WITH ACUTE ACCENT
12/14 LATIN CAPITAL LETTER I WITH CIRCUMFLEX ACCENT
12/15 LATIN CAPITAL LETTER I WITH DIAERESIS
13/00 ICELANDIC CAPITAL LETTER ETH
13/01 LATIN CAPITAL LETTER N WITH TILDE
13/02 LATIN CAPITAL LETTER O WITH GRAVE ACCENT
13/03 LATIN CAPITAL LETTER O WITH ACUTE ACCENT
13/04 LATIN CAPITAL LETTER O WITH CIRCUMFLEX ACCENT
13/05 LATIN CAPITAL LETTER O WITH TILDE
13/06 LATIN CAPITAL LETTER O WITH DIAERESIS
13/07 MULTIPLICATION SIGN
13/08 LATIN CAPITAL LETTER O WITH OBLIQUE STROKE
13/09 LATIN CAPITAL LETTER U WITH GRAVE ACCENT
13/10 LATIN CAPITAL LETTER U WITH ACUTE ACCENT
13/11 LATIN CAPITAL LETTER U WITH CIRCUMFLEX ACCENT
13/12 LATIN CAPITAL LETTER U WITH DIAERESIS
13/13 LATIN CAPITAL LETTER Y WITH ACUTE ACCENT
13/14 ICELANDIC CAPITAL LETTER THORN
13/15 GERMAN SMALL LETTER SHARP s
14/00 LATIN SMALL LETTER a WITH GRAVE ACCENT
14/01 LATIN SMALL LETTER a WITH ACUTE ACCENT
14/02 LATIN SMALL LETTER a WITH CIRCUMFLEX ACCENT
14/03 LATIN SMALL LETTER a WITH TILDE
14/04 LATIN SMALL LETTER a WITH DIAERESIS
14/05 LATIN SMALL LETTER a WITH RING ABOVE
14/06 LATIN SMALL DIPHTHONG ae
14/07 LATIN SMALL LETTER c WITH CEDILLA
14/08 LATIN SMALL LETTER e WITH GRAVE ACCENT
14/09 LATIN SMALL LETTER e WITH ACUTE ACCENT
14/10 LATIN SMALL LETTER e WITH CIRCUMFLEX ACCENT
14/11 LATIN SMALL LETTER e WITH DIAERESIS
14/12 LATIN SMALL LETTER i WITH GRAVE ACCENT

Set

Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin -1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1

79

Byte
4

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

161
162
163
165
166
169
170
171
172
174
175
177
178
179
181
182
183
185
186
187
188
189
190
191
192
195
197
198
200
202
204
207
208
209

Xll, Release 5

Code Name
Pos

14/13 LATIN SMALL LETTER i WITH ACUTE ACCENT
14/14 LATIN SMALL LETTER i WITH CIRCUMFLEX ACCENT
14/15 LATIN SMALL LETTER i WITH DIAERESIS
15/00 ICELANDIC SMALL LETTER ETH
15/01 LATIN SMALL LETTER n WITH TILDE
15/02 LATIN SMALL LETTER o WITH GRAVE ACCENT
15/03 LATIN SMALL LETTER o WITH ACUTE ACCENT
15/04 LATIN SMALL LETTER o WITH CIRCUMFLEX ACCENT
15/05 LATIN SMALL LETTER o WITH TILDE
15/06 LATIN SMALL LETTER o WITH DIAERESIS
15/07 DIVISION SIGN
15/08 LATIN SMALL LETTER o WITH OBLIQUE STROKE
15/09 LATIN SMALL LETTER u WITH GRAVE ACCENT
15/10 LATIN SMALL LETTER u WITH ACUTE ACCENT
15/11 LATIN SMALL LETTER u WITH CIRCUMFLEX ACCENT
15/12 LATIN SMALL LETTER u WITH DIAERESIS
15/13 LATIN SMALL LETTER y WITH ACUTE ACCENT
15/14 ICELANDIC SMALL LETTER THORN
15/15 LATIN SMALL LETTER y WITH DIAERESIS

10/01 LATIN CAPITAL LETTER A WITH OGONEK
10/02 BREVE
10/03 LATIN CAPITAL LETTER L WITH STROKE
10/05 LATIN CAPITAL LETTER L WITH CARON
10/06 LATIN CAPITAL LETTER S WITH ACUTE ACCENT
10/09 LATIN CAPITAL LETTER S WITH CARON
10/10 LATIN CAPITAL LETTER S WITH CEDILLA
10/11 LATIN CAPITAL LETTER T WITH CARON
10/12 LATIN CAPITAL LETTER Z WITH ACUTE ACCENT
10/14 LATIN CAPITAL LETTER Z WITH CARON
10/15 LATIN CAPITAL LETTER Z WITH DOT ABOVE
11/01 LATIN SMALL LETTER a WITH OGONEK
11/02 OGONEK
11/03 LATIN SMALL LETTER 1 WITH STROKE
11/05 LATIN SMALL LETTER 1 WITH CARON
11/06 LATIN SMALL LETTER s WITH ACUTE ACCENT
11/07 CARON
11/09 LATIN SMALL LETTER s WITH CARON
11/10 LATIN SMALL LETTER s WITH CEDILLA
11/11 LATIN SMALL LETTER t WITH CARON
11/12 LATIN SMALL LETTER z WITH ACUTE ACCENT
11/13 DOUBLE ACUTE ACCENT
11/14 LATIN SMALL LETTER z WITH CARON
11/15 LATIN SMALL LETTER z WITH DOT ABOVE
12/00 LATIN CAPITAL LETTER R WITH ACUTE ACCENT
12/03 LATIN CAPITAL LETTER A WITH BREVE
12/05 LATIN CAPITAL LETTER L WITH ACUTE ACCENT
12/06 LATIN CAPITAL LETTER C WITH ACUTE ACCENT
12/08 LATIN CAPITAL LETTER C WITH CARON
12/10 LATIN CAPITAL LETTER E WITH OGONEK
12/12 LATIN CAPITAL LETTER E WITH CARON
12/15 LATIN CAPITAL LETTER D WITH CARON
13/00 LATIN CAPITAL LETTER D WITH STROKE
13/01 LATIN CAPITAL LETTER N WITH ACUTE ACCENT
13/02 LATIN CAPITAL LETTER N WITH CARON
13/05 LATIN CAPITAL LETTER O WITH DOUBLE ACUTE ACCENT
13/08 LATIN CAPITAL LETTER R WITH CARON
13/09 LATIN CAPITAL LETTER U WITH RING ABOVE
13/11 LATIN CAPITAL LETTER U WITH DOUBLE ACUTE ACCENT
13/14 LATIN CAPITAL LETTER T WITH CEDILLA

Set

Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin -1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1
Latin-1

Latin-2
Latin-2
Latin-2
Latin-2
La tin- 2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Lalin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2

80

Byte
4

224
227
229
230
232
234
236
239
240
241
242
245
248
249
251
254
255

161
166
169
171
172
177
182
185
187
188
197
198
213
216
221
222
229
230
245
248
253
254

162
163
165
166
170
171
172
179
181
182
186
187
188
189
191
192
199

Xll, Release 5

Code
Pos

14/00
14/03
14/05
14/06
14/08
14/10
14/12
14/15
15/00
15/01
15/02
15/05
15/08
15/09
15/11
15/14
15/15

10/01
10/06
10/09
10/11
10/12
11/01
11/06
11/09
11/11
11/12
12/05
12/06
13/05
13/08
13/13
13/14
14/05
14/06
15/05
15/08
15/13
15/14

10/02
10/03
10/05
10/06
10/10
10/11
10/12
11/03
11/05
11/06
11/10
11/11
11/12
11/13
11/15
12/00
12/07
12/12

Name

LATIN SMALL LETTER r WITH ACUTE ACCENT
LATIN SMALL LETTER a WITH BREVE
LATIN SMALL LETTER 1 WITH ACUTE ACCENT
LATIN SMALL LETTER c WITH ACUTE ACCENT
LATIN SMALL LETTER c WITH CARON
LATIN SMALL LETTER e WITH OGONEK
LATIN SMALL LETTER e WITH CARON
LATIN SMALL LETTER d WITH CARON
LATIN SMALL LETTER d WITH STROKE
LATIN SMALL LETTER n WITH ACUTE ACCENT
LATIN SMALL LETTER n WITH CARON
LATIN SMALL LETTER o WITH DOUBLE ACUTE ACCENT
LATIN SMALL LETTER r WITH CARON
LATIN SMALL LETTER u WITH RING ABOVE
LATIN SMALL LETTER u WITH DOUBLE ACUTE ACCENT
LATIN SMALL LETTER t WITH CEDILLA
DOT ABOVE

LATIN CAPITAL LETTER H WITH STROKE
LATIN CAPITAL LETTER H WITH CIRCUMFLEX ACCENT
LATIN CAPITAL LETTER I WITH DOT ABOVE
LATIN CAPITAL LETTER G WITH BREVE
LATIN CAPITAL LETTER J WITH CIRCUMFLEX ACCENT
LATIN SMALL LETTER h WITH STROKE
LATIN SMALL LETTER h WITH CIRCUMFLEX ACCENT
SMALL DOTLESS LETTER i
LATIN SMALL LETTER g WITH BREVE
LATIN SMALL LETTER j WITH CIRCUMFLEX ACCENT
LATIN CAPITAL LETTER C WITH DOT ABOVE
LATIN CAPITAL LETTER C WITH CIRCUMFLEX ACCENT
LATIN CAPITAL LETTER G WITH DOT ABOVE
LATIN CAPITAL LETTER G WITH CIRCUMFLEX ACCENT
LATIN CAPITAL LETTER U WITH BREVE
LATIN CAPITAL LETTER S WITH CIRCUMFLEX ACCENT
LATIN SMALL LETTER c WITH DOT ABOVE
LATIN SMALL LETTER c WITH CIRCUMFLEX ACCENT
LATIN SMALL LETTER g WITH DOT ABOVE
LATIN SMALL LETTER g WITH CIRCUMFLEX ACCENT
LATIN SMALL LETTER u WITH BREVE
LATIN SMALL LETTER s WITH CIRCUMFLEX ACCENT

SMALL GREENLANDIC LETTER KRA
LATIN CAPITAL LETTER R WITH CEDILLA
LATIN CAPITAL LETTER I WITH TILDE
LATIN CAPITAL LETTER L WITH CEDILLA
LATIN CAPITAL LETTER E WITH MACRON
LATIN CAPITAL LETTER G WITH CEDILLA
LATIN CAPITAL LETTER T WITH OBLIQUE STROKE
LATIN SMALL LETTER r WITH CEDILLA
LATIN SMALL LETTER i WITH TILDE
LATIN SMALL LETTER 1 WITH CEDILLA
LATIN SMALL LETTER e WITH MACRON
LATIN SMALL LETTER g WITH CEDILLA ABOVE
LATIN SMALL LETTER t WITH OBLIQUE STROKE
LAPPISH CAPITAL LETTER ENG
LAPPISH SMALL LETTER ENG
LATIN CAPITAL LETTER A WITH MACRON
LATIN CAPITAL LETTER I WITH OGONEK
LATIN CAPITAL LETTER E WITH DOT ABOVE

Set

Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2
Latin-2

Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3
Latin-3

Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4
Latin-4

81

Byte
4

207
209
210
211
217
221
222
224
231
236
239
241
242
243
249
253
254

126
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

Xll, Release 5

Code Name Set
Pos

12/15 LATIN CAPITAL LETTER I WITH MACRON Latin-4
13/01 LATIN CAPITAL LETTER N WITH CEDILLA Latin-4
13/02 LATIN CAPITAL LETTER O WITH MACRON Latin-4
13/03 LATIN CAPITAL LETTER K WITH CEDILLA Latin-4
13/09 LATIN CAPITAL LETTER U WITH OGONEK Latin-4
13/13 LATIN CAPITAL LETTER U WITH TILDE Latin-4
13/14 LATIN CAPITAL LETTER U WITH MACRON Latin-4
14/00 LATIN SMALL LETTER a WITH
14/07 LATIN SMALL LETTER i WITH
14/12 LATIN SMALL LETTER e WITH
14/15 LATIN SMALL LETTER i WITH
15/01 LATIN SMALL LETTER n WITH
15/02 LATIN SMALL LETTER 0 WITH
15/03 LATIN SMALL LETTER k WITH
15/09 LATIN SMALL LETTER u WITH
15/13 LATIN SMALL LETTER u WITH
15/14 LATIN SMALL LETTER u WITH

07/14 OVERLINE
10/01 KANA FULL STOP
10/02 KANA OPENING BRACKET
10/03 KANA CLOSING BRACKET
10/04 KANA COMMA
10/05 KANA CONJUNCTIVE
10/06 KANA LETTER WO
10/07 KANA LETTER SMALL A
10/08 KANA LETTER SMALL I
10/09 KANA LETTER SMALL U
10/10 KANA LETTER SMALL E
10/11 KANA LETTER SMALL O
10/12 KANA LETTER SMALL YA
10/13 KANA LETTER SMALL YU
10/14 KANA LETTER SMALL YO
10/15 KANA LETTER SMALL TSU
11/00 PROLONGED SOUND SYMBOL
11/01 KANA LETTER A
11/02 KANA LETTER I
11/03 KANA LETTER U
11/04 KANA LETTER E
11/05 KANA LETTER O
11/06 KANA LETTER KA
11/07 KANA LETTER KI
11/08 KANA LETTER KU
11/09 KANA LETTER KE
11/10 KANA LETTER KO
11/11 KANA LETTER SA
11/12 KANA LETTER SHI
11/13 KANA LETTER SU
11/14 KANA LETTER SE
11/15 KANA LETTER SO
12/00 KANA LETTER TA
12/01 KANA LETTER CHI
12/02 KANA LETTER TSU
12/03 KANA LETTER TE
12/04 KANA LETTER TO
12/05 KANA LETTER NA
12/06 KANA LETTER N1
12/07 KANA LETTER NU
12/08 KANA LETTER NE
12/09 KANA LETTER NO

MACRON Latin-4
OGONEK Latin-4
DOT ABOVE Latin-4
MACRON Latin-4
CEDILLA Latin-4
MACRON Latin-4
CEDILLA Latin-4
OGONEK Latin-4
TILDE Latin-4
MACRON Latin-4

Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana
Kana

82

Byte
4

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

172
187
191
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
224
225
226
227
228
229
230
231

Xll, Release 5

Code
Pos

Name Set

12/10 KANA LETTER HA Kana
12/11 KANA LETTER HI Kana
12/12 KANA LETTER FU Kana
12/13 KANA LETTER HE Kana
12/14 KANA LETTER HO Kana
12/15 KANA LETTER MA Kana
13/00 KANA LETTER MI Kana
13/01 KANA LETTER MU Kana
13/02 KANA LETTER ME Kana
13/03 KANA LETTER MO Kana
13/04 KANA LETTER YA Kana
13/05 KANA LETTER YU Kana
13/06 KANA LETTER YO Kana
13/07 KANA LETTER RA Kana
13/08 KANA LETTER RI Kana
13/09 KANA LETTER RU Kana
13/10 KANA LETTER RE Kana
13/11 KANA LETTER RO Kana
13/12 KANA LETTER WA Kana
13/13 KANA LETTER N Kana
13/14 VOICED SOUND SYMBOL Kana
13/15 SEMIVOICED SOUND SYMBOL Kana

10/12 ARABIC COMMA Arabic
11/11 ARABIC SEMICOLON Arabic
11/15 ARABIC QUESTION MARK Arabic
12/01 ARABIC LETTER HAMZA Arabic
12/02 ARABIC LETTER MADDA ON ALEF Arabic
12/03 ARABIC LETTER HAMZA ON ALEF Arabic
12/04 ARABIC LETTER HAMZA ON WAW Arabic
12/05 ARABIC LETTER HAMZA UNDER ALEF Arabic
12/06 ARABIC LETTER HAMZA ON YEH Arabic
12/07 ARABIC LETTER ALEF Arabic
12/08 ARABIC LETTER BEH Arabic
12/09 ARABIC LETTER TEH MARBUTA Arabic
12/10 ARABIC LETTER TEH Arabic
12/11 ARABIC LETTER THEH Arabic
12/12 ARABIC LETTER JEEM Arabic
12/13 ARABIC LETTER HAH Arabic
12/14 ARABIC LETTER KHAH Arabic
12/15 ARABIC LETTER DAL Arabic
13/00 ARABIC LETTER THAL Arabic
13/01 ARABIC LETTER RA Arabic
13/02 ARABIC LETTER ZAIN Arabic
13/03 ARABIC LETTER SEEN Arabic
13/04 ARABIC LETTER SHEEN Arabic
13/05 ARABIC LETTER SAD Arabic
13/06 ARABIC LETTER DAD Arabic
13/07 ARABIC LETTER TAH Arabic
13/08 ARABIC LETTER ZAH Arabic
13/09 ARABIC LETTER AIN Arabic
13/10 ARABIC LETTER GHAIN Arabic
14/00 ARABIC LETTER TATWEEL Arabic
14/01 ARABIC LETTER FEH Arabic
14/02 ARABIC LETTER QAF Arabic
14/03 ARABIC LETTER KAF Arabic
14/04 ARABIC LETTER LAM Arabic
14/05 ARABIC LETTER MEEM Arabic
14/06 ARABIC LETTER NOON Arabic
14/07 ARABIC LETTER HA Arabic

83

Byte
4

232
233
234
235
236
237
238
239
240
241
242

161
162
163
164
165
166
167
168
169
170
171
172
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Xll, Release 5

Code
Pos

14/08
14/09
14/10
14/11
14/12
14/13
14/14
14/15
15/00
15/01
15/02

10/01
10/02
10/03
10/04
10/05
10/06
10/07
10/08
10/09
10/10
10/11
10/12
10/14
10/15
11/00
11/01
11/02
11/03
11/04
11/05
11/06
11/07
11/08
11/09
11/10
11/11
11/12
11/14
11/15
12/00
12/01
12/02
12/03
12/04
12/05
12/06
12/07
12/08
12/09
12/10
12/11
12/12
12/13
12/14
12/15
13/00
13/01
13/02

Name

ARABIC LETTER WAW
ARABIC LETTER ALEF MAKSURA
ARABIC LETTER YEH
ARABIC LETTER FATHATAN
ARABIC LETTER DAMMATAN
ARABIC LETTER KASRATAN
ARABIC LETTER FATHA
ARABIC LETTER DAMMA
ARABIC LETTER KASRA
ARABIC LETTER SHADDA
ARABIC LETTER SUKUN

SERBOCROATION CYRILLIC SMALL LETTER DJE
MACEDONIAN CYRILLIC SMALL LETTER GJE
CYRILLIC SMALL LETTER IO
UKRAINIAN CYRILLIC SMALL LETTER IE
MACEDONIAN SMALL LETTER DSE
BYELORUSSIAN/UKRAINIAN CYRILLIC SMALL LETTER I
UKRAINIAN SMALL LETTER YI
CYRILLIC SMALL LETTER JE
CYRILLIC SMALL LETTER LJE
CYRILLIC SMALL LETTER NJE
SERBIAN SMALL LETTER TSHE
MACEDONIAN CYRILLIC SMALL LETTER KJE
BYELORUSSIAN SMALL LETTER SHORT U
CYRILLIC SMALL LETTER DZHE
NUMERO SIGN
SERBOCROATIAN CYRILLIC CAPITAL LETTER DJE
MACEDONIAN CYRILLIC CAPITAL LETTER GJE
CYRILLIC CAPITAL LETTER IO
UKRAINIAN CYRILLIC CAPITAL LETTER IE
MACEDONIAN CAPITAL LETTER DSE
BYELORUSSIAN/UKRAINIAN CYRILLIC CAPITAL LETTER I
UKRAINIAN CAPITAL LETTER YI
CYRILLIC CAPITAL LETTER JE
CYRILLIC CAPITAL LETTER LJE
CYRILLIC CAPITAL LETTER NJE
SERBIAN CAPITAL LETTER TSHE
MACEDONIAN CYRILLIC CAPITAL LETTER KJE
BYELORUSSIAN CAPITAL LETTER SHORT U
CYRILLIC CAPITAL LETTER DZHE
CYRILLIC SMALL LETTER YU
CYRILLIC SMALL LETTER A
CYRILLIC SMALL LETTER BE
CYRILLIC SMALL LETTER TSE
CYRILLIC SMALL LETTER DE
CYRILLIC SMALL LETTER IE
CYRILLIC SMALL LETTER EF
CYRILLIC SMALL LETTER GHE
CYRILLIC SMALL LETTER HA
CYRILLIC SMALL LETTER I
CYRILLIC SMALL LETTER SHORT I
CYRILLIC SMALL LETTER KA
CYRILLIC SMALL LETTER EL
CYRILLIC SMALL LETTER EM
CYRILLIC SMALL LETTER EN
CYRILLIC SMALL LETTER O
CYRILLIC SMALL LETTER PE
CYRILLIC SMALL LETTER YA
CYRILLIC SMALL LETTER ER

Set

Arabic
Arabic
Arabic
Arabic
Arabic
Arabic
Arabic
Arabic
Arabic
Arabic
Arabic

Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cynllic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic
Cyrillic

84

Byte
4

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

161
162
163
164
165
167
168
169
171
174
175
177
178
179

Xll, Release 5

Code Name Set
Pos

13/03 CYRILLIC SMALL LETTER ES Cyrillic
13/04 CYRILLIC SMALL LETTER TE Cyrillic
13/05 CYRILLIC SMALL LETTER U Cyrillic
13/06 CYRILLIC SMALL LETTER ZHE Cyrillic
13/07 CYRILLIC SMALL LETTER VE Cyrillic
13/08 CYRILLIC SMALL SOFT SIGN Cyrillic
13/09 CYRILLIC SMALL LETTER YERU . Cyrillic
13/10 CYRILLIC SMALL LETTER ZE Cyrillic
13/11 CYRILLIC SMALL LETTER SHA Cyrillic
13/12 CYRILLIC SMALL LETTER E Cyrillic
13/13 CYRILLIC SMALL LETTER SHCHA Cyrillic
13/14 CYRILLIC SMALL LETTER CHE Cyrillic
13/15 CYRILLIC SMALL HARD SIGN Cyrillic
14/00 CYRILLIC CAPITAL LETTER YU Cyrillic
14/01 CYRILLIC CAPITAL LETTER A Cyrillic
14/02 CYRILLIC CAPITAL LETTER BE Cyrillic
14/03 CYRILLIC CAPITAL LETTER TSE Cyrillic
14/04 CYRILLIC CAPITAL LETTER DE Cyrillic
14/05 CYRILLIC CAPITAL LETTER IE Cyrillic
14/06 CYRILLIC CAPITAL LETTER EF Cyrillic
14/07 CYRILLIC CAPITAL LETTER GHE Cyrillic
14/08 CYRILLIC CAPITAL LETTER HA Cyrillic
14/09 CYRILLIC CAPITAL LETTER I Cyrillic
14/10 CYRILLIC CAPITAL LETTER SHORT I Cyrillic
14/11 CYRILLIC CAPITAL LETTER KA Cyrillic
14/12 CYRILLIC CAPITAL LETTER EL Cyrillic
14/13 CYRILLIC CAPITAL LETTER EM Cyrillic
14/14 CYRILLIC CAPITAL LETTER EN Cyrillic
14/15 CYRILLIC CAPITAL LETTER 0 Cyrillic
15/00 CYRILLIC CAPITAL LETTER PE Cyrillic
15/01 CYRILLIC CAPITAL LETTER YA Cyrillic
15/02 CYRILLIC CAPITAL LETTER ER Cyrillic
15/03 CYRILLIC CAPITAL LETTER ES Cyrillic
15/04 CYRILLIC CAPITAL LETTER TE Cyrillic
15/05 CYRILLIC CAPITAL LETTER U Cyrillic
15/06 CYRILLIC CAPITAL LETTER ZHE Cyrillic
15/07 CYRILLIC CAPITAL LETTER VE Cyrillic
15/08 CYRILLIC CAPITAL SOFT SIGN Cyrillic
15/09 CYRILLIC CAPITAL LETTER YERU Cyrillic
15/10 CYRILLIC CAPITAL LETTER ZE Cyrillic
15/11 CYRILLIC CAPITAL LETTER SHA Cyrillic
15/12 CYRILLIC CAPITAL LETTER E Cyrillic
15/13 CYRILLIC CAPITAL LETTER SHCHA Cyrillic
15/14 CYRILLIC CAPITAL LETTER CHE Cyrillic
15/15 CYRILLIC CAPITAL HARD SIGN Cyrillic

10/01 GREEK CAPITAL LETTER ALPHA WITH ACCENT Greek
10/02 GREEK CAPITAL LETTER EPSILON WITH ACCENT Greek
10/03 GREEK CAPITAL LETTER ETA WITH ACCENT Greek
10/04 GREEK CAPITAL LETTER IOTA WITH ACCENT Greek
10/05 GREEK CAPITAL LETTER IOTA WITH DIAERESIS Greek
10/07 GREEK CAPITAL LETTER OMICRON WITH ACCENT Greek
10/08 GREEK CAPITAL LETTER UPSILON WITH ACCENT Greek
10/09 GREEK CAPITAL LETTER UPSILON WITH DIAERESIS Greek
10/11 GREEK CAPITAL LETTER OMEGA WITH ACCENT Greek
10/14 DIAERESIS AND ACCENT Greek
10/15 HORIZONTAL BAR Greek
11/01 GREEK SMALL LETTER ALPHA WITH ACCENT Greek
11/02 GREEK SMALL LETTER EPSILON WITH ACCENT Greek
11/03 GREEK SMALL LETTER ETA WITH ACCENT Greek

85

Byte
4

180
181
182
183
184
185
186
187
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
212
213
214
215
216
217
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

161
162

Xll, Release 5

Code Name
Pos

11/04 GREEK SMALL LETTER IOTA WITH ACCENT
11/05 GREEK SMALL LETTER IOTA WITH DIAERESIS
11/06 GREEK SMALL LETTER IOTA WITH ACCENT+DIAERESIS
11/07 GREEK SMALL LETTER OMICRON WITH ACCENT
11/08 GREEK SMALL LETTER UPSILON WITH ACCENT
11/09 GREEK SMALL LETTER UPSILON WITH DIAERESIS
11/10 GREEK SMALL LETTER UPSILON WITH ACCENT+DIAERESIS
11/11 GREEK SMALL LETTER OMEGA WITH ACCENT
12/01 GREEK CAPITAL LETTER ALPHA
12/02 GREEK CAPITAL LETTER BETA
12/03 GREEK CAPITAL LETTER GAMMA
12/04 GREEK CAPITAL LETTER DELTA
12/05 GREEK CAPITAL LETTER EPSILON
12/06 GREEK CAPITAL LETTER ZETA
12/07 GREEK CAPITAL LETTER ETA
12/08 GREEK CAPITAL LETTER THETA
12/09 GREEK CAPITAL LETTER IOTA
12/10 GREEK CAPITAL LETTER KAPPA
12/11 GREEK CAPITAL LETTER LAMDA
12/12 GREEK CAPITAL LETTER MU
12/13 GREEK CAPITAL LETTER NU
12/14 GREEK CAPITAL LETTER XI
12/15 GREEK CAPITAL LETTER OMICRON
13/00 GREEK CAPITAL LETTER PI
13/01 GREEK CAPITAL LETTER RHO
13/02 GREEK CAPITAL LETTER SIGMA
13/04 GREEK CAPITAL LETTER TAU
13/05 GREEK CAPITAL LETTER UPSILON
13/06 GREEK CAPITAL LETTER PHI
13/07 GREEK CAPITAL LETTER CHI
13/08 GREEK CAPITAL LETTER PSI
13/09 GREEK CAPITAL LETTER OMEGA
14/01 GREEK SMALL LETTER ALPHA
14/02 GREEK SMALL LETTER BETA
14/03 GREEK SMALL LETTER GAMMA
14/04 GREEK SMALL LETTER DELTA
14/05 GREEK SMALL LETTER EPSILON
14/06 GREEK SMALL LETTER ZETA
14/07 GREEK SMALL LETTER ETA
14/08 GREEK SMALL LETTER THETA
14/09 GREEK SMALL LETTER IOTA
14/10 GREEK SMALL LETTER KAPPA
14/11 GREEK SMALL LETTER LAMDA
14/12 GREEK SMALL LETTER MU
14/13 GREEK SMALL LETTER NU
14/14 GREEK SMALL LETTER XI
14/15 GREEK SMALL LETTER OMICRON
15/00 GREEK SMALL LETTER PI
15/01 GREEK SMALL LETTER RHO
15/02 GREEK SMALL LETTER SIGMA
15/03 GREEK SMALL LETTER FINAL SMALL SIGMA
15/04 GREEK SMALL LETTER TAU
15/05 GREEK SMALL LETTER UPSILON
15/06 GREEK SMALL LETTER PHI
15/07 GREEK SMALL LETTER CHI
15/08 GREEK SMALL LETTER PSI
15/09 GREEK SMALL LETTER OMEGA

10/01 LEFT RADICAL
10/02 TOP LEFT RADICAL

Set

Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek
Greek

Technical
Technical

86

Byte
4

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
188
189
190
191
192
193
194
197
200
201
205
206
207
214
218
219
220
221
222
223
239
246
251
252
253
254

223
224
225
226
227
228
229
232
233
234
235
236

Xll, Release 5

Code Name Set
Pos

10/03 HORIZONTAL CONNECTOR Technical
10/04 TOP INTEGRAL Technical
10/05 BOTTOM INTEGRAL Technical
10/06 VERTICAL CONNECTOR Technical
10/07 TOP LEFT SQUARE BRACKET Technical
10/08 BOTTOM LEFT SQUARE BRACKET Technical
10/09 TOP RIGHT SQUARE BRACKET Technical
10/10 BOTTOM RIGHT SQUARE BRACKET Technical
10/11 TOP LEFT PARENTHESIS Technical
10/12 BOTTOM LEFT PARENTHESIS Technical
10/13 TOP RIGHT PARENTHESIS Technical
10/14 BOTTOM RIGHT PARENTHESIS Technical
10/15 LEFT MIDDLE CURLY BRACE Technical
11/00 RIGHT MIDDLE CURLY BRACE Technical
11/01 TOP LEFT SUMMATION Technical
11/02 BOTTOM LEFT SUMMATION Technical
11/03 TOP VERTICAL SUMMATION CONNECTOR Technical
11/04 BOTTOM VERTICAL SUMMATION CONNECTOR Technical
11/05 TOP RIGHT SUMMATION Technical
11/06 BOTTOM RIGHT SUMMATION Technical
11/07 RIGHT MIDDLE SUMMATION Technical
11/12 LESS THAN OR EQUAL SIGN Technical
11/13 NOT EQUAL SIGN Technical
11/14 GREATER THAN OR EQUAL SIGN Technical
11/15 INTEGRAL Technical
12/00 THEREFORE Technical
12/01 VARIATION, PROPORTIONAL TO Technical
12/02 INFINITY Technical
12/05 NABLA, DEL Technical
12/08 IS APPROXIMATE TO Technical
12/09 SIMILAR OR EQUAL TO Technical
12/13 IF AND ONLY IF Technical
12/14 IMPLIES Technical
12/15 IDENTICAL TO Technical
13/06 RADICAL Technical
13/10 IS INCLUDED IN Technical
13/11 INCLUDES Technical
13/12 INTERSECTION Technical
13/13 UNION Technical
13/14 LOGICAL AND Technical
13/15 LOGICAL OR Technical
14/15 PARTIAL DERIVATIVE Technical
15/06 FUNCTION Technical
15/11 LEFT ARROW Technical
15/12 UPWARD ARROW Technical
15/13 RIGHT ARROW Technical
15/14 DOWNWARD ARROW Technical

13/15 BLANK Special
14/00 SOLID DIAMOND Special
14/01 CHECKERBOARD Special
14/02 “HT” Special
14/03 “FF” Special
14/04 “CR” Special
14/05 *‘LF” Special
14/08 "NL” Special
14/09 "VT” Special
14/10 LOWER-RIGHT CORNER Special
14/11 UPPER-RIGHT CORNER Special
14/12 UPPER-LEFT CORNER Special

87

Byte
4

237
238
239
240
241
242
243
244
245
246
247
248

161
162
163
164
165
166
167
168
169
170
172
174
175
176
177
178
179
180
181
182
183
184
187
188
189
190
191
195
196
197
198
201
202
203
204
205
206
207
208
209
210
211
212
214
215
217
218

XI1, Release 5

Code Name Set
Pos

14/13 LOWER-LEFT CORNER Special
14/14 CROSSING-LINES Special
14/15 HORIZONTAL LINE, SCAN 1 Special
15/00 HORIZONTAL LINE, SCAN 3 Special
15/01 HORIZONTAL LINE, SCAN 5 Special
15/02 HORIZONTAL LINE, SCAN 7 Special
15/03 HORIZONTAL LINE, SCAN 9 Special
15/04 LEFT “T” Special
15/05 RIGHT “T” Special
15/06 BOTTOM “T” Special
15/07 TOP “T" Special
15/08 VERTICAL BAR Special

10/01 EM SPACE Publish
10/02 EN SPACE Publish
10/03 3/EM SPACE Publish
10/04 4/EM SPACE Publish
10/05 DIGIT SPACE Publish
10/06 PUNCTUATION SPACE Publish
10/07 THIN SPACE Publish
10/08 HAIR SPACE Publish
10/09 EM DASH Publish
10/10 EN DASH Publish
10/12 SIGNIFICANT BLANK SYMBOL Publish
10/14 ELLIPSIS Publish
10/15 DOUBLE BASELINE DOT Publish
11/00 VULGAR FRACTION ONE THIRD Publish
11/01 VULGAR FRACTION TWO THIRDS Publish
11/02 VULGAR FRACTION ONE FIFTH Publish
11/03 VULGAR FRACTION TWO FIFTHS Publish
11/04 VULGAR FRACTION THREE FIFTHS Publish
11/05 VULGAR FRACTION FOUR FIFTHS Publish
11/06 VULGAR FRACTION ONE SIXTH Publish
11/07 VULGAR FRACTION FIVE SIXTHS Publish
11/08 CARE OF Publish
11/11 FIGURE DASH Publish
11/12 LEFT ANGLE BRACKET Publish
11/13 DECIMAL POINT Publish
11/14 RIGHT ANGLE BRACKET Publish
11/15 MARKER Publish
12/03 VULGAR FRACTION ONE EIGHTH Publish
12/04 VULGAR FRACTION THREE EIGHTHS Publish
12/05 VULGAR FRACTION FIVE EIGHTHS Publish
12/06 VULGAR FRACTION SEVEN EIGHTHS Publish
12/09 TRADEMARK SIGN Publish
12/10 SIGNATURE MARK Publish
12/11 TRADEMARK SIGN IN CIRCLE Publish
12/12 LEFT OPEN TRIANGLE Publish
12/13 RIGHT OPEN TRIANGLE Publish
12/14 EM OPEN CIRCLE Publish
12/15 EM OPEN RECTANGLE Publish
13/00 LEFT SINGLE QUOTATION MARK Publish
13/01 RIGHT SINGLE QUOTATION MARK Publish
13/02 LEFT DOUBLE QUOTATION MARK Publish
13/03 RIGHT DOUBLE QUOTATION MARK Publish
13/04 PRESCRIPTION. TAKE, RECIPE Publish
13/06 MINUTES Publish
13/07 SECONDS Publish
13/09 LATIN CROSS Publish
13/10 HEXAGRAM Publish

88

Byte
4

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

163
166
168
169
192
194
195
196
198
202
204
206
207
211
214
216
218
220

XI1, Release 5

Code Name Set
Pos

13/11 FILLED RECTANGLE BULLET Publish
13/12 FILLED LEFT TRIANGLE BULLET Publish
13/13 FILLED RIGHT TRIANGLE BULLET Publish
13/14 EM FILLED CIRCLE Publish
13/15 EM FILLED RECTANGLE Publish
14/00 EN OPEN CIRCLE BULLET Publish
14/01 EN OPEN SQUARE BULLET Publish
14/02 OPEN RECTANGULAR BULLET Publish
14/03 OPEN TRIANGULAR BULLET UP Publish
14/04 OPEN TRIANGULAR BULLET DOWN Publish
14/05 OPEN STAR Publish
14/06 EN FILLED CIRCLE BULLET Publish
14/07 EN FILLED SQUARE BULLET Publish
14/08 FILLED TRIANGULAR BULLET UP Publish
14/09 FILLED TRIANGULAR BULLET DOWN Publish
14/10 LEFT POINTER Publish
14/11 RIGHT POINTER Publish
14/12 CLUB Publish
14/13 DIAMOND Publish
14/14 HEART Publish
15/00 MALTESE CROSS Publish
15/01 DAGGER Publish
15/02 DOUBLE DAGGER Publish
15/03 CHECK MARK, TICK Publish
15/04 BALLOT CROSS Publish
15/05 MUSICAL SHARP Publish
15/06 MUSICAL FLAT Publish
15/07 MALE SYMBOL Publish
15/08 FEMALE SYMBOL Publish
15/09 TELEPHONE SYMBOL Publish
15/10 TELEPHONE RECORDER SYMBOL Publish
15/11 PHONOGRAPH COPYRIGHT SIGN Publish
15/12 CARET Publish
15/13 SINGLE LOW QUOTATION MARK Publish
15/14 DOUBLE LOW QUOTATION MARK Publish
15/15 CURSOR Publish

10/03 LEFT CARET APL
10/06 RIGHT CARET APL
10/08 DOWN CARET APL
10/09 UP CARET APL
12/00 OVERBAR APL
12/02 DOWN TACK APL
12/03 UP SHOE (CAP) APL
12/04 DOWN STILE APL
12/06 UNDERBAR APL
12/10 JOT APL
12/12 QUAD APL
12/14 UP TACK APL
12/15 CIRCLE APL
13/03 UP STILE APL
13/06 DOWN SHOE (CUP) APL
13/08 RIGHT SHOE APL
13/10 LEFT SHOE APL
13/12 LEFT TACK APL
15/12 RIGHT TACK APL

13/15 DOUBLE LOW LINE Hebrew
14/00 HEBREW LETTER ALEPH Hebrew

89

Byte
4

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

008
009
010
Oil
013
019
020
027
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
080
081
082
083
084
085
086
087

Xll, Release 5

Code Name Set
Pos

14/01 HEBREW LETTER BET Hebrew
14/02 HEBREW LETTER GIMEL Hebrew
14/03 HEBREW LETTER DALET Hebrew
14/04 HEBREW LETTER HE Hebrew
14/05 HEBREW LETTER WAW Hebrew
14/06 HEBREW LETTER ZA[N Hebrew
14/07 HEBREW LETTER CHET Hebrew
14/08 HEBREW LETTER TET Hebrew
14/09 HEBREW LETTER YOD Hebrew
14/10 HEBREW LETTER FINAL KAPH Hebrew
14/11 HEBREW LETTER KAPH Hebrew
14/12 HEBREW LETTER LAMED Hebrew
14/13 HEBREW LETTER FINAL MEM Hebrew
14/14 HEBREW LETTER MEM Hebrew
14/15 HEBREW LETTER FINAL NUN Hebrew
15/00 HEBREW LETTER NUN Hebrew
15/01 HEBREW LETTER SAMECH Hebrew
15/02 HEBREW LETTER A’YIN Hebrew
15/03 HEBREW LETTER FINAL PE Hebrew
15/04 HEBREW LETTER PE Hebrew
15/05 HEBREW LETTER FINAL ZADE Hebrew
15/06 HEBREW LETTER ZADE Hebrew
15/07 HEBREW QOPH Hebrew
15/08 HEBREW RESH Hebrew
15/09 HEBREW SHIN Hebrew
15/10 HEBREW TAW Hebrew

00/08 BACKSPACE, BACK SPACE, BACK CHAR Keyboard
00/09 TAB Keyboard
00/10 LINEFEED, LF Keyboard
00/11 CLEAR Keyboard
00/13 RETURN, ENTER Keyboard
01/03 PAUSE. HOLD Keyboard
01/04 SCROLL LOCK Keyboard
01/11 ESCAPE Keyboard
02/00 MULTI-KEY CHARACTER PREFACE Keyboard
02/01 KANJI, KANJI CONVERT Keyboard
02/02 MUHENKAN Keyboard
02/03 HENKAN MODE Keyboard
02/04 ROMAJ1 Keyboard
02/05 HIRAGANA Keyboard
02/06 KATAKANA Keyboard
02/07 HIRAGANA/KATAKANA TOGGLE Keyboard
02/08 ZENKAKU Keyboard
02/09 HANKAKU Keyboard
02/10 ZENKAKU/HANKAKU TOGGLE Keyboard
02/11 TOUROKU Keyboard
02/12 MASSYO Keyboard
02/13 KANA LOCK Keyboard
02/14 KANA SHIFT Keyboard
02/15 EISU SHIFT Keyboard
03/00 EISU TOGGLE Keyboard
05/00 HOME Keyboard
05/01 LEFT, MOVE LEFT. LEFT ARROW Keyboard
05/02 UP. MOVE UP, UP ARROW Keyboard
05/03 RIGHT. MOVE RIGHT, RIGHT ARROW Keyboard
05/04 DOWN, MOVE DOWN, DOWN ARROW Keyboard
05/05 PRIOR. PREVIOUS Keyboard
05/06 NEXT Keyboard
05/07 END, EOL Keyboard

90

Byte
4

088
096
097
098
099
101
102
103
104
105
106
107
126
127
128
137
141
145
146
147
148
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

Xll, Release 5

Code Name Set
Pos

05/08 BEGIN, BOL Keyboard
06/00 SELECT. MARK Keyboard
06/01 PRINT Keyboard
06/02 EXECUTE. RUN. DO Keyboard
06/03 INSERT. INSERT HERE Keyboard
06/05 UNDO. OOPS Keyboard
06/06 REDO. AGAIN Keyboard
06/07 MENU Keyboard
06/08 FIND, SEARCH Keyboard
06/09 CANCEL, STOP, ABORT, EXIT Keyboard
06/10 HELP. QUESTION MARK Keyboard
06/11 BREAK Keyboard
07/14 MODE SWITCH, SCRIPT SWITCH. CHARACTER SET SWITCH Keyboard
07/15 NUM LOCK Keyboard
08/00 KEYPAD SPACE Keyboard
08/09 KEYPAD TAB Keyboard
08/13 KEYPAD ENTER Keyboard
09/01 KEYPAD FI. PF1, A Keyboard
09/02 KEYPAD F2, PF2, B Keyboard
09/03 KEYPAD F3, PF3, C Keyboard
09/04 KEYPAD F4, PF4, D Keyboard
10/10 KEYPAD MULTIPLICATION SIGN. ASTERISK Keyboard
10/11 KEYPAD PLUS SIGN Keyboard
10/12 KEYPAD SEPARATOR, COMMA Keyboard
10/13 KEYPAD MINUS SIGN, HYPHEN Keyboard
10/14 KEYPAD DECIMAL POINT. FULL STOP Keyboard
10/15 KEYPAD DIVISION SIGN, SOLIDUS Keyboard
11/00 KEYPAD DIGIT ZERO Keyboard
11/01 KEYPAD DIGIT ONE Keyboard
11/02 KEYPAD DIGIT TWO Keyboard
11/03 KEYPAD DIGIT THREE Keyboard
11/04 keypad Digit four Keyboard
11/05 KEYPAD DIGIT FIVE Keyboard
11/06 KEYPAD DIGIT SIX Keyboard
11/07 KEYPAD DIGIT SEVEN Keyboard
11/08 KEYPAD DIGIT EIGHT Keyboard
11/09 KEYPAD DIGIT NINE Keyboard
11/13 KEYPAD EQUALS SIGN Keyboard
11/14 FI Keyboard
11/15 F2 Keyboard
12/00 F3 Keyboard
12/01 F4 Keyboard
12/02 F5 Keyboard
12/03 F6 Keyboard
12/04 F7 Keyboard
12/05 F8 Keyboard
12/06 F9 Keyboard
12/07 F10 Keyboard
12/08 FI 1, LI Keyboard
12/09 F12, L2 Keyboard
12/10 F13, L3 Keyboard
12/11 F14, L4 Keyboard
12/12 F15, L5 Keyboard
12/13 F16, L6 Keyboard
12/14 F17, L7 Keyboard
12/15 F18, L8 Keyboard
13/00 F19, L9 Keyboard
13/01 F20, L10 Keyboard
13/02 F21, R1 Keyboard
13/03 F22, R2 Keyboard
13/04 F23, R3 Keyboard

91

Byte
4

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
255

XI1, Release 5

Code Name Set
Pos

13/05 F24, R4 Keyboard
13/06 F25, R5 Keyboard
13/07 F26, R6 Keyboard
13/08 F27, R7 Keyboard
13/09 F28, R8 Keyboard
13/10 F29, R9 Keyboard
13/11 F30, RIO Keyboard
13/12 F31, Rll Keyboard
13/13 F32, R12 Keyboard
13/14 F33, R13 Keyboard
13/15 F34, R14 Keyboard
14/00 F35, R15 Keyboard
14/01 LEFT SHIFT Keyboard
14/02 RIGHT SHIFT Keyboard
14/03 LEFT CONTROL Keyboard
14/04 RIGHT CONTROL Keyboard
14/05 CAPS LOCK Keyboard
14/06 SHIFT LOCK Keyboard
14/07 LEFT META Keyboard
14/08 RIGHT META Keyboard
14/09 LEFT ALT Keyboard
14/10 RIGHT ALT Keyboard
14/11 LEFT SUPER Keyboard
14/12 RIGHT SUPER Keyboard
14/13 LEFT HYPER Keyboard
14/14 RIGHT HYPER Keyboard
15/15 DELETE, RUBOUT Keyboard

92

X Protocol Xll, Release 5

Appendix B

Protocol Encoding

Syntactic Conventions
All numbers are in decimal, unless prefixed with #x, in which case they are in hexadecimal
(base 16).

The general syntax used to describe requests, replies, errors, events, and compound types is:

NameofThing

encode-form

encode-form

Each encode-form describes a single component.

For components described in the protocol as:

name: TYPE

the encode-form is:

N TYPE name

N is the number of bytes occupied in the data stream, and TYPE is the interpretation of those
bytes. For example,

depth: CARD8

becomes:

1 CARD8 depth

For components with a static numeric value the encode-form is:

N value name

The value is always interpreted as an N-bytc unsigned integer. For example, the first two
bytes of a Window error are always zero (indicating an error in general) and three (indicating
the Window error in particular):

1 0 Error

1 3 code

For components described in the protocol as:

name: {Namel. Namel)

the encode-form is:

N name

valuel Namel

valuel Namel

The value is always interpreted as an N-bytc unsigned integer. Note that the size of N is
sometimes larger than that strictly required to encode the values. For example:

class: {InputOutput, InputOnly, CopyFromParent)

becomes:

2 class

0 CopyFromParent

93

X Protocol Xll, Release 5

1 InputOutput

2 InputOnly

For components described in the protocol as:
NAME: TYPE or Altemativel...or Alternativel

the encode-form is:

N TYPE NAME
valuel Alternativel

valuel Alternativel

The alternative values are guaranteed not to conflict with the encoding of TYPE. For example:
destination: WINDOW or PointerWindowor InputFocus

becomes:

4 WINDOW destination
0 PointerWindow

1 InputFocus

For components described in the protocol as:

value-mask: BITMASK

the encode-form is:

N BITMASK value-mask

maskl mask-name!

maskl mask-namel

The individual bits in the mask are specified and named, and N is 2 or 4. The most-significant
bit in a BITMASK is reserved for use in defining chained (multiword) bitmasks, as extensions
augment existing core requests. The precise interpretation of this bit is not yet defined here,
although a probable mechanism is that a l-bit indicates that another N bytes of bitmask fol¬
lows, with Bits within the overall mask still interpreted from least-significant to most-significant
with an N-byte unit, with N-byte units interpreted in stream order, and with the overall mask
being byte-swapped in individual N-byte units.
For LISTofVALUE encodings, the request is followed by a section of the form:

VALUES

encode-form

encode-form

listing an encode-form for each VALUE. The NAME in each encode-form keys to the
corresponding BITMASK bit. The encoding of a VALUE always occupies four bytes, but the
number of bytes specified in the encoding-form indicates how many of the least-significant
bytes are actually used; the remaining bytes are unused and their values do not matter.
In various cases, the number of bytes occupied by a component will be specified by a lower¬
case single-letter variable name instead of a specific numeric value, and often some other com¬
ponent will have its value specified as a simple numeric expression involving these variables.
Components specified with such expressions are always interpreted as unsigned integers. The
scope of such variables is always just the enclosing request, reply, error, event, or compound
type structure. For example:

2 3+n request length
4n LISTofPOINT points

For unused bytes (the values of the bytes are undefined and do no matter), the encode-form is:

N unused

94

X Protocol XI1, Release 5

If the number of unused bytes is variable, the cncodc-form typically is:

p unused, p=pad(E)

where E is some expression, and pad(E) is the number of bytes needed to round E up to a
multiple of four.

pad(E) = (4 - (E mod 4)) mod 4

Common Types
LISTofFOO

In this document the LISTof notation strictly means some number of repetitions of the
FOO encoding; the actual length of the list is encoded elsewhere.

SETofFOO

A set is always represented by a bitmask, with a 1-bit indicating presence in the set.
BITMASK: CARD32

WINDOW: CARD32

PIXMAP: CARD32

CURSOR: CARD32

FONT: CARD32

GCONTEXT: CARD32

COLORMAP: CARD32

DRAW ABLE: CARD32

FONT ABLE: CARD32

ATOM: CARD32

VISUALID: CARD32

BYTE: 8-bit value

INT8: 8-bit signed integer

INTI 6: 16-bit signed integer

INT32: 32-bit signed integer

CARD8: 8-bit unsigned integer

CARD16: 16-bit unsigned integer

CARD32: 32-bit unsigned integer

TIMESTAMP: CARD32

BITGRAVITY

0 Forget

NorthWest

North

NorthEast

West

Center

East

SouthWest

South

SouthEast

Static

2
3

4

5

6
7

8
9

10

WINGRAVITY

0 Unmap

NorthWest

North

NorthEast

West

Center

East

SouthWest

2
3

4

5

6
7

95

X Protocol XI1, Reieusc 5

8 South

9
10

SouthEast
Static

BOOL

0

1

False

True

SETofEVENT

#x00000001

#x00000002

#x00000004

#x00000008

#x00000010

#x00000020

#x00000040

#x00000080

#x00000100

#x00000200

#x00000400

#x00000800

#x00001000

#x00002000

#x00004000

#x00008000

#x00010000

#x00020000

#x00040000

#x00080000

#x00100000

#x00200000

#x00400000

#x00800000

#x01000000

#xFE000000

KeyPress

Key Re lease

ButtonPTcss

ButtonRelcase
EnterWindow

LeaveWindow

PointerMotion

PointerMotionH int

Button 1 Motion

Button2Motion

Button3 Motion

Button4Motion

ButtonSMotion

ButtonMotion

KeymapState

Exposure

VisibilityChange

StructureNotify

ResizcRedirect

SubstructureNolify

SubstructurcRedirect

FocusChange

Proper tyChangc

ColormapChange

OwncrGrabButton

unused but must be zero

SETofPOINTEREVENT

encodings are the same as for SETofEVENT, except with

#xFFFF8003 unused but must be zero

SETofDEVICEEVENT

encodings are the same as for SETofEVENT, except with

tfxFFFFCOBO unused but must be zero

KEYSYM: CARD32

KEYCODE: CARD8

BUTTON: CARD8

SETofKEYBUTMASK

#x0001

#x0002

#x0004

#x0008

#x0010

#x0020

#x0040

#x0080

#x0100

#x0200

#x0400

#x0800

#xl000

#xE000

Shift

Lock

Control

Modi

Mod2

Mod3
Mod4

Mod5

Button 1

Button2

Button3

Button4

Button5

unused but must be zero

SETofKEYMASK

encodings are the same as for SETofKEYBUTMASK, except with

96

X Protocol Xll, Release 5

#xFF00 unused but must be zero

STRING8: LISTofCARD8

STRING 16: LISTofCHAR2B

CHAR2B
1 CARD8 bytel

1 CARD8 byte2

POINT

2 INTI 6 X

2 INTI 6 y

RECTANGLE

2 INTI 6 X

2 INTI 6 y
2 CARD16 width

2 CARD16 height

ARC

2 INTI 6 X

2 INTI 6 y
2 CARD16 width

2 CARD16 height

2 INTI 6 anglel

2 INTI 6 angle2

HOST
1 family

0 Internet

1 DECnet

2 Chaos

1 unused

2 n length of address

n LISTofBYTE address

P unused, p=pad(n)

STR

1 n length of name in bytes

n STRING8 name

Errors
Request

1 0 Error

1 1 code

2 CARD16 sequence number

4 unused

2 CARD16 minor opcode
1 CARD8 major opcode

21 unused

Value

1 0 Error

1 2 code
2 CARD16 sequence number
4 <32-bits> bad value

2 CARD16 minor opcode
1 CARD8 major opcode

21 unused

Window

1 0 Error
1 3 code

2 CARD16 sequence number
4 CARD32 bad resource id

97

X Protocol XI1, Release 5

2 CARD16 minor opcode

1 CARD8 major opcode

21 unused

Pixmap

1 0 Error

1 4 code

2 CARD16 sequence number

4 CARD32 bad resource id

2 CARD16 minor opcode

1 CARD8 major opcode

21 unused

Atom

1 0 Error

1 5 code

2 CARD16 sequence number

4 CARD32 bad atom id

2 CARD16 minor opcode

1 CARD8 major opcode

21 unused

Cursor

1 0 Error

1 6 code

2 CARD16 sequence number

4 CARD32 bad resource id

2 CARD16 minor opcode

1 CARD8 major opcode

21 unused

Font

1 0 Error

1 7 code

2 CARD16 sequence number

4 CARD32 bad resource id

2 CARD16 minor opcode

1 CARD8 major opcode

21 unused

Match

1 0 Error
1 8 code

2 CARD16 sequence number

4 unused
2 CARD16 minor opcode

1 CARD8 major opcode

21 unused

Drawable

1 0 Emor
1 9 code

2 CARD16 sequence number
4 CARD32 bad resource id

2 CARD16 minor opcode

1 CARD8 major opcode

21 unused

Access

1 0 Error
1 10 code
2 CARD16 sequence number
4 unused
2 CARD16 minor opcode
1 CARD8 major opcode
21 unused

98

1

1
2
4

2
1
21

lor

1
1
2
4

2
1
21

'on

1
1
2
4

2
1
21

~h<

1
1
2
4

2
1
21

me

1
1
2
4

2
1
21

igt
1
1
2
4

2
1
21

pie

1
1
2
4

2
1
21

Xll, Relcu.se 5

Error

code

sequence number

unused

minor opcode

major opcode

unused

Error

code

sequence number

bad resource id

minor opcode

major opcode

unused

Enor

code

sequence number

bad resource id

minor opcode

major opcode

unused

Enor

code

sequence number

bad resource id

minor opcode

major opcode
unused

Enor

code

sequence number

unused

minor opcode

major opcode

unused

Enor

code

sequence number

unused

minor opcode

major opcode

unused

Enor

code

sequence number

unused

minor opcode

major opcode

unused

99

X Protocol XI1, Release 5

Keyboards
KEYCODE values are always greater than 7 (and less than 256).
KEYSYM values with the bit #xl0000000 set arc reserved as vendor-specific.
The names and encodings of the standard KEYSYM values are contained in Appendix A,
Keysym Encoding.

Pointers
BUTTON values are numbered starting with one.

Predefined Atoms
PRIMARY 1 WM NORMAL HINTS 40

SECONDARY 2 WM SIZE HINTS 41

ARC 3 WM ZOOM HINTS 42

ATOM 4 MIN SPACE 43

BITMAP 5 NORM SPACE 44

CARDINAL 6 MAX SPACE 45

COLORMAP 7 END SPACE 46

CURSOR 8 SUPERSCRIPT X 47

CUT BUFFER0 9 SUPERSCRIPT Y 48

CUT BUFFER1 10 SUBSCRIPT X 49

CUT BUFFER2 11 SUBSCRIPT Y 50

CUT BUFFER3 12 UNDERLINE POSITION 51
CUT BUFFER4 13 UNDERLINE THICKNESS 52

CUT BUFFER5 14 STRIKEOUT ASCENT 53

CUT BUFFER6 15 STRIKEOUT DESCENT 54

CUT BUFFER7 16 ITALIC ANGLE 55

DRAWABLE 17 X HEIGHT 56

FONT 18 QUAD WIDTH 57

INTEGER 19 WEIGHT 58

PDCMAP 20 POINT SIZE 59

POINT 21 RESOLUTION 60

RECTANGLE 22 COPYRIGHT 61

RESOURCE MANAGER 23 NOTICE 62

RGB COLOR MAP 24 FONT NAME 63

RGB BEST MAP 25 FAMILY NAME 64

RGB BLUE MAP 26 FULL NAME 65

RGB DEFAULT MAP 27 CAP HEIGHT 66

RGB GRAY MAP 28 WM CLASS 67

RGB GREEN MAP 29 WM TRANSIENT FOR 68

RGB RED MAP 30
STRING 31

VISUAUD 32
WINDOW 33

WM COMMAND 34

WM HINTS 35

WM CLIENT MACHINE 36
WM ICON NAME 37

WM ICON SIZE 38

WM NAME 39

Connection Setup

For TCP connections, displays on a given host arc numbered starting from 0, and the server
for display N listens and accepts connections on port 6000 + N. For DECnct connections,
displays on a given host are numbered starting from 0, and the server for display N listens and
accepts connections on the object name obtained by concatenating “X$X” with the decimal
representation of N, for example, X$X0 and X$X1.
Information sent by the client at connection setup:

1
#x42 MSB first

#x6C LSB first
1
2 CARD16

byte-order

unused

protocol-major-vcrsion

100

X Protocol Xll, Release 5

2 CARD16 protocol-minor-version

2 n length of authorizalion-protocol-name

2 d length of authorization-protocol-data

2 unused

n STRING8 authorizalion-protocol-name

P unused, p=pad(n)

d STRING8 authorization-protocol-data

q unused, q=pad(d)

Except where explicitly noted in the protocol, all 16-bit and 32-bit quantities sent by the client
must be transmitted with the specified byte order, and all 16-bit and 32-bit quantities returned
by the server will be transmitted with this byte order.
Information received by the client if authorization fails:

1 o
1 n
2 CARD16

2 CARD16

2 (n+p)/4

n STRING8

P

failed

length of reason in bytes

prolocol-major-vcrsion

protocol-minor-version
length in 4-bytc units of "additional data”

reason

unused, p=pad(n)

Information received by the client if authorization is accepted:
1 1
1
2 CARD16

2 CARD16

2 8+2n+(v+p+m)/4

4 CARD32

4 CARD32

4 CARD32

4 CARD32

2 v

2 CARD16

1 CARD8

1 n

1

0 LSBFirst

1 MSBFirst

1

0 LeastSignificant

1 MostSignificant

1 CARD8

1 CARD8

1 KEYCODE

1 KEYCODE
4

v STRING8

P
8n LISTofFORMAT

m LISTofSCREEN

FORMAT

1 CARD8

1 CARD8

1 CARD8

5

success

unused

protocol-major-version

protocol-minor-version

length in 4-byte units of "additional data”
release-number

rcsourcc-id-basc

rcsourcc-id-mask
motion-buffer-size

length of vendor

maximum-rcqucst-lcngih

number of SCREENS in roots

number for FORMATS in pixmap-formats

image-byte-order

bitmap-form al-bit-ordcr

bitmap-fomiai-scanline-unil

bitmap-format-scanline-pad

min-kcycodc

max-kcycode

unused

vendor

unused, p=pad(v)

pixmap-formats

roots (m is always a multiple of 4)

depth

bits-pcr-pixel

scanlinc-pad

unused

SCREEN

4 WINDOW

4 COLORMAP

4 CARD32

4 CARD32

4 SETofEVENT
2 CARD16

root

default-colormap

white-pixel

black-pixel

current-input-masks
width-in-pixcls

101

X Protocol Xll, Release 5

2 CARD16 height-in-pixcls

2 CARD16 widlh-in-millimctcrs

2 CARD16 hcight-in-millimctcrs

2 CARD16 min-installcd-maps

2 CARD16 max-installcd-maps

4 VISUAUD root-visual

1

0 Never

backing-stores

1 WhenMapped

2 Always

1 BOOL save-unders

1 CARD8 root-depth

1 CARD8 number of DEPTHs in allowcd-depths

n LISTofDEPTH allowed-dcpths (n is always a multiple

DEPTH

1 CARD8 depth

1 unused

2 n number of VISUALTYPES in visuals

4 unused

24n LISTofVISUALTYPE visuals

VISUALTYPE

4 VISUAUD visual-id

1
0 StatieGray

class

1 Grayscale

2 StaticColor

3 PseudoColor

4 TrueColor

5 DirectColor

1 CARD8 bits-pcr-rgb-value

2 CARD16 colormap-cntrics

4 CARD32 red-mask

4 CARD32 green-mask

4 CARD32 blue-mask

4 unused

Requests
CreateWindow

1 1
1 CARD8

2 8+n

4 WINDOW

4 WINDOW

2 INTI 6

2 INTI 6

2 CARD16

2 CARD16

2 CARD16

2
0
1
2

4 VISUALID

0
4 BITMASK

#x00000001

#x00000002

#x00000004

#x00000008

#x00000010

#x00000020

#x00000040

opcode

depth

request length

wid

parent

x

y
width

height

border-width

class

Copy From Parent

InputOutput

InputOnly

visual

CopyFrom Parent

value-mask (has n bits set to 1)

background-pi xmap

background-pixel

bordcr-pixmap

border-pixel

bit-gravity

win-gravity

backing-store

102

X Protocol XI1, Release 5

#x00000080

#x00000100
#x00000200

#x00000400

#x00000800

#x00001000

#x00002000

#x00004000
4n LISTofVALUE

backing-planes

backing-pixel

override-redirect

save-under

event-mask

do-not-propagate-mask

colormap

cursor
value-list

VALUES

4 PLXMAP
0
1

4 CARD32

4 PEXMAP

0
4 CARD32
1 BITGRAVITY

1 WINGRAVITY

1
0

None

ParentRelative

Copy From Parent

NotUseful

1

2
4 CARD32

4 CARD32

1 BOOL
1 BOOL

4 SETofEVENT
4 SETofDEVICEEVENT

4 COLORMAP

0 CopyFrom Parent

4 CURSOR
0 None

WhenMapped

Always

background-pixmap

background-pixel

border-pi xmap

border-pixel

bit-gravity

win-gravity

backing-store

backing-planes

backing-pixel

override-redirect
save-under

event-mask

do-nol-propagatc-mask
colormap

cursor

Change WindowAttributcs
1

1

2
4

4

4n

3+n
WINDOW

BITMASK

encodings are the same as for CreateWindow

LISTofVALUE value-list

encodings are the same as for CreateWindow

opcode

unused

request length
window

value-mask (has n bits set to 1)

Get WindowAttributcs
1 3
1

2 2
4 WINDOW

opcode

unused

request length

window

1 1
1

0

1

2
2 CARD16
4 3

4 VISUAUD

2
1 InputOutput

2 InputOnly

1 BITGRAVITY

1 WINGRAVITY

4 CARD32

NotUseful

WhenMapped

Always

Reply

backing-store

sequence number

reply length

visual

class

bit-gravity

win-gravity

backing-planes

103

X Protocol Xll, Release 5

4 CARD32 backing-pixel

1 BOOL save-under

1 BOOL map-is-installed

1 map-state

0 Unmapped

1 Unviewable

2 Viewable

1 BOOL ovcrride-rcdircct

4 COLORMAP colormap

0 None

4 SETofEVENT all-evcnt-masks

4 SETofEVENT your-c vent-mask

2 SETofDEVICEEVENT do-noi-propagatc-mask

2 unused

Destroy Window
1 4 opcode

1 unused

2 2 request length
4 WINDOW window

DestroySubwindows
1 5 opcode

1 unused

2 2 request length
4 WINDOW window

ChangeSaveSet
1 6 opcode

1 mode

0 Insert

1 Delete

2 2 request length
4 WINDOW window

ReparentWindow
1 7 opcode

1 unused

2 4 request length
4 WINDOW window

4 WINDOW parent

2 INTI 6 X

2 INTI 6 y

MapWindow
1 8 opcode

1 unused

2 2 request length
4 WINDOW window

MapSubwindows
1 9 opcode

1 unused

2 2 request length
4 WINDOW window

UnmapWindow
1 10 opcode
1 unused

2 2 request length
4 WINDOW window

UnmapSubwindows
1 11 opcode
1 unused
2 2 request length

104

X Protocol XI1, Release 5

4 WINDOW window

Configure Window
1 12 opcode

1 unused

2 3+n request length

4 WINDOW window

2 BITMASK value-mask (has n bits set to 1)

#x0001 X

#x0002 y
#x0004 width

#x0008 height

#x0010 border-width

#x0020 sibling

#x0040 stack-mode

2 unused

4n LISTofVALUE value-list

VALUES

2 INTI 6 X

2 INTI 6 y
2 CARD16 width

2 CARD16 height

2 CARD16 border-width

4 WINDOW sibling

1 stack-mode

0 Above

1 Below

2 Toplf

3 Bottomlf

4 Opposite

CirculatcWindow
1 13 opcode

1 direction

0 RaiseLowest

1 LoweTHighcst

2 2 request length
4 WINDOW window

GetGeometry
1 14 opcode

1 unused

2 2 request length
4 DRAW ABLE drawablc

=>

1 1 Reply
1 CARD8 depth

2 CARD16 sequence number

4 0 reply length
4 WINDOW root

2 INTI 6 X

2 INTI 6 y
2 CARD16 width

2 CARD16 height
2 CARD16 border-width
10 unused

QueryTree
1 15 opcode

1 unused
2 2 request length
4 WINDOW window

=>

1 1 Reply

105

X Protocol Xll, Release 5

1

2 CARD16
4 n

4 WINDOW

4 WINDOW

0 None

2 n

14
4n LISTofWINDOW

InternAtom

1 16

1 BOOL
2 2+(n+p)/4

2 n

2
n STRING8

P

=>

1 1
1
2 CARD16

4 0

4 ATOM

0 None

20

GetAtomName

1 17

1

2 2
4 ATOM

1 1
1
2 CARD16

4 (n+p)/4

2 n

22
n STRING8

P

ChangeProperty

1 18

1
0 Replace

1 Prepend

2 Append

2 6+(n+p)/4

4 WINDOW

4 ATOM

4 ATOM

1 CARD8

3

4 CARD32

n LISTofBYTE

P

unused

sequence number
reply length

root

parent

number of WINDOWs in children

unused

children

opcode

only-if-exists

request length

length of name

unused

name

unused, p=pad(n)

Reply

unused

sequence number

reply length

atom

unused

opcode

unused

request length

atom

Reply

unused

sequence number

reply length

length of name

unused

name

unused, p=pad(n)

opcode

mode

request length

window

property

type

format

unused

length of data in format units

(= n for format = 8)

(= n/2 for format = 16)

(= n/4 for format = 32)

data

(n is a multiple of 2 for format =16)

(n is a multiple of 4 for format = 32)

unused, p=pad(n)

106

X Protocol XI1, Release 5

DeleteProperty
1 19

1

2 3
4 WINDOW

4 ATOM

opcode

unused

request length
window

property

GetProperty
1 20

1 BOOL

2 6
4 WINDOW

4 ATOM

4 ATOM

0

4 CARD32

4 CARD32

opcode

delete

request length
window

property

type

Any PropertyT ype

long-offset

long-length

=>

1 1
1 CARD8

2 CARD16

4 (n+p)/4

4 ATOM

0

4 CARD32

4 CARD32

Reply

format

sequence number

reply length

type

None

bytes-aftcr
length of value in format units

(- 0 for format = 0)

(= n for format = 8)

(- n/2 for format = 16)

(= n/4 for format = 32)

12

n LISTofBYTE

unused

value

P

(n is zero for format = 0)

(n is a multiple of 2 for format = 16)

(n is a multiple of 4 for format = 32)

unused, p=pad(n)

ListProperties
1 21

1

2 2

4 WINDOW

opcode

unused

request length
wmdow

=>

1 1

1

2 CARD16
4 n

2 n

22

4n LISTofATOM

Reply

unused

sequence number

reply length

number of ATOMs in atoms

unused

atoms

SetSelcctionOwner
1 22

1

2 4
4 WINDOW

0

4 ATOM

4 TIMESTAMP

0

opcode

unused

request length

owner

None

selection

lime

CurrentTime

GetSelectionOwner
1 23

1
opcode

unused

107

X Protocol Xll, Release 5

2 2 request length

4 ATOM selection

=>

1 1 Reply

1 unused

2 CARD16 sequence number

4 0 reply length

4 WINDOW owner

0 None

20 unused

ConvertSelcction
1 24 opcode

1 unused

2 6 request length

4 WINDOW requestor

4 ATOM selection

4 ATOM target

4 ATOM property

0 None

4 TIMESTAMP time

0 CurrentTime

SendEvent
1 25 opcode

1 BOOL propagate

2 11 request length

4 WINDOW destination

0 PointerWindow

1 InputFocus

4 SETofEVENT event-mask

32 event

standard event format (see the Events section)

GrabPointer
1 26 opcode

1 BOOL owner-events

2 6 request length

4 WINDOW grab-window

2 SETofPOINTEREVENT event-mask

1 pointer-mode

0 Synchronous

1 Asynchronous

1 keyboard-mode

0 Synchronous

1 Asynchronous
4 WINDOW confinc-to

0 None
4 CURSOR cursor

0 None
4 TIMESTAMP time

0 CurrentTime

=>

1 1 Reply

1 status
0 Success

1 AlreadyGrabbed

2 InvalidTime
3 NotViewable
4 Frozen

2 CARD16 sequence number
4 0 reply length
24 unused

108

X Protocol Xll, Release 5

UngrabPoIntcr

1 27 opcode

1 unused

2 2 request length

4 TIMESTAMP time

0 CunentTime

Grab Button

1 28 opcode

1 BOOL owner-events

2 6 request length

4 WINDOW grab-window

2 SETofPOINTEREVENT event-mask

1 pointer-mode

0 Synchronous

1 Asynchronous

1 keyboard-mode

0 Synchronous

1 Asynchronous

4 WINDOW confine-to
0 None

4 CURSOR cursor

0 None

1 BUTTON button

0 AnyButton

1 unused

2 SETofKEYMASK modifiers
#x8000 AnyModifier

UngrabButton

1 29 opcode

1 BUTTON button
0 AnyButton

2 3 request length
4 WINDOW grab-window

2 SETofKEYMASK modifiers

#x8000 AnyModifier
2 unused

ChangeActivePointerGrab

1 30 opcode
1 unused

2 4 request length
4 CURSOR cursor

0 None
4 TIMESTAMP time

0 CurrentTime
2 SETofPOINTEREVENT event-mask
2 unused

GrabKeyboard

1 31 opcode
1 BOOL owner-events

2 4 request length
4 WINDOW grab-window
4 TIMESTAMP time

0 CunentTime
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

2 unused

=>

109

X Protocol X11) ReIcasc. 5

1 1 Reply
1 status

0 Success
1 AlreadyGrabbed
2 InvalidTime
3 NotViewable
4 Frozen

2 CARD16 sequence number
4 0 reply length
24 unused

UngrabKey board

1 32 opcode
1 unused
2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabKey

1 33 opcode
1 BOOL owner-events
2 4 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModificr
1 KEYCODE key

0 Any Key
1 pointer-mode

0 Synchronous
1 Asynchronous

1 keyboard-mode
0 Synchronous
1 Asynchronous

3 unused

UngrabKey

1 34 opcode
1 KEYCODE key

0 AnyKey
2 3 request length
4 WINDOW grab-window
2 SETofKEYMASK modifiers

#x8000 AnyModificr
2 unused

AllowEvents

1 35 opcode
1 mode

0 AsyncPointer
1 SyncPointer
2 Replay Pointer
3 Async Keyboard
4 SyncKeyboard
5 ReplayKeyboard
6 AsyncBoth
7 SyncBoth

2 2 request length
4 TIMESTAMP time

0 CurrentTime

GrabServer

1 36
1
2 1

opcode

unused

request length

110

X Protocol XI1, Release 5

UngrabServer

1 37

1

2 1

QucryPointer

1 38

1

2 2
4 WINDOW

1 1
1 BOOL

2 CARD16

4 0

4 WINDOW

4 WINDOW

0 None

2 INTI 6

2 INTI 6

2 INTI 6

2 INTI 6
2 SETofKEYBUTMASK

6

GetMotionEvents

1 39

1

2 4

4 WINDOW

4 TIMESTAMP

0 CunrentTime

4 TIMESTAMP

0 CurrcntTime

1 1

1

2 CARD16

4 2n

4 n

20
8n LISTofTIMECOORD

TIMECOORD

4 TIMESTAMP

2 INTI 6

2 INTI 6

T ranslatcCoord inates
1 40

1

2 4

4 WINDOW

4 WINDOW

2 INTI 6
2 INTI 6

1 1

1 BOOL

2 CARD16
4 0

4 WINDOW

0 None

2 INTI 6

opcode

unused

request length

opcode

unused

request length

window

Reply

same-screen

sequence number

reply length

root
child

root-x

root-y

win-x

win-y

mask

unused

opcode

unused

request length

window

start

slop

Reply

unused

sequence number

reply length

number of TIMECOORDs in events
unused

events

time

x

y

opcode

unused

request length
sre-window

dst-window

sre-x

sre-y

Reply

same-screen

sequence number

reply length

child

dst-x

111

X Protocol Xll, Release 5

2 INTI 6 dst-y

16 unused

WarpPointer

I 41 opcode

1 unused

2 6 request length

4 WINDOW sre-window

0 None

4 WINDOW dst-window

0 None

2 INTI 6 sre-x

2 INTI 6 sre-y

2 CARD16 sre-width

2 CARD16 sre-height

2 INTI 6 dst-x

2 INTI 6 dst-y

SetlnputFocus

1 42 opcode

1 revert-to

0 None

1 PointcrRoot

2 Parent

2 3 request length
4 WINDOW focus

0 None

1 PointcrRoot
4 TIMESTAMP time

0 CurrentTimc

GetlnputFocus

1 43 opcode

1 unused

2 1 request length

=>

1 1 Reply

1 revert-to

0 None

1 PointerRoot

2 Parent

2 CARD16 sequence number

4 0 reply length
4 WINDOW focus

0 None

1 PointerRoot
20 unused

QueryKeymap

1 44 opcode
1 unused

2 1 request length

=>

1 1 Reply

1 unused
2 CARD16 sequence number

4 2 reply length

32 LISTofCARD8 keys

OpenFont

1 45 opcode

1 unused

2 3+<n+p)/4 request length
4 FONT fid

112

X Protocol Xll, Release 5

2 n

2
n STRING8

P

CloseFont

1 46

1
2 2
4 FONT

QueryFont

1
1

47

2 2

4 FONTABLE

=>

1

1

1

2 CARD16

4 7+2n+3m

12
4

CHARINFO

12

4

CHARINFO

2 CARD16

2 CARD16

2 CARD16

2

1

n

0 LeftToRight

1 RightToLeft

1 CARD8

1 CARD8

1 BOOL

2 INTI 6

2 INTI 6

4 m

8n LISTofFONTPROP

12m LISTofCHARINFO

FONTPROP

4 ATOM

4 <32-bits>

CHARINFO

2 INTI 6

2 INTI 6

2 INTI 6

2 INTI 6

2 INTI 6

2 CARD16

QueryTextExtents

1 48

1 BOOL

2 2+(2n+p)/4

4 FONTABLE

2n

P

STRING 16

=>

1

1

1

0 LeftToRight

1 RightToLeft

length of name

unused

name

unused, p=pad(n)

opcode
unused

request length

font

opcode

unused

request length

font

Reply

unused

sequence number

reply length

min-bounds

unused

max-bounds

unused
min-char-or-byte2

max-char-or-byte2

default-char
number of FONTPROPs in properties

draw-direction

min-bytcl

max-byte 1
all-chars-cxisl

font-ascent

font-descent
number of CHARLNFOs in char-infos

properties

char-infos

name

value

left-sidc-bearing

right-side-bearing

character-width

ascent

descent

attributes

opcode

odd length, True if p = 2

request length

font

string
unused, p=pad(2n)

Reply

draw-direction

113

X Protocol Xll, Release 5

2 CARD16

4 0

2 INTI 6

2 INTI 6

2 INTI 6

2 INTI 6

4 INT32

4 INT32

4 INT32

4

sequence number

reply length

font-ascent

font-descent

overall-ascent

overall-descent

overall-width

overall-left

overall-right

unused

ListFonts

1 49

1
2 2+<n+p)/4

2 CARD16

2 n

n STRDMG8

P

1 1
1
2 CARD16

4 (n+p)/4

2 CARD16

22
n LISTofSTR

P

ListFonts Withlnfo

1 50

1

2 2+<n+p)/4

2 CARD16

2 n

n STRING8

P

=> (except for last in series)

1 1
1 n
2 CARD16

4 7+2m-Kn+p)/4

12 CHARINFO
4

12 CHARINFO

4

2 CARD16

2 CARD16

2 CARD16

2 m

1
0 LeftToRight

1 RightToLeft

1 CARD8

1 CARD8

1 BOOL

2 INTI 6

2 INTI 6

4 CARD32

8m LISTofFONTPROP

n STRING8

P

FONTPROP

encodings are the same as for QueryFont

opcode

unused

request length

max-names

length of pattern

pattern

unused, p=pad(n)

Reply

unused

sequence number

reply length

number of STRs in names

unused

names

unused, p=pad(n)

opcode
unused

request length

max-names

length of pattern

pattern

unused, p=pad(n)

Reply

length of name in bytes

sequence number

reply length

min-bounds

unused

max-bounds

unused

min-char-or-bylc2

max-char-or-bytc2

default-char

number of FONTPROPs in properties

draw-direction

min-bytel

max-byte 1

all-chars-cxist

font-ascent

font-descent

replies-hint

properties

name

unused, p=pad(n)

114

X Protocol XI1, Release 5

CHARINFO

encodings are the same as for QueryFont

=> (last in series)

1 1 Reply

1 0 last-reply indicator
2 CARD16 sequence number
4 7 reply length
52 unused

SetFontPath

1 51 opcode
1 unused
2 2+(n+p)/4 request length
2 CARD16 number of STRs in path
2 unused
n LISTofSTR path

P unused, p=pad(n)

GetFontPath

1 52 opcode
1 unused
2 1 request list

=>

1 1 Reply
1 unused
2 CARD16 sequence number
4 (n+p)/4 reply length
2 CARD16 number of STRs in path
22 unused
n LISTofSTR path

P unused, p=pad(n)

CreatePixmap

1 53 opcode
1 CARD8 depth
2 4 request length
4 PEXMAP pid
4 DRAWABLE drawable
2 CARD16 width
2 CARD16 height

FreePixmap

1 54 opcode
1 unused
2 2 request length
4 PIXMAP pixmap

CreateGC

1 55 opcode
1 unused
2 4+n request length
4 GCONTEXT cid
4 DRAWABLE drawable
4 BITMASK value-mask (has n bits set to 1)

#x00000001 function
#x00000002 plane-mask
#x00000004 foreground
#x00000008 background
#x00000010 line-width

#x00000020 line-style
#x00000040 cap-style
#x00000080 join-style
#x00000100 fill-style
#x00000200 fill-rule

115

X Protocol XI1, Release 5

#x00000400

#x00000800

#x00001000

#x00002000

#x00004000

#x00008000

#x00010000

#x00020000

#x00040000

#x00080000

#x00100000

#x00200000

#x00400000

4n LISTofVALUE

VALUES

1

0

1

2
3

4

5

6
7

8
9

10
11
12
13

14

15

4 CARD32

4 CARD32

4 CARD32

2 CARD16

1

0

1
2

1
0
1
2
3

1
0

1

2
1

0

1

2
3

1

0

1

4 PEXMAP

4 PtXMAP

2 INTI 6

2 INTI 6

4 FONT
1

0

1

tile

stipple

tile-stipplc-x-origin

tile-stipplc-y-origin

font

subwindow-mode

graphics-exposures

c 1 ip-x-origin

clip-y-origin

clip-mask

dash-offset

dashes

arc-mode

value-list

function

Clear

And

AndReverse

Copy

Andlnvertcd

NoOp

Xor

Or

Nor

Equiv

Invert

OrReverse

Copylnvcrtcd

Or Inverted

Nand

Set

plane-mask

foreground

background

line-width

line-style

Solid

OnOffDash

DoublcDash

cap-style

NolLast

Butt

Round

Projecting

join-style

Miter

Round

Bevel

fill-style

Solid

Tiled

Stippled

OpaqueStippled

fill-rule

EvenOdd

Winding

tile

stipple

tiie-stipple-x-origin

tile-slipplc-y-origin

font
subwindow-mode

ClipByChildren

Includelnferiors

116

X Protocol Xll, Release 5

1 BOOL

2 INTI 6
2 INTI 6

4 PIXMAP

0 None

2 CARD16

1 CARD8

1

0 Chord

1 PieSlice

graphics-exposures

clip-x-origin
clip-y-origin

clip-mask

dash-offset

dashes

arc-mode

ChangcGC

1

1
2
4
4

4n

56

3+n

GCONTEXT

BITMASK

encodings are the same as for CreateGC

LISTofVALUE value-list

encodings are the same as for CreateGC

opcode

unused

request length

gc
value-mask (has n bits set to 1)

CopyGC

1
1
2
4

4

4

57

GCONTEXT

GCONTEXT

BITMASK

opcode

unused

request length

src-gc

dst-gc

value-mask
encodings are the same as for CreateGC

SetDashcs
1 58

1

2 3+(n+p)/4
4 GCONTEXT

2 CARD16

2 n
n LISTofCARD8

P

SetClipRectangles

1

1

59

0 UnSorted
1 YSorted
2 YXSorted
3 YX Banded

2 3+2n
4 GCONTEXT
2 INTI 6

2 INTI 6

8n LISTofRECT ANGLE

FrceGC

1 60

1
2 2
4 GCONTEXT

opcode

unused

request length

gc
dash-offset

length of dashes

dashes

unused, p=pad(n)

opcode

ordering

request length

gc
clip-x-origin

clip-y-origin

rectangles

opcode

unused

request length

gc

ClearArea

1 61

1 BOOL

2 4

4 WINDOW

2 INTI 6
2 INTI 6

opcode

exposures

request length
window

x

y

117

X Protocol Xll, Release 5

2 CARD16 width

2 CARD16 height

CopyArea

1 62 opcode

1 unused

2 7 request length

4 DRAWABLE src-drawable

4 DRAWABLE dst-drawable

4 GCONTEXT gc
2 INTI 6 sre-x

2 INTI 6 sre-y

2 INTI 6 dst-x

2 INTI 6 dst-y

2 CARD 16 width

2 CARD16 height

CopyPlane

1 63 opcode

1 unused

2 8 request length

4 DRAWABLE src-drawable

4 DRAWABLE dst-drawable

4 GCONTEXT gc
2 INTI 6 sre-x

2 INTI 6 sre-y

2 INTI 6 dst-x

2 INTI 6 dst-y

2 CARD16 width

2 CARD16 height

4 CARD32 bit-plane

PolyPoint

1 64 opcode

1 coordinate-mode

0 Origin

1 Previous

2 3+n request length

4 DRAWABLE drawable

4 GCONTEXT gc
4n LISTofPOINT points

PolyLi ne

1 65 opcode

1 coordinate-mode

0 Origin

1 Previous

2 3+n request length

4 DRAWABLE drawable
4 GCONTEXT gc
4n LISTofPOINT points

PolySegment

1 66 opcode

1 unused

2 3+2n request length
4 DRAWABLE drawable
4 GCONTEXT gc
8n LISTofSEGMENT segments

SEGMENT
2 INTI 6 xl

2 INTI 6 yi
2 INTI 6 x2
2 INTI 6 y2

118

X Protocol Xll, Release 5

PolyRectangle

1 67 opcode

1 unused

2 3+2n request length

4 DRAWABLE drawablc

4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyArc

1 68 opcode

1 unused

2 3+3n request length

4 DRAWABLE drawable

4 GCONTEXT gc
12n USTofARC arcs

FillPoly

1 69 opcode

1 unused

2 4+n request length

4 DRAWABLE drawablc

4 GCONTEXT gc
1 shape

0 Complex

1 Nonconvex
2 Convex

1 coordinatc-modc

0 Origin

1 Previous

2 unused

4n LISTofPOINT points

PolyFillRec tangle

1 70 opcode

1 unused

2 3+2n request length

4 DRAWABLE drawable

4 GCONTEXT gc
8n LISTofRECTANGLE rectangles

PolyFillArc

1 71 opcode

1 unused

2 3+3n request length

4 DRAWABLE drawablc

4 GCONTEXT gc
12n LISTofARC arcs

Putlmage

1 72 opcode

1 format

0 Bitmap

1 XYPixmap

2 ZPixmap
2 6+(n+p)/4 request length

4 DRAWABLE drawable

4 GCONTEXT gc
2 CARD16 width
2 CARD16 height
2 INTI 6 dsl-x
2 INTI 6 dst-y

1 CARD8 left-pad

1 CARD8 depth
2 unused

n LISTofBYTE data

P unused, p=pad(n)

119

X Protocol Xll, Release 5

Getlmage
1 73
1

1 XYPixmap

2 ZPixmap

2 5

4 DRAWABLE

2 INTI 6
2 INTI 6

2 CARD16

2 CARD16

4 CARD32

1 1
1 CARD8

2 CARD16
4 (n+p)/4

4 VISUAUD

0 None

20
n LISTofBYTE

P

PolyText8
1 74

1

2 4+(n+p)/4

4 DRAWABLE
4 GCONTEXT

2 INTI 6

2 INTI 6

n LISTofTEXTITEM8

P

TEXTITEM8

1 m
1 INT8

m STRING8

or

1 255

1

1

1

1

PolyTcxtl6
1 75

1

2 4+(n+p)/4

4 DRAWABLE

4 GCONTEXT

2 INTI 6

2 INTI 6

n LISTofTEXTITEM16

P

TEXTITEM16

1 m

1 INT8

2m STRING 16
or

1 255

1

1

1

1

opcode
format

request length

drawablc

x

y
width

height
plane-mask

Reply

depth

sequence number

reply length

visual

unused
data

unused, p=pad(n)

opcode

unused

request length

drawablc

gc
X

y
items

unused, p=pad(n) (p is always 0 or 1)

length of siring (cannot be 255)

della

suing

font-shift indicator

font byte 3 (most-significant)

font byte 2

font byte 1

font byte 0 (least-significant)

opcode

unused

request length

drawablc

gc
x

y
items

unused, p=pad(n) (p must be 0 or 1)

number of CHAR2Bs in string (cannot be 255)

delta

suing

font-shift indicator

font byte 3 (most-significant)

font byte 2

font byte 1

font byte 0 (least-significant)

120

X Protocol XII, Release 5

ImageText8

1 76 opcode
1 n length of siring

2 4+{n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INTI 6 X

2 INTI 6 y
n STRING8 string

P unused, p=pad(n)

ImageTextl6

1 77 opcode
1 n number of CHAR2Bs
2 4+{2n+p)/4 request length
4 DRAWABLE drawable
4 GCONTEXT gc
2 INTI 6 X

2 INTI 6 y
2n STRING 16 string

P unused, p=pad(2n)

CreateColormap

1 78 opcode
1 alloc

0 None

1 All
2 4 request length
4 COLORMAP mid
4 WINDOW window
4 VISUALID visual

FreeColormap

1 79 opcode
1 unused
2 2 request length
4 COLORMAP cmap

CopyColormapAndFrce
1 80 opcode
1 unused
2 3 request length
4 COLORMAP mid
4 COLORMAP src-cmap

InstallColormap

1 81 opcode
1 unused
2 2 request length
4 COLORMAP cmap

UninstallColormap

1 82 opcode
1 unused
2 2 request length
4 COLORMAP cmap

ListlnstalledColormaps
1 83 opcode
1 unused
2 2 request length
4 WINDOW window

=>

1 1 Reply
1 unused

121

X Protocol XI1, Release 5

2 CARD16

4 n

2 n

22
4n LISTofCOLORMAP

AllocColor

1 84

1

2 4

4 COLORMAP

2 CARD16

2 CARD16

2 CARD16

2

1 1
1
2 CARD16
4 0

2 CARD16

2 CARD16

2 CARD16

2
4 CARD32

12

AllocNamedColor

1 85

1

2 3+(n+p)/4
4 COLORMAP

2 n

2
n STRING8

P

1 1
1

2 CARD16
4 0

4 CARD32

2 CARD16

2 CARD16

2 CARD16

2 CARD16

2 CARD16

2 CARD16
8

AllocColorCells

1 86
1 BOOL

2 3

4 COLORMAP

2 CARD16

2 CARD16

1 1
1

2 CARD16

4 n+m

2 n

2 m

sequence number

reply length
number of COLORMAPs in cmaps

unused

cmaps

opcode

unused

request length

cmap

red

green

blue

unused

Reply

unused

sequence number

reply length

red

green

blue

unused

pixel

unused

opcode

unused

request length

cmap

length of name

unused

name

unused, p=pad(n)

Reply

unused

sequence number

reply length

pixel

exact-red

exact-green

exact-blue

visual-red

visual-green

visual-blue

unused

opcode

contiguous

request length

cmap

colors

planes

Reply

unused

sequence number

reply length

number of CARD32s in pixels

number of CARD32s in masks

122

X Protocol Xll, Release 5

20 unused

4n LISTofCARD32 pixels
4m LISTofCARD32 masks

AllocColorPlanes
1 87

1 BOOL
2 4

4 COLORMAP

2 CARD16

2 CARD16

2 CARD16

2 CARD16

1 1
1

2 CARD16
4 n

2 n
2
4 CARD32

4 CARD32
4 CARD32

8
4n LISTofCARD32

FreeCoIors

1 88
1
2 3+n

4 COLORMAP

4 CARD32

4n LISTofCARD32

StoreColors

1 89
1

2 2+3n

4 COLORMAP

12n LISTofCOLORITEM

COLORITEM

4 CARD32

2 CARD16

2 CARD16

2 CARD16

1

#x01

#x02

#x04

#xF8

opcode

contiguous

request length

cmap

colors

reds

greens

blues

Reply

unused

sequence number

reply length

number of CARD32s in pixels
unused

red-mask

green-mask
blue-mask

unused

pixels

opcode

unused

request length

cmap

plane-mask

pixels

opcode

unused

request length
cmap

items

pixel

red

green

blue

do-red, do-green, do-blue
do-red (1 is True, 0 is False)

do-green (1 is True, 0 is False)

do-blue (1 is True, 0 is False)
unused

unused

StoreNamedColor
1 90

1
#x01

#x02

#x04

#xF8

2 4+(n+p)/4

4 COLORMAP
4 CARD32
2 n

2

opcode

do-red, do-green, do-blue
do-red (1 is True, 0 is False)

do-green (1 is True, 0 is False)

do-blue (1 is True, 0 is False)
unused

request length

cmap

pixel

length of name

unused

123

X Protocol Xll, Release 5

n STRING8 name

P unused, p=pad(n)

QueryColors
1 91 opcode

1 unused

2 2+n request length

4 COLORMAP cmap

4n LISTofCARD32 pixels

=>

1 1 Reply

1 unused

2 CARD16 sequence number

4 2n reply length

2 n number of RGBs in colors

22 unused

8n LISTofRGB colors

RGB

2 CARD16 red

2 CARD16 green

2 CARD16 blue

2 unused

LookupColor
1 92 opcode

1 unused

2 3+(n+p)/4 request length

4 COLORMAP cmap

2 n length of name

2 unused

n STRING8 name

P unused, p=pad(n)

=>

1 1 Reply

1 unused

2 CARD16 sequence number

4 0 reply length

2 CARD16 exact-red

2 CARD16 exact-green

2 CARD16 exact-blue

2 CARD16 visual-red

2 CARD16 visual-green

2 CARD16 visual-blue

12 unused

CreateCursor
1 93 opcode

1 unused

2 8 request length
4 CURSOR cid
4 PIXMAP source
4 PEXMAP mask

0 None

2 CARD16 fore-red

2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red

2 CARD16 back-green
2 CARD16 back-blue
2 CARD16 X

2 CARD16 y

CreateGlyphCursor
1 94 opcode

124

X Protocol Xll, Release 5

1 unused
2 8 request length
4 CURSOR cid
4 FONT source-font
4 FONT mask-font

0 None

2 CARD16 source-char
2 CARD16 mask-char
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

FreeCursor
1 95 opcode
1 unused
2 2 request length
4 CURSOR cursor

RecolorCursor
1 96 opcode
1 unused
2 5 request length
4 CURSOR cursor
2 CARD16 fore-red
2 CARD16 fore-green
2 CARD16 fore-blue
2 CARD16 back-red
2 CARD16 back-green
2 CARD16 back-blue

Query BestSize
1 97 opcode
1 class

0 Cursor
1 Tile
2 Stipple

2 3 request length
4 DRAWABLE drawablc
2 CARD16 width
2 CARD16 height

=>

1 1 Reply
1 unused
2 CARD16 sequence number
4 0 reply length
2 CARD16 width
2 CARD16 height
20 unused

Query Extension
1 98 opcode
1 unused
2 2+(n+p)/4 request length
2 n length of name
2 unused
n STRING8 name

P unused, p=pad(n)

=>

1 1 Reply
1 unused
2 CARD16 sequence number

125

X Protocol Xll, Release 5

4 0
1 BOOL
1 CARD8
1 CARD8
1 CARD8
20

ListExtensions
1 99
1
2 1

1 1
1 CARD8
2 CARD16
4 (n+p)/4
24
n USTofSTR
P

ChangcKeyboardMapping
1 100
1 n
2 2+nm
1 KEYCODE
1 m
2
4nm LISTofKEYSYM

GetKeyboardMapping
1 101
1

2 2
1 KEYCODE
1 m
2

1 1
1 n
2 CARD16
4 nm
24
4wn LISTofKEYSYM

ChangcKeyboardControl
102

2+n

BITMASK

#x0001 key-click-perccnt

#x0002 bell-percent

#x0004 bell-pitch

#x0008 bell-duration

#x0010 led

#x0020 led-mode

#x0040 key

#x0080 auto-repeat-mode

LISTofVALUE

VALUES

1 INT8

1 INT8

2 INTI 6
2 INTI 6
1 CARD8

reply length

present
major-opcode

first-event

first-error

unused

opcode

unused
request length

Reply

number of STRs in names

sequence number

reply length
unused

names

unused, p=pad(n)

opcode

key code-count

request length

first-keycode

kcysyms-pcr-keycode

unused

keysyms

opcode

unused

request length

first-keycode

count

unused

Reply

kcysyms-pcr-keycode

sequence number

reply length (m = count field from the request)

unused

keysyms

opcode

unused

request length

value-mask (has n bits set to 1)

value-list

kcy-click-pcrccnt

bell-percent

bell-pitch

bell-duration

led

126

X Protocol Xll, Release 5

1
0 Off

led-modc

1 On

1 KEYCODE key

1
0 Off

auto-repeat-mode

1 On

2 Default

GctKcyboardControl

1 103 opcode

1 unused

2 1 request length

=>

1 1 Reply

1
0 Off

global-auto-repeat

1 On

2 CARD16 sequence number

4 5 reply length

4 CARD32 led-mask

1 CARD8 key-click-percent

1 CARD8 bell-percent

2 CARD16 bell-pitch

2 CARD16 bell-duration

2 unused

32 LISTofCARD8 auto-repeats

Bell

1 104 opcode

1 LMT8 percent

2 1 request length

ChangePointerControl

1 105 opcode

1 unused

2 3 request length

2 INTI 6 acceleration-numerator

2 INTI 6 acceleration-denominator

2 INTI 6 threshold

1 BOOL do-accclcration

1 BOOL do-threshold

GctPointcrControl

1 106 opcode

1 unused

2 1 request length

=>

1 1 Reply

1 unused

2 CARD16 sequence number
4 0 reply length

2 CARD16 acceleration-numerator

2 CARD16 acceleration-denominator

2 CARD16 threshold
18 unused

SetScreenSaver

1 107 opcode

1 unused

2 3 request length

2 INTI 6 timeout

2 INTI 6 interval
1 prcfcr-blanking

127

X Protocol XI1, Release 5

0 No
1 Yes
2 Default

1 allow-cxposurcs

0 No
1 Yes
2 Default

2 unused

GetScrcenSavcr
1 108 opcode

1 unused

2 1 request length

=>

1 1 Reply

1 unused

2 CARD16 sequence number

4 0 reply length

2 CARD16 timeout

2 CARD16 interval

1 prcfcr-blanking

0 No

1 Yes

1 allow-cxposurcs

0 No

1 Yes

18 unused

ChangeHosts
1 109 opcode

1 mode

0 Insert

1 Delete

2 2+{n+p)/4 request length

1 family

0 Internet

1 DECnet

2 Chaos

1 unused

2 n length of address

n LISTofCARDS address

P unused, p=pad(n)

ListHosts
1 110 opcode

1 unused

2 1 request length

=>

1 1 Reply

1 mode

0 Disabled

1 Enabled

2 CARD16 sequence number

4 n/4 reply length

2 CARD16 number of HOSTs in hosts

22 unused

n LISTomOST hosts (n always a multiple of 4)

SetAccessControl
1 111 opcode

1 mode

0 Disable

1 Enable

2 1 request length

128

X Protocol Xll, Release 5

SetCloseDownMode
1 112 opcode

1 mode

0 Destroy

1 R e tain Per m ane n t

2 RetainTemporary

2 1 request length

KillClicnt
1 113 opcode

1 unused

2 2 request length

4 CARD32 resource

0 AllTemporary

RotatePropcrtics
1 114 opcode

1 unused

2 3+n request length

4 WINDOW window

2 n number of properties

2 INTI 6 delta

4n LISTofATOM properties

ForceScreenSaver
1 115 opcode

1 mode

0 Reset

1 Activate

2 1 request length

SetPointerMapping
1 116 opcode

1 n length of map
2 1 +{n+p)/4 request length

n LISTofCARD8 map

P unused, p=pad(n)

=>

1 1 Reply

1 status
0 Success

1 Busy

2 CARD16 sequence number
4 0 reply length
24 unused

GetPointerMapping
1 117 opcode

1 unused

2 1 request length

=>

1 1 Reply

1 n length of map

2 CARD16 sequence number
4 (n+p)/4 reply length
24 unused

n LISTofCARD8 map

P unused, p=pad(n)

SetModifierMapping
1 118 opcode

1 n keycodes-pcr-modificr

2 l+2n request length

8n LISTofKEYCODE kcycodcs

129

X Protocol XI1, Release 5

=>

1 1 Reply

1 status

0 Success

1 Busy

2 Failed

2 CARD16 sequence number

4 0 reply length

24 unused

GetMddifierMapping

1 119 opcode

1 unused

2 1 request length

=>

1 1 Reply

1 n key codes-per-mod i ficr

2 CARD16 sequence number

4 2n reply length

24 unused

8n LISTofKEYCODE kcycodcs

NoOperation

1 127 opcode

1 unused

2 1 request length

Events

KeyPress

1 2 code

1 KEYCODE detail

2 CARD16 sequence number

4 TIMESTAMP lime
4 WINDOW root

4 WINDOW event

4 WINDOW child

0 None

2 INTI 6 root-x

2 INTI 6 root-y

2 INTI 6 event-x

2 INTI 6 event-y

2 SETofKEYBUTMASK state

1 BOOL same-screen

1 unused

KeyRelease

1 3 code

1 KEYCODE detail

2 CARD16 sequence number

4 TIMESTAMP time

4 WINDOW root
4 WINDOW event

4 WINDOW child

0 None

2 INTI 6 root-x

2 INTI 6 root-y

2 INTI 6 event-x
2 INTI 6 event-y

2 SETofKEYBUTMASK state
1 BOOL same-screen
1 unused

ButtonPress

1 4 code

130

X Protocol Xll, Release

1 BUTTON detail

2 CARD16 sequence number

4 TIMESTAMP time

4 WINDOW root

4 WINDOW event

4 WINDOW child

0 None

2 INTI 6 root-x

2 INTI 6 root-y

2 INTI 6 cvcnt-x

2 INTI 6 cvent-y

2 SETofKEYBUTMASK slate

1 BOOL same-screen

1 unused

ButtonRelease
1 5 code

1 BUTTON detail

2 CARD16 sequence number

4 TIMESTAMP time

4 WINDOW root

4 WINDOW event

4 WINDOW child

0 None

2 INTI 6 root-x

2 INTI 6 root-y

2 INTI 6 cvcni-x

2 INTI 6 cvcnt-y

2 SETofKEYBUTMASK slate

1 BOOL same-screen

1 unused

MotionNotify
1 6 code

1 detail

0 Normal

1 Hint

2 CARD16 sequence number

4 TIMESTAMP lime

4 WINDOW root
4 WINDOW event

4 WINDOW child

0 None

2 INTI 6 root-x

2 INTI 6 root-y

2 INTI 6 evcnl-x
2 INTI 6 event-y

2 SETofKEYBUTMASK state

1 BOOL same-screen
1 unused

EnterNotify
1 7 code

1 detail
0 Ancestor
1 Virtual

2 Inferior

3 Nonlinear
4 NonlinearVirtual

2 CARD16 sequence number
4 TIMESTAMP time
4 WINDOW root
4 WINDOW event
4 WINDOW child

0 None

131

X Protocol Xll, Release 5

2 INTI 6 root-x

2 INTI 6 rooty

2 INTI 6 cvcnt-x

2 INTI 6 cvcnt-y

2 SETofKEYBUTMASK state

1 mode

0 Normal

1 Grab

2 Ungrab

1 same-screen, focus

#x01 focus (1 is True, 0 is False)

#x02 same-screen (1 is True, 0 is False)

#xFC unused

LeaveNotify

1 8 code

1 detail

0 Ancestor

1 Virtual

2 Inferior

3 Nonlinear

4 NonlinearViriual

2 CARD16 sequence number

4 TIMESTAMP time

4 WINDOW root

4 WINDOW event

4 WINDOW child

0 None

2 INTI 6 root-x

2 INTI 6 root-y

2 INTI 6 event-x

2 INTI 6 event-y

2 SETofKEYBUTMASK state

1 mode

0 Normal

1 Grab

2 Ungrab

1 same-screen, focus

#x01 focus (1 is True, 0 is False)

#x 02 same-screen (1 is True, 0 is False)

#xFC unused

Focusln

1 9 code

1 detail

0 Ancestor

1 Virtual

2 Inferior
3 Nonlinear
4 NonlinearViriual

5 Pointer

6 PointerRoot
7 None

2 CARD16 sequence number
4 WINDOW event
1 mode

0 Normal

1 Grab

2 Ungrab

3 WhileGrabbed

23 unused

FocusOut

1 10 code
1 detail

132

X Protocol Xil, Release 5

0 Ancestor
1 Virtual
2 Inferior
3 Nonlinear
4 NonlinearVirtual
5 Pointer
6 PointcrRoot
7 None

2 CARD16 sequence number
4 WINDOW event
1 mode

0 Normal
1 Grab
2 Ungrab
3 WhileGrabbed

23 unused

KeymapNotify

1 11 code
31 LISTofCARD8 keys (byte for key

Expose

1 12 code
1 unused
2 CARD16 sequence number
4 WINDOW window
2 CARD16 X

2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 count
14 unused

Graph icsExposure
1 13 code
1 unused
2 CARD16 sequence number
4 DRAWABLE drawablc
2 CARD16 X

2 CARD16 y
2 CARD16 width
2 CARD16 height
2 CARD16 minor-opcode
2 CARD16 count
1 CARD8 major-opcode
11 unused

NoExposure
1 14 code
1 unused
2 CARD16 sequence number
4 DRAWABLE drawable
2 CARD16 minor-opcode
1 CARD8 major-opcode
21 unused

VisibilityNotify
1 15 code
1 unused
2 CARD16 sequence number
4 WINDOW window
1 state

0 Unobscurcd
1 Parti allyObscured
2 FullyObscurcd

23 unused

133

X Protocol Xll, Release 5

Create Notify
1 16
1
2 CARD16
4 WINDOW
4 WINDOW
2 INT16
2 INTI 6
2 CARD16
2 CARD16
2 CARD16
1 BOOL
9

code

unused

sequence number

parent
window

X

y
width

height

border-width

ovcrridc-rcdircct

unused

DestroyNotify
1 17
1
2 CARD16
4 WINDOW
4 WINDOW
20

code

unused

sequence number

event
window

unused

UnmapNotify
1 18
1
2 CARD16
4 WINDOW
4 WINDOW
1 BOOL
19

code

unused

sequence number

event

window

from-configurc

unused

MapNotify
1 19
1
2 CARD16
4 WINDOW
4 WINDOW
1 BOOL
19

code

unused

sequence number

event

window

ovcrridc-rcdircct

unused

MapRcqucst
1 20
1
2 CARD16
4 WINDOW
4 WINDOW
20

code

unused

sequence number

parent

window

unused

ReparentNotify
1 21
1
2 CARD16
4 WINDOW
4 WINDOW
4 WINDOW
2 INTI 6
2 INTI 6
I BOOL
II

code

unused

sequence number

event

window

parent

X

y
ovcrridc-rcdircct

unused

ConfigurcNotify
1 22
1
2 CARD16
4 WINDOW
4 WINDOW

code

unused

sequence number

event
window

134

X Protocol Xll, Release 5

4 WINDOW
0

2 INTI 6
2 INTI 6
2 CARD16
2 CARD16
2 CARD16
1 BOOL
5

ConfigureRequest
1 23
1

0
1
2
3
4

2 CARD16
4 WINDOW
4 WINDOW
4 WINDOW

0
2 INTI 6
2 INTI 6
2 CARD16
2 CARD16
2 CARD16
2 BITMASK

#x0001
#x0002
#x0004
#x0008
#x0010
#x0020
#x0040

4

GravityNotify
1 24
1
2 CARD16
4 WINDOW
4 WINDOW
2 INTI 6
2 INTI 6
16

ResizeRequest
1 25
1
2 CARD16
4 WINDOW
2 CARD16
2 CARD16
20

CirculatcNotify
1 26
1

2 CARD16
4 WINDOW
4 WINDOW
4 WINDOW
1

above-sibling

x

y
width

height

border-width

overridc-rcdircct
unused

code

stack-mode

sequence number

parent
window

sibling

x

y
width

height

border-width

value-mask

unused

code

unused

sequence number

event
window

x

y
unused

code

unused

sequence number
window

width

height

unused

code

unused

sequence number

event

window

unused

place

None

Above
Below

Toplf

Bottomlf

Opposite

None

x

y
width

height

border-width

sibling

stack-mode

135

X Protocol XI1, Release 5

0 Top
1 Bottom

15 unused

CirculatcRequest
1 27 code

1 unused

2 CARD16 sequence number

4 WINDOW parent

4 WINDOW window

4 unused

1 place

0 Top
1 Bottom

15 unused

PropertyNotlfy
1 28 code

1 unused

2 CARD16 sequence number

4 WINDOW window

4 ATOM atom

4 TIMESTAMP time

1 state

0 NewValue
1 Deleted

15 unused

SelcctionCIcar
1 29 code

1 unused

2 CARD16 sequence number

4 TIMESTAMP time

4 WINDOW owner

4 ATOM selection

16 unused

SelcctionRequcs!
1 30 code

1 unused

2 CARD16 sequence number

4 TIMESTAMP time

0 CurTentTimc
4 WINDOW owner
4 WINDOW requestor

4 ATOM selection
4 ATOM target
4 ATOM property

0 None
4 unused

SelectionNotify
1 31 code

1 unused
2 CARD16 sequence number

4 TIMESTAMP time
0 CurrentTime

4 WINDOW requestor
4 ATOM selection

4 ATOM target
4 ATOM property

0 None
8 unused

ColormapNotlfy
1 32 code

136

X Protocol Xll, Release 5

1 unused
2 CARD16 sequence number
4 WINDOW window
4 COLORMAP colormap

0 None
1 BOOL new
1 stale

0 Uninstalled
1 Installed

18 unused

ClicntMessage
1 33 code
1 CARDS format
2 CARD16 sequence number
4 WINDOW window
4 ATOM type
20 data

Mappin igNotify
1 34 code
1 unused
2 CARD16 sequence number
1 request

0 Modifier
1 Keyboard
2 Pointer

1 KEYCODE first-kcycode
1 CARD8 count
25 unused

137

X Protocol XI1, Release 5

Glossary

Access control list

X maintains a list of hosts from which client programs can be run. By default, only pro¬
grams on the local host and hosts specified in an initial list read by the sewer can use the
display. Clients on the local host can change this access control list. Some server imple¬
mentations can also implement other authorization mechanisms in addition to or in place
of this mechanism. The action of this mechanism can be conditional based on the author¬
ization protocol name and data received by the sewer at connection setup.

Active grab

A grab is active when the pointer or keyboard is actually owned by the single grabbing
client.

Ancestors

If W is an inferior of A, then A is an ancestor of W.

Atom

An atom is a unique ID corresponding to a string name. Atoms are used to identify pro¬
perties, types, and selections.

Background

An InputOutput window can have a background, which is defined as a pixmap. When
regions of the window have their contents lost or invalidated, the sewer will automatical¬
ly tile those regions with the background.

Backing store

When a sewer maintains the contents of a window, the pixels saved off screen are known
as a backing store.

Bit gravity

When a window is resized, the contents of the window are not necessarily discarded. It
is possible to request that the sewer relocate the previous contents to some region of the
window (though no guarantees are made). This attraction of window contents for some
location of a window is known as bit gravity.

Bit plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a
bit plane or plane.

Bitmap

A bitmap is a pixmap of depth one.

Border

An InputOutput window can have a border of equal thickness on all four sides of the
window. A pixmap defines the contents of the border, and the sewer automatically main¬
tains the contents of the border. Exposure events arc never generated for border regions.

Button grabbing

Buttons on the pointer may be passively grabbed by a client. When the button is pressed,
the pointer is then actively grabbed by the client.

Byte order

For image (pixmap/bitmap) data, the sewer defines the byte order, and clients with
different native byte ordering must swap bytes as necessary. For all other parts of the
protocol, the client defines the byte order, and the sewer swaps bytes as necessary.

Children

The children of a window are its first-level subwindows.

138

X Protocol XI1, Release 5

Client

An application program connects to the window system server by some interprocess com¬
munication (IPC) path, such as a TCP connection or a shared memory buffer. This pro¬
gram is referred to as a client of the window system server. More precisely, the client is
die IPC path itself; a program with multiple paths open to the server is viewed as multi¬
ple clients by the protocol. Resource lifetimes arc controlled by connection lifetimes, not
oy program lifetimes.

Clipping region

In a graphics context, a bitmap or list of rectangles can be specified to restrict output to a
particular region of the window. The image defined by the oitmap or rectangles is called
a clipping region.

Colormap

A colormap consists of a set of entries defining color values. The colormap associated
with a window is used to display the contents of the window; each pixel value indexes
the colormap to produce RGB values that drive the guns of a monitor. Depending on
hardware limitations, one or more colormaps may be installed at one time, so that win¬
dows associated with those maps display with correct colors.

Connection

The IPC path between the server and client program is known as a connection. A client
program typically (but not necessarily) has one connection to the server over which re¬
quests and events are sent.

Containment

A window “contains” the pointer if the window is viewable and the hotspot of the cur¬
sor is within a visible region of the window or a visible region of one of its inferiors.
The border of the window is included as part of the window for containment. The
pointer is “in” a window if the window contains the pointer but no inferior contains the
pointer.

Coordinate system

The coordinate system has the X axis horizontal and the Y axis vertical, with the origin
[0, 0] at the upper left. Coordinates arc integral, in terms of pixels, and coincide with
pixel centers. Each window and pixmap has us own coordinate system. For a window,
the origin is inside the border at the inside upper left.

Cursor

A cursor is the visible shape of the pointer on a screen. It consists of a hot spot, a
source bitmap, a shape bitmap, and a pair of colors. The cursor defined for a window
controls the visible appearance when the pointer is in that window.

Depth

The depth of a window or pixmap is the number of bits per pixel that it has. The depth
of a graphics context is the depth of the drawablcs it can be used in conjunction with for
graphics output.

Device

Keyboards, mice, tablets, track-balls, button boxes, and so on are all collectively known
as input devices. The core protocol only deals with two devices, “the keyboard” and
“the pointer.”

DirectCoIor

DirectColor is a class of colormap in which a pixel value is decomposed into three
separate subfields for indexing. The first subfield indexes an array to produce red intensi¬
ty values. The second subfield indexes a second array to produce blue intensity values.
The third subfield indexes a third array to produce green intensity values. The RGB
values can be changed dynamically.

Display

A server, together with its screens and input devices, is called a display.

Drawable

Both windows and pixmaps can be used as sources and destinations in graphics opera¬
tions. These windows and pixmaps arc collectively known as drawablcs. However, an
InputOnly window cannot be used as a source or destination in a graphics operation.

139

X Protocol XI1, Release 5

Event

Clients are informed of information asynchronously by means of events. These events
can be generated either asynchronously from devices or as side effects of client requests.
Events are grouped into types. The server never sends events to a client unless the client
has specificially asked to be informed of that type of event. However, other clients can
force events to be sent to other clients. Events arc typically reported relative to a win¬
dow.

Event mask

Events are requested relative to a window. The set of event types that a client requests
relative to a window is described by using an event mask.

Event synchronization

There are certain race conditions possible when demultiplexing device events to clients
(in particular deciding where pointer and keyboard events should be sent when in the
middle of window management operations). The event synchronization mechanism al¬
lows synchronous processing of device events.

Event propagation

Device-related events propagate from the source window to ancestor windows until some
client has expressed interest in handling that type of event or until the event is discarded
explicitly.

Event source

The window the pointer is in is the source of a device-related event.
Exposure event

Servers do not guarantee to preserve the contents of windows when windows are ob¬
scured or reconfigured. Exposure events arc sent to clients to inform them when contents
of regions of windows have been lost.

Extension

Named extensions to the core protocol can be defined to extend the system. Extension to
output requests, resources, and event types arc all possible and are expected.

Focus window

The focus window is another term for the input focus.
Font

A font is a matrix of glyphs (typically characters). The protocol docs no translation or
interpretation of character sets. The client simply indicates values used to index the
glyph array. A font contains additional metric information to determine interglyph and
interline spacing.

GC, GContext

GC and gcontext are abbreviations for graphics context.
Glyph

A glyph is an image, typically of a character, in a font.
Grab

Keyboard keys, the keyboard, pointer buttons, the pointer, and the server can be grabbed
for exclusive use by a client. In general, these facilities are not intended to be used by
normal applications but are intended for various input and window managers to imple¬
ment various styles of user interfaces.

Graphics context

Various information for graphics output is stored in a graphics context such as fore¬
ground pixel, background pixel, line width, clipping region, and so on. A graphics con¬
text can only be used with drawables that have the same root and the same depth as the
graphics context.

Gravity

See bit gravity and window gravity.

140

X Protocol XI1, Release 5

Grayscale
Grayscale can be viewed as a degenerate case of PseudoCoIor, in which the red, green,
and blue values in any given colormap entry arc equal, thus producing shades of gray.
The gray values can be changed dynamically.

Hotspot
A cursor has an associated hotspot that defines the point in the cursor corresponding to
the coordinates reported for the pointer.

Identifier
An identifier is a unique value associated with a resource that clients use to name that
resource. The identifier can be used over any connection.

Inferiors
The inferiors of a window are all of the subwindows nested below it: the children, the
children’s children, and so on.

Input focus
The input focus is normally a window defining the scope for processing of keyboard in¬
put. It a generated keyboard event would normally be reported to this window or one of
its inferiors, the event is reported normally. Otherwise, the event is reported with respect
to the focus window. The input focus also can be set such that all keyboard events are
discarded and such that the focus window is dynamically taken to be the root window of
whatever screen the pointer is on at each keyboard event.

Input manager
Control over keyboard input is typically provided by an input manager client.

InputOnly window
An InputOnly window is a window that cannot be used for graphics requests. Inpu¬
tOnly windows are invisible and can be used to control such things as cursors, input
event generation, and grabbing. InputOnly windows cannot have InputOutput win¬
dows as inferiors.

InputOutput window
An InputOutput window is the normal kind of opaque window, used for both input and
output. InputOutput windows can have both InputOutput and InputOnly windows
as inferiors.

Key grabbing

Keys on the keyboard can be passively grabbed by a client. When the key is pressed, the
keyboard is then actively grabbed by the client.

Keyboard grabbing
A client can actively grab control of the keyboard, and key events will be sent to that
client rather than the client the events would normally have been sent to.

Keysym
An encoding of a symbol on a keycap on a keyboard.

Mapped

A window is said to be mapped if a map call has been performed on it. Unmapped win¬
dows and their inferiors are never viewable or visible.

Modifier keys

Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock, ShiftLock, and
similar keys are called modifier keys.

Monochrome
Monochrome is a special case of StaticGray in which there are only two colormap en¬
tries.

141

X Protocol XI1, Release 5

Obscure

A window is obscured if some other window obscures it. Window A obscures window
B if both are viewable InputOutput windows, A is higher in the global stacking order,
and the rectangle defined by the outside edges of A intersects the rectangle defined by the
outside edges of B. Note the distinction between obscure and occludes. Also note that
window borders are included in the calculation and that a window can be obscured and
yet still have visible regions.

Occlude

A window is occluded if some other window occludes it. Window A occludes window
B if both are mapped, A is higher in the global stacking order, and the rectangle defined
by the outside edges of A intersects the rectangle defined by the outside edges of B.
Note the distinction between occludes and obscures. Also note that window borders are
included in the calculation.

Padding

Some padding bytes are inserted in the data stream to maintain alignment of the protocol
requests on natural boundaries. This increases ease of portability to some machine archi¬
tectures.

Parent window

If C is a child of P, then P is the parent of C.

Passive grab

Grabbing a key or button is a passive grab. The grab activates when the key or button is
actually pressed.

Pixel value

A pixel is an N-bit value, where N is the number of bit planes used in a particular win¬
dow or pixmap (that is, N is the depth of the window or pixmap). For a window, a pixel
value indexes a colormap to derive an actual color to be displayed.

Pixmap

A pixmap is a three-dimensional array of bits. A pixmap is normally thought of as a
two-dimensional array of pixels, where each pixel can be a value from 0 to (2~N)-1 and
where N is the depth (z axis) of the pixmap. A pixmap can also be thought of as a stack
of N bitmaps.

Plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a
plane or bit plane.

Plane mask

Graphics operations can be restricted to only affect a subset of bit planes of a destination.
A plane mask is a bit mask describing which planes arc to be modified. The plane mask
is stored in a graphics context.

Pointer

The pointer is the pointing device attached to the cursor and tracked on the screens.

Pointer grabbing

A client can actively grab control of the pointer. Then button and motion events will be
sent to that client rather than the client the events would normally have been sent to.

Pointing device

A pointing device is typically a mouse, tablet, or some other device with effective dimen¬
sional motion. There is only one visible cursor defined by the core protocol, and it tracks
whatever pointing device is attached as the pointer.

Property

Windows may have associated properties, which consist of a name, a type, a data format,
and some data. The protocol places no interpretation on properties. They are intended as
a general-purpose naming mechanism for clients. For example, clients might use proper¬
ties to share information such as resize hints, program names, and icon formats with a
window manager.

142

X Protocol XI1, Release 5

Property list
The property list of a window is the list of properties that have been defined for the win¬
dow.

PseudoColor
PseudoColor is a class of colormap in which a pixel value indexes the colormap to pro¬
duce independent red, green, and blue values; that is, the colormap is viewed as an array
of triples (RGB values). The RGB values can be changed dynamically.

Redirecting control

Window managers (or client programs) may want to enforce window layout policy in
various ways. When a client attempts to change the size or position of a window, the
operation may be redirected to a specified client rather than the operation actually being
performed.

Reply
Information requested by a client program is sent back to the client with a reply. Both
events and replies are multiplexed on the same connection. Most requests do not gen¬
erate replies, although some requests generate multiple replies.

Request
A command to the server is called a request. It is a single block of data sent over a con¬
nection.

Resource
Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are known as
resources. They all have unique identifiers associated with them for naming purposes.
The lifetime of a resource usually is bounded by the lifetime of the connection over
which the resource was created.

RGB values
Red, green, and blue (RGB) intensity values arc used to define color. These values arc
always represented as 16-bit unsigned numbers, with 0 being the minimum intensity and
65535 being the maximum intensity. The server scales the values to match the display
hardware.

Root
The root of a pixmap, colormap, or graphics context is the same as the root of whatever
drawable was used when the pixmap, colormap, or graphics context was created. The
root of a window is the root window under which the window was created.

Root window
Each screen has a root window covering it. It cannot be reconfigured or unmapped, but
it otherwise acts as a full-fledged window. A root window has no parent.

Save set
The save set of a client is a list of other clients’ windows that, if they are inferiors of one
of the client’s windows at connection close, should not be destroyed and that should be
remapped if currently unmapped. Save sets arc typically used by window managers to
avoid lost windows if the manager terminates abnormally.

Scanline
A scanline is a list of pixel or bit values viewed as a horizontal row (all values having
the same y coordinate) of an image, with the values ordered by increasing x coordinate.

Scanline order
An image represented in scanline order contains scanlincs ordered by increasing y coordi¬
nate.

Screen

A server can provide several independent screens, which typically have physically in¬
dependent monitors. This would be the expected configuration when there is only a sin¬
gle keyboard and pointer shared among the screens.

143

X Protocol XI1, Release 5

Selection

A selection can be thought of as an indirect property with dynamic type; that is, rather
than having the property stored in the server, it is maintained by some client (the “own¬
er”). A selection is global in nature and is thought of as belonging to the user (although
maintained by clients), rather than as being private to a particular window subhierarchy or
a particular set of clients. When a client asks for the contents of a selection, it specifies a
selection “target type”. This target type can be used to control the transmitted represen¬
tation of the contents. For example, if the selection is “the last thing the user clicked
on” and that is currently an image, then the target type might specify whether the con¬
tents of the image should be sent in XY format or Z format. The target type can also be
used to control the class of contents transmitted; for example, asking for the “looks”
(fonts, line spacing, indentation, and so on) of a paragraph selection rather than the text
of the paragraph. TTie target type can also be usca for other purposes. The protocol does
not constrain the semantics.

Server

The server provides the basic windowing mechanism. It handles IPC connections from
clients, multiplexes graphics requests onto the screens, and demultiplexes input back to
the appropriate clients.

Server grabbing

The server can be grabbed by a single client for exclusive use. This prevents processing
of any requests from other client connections until the grab is completed. This is typical¬
ly only a transient state for such things as rubber-banding, pop-up menus, or to execute
requests indivisibly.

Sibling

Children of the same parent window arc known as sibling windows.

Stacking order

Sibling windows may stack on top of each other. Windows above other windows both
obscure and occlude those lower windows. This is similar to paper on a desk. The rela¬
tionship between sibling windows is known as the stacking order.

StaticColor

StaticColor can be viewed as a degenerate case of PseudoColor in which the RGB
values are predefined and read-only.

StaticGray

StaticGray can be viewed as a degenerate case of Grayscale in which the gray values
are predefined and read-only. The values arc typically linear or near-linear increasing
ramps.

Stipple

A stipple pattern is a bitmap that is used to tile a region that will serve as an additional
clip mask for a fill operation with the foreground color.

String Equivalence

Two ISO Latin-1 STRING8 values are considered equal if they are the same length and
if corresponding bytes are either equal or are equivalent as follows: decimal values 65 to
90 inclusive (characters “A” to “Z”) are pairwise equivalent to decimal values 97 to
122 inclusive (characters “a” to “z”), decimal values 192 to 214 inclusive (characters
“A grave” to “0 diaeresis”) arc pairwise equivalent to decimal values 224 to 246 in¬
clusive (characters “a grave” to “o diaeresis”), and decimal values 216 to 222 inclusive
(characters “O oblique"” to “THORN”) arc pairwise equivalent to decimal values 246 to
254 inclusive (characters “o oblique” to “thorn”).

Tile

A pixmap can be replicated in two dimensions to tile a region. The pixmap itself is also
known as a tile.

144

X Protocol XI1, Release 5

Timestamp

A timestamp is a time value, expressed in milliseconds. It typically is the time since the
last server reset. Timestamp values wrap around (after about 49.7 days). The server,
given its current time is represented by timestamp T, always inteiprets timestamps from
clients by treating half of the timestamp space as being earlier in time than T and half of
the timestamp space as being later in time than T. One timestamp value (named
CurrentTime) is never generated by the server. This value is reserved for use in re¬
quests to represent the current server time.

TrueCoIor

TrueColor can be viewed as a degenerate case of DirectColor in which the subfields in
the pixel value directly encode the corresponding RGB values; that is, the colormap has
predefined read-only RGB values. The values arc typically linear or near-linear increas¬
ing ramps.

Type

A type is an arbitrary atom used to identify the interpretation of property data. Types are
completely uninterpreted by the server and are solely for the benefit of clients.

Viewable

A window is viewable if it and all of its ancestors arc mapped. This does not imply that
any portion of the window is actually visible. Graphics requests can be performed on a
window when it is not viewable, but output will not be retained unless the server is main¬
taining backing store.

Visible

A region of a window is visible if someone looking at the screen can actually see it; that
is, the window is viewable and the region is not occluded by any other window.

Window gravity

When windows are resized, subwindows may be repositioned automatically relative to
some position in the window. This attraction of a subwindow to some part of its parent
is known as window gravity.

Window manager

Manipulation of windows on the screen and much of the user interface (policy) is typical¬
ly provided by a window manager client.

XYFormat

The data for a pixmap is said to be in XY format if it is organized as a set of bitmaps
representing individual bit planes, with the planes appearing from most-significant to
least-significant in bit order.

ZFormat

The data for a pixmap is said to be in Z format if it is organized as a set of pixel values
in scanline order.

145

X Protocol Xll, Release 5

Index

A

Above, 17, 19, 72
Access control list, 138
Access, 4, 15, 25, 26, 27, 28, 54, 62, 63, 98
Activate, 62
Active grab, 138
All, 50, 51, 54
Alloc, 4, 11, 20, 21, 32, 36, 41, 42, 50, 51, 52,
53, 55, 56, 57, 58, 99
AllocColor, 51, 52, 53, 54, 122
AllocColorCells, 51, 53, 54, 122
AllocColorPlanes, 51, 53, 54, 123
AllocNamedColor, 51, 52, 54, 122
AllowEvents, 24, 27, 28, 29, 110
AllTemporary, 63
AlreadyGrabbed, 24, 25, 26, 27
Alternative 1, 94
Altcmativel, 94
AltemativeValues, 1
Always, 8, 12, 14, 15, 69
Ancestor, 65, 66, 67
Ancestors, 138
And, 36, 37
Andlnverted, 36, 37
AndReverse, 36, 37
AnyButton, 25, 26
AnyKey, 27, 28
AnyModifier, 25, 26, 27, 28
AnyPropertyType, 21, 22
Append, 21
AsyncBoth, 28, 29
Asynchronous, 24, 25, 26, 27, 64
AsyncKeyboard, 28, 29
AsyncPointcr, 28, 29
Atom, 1, 4, 5, 21, 22, 23, 98, 138

B

Background, 138
Backing store, 138
Bell, 60, 127
Below, 17, 19, 72
Bevel, 36, 39
Bit:

gravity, 138
plane, 138

Bitmap, 48, 138
Border, 138
Bottom, 72
Bottomlf, 17, 19, 72
Busy, 57, 60

Butt, 36, 38, 39, 41
Button 1, 2
Button 1 Motion, 2
Button2, 2
Button2Motion, 2
Button3, 2
Button3Motion, 2
Button4, 2
Button4Motion, 2
Button5, 2
Button5Motion, 2
Button:

grabbing, 138
ButtonMotion, 2, 65
ButtonPress, 2, 15, 25, 28, 29, 64, 65, 66, 130
ButtonRclease, 2, 28, 29, 64, 65, 66, 131
Button[l-5]Motion, 65
Byte order, 138

c

Center, 2, 18
ChangeActivePointerGrab, 26, 64, 109
ChangeGC, 4, 41, 42, 117
ChangeHosts, 4, 62, 128
ChangeKeyboardControl, 4, 59, 126
ChangeKeyboardMapping, 58, 74, 126
ChangePointerControl, 61, 127
ChangePropcrty, 21, 73, 106
ChangeSaveSet, 16, 104
ChangeWindowAttributes, 4, 11, 14, 51, i03
Chaos, 2
Children, 138
Chord, 36, 47
CirculateNotify, 20, 66, 69, 70, 72, 135
CirculateRequest, 20, 72, 136
CirculatcWindow, 20, 72, 105
Clear, 36, 37
Clear Area, 43, 117
Client, 138
ClicntMessage, 74, 137
ClipByChildren, 36, 40, 41, 43
Clipping region, 139
CloseFont, 32, 113
Colormap, 1, 4, 5, 11, 15, 51, 52, 53, 54, 55, 99,
139
ColormapChange, 2, 74
ColormapNotify, 15, 51, 52, 73, 136
Complex, 46, 47
ConfigureNotify, 18, 19, 66, 69, 70, 71, 134
ConfigureRequest, 18, 72, 135
ConfigureWindow, 14, 17, 71, 72, 105

146

X Protocol Xll, Release 5

Connection, 139
Containment, 139
Control, 2, 57, 58
ConvertSelection, 23, 73, 108
Convex, 46, 47
Coordinate system, 139
Copy, 36, 37, 41, 43, 50
CopyArea, 40, 43, 44, 70, 118
CopyColormapAndFree, 51, 121
CopyFromParent, 11, 12, 13, 14, 15, 93
CopyGC, 41, 117
Copylnverted, 36, 37
CopyPlane, 40, 43, 70, 118
CreateColormap, 50, 51, 54, 121
CreateCursor, 55, 56, 124
CreateGC, 36, 41,42, 115
CreateGlyphCursor, 56, 124
CreateNotify, 14, 70, 134
CreatePixmap, 36, 115
CreateWindow, 11, 15, 51, 70, 102
CurrentTime, 23, 24, 25, 26, 27, 28, 30, 31, 73,
144
Cursor, 1, 4, 5, 11, 15, 24, 25, 26, 56, 98, 139

D

DECnet, 2
Default, 59, 61
Delete, 16, 62
Deleted, 73
Delete Property, 21, 73, 107
Depth, 139
Destroy, 63, 64
DestroyNotify, 16, 70, 134
DestroySubwindows, 16, 104
DestroyWindow, 16, 104
Device, 139
DirectColor, 8, 11, 51, 53, 139, 145
Disable, 63
Disabled, 62
Display, 139
DoubleDash, 36, 38, 39, 40
Drawable, 1, 4, 5, 20, 36, 43, 44, 45, 46, 47, 48,
49, 50, 56, 98, 139

E

East, 2, 18
Enable, 63
Enabled, 62
EnterNotify, 25, 65, 66, 67, 69, 70, 131
EnterWindow, 2, 65
Equiv, 36, 37

Error Codes:
Access, 4
Alloc, 4
Atom, 4
Colormap, 4
Cursor, 4
Drawable, 4
Font, 4
GContext, 4
IDChoice, 5
Implementation, 5
Length, 5
Match, 5
Name, 5
Pixmap, 5
Request, 5
Value, 5
Window, 5

EvcnOdd, 36, 40, 41
Event, 139

Exposure, 140
mask, 140
propagation, 140
source, 140
synchronization, 140

EventName, 2
Expose, 66, 67, 69, 70, 133
Exposure, 2, 69
Extension, 140

F

Failed, 57
False, 2, 12, 17, 18, 20, 24, 27, 30, 64, 66, 71,
74
FillPoly, 39, 40, 46, 47, 119
Focus window, 140
FocusChange, 2, 67
Focusln, 27, 31, 67, 68, 69, 132
FocusOut, 27, 31, 66, 67, 68, 69, 70, 132
Font, 1, 4, 5, 32, 33, 34, 36, 41, 49, 56, 98, 140
ForceScreenSaver, 61, 62, 129
Forget, 2, 12, 19
Free, 63
FreeColormap, 14, 51, 121
FrceColors, 4, 51, 54, 123
FreeCursor, 56, 125
FreeGC, 43, 117
FrcePixmap, 36, 115
Frozen, 24, 25, 26, 27

147

X Protocol Xll, Release 5

FullyObscured, 70

G

GC, 140
GContext, 1, 4, 5, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 99, 140
GetAtomName, 21, 106
GetFontPath, 36, 115
GetGeometry, 20, 105
Getlmage, 48, 120
GetlnputFocus, 31, 112
GetKeyboardControl, 60, 127
GetKeyboardMapping, 58, 126
GetModifierMapping, 57, 130
GetMotionEvents, 10, 30, 65, 111
GetPointerControl, 61, 127
GetPointerMapping, 60, 61, 129
GetProperty, 21, 73, 107
GetScreenSaver, 61, 128
GetSelectionOwner, 23, 107
GetWindowAttributes, 11, 15, 103
Glyph, 140
Grab, 65, 66, 67, 68, 140
GrabButton, 25 , 26, 29, 64, 109
GrabKey, 27, 28, 29, 110
GrabKeyboard, 26, 27, 28, 29, 109
GrabPointer, 24, 25, 26, 29, 108
GrabServer, 29, 110
Graphics context, 140
GraphicsExposure, 40, 43, 69, 70, 133
Gravity, 140
GravityNotify, 19, 66, 69, 70, 72, 135
Grayscale, 8, 11, 51, 53, 55, 140, 144

H

Hint, 65
Hotspot, 141

I

IDChoice, 1, 4, 11, 32, 36, 50, 51, 55, 56, 99
Identifier, 141
ImageTextl6, 50, 121
ImageText8, 50, 121
Implementation, 4, 99
Includelnferiors, 36, 40
Inferior, 65, 66, 67
Inferiors, 141
Input focus, 141
Input manager, 141
InputFocus, 23, 24, 94
InputOnly, 4, 10, 11, 12, 13, 15, 17, 18, 20, 36,
43, 56, 69, 70, 93, 139, 141

InputOutput, 10, 11, 12, 15, 40, 93, 138, 141
Insert, 16, 62
InstallColormap, 10, 14, 15, 51, 52, 121
Installed, 74
IntemAtom, 6, 20, 106
Internet, 2
InvalidTime, 24, 25, 26, 27
Invert, 36, 37

K

Key:
grabbing, 141

Keyboard, 74
grabbing, 141

KeymapNotify, 1, 69, 133
KeymapState, 2, 69
KeyPress, 2, 6, 27, 29, 59, 64, 65, 68, 130
KeyRelcase, 2, 27, 29, 59, 64, 65, 69, 130
Keysym, 141
KillClient, 63, 129

L

LeastSignificant, 8
LcavcNotify, 25, 65, 66, 67, 69, 70, 132
LcaveWindow, 2, 65
LcftToRight, 32, 33, 34
Length, 4, 10, 57, 58, 99
ListExtensions, 57, 126
ListFonts,, 35
ListFonts, 35, 114
LislFontsWithlnfo, 35, 114
ListHosts, 62, 128
ListlnstalledColormaps, 52, 121
ListProperties, 22, 107
Lock, 2, 57, 58
LookupColor, 55, 124
LowerHighcst, 20
LSBFirst, 8

M

MapNotify, 17, 66, 69, 70, 71, 134
Mapped window, 141
MappingNotify, 57, 58, 60, 74, 137
MapRcquest, 17, 71, 134
MapSubwindows, 17, 104
MapWindow, 16, 17, 63, 71, 104
Match, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21,
22, 31, 36, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 55, 56, 59, 98
Miter, 36, 39, 41
Modi, 2, 57, 58
Mod2, 2, 57, 58

148

X Protocol Xll, Release 5

Mod3, 2, 57, 58
Mod4, 2, 57, 58
Mod5, 2, 57, 58
Modifier keys, 141
Modifier, 74
Modifiers, 74
Monochrome, 141
MostSignificant, 8
MotionNolify, 10, 64, 65, 131
MSBFirst, 8

N

Namel, 93
Name, 4, 32, 53, 54, 55, 99
Namel, 93
NameofThing, 93
Nand, 36, 37
Never, 8
NewValue, 73
No, 61, 62
NoExposure, 43, 70, 133
Nonconvex, 46, 47
None, 5, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25,
26, 30, 31, 32, 36, 40, 41, 42, 43, 48, 50, 51, 55,
56, 64, 65, 66, 67, 68, 71, 72, 73
Nonlinear, 65, 66, 67, 68
NonlinearVirtual, 65, 66, 67, 68
NoOp, 36, 37
NoOperation, 63, 130
Nor, 36, 37
Normal, 65, 66, 67, 68, 69
North, 2, 18
NorthEast, 2, 18
Northwest, 2, 12, 18, 19
NoSymbol, 58, 59
NotLast, 36, 38, 39
NotUseful, 12, 14, 15
NotViewable, 24, 25, 26, 27

o

Obscure, 141
Occlude, 142
Off, 59, 60
On, 59, 60
OnOffDash, 36, 38, 39
OpaqueStippled, 36, 39, 40, 44
OpenFont, 32, 112
Opposite, 17, 19, 72
Or, 36, 37
Origin, 44, 46
Orlnverted, 36, 37
OrReverse, 36, 37

OwnerGrabButton, 2, 64

P

Padding, 142
Parent, 31, 32
ParcntRelative, 12, 13, 15, 17
PartiallyObscurcd, 70
Passive grab, 142
PicSlice, 36, 41, 47
Pixel value, 142
Pixmap, 1, 4, 5, 11, 15, 36, 41, 55, 98, 142
Plane, 142

mask, 142
Pointer, 67, 68, 74, 142

grabbing, 142
PointcrMotion, 2, 65
PoinlcrMotionHint, 2, 65
PointerRoot, 5, 31, 32, 64, 67, 68
PointcrWindow, 23, 94
Pointing device, 142
PolyArc, 39, 45, 47, 119
PolyFillArc, 39, 40, 47, 119
PolyFillRcctangle, 39, 47, 119
PolyLine, 39, 44, 45, 118
PolyPoint, 44, 118
PolyRectangle, 39, 45, 119
PolySegment, 39, 45, 118
PolyTcxtl6, 4, 39, 49, 120
PolyText8, 4, 39, 49, 120
Prepend, 21
Previous, 44, 46
Projecting, 36, 38, 39
Property list, 142
Property, 142
PropcrtyChange, 2, 73
PropcrtyNotify, 21, 22, 73, 136
PscudoColor, 8, 11, 51, 53, 140, 143, 144
Putlmage, 48, 119

Q

QucryBestSize, 56, 125
QucryColors, 54, 124
QueryExtcnsion, 57, 125
QueryFont, 32, 34, 35, 113
QueryKeymap, 32, 69, 112
QueryPointer, 30, 65, 111
QueryTextExtents, 34, 50, 113
QueryTree, 20, 105

R

RaiscLowest, 20
RecolorCursor, 56, 125

149

X Protocol Xll, Release 5

Redirecting control, 143
ReparentNotify, 16, 71, 134
ReparentWindow, 16, 104
Replace, 21
ReplayKeyboard, 28, 29
ReplayPointer, 28, 29
Reply, 143
Request, 4, 97, 143
RequestName, 1
Reset, 61, 62
ResizeRedirect, 2, 15, 18, 72
ResizeRequest, 18, 72, 135
Resource, 143
RetainPermanent, 63, 64
RetainTemporary, 63, 64
RGB values, 143
RightToLeft, 32, 33, 34
Root, 143
RotateProperties, 22, 73, 129
Round, 36, 38, 39

S

Save set, 143
Scanline order, 143
Scanline, 143
Screen, 143
Selection, 143
SelectionClear, 23, 73, 136
SelectionNotify, 23, 73, 136
SelectionRequest, 23, 73, 136
SendEvent, 1, 23, 73, 74, 108
Server, 144

grabbing, 144
Set, 36, 37
SetAccessControl, 63, 128
SetClipRectangles, 40, 41, 42, 117
SetCloseDownMode, 63, 129
SetDashes, 40, 41, 42, 117
SetFontPath, 35, 115
SetlnputFocus, 31, 67, 112
SetModifierMapping, 57, 74, 129
SetPointerMapping, 60, 74, 129
SetScreenSaver, 61, 127
SetSelectionOwner, 22, 63, 73, 107
Shift, 2, 57, 58
Sibling, 144
Solid, 36, 38, 39, 40, 41, 50
South, 2, 18
SouthEast, 2, 18
Southwest, 2, 18
Stacking order, 144
Static, 2, 19
StaticColor, 8, 11, 51, 144
StaticGray, 8, 11, 51, 55, 141, 144

Stipple, 56, 144
Stippled, 36, 39, 40
StoreColors, 4, 53, 54, 123
StorcNamedColor, 53, 54, 123
String Equivalence, 144
StructureNotify, 2, 70, 71, 72
SubstructureNotify, 2, 70, 71, 72
SubstructurcRedircct, 2, 14, 15, 17, 18, 20, 71,
72
Success, 24, 26, 57, 60
SyncBoth, 28, 29
Synchronous, 24, 25, 26, 27
SyncKeyboard, 28, 29
SyncPointer, 28, 29

T

Tile, 56, 144
Tiled, 36, 39, 40
Timestamp, 144
Top, 72
Toplf, 17, 19, 72
TranslatcCoordinatcs, 30, 111
True, 2, 10, 14, 16, 22, 24, 27, 30, 33, 41, 43,
53, 64, 66, 71, 74
TrueColor, 8, 11, 51, 145
Type, 145
Types:

ARC, 3
ATOM, 3
BITGRAVITY, 3
BITMASK, 2
BOOL, 3
BUTMASK, 3
BUTTON, 3
BYTE, 3
CARD16, 3
CARD32, 3
CARD8, 3
CHAR2B, 3
COLORMAP, 2
CURSOR, 2
DEVICEEVENT, 3
DRAWABLE, 2
EVENT, 3
FONT, 2
FONTABLE, 3
GCONTEXT, 2
HOST, 3
INT16, 3
INT32, 3
INT8, 3
KEYBUTMASK, 3
KEYCODE, 3
KEYMASK, 3

150

X Protocol XI1, Release 5

KEYSYM,3
LISTofFOO, 2
LISTofVALUE, 2
OR, 2
PIXMAP, 2
POINT, 3
POINTEREVENT, 3
RECTANGLE, 3
STRING 16, 3
STRING8, 3
TIMESTAMP, 3
VALUE, 3
VISUALID, 3
WINDOW, 2
WINGRAVITY, 3

u

Ungrab, 65, 66, 67, 69
UngrabButton, 26, 109
UngrabKey, 28, 110
UngrabKeyboard, 27, 63, 110
UngrabPointer, 25, 63, 64, 109
UngrabServer, 30, 63, 111
UninstallColormap, 51, 52, 121
Uninstalled, 74
Unmap, 2, 19, 71
UnmapNotify, 17, 19, 66, 67, 69, 70, 71, 134
Unmapped, 15
UnmapSubwindows, 17, 104
UnmapWindow, 16, 17, 104
Unobscured, 70
UnSortcd, 42
Unviewable, 15

V

Value, 1, 2, 4, 11, 12, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 26, 27, 28, 31, 35, 36, 40, 41, 42, 43,
44, 46, 48, 50, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 97
Viewable, 15, 145
Virtual, 65, 66, 67
Visibilility, 69
VisibilityChange, 2, 70
VisibilityNotify, 12, 66, 67, 69, 70, 133
Visible, 145

W

WarpPointer, 31, 112
West, 2, 18
WhenMapped, 8, 12, 14, 15, 69
WhileGrabbed, 67
Winding, 36, 40

Window, 1, 4, 5, 11, 15, 16, 17, 20, 21, 22, 23,
24, 25, 26, 27, 28, 30, 31, 43, 50, 52, 97

gravity, 145
InpulOnly, 141
InputOutpuL, 141
manager, 145
parent, 142
root, 143

X

Xor, 36, 37
XYFormat, 145
XYPixmap, 48

Y

Yes, 61, 62
YSorted, 42
YXBanded, 42
YXSortcd, 42

Z

ZFormat, 145
ZPixmap, 48

151

Xlib - C Language X Interface

MIT X Consortium Standard

X Version 11, Release 5

First Revision - August, 1991

James Gcitys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Schcillcr

Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.

Vania Joloboff, Open Software Foundation

Bill McMahon, Hewlett-Packard Company

Ron Newman, Massachusetts Institute of Technology

A1 Tabayoyon, Tektronix, Inc.

Glenn Widcner, Tektronix, Inc.

The X Window System is a trademark of MIT.

TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Massachusetts Institute of Technology, Cambridge,

Massachusetts, and Digital Equipment Corporation, Maynard, Massachusetts.

Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appears in all copies and that both that copyright notice and this

permission notice appear in all copies, and that the names of MIT, Digital, and Tektronix not be used in in advertis¬

ing or publicity pertaining to this documentation without specific, written prior permission. MIT, Digital, and Tek¬

tronix makes no representations about the suitability of this documentation for any purpose. It is provided “as is”

without express or implied warranty.

Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Schciflcr of the MIT Laboratory for Computer Science and Jim Gettys of
Digital Equipment Corporation and Ron Newman of MIT, both at MIT Project Athena. X ver¬
sion 11, however, is the result of the efforts of dozens of individuals at almost as many loca¬
tions and organizations. At the risk of offending some of the players by exclusion, we would
like to acknowledge some of the people who deserve special credit and recognition for their
work on Xlib. Our apologies to anyone inadvertently overlooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for
us during the early releases. He handled literally thousands of requests from people every¬
where and saved the sanity of at least one of us. His calm good cheer was a foundation on
which we could build.

Our thanks also goes to Todd Brunhoff (Tektronix) who was “loaned” to Project Athena at
exactly the right moment to provide very capable and much-needed assistance during the alpha
and beta releases. He was responsible for the successful integration of sources from multiple
sites; we would not have had a release without him.

Our thanks also goes to A1 Mcnto and A1 Wojtas of Digital’s ULTRIX Documentation Group.
With good humor and cheer, they took a rough draft and made it an infinitely better and more
useful document. The work they have done will help many everywhere. We also would like
to thank Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by
proofreading the early drafts of this document.

Our thanks also goes to Jeff Dike (Digital UEG), Tom Benson, Jackie Granficld, and Vince
Orgovan (Digital VMS) who helped with the library utilities implementation; to Hania
Gajewska (Digital UEG-WSL) who, along wilh Ellis Cohen (CMU and Siemens), was instru¬
mental in the semantic design of the window manager properties; and to Dave Rosenthal (Sun
Microsystems) who also contributed to the protocol and provided the sample generic color
frame buffer device-dependent code.

The alpha and beta test participants deserve special recognition and thanks as well. It is
significant that the bug reports (and many fixes) during alpha and beta test came almost
exclusively from just a few of the alpha testers, mostly hardware vendors working on product
implementations of X. The continued public contribution of vendors and universities is cer¬
tainly to the benefit of the entire X community.

Our special thanks must go to Sam Fuller, Vice-President of Corporate Research at Digital,
who has remained committed to the widest public availability of X and who made it possible
to greatly supplement MIT’s resources with the Digital staff in order to make version 11 a
reality. Many of the people mentioned here arc part of the Western Software Laboratory
(Digital UEG-WSL) of the ULTRIX Engineering group and work for Smokey Wallace, who
has been vital to the project’s success. Others not mentioned here worked on the toolkit and
are acknowledged in the X Toolkit documentation.

Of course, we must particularly thank Paul Ascnte, formerly of Stanford University and now of
Digital UEG-WSL, who wrote W, the predecessor to X, and Brian Reid, formerly of Stanford
University and now of Digital WRL, who had much to do with W’s design.

Finally, our thanks goes to MIT, Digital Equipment Corporation, and IBM for providing the
environment where it could happen.

i

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying the new Xlib
functions for Inter-Client Communication Conventions (ICCCM) support.

We also thank A1 Mento of Digital for his continued effort in maintaining this document and
Jim Fulton and Donna Converse (MIT X Consortium) for their much-appreciated efforts in
reviewing the changes.

Release 5

The principal authors of the Input Method facilities are Vania Joloboff (Open Software Foun¬
dation) and Bill McMahon (Hewlett-Packard). The principal author of the rest of the interna¬
tionalization facilities is Glenn Widcncr (Tektronix). Our thanks to them for keeping their
sense of humor through a long and sometimes difficult design process. Although the words
and much of the design are due to them, many others have contributed substantially to the
design and implementation. Tom McFarland (HP) and Frank Rojas (IBM) deserve particular
recognition for their contributions. Other contributors were: Tim Anderson (Motorola), Alka
Badshah (OSF), Gabe Beged-Dov (HP), Chih-Chung Ko (III), Vera Cheng (III), Michael Col¬
lins (Digital), Walt Daniels (IBM), Noritoshi Dcmizu (OMRON), Keisuke Fukui (Fujitsu),
Hitoshoi Fukumoto (Nihon Sun), Tim Greenwood (Digital), John Harvey (IBM), Fred Horman
(AT&T), Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM), Yutaka Kataoka (Waseda University),
Ranee Khubchandani (Sun), Akira Kon (NEC), Hiroshi Kuribayashi (OMRON), Teruhiko
Kurosaka (Sun), Seiji Kuwari (OMRON), Sandra Martin (OSF), Masato Morisaki (NTT), Nel¬
son Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM), Akira Ohsone
(Nihon Sun), Chris Peterson (MIT), Sam Shtcingart (AT&T), Manish Shcth (AT&T),
Muneiyoshi Suzuki (NTT), Cori Mchring (Digital), Shoji Sugiyama (IBM), and Eiji Tosa
(IBM).

We are deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing the first com¬
plete sample implementation of the internationalization facilities. We arc also very much
indebted to Masato Morisaki (NTT) for coordinating the integration, testing, and release of this
implementation. We also thank Michael Collins for his design of the “pluggable layer” inside
Xlib.

The principal authors (design and implementation) of the Xcms color management facilities are
A1 Tabayoyon (Tektronix) and Chuck Adams (Tektronix). Joann Taylor (Tektronix), Bob
Toole (Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the
design. Others who contributed arc: Harold Boll (Kodak), Ken Bronstcin (HP), Nancy Cam
(SGI), Donna Converse (MIT X Consortium), Elias Israel (ISC), Dcron Johnson (Sun), Jim
King (Adobe), Ricardo Motta (HP), Keith Packard (MIT), Chuck Peck (IBM), Wil Plouffe
(IBM), Dave Stemlicht (MIT X Consortium), Kumar Talluri (AT&T), and Richard Verbcrg
(IBM).

We also once again thank A1 Mento of Digital for his work in formatting and reformatting text
for this manual, and for producing man pages. Thanks also to Clive Feather (IXI) for proof¬
reading and finding a number of small errors.

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W. Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology

11

Xlib - C Library XI1, Release 5

Table of Contents

Table of Contents. ii

Acknowledgments . iii

Chapter 1: Introduction to Xlib. 1

1.1. Overview of the X Window System... i

1.2. Errors 2

1.3. Standard Header Files... 3

1.4. Generic Values and Types . 4

1.5. Naming and Argument Conventions within Xlib . 4

1.6. Programming Considerations ... 5

1.7. Character Sets and Encodings. 5

1.8. Formatting Conventions . 6

Chapter 2: Display Functions. 7

2.1. Opening the Display . 7

2.2. Obtaining Information about the Display, Image Formats, or Screens. 8

2.2.1. Display Macros . 8

2.2.2. Image Format Functions and Macros . 14

2.2.3. Screen Information Macros. 16

2.3. Generating a NoOpcration Protocol Request . 19

2.4. Freeing Client-Created Data . 19

2.5. Closing the Display ... 19

2.6. X Server Connection Close Operations . 20

Chapter 3: Window Functions . 22

3.1. Visual Types . 22

3.2. Window Attributes. 23

3.2.1. Background Attribute..... 25

3.2.2. Border Attribute .. 26

3.2.3. Gravity Attributes . 27

3.2.4. Backing Store A.ttribute . 28

3.2.5. Save Under Flag .. 28

3.2.6. Backing Planes and Backing Pixel Attributes... 28

3.2.7. Event Mask and Do Not Propagate Mask Attributes . 28

3.2.8. Override Redirect Flag. 29

3.2.9. Coiormap Attribute . 29

3.2.10. Cursor Attribute . 29

3.3. Creating Windows . 29

3.4. Destroying Windows . 32

iii

3.5. Mapping Windows... 32

3.6. Unmapping Windows . 34

3.7. Configuring Windows . 35

3.8. Changing Window Stacking Order . 39

3.9. Changing Window Attributes . 41

Chapter 4: Window Information Functions . 45

4.1. Obtaining Window Information . 45

4.2. Translating Screen Coordinates . 48

4.3. Properties and Atoms. 49

4.4. Obtaining and Changing Window Properties . 52

4.5. Selections .. 55

Chapter 5: Pixmap and Cursor Functions ... 58

5.1. Creating and Freeing Pixmaps . 58

5.2. Creating, Recoloring, and Freeing Cursors. 59

Chapter 6: Color Management Functions . 62

6.1. Color Structures .. 63

6.2. Color Strings. 65

6.2.1. RGB Device String Specification . 66

6.2.2. RGB Intensity String Specification . 66

6.2.3. Device-Independent String Specifications . 66

6.3. Color Conversion Contexts and Gamut Mapping . 67

6.4. Creating, Copying, and Destroying Colormaps . 67

6.5. Mapping Color Names to Values . 69

6.6. Allocating and Freeing Color Cells . 70

6.7. Modifying and Querying Colormap Cells . 75

6.8. Color Conversion Context Functions . 79

6.8.1. Getting and Setting the Color Conversion Context of a Colormap . 79

6.8.2. Obtaining the Default Color Conversion Context... 80

6.8.3. Color Conversion Context Macros . 80

6.8.4. Modifying Attributes of a Color Conversion Context . 81

6.8.5. Creating and Freeing a Color Conversion Context . 82

6.9. Converting Between Color Spaces . 83

6.10. Callback Functions. 84

6.10.1. Prototype Gamut Compression Procedure . 84

6.10.2. Supplied Gamut Compression Procedures . 85

6.10.3. Prototype White Point Adjustment Procedure . 86

6.10.4. Supplied White Point Adjustment Procedures . 87

6.11. Gamut Querying Functions . 88

6.11.1. Red, Green, and Blue Queries . 88

6.11.2. CIELab Queries . 90

6.11.3. CIELuv Queries . 91

6.11.4. TekHVC Queries . 93

XV

6.12. Color Management Extensions . 95

6.12.1. Color Spaces . 95

6.12.2. Adding Device-Independent Color Spaces . 96

6.12.3. Querying Color Space Format and Prefix . 96

6.12.4. Creating Additional Color Spaces. 96

6.12.5. Parse String Callback. 97

6.12.6. Color Specification Conversion Callback . 97

6.12.7. Function Sets . 99

6.12.8. Adding Function Sets . 99

6.12.9. Creating Additional Function Sets . 99

Chapter 7: Graphics Context Functions . 101

7.1. Manipulating Graphics Context/State . 101

7.2. Using GC Convenience Routines ... 109

7.2.1. Setting the Foreground, Background, Function, or Plane Mask . 109

7.2.2. Setting the Line Attributes and Dashes . 111

7.2.3. Setting the Fill Style and Fill Rule . 112

7.2.4. Setting the Fill Tile and Stipple. 112

7.2.5. Setting the Current Font . 114

7.2.6. Setting the Clip Region... 115

7.2.7. Setting the Arc Mode, Subwindow Mode, and Graphics Exposure . 116

Chapter 8: Graphics Functions. 118

8.1. Clearing Areas . 118

8.2. Copying Areas . 119

8.3. Drawing Points, Lines, Rectangles, and Arcs. 120

8.3.1. Drawing Single and Multiple Points. 121

8.3.2. Drawing Single and Multiple Lines. 122

8.3.3. Drawing Single and Multiple Rectangles . 123

8.3.4. Drawing Single and Multiple Arcs . 124

8.4. Filling Areas . 126

8.4.1. Filling Single and Multiple Rectangles. 126

8.4.2. Filling a Single Polygon 127

8.4.3. Filling Single and Multiple Arcs . 128

8.5. Font Metrics. 129

8.5.1. Loading and Freeing Fonts . 132

8.5.2. Obtaining and Freeing Font Names and Information . 134

8.5.3. Computing Character String Sizes . 135

8.5.4. Computing Logical Extents. 136

8.5.5. Querying Character String Sizes... 137

8.6. Drawing Text... 138

8.6.1. Drawing Complex Text . 139

8.6.2. Drawing Text Characters . 140

8.6.3. Drawing Image Text Characters . 141

v

8.7. Transferring Images between Client and Server. 142

Chapter 9: Window and Session Manager Functions . 147

9.1. Changing the Parent of a Window . 147

9.2. Controlling the Lifetime of a Window . 148

9.3. Managing Installed Colormaps . 149

9.4. Setting and Retrieving the Font Search Path . 150

9.5. Server Grabbing. 151

9.6. Killing Clients. 151

9.7. Screen Saver Control . 152

9.8. Controlling Host Access . 153

9.8.1. Adding, Getting, or Removing Hosts .. 154

9.8.2. Changing, Enabling, or Disabling Access Control . 156

Chapter 10: Events. 157

10.1. Event Types . 157

10.2. Event Structures . 158

10.3. Event Masks .. 159

10.4. Event Processing Overview . 160

10.5. Keyboard and Pointer Events . 162

10.5.1. Pointer Button Events . 162

10.5.2. Keyboard and Pointer Events . 163

10.6. Window Entry/Exit Events . 165

10.6.1. Normal Entry/Exit Events . 166

10.6.2. Grab and Ungrab Entry/Exit Events . 167

10.7. Input Focus Events . 168

10.7.1. Normal Focus Events and Focus Events While Grabbed . 169

10.7.2. Focus Events Generated by Grabs . 171

10.8. Key Map State Notification Events .. 171

10.9. Exposure Events 172

10.9.1. Expose Events. 172

10.9.2. GraphicsExpose and NoExpose Events . 173

10.10. Window State Change Events. 174

10.10.1. CirculateNotify Events . 174

10.10.2. ConfigureNotify Events. 175

10.10.3. CreateNotify Events . 175

10.10.4. DestroyNotify Events. 176

10.10.5. GravityNotify Events .. 177

10.10.6. MapNotify Events .. 177

10.10.7. MappingNotify Events . 178

10.10.8. ReparentNotify Events . 178

10.10.9. UnmapNotify Events. 179

10.10.10. VisibilityNotify Events. 179

10.11. Structure Control Events . 180

vi

10.11.1. CirculateRequest Events. 180

10.11.2. ConfigureRequest Events . 181

10.11.3. MapRequest Events. 181

10.11.4. ResizeRequest Events . 182

10.12. Colormap State Change Events. 182

10.13. Client Communication Events. 183

10.13.1. ClientMessage Events . 183

10.13.2. PropertyNotify Events. 184

10.13.3. SelectionClear Events . 184

10.13.4. SelectionRequest Events . 185

10.13.5. SelectionNotify Events. 185

Chapter 11: Event Handling Functions . 187

11.1. Selecting Events. 187

11.2. Handling the Output Buffer . 188

11.3. Event Queue Management . 188

11.4. Manipulating the Event Queue . 189

11.4.1. Returning the Next Event . 189

11.4.2. Selecting Events Using a Predicate Procedure. 190

11.4.3. Selecting Events Using a Window or Event Mask . 191

11.5. Putting an Event Back into the Queue. 193

11.6. Sending Events to Other Applications. 194

11.7. Getting Pointer Motion History . 195

11.8. Handling Protocol Errors . 195

11.8.1. Enabling or Disabling Synchronization . 196

11.8.2. Using the Default Error Handlers . 196

Chapter 12: Input Device Functions . 201

12.1. Pointer Grabbing. 201

12.2. Keyboard Grabbing. 205

12.3. Resuming Event Processing. 208

12.4. Moving the Pointer . 210

12.5. Controlling Input Focus . 211

12.6. Keyboard and Pointer Settings . 212

12.7. Keyboard Encoding . 216

Chapter 13: Locales and Internationalized Text Functions . 222

13.1. X Locale Management .. 222

13.2. Locale and Modifier Dependencies. 224

13.3. Creating and Freeing a Font Set . 225

13.4. Obtaining Font Set Metrics. 228

13.5. Drawing Text Using Font Sets . 233

13.6. Input Method Overview . 235

13.6.1. Input Method Architecture. 237

13.6.2. Input Contexts. 238

vii

13.6.3. Getting Keyboard Input . 238

13.6.4. Focus Management . 239

13.6.5. Geometry Management . 239

13.6.6. Event Filtering . 240

13.6.7. Callbacks. 240

13.7. Variable Argument Lists . 240

13.8. Input Method Functions . 241

13.9. Input Context Functions. 243

13.10. XIC Value Arguments . 246

13.10.1. Input Style. 247

13.10.2. Client Window . 247

13.10.3. Focus Window . 248

13.10.4. Resource Name and Class . 248

13.10.5. Geometry Callback. 248

13.10.6. Filter Events . 248

13.10.7. Preedit and Status Attribute . 248

13.10.7.1. Area. 249

13.10.7.2. Area Needed . 249

13.10.7.3. Spot Location . 249

13.10.7.4. Colormap. 249

13.10.7.5. Foreground and Background . 250

13.10.7.6. Background Pixmap . 250

13.10.7.7. FontSet . 250

13.10.7.8. Line Spacing . 250

13.10.7.9. Cursor . 250

13.10.7.10. Preedit and Status Callbacks . 250

13.11. Callback Semantics . 251

13.11.1. Geometry Callback. 251

13.11.2. Preedit State Callbacks. 252

13.11.3. PreeditDraw Callback . 252

13.11.4. PreeditCaretCallback . 254

13.11.5. Status Callbacks . 255

13.12. Event Filtering . 256

13.13. Getting Keyboard Input . 257

13.14. Input Method Conventions. 258

13.14.1. Client Conventions. 258

13.14.2. Synchronization Conventions. 258

13.15. String Constants . 259

Chapter 14: Inter-Client Communication Functions . 260

14.1. Client to Window Manager Communication . 261

14.1.1. Manipulating Top-Level Windows . 261

14.1.2. Converting String Lists . 263

viii

14.1.3. Setting and Reading Text Properties. 266

14.1.4. Setting and Reading the WM_NAME Property . 267

14.1.5. Setting and Reading the WM_ICON_NAME Property . 269

14.1.6. Setting and Reading the WM_HINTS Property . 270

14.1.7. Setting and Reading the WM_NORMAL_HINTS Property. 272

14.1.8. Setting and Reading the WM_CLASS Property . 275

14.1.9. Setting and Reading the WM_TRANSIENT_FOR Property . 276

14.1.10. Setting and Reading the WM_PROTOCOLS Property . 277

14.1.11. Setting and Reading the WM_COLORMAP_WINDOWS Property . 278

14.1.12. Setting and Reading the WM_ICON_SIZE Property . 279

14.1.13. Using Window Manager Convenience Functions . 280

14.2. Client to Session Manager Communication . 282

14.2.1. Setting and Reading the WM_COMMAND Property . 282

14.2.2. Setting and Reading the WM_CLIENT_MACHINE Property . 283

14.3. Standard Colormaps . 284

14.3.1. Standard Colormap Properties and Atoms . 286

14.3.2. Setting and Obtaining Standard Colormaps . 286

Chapter 15: Resource Manager Functions ... 289

15.1. Resource File Syntax . 290

15.2. Resource Manager Matching Rules . 291

15.3. Quarks. 291

15.4. Creating and Storing Databases . 293

15.5. Merging Resource Databases. 296

15.6. Looking Up Resources . 297

15.7. Storing Into a Resource Database. 299

15.8. Enumerating Database Entries . 300

15.9. Parsing Command Line Options . 301

Chapter 16: Application Utility Functions . 304

16.1. Keyboard Utility Functions. 304

16.1.1. Keysym Classification Macros... 305

16.2. Latin-1 Keyboard Event Functions . 306

16.3. Allocating Permanent Storage. 307

16.4. Parsing the Window Geometry . 308

16.5. Manipulating Regions . 309

16.5.1. Creating, Copying, or Destroying Regions . 309

16.5.2. Moving or Shrinking Regions. 310

16.5.3. Computing with Regions . 310

16.5.4. Determining if Regions Are Empty or Equal . 311

16.5.5. Locating a Point or a Rectangle in a Region . 312

16.6. Using Cut Buffers. 312

16.7. Determining the Appropriate Visual Type . 314

16.8. Manipulating Images. 315

IX

16.9. Manipulating Bitmaps. 318

16.10. Using the Context Manager. 320

Appendix A: Xlib Functions and Protocol Requests . 323

Appendix B: X Font Cursors. 335

Appendix C: Extensions . 336

Appendix D: Compatibility Functions . 354

Glossary . 364

Index . 377

x

Chapter 1

Introduction to Xlib

The X Window System is a network-transparent window system that was designed at MIT. X
display servers run on computers with cither monochrome or color bitmap display hardware.
The server distributes user input to and accepts output requests from various client programs
located either on the same machine or elsewhere in the network. Xlib is a C subroutine library
that application programs (clients) use to interface with the window system by means of a
stream connection. Although a client usually runs on the same machine as the X server it is
talking to, this need not be the case.

Xlib - C Language X Interface is a reference guide to the low-level C language interface to the
X Window System protocol. It is neither a tutorial nor a user’s guide to programming the X
Window System. Rather, it provides a detailed description of each function in the library as
well as a discussion of the related background information. Xlib - C Language X Interface
assumes a basic understanding of a graphics window system and of the C programming
language. Other higher-level abstractions (for example, those provided by the toolkits for X)
are built on top of the Xlib library. For further information atx>ut these higher-level libraries,
see the appropriate toolkit documentation. The X Window System Protocol provides the
definitive word on the behavior of X. Although additional information appears here, the proto¬
col document is the ruling document.

To provide an introduction to X programming, this chapter discusses:

• Overview of the X Window System

• Errors

• Standard header files

• Naming and argument conventions

• Programming considerations

• Formatting conventions

1.1. Overview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to
other window systems have different meanings in X. You may find it helpful to refer to the
glossary, which is located at the end of the book.

The X Window System supports one or more screens containing overlapping windows or
subwindows. A screen is a physical monitor and hardware, which can be either color, grays¬
cale, or monochrome. There can be multiple screens for each display or workstation. A single
X server can provide display services for any number of screens. A set of screens for a single
user with one keyboard and one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each hierarchy
is a root window, which covers each of the display screens. Each root window is partially or
completely covered by child windows. All windows, except for root windows, have parents.
There is usually at least one window for each application program. Child windows may in
turn have their own children. In this way, an application program can create an arbitrarily
deep tree on each screen. X provides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child window can
extend beyond the boundaries of the parent, but all output to a window is clipped by its parent.
If several children of a window have overlapping locations, one of the children is considered to
be on top of or raised over the others thus obscuring them. Output to areas covered by other

1

Xlib - C Library Xll, Release 5

windows is suppressed by the window system unless the window has backing store. If a win¬
dow is obscured by a second window, the second window obscures only those ancestors of the
second window, which are also ancestors of the first window.

A window has a border zero or more pixels in width, which can be any pattern (pixmap) or
solid color you like. A window usually but not always has a background pattern, which will
be repainted by the window system when uncovered. Child windows obscure their parents,
and graphic operations in the parent window usually are clipped by the children.

Each window and pixmap has its own coordinate system. The coordinate system has the X
axis horizontal and the Y axis vertical, with the origin [0, 0] at the upper left. Coordinates are
integral, in terms of pixels, and coincide with pixel centers. For a window, the origin is inside
the border at the inside upper left.

X does not guarantee to preserve the contents of windows. When part or all of a window is
hidden and then brought back onto the screen, its contents may be lost. The server then sends
the client program an Expose event to notify it that part or all of the window needs to be
repainted. Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics func¬
tions interchangeably with windows and arc used in vanous graphics operations to define pat¬
terns or tiles. Windows and pixmaps together arc referred to as drawables.

Most of the functions in Xlib just add requests to an output buffer. These requests later exe¬
cute asynchronously on the X server. Functions that return values of information stored in the
server do not return (that is, they block) until an explicit reply is received or an error occurs.
You can provide an error handler, which will be called when the error is reported.

If a client does not want a request to execute asynchronously, it can follow the request with a
call to XSync, which blocks until all previously buffered asynchronous events have been sent
and acted on. As an important side effect, the output buffer in Xlib is always flushed by a call
to any function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource ID, which allows you to refer to objects
stored on the X server. These can be of type Window, Font, Pixmap, Colormap, Cursor,
and GContext, as defined in the file <X11/X.h>. These resources are created by requests and
are destroyed (or freed) by requests or when connections arc closed. Most of these resources
are potentially sharable between applications, and in fact, windows are manipulated explicitly
by window manager programs. Fonts and cursors are shared automatically across multiple
screens. Fonts are loaded and unloaded as needed and are shared by multiple clients. Fonts
are often cached in the server. Xlib provides no support for sharing graphics contexts between
applications.

Client programs are informed of events. Events may cither be side effects of a request (for
example, restacking windows generates Expose events) or completely asynchronous (for exam¬
ple, from the keyboard). A client program asks to be informed of events. Because other
applications can send events to your application, programs must be prepared to handle (or
ignore) events of all types.

Input events (for example, a key pressed or the pointer moved) arrive asynchronously from the
server and are queued until they are requested by an explicit call (for example, XNextEvent or
XWindowEvent). In addition, some library functions (for example, XRaiseWindow) gen¬
erate Expose and ConfigureRequest events. These events also arrive asynchronously, but the
client may wish to explicitly wait for them by calling XSync after calling a function that can
cause the server to generate events.

1.2. Errors

Some functions return Status, an integer error indication. If the function fails, it returns a
zero. If the function returns a status of zero, it has not updated the return arguments. Because
C does not provide multiple return values, many functions must return their results by writing

2

Xlib - C Library XI1, Release 5

into client-passed storage. By default, errors arc handled cither by a standard library function
or by one that you provide. Functions that return pointers to strings return NULL pointers if
the string does not exist.

The X server reports protocol errors at the time that it detects them. If more than one error
could be generated for a given request, the server can report any of them.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later than they actually occur. For debugging purposes,
however, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1).
When synchronization is enabled, errors are reported as they arc generated.

When Xlib detects an error, it calls an error handler, which your program can provide. If you
do not provide an error handler, the error is printed, and your program terminates.

13. Standard Header Files

The following include files are part of the Xlib standard.

<X11/Xlib.h>

This is the main header file for Xlib. The majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor symbol
XlibSpecificationRelease. This symbol is defined to have the “5” in this release of the
standard. (Earlier releases of Xlib did not have this symbol.)

<X11/X.h>

This file declares types and constants for the X protocol that are to be used by applica¬
tions. It is included automatically from <X11/Xlib.h>, so application code should never
need to reference this file directly.

<X11/Xcms.h>

This file contains symbols for much of the color management facilities described in
chapter 6. All functions, types, and symbols with the prefix "Xcms”, plus the Color
Conversion Contexts macros, are declared in this file. < X11/Xlib.h > must be included
before including this file.

<X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communica¬
tion and application utility functions, described in chapters 14 and 16. <X11/Xlib.h>
must be included before including this file.

<X11/Xresource.h >

This file declares all functions, types, and symbols for the resource manager facilities,
described in chapter 15. <X 11/Xlib.h> must be included before including this file.

<Xll/Xatom.h>

This file declares all predefined atoms, symbols with prefix “XA_”.

<Xll/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, listed in appendix B.
All symbols have the prefix “XC_”.

< XI 1/keysymdef.h >

This file declares all standard KeySym values, symbols with prefix “XK_”. The
KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each
group. The preprocessor symbol must be defined prior to inclusion of the file to obtain
the associated values. The preprocessor symbols are: XK_MISCELLANY,
XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, XK KATAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK TECHNICAL, XK_SPECIAL,
XK PUBLISHING, XK APL, and XK HEBREW.

3

Xlib - C Library XI1, Release 5

<Xll/keysym.h>

This file defines the preprocessor symbols XK_MISCELLANY, XK_LATIN1,
XK_LATIN2, XK_LATIN3, XK_LATIN4, and XK_GREEK, and then includes
<Xll/keysymdef.h>.

< XI 1/Xlibint.h >

This file declares all the functions, types, and symbols used for extensions, described in
appendix C. This file automatically includes <X11/Xlib.h>.

<Xll/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It is included automatically from <X1 i/Xlibint.h>, so application and exten¬
sion code should never need to reference this fiic directly.

< XI 1/Xprotostr.h >

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. It is included automatically from <Xll/Xproto.h>, so application and exten¬
sion code should never need to reference this file directly.

<X11/X10.h>

This file declares all the functions, types, and symbols used for the X10 compatibility
functions, described in appendix D.

1.4. Generic Values and Types

The following symbols are defined by Xlib and used throughout the manual:

• Xlib defines the type Bool and the boolean values True and False.

• None is the universal null resource ID or atom.

• The type XID is used for generic resource IDs.

• The type XPointer is defined to be “char *” and is used as a generic opaque pointer to
data.

1.5. Naming and Argument Conventions within Xlib

Xlib follows a number of conventions for the naming and syntax of the functions. Given that
you remember what information the function requires, these conventions are intended to make
the syntax of the functions more predictable.

The major naming conventions are:

• To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leaves lowercase for variables and all uppercase for user macros, as
per existing convention.

• All Xlib functions begin with a capital X.

• The beginnings of all function names and symbols arc capitalized.

• All user-visible data structures begin with a capital X. More generally, anything that a
user might dereference begins with a capital X.

• Macros and other symbols do not begin with a capital X. To distinguish them from all
user symbols, each word in the macro is capitalized.

• All elements of or variables in a data structure are in lowercase. Compound words,
where needed, are constructed with underscores (_).

• The display argument, where used, is always first in the argument list.

• All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

4

Xlib - C Library XI1, Release 5

• When a graphics context is present together with another type of resource (most com¬
monly, a drawable), the graphics context occurs in the argument list after the other
resource. Drawables outrank all other resources.

• Source arguments always precede the destination arguments in the argument list.

• The x argument always precedes the y argument in the argument list.

• The width argument always precedes the height argument in the argument list.

• Where the x, y, width, and height arguments arc used together, the x and y arguments
always precede the width and height arguments.

• Where a mask is accompanied with a structure, the mask always precedes the pointer to
the structure in the argument list.

1.6. Programming Considerations

The major programming considerations are:

• Coordinates and sizes in X are actually 16-bit quantities. This decision was taken to
minimize the bandwidth required for a given level of performance. Coordinates usually
are declared as an “int” in the interface. Values larger than 16 bits are truncated
silently. Sizes (width and height) are declared as unsigned quantities.

• Keyboards are the greatest variable between different manufacturers’ workstations. If
you want your program to be portable, you should be particularly conservative here.

• Many display systems have limited amounts of off-screen memory. If you can, you
should minimize use of pixmaps and backing store.

• The user should have control of his screen real estate. Therefore, you should write your
applications to react to window management rather than presume control of the entire
screen. What you do inside of your top-level window, however, is up to your applica¬
tion. For further information, see chapter 14 and the Inter-Client Communication Con¬
ventions Manual.

1.7. Character Sets and Encodings

Some of the Xlib functions make reference to specific character sets and character encodings.
The following ones are the most common:

X Portable Character Set

A basic set of 97 characters which arc assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a..z A..Z 0..9

!"#$%&*0*+,-./:;<=>?@NV 0 T
<space>, <tab>, and <newline>

This is the left/lower half of the graphic character set of IS08859-1 plus <space>, <tab>,
and <newline>. It is also the set of graphic characters in 7-bit ASCII plus the same three
control characters. The actual encoding of these characters on the host is system depen¬
dent.

Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by
Xlib on the host. If a string is said to be in the Host Portable Character Encoding, then it
only contains characters from the X Portable Character Set, in the host encoding.

Latin-1

The coded character set defined by the IS08859-1 standard.

5

Xlib - C Library XI1, Release 5

STRING encoding

Latin-1, plus tab and newline.

POSIX Portable Filename Character Set

The set of 65 characters which can be used in naming files on a POSIX-compliant host
that are correctly processed in all locales. The set is:

a..z A..Z 0..9

1.8. Formatting Conventions

Xlib - C Language X Interface uses the following conventions:

• Global symbols are printed in this special font. These can be either function names,
symbols defined in include files, or structure names. Arguments are printed in italics.

• Each function is introduced by a general discussion that distinguishes it from other func¬
tions. The function declaration itself follows, and each argument is specifically
explained. Although ANSI C function prototype syntax is not used, Xlib header files
normally declare functions using function prototypes in ANSI C environments. General
discussion of the function, if any is required, follows the arguments. Where applicable,
the last paragraph of the explanation lists the possible Xlib error codes that the function
can generate. For a complete discussion of the Xlib error codes, see section 11.8.2.

• To eliminate any ambiguity between those arguments that you pass and those that a
function returns to you, the explanations for all arguments that you pass start with the
word specifies or, in the case of multiple arguments, the word specify. The explanations
for all arguments that are returned to you start with the word returns or, in the case of
multiple arguments, the word return. The explanations for all arguments that you can
pass and are returned start with the words specifies and returns.

® Any pointer to a structure that is used to return a value is designated as such by the
jeturn suffix as part of its name. All other pointers passed to these functions are used
for reading only. A few arguments use pointers to structures that are used for both input
and output and are indicated by using the _in_out suffix.

6

Xlib - C Library XI1, Release 5

Chapter 2

Display Functions

Before your program can use a display, you must establish a connection to the X server. Once
you have established a connection, you then can use the Xlib macros and functions discussed
in this chapter to return information about the display. This chapter discusses how to:

• Open (connect to) the display

• Obtain information about the display, image format, and screen

• Free client-created data

• Close (disconnect from) a display

The chapter concludes with a general discussion of what occurs when the connection to the X
server is closed.

2.1. Opening the Display

To open a connection to the X server that controls a display, use XOpenDisplay.

Display *XOpenDisplay (display_name)
char * display _name\

displayjiame Specifies the hardware display name, which determines the display and com¬
munications domain to be used. On a POSIX-conformant system, if the
display_name is NULL, it defaults to the value of the DISPLAY environment
variable.

The encoding and interpretation of the display name is implementation dependent. Strings in
the Host Portable Character Encoding arc supported; support for other characters is implemen¬
tation dependent. On POSIX-conformant systems, the display name or DISPLAY environment
variable can be a string in the format:

hostname: number. screen_number

hostname Specifies the name of the host machine on which the display is physically
attached. You follow the hostname with cither a single colon (:) or a double
colon (::).

number Specifies the number of the display server on that host machine. You may
optionally follow this display number with a period (.). A single CPU can
have more than one display. Multiple displays are usually numbered starting
with zero.

screen jxumber Specifies the screen to be used on that server. Multiple screens can be con¬
trolled by a single X server. The scrccn_number sets an internal variable that
can be accessed by using the DefaultScreen macro or the XDefaultScreen
function if you arc using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named “dual¬
headed”:

dual-headed:0.1

The XOpenDisplay function returns a Display structure that serves as the connection to the X
server and that contains all the information about that X server. XOpenDisplay connects your
application to the X server through TCP or DECnct communications protocols, or through

7

Xlib - C Library XI1, Release 5

some local inter-process communication protocol. If the hostname is a host machine name and
a single colon (:) separates the hostname and display number, XOpenDisplay connects using
TCP streams. If the hostname is not specified, Xlib uses whatever it believes is the fastest
transport. If the hostname is a host machine name and a double colon (::) separates the host-
name and display number, XOpenDisplay connects using DECnet. A single X server can
support any or all of these transport mechanisms simultaneously. A particular Xlib implemen¬
tation can support many more of these transport mechanisms.

If successful, XOpenDisplay returns a pointer to a Display structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call
to XOpenDisplay, all of the screens in the display can be used by the client. The screen
number specified in the display_name argument is returned by the DefaultScreen macro (or
the XDefaultScreen function). You can access elements of the Display and Screen struc¬
tures only by using the information macros or functions. For information about using macros
and functions to obtain information from the Display structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).

2,2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that return
data from the Display structure. The macros are used for C programming, and their
corresponding function equivalents are. for other language bindings. This section discusses the:

• Display macros

• Image format macros

• Screen macros

All other members of the Display structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications must never directly modify or inspect these
private members of the Display structure.

Note

The XDisplayWidth, XDisplayHeight, XDisplayCells, XDisplayPlanes,
XDisplayWidthMM, and XDisplayHeightMM functions in the next sections are
misnamed. These functions really should be named Screen whatever and XScrcen-
whatever, not Display whatever or XDisplay whatever. Our apologies for the result¬
ing confusion.

2.2.1. Display Macros

Applications should not directly modify any part of the Display and Screen structures. The
members should be considered read-only, although they may change as the result of other
operations on the display.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they boih can return.

AllPlanes

unsigned long XAllPlanesO

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application.
These pixel values are for permanently allocated entries in the default colormap. The actual
RGB (red, green, and blue) values are settable on some screens and, in any case, may not

8

Xlib - C Library XI1, Release 5

actually be black or white. The names arc intended to convey the expected relative intensity of
the colors.

BlackPixel (display, screen jiumber)

unsigned long XBlackPixel(dwp/ay, screen jiumber)
Display * display,
int screen jxumber\

display Specifies the connection to the X server.

screenjnumber Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

Wh\teP\xQ\(display, screen jiumber)

unsigned long XWh\ie?ixc\(display, screen jiumber)
Display * display,
int screen jiumber',

display Specifies line connection to the X server.

screen jiumber Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

CormectionNumber(afap/av)

int XConnectionNumberfd/.sp/ay)
Display * display,

display Specifies the connection to the X server.

Both return a connection number for the specified display. On a POSIX-conformant system,
this is the file descriptor of the connection.

DcfaultColormap(ii/i’p/ay, screen jiumber)

Colormap XDcfaultColormap(c//.v/;/u_y, screen jiumber)
Display * display,
int screen jiumber',

display Specifies the connection to the X server.

screen jiumber Specifies the appropriate screen number on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine allo¬
cations of color should be made out of this colormap.

DefaultDcpth^fsp/ay, screen_number)

int XDefaultDepth(display, screenjnumber)
Display * display,
int screen_number\

display Specifies the connection to the X server.

screen jiumber Specifies the appropriate screen number on the host server.

9

Xlib - C Library XI1, Release 5

Both return the depth (number of planes) of the default root window for the specified screen.
Other depths may also be supported on this screen (see XMatchVisuallnfo).

To determine the number of depths that are available on a given screen, use XListDepths.

int *XLisiDep[hs(display, screen jumber, count_return)
Display ^display,
int screen jiumber,
int * countjeturn',

display Specifies the connection to the X server.

screen jumber Specifies the appropriate screen number on the host server.

count jeturn Returns the number of depths.

The XListDepths function returns the array of depths that are available on the specified
screen. If the specified screen_number is valid and sufficient memory for the array can be
allocated, XListDepths sets count_retum to the number of available depths. Otherwise, it
does not set count_retum and returns NULL. To release the memory allocated for the array of
depths, use XFree.

DefaultGC {display, screen jumber)

GC XDefault GC(display, screen jumber)
Display * display,
int screen jumber',

display Specifies the connection to the X server.

screen jumber Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root window of the specified screen. This GC
is created for the convenience of simple applications and contains the default GC components
with the foreground and background pixel values initialized to the black and white pixels for
the screen, respectively. You can modify its contents freely because it is not used in any Xlib
function. This GC should never be freed.

DefaultRootWindowfdfs'p/ay)

Window XDcfaultRootWindow(display)
Display * display,

display Specifies the connection to the X server.

Both return the root window for the default screen.

DefaultScreenOfDisplay(J/sp/tfy)

Screen *XDefaultScreen01Display{display)
Display * display,

display Specifies the connection to the X server.

Both return a pointer to the default screen.

10

Xlib - C Library XI1, Release 5

ScrQQnOfD\sp\ay (display, screenjiumber)

Screen *XScreenOfDisplay{display, screenjiumber)
Display * display,
int screenjiumber;

display Specifies the connection to the X server.

screenjiumber Specifies the appropriate screen number on the host sewer.

Both return a pointer to the indicated screen.

DefaultScreen(dfs'p/<2y)

int XDefaultScreen(c/«p/<3y)
Display * display,

display Specifies the connection to the X server.

Both return the default screen number referenced by the XOpenDisplay function. This macro
or function should be used to retrieve the screen number in applications that will use only a
single screen.

DefaultVisuaK^p/ay, screenjiumber)

Visual *XDcfaultVisual(d/5p/<2y, screenjiumber)
Display * display,
int screenjiumber;

display Specifies the connection to the X server.

screenjiumber Specifies the appropriate screen number on the host server.

Both return the default visual type for the specified screen. For further information about
visual types, see section 3.1.

DisplayCells(display, screenjiumber)

int XDisplayCells{display, screenjiumber)
Display * display,
int screenjiumber;

display Specifies the connection to the X server.

screenjiumber Specifies the appropriate screen number on the host server.

Both return the number of entries in the default colormap.

DisplayPlanes(<ff?p/<3y, screenjiumber)

int XDisplayPlanes(^/5p/ay, screenjiumber)
Display * display,
int screenjiumber-,

display Specifies the connection to the X server.

screenjiumber Specifies the appropriate screen number on the host server.

Both return the depth of the root window of the specified screen. For an explanation of depth,
see the glossary.

11

Xlib - C Library XI1, Release 5

DisplayString(<i/5/?/ay)

char *XDisplayString(display)
Display * display,

display Specifies the connection to the X server.

Both return the string that was passed to XOpenDisplay when the current display was opened.
On POSIX-conformant systems, if the passed string was NULL, these return the value of the
DISPLAY environment variable when the current display was opened. These are useful to
applications that invoice the fork system call and want to open a new connection to the same
display from the child process as well as for printing error messages.

long XMaxRequestSize(dwp/(3y)
Display * display,

display Specifies the connection to the X server.

XMaxRequestSize returns the maximum request size (in 4-byte units) supported by the server.
Single protocol requests to the server can be no longer than this size. The protocol guarantees
the size to be no smaller than 4096 units (16384 bytes). Xlib automatically breaks data up into
multiple protocol requests as necessary for the following functions: XDrawPoints,
XDrawRectangles, XDrawSegments, XFillArcs, XFillRectangies, and XPutlmage.

LastKnownRequestProcessed (display)

unsigned long XLastKnownRequcstProcesscdf^Ap/ay)
Display * display,

display Specifies the connection to the X server.

Both extract the full serial number of the last request known by Xlib to have been processed
by the X server. Xlib automatically sets this number when replies, events, and errors are
received.

Ne xtRequest (display)

unsigned long XNextRequcst(d/.vp/<jy)
Display * display,

display Specifies the connection to the X server.

Both extract the full serial number that is to be used for the next request. Serial numbers are
maintained separately for each display connection.

ProtocolVersion (display)

int XProtocolVersion(d/sp/ay)
Display * display,

display Specifies the connection to the X server.

Both return the major version number (11) of the X protocol associated with the connected
display.

12

Xlib - C Library XI1, Release 5

ProtocolRevision(d/.yp/tfy)

int XProtoco\Re\ision(display)
Display * display,

display Specifies the connection to the X server.

Both return the minor protocol revision number of the X server.

QLeng\h(display)

int XQLQng\h(display)
Display * display,

display Specifies the connection to the X server.

Both return the length of the event queue for the connected display. Note that there may be
more events that have not been read into the queue yet (see XEventsQueued).

Root Window (display, screenjiumber)

Window XRoolWmdow (display, screenjiumber)
Display * display,
int screenjiumber',

display Specifics the connection to the X server.

screenjiumber Specifies the appropriate screen number on the host server.

Both return the root window. These are useful with functions that need a drawable of a partic¬
ular screen and for creating top-level windows.

ScreenCountf display)

int XScreenCount(d/5/?/(3y)
Display * display,

display Specifies the connection to the X server.

Both return the number of available screens.

ServerVendor(di splay)

char *XServ'erVendor(dfyp/ay)
Display * display,

display Specifies the connection to the X server.

Both return a pointer to a null-terminated string that provides some identification of the owner
of the X server implementation. If the data returned by the server is in the Latin Portable
Character Encoding, then the string is in the Host Portable Character Encoding. Otherwise, the
contents of the string are implementation dependent.

VendorRelease(d/sp/ay)

int XVendorRelease(cfop/ay)
Display * display.

13

Xlib - C Library Xll, Release 5

display Specifies the connection to the X server.

Both return a number related to a vendor’s release of the X server.

2.2.2. Image Format Functions and Macros

Applications are required to present data to the.X server in a format that the server demands.
To help simplify applications, most of the work required to convert the data is provided by
Xlib (see sections 8.7 and 16.8).

The XPixmapFormatValues structure provides an interface to the pixmap format information
that is returned at the time of a connection setup. It contains:

typedef struct (
int depth;
int bits_per_pixel;
int scanline_pad;

} XPixmapFormatValues;

To obtain the pixmap format information for a given display, use XListPixmapFormats.

XPixmapFormatValues * XListPixmapFormats (display, countjeturn)
Display * display;
int * countjeturn;

display Specifies the connection to the X server.

count jeturn Returns the number of pixmap formats that are supported by the display.

The XListPixmapFormats function returns an array of XPixmapFormatValues structures
that describe the types of Z format images supported by the specified display. If insufficient
memory is available, XListPixmapFormats returns NULL. To free the allocated storage for
the XPixmapFormatValues structures, use XFree.

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both return for the specified server and screen.
These are often used by toolkits as well as by simple applications.

ImageByteOrder(cfcy/?/<zy)

int XImageByteOrder(iiwp/ay)
Display * display;

display Specifies the connection to the X server.

Both specify the required byte order for images for each scanline unit in XY format (bitmap)
or for each pixel value in Z format. The macro or function can return either LSBFirst or
MSBFirst.

BitmapUnit(<&'p/<xy)

int XBiunapUnit((7wp/ay)
Display * display;

display Specifies the connection to the X server.

Both return the size of a bitmap’s scanlinc unit in bits. The scanline is calculated in multiples
of this value.

14

Xlib - C Library XI1, Release 5

BitmapBitOrderfd/sp/ay)

int XBiimapBitOrder(d/5p/ay)
Display * display,

display Specifies the connection to the X server.

Within each bitmap unit, the left-most bit in the bitmap as displayed on the screen is either the
least-significant or most-significant bit in the unit. This macro or function can return
LSBFirst or MSBFirst.

B itmapPad (display)

int XBitmapPad{display)
Display * display,

display Specifies the connection to the X server.

Each scanline must be padded to a multiple of bits returned by this macro or function.

DisplayHeight^/sp/ay, screenjiumber)

int XDisplayHeight((ii5p/ay, screen_number)
Display * display,
int screen_number\

display Specifies the connection to the X server.

screen_number Specifies the appropriate screen number on the host server.

Both return an integer that describes the height of the screen in pixels.

DisplayHeightMM (display, screen_number)

int XDisplayHeightMM(display, screen jnumber)
Display * display,
int screenjiumber',

display Specifies the connection to the X server.

screenjiumber Specifies the appropriate screen number on the host server.

Both return the height of the specified screen in millimeters.

DisplayWid\h(display, screen_number)

int XDisplayWidth(display, screenjnumber)
Display * display,
int screenjiumber',

display Specifies the connection to the X server.

screenjiumber Specifies the appropriate screen number on the host server.

Both return the width of the screen in pixels.

15

Xlib - C Library XI1, Release 5

DisplayWidlhMM(display, screenjiumber)

int XDisplayWidthMM(^/sp/<xy, screenjxumber)
Display * display,
int screenjxumber',

display Specifies the connection to the X server.

screenjxumber Specifies the appropriate screen number on the host server.

Both return the width of the specified screen in millimeters.

2.2.3. Screen Information Macros

The following lists the C language macros, their corresponding function equivalents that are for
other language bindings, and what data they both can return. These macros or functions all
take a pointer to the appropriate screen structure.

BlackPixelOfScreen (screen)

unsigned long XBlackPixelOfScrccn(screen)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the black pixel value of the specified screen.

WhitePixelOfScreen(screen)

unsigned long XWhitePixelOfScrcen(screen)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the white pixel value of the specified screen.

CellsOfScreen (screen)

int XCellsOfScreen(screen)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the number of colormap cells in the default colormap of the specified screen.

DefaultColormapOfScreen (screen)

Colormap XDefaultColormapOfScrcen(screen)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the default colormap of the specified screen.

DcfaultDepthOfScrecn(screen)

int XDefaultDcpthOfScreen(screen)
Screen * screen'.

16

Xlib - C Library XI1, Release 5

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

DefaultGCOfScrecn (screen)

GC XDefaultGCOfScreen(screen)
Screen * screen:

screen Specifics the appropriate Screen structure.

Both return a default graphics context (GC) of the specified screen, which has the same depth
as the root window of the screen. The GC must never be freed.

DefaultVisualOfScreen(screen)

Visual *XDefaultVisualOfScreen(screen)
Screen * screen:

screen Specifies the appropriate Screen structure.

Both return the default visual of the specified screen. For information on visual types, see sec¬
tion 3.1.

DocsB acki ngStorc (screen)

int XDocsBackingStorc(screen)
Screen * screen:

screen Specifies the appropriate Screen structure.

Both return a value indicating whether the screen supports backing stores. The value returned
can be one of WhenMapped, NotUseful, or Always (see section 3.2.4).

DoesSaveUnders(scree/t)

Bool XDoesSaveUnders(screen)
Screen * screen:

screen Specifies the appropriate Screen structure.

Both return a Boolean value indicating whether the screen supports save unders. If True, the
screen supports save unders. If False, the screen docs not support save unders (see section
3.2.5).

DisplayOfScrcen(screen)

Display *XDisplayOfScreen(screen)
Screen * screen:

screen Specifies the appropriate Screen structure.

Both return the display of the specified screen.

int XScreenNumberOfScreen(scrcc/i)
Screen * screen:

17

Xlib - C Library Xll, Release 5

screen Specifies the appropriate Screen structure.

The XScreenNumberOfScreen function returns the screen index number of the specified
screen.

EventMaskOfScreen (screen)

long XEvcntMaskOfScreen(sa-mi)
Screen * screens

screen Specifies the appropriate Screen structure.

Both return the event mask of the root window for the specified screen at connection setup
time.

WidthOfScreen(5creen)

int XWidthOfScreenfscree/i)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in pixels.

HeightOfScreen(.screen)

int XHeightOfScreen(scTeert)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in pixels.

WidthMMOfScrcen^cree/i)

int XWidthMMOfScreen(^creeAj)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the width of the specified screen in millimeters.

HeightMMOfScreen(screen)

int XHeightMMOfScrcenfscree/i)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the height of the specified screen in millimeters.

MaxCmapsOfScreen(screen)

int XMaxCmapsOfScreen(so-mi)
Screen * screen',

screen Specifies the appropriate Screen structure.

IS

Xlib - C Library XI1, Release 5

Both return the maximum number of installed colormaps supported by the specified screen (see
section 9.3).

MinCmapsOfScreen(5creert)

int XMinCmapsOfScreen(5cre^n)
Screen * screen',

screen Specifies the appropriate Screen structure.*

Both return the minimum number of installed colormaps supported by the specified screen (see
section 9.3).

PlanesOfScreen(^creezz)

int XPlanesOfScreen(screen)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the depth of the root window.

RootWindowOfScreen(screen)

Window XRootWindowOfScrecn(screen)
Screen * screen',

screen Specifies the appropriate Screen structure.

Both return the root window of the specified screen.

23. Generating a NoOperation Protocol Request

To execute a NoOperation protocol request, use XNoOp.

XNoOp {display)
Display * display',

display Specifies the connection to the X server.

The XNoOp function sends a NoOperation protocol request to the X server, thereby exercis¬
ing the connection.

2.4. Freeing Client-Created Data

To free in-memory data that was created by an Xlib function, use XFree.

XFrQe(data)
void *data;

data Specifies the data that is to be freed.

The XFree function is a general-purpose Xlib routine that frees the specified data. You must
use it to free any objects that were allocated by Xlib, unless an alternate function is explicitly
specified for the object.

23. Closing the Display

To close a display or disconnect from the X server, use XCloseDisplay.

19

Xlib - C Library XI1, Release 5

XCloseDisplay (display)
Display * display,

display Specifies the connection to the X server.

The XCloseDisplay function closes the connection to the X server for the display specified in
the Display structure and destroys all windows, resource IDs (Window, Font, Pixmap,
Colormap, Cursor, and GContext), or other resources that the client has created on this
display, unless the close-down mode of the resource has been changed (see XSetCloseDown-
Mode). Therefore, these windows, resource IDs, and other resources should never be refer¬
enced again or an error will be generated. Before exiting, you should call XCloseDisplay
explicitly so that any pending errors are reported as XCloseDisplay performs a final XSync
operation.

XCloseDisplay can generate a BadGC error.

Xlib provides a function to permit the resources owned by a client to survive after the client’s
connection is closed. To change a client’s close-down mode, use XSetCIoseDownMode.

XSetCloseDownMode (display, closejnode)
Display * display,
int closejnode;

display Specifies the connection to the X server.

closejnode Specifies the client close-down mode. You can pass DestroyAIl, RetainPer-
manent, or RetainTemporary.

The XSetCloseDownMode defines what will happen to the client’s resources at connection
close. A connection starts in DestroyAIl mode. For information on what happens to the
client’s resources when the closc_mode argument is RetainPermanent or RetainTemporary,
see section 2.6.

XSetCloseDownMode can generate a BadValue error.

2.6. X Server Connection Close Operations

When the X server’s connection to a client is closed cither by an explicit call to
XCloseDisplay or by a process that exits, the X server performs the following automatic
operations:

• It disowns all selections owned by the client (sec XSetSelectionOwner).

• It performs an XUngrabPointer and XUngrubKeyboard if the client has actively
grabbed the pointer or the keyboard.

® It performs an XUngrabServer if the client has grabbed the server.

» It releases all passive grabs made by the client.

® It marks all resources (including colormap entries) allocated by the client cither as per¬
manent or temporary, depending on whether the close-down mode is RetainPermanent
or RetainTemporary. However, this does not prevent other client applications from
explicitly destroying the resources (see XSetCloseDownMode).

When the close-down mode is DestroyAIl, the X server destroys all of a client’s resources as
follows:

® It examines each window in the client’s save-set to determine if it is an inferior (subwin¬
dow) of a window created by the client. (The save-set is a list of other clients’ win¬
dows, which are referred to as save-set windows.) If so, the X server reparents the save-
set window to the closest ancestor so that the save-set window is not an inferior of a
window created by die client. The reparenting leaves unchanged the absolute coordinates
(with respect to the root window) of the upper-left outer comer of die save-set window.

20

Xlib - C Library XI1, Release 5

• It performs a MapWindow request on the save-set window if the save-set window is
unmapped. The X server docs this even if the save-set window was not an inferior of a
window created by the client.

• It destroys all windows created by the client.

• It performs the appropriate free request on each nonwindow resource created by the
client in the server (for example, Font, Pixmap, Cursor, Colormap, and GContext).

• It frees all colors and colormap entries allocated by a client application.

Additional processing occurs when the last connection to the X server closes. An X server
goes through a cycle of having no connections and having some connections. When the last
connection to the X server closes as a result of a connection closing with the close_mode of
DestroyAIl, the X server does the following:

• It resets its state as if it had just been started. The X server begins by destroying all
lingering resources from clients that have terminated in RetainPermanent or Retain-
Temporary mode.

• It deletes all but the predefined atom identifiers.

• It deletes all properties on all root windows (sec section 4.3).

• It resets all device maps and attributes (for example, key click, bell volume, and
acceleration) as well as the access control list.

• It restores the standard root tiles and cursors.

• It restores the default font path.

• It restores the input focus to state PointerRoot.

However, the X server does not reset if you close a connection with a close-down mode set to
RetainPermanent or RetainTemporary.

21

Xlib - C Library XI1, Release 5

Chapter 3

Window Functions

In the X Window System, a window is a rectangular area on the screen that lets you view
graphic output. Client applications can display overlapping and nested windows on one or
more screens that are driven by X servers on one or more machines. Clients who want to
create windows must first connect their program to the X server by calling XOpenDisplay.
This chapter begins with a discussion of visual types and window attributes. The chapter con¬
tinues with a discussion of the Xlib functions you can use to:

• Create windows

• Destroy windows

• Map windows

• Unmap windows

® Configure windows

• Change the stacking order

• Change window attributes

This chapter also identifies the window actions that may generate events.

Note that it is vital that your application conform to the established conventions for communi¬
cating with window managers for it to work well with the various window managers in use
(see section 14.1). Toolkits generally adhere to these conventions for you, relieving you of the
burden. Toolkits also often supersede many functions in this chapter with versions of their
own. Refer to the documentation for the toolkit you are using for more information.

3.1. Visual Types

On some display hardware, it may be possible to deal with color resources in more than one
way. For example, you may be able to deal with a screen of cither 12-bit depth with arbitrary
mapping of pixel to color (pseudo-color) or 24-bit depth with 8 bits of the pixel dedicated to
each of red, green, and blue. These different ways of dealing with the visual aspects of the
screen are called visuals. For each screen of the display, there may be a list of valid visual
types supported at different depths of the screen. Because default windows and visual types
are defined for each screen, most simple applications need not deal with this complexity. Xlib
provides macros and functions that return the default root window, the default depth of the
default root window, and the default visual type (see sections 2.2.1 and 16.7).

Xlib uses an opaque Visual structure that contains information about the possible color map¬
ping. The visual utility functions (see section 16.7) use an XVisuallnfo structure to return
this information to an application. The members of this structure pertinent to this discussion
are class, red_mask, green_mask, bluejnask, bits_pcr_rgb, and colormap_size. The class
member specifies one of the possible visual classes of the screen and can be StaticGray, Sta-
ticCoIor, TrueColor, Grayscale, PseudoColor, or DirectColor.

The following concepts may serve to make the explanation of visual types clearer. The screen
can be color or grayscale, can have a colormap that is writable or read-only, and can also have
a colormap whose indices are decomposed into separate RGB pieces, provided one is not on a
grayscale screen. This leads to the following diagram:

22

Xiib - C Library XI1, Release 5

Color Grayscale
R/O R/W R/O R/W

H-1-h

I Undecomposed I Static I Pseudo I Static I Gray I
I Colormap I Color I Color I Gray I Scale I
+.+.+

I Decomposed I True I Direct I
I Colormap I Color I Color I
+.+.+

Conceptually, as each pixel is read out of video memory for display on the screen, it goes
through a look-up stage by indexing into a colormap. Colormaps can be manipulated arbi¬
trarily on some hardware, in limited ways on other hardware, and not at all on other hardware.
The visual types affect the colormap and the RGB values in the following ways:

• For PseudoColor, a pixel value indexes a colormap to produce independent RGB
values, and the RGB values can be changed dynamically.

• Grayscale is treated the same way as PseudoColor except that the primary that drives
the screen is undefined. Thus, the client should always store the same value for red,
green, and blue in the colormaps.

• For DirectColor, a pixel value is decomposed into separate RGB subfields, and each
subfield separately indexes the colormap for the corresponding value. The RGB values
can be changed dynamically.

• TrueColor is treated the same way as DirectColor except that the colormap has
predefined, read-only RGB values. These RGB values are server-dependent but provide
linear or near-linear ramps in each primary.

• StaticColor is treated the same way as PseudoColor except that the colormap has
predefined, read-only, server-dependent RGB values.

• StaticGray is treated the same way as StaticColor except that the RGB values are
equal for any single pixel value, thus resulting in shades of gray. StaticGray with a
two-entry colormap can be thought of as monochrome.

The rcd_mask, grecnjnask, and blue_mask members are only defined for DirectColor and
TrueColor. Each has one contiguous set of bits with no intersections. The bits_per_rgb
member specifies the log base 2 of the number of distinct color values (individually) of red,
green, and blue. Actual RGB values arc unsigned 16-bit numbers. The colormap_size
member defines the number of available colormap entries in a newly created colormap. For
DirectColor and TrueColor, this is the size of an individual pixel subficld.

To obtain the visual ID from a Visual, use XVisuallDFromVisual.

VisuallD XVisuallDFromVisual (visual)
Visual * visual',

visual Specifies the visual type.

The XVisuallDFromVisual function returns the visual ID for the specified visual type.

3.2. Window Attributes

All InputOutput windows have a border width of zero or more pixels, an optional back¬
ground, an event suppression mask (which suppresses propagation of events from children),
and a property list (see section 4.3). The window border and background can be a solid color
or a pattern, called a tile. All windows except the root have a parent and are clipped by their
parent. If a window is stacked on top of another window, it obscures that other window for
the purpose of input. If a window has a background (almost all do), it obscures the other win¬
dow for purposes of output. Attempts to output to the obscured area do nothing, and no input

23

Xlib - C Library XI1, Release 5

events (for example, pointer motion) are generated for the obscured area.

Windows also have associated property lists (see section 4.3).

Both InputOutput and InputOnly windows have the following common attributes, which are
the only attributes of an InputOnly window:

• win-gravity

• event-mask

• do-not-propagate-mask

• override-redircct

• cursor

If you specify any other attributes for an InputOnly window, a BadMatch error results.

InputOnly windows are used for controlling input events in situations where InputOutput
windows are unnecessary. InputOnly windows are invisible; can only be used to control such
things as cursors, input event generation, and grabbing; and cannot be used in any graphics
requests. Note that InputOnly windows cannot have InputOutput windows as inferiors.

Windows have borders of a programmable width and pattern as well as a background pattern
or tile. Pixel values can be used for solid colors. The background and border pixmaps can be
destroyed immediately after creating the window if no further explicit references to them are to
be made. The pattern can either be relative to the parent or absolute. If ParentRelative, the
parent’s background is used.

When windows are first created, they are not visible (not mapped) on die screen. Any output
to a window that is not visible on the screen and that does not have backing store will be dis¬
carded. An application may wish to create a window long before it is mapped to the screen.
When a window is eventually mapped to the screen (using XMapWindow), the X server gen¬
erates an Expose event for the window if backing store has not been maintained.

A window manager can override your choice of size, border width, and position for a top-level
window. Your program must be prepared to use the actual size and position of the top win¬
dow. It is not acceptable for a client application to resize itself unless in direct response to a
human command to do so. Instead, either your program should use the space given to it, or if
the space is too small for any useful work, your program might ask the user to resize the win¬
dow. The border of your top-level window is considered fair game for window managers.

To set an attribute of a window, set the appropriate member of the XSetWindowAttributes
structure and OR in the corresponding value bitmask in your subsequent calls to XCreateWin-
dow and XChangeWindowAttributes, or use one of the other convenience functions that set
the appropriate attribute. The symbols for the value mask bits and the XSetWindowAttri¬
butes structure are:

/* Window attribute value mask bits */

#define CWBackPixmap (1 L«0)
#define CWBackPixel (1 L«l)
#define CW'BorderPixmap (1 L«2)
#define CWBorderPixel (1L«3)
#define CWBitGravity (1L«4)
#dcfine CWWinGravity (1L«5)
#define CWBackingStore (1L«6)
#define CWBackingPlanes (1L«7)
#define CWBackingPixei (1L«8)
#define CW'OverrideRedirect (1L«9)
#define CWSaveUnder (1L«10)
#define CWEventMask (1 L« 11)
#define CWDontPropagate (1 L« 12)

24

Xlib - C Library XI1, Release 5

#define CWColormap
#define CWCursor

/* Values */

typedef struct {
Pixmap background_pixmap;
unsigned long background_pixcl;
Pixmap bordcr_pixmap;
unsigned long borderjpixcl;
int bit_gravity;
int win_gravity;
int backing__store;
unsigned long backing_planes;
unsigned long backing_pixel;
Bool save_under,
long event_mask;
long do_not_propagate_mask;
Bool override_rcdirect;
Colormap colormap;
Cursor cursor,

} XSetWindowAttributes;

The following lists the defaults for each window attribute and indicates whether the attribute is
applicable to InputOutput and InputOnly windows:

Attribute Default InputOutput InputOnly

background-pixmap None Yes No
background-pixel Undefined Yes No
border-pixmap CopyFromParent Yes No
border-pixel Undefined Yes No
bit-gravity ForgetGravity Yes No
win-gravity NorthWestGravity Yes Yes
backing-store NotUseful Yes No
backing-planes All ones Yes No
backing-pixel zero Yes No
save-under False Yes No
event-mask empty set Yes Yes
do-not-propagate-mask empty set Yes Yes
override-redirect False Yes Yes
colormap CopyFromParent Yes No
cursor None Yes Yes

(1 L« 13)
(1 L« 14)

/* background, None, or ParentRelative */
/* background pixel */
/* border of the window or CopyFromParcnt */
/* border pixel value */
/* one of bit gravity values */
/* one of the window gravity values */
/* NotUseful, WheriMapped, Always */
/* planes to be preserved if possible */
/* value to use in restoring planes */
/* should bits under be saved? (popups) */
/* set of events that should be saved */
/* set of events that should not propagate */
/* boolean value for override_rcdirect */
/* color map to be associated with window */
/* cursor to be displayed (or None) */

3.2.1. Background Attribute

Only InputOutput windows can have a background. You can set the background of an
InputOutput window by using a pixel or a pixmap.

The background-pixmap attribute of a window specifics the pixmap to be used for a window’s
background. This pixmap can be of any size, although some sizes may be faster than others.
The background-pixel attribute of a window specifies a pixel value used to paint a window’s
background in a single color.

You can set the background-pixmap to a pixmap, None (default), or ParentRelative. You
can set the background-pixel of a window to any pixel value (no default). If you specify a
background-pixel, it overrides either the default background-pixmap or any value you may

25

Xlib - C Library XI1, Release 5

have set in the background-pixmap. A pixmap of an undefined size that is filled with the
background-pixel is used for the background. Range checking is not performed on the back¬
ground pixel; it simply is truncated to the appropriate number of bits.

If you set the background-pixmap, it overrides the default. The background-pixmap and the
window must have the same depth, or a BadMatch error results. If you set background-
pixmap to None, the window has no defined background. If you set the background-pixmap to
ParentRelative:

• The parent window’s background-pixmap is used. The child window, however, must
have the same depth as its parent, or a BadMatch error results.

• If the parent window has a background-pixmap of None, the window also has a
background-pixmap of None.

• A copy of the parent window’s background-pixmap is not made. The parent’s
background-pixmap is examined each time the child window’s background-pixmap is
required.

• The background tile origin always aligns with the parent window’s background tile ori¬
gin. If the background-pixmap is not ParentRelative, the background tile origin is the
child window’s origin.

Setting a new background, whether by setting background-pixmap or background-pixel, over¬
rides any previous background. The background-pixmap can be freed immediately if no
further explicit reference is made to it (the X server will keep a copy to use when needed). If
you later draw into the pixmap used for the background, what happens is undefined because
the X implementation is free to make a copy of the pixmap or to use the same pixmap.

When no valid contents arc available for regions of a window and either the regions are visible
or the server is maintaining backing store, the server automatically tiles the regions with the
window’s background unless the window has a background of None. If the background is
None, the previous screen contents from other windows of the same depth as the window are
simply left in place as long as the contents come from the parent of the window or an inferior
of the parent. Otherwise, the initial contents of the exposed regions are undefined. Expose
events are then generated for the regions, even if the background-pixmap is None (see section
10.9).

3.2.2. Border Attribute

Only InputOutput windows can have a border. You can set the border of an InputOutput
window by using a pixel or a pixmap.

The border-pixmap attribute of a window specifics the pixmap to be used for a window’s
border. The border-pixel attribute of a window specifics a pixmap of undefined size filled with
that pixel be used for a window’s border. Range checking is not performed on the background
pixel; it simply is truncated to the appropriate number of bits. The border tile origin is always
the same as the background tile origin.

You can also set the border-pixmap to a pixmap of any size (some may be faster than others)
or to CopyFromParent (default). You can set the border-pixel to any pixel value (no
default).

If you set a border-pixmap, it overrides the default. The border-pixmap and the window must
have the same depth, or a BadMatch error results. If you set the border-pixmap to Copy¬
FromParent, the parent window’s border-pixmap is copied. Subsequent changes to the parent
window’s border attribute do not affect the child window. However, the child window must
have the same depth as the parent window, or a BadMatch error results.

The border-pixmap can be freed immediately if no further explicit reference is made to it. If
you later draw into the pixmap used for the border, what happens is undefined because the X
implementation is free either to make a copy of the pixmap or to use the same pixmap. If you
specify a border-pixel, it overrides cither the default border-pixmap or any value you may have

26

Xlib - C Library Xll, Release 5

set in the border-pixmap. All pixels in the window’s border will be set to the border-pixel.
Setting a new border, whether by setting border-pixel or by setting border-pixmap, overrides
any previous border.

Output to a window is always clipped to the inside of the window. Therefore, graphics opera¬
tions never affect the window border.

3.2.3. Gravity Attributes

The bit gravity of a window defines which region of the window should be retained when an
InputOutput window is resized. The default value for the bit-gravity attribute is ForgetGrav-
ity. The window gravity of a window allows you to define how the InputOutput or Inpu-
tOnly window should be repositioned if its parent is resized. The default value for the win-
gravity attribute is NorthWestGravity.

If the inside width or height of a window is not changed and if the window is moved or its
border is changed, then the contents of the window arc not lost but move with the window.
Changing the inside width or height of the window causes its contents to be moved or lost
(depending on the bit-gravity of the window) and causes children to be reconfigured (depend¬
ing on their win-gravity). For a change of width and height, the (x, y) pairs are defined:

Gravity Direction Coordinates

NorthWestGravity
NorthGravity
NorthEastGravity
WestGravity
CenterGravity
EastGravity
South WestGravity
SouthGravity
SouthEastGravity

(0, 0)
(Width/2, 0)
(Width, 0)
(0, Hcight/2)
(Width/2, Height/2)
(Width, Hcight/2)
(0, Height)
(Width/2, Height)
(Width, Height)

When a window with one of these bit-gravity values is resized, the corresponding pair defines
the change in position of each pixel in the window. When a window with one of these win-
gravities has its parent window resized, the corresponding pair defines the change in position
of the window within the parent. When a window is so repositioned, a GravityNotify event
is generated (see section 10.10.5).

A bit-gravity of StaticGravily indicates that the contents or origin should not move relative to
the origin of the root window. If the change in size of the window is coupled with a change
in position (x, y), then for bit-gravity the change in position of each pixel is (-x, -y), and for
win-gravity the change in position of a child when its parent is so resized is (-x, -y). Note
that StaticGravily still only takes effect when the width or height of the window is changed,
not when the window is moved.

A bit-gravity of ForgetGravity indicates that the window’s contents are always discarded after
a size change, even if a backing store or save under has been requested. The window is tiled
with its background and zero or more Expose events are generated. If no background is
defined, the existing screen contents are not altered. Some X servers may also ignore the
specified bit-gravity and always generate Expose events.

The contents and borders of inferiors are not affected by their parent’s bit-gravity. A server is
permitted to ignore the specified bit-gravity and use Forget instead.

A win-gravity of UnmapGravity is like NorthWestGravity (the window is not moved),
except the child is also unmapped when the parent is resized, and an UnmapNotify event is
generated.

27

Xlib - C Library XI1, Release 5

3.2.4. Backing Store Attribute

Some implementations of the X server may choose to maintain the contents of InputOutput
windows. If the X server maintains the contents of a window, the off-screen saved pixels are
known as backing store. The backing store advises the X server on what to do with the con¬
tents of a window. The backing-store attribute can be set to NotUseful (default), When-
Mapped, or Always.

A backing-store attribute of NotUseful advises the X server that maintaining contents is
unnecessary, although some X implementations may still choose to maintain contents and,
therefore, not generate Expose events. A backing-store attribute of WhenMapped advises the
X server that maintaining contents of obscured regions when the window is mapped would be
beneficial. In this case, the server may generate an Expose event when the window is created.
A backing-store attribute of Always advises the X server that maintaining contents even when
the window is unmapped would be beneficial. Even if the window is larger than its parent, this
is a request to the X server to maintain complete contents, not just the region within the parent
window boundaries. While the X server maintains the window’s contents. Expose events nor¬
mally are not generated, but the X server may stop maintaining contents at any time.

When the contents of obscured regions of a window are being maintained, regions obscured by
noninferior windows are included in the destination of graphics requests (and source, when the
window is the source). However, regions obscured by inferior windows are not included.

3.2.5. Save Under Flag

Some server implementations may preserve contents of InputOutput windows under other
InputOutput windows. This is not the same as preserving the contents of a window for you.
You may get better visual appeal if transient windows (for example, pop-up menus) request
that the system preserve the screen contents under them, so the temporarily obscured applica¬
tions do not have to repaint.

You can set the save-under (lag to True or False (default). If save-under is True, the X
server is advised that, when this window is mapped, saving the contents of windows it
obscures would be beneficial.

3.2.6. Backing Planes and Backing Pixel Attributes

You can set backing planes to indicate (with bits set to 1) which bit planes of an InputOutput
window hold dynamic data that must be preserved in backing store and during save unders.
The default value for the backing-planes attribute is all bits set to 1. You can set backing pixel
to specify what bits to use in planes not covered by backing planes. The default value for the
backing-pixel attribute is all bits set to 0. The X server is free to save only the specified bit
planes in the backing store or the save under and is free to regenerate the remaining planes
with the specified pixel value. Any extraneous bits in these values (that is, those bits beyond
the specified depth of the window) may be simply ignored. If you request backing store or
save unders, you should use these members to minimize the amount of off-screen memory
required to store your window.

3.2.7. Event Mask and Do Not Propagate Mask Attributes

The event mask defines which events the client is interested in for this InputOutput or Inpu-
tOnly window (or, for some event types, inferiors of this window). The event mask is the bit¬
wise inclusive OR of zero or more of the valid event mask bits. You can specify that no
maskable events are reported by setting NoEventMask (default).

The do-not-propagate-mask attribute defines which events should not be propagated to ancestor
windows when no client has the event type selected in this InputOutput or InputOnly win¬
dow. The do-not-propagate-mask is the bitwise inclusive OR of zero or more of the following
masks: KeyPress, KeyRelease, ButtonPress, ButtonRelease, PointerMotion,
ButtonlMotion, Button2Motion, Button3Motion, Button4Motion, Button5Motion, and

28

Xlib - C Library Xll, Release 5

ButtonMotion. You can specify that all events are propagated by setting NoEventMask
(default).

3.2.8. Override Redirect Flag

To control window placement or to add decoration, a window manager often needs to intercept
(redirect) any map or configure request. Pop-up windows, however, often need to be mapped
without a window manager getting in the way. To control whether an InputOutput or Inpu-
tOnly window is to ignore these structure control facilities, use the override-redirect flag.

The override-redirect flag specifies whether map and configure requests on this window should
override a SubstructureRedirectMask on the parent. You can set the override-redirect flag to
True or False (default). Window managers use this information to avoid tampering with
pop-up windows (see also chapter 14).

3.2.9. Colormap Attribute

The colormap attribute specifies which colormap best reflects the true colors of the InputOut¬
put window. The colormap must have the same visual type as the window, or a BadMatch
error results. X servers capable of supporting multiple hardware colormaps can use this infor¬
mation, and window managers can use it for calls to XInstallCoIormap. You can set the
colormap attribute to a colormap or to CopyFromParent (default).

If you set the colormap to CopyFromParent, the parent window’s colormap is copied and
used by its child. However, the child window must have the same visual type as the parent, or
a BadMatch error results. The parent window must not have a colormap of None, or a Bad-
Match error results. The colormap is copied by sharing the colormap object between the child
and parent, not by making a complete copy of the colormap contents. Subsequent changes to
the parent window’s colormap attribute do not affect the child window.

3.2.10. Cursor Attribute

The cursor attribute specifies which cursor is to be used when the pointer is in the InputOut¬
put or InputOnly window. You can set the cursor to a cursor or None (default).

If you set the cursor to None, the parent’s cursor is used when the pointer is in the InputOut¬
put or InputOnly window, and any change in the parent’s cursor will cause an immediate
change in the displayed cursor. By calling XFreeCursor, the cursor can be freed immediately
as long as no further explicit reference to it is made.

3.3. Creating Windows

Xlib provides basic ways for creating windows, and toolkits often supply higher-level functions
specifically for creating and placing top-level windows, which are discussed in the appropriate
toolkit documentation. If you do not use a toolkit, however, you must provide some standard
information or hints for the window manager by using the Xlib inter-client communication
functions (see chapter 14).

If you use Xlib to create your own top-level windows (direct children of the root window), you
must observe the following rules so that all applications interact reasonably across the different
styles of window management:

• You must never fight with the window manager for the size or placement of your top-
level window.

• You must be able to deal with whatever size window you get, even if this means that
your application just prints a message like “Please make me bigger” in its window.

• You should only attempt to resize or move top-level windows in direct response to a
user request. If a request to change the size of a top-level window fails, you must be
prepared to live with what you get. You are free to resize or move the children of top-
level windows as necessary. (Toolkits often have facilities for automatic relayout.)

29

Xlib - C Library XI1, Release 5

• If you do not use a toolkit that automatically sets standard window properties, you
should set these properties for top-level windows before mapping them.

For further information, see chapter 14 and the Inter-Client Communication Conventions
Manual.

XCreateWindow is the more general function that allows you to set specific window attri¬
butes when you create a window. XCreateSimpleVVindow creates a window that inherits its
attributes from its parent window.

The X server acts as if InputOnly windows do not exist for the purposes of graphics requests,
exposure processing, and VisibilityNotify events. An InputOnly window cannot be used as
a drawable (that is, as a source or destination for graphics requests). InputOnly and Inpu-
tOutput windows act identically in other respects (properties, grabs, input control, and so on).
Extension packages can define other classes of windows.

To create an unmapped window and set its window attributes, use XCreateWindow.

Window XCreateWindow(display, parent, x, y, width, height, border _width„ depth,
class, visual, valuemask, attributes)

Display * display.
Window parent',
int x, y,
unsigned int width, height',
unsigned int border_width\
int depth',
unsigned int class'.
Visual *visual
unsigned long valuemask',
XSetWindowAttributes * attributes',

display Specifies the connection to the X ser/cr.

parent Specifies the parent window.

*

y Specify the x and y coordinates, which arc the top-left outside comer of the
created window’s borders and arc relative to the inside of the parent window’s
borders.

width
height Specify the width and height, which arc the created window’s inside dimen¬

sions and do not include the created window’s borders. The dimensions must
be nonzero, or a BadValue error results.

border_width

depth

class

visual

valuemask

attributes

Specifies the width of the created window’s border in pixels.

Specifies the window’s depth. A depth of CopyFromParent means the depth
is taken from the parent.

Specifies the created window’s class. You can pass InputOutput, Inpu¬
tOnly, or CopyFromParent. A class of CopyFromParent means the class
is taken from the parent.

Specifies the visual type. A visual of CopyFromParent means the visual type
is taken from the parent.

Specifies which window attributes are defined in the attributes argument. This
mask is the bitwise inclusive OR of the valid attribute mask bits. If valuemask
is zero, the attributes are ignored and are not referenced.

Specifies the structure from which the values (as specified by the value mask)
are to be taken. The value mask should have the appropriate bits set to indi¬
cate which attributes have been set in the structure.

30

Xlib - C Library XI1, Release 5

The XCreateWindow function creates an unmapped subwindow for a specified parent win¬
dow, returns the window ID of the created window, and causes the X server to generate a
CreateNotify event. The created window is placed on top in the stacking order with respect
to siblings.

The coordinate system has the X axis horizontal and the Y axis vertical, with the origin [0, 0]
at the upper left. Coordinates are integral, in terms of pixels, and coincide with pixel centers.
Each window and pixmap has its own coordinate system. For a window, the origin is inside
the border at the inside upper left.

The border_width for an InputOnly window must be zero, or a BadMatch error results. For
class InputOutput, the visual type and depth must be a combination supported for the screen,
or a BadMatch error results. The depth need not be the same as the parent, but the parent
must not be a window of class InputOnly, or a BadMatch error results. For an InputOnly
window, the depth must be zero, and the visual must be one supported by the screen. If either
condition is not met, a BadMatch error results. The parent window, however, may have any
depth and class. If you specify any invalid window attribute for a window, a BadMatch error
results.

The created window is not yet displayed (mapped) on the user’s display. To display the win¬
dow, call XMapWindow. The new window initially uses the same cursor as its parent. A
new cursor can be defined for the new window by calling XDefineCursor. The window will
not be visible on the screen unless it and all of its ancestors are mapped and it is not obscured
by any of its ancestors.

XCreateWindow can generate BadAlloc, BadColor, BadCursor, BadMatch, BadPixmap,
BadValue, and Bad Window errors.

To create an unmapped InputOutput subwindow of a given parent window, use
XCreateSimple Window.

Window XCreateSimpleWindow(c//5p/ay, parent, x, y, width, height, border_width,
border, background)

Display * display.
Window parent',
int x, y,
unsigned int width, height',
unsigned int border_width\
unsigned long border',
unsigned long background'.

display Specifies the connection to the X server.

parent Specifies the parent window.

x
y Specify the x and y coordinates, which are the top-left outside comer of the

new window’s borders and are relative to the inside of the parent window’s
borders.

width
height

border_width

border

background

Specify the width and height, which arc the created window’s inside dimen¬
sions and do not include the created window’s borders. The dimensions must
be nonzero, or a BadValue error results.

Specifies the width of the created window’s border in pixels.

Specifies the border pixel value of the window.

Specifies the background pixel value of the window.

31

Xlib - C Library Xll, Release 5

The XCreateSimpIeWindovv function creates an unmapped InputOutput subwindow for a
specified parent window, returns the window ID of the created window, and causes the X
server to generate a CreateNotify event. The created window is placed on top in the stacking
order with respect to siblings. Any part of the window that extends outside its parent window
is clipped. The border_width for an InputOnly window must be zero, or a BadMatch error
results. XCreateSimpleWindow inherits its depth, class, and visual from its parent. All other
window attributes, except background and border, have their default values.

XCreateSimpleWindow can generate BadAlloc, BadMatch, BadValue, and BadWindow
errors.

3.4. Destroying Windows

Xlib provides functions that you can use to destroy a window or destroy all subwindows of a
window.

To destroy a window and all of its subwindows, use XDestroyWindow.

XDestroy Window {display, vv)
Display * display.
Window w;

display Specifies the connection to the X server.

w Specifies the window.

The XDestroyWindow function destroys the specified window as well as all of its subwin¬
dows and causes the X server to generate a DestroyNotify event for each window. The win¬
dow should never be referenced again. If the window specified by the w argument is mapped,
it is unmapped automatically. The ordering of the DestroyNotify events is such that for any
given window being destroyed, DestroyNotify is generated on any inferiors of the window
before being generated on the window itself. The ordering among siblings and across
subhierarchies is not otherwise constrained. If the window you specified is a root window, no
windows are destroyed. Destroying a mapped window will generate Expose events on other
windows that were obscured by the window being destroyed.

XDestroyWindow can generate a BadWindow error.

To destroy all subwindows of a specified window, use XDestroySubwindows.

XDestroySubwindows(display, w)
Display * display.
Window w;

display Specifies the connection to the X server,

w Specifies the window.

The XDestroySubwindows function destroys all inferior windows of the specified window, in
bottom-to-top stacking order. It causes the X server to generate a DestroyNotify event for
each window. If any mapped subwindows were actually destroyed, XDestroySubwindows
causes the X server to generate Expose events on the specified window. This is much more
efficient than deleting many windows one at a time because much of the work need be per¬
formed only once for all of the windows, rather than for each window. The subwindows
should never be referenced again.

XDestroySubwindows can generate a BadWindow error.

3.5. Mapping Windows

A window is considered mapped if an XMapWindow call has been made on it. It may not
be visible on the screen for one of the following reasons:

32

Xlib - C Library XI1, Release 5

® It is obscured by another opaque window.

* One of its ancestors is not mapped.

® It is entirely clipped by an ancestor.

Expose events are generated for the window when part or all of it becomes visible on the
screen. A client receives the Expose events only if it has asked for them. Windows retain
their position in the stacking order when they arc unmapped.

A window manager may want to control the placement of subwindows. If Substruc-
tureRedirectMask has been selected by a window manager on a parent window (usually a
root window), a map request initiated by other clients on a child window is not performed, and
the window manager is sent a MapRequest event. However, if the override-redirect flag on
the child had been set to True (usually only on pop-up menus), the map request is performed.

A tiling window manager might decide to reposition and resize other clients’ windows and
then decide to map the window to its final location. A window manager that wants to provide
decoration might reparent the child into a frame first. For further information, see section 3.2.8
and section 10.10. Only a single client at a time can select for SubstruetureRedirectMask.

Similarly, a single client can select for ResizeRedirectMask on a parent window. Then, any
attempt to resize the window by another client is suppressed, and the client receives a Resiz-
eRequest event.

To map a given window, use XMapWindow.

XMapWmdow (display, w)
Display * display.
Window w;

display Specifies the connection to the X server,

w Specifies the window.

The XMapWindow function maps the window and all of its subwindows that have had map
requests. Mapping a window that has an unmapped ancestor does not display the window but
marks it as eligible for display when the ancestor becomes mapped. Such a window is called
unviewable. When all its ancestors are mapped, the window becomes viewable and will be
visible on the screen if it is not obscured by another window. This function has no effect if
the window is already mapped.

If the override-redirect of the window is False and if some other client has selected Substruc-
tureRedirectMask on the parent window, then the X server generates a MapRequest event,
and the XMapWindow function does not map the window. Otherwise, the window is
mapped, and the X server generates a MapNotify event.

If the window becomes viewable and no earlier contents for it are remembered, the X server
tiles the window with its background. If the window’s background is undefined, the existing
screen contents arc not altered, and the X server generates zero or more Expose events. If
backing-store was maintained while the window was unmapped, no Expose events are gen¬
erated. If backing-store will now be maintained, a full-window exposure is always generated.
Otherwise, only visible regions may be reported. Similar tiling and exposure take place for
any newly viewable inferiors.

If the window is an InputOutput window, XMapWindow generates Expose events on each
InputOutput window that it causes to be displayed. If the client maps and paints the window
and if the client begins processing events, the window is painted twice. To avoid this, first ask
for Expose events and then map the window, so the client processes input events as usual.
The event list will include Expose for each window that has appeared on the screen. The
client’s normal response to an Expose event should be to repaint the window. This method
usually leads to simpler programs and to proper interaction with window managers.

33

Xlib - C Library Xll, Release 5

XMapWindow can generate a BadWindow error.

To map and raise a window, use XMapRaised.

XMapRaised (dfsp/ay, w)
Display * display.
Window w;

display Specifies the connection to the X server,

w Specifies the window.

The XMapRaised function essentially is similar to XMapWindow in that it maps the window
and all of its subwindows that have had map requests. However, it also raises the specified
window to the top of the stack. For additional information, see XMapWindow.

XMapRaised can generate multiple BadWindow errors.

To map all subwindows for a specified window, use XMapSubwindows.

XMapSubwindows (d/sp/ay, w)
Display * display.
Window w,

display Specifies the connection to the X server,

w Specifies the window.

The XMapSubwindows function maps all subwindows for a specified window in top-to-
bottom stacking order. The X server generates Expose events on each newly displayed win¬
dow. This may be much more efficient than mapping many windows one at a time because
the server needs to perform much of the work only once, for all of the windows, rather than
for each window.

XMapSubwindows can generate a BadWindow error.

3.6. Unmapping Windows

Xlib provides functions that you can use to unmap a window or all subwindows.

To unmap a window, use XUnmapWindow.

XUnmapWindowf^/sp/ay, w)
Display * display.
Window w;

display Specifies the connection to the X server,

w Specifies the window.

The XUnmap Window function unmaps the specified window and causes the X server to gen¬
erate an UnmapNotify event. If the specified window is already unmapped, XUnmapWin-
dow has no effect. Normal exposure processing on formerly obscured windows is performed.
Any child window will no longer be visible until another map call is made on the parent. In
other words, the subwindows are still mapped but are not visible until the parent is mapped.
Unmapping a window will generate Expose events on windows that were formerly obscured
by it.

XUnmapWindow can generate a BadWindow error.

To unmap all subwindows for a specified window, use XUnmapSubwindows.

34

Xlib - C Library Xll, Release 5

XUnmapSubwindows (cfop/ay, vv)
Display * display.
Window w;

display Specifies the coanection to the X server,

w Specifies the window.

The XUnmapSubwindows function unmaps al! subwindows for the specified window in
bottom-to-top stacking order. It causes the X server to generate an UnmapNotify event on
each subwindow and Expose events on formerly obscured windows. Using this function is
much more efficient than unmapping multiple windows one at a time because the server needs
to perform much of the work only once, for all of the windows, rather than for each window.

XUnmapSubwindows can generate a BadWindow error.

3.7. Configuring Windows

Xlib provides functions that you can use to move a window, resize a window, move and resize
a window, or change a window’s border width. To change one of these parameters, set the
appropriate member of the XWindowChanges structure and OR in the corresponding value
mask in subsequent calls to XConfigureWindow. The symbols for the value mask bits and
the XWindowChanges structure are:

/* Configure window value mask bits */

#define cwx (1«0)
#define CWY d«l)
#define CWWidth (1«2)
#define CWHeight (1«3)
#define CWBorderWidth (1«4)
#define CWSibling (1«5)
#define CWStackMode (1«6)

/* Values */

typedef struct {
int x, y;
int width, height;
int border_width;
Window sibling;
int stack_modc;

} XWindowChanges;

The x and y members are used to set the window’s x and y coordinates, which are relative to
the parent’s origin and indicate the position of the upper-left outer comer of the window. The
width and height members are used to set the inside size of the window, not including the
border, and must be nonzero, or a BadValue error results. Attempts to configure a root win¬
dow have no effect.

The border_width member is used to set the width of the border in pixels. Note that setting
just the border width leaves the outer-left comer of the window in a fixed position but moves
the absolute position of the window’s origin. If you attempt to set the border-width attribute
of an InputOnly window nonzero, a BadMatch error results.

The sibling member is used to set the sibling window for stacking operations. The stack_mode
member is used to set how the window is to be restacked and can be set to Above, Below,
Toplf, Bottomlf, or Opposite.

If the override-redircct flag of the window is False and if some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and

35

Xlib - C Library Xll, Release 5

no further processing is performed. Otherwise, if some other client has selected Resiz-
eRedirectMask on the window and the inside width or height of the window is being
changed, a ResizeRequest event is generated, and the current inside width and height are used
instead. Note that the override-rcdirect Hag of the window has no effect on Resiz-
eRedirectMask and that SubstructureRedirectMask on the parent has precedence over
ResizeRedirectMask on the window.

When the geometry of the window is changed as specified, the window is restacked among
siblings, and a ConfigureNotify event is generated if the state of the window actually changes.
GravityNotify events are generated after ConfigureNotify events. If the inside width or
height of the window has actually changed, children of the window are affected as specified.

If a window’s size actually changes, the window’s subwindows move according to their win¬
dow gravity. Depending on the window’s bit gravity, the contents of the window also may be
moved (see section 3.2.3).

If regions of the window were obscured but now are not, exposure processing is performed on
these formerly obscured windows, including the window itself and its inferiors. As a result of
increasing the width or height, exposure processing is also performed on any new regions of
the window and any regions where window contents are lost.

The restack check (specifically, the computation for Bottomlf, Toplf, and Opposite) is per¬
formed with respect to the window’s final size and position (as controlled by the other argu¬
ments of the request), not its initial position. If a sibling is specified without a stack_mode, a
BadMatch error results.

If a sibling and a stack_mode are specified, the window is rcstacked as follows:

Above The window is placed just above the sibling.

Below The window is placed just below the sibling.

Toplf If the sibling occludes the window, the window is placed at the top of the
stack.

Bottomlf If the window occludes the sibling, the window is placed at the bottom of the
stack.

Opposite If the sibling occludes the window, the window is placed at the top of the
stack. If the window occludes the sibling, the window is placed at the bottom
of the stack.

If a stackjnode is specified but no sibling is specified, the window is restacked as follows:

Above The window is placed at the top of the stack.

Below The window is placed at the bottom of the stack.

Toplf If any sibling occludes the window, the window is placed at the top of the
stack.

Bottomlf If the window occludes any sibling, the window is placed at the bottom of the
stack.

Opposite If any sibling occludes the window, the window is placed at the top of the
stack. If the window occludes any sibling, the window is placed at the bottom
of the stack.

Attempts to configure a root window have no effect.

To configure a window’s size, location, stacking, or border, use XConfigureWindow.

36

Xlib - C Library XI1, Release 5

XConfigureWindow (d/sp/oy, w, valuejnask, values)
Display * display.
Window w;
unsigned int value_mask\
XWindowChanges *values\

display Specifies the connection to the X server,

w Specifies the window to be reconfigured.

value jnask Specifies which values arc to be set using information in the values structure.
This mask is the bitwise inclusive OR of the valid configure window values
bits.

values Specifies the XWindowChanges structure.

The XConfigureWindow function uses the values specified in the XWindowChanges struc¬
ture to reconfigure a window’s size, position, border, and stacking order. Values not specified
are taken from the existing geometry of the window.

If a sibling is specified without a stack_mode or if the window is not actually a sibling, a Bad-
Match error results. Note that the computations for Bottomlf, Toplf, and Opposite are per¬
formed with respect to the window’s final geometry (as controlled by the other arguments
passed to XConfigureWindow), not its initial geometry. Any backing store contents of the
window, its inferiors, and other newly visible windows arc cither discarded or changed to
reflect the current screen contents (depending on the implementation).

XConfigureWindow can generate BadMateh, BadValue, and BadWindow errors.

To move a window without changing its size, use XMoveWindow.

XMoveWindow (d/sp/ay, w, x, y)
Display * display.
Window w;
int x, y,

display Specifics the connection to the X server,

w Specifies the window to be moved,

x
y Specify the x and y coordinates, which define the new location of the top-left

pixel of the window’s border or the window itself if it has no border.

The XMoveWindow function moves the specified window to the specified x and y coordi¬
nates, but it does not change the window’s size, raise the window, or change the mapping state
of the window. Moving a mapped window may or may not lose the window’s contents
depending on if the window is obscured by nonchildrcn and if no backing store exists. If the
contents of the window are lost, the X server generates Expose events. Moving a mapped
window generates Expose events on any formerly obscured windows.

If the override-redirect flag of the window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and
no further processing is performed. Otherwise, the window is moved.

XMoveWindow can generate a BadWindow error.

To change a window’s size without changing the upper-left coordinate, use XResizeWindow.

XResize Window (dz.vp/ay, w, width, height)
Display * display.
Window w;
unsigned int width, height'.

37

Xlib - C Library XI1, Release 5

display Specifies the connection to the X server.

w Specifies the window.

width
height Specify the width and height, which are the interior dimensions of the window

after the call completes.

The XResizeWindow function changes the inside dimensions of the specified window, not
including its borders. This function docs not change the window’s upper-left coordinate or the
origin and docs not rcstack the window. Changing the size of a mapped window may lose its
contents and generate Expose events. If a mapped window is made smaller, changing its size
generates Expose events on windows that the mapped window formerly obscured.

If the override-redircct flag of the window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and
no further processing is performed. If either width or height is zero, a BadValue error results.

XResizeWindow can generate BadValue and BadWindow errors.

To change the size and location of a window, use XMoveResizeWindow.

XMoveResizeWindow (<i/.y/?/ay, w, x, y, width, height)
Display * display.
Window w;
int x, y,
unsigned int width, height',

display Specifies the connection to the X server,

w Specifies the window to be reconfigured,

x
y Specify the x and y coordinates, which define the new position of the window

relative to its parent.

width
height Specify the width and height, which define the interior size of the window.

The XMoveResizeWindow function changes the size and location of the specified window
without raising it. Moving and resizing a mapped window may generate an Expose event on
the window. Depending on the new size and location parameters, moving and resizing a win¬
dow may generate Expose events on windows that the window formerly obscured.

If the override-redircct flag of the window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates a ConfigureRequest event, and
no further processing is performed. Otherwise, the window size and location are changed.

XMoveResizeWindow can generate BadValue and BadWindow errors.

To change the border width of a given window, use XSetWindowBorderWidth.

XSetWindowBorderWidth! dfsp/ay, w, width)
Display * display.
Window w;
unsigned int width',

display Specifies the connection to the X server.

w Specifies the window.

width Specifies the width of the window border.

The XSetWindowBorderWidth function sets the specified window’s border width to the
specified width.

38

Xlib - C Library XI1, Release 5

XSetWindowBorderWidth can generate a BadWindow error.

3.8. Changing Window Stacking Order

Xlib provides functions that you can use to raise, lower, circulate, or restack windows.

To raise a window so that no sibling window obscures it, use XRaiseWindow.

XRaiscWindow{display, w)
Display * display.
Window w;

display Specifies the connection to the X server,

w Specifies the window.

The XRaiseWindow function raises the specified window to the top of the stack so that no
sibling window obscures it. If the windows are regarded as overlapping sheets of paper
stacked on a desk, then raising a window is analogous to moving the sheet to the top of the
stack but leaving its x and y location on the desk constant. Raising a mapped window may
generate Expose events for the window and any mapped subwindows that were formerly
obscured.

If the override-redirect attribute of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event,
and no processing is performed. Otherwise, the window is raised.

XRaiseWindow can generate a BadWindow error.

To lower a window so that it docs not obscure any sibling windows, use XLowerWindow.

XLowerWindow(display, w)
Display * display.
Window w;

display Specifies the connection to the X server,

w Specifies the window.

The XLowerWindow function lowers the specified window to the bottom of the stack so that
it does not obscure any sibling windows. If the windows are regarded as overlapping sheets of
paper stacked on a desk, then lowering a window is analogous to moving the sheet to the bot¬
tom of the stack but leaving its x and y location on the desk constant. Lowering a mapped
window will generate Expose events on any windows it formerly obscured.

If the override-redirect attribute of the window is False and some other client has selected
SubstructureRedirectMask on the parent, the X server generates a ConfigureRequest event,
and no processing is performed. Otherwise, the window is lowered to the bottom of the stack.

XLowerWindow can generate a BadWindow error.

To circulate a subwindow up or down, use XCireulateSubwindows.

XCirculateSubwindows(<i/5p/ay, w, direction)
Display * display.
Window w;
int direction;

display Specifies the connection to the X server,

w Specifies the window.

direction Specifies the direction (up or down) that you want to circulate the window.
You can pass RaiseLowest or LowerHighest.

39

Xlib - C Library Xll, Release 5

The XCirculateSubwindows function circulates children of the specified window in the
specified direction. If you specify RaiseLowest, XCircuIateSubvvindoyvs raises the lowest
mapped child (if any) that is occluded by another child to the top of the stack. If you specify
LowerHighest, XCirculateSubwindows lowers the highest mapped child (if any) that
occludes another child to the bottom of the stack. Exposure processing is then performed on
formerly obscured windows. If some other client has selected SubstructureRedirectMask on
the window, the X server generates a CircuIateRequest event, and no further processing is
performed. If a child is actually rcstackcd, the X server generates a CirculateNotifv event.

XCirculateSubwindows can generate BadValue and BadWindow errors.

To raise the lowest mapped child of a window that is partially or completely occluded by
another child, use XCirculateSubwindowsUp.

XCirculateSubwindowsUpfr/wp/ay, w)
Display * display.
Window w;

display Specifies the connection to the X server,

w Specifies the window.

The XCirculateSubwindowsUp function raises the lowest mapped child of the specified win¬
dow that is partially or completely occluded by another child. Completely unobscured children
are not affected. This is a convenience function equivalent to XCirculateSubwindows with
RaiseLowest specified.

XCirculateSubwindowsUp can generate a BadWindow error.

To lower the highest mapped child of a window that partially or completely occludes another
child, use XCirculateSubwindowsDown.

XCirculateSubwindowsDown (d/sp/cry, w)
Display * display.
Window w;

display Specifies the connection to the X server,

w Specifies the window.

The XCirculateSubwindowsDown function lowers the highest mapped child of the specified
window that partially or completely occludes another child. Completely unobscured children
are not affected. This is a convenience function equivalent to XCirculateSubwindows with
LowerHighest specified.

XCirculateSubwindowsDown can generate a BadWindow error.

To restack a set of windows from top to bottom, use XRestackWindows.

XRestackWindow's(display, windows, nwindows)',
Display * display.
Window windows[]',
int nwindows',

display Specifies the connection to the X server.

windows Specifies an array containing the windows to be restacked.

nwindows Specifies the number of windows to be restacked.

The XRestackWindows function restacks the windows in the order specified, from top to bot¬
tom. The stacking order of the first window in the windows array is unaffected, but the other
windows in the array are stacked underneath the first window, in the order of the array. The
stacking order of the other windows is not affected. For each window in the window array

40

Xlib - C Library XI1, Release 5

that is not a child of the specified window, a BadMatch error results.

If the override-redircct attribute of a window is False and some other client has selected Sub-
structureRedirectMask on the parent, the X server generates ConfigureRequest events for
each window whose override-redircct flag is not set, and no further processing is performed.
Otherwise, the windows will be restackcd in top to bottom order.

XRestackWindows can generate a BadWindow error.

3.9. Changing Window Attributes

Xlib provides functions that you can use to set window attributes. XChangeWindowAttri-
butes is the more general function that allows you to set one or more window attributes pro¬
vided by the XSetWindowAttributes structure. The other functions described in this section
allow you to set one specific window attribute, such as a window’s background.

To change one or more attributes for a given window, use XChangeWindowAttributes.

XChangeWindowAttributes (JL/?/ay, w, valuemask, attributes)
Display * display.
Window w;
unsigned long valuemask',
XSetWindowAttributes * attributes'.

display

w

valuemask

Specifics the connection to the X server.

Specifies the window.

Specifies which window attributes are defined in the attributes argument. This
mask is the bitwise inclusive OR of the valid attribute mask bits. If valuemask
is zero, the attributes arc ignored and arc not referenced. The values and res¬
trictions are the same as for XCreateWindow.

attributes Specifies the structure from which the values (as specified by the value mask)
are to be taken. The value mask should have the appropriate bits set to indi¬
cate which attributes have been set in the structure (see section 3.2).

Depending on the valuemask, the XChangeWindowAttributes function uses the window attri¬
butes in the XSetWindowAttributes structure to change the specified window attributes.
Changing the background does not cause the window contents to be changed. To repaint the
window and its background, use XCIearWindow. Setting the border or changing the back¬
ground such that the border tile origin changes causes the border to be repainted. Changing
the background of a root window to None or ParentRelative restores the default background
pixmap. Changing the border of a root window to CopyFromParent restores the default
border pixmap. Changing the win-gravity docs not affect the current position of the window.
Changing the backing-store of an obscured window to WhenMapped or Always, or changing
the backing-planes, backing-pixel, or save-under of a mapped window may have no immediate
effect. Changing the colormap of a window (that is, defining a new map, not changing the
contents of the existing map) generates a ColormapNotify event. Changing the colormap of a
visible window may have no immediate effect on the screen because the map may not be
installed (see XInstallColormap). Changing the cursor of a root window to None restores
the default cursor. Whenever possible, you are encouraged to share colormaps.

Multiple clients can select input on the same window. Their event masks are maintained
separately. When an event is generated, it is reported to all interested clients. However, only
one client at a time can select for SubstructureRedirectMask, ResizeRedirectMask, and
ButtonPressMask. If a client attempts to select any of these event masks and some other
client has already selected one, a BadAccess error results. There is only one do-not-
propagate-mask for a window, not one per client.

41

Xlib - C Library XI1, Release 5

XChangeWindowAttributes can generate BadAccess, BadColor, BadCursor, BadMatch,
BadPixmap, BadValue, and BadWindow errors.

To set the background of a window to a given pixel, use XSetWindowBackground.

XSetWindowBackground w, background_pixel)
Display * display.
Window w;
unsigned long backgroundjpixel,

display Specifies the connection to the X server.

w Specifies the window.

background_pixel
Specifies the pixel that is to be used for the background.

The XSetWindowBackground function sets the background of the window to the specified
pixel value. Changing the background docs not cause the window contents to be changed.
XSetWindowBackground uses a pixmap of undefined size filled with the pixel value you
passed. If you try to change the background of an InputOnly window, a BadMatch error
results.

XSetWindowBackground can generate BadMatch and BadWindow errors.

To set the background of a window to a given pixmap, use XSetWindowBackgroundPix-
map.

XSctWindowBackgroundPixmap(^/7/ay, w, backgroundjpixmap)
Display * display.
Window w;
Pixmap backgroundjpixmap',

display Specifies the connection to the X server,

w Specifies the window.

backgroundjpixmap
Specifies the background pixmap, ParentRelative, or None.

The XSetWindowBackgroundPixmap function sets the background pixmap of the window to
the specified pixmap. The background pixmap can immediately be freed if no further explicit
references to it are to be made. If ParentRelative is specified, the background pixmap of the
window’s parent is used, or on the root window, the default background is restored. If you try
to change the background of an InputOnly window, a BadMatch error results. If the back¬
ground is set to None, the window has no defined background.

XSetWindowBackgroundPixmap can generate BadMatch, BadPixmap, and BadWindow
errors.

Note

XSetWindowBackground and XSetWindowBackgroundPixmap do not change
the current contents of the window.

To change and repaint a window’s border to a given pixel, use XSetWindowBorder.

XSetWindowBorder(^p/ay, w, borderj>ixel)
Display * display.
Window w;
unsigned long borderjjixei.

42

Xlib - C Library XI1, Release 5

display Specifies the connection to the X server.

w Specifies the window.

border_pixel Specifies the entry in the colormap.

The XSetWindowBorder function sets the border of the window to the pixel value you
specify. If you attempt to perform this on an InputOnly window, a BadMatch error results.

XSetWindowBorder can generate BadMatch and BadWindovv errors.

To change and repaint the border tile of a given window, use XSetWindovvBorderPixmap.

XSetWindowBorderPixmapCcfop/ay, w, borderjpixmap)
Display * display.
Window w;
Pixmap borderjpixmap',

display Specifies the connection to the X server,

w Specifies the window.

borderjpixmap Specifies the border pixmap or CopyFromParent.

The XSetWindowBorderPixmap function sets the border pixmap of the window to the pix¬
map you specify. The border pixmap can be freed immediately if no further explicit references
to it are to be made. If you specify CopyFromParent, a copy of the parent window’s border
pixmap is used. If you attempt to perform this on an InputOnly window, a BadMatch error
results.

XSetWindowBorderPixmap can generate BadMatch, BadPixmap, and BadWindow errors.

To set the colormap of a given window, use XSetWindowColormap.

XSetWindowColormap(c#.sy?/tf>', w, colormap)
Display * display.
Window w;
Colormap colormap',

display Specifies the connection to the X server,

w Specifies the window.

colormap Specifies the colormap.

The XSetWindowColormap function sets the specified colormap of the specified window.
The colormap must have the same visual type as the window, or a BadMatch error results.

XSetWindowColormap can generate BadColor, BadMatch, and BadWindow errors.

To define which cursor will be used in a window, use XDefineCursor.

XDefineCursor (d/jp/ay, w, cursor)
Display * display.
Window w;
Cursor cursor',

display Specifies the connection to the X server,

w Specifies the window.

cursor Specifies the cursor that is to be displayed or None.

If a cursor is set, it will be used when the pointer is in the window. If the cursor is None, it
is equivalent to XUndefineCursor.

XDefineCursor can generate BadCursor and BadWindow errors.

43

Xlib - C Library XI1, Release 5

To undeline the cursor in a given window, use XUndefineCursor.

XUndefineCursor(display, w)
Display * display.
Window w;

display Specifies the connection to the X sciwcr.

w Specifies the window.

The XUndefineCursor function undoes the effect of a previous XDefineCursor for this win¬
dow. When the pointer is in the window, the parent’s cursor will now be used. On the root
window, the default cursor is restored.

XUndefineCursor can generate a BadWindow error.

44

Xlib - C Library Xll, Release 5

Chapter 4

Window Information Functions

After you connect the display to the X server and create a window, you can use the Xlib win¬
dow information functions to:

• Obtain information about a window

• Translate screen coordinates

• Manipulate property lists

• Obtain and change window properties

• Manipulate selections

4.1. Obtaining Window Information

Xlib provides functions that you can use to obtain information about the window tree, the
window’s current attributes, the window’s current geometry, or the current pointer coordinates.
Because they are most frequently used by window managers, these functions all return a status
to indicate whether the window still exists.

To obtain the parent, a list of children, and number of children for a given window, use
XQueryTree.

Status XQueryTree (display, w, root_return, parent_return, children_return, nchildren_return)
Display * display.
Window w;
Window *root_return\
Window *parent_return\
Window **children_return\
unsigned int *nchildren_return\

Specifies the connection to the X server.

Specifies the window whose list of children, root, parent, and number of chil¬
dren you want to obtain.

Returns the root window.

Returns the parent window.

display

w

root_return

parent_return

children return Returns the list of children.

nchildren_returnRclums the number of children.

The XQueryTree function returns the root ID, the parent window ID, a pointer to the list of
children windows, and the number of children in the list for the specified window. The chil¬
dren are listed in current stacking order, from bottommost (first) to topmost (last).
XQueryTree returns zero if it fails and nonzero if it succeeds. To free this list when it is no
longer needed, use XFree.

XQueryTree can generate a BadWindow error.

To obtain the current attributes of a given window, use XGetWindowAttributes.

45

Xlib - C Library XI1, Release 5

Status XGetWindowAttributes(cfe/;/ay, w, window_attributes_return)
Display * display.
Window w;
XWindowAttributes *windowjmributesjeturn;

display Specifies the connection to the X server.

w Specifies the window whose current attributes you want to obtain.

window attributes return
Returns the specified window’s
ture.

The XGetWindowAttributes function returns
to an XWindowAttributes structure.

typedef struct {
int x, y;
int width, height;
int border_width;
int depth;
Visual *visual;
Window root;
int class;
int bit_gravity;
int win_gravity;
int backing_store;
unsigned long backing_planes;
unsigned long backing_pixcl;
Bool save_under,
Colormap colormap;
Bool map_installcd;
int map_state;
long all_event_masks;
long your_evcnt_mask;
long do_not_propagate_mask;
Bool override_redirect;
Screen ^screen;

} XWindowAttributes;

attributes in the XWindowAttributes struc-

thc current attributes for the specified window

/* location of window */
/* width and height of window */
/* border width of window */
/* depth of window */
/* the associated visual structure */
/* root of screen containing window */
/* InputOutput, InputOnly*/
/* one of the bit gravity values */
/* one of the window gravity values */
/* NotUseful, WhenMapped, Always */
/* planes to be preserved if possible */
/* value to be used when restoring planes */
/* boolean, should bits under be saved? */
/* color map to be associated with window */
/* boolean, is color map currently installed*/
/* IsUnmapped, IsUnviewable, IsViewable */
/* set of events all people have interest in*/
/* my event mask */
/* set of events that should not propagate */
/* boolean value for override-redirect */
/* back pointer to correct screen */

The x and y members are set to the upper-left outer comer relative to the parent window’s ori¬
gin. The width and height members are set to the inside size of the window, not including the
border. The border_width member is set to the window’s border width in pixels. The depth
member is set to the depth of the window (that is, bits per pixel for the object). The visual
member is a pointer to the screen’s associated Visual structure. The root member is set to the
root window of the screen containing the window. The class member is set to the window’s
class and can be either InputOutput or InputOnly.

The bit gravity member is set to the window’s bit gravity and can be one of the following:

ForgetGravity
North WestGravity
NorthGravity
NorthEastGravity
WestGravity
CenterGravity

EastGravity
South WestGravity
SouthGravity
SouthEastGravity
StaticGravity

The win_gravity member is set to the window’s window gravity and can be one of the follow¬
ing:

46

Xlib - C Library XI1, Release 5

UnmapGravity
North WestGravity
NorthGravity
NorthEastGravity
WestGravity
CenterGravity

EastGravity
South WestGravity
SouthGravity
SouthEastGravity
StaticGravity

For additional information on gravity, see section 3.3.

The backing_store member is set to indicate how the X server should maintain the contents of
a window and can be WhenMapped, Always, or NotUseful. The backing_planes member is
set to indicate (with bits set to 1) which bit planes of the window hold dynamic data that must
be preserved in backing_stores and during savc_undcrs. The backing_pixel member is set to
indicate what values to use for planes not set in backing_planes.

The save_under member is set to True or False. The colormap member is set to the color-
map for the specified window and can be a colormap ID or None. The map_installed member
is set to indicate whether the colormap is currently installed and can be True or False. The
map_state member is set to indicate the state of the window and can be IsUnmapped, IsUn-
viewable, or IsViewable. IsUnviewable is used if the window is mapped but some ancestor
is unmapped.

The all_event_masks member is set to the bitwise inclusive OR of all event masks selected on
the window by all clients. The your_cvcnt_mask member is set to the bitwise inclusive OR of
all event masks selected by the querying client. The do_not_propagate_mask member is set to
the bitwise inclusive OR of the set of events that should not propagate.

The override_redirect member is set to indicate whether this window overrides structure control
facilities and can be True or False. Window manager clients should ignore the window if
this member is True.

The screen member is set to a screen pointer that gives you a back pointer to the correct
screen. This makes it easier to obtain the screen information without having to loop over the
root window fields to see which field matches.

XGetWindowAttributes can generate BadDrawable and BadWindow errors.

To obtain the current geometry of a given drawablc, use XGetGeometry.

Status XGetGeometry {display, d, root jeturn, x jeturn, yjeturn, width jeturn,
height_return, border_width_return, depth_return)

Display * display,
Drawable d\
Window * root jeturn',
int *x_return, *y jeturn',
unsigned int *width jeturn, * heightjeturn',
unsigned int * border _width_return\
unsigned int *depth jeturn'.

display

d

root return

Specifies the connection to the X server.

Specifies the drawable, which can be a window or a pixmap.

Returns the root window.

xjreturn
yjeturn Return the x and y coordinates that define the location of the drawable. For a

window, these coordinates specify the upper-left outer comer relative to its
parent’s origin. For pixmaps, these coordinates are always zero.

widthjeturn
heightjeturn Return the drawable’s dimensions (width and height). For a window, these

dimensions specify the inside size, not including the border.

47

Xlib - C Library XI1, Release 5

border_width_return
Returns the border width in pixels. If the drawable is a pixmap, it returns zero.

depth_return Returns the depth of the drawable (bits per pixel for the object).

The XGetGeometry function returns the root window and the current geometry of the draw-
able. The geometry of the drawable includes the x and y coordinates, width and height, border
width, and depth. These are described in the argument list. It is legal to pass to this function
a window whose class is InputOnly.

XGetGeometry can generate a BadDrawable error.

4.2, Translating Screen Coordinates

Applications sometimes need to perform a coordinate transformation from the coordinate space
of one window to another window or need to determine which window the pointing device is
in. XTranslateCoordinates and XQueryPointer fulfill these needs (and avoids any race con¬
ditions) by asking the X server to perform these operations.

To translate a coordinate in one window to the coordinate space of another window, use
XTranslateCoordinates.

Bool XTranslateCoordinates (JAp/ay, src_w, dest_w, src_x, src_y, dest_x_return,
dest_y_return, child_return)

Display * display.
Window src_w, dest_w,
int sreje, srejy,
int *dest_x_return, *dest_y_return\
Window * child_return\

Specifies the connection to the X server.

Specifies the source window.

Specifies the destination window.

Specify the x and y coordinates within the source window.

Return the x and y coordinates within the destination window.

Returns the child if the coordinates arc contained in a mapped child of the des¬
tination window.

If XTranslateCoordinates returns True, it takes the src_x and src_y coordinates relative to
the source window’s origin and returns these coordinates to dest_x_retum and dest_y_retum
relative to the destination window’s origin. If XTranslateCoordinates returns False, src_w
and dest_w are on different screens, and dcst_x_rctum and dest_y_retum are zero. If the coor¬
dinates are contained in a mapped child of dcst_w, that child is returned to child_rctum. Oth¬
erwise, child_retum is set to None.

XTranslateCoordinates can generate a BadWindow error.

To obtain the screen coordinates of the pointer, or to determine the pointer coordinates relative
to a specified window, use XQueryPointer.

display

src_w

dest_w

src_x
src_y

dest_x_return
dest_y jeturn

child return

48

Xlib - C Library XI1, Release 5

Bool XQueryPointer(<i/5p/ay, w, root_return, child_return, root_x_return, root_y_return,
win_x_return, win_y_return, mask_return)

Display * display.
Window w;
Window *root_return, *child_return;
int *root_x_return, *root_y_return\
int *win_x_return, *win_y_return\
unsigned int *mask_return\

display

w

rootjeturn

child return

Specifies the connection to the X server.

Specifies the window.

Returns the root window that the pointer is in.

Returns the child window that the pointer is located in, if any.

root_x_return
root_y_return Return the pointer coordinates relative to the root window’s origin.

win_x_return
winjjeturn Return the pointer coordinates relative to the specified window.

mask_return Returns the current state of the modifier keys and pointer buttons.

The XQueryPointer function returns the root window the pointer is logically on and the
pointer coordinates relative to the root window’s origin. If XQueryPointer returns False, the
pointer is not on the same screen as the specified window, and XQueryPointer returns None
to child_retum and zero to win_x_rctum and win y_rctum. If XQueryPointer returns True,
the pointer coordinates returned to win_x_rctum and win_y_rctum are relative to the origin of
the specified window. In this case, XQueryPointer returns the child that contains the pointer,
if any, or else None to child_rctum.

XQueryPointer returns the current logical state of the keyboard buttons and the modifier keys
in mask_retum. It sets mask_rctum to the bitwise inclusive OR of one or more of the button
or modifier key bitmasks to match the current state of the mouse buttons and the modifier
keys.

Note that the logical state of a device (as seen through Xlib) may lag the physical state if dev¬
ice event processing is frozen (see section 12.1).

XQueryPointer can generate a BadWindow error.

4.3. Properties and Atoms

A property is a collection of named, typed data. The window system has a set of predefined
properties (for example, the name of a window, size hints, and so on), and users can define
any other arbitrary information and associate it with windows. Each property has a name,
which is an ISO Latin-1 string. For each named property, a unique identifier (atom) is associ¬
ated with it. A property also has a type, for example, string or integer. These types are also
indicated using atoms, so arbitrary new types can be defined. Data of only one type may be
associated with a single property name. Clients can store and retrieve properties associated
with windows. For efficiency reasons, an atom is used rather than a character string. Xlnter-
nAtom can be used to obtain the atom for property names.

A property is also stored in one of several possible formats. The X server can store the infor¬
mation as 8-bit quantities, 16-bit quantities, or 32-bit quantities. This permits the X server to

49

Xlib - C Library XI1, Release 5

present the data in the byte order that the client expects.

Note

If you define further properties of complex type, you must encode and decode
them yourself. These functions must be carefully written if they are to be portable.
For further information about how to write a library' extension, see appendix C.

The type of a property is defined by an atom, which allows for arbitrary extension in this type
scheme.

Certain property names are predefined in the server for commonly used functions. The atoms
for these properties are defined in <XIl/Xatom.h>. To avoid name clashes with user sym¬
bols, the #define name for each atom has the XA_ prefix. For definitions of these properties,
see section 4.3. For an explanation of the functions that let you get and set much of the infor¬
mation stored in these predefined properties, see chapter 14.

The core protocol imposes no semantics on these property names, but semantics are specified
in other X Consortium standards, such as the Inter-Client Communication Conventions Manual
and the X Logical Font Description Conventions.

You can use properties to communicate other information between applications. The functions
described in this section let you define new properties and get the unique atom IDs in your
applications.

Although any particular atom can have some client interpretation within each of the name
spaces, atoms occur in five distinct name spaces within the protocol:

• Selections

• Property names

• Property types

• Font properties

• Type of a ClientMessage event (none arc built into the X server)

The built-in selection property names are:

PRIMARY
SECONDARY

The built-in property names arc:

CUT_BUFFERO
CUT_BUFFER1
CUT_BUFFER2
CUT_BUFFER3
CUT_ BUFFER 4

CUT_BUFFER5
CUT_BUFFER6
CUT_BUFFER7
RGB BEST MAP

RESOURCE_MANAGER
WM_CLASS
WM_CLIENT_MACHINE
WM_COLORMAP_WINDOWS
WM_COMMAND
WMJ4INTS
WM_ICON_NAME
WM_ICON_SIZE
WM_NAME
WM_NORMAL_HINTS
WM_PROTOCOLS
WM_STATE
WM TRANSIENT FOR

RGRJBLUE_MAP
RGB_DEFAULT_MAP
RGB_GRAY_MAP
RGB_GREEN_MAP
RGB RED MAP

The built-in property types are:

50

Xlib - C Library Xll, Release 5

ARC
ATOM
BITMAP
CARDINAL
COLORMAP
CURSOR
DRAWABLE
FONT
INTEGER
PIXMAP

The built-in font property na

MIN_SPACE
NORM_SPACE
MAX_SPACE
END_SPACE
SUPERSCRIPT_X
SUPERSCRIPT_Y
SUBSCRIPT_X
SUBSCRIPT_Y
UNDERLINE_POSITION
UNDERLINE_THICKNESS
FONT_NAME
FULL NAME

POINT
RGB_COLOR_MAP
RECTANGLE
STRING
VISUALID
WINDOW
WMHINTS
WM SIZE HINTS

are:

STRIKEOUT_DESCENT
STRIKEOUT_ASCENT
ITALIC_ANGLE
X_HEIGHT
QUAD_WIDTH
WEIGHT
POINT_SIZE
RESOLUTION
COPYRIGHT
NOTICE
FAMILY_NAME
CAP HEIGHT

For further information about font properties, sec section 8.5.

To return an atom for a given name, use XInternAtom.

Atom XInternAtom (display, atomjiame, only_if_exists)
Display * display,
char * atomjiame',
Bool only_if_exists\

display Specifies the connection to the X server.

atomjiame Specifics the name associated with the atom you want returned.

only_if_exists Specifies a Boolean value that indicates whether XInternAtom creates the
atom.

The XInternAtom function returns the atom identifier associated with the specified
atomjiame string. If only_if_exists is False, the atom is created if it does not exist. There¬
fore, XInternAtom can return None. If the atom name is not in the Host Portable Character
Encoding the result is implementation dependent. Case matters; the strings thing. Thing, and
thinG all designate different atoms. The atom will remain defined even after the client’s con¬
nection closes. It will become undefined only when the last connection to the X server closes.

XInternAtom can generate BadAlIoc and BadValue errors.

To return a name for a given atom identifier, use XGetAtomName.

char *XGetAtomName(ifop/<2y, atom)
Display * display.
Atom atom-.

51

Xlib - C Library Xll, Release 5

display Specifies the connection to the X server.

atom Specifies the atom for the property name you want returned.

The XGetAtomName function returns the name associated with the specified atom. If the
data returned by the server is in the Latin Portable Character Encoding, then the returned string
is in the Host Portable Character Encoding. Otherwise, the result is implementation dependent.
To free the resulting string, call XFree.

XGetAtomName can generate a BadAtom error.

4.4. Obtaining and Changing Window Properties

You can attach a property list to every window. Each property has a name, a type, and a
value (see section 4.3). The value is an array of 8-bit, 16-bit, or 32-bit quantities, whose
interpretation is left to the clients.

Xlib provides functions that you can use to obtain, change, update, or interchange window pro¬
perties. In addition, Xlib provides other utility functions for inter-client communication (see
chapter 14).

To obtain the type, format, and value of a property of a given window, use XGetWindowPro-
perty.

int XGetWindowPropertyfd/sp/tfy, w, property, long_ojfset, long_length, delete, reqjype,
actualjypejeturn, actualJormat_return, nitems_return, bytes jifterjeturn,
prop_return)

Display * display.
Window w;
Atom property;
long long_offset, long_length\
Bool delete'.
Atom reqjype'.
Atom * actual jypejeturn;
int * actualJormatjeturn',
unsigned long * nitems jeturn',
unsigned long *bytes_afterjeturn',
unsigned char ** prop jeturn'.

display

w

property

long_offset

Specifies the connection to the X server.

Specifies the window whose property you want to obtain.

Specifies the property name.

Specifies the offset in the specified property (in 32-bit quantities) where the
data is to be retrieved.

longjength Specifies the length in 32-bit multiples of the data to be retrieved.

delete Specifies a Boolean value that determines whether the property is deleted.

reqjype Specifies the atom identifier associated with the property type or AnyProper-
tyType.

actualJypejeturn
Returns the atom identifier that defines the actual type of the property.

actualJormatjeturn
Returns the actual format of the property.

nitems jeturn Returns the actual number of 8-bit, 16-bit, or 32-bit items stored in the
prop_retum data.

bytes _afterje turn
Returns the number of bytes remaining to be read in the property if a partial

52

Xlib - C Library XI1, Release 5

read was performed.

prop_return Returns the data in the specified format.

The XGetWindovvProperty function returns the actual type of the property; the actual format
of the property; the number of 8-bit, 16-bit, or 32-bit items transferred; the number of bytes
remaining to be read in the property; and a pointer to the data actually returned. XGetWin-
dowProperty sets the return arguments as follows:

• If the specified property docs not exist for the specified window, XGetWindowProperty
returns None to actual_typc_retum and the value zero to actual_format_rctum and
bytes_after_retum. The nitems_rctum argument is empty. In this case, the delete argu¬
ment is ignored.

• If the specified property exists but its type docs not match the specified type, XGetWin¬
dowProperty returns the actual property type to actual_type_retum, the actual property
format (never zero) to actual_format_retum, and the property length in bytes (even if the
actual_format_retum is 16 or 32) to bytes_aftcr_rctum. It also ignores the delete argu¬
ment. The nitems_retum argument is empty.

• If the specified property exists and either you assign AnyPropertyType to the req_type
argument or the specified type matches the actual property type, XGetWindowProperty
returns the actual property type to actual_type_rctum and the actual property format
(never zero) to actual_format_retum. It also returns a value to bytes_after_rctum and
nitems_retum, by defining the following values:

N = actual length of the stored property in bytes
(even if the format is 16 or 32)

1=4* long_offset
T = N - I
L = MINIMUM(T, 4 * longjcngth)
A = N - (I + L)

The returned value starts at byte index I in the property (indexing from zero), and its
length in bytes is L. If the value for long_offsct causes L to be negative, a BadValue
error results. The value of bytes_after_rctum is A, giving the number of trailing unread
bytes in the stored property.

XGetWindowProperty always allocates one extra byte in prop_rctum (even if the property is
zero length) and sets it to ASCII null so that simple properties consisting of characters do not
have to be copied into yet another string before use. If delete is True and bytes_after_retum
is zero, XGetWindowProperty deletes the property from the window and generates a Pro-
pertyNotify event on the window.

The function returns Success if it executes successfully. To free the resulting data, use
XFree.

XGetWindowProperty can generate BadAtom, BadValue, and BadWindow errors.

To obtain a given window’s property list, use XListProperties.

Atom *XListProperties(^/sp/(3y, w, num_prop_return)
Display * display.
Window w;
int *num jpropjreturn;

display Specifies the connection to the X server,

w Specifies the window whose property list you want to obtain.

num _prop_return
Returns the length of the properties array.

53

Xlib - C Library Xll, Release 5

The XListProperties function returns a pointer to an array of atom properties that are defined
for the specified window or returns NULL if no properties were found. To free the memory
allocated by this function, use XFree.

XListProperties can generate a BadWindow error.

To change a property of a given window, use XChangeProperty.

XChangeProperty{display, w, property, type, format, mode, data, nelements)
Display * display.
Window w;
Atom property, type;
int format’,
int mode;
unsigned char *data\
int nelements;

display

w

property

type

format

mode

data

nelements

Specifies the connection to the X server.

Specifies the window whose property you want to change.

Specifies the property name.

Specifies the type of the property. The X server does not interpret the type but
simply passes it back to an application that later calls XGetWindowProperty.

Specifies whether the data should be viewed as a list of 8-bit, 16-bit, or 32-bit
quantities. Possible values are 8, 16, and 32. This information allows the X
server to correctly perform byte-swap operations as necessary. If the format is
16-bit or 32-bit, you must explicitly cast your data pointer to an (unsigned char
*) in the call to XChangeProperty.

Specifies the mode of the operation. You can pass PropModeReplace, Prop-
ModePrepend, or PropModeAppend.

Specifies the property data.

Specifies the number of elements of the specified data format.

The XChangeProperty function alters the property for the specified window and causes the X
server to generate a PropertyNotify event on that window. XChangeProperty performs the
following:

• If mode is PropModeReplace, XChangeProperty discards the previous property value
and stores the new data.

• If mode is PropModePrepend or PropModeAppend, XChangeProperty inserts the
specified data before the beginning of the existing data or onto the end of the existing
data, respectively. The type and format must match the existing property value, or a
BadMatch error results. If the property is undefined, it is treated as defined with the
correct type and format with zero-length data.

The lifetime of a property is not tied to the storing client. Properties remain until explicitly
deleted, until the window is destroyed, or until the server resets. For a discussion of what hap¬
pens when the connection to the X server is closed, see section 2.6. The maximum size of a
property is server dependent and can vary dynamically depending on the amount of memory
the server has available. (If there is insufficient space, a BadAlloc error results.)

XChangeProperty can generate BadAlloc, BadAtom, BadMatch, BadValue, and
BadWindow errors.

To rotate a window’s property list, use XRotateWindowProperties.

54

Xlib - C Library XI1, Release 5

XRotateWindowProperties(d7s/?/tfy, w, properties, num_prop, impositions)
Display * display.
Window w;
Atom properties[\\
int numjrnrop',
int npositions;

display

w

properties

numjprop

npositions

Specifies the

Specifies the

Specifies the

Specifies the

Specifies the

connection to the X server,

window.

array of properties that are to be rotated,

length of the properties array,

rotation amount.

The XRotateWindowProperties function allows you to rotate properties on a window and
causes the X server to generate PropertyNotify events. If the property names in the proper¬
ties array are viewed as being numbered starting from zero and if there are nurn_prop property
names in the list, then the value associated with property name 1 becomes the value associated
with property name (I + npositions) mod N for ail 1 from zero to N - 1. The effect is to rotate
the states by npositions places around the virtual ring of property names (right for positive
npositions, left for negative npositions). If npositions mod N is nonzero, the X server gen¬
erates a PropertyNotify event for each property in the order that they are listed in the array.
If an atom occurs more than once in the list or no property with that name is defined for the
window, a BadMatch error results. If a BadAtom or BadMatch error results, no properties
are changed.

XRotateWindowProperties can generate BadAtom, BadMatch, and Bad Window errors.

To delete a property on a given window, use XDeleteProperty.

XDclctcProperty(dAp/ay, w, property)
Display * display.
Window w;
Atom property,

display Specifics the connection to the X server

w Specifies the window whose property you want to delete.

property Specifies the property name.

The XDeleteProperty function deletes the specified property only if the property was defined
on the specified window and causes the X server to generate a PropertyNotify event on the
window unless the property docs not exist.

XDeleteProperty can generate BadAtom and BadWindow errors.

4.5. Selections

Selections are one method used by applications to exchange data. By using the property
mechanism, applications can exchange data of arbitrary types and can negotiate the type of the
data. A. selection can be thought of as an indirect property with a dynamic type. That is,
rather than having the property stored in the X server, Lhe property is maintained by some
client (the owner). A selection is global in nature (considered to belong to the user but be
maintained by clients) rather than being private to a particular window subhierarchy or a partic¬
ular set of clients.

Xlib provides functions that you can use to set, get, or request conversion of selections. This
allows applications to implement the notion of current selection, which requires that
notification be sent to applications when they no longer own the selection. Applications that
support selection often highlight the current selection and so must be informed when another

55

Xlib - C Library XI1, Release 5

application has acquired the selection so that they can unhighlight the selection.

When a client asks for the contents of a selection, it specifies a selection target type. This tar¬
get type can be used to control the transmitted representation of the contents. For example, if
the selection is “the last thing the user clicked on” and that is currently an image, then the tar¬
get type might specify whether the contents of the image should be sent in XY format or Z
format.

The target type can also be used to control the class of contents transmitted, for example, ask¬
ing for the “looks” (fonts, line spacing, indentation, and so forth) of a paragraph selection, not
the text of the paragraph. The target type can also be used for other purposes. The protocol
does not constrain the semantics.

To set the selection owner, use XSetSelectionOwner.

XSetSelectionOwner(d/sp/ay, selection, owner, time)
Display * display.
Atom selection;
Window owner;

Time time;

display Specifies

selection Specifies

owner Specifies
None.

time Specifies

the connection to the X server,

the selection atom.

the owner of the specified selection atom. You can pass a window or

die time. You can pass cither a timestamp or CurrentTime.

The XSetSelectionOwner function changes the owner and last-change time for the specified
selection and has no effect if the specified time is earlier than the current last-change time of
the specified selection or is later than the current X server time. Otherwise, the last-change
time is set to the specified time, with CurrentTime replaced by the current server time. If the
owner window is specified as None, then the owner of the selection becomes None (that is,
no owner). Otherwise, the owner of the selection becomes the client executing the request.

If the new owner (whether a client or None) is not the same as the current owner of the selec¬
tion and the current owner is not None, the current owner is sent a SelectionClear event. If
the client that is the owner of a selection is later terminated (that is, its connection is closed) or
if the owner window it has specified in the request is later destroyed, the owner of the selec¬
tion automatically reverts to None, but the last-change time is not affected. The selection
atom is uninterpreted by the X server. XGetSelectionOwner returns the owner window,
which is reported in SelectionRequest and SelectionClear events. Selections are global to
the X server.

XSetSelectionOwner can generate BadAtom and BadWindow errors.

To return the selection owner, use XGetSelectionOwner.

Window XGciSclcciionOwner (display, selection)
Display * display;
Atom selection;

display Specifies the connection to the X server.

selection Specifies the selection atom whose owner you want returned.

The XGetSelectionOwner function returns the window ID associated with the window that
currently owns the specified selection. If no selection was specified, the function returns the
constant None. If None is returned, there is no owner for the selection.

XGetSelectionOwner can generate a BadAtom error.

56

Xlib - C Library XI1, Release 5

To request conversion of a selection, use XConvertSelection.

XConvertSelection{display, selection, target, property, requestor, time)
Display * display.
Atom selection, target;
Atom property.
Window requestor-.
Time time'.

display Specifics the connection to the X server.

selection Specifies the selection atom.

target Specifies the target atom.

property Specifies the property name. You also can pass None.

requestor Specifies the requestor.

time Specifies the time. You can pass either a timestamp or CurrentTime.

XConvertSelection requests that the specified selection be converted to the specified target
type:

• If the specified selection has an owner, the X server sends a SeiectionRequest event to
that owner.

• If no owner for the specified selection exists, the X server generates a SelectionNotify
event to the requestor with property None.

The arguments are passed on unchanged in either of the events. There are two predefined
selection atoms: PRIMARY and SECONDARY.

XConvertSelection can generate Bad A tom and BadWindow errors.

57

Xlib - C Library XI1, Release 5

Chapter 5

Pixmap and Cursor Functions

Once you have connected to an X server, you can use the Xlib functions to:

• Create and free pixmaps

• Create, recolor, and free cursors

5.1. Creating and Freeing Pixmaps

Pixmaps can only be used on the screen on which they were created. Pixmaps are off-screen
resources that are used for various operations, for example, defining cursors as tiling patterns
or as the source for certain raster operations. Most graphics requests can operate either on a
window or on a pixmap. A bitmap is a single bit-plane pixmap.

To create a pixmap of a given size, use XCreatePixmup.

Pixmap XCreatePixmap(^p/ay, d, width, height, depth)
Display * display,
Drawable d\
unsigned int width, height',
unsigned int depth',

display Specifies the connection to the X server.

d Specifies which screen the pixmap is created on.

width
height Specify the width and height, which define the dimensions of the pixmap.

depth Specifies the depth of the pixmap.

The XCreatePixmap function creates a pixmap of the width, height, and depth you specified
and returns a pixmap ID that identifies it. It is valid to pass an InputOnly window to the
drawable argument. The width and height arguments must be nonzero, or a BadValue error
results. The depth argument must be one of the dcpLhs supported by the screen of the
specified drawable, or a BadValue error results.

The server uses the specified drawable to determine on which screen to create the pixmap.
The pixmap can be used only on this screen and only with other drawables of the same depth
(see XCopyPIane for an exception to this rule). The initial contents of the pixmap are
undefined.

XCreatePixmap can generate BadAlIoc, BadDrawable, and BadValue errors.

To free all storage associated with a specified pixmap, use XFreePixmap.

XFreePixmap{display, pixmap)
Display * display,
Pixmap pixmap',

display Specifies the connection to the X server.

pixmap Specifies the pixmap.

The XFreePixmap function first deletes the association between the pixmap ID and the pix¬
map. Then, the X server frees the pixmap storage when there are no references to it. The pix¬
map should never be referenced again.

58

Xlib - C Library Xll, Release 5

XFreePixmap can generate a BadPixmap error.

5.2. Creating, Recoloring, and Freeing Cursors

Each window can have a different cursor defined for it. Whenever the pointer is in a visible
window, it is set to the cursor defined for that window. If no cursor was defined for that win¬
dow, the cursor is the one defined for the parent window.

From X’s perspective, a cursor consists of a cursor source, mask, colors, and a hotspot. The
mask pixmap determines the shape of the cursor and must be a depth of one. The source pix-
map must have a depth of one, and the colors determine die colors of the source. The hotspot
defines the point on the cursor that is reported when a pointer event occurs. There may be
limitations imposed by the hardware on cursors as to size and whether a mask is implemented.
XQueryBestCursor can be used to find out what sizes are possible. There is a standard font
for creating cursors, but Xlib provides functions that you can use to create cursors from an
arbitrary font, or from bitmaps.

To create a cursor from the standard cursor font, use XCreateFontCursor.

#include <X1 l/cursorfont.h>

Cursor XCreateFontCursor(c/fsp/ay, shape)
Display * display,
unsigned int shape;

display Specifies the connection to the X server.

shape Specifies the shape of the cursor.

X provides a set of standard cursor shapes in a special font named cursor. Applications are
encouraged to use this interface for their cursors because the font can be customized for the
individual display type. The shape argument specifies which glyph of the standard fonts to
use.

The hotspot comes from the information stored in the cursor font. The initial colors of a cur¬
sor are a black foreground and a white background (sec XRecolorCursor). For further infor¬
mation about cursor shapes, see appendix B.

XCreateFontCursor can generate BadAlloc and BadValue errors.

To create a cursor from font glyphs, use XCreateGlyphCursor.

Cursor XCreateGlyphCursor(dAp/ay, source Jont, maskjont, source_char, mask_char,
foreground_color, background_color)

Display * display.
Font source Jont, mask Jo nr,
unsigned int source_char, mask_char\
XColor *foreground_color\
XColor *background_color \

display Specifies the

source Jont Specifies the

mask Jont Specifies the

source char Specifies the

mask char Specifies the

foreground color
Specifies the

background color
Specifies the

connection to the X server,

font for the source glyph,

font for the mask glyph or None,

character glyph for the source,

glyph character for the mask.

RGB values for the foreground of the source.

RGB values for the background of the source.

59

Xlib - C Library XI1, Release 5

The XCreateGlyphCursor function is similar to XCreatePixmapCursor except that the
source and mask bitmaps are obtained from the specified font glyphs. The source_char must
be a defined glyph in source_font, or a BadValue error results. If mask_font is given,
mask_char must be a defined glyph in mask_font, or a BadValue error results. The
mask_font and character are optional. The origins of the source_char and mask_char (if
defined) glyphs are positioned coincidcntly and define the hotspot. The source_char and
mask_char need not have the same bounding box metrics, and there is no restriction on the
placement of the hotspot relative to the bounding boxes. If no mask_char is given, all pixels of
the source are displayed. You can free the fonts immediately by calling XFreeFont if no
further explicit references to them are to be made.

For 2-byte matrix fonts, the 16-bit value should be formed with the bytel member in the
most-significant byte and the byte2 member in the least-significant byte.

XCreateGlyphCursor can generate BadAlloc, BadFont, and BadValue errors.

To create a cursor from two bitmaps, use XCreatePixmapCursor.

Cursor XCreatePixmapCursor(dLy?/ay, source, mask, foreground_color, background_color, x, y)
Display * display,
Pixmap source',
Pixmap mask:
XColor *foreground_color\
XColor *background_color\
unsigned int x, y\

display Specifies

source Specifies

mask Specifies

foreground_color
Specifies

background_color
Specifies

x
y Specify the x and y coordinates, which indicate the hotspot relative to the

source’s origin.

The XCreatePixmapCursor function creates a cursor and returns the cursor ID associated
with it. The foreground and background RGB values must be specified using forcground_color
and background_color, even if the X server only has a StaticGray or Grayscale screen. The
foreground color is used for the pixels set to 1 in the source, and the background color is used
for the pixels set to 0. Both source and mask, if specified, must have depth one (or a Bad-
Match error results) but can have any root. The mask argument defines the shape of the cur¬
sor. The pixels set to 1 in the mask define which source pixels are displayed, and the pixels
set to 0 define which pixels are ignored. If no mask is given, all pixels of the source are
displayed. The mask, if present, must be the same size as the pixmap defined by the source
argument, or a BadMatch error results. The hotspot must be a point within the source, or a
BadMatch error results.

The components of the cursor can be transformed arbitrarily to meet display limitations. The
pixmaps can be freed immediately if no further explicit references to them are to be made.
Subsequent drawing in the source or mask pixmap has an undefined effect on the cursor. The
X server might or might not make a copy of the pixmap.

XCreatePixmapCursor can generate BadAlloc and BadPixmap errors.

To determine useful cursor sizes, use XQueryBestCursor.

the connection to the X server,

the shape of the source cursor,

the cursor’s source bits to be displayed or None.

the RGB values for the foreground of the source.

the RGB values for the background of the source.

60

Xlib - C Library XI1, Release 5

Status XQueryBestCursor{display, d, width, height, width_return, heightjeturn)
Display * display,
Drawable d\
unsigned int width, height;
unsigned int *width_return, * heightjeturn'.

display

d

width
height

Specifies the connection to the X server.

Specifies the drawable, which indicates the screen.

Specify the width and height of the cursor that you want the size information
for.

widthjeturn
height_return Return the best width and height that is closest to the specified width and

height.

Some displays allow larger cursors than other displays. The XQueryBestCursor function
provides a way to find out what size cursors are actually possible on the display. It returns the
largest size that can be displayed. Applications should be prepared to use smaller cursors on
displays that cannot support large ones.

XQueryBestCursor can generate a BadDrawable error.

To change the color of a given cursor, use XRecolorCursor.

XRecolorCursorC^p/oy, cursor, foreground jolor, background_color)
Display * display.
Cursor cursor-,
XColor *foreground_color, * background jolor \

display Specifies the connection to the X server.

cursor Specifies the cursor.

foregroundjcolor
Specifics the RGB values for the foreground of the source.

background jcolor
Specifies the RGB values for the background of the source.

The XRecolorCursor function changes the color of the specified cursor, and if the cursor is
being displayed on a screen, the change is visible immediately. Note that the pixel members of
the XColor structures are ignored, only the RGB values are used.

XRecolorCursor can generate a BadCursor error.

To free (destroy) a given cursor, use XFreeCursor.

XFreeCursor (display, cursor)
Display * display.
Cursor cursor-,

display Specifies the connection to the X server.

cursor Specifies the cursor.

The XFreeCursor function deletes the association between the cursor resource ID and the
specified cursor. The cursor storage is freed when no other resource references it. The
specified cursor ID should not be referred to again.

XFreeCursor can generate a BadCursor error.

61

Xlib - C Library XI1, Release 5

Chapter 6

Color Management Functions

Each X window always has an associated colormap that provides a level of indirection between
pixel values and colors displayed on the screen. Xlib provides functions that you can use to
manipulate a colormap. The X protocol defines colors using values in the RGB color space.
The RGB color space is device-dependent; rendering an RGB value on differing output devices
typically results in different colors. Xlib also provides a means for clients to specify color
using device-independent color spaces, for consistent results across devices. Xlib supports
device-independent color spaces derivable from the CIE XYZ color space. This includes the
CIE XYZ, xyY, L*u*v*, and L*a*b* color spaces as well as the TekHVC color space.

This chapter discusses how to:

• Create, copy, and destroy a colormap

• Specify colors by name or value

• Allocate, modify, and free color cells

• Read entries in a colormap

• Convert between color spaces

® Control aspects of color conversion

• Query the color gamut of a screen

• Add new color spaces

All functions, types, and symbols in this chapter with the prefix "Xcms" are defined in
<X11/Xcms.h>. The remaining functions and types are defined in <XI 1/Xlib.h>.

Functions in this chapter manipulate the representation of color on the screen. For each possi¬
ble value that a pixel can take in a window, there is a color cell in the colormap. For example,
if a window is 4 bits deep, pixel values 0 through 15 are defined. A colormap is a collection of
color cells. A color cell consists of a triple of red, green, and blue values. The hardware
imposes limits on the number of significant bits in these values. As each pixel is read out of
display memory, the pixel is looked up in a colormap. The RGB value of the cell determines
what color is displayed on the screen. On a grayscale display with a black-and-white monitor
the values are combined to determine the brightness on the screen.

Typically, an application allocates color cells or sets of color cells to obtain the desired colors.
The client can allocate read-only cells, in which case the pixel values for these colors can be
shared among multiple applications, and the RGB value of the cell cannot be changed. If the
client allocates read/write cells, they are exclusively owned by the client, and the color associ¬
ated with the pixel value may be changed at will. Cells must be allocated (and, if read/write,
initialized with an RGB value) by a client to obtain desired colors; use of pixel value for an
unallocated cell results in an undefined color.

Because colormaps are associated with windows, X supports displays with multiple colormaps
and, indeed, different types of colormaps. If there are not sufficient colormap resources in the
display, some windows will display in their true colors, and others will display with incorrect
colors. A window manager usually controls which windows are displayed in their true colors
if more than one colormap is required for the color resources the applications are using. At
any time, there is a set of installed colormaps for a screen. Windows using one of the
installed colormaps display with true colors, and windows using other colormaps generally
display with incorrect colors. The set of installed colormaps is controlled using Xln-
stallColormap and XUninstallColormap.

62

Xlib - C Library XI1, Release 5

Colormaps are local to a particular screen. Screens always have a default colormap, and pro¬
grams typically allocate cells out of this colormap. You should not in general write applica¬
tions that monopolize color resources. Although some hardware supports multiple colormaps
installed at one time, many of the hardware displays built today support only a single installed
colormap, so the primitives are written to encourage sharing of colormap entries between appli¬
cations.

The DefauItColormap macro returns the default colormap. The DefauItVisual macro returns
the default visual type for the specified screen. Possible visual types are StaticGray, Grays¬
cale, StaticColor, PseudoColor, TrueColor, or DirectColor (see section 3.1).

6.L Color Structures

Functions which operate only on RGB color space values use an XColor structure, which con¬
tains:

typedef struct {
unsigned long pixel; /* pixel value */
unsigned short red, green, blue;/* rgb values */
char flags; /* DoRcd, DoGreen, DoBlue */
char pad;

} XColor,

The red, green, and blue values are always in the range 0 to 65535 inclusive, independent of
the number of bits actually used in the display hardware. The server scales these values down
to the range used by the hardware. Black is represented by (0,0,0), white is represented by
(65535,65535,65535). In some functions, the flags member controls which of the red, green,
and blue members is used and can be the inclusive OR of zero or more of DoRed, DoGreen,
and DoBlue.

Functions which operate on all color space values use an XcmsColor structure. This structure
contains a union of substructures, each supporting color specification encoding for a particular
color space. Like the XColor structure, the XcmsColor structure contains pixel and color
specification information (the spec member in the XcmsColor structure).

typedef unsigned long XcmsColorFormat;/* Color Specification Format */

typedef struct {
union {

XcmsRGB RGB;
XcmsRGBi RGBi;
XcmsCIEXYZ CIEXYZ;
XcmsCIEuvY CIEuvY;
XcmsCIExyY CIExyY;
XcmsCIELab CIELab;
XcmsCIELuv CIELuv;
XcmsTekHVC TekHVC;
XcmsPad Pad;

} spec;
XcmsColorFormat format;
unsigned long pixel;

} XcmsColor, /* Xcms Color Structure */

Because the color specification can be encoded for the various color spaces, encoding for the
spec member is identified by the format member, which is of type XcmsColorFormat. The
following macros define standard formats.

63

Xlib - C Library XI1, Release 5

#define XcmsUndefinedFormat 0x00000000
#define XcmsCIEXYZFormat 0x00000001 /* CIE XYZ */
#define XcmsCIEuvYFormat 0x00000002 /* CIE u’v'Y */
#define XcmsCIExyYFormat 0x00000003 /* CIE xyY */
#define XcmsCIELabFormat 0x00000004 /* CIE L*a*b* */
#define XcmsCIELuvFormat 0x00000005 /* CIE L*u*v* */
#define XcmsTekH VC Format 0x00000006 /* TekHVC */
#define XcmsRGBFormat 0x80000000 /* RGB Device */
#define XcmsRGBiFormat 0x80000001 /* RGB Intensity */

Note that formats for device-independent color spaces are distinguishable from those for
device-dependent spaces by the 32nd bit. If this bit is set, it indicates that the color
specification is in a device-dependent form; otherwise, it is in a device-independent form. If
the 31st bit is set, this indicates that the color space has been added to Xlib at run-time (see
section 6.12.4). The format value for a color space added at run-time may be different each
time the program is executed. If references to such a color space must be made outside the
client (for example, storing a color specification in a file), then reference should be made by
colorspace string prefix (see XcmsFormatOfPrefix and XemsPrefixOfFormat).

Data types that describe the color specification encoding for the various color spaces are
defined as follows:

typedef double XcmsFloat;

typedef struct {
unsigned short red; /* 0x0000 to Oxffff
unsigned short green; /* 0x0000 to Oxffff
unsigned short blue; /* 0x0000 to Oxffff

} XcmsRGB; /* RGB Device */

typedef struct {
XcmsFloat red; /* 0.0 to 1.0 */
XcmsFloat green; /* 0.0 to 1.0 */
XcmsFloat blue; /* 0.0 to 1.0 */

} XcmsRGBi; /* RGB Intensity */

typedef struct {
XcmsFloat X;
XcmsFloat Y; /* 0.0 to 1.0 */
XcmsFloat Z;

} XcmsCIEXYZ; /* CIE XYZ */

typedef struct {
XcmsFloat u_prime; /* 0.0 to '0.6 */
XcmsFloat v_prime; /* 0.0 to '0.6 */
XcmsFloat Y; /* 0.0 to 1.0 */

} XcmsCIEuvY; /* CIE u’v’Y */

typedef struct {
XcmsFloat x; /* 0.0 to ' .75 */
XcmsFloat y; /* 0.0 to '.85 */
XcmsFloat Y; /* 0.0 to 1.0 */

} XcmsCIExyY; /* CIE xyY */

typedef struct {
XcmsFloat L star, /* 0.0 to 100.0 */
XcmsFloat a star.

64

Xlib - C Library XI1, Release 5

XcmsFloat b_star.
} XcmsClELab; /* CIE L*a*b* */

typedef struct {
XcmsFloat L_star, /* 0.0 to 100.0 */
XcmsFloat u__star.
XcmsFloat v star.

} XcmsCIELuv; /* CIE L*u*v* 7

typedef struct {
XcmsFloat H; /* 0.0 to 360.0 7
XcmsFloat V; /* 0.0 to 100.0 7
XcmsFloat C; /* 0.0 to 100.0 7

} XcmsTekHVC; /* TckHVC */

typedef struct {
XcmsFloat padO;
XcmsFloat padl;
XcmsFloat pad2;
XcmsFloat pad3;

} XcmsPad; /* four doubles 7

The device-dependent formats provided allow color specification in:

• RGB Intensity (XcmsRGBi)

Red, green, and blue linear intensity values, floating point values from 0.0 to 1.0, where
1.0 indicates full intensity, 0.5 half intensity, and so on.

• RGB Device (XcmsRGB)

Red, green, and blue values appropriate for the specified output device. XcmsRGB
values are of type unsigned short, scaled from 0 to 65535 inclusive, and are interchange¬
able with values the red, green, and blue values in an XColor structure.

It is important to note that RGB Intensity values arc not gamma corrected values. In contrast,
RGB Device values generated as a result of converting color specifications are always gamma
corrected, and RGB Device values acquired as a result of querying a colormap or passed in by
the client are assumed by Xlib to be gamma corrected. The term “RGB value” in this manual
always refers to an RGB Device value.

6.2. Color Strings

Xlib provides a mechanism for using string names for colors. A color string may either con¬
tain an abstract color name or a numerical color specification. Color strings are case-
insensitive.

Color strings are used in the following functions:

® XAllocNamedCoIor

® XcmsAUocNamedColor

• XLookupColor

® XcmsLookupCoIor

® XParseColor

• XStoreNamedColor

Xlib supports the use of abstract color names, for example, "red", "blue". A value for this
abstract name is obtained by searching one or more color name databases. Xlib first searches
zero or more client-side databases; the number, location, and content of these databases is
implementation dependent, and might depend on the current locale. If the name is not found,

65

Xlib - C Library XI1, Release 5

Xlib then looks for the color in the X server’s database. If the color name is not in the Host
Portable Character Encoding the result is implementation dependent.

A numerical color specification consists of a color space name and a set of values in the fol¬
lowing syntax:

<color_space_name>:<value>/.../<value>

The following are examples of valid color strings.

"CIEXYZ:0.3227/0.28133/0.2493”
"RGBi:1.0/0.0/0.0"
"rgb:00/ff/00"
"CIELuv:50.0/0.0/0.0"

The syntax and semantics of numerical specifications are given for each standard color space in
sections below.

6.2.1. RGB Device String Specification

An RGB Device specification is identified by the prefix "rgb:" and conforms to the following
syntax:

rg b: <red>l<g re en>/<blu e>

<red>, <green>, <blue> := h I hh I hhh I hhhh
h := single hexadecimal digits (case insignificant)

Note that h indicates the value scaled in 4 bits, hh the value scaled in 8 bits, hhh the value
scaled in 12 bits, and hhhh the value scaled in 16 bits, respectively.

Typical examples are "rgb:ca/75/52" and ”rgb:ccc/320/320", but mixed numbers of hex digits
("rgb:ff/a5/0" and "rgb:ccc/32/0") are also allowed.

For backward compatibility, an older syntax for RGB Device is supported, but its continued
use is not encouraged. The syntax is an initial sharp sign character followed by a numeric
specification, in one of the following formats:

#RGB (4 bits each)
#RRGGBB (8 bits each)
#RRRGGGBBB (12 bits each)
#RRRRGGGGBBBB (16 bits each)

The R, G, and B represent single hexadecimal digits. When fewer than 16 bits each are
specified, they represent the most-significant bits of the value (unlike the "rgb:" syntax, in
which values are scaled). For example, #3a7 is the same as #3000a0007000.

6.2.2. RGB Intensity String Specification

An RGB intensity specification is identified by the prefix "rgbi:" and conforms to the following
syntax:

rgbi :<red>/<green>/<blue>

Note that red, green, and blue are floating point values between 0.0 and 1.0, inclusive. The
input format for these values is an optional sign, a string of numbers possibly containing a
decimal point, and an optional exponent field containing an E or e followed by a possibly
signed integer string.

6.2.3. Device-Independent String Specifications

The standard device-independent string specifications have the following syntax:

66

Xlib - C Library XI1, Release 5

CIEXYZ :<X>/<Y>I<Z>
CIEuvY:<w>/<v>/<L>
CIExy Y :<x>l<y>/<Y>
CIELab:<L>/<a>/</?>
CIELu v:<L>/<u>/<v>
TekHVC:<//>/<K>/<C>

All of the values (C, H, V, X, Y, Z, a, b, u, v, y, x) are floating point values. The syntax for
these values is an optional ’+’ op sign, a string of digits possibly containing a decimal point,
and an optional exponent field consisting of an ’E’ or ’e’ followed by an optional ’+’ or
followed by a string of digits.

6.3. Color Conversion Contexts and Gamut Mapping

When Xlib converts device-independent color specifications into device-dependent
specifications and vice-versa, it uses knowledge about the color limitations of the screen
hardware. This information, typically called the device profile, is available in a Color Conver¬
sion Context (hereafter referred to as the CCC).

Because a specified color may be outside the color gamut of the target screen and the white
point associated with the color specification may differ from the white point inherent to the
screen, Xlib applies gamut mapping when certain conditions are encountered:

• Gamut compression when conversion of dcvicc-indcpcndcnt color specifications to
device-dependent color specification results in a color out of the target screen’s gamut.

• White adjustment when the inherent while point of the screen differs from the white
point assumed by the client.

Gamut handling methods are stored as callbacks in the CCC, which, in aim, are used by the
color space conversion routines. Client data is also stored in the CCC for each callback. The
CCC also contains the white point the client assumes to be associated with color specifications
(that is, the Client White Point). The client can specify the gamut handling callbacks and
client data, as well the Client White Point. Note that Xlib does not preclude the X client from
performing other forms of gamut handling (for example, gamut expansion); however, direct
support for gamut handling other than white adjustment and gamut compression is not provided
by Xlib.

Associated with each colormap is an initial CCC transparently generated by Xlib. Therefore,
when you specify a colormap as an argument to an Xlib function, you are indirectly specifying
a CCC. There is a default CCC associated with each screen. Newly created CCCs inherit
attributes from the default CCC, so the default CCC attributes can be modified to affect new
CCCs.

Xcms functions in which gamut mapping can occur return Status, and have specific status
values defined for them:

• XcmsFailure indicates that the function failed.

• XcmsSuccess indicates that the function succeeded. In addition, if the function per¬
formed any color conversion, the color (or colors) did not need to be compressed.

• XcmsSuccess Wit hCompression indicates the function performed color conversion, and
at least one of the colors needed to be compressed. The gamut compression method is
determined by the gamut compression procedure in the CCC that is specified directly as
a function argument, or in the CCC indirectly specified by means of the colormap argu¬
ment.

6.4. Creating, Copying, and Destroying Colormaps

To create a colormap for a screen, use XCreateColormap.

67

Xlib - C Library Xll, Release 5

Colormap XGreateColonmap(J/.vp/ay, w, visual, alloc)
Display * display.
Window w;
Visual * visual',
int alloc,

display Specifies the connection to the X server.

w Specifies the window on whose screen you want to create a colormap.

visual Specifies a visual type supported on the screen. If the visual type is not one
supported by the screen, a BudMatch error results.

alloc Specifies the colormap entries to be allocated. You can pass AllocNone or
AllocAll.

The XCreateColormap function creates a colormap of the specified visual type for the screen
on which the specified window resides and returns the colormap ID associated with it. Note
that the specified window is only used to determine the screen.

The initial values of the colormap entries are undefined for the visual classes Grayscale,
PseudoColor, and DirectColor. For StaticGray, StaticColor, and TrueColor, the entries
have defined values, but those values are specific to the visual and are not defined by X. For
StaticGray, StaticColor, and TrueColor, alloc must be AllocNone, or a BadMatch error
results. For the other visual classes, if alloc is AllocNone, the colormap initially has no allo¬
cated entries, and clients can allocate them. For information about the visual types, see section
3.1.

If alloc is AllocAll, the entire colormap is allocated writable. The initial values of all allo¬
cated entries are undefined. For Grayscale and PseudoColor, the effect is as if an XAlloc-
CoIorCells call returned all pixel values from zero to N - 1, where N is the colormap entries
value in the specified visual. For DirectColor, the effect is as if an XAlIocColorPlanes call
returned a pixel value of zero and red_mask, grccn_mask, and blue_mask values containing the
same bits as the corresponding masks in the specified visual. However, in all cases, none of
these entries can be freed by using XFreeColors.

XCreateColormap can generate BadAIIoc, BadMatch, BadValue, and BadWindovv errors.

To create a new colormap when the allocation out of a previously shared colormap has failed
because of resource exhaustion, use XCopyColormapAndFree.

Colormap XCopyColormapAndFree {display, colormap)
Display * display,
Colormap colormap',

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XCopyColormapAndFree function creates a colormap of the same visual type and for
the same screen as the specified colormap and returns the new colormap ID. It also moves all
of the client’s existing allocation from the specified colormap to the new colormap with their
color values intact and their read-only or writable characteristics intact and frees those entries
in the specified colormap. Color values in other entries in the new colormap are undefined. If
the specified colormap was created by the client with alloc set to AllocAll, the new colormap
is also created with AllocAll, all color values for all entries are copied from the specified
colormap, and then all entries in the specified colormap are freed. If the specified colormap
was not created by the client with AllocAll, the allocations to be moved are all those pixels
and planes that have been allocated by the client using XAliocColor, XAlIocNamedCoIor,
XAllocColorCells, or XAlIocColorPlanes and that have not been freed since they were allo¬
cated.

68

Xlib - C Library XI1, Release 5

XCopyCoIormapAndFree can generate BadAlloc and BadColor errors.

To destroy a colormap, use XFreeColormap.

XFreeColormap(dB/?/ay, colormap)
Display * display,
Colormap colormap',

display Specifies the connection to the X server.

colormap Specifies the colormap that you want to destroy.

The XFreeColormap function deletes the association between the colormap resource ID and
the colormap and frees the colormap storage. However, this function has no effect on the
default colormap for a screen. If the specified colormap is an installed map for a screen, it is
uninstalled (see XUninstallColormap). If the specified colormap is defined as the colormap
for a window (by XCreateWindow, XSetWindovvCoIormap, or XChangeWindowAttri-
butes), XFreeColormap changes the colormap associated with the window to None and gen¬
erates a ColormapNotify event. X does not define the colors displayed for a window with a
colormap of None.

XFreeColormap can generate a BadColor error.

6.5. Mapping Color Names to Values

To map a color name to an RGB value, use XLookupColor.

Status XLookupColor(^wp/ay, colormap, color jiame, exact_def_return, screen_def_return)
Display * display,
Colormap colormap',
char * color_name\
XColor * exactjiefjeturn, * screen jiefjeturn;

display Specifies the connection to the X server.

colormap Specifies the colormap.

colorjiame Specifies the color name string (for example, red) whose color definition struc¬
ture you want returned.

exactjdefjeturnRctums the exact RGB values.

screen jiefjeturn
Returns the closest RGB values provided by the hardware.

The XLookupColor function looks up the string name of a color with respect to the screen
associated with the specified colormap. It returns both the exact color values and the closest
values provided by the screen with respect to the visual type of the specified colormap. If the
color name is not in the Host Portable Character Encoding the result is implementation depen¬
dent. Use of uppercase or lowercase does not matter. XLookupColor returns nonzero if the
name is resolved, otherwise it returns zero.

XLookupColor can generate a BadColor error.

To map a color name to just the exact RGB value, use XParseColor.

Status XParseColor {display, colormap, spec, exact jiefjeturn)
Display *display,
Colormap colormap',
char *spec,
XColor * exact jiefjeturn'.

69

Xlib - C Library Xll, Release 5

display Specifies the connection to the X server.

colormap Specifies the colormap.

spec Specifies the color name string; case is ignored.

exact_def_returnRcturns the exact color value for later use and sets the DoRed, DoGreen,
and DoBlue flags.

The XParseColor function looks up the string name of a color with respect to the screen asso¬
ciated with the specified colormap. It returns the exact color value. If the color name is not in
the Host Portable Character Encoding the result is implementation dependent. Use of upper¬
case or lowercase does not matter. XParseColor returns nonzero if the name is resolved, oth¬
erwise it returns zero.

XParseColor can generate a BadColor error.

To map a color name to a value in an arbitrary color space, use XcmsLookupCoIor.

Status XcmsLookupCoIor(display, colormap, color_string, color_exact_return, color_screen_return,
result Jormat)

Display * display,
Colormap colormap;
char * color_string\
XcmsColor * colorjexact_return, * color_screen_return\
XcmsColorFormat result Jormat',

display Specifies the connection to the X seiwcr.

colormap Specifies the colormap.

color_string Specifies the color string.

color_exact_return
Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color name database.

color_screen_return
Returns the color that can be reproduced on the Screen.

resultJormat Specifies the color format for the returned color specifications
(color_screen_rctum and color_exact_rctum arguments). If format is
XcnisUndefinedFormat and the color string contains a numerical color
specification, the specification is returned in the format used in that numerical
color specification. If format is XcnisUndefinedFormat and the color string
contains a color name, the specification is returned in the format used to store
the color in the database.

The XcmsLookupCoIor function looks up the string name of a color with respect to the
screen associated with the specified colormap. It returns both the exact color values and the
closest values provided by the screen with respect to the visual type of the specified colormap.
The values are returned in the format specified by rcsult_format. If the color name is not in
the Host Portable Character Encoding the result is implementation dependent. Use of upper¬
case or lowercase does not matter. XcmsLookupCoIor returns XcmsSuccess or XcmsSuc-
cessWithCompression if the name is resolved, otherwise it returns XcmsFaiiure. If
XcmsSuccessWithCompression is restumed, then the color specification in
color_screen_return is the result of gamut compression.

6.6. Allocating and Freeing Color Cells

There are two ways of allocating color cells: explicitly as read-only entries, one pixel value at
a time, or read/write, where you can allocate a number of color cells and planes simultane¬
ously. A read-only cell has its RGB value set by the server. Rcad/write cells do not have
defined colors initially; functions described in the next section must be used to store values

70

Xlib - C Library XI1, Release 5

into them. Although it is possible for any client to store values into a read/write cell allocated
by another client, read/write cells normally should be considered private to the client that allo¬
cated them.

Read-only colormap cells are shared among clients. The server counts each allocation and free
of the cell by clients. When the last client frees a shared cell, the cell is finally deallocated.
Note that if a single client allocates the same read-only cell multiple times, the server counts
each such allocation, not just the first one.

To allocate a read-only color cell with an RGB value, use XAlIocColor,

Status XAllocColor(^wp/ay, colormap, screen_in_out)
Display * display,
Colormap colormap;
XColor * screen Jn_out\

display Specifies the connection to the X server.

colormap Specifies the colormap.

screen_in_out Specifies and returns the values actually used in the colormap.

The XAlIocColor function allocates a read-only colormap entry corresponding to the closest
RGB value supported by the hardware. XAlIocColor returns the pixel value of the color
closest to the specified RGB elements supported by the hardware and returns the RGB value
actually used. The corresponding colormap cell is read-only. In addition, XAlIocColor
returns nonzero if it succeeded or zero if it failed. Multiple clients that request the same
effective RGB value can be assigned the same read-only entry, thus allowing entries to be
shared. When the last client deallocates a shared cell, it is deallocated. XAlIocColor does not
use or affect the flags in the XColor structure.

XAlIocColor can generate a BadColor error.

To allocate a read-only color cell with a color in arbitrary format, use XcmsAllocColor.

Status XcmsAllocColor {display, colormap, color_in_out, resultJormat)
Display * display,
Colormap colormap-,
XcmsColor * colorJn_out\
XcmsColorFormat resultJormat',

display

colormap

color_in_out

result Jormat

Specifies the connection to the X server.

Specifies the colormap.

Specifies the color to allocate and returns the pixel and color that is actually
used in the colormap.

Specifics the color format for the returned color specification.

The XcmsAllocColor function is similar to XAlIocColor except the color can be specified in
any format. The XcmsAllocColor function ultimately calls XAlIocColor to allocate a read¬
only color cell (colormap entry) with the specified color. XcmsAllocColor first converts the
color specified to an RGB value and then passes this to XAlIocColor. XcmsAllocColor
returns the pixel value of the color cell and the color specification actually allocated. This
returned color specification is the result of converting the RGB value returned by XAlIocColor
into the format specified with the result_format argument. If there is no interest in a returned
color specification, unnecessary computation can be bypassed if result_format is set to
XcmsRGBFormat. The corresponding colormap cell is read-only. If this routine returns
XcmsFailure, the color_in_out color specification is left unchanged.

XcmsAllocColor can generate a BadColor error.

71

Xlib - C Library Xll, Release 5

To allocate a read-only color cell using a color name, and return the closest color supported by
the hardware in RGB format, use XAllocNamedColor.

Status XAllocNamedColor(^p/ay, colormap, color _name, screen jlefjeturn, exact_def_return)
Display * display,
Colormap colormap',
char * color_name‘,
XColor *screen_def_return, * exact_def_re turn',

display Specifies the connection to the X server.

colormap Specifies the colormap.

color_name Specifies the color name string (for example, red) whose color definition struc¬
ture you want returned.

screen _defjreturn
Returns the closest RGB values provided by the hardware.

exact_def_returnRctums the exact RGB values.

The XAllocNamedColor function looks up the named color with respect to the screen that is
associated with the specified colormap. It returns both the exact database definition and the
closest color supported by the screen. The allocated color cell is read-only. The pixel value is
returned in screen_dcf_retum. If the color name is not in the Host Portable Character Encod¬
ing the result is implementation dependent. Use of uppercase or lowercase does not matter.
XLookupColor returns nonzero if a cell is allocated, otherwise it returns zero.

XAllocNamedColor can generate a BadColor error.

To allocate a read-only color cell using a color name, and return the closest color supported by
the hardware in an arbitrary format, use XcmsAllocNamedColor.

Status XcmsAllocNamedColor {display, colormap, color_string, resultJormat, color_screen_retun
color_exact_return)

Display * display,
Colormap colormap',
char * color _string\
XcmsColorFormat result Jormat',
XcmsColor * color_screen_return\
XcmsColor * color exact return'.

display

colormap

color_string

result Jormat

Specifies the connection to the X server.

Specifies the colormap.

Specifies the color string whose color definition structure is to be returned.

Specifies the color format for the returned color specifications
(color_scrcen_rctum and color_exact_rctum arguments). If format is
XcmsUndefinedFormat and the color string contains a numerical color
specification, the specification is returned in the format used in that numerical
color specification. If format is XcmsUndefinedFormat and the color string
contains a color name, the specification is returned in the format used to store
the color in the database.

color_screen_return
Returns the pixel value of the color cell and color specification that actually is
stored for that cell.

color_exactjreturn
Returns the color specification parsed from the color string or parsed from the
corresponding string found in a color name database.

72

Xlib - C Library XI1, Release 5

The XcmsAHocNamedColor function is similar to XAllocNamedColor except the color
returned can be in any format specified. This function ultimately calls XAllocColor to allo¬
cate a read-only color cell with the color specified by a color string. The color string is parsed
into an XcmsColor structure (see XcmsLookupColor), converted to an RGB value, then
finally passed to the XAllocColor. If the color name is not in the Host Portable Character
Encoding the result is implementation dependent. Use of uppercase or lowercase does not
matter.

This function returns both the color specification as a result of parsing (exact specification) and
the actual color specification stored (screen specification). This screen specification is the
result of converting the RGB value returned by XAllocColor into the format specified in
result_format. If there is no interest in a returned color specification, unnecessary computation
can be bypassed if result_format is set to XcmsRGBFormat.

XcmsAHocNamedColor can generate a BadCoIor error.

To allocate read/write color cell and color plane combinations for a PseudoColor model, use
XAllocColorCells.

Status XAllocColorCells {display, colormap, contig, plane_masks_return, nplanes,
pixels_return, npixels)

Display * display,
Colormap colormap;
Bool contig;
unsigned long planejnasks_return[}\
unsigned int nplanes;
unsigned long pixels_return[];
unsigned int npixels',

display Specifies the connection to the X server.

colormap Specifies the colormap.

contig Specifies a Boolean value that indicates whether the planes must be contiguous.

plane _mask_return
Returns an array of plane masks.

nplanes Specifies the number of plane masks that are to be returned in the plane masks
array.

pixels jetum Returns an array of pixel values.

npixels Specifies the number of pixel values that are to be returned in the pixels_retum
array.

The XAllocColorCells function allocates read/write color cells. The number of colors must be
positive and the number of planes nonnegative, or a BadValue error results. If ncolors and
nplanes are requested, then ncolors pixels and nplane plane masks are returned. No mask will
have any bits set to 1 in common with any other mask or with any of the pixels. By ORing
together each pixel with zero or more masks, ncolors * 2np,anes distinct pixels can be produced.
All of these are allocated writable by the request. For GrayScale or PseudoColor, each mask
has exactly one bit set to 1. For DirectColor, each has exactly three bits set to 1. If contig is
True and if all masks are ORed together, a single contiguous set of bits set to 1 will be
formed for GrayScale or PseudoColor and three contiguous sets of bits set to 1 (one within
each pixel subfield) for DirectColor. The RGB values of the allocated entries are undefined.
XAllocColorCells returns nonzero if it succeeded or zero if it failed.

XAllocColorCells can generate BadCoIor and BadValue errors.

To allocate read/write color resources for a DirectColor model, use XAUocColorPlanes.

73

Xlib - C Library Xll, Release 5

Status XAllocColorPlanes(tfo/?/ay, colormap, contig, pixels_return, ncolors, nreds, ngreens,
nblues, rmask_return, gmask_return, bmask_return)

Display * display,
Colormap colormap;
Bool contig-,
unsigned long pixels_return[}\
int ncolors',
int nreds, ngreens, nblues;
unsigned long *rmask_return, *gmask_return, *bmask_return\

display

colormap

contig

pixels_return

ncolors

nreds
ngreens
nblues

Specifies the connection to the X server.

Specifies the colormap.

Specifies a Boolean value that indicates whether the planes must be contiguous.

Returns an array of pixel values. XAllocCoIorPlanes returns the pixel values
in this array.

Specifies the number of pixel values that are to be returned in the pixels_retum
array.

Specify the number of red, green, and blue planes. The value you pass must
be nonnegative.

rmask_return
gmaskjreturn
bmaskjeturn Return bit masks for the red, green, and blue planes.

The specified ncolors must be positive; and nreds, ngreens, and nblues must be nonnegative, or
a BadValue error results. If ncolors colors, nreds reds, ngreens greens, and nblues blues are
requested, ncolors pixels are returned; and the masks have nreds, ngreens, and nblues bits set
to 1, respectively. If contig is True, each mask will have a contiguous set of bits set to 1.
No mask will have any bits set to 1 in common with any other mask or with any of the pixels.
For DirectColor, each mask will lie within the corresponding pixel subfield. By ORing
together subsets of masks with each pixel value, ncolors * 2(nreds+ngreens+nhlu£s) distinct pixel
values can be produced. All of these are allocated by the request. However, in the colormap,
there are only ncolors * 2"eds independent red entries, ncolors * 2ngreens independent green
entries, and ncolors * 2nblues independent blue entries. 'This is true even for PseudoColor.
When the colormap entry of a pixel value is changed (using XStoreColors, XStoreColor, or
XStoreNamedColor), the pixel is decomposed according to the masks, and the corresponding
independent entries are updated. XAllocCoIorPlanes returns nonzero if it succeeded or zero if
it failed.

XAllocCoIorPlanes can generate BadCoIor and BadValue errors.

To free colormap cells, use XFreeColors.

XFreeColors (display, colormap, pixels, npixels, planes)
Display * display,
Colormap colormap-,
unsigned long pixels[\,
int npixels-,
unsigned long planes-,

display Specifies the connection to the X server.

colormap Specifies the colormap.

74

Xlib - C Library Xll, Release 5

pixels Specifies an array of pixel values that map to the cells in the specified color-
map.

npixels Specifies the number of pixels.

planes Specifies the planes you want to free.

The XFreeCoIors function frees the cells represented by pixels whose values are in-the pixels
array. The planes argument should not have any bits set to 1 in common with any of the pix¬
els. The set of all pixels is produced by ORing together subsets of the planes argument with
the pixels. The request frees all of these pixels that were allocated by the client (using XA1-
IocColor, XAlIocNamedColor, XAlIocCoIorCells, and XAllocColorPlanes). Note that free¬
ing an individual pixel obtained from XAllocColorPlanes may not actually allow it to be
reused until all of its related pixels are also freed. Similarly, a read-only entry is not actually
freed until it has been freed by all clients, and if a client allocates the same read-only entry
multiple times, it must free the entry that many times before the entry is actually freed.

All specified pixels that are allocated by the client in the colormap are freed, even if one or
more pixels produce an error. If a specified pixel is not a valid index into the colormap, a
BadValue error results. If a specified pixel is not allocated by the client (that is, is unallo¬
cated or is only allocated by another client), or if the colormap was created with all entries
writable (by passing Alloc All to XCreateCoIormap), a BadAccess error results. If more than
one pixel is in error, the one that gets reported is arbitrary.

XFreeCoIors can generate BadAccess, BadColor, and BadValue errors.

6.7. Modifying and Querying Colormap Cells

To store an RGB value in a single colormap cell, use XStoreColor.

XStoreColor(display, colormap, color)
Display * display,
Colormap colormap;
XColor *color\

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the pixel and RGB values.

The XStoreColor function changes the colormap entry of the pixel value specified in the pixel
member of the XColor structure. You specified this value in the pixel member of the XColor
structure. This pixel value must be a read/write cell and a valid index into the colormap. If a
specified pixel is not a valid index into the colormap, a BadValue error results. XStoreColor
also changes the red, green, and/or blue color components. You specify which color com¬
ponents are to be changed by setting DoRed, DoGreen, and/or DoBlue in the flags member
of the XColor structure. If the colormap is an installed map for its screen, the changes are
visible immediately.

XStoreColor can generate BadAccess, BadColor, and BadValue errors.

To store multiple RGB values into multiple colormap cells, use XStoreColors.

XStoreColors(6fap/oy, colormap, color, ncolors)
Display * display,
Colormap colormap;
XColor color [];
int ncolors;

display Specifies the connection to the X server.

75

Xlib - C Library Xll, Release 5

colormap Specifies the colormap.

color Specifies an array of color definition structures to be stored.

ncolors Specifies the number of XColor structures in the color definition array.

The XStoreColors function changes the colormap entries of the pixel values specified in the
pixel members of the XColor structures. You specify which color components are to be
changed by setting DoRed, DoGreen, and/or DoBIue in the flags member of the XColor
structures. If the colormap is an installed map for its screen, the changes are visible immedi¬
ately. XStoreColors changes the specified pixels if they are allocated writable in the color-
map by any client, even if one or more pixels generates an error. If a specified pixel is not a
valid index into the colormap, a BadValue error results. If a specified pixel either is unallo¬
cated or is allocated read-only, a BadAccess error results. If more than one pixel is in error,
the one that gets reported is arbitrary.

XStoreColors can generate BadAccess, BadColor, and BadValue errors.

To store a color of arbitrary format in a single colormap cell, use XcmsStoreCoIor.

Status XcmsStoreCo\or(display, colormap, color)
Display * display,
Colormap colormap;
XcmsColor *color\

display Specifies the connection to the X server.

colormap Specifies the colormap.

color Specifies the color cell and the color to store. Values specified in this
XcmsColor structure remain unchanged upon return.

The XcmsStoreCoIor function converts the color specified in the XcmsColor structure into
RGB values and then uses this RGB specification in an XColor structure, whose three flags
(DoRed, DoGreen, and DoBIue) are set, in a call to XStoreCoIor to change the color cell
specified by the pixel member of the XcmsColor structure. This pixel value must be a valid
index for the specified colormap, and the color cell specified by the pixel value must be a
read/write cell. If the pixel value is not a valid index, a BadValue error results. If the color
cell is unallocated or is allocated read-only, a BadAccess error results. If the colormap is an
installed map for its screen, the changes are visible immediately.

Note that XStoreCoIor has no return value; therefore, a XcmsSuccess return value from this
function indicates that the conversion to RGB succeeded and the call to XStoreCoIor was
made. To obtain the actual color stored, use XcmsQueryCoIor. Due to the screen’s hardware
limitations or gamut compression, the color stored in the colormap may not be identical to the
color specified.

XcmsStoreCoIor can generate BadAccess, BadColor, and BadValue errors.

To store multiple colors of arbitrary format into multiple colormap cells, use
XcmsStoreCoIors.

Status XcmsStoreCoIors {display, colormap, colors, ncolors, compression Jlagsjeturn)
Display * display,
Colormap colormap',
XcmsColor colors[];
int ncolors',
Bool compression Jlags_return [];

display Specifies the connection to the X server.

colormap Specifies the colormap.

76

Xlib - C Library XI1, Release 5

colors Specifies the color specification array of XcmsCoIor structures, each specify¬
ing a color cell and the color to store in that cell. Values specified in the array
remain unchanged upon return.

ncolors Specifies the number of XcmsCoIor structures in the color specification array.

compression Jlags jreturn
Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, each element of the array is set to True if the
corresponding color was compressed, and False otherwise. Pass NULL if the
compression status is not useful.

The XcmsStoreColors function converts the colors specified in the array of XcmsCoIor struc¬
tures into RGB values and then uses these RGB specifications in an XCoIor structures, whose
three flags (DoRed, DoGreen, and DoBlue) are set, in a call to XStoreColors to change the
color cells specified by the pixel member of the corresponding XcmsCoIor structure. Each
pixel value must be a valid index for the specified colormap, and the color cell specified by
each pixel value must be a read/write cell. If a pixel value is not a valid index, a BadValue
error results. If a color cell is unallocated or is allocated read-only, a BadAccess error results.
If more than one pixel is in error, the one that gets reported is arbitrary. If the colormap is an
installed map for its screen, the changes are visible immediately.

Note that XStoreColors has no return value; therefore, a XcmsSuccess return value from this
function indicates that conversions to RGB succeeded and the call to XStoreColors was made.
To obtain the actual colors stored, use XcmsQueryCoIors. Due to the screen’s hardware limi¬
tations or gamut compression, the colors stored in the colormap may not be identical to the
colors specified.

XcmsStoreColors can generate BadAccess, BadColor, and BadValue errors.

To store a color specified by name in a single colormap cell, use XStoreNamedColor.

XStoreNamedColor{display, colormap, color, pixel, flags)
Display * display,
Colormap colormap-,
char * color-,
unsigned long pixel',
int flags-.

display

colormap

color

pixel

flags

Specifies the connection to the X server.

Specifies the colormap.

Specifies the color name string (for example, red).

Specifies the entry in the colormap.

Specifies which red, green, and blue components are set.

The XStoreNamedColor function looks up the named color with respect to the screen associ¬
ated with the colormap and stores the result in the specified colormap. The pixel argument
determines the entry in the colormap. The flags argument determines which of the red, green,
and blue components are set. You can set this member to the bitwise inclusive OR of the bits
DoRed, DoGreen, and DoBlue. If the color name is not in the Host Portable Character
Encoding the result is implementation dependent. Use of uppercase or lowercase does not
matter. If the specified pixel is not a valid index into the colormap, a BadValue error results.
If the specified pixel either is unallocated or is allocated read-only, a BadAccess error results.

XStoreNamedColor can generate BadAccess, BadColor, BadName, and BadValue errors.

The XQueryCoIor and XQueryCoIors functions take pixel values in the pixel member of
XCoIor structures, and store in the structures the RGB values for those pixels from the
specified colormap. The values returned for an unallocated entry are undefined. These func¬
tions also set the flags member in the XCoIor structure to all three colors. If a pixel is not a

77

Xlib - C Library XI1, Release 5

valid index into the specified colormap, a BadValue error results. If more than one pixel is in
error, the one that gets reported is arbitrary.

To query the RGB value of a single colormap cell, use XQueryColor.

XQueryColorC^wp/ay, colormap, def_in_out)
Display * display,
Colormap colormap;
XColor *def_in_out\

display Specifies the connection to the X server.

colormap Specifies the colormap.

def_in_out Specifies and returns the RGB values for the pixel specified in the structure.

The XQueryColor function returns the current RGB value for the pixel in the XColor struc¬
ture and sets the DoRed, DoGreen, and DoBIue flags.

XQueryColor can generate BadColor and BadValue errors.

To query the RGB values of multiple colormap cells, use XQueryColors.

XQueryColors(display, colormap, defs_in_out, ncolors)
Display * display,
Colormap colormap;
XColor defsJn_out[];
int ncolors;

display Specifies the connection to the X server.

colormap Specifies the colormap.

defs_in_out Specifies and returns an array of color definition structures for the pixel
specified in the structure.

ncolors Specifies the number of XColor structures in the color definition array.

The XQueryColors function returns the RGB value for each pixel in each XColor structure,
and sets the DoRed, DoGreen, and DoBIue flags in each structure.

XQueryColors can generate BadColor and BadValue errors.

To query the color of a single colormap cell in an arbitrary format, use XcmsQueryColor.

Status XcmsQuery Color {display, colormap, color_in_out, resultJormat)
Display * display,
Colormap colormap',
XcmsColor * color Jn_out\
XcmsColorFormat resultJormat',

display Specifies the connection to the X server.

colormap Specifies the colormap.

colorjnjout Specifies the pixel member that indicates the color cell to query, and the color
specification stored for the color cell is returned in this XcmsColor structure.

resultJormat Specifies the color format for the returned color specification.

The XcmsQueryColor function obtains the RGB value for the pixel value in the pixel
member of the specified XcmsColor structure, and then converts the value to the target format
as specified by the result_format argument. If the pixel is not a valid index into the specified
colormap, a BadValue error results.

78

Xlib - C Library Xll, Release 5

XcmsQueryColor can generate BadColor and BadValue errors.

To query the color of multiple colormap cells in an arbitrary format, use XcmsQueryColors.

Status XcmsQueryColors (display, colormap, colors _in_out, ncolors, resultJormat)
Display * display,
Colormap colormap',
XcmsColor colors_in_out[];
unsigned int ncolors',
XcmsColorFormat resultJormat',

display

colormap

colors in out

Specifies the connection to the X server.

Specifies the colormap.

Specifies an array of XcmsColor structures, each pixel member indicating the
color cell to query. The color specifications for the color cells are returned in
these structures.

ncolors Specifies the number of XcmsColor structures in the color specification array.

result Jormat Specifies the color format for the returned color specification.

The XcmsQueryColors function obtains the RGB values for pixel values in the pixel
members of XcmsColor structures, and then converts the values to the target format as
specified by the result_format argument. If a pixel is not a valid index into the specified color-
map, a BadValue error results. If more than one pixel is in error, the one that gets reported is
arbitrary.

XcmsQueryColors can generate BadColor and BadValue errors.

6.8. Color Conversion Context Functions

This section describes functions to create, modify, and query Color Conversion Contexts.

Associated with each colormap is an initial CCC transparently generated by Xlib. Therefore,
when you specify a colormap as an argument to a function, you are indirectly specifying a
CCC. The CCC attributes that can be modified by the X client are:

• Client White Point

• Gamut compression procedure and client data

• White point adjustment procedure and client data

The initial values for these attributes are implementation specific. The CCC attributes for sub¬
sequently created CCCs can be defined by changing the CCC attributes of the default CCC.
There is a default CCC associated with each screen.

6.8.1. Getting and Setting the Color Conversion Context of a Colormap

To obtain the CCC associated with a colormap, use XcmsCCCOfCoIormap.

XcmsCCC XcmsCCCofColormap(^p/ay, colormap)
Display * display,
Colormap colormap',

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XcmsCCCofColormap function returns the CCC associated with the specified colormap.
Once obtained, the CCC attributes can be queried or modified. Unless the CCC associated
with the specified colormap is changed with XcmsSetCCCOfColormap, this CCC is used
when the specified colormap is used as an argument to color functions.

79

Xlib - C Library Xll, Release 5

To change the CCC associated with a colormap, use XcmsSetCCCOfCoiormap.

XcmsCCC XcmsSetCCCOfColormap(dwp/ay, colormap, ccc)
Display * display,
Colormap colormap',
XcmsCCC ccc;

display Specifies the connection to the X server.

colormap Specifies the colormap.

ccc Specifies the CCC.

The XcmsSetCCCOfCoiormap function changes the CCC associated with the specified color-
map. It returns the CCC previously associated to the colonnap. If they are not used again in
the application, CCCs should be freed by calling XcmsFreeCCC.

6.8.2. Obtaining the Default Color Conversion Context

The default CCC attributes for subsequently created CCCs can be changed by changing the
CCC attributes of the default CCC. A default CCC is associated with each screen.

To obtain the default CCC for a screen, use XcmsDefaultCCC.

XcmsCCC XcmsDefaultCCCfd/sp/ay, screenjiumber)
Display * display,
int screenjiumber,

display Specifies the connection to the X server.

screenjiumber Specifies the appropriate screen number on the host server.

The XcmsDefaultCCC function returns the default CCC for the specified screen. Its visual is
the default visual of the screen. Its initial gamut compression and white point adjustment pro¬
cedures as well as the associated client data arc implementation specific.

6.8.3. Color Conversion Context Macros

Applications should not directly modify any part of the XcmsCCC. The following lists the C
language macros, their corresponding function equivalents that are for other language bindings,
and what data they both can return.

DisplayOfCCC (ccc)
XcmsCCC ccc;

Display *XcmsDisplayOfCCC(ccc)
XcmsCCC ccc;

ccc Specifies the CCC.

Both return the display associated with the specified CCC.

VisualOfCCC(ccc)
XcmsCCC ccc;

Visual *XcmsVisualOfCCC(ccc)
XcmsCCC ccc;

ccc Specifies the CCC.

Both return the visual associated with the specified CCC.

80

Xlib - C Library Xll, Release 5

ScreenNumberOfCCC(ccc)
XcmsCCC ccc;

int XcmsScreenNumberOfCCC(ccc)
XcmsCCC ccc;

ccc Specifies the CCC.

Both return the number of the screen associated with the specified CCC.

ScreenWhitePointOfCCC (ccc)
XcmsCCC ccc;

XcmsColor *XcmsScreenWhitePointOfCCC(ccc)
XcmsCCC ccc;

ccc Specifies the CCC.

Both return the white point of the screen associated with the specified CCC.

Client WhitePointOfCCC(ccc)
XcmsCCC ccc;

XcmsColor *XcmsClientWhitePointOfCCC(ccc)
XcmsCCC ccc;

ccc Specifies the CCC.

Both return the Client White Point of the specified CCC.

6.8.4. Modifying Attributes of a Color Conversion Context

To set the Client White Point in the CCC, use XcmsSetWhitePoint.

Status XcmsSetWhitePoint(ccc, color)
XcmsCCC ccc;
XcmsColor * color,

ccc Specifies the CCC.

color Specifies the new Client White Point.

The XcmsSetWhitePoint function changes the Client White Point in the specified CCC. Note
that the pixel member is ignored and that the color specification is left unchanged upon return.
The format for the new white point must be XcmsCIEXYZFormat, XcmsCIEuvYFormat,
XcmsCIExyYFarmat, or XcmsUndefmedFormat. If color is NULL, this function sets the
format component of the Client White Point specification to XcmsUnddinedFormat, indicat¬
ing that the Client White Point is assumed to be the same as the Screen White Point.

To set the gamut compression procedure and corresponding client data in a specified CCC, use
XcmsSetCompressionProc.

XcmsCompressionProc XcmsSetCompressionProc(ccc, compression_proc, clientjiata)
XcmsCCC ccc;
XcmsCompressionProc compressionjproc\
XPointer clientjiata;

ccc Specifies the CCC.

compression _proc
Specifies the gamut compression procedure that is to be applied when a color

81

Xlib - C Library XI1, Release 5

lies outside the screen’s color gamut. If NULL and when functions using this
CCC must convert a color specification to a device-dependent format and
encounters a color that lies outside the screen’s color gamut, that function will
return XcmsFailure.

clientjiata Specifies client data for the gamut compression procedure or NULL.

The XcmsSetCompressionProc function first sets the gamut compression procedure and client
data in the specified CCC with the newly specified procedure and client data and then returns
the old procedure.

To set the white point adjustment procedure and corresponding client data in a specified CCC,
use XcmsSetWhiteAdjustProc.

XcmsWhiteAdjustProc XcmsSetWhiteAdjustProc! ccc, white^adjust _proc, client jiata)
XcmsCCC ccc\
XcmsWhiteAdjustProc white_adjustjroc\
XPointer client_data;

ccc Specifies the CCC.

white jidjust_proc
Specifies the white point adjustment procedure.

client jiata Specifies client data for the white point adjustment procedure or NULL.

The XcmsSetWhiteAdjustProc function first sets the white point adjustment procedure and
client data in the specified CCC with the newly specified procedure and client data and then
returns the old procedure.

6.8.5. Creating and Freeing a Color Conversion Context

You can explicitly create a CCC within your application by calling XcmsCreateCCC. These
created CCCs can then be used by those functions that explicitly call for a CCC argument.
Old CCCs that will not be used by the application should be freed using XcmsFreeCCC.

To create a CCC, use XcmsCreateCCC.

XcmsCCC XcmsCreateCCC(^p/ay, screen jiumber, visual, clientjvhitejpoint, compression_proc,
compression jlient jiata, white ^adjust jroc, white_adjust_c lie ntjiata)

Display * display,
int screen jiumber \
Visual *visual\
XcmsColor *clientjvhitejpoint',
XcmsCompressionProc compressionjproc\
XPointer compression jlient jiata;
XcmsWhiteAdjustProc white_adjustjroc\
XPointer whitejdjustjlientjiata;

display Specifies the connection to the X server.

screenjumber Specifies the appropriate screen number on the host server.

visual Specifies the visual type.

client jvhitejoint
Specifies the Client White Point. If NULL, the Client White Point is to be
assumed to be the same as the Screen White Point. Note that the pixel
member is ignored.

compression jroc
Specifies the gamut compression procedure that is to be applied when a color
lies outside the screen’s color gamut. If NULL and when functions using this

82

Xlib - C Library XI1, Release 5

CCC must convert a color specification to a device-dependent format and
encounters a color that lies outside the screen’s color gamut, that function will
return XcmsFailure.

compression_client_data
Specifies client data for use by the gamut compression procedure or NULL.

white_adjust_proc
Specifies the white adjustment procedure that is to be applied when the Client
White Point differs from the Screen White Point. NULL indicates that no
white point adjustment is desired.

white _a.djust_client_da.ta
Specifies client data for use with the white point adjustment procedure or
NULL.

The XcmsCreateCCC function creates a CCC for the specified display, screen, and visual.

To free a CCC, use XcmsFreeCCC.

void XcmsFreeCCC(ccc)
XcmsCCC ccc;

ccc Specifies the CCC.

The XcmsFreeCCC function frees the memory used for the specified CCC. Note that default
CCCs and those currently associated with colormaps are ignored.

6.9. Converting Between Color Spaces

To convert an array of color specifications in arbitrary color formats to a single destination for¬
mat, use XcmsConvertColors.

Status XcmsConvertColors (ccc, colors _in_out, ncolors, targetJormat, compression Jlagsjetu.ni)
XcmsCCC ccc;
XcmsColor colors_in_out[];
unsigned int ncolors;
XcmsColorFormat targetJormat;
Bool compression Jagsjeturn [];

ccc

colors in out

Specifies the CCC. If conversion is between device-independent color spaces
only (for example, TekHVC to CIELuv), the CCC is necessary only to specify
the Client White Point.

Specifies an array of color specifications. Pixel members are ignored and
remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the color specification array.

targetJormat Specifies the target color specification format.

compression Jagsjeturn
Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, each element of the array is set to True if the
corresponding color was compressed, and False otherwise. Pass NULL if the
compression status is not useful.

The XcmsConvertColors function converts the color specifications in the specified array of
XcmsColor structures from their current format to a single target format, using the specified
CCC. When the return value is XcmsFailure, the contents of the color specification array are
left unchanged.

The array may contain a mixture of color specification formats (for example, 3 CIE XYZ, 2
CIE Luv, ...). Note that when the array contains both device-independent and device-

83

Xlib - C Library XI1, Release 5

dependent color specifications, and the target_format argument specifies a device-dependent
format (for example, XcmsRGBiFormat, XcmsRGBFormat) all specifications are converted
to CIE XYZ format then to the target dcvice-dcpcndcnt format.

6.10. Callback Functions

This section describes the gamut compression and white point adjustment callbacks.

The gamut compression procedure specified in the Color Conversion Context is called when an
attempt to convert a color specification from XcmsCIEXYZ to a device-dependent format
(typically XcmsRGBi) results in a color that lies outside the screen’s color gamut. If the
gamut compression procedure requires client data, this data is passed via the gamut compres¬
sion client data in the CCC.

During color specification conversion between device-independent and device-dependent color
spaces, if a white point adjustment procedure is specified in the CCC, it is triggered when the
Client White Point and Screen White Point differ. If required, the client data is obtained from
the CCC.

6.10.1. Prototype Gamut Compression Procedure

The gamut compression callback interface must adhere to the following:

typedef Status (*XcmsCompressionProc)(ccc, colorsJn_out, ncolors, index, compressionJlags_return)
XcmsCCC ccc\
XcmsColor colors_in_out[]\
unsigned int ncolors;
unsigned int index',
Bool compression Jlags _reiurn[]\

ccc Specifies the CCC.

colorsJn_out Specifies an array of color specifications. Pixel members are ignored and
remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the color specification array.

index Specifies the index into the array of XcmsColor structures for the encountered
color specification that lies outside the Screen’s color gamut. Valid values are
0 (for the first element) to ncolors - 1.

compression Jlags jeturn
Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, and a color at a given index is compressed,
then True should be stored at the corresponding index in this array.

When implementing a gamut compression procedure, consider the following rules and assump¬
tions:

• The gamut compression procedure can attempt to compress one or multiple specifications
at a time.

• When called, elements 0 to index - 1 in the array of color specification array can be
assumed to fall within the screen’s color gamut. In addition these color specifications
are already in some device-dependent format (typically XcmsRGBi). If any
modifications are made to these color specifications, they must upon return be in their
initial device-dependent format.

• When called, the element in the color specification array specified by the index argument
contains the color specification outside the screen’s color gamut encountered by the cal¬
ling routine. In addition this color specification can be assumed to be in
XcmsCIEXYZ. Upon return, this color specification must be in XcmsCIEXYZ.

• When called, elements from index to ncolors - 1 in the color specification array may or
may not fall within the screen’s color gamut. In addition these color specifications can

84

Xlib C Library XI1, Release 5

be assumed to be in XcmsCIEXYZ. If any modifications are made to these color
specifications, they must upon return be in XcmsCIEXYZ.

• The color specifications passed to the gamut compression procedure have already been
adjusted to the Screen White Point. This means that at this point the color
specification’s white point is the Screen White Point.

• If the gamut compression procedure uses a device-independent color space not initially
accessible for use in the color management system, use XcmsAddCoIorSpace to insure
that it is added.

6.10.2. Supplied Gamut Compression Procedures

The following equations are useful in describing gamut compression procedures.

CIELab Psychometric Chroma = sqrt (a_star2 + b_star2)

CIELab Psychometric Hue = tan'
b star

a star

CIELuv Psychometric Chroma = sqrt (u_star2 + v_star2)

CIELuv Psychometric Hue = tan 1
v star

u star

The gamut compression callback procedures provided by Xlib are as follows.

XcmsCIELabClipL

Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing or increasing CIE metric lightness (L*) in the CIE L*a*b* color space until the
color is within the gamut. If the Psychometric Chroma of the color specification is
beyond maximum for the Psychometric Hue Angle, then, while maintaining the same
Psychometric Hue Angle, the color will be clipped to the CIE L*a*b* coordinates of
maximum Psychometric Chroma. See XcmsCIELabQueryMaxC. No client data is
necessary.

XcmsCIELabClipab

Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing Psychometric Chroma, while maintaining Psychometric Hue Angle, until the
color is within the gamut. No client data is necessary.

XcmsCIELabClipLab

Brings the encountered out of gamut color specification into the screen’s color gamut by
replacing it with CIE L*a*b* coordinates that fall within the color gamut while maintain¬
ing the original Psychometric Hue Angle and whose vector to the original coordinates is
the shortest attainable. No client data is necessary.

XcmsCIELuvClipL

Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing or increasing CIE metric lightness (L*) in the CIE L*u*v* color space until the
color is within the gamut. If the Psychometric Chroma of the color specification is
beyond maximum for the Psychometric Hue Angle, then, while maintaining the same
Psychometric Hue Angle, the color will be clipped to the CIE L*u*v* coordinates of
maximum Psychometric Chroma. See XcmsCIELuvQueryMaxC. No client data is
necessary.

XcmsCIELuvClipuv

Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing Psychometric Chroma while maintaining Psychometric Hue Angle, until the

85

Xlib - C Library XI1, Release 5

color is within the gamut. No client data is necessary.

XcmsCIELuvClipLuv

Brings the encountered out of gamut color specification into the screen’s color gamut by
replacing it with CIE L*u*v* coordinates that fall within the color gamut while maintain¬
ing the original Psychometric Hue Angle and whose vector to the original coordinates is
the shortest attainable. No client data is necessary.

XcmsTekHVCCIipV

Brings the encountered out of gamut color specification into the screen’s color gamut by
reducing or increasing the Value dimension in the TekHVC color space until the color is
within the gamut. If Chroma of the color specification is beyond maximum for the par¬
ticular Hue, then, while maintaining the same Hue, the color will be clipped to the Value
and Chroma coordinates that represent maximum Chroma for that particular Hue. No
client data is necessary.

XcmsTekHVCClipC

Bnngs the encountered out of gamut color specification into the screen’s color gamut by
reducing the Chroma dimension in the TekHVC color space until the color is within the
gamut. No client data is necessary.

XcmsTekHVCClipVC

Brings the encountered out of gamut color specification into the screen’s color gamut by
replacing it with TekHVC coordinates that fall within the color gamut while maintaining
the original Hue and whose vector to the original coordinates is the shortest attainable.
No client data is necessary.

6.10.3. Prototype White Point Adjustment Procedure

The white point adjustment procedure interface must adhere to the following:

typedef Status (*XcmsWhiteAdjustProc)(ccc, initial_white jpoint, targetjvhite jaoint, targetJar mat,
colors_in_out, ncolors, compressionJlags_return)

XcmsCCC ccc\
XcmsColor * initialjvhite jpoint-,
XcmsColor * target_white_point\
XcmsColorFormat target Jormaf,
XcmsColor colors_in_out[]\
unsigned int ncolors',
Bool compression Jlags_return[]\

ccc Specifies the CCC.

initial jvhite jpoint
Specifies the initial white point.

target jvhitejpoint
Specifies the target white point.

target Jormat Specifies the target color specification format.

colorsJnjout Specifies an array of color specifications. Pixel members are ignored and
remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the color specification array.

compression Jlags return
Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, and a color at a given index is compressed,
then True should be stored at the corresponding index in this array.

86

Xlib - C Library XI1, Release 5

6.10.4. Supplied White Point Adjustment Procedures

White point adjustment procedures provided by Xlib are as follows.

XcmsCIELabWhiteShiftColors

Uses the CIE L*a*b* color space for adjusting the chromatic character of colors to com¬
pensate for the chromatic differences between the source and destination white points.
This procedure simply converts the color specifications to XcmsCIELab using the
source white point and then converts to the target specification format using the destina¬
tions white point. No client data is necessary.

XcmsCIELuvWhiteShiftColors

Uses the CIE L*u*v* color space for adjusting the chromatic character of colors to com¬
pensate for the chromatic differences between the source and destination white points.
This procedure simply converts the color specifications to XcmsCIELuv using the
source white point and then converts to the target specification format using the destina¬
tions white point. No client data is necessary.

XcmsTekHVCWhiteShsftColors

Uses the TekHVC color space for adjusting the chromatic character of colors to compen¬
sate for the chromatic differences between the source and destination white points. This
procedure simply converts the color specifications to XcmsTekHVC using the source
white point and then converts to the target specification format using the destinations
white point. An advantage of this procedure over those previously described is an
attempt to minimize hue shift. No client data is necessary.

From an implementation point of view, these white point adjustment procedures convert the
color specifications to a device-independent but whitc-point-dcpendcnt color space (for exam¬
ple., CIE L*u*v*, CIE L*a*b*, TekHVC) using one white point and then converting those
specifications to the target color space using another white point. In other words, the
specification goes in the color space with one white point but comes out with another white
point, resulting in a chromatic shift based on the chromatic displacement between the initial
white point and target white point. The CIE color spaces that are assumed to be white-point-
independent are CIE u’v’Y, CIE XYZ, and CIE xyY. When developing a custom white point
adjustment procedure that uses a device-independent color space not initially accessible for use
in the color management system, use XcmsAddColorSpace to insure that it is added.

As an example, if a white point adjustment procedure is specified by the Color Conversion
Context and if the Client White Point and Screen White Point differ, the XcmsAllocCoior
function will use the white point adjustment procedure twice:

@ Once to convert to XcmsRGB

© A second time to convert from XcmsRGB

For example, assume the specification is in XcmsCIEuvY and the adjustment procedure is
XcmsCIELuvWhiteShiftColors. During conversion to XcmsRGB, the call to XcmsAIloc-
Color results in the following series of color specification conversions:

® From XcmsCIEuvY to XcmsCIELuv using the Client White Point

© From XcmsCIELuv to XcmsCIEuvY using the Screen White Point

© From XcmsCIEuvY to XcmsCIEXYZ (CIE u’v’Y and XYZ are white-point-
independent color spaces)

® From XcmsCIEXYZ to XcmsRGB!

© Finally from XcmsRGB! to XcmsRGB

The resulting RGB specification is passed to XAIlocCoIor and the RGB specification returned
by XAIlocCoIor is converted back to XcmsCIEuvY by reversing the color conversion
sequence.

87

Xlib - C Library XI1, Release 5

6.11. Gamut Querying Functions

This section describes the gamut querying functions that arc provided by Xlib. These func¬
tions allow the client to query the boundary of the screen’s color gamut in terms of the CIE
L*a*b*, CIE L*u*v*, and TekHVC color spaces. Functions are also provided that allow you
to query the color specification of:

• White (full intensity red, green, and blue)

• Red (full intensity red while green and blue are zero)

• Green (full intensity green while red and blue are zero)

• Blue (full intensity blue while red and green are zero)

• Black (zero intensity red, green, and blue)

The white point associated with color specifications passed to and returned from these gamut
querying functions are assumed to be the Screen White Point. This is a reasonable assumption,
since the client is trying to query the screen’s color gamut.

Note that the following naming convention is used for the "Max" and "Min" functions:

Xcms<colorjpace>QueryMa\<dimensions>

Xcms<colorjpace>QueryM\n<dimensions>

Note that the <dimensions> consists of letter or letters that identify the dimension or dimen¬
sions of the color space that are not fixed. For example, XcmsTekHVCQueryMaxC is given
a fixed Hue and Value for which maximum Chroma is found.

6.11.1. Red, Green, and Blue Queries

To obtain the color specification for black (zero intensity red, green, and blue), use
XcmsQueryBlack.

Status XcmsQueryBlack(ccc, target Jormat, color jeturn)
XcmsCCC ccc;
XcmsColorFormat target Jormaf,
XcmsColor *color jeturn',

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

targetJormat Specifies the target color specification format.

color_return Returns the color specification in the specified target format for zero intensity
red, green, and blue. The white point associated with the returned color
specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsQueryBlack function returns the color specification in the specified target format for
zero intensity red, green, and blue.

To obtain the color specification for blue (full intensity blue while red and green are zero), use
XcmsQueryBlue.

Status XcmsQueryBlue (ccc, targetJormat, color jeturn)
XcmsCCC ccc;
XcmsColorFormat targetJormaf,
XcmsColor * color jeturn',

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

targetJormat Specifies the target color specification format.

88

Xlib - C Library XI1, Release 5

colorjeturn Returns the color specification in the specified target format for full intensity
blue while red and green arc zero. The white point associated with the
returned color specification is the Screen White Point. The value returned in
the pixel member is undefined.

The XcmsQueryBlue function returns the color specification in the specified target format for
full intensity blue while red and green are zero.

To obtain the color specification for green (full intensity green while red and blue are zero),
use XcmsQueryGreen.

Status XcmsQueryGreen(ccc, target Jormat, colorjeturn)
XcmsCCC ccc\
XcmsColorFormat target Jormat',
XcmsColor * colorjeturn',

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

target Jormat Specifies the target color specification format.

color jeturn Returns the color specification in the specified target format for full intensity
green while red and blue are zero. The white point associated with the
returned color specification is the Screen White Point. The value returned in
the pixel member is undefined.

The XcmsQueryGreen function returns the color specification in the specified target format
for full intensity green while red and blue arc zero.

To obtain the color specification for red (full intensity red while green and blue are zero), use
XcmsQuery Red.

Status XcmsQueryRed(ccc, target Jormat, color jeturn)
XcmsCCC ccc;
XcmsColorFormat target Jormat:
XcmsColor * colorjeturn',

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

targetJormat Specifies the target color specification format.

color jeturn Returns the color specification in the specified target format for full intensity
red while green and blue are zero. The white point associated with the
returned color specification is the Screen White Point. The value returned in
the pixel member is undefined.

The XcmsQueryRed function returns the color specification in the specified target format for
full intensity red while green and blue are zero.

To obtain the color specification for white (full intensity red, green, and blue), use
XcmsQuery White.

Status XcmsQueryWhite(ccc, targetJormat, color jeturn)
XcmsCCC ccc\
XcmsColorFormat targetJormat',
XcmsColor * colorjeturn:

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

targetJormat Specifies the target color specification format.

89

Xlib - C Library XI1, Release 5

colorjeturn Returns the color specification in the specified target format for full intensity
red, green, and blue. The white point associated with the returned color
specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsQueryWhite function returns the color specification in the specified target format
for full intensity red, green, and blue.

6.11.2. CIELab Queries

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcmsCIELabQueryMaxC.

CIELab Psychometric Chroma - sqri (a_star2 + bjtar2)

CIELab Psychometric Hue = tan
b star

a star

Status XcmsCIELabQueryMaxC(ccc, hue_angle, Ljtar, colorjeturn)
XcmsCCC ccc\
XcmsFloat hue jingle',
XcmsFloat L_star;
XcmsColor * color return;

ccc

hue jangle

Ljtar

color return

Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

Specifies the hue angle in degrees at which to find maximum chroma.

Specifies the lightness (L*) at which to find maximum chroma.

Returns the CIE L*a*b* coordinates of maximum chroma displayable by the
screen for the given hue angle and lightness. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELabQueryMaxC function, given a hue angle and lightness, finds the point of
maximum chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of maximum CIE metric lightness (L*) for a given
Psychometric Hue Angle and Psychometric Chroma, use XcmsCIELabQueryMaxL.

Status XcmsCIELabQueryMaxL(ccc, hue jingle, chroma, color jeturn)
XcmsCCC ccc,
XcmsFloat hue jingle’,
XcmsFloat chroma',
XcmsColor * color return'.

ccc

hue jingle

chroma

color return

Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

Specifies the hue angle in degrees at which to find maximum lightness.

Specifies the chroma at which to find maximum lightness.

Returns the CIE L*a*b* coordinates of maximum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELabQueryMaxL function, given a hue angle and chroma, finds the point in
CIE L*a*b* color space of maximum lightness (L*) displayable by the screen. It returns this

90

Xlib - C Library XI1, Release 5

point in CIE L*a*b* coordinates. An XcmsFailure return value usually indicates that the
given chroma is beyond maximum for the given hue angle.

To obtain the CIE L*a*b* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcmsCIELabQueryMaxLC.

Status XcmsCIELabQueryMaxLC (ccc, hue_angle, colorjeturn)
XcmsCCC ccc;
XcmsFloat hue_angle\
XcmsColor *color_return\

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue_angle Specifies the hue angle in degrees at which to find maximum chroma.

color_return Returns the CIE L*a*b* coordinates of maximum chroma displayable by the
screen for the given hue angle. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsCIELabQueryMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. It returns this point in CIE L*a*b* coordinates.

To obtain the CIE L*a*b* coordinates of minimum CIE metric lightness (L*) for a given
Psychometric Hue Angle and Psychometric Chroma, use XcmsCIELabQueryMinL.

Status XcmsCIELabQueryMinL!ccc, hue_angle, chroma, colorjeturn)
XcmsCCC ccc;
XcmsFloat hue_angle\
XcmsFloat chroma;
XcmsColor * color return;

Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

Specifies the hue angle in degrees at which to find minimum lightness.

Specifies the chroma at which to find minimum lightness.

Returns the CIE L*a*b* coordinates of minimum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELabQueryMinL function, given a hue angle and chroma, finds the point of
minimum lightness (L*) displayable by the screen. It returns this point in CIE L*a*b* coordi¬
nates. An XcmsFailure return value usually indicates that the given chroma is beyond max¬
imum for the given hue angle.

ccc

hue_angle

chroma

color return

6.11.3. CIELuv Queries

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle and CIE metric lightness (L*), use XcmsCIELuvQueryMaxC.

CIELuv Psychometric Chroma = sqrt (u_star2 + v_star2)

CIELuv Psychometric Hue = tan 1
v star

u star

91

Xlib - C Library Xll, Release 5

Status XcmsCIELuvQueryMaxC(ccc, huejngle, Ljtar, colorjeturn)
XcmsCCC ccc,
XcmsFloat huejngle',
XcmsFloat Ljtar \
XcmsColor * color return;

ccc

hue_angle

L_star

color return

Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

Specifies the hue angle in degrees at which to find maximum chroma.

Specifies the lightness (L*) at which to find maximum chroma.

Returns the CIE L*u*v* coordinates of maximum chroma displayable by the
screen for the given hue angle and lightness. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELuvQueryMaxC function, given a hue angle and lightness, finds the point of
maximum chroma displayable by the screen. Note that it returns this point in CIE L*u*v*
coordinates.

To obtain the CIE L*u*v* coordinates of maximum CIE metric lightness (L*) for a given
Psychometric Hue Angle and Psychometric Chroma, use XcmsCIELuvQueryMaxL.

Status XcmsCIELuvQueryMaxL (ccc, hue jingle, chroma, color jeturn)
XcmsCCC ccc;
XcmsFloat huejngle',
XcmsFloat chroma;
XcmsColor * color return'.

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

huejngle Specifies the hue angle in degrees at which to find maximum lightness.

Ljtar Specifies the lightness (L*) at which to find maximum lightness.

color jeturn Returns the CIE L*u*v* coordinates of maximum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELuvQueryMaxL function, given a hue angle and chroma, finds the point in
CIE L*u*v* color space of maximum lightness (L*) displayable by the screen. Note that it
returns this point in CIE L*u*v* coordinates. An XcmsFailure return value usually indicates
that the given chroma is beyond maximum for the given hue angle.

To obtain the CIE L*u*v* coordinates of maximum Psychometric Chroma for a given
Psychometric Hue Angle, use XcmsCIELuvQueryMaxLC.

Status XcmsCIELuvQueryMaxLC(ccc, huejngle, color jeturn)
XcmsCCC ccc\
XcmsFloat huejngle',
XcmsColor * color jeturn',

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

huejngle Specifies the hue angle in degrees at which to find maximum chroma.

color jeturn Returns the CIE L*u*v* coordinates of maximum chroma displayable by the
screen for the given hue angle. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel

92

Xlib - C Library XI1, Release 5

member is undefined.

The XcmsCIELuvQueryMaxLC function, given a hue angle, finds the point of maximum
chroma displayable by the screen. Note that it returns this point in CIE L*u*v* coordinates.

To obtain the CIE L*u*v* coordinates of minimum CIE metric lightness (L*) for a given
Psychometric Hue Angle and Psychometric Chroma, use XcmsCIELuvQueryMinL.

Status XcmsCIELuvQueryMinL (ccc, hue jingle, chroma, colorjeturn)
XcmsCCC ccc\
XcmsFloat hue jingle',
XcmsFloat chroma;
XcmsColor * color return'.

ccc

hue_angle

chroma

color return

Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

Specifies the hue angle in degrees at which to find minimum lightness.

Specifies the chroma at which to find minimum lightness.

Returns the CIE L*u*v* coordinates of minimum lightness displayable by the
screen for the given hue angle and chroma. The white point associated with
the returned color specification is the Screen White Point. The value returned
in the pixel member is undefined.

The XcmsCIELuvQueryMinL function, given a hue angle and chroma, finds the point of
minimum lightness (L*) displayable by the screen. Note that it returns this point in CIE
L*u*v* coordinates. An XcmsFuilure return value usually indicates that the given chroma is
beyond maximum for the given hue angle.

6.11.4. TekHVC Queries

To obtain the maximum Chroma for a given Hue and Value, use XcmsTekHVCQueryMaxC.

Status XcmsTekHVCQueryMaxC (ccc, hue, value, colorjeturn)
XcmsCCC ccc;
XcmsFloat hue',
XcmsFloat value',
XcmsColor * colorjeturn',

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue Specifies the Hue in which to find the maximum Chroma.

value Specifies the Value in which to find the maximum Chroma.

color jeturn Returns the maximum Chroma along with the actual Hue and Value at which
the maximum Chroma was found. The white point associated with the
returned color specification is the Screen White Point. The value returned in
the pixel member is undefined.

The XcmsTekHVCQueryMaxC function, given a Hue and Value, determines the maximum
Chroma in TekHVC color space displayable by the screen. Note that it returns the maximum
Chroma along with the actual Hue and Value at which the maximum Chroma was found.

To obtain the maximum Value for a given Hue and Chroma, use XcmsTekHVCQueryMaxV

93

Xlib - C Library XI1, Release 5

Status XcmsTekHVCQueryMaxVfccc, hue, chroma, color_return)
XcmsCCC ccc;
XcmsFloat hue',
XcmsFloat chroma;
XcmsColor * color ^return'.

Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

Specifies the Hue in which to find the maximum Value. '

Specifies the chroma at which to find maximum Value.

Returns the maximum Value along with the Hue and Chroma at which the
maximum Value was found. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsTekHVCQueryMaxV function, given a Hue and Chroma, determines the maximum
Value in TekHVC color space displayable by the screen. Note that it returns the maximum
Value and the actual Hue and Chroma at which the maximum Value was found.

To obtain the maximum Chroma and Value at which it is reached for a specified Hue, use
XcmsTekH VCQueryMaxVC.

Status XcmsTekHVCQueryMaxVC(ccc, hue, color_return)
XcmsCCC ccc\
XcmsFloat hue',
XcmsColor * color^return',

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures arc ignored.

hue Specifies the Hue in which to find the maximum Chroma.

color_return Returns the color specification in XcmsTekHVC for the maximum Chroma, the
Value at which that maximum Chroma is reached and actual Hue at which the
maximum Chroma was found. The white point associated with the returned
color specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsTekHVCQueryMaxVC function, given a Hue, determines the maximum Chroma in
TekHVC color space displayable by the screen and the Value at which that maximum Chroma
is reached. Note that it returns the maximum Chroma, the Value at which that maximum
Chroma is reached, and the actual Hue for which the maximum Chroma was found.

To obtain a specified number of TekHVC specifications such that they contain a maximum
Values for a specified Hue, and the Chroma at which the maximum Values are reached, use
XcmsTekH VCQueryMaxVSamples.

Status XcmsTekHVCQueryMaxVSamples(ccc, hue, colors ^return, nsamples)
XcmsCCC ccc\
XcmsFloat hue',
XcmsColor colors_return[];
unsigned int nsamples',

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue Specifies the Hue for maximum Chroma/Value samples.

nsamples Specifies the number of samples.

ccc

hue

chroma

color return

94

Xlib - C Library XI1, Release 5

colors_in_out Returns nsamples of color specifications in XcmsTekHVC such that the
Chroma is the maximum attainable for the Value and Hue. The white point
associated with the returned color specification is the Screen White Point. The
value returned in the pixel member is undefined.

The XcmsTekHVCQueryMaxVSamples returns nsamples of maximum Value, Chroma at
which that maximum Value is reached, and the actual Hue for which the maximum Chroma
was found. These sample points may then be used to plot the maximum Value/Chroma boun¬
dary of the screen’s color gamut for the specified Hue in TekHVC color space.

To obtain the minimum Value for a given Hue and Chroma, use XcmsTekHVCQueryMinV

Status XcmsTekHVCQueryMinV(ccc, hue, chroma, colorjeturn)
XcmsCCC ccc;
XcmsFloat hue',
XcmsFloat chroma-,
XcmsColor * colorjeturrv,

ccc Specifies the CCC. Note that the CCC’s Client White Point and White Point
Adjustment procedures are ignored.

hue Specifies the Hue in which to find the minimum Value.

value Specifies the Value in which to find the minimum Value.

color_return Returns the minimum Value and the actual Hue and Chroma at which the
minimum Value was found. The white point associated with the returned color
specification is the Screen White Point. The value returned in the pixel
member is undefined.

The XcmsTekHVCQueryMinV function, given a Hue and Chroma, determines the minimum
Value in TekHVC color space displayable by the screen. Note that it returns the minimum
Value and the actual Hue and Chroma at which the minimum Value was found.

6.12. Color Management Extensions

The Xlib color management facilities can be extended in two ways:

• Device-Independent Color Spaces

Device-independent color spaces that are derivable to CIE XYZ space can be added
using the XcmsAddColorSpace function.

• Color Characterization Function Set

A Color Characterization Function Set consists of device-dependent color spaces and
their functions that convert between these color spaces and the CIE XYZ color space,
bundled together for a specific class of output devices. A function set can be added
using the XcmsAddFunctionSet function.

6.12.1. Color Spaces

The CIE XYZ color space series as the "hub" for all conversions between device-independent
and device-dependent color spaces. Therefore, associated with each color space is the
knowledge to convert an XcmsColor structure to and from CIE XYZ format. For example,
conversion from CIE L*u*v* to RGB requires the knowledge to convert from CIE L*u*v* to
CIE XYZ and from CIE XYZ to RGB. This knowledge is stored as an array of functions that
when applied in series will convert the XcmsColor structure to or from CIE XYZ format.
This color specification conversion mechanism facilitates the addition of color spaces.

Of course, when converting between only device-independent color spaces or only device¬
dependent color spaces, short cuts are taken whenever possible. For example, conversion from
TekHVC to CIE L*u*v* is performed by intermediate conversion to CIE u*v*Y and then to
CIE L*u*v*, thus bypassing conversion between CIE u*v*Y and CIE XYZ.

95

Xlib - C Library XI1, Release 5

6.12.2. Adding Device-Independent Color Spaces

To add a device-independent color space, use XcmsAddColorSpace.

Status XcmsAddColorSpace (color jpace)
XcmsColorSpace * color jpace:

color_space Specifies the device-independent color space to add.

The XcmsAddColorSpace function makes a device-independent color space (actually an
XcmsColorSpace structure) accessible by the color management system. Because format
values for unregistered color spaces are assigned at run-time, they should be treated as private
to the client. If references to an unregistered color space must be made outside the client (for
example, storing color specifications in a file using the unregistered color space), then reference
should be made by color space prefix (see XcmsFormatOfPrefix and XcmsPrefixOfFormat).

If the XcmsColorSpace structure is already accessible in the color management system,
XcmsAddColorSpace returns XcmsSuccess.

Note that added XcmsColorSpaces must be retained for reference by Xlib.

6.12.3. Querying Color Space Format and Prefix

To obtain the format associated with the color space associated with a specified color string
prefix, use XcmsFormatOfPrefix.

XcmsColorFormat XcmsFormatOfPrefix (prefix)
char * prefix:

prefix Specifies the string that contains the color space prefix.

The XcmsFormatOfPrefix function returns format for the specified color space prefix (for
example, "CIEXYZ"). Note that the prefix is case-insensitive. If the color space is not acces¬
sible in the color management system, XcmsFormatOfPrefix returns
XcmsUndefinedFormat.

To obtain the color string prefix associated with the color space specified by a color format,
use XcmsPrefixOfFormat.

char *XcmsPrefixOfFormat(/br/7iar)
XcmsColorFormat format;

format Specifies the color specification format.

The XcmsPrefixOfFormat function returns the string prefix associated with the color
specification encoding specified by format. Otherwise, if none is found, it returns NULL.
Note that the returned string must be treated as read-only.

6.12.4. Creating Additional Color Spaces

Color space specific information necessary for color space conversion and color string parsing
is stored in an XcmsColorSpace structure. Therefore, a new structure containing this infor¬
mation is required for each additional color space. In the case of device-independent color
spaces, a handle to this new structure (that is, by means of a global variable) is usually made
accessible to the client program for use with the XcmsAddColorSpace function.

If a new XcmsColorSpace structure specifies a color space not registered with the X Consor¬
tium, because format values for unregistered color spaces are assigned at run-time they should
be treated as private to the client. If references to an unregistered color space must be made
outside the client (for example, storing color specifications in a file using the unregistered color
space), then reference should be made by color space prefix (see XcmsFormatOfPrefix and
XcmsPrefixOfFormat).

typedef (*XcmsConversionProc)();
typedef XcmsConversionProc *XcmsFuncListPtr;

96

Xlib - C Library XI1, Release 5

/* A NULL terminated list of function pointers*/

typedef struct _XcmsColorSpace {
char *prefix;
XcmsColorFormat format;
XcmsParseStringProc parseString;
XcmsFuncListPtr to_CIEXYZ;
XcmsFuncListPtr from_CIEXYZ;

int inverse_fiag;
} XcmsColorSpace;

The prefix member specifies the prefix that indicates a color string is in this color space’s
string format. For example, "ciexyz" or "CIEXYZ" for CIE XYZ, and "rgb" or "RGB" for
RGB. Note that the prefix is case insensitive. The format member specifies the color
specification format. Formats for unregistered color spaces are assigned at run-time. The
parseString member contains a pointer to the function that can parse a color string into an
XcmsColor structure. This function returns an integer (int): non-zero if it succeeded and zero
otherwise. The to_CIEXYZ and fromjCIEXYZ members contain pointers, each to a NULL
terminated list of function pointers. When the list of functions are executed in series, it will
convert the color specified in an XcmsCoior structure from/to the current color space format
to/from the CIE XYZ format. Each function returns an integer (int): non-zero if it succeeded
and zero otherA'ise. Note that the white point to be associated with the colors is specified
explicitly, even though white points can be found in the Color Conversion Context. The
inverse_flag member, if non-zero, specifies that for each function listed in to_CIEXYZ, its
inverse function can be found in from_CIEXYZ such that:

Given: n = number of functions in each list

foreach i, such that 0 <= i < n
from_CIEXYZ[n - i - lj is the inverse of to_CIEXYZ[i],

This allows Xlib to use the shortest conversion path, thus, bypassing CIE XYZ if possible (for
example, TekHVC to CIE L*u*v*).

6.12.5. Parse String Callback

The callback in the XcmsColorSpace structure for parsing a color string for the particular
color space must adhere to the following software interface specification:

typedef int (*XcmsParseStringProc)(a?/or_srrmg, color_return)
char * colorjtring\
XcmsColor * color_return\ /* color to compress */

color_string Specifies the color string to parse.

color jeturn Returns the color specification in the color space’s format.

6.12.6. Color Specification Conversion Callback

Callback functions in the XcmsColorSpace structure for converting a color specification
between device-independent spaces must adhere to the following software interface
specification:

Status ConversionProc(ccc, white_point, colors_in_out, ncolors)
XcmsCCC ccc\
XcmsColor *white_point\
XcmsColor * colors_in_out\
unsigned int ncolors;

97

Xlib - C Library XI1, Release 5

ccc Specifies the CCC.

white_point Specifies the white point associated with color specifications. Note that the
pixel member is ignored and that the color specification is left unchanged upon
return.

colors_in_out Specifies an array of color specifications. Pixel members are ignored and
remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the color specification array.

Callback functions in the XcmsColorSpace structure for converting a color specification to or
from a device-dependent space must adhere to the following software interface specification:

Status ConversionProc(ccc, colors Jn_out, ncolors, compressionJlags_return)
XcmsCCC ccc;
XcmsColor * colors_in_our,
unsigned int ncolors;
Bool compression Jlagsjeturn [];

ccc Specifies the CCC.

colors_in_out Specifies an array of color specifications. Pixel members are ignored and
remain unchanged upon return.

ncolors Specifies the number of XcmsColor structures in the color specification array.

compression Jlagsjeturn
Specifies an array of Boolean values for returning compression status. If a
non-NULL pointer is supplied, and a color at a given index is compressed,
then True should be stored at the corresponding index in this array.

Conversion functions are available globally for use by other color spaces. The conversion
functions provided by Xlib are:

Function Converts

XcmsCIELabToCIEXYZ From
mat.

XcmsCIELuvToCIEuvY From
XcmsCIEXYZToCIELab From

mat.
XcmsCIEXYZToCIEuvY From

mat.
XcmsCIEXYZToCIExyY From

mat.
XcmsCIEXYZToRGBi From
XcmsCIEuvYToCIELuv From
XcmsCIEuvYToCIEXYZ From

mat.
XcmsCIEuvYToTekHVC From

mat.
XcmsCIExyYToCIEXYZ From

mat.
XcmsRGBToRGBi From
XcmsRGBiToCIEXYZ From
XcmsRGBiToRGB From
XcmsTekHVCToCIEuvY From

mat.

XcmsCIELabFormat to XcmsCIEXYZFor-

XcmsCIELuvFormat to XcmsCIEuvYFormat.
XcmsCIEX YZFormat to XcmsCIELabFor-

XcmsCIEXYZFormat to XcmsCIEuvYFor-

XcmsCIEXYZFormat to XcmsCIExyYFor-

XcmsCIEX YZFormat to XcmsRGBiFormat.
XcmsCIEuvYFormat to XcmsCIELabFormat.
XcmsCIEuvYFormat to XcmsCIEXYZFor-

XcmsCIEuvYFormat to XcmsTekHVCFor-

XcmsCIExyYFormat to XcmsCIEXYZFor-

XcmsRGBFormat to XcmsRGBiFormat.
XcmsRGBiFormat to XcmsCIEXYZFormat.
XcmsRGBiFormat to XcmsRGBFormat.
XcmsTekHVCFormat to XcmsCIEuvYFor-

98

Xlib - C Library XI1, Release 5

6.12.7. Function Sets

Functions to convert between device-dependent color spaces and CIE XYZ may differ for
different classes of output devices (for example, color versus gray monitors). Therefore, the
notion of a Color Characterization Function Set (hereafter referred to as a Function Set) has
been developed. A function set consists of device-dependent color spaces and the functions
that convert color specifications between these device-dependent color spaces and the CIE
XYZ color space appropriate for a particular class of output devices. The function set also
contains a function that reads color characterization data off root window properties. It is this
characterization data that will differ between devices wiLhin a class of output devices. For
details about color characterization data is stored in root window properties, see the section on
Device Color Characterization in the Inter-Client Communication Conventions Manual. The
LINEAR_RGB Function Set is provided by Xlib and will support most color monitors. Func¬
tion sets may require data that differs from those needed for the LINEAR_RGB Function Set.
In that case, its corresponding data may be stored on different root window properties.

6.12.8. Adding Function Sets

To add a Color Characterization Function Set, use XcmsAddFunctionSet.

Status XcmsAd6Funci\onSei(function_set)
XcmsFunctionSet *function_set\

function_set Specifies the Color Characterization Function Set to add.

The XcmsAddFunctionSet adds a Color Characterization Function Set to the color manage¬
ment system. If the Function Set uses device-dependent XcmsCoIorSpace structures not
accessible in the color management system, XcmsAddFunctionSet adds them. If an added
XcmsCoIorSpace structure is for a device-dependent color space not registered with the X
Consortium, because format values for unregistered color spaces are assigned at run-time they
should be treated as private to the client. If references to an unregistered color space must be
made outside the client (for example, storing color specifications in a file using the unregistered
color space), then reference should be made by color space prefix (see XcmsFormatQfPrefix
and XcmsPrefixOfFormat).

Additional function sets should be added before any calls to other Xlib routines are made. If
not, the XcmsPerScrnlnfo member of a previously created XcmsCCC does not have the
opportunity to initialize with the added Function Set.

6.12.9. Creating Additional Function Sets

Creation of additional Color Characterization Function Sets should be required only when an
output device does not conform to existing function sets or when additional device-dependent
color spaces are necessary. A function set consists primarily of a collection of device¬
dependent XcmsCoIorSpace structures and a means to read and store a screen’s color charac¬
terization data. This data is stored in an XcmsFunctionSet structure. A handle to this struc¬
ture (that is, by means of global variable) is usually made accessible to the client program for
use with XcmsAddFunctionSet.

If a Function Set uses new device-dependent XcmsCoIorSpace structures, they will be tran¬
sparently processed into the color management system. Function Sets can share an
XcmsCoIorSpace structure for a device-dependent color space. In addition, multiple
XcmsCoIorSpace structures are allowed for a device-dependent color space; however, a Func¬
tion Set can reference only one of them. These XcmsCoIorSpace structures will differ in the
functions to convert to and from CIE XYZ, thus tailored for the specific Function Set.

typedef struct _XcmsFunctionSet {
XcmsCoIorSpace **DDColorSpaces;
XcmsScreenlnitProc screenlnitProc;
XcmsScreenFreeProc screertFreeProc;

} XcmsFunctionSet;

99

Xlib - C Library Xll, Release 5

The DDColorSpaces member is a pointer to a NULL terminated list of pointers to
XcmsCoIorSpace structures for the device-dependent color spaces that are supported by the
Function Set. The screenlnitProc member is set to the callback procedure (see following inter¬
face specification) that initializes the XcmsPerScrnlnfo structure for a particular screen.

The screen initialization callback must adhere to the following software interface specification:

typedef Status (*XcmsScreenInitProc)(d/i'p/ay, screen jiumber, screenjnfo)
Display * display,
int screen jxumbejr,
XcmsPerScrnlnfo * screenjnfo',

display Specifies the connection to the X server.

screen jiumber Specifies the appropriate screen number on the host server.

screenjnfo Specifies the XcmsPerScrnlnfo structure, which contains the per screen infor¬
mation.

The screen initialization callback in the XcmsFunctionSet structure fetches the Color Charac¬
terization Data (device profile) for the specified screen, typically off properties on the screen’s
root window; then it initializes the specified XcmsPerScrnlnfo structure. If successful, the
procedure fills in the XcmsPerScrnlnfo structure as follows:

• It sets the screenData member to the address of the created device profile data structure
(contents known only by the function set).

• It next sets the screenWhitePoint member.

• It next sets the functionSet member to the address of the XcmsFunctionSet structure.

• It then sets the state member to XcmsInitSuccess and finally returns XcmsSuccess.

If unsuccessful, the procedure sets the state member to XcmsInitFailure and returns
XcmsFailure.

The XcmsPerScrnlnfo structure contains:
typedef struct _XcmsPerScmInfo {

XcmsColor screenWhitcPoint;
XPointer functionSet;
XPointer screenData;
unsigned char state;
char pad[3];

} XcmsPerScrnlnfo;

The screen WhitePoint member specifies the white point inherent to the screen. The function¬
Set member specifies the appropriate Function Set. The screenData member specifies the dev¬
ice profile. The state member is set to one of the following:

• XcmsInitNone indicates initialization has not been previously attempted.

• XcmsInitFailure indicates initialization has been previously attempted but failed.

• XcmsInitSuccess indicates initialization has been previously attempted and succeeded.

The screen free callback must adhere to the following software interface specification:

typedef void (*XcmsScreenFreeProc)(5cr^eAiDaw)
XPointer screenData;

screenData Specifies the data to be freed.

This function is called to free the screenData stored in an XcmsPerScrnlnfo structure.

100

Xlib - C Library XI1, Release 5

Chapter 7

Graphics Context Functions

A number of resources are used when performing graphics operations in X. Most information
about performing graphics (for example, foreground color, background color, line style, and so
on) are stored in resources called graphics contexts (GC). Most graphics operations (see
chapter 8) take a GC as an argument. Although in theory the X protocol permits sharing of
GCs between applications, it is expected that applications will use their own GCs when per¬
forming operations. Sharing of GCs is highly discouraged because the library may cache GC
state.

Graphics operations can be performed to either windows or pixmaps, which collectively are
called drawables. Each drawable exists on a single screen. A GC is created for a specific
screen and drawable depth, and can only be used with drawables of matching screen and depth.

7.1. Manipulating Graphics Context/State

Most attributes of graphics operations are stored in Graphic Contexts (GCs). These include
line width, line style, plane mask, foreground, background, tile, stipple, clipping region, end
style, join style, and so on. Graphics operations (for example, drawing lines) use these values
to determine the actual drawing operation. Extensions to X may add additional components to
GCs. The contents of a GC are private to Xlib.

Xlib implements a write-back cache for all elements of a GC that are not resource IDs to allow
Xlib to implement the transparent coalescing of changes to GCs. For example, a call to XSet-
Foreground of a GC followed by a call to XSetLineAttributes results in only a single¬
change GC protocol request to the server. GCs are neither expected nor encouraged to be
shared between client applications, so this write-back caching should present no problems.
Applications cannot share GCs without external synchronization. Therefore, sharing GCs
between applications is highly discouraged.

To set an attribute of a GC, set the appropriate member of the XGCValues structure and OR
in the corresponding value bitmask in your subsequent calls to XCreateGC. The symbols for
the value mask bits and the XGCValues structure are:

/* GC attribute value mask bits */

#define GCFunction (1 L«0)
#define GCPianeMask (1L«1)
#define GCForeground (1 L«2)
#define GCBackground (1L«3)
#define GCLineWidth (1 L«4)
#define GCLineStyle (1L«5)
#define GCCapStyle (1L«6)
#define GCJoinStyle (1L«7)
#define GCFillStyle (1L«8)
#define GCFiilRule (1L«9)
#define GCTile (1 L« 10)
#define GCStipple (1L«11)
#define GCTileStipXOrigin (1 L« 12)
#define GCTileStipYOrigin (1L«13)
#define GCFont (1L«14)
#define GCSubwindowMode (1 L« 15)

101

XI1, Release 5 Xlib - < C Library

#define GCGraphicsExposures (1L«16)
#define GCClipXOrigin (1L«17)
#define GCClipYOrigin (1 L« 18)
#define GCCHpMask (1 L« 19)
#define GCDashOffset (1L«20)
#define GCDashList (1L«21)
#define GCArcMode (1L«22)

/* Values */

typedef struct {
int function;
unsigned long plane_mask;
unsigned long foreground;
unsigned long background;
int line_width;
int line_style;
int cap_style;
int join_style;
int fill_style;
int fill_rule;
int arc_mode;
Pixmap tile;
Pixmap stipple;
int ts_x_origin;
int ts_y_origin;
Font font;
int subwindow_mode;
Bool graphics_exposurcs;
int clip_x_origin;
int clip_y_origin;
Pixmap clip_mask;
int dash_offset;
char dashes;

} XGCValues;

/* logical operation */
/* plane mask */
/* foreground pixel */
/* background pixel */
/* line width (in pixels) */
/* LineSolid, LineOnOffDash, LineDoubleDash */
/* CapNotLast, CapButt, CapRound, CapProjecting */
/* JoinMitcr, JoinRound, JoinBevel */
/* FillSolid, FillTiled, FillStipplcd FillOpaqueStipplcd*/
/* EvenOddRule, WindingRule */
/* ArcChord, ArcPieSlice */
/* tile pixmap for tiling operations */
/* stipple 1 plane pixmap for stippling */
/* offset for tile or stipple operations */

/* default text font for text operations */
/* ClipByChildren, Includelnferiors */
/* boolean, should exposures be generated */
/* origin for clipping */

/* bitmap clipping; other calls for rects */
/* pattcmed/dashed line information */

The default GC values are:

Component Default

function
plane_mask
foreground
background
line_width
line_style
cap_style
join_style
fill_style
fill_rule
arc_mode
tile

stipple

GXcopy
All ones
0
1
0
LineSolid
CapButt
JoinMiter
FillSolid
EvenOddRule
ArcPieSlice
Pixmap of unspecified size filled with foreground pixel
(that is, client specified pixel if any, else 0)
(subsequent changes to foreground do not affect this pixmap)
Pixmap of unspecified size filled with ones

102

Xlib - C Library XI1, Release 5

Component Default

ts_x_origin 0
ts y origin 0
font implementation dependent
subwindow mode ClipByChildren
graphics exposures True
clip x origin 0
clip y origin 0
clip mask None
dash offset 0
dashes 4 (that is, the list [4, 4])

Note that foreground and background are not set to any values likely to be useful in a window.

The function attributes of a GC are used when you update a section of a drawable (the destina¬
tion) with bits from somewhere else (the source). The function in a GC defines how the new
destination bits are to be computed from the source bits and the old destination bits. GXcopy
is typically the most useful because it will work on a color display, but special applications
may use other functions, particularly in concert with particular planes of a color display. The
16 GC functions, defined in <X11/X.h>, arc:

Function Name Value Operation

GXclear 0x0 0
GXand 0x1 sre AND dst
GXandReverse 0x2 sre AND NOT dst
GXcopy 0x3 sre
GXandlnverted 0x4 (NOT sre) AND dst
GXnoop 0x5 dst
GXxor 0x6 sre XOR dst
GXor 0x7 sre OR dst
GXnor 0x8 (NOT sre) AND (NOT dst)
GXequiv 0x9 (NOT sre) XOR dst
GXinvert Oxa NOT dst
GXorReverse Oxb sre OR (NOT dst)
GXcopylnverted Oxc NOT sre
GXorlnverted Oxd (NOT sre) OR dst
GXnand Oxe (NOT sre) OR (NOT dst)
GXset Oxf 1

Many graphics operations depend on either pixel values or planes in a GC. The planes attri¬
bute is of type long, and it specifies which planes of the destination are to be modified, one bit
per plane. A monochrome display has only one plane and will be the least-significant bit of
the word. As planes are added to the display hardware, they will occupy more significant bits
in the plane mask.

In graphics operations, given a source and destination pixel, the result is computed bitwise on
corresponding bits of the pixels. That is, a Boolean operation is performed in each bit plane.
The plane_mask restricts the operation to a subset of planes. A macro constant AllPIanes can
be used to refer to all planes of the screen simultaneously. The result is computed by the fol¬
lowing:

((sre FUNC dst) AND plane-mask) OR (dst AND (NOT plane-mask))

103

Xlib - C Library Xll, Release 5

Range checking is not performed on the values for foreground, background, or plane_mask.
They are simply truncated to the appropriate number of bits. The line-width is measured in
pixels and either can be greater than or equal to one (wide line) or can be the special value
zero (thin line).

Wide lines are drawn centered on the path described by the graphics request. Unless otherwise
specified by the join-style or cap-style, the bounding box of a wide line with endpoints [xl,
yl], [x2, y2] and width w is a rectangle with vertices at the following real coordinates:

[xl-(w*sn/2), yl+(w*cs/2)], [xl+(w*sn/2), yl-(w*cs/2)],
[x2-(w*sn/2), y2+(w*cs/2)], [x2+(w*sn/2), y2-(w*cs/2)]

Here sn is the sine of the angle of the line, and cs is the cosine of the angle of the line. A
pixel is part of the line and so is drawn if the center of the pixel is fully inside the bounding
box (which is viewed as having infinitely thin edges). If the center of the pixel is exactly on
the bounding box, it is part of the line if and only if the interior is immediately to its right (x
increasing direction). Pixels with centers on a horizontal edge are a special case and are part
of the line if and only if the interior or the boundary is immediately below (y increasing direc¬
tion) and the interior or the boundary is immediately to the right (x increasing direction).

Thin lines (zero line-width) are one-pixel-wide lines drawn using an unspecified, device¬
dependent algorithm. There are only two constraints on this algorithm.

1. If a line is drawn unclipped from [xl.yl] to [x2,y2] and if another line is drawn
unclipped from [xl+dx,yl+dy] to [x2+dx,y2+dy], a point [x,y] is touched by drawing the
first line if and only if the point [x+dx,y+dy] is touched by drawing the second line.

2. The effective set of points comprising a line cannot be affected by clipping. That is, a
point is touched in a clipped line if and only if the point lies inside the clipping region
and the point would be touched by the line when drawn unclipped.

A wide line drawn from [xl.yl] to [x2,y2] always draws the same pixels as a wide line drawn
from [x2,y2] to [xl.yl], not counting cap-style and join-style. It is recommended that this pro¬
perty be true for thin lines, but this is not required. A line-width of zero may differ from a
line-width of one in which pixels are drawn. This permits the use of many manufacturers’ line
drawing hardware, which may run many times faster than the more precisely specified wide
lines.

In general, drawing a thin line will be faster than drawing a wide line of width one. However,,
because of their different drawing algorithms, thin lines may not mix well aesthetically with
wide lines. If it is desirable to obtain precise and uniform results across all displays, a client
should always use a line-width of one rather than a line-width of zero.

The line-style defines which sections of a line are drawn:

LineSolid The full path of the line is drawn.

LineDoubleDash The full path of the line is drawn, but the even dashes are filled
differently than the odd dashes (see fill-style) with CapButt style used
where even and odd dashes meet.

LineOnOffDash Only the even dashes are drawn, and cap-style applies to all internal
ends of the individual dashes, except CapNotLast is treated as Cap-
Butt.

The cap-style defines how the endpoints of a path are drawn:

CapNotLast This is equivalent to CapButt except that for a line-width of zero the
final endpoint is not drawn.

CapButt The line is square at the endpoint (perpendicular to the slope of the
line) with no projection beyond.

104

Xlib - C Library XI1, Release 5

CapRound The line has a circular arc with the diameter equal to the line-width,
centered on the endpoint. (This is equivalent to CapButt for line-
width of zero).

CapProjecting The line is square at the end, but the path continues beyond the end¬
point for a distance equal to half the line-width. (This is equivalent to
CapButt for line-width of zero).

The join-style defines how comers are drawn for wide lines:

JoinMiter The outer edges of two lines extend to meet at an angle. However, if
the angle is less than 11 degrees, then a JoinBevel join-style is used
instead.

JoinRound The comer is a circular arc with the diameter equal to the line-width,
centered on the joinpoint.

JoinBevel The comer has CapButt endpoint styles with the triangular notch
filled.

For a line with coincident endpoints (xl=x2, yl=y2), when the cap-style is applied to both
endpoints, the semantics depends on the line-width and the cap-style:

CapNotLast thin The results are device-dependent, but the desired effect is that
nothing is drawn.

CapButt thin The results are device-dependent, but the desired effect is that a
single pixel is drawn.

CapRound thin The results are the same as for CapButt/thin.

CapProjecting thin The results are the same as for CapButt/thin.

CapButt wide Nothing is drawn.

CapRound wide The closed path is a circle, centered at the endpoint, and with
the diameter equal to the line-width.

CapProjecting wide The closed path is a square, aligned with the coordinate axes,
centered at the endpoint, and with the sides equal to the line-
width.

For a line with coincident endpoints (xl=x2, yl=y2), when the join-style is applied at one or
both endpoints, the effect is as if the line was removed from the overall path. However, if the
total path consists of or is reduced to a single point joined with itself, the effect is the same as
when the cap-style is applied at both endpoints.

The tile/stipple represents an infinite 2D plane, with the tile/stipple replicated in all dimensions.
When that plane is superimposed on the drawable for use in a graphics operation, the upper
left comer of some instance of the tile/stipple is at the coordinates within the drawable
specified by the tile/stipple origin. The tilc/stipple and clip origins are interpreted relative to
the origin of whatever destination drawable is specified in a graphics request. The tile pixmap
must have the same root and depth as the GC, or a BadMatch error results. The stipple pix¬
map must have depth one and must have the same root as the GC, or a BadMatch error
results. For stipple operations where the fill-style is FillStippled but not FillOpaqueStippled,
the stipple pattern is tiled in a single plane and acts as an additional clip mask to be ANDed
with the clip-mask. Although some sizes may be faster to use than others, any size pixmap
can be used for tiling or stippling.

The fill-style defines the contents of the source for line, text, and fill requests. For all text and
fill requests (for example, XDrawText, XDrawTextl6, XFillRectangle, XFillPolygon, and
XFillArc); for line requests with line-style LineSolid (for example, XDrawLine,

105

Xilib - C Library XI1, Release 5

XDrawSegments, XDrawRectangle, XDrawArc); and for the even dashes for line requests
with line-style LineOnOffDash or LineDoubleDash, the following apply:

FillSolid Foreground

FillTiled Tile

FillOpaqueStippled A tile with the same width and height as stipple, but with
background everywhere stipple has a zero and with foreground
everywhere stipple has a one

FillStippled Foreground masked by stipple

When drawing lines with line-style LineDoubleDash, the odd dashes are controlled by the
fill-style in the following manner:

FillSolid Background

FillTiled Same as for even dashes

FillOpaqueStippled Same as for even dashes

FillStippIed Background masked by stipple

Storing a pixmap in a GC might or might not result in a copy being made. If the pixmap is
later used as the destination for a graphics request, the change might or might not be reflected
in the GC. If the pixmap is used simultaneously in a graphics request both as a destination
and as a tile or stipple, the results are undefined.

For optimum performance, you should draw as much as possible with the same GC (without
changing its components). The costs of changing GC components relative to using different
GCs depend upon the display hardware and the server implementation. It is quite likely that
some amount of GC information will be cached in display hardware and that such hardware
can only cache a small number of GCs.

The dashes value is actually a simplified form of the more general patterns that can be set with
XSetDashes. Specifying a value of N is equivalent to specifying the two-element list [N, N]
in XSetDashes. The value must be nonzero, or a Bad Value error results.

The clip-mask restricts writes to the destination drawable. If the clip-mask is set to a pixmap, it
must have depth one and have the same root as the GC, or a BadMatch error results. If clip-
mask is set to None, the pixels are always drawn regardless of the clip origin. The clip-mask
also can be set by calling the XSetClipRectangles or XSetRegion functions. Only pixels
where the clip-mask has a bit set to 1 are drawn. Pixels are not drawn outside the area covered
by the clip-mask or where the clip-mask has a bit set to 0. The clip-mask affects all graphics
requests. The clip-mask does not clip sources. The clip-mask origin is interpreted relative to
the origin of whatever destination drawable is specified in a graphics request.

You can set the subwindow-mode to ClipByChildren or Includelnferiors. For ClipByChil-
dren, both source and destination windows are additionally clipped by all viewable InputOut-
put children. For Includelnferiors, neither source nor destination window is clipped by inferi¬
ors. This will result in including subwindow contents in the source and drawing through
subwindow boundaries of the destination. The use of Includelnferiors on a window of one
depth with mapped inferiors of differing depth is not illegal, but the semantics are undefined by
the core protocol.

The fill-rule defines what pixels are inside (drawn) for paths given in XFillPoiygon requests
and can be set to EvenOddRule or YVindingRuIe. For EvenOddRule, a point is inside if an
infinite ray with the point as origin crosses the path an odd number of times. For Win-
dingRule, a point is inside if an infinite ray with the point as origin crosses an unequal
number of clockwise and counterclockwise directed path segments. A clockwise directed path
segment is one that crosses the ray from left to right as observed from the point. A

106

Xlib - C Library XI1, Release 5

counterclockwise segment is one that crosses the ray from right to left as observed from the
point. The case where a directed line segment is coincident with the ray is uninteresting
because you can simply choose a different ray that is not coincident with a segment.

For both EvenOddRuIe and WindingRule, a point is infinitely small, and the path is an
infinitely thin line. A pixel is inside if the center point of the pixel is inside and the center
point is not on the boundary. If the center point is on the boundary, the pixel is inside if and
only if the polygon interior is immediately to its right (x increasing direction). Pixels with
centers on a horizontal edge are a special case and are inside if and only if the polygon interior
is immediately below (y increasing direction).

The arc-mode controls filling in the XFillArcs function and can be set to ArcPieSlice or
ArcChord. For ArcPieSlice, the arcs are pie-slice filled. For ArcChord, the arcs are chord
filled.

The graphics-exposure flag controls GraphicsExpose event generation for XCopyArea and
XCopyPlane requests (and any similar requests defined by extensions).

To create a new GC that is usable on a given screen with a depth of drawable, use
XCreateGC.

GC XCreatcGC(display, d, valuemask, values)
Display * display,
Drawable d\
unsigned long valuemask',
XGCValucs * values',

display Specifies the connection to the X server.

d Specifies the drawable.

valuemask Specifies which components in the GC arc to be set using the information in
the specified values structure. This argument is the bitwise inclusive OR of
zero or more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XCreateGC function creates a graphics context and returns a GC. The GC can be used
with any destination drawable having the same root and depth as the specified drawable. Use
with other drawables results in a BadMatch error.

XCreateGC can generate BadAlIoc, BadDrawable, BadFont, BadMatch, BadPixmap,
and BadValue errors.

To copy components from a source GC to a destination GC, use XCopyGC.

XCopyGC (display, sre, valuemask, dest)
Display * display,
GC sre, dest',
unsigned long valuemask',

display Specifies the connection to the X server.

sre Specifies the components of the source GC.

valuemask Specifies which components in the GC are to be copied to the destination GC.
This argument is the bitwise inclusive OR of zero or more of the valid GC
component mask bits.

dest Specifies the destination GC.

The XCopyGC function copies the specified components from the source GC to the destina¬
tion GC. The source and destination GCs must have the same root and depth, or a BadMatch
error results. The valuemask specifies which component to copy, as for XCreateGC.

107

Xlib - C Library XI1, Release 5

XCopyGC can generate BadAlloc, BadGC, and BadMatch errors.

To change the components in a given GC, use XChangeGC.

XChangeGC (dfsp/ay, gc, valuemask, values)
Display * display,
GC gc\
unsigned long valuemask',
XGCValues * values',

display Specifies the connection to the X server.

gc Specifies the GC.

valuemask Specifies which components in the GC are to be changed using information in
the specified values structure. This argument is the bitwise inclusive OR of
zero or more of the valid GC component mask bits.

values Specifies any values as specified by the valuemask.

The XChangeGC function changes the components specified by valuemask for the specified
GC. The values argument contains the values to be set. The values and restrictions are the
same as for XCreateGC. Changing the clip-mask overrides any previous XSetCIipRectan-
gles request on the context. Changing the dash-offset or dash-list overrides any previous XSet-
Dashes request on the context. The order in which components are verified and altered is
server-dependent. If an error is generated, a subset of the components may have been altered.

XChangeGC can generate BadAlloc, BadFont, BadGC, BadMatch, BadPixmap, and
BadValue errors.

To obtain components of a given GC, use XGetGCValues.

Status XGetGCValues(<iLp/ay, gc, valuemask, values_return)
Display * display,
GC gc,
unsigned long valuemask',
XGCValues *values return',

display Specifies the connection to the X server.

gc Specifies the GC.

valuemask Specifies which components in the GC are to be returned in the values_retum
argument. This argument is the bitwise inclusive OR of zero or more of the
valid GC component mask bits.

values jeturn Returns the GC values in the specified XGCValues structure.

The XGetGCValues function returns the components specified by valuemask for the specified
GC. If the valuemask contains a valid set of GC mask bits (GCFunction, GCPIaneMask,
GCForeground, GCBackground, GCLineWidth, GCLineStyle, GCCapStyle, GCJoin-
Style, GCFillStyle, GCFillRule, GCTile, GCStipple, GCTileStipXOrigin, GCTileS-
tipYOrigin, GCFont, GCSubwindovvMode, GCGraphicsExposures, GCClipXOrigin,
GCCLipYOrigin, GCDashOffset, or GCArcMode) and no error occur, XGetGCValues
sets the requested components in values_rctum and returns a nonzero status. Otherwise, it
returns a zero status. Note that the clip-mask and dash-list (represented by the GCClipMask
and GCDashList bits, respectively, in the valuemask) cannot be requested. Also note that an
invalid resource ID (with one or more of the three most-significant bits set to one) will be
returned for GCFont, GCTile, and GCStipple if the component has never been explicidy set
by the client.

To free a given GC, use XFreeGC.

108

Xlib - C Library XI1, Release 5

XFrceGCidisplay, gc)
Display * display,
GC gc\

display Specifies the connection to the X server.

gc Specifies the GC.

The XFreeGC function destroys the specified GC as well as all the associated storage.

XFreeGC can generate a BadGC error.

To obtain the GContext resource ID for a given GC, use XGContextFromGC.

GContext XGContextFromGC (gc)
GC gc\

gc Specifies the GC for which you want the resource ID.

Xlib normally defers sending changes to the components of a GC to the server until a graphics
function is actually called with that GC. This permits batching of component changes into a
single server request. In some circumstances, however, it may be necessary for the client to
explicitly force sending of the changes to the server. An example might be when a protocol
extension uses the GC indirectly, in such a way that the extension interface cannot know what
GC will be used. To force sending of GC component changes, use XFIushGC.

void XFlushGC(<f/sp/tfy, gc)
Display * display,
GC gc;

display Specifies the connection to the X server.

gc Specifies the GC.

7.2. Using GC Convenience Routines

This section discusses how to set the:

• Foreground, background, plane mask, or function components

• Line attributes and dashes components

• Fill style and fill rule components

• Fill tile and stipple components

• Font component

• Clip region component

• Arc mode, subwindow mode, and graphics exposure components

7.2.1. Setting the Foreground, Background, Function, or Plane Mask

To set the foreground, background, plane mask, and function components for a given GC, use
XSetState.

XSetState(display, gc, foreground, background, function, planejnask)
Display * display;
GC gc;
unsigned long foreground, background;
int function;
unsigned long plane jnask;

display Specifies the connection to the X server.

gc Specifies the GC.

109

Xlib - C Library XI1, Release 5

foreground

background

function

plane jnask

XSetState can

Specifies the foreground you want to set for the specified GC.

Specifies the background you want to set for the specified GC.

Specifies the function you want to set for the specified GC.

Specifies the plane mask.

generate BadAlloc, BadGC, and BadValue errors.

To set the foreground of a given GC, use XSetForeground.

XSetForeground{display, gc, foreground)
Display * display,
GC gc;
unsigned long foreground',

display Specifies the connection to the X server.

gc Specifies the GC.

foreground Specifies the foreground you want to set for the specified GC.

XSetForeground can generate BadAlloc and BadGC errors.

To set the background of a given GC, use XSetBackground.

XSetBackground{display, gc, background)
Display * disp lay,
GC gc;
unsigned long background;

display Specifies the connection to the X server.

gc Specifies the GC.

background Specifies the background you want to set for the specified GC.

XSetBackground can generate BadAlloc and BadGC errors.

To set the display function in a given GC, use XSetFunction.

XSetFunction (cfcp/ary, gc, function)
Display * display;
GC gc;
int function;

display Specifies the connection to the X server.

gc Specifies the GC.

function Specifies the function you want to set for the specified GC.

XSetFunction can generate BadAlloc, BadGC, and BadValue errors.

To set the plane mask of a given GC, use XSetPlaneMask.

XSetPlaneMask(cf/5p/ay, gc, plane jnask)
Display * display;
GC gc;
unsigned long plane jnask;

display Specifies the connection to the X server.

gc Specifies the GC.

plane jnask Specifies the plane mask.

110

Xlib - C Library XI1, Release 5

XSetPlaneMask can generate Bad Alloc and BadGC errors.

7.2.2. Setting the Line Attributes and Dashes

To set the line drawing components of a given GC, use XSetLineAttributes.

XSetLine Attributes {display, gc, line_width, line_style, cap_style, joinjtyle)
Display * display,
GC gc\
unsigned int line_width;
int line_style\
int cap_style\
int join_style\

display Specifies the connection to the X server.

gc Specifies the GC.

linejvidth Specifies the line-width you want to set for the specified GC.

line_style Specifies the line-style you want to set for the specified GC. You can pass
LineSolid, LineOnOffDash, or LineDoubleDash.

cap_style Specifies the line-style and cap-style you want to set for the specified GC.
You can pass CapNotLast, CapButt, CapRound, or CapProjecting.

join_style Specifies the line join-style you want to set for the specified GC. You can
pass JoinMiter, JoinRound, or JoinBevel.

XSetLineAttributes can generate BadAlloc, BadGC, and BadValue errors.

To set the dash-offset and dash-list for dashed line styles of a given GC, use XSetDashes.

XSetDashes{display, gc, dash_offset, dashjist, n)
Display * display,
GC gc\
int dash_offset\
char dashjist[];

Specifies the connection to the X server.

Specifies the GC.

Specifies the phase of the pattern for the dashed line-style you want to set for
the specified GC.

Specifies the dash-list for the dashed line-style you want to set for the specified
GC

Specifies the number of elements in dashjist.

The XSetDashes function sets the dash-offset and dash-list attributes for dashed line styles in
the specified GC. There must be at least one element in the specified dashjist, or a Bad-
Value error results. The initial and alternating elements (second, fourth, and so on) of the
dashjist are the even dashes, and the others are the odd dashes. Each element specifies a dash
length in pixels. All of the elements must be nonzero, or a BadValue error results. Specify¬
ing an odd-length list is equivalent to specifying the same list concatenated with itself to pro¬
duce an even-length list.

The dash-offset defines the phase of the pattern, specifying how many pixels into the dash-list
the pattern should actually begin in any single graphics request. Dashing is continuous through
path elements combined with a join-style but is reset to the dash-offset between each sequence
of joined lines.

int n\

display

gc

dash _offset

dashjist

n

111

Xlib - C Library XI1, Release 5

The unit of measure for dasnes is the same for the ordinary coordinate system. Ideally, a dash
length is measured along the slope of the line, but implementations are only required to match
this ideal for horizontal and vertical lines. Failing the ideal semantics, it is suggested that the
length be measured along the major axis of the line. The major axis is defined as the x axis
for lines drawn at an angle of between -45 and +45 degrees or between 135 and 225 degrees
from the x axis. For all other lines, the major axis is the y axis.

XSctDashes can generate BadAHoc, BadGC, and BadValue errors.

7.2.3. Setting the Fill Style and Fill Rule

To set the fiil-style of a given GC, use XSetFillStyle.

XSetFillStyle (tftsp/ay, gc, filljstyle)
Display * display,
GC gc;
int fill_style;

display Specifies the connection to the X server.

gc Specifies the GC.

fi!l_style Specifies the fill-style you want to set for the specified GC. You can pass
FillSolid, FillTiled, FillStippled, or FillOpaqueStippled.

XSetFillStyle can generate BadAHoc, BadGC, and BadValue errors.

To set the fill-rule of a given GC, use XSetFillRule.

XSetFillRule(display, gc, fill_rule)
Display * display,
GC gc\
int fill yule;

display Specifies the connection to the X server.

gc Specifies the GC.

fill_rule Specifies the fill-rule you want to set for the specified GC. You can pass
EvenOddRuie or WindingRule.

XSetFillRule can generate BadAHoc, BadGC, and BadValue errors.

7.2.4. Setting the Fill Tile and Stipple

Some displays have hardware support for tiling or stippling with patterns of specific sizes. Til¬
ing and stippling operations that restrict themselves to those specific sizes run much faster than
such operations with arbitrary size patterns. Xlib provides functions that you can use to deter¬
mine the best size, tile, or stipple for the display as well as to set the tile or stipple shape and
the tile or stipple origin.

To obtain the best size of a tile, stipple, or cursor, use XQueryBestSize.

Status XQuery BestSize (display, class, which jereen, width, height, width jeturn, height jeturn)
Display * display,
int class;
Drawable which_screen;
unsigned int width, height;
unsigned int *width_return, *height_return;

display Specifies the connection to the X server.

class Specifies the class that you are interested in. You can pass TileShape, Cur-
sorShape, or StippleShape.

112

Xlib - C Library Xll, Release 5

which_screen Specifies any drawable on the screen.

width
height Specify the width and height.

width_return
height jeturn Return the width and height of the object best supported by the display

hardware.

The XQueryBestSize function returns the best or closest size to the specified size. For Cur-
sorShape, this is the largest size that can be fully displayed on the screen specified by
which_screen. For TileShape, this is the size that can be tiled fastest. For StippleShape,
this is the size that can be stippled fastest. For CursorShape, the drawable indicates the
desired screen. For TileShape and StippleShape, the drawable indicates the screen and pos¬
sibly the window class and depth. An InputOnly window cannot be used as the drawable for
TileShape or StippleShape, or a BadMatch error results.

XQueryBestSize can generate BadDrawable, BadMatch, and Bad Value errors.

To obtain the best fill tile shape, use XQueryBestTile.

Status XQueryBestTil^{display, which_screen, width, height, width_return, heightjeturn)
Display * display,
Drawable which_screen\
unsigned int width, height',
unsigned int *width_return, * height_return\

display

whichjcreen

width
height

width_return
heightjeturn

Specifies the connection to the X server.

Specifies any drawable on the screen.

Specify the width and height.

Return the width and height of the object best supported by the display
hardware.

The XQueryBestTile function returns the best or closest size, that is, the size that can be tiled
fastest on the screen specified by which_scrccn. The drawable indicates the screen and possi¬
bly the window class and depth. If an InputOnly window is used as the drawable, a Bad¬
Match error results.

XQueryBestTile can generate BadDrawable and BadMatch errors.

To obtain the best stipple shape, use XQueryBestStipple.

Status XQueryBestStipple(display, which_screen, width, height, widthjeturn, height_return)
Display * display,
Drawable which_screen\
unsigned int width, height',
unsigned int *width_return, * height_return~.

display

which_screen

width
height

widthjeturn
height_return

Specifies the connection to the X server.

Specifies any drawable on the screen.

Specify the width and height.

Return the width and height of the object best supported by the display
hardware.

113

Xlib - C Library XI1, Release 5

The XQueryBestStipple function returns the best or closest size, that is, the size that can be
stippled fastest on the screen specified by which_scrcen. The drawable indicates the screen
and possibly the window class and depth. If an InputOnly window is used as the drawable, a
BadMatch error results.

XQueryBestStipple can generate BadDrawable and BadMatch errors.

To set the fill tile of a given GC, use XSetTile.

XSetTile(display, gc, tile)
Display * display,
GC gc:
Pixmap tile',

display Specifies the connection to the X server.

gc Specifies the GC.

tile Specifies the fill tile you want to set for the specified GC.

The tile and GC must have the same depth, or a BadMatch error results.

XSetTile can generate BadAUoc, BadGC, BadMatch, and BadPixmap errors.

To set the stipple of a given GC, use XSetStipple.

XSetStipplc(display, gc, stipple)
Display * display,
GC gc:
Pixmap stipple;

display Specifies the connection to the X server.

gc Specifies the GC.

stipple Specifies the stipple you want to set for the specified GC.

The stipple must have a depth of one, or a BadMatch error results.

XSetStipple can generate BadAlloc, BadGC, BadMatch, and BadPixmap errors.

To set the tile or stipple origin of a given GC, use XSetTSOrigin.

XSetTSOrigin /ay, gc, ts_x_origin, ts_y_origin)
Display * display:
GC gc:
int ts_x_origin, ts_y_origin:

display Specifies the connection to the X server.

gc Specifies the GC.

ts_x_origin
ts_y_origin Specify the x and y coordinates of the tile and stipple origin.

When graphics requests call for tiling or stippling, the parent’s origin will be interpreted rela¬
tive to whatever destination drawable is specified in the graphics request.

XSetTSOrigin can generate BadAlloc and BadGC error.

7,2.5. Setting the Current Font

To set the current font of a given GC, use XSetFont.

114

Xlib - C Library XI1, Release 5

XSe\Foni(display, gc,font)
Display * display,
GC gc.
Font font;

gc
font

display Specifies the connection to the X server.

Specifies the GC.

Specifies the font.

XSetFont can generate BadAIIoc, BadFont, and BadGC errors.

7.2.6. Setting the Clip Region

Xlib provides functions that you can use to set the clip-origin and the clip-mask or set the
clip-mask to a list of rectangles.

To set the clip-origin of a given GC, use XSetClipOrigin.

XSQtC\\pOrigm(display, gc, clip_x_origin, clip _y_ori gin)
Display * display,
GC gc,
int clip_x_origin, clip_y_origin\

display Specifies the connection to the X server.

gc Specifies the GC.

clip _x_origin
clip_y_origin Specify the x and y coordinates of the clip-mask origin.

The clip-mask origin is interpreted relative to the origin of whatever destination drawable is
specified in the graphics request.

XSetClipOrigin can generate BadAIIoc and BadGC errors.

To set the clip-mask of a given GC to the specified pixmap, use XSetClipMask.

XSetClipMask(<fa/?/tfy, gc, pixmap)
Display * display,
GC gc\
Pixmap pixmap',

display Specifies the connection to the X server.

gc Specifies the GC.

pixmap Specifies the pixmap or None.

If the clip-mask is set to None, the pixels are are always drawn (regardless of the clip-origin).

XSetClipMask can generate BadAIIoc, BadGC, BadMatch, and BadPixmap errors.

To set the clip-mask of a given GC to the specified list of rectangles, use XSetClipRectan-
gles.

XSetQipRectanglesC^p/ay, gc, clip_x_origin, clip_y_origin, rectangles, n, ordering)
Display * display,
GC gc,
int clip_x_origin, clip_y_origin\
XRectangle rectangles[]\
int n\
int ordering'.

115

Xlib - C Library XI1, Release 5

display

gc

clip_x_origin
clip _y _origin

rectangles

n

ordering

Specifies the connection to the X server.

Specifies the GC.

Specify the x and y coordinates of the clip-mask origin.

Specifies an array of rectangles that define the clip-mask.

Specifies the number of rectangles.

Specifies the ordering relations on the rectangles. You can pass Unsorted,
YSorted, YXSorted, or YXBanded.

The XSetClipRectangles function changes the clip-mask in the specified GC to the specified
list of rectangles and sets the clip origin. The output is clipped to remain contained within the
rectangles. The clip-origin is interpreted relative to the origin of whatever destination drawable
is specified in a graphics request. The rectangle coordinates are interpreted relative to the clip-
origin. The rectangles should be nonintersecting, or the graphics results will be undefined.
Note that the list of rectangles can be empty, which effectively disables output. This is the
opposite of passing None as the clip-mask in XCreateGC, XChangeGC, and XSetClip-
Mask.

If known by the client, ordering relations on the rectangles can be specified with the ordering
argument. This may provide faster operation by the server. If an incorrect ordering is specified,
the X server may generate a BadMatch error, but it is not required to do so. If no error is
generated, the graphics results are undefined. Unsorted means the rectangles are in arbitrary
order. YSorted means that the rectangles are nondecreasing in their Y origin. YXSorted
additionally constrains YSorted order in that all rectangles with an equal Y origin are nonde¬
creasing in their X origin. YXBanded additionally constrains YXSorted by requiring that, for
every possible Y scanline, all rectangles that include that scanline have an identical Y origins
and Y extents.

XSetClipRectangles can generate BadAlloc, BadGC, BadMatch, and BadValue errors.

Xlib provides a set of basic functions for performing region arithmetic. For information about
these functions, see section 16.5.

7.2.7. Setting the Arc Mode, Subwindow Mode, and Graphics Exposure

To set the arc mode of a given GC, use XSetArcMode.

XSetArcMode (^wp/ay, gc, arejnode)
Display * display,
GC gc\
int arejnode',

display Specifies the connection to the X server.

gc Specifies the GC.

arejnode Specifies the arc mode. You can pass ArcChord or ArcFieSlice.

XSetArcMode can generate BadAlloc, BadGC, and BadValue errors.

To set the subwindow mode of a given GC, use XSetSubwindowMode.

XSetSubwindowMode(cfcp/ay, gc, subwindowjnode)
Display * display,
GC gc\
int subwindow jnode',

display Specifies the connection to the X server.

gc Specifies the GC.

116

Xlib - C Library XI1, Release 5

subwindow jnode
Specifies the subwindow mode. You can pass ClipByChildren or Includeln-
feriors.

XSetSubwindowMode can generate BadAlloc, BadGC, and BadValue errors.

To set the graphics-exposures (lag of a given GC, use XSetGraphicsExposures.

XSetGraphicsExposures (display, gc, graphics ^exposures)
Display * display,
GC gc\
Bool graphics_exposures\

display Specifies the connection to the X server.

gc Specifies the GC.

graphics ^exposures
Specifies a Boolean value that indicates whether you want GraphicsExpose
and NoExpose events to be reported when calling XCopyArea and XCopy-
Plane with this GC.

XSetGraphicsExposures can generate BadAlloc, BadGC, and BadValue errors.

117

Xlib - C Library XI1, Release 5

Chapter 8

Graphics Functions

Once you have established a connection to a display, you can use the Xlib graphics functions
to:

• Clear and copy areas

• Draw points, lines, rectangles, and arcs

• Fill areas

• Manipulate fonts

® Draw text

• Transfer images between clients and the server

If the same drawable and GC is used for each call, Xlib batches back-to-back calls to
XDrawPoint, XDravvLine, XDrawRectangle, XFillArc, and XFillRectangle. Note that
this reduces the total number of requests sent to the ser/er.

8.1. Clearing Areas

Xlib provides functions that you can use to clear an area or the entire window. Because pix-
maps do not have defined backgrounds, they cannot be filled by using the functions described
in this section. Instead, to accomplish an analogous operation on a pixmap, you should use
XFillRectangle, which sets the pixmap to a known value.

To clear a rectangular area of a given window, use XClearArea.

XClearArea{display, w, x, y, width, height,, exposures)
Display * display,
Window w;
int x, y,
unsigned int width, height',
Bool exposures;

display Specifies the connection to the X server,

w Specifies the window.

y Specify the x and y coordinates, which are relative to the origin of the window
and specify the upper-left comer of the rectangle.

width
height Specify the width and height, which arc the dimensions of the rectangle.

exposures Specifies a Boolean value that indicates if Expose events are to be generated.

The XClearArea function paints a rectangular area in the specified window according to the
specified dimensions with the window’s background pixel or pixmap. The subwindow-mode
effectively is ClipByChildren. If width is zero, it is replaced with the current width of the
window minus x. If height is zero, it is replaced with the current height of the window minus
y. If the window has a defined background tile, the rectangle clipped by any children is filled
with this tile. If the window has background None, the contents of the window are not
changed. In either case, if exposures is True, one or more Expose events are generated for
regions of the rectangle that are either visible or are being retained in a backing store. If you
specify a window whose class is InputOnly, a BadMatch error results.

118

Xlib - C Library XI1, Release 5

XCJearArea can generate BadMatch, BadValue, and BadWindow errors.

To clear the entire area in a given window, use XClearWindow.

XClearWindow (<i/.sp/ay, w)
Display * display.
Window w;

display Specifies the connection to the X server,

w Specifies the window.

The XClearWindow function clears the entire area in the specified window and is equivalent
to XClearArea (display, w, 0, 0, 0, 0, False). If the window has a defined background tile,
the rectangle is tiled with a plane-mask of all ones and GXcopy function. If the window has
background None, the contents of the window are not changed. If you specify a window
whose class is InptiiOnly, a BadMatch error results.

XClearWindow can generate BadMatch and BadWindow errors.

8.2. Copying Areas

Xlib provides functions that you can use to copy an area or a bit plane.

To copy an area between drawablcs of the same root and depth, use XCopyArea.

XCopyArea(display, sre, dest, gc, src_x, src_y, width, height, dest_x, dest_y)
Display * display,
Drawable sre, dest',
GC gc;
int srcjc, src_y;
unsigned int width, height;
int dest_x, dest_y;

display Specifies the connection to the X server.

sre
dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

srcjc
srejy Specify the x and y coordinates, which are relative to the origin of the source

rectangle and specify its upper-left comer.

width
height Specify the width and height, which are the dimensions of both the source and

destination rectangles.

destjc
destjy Specify the x and y coordinates, which arc relative to the origin of the destina¬

tion rectangle and specify its upper-left comer.

The XCopyArea function combines the specified rectangle of sre with the specified rectangle
of dest. The drawables must have the same root and depth, or a BadMatch error results.

If regions of the source rectangle are obscured and have not been retained in backing store or
if regions outside the boundaries of the source drawable are specified, those regions are not
copied. Instead, the following occurs on all corresponding destination regions that are either
visible or are retained in backing store. If the destination is a window with a background odier
than None, corresponding regions of the destination are tiled with that background (with
plane-mask of all ones and GXcopy function). Regardless of tiling or whether the destination
is a window or a pixmap, if graphics-exposures is True, then GraphicsExpose events for all
corresponding destination regions are generated. If graphics-exposures is True but no

119

Xlib - C Library Xll, Release 5

GraphicsExpose events are generated, a NoExpose event is generated. Note that by default
graphics-exposures is True in new GCs.

This function uses these GC components: function, plane-mask, subwindow-mode, graphics-
exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyArea can generate BadDravvable, BadGC, and BadMatch errors.

To copy a single bit plane of a given drawable, use XCopyPlane.

XCopyPlane(display, sre, dest, gc, sreje, src_y, width, height, dest_x, dest_y, plane)
Display * display,
Drawable sre, dest',
GC gc\
int sreje, src_y,
unsigned int width, height',
int dest_x, dest_y,
unsigned long plane',

display Specifies the connection to the X server.

sre
dest Specify the source and destination rectangles to be combined.

gc Specifies the GC.

sreje
src_y Specify the x and y coordinates, which arc relative to the origin of the source

rectangle and specify its upper-left comer.

width
height Specify the width and height, which arc the dimensions of both the source and

destination rectangles.

destjc
destj Specify the x and y coordinates, which are relative to the origin of the destina¬

tion rectangle and specify its upper-left comer.

plane Specifies the bit plane. You must set exactly one bit to 1.

The XCopyPlane function uses a single bit plane of the specified source rectangle combined
with the specified GC to modify the specified rectangle of dest. The drawables must have the
same root but need not have the same depth. If the drawables do not have the same root, a
BadMatch error results. If plane does not have exactly one bit set to 1 and the values of
planes must be less than 2", where n is the depth of sre, a Bad Value error results.

Effectively, XCopyPlane forms a pixmap of the same depth as the rectangle of dest and with
a size specified by the source region. It uses the foreground/background pixels in the GC (fore¬
ground everywhere the bit plane in sre contains a bit set to 1, background everywhere the bit
plane in sre contains a bit set to 0) and the equivalent of a CopyArea protocol request is per¬
formed with all the same exposure semantics. This can also be thought of as using the
specified region of the source bit plane as a stipple with a fill-style of FillOpaqueSlippled for
filling a rectangular area of the destination.

This function uses these GC components: function, plane-mask, foreground, background,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

XCopyPlane can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

8.3. Drawing Points, Lines, Rectangles, and Arcs

Xlib provides functions that you can use to draw:

• A single point or multiple points

120

Xlib - C Library Xll, Release 5

• A single line or multiple lines

• A single rectangle or multiple rectangles

• A single arc or multiple arcs

Some of the functions described in the following sections use these structures:

typedef struct {
short xl, yl, x2, y2;

} XSegment;

typedef struct {
short x, y;

} XPoint;

typedef struct {
short x, y;
unsigned short width, height;

} XRectangle;

typedef struct {
short x, y;
unsigned short width, height;
short angle 1, angle2; /* Degrees * 64 */

} XArc;

All x and y members are signed integers. The width and height members are 16-bit unsigned
integers. You should be careful not to generate coordinates and sizes out of the 16-bit ranges,
because the protocol only has 16-bit fields for these values.

8.3.1. Drawing Single and Multiple Points

To draw a single point in a given drawable, use XDrawPoint.

XDrawPoint(^p/<3y, d, gc, x, y)
Display * display,
Drawable d\
GC gc;
int x, y;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates where you want the point drawn.

To draw multiple points in a given drawable, use XDrawPoints.

XDrawPoints(d/s/?/ay, d, gc, points, npoints, mode)
Display * display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int mode;

display Specifies the connection to the X server.

121

Xlib - C Library XI1, Release 5

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or Coord-
ModePrevious.

The XDravvPoint function uses the foreground pixel and function components of the GC to
draw a single point into the specified drawable; XDrawPoints draws multiple points this way.
CoordModeOrigin treats all coordinates as relative to the origin, and CoordModePrevious
treats all coordinates after the first as relative to the previous point. XDrawPoints draws the
points in the order listed in the array.

Both functions use these GC components; function, plane-mask, foreground, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask.

XDrawPoint can generate BadDrawable, BadGC, and BadMatch errors. XDrawPoints
can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

8.3.2. Drawing Single and Multiple Lines

To draw a single line between two points in a given drawable, use XDrawLine.

XDrawLine(^p/ay, d, gc, xl, yl,x2, y2)
Display * display,
Drawable d;
GC gc;
int xl, yl, x2,y2\

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

xl

yi
x2

y2 Specify the points.(xl, yl) and (x2, yl) to be connected.

To draw multiple lines in a given drawable, use XDrawLines.

XDrawLines(display, d, gc, points, npoints, mode)
Display * display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int mode;

display Specifies the connection to the

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points

mode Specifies the coordinate mode.
ModePrevious.

X server.

in the array.

You can pass CoordModeOrigin or Coord-

122

Xlib - C Library XI1, Release 5

To draw multiple, unconnected lines in a given drawable, use XDrawSegments.

XDrawSegments(display, d, gc, segments, nsegments)
Display * display,
Drawable d\
GC gc\
XSegment * segments',
int nsegments'.

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

segments Specifies an array of segments.

nsegments Specifies the number of segments in the array.

The XDrawLine function uses the components of the specified GC to draw a line between the
specified set of points (xl, yl) and (x2, y2). It does not perform joining at coincident end¬
points. For any given line, XDrawLine does not draw a pixel more than once. If lines inter¬
sect, the intersecting pixels are drawn multiple times.

The XDrawLines function uses the components of the specified GC to draw npoints-1 lines
between each pair of points (pointfi], point[i+l]) in the array of XPoint structures. It draws
the lines in the order listed in the array. The lines join correctly at all intermediate points, and
if the first and last points coincide, the first and last lines also join correctly. For any given
line, XDrawLines does not draw a pixel more than once. If thin (zero line-width) lines inter¬
sect, the intersecting pixels are drawn multiple times. If wide lines intersect, the intersecting
pixels are drawn only once, as though the entire PolyLine protocol request were a single,
filled shape. CoordModeOrigin treats all coordinates as relative to the origin, and CoordMo-
dePrevious treats all coordinates after the first as relative to the previous point.

The XDrawSegments function draws multiple, unconnected lines. For each segment,
XDrawSegments draws a line between (xl, yl) and (x2, y2). It draws the lines in the order
listed in the array of XSegment structures and does not perform joining at coincident end¬
points. For any given line, XDrawSegments docs not draw a pixel more than once. If lines
intersect, the intersecting pixels are drawn multiple times.

All three functions use these GC components: function, plane-mask, line-width, line-style, cap-
style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. The XDraw¬
Lines function also uses the join-style GC component. All three functions also use these GC
mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, tile-
stipple-y-origin, dash-offset, and dash-list.

XDrawLine, XDrawLines, and XDrawSegments can generate BadDrawable, BadGC, and
BadMatch errors. XDrawLines also can generate BadValue errors.

8J.3. Drawing Single and Multiple Rectangles

To draw the outline of a single rectangle in a given drawable, use XDrawRectangle.

XDrawRectanglef^p/ay, d, gc, x, y, width, height)
Display * display,
Drawable d\
GC gc\
int x, y,
unsigned int width, height',

display Specifies the connection to the X server.

d Specifies the drawable.

123

Xlib - C Library XI1, Release 5

gc Specifies the GC.

x
y Specify the x and y coordinates, which specify the upper-left comer of the rec¬

tangle.

width
height Specify the width and height, which specify the dimensions of the rectangle.

To draw the outline of multiple rectangles in a given drawable, use XDrawRectangles.

XDrawRectangles{display, d, gc, rectangles, nrectangles)
Display * display,
Drawable d;
GC gc\
XRectangle rectangles [];
int nrectangles'.

display

d

gc
rectangles

nrectangles

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

Specifies an array of rectangles.

Specifies the number of rectangles in the array.

The XDrawRectangle and XDrawRectangles functions draw the outlines of the specified
rectangle or rectangles as if a five-point PolyLine protocol request were specified for each rec¬
tangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height] [x,y]

For the specified rectangle or rectangles, these functions do not draw a pixel more than once.
XDrawRectangles draws the rectangles in the order listed in the array. If rectangles intersect,
the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-
style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They
also use these GC mode-dependent components: foreground, background, tile, stipple, tile-
stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawRectangle and XDrawRectangles can generate BadDrawable, BadGC, and Bad-
Match errors.

8.3.4. Drawing Single and Multiple Arcs

To draw a single arc in a given drawable, use XDrawArc.

XDrawArc{display, d, gc, x, y, width, height, angle 1, angle2)
Display * display,
Drawable d;
GC gc;
int x, y;
unsigned int width, height;
int angle 1, angle2;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

124

Xlib - C Library Xll, Release 5

y Specify the x and y coordinates, which are relative to the origin of the draw-
able and specify the upper-left comer of the bounding rectangle.

width
height Specify the width and height, which are the major and minor axes of the arc.

angle 1 Specifies the start of the arc relative to the three-o’clock position from the
center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units
of degrees * 64.

To draw multiple arcs in a given drawable, use XDrawArcs.

XDrawArcs (tfap/ay, d, gc, arcs, narcs)
Display * display,
Drawable d\
GC gc;
XArc *arcs;
int narcs;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array

XDrawArc draws a single circular or elliptical arc, and XDrawArcs draws multiple circular
or elliptical arcs. Each arc is specified by a rectangle and two angles. The center of the circle
or ellipse is the center of the rectangle, and the major and minor axes are specified by the
width and height. Positive angles indicate counterclockwise motion, and negative angles indi¬
cate clockwise motion. If the magnitude of angle2 is greater than 360 degrees, XDrawArc or
XDrawArcs truncates it to 360 degrees.

For an arc specified as [x,y, width, height, angle 1, angle2], the origin of the major and minor

axes is at [x+ Wl<^h t y+ —jgh*. and the infinitely thin path describing the entire circle or

ellipse intersects the horizontal axis at [x, y+ h£l&hL] aruj [x+width, y+ and intersects

the vertical axis at [*+ ^ , y] and [x + , y +height]. These coordinates can be fractional

and so are not truncated to discrete coordinates. The path should be defined by the ideal
mathematical path. For a wide line with line-width lw, the bounding outlines for filling are
given by the two infinitely thin paths consisting of all points whose perpendicular distance
from the path of the circle/cllipse is equal to lw/2 (which may be a fractional value). The
cap-style and join-style are applied the same as for a line corresponding to the tangent of the
circle/ellipse at the endpoint.

For an arc specified as [x,y, width, height, angle 1, angle 2], the angles must be specified in the
effectively skewed coordinate system of the ellipse (for a circle, the angles and coordinate sys¬
tems are identical). The relationship between these angles and angles expressed in the normal
coordinate system of the screen (as measured with a protractor) is as follows:

skewed-angle = a tan tan(normal-angle)*
width

height
+ adjust

The skewed-angle and normal-angle are expressed in radians (rather than in degrees scaled by

64) in the range [0, 2n] and where atan returns a value in the range [-y, y] and adjust is:

125

Xlib - C Library Xll, Release 5

2k

K

0 for normal-angle in the range [0, y]

for normal-angle in the range [y, -y-]

for normal-angle in the range [-y-, 2k]

For any given arc, XDrawArc and XDrawArcs do not draw a pixel more than once. If two
arcs join correctly and if the line-width is greater than zero and the arcs intersect, XDrawArc
and XDrawArcs do not draw a pixel more than once. Otherwise, the intersecting pixels of
intersecting arcs are drawn multiple times. Specifying an arc with one endpoint and a clock¬
wise extent draws the same pixels as specifying the other endpoint and an equivalent counter¬
clockwise extent, except as it affects joins.

If the last point in one arc coincides with the first point in the following arc, the two arcs will
join correctly. If the first point in the first arc coincides with the last point in the last arc, the
two arcs will join correctly. By specifying one axis to be zero, a horizontal or vertical line can
be drawn. Angles are computed based solely on the coordinate system and ignore the aspect
ratio.

Both functions use these GC components: function, plane-mask, line-width, line-style, cap-
style, join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They
also use these GC mode-dependent components: foreground, background, tile, stipple, tile-
stipple-x-origin, tile-stipple-y-origin, dash-offset, and dash-list.

XDrawArc and XDrawArcs can generate BadDrawable, BadGC, and BadMatch errors.

8.4. Filling Areas

Xlib provides functions that you can use to fill:

• A single rectangle or multiple rectangles

• A single polygon

• A single arc or multiple arcs

8.4.1. Filling Single and Multiple Rectangles

To fill a single rectangular area in a given drawable, use XFillRectangle.

XFillRectangle{display, d, gc, x, y, width, height)
Display * display,
Drawable d\
GC gc,
int x, y,
unsigned int width, height',

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

y Specify the x and y coordinates, which are relative to the origin of the draw-
able and specify the upper-left comer of the rectangle.

width
height Specify the width and height, which are the dimensions of the rectangle to be

filled.

To fill multiple rectangular areas in a given drawable, use XFillRectangles.

126

Xlib - C Library XI1, Release 5

XFillRectangles (cfrsp/ay, d, gc, rectangles, nrectangles)
Display * display,
Drawable d;
GC gc;
XRectangle * rectangles;
int nrectangles;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

rectangles Specifies an array of rectangles.

nrectangles Specifies the number of rectangles in the array.

The XFillRectangle and XFillRectangles functions fill the specified rectangle or rectangles as
if a four-point FillPolygon protocol request were specified for each rectangle:

[x,y] [x+width,y] [x+width,y+height] [x,y+height]

Each function uses the x and y coordinates, width and height dimensions, and GC you specify.

XFillRectangles fills the rectangles in the order listed in the array. For any given rectangle,
XFillRectangle and XFillRectangles do not draw a pixel more than once. If rectangles inter¬
sect, the intersecting pixels are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, subwindow-mode,
clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent com¬
ponents: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-stipple-y-origin.

XFillRectangle and XFillRectangles can generate BadDravvable, BadGC, and BadMatch
errors.

8.4.2. Filling a Single Polygon

To fill a polygon area in a given drawable, use XFillPoiygon.

XFillPoiygon (d/sp/ay, d, gc, points, npoints, shape, mode)
Display * display;
Drawable d;
GC gc;
XPoint *points;
int npoints;
int shape;
int mode;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

points Specifies an array of points.

npoints Specifies the number of points in the array.

shape Specifies a shape that helps the server to improve performance. You can pass
Complex, Convex, or Nonconvex.

mode Specifies the coordinate mode. You can pass CoordModeOrigin or Coord-
ModePrevious.

XFillPoiygon fills the region closed by the specified path. The path is closed automatically if
the last point in the list does not coincide with the first point. XFillPoiygon does not draw a
pixel of the region more than once. CoordModeOrigin treats all coordinates as relative to the

127

Xlib - C Library XI1, Release 5

origin, and CoordModePrevious treats all coordinates after the first as relative to the previous
point.

Depending on the specified shape, the following occurs:

• If shape is Complex, the path may self-intersect. Note that contiguous coincident points
in the path are not treated as self-intersection.

• If shape is Convex, for every pair of points inside the polygon, the line segment con¬
necting them does not intersect the path. If known by the client, specifying Convex can
improve performance. If you specify Convex for a path that is not convex, the graphics
results are undefined.

• If shape is Nonconvex, the path does not self-intersect, but the shape is not wholly con¬
vex. If known by the client, specifying Nonconvex instead of Complex may improve
performance. If you specify Nonconvex for a self-intersecting path, the graphics results
are undefined.

The fill-rule of the GC controls the filling behavior of self-intersecting polygons.

This function uses these GC components: function, plane-mask, fill-style, fill-rule, subwindow¬
mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent com¬
ponents: foreground, background, tile, stipple, tilc-stipplc-x-origin, and tile-stipple-y-origin.

XFillPolygon can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

8.4.3. Filling Single and Multiple Arcs

To fill a single arc in a given drawable, use XFillArc.

XF\l\ Arc (display, d, gc, x, y, width, height, angle 1, angle2)
Display * display,
Drawable d\
GC gc\
int x, y,
unsigned int width, height',
int angle 1, angle2\

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the draw-

able and specify the upper-left comer of the bounding rectangle.

width
height Specify the width and height, which are the major and minor axes of the arc.

anglel Specifies the start of the arc relative to the three-o’clock position from the
center, in units of degrees * 64.

angle2 Specifies the path and extent of the arc relative to the start of the arc, in units
of degrees * 64.

To fill multiple arcs in a given drawable, use XFillArcs.

XFillArcsC^p/ay, d, gc, arcs, narcs)
Display * display,
Drawable d\
GC gc\
XArc * arcs',
int narcs'.

128

Xlib - C Library XI1, Release 5

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

arcs Specifies an array of arcs.

narcs Specifies the number of arcs in the array.

For each arc, XFillArc or XFillArcs fills the region closed by the infinitely thin path
described by the specified arc and, depending on the arc-mode specified in the GC, one or two
line segments. For ArcChord, the single line segment joining the endpoints of the arc is used.
For ArcPieSlice, the two line segments joining the endpoints of the arc with the center point
are used. XFillArcs fills the arcs in the order listed in the array. For any given arc, XFillArc
and XFillArcs do not draw a pixel more than once. If regions intersect, the intersecting pixels
are drawn multiple times.

Both functions use these GC components: function, plane-mask, fill-style, arc-mode,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-
dependent components: foreground, background, tile, stipple, tile-stipple-x-origin, and tile-
stipple-y-origin.

XFillArc and XFillArcs can generate BadDrawable, BadGC, and BadMatch errors.

8.5. Font Metrics

A font is a graphical description of a set of characters that are used to increase efficiency
whenever a set of small, similar sized patterns arc repeatedly used.

This section discusses how to:

» Load and free fonts

• Obtain and free font names

• Compute character string sizes

• Return logical extents

• Query character string sizes

The X server loads fonts whenever a program requests a new font. The server can cache fonts
for quick lookup. Fonts are global across all screens in a server. Several levels are possible
when dealing with fonts. Most applications simply use XLoadQueryFont to load a font and
query the font metrics.

Characters in fonts are regarded as masks. Except for image text requests, the only pixels
modified are those in which bits are set to 1 in the character. This means that it makes sense
to draw text using stipples or tiles (for example, many menus gray-out unusable entries).

The XFontStruct structure contains all of the information for the font and consists of the
font-specific information as well as a pointer to an array of XCharStruct structures for the
characters contained in the font. The XFontStruct, XFontProp, and XCharStruct structures
contain:

typedef struct {
short lbearing;
short rbearing;
short width;
short ascent;
short descent;
unsigned short attributes;

} XCharStruct;

/* origin to left edge of raster */
/* origin to right edge of raster */
/* advance to next char’s origin */
/* baseline to top edge of raster */
/* baseline to bottom edge of raster */
/* per char flags (not predefined) */

typedef struct {
Atom name;

129

Xlib - C Library XI1, Release 5

unsigned long card32;
} XFontProp;

typedef struct {
unsigned char bytel;
unsigned char byte2;

} XChar2b;

typedef struct {
XExtData *ext_data;
Font fid;
unsigned direction;
unsigned min_char_or_byte2;
unsigned max_char_or_byte2;
unsigned min_bytel;
unsigned max_bytel;
Bool all_chars_exist;
unsigned default_char;
int n_properties;
XFontProp *properties;
XCharStruct min_bounds;
XCharStruct max_bounds;
XCharStruct *per_char;
int ascent;
int descent;

} XFontStruct;

/* normal 16 bit characters are two bytes */

/* hook for extension to hang data */
/* Font id for this font */
/* hint about the direction font is painted */
/* first character */
/* last character */
/* first row that exists */
/* last row that exists */
/* flag if all characters have nonzero size */
/* char to print for undefined character */
/* how many properties there are */
/* pointer to array of additional properties */
/* minimum bounds over all existing char */
/* maximum bounds over all existing char */
/* first_char to last_char information */
/* logical extent above baseline for spacing */
/* logical decent below baseline for spacing */

X supports single byte/character, two bytes/charactcr matrix, and 16-bit character text opera¬
tions. Note that any of these forms can be used with a font, but a single byte/character text
request can only specify a single byte (that is, the first row of a 2-byte font). You should view
2-byte fonts as a two-dimensional matrix of defined characters: bytel specifies the range of
defined rows and byte2 defines the range of defined columns of the font. Single byte/character
fonts have one row defined, and the byte2 range specified in the structure defines a range of
characters.

The bounding box of a character is defined by the XCharStruct of that character. When
characters are absent from a font, the dcfault_char is used. When fonts have all characters of
the same size, only the information in the XFontStruct min and max bounds are used.

The members of the XFontStruct have the following semantics:

• The direction member can be either FontLeftToRight or FontRightToLeft. It is just a
hint as to whether most XCharStruct elements have a positive (FontLeftToRight) or a
negative (FontRightToLeft) character width metric. The core protocol defines no sup¬
port for vertical text.

• If the min_bytel and max_bytel members arc both zero, min_char_or_byte2 specifies the
linear character index corresponding to the first element of the per_char array, and
max_char_or_byte2 specifies the linear character index of the last element.

If either min_bytel or max_bytel are nonzero, both min_char_or_byte2 and
max_char_or_byte2 are less than 256, and the 2-byte character index values correspond¬
ing to the per_char array clement N (counting from 0) are:

bytel = N/D + min_bytel
byte2 = N\D + min_char_or_byte2

where:

D = max_char_or_byte2 - min_char_or_byte2 + 1
/ = integer division

130

Xlib - C Library Xll, Release 5

\ = integer modulus

• If the per_char pointer is NULL, all glyphs between the first and last character indexes
inclusive have the same information, as given by both min_bounds and max_bounds.

• If all_chars_exist is True, all characters in the pcr_char array have nonzero bounding
boxes.

• The default_char member specifies the character that will be used when an undefined or
nonexistent character is printed. The dcfault_char is a 16-bit character (not a 2-byte char¬
acter). For a font using 2-byte matrix format, the dcfault_char has bytel in the most-
significant byte and byte2 in the least-significant byte. If the default_char itself specifies
an undefined or nonexistent character, no printing is performed for an undefined or
nonexistent character.

• The min_bounds and max_bounds members contain the most extreme values of each
individual XCharStruct component over all elements of this array (and ignore nonex¬
istent characters). The bounding box of the font (the smallest rectangle enclosing the
shape obtained by superimposing all of the characters at the same origin [x,y]) has its
upper-left coordinate at:

[x + min_bounds.lbcaring, y - maxjxmnds.ascent]

Its width is:

max_bounds.rbcaring - min_bounds.lbearing

Its height is:

max_bounds.asccnt + max_bounds.desccnt

• The ascent member is the logical extent of the font above the baseline that is used for
determining line spacing. Specific characters may extend beyond this.

• The descent member is the logical extent of the font at or below the baseline that is used
for determining line spacing. Specific characters may extend beyond this.

• If the baseline is at Y-coordinate y, the logical extent of the font is inclusive between the
Y-coordinate values (y - font.ascent) and (y + font.descent - 1). Typically, the
minimum interline spacing between rows of text is given by ascent + descent.

For a character origin at [x,y], the bounding box of a character (that is, the smallest rectangle
that encloses the character’s shape) described in terms of XCharStruct components is a rec¬
tangle with its upper-left comer at:

[x + lbearing, y - ascent]

Its width is:

rbearing - lbearing

Its height is:

ascent + descent

The origin for the next character is defined to be:

[x + width, y]

The lbearing member defines the extent of the left edge of the character ink from the origin.
The rbearing member defines the extent of the right edge of the character ink from the origin.
The ascent member defines the extent of the top edge of the character ink from the origin. The
descent member defines the extent of the bottom edge of the character ink from the origin.

131

Xlib - C Library XI1, Release 5

The width member defines the logical width of the character.

Note that the baseline (the y position of the character origin) is logically viewed as being the
scanline just below nondescending characters. When descent is zero, only pixels with Y-
coordinates less than y are drawn, and the origin is logically viewed as being coincident with
the left edge of a nonkemed character. When lbcaring is zero, no pixels with X-coordinate less
than x are drawn. Any of the XCharStruct metric members could be negative. If the width
is negative, the next character will be placed to the left of the current origin.

The X protocol does not define the interpretation of the attributes member in the XCharStruct
structure. A nonexistent character is represented with all members of its XCharStruct set to
zero.

A font is not guaranteed to have any properties. The interpretation of the property value (for
example, long or unsigned long) must be derived from a priori knowledge of the property. A
basic set of font properties is specified in the X Consortium standard X Logical Font Descrip¬
tion Conventions.

8.5.1. Loading and Freeing Fonts

Xlib provides functions that you can use to load fonts, get font information, unload fonts, and
free font information. A few font functions use a GContext resource ID or a font ID inter¬
changeably.

To load a given font, use XLoadFont.

Font XLoadFont (display, name)
Display * display',
char *name\

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadFont function loads the specified font and returns its associated font ID. If the
font name is not in the Host Portable Character Encoding the result is implementation depen¬
dent. Use of uppercase or lowercase does not matter. The interpretation of characters “?”
and “*” in the name is not defined by the core protocol but is reserved for future definition.
A structured format for font names is specified in the X Consortium standard X Logical Font
Description Conventions. If XLoadFont was unsuccessful at loading the specified font, a
BadName error results. Fonts are not associated with a particular screen and can be stored as
a component of any GC. When the font is no longer needed, call XUnloadFont.

XLoadFont can generate BadAlloc and BadName errors.

To return information about an available font, use XQueryFont.

XFontStruct *XQueryFont(display, fontJD)
Display * display,
XID fontJD',

display Specifies the connection to the X server.

fontJD Specifies the font ID or the GContext ID.

The XQueryFont function returns a pointer to the XFontStruct structure, which contains
information associated with the font. You can query a font or the font stored in a GC. The
font ID stored in the XFontStruct structure will be the GContext ID, and you need to be
careful when using this ID in other functions (see XGContextFromGC). If the font does not
exist, XQueryFont returns NULL. To free this data, use XFreeFontlnfo.

To perform a XLoadFont and XQueryFont in a single operation, use XLoadQueryFont.

132

Xlib - C Library XI1, Release 5

XFontStruct *XLoadQuzryFont(display, name)
Display * display,
char *name\

display Specifies the connection to the X server.

name Specifies the name of the font, which is a null-terminated string.

The XLoadQueryFont function provides the most common way for accessing a font.
XLoadQueryFont both opens (loads) the specified font and returns a pointer to the appropri¬
ate XFontStruct structure. If the font name is not in the Host Portable Character Encoding
the result is implementation dependent. If the font does not exist, XLoadQueryFont returns
NULL.

XLoadQueryFont can generate a BadAlIoc error.

To unload the font and free the storage used by the font structure that was allocated by
XQueryFont or XLoadQueryFont, use XFreeFont.

XFreeFont (display, fontjtruct)
Display * display,
XFontStruct *font_struct\

display Specifies the connection to the X server.

fontjtruct Specifies the storage associated with the font.

The XFreeFont function deletes the association between the font resource ID and the specified
font and frees the XFontStruct structure. The font itself will be freed when no other resource
references it. The data and the font should not be referenced again.

XFreeFont can generate a BadFont error.

To return a given font property, use XGetFontProperty.

Bool XGetFontProperty (fontjtruct, atom, value jeturn)
XFontStruct *fontjtruct’.
Atom atom’,
unsigned long * valuejeturn’,

fontjtruct Specifies the storage associated with the font.

atom Specifies the atom for the property name you want returned.

value jeturn Returns the value of the font property.

Given the atom for that property, the XGetFontProperty function returns the value of the
specified font property. XGetFontProperty also returns False if the property was not defined
or True if it was defined. A set of predefined atoms exists for font properties, which can be
found in <Xll/Xatom,h>. This set contains the standard properties associated with a font.
Although it is not guaranteed, it is likely that the predefined font properties will be present.

To unload a font that was loaded by XLoadFont, use XUnloadFont.

XUnloadFont(ifwp/ay, font)
Display * display.
Font font’,

display Specifies the connection to the X server.

font Specifies the font.

The XUnloadFont function deletes the association between the font resource ID and the
specified font. The font itself will be freed when no other resource references it. The font
should not be referenced again.

133

Xlib - C Library XI1, Release 5

XUnloadFont can generate a BadFont error.

8.5.2. Obtaining and Freeing Font Names and Information

You obtain font names and information by matching a wildcard specification when querying a
font type for a list of available sizes and so on.

To return a list of the available font names, use XListFonts.

char **XListFonts {display, pattern, maxnames, actual_count_return)
Display * display,
char * pattern',
int maxnames',
int * actual_count_return\

display Specifies the connection to the X server.

pattern Specifies the null-terminated pattern string that can contain wildcard characters.

maxnames Specifies the maximum number of names to be returned.

actual_count_return
Returns the actual number of font names.

The XListFonts function returns an array of available font names (as controlled by the font
search path; see XSetFontPath) that match the string you passed to the pattern argument. The
pattern string can contain any characters, but each asterisk (*) is a wildcard for any number of
characters, and each question mark (?) is a wildcard for a single character. If the pattern string
is not in the Host Portable Character Encoding the result is implementation dependent. Use of
uppercase or lowercase does not matter. Each returned string is null-terminated. If the data
returned by the server is in the Latin Portable Character Encoding, then the returned strings are
in the Host Portable Character Encoding. Otherwise, the result is implementation dependent.
If there are no matching font names, XListFonts returns NULL. The client should call
XFreeFontNames when finished with the result to free the memory.

To free a font name array, use XFreeFontNames.

XFreeFontNames (list)
char *list[];

list Specifies the array of strings you want to free.

The XFreeFontNames function frees the array and strings returned by XListFonts or XList¬
Fonts Withlnfo.

To obtain the names and information about available fonts, use XListFontsWithlnfo.

char **XListFontsWithInfo(rf/5p/ay, pattern, maxnames, countjeturn, info_return)
Display * display,
char *pattern',
int maxnames;
int *count_return;
XFontStruct **info_return\

display

pattern

maxnames

count_return

info_return

Specifies the connection to the X server.

Specifies the null-terminated pattern string that can contain wildcard characters.

Specifies the maximum number of names to be returned.

Returns the actual number of matched font names.

Returns the font information.

134

Xlib - C Library Xll, Release 5

The XListFontsWithlnfo function returns a list of font names that match the specified pattern
and their associated font information. The list of names is limited to size specified by max-
names. The information returned for each font is identical to what XLoadQueryFont would
return except that the per-character metrics are not returned. The pattern string can contain any
characters, but each asterisk (*) is a wildcard for any number of characters, and each question
mark (?) is a wildcard for a single character. If the pattern string is not in the Host Portable
Character Encoding the result is implementation dependent. Use of uppercase or lowercase
does not matter. Each returned string is null-terminated. If the data returned by the server is
in the Latin Portable Character Encoding, then the returned strings are in the Host Portable
Character Encoding. Otherwise, the result is implementation dependent. If there are no match¬
ing font names, XListFontsWithlnfo returns NULL.

To free only the allocated name array, the client should call XFreeFontNames. To free both
the name array and the font information array, or to free just the font information array, the
client should call XFreeFontlnfo.

To free the the font information array, use XFreeFontlnfo.

XFreeFontInfo(m2/nc.s, freejnfo, actual_count)
char **names',
XFontStruct *freejnfo\
int actual_count\

names Specifies the list of font names returned by XListFontsWithlnfo.

freejnfo Specifies the font information returned by XListFontsWithlnfo.

actual_count Specifies the actual number of matched font names returned by XList¬
FontsWithlnfo.

The XFreeFontlnfo function frees the the font information array. To free an XFontStruct
structure without closing the font, call XFreeFontlnfo with the names argument specified as
NULL.

8.5.3. Computing Character String Sizes

Xlib provides functions that you can use to compute the width, the logical extents, and the
server information about 8-bit and 2-byte text strings. The width is computed by adding the
character widths of all the characters. It does not matter if the font is an 8-bit or 2-byte font.
These functions return the sum of the character metrics, in pixels.

To determine the width of an 8-bit character string, use XTextWidth.

int XTextWidth(/b«r_.srrwcr, string, count)
XFontStruct *font_struct\
char * string',
int count',

font_struct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

To determine the width of a 2-byte character string, use XTextWidthl6.

int XTexiWid\h\6(font_struct, string, count)
XFontStruct *font_struct',
XChar2b * string',
int count'.

135

Xlib - C Library XI1, Release 5

font_struct Specifies the font used for the width computation.

string Specifies the character string.

count Specifies the character count in the specified string.

8.5.4. Computing Logical Extents

To compute the bounding box of an 8-bit character string in a given font, use XTextExtents.

XTextExtents(fontjtruct, string, nchars, direction_return, font_ascent_return,
font_descent_return, overall jeturn)

XFontStruct *font_struct\
char * string',
int nchars',
int * directionjeturn',
int *font_ascent_return, *font_descent_return',
XCharStruct * overall return'.

fontjtruct Specifies the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_returnRetums the value of the direction hint (FontLeftToRight or FontRight-
ToLeft).

font_ascent_return
Returns the font ascent.

font_descent_return
Returns the font descent.

overall jeturn Returns the overall size in the specified XCharStruct structure.

To compute the bounding box of a 2-byte character string in a given font, use XTextEx-
tentsl6.

XTextExtents\6(font_struct, string, nchars, directionjeturn, font_ascentjeturn,
fontjlescentjeturn, overall jeturn)

XFontStruct *fontjtruct',
XChar2b * string',
int nchars',
int * direction jeturn',
int *font_ascentjeturn, *fontjlescentjeturn',
XCharStruct * overall return'.

fontjtruct Specifies the XFontStruct structure.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction jeturnRctums the value of the direction hint (FontLeftToRight or FontRight-
ToLeft).

fontjtscentjeturn
Returns the font ascent.

font jlescent jeturn
Returns the font descent.

overall jeturn Returns the overall size in the specified XCharStruct structure.

136

Xlib - C Library Xll, Release 5

The XTextExtents and XTextExtentsl6 functions perform the size computation locally and,
thereby, avoid the round-trip overhead of XQueryTextExtents and XQueryTextExtentsl6.
Both functions return an XCharStruct structure, whose members are set to the values as fol¬
lows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.
The descent member is set to the maximum of the descent metrics. The width member is set
to the sum of the character-width metrics of all characters in the string. For each character in
the string, let W be the sum of the character-width metrics of all characters preceding it in the
string. Let L be the left-side-bcaring metric of the character plus W. Let R be the right-side¬
bearing metric of the character plus W. The lbcaring member is set to the minimum L of all
characters in the string. The rbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b
structure is interpreted as a 16-bit number with bytel as the most-significant byte. If the font
has no defined default character, undefined characters in the string are taken to have all zero
metrics.

8.5.5. Querying Character String Sizes

To query the server for the bounding box of an 8-bit character string in a given font, use
XQueryTextExtents.

XQueryTextExtents {display, font _ID, string, nchars, direction_return, font_ascent_return,
font_descent_retum, overall_return)

Display * display,
XID font_lD\
char * string-,
int nchars\
int *direction_return-,
int *font_ascent_return, *font_descent_return;
XCharStruct * over all_return\

display Specifies the connection to the X server.

fontJD Specifies cither the font ID or the GContext ID that contains the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction_returnRciams the value of the direction hint (FontLeftToRight or FontRight-
ToLeft).

fontjxscentjeturn
Returns the font ascent.

font_descent_return
Returns the font descent.

overall_return Returns the overall size in the specified XCharStruct structure.

To query the server for the bounding box of a 2-byte character string in a given font, use
XQueryTextExtentsl6.

137

Xlib - C Library XI1, Release 5

XQueryTextExtents 16 (display, fontJD, string, nchars, direction jeturn, font_ascent_return,
font_descent_return, overall jeturn)

Display * display,
X1D fontJD',
XChar2b * string",
int nchars;
int *directionjeturn\
int *font_ascent_return, * font_descentjeturn;
XCharStruct * overalljeturn',

display Specifies the connection to the X server.

fontJD Specifies either the font ID or the GContext ID that contains the font.

string Specifies the character string.

nchars Specifies the number of characters in the character string.

direction jeturnRetums the value of the direction hint (FontLeftToRight or FontRight-
ToLeft).

fontjscentjeturn
Returns the font ascent.

fontjlescentjeturn
Returns the font descent.

overall jeturn Returns the overall size in the specified XCharStruct structure.

The XQueryTextExtents and XQueryTextExtentsl6 functions return the bounding box of
the specified 8-bit and 16-bit character string in the specified font or the font contained in the
specified GC. These functions query the X server and, therefore, suffer the round-trip over¬
head that is avoided by XTextExtents and XTextExtentsl6. Both functions return a XChar¬
Struct structure, whose members are set to the values as follows.

The ascent member is set to the maximum of the ascent metrics of all characters in the string.
The descent member is set to the maximum of the descent metrics. The width member is set
to the sum of the character-width metrics of all characters in the string. For each character in
the string, let W be the sum of the character-width metrics of all characters preceding it in the
string. Let L be the left-side-bearing metric of the character plus W. Let R be the right-side-
bearing metric of the character plus W. The .lbcaring member is set to the minimum L of all
characters in the string. The rbearing member is set to the maximum R.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b
structure is interpreted as a 16-bit number with bytcl as the most-significant byte. If the font
has no defined default character, undefined characters in the string are taken to have all zero
metrics.

Characters with all zero metrics are ignored. If the font has no defined default_char, the
undefined characters in the string are also ignored.

XQueryTextExtents and XQueryTextExtentsl6 can generate BadFont and BadGC errors.

8.6. Drawing Text

This section discusses how to draw:

• Complex text

• Text characters

• Image text characters

The fundamental text functions XDrawText and XDrawTextl6 use the following structures,

typedef struct {
char *chars; /* pointer to string */
int nchars; /* number of characters */

138

Xlib - C Library Xll, Release 5

int delta; /* delta between strings */
Font font; /* Font to print it in. None don’t change */

} XTextltem;

typedef struct {
XChar2b *chars;
int nchars;
int delta;
Font font;

} XTextltem 16;

If the font member is not None, the font is changed before printing and also is stored in the
GC. If an error was generated during text drawing, the previous items may have been drawn.
The baseline of the characters are drawn starting at the x and y coordinates that you pass in the
text drawing functions.

For example, consider the background rectangle drawn by XDrawImageString. If you want
the upper-left comer of the background rectangle to be at pixel coordinate (x.y), pass the (x,y
+ ascent) as the baseline origin coordinates to the text functions. The ascent is the font ascent,
as given in the XFontStruct structure. If you want the lower-left comer of the background
rectangle to be at pixel coordinate (x.y), pass the (x.y - descent + 1) as the baseline origin
coordinates to the text functions. The descent is the font descent, as given in the XFontStruct
structure.

8.6.1. Drawing Complex Text

To draw 8-bit characters in a given drawable, use XDrawText.

XDrawText (tf/sp/ay, d, gc, x, y, items, nitems)
Display * display,
Drawable d\
GC gc\
int x, y,
XTextltem ^items',
int nitems;

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the

specified drawable and define the origin of the first character.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

To draw 2-byte characters in a given drawable, use XDrawTextl6.

XDrawText 16{display, d, gc, x, y, items, nitems)
Display * display,
Drawable d\
GC gc\
int x, y,
XTextltem 16 * items',
int nitems'.

/* pointer to two-byte characters */
/* number of characters */
/* delta between strings */
/* font to print it in. None don’t change */

139

Xlib - C Library XI1, Release 5

display

d

gc

Specifies the connection to the X server.

Specifies the drawable.

Specifies the GC.

x

y

items

nitems

Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

Specifies an array of text items.

Specifies the number of text items in the array.

The XDra\vTextl6 function is similar to XDrawText except that it uses 2-byte or 16-bit
characters. Both functions allow complex spacing and font shifts between counted strings.

Each text item is processed in turn. A font member other than None in an item causes the
font to be stored in the GC and used for subsequent text. A text element delta specifies an
additional change in the position along the x axis before the string is drawn. The delta is
always added to the character origin and is not dependent on any characteristics of the font.
Each character image, as defined by the font in the GC, is treated as an additional mask for a
fill operation on the drawable. The drawable is modified only where the font character has a
bit set to 1. If a text item generates a BadFont error, the previous text items may have been
drawn.

For fonts defined with linear indexing rather than 2-byte matrix indexing, each XChar2b
structure is interpreted as a 16-bit number with bytel as the most-significant byte.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow¬
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent
components: foreground, background, tile, stipple, tilc-stipplc-x-origin, and tile-stipple-y-origin.

XDrawText and XDrawTextl6 can generate BadDrawable, BadFont, BadGC, and Bad-
Match errors.

8.6.2. Drawing Text Characters

To draw 8-bit characters in a given drawable, use XDrawString.

XDrawString(display, d, gc, x, y, string, length)
Display * display,
Drawable d\
GC gc\
int x, y,
char * string',
int length',

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x

string

length

Specify the x and y coordinates, which are relative to the origin of the
specified drawable and define the origin of the first character.

Specifies the character string.

Specifies the number of characters in the string argument.

To draw 2-byte characters in a given drawable, use XDrawStringl6.

140

Xlib - C Library XI1, Release 5

XDrawStringl6{display, d, gc, x, y, string, length)
Display * display,
Drawable d\
GC gc\
int x, y,
XChar2b * string',
int length'.

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the

specified drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

Each character image, as defined by the font in the GC, is treated as an additional mask for a
fill operation on the drawable. The drawable is modified only where the font character has a
bit set to 1. For fonts defined with 2-byte matrix indexing and used with XDra\vStringl6,
each byte is used as a byte2 with a bytel of zero.

Both functions use these GC components: function, plane-mask, fill-style, font, subwindow¬
mode, clip-x-origin, clip-y-origin, and clip-mask. They also use these GC mode-dependent
components: foreground, background, tile, stipple, tile-stipplc-x-origin, and tile-stipple-y-origin.

XDrawString and XDrawStringl6 can generate BadDrawable, BadGC, and BadMatch
errors.

8.6.3. Drawing Image Text Characters

Some applications, in particular terminal emulators, need to print image text in which both the
foreground and background bits of each character arc painted. This prevents annoying flicker
on many displays.

To draw 8-bit image text characters in a given drawable, use XDrawImageString.

XDrawImageString(<fep/tfy, d, gc, x, y, string, length)
Display * display,
Drawable d\
GC gc\
int x, y,
char * string',
int length',

display Specifics the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the

specified drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

To draw 2-byte image text characters in a given drawable, use XDrawImageStringl6.

141

Xlib - C Library XI1, Release 5

XDrawImageString 16(£fop/ay, d, gc, x, y, string, length)
Display * display,
Drawable d\
GC gc\
int x, y,
XChar2b * string',
int length',

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

x
y Specify the x and y coordinates, which are relative to the origin of the

specified drawable and define the origin of the first character.

string Specifies the character string.

length Specifies the number of characters in the string argument.

The XDra\vImageStringl6 function is similar to XDrawImageString except that it uses 2-
byte or 16-bit characters. Both functions also use both the foreground and background pixels
of the GC in the destination.

The effect is first to fill a destination rectangle with the background pixel defined in the GC
and then to paint the text with the foreground pixel. The upper-left comer of the filled rectan¬
gle is at:

[x, y - font-ascent]

The width is:

overall-width

The height is:

font-ascent + font-descent

The overall-width, font-ascent, and font-descent are as would be returned by XQueryTextEx-
tents using gc and string. The function and fill-style defined in the GC are ignored for these
functions. The effective function is GXcopy, and the effective fill-style is FillSolid.

For fonts defined with 2-byte matrix indexing and used with XDrawImageString, each byte is
used as a byte2 with a bytel of zero.

Both functions use these GC components: plane-mask, foreground, background, font,
subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask.

XDrawImageString and XDrawImageStringl6 can generate BadDrawable, BadGC, and
BadMatch errors.

8.7. Transferring Images between Client and Server

Xlib provides functions that you can use to transfer images between a client and the server.
Because the server may require diverse data formats, Xlib provides an image object that fully
describes the data in memory and that provides for basic operations on that data. You should
reference the data through the image object rather than referencing the data directly. However,
some implementations of the Xlib library may efficiently deal with frequently used data for¬
mats by replacing functions in the procedure vector with special case functions. Supported
operations include destroying the image, getting a pixel, storing a pixel, extracting a subimage
of an image, and adding a constant to an image (see section 16.5).

142

Xlib - C Library Xll, Release 5

All the image manipulation functions discussed in this section make use of the Xlmage data
structure, which describes an image as it exists in the client’s memory.

typedef struct _XImage {
int width, height;
int xoffset;
int format;
char *data;
int byte_order;
int bitmapjanit;
int bitmap_bit_order,
int bitmap_pad;
int depth;
int bytes_per_line;
int bits_per_pixel;
unsigned long red_mask;
unsigned long grcen_mask;
unsigned long blue_mask;
XPointer obdata;
struct funcs {

struct _XImage *(*create_image)();
int (*destroyjmage)();
unsigned long (*get_pixel)();
int (*put_pixel)();
struct _XImage *(*sub_image)();
int (*add_pixel)();

} f;
} Xlmage;

/* size of image */
/* number of pixels offset in X direction */
/* XYBitmap, XYPixmap, ZPixmap */
/* pointer to image data */
/* data byte order, LSBFirst, MSBFirst */
/* quant, of scanline 8, 16, 32 */
/* LSBFirst, MSBFirst */
/* 8, 16, 32 either XY or ZPixmap */
/* depth of image */
/* accelerator to next scanline */
/* bits per pixel (ZPixmap) */
/* bits in z arrangement */

/* hook for the object routines to hang on */
/* image manipulation routines */

You may request that some of the members (for example, height, width, and xoffset) be
changed when the image is sent to the server. That is, you may send a subset of the image.
Other members (for example, bytc_order, bitmap_unit, and so forth) are characteristics of both
the image and the server. If these members differ between the image and the server, XPutlm-
age makes the appropriate conversions. The first byte of the first scanline of plane n is located
at the address (data + (n * height * bytes_pcr_linc)).

To combine an image in memory with a rectangle of a drawable on the display, use XPutlm-
age.

XPutImage(<i/3/7/ay, d, gc, image, srcjc, src_y, dest_x, dest_y, width, height)
Display * display,
Drawable d\
GC gc\
Xlmage * image',
int src_x, src_y,
int destjc, dest_y\
unsigned int width, height-.

display Specifies the connection

d Specifies the drawable.

gc Specifies the GC.

image Specifies the image you

sre x Specifies the offset in X
age data structure.

to the X server.

want combined with the rectangle.

from the left edge of the image defined by the Xlm-

143

Xlib - C Library XI1, Release 5

Specifies the offset in Y from the top edge of the image defined by the Xlm-
age data structure.

Specify the x and y coordinates, which are relative to the origin of the draw-
able and are the coordinates of the subimage.

Specify the width and height of the subimage, which define the dimensions of
the rectangle.

The XPutlmage function combines an image in memory with a rectangle of the specified
drawable. If XYBitmap format is used, the depth of the image must be one, or a BadMatch
error results. The foreground pixel in the GC defines the source for the one bits in the image,
and the background pixel defines the source for the zero bits. For XYPixmap and ZPixmap,
the depth of the image must match the depth of the drawable, or a BadMatch error results.
The section of the image defined by the src_x, src_y, width, and height arguments is drawn on
the specified part of the drawable.

This function uses these GC components: function, plane-mask, subwindow-mode, clip-x-
origin, clip-y-origin, and clip-mask. It also uses these GC mode-dependent components: fore¬
ground and background.

XPutlmage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

To return the contents of a rectangle in a given drawable on the display, use XGetlmage.
This function specifically supports rudimentary screen dumps.

Xlmage *XGcllmagc(display, d, x, y, width, height, planejnask, format)
Display * display,
Drawable d\
int x, y;
unsigned int width, height',
unsigned long plane_mask\
int format',

display Specifies the connection to the X server.

d Specifies the drawable.

*

y Specify the x and y coordinates, which are relative to the origin of the draw-
able and define the upper-left comer of the rectangle.

width
height Specify the width and height of the subimage, which define the dimensions of

the rectangle.

plane_mask Specifies the plane mask.

format Specifies the format for the image. You can pass XYPixmap or ZPixmap.

The XGetlmage function returns a pointer to an Xlmage structure. This structure provides
you with the contents of the specified rectangle of the drawable in the format you specify. If
the format argument is XYPixmap, the image contains only the bit planes you passed to the
planejnask argument. If the plane_mask argument only requests a subset of the planes of the
display, the depth of the returned image will be the number of planes requested. If the format
argument is ZPixmap, XGetlmage returns as zero the bits in all planes not specified in the
planejnask argument. The function performs no range checking on the values in planejnask
and ignores extraneous bits.

XGetlmage returns the depth of the image to the depth member of the Xlmage structure.
The depth of the image is as specified when the drawable was created, except when getting a
subset of the planes in XYPixmap format, when the depth is given by the number of bits set

src_y

destjc
dest_y

width
height

144

Xlib - C Library XI1, Release 5

A

to 1 in plane_mask.

If the drawable is a pixmap, the given rectangle must be wholly contained within the pixmap,
or a BadMatch error results. If the drawable is a window, the window must be viewable, and
it must be the case that if there were no inferiors or overlapping windows, the specified rectan¬
gle of the window would be fully visible on the screen and wholly contained within the outside
edges of the window, or a BadMatch error results. Note that the borders of the window can
be included and read with this request. If the window has backing-store, the backing-store
contents are returned for regions of the window that are obscured by noninferior windows. If
the window does not have backing-store, the returned contents of such obscured regions are
undefined. The returned contents of visible regions of inferiors of a different depth than the
specified window’s depth are also undefined. The pointer cursor image is not included in the
returned contents. If a problem occurs, XGetlmage returns NULL.

XGetlmage can generate BadDrawable, BadMatch, and BadValue errors.

To copy the contents of a rectangle on the display to a location within a preexisting image
structure, use XGetSublmage.

Xlmage *XGetSubImage{display, d, x, y, width, height, planejnask, format, destjmage, destjc,
dest_y)

Display * display,
Drawable d\
int x, y\
unsigned int width, height',
unsigned long planejnask',
int format',
Xlmage * destjmage',
int destjc, dest_y;

display Specifies the connection to the X server.

d Specifies the drawable.

x

y

width
height

plane jnask

format

destjmage

destjc
destjy

Specify the x and y coordinates, which are relative to the origin of the draw-
able and define the upper-left comer of the rectangle.

Specify the width and height of the subimage, which define the dimensions of
the rectangle.

Specifies the plane mask.

Specifies the format for the image. You can pass XYPixmap or ZPixmap.

Specify the destination image.

Specify the x and y coordinates, which are relative to the origin of the destina¬
tion rectangle, specify its upper-left comer, and determine where the subimage
is placed in the destination image.

The XGetSublmage function updates destjmage with the specified subimage in the same
manner as XGetlmage. If the format argument is XYPixmap, the image contains only the
bit planes you passed to the plane jnask argument. If the format argument is ZPixmap,
XGetSublmage returns as zero the bits in all planes not specified in the planejnask argu¬
ment. The function performs no range checking on the values in planejnask and ignores
extraneous bits. As a convenience, XGetSublmage returns a pointer to the same Xlmage
structure specified by destjmage.

The depth of the destination Xlmage structure must be the same as that of the drawable. If
the specified subimage does not fit at the specified location on the destination image, the right

145

Xlib - C Library XI1, Release 5

and bottom edges are clipped. If the drawable is a pixmap, the given rectangle must be wholly
contained within the pixmap, or a BadMatch error results. If the drawable is a window, the
window must be viewable, and it must be the case that if there were no inferiors or overlap¬
ping windows, the specified rectangle of the window would be fully visible on the screen and
wholly contained within the outside edges of the window, or a BadMatch error results. If the
window has backing-store, then the backing-store contents are returned for regions of the win¬
dow that are obscured by noninferior windows. If the window does not have backing-store, the
returned contents of such obscured regions are undefined. The returned contents of visible
regions of inferiors of a different depth than the specified window’s depth are also undefined.
If a problem occurs, XGetSublmage returns NULL.

XGetSublmage can generate BadDrawable, BadGC, BadMatch, and BadValue errors.

146

Xlib - C Library Xll, Release 5

Chapter 9

Window and Session Manager Functions

Although it is difficult to categorize functions as exclusively for an application or a window
manager or a session manager, the functions in this chapter arc most often used by window
managers and session managers. It is not expected that these functions will be used by most
application programs. Xlib provides management functions to:

® Change the parent of a window

® Control the lifetime of a window

• Manage installed colormaps

• Set and retrieve the font search path

• Grab the server

• Kill a client

• Control the screen saver

• Control host access

9.1. Changing the Parent of a Window

To change a window’s parent to another window on the same screen, use XReparentWin-
dow. There is no way to move a window between screens.

XReparentWindow (drfp/ay, w, parent, x, y)
Display * display.
Window w;
Window parent',
int x, y\

display Specifies the connection to the X server,

w Specifies the window.

parent Specifies the parent window.

•

y Specify the x and y coordinates of the position in the new parent window.

If the specified window is mapped, XReparentWindow automatically performs an
UnmapWindow request on it, removes it from its current position in the hierarchy, and inserts
it as the child of the specified parent. The window is placed in the stacking order on top with
respect to sibling windows.

After reparenting the specified window, XReparentWindow causes the X server to generate a
ReparentNotify event. The override_redircct member returned in this event is set to the
window’s corresponding attribute. Window manager clients usually should ignore this window
if this member is set to True. Finally, if the specified window was originally mapped, the X
server automatically performs a MapWindow request on it.

The X server performs normal exposure processing on formerly obscured windows. The X
server might not generate Expose events for regions from the initial UnmapWindow request
that are immediately obscured by the final MapWindow request. A BadMatch error results
if:

• The new parent window is not on the same screen as the old parent window.

147

Xlib - C Library XI1, Release 5

• The new parent window is the specified window or an inferior of the specified window.

® The new parent is InputOniy and the window is not.

• The specified window has a ParentRelative background, and the new parent window is
not the same depth as the specified window.

XReparentWindow can generate BadMatch and BadWindow errors.

9.2. Controlling the Lifetime of a Window

The save-set of a client is a list of other clients’ windows that, if they are inferiors of one of
the client’s windows at connection close, should not be destroyed and should be remapped if
they are unmapped. For further information about close-connection processing, see section 2.6.
To allow an application’s window to survive when a window manager that has reparented a
window fails, Xlib provides the save-set functions that you can use to control the longevity of
subwindows that are normally destroyed when the parent is destroyed. For example, a window
manager that wants to add decoration to a window by adding a frame might reparent an
application’s window. When the frame is destroyed, the application’s window should not be
destroyed but be returned to its previous place in the window hierarchy.

The X server automatically removes windows from the save-set when they are destroyed.

To add or remove a window from the client’s save-set, use XChangeSaveSet.

XChangeSaveSet{display, w, changejnode)
Display * display.
Window w;
int change_mode\

display Specifies the connection to the X server.

w Specifies the window that you want to add to or delete from the client’s save-
set.

change jnode Specifies the mode. You can pass SetModelnsert or SetModeDelete.

Depending on the specified mode, XChangeSaveSet cither inserts or deletes the specified win¬
dow from the client’s save-set. The specified window must have been created by some other
client, or a BadMatch error results.

XChangeSaveSet can generate BadMatch, BadValue, and BadWindow errors.

To add a window to the client’s save-set, use XAddToSaveSet.

XAddToSaveSet(display, w)
Display * display.
Window w;

display Specifies the connection to the X server.

w Specifies the window that you want to add to the client’s save-set.

The XAddToSaveSet function adds the specified window to the client’s save-set. The
specified window must have been created by some other client, or a BadMatch error results.

XAddToSaveSet can generate BadMatch and BadWindow errors.

To remove a window from the client’s save-set, use XRemoveFromSaveSet.

XRemoveFromSaveSet(dwp/ay, w)
Display * display.
Window w;

148

Xlib - C Library Xll, Release 5

display Specifies the connection to the X server.

w Specifies the window that you want to delete from the client’s save-set.

The XRemoveFromSaveSet function removes the specified window from the client’s save-set.
The specified window must have been created by some other client, or a BadMatch error
results.

XRemoveFromSaveSet can generate BadMatch and BadWindow errors.

9J. Managing Installed Colormaps

The X server maintains a list of installed colormaps. Windows using these colormaps are
guaranteed to display with correct colors; windows using other colormaps may or may not
display with correct colors. Xlib provides functions that you can use to install a colormap,
uninstall a colormap, and obtain a list of installed colormaps.

At any time, there is a subset of the installed maps that is viewed as an ordered list and is
called the required list. The length of the required list is at most M, where M is the minimum
number of installed colormaps specified for the screen in the connection setup. The required
list is maintained as follows. When a colormap is specified to XInstallColormap, it is added
to the head of the list; the list is truncated at the tail, if necessary, to keep its length to at most
M. When a colormap is specified to XUninstallColormap and it is in the required list, it is
removed from the list. A colormap is not added to the required list when it is implicitly
installed by the X server, and the X server cannot implicitly uninstall a colormap that is in the
required list.

To install a colormap, use XInstallColormap.

XInstallColormap(display, colormap)
Display * display,
Colormap colormap',

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XInstallColormap function installs the specified colormap for its associated screen. All
windows associated with this colormap immediately display with true colors. You associated
the windows with this colormap when you created them by calling XCreateWindow,
XCreateSimpleWindow, XChangeWindowAttributes, or XSetWindowCoIormap.

If the specified colormap is not already an installed colormap, the X server generates a Color-
mapNotify event on each window that has that colormap. In addition, for every other color-
map that is installed as a result of a call to XInstallColormap, the X server generates a
ColormapNotify event on each window that has that colormap.

XInstallColormap can generate a BadColor error.

To uninstall a colormap, use XUninstallColormap.

XUninstallColormapC^wp/ay, colormap)
Display * display,
Colormap colormap',

display Specifies the connection to the X server.

colormap Specifies the colormap.

The XUninstallColormap function removes the specified colormap from the required list for
its screen. As a result, the specified colormap might be uninstalled, and the X server might
implicitly install or uninstall additional colormaps. Which colormaps get installed or unin¬
stalled is server-dependent except that the required list must remain installed.

149

Xlib - C Library XI1, Release 5

If the specified colormap becomes uninstalled, the X server generates a ColormapNotify event
on each window that has that colormap. In addition, for every other colormap that is installed
or uninstalled as a result of a call to XUninstallColormap, the X server generates a Color¬
mapNotify event on each window that has that colormap.

XUninstallColormap can generate a BadColor error.

To obtain a list of the currently installed colormaps for a given screen, use XListlnstal-
IedColormaps.

Colormap * XListlnstalledColormaps (d/sp/oy, w, numjeturn)
Display * display.
Window w;
int *num_return\

display Specifies the connection to the X server,

w Specifies the window that determines the screen.

num_return Returns the number of currently installed colormaps.

The XListlnstalledColormaps function returns a list of the currently installed colormaps for
the screen of the specified window. The order of the colormaps in the list is not significant
and is no explicit indication of the required list. When the allocated list is no longer needed,
free it by using XFree.

XListlnstalledColormaps can generate a BadVVindow error.

9.4. Setting and Retrieving the Font Search Path

The set of fonts available from a server depends on a font search path. Xlib provides func¬
tions to set and retrieve the search path for a server.

To set the font search path, use XSetFontPath.

XSetFontPath(display, directories, ndirs)
Display * display,
char **directories\
int ndirs',

display Specifies the connection to the X server.

directories Specifies the directory path used to look for a font. Setting the path to the
empty list restores the default path defined for the X server.

ndirs Specifies the number of directories in the path.

The XSetFontPath function defines the directory search path for font lookup. There is only
one search path per X server, not one per client. The encoding and interpretation of the strings
is implementation dependent, but typically they specify directories or font servers to be
searched in the order listed. An X server is permitted to cache font information internally, for
example, it might cache an entire font from a file and not check on subsequent opens of that
font to see if the underlying font file has changed. However, when the font path is changed
the X server is guaranteed to flush all cached information about fonts for which there currently
are no explicit resource IDs allocated. The meaning of an error from this request is implemen¬
tation dependent.

XSetFontPath can generate a BadValue error.

To get the current font search path, use XGetFontPath.

150

Xlib - C Library XI1, Release 5

char ** XGetFontPath (d/sp/ay, npaths_return)
Display * display,
int *npaths_return\

display Specifies the connection to the X server.

npaths_return Returns the number of strings in the font path array.

The XGetFontPath function allocates and returns an array of strings containing the search
path. The contents of these strings are implementation dependent and are not intended to be
interpreted by client applications. When it is no longer needed, the data in the font path should
be freed by using XFreeFontPath.

To free data returned by XGetFontPath, use XFreeFontPath.

XFreeFontPath (list)
char **lisr,

list Specifies the array of strings you want to free.

The XFreeFontPath function frees the data allocated by XGetFontPath.

9.5. Server Grabbing

Xlib provides functions that you can use to grab and ungrab the server. These functions can
be used to control processing of output on other connections by the window system server.
While the server is grabbed, no processing of requests or close downs on any other connection
will occur. A client closing its connection automatically ungrabs the server. Although grab¬
bing the server is highly discouraged, it is sometimes necessary.

To grab the server, use XGrabServer.

XGrabServer (display)
Display * display,

display Specifies the connection to the X server.

The XGrabServer function disables processing of requests and close downs on all other con- .
nections than the one this request arrived on. You should not grab the X server any more than
is absolutely necessary.

To ungrab the server, use XUngrabServer.

XUngrabServer (dfsp/ay)
Display * display,

display Specifies the connection to the X server.

The XUngrabServer function restarts processing of requests and close downs on other con¬
nections. You should avoid grabbing the X server as much as possible.

9.6. Killing Clients

Xlib provides a function to cause the connection to a client to be closed and its resources to be
destroyed. To destroy a client, use XKillClient.

XK\\lC\ient(display, resource)
Display * display,
XID resource'.

151

Xlib - C Library XI1, Release 5

display Specifies the connection to the X server.

resource Specifies any resource associated with the client that you want to destroy or
AllTemporary.

The XKillClient function forces a close-down of the client that created the resource if a valid
resource is specified. If the client has already terminated in either RetainPennanent or
RetainTemporary mode, all of the client’s resources arc destroyed. If AllTemporary is
specified, the resources of all clients that have terminated in RetainTemporary are destroyed
(see section 2.5). This permits implementation of window manager facilities that aid debug¬
ging. A client can set its close-down mode to RetainTemporary. If the client then crashes,
its windows would not be destroyed. The programmer can then inspect the application’s win¬
dow tree and use the window manager to destroy the zombie windows.

XKillClient can generate a BadValue error.

9.7. Screen Saver Control

Xlib provides functions that you can use to set or reset the mode of the screen saver, to force
or activate the screen saver, or to obtain the current screen saver values.

To set the screen saver mode, use XSetScreenSaver.

XSetScreenSaver(<i/.vp/ay, timeout, interval, prefer_blanking, allow_exposures)
Display * display,
int timeout, interval',
int prefer_blanking\
int allow_exposures\

display Specifies the connection to the X server.

timeout Specifies the timeout, in seconds, until the screen saver turns on.

interval Specifies the interval, in seconds, between screen saver alterations.

preferJblankingSpecifies how to enable screen blanking. You can pass DontPreferBlanking,
PreferBIanking, or DefaultBlanking.

allow_exposuresSpec\f\QS the screen save control values. You can pass DontAllowExposures,
AllowExposures, or DefauItExposures.

Timeout and interval are specified in seconds. A timeout of 0 disables the screen saver (but an
activated screen saver is not deactivated), and a timeout of -1 restores the default. Other nega¬
tive values generate a BadValue error. If the timeout value is nonzero, XSetScreenSaver
enables the screen saver. An interval of 0 disables the random-pattern motion. If no input
from devices (keyboard, mouse, and so on) is generated for the specified number of timeout
seconds once the screen saver is enabled, the screen saver is activated.

For each screen, if blanking is preferred and the hardware supports video blanking, the screen
simply goes blank. Otherwise, if either exposures are allowed or the screen can be regenerated
without sending Expose events to clients, the screen is tiled with the root window background
tile randomly re-origined each interval minutes. Otherwise, the screens’ state do not change,
and the screen saver is not activated. The screen saver is deactivated, and all screen states are
restored at the next keyboard or pointer input or at the next call to XForceScreenSaver with
mode ScreenSaverReset.

If the server-dependent screen saver method supports periodic change, the interval argument
serves as a hint about how long the change period should be, and zero hints that no periodic
change should be made. Examples of ways to change the screen include scrambling the color-
map periodically, moving an icon image around the screen periodically, or tiling the screen
with the root window background tile, randomly rc-origined periodically.

XSetScreenSaver can generate a BadValue error.

152

Xlib - C Library XI1, Release 5

To force the screen saver on or off, use XForceScreenSaver.

XForceScreenSaver(display, mode)
Display * display,
int mode;

display Specifies the connection to the X server.

mode Specifies the mode that is to be applied. You can pass ScreenSaverActive or
ScreenSaverReset.

If the specified mode is ScreenSaverActive and the screen saver currently is deactivated,
XForceScreenSaver activates the screen saver even if the screen saver had been disabled with
a timeout of zero. If the specified mode is ScreenSaverReset and the screen saver currently
is enabled, XForceScreenSaver deactivates the screen saver if it was activated, and the activa¬
tion timer is reset to its initial state (as if device input had been received).

XForceScreenSaver can generate a BadValue error.

To activate the screen saver, use XActivateScreenSaver.

XActivateScreenSaver (display)
Display * display,

display Specifies the connection to the X server.

To reset the screen saver, use XResetScreenSaver.

XResetScreenSaver(d/sp/ay)
Display * display,

display Specifies the connection to the X server.

To get the current screen saver values, use XGetScreenSaver.

XGetScreenSaver(d/s'/?/tfy, timeoutjeturn, interval_return, prefer_blanking_return,
allowjexposures_return)

Display * display,
int * timeoutjreturn, * interval jeturn',
int *prefer_blanking jeturn',
int * allow_exposures_return;

display Specifies the connection to the X server.

timeoutjeturn Returns the timeout, in seconds, until the screen saver turns on.

interval_return Returns the interval between screen saver invocations.

prefer_blankingjeturn
Returns the current screen blanking preference (DontPreferBlanking, Prefer-
Blanking, or DefaultBlanking).

allow _exposures jeturn
Returns the current screen save control value (DontAllowExposures,
AlIowExposures, or DefaultExposures).

9.8. Controlling Host Access

This section discusses how to:

• Add, get, or remove hosts from the access control list

• Change, enable, or disable access

X does not provide any protection on a per-window basis. If you find out the resource ID of a
resource, you can manipulate it. To provide some minimal level of protection, however.

153

Xlib - C Library Xll, Release 5

connections are permitted only from machines you trust. This is adequate on single-user
workstations but obviously breaks down on timesharing machines. Although provisions exist
in the X protocol for proper connection authentication, the lack of a standard authentication
server leaves host-level access control as the only common mechanism.

The initial set of hosts allowed to open connections typically consists of:

• The host the window system is running on.

• On POSIX-conformant systems, each host listed in the /etc/X?.hosts file. The ? indi¬
cates the number of the display. This file should consist of host names separated by
newlines. DECnet nodes must terminate in :: to distinguish them from Internet hosts.

If a host is not in the access control list when the access control mechanism is enabled and if
the host attempts to establish a connection, the server refuses the connection. To change the
access list, the client must reside on the same host as the server and/or must have been granted
permission in the initial authorization at connection setup.

Servers also can implement other access control policies in addition to or in place of this host
access facility. For further information about other access control implementations, see “X
Window System Protocol.”

9,8.1. Adding, Getting, or Removing Hosts

Xlib provides functions that you can use to add, get, or remove hosts from the access control
list. All the host access control functions use the XHostAddress structure, which contains:

typedef struct {
int family;
int length;
char *address;

} XHostAddress;

The family member specifies which protocol address family to use (for example, TCP/IP or
DECnet) and can be Familylnternet, FamiiyDECnet, or FamilyChaos. The length member
specifies the length of the address in bytes. The address member specifics a pointer to the
address.

For TCP/IP, the address should be in network byte order. For the DECnet family, the server
performs no automatic swapping on the address bytes. A Phase IV address is two bytes long.
The first byte contains the least-significant eight bits of the node number. The second byte
contains the most-significant two bits of the node number in the least-significant two bits of the
byte and the area in the most-significant six bits of the byte.

To add a single host, use XAddHost.

XAddHost(display, host)
Display * display,
XHostAddress *host\

display Specifies the connection to the X server.

host Specifies the host that is to be added.

The XAddHost function adds the specified host to the access control list for that display. The
server must be on the same host as the client issuing the command, or a BadAccess error
results.

XAddHost can generate BadAccess and BadValue errors.

To add multiple hosts at one time, use XAddHosts.

/* for example Familylnternet */
/* length of address, in bytes */
/* pointer to where to find the address */

154

Xlib - C Library XI1, Release 5

XAddHosts (d/sp/ay, hosts, numjiosts)
Display * display,
XHostAddress * hosts',
int numjiosts',

display Specifies the connection to the X server.

hosts Specifies each host that is to be added.

numjiosts Specifies the number of hosts.

The XAddHosts function adds each specified host to the access control list for that display.
The server must be on the same host as the client issuing the command, or a BadAccess error
results.

XAddHosts can generate BadAccess and BadValue errors.

To obtain a host list, use XListHosts.

XHostAddress *XListHosts(&p/ay, nhosts_return, state jeturri)
Display * display,
int * nhosts _return\
Bool * state_return\

display Specifies the connection to the X server.

nhosts jeturn Returns the number of hosts currently in the access control list.

state_return Returns the state of the access control.

The XListHosts function returns the current access control list as well as whether the use of
the list at connection setup was enabled or disabled. XListHosts allows a program to find out
what machines can make connections. It also returns a pointer to a list of host structures that
were allocated by the function. When no longer needed, this memory should be freed by cal¬
ling XFree.

To remove a single host, use XRemoveHost.

XRemoveHost(J/j>p/ay, host)
Display * display,
XHostAddress *host\

display Specifies the connection to the X server.

host Specifies the host that is to be removed.

The XRemoveHost function removes the specified host from the access control list for that
display. The server must be on the same host as the client process, or a BadAccess error
results. If you remove your machine from the access list, you can no longer connect to that
server, and this operation cannot be reversed unless you reset the server.

XRemoveHost can generate BadAccess and BadValue errors.

To remove multiple hosts at one time, use XRemoveHosts.

XRemoveHosts(^/s,/7/ay, hosts, numjiosts)
Display * display,
XHostAddress * hosts',
int numjiosts',

display Specifies the connection to the X server.

hosts Specifies each host that is to be removed.

numjiosts Specifies the number of hosts.

155

Xlib - C Library XI1, Release 5

The XRemoveHosts function removes each specified host from the access control list for that
display. The X server must be on the same host as the client process, or a BadAccess error
results. If you remove your machine from the access list, you can no longer connect to that
server, and this operation cannot be reversed unless you reset the server.

XRemoveHosts can generate BadAccess and BadValue errors.

9.8.2. Changing, Enabling, or Disabling Access Control

Xlib provides functions that you can use to enable, disable, or change access control.

For these funcuons to execute successfully, the client application must reside on the same host
as the X server and/or have been given permission in the initial authorization at connection
setup.

To change access control, use XSetAccessControl.

XSetAccessContro{(display, mode)
Display * display,
int mode;

display Specifies the connection to the X server.

mode Specifies the mode. You can pass EnableAccess or DisableAccess.

The XSetAccessControl function either enables or disables the use of the access control list at
each connection setup.

XSetAccessControl can generate BadAccess and BadValue errors.

To enable access control, use XEnableAccessControl.

XEnableAccessControlf d/sp/ay)
Display * display,

display Specifies the connection to the X server.

The XEnableAccessControl function enables the use of the access control list at each connec¬
tion setup.

XEnableAccessControl can generate a BadAccess error.

To disable access control, use XDisableAccessControl.

XDisableAccessControl {display)
Display * display,

display Specifies the connection to the X server.

The XDisableAccessControl function disables the use of the access control list at each con-
necdon setup.

XDisableAccessControl can generate a BadAccess error.

156

Xlib - C Library XI1, Release 5

Chapter 10

Events

A client application communicates with the X server through the connection you establish with
the XOpenDisplay function. A client application sends requests to the X server over this con¬
nection. These requests are made by the Xlib functions that are called in the client application.
Many Xlib functions cause the X server to generate events, and the user’s typing or moving
the pointer can generate events asynchronously. The X server returns events to the client on
the same connection.

This chapter discusses the following topics associated with events:

• Event types

• Event structures

® Event mask

• Event processing

Functions for handling events are dealt with in the next chapter.

10.1. Event Types

An event is data generated asynchronously by the X server as a result of some device activity
or as side effects of a request sent by an Xlib function. Device-related events propagate from
the source window to ancestor windows until some client application has selected that event
type or until the event is explicitly discarded. The X server generally sends an event to a
client application only if the client has specifically asked to be informed of that event type, typ¬
ically by setting the event-mask attribute of the window. The mask can also be set when you
create a window or by changing the window’s event-mask. You can also mask out events that
would propagate to ancestor windows by manipulating the do-not-propagate mask of the
window’s attributes. However, MappingNotify events are always sent to all clients.

An event type describes a specific event generated by the X server. For each event type, a
corresponding constant name is defined in <X11/X.h>, which is used when referring to an
event type. The following table lists the event category and its associated event type or types.
The processing associated with these events is discussed in section 10.5.

Event Category Event Type

Keyboard events KeyPress, Key Release

Pointer events ButtonPress, ButtonRelease, MotionNotify

Window crossing events EnterNotify, LeaveNotify

Input focus events Focusln, FocusOut

Keymap state notification event KeymapNotify

Exposure events Expose, GraphicsExpose, NoExpose

Structure control events CirculateRequest, ConfigureRequest, MapRequest,
ResizeRequest

157

Xlib - C Library XI1, Release 5

Event Category Event Type

Window state notification events CirculateNotify, ConfigureNotify, CreateNotify,
DestroyNotify, GravityNotify, MapNotify, Map-
pingNotify, ReparentNotify, UnmapNotify, Visibili-
tyNotify

Colormap state notification event ColormapNotify

Client communication events ClientMessage, PropertyNotify, SelectionClear,
SelectionNotify, SelectionRequest

10.2. Event Structures

For each event type, a corresponding structure is declared in <X11/Xlib.h>. All the event
structures have the following common members:

typedef struct {
int type:
unsigned long serial; /* # of last request processed by server */
Bool send_event; /* true if this came from a SendEvent request */
Display ^display; /* Display the event was read from */
Window window;

} XAnyEvent;

The type member is set to the event type constant name that uniquely identifies it. For exam¬
ple, when the X server reports a GraphicsExpose event to a client application, it sends an
XGraphicsExposeEvent structure with the type member set to GraphicsExpose. The display
member is set to a pointer to the display the event was read on. The send_event member is set
to True if the event came from a SendEvent protocol request. The serial member is set from
the serial number reported in the protocol but expanded from the 16-bit least-significant bits to
a full 32-bit value. The window member is set to the window that is most useful to toolkit
dispatchers.

The X server can send events at any time in the input stream. Xlib stores any events received
while waiting for a reply in an event queue for later use. Xlib also provides functions that
allow you to check events in the event queue (see section 11.3).

In addition to the individual structures declared for each event type, the XEvent structure is a
union of the individual structures declared for each event type. Depending on the type, you
should access members of each event by using the XEvent union.

typedef union _XEvent {
int type; /* must not be changed */
XAnyEvent xany;
XKeyEvent xkey;
XButtonEvent xbutton;
XMotionEvent xmotion;
XCrossingEvent xcrossing;
XFocusChangeEvent xfocus;
XExposeEvent xexpose;
XGraphicsExposeEvent xgraphicsexpose;
XNoExposeEvent xnoexpose;
XVisibilityEvent xvisibility;
XCreateWindowEvent xcreatewindow;
XDestroyWindowEvent xdestroywindow;
XUnmapEvcnt xunmap;

158

Xlib - C Library XI1, Release 5

XMapEvent xmap;
XMapRequestEvent xmaprcqucst;
XReparentEvent xreparcnt;
XConfigureEvent xconfigure;
XGravityEvent xgravity;
XResizeRequestEvcnt xrcsizercquest;
XConfigureRequestEvent xconfigurcrcqucst;
XCirculateEvcnt xcirculatc;
XCirculatcRequestEvcnt xcirculatcrcqucst;
XPropertyEvent xproperty;
XSelectionClearEvent xsclcctionclcar,
XSelectionRcquestEvent xselectionrcquest;
XSelectionEvent xselection;
XColormapEvent xcolormap;
XClientMessageEvent xclient;
XMappingEvent xmapping;
XErrorEvent xerror,
XKeymapEvent xkeymap;
long pad[24];

} XEvent;

An XEvent structure’s first entry always is the type member, which is set to the event type.
The second member always is the serial number of the protocol request that generated the
event. The third member always is scnd_evcnt, which is a Bool that indicates if the event was
sent by a different client. The fourth member always is a display, which is the display that the
event was read from. Except for keymap events, the fifth member always is a window, which
has been carefully selected to be useful to toolkit dispatchers. To avoid breaking toolkits, the
order of these first five entries is not to change. Most events also contain a time member,
which is the time at which an event occurred. In addition, a pointer to the generic event must
be cast before it is used to access any other information in the structure.

10.3. Event Masks

Clients select event reporting of most events relative to a window. To do this, pass an event
mask to an Xlib event-handling function that takes an evcntjnask argument. The bits of the
event mask are defined in <X11/X.h>. Each bit in the event mask maps to an event mask
name, which describes the event or events you want the X server to return to a client applica¬
tion.

Unless the client has specifically asked for them, most events are not reported to clients when
they are generated. Unless the client suppresses them by setting graphics-exposures in the GC
to False, GraphicsExpose and NoExpose are reported by default as a result of XCopyPlane
and XCopyArea. SelectionClear, SelectionRequest, SelectionNotify, or ClientMessage
cannot be masked. Selection related events arc only sent to clients cooperating with selections
(see section 4.5). When the keyboard or pointer mapping is changed, MappingNotify is
always sent to clients.

The following table lists the event mask constants you can pass to the event_mask argument
and the circumstances in which you would want to specify the event mask:

Event Mask Circumstances

NoEventMask
KeyPressMask
KeyReleaseMask

No events wanted
Keyboard down events wanted
Keyboard up events wanted

159

Xlib - C Library XI1, Release 5

Event Mask Circumstances

ButtonPressMask
ButtonReleaseMask
EnterWindowMask
LeaveWindowMask
PointerMotionMask
PointerMotionHintMask
ButtonlMotionMask
Button2MotionMask
Button3MotionMask
Button4MotionMask
ButtonSMotionMask
ButtonMotionMask
KeymapStateMask
ExposureMask
VisibilityChangeMask
StructureNotifyMask
ResizeRedirectMask
SubstructureNotifyMask
SubstructureRedirectMask
FocusChangeMask
PropertyChangeMask
ColormapChangeMask
OwnerGrabButtonMask

Pointer button down events wanted
Pointer button up events wanted
Pointer window entry events wanted
Pointer window leave events wanted
Pointer motion events wanted
Pointer motion hints wanted
Pointer motion while button 1 down
Pointer motion while button 2 down
Pointer motion while button 3 down
Pointer motion while button 4 down
Pointer motion while button 5 down
Pointer motion while any button down
Keyboard state wanted at window entry and focus in
Any exposure wanted
Any change in visibility wanted
Any change in window structure wanted
Redirect resize of this window
Substructure notification wanted
Redirect structure requests on children
Any change in input focus wanted
Any change in property wanted
Any change in colormap wanted
Automatic grabs should activate with owncr_events set
to True

10.4. Event Processing Overview

The event reported to a client application during event processing depends on which event
masks you provide as the event-mask attribute for a window. For some event masks, there is a
one-to-one correspondence between the event mask constant and the event type constant. For
example, if you pass the event mask ButtonPressMask, the X server sends back only But-
tonPress events. Most events contain a time member, which is the time at which an event
occurred.

In other cases, one event mask constant can map to several event type constants. For example,
if you pass the event mask SubstructureNotifyMask, the X server can send back Circula-
teNotify, ConfigureNotify, CreateNotify, DestroyNotify, GravityNotify, MapNotify,
ReparentNotify, or UnmapNotify events.

In another case, two event masks can map to one event type. For example, if you pass either
PointerMotionMask or ButtonMotionMask, the X server sends back a MotionNotify event.

The following table lists the event mask, its associated event type or types, and the structure
name associated with the event type. Some of these structures actually are typedefs to a gen¬
eric structure that is shared between two event types. Note that N.A. appears in columns for
which the information is not applicable.

Event Mask Event Type Structure Generic Structure

ButtonMotionMask MotionNotify XPointeiMovcdEvcnt XMotionEvent

ButtonlMotionMask

Button2MotionM ask

160

Xlib - C Library XI1, Release 5

Event Mask Event Type Structure Generic Structure

B u tton3 Mo tionM as k

Button4MotionMask

Button5MotionMask

ButtonPressMask ButtonPress

ButtonReleaseMask ButtonRclease

ColormapChangeMask ColormapNotify

EnterWindowMask EnterNotify

Leave WindowMask LeaveNolify

ExposureMask

GCGraphicsExposures in GC

Expose

GraphicsExpose

NoExpose

FocusChangeMask Focusln

FocusOut

KeymapStateMask KeymapNotify

KeyPressMask

KeyReleaseMask

KeyPress

KeyRcicase

OwnerGrabButtonMask N.A.

PointerMotionMask

PointerMotionHintMask

MotionNolify

N.A.

PropertyChangeMask PropertyNodfy

ResizeRedirectMask ResizcRcquest

StructureNotifyMask CirculatcNotify

ConfigurcNotify

DestroyNotify

GravityNotify

MapNotify

ReparcntNotify

UnmapNotify

Subs tructureNotifyM ask CirculatcNotify

ConfigurcNotify

CreatcNotify

DestroyNotify

GravityNotify

MapNotify

ReparcntNotify

UnmapNotify

Subs cructureRedirectMask CirculateRequest

ConfigurcRequest

MapRcquest

N.A. ClientMessage

N.A. MappingNotify

N.A. SelectionClear

XButtonPrcsscdEvent XButtonEvcnt

XButtonReleascdEvent XButtonEvent

XColormapEvent

XEnterWindowEvent XCrossing Event

XLeaveWindow Event XCrossingEvent

XExposcEvent

XGraphicsExposeEvent

XNoExposeEvent

XFocusInEvent XFocusChange Event

XFocusOutEvent XFocusChangeEvent

XKcymapEvent

X Key PressedE vent XKeyEvent

XKeyRcleascdEvcnt XKeyEvent

N.A.

X Pointer Mo vedEvcnt

N.A.

XMotionEvent

X Property Event

XRcsizeRcquestEvent

XCirculatcEvent

XConfigurcEvent

XDcstroyWindowEvent

XGravityEvent

XMapEvent

XRcparenlEvent

XUnmapEvcnt

XCirculatcEvent

XConfigurcEvent

XCreateWindowEvent

XDcstroyWindowEvent

XGravityEvent

XMapEvent

XRcparenlEvent

XUnmapEvcnt

XCirculateRcquestEvent

XConfigurcRequestEvent

XMapRequestEvent

XClienlMessageEvent

XMappingEvent

XSelcctionClearEvent

161

Xlib - C Library Xll, Release 5

Event Mask Event Type Structure Generic Structure

N.A. SelectionNotify XSelectionEvent

N.A. SelectionRcquesl XSelectionRequestEvent

VisibilityChangeMask VisibilityNotify XVisibilityEvent

The sections that follow describe the processing that occurs when you select the different event
masks. The sections are organized according to these processing categories:

• Keyboard and pointer events

• Window crossing events

• Input focus events

• Keymap state notification events

• Exposure events

• Window state notification events

• Structure control events

• Colormap state notification events

• Gient communication events

10.5. Keyboard and Pointer Events

This section discusses:

• Pointer button events

• Keyboard and pointer events

10.5.1. Pointer Button Events

The following describes the event processing that occurs when a pointer button press is pro¬
cessed with the pointer in some window w and when no active pointer grab is in progress.

The X server searches the ancestors of w from the root down, looking for a passive grab to
activate. If no matching passive grab on the button exists, the X server automatically starts an
active grab for the client receiving the event and sets the last-pointer-grab time to the current
server time. The effect is essentially equivalent to an XGrabButton with these client passed
arguments:

Argument Value

w The event window
event mask The client’s selected pointer events on the event win¬

dow
pointer mode GrabModeAsync
keyboard mode GrabModeAsync
owner events True, if the client has selected OwnerGrabButton-

Mask on the event window, otherwise False
confine to None
cursor None

The active grab is automatically terminated when the logical state of the pointer has all buttons
released. Clients can modify the active grab by calling XUngrabPointer and XChangeAc-
tivePointerGrab.

162

Xlib - C Library XI1, Release 5

10.5.2. Keyboard and Pointer Events

This section discusses the processing that occurs for the keyboard events KeyPress and
KeyRelease and tine pointer events ButtonPress, ButtonRelease, and MotionNotify. For
information about the keyboard event-handling utilities, see chapter 11.

The X server reports KeyPress or KeyRelease events to clients wanting information about
keys that logically change state. Note that these events are generated for all keys, even those
mapped to modifier bits. The X server reports ButtonPress or ButtonRelease events to
clients wanting information about buttons that logically change state.

The X server reports MotionNotify events to clients wanting information about when the
pointer logically moves. The X server generates this event whenever the pointer is moved and
the pointer motion begins and ends in the window. The granularity of MotionNotify events is
not guaranteed, but a client that selects this event type is guaranteed to receive at least one
event when the pointer moves and then rests.

The generation of the logical changes lags the physical changes if device event processing is
frozen.

To receive KeyPress, KeyRelease, ButtonPress, and ButtonRelease events, set
KeyPressMask, KeyReleaseMask, ButtonPressMask, and ButtonReleaseMask bits in the
event-mask attribute of the window.

To receive MotionNotify events, set one or more of the following event masks bits in the
event-mask attribute of the window.

• ButtonlMotionMask - ButtonSMotionMask

The client application receives MotionNotify events only when one or more of the
specified buttons is pressed.

• ButtonMotionMask

The client application receives MotionNotify events only when at least one button is
pressed.

• PointerMotionMask

The client application receives MotionNotify events independent of the state of the
pointer buttons.

• PointerMotionHintMask

If PointerMotionHintMask is selected in combination with one or more of the above
masks, the X server is free to send only one MotionNotify event (with the is_hint
member of the XPointerMovedEvent structure set to NotifyHint) to the client for the
event window, until either the key or button state changes, the pointer leaves the event
window, or the client calls XQueryPointer or XGetMotionEvents. The server still
may send MotionNotify events without is_hint set to NotifyHint.

The source of the event is the viewable window that the pointer is in. The window used by
the X server to report these events depends on the window’s position in the window hierarchy
and whether any intervening window prohibits the generation of these events. Starting with
the source window, the X server searches up the window hierarchy until it locates the first
window specified by a client as having an interest in these events. If one of the intervening
windows has its do-not-propagate-mask set to prohibit generation of the event type, the events
of those types will be suppressed. Clients can modify the actual window used for reporting by
performing active grabs and, in the case of keyboard events, by using the focus window.

The structures for these event types contain:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;

/* ButtonPress or ButtonRelease */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

163

Xlib - C Library XI1, Release 5

Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int button;
Bool same _screen;

} XButtonEvent;
typedef XButtonEvent XButtonPressedEvent;
typedef XButtonEvent XButtonRelcasedEvcnt;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;
unsigned int state;
unsigned int keycode;
Bool same_screen;

} XKeyEvent;
typedef XKeyEvent XKeyPresscdEvent;
typedef XKeyEvent XKeyReleascdEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window window;
Window root;
Window subwindow;

Time time;
int x, y;
int x_rootv y_root;
unsigned int state;
char is_hint;
Bool same_screen;

} XMotionEvent;
typedef XMotionEvent XPointerMovedEvent;

/* “event” window it is reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root */
/* key or button mask */
/* detail */
/* same screen flag */

/* KeyPress or KeyRelease */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* “event” window it is reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root */
/* key or button mask */
/* detail */
/* same screen flag */

/* MotionNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* “event” window reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root */
I* key or button mask */
/* detail */
/* same screen flag */

These structures have the following common members: window, root, subwindow, time, x, y,
x_root, y_root, state, and same_screen. The window member is set to the window on which
the event was generated and is referred to as the event window. As long as the conditions pre¬
viously discussed are met, this is the window used by the X server to report the event. The
root member is set to the source window’s root window. The x_root and y_root members are
set to the pointer’s coordinates relative to the root window’s origin at the time of the event.

164

Xlib - C Library XI1, Release 5

The same_screen member is set to indicate whether the event window is on the same screen as
the root window and can be either True or False. If True, the event and root windows are
on the same screen. If False, the event and root windows are not on the same screen.

If the source window is an inferior of the event window, the subwindow member of the struc¬
ture is set to the child of the event window that is the source window or the child of the event
window that is an ancestor of the source window. Otherwise, the X server sets the subwindow
member to None. The time member is set to the time when the event was generated and is
expressed in milliseconds.

If the event window is on the same screen as the root window, the x and y members are set to
the coordinates relative to the event window’s origin. Otherwise, these members are set to
zero.

The state member is set to indicate the logical state of the pointer buttons and modifier keys
just prior to the event, which is the bitwise inclusive OR of one or more of the button or
modifier key masks: ButtonlMask, Button2Mask, Button3Mask, Button4Mask,
Button5Mask, ShiftMask, LockMask, ControlMask, ModlMask, Mod2Mask,
Mod3Mask, Mod4Mask, and Mod5Mask.

Each of these structures also has a member that indicates the detail. For the
XKeyPressedEvent and XKeyReleasedEvent structures, this member is called keycode. It is
set to a number that represents a physical key on the keyboard. The keycode is an arbitrary
representation for any key on the keyboard (sec sections 12.7 and 16.1).

For the XButtonPressedEvent and XButtonReleasedEvent structures, this member is called
button. It represents the pointer button that changed state and can be the Buttonl, Button2,
Button3, Button4, or Buttons value. For the XPointerMovedEvent structure, this member
is called is_hint. It can be set to NotifyNormal or NotifyHint.

10.6. Window Entry/Exit Events

This section describes the processing that occurs for the window crossing events EnterNotify
and LeaveNotify. If a pointer motion or a window hierarchy change causes the pointer to be
in a different window than before, the X server reports EnterNotify or LeaveNotify events to
clients who have selected for these events. All EnterNotify and LeaveNotify events caused
by a hierarchy change are generated after any hierarchy event (UnmapNotify, MapNotify,
ConfigureNotify, GravityNotify, CirculateNotify) caused by that change; however, the X
protocol does not constrain the ordering of EnterNotify and LeaveNotify events with respect
to FocusOut, VisibilityNotify, and Expose events.

This contrasts with MotionNotify events, which arc also generated when the pointer moves
but only when the pointer motion begins and ends in a single window. An EnterNotify or
LeaveNotify event also can be generated when some client application calls XGrabPointer
and XUngrabPointer.

To receive EnterNotify or LeaveNotify events, set the EnterWindowMask or LeaveWin-
dowMask bits of the event-mask attribute of the window.

The structure for these event types contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window window;
Window root;
Window subwindow;
Time time;
int x, y;
int x_root, y_root;

/* EnterNotify or LeaveNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* “event” window reported relative to */
/* root window that the event occurred on */
/* child window */
/* milliseconds */
/* pointer x, y coordinates in event window */
/* coordinates relative to root */

165

Xlib - C Library XI1, Release 5

int mode; /* NotifyNormal, NotifyGrab, NotifyUngrab */
int detail;

/*
* NotifyAncestor, NotifyVirtual, Notifylnferior,
* NotiryNonlinear,NotifyNonlinearVirtual

*/
Bool same_screen;
Bool focus;
unsigned int state;

} XCrossingEvent;
typedef XCrossingEvent XEnterWindowEvcnt;
typedef XCrossingEvent XLeavcWindowEvent;

/* same screen flag */
/* boolean focus */
/* key or button mask */

The window member is set to the window on which the EnterNotify or LeaveNotify event
was generated and is referred to as the event window. This is the window used by the X server
to report the event, and is relative to the root window on which the event occurred. The root
member is set to the root window of the screen on which the event occurred.

For a LeaveNotify event, if a child of the event window contains the initial position of the
pointer, the subwindow component is set to that child. Otherwise, the X server sets the
subwindow member to None. For an EnterNotify event, if a child of the event window con¬
tains the final pointer position, the subwindow component is set to that child or None.

The time member is set to the time when the event was generated and is expressed in mil¬
liseconds. The x and y members are set to the coordinates of the pointer position in the event
window. This position is always the pointer’s final position, not its initial position. If the
event window is on the same screen as the root window, x and y are the pointer coordinates
relative to the event window’s origin. Otherwise, x and y are set to zero. The x_root and
y_root members are set to the pointer’s coordinates relative to the root window’s origin at the
time of the event.

The same_screen member is set to indicate whether the event window is on the same screen as
the root window and can be either True or False. If True, the event and root windows are
on the same screen. If False, the event and root windows are not on the same screen.

The focus member is set to indicate whether the event window is the focus window or an infe¬
rior of the focus window. The X server can set this member to either True or False. If
True, the event window is the focus window or an inferior of the focus window. If False,
the event window is not the focus window or an inferior of the focus window.

The state member is set to indicate the state of the pointer buttons and modifier keys just prior
to the event. The X server can set this member to the bitwise inclusive OR of one or more of
the button or modifier key masks: ButtonlMask, Button2Mask, Button3Mask,
Button4Mask, ButtonSMask, ShiftMask, LockMask, ControIMask, ModlMask,
Mod2Mask, Mod3Mask, Mod4Mask, ModSMask.

The mode member is set to indicate whether the events arc normal events, pseudo-motion
events when a grab activates, or pseudo-motion events when a grab deactivates. The X server
can set this member to NotifyNormal, NotifyGrab, or NotifyUngrab.

The detail member is set to indicate the notify detail and can be NotifyAncestor, NotifyVir¬
tual, Notifylnferior, NotifyNonlinear, or NotifyNonlinearVirtual.

10.6,1. Normal Entry/Exit Events

EnterNotify and LeaveNotify events are generated when the pointer moves from one window
to another window. Normal events are identified by XEnterWindowEvent or XLeaveWin-
dowEvent structures whose mode member is set to NotifyNormal.

• When the pointer moves from window A to window B and A is an inferior of B, the X
server does the following:

166

Xlib - C Library Xll, Release 5

- It generates a LeaveNotify event on window A, with the detail member of the
XLeaveYVindowEvent structure set to NotifyAncestor.

- It generates a LeaveNotify event on each window between window A and win¬
dow B, exclusive, with the detail member of each XLeaveWindowEvent structure
set to NotifyVirtual.

- It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to Notifylnferior.

• When the pointer moves from window A to window B and B is an inferior of A, the X
server does the following:

- It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to Notifylnferior.

- It generates an EnterNotify event on each window between window A and win¬
dow B, exclusive, with the detail member of each XEnterWindowEvent structure
set to NotifyVirtual.

It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyAncestor.

• When the pointer moves from window A to window B and window C is their least com¬
mon ancestor, the X server does the following:

- It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear.

- It generates a LeaveNotify event on each window between window A and win¬
dow C, exclusive, with the detail member of each XLeaveWindowEvent structure
set to NotifyNonlinearVirtual.

It generates an EnterNotify event on each window between window C and win¬
dow B, exclusive, with the detail member of each XEnterWindowEvent structure
set to NotifyNonlinearVirtual.

- It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyNonlinear.

• When the pointer moves from window A to window B on different screens, the X server
does the following:

- It generates a LeaveNotify event on window A, with the detail member of the
XLeaveWindowEvent structure set to NotifyNonlinear.

- If window A is not a root window, it generates a LeaveNotify event on each win¬
dow above window A up to and including its root, with the detail member of each
XLeaveWindowEvent structure set to NotifyNonlinearVirtual.

- If window B is not a root window, it generates an EnterNotify event on each
window from window B’s root down to but not including window B, with the
detail member of each XEnterWindowEvent structure set to NotifyNonlinear¬
Virtual.

- It generates an EnterNotify event on window B, with the detail member of the
XEnterWindowEvent structure set to NotifyNonlinear.

10.6.2. Grab and Ungrab Entry/Exit Events

Pseudo-motion mode EnterNotify and LeaveNotify events are generated when a pointer grab
activates or deactivates. Events in which the pointer grab activates are identified by XEn¬
terWindowEvent or XLeaveWindowEvent structures whose mode member is set to
NotifyGrab, Events in which the pointer grab deactivates are identified by XEnterWin¬
dowEvent or XLeaveWindowEvent structures whose mode member is set to NotifyUngrab
(see XGrabPointer).

167

Xlib - C Library XI1, Release 5

• When a pointer grab activates after any initial warp into a confine_to window and before
generating any actual ButtonPress event that activates the grab, G is the grab_window
for the grab, and P is the window the pointer is in, the X server does the following:

- It generates EnterNotify and LeaveNotify events (see section 10.6.1) with the
mode members of the XEnterWindowEvent and XLeaveWindovvEvent struc¬
tures set to NotifyGrab. These events are generated as if the pointer were to sud¬
denly warp from its current position in P to some position in G. However, the
pointer does not warp, and the X server uses the pointer position as both the initial
and final positions for the events.

• When a pointer grab deactivates after generating any actual ButtonRelease event that
deactivates the grab, G is the grab_window for the grab, and P is the window the pointer
is in, the X server does the following:

- It generates EnterNotify and LeaveNotify events (see section 10.6.1) with the
mode members of the XEnterWindowEvent and XLeaveWindowEvent struc¬
tures set to NotifyUngrab. These events are generated as if the pointer were to
suddenly warp from some position in G to its current position in P. However, the
pointer does not warp, and the X server uses the current pointer position as both
the initial and final positions for the events.

10,7. Input Focus Events

This section describes the processing that occurs for the input focus events Focusln and
FocusOut. The X server can report Focusln or FocusOut events to clients wanting informa¬
tion about when the input focus changes. The keyboard is always attached to some window
(typically, the root window or a top-level window), which is called the focus window. The
focus window and the position of the pointer determine the window that receives keyboard
input. Clients may need to know when the input focus changes to control highlighting of areas
on the screen.

To receive Focusln or FocusOut events, set the FocusChangeMask bit in the event-mask
attribute of the window.

The structure for these event types contains:

typedef struct {
int type;
unsigned long serial;
Bool send_evcnt;
Display ^display;
Window window;
int mode;
int detail;

} XFocusChangeEvent;
typedef XFocusChangeEvent XFocusInEvent;
typedef XFocusChangeEvent XFocusOutEvcnt;

/* Focusln or FocusOut */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* window of event */
/* NotifyNormal, NotifyGrab, NotifyUngrab */

/*
* Notify Ancestor, NotifyVirtual, Notifylnferior,
* NotifyNonlinear,NotifyNonlinearVirtual, NotifyPointe
* NotifyPointerRoot, NotifyDetailNone

*/

The window member is set to the window on which the Focusln or FocusOut event was
generated. This is the window used by the X server to report the event. The mode member is
set to indicate whether the focus events are normal focus events, focus events while grabbed,
focus events when a grab activates, or focus events when a grab deactivates. The X server can
set the mode member to NotifyNormal, NotifyWhileGrabbed, NotifyGrab, or
NotifyUngrab.

168

Xlib - C Library XI1, Release 5

All FocusOut events caused by a window unmap are generated after any UnmapNotify
event; however, the X protocol does not constrain the ordering of FocusOut events with
respect to generated EnterNotify, LeaveNotify, VisibilityNotify, and Expose events.

Depending on the event mode, the detail member is set to indicate the notify detail and can be
NotifyAncestor, Notify Virtual, Notifylnferior, NotifyNonlinear, NotifyNonlinearVirtual,
NotifyPointer, NotifyPointerRoot, or NotifyDetailNone.

10.7.1. Normal Focus Events and Focus Events While Grabbed

Normal focus events are identified by XFocusInEvent or XFocusOutEvent structures whose
mode member is set to NotifyNormal. Focus events while grabbed are identified by XFocu¬
sInEvent or XFocusOutEvent structures whose mode member is set to
NotifyWhileGrabbed. The X server processes normal focus and focus events while grabbed
according to the following:

• When the focus moves from window A to window B, A is an inferior of B, and the
pointer is in window P, the X server does the following:

It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyAncestor.

It generates a FocusOut event on each window between window A and window
B, exclusive, with the detail member of each XFocusOutEvent structure set to
Notify Virtual.

It generates a Focusln event on window B, with the detail member of the XFocu¬
sOutEvent structure set to Notifylnferior.

- If window P is an inferior of window B but window P is not window A or an
inferior or ancestor of window A, it generates a Focusln event on each window
below window B, down to and including window P, with the detail member of
each XFocusInEvent structure set to NotifyPointer.

• When the focus moves from window A to window B, B is an inferior of A, and the
pointer is in window P, the X server does the following:

- If window P is an inferior of window A but P is not an inferior of window B or
an ancestor of B, it generates a FocusOut event on each window from window P
up to but not including window A, with the detail member of each XFocu¬
sOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to Notifylnferior.

- It generates a Focusln event on each window between window A and window B,
exclusive, with the detail member of each XFocusInEvent structure set to
Notify Virtual.

It generates a Focusln event on window B, with the detail member of the XFocu¬
sInEvent structure set to NotifyAncestor.

• When the focus moves from window A to window B, window C is their least common
ancestor, and the pointer is in window P, the X server does the following:

- If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail
member of the XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

It generates a FocusOut event on each window between window A and window
C, exclusive, with the detail member of each XFocusOutEvent structure set to
NotifyNonlinearVirtual.

169

Xlib - C Library Xll, Release 5

- It generates a Focusln event on each window between C and B, exclusive, with
the detail member of each XFocusInEvent structure set to NotifyNonlinearVir¬
tual.

- It generates a Focusln event on window B, with the detail member of the XFocu¬
sInEvent structure set to NotifyNonlinear.

- If window P is an inferior of window B, it generates a Focusln event on each
window below window B down to and including window P, with the detail
member of the XFocusInEvent structure set to NotifyPointer.

® When the focus moves from window A to window B on different screens and the pointer
is in window P, the X server does the following:

- If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

- If window A is not a root window, it generates a FocusOut event on each win¬
dow above window A up to and including its root, with the detail member of each
XFocusOutEvent structure set to NotifyNonlinearVirtual.

If window B is not a root window, it generates a Focusln event on each window
from window B’s root down to but not including window B, with the detail
member of each XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a Focusln event on window B, with the detail member of each
XFocusInEvent structure set to NotifyNonlinear.

- If window P is an inferior of window B, it generates a Focusln event on each
window below window B down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

• When the focus moves from window A to PointerRoot (events sent to the window
under the pointer) or None (discard), and the pointer is in window P, the X server does
the following:

- If window P is an inferior of window A, it generates a FocusOut event on each
window from window P up to but not including window A, with the detail
member of each XFocusOutEvent structure set to NotifyPointer.

It generates a FocusOut event on window A, with the detail member of the
XFocusOutEvent structure set to NotifyNonlinear.

If window A is not a root window, it generates a FocusOut event on each win¬
dow above window A up to and including its root, with the detail member of each
XFocusOutEvent structure set to NotifyNonlinearVirtual.

It generates a Focusln event on the root window of all screens, with the detail
member of each XFocusInEvent structure set to NotifyPointerRoot (or
NotifyDetailNone).

- If the new focus is PointerRoot, it generates a Focusln event on each window
from window P’s root down to and including window P, with the detail member of
each XFocusInEvent structure set to NotifyPointer.

® When the focus moves from PointerRoot (events sent to the window under the pointer)
or None to window A, and the pointer is in window P, the X server does the following:

- If the old focus is PointerRoot, it generates a FocusOut event on each window
from window P up to and including window P’s root, with the detail member of
each XFocusOutEvent structure set to NotifyPointer.

170

Xlib - C Library XI1, Release 5

- It generates a FocusOut event on all root windows, with the detail member of
each XFocusOutEvent structure set to NotifyPointerRoot (or NotifyDetail-
None).

- If window A is not a root window, it generates a Focusln event on each window
from window A’s root down to but not including window A, with the detail
member of each XFocusInEvent structure set to NotifyNonlinearVirtual.

It generates a Focusln event on window A, with the detail member of the XFocu¬
sInEvent structure set to NotifyNonlinear.

- If window P is an inferior of window A, it generates a Focusln event on each
window below window A down to and including window P, with the detail
member of each XFocusInEvent structure set to NotifyPointer.

• When the focus moves from PointerRoot (events sent to the window under the pointer)
to None (or vice versa), and the pointer is in window P, the X server does the follow¬
ing:

- If the old focus is PointerRoot, it generates a FocusOut event on each window
from window P up to and including window P’s root, with the detail member of
each XFocusOutEvent structure set to NotifyPointer.

- It generates a FocusOut event on all root windows, with the detail member of
each XFocusOutEvent structure set to either NotifyPointerRoot or NotifyDetail-
None.

- It generates a Focusln event on all root windows, with the detail member of each
XFocusInEvent structure set to NotifyDetailNone or NotifyPointerRoot.

- If the new focus is PointerRoot, it generates a Focusln event on each window
from window P’s root down to and including window P, with the detail member of
each XFocusInEvent structure set to NotifyPointer.

10.7,2. Focus Events Generated by Grabs

Focus events in which the keyboard grab activates are identified by XFocusInEvent or
XFocusOutEvent structures whose mode member is set to NotifyGrab. Focus events in
which the keyboard grab deactivates are identified by XFocusInEvent or XFocusOutEvent
structures whose mode member is set to NotifyUngrab (see XGrabKeyboard).

• When a keyboard grab activates before generating any actual KeyPress event that
activates the grab, G is the grab_window, and F is the current focus, the X server does
the following:

It generates Focusln and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to NotifyGrab. These
events are generated as if the focus were to change from F to G.

• When a keyboard grab deactivates after generating any actual KeyRelease event that
deactivates the grab, G is the grab_window, and F is the current focus, the X server does
the following:

It generates Focusln and FocusOut events, with the mode members of the
XFocusInEvent and XFocusOutEvent structures set to NotifyUngrab. These
events are generated as if the focus were to change from G to F.

10.8. Key Map State Notification Events

The X server can report KeymapNotify events to clients that want information about changes
in their keyboard state.

To receive KeymapNotify events, set the KeymapStateMask bit in the event-mask attribute
of the window. The X server generates this event immediately after every EnterNotify and
Focusln event.

171

Xlib - C Library XI1, Release 5

when KeymapState selected */

The structure for this event type contains:

/* generated on EnterWindow and Focusln
typedef struct {

int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
char key_vector[32];

} XKeymapEvent;

/* KeymapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The window member is not used but is present to aid some toolkits. The key_vector member
is set to the bit vector of the keyboard. Each bit set to 1 indicates that the corresponding key
is currently pressed. The vector is represented as 32 bytes. Byte N (from 0) contains the bits
for keys 8N to 8N + 7 with the least-significant bit in the byte representing key 8N.

10.9. Exposure Events

The X protocol does not guarantee to preserve the contents of window regions when the win¬
dows are obscured or reconfigured. Some implementations may preserve the contents of win¬
dows. Other implementations are free to destroy the contents of windows when exposed. X
expects client applications to assume the responsibility for restoring the contents of an exposed
window region. (An exposed window region describes a formerly obscured window whose
region becomes visible.) Therefore, the X server sends Expose events describing the window
and the region of the window that has been exposed. A naive client application usually
redraws the entire window. A more sophisticated client application redraws only the exposed
region.

10.9.1. Expose Events

The X server can report Expose events to clients wanting information about when the contents
of window regions have been lost. The circumstances in which the X server generates Expose
events are not as definite as those for other events. However, the X server never generates
Expose events on windows whose class you specified as InputOnly. The X server can gen¬
erate Expose events when no valid contents are available for regions of a window and either
the regions are visible, the regions are viewable and the server is (perhaps newly) maintaining
backing store on the window, or the window is not viewable but the server is (perhaps newly)
honoring the window’s backing-store attribute of Always or WhenMapped. The regions
decompose into an (arbitrary) set of rectangles, and an Expose event is generated for each rec¬
tangle. For any given window, the X server guarantees to report contiguously all of the
regions exposed by some action that causes Expose events, such as raising a window.

To receive Expose events, set the ExposureMask bit in the event-mask attribute of the win¬
dow.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int x, y;
int width, height;
int count;

} XExposeEvent;

/* Expose */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */

172

Xlib - C Library XI1, Release 5

The window member is set to the exposed (damaged) window. The x and y members are set
to the coordinates relative to the window’s origin and indicate the upper-left comer of the rec¬
tangle. The width and height members are set to the size (extent) of the rectangle. The count
member is set to the number of Expose events that are to follow. If count is zero, no more
Expose events follow for this window. However, if count is nonzero, at least that number of
Expose events (and possibly more) follow for this window. Simple applications that do not
want to optimize redisplay by distinguishing between subareas of its window can just ignore all
Expose events with nonzero counts and perform full redisplays on events with zero counts.

10.9,2. GraphicsExpose and NoExpose Events

The X server can report GraphicsExpose events to clients wanting information about when a
destination region could not be computed during certain graphics requests: XCopyArea or
XCopyPlane. The X server generates this event whenever a destination region could not be
computed due to an obscured or out-of-bounds source region. In addition, the X server
guarantees to report contiguously all of the regions exposed by some graphics request (for
example, copying an area of a drawable to a destination drawable).

The X server generates a NoExpose event whenever a graphics request that might produce a
GraphicsExpose event does not produce any. In other words, the client is really asking for a
GraphicsExpose event but instead receives a NoExpose event.

To receive GraphicsExpose or NoExpose events, you must first set the graphics-exposure
attribute of the graphics context to True. You also can set the graphics-expose attribute when
creating a graphics context using XCreateGC or by calling XSetGraphicsExposures.

The structures for these event types contain:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Drawable drawable;
int x, y;
int width, height;
int count;
int major_code;
int minor_code;

} XGraphicsExposeEvent;

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Drawable drawable;
int major_code;
int minor_code;

} XNoExposeEvent;

Both structures have these common members: drawable, major_code, and minor_code. The
drawable member is set to the drawable of the destination region on which the graphics request
was to be performed. The major_code member is set to the graphics request initiated by the
client and can be either X_CopyArea or X_CopyP!ane. If it is X_CopyArea, a call to
XCopyArea initiated the request. If it is X CopyPlane, a call to XCopyPIane initiated the
request. These constants are defined in <Xll/Xproto.h>. The minor_code member, like the
major_code member, indicates which graphics request was initiated by the client. However, the

/* GraphicsExpose */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* if nonzero, at least this many more */
/* core is CopyArea or CopyPlane */
/* not defined in the core */

/* NoExpose */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* core is CopyArea or CopyPlane */
/* not defined in the core */

173

Xlib - C Library XI1, Release 5

minor_code member is not defined by the core X protocol and will be zero in these cases,
although it may be used by an extension.

The XGraphicsExposeEvent structure has these additional members: x, y, width, height, and
count. The x and y members are set to the coordinates relative to the drawable’s origin and
indicate the upper-left comer of the rectangle. The width and height members are set to the
size (extent) of the rectangle. The count member is set to the number of GraphicsExpose
events to follow. If count is zero, no more GraphicsExpose events follow for this window.
However, if count is nonzero, at least that number of GraphicsExpose events (and possibly
more) are to follow for this window.

10.10. Window State Change Events

The following sections discuss:

© CirculateNotify events

® ConfigureNotify events

• CreateNotify events

® DestroyNotify events

® GravityNotify events

• MapNotify events

© MappingNotify events

• ReparentNotify events

« LlnmapNotify events

• VisibilityNotify events

10.10.1. CirculateNotify Events

The X server can report CirculateNotify events to clients wanting information about when a
window changes its position in the stack. The X server generates this event type whenever a
window is actually restacked as a result of a client application calling XCirculateSubwin-
dovvs, XCirculateSubwindovvsUp, or XCirculateSubwindowsDown.

To receive CirculateNotify events, set the StructureNotifyMask bit in the event-mask attri¬
bute of the window or the SubstructureNotifyMask bit in the event-mask attribute of the
parent window (in which case, circulating any child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window event;
Window window;
int place;

} XCirculateEvent;

/* CirculateNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event, was read from */

/* PlaceOnTop, PlaceOnBottom */

The event member is set either to the restacked window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. The window member is set to the win¬
dow that \yas restacked. The place member is set to the window’s position after the restack
occurs and is either PlaceOnTop or PlaceOnBottom. If it is PlaceOnTop, the window is
now on top of all siblings. If it is PlaceOnBottom, the window is now below all siblings.

174

Xlib - C Library Xll, Release 5

10.10.2. ConfigureNotify Events

The X server can report ConfigureNotify events to clients wanting information about actual
changes to a window’s state, such as size, position, border, and stacking order. The X server
generates this event type whenever one of the following configure window requests made by a
client application actually completes:

• A window’s size, position, border, and/or stacking order is reconfigured by calling
XConfigureWindow.

• The window’s position in the stacking order is changed by calling XLowerWindow,
XRaiseWindovv, or XRestackWindows.

• A window is moved by calling XMoveWindow.

• A window’s size is changed by calling XResizeWindovv.

• A window’s size and location is changed by calling XMoveResizeWindow.

• A window is mapped and its position in the stacking order is changed by calling
XMapRaised.

• A window’s border width is changed by calling XSetWindowBorderWidth.

To receive ConfigureNotify events, set the StructureNotifyMask bit in the event-mask attri¬
bute of the window or the SubstructureNotifyMask bit in the event-mask attribute of the
parent window (in which case, configuring any child generates an event).

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display ^display; /*
Window event;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
Bool override_redirect;

} XConfigureEvent;

ConfigureNotify */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

The event member is set either to the reconfigured window or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window member is set to
the window whose size, position, border, and/or stacking order was changed.

The x and y members are set to the coordinates relative to the parent window’s origin and
indicate the position of the upper-left outside comer of the window. The width and height
members are set to the inside size of the window, not including the border. The border_width
member is set to the width of the window’s border, in pixels.

The above member is set to the sibling window and is used for stacking operations. If the X
server sets this member to None, the window whose state was changed is on the bottom of the
stack with respect to sibling windows. However, if this member is set to a sibling window,
the window whose state was changed is placed on top of this sibling window.

The override_redirect member is set to the override-redirect attribute of the window. Window
manager clients normally should ignore this window if the override_redirect member is True.

10.10.3. CreateNotify Events

The X server can report CreateNotify events to clients wanting information about creation of
windows. The X server generates this event whenever a client application creates a window

175

Xlib - C Library XI1, Release 5

by calling XCreateWindow or XCreateSimpleWindow.

To receive CreateNotify events, set the SubstructureNotifyMask bit in the event-mask attri¬
bute of the window. Creating any children then generates an event.

The structure for the event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_everit;
Display *display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Bool override_redirect;

} XCreateWindowEvent;

The parent member is set to the created window’s parent. The window member specifies the
created window. The x and y members are set to die created window’s coordinates relative to
the parent window’s origin and indicate the position of the upper-left outside comer of the
created window. The width and height members are set to the inside size of the created win¬
dow (not including the border) and are always nonzero. The border_width member is set to
the width of the created window’s border, in pixels. The override_redirect member is set to
the override-redirect attribute of the window. Window manager clients normally should ignore
this window if the override redirect member is True.

/* CreateNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* parent of the window */
/* window id of window created */
/* window location */
/* size of window */

/* border width */
/* creation should be overridden */

10.10.4, DestroyNotify Events

The X server can report DestroyNotify events to clients wanting information about which
windows are destroyed. The X server generates this event whenever a client application des¬
troys a window by calling XDestroyWindow or XDestroySubwindows.

The ordering of the DestroyNotify events is such that for any given window, DestroyNotify
is generated on all inferiors of the window before being generated on the window itself. The X
protocol does not constrain the ordering among siblings and across subhierarchies.

To receive DestroyNotify events, set the StructureNotifyMask bit in the event-mask attribute
of the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent
window (in which case, destroying any child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window event;
Window window;

} XDestroyWindowEvent;

/* DestroyNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the destroyed window or to its parent, depending on whether
StructureNotify or SubstructureNotify was selected. The window member is set to the win¬
dow that is destroyed.

176

Xlib - C Library XI1, Release 5

10.10.5. GravityNotify Events

The X server can report GravityNotify events to clients wanting information about when a
window is moved because of a change in the size of its parent. The X server generates this
event whenever a client application actually moves a child window as a result of resizing its
parent by calling XConfigureWindow, XMoveResizeWindow, or XResizeWindow.

To receive GravityNotify events, set the StructureNotifyMask bit in the event-mask attribute
of the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent
window (in which case, any child that is moved because its parent has been resized generates
an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
int x, y;

} XGravityEvent;

/* GravityNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the window that was moved or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window member is set to
the child window that was moved. The x and y members are set to the coordinates relative to
the new parent window’s origin and indicate the position of the upper-left outside comer of the
window.

10.10.6. MapNotify Events

The X server can report MapNotify events to clients wanting information about which win¬
dows are mapped. The X server generates this event type whenever a client application
changes the window’s state from unmapped to mapped by calling XMapWindow,
XMapRaised, XMapSubwindows, XReparentWindow, or as a result of save-set process¬
ing.

To receive MapNotify events, set the StructureNotifyMask bit in the event-mask attribute of
the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent win¬
dow (in which case, mapping any child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Bool override_redirect;

} XMapEvent;

/* MapNotify */

/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* boolean, is override set... */

The event member is set either to the window that was mapped or to its parent, depending on
whether StructureNotify or SubstructureNotify was selected. The window member is set to
the window that was mapped. The override_redirect member is set to the override-redirect
attribute of the window. Window manager clients normally should ignore this window if the
override-redirect attribute is True, because these events usually are generated from pop-ups,
which override structure control.

177

Xlib - C Library XI1, Release 5

10.10.7. MappingNotify Events

The X server reports MappingNotify events to all clients. There is no mechanism to express
disinterest in this event. The X server generates this event type whenever a client application
successfully calls:

• XSetModifierMapping to indicate which KeyCodes are to be used as modifiers

• XChangeKeyboardMapping to change the keyboard mapping

• XSetPointerMapping to set the pointer mapping

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
int request;

int first_keycode;
int count;

} XMappingEvent;

The request member is set to indicate the kind of mapping change that occurred and can be
MappingModifier, MappingKeyboard, MappingPointer. If it is MappingModifier, the
modifier mapping was changed. If it is MappingKeyboard, the keyboard mapping was
changed. If it is MappingPointer, the pointer button mapping was changed. The
first_keycode and count members are set only if the request member was set to MappingKey¬
board. The number in first_keycode represents the first number in the range of the altered
mapping, and count represents the number of keycodes altered.

To update the client application’s knowledge of the keyboard, you should call XRefreshKey-
boardMapping.

/* MappingNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */
/* unused */
/* one of MappingModifier, MappingKeyboard,

MappingPointer */

/* first keycode */
/* defines range of change w. first_keycode*/

10.10.8. ReparentNotify Events

The X server can report ReparentNotify events to clients wanting information about changing
a window’s parent. The X server generates this event whenever a client application calls
XReparentWindow and the window is actually reparented.

To receive ReparentNotify events, set the StructureNotifyMask bit in the event-mask attri¬
bute of the window or the SubstructureNotifyMask bit in the event-mask attribute of either
the old or the new parent window (in which case, reparenting any child generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window event;
Window window;
Window parent;
int x, y;
Bool override_redirect;

} XReparentEvent;

/* ReparentNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the reparented window or to the old or the new parent,
depending on whether StructureNotify or SubstructureNotify was selected. The window

178

Xlib - C Library XI1, Release 5

member is set to the window that was reparented. The parent member is set to the new parent
window. The x and y members are set to the reparented window’s coordinates relative to the
new parent window’s origin and define the upper-left outer comer of the reparented window.
The override_redirect member is set to the override-redirect attribute of the window specified
by the window member. Window manager clients normally should ignore this window if the
override redirect member is True.

10.10.9. UnmapNotify Events

The X server can report UnmapNotify events to clients wanting information about which win¬
dows are unmapped. The X server generates this event type whenever a client application
changes the window’s state from mapped to unmapped.

To receive UnmapNotify events, set the StructureNotifyMask bit in the event-mask attribute
of the window or the SubstructureNotifyMask bit in the event-mask attribute of the parent
window (in which case, unmapping any child window generates an event).

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window event;
Window window;
Bool from__configure;

} XUnmapEvent;

/* UnmapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The event member is set either to the unmapped window or to its parent, depending on
whether StructureNotify or SubstruetureNotify was selected. This is the window used by
the X server to report the event. The window member is set to the window that was
unmapped. The from_configure member is set to True if the event was generated as a result
of a resizing of the window’s parent when the window itself had a win_gravity of Unmap-
Gravity.

10.10.10. VisibilityNotify Events

The X server can report VisibilityNotify events to clients wanting any change in the visibility
of the specified window. A region of a window is visible if someone looking at the screen can
actually see it. The X server generates this event whenever the visibility changes state. How¬
ever, this event is never generated for windows whose class is InputOnly.

All VisibilityNotify events caused by a hierarchy change are generated after any hierarchy
event (UnmapNotify, MapNotify, ConfigureNotify, GravityNotify, CirculateNotify)
caused by that change. Any VisibilityNotify event on a given window is generated before any
Expose events on that window, but it is not required that all VisibilityNotify events on all
windows be generated before all Expose events on all windows. The X protocol does not con¬
strain the ordering of VisibilityNotify events with respect to FoeusOut, EnterNotify, and
LeaveNotify events.

To receive VisibilityNotify events, set the VisibilityChangeMask bit in the event-mask attri¬
bute of the window.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;

/* VisibiltyNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

179

Xlib - C Library XI1, Release 5

Window window,
int state;

} XVisibilityEvent;

The window member is set to the window whose visibility state changes. The state member is
set to the state of the window’s visibility and can be VisibilityUnobscured, VisibilityPartial-
lyObscured, or VisibilityFulIyObscured. The X server ignores all of a window’s subwin¬
dows when determining the visibility state of the window and processes VisibilityNotify
events according to the following:

® WTien the window changes state from partially obscured, fully obscured, or not viewable
to viewable and completely unobscured, the X server generates the event with the state
member of the XVisibilityEvent structure set to VisibilityUnobscured.

• When the window changes state from viewable and completely unobscured or not view¬
able to viewable and partially obscured, the X server generates the event with the state
member of the XVisibilityEvent structure set to VisibilityPartiallyObscured.

® When the window changes state from viewable and completely unobscured, viewable
and partially obscured, or not viewable to viewable and fully obscured, the X server gen¬
erates the event with the state member of the XVisibilityEvent structure set to Visibili¬
tyFulIyObscured .

10.11. Structure Control Events

This section discusses:

• CirculateRequest events

• ConfigureRequest events

• MapRequest events

• ResizeRequest events

10.11.1. CirculateRequest Events

The X server can report CirculateRequest events to clients wanting information about when
another client initiates a circulate window request on a specified window. The X server gen¬
erates this event type whenever a client initiates a circulate window request on a window and a
subwindow actually needs to be rcstacked. The client initiates a circulate window request on
the window by calling XCircuIateSubwindows, XCirculateSubwindowsUp, or XCircula-
teSubwindowsDown.

To receive CirculateRequest events, set the SubstructureRedirectMask in the event-mask
attribute of the window. Then, in the future, the circulate window request for the specified win¬
dow is not executed, and thus, any subwindow’s position in the stack is not changed. For
example, suppose a client application calls XCirculateSubwindowsUp to raise a subwindow
to the top of the stack. If you had selected SubstructureRedirectMask on the window, the X
server reports to you a CirculateRequest event and does not raise the subw-indow to the top
of the stack.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window parent;
Window window;
int place;

} XCirculateRequestEvent;

/* CirculateRequest */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* PlaceOnTop, PlaceOnBottom */

180

Xlib - C Library XI1, Release 5

The parent member is set to the parent window. The window member is set to the subwindow
to be restacked. The place member is set to what the new position in the stacking order should
be and is either PlaceOnTop or PlaceOnBottom. If it is PlaceOnTop, the subwindow
should be on top of all siblings. If it is PlaceOnBottom, the subwindow should be below all
siblings.

10.11.2. ConfigureRequest Events

The X server can report ConfigureRequest events to clients wanting information about when
a different client initiates a configure window request on any child of a specified window. The
configure window request attempts to reconfigure a window’s size, position, border, and stack¬
ing order. The X server generates this event whenever a different client initiates a configure
window request on a window by calling XConfigureWindow, X Lower Window,
XRaiseWindow, XMapRaised, XMoveResizeWindow, XMoveWindow, XResizeWindow,
XRestackWindows, or XSetWindowBorderWidth.

To receive ConfigureRequest events, set the SubstructureRedirectMask bit in the event-
mask attribute of the window. ConfigureRequest events are generated when a
ConfigureWindow protocol request is issued on a child window by another client. For exam¬
ple, suppose a client application calls XLowerWindow to lower a window. If you had
selected SubstructureRedirectMask on the parent window and if the override-redirect attri¬
bute of the window is set to False, the X server reports a ConfigureRequest event to you and
does not lower the specified window.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window parent;
Window window;
int x, y;
int width, height;
int border_width;
Window above;
int detail;
unsigned long value_mask;

} XConfigureRequestEvent;

/* ConfigureRequest */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* Above, Below, Toplf, Bottomlf, Opposite */

The parent member is set to the parent window. The window member is set to the window
whose size, position, border width, and/or stacking order is to be reconfigured. The
value_mask member indicates which components were specified in the ConfigureWindow
protocol request. The corresponding values are reported as given in the request. The remain¬
ing values are filled in from the current geometry of the window, except in the case of above
(sibling) and detail (stack-mode), which are reported as Above and None, respectively, if they
are not given in the request.

10.11.3. MapRequest Events

The X server can report MapRequest events to clients wanting information about a different
client’s desire to map windows. A window is considered mapped when a map window request
completes. The X server generates this event whenever a different client initiates a map win¬
dow request on an unmapped window whose override_redirect member is set to False. Clients,
initiate map window requests by calling XMapWindow, XMapRaised, or XMapSubwin-
dows.

181

Xlib - C Library Xll, Release 5

To receive MapRequest events, set the SubstructureRedirectMask bit in the event-mask
attribute of the window. This means another client’s attempts to map a child window by calling
one of the map window request functions is intercepted, and you are sent a MapRequest
instead. For example, suppose a client application calls XMapWindow to map a window. If
you (usually a window manager) had selected SubstructureRedirectMask on the parent win¬
dow and if the ovemde-redirect attribute of the window is set to False, the X server reports a
MapRequest event to you and does not map the specified window. Thus, this event gives
your window manager client the ability to control the placement of subwindows.

The structure for this event type contains:

typedef struct {
int type:
unsigned long serial;
Bool send_evenu
Display *display;
Window parent;
Window window;

} XMapRequestEvent;

/* MapRequest */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The parent member is set to the parent window. The window member is set to the window to
be mapped.

10.11.4. ResizeRequest Events

The X server can report ResizeRequest events to clients wanting information about another
client’s attempts to change the size of a window. The X server generates this event whenever
some other client attempts to change the size of the specified window by calling
XConfigureWindovv, XResizeWindow, or XMoveResizeWindow.

To receive ResizeRequest events, set the ResizeRedirect bit in the event-mask attribute of
the window. Any attempts to change the size by other clients are then redirected.

The structure for this event type contains:

typedef struct {
int type; /*
unsigned long serial; /*
Bool send_event; /*
Display ^display; /*
Window window;
int width, height;

} XResizeRequestEvent;

ResizeRequest */
of last request processed by server */
true if this came from a SendEvent request */
Display the event was read from */

The window member is set to the window whose size another client attempted to change. The
width and height members are set to the inside size of the window, excluding the border.

10.12. Colormap State Change Events

The X server can report CoIormapNotify events to clients wanting information about when
the colormap changes and when a colormap is installed or uninstalled. The X server generates
this event type whenever a client application:

• Changes the colormap member of the XSetWindowAttributes structure by calling
XChangeWindowAttributes, XFreeColormap, or XSetWindovvColormap

• Installs or uninstalls the colormap by calling XInstallColormap or XUninstallCoIor-
map

To receive CoIormapNotify events, set the ColormapChangeMask bit in the event-mask
attribute of the window.

182

Xlib - C Library Xll, Release 5

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window window;
Colormap colormap;
Bool new;
int state;

} XColormapEvent;

/* ColormapNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* colormap or None */

/* Colormaplnstalled, ColormapUninstalled */

The window member is set to the window whose associated colormap is changed, installed, or
uninstalled. For a colormap that is changed, installed, or uninstalled, the colormap member is
set to the colormap associated with the window. For a colormap that is changed by a call to
XFreeCoIormap, the colormap member is set to None. The new member is set to indicate
whether the colormap for the specified window was changed or installed or uninstalled and can
be True or False. If it is True, the colormap was changed. If it is False, the colormap was
installed or uninstalled. The state member is always set to indicate whether the colormap is
installed or uninstalled and can be Colormaplnstalled or ColormapUninstalled.

10.13. Client Communication Events

This section discusses:

• ClientMessage events

• PropertyNotify events

• SelectionCIear events

• SelectionNotify events

• SelectionRequest events

10.13.1. ClientMessage Events

The X server generates ClientMessage events only when a client calls the function XSen-
dEvent.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom message_type;
int format;
union {

char b[20];
short s[10];
long 1[5];

} data;
} XClientMessageEvent;

/* ClientMessage */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The message_type member is set to an atom that indicates how the data should be interpreted
by the receiving client. The format member is set to 8, 16, or 32 and specifies whether the
data should be viewed as a list of bytes, shorts, or longs. The data member is a union that
contains the members b, s, and 1. The b, s, and 1 members represent data of 20 8-bit values.

183

Xlib - C Library XI1, Release 5

10 16-bit values, and 5 32-bit values. Particular message types might not make use of all these
values. The X server places no interpretation on the values in the window, message_type, or
data members.

10.13.2. PropertyNotify Events

The X server can report PropertyNotify events to clients wanting information about property
changes for a specified window.

To receive PropertyNotify events, set the PropertyChangeMask bit in the event-mask attri¬
bute of the window.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window window;
Atom atom;
Time time;
int state;

} XPropertyEvent;

The window member is set to the window whose associated property was changed. The atom
member is set to the property’s atom and indicates which property was changed or desired.
The time member is set to the server time when the property was changed. The state member
is set to indicate whether the property was changed to a new value or deleted and can be Pro-
pertyNewValue or PropertyDelete. The state member is set to PropertyNewValue when a
property of the window is changed using XChangeProperty or XRotateWindowProperties
(even when adding zero-length data using XChangeProperty) and when replacing all or part
of a property with identical data using XChangeProperty or XRotateWindowProperties.
The state member is set to PropertyDelete when a property of the window is deleted using
XDeleteProperty or, if the delete argument is True, XGetWindowProperty.

/* PropertyNotify */

/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* PropertyNewValue or PropertyDelete */

10.13.3. SelectionClear Events

The X server reports SelectionClear events to the client losing ownership of a selection. The
X server generates this event type when another client asserts ownership of the selection by
calling XSetSelectionOwner.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window window;
Atom selection;
Time time;

} XSelectionClearEvent;

/* SelectionClear */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

The selection member is set to the selection atom. The time member is set to the last change
time recorded for the selection. The window member is the window that was specified by the
current owner (the owner losing the selection) in its XSetSelectionOwner call.

184

Xlib - C Library XI1, Release 5

10.13.4. SelectionRequest Events

The X server reports SelectionRequest events to the owner of a selection. The X server gen¬
erates this event whenever a client requests a selection conversion by calling XConvertSelec-
tion for the owned selection.

The structure for this event type contains

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display *display;
Window owner,
Window requestor.
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionRequestEvent;

The owner member is set to the window that was specified by the current owner in its XSet-
SelectionOwner call. The requestor member is set to the window requesting the selection.
The selection member is set to the atom that names the selection. For example, PRIMARY is
used to indicate the primary selection. The target member is set to the atom that indicates the
type the selection is desired in. The property member can be a property name or None. The
time member is set to the timestamp or CurrentTime value from the ConvertSelection
request.

The owner should convert the selection based on the specified target type and send a Selec-
tionNotify event back to the requestor. A complete specification for using selections is given
in the X Consortium standard Inter-Client Communication Conventions Manual.

10.13.5. SelectionNotify Events

This event is generated by the X server in response to a ConvertSelection protocol request
when there is no owner for the selection. When there is an owner, it should be generated by
the owner of the selection by using XSendEvent. The owner of a selection should send this
event to a requestor when a selection has been convened and stored as a property or when a
selection conversion could not be performed (which is indicated by setting the property
member to None).

If None is specified as the property in the ConvertSelection protocol request, the owner
should choose a property name, store the result as that property on the requestor window, and
then send a SelectionNotify giving that actual property name.

The structure for this event type contains:

typedef struct {
int type;
unsigned long serial;
Bool send_event;
Display ^display;
Window requestor.
Atom selection;
Atom target;
Atom property;
Time time;

} XSelectionEvent;

/* SelectionNotify */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

/* atom or None */

/* SelectionRequest */
/* # of last request processed by server */
/* true if this came from a SendEvent request */
/* Display the event was read from */

185

Xlib - C Library XI1, Release 5

The requestor member is set to the window associated with the requestor of the selection. The
selection member is set to the atom that indicates the selection. For example, PRIMARY is
used for the primary selection. The target member is set to the atom that indicates the con¬
verted type. For example, PIXMAP is used for a pixmap. The property member is set to the
atom that indicates which property the result was stored on. If the conversion failed, the pro¬
perty member is set to None. The time member is set to the time the conversion took place
and can be a timestamp or CurrentTime.

186

Xlib - C Library XI1, Release 5

Chapter 11

Event Handling Functions

This chapter discusses the Xlib functions you can use to:

• Select events

• Handle the output buffer and the event queue

• Select events from the event queue

• Send and get events

• Handle protocol errors

Note

Some toolkits use their own event-handling functions and do not allow you to
interchange these event-handling functions with those in Xlib. For further infor¬
mation, see the documentation supplied with the toolkit.

Most applications simply are event loops: they wait for an event, decide what to do with it,
execute some amount of code that results in changes to the display, and then wait for the next
event.

11.1. Selecting Events

There are two ways to select the events you want reported to your client application. One way
is to set the event_mask member of the XSetWindowAttributes structure when you call
XCreateWindow and XChangeWindowAttributes. Another way is to use XSelectlnput.

XSelectlnput (dwp/ay, w, event_mask)
Display * display.
Window w;
long event_mask\

display Specifies the connection to the X server,

w Specifies the window whose events you are interested in.

eventjnask Specifies the event mask.

The XSelectlnput function requests that the X server report the events associated with the
specified event mask. Initially, X will not report any of these events. Events are reported rela¬
tive to a window. If a window is not interested in a device event, it usually propagates to the
closest ancestor that is interested, unless the do_not_propagate mask prohibits it.

Setting the event-mask attribute of a window overrides any previous call for the same window
but not for other clients. Multiple clients can select for the same events on the same window
with the following restrictions:

• Multiple clients can select events on the same window because their event masks are dis¬
joint. When the X server generates an event, it reports it to all interested clients.

• Only one client at a time can select CirculateRequest, ConfigureRequest, or MapRe-
quest events, which are associated with the event mask SubstructureRedirectMask.

• Only one client at a time can select a ResizeRequest event, which is associated with the
event mask ResizeRedirectMask.

• Only one client at a time can select a ButtonPress event, which is associated with the
event mask ButtonPressMask.

187

Xlib - C Library XI1, Release 5

The server reports the event to all interested clients.

XSelectlnput can generate a BadWindow error.

11.2. Handling the Output Buffer

The output buffer is an area used by Xlib to store requests. The functions described in this
section flush the output buffer if the function would block or not return an event. That is, all
requests residing in the output buffer that have not yet been sent are transmitted to the X
server. These functions differ in the additional tasks they might perform.

To flush the output buffer, use XFlush.

XFlush (display)
Display * display’,

display Specifies the connection to the X server.

The XFlush function flushes the output buffer. Most client applications need not use this
function because the output buffer is automatically flushed as needed by calls to XPending,
XNextEvent, and XWindovvEvent. Events generated by the server may be enqueued into the
library’s event queue.

To flush the output buffer and then wait until all requests have been processed, use XSync.

XSync(display, discard)
Display * display,
Bool discard’,

display Specifies the connection to the X server.

discard Specifies a Boolean value that indicates whether XSync discards all events on
the event queue.

The XSync function flushes the output buffer and then waits until all requests have been
received and processed by the X server. Any errors generated must be handled by the error
handler. For each protocol error received by Xlib, XSync calls the client application’s error
handling routine (see section 11.8.2). Any events generated by the server are enqueued into
the library’s event queue.

Finally, if you passed False, XSync docs not discard the events in the queue. If you passed
True, XSync discards all events in the queue, including those events that were on the queue
before XSync was called. Client applications seldom need to call XSync.

11J. Event Queue Management

Xlib maintains an event queue. However, the operating system also may be buffering data in
its network connection that is not yet read into the event queue.

To check the number of events in the event queue, use XEventsQueued.

int XEventsQueued {display, mode)
Display * display,
int mode’,

display Specifies the connection to the X server.

mode Specifies the mode. You can pass QueuedAlready, QueuedAfterFlush, or
QueuedAfterReading.

If mode is QueuedAlready, XEventsQueued returns the number of events already in the
event queue (and never performs a system call). If mode is QueuedAfterFlush,
XEventsQueued returns the number of events already in the queue if the number is nonzero.

188

Xlib - C Library XI1, Release 5

If there are no events in the queue, XEventsQueued Hushes the output buffer, attempts to read
more events out of the application’s connection, and returns the number read. If mode is
QueuedAfterReading, XEventsQueued returns the number of events already in the queue if
the number is nonzero. If there are no events in the queue, XEventsQueued attempts to read
more events out of the application’s connection without flushing the output buffer and returns
the number read.

XEventsQueued always returns immediately without I/O if there are events already in the
queue. XEventsQueued with mode QueuedAfterFlush is identical in behavior to XPend-
ing. XEventsQueued with mode QueuedAiready is identical to the XQLength function.

To return the number of events that are pending, use XPending.

int XPending {display)
Display * display,

display Specifies the connection to the X server.

The XPending function returns the number of events that have been received from the X
server but have not been removed from the event queue. XPending is identical to
XEventsQueued with the mode QueuedAfterFlush specified.

11.4. Manipulating the Event Queue

Xlib provides functions that let you manipulate the event queue. This section discusses how
to:

• Obtain events, in order, and remove them from the queue

• Peek at events in the queue without removing them

• Obtain events that match the event mask or the arbitrary predicate procedures that you
provide

11.4.1. Returning the Next Event

To get the next event and remove it from the queue, use XNextEvent.

XNextEvent eventjeturn)
Display * display,
XEvent * eventjeturn',

display Specifies the connection to the X server.

eventjeturn Returns the next event in the queue.

The XNextEvent function copies the first event from the event queue into the specified
XEvent structure and then removes it from the queue. If the event queue is empty, XNex¬
tEvent flushes the output buffer and blocks until an event is received.

To peek at the event queue, use XPeekEvent.

XPeekEvent (d/sp/ay, eventjeturn)
Display * display,
XEvent * eventjeturn',

display Specifies the connection to the X server.

eventjeturn Returns a copy of the matched event’s associated structure.

The XPeekEvent function returns the first event from the event queue, but it does not remove
the event from the queue. If the queue is empty, XPeekEvent flushes the output buffer and
blocks until an event is received. It then copies the event into the client-supplied XEvent
structure without removing it from the event queue.

189

Xlib - C Library XI1, Release 5

11.4.2. Selecting Events Using a Predicate Procedure

Each of the functions discussed in this section requires you to pass a predicate procedure that
determines if an event matches what you want. Your predicate procedure must decide only if
the event is useful and must not call Xlib functions. In particular, a predicate is called from
inside the event routine, which must lock data structures so that the event queue is consistent
in a multi-threaded environment.

The predicate procedure and its associated arguments are:

Bool (*predicate)(display, event, arg)
Display * display,
XEvent *evenf,
XPointer arg;

display Specifies the connection to the X server.

event Specifies the XEvent structure.

arg Specifies the argument passed in from the XlfEvent, XChecklfEvent, or
XPeeklfEvent function.

The predicate procedure is called once for each event in the queue until it finds a match. After
finding a match, the predicate procedure must return True. If it did not find a match, it must
return False.

To check the event queue for a matching event and, if found, remove the event from the
queue, use XlfEvent.

XIfEvent(<i/.s'/?/ay, event jeturn, predicate, arg)
Display * display,
XEvent * event jeturn;
Bool (* predicated);
XPointer arg\

display

event_return

predicate

arg

Specifies the connection to the X server.

Returns the matched event’s associated structure.

Specifies the procedure that is to be called to determine if the next event in the
queue matches what you want.

Specifies the user-supplied argument that will be passed to the predicate pro¬
cedure.

The XlfEvent function completes only when the specified predicate procedure returns True
for an event, which indicates an event in the queue matches. XlfEvent flushes the output
buffer if it blocks waiting for additional events. XlfEvent removes the matching event from
the queue and copies the structure into the client-supplied XEvent structure.

To check the event queue for a matching event without blocking, use XChecklfEvent.

Bool XChecklfEvent {display, event jeturn, predicate, arg)
Display * display,
XEvent * event jeturn’,
Bool {^predicate)();
XPointer arg;

display Specifies the connection to the X server.

event jeturn Returns a copy of the matched event’s associated structure.

predicate Specifies the procedure that is to be called to determine if the next event in the
queue matches what you want.

190

Xlib - C Library XI1, Release 5

arg Specifies the user-supplied argument that will be passed to the predicate pro¬
cedure.

When the predicate procedure finds a match, XChecklfEvent copies the matched event into
the client-supplied XEvent structure and returns True. (This event is removed from the
queue.) If the predicate procedure finds no match, XChecklfEvent returns False, and the out¬
put buffer will have been flushed. AU earlier events stored in the queue are not discarded.

To check the event queue for a matching event without removing the event from the queue,
use XPeeklfEvent.

XPeeklfEventC^wp/oy, event_return, predicate, arg)
Display * display,
XEvent *event_return‘,
Bool (*predicate)()\
XPointer arg’.

display

event_return

predicate

arg

Specifies the connection to the X server.

Returns a copy of the matched event’s associated structure.

Specifies the procedure that is to be called to determine if the next event in the
queue matches what you want.

Specifies the user-supplied argument that will be passed to the predicate pro¬
cedure.

The XPeeklfEvent function returns only when the specified predicate procedure returns True
for an event. After the predicate procedure finds a match, XPeeklfEvent copies the matched
event into the client-supplied XEvent structure without removing the event from the queue.
XPeeklfEvent flushes the output buffer if it blocks waiting for additional events.

11.4.3. Selecting Events Using a Window or Event Mask

The functions discussed in this section let you select events by window or event types, allow¬
ing you to process events out of order.

To remove the next event that matches both a window and an event mask, use XWin-
dowEvent,

XWindowEvent(cfr.sp/ay, w, eventjnask, event jeturn)
Display * display.
Window w;
long event_mask\
XEvent * event return’.

display

w

event jnask

event return

Specifies the connection to the X server.

Specifies the window whose events you are interested in.

Specifies the event mask.

Returns the matched event’s associated structure.

The XWindowEvent function searches the event queue for an event that matches both the
specified window and event mask. When it finds a match, XWindowEvent removes that
event from the queue and copies it into the specified XEvent structure. The other events
stored in the queue are not discarded. If a matching event is not in the queue, XWin¬
dowEvent flushes the output buffer and blocks until one is received.

To remove the next event that matches both a window and an event mask (if any), use
XCheckWindowEvent. This function is similar to XWindowEvent except that it never
blocks and it returns a Bool indicating if the event was returned.

191

Xlib - C Library XI1, Release 5

Bool XCheckWindowEventC^wp/ay, w, eventjnask, eventjeturn)
Display * display.
Window w;
long event jnask',
XEvent * event return;

display

w

event jnask

event return

Specifies the connection to the X server.

Specifies the window whose events you are interested in.

Specifies the event mask.

Returns the matched event’s associated structure.

The XCheckWindowEvent function searches the event queue and then the events available on
the server connection for the first event that matches the specified window and event mask. If
it finds a match, XCheckWindowEvent removes that event, copies it into the specified
XEvent structure, and returns True. The other events stored in the queue are not discarded.
If the event you requested is not available, XCheckWindowEvent returns False, and the out¬
put buffer will have been flushed.

To remove the next event that matches an event mask, use XMaskEvent.

XMaskEvent (cfcp/ay, event jnask, eventjeturn)
Display * display,
long event jnask',
XEvent * eventjeturn',

display Specifies the connection to the X server.

event jnask Specifies the event mask.

event jeturn Returns the matched event’s associated structure.

The XMaskEvent function searches the event queue for the events associated with the
specified mask. When it finds a match, XMaskEvent removes that event and copies it into
the specified XEvent structure. The other events stored in the queue are not discarded. If the
event you requested is not in the queue, XMaskEvent flushes the output buffer and blocks
until one is received.

To return and remove the next event that matches an event mask (if any), use XCheck-
MaskEvent. This function is similar to XMaskEvent except that it never blocks and it
returns a Bool indicating if the event was returned.

Bool XCheckMaskEvent(^«p/ay, event jnask, event jeturn)
Display * display,
long event jnask',
XEvent * eventjeturn',

display Specifies the connection to the X server.

event jnask Specifies the event mask.

event jeturn Returns the matched event’s associated structure.

The XCheckMaskEvent function searches the event queue and then any events available on
the server connection for the first event that matches the specified mask. If it finds a match,
XCheckMaskEvent removes that event, copies it into the specified XEvent structure, and
returns True. The other events stored in the queue are not discarded. If the event you
requested is not available, XCheckMaskEvent returns False, and the output buffer will have
been flushed.

To return and remove the next event in the queue that matches an event type, use

192

Xlib - C Library XI1, Release 5

XCheckTypedEvent.

Bool XCheckTypedEvent(J/sp/ay, eventjype, event_return)
Display * display',
int event_type\
XEvent * event jeturn',

display Specifies the connection to the X server.

event jype Specifies the event type to be compared.

eventjeturn Returns the matched event’s associated structure.

The XCheckTypedEvent function searches the event queue and then any events available on
the server connection for the first event that matches the specified type. If it finds a match,
XCheckTypedEvent removes that event, copies it into the specified XEvent structure, and
returns True. The other events in the queue are not discarded. If the event is not available,
XCheckTypedEvent returns False, and the output buffer will have been flushed.

To return and remove the next event in the queue that matches an event type and a window,
use XCheckTypedWindowEvent.

Bool XCheckTypedWindowEvent(tfop/ay, w, event jype, event jeturn)
Display * display.
Window w;
int event jype',
XEvent * eventjeturn',

display Specifies the connection to the X server.

w Specifies the window.

event jype Specifies the event type to be compared.

event jeturn Returns the matched event’s associated structure.

The XCheckTypedWindowEvent function searches the event queue and then any events
available on the server connection for the first event that matches the specified type and win¬
dow. If it finds a match, XCheckTypedWindowEvent removes the event from the queue,
copies it into the specified XEvent structure, and returns True. The other events in the queue
are not discarded. If the event is not available, XCheckTypedWindowEvent returns False,
and the output buffer will have been flushed.

11.5. Putting an Event Back into the Queue

To push an event back into the event queue, use XPutBackEvent.

XPutBackEvent (ci/sp/ay, event)
Display * display,
XEvent * event',

display Specifies the connection to the X sen/er.

event Specifies the event.

The XPutBackEvent function pushes an event back onto the head of the display’s event
queue by copying the event into the queue. This can be useful if you read an event and then
decide that you would rather deal with it later. There is no limit to the number of times in
succession that you can call XPutBackEvent.

193

Xlib - C Library XI1, Release 5

11.6. Sending Events to Other Applications

To send an event to a specified window, use XSendEvent. This function is often used in
selection processing. For example, the owner of a selection should use XSendEvent to send a
SelectionNotify event to a requestor when a selection has been converted and stored as a pro¬
perty.

Status XSendEvent(display, w, propagate, event jnask, event_send)
Display * display.
Window w;
Bool propagate;
long event_mask\
XEvent * event send’.

display Specifies the connection to the X server.

w Specifies the window the event is to be sent to, PointerWindow, or Input-
Focus.

propagate Specifies a Boolean value.

event jnask Specifies the event mask.

event_send Specifies the event that is to be sent.

The XSendEvent function identifies the destination window, determines which clients should
receive the specified events, and ignores any active grabs. This function requires you to pass
an event mask. For a discussion of the valid event mask names, see section 10.3. This func¬
tion uses the w argument to identify the destination window as follows:

• If w is PointerWindow, the destination window is the window that contains the pointer.

• If w is InputFocus and if the focus window contains the pointer, the destination win¬
dow is the window that contains the pointer, otherwise, the destination window is the
focus window.

To determine which clients should receive the specified events, XSendEvent uses the pro¬
pagate argument as follows:

• If event_mask is the empty set, the event is sent to the client that created the destination
window. If that client no longer exists, no event is sent.

• If propagate is False, the event is sent to every client selecting on destination any of the
event types in the event_mask argument.

• If propagate is True and no clients have selected on destination any of the event types
in event-mask, the destination is replaced with the closest ancestor of destination for
which some client has selected a type in event-mask and for which no intervening win¬
dow has that type in its do-not-propagate-mask. If no such window exists or if the win¬
dow is an ancestor of the focus window and InputFocus was originally specified as the
destination, the event is not sent to any clients. Otherwise, the event is reported to every
client selecting on the final destination any of the types specified in eventjmask.

The event in the XEvent structure must be one of the core events or one of the events defined
by an extension (or a BadValue error results) so that the X server can correctly byte-swap the
contents as necessary. The contents of the event are otherwise unaltered and unchecked by the
X server except to force send_event to True in the forwarded event and to set the serial
number in the event correctly.

XSendEvent returns zero if the conversion to wire protocol format failed and returns nonzero
otherwise.

XSendEvent can generate BadValue and BadWindow errors.

194

Xlib - C Library Xll, Release 5

11.7. Getting Pointer Motion History

Some X server implementations will maintain a more complete history of pointer motion than
is reported by event notification. The pointer position at each pointer hardware interrupt may
be stored in a buffer for later retrieval. This buffer is called the motion history buffer. For
example, a few applications, such as paint programs, want to have a precise history of where
the pointer traveled. However, this historical information is highly excessive for most applica¬
tions.

To determine the approximate maximum number of elements in the motion buffer, use
XDisplayMotionBufferSize.

unsigned long XDisplayMotionBufferSize(d/s/?/ay)
Display * display,

display Specifies the connection to the X server.

The server may retain the recent history of the pointer motion and do so to a finer granularity
than is reported by MotionNotify events. The XGetMotionEvents function makes this his¬
tory available.

To get the motion history for a specified window and time, use XGetMotionEvents.

XTimeCoord *XCiQlMot\onEvQnis(display, w, start, stop, neventsjeturn)
Display * display.
Window w;
Time start, stop;
int *neventsjeturn\

display Specifies the connection to the X server.

w Specifies the window.

start
stop Specify the time interval in which the events are returned from the motion his¬

tory buffer. You can pass a timestamp or CurrentTime.

nevents jeturn Returns the number of events from the motion history buffer.

The XGetMotionEvents function returns all events in the motion history buffer that fall
between the specified start and stop times, inclusive, and that have coordinates that lie within
the specified window (including its borders) at its present placement If the server does not
support motion history, or if the start time is later than the stop time, or if the start time is in
the future, no events are returned, and XGetMotionEvents returns NULL. If the stop time is
in the future, it is equivalent to specifying CurrentTime. The return type for this function is
a structure defined as follows:

typedef struct {
Time time;
short x, y;

} XTimeCoord;

The time member is set to the time, in milliseconds. The x and y members are set to the coor¬
dinates of the pointer and are reported relative to the origin of the specified window. To free
the data returned from this call, use XFree.

XGetMotionEvents can generate a BadWindow error.

11.8. Handling Protocol Errors

Xlib provides functions that you can use to enable or disable synchronization and to use the
default error handlers.

195

Xlib - C Library XI1, Release 5

11.8.1. Enabling or Disabling Synchronization

When debugging X applications, it often is very convenient to require Xlib to behave synchro¬
nously so that errors are reported as they occur. The following function lets you disable or
enable synchronous behavior. Note that graphics may occur 30 or more times more slowly
when synchronization is enabled. On POSIX-conformant systems, there is also a global vari¬
able _X debug that, if set to nonzero before starting a program under a debugger, will force
synchronous library behavior.

After completing their work, all Xlib functions that generate protocol requests call what is
known as an after function. XSet After Function sets which function is to be called.

int (*XSetAfterFunction(rf/5/?/ay, procedure))0
Display * display,
int {* procedure)0;

display Specifies the connection to the X server.

procedure Specifies the function to be called.

The specified procedure is called with only a display pointer. XSetAfterFunction returns the
previous after function.

To enable or disable synchronization, use XSynchronize.

int (*XSynchronize(dLp/oy, onoff)){)
Display * display,
Bool onoff\

display Specifies the connection to the X server.

onoff Specifies a Boolean value that indicates whether to enable or disable synchroni¬
zation.

The XSynchronize function returns the previous after function. If onoff is True, XSyn¬
chronize turns on synchronous behavior. If onoff is False, XSynchronize turns off synchro¬
nous behavior.

11.8.2. Using the Default Error Handlers

There are two default error handlers in Xlib: one to handle typically fatal conditions (for exam¬
ple, the connection to a display server dying because a machine crashed) and one to handle
protocol errors from the X server. These error handlers can be changed to user-supplied rou¬
tines if you prefer your own error handling and can be changed as often as you like. If either
function is passed a NULL pointer, it will rcinvoke the default handler. The action of the
default handlers is to print an explanatory message and exit.

To set the error handler, use XSetErrorHandler.

int (*XSeiErrorHmd\er(handler))()
int (* handler)(Display *, XErrorEvent *)

handler Specifies the program’s supplied error handler.

Xlib generally calls the program’s supplied error handler whenever an error is received. It is
not called on BadName errors from OpenFont, LookupCoIor, or AllocNamedColor proto¬
col requests or on BadFont errors from a QueryFont protocol request. These errors gen¬
erally are reflected back to the program through the procedural interface. Because this condi¬
tion is not assumed to be fatal, it is acceptable for your error handler to return. However, the
error handler should not call any functions (directly or indirectly) on the display that will gen¬
erate protocol requests or that will look for input events. The previous error handler is
returned.

The XErrorEvent structure contains:

196

Xlib - C Library Xll, Release 5

typedef struct {
int type;
Display *display;
unsigned long serial;
unsigned char error_code;
unsigned char request_code;
unsigned char minor_code;
XID resourceid;

} XErrorEvent;

/* Display the event was read from */
/* serial number of failed request */
/* error code of failed request */
/* Major op-code of failed request */
/* Minor op-code of failed request */
/* resource id */

The serial member is the number of requests, starting from one, sent over the network connec¬
tion since it was opened. It is the number that was the value of NextRequest immediately
before the failing call was made. The request_code member is a protocol request of the pro¬
cedure that failed, as defined in <Xll/Xproto.h>. The following error codes can be returned
by the functions described in this chapter:

Error Code Description

BadAccess

BadAUoc

BadAtom

BadColor

BadCursor

BadDrawable

BadFont

BadGC

A client attempts to grab a key/button combination already
grabbed by another client.

A client attempts to free a colormap entry that it had not
already allocated, or to free an entry in a colormap that was
created with all entries writable.

A client attempts to store into a read-only or unallocated color-
map entry.

A client attempts to modify the access control list from other
than the local (or otherwise authorized) host.

A client attempts to select an event type that another client has
already selected.

The server fails to allocate the requested resource. Note that
the explicit listing of BadAUoc errors in requests only covers
allocation errors at a very coarse level and is not intended to
(nor can it in practice hope to) cover all cases of a server run¬
ning out of allocation space in the middle of service. The
semantics when a server runs out of allocation space are left
unspecified, but a server may generate a BadAUoc error on
any request for this reason, and clients should be prepared to
receive such errors and handle or discard them.

A value for an atom argument does not name a defined atom.

A value for a colormap argument does not name a defined
colormap.

A value for a cursor argument does not name a defined cursor.

A value for a drawable argument does not name a defined win¬
dow or pixmap.

A value for a font argument does not name a defined font (or,
in some cases, GContext).

A value for a GContext argument does not name a defined
GContext.

197

Xlib - C Library XI1, Release 5

Error Code Description

BadIDChoice The value chosen for a resource identifier either is not included
in the range assigned to the client or is already in use. Under
normal circumstances, this cannot occur and should be con¬
sidered a server or Xlib error.

Badlmplementation The server does not implement some aspect of the request. A
server that generates this error for a core request is deficient.
As such, this error is not listed for any of the requests, but
clients should be prepared to receive such errors and handle or
discard them.

BadLength The length of a request is shorter or longer than that required
to contain the arguments. This is an internal Xlib or server
error.

BadMatch

The length of a request exceeds the maximum length accepted
by the server.

In a graphics request, the root and depth of the graphics con¬
text does not match that of the drawable.

BadName

BadPixmap

An InputOnly window is used as a drawable.

Some argument or pair of arguments has the correct type and
range, but it fails to match in some other way required by the
request.

An InputOnly window lacks this attribute.

A font or color of the specified name does not exist.

A value for a pixmap argument does not name a defined pix-
map.

BadRequest The major or minor opcode does not specify a valid request.
This usually is an Xlib or server error.

BadValue Some numeric value falls outside of the range of values
accepted by the request. Unless a specific range is specified for
an argument, the full range defined by the argument’s type is
accepted. Any argument defined as a set of alternatives typi¬
cally can generate this error (due to the encoding).

BadWindow A value for a window argument does not name a defined win¬
dow.

Note

The BadAtom, BadColor, BadCursor, BadDrawable, BadFont, BadGC,
BadPixmap, and BadWindow errors are also used when the argument type is
extended by a set of fixed alternatives.

To obtain textual descriptions of the specified error code, use XGetErrorText.

XGetErroiText(display, code, bufferjeturn, length)
Display * display,
int code;
char * buffer _return\
int length;

198

Xlib - C Library Xll, Release 5

display Specifies the connection to the X server.

code Specifies the error code for which you want to obtain a description.

buffer_return Returns the error description.

length Specifies the size of the buffer.

The XGetErrorText function copies a null-terminated string describing the specified error
code into the specified buffer. The returned text is in the encoding of the current locale. It is
recommended that you use this function to obtain an error description because extensions to
Xlib may define their own error codes and error strings.

To obtain error messages from the error database, use XGetErrorDatabaseText.

XGetErrorDatabaseText(dfyp/ay, name, message, default_string, buffer_return, length)
Display * display,
char *name, * message',
char * default_string\
char * buff er_return;
int length'.

display Specifies the connection to the X server.

name Specifies the name of the application.

message Specifies the type of the error message.

default_string Specifies the default error message if none is found in the database.

bufferjeturn Returns the error description.

length Specifies the size of the buffer.

The XGetErrorDatabaseText function returns a null-terminated message (or the default mes¬
sage) from the error message database. Xlib uses this function internally to look up its error
messages. The default_string is assumed to be in the encoding of the current locale. The
buffer_retum text is in the encoding of the current locale.

The name argument should generally be the name of your application. The message argument
should indicate which type of error message you want. If the name and message are not in the
Host Portable Character Encoding the result is implementation dependent. Xlib uses three
predefined “application names’’ to report errors (uppercase and lowercase matter):

XProtoError The protocol error number is used as a string for the message argument.

XlibMessage These are the message strings that are used internally by the library.

XRequest For a core protocol request, the major request protocol number is used for the
message argument. For an extension request, the extension name (as given by
InitExtension) followed by a period (.) and the minor request protocol number
is used for the message argument. If no string is found in the error database,
the default_string is returned to the buffer argument.

To report an error to the user when the requested display does not exist, use XDisplayName.

char *XDisplayName(5trmg)
char * string',

string Specifies the character string.

The XDisplayName function returns the name of the display that XOpenDisplay would
attempt to use. If a NULL string is specified, XDisplayName looks in tine environment for
the display and returns the display name that XOpenDisplay would attempt to use. This
makes it easier to report to the user precisely which display the program attempted to open
when the initial connection attempt failed.

199

Xlib - C Library XI1, Release 5

To handle fatal I/O errors, use XSetlOErrorHandler.

int (*XSetIOErrorHandler(/iam//£r))()
int (*handler)(Display *);

handler Specifies the program’s supplied error handler.

The XSetlOErrorHandler sets the fatal I/O error handler. Xlib calls the program’s supplied
error handler if any sort of system call error occurs (for example, the connection to the server
was lost). This is assumed to be a fatal condition, and the called routine should not return. If
the I/O error handler does return, the client process exits.

Note that the previous error handler is returned.

200

Xlib - C Library XI1, Release 5

Chapter 12

Input Device Functions

You can use the Xlib input device functions to:

• Grab the pointer and individual buttons on the pointer

• Grab the keyboard and individual keys on the keyboard

• Move the pointer

• Set the input focus

• Manipulate the keyboard and pointer settings

• Manipulate the keyboard encoding

12.1. Pointer Grabbing

Xlib provides functions that you can use to control input from the pointer, which usually is a
mouse. Usually, as soon as keyboard and mouse events occur, the X server delivers them to
the appropriate client, which is determined by the window and input focus. The X server pro¬
vides sufficient control over event delivery to allow window managers to support mouse ahead
and various other styles of user interface. Many of these user interfaces depend upon synchro¬
nous delivery of events. The delivery of pointer and keyboard events can be controlled
independently.

When mouse buttons or keyboard keys are grabbed, events will be sent to the grabbing client
rather than the normal client who would have received the event. If the keyboard or pointer is
in asynchronous mode, further mouse and keyboard events will continue to be processed. If
the keyboard or pointer is in synchronous mode, no further events are processed until the grab¬
bing client allows them (see XAllowEvents). The keyboard or pointer is considered frozen
during this interval. The event that triggered the grab can also be replayed.

Note that the logical state of a device (as seen by client applications) may lag the physical state
if device event processing is frozen.

There are two kinds of grabs: active and passive. An active grab occurs when a single client
grabs the keyboard and/or pointer explicitly (see XGrabPointer and XGrabKeyboard). A
passive grab occurs when clients grab a particular keyboard key or pointer button in a window,
and the grab will activate when the key or button is actually pressed. Passive grabs are con¬
venient for implementing reliable pop-up menus. For example, you can guarantee that the
pop-up is mapped before the up pointer button event occurs by grabbing a button requesting
synchronous behavior. Tne down event will trigger the grab and freeze further processing of
pointer events until you have the chance to map the pop-up window. You can then allow
further event processing. The up event will then be correctly processed relative to the pop-up
window.

For many operations, there are functions that take a time argument. The X server includes a
timestamp in various events. One special time, called CurrentTime, represents the current
server time. The X server maintains the time when the input focus was last changed, when the
keyboard was last grabbed, when the pointer was last grabbed, or when a selection was last
changed. Your application may be slow reacting to an event. You often need some way to
specify that your request should not occur if another application has in the meanwhile taken
control of the keyboard, pointer, or selection. By providing the timestamp from the event in
the request, you can arrange that the operation not take effect if someone else has performed
an operation in the meanwhile.

201

Xlib - C Library XI1, Release 5

A timestamp is a time value, expressed in milliseconds. It typically is the time since the last
server reset. Timestamp values wrap around (after about 49.7 days). The server, given its
current time is represented by timestamp T, always interprets timestamps from clients by treat¬
ing half of the timestamp space as being later in time than T. One timestamp value, named
CurrentTime, is never generated by the server. This value is reserved for use in requests to
represent the current server time.

For many functions in this section, you pass pointer event mask bits. The valid pointer event
mask bits are: ButtonPressMask, ButtonReleaseMask, EnterWindowMask, LeaveWin-
dowMask, PointerMotionMask, PointerMotionHintMask, ButtonlMotionMask,
Button2MotionMask, Button3MotioriMask, Button4MotionMask, Button5MotionMask,
ButtonMotionMask, and KeyMapStateMask. For other functions in this section, you pass
keymask bits. The valid keymask bits are: ShiftMask, LockMask, ControlMask,
ModlMask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5Mask.

To grab the pointer, use XGrabPointer.

int XGrabPointer(rf/sp/ay, grabjwindow, owner_events, eventjnask, pointerjnode,
keyboardjnode, confine jo, cursor, time)

Display * display.
Window grabjwindow,
Bool owner_events;
unsigned int event mask;
int pointer jnode, keyboardjnode;
Window confine jo;
Cursor cursor-.
Time time'.

display

grabjwindow

owner events

Specifies the connection to the X server.

Specifies the grab window.

Specifies a Boolean value that indicates whether the pointer events are to be
reported as usual or reported with respect to the grab window if selected by the
event mask.

eventjnask Specifies which pointer events are reported to the client. The mask is the bit¬
wise inclusive OR of the valid pointer event mask bits.

pointer jnode Specifies further processing of pointer events. You can pass GrabModeSync
or GrabModeAsync.

key board jnode Specifies further processing of keyboard events. You can pass GrabMo¬
deSync or GrabModeAsync.

confine jo Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed during the grab or None.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XGrabPointer function actively grabs control of the pointer and returns GrabSuccess if
the grab was successful. Further pointer events are reported only to the grabbing client.
XGrabPointer overrides any active pointer grab by this client. If owner_events is False, all
generated pointer events are reported with respect to grab_window and are reported only if
selected by eventjnask. If owner_events is True and if a generated pointer event would nor¬
mally be reported to this client, it is reported as usual. Otherwise, the event is reported with
respect to the grab_window and is reported only if selected by eventjnask. For either value
of owner_events, unreported events are discarded.

If the pointer_mode is GrabModeAsync, pointer event processing continues as usual. If the
pointer is currently frozen by this client, the processing of events for the pointer is resumed. If
the pointerjnode is GrabModeSync, the state of the pointer, as seen by client applications,

202

Xlib - C Library XI1, Release 5

appears to freeze, and the X server generates no further pointer events until the grabbing client
calls XAllowEvents or until the pointer grab is released. Actual pointer changes are not lost
while the pointer is frozen; they are simply queued in the server for later processing.

If the keyboard_mode is GrabModeAsync, keyboard event processing is unaffected by activa¬
tion of the grab. If the keyboardjnode is GrabModeSync, the state of the keyboard, as seen
by client applications, appears to freeze, and the X server generates no further keyboard events
until the grabbing client calls XAllowEvents or until the pointer grab is released. Actual key¬
board changes are not lost while the pointer is frozen; they are simply queued in the server for
later processing.

If a cursor is specified, it is displayed regardless of what window the pointer is in. If None is
specified, the normal cursor for that window is displayed when the pointer is in grab_window
or one of its subwindows; otherwise, the cursor for grab_window is displayed.

If a confine_to window is specified, the pointer is restricted to stay contained in that window.
The confine_to window need have no relationship to the grab_window. If the pointer is not
initially in the confine_to window, it is warped automatically to the closest edge just before the
grab activates and enter/leave events are generated as usual. If the confine_to window is subse¬
quently reconfigured, the pointer is warped automatically, as necessary, to keep it contained in
the window.

The time argument allows you to avoid certain circumstances that come up if applications take
a long time to respond or if there are long network delays. Consider a situation where you
have two applications, both of which normally grab the pointer when clicked on. If both appli¬
cations specify the timestamp from the event, the second application may wake up faster and
successfully grab the pointer before the first application. The first application then will get an
indication that the other application grabbed the pointer before its request was processed.

XGrabPointer generates EnterNotify and LeaveNotify events.

Either if grab_window or confine_to window is not viewable or if the confine_to window lies
completely outside the boundaries of the root window, XGrabPointer fails and returns Grab-
NotVievvable. If the pointer is actively grabbed by some other client, it fails and returns
AlreadyGrabbed. If the pointer is frozen by an active grab of another client, it fails and
returns GrabFrozen. If the specified time is earlier than the last-pointer-grab time or later
than the current X server time, it fails and returns GrablnvalidTime. Otherwise, the last-
pointer-grab time is set to the specified time (CurrentTime is replaced by the current X server
time).

XGrabPointer can generate BadCursor, BadValue, and BadWindow errors.

To ungrab the pointer, use XUngrabPointer.

XUngrabPointer (ifop/ay, time)
Display * display.
Time time;

display Specifies the connection to the X server.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngrabPointer function releases the pointer and any queued events if this client has
actively grabbed the pointer from XGrabPointer, XGrabButton, or from a normal button
press. XUngrabPointer does not release the pointer if the specified time is earlier than the
last-pointer-grab time or is later than the current X server time. It also generates EnterNotify
and LeaveNotify events. The X server performs an UngrabPointer request automatically if
the event window or confine_to window for an active pointer grab becomes not viewable or if
window reconfiguration causes the confine_to window to lie completely outside the boundaries
of the root window.

203

Xlib - C Library XI1, Release 5

To change an active pointer grab, use XChangeActivePointerGrab.

XChangeActivePointerGrab(ctop/ay, eventjnask, cursor, time)
Display * display,
unsigned int event jnask'.
Cursor cursor-.
Time time’.

display

event jnask

cursor

time

Specifies the connection to the X server.

Specifies which pointer events are reported to the client. The mask is the bit¬
wise inclusive OR of the valid pointer event mask bits.

Specifies the cursor that is to be displayed or None.

Specifies the time. You can pass either a timestamp or CurrentTime.

The XChangeActivePointerGrab function changes the specified dynamic parameters if the
pointer is actively grabbed by the client and if the specified time is no earlier than the last-
pointer-grab time and no later than the current X server time. This function has no effect on
the passive parameters of a XGrabButton. The interpretation of event_mask and cursor is the
same as described in XGrabPointer.

XChangeActivePointerGrab can generate BadCursor and BadValue errors.

To grab a pointer button, use XGrabButton.

XGrabButton^fsp/ay, button, modifiers, grabjvindow, owner_events, event jnask,
pointerjnode, keyboard jnode, confinejo, cursor)

Display * display,
unsigned int button-,
unsigned int modifiers'.
Window grabjvindow,
Bool owner_events\
unsigned int event jnask-,
int pointer jnode, keyboardjnode \
Window confinejo\
Cursor cursor-.

display Specifies the connection to the X server.

button Specifies the pointer button that is to be grabbed or AnyButton.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

Specifies the grab window.

Specifies a Boolean value that indicates whether the pointer events are to be
reported as usual or reported with respect to the grab window if selected by the
event mask.

Specifies which pointer events are reported to the client. The mask is the bit¬
wise inclusive OR of the valid pointer event mask bits.

Specifies further processing of pointer events. You can pass GrabModeSync
or GrabModeAsync.

keyboard jnode Specifies further processing of keyboard events. You can pass GrabMo¬
deSync or GrabModeAsync.

confine jo Specifies the window to confine the pointer in or None.

cursor Specifies the cursor that is to be displayed or None.

The XGrabButton function establishes a passive grab. In the future, the pointer is actively
grabbed (as for XGrabPointer), the last-pointer-grab time is set to the time at which the

grabjvindow

owner events

event mask

pointer jnode

204

Xlib - C Library XI1, Release 5

button was pressed (as transmitted in the ButtonPress event), and the ButtonPress event is
reported if all of the following conditions are true:

• The pointer is not grabbed, and the specified button is logically pressed when the
specified modifier keys are logically down, and no other buttons or modifier keys are
logically down.

• The grab_window contains the pointer.

• The confinejo window (if any) is viewable.

• A passive grab on the same button/key combination does not exist on any ancestor of
grab_window.

The interpretation of the remaining arguments is as for XGrabPointer The active grab is ter¬
minated automatically when the logical state of the pointer has all buttons released (indepen¬
dent of the state of the logical modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical state
if device event processing is frozen.

This request overrides all previous grabs by the same client on the same button/key combina¬
tions on the same window. A modifiers of AnyModifier is equivalent to issuing the grab
request for all possible modifier combinations (including the combination of no modifiers). It is
not required that all modifiers specified have currently assigned KeyCodes. A button of
AnyButton is equivalent to issuing the request for all possible buttons. Otherwise, it is not
required that the specified button currently be assigned to a physical button.

If some other client has already issued a XGrabButton with the same button/key combination
on the same window, a BadAccess error results. When using AnyModifier or AnyButton,
the request fails completely, and a BadAccess error results (no grabs are established) if there
is a conflicting grab for any combination. XGrabButton has no effect on an active grab.

XGrabButton can generate BadCursor, BadVaSue, and BadWindow errors.

To ungrab a pointer button, use XUngrabButton.

XUngrabButton (drsplay, button, modifiers, grab_window)
Display * display,
unsigned int button;
unsigned int modifiers'.
Window grab_window;

display

button

modifiers

grab_window

Specifies the connection to the X server.

Specifies the pointer button that is to be released or AnyButton.

Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

Specifies the grab window.

The XUngrabButton function releases the passive button/key combination on the specified
window if it was grabbed by this client, A modifiers of AnyModifier is equivalent to issuing
the ungrab request for all possible modifier combinations, including the combination of no
modifiers. A button of AnyButton is equivalent to issuing the request for all possible buttons.
XUngrabButton has no effect on an active grab.

XUngrabButton can generate BadVaiue and BadWindow errors.

12.2. Keyboard Grabbing

Xlib provides functions that you can use to grab or ungrab the keyboard as well as allow
events.

For many functions in this section, you pass keymask bits. The valid keymask bits are: Shift-
Mask, LockMask, ControlMask, ModlMask, Mod2Mask, Mod3Mask, Mod4Mask, and

205

Xlib - C Library Xll, Release 5

ModSMask.

To grab the keyboard, use XGrabKeyboard.

int XGrabKeyboard (display, grabjvindow, owner _events, pointerjnode, keyboardjnode, time)
Display * display’.
Window grabjvindow;
Bool owner_events\
int pointer jnode, keyboard jnode;
Time time;

display

grabjvindow

owner_events

pointer jnode

Specifies the connection to the

Specifies the grab window.

Specifies a Boolean value that
reported as usual.

Specifies further processing of
or GrabModeAsync.

keyboard jnode Specifies further processing of
deSync or GrabModeAsync.

X server.

indicates whether the keyboard events are to be

pointer events. You can pass GrabModeSync

keyboard events. You can pass GrabMo-

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XGrabKeyboard function actively grabs control of the keyboard and generates Focusln
and FocusOut events. Further key events are reported only to the grabbing client. XGrab¬
Keyboard overrides any active keyboard grab by this client. If owner_events is False, all
generated key events are reported with respect to grab_window. If owne rjvents is True and
if a generated key event would normally be reported to this client, it is reported normally; oth¬
erwise, the event is reported with respect to the grab_window. Both KeyPress and
KeyRelease events are always reported, independent of any event selection made by the client.

If the keyboardjnode argument is GrabModeAsync, keyboard event processing continues as
usual. If the keyboard is currently frozen by this client, then processing of keyboard events is
resumed. If the keyboard_mode argument is GrabModeSync, the state of the keyboard (as
seen by client applications) appears to freeze, and the X server generates no further keyboard
events until the grabbing client issues a releasing XAlIowEvents call or until the keyboard
grab is released. Actual keyboard changes are not lost while the keyboard is frozen; they are
simply queued in the server for later processing.

If pointerjnode is GrabModeAsync, pointer event processing is unaffected by activation of
the grab. If pointerjnode is GrabModeSync, the state of the pointer (as seen by client appli¬
cations) appears to freeze, and the X server generates no further pointer events until the grab¬
bing client issues a releasing XAlIowEvents call or until the keyboard grab is released.
Actual pointer changes are not lost while the pointer is frozen; they are simply queued in the
server for later processing.

If the keyboard is acuvely grabbed by some other client, XGrabKeyboard fails and returns
AlreadyGrabbed. If grabjvindow is not viewable, it fails and returns GrabNotViewable.
If the keyboard is frozen by an active grab of another client, it fails and returns GrabFrozen.
If the specified time is earlier than the last-keyboard-grab time or later than the current X
server time, it fails and returns GrablnvalidTime. Otherwise, the last-keyboard-grab time is
set to the specified time (CurrentTime is replaced by the current X server time).

XGrabKeyboard can generate BadValue and BadWindow errors.

To ungrab the keyboard, use XUngrabKeyboard.

206

Xlib - C Library XI1, Release 5

XUngrabKeyboard (display, time)
Display * display.
Time time:

display Specifies the connection to the X server.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XUngrabKeyboard function releases the keyboard and any queued events if this client
has it actively grabbed from either XGrabKeyboard or XGrabKey. XUngrabKeyboard
does not release the keyboard and any queued events if the specified time is earlier than the
last-keyboard-grab time or is later than the current X server time. It also generates Focusln
and FocusOut events. The X server automatically performs an UngrabKeyboard request if
the event window for an active keyboard grab becomes not viewable.

To passively grab a single key of the keyboard, use XGrabKey.

XGrabKey (display, keycode, modifiers, grabjwindow, owner_events, pointerjnode,
keyboardjnode)

Display * display,
int keycode;
unsigned int modifiers;
Window grab_window\
Bool owner_events\
int pointer jnode, keyboardjnode'.

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

grabjvindow Specifies the grab window.

owner_events Specifies a Boolean value that indicates whether the keyboard events are to be
reported as usual.

pointer jnode Specifies further processing of pointer events. You can pass GrabModeSync
or GrabModeAsync.

keyboard jnode Specifies further processing of keyboard events. You can pass GrabMo¬
deSync or GrabModeAsync.

The XGrabKey function establishes a passive grab on the keyboard. In the future, the key¬
board is actively grabbed (as for XGrabKeyboard), the last-keyboard-grab time is set to the
time at which the key was pressed (as transmitted in the KeyPress event), and the KeyPress
event is reported if all of the following conditions are true:

• The keyboard is not grabbed and the specified key (which can itself be a modifier key) is
logically pressed when the specified modifier keys are logically down, and no other
modifier keys are logically down.

• Either the grab_window is an ancestor of (or is) the focus window, or the grab_window
is a descendant of the focus window and contains the pointer.

• A passive grab on the same key combination does not exist on any ancestor of
grab_window.

The interpretation of the remaining arguments is as for XGrabKeyboard. The active grab is
terminated automatically when the logical state of the keyboard has the specified key released
(independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by client applications) may lag the physical state
if device event processing is frozen.

207

Xlib - C Library XI1, Release 5

A modifiers argument of AnyModifier is equivalent to issuing the request for all possible
modifier combinations (including the combination of no modifiers). It is not required that all
modifiers specified have currently assigned KeyCodes. A keycode argument of AnyKey is
equivalent to issuing the request for all possible KeyCodes. Otherwise, the specified keycode
must be in the range specified by min_keycode and max_keycode in the connection setup, or a
BadValue error results.

If some other client has issued a XGrabKey with the same key combination on the same win¬
dow, a BadAccess error results. When using AnyModifier or AnyKey, the request fails
completely, and a BadAccess error results (no grabs are established) if there is a conflicting
grab for any combination.

XGrabKey can generate BadAccess, BadValue, and BadWindow errors.

To ungrab a key, use XUngrabKey.

XUngrabKey (d/sp/py, keycode, modifiers, grabjvindow)
Display * display,
int keycode’,
unsigned int modifiers’.
Window grabjvindow,

display Specifies the connection to the X server.

keycode Specifies the KeyCode or AnyKey.

modifiers Specifies the set of keymasks or AnyModifier. The mask is the bitwise
inclusive OR of the valid keymask bits.

grabjvindow Specifies the grab window.

The XUngrabKey function releases the key combination on the specified window if it was
grabbed by this client. It has no effect on an active grab. A modifiers of AnyModifier is
equivalent to issuing the request for all possible modifier combinations (including the combina¬
tion of no modifiers). A keycode argument of AnyKey is equivalent to issuing the request for
all possible key codes.

XUngrabKey can generate BadValue and BadWindow errors.

12J. Resuming Event Processing

The previous sections discussed grab mechanisms with which processing of events by the
server can be temporarily suspended. This section describes the mechanism for resuming event
processing.

To allow further events to be processed when the device has been frozen, use XAIlowEvents.

XAIlowEvents (d/sp/ay, eventjnode, time)
Display * display,
int eventjnode;
Time time’,

display Specifies the connection to the X server.

event jnode Specifies the event mode. You can pass AsyncPointer, SyncPointer,
AsyncKeyboard, SyncKeyboard, ReplayPointer, ReplayKeyboard,
AsyncBoth, or SyncBoth.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XAIlowEvents function releases some queued events if the client has caused a device to
freeze. It has no effect if the specified time is earlier than the last-grab time of the most recent
active grab for the client or if the specified time is later than the current X server time.
Depending on the event_mode argument, the following occurs:

208

Xlib - C Library

AsyncPointer

SyncPointer

ReplayPointer

AsyncKeyboard

SyncKeyboard

ReplayKeyboard

XI1, Release 5

If the pointer is frozen by the client, pointer event processing continues
as usual. If the pointer is frozen twice by the client on behalf of two
separate grabs, AsyncPointer thaws for both. AsyncPointer has no
effect if the pointer is not frozen by the client, but the pointer need not
be grabbed by the client.

If the pointer is frozen and actively grabbed by the client, pointer event
processing continues as usual until the next ButtonPress or Button-
Release event is reported to the client. At this time, the pointer again
appears to freeze. However, if the reported event causes the pointer
grab to be released, the pointer does not freeze. SyncPointer has no
effect if the pointer is not frozen by the client or if the pointer is not
grabbed by the client.

If the pointer is actively grabbed by the client and is frozen as the
result of an event having been sent to the client (either from the activa¬
tion of a XGrabButton or from a previous XAllowEvents with mode
SyncPointer but not from a XGrabPointer), the pointer grab is
released and that event is completely reprocessed. This time, however,
the function ignores any passive grabs at or above (towards the root of)
the grab_window of the grab just released. The request has no effect if
the pointer is not grabbed by the client or if the pointer is not frozen as
the result of an event.

If the keyboard is frozen by the client, keyboard event processing con¬
tinues as usual. If the keyboard is frozen twice by the client on behalf
of two separate grabs, AsyncKeyboard thaws for both. AsyncKey¬
board has no effect if the keyboard is not frozen by the client, but the
keyboard need not be grabbed by the client.

If the keyboard is frozen and actively grabbed by the client, keyboard
event processing continues as usual until the next KeyPress or
KeyRelease event is reported to the client. At this time, the keyboard
again appears to freeze. However, if the reported event causes the key¬
board grab to be released, the keyboard does not freeze. SyncKey¬
board has no effect if the keyboard is not frozen by the client or if the
keyboard is not grabbed by the client.

If the keyboard is actively grabbed by the client and is frozen as the
result of an event having been sent to the client (either from the activa¬
tion of a XGrabKey or from a previous XAllowEvents with mode
SyncKeyboard but not from a XGrabKeyboard), the keyboard grab
is released and that event is completely reprocessed. This time, how¬
ever, the function ignores any passive grabs at or above (towards the
root of) the grab_window of the grab just released. The request has no
effect if the keyboard is not grabbed by the client or if the keyboard is
not frozen as the result of an event.

209

Xlib - C Library XI1, Release 5

If both pointer and keyboard are frozen by the client, event processing
for both devices continues as usual until the next ButtonPress, But-
tonRelease, KeyPress, or KeyReiease event is reported to the client
for a grabbed device (button event for the pointer, key event for the
keyboard), at which time the devices again appear to freeze. However,
if the reported event causes the grab to be released, then the devices do
not freeze (but if the other device is still grabbed, then a subsequent
event for it will still cause both devices to freeze). SyncBoth has no
effect unless both pointer and keyboard are frozen by the client. If the
pointer or keyboard is frozen twice by the client on behalf of two
separate grabs, SyncBoth thaws for both (but a subsequent freeze for
SyncBoth will only freeze each device once).

If the pointer and the keyboard are frozen by the client, event process¬
ing for both devices continues as usual. If a device is frozen twice by
the client on behalf of two separate grabs, AsyncBoth thaws for both.
AsyncBoth has no effect unless both pointer and keyboard are frozen
by the client.

AsyncPointer, SyncPointer, and Replay Pointer have no effect on the processing of key¬
board events. AsyncKeyboard, SyncKeyboard, and ReplayKeyboard have no effect on the
processing of pointer events. It is possible for both a pointer grab and a keyboard grab (by the
same or different clients) to be active simultaneously. If a device is frozen on behalf of either
grab, no event processing is performed for the device. It is possible for a single device to be
frozen because of both grabs. In this case, the freeze must be released on behalf of both grabs
before events can again be processed. If a device is frozen twice by a single client, then a sin¬
gle AIlowEvents releases both.

XAIlowEvents can generate a BadValue error.

12.4. Moving the Pointer

Although movement of the pointer normally should be left to the control of the end user,
sometimes it is necessary to move the pointer to a new position under program control.

SyncBoth

AsyncBoth

To move the pointer to an arbitrary point in a window, use XWarpPointer.

XWarpPointer(<iwp/ay, srejv, destjv, src_x, src_y, srcjvidth, srejieight, destjc,
dest_y)

Display * display.
Window src_w, destjv,
int sreje, src_y\
unsigned int srcjvidth, srejieight',
int destjc, destj;

display Specifies the connection to the X server.

srejv Specifies the source window or None.

destjv Specifies the destination window or None.

src_x
srej
srcjvidth
srejieight Specify a rectangle in the source window.

destjc
dest_y Specify the x and y coordinates within the destination window.

If dest_w is None, XWarpPointer moves the pointer by the offsets (dest_x, dest_y) relative
to the current position of the pointer. If dest_w is a window, XWarpPointer moves the

210

Xlib - C Library XI1, Release 5

pointer to the offsets (dest_x, dest_y) relative to the origin of dcst_w. However, if src_w is a
window, the move only takes place if the window src_w contains the pointer and if the
specified rectangle of src_w contains the pointer.

The src_x and src_y coordinates are relative to the origin of src_w. If src_height is zero, it is
replaced with the current height of src_w minus src_y. If src_width is zero, it is replaced with
the current width of src_w minus src_x.

There is seldom any reason for calling this function. The pointer should normally be left to the
user. If you do use this function, however, it generates events just as if the user had instan¬
taneously moved the pointer from one position to another. Note that you cannot use XWarp-
Pointer to move the pointer outside the confme_to window of an active pointer grab. An
attempt to do so will only move the pointer as far as the closest edge of the confine_to win¬
dow.

XWarpPointer can generate a BadWindow error.

12.5. Controlling Input Focus

Xlib provides functions that you can use to set and get the input focus. The input focus is a
shared resource, and cooperation among clients is required for correct interaction. See the
Inter-Client Communication Conventions Manual for input focus policy.

To set the input focus, use XSetlnputFocus.

XSetlnpuiFocus(display, focus, revertjo, time)
Display * display.
Window focus\
int revertjg\
Time time’,

display Specifies the connection to the X server.

focus Specifies the window, PointerRoot, or None.

revert jo Specifies where the input focus reverts to if the window becomes not viewable.
You can pass RevertToParent, RevertToPointerRoot, or RevertToNone.

time Specifies the time. You can pass either a timestamp or CurrentTime.

The XSetlnputFocus function changes the input focus and the last-focus-change time. It has
no effect if the specified time is earlier than the current last-focus-change time or is later than
the current X server time. Otherwise, the last-focus-change time is set to the specified time
(CurrentTime is replaced by the current X server time). XSetlnputFocus causes the X
server to generate Focusln and FocusOut events.

Depending on the focus argument, the following occurs:

® If focus is None, all keyboard events are discarded until a new focus window is set, and
the revert_to argument is ignored.

® If focus is a window, it becomes the keyboard’s focus window. If a generated keyboard
event would normally be reported to this window or one of its inferiors, the event is
reported as usual. Otherwise, the event is reported relative to the focus window.

@ If focus is PointerRoot, the focus window is dynamically taken to be the root window
of whatever screen the pointer is on at each keyboard event. In this case, the revert_to
argument is ignored.

The specified focus window must be viewable at the time XSetlnputFocus is called, or a
BadMatch error results. If the focus window later becomes not viewable, the X server evalu¬
ates the revert_to argument to determine the new focus window as follows:

® If revertj:o is RevertToParent, the focus reverts to the parent (or the closest viewable
ancestor), and the new revert to value is taken to be RevertToNone.

211

Xlib - C Library XI1, Release 5

« If revert_to is RevertToPointerRoot or RevertToNone, the focus reverts to Pointer-
Root or None, respectively. When the focus reverts, the X server generates Focusln
and FocusOut events, but the last-focus-change time is not affected.

XSetlnputFocus can generate BadMatch, BadValue, and BadWindow errors.

To obtain the current input focus, use XGetlnputFocus.

XGetlnputFocus (d/sp/cty, focus jeturn, revertjo jeturn)
Display * display.
Window *focus_return;
int * revert jo_return\

display Specifies the connection to the X server.

focus return Returns the focus window, PointerRoot, or None.

revertjojeturnRetums the current focus state (RevertToParent, RevertToPointerRoot, or
RevertToNone).

The XGetlnputFocus function returns the focus window and the current focus state.

12.6. Keyboard and Pointer Settings

Xlib provides functions that you can use to change the keyboard control, obtain a list of the
auto-repeat keys, turn keyboard auto-repeat on or off, ring the bell, set or obtain the pointer
button or keyboard mapping, and obtain a bit vector for the keyboard.

This section discusses the user-preference options of bell, key click, pointer behavior, and so
on. The default values for many of these functions are determined by command line argu¬
ments to the X server and, on POSIX-confonnant systems, are typically set in the /etc/ttys
file. Not all implementations will actually be able to control all of these parameters.

The XChangeKeyboardControi function changes control of a keyboard and operates on a
XKeyboardControl structure:

/* Mask bits for ChangeKeyboardControl */

#define KBKeyClickPercent (1L«0)
#define KBBellPercent (1L«1)
#define KBBellPitch (1L«2)
#define KBBellDuration (1L«3)
#defme KBLed (1L«4)
#define KBLedMode (1L«5)
#define KBKey (1L«6)
#define KBAutoRepeatMode (1L«7)

/* Values */

typedef struct {
int key_click_percent;
int bell_percent;
int bell_pitch;
int bellduration;
int led;
int ledjnode; /* LedModeOn, LedModcOff */
int key;
int auto_ repeat_mode; /* AutoRepeatModeOff, AutoRepeatModeOn,

AutoRepcatModeDefault */
} XKeyboardControl;

212

Xlib - C Library Xll, Release 5

The key_click_percent member sets the volume for key clicks between 0 (off) and 100 (loud)
inclusive, if possible. A setting of -1 restores the default. Other negative values generate a
BadValue error.

The bell_percent sets the base volume for the bell between 0 (off) and 100 (loud) inclusive, if
possible. A setting of -1 restores the default. Other negative values generate a BadValue
error. The bell_pitch member sets the pitch (specified in Hz) of the bell, if possible. A setting
of -1 restores the default. Other negative values generate a BadValue error. The
bell_duration member sets the duration of the bell specified in milliseconds, if possible. A set¬
ting of —1 restores the default. Other negative values generate a BadValue error.

If both the ledjnode and led members are specified, the state of that LED is changed, if possi¬
ble. The led_mode member can be set to LedModeOn or LedModeOff. If only ledjnode is
specified, the state of all LEDs are changed, if possible. At most 32 LEDs numbered from one
are supported. No standard interpretation of LEDs is defined. If led is specified without
ledjnode, a BadMatch error results.

If both the auto_repeat_mode and key members are specified, the auto_repeat_mode of that key
is changed (according to AutoRepeatModeOn, AutoRepeatModeOff, or AutoRepeatMo-
deDefault), if possible. If only auto_repeat_mode is specified, the global auto_repeat_mode
for the entire keyboard is changed, if possible, and does not affect the per key settings. If a
key is specified without an auto_repeat_mode, a BadMatch error results. Each key has an
individual mode of whether or not it should auto-repeat and a default setting for the mode. In
addition, there is a global mode of whether auto-repeat should be enabled or not and a default
setting for that mode. When global mode is AutoRepeatModeOn, keys should obey their
individual auto-repeat modes. When global mode is AutoRepeatModeOff, no keys should
auto-repeat. An auto-repeating key generates alternating KeyPress and KeyRelease events.
When a key is used as a modifier, it is desirable for the key not to auto-repeat, regardless of its
auto-repeat setting.

A bell generator connected with the console but not directly on a keyboard is treated as if it
were part of the keyboard. The order in which controls are verified and altered is server-
dependent. If an error is generated, a subset of the controls may have been altered.

XChangeKeyboardControl (d/sp/oy, value jnask, values)
Display * display,
unsigned long valuejnask',
XKeyboardControl *values\

display Specifies the connection to the X server.

value jnask Specifies which controls to change. This mask is the bitwise inclusive OR of
the valid control mask bits.

values Specifies one value for each bit set to 1 in the mask.

The XChangeKeyboardControl function controls the keyboard characteristics defined by the
XKeyboardControl structure. The valuejnask argument specifies which values are to be
changed.

XChangeKeyboardControl can generate BadMatch and BadValue errors.

To obtain the current control values for the keyboard, use XGetKeyboardControl.

XGetKeyboardControl(display, values jeturn)
Display * display,
XKeyboardState *values_return\

display Specifies the connection to the X server.

213

Xlib - C Library Xll, Release 5

values jeturn Returns the current keyboard controls in the specified XKeyboardState struc¬
ture.

The XGetKeyboardControl function returns the current control values for the keyboard to the
XKeyboardState structure.

typedef struct {
int key_click_percent;
int bell_percent;
unsigned int bell_pitch, bell_duration;
unsigned long led_mask;
int global_auto_repeat;
char auto_repeats[32];

} XKeyboardState;

For the LEDs, the least-significant bit of ledjnask corresponds to LED one, and each bit set to
1 in ledjnask indicates an LED that is lit. The global_auto_repeat member can be set to
AutoRepeatModeOn or AutoRepeatModeOff. The auto_repeats member is a bit vector.
Each bit set to 1 indicates that auto-repeat is enabled for the corresponding key. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7 with the
least-significant bit in the byte representing key 8N.

To turn on keyboard auto-repeat, use XAutoRepeatOn.

XAutoRepeatOn (dwp/oy)
Display * display,

display Specifies the connection to the X server.

The XAutoRepeatOn function turns on auto-repeat for the keyboard on the specified display.

To turn off keyboard auto-repeat, use XAutoRepeatOff.

XAutoRepeatQff (tfop/ay)
Display * display,

display Specifies the connection to the X server.

The XAutoRepeatOff function turns off auto-repeat for the keyboard on the specified display.

To ring the bell, use XBell.

XBQ\\(display, percent)
Display * display,
int percent',

display Specifies the connection to the X server.

percent Specifies the volume for the bell, which can range from -100 to 100 inclusive.

The XBell function rings the bell on the keyboard on the specified display, if possible. The
specified volume is relative to the base volume for the keyboard. If the value for the percent
argument is not in the range -100 to 100 inclusive, a BadValue error results. The volume at
which the bell rings when the percent argument is nonnegative is:

base - [(base * percent) / 100] + percent

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]

To change the base volume of the bell, use XChangeKeyboardControl.

XBell can generate a BadValue error.

214

Xlib - C Library Xll, Release 5

To obtain a bit vector that describes the state of the keyboard, use XQueryKeymap.

XQuery Key map (display, keys_return)
Display * display,
char keys _return[32\;

display Specifies the connection to the X server.

keysjeturn Returns an array of bytes that identifies which keys are pressed down. Each
bit represents one key of the keyboard.

The XQueryKeymap function returns a bit vector for the logical state of the keyboard, where
each bit set to 1 indicates that the corresponding key is currently pressed down. The vector is
represented as 32 bytes. Byte N (from 0) contains the bits for keys 8N to 8N + 7 with the
least-significant bit in the byte representing key 8N.

Note that the logical state of a device (as seen by client applications) may lag the physical state
if device event processing is frozen.

To set the mapping of the pointer buttons, use XSetPointerMapping.

int XSetPointerMapping(^/5p/ay, map, nmap)
Display * display;
unsigned char map[];
int nmap;

display Specifies the connection to the X server.

map Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

The XSetPointerMapping function sets the mapping of the pointer. If it succeeds, the X
server generates a MappingNotify event, and XSetPointerMapping returns MappingSuc-
cess. Element map[i] defines the logical button number for the physical button i+1. The
length of the list must be the same as XGetPointerMapping would return, or a BadValue
error results. A zero element disables a button, and elements are not restricted in value by the
number of physical buttons. However, no two elements can have the same nonzero value, or a
BadValue error results. If any of the buttons to be altered are logically in the down state,
XSetPointerMapping returns MappingBusy, and the mapping is not changed.

XSetPointerMapping can generate a BadValue error.

To get the pointer mapping, use XGetPointerMapping.

int XGetPointerMapping(display, map_return, nmap)
Display * disp lay;
unsigned char map ^return [];
int nmap;

display Specifies the connection to the X server.

map_return Returns the mapping list.

nmap Specifies the number of items in the mapping list.

The XGetPointerMapping function returns the current mapping of the pointer. Pointer but¬
tons are numbered starting from one. XGetPointerMapping returns the number of physical
buttons actually on the pointer. The nominal mapping for a pointer is map[i]=i+l. The nmap
argument specifies the length of the array where the pointer mapping is returned, and only the
first nmap elements are returned in map_retum.

To control the pointer’s interactive feel, use XChangePointerControl.

215

Xlib - C Library XI1, Release 5

XChangePointerControl(dwp/ay, do_accel, dojhreshold, acceljiumerator,
acceljdenominator, threshold)

Display * display,
Bool dojiccel, dojhreshold;
int acceljiumerator, acceljdenominator;
int threshold;

display Specifies the connection to the X server.

do_accel Specifies a Boolean value that controls whether the values for the
acceljiumerator or accel_denominator are used.

dojhreshold Specifies a Boolean value that controls whether the value for the threshold is
used.

acceljiumeratorSpecifies the numerator for the acceleration multiplier.

acceljdenominator
Specifies the denominator for the acceleration multiplier.

threshold Specifies the acceleration threshold.

The XChangePointerControl function defines how the pointing device moves. The accelera¬
tion, expressed as a fraction, is a multiplier for movement. For example, specifying 3/1 means
the pointer moves three times as fast as normal. The fraction may be rounded arbitrarily by
the X server. Acceleration only takes effect if the pointer moves more than threshold pixels at
once and only applies to the amount beyond the value in the threshold argument. Setting a
value to -1 restores the default. The values of the do_accel and dojhreshold arguments must
be True for the pointer values to be set, or the parameters are unchanged. Negative values
(other than -1) generate a BadValue error, as does a zero value for the accel_denominator
argument.

XChangePointerControl can generate a BadValue error.

To get the current pointer parameters, use XGetPointerControI.

XGetPointerConiro\(display, acceljumeratorjeturn, acceljdenominatorjeturn,
thresholdjeturn)

Display * display,
int * acceljxumeratorjeturn, * accel jlenominatorjeturn',
int * threshold jeturn',

display Specifies the connection to the X server.

accel jxumerator jeturn
Returns the numerator for the acceleration multiplier.

acceljdenominatorjeturn
Returns the denominator for the acceleration multiplier.

thresholdjeturnRciums the acceleration threshold.

The XGetPointerControI function returns the pointer’s current acceleration multiplier and
acceleration threshold.

12.7. Keyboard Encoding

A KeyCode represents a physical (or logical) key. KeyCodes lie in the inclusive range [8,255].
A KeyCode value carries no intrinsic information, although server implementors may attempt
to encode geometry (for example, matrix) information in some fashion so that it can be inter¬
preted in a server-dependent fashion. The mapping between keys and KeyCodes cannot be
changed.

A KeySym is an encoding of a symbol on the cap of a key. The set of defined KeySyms
includes the ISO Latin character sets (1-4), Katakana, Arabic, Cyrillic, Greek, Technical,

216

Xlib - C Library XI1, Release 5

Special, Publishing, APL, Hebrew, and a special miscellany of keys found on keyboards
(Return, Help, Tab, and so on). To the extent possible, these sets are derived from international
standards. In areas where no standards exist, some of these sets are derived from Digital
Equipment Corporation standards. The list of defined symbols can be found in
<Xll/keysymdef.h>. Unfortunately, some C preprocessors have limits on the number of
defined symbols. If you must use KeySyms not in the Latin 1—4, Greek, and miscellaneous
classes, you may have to define a symbol for those sets. Most applications usually only
include <Xll/keysym.h>, which defines symbols for ISO Latin 1-4, Greek, and miscellane¬
ous.

A list of KeySyms is associated with each KeyCode. The list is intended to convey the set of
symbols on the corresponding key. If the list (ignoring trailing NoSymbol entries) is a single
KeySym “K,” then the list is treated as if it were the list “K NoSymbol K NoSymbol.” If the
list (ignoring trailing NoSymbol entries) is a pair of KeySyms "K1 K2,” then the list is treated
as if it were the list “K1 K2 K1 K2." If the list (ignoring trailing NoSymbol entries) is a triple
of KeySyms “K1 K2 K3,” then the list is treated as if it were the list “A7 K2 K3 NoSym¬
bol.” When an explicit “void” element is desired in the list, the value VoidSymbol can be
used.

The first four elements of the list are split into two groups of KeySyms. Group 1 contains the
first and second KeySyms; Group 2 contains the third and fourth KeySyms. Within each
group, if the second element of the group is NoSymbol, then the group should be treated as if
the second element were the same as the first element, except when the first element is an
alphabetic KeySym “K” for which both lowercase and uppercase forms are defined. In that
case, the group should be treated as if the first element were the lowercase form of “K” and
the second element were the uppercase form of “A'.”

The standard rules for obtaining a KeySym from a KeyPress event make use of only the
Group 1 and Group 2 KeySyms; no interpretation of other KeySyms in the list is given.
Which group to use is determined by the modifier state. Switching between groups is con¬
trolled by the KeySym named MODE SWITCH, by attaching that KeySym to some KeyCode
and attaching that KeyCode to any one of the modifiers Modi through Mod5. This modifier is
called the “group modifier.” For any KeyCode, Group 1 is used when the group modifier is
off, and Group 2 is used when the group modifier is on.

Within a group, the modifier state also determines which KeySym to use. The first KeySym is
used when the Shift and Lock modifiers are off. The second KeySym is used when the Shift
modifier is on, when the Lock modifier is on and the second KeySym is uppercase alphabetic,
or when the Lock modifier is on and is interpreted as ShiftLock. Otherwise, when the Lock
modifier is on and is interpreted as CapsLock, the state of the Shift modifier is applied first to
select a KeySym; but if that KeySym is lowercase alphabetic, then the corresponding uppercase
KeySym is used instead.

No spatial geometry of the symbols on the key is defined by their order in the KeySym list,
although a geometry might be defined on a vendor-specific basis. The X server does not use
the mapping between KeyCodes and KeySyms. Rather, it stores it merely for reading and
writing by clients.

The KeyMask modifier named Lock is intended to be mapped to either a CapsLock or a Shift-
Lock key, but which one is left as application-specific and/or user-specific. However, it is sug¬
gested that the determination be made according to the associated KeySym(s) of the
corresponding KeyCode.

To obtain the legal KeyCodes for a display, use XDisplayKeycodes.

XDisplayKeycodes(display, min_keycodes_return, max_keycodes_return)
Display * display,
int * min_key codes_re turn, * max_keycodes_return\

217

Xlib - C Library XI1, Release 5

display Specifies the connection to the X server.

min_key codesjeturn
Returns the minimum number of KeyCodes.

maxJcey codesjeturn
Returns the maximum number of KeyCodes.

The XDisplayKeycodes function returns the min-keycodes and max-keycodes supported by
the specified display. The minimum number of KeyCodes returned is never less than 8, and
the maximum number of KeyCodes returned is never greater than 255. Not all KeyCodes in
this range are required to have corresponding keys.

To obtain the symbols for the specified KeyCodes, use XGetKeyboardMapping.

KeySym *XGetKeyboardMapping(dwp/ay, firstJceycode, key code_count,
keysyms_perJceycodejeturn)

Display * display,
KeyCode first Jcey code',
int keycode_counr,
int * keysyms _perJceycode_return\

display Specifies the connection to the X server.

first Jeycode Specifies the first KeyCode that is to be returned.

keycode_count Specifies the number of KeyCodes that are to be returned.

keysyms _perJeycode_return
Returns the number of KeySyms per KeyCode.

The XGetKeyboardMapping function returns the symbols for the specified number of Key-
Codes starting with first_keycode. The value specified in first_keycode must be greater than or
equal to min_keycode as returned by XDisplayKeycodes, or a Bad Value error results. In
addition, the following expression must be less than or equal to max_keycode as returned by
XDisplayKeycodes:

first_keycode + keycode_count - 1

If this is not the case, a BadValue error results. The number of elements in the KeySyms list
is:

keycode_count * keysyms_per_keycode_retum

KeySym number N, counting from zero, for KeyCode K has the following index in the list,
counting from zero:

(K - first_code) * keysyms_per_code_retum + N

The X server arbitrarily chooses the keysyms_per_keycode_retum value to be large enough to
report all requested symbols. A special KeySym value of NoSymbol is used to fill in unused
elements for individual KeyCodes. To free the storage returned by XGetKeyboardMapping,
use XFree.

XGetKeyboardMapping can generate a BadValue error.

To change the keyboard mapping, use XChangeKeyboardMapping.

218

Xlib - C Library XI1, Release 5

XChangeKeyboardMapping^Ap/ay, first_keycode, keysyms_per_keycode, keysyms, num_codes)
Display * display,
int first_keycode\
int keysyms_per_keycode\
KeySym * keysyms',
int num_codes;

display Specifies the connection to the X server.

first_keycode Specifies the first KeyCode that is to be changed.

keysyms _per_keycode
Specifies the number of KeySyms per KeyCode.

keysyms Specifies an array of KeySyms.

numjeodes Specifies the number of Key Codes that are to be changed.

The XChangeKeyboardMapping function defines the symbols for the specified number of
KeyCodes starting with first_keycode. The symbols for KeyCodes outside this range remain
unchanged. The number of elements in keysyms must be:

num_codes * keysyms_per_keycode

The specified first_keycode must be greater than or equal to min_keycode returned by
XDisplayKeycodes, or a BadValue error results. In addition, the following expression must
be less than or equal to max_keycode as returned by XDisplayKeycodes, or a BadValue
error results:

first_keycode + num_codcs - 1

KeySym number N, counting from zero, for KeyCode K has the following index in keysyms,
counting from zero:

(K - first_keycode) * keysyms_per_keycode + N

The specified keysyms_pcr_keycode can be chosen arbitrarily by the client to be large enough
to hold all desired symbols. A special KeySym value of NoSymbol should be used to fill in
unused elements for individual KeyCodes. It is legal for NoSymbol to appear in nontrailing
positions of the effective list for a KeyCode. XChangeKeyboardMapping generates a Map-
pingNotify event.

There is no requirement that the X server interpret this mapping. It is merely stored for reading
and writing by clients.

XChangeKeyboardMapping can generate BadAlloc and BadValue errors.

The next four functions make use of the XModifierKeymap data structure, which contains:

typedef struct {
int max_keypcrmod; /* This server’s max number of keys per modifier */
KeyCode *modifiermap; /* An 8 by max_keypermod array of the modifiers */

} XModifierKeymap;

To create an XModifierKeymap structure, use XNewModifiermap,

XModifierKeymap *XNewModifiermap(max_/:ey.s_per_mod)
int max_keys_per_mod\

maxjceys jperjnod
Specifies the number of KeyCode entries preallocated to the modifiers in the
map.

The XNewModifiermap function returns a pointer to XModifierKeymap structure for later
use.

219

Xlib - C Library Xll, Release 5

To add a new entry to an XModifierKeymap structure, use XlnsertModifiermapEntry.

XModifierKeymap *XInsertModifiermapEntry(mo^wap, key code _entry, modifier)
XModifierKeymap *modmap\
KeyCode key code_entry\
int modifier;

modmap Specifies the XModifierKeymap structure.

key code_entry Specifies the KeyCode.

modifier Specifies the modifier.

The XlnsertModifiermapEntry function adds the specified KeyCode to the set that controls
the specified modifier and returns the resulting XModifierKeymap structure (expanded as
needed).

To delete an entry from an XModifierKeymap structure, use XDeleteModifiermapEntry.

XModifierKeymap *XDeleteModifiermapEntry (modmap, keycode_entry, modifier)
XModifierKeymap *modmap\
KeyCode key code _entry\
int modifier;

modmap Specifies the XModifierKeymap structure.

keycode_entry Specifies the KeyCode.

modifier Specifies the modifier.

The XDeleteModifiermapEntry function deletes the specified KeyCode from the set that con¬
trols the specified modifier and returns a pointer to the resulting XModifierKeymap structure.

To destroy an XModifierKeymap structure, use XFreeModifiermap.

XFreeModifiermap(modmap)
XModifierKeymap * modmap',

modmap Specifies the XModifierKeymap structure.

The XFreeModifiermap function frees the specified XModifierKeymap structure.

To set the KeyCodcs to be used as modifiers, use XSetModifierMapping.

int XSetModifierMapping(dfsp/ay, modmap)
Display * display,
XModifierKeymap * modmap;

display Specifies the connection to the X server.

modmap Specifies the XModifierKeymap structure.

The XSetModifierMapping function specifies the KeyCodes of the keys (if any) that are to be
used as modifiers. If it succeeds, the X server generates a MappingNotify event, and
XSetModifierMapping returns MappingSuccess. X permits at most eight modifier keys. If
more than eight are specified in the XModifierKeymap structure, a BadLength error results.

The modifiermap member of the XModifierKeymap structure contains eight sets of
maxjceypermod KeyCodes, one for each modifier in the order Shift, Lock, Control, Modi,
Mod2, Mod3, Mod4, and Mod5. Only nonzero KeyCodes have meaning in each set, and
zero KeyCodes are ignored. In addition, all of the nonzero KeyCodes must be in the range
specified by min_keycode and max_keycode in the Display structure, or a BadValue error
results.

An X server can impose restrictions on how modifiers can be changed, for example, if certain
keys do not generate up transitions in hardware, if auto-repeat cannot be disabled on certain

220

Xlib - C Library XI1, Release 5

keys, or if multiple modifier keys are not supported. If some such restriction is violated, the
status reply is MappingFailed, and none of the modifiers are changed. If the new KeyCodes
specified for a modifier differ from those currently defined and any (current or new) keys for
that modifier are in the logically down state, XSetModifierMapping returns MappingBusy,
and none of the modifiers is changed.

XSetModifierMapping can generate BadAlIoc and BadValue errors.

To obtain the KeyCodes used as modifiers, use XGetModifierMapping.

XModifierKeymap *XGetModifierMapping(<fo/?/ay)
Display * display.

display Specifies the connection to the X server.

The XGetModifierMapping function returns a pointer to a newly created XModifierKeymap
structure that contains the keys being used as modifiers. The structure should be freed after
use by calling XFreeModifiermap. If only zero values appear in the set for any modifier, that
modifier is disabled.

221

Xlib - C Library XI1, Release 5

Chapter 13

Locales and Internationalized Text Functions

An internationalized application is one which is adaptable to the requirements of different
native languages, local customs, and character string encodings. The process of adapting the
operation to a particular native language, local custom, or string encoding is called localizaton.
A goal of internationalization is to permit localization without program source modifications or
recompilation.

Internationalization in X is based on the concept of a locale. A locale defines the “localized”
behavior of a program at run-time. Locales affect Xlib in its:

• Encoding and processing of input method text

• Encoding of resource files and values

• Encoding and imaging of text strings

• Encoding and decoding for inter-client text communication

Characters from various languages are represented in a computer using an encoding. Different
languages have different encodings, and there arc even different encodings for the same charac¬
ters in the same language.

This chapter defines support for localized text imaging and text input, and the locale mechan¬
ism which controls all locale-dependent Xlib functions. Sets of functions are provided for
multibyte (char *) text as well as wide character (wchar_t) text in the form supported by the
host C language environment. The multibyte and wide character functions are equivalent
except for the form of the text argument.

The Xlib internationalization functions are not meant to provide support for multilingual appli¬
cations (mixing multiple languages within a single piece of text), but they make it possible to
implement applications that work in limited fashion with more than one language in indepen¬
dent contexts.

13.1. X Locale Management

X supports a one or more of the locales defined by the host environment. On implementations
that conform to the ANSI C library, the locale announcement method is setlocale. This func¬
tion configures the locale operation of both the host C library and Xlib. The operation of Xlib
is governed by the LCCTYPE category; this is called the current locale. An implementation
is permitted to provide implementation-dependent mechanisms for announcing the locale in
addition to setlocale.

On implementations that do not conform to the ANSI C library, the locale announcement
method is Xlib implementation-dependent.

The mechanism by which the semantic operation of Xlib is defined for a specific locale is
implementation-dependent

X is not required to support all the locales supported by the host. To determine if the current
locale is supported by X, use XSupportsLocaie.

Bool XSupportsLocale()

The XSupportsLocaie function returns True if Xlib functions are capable of operating under
the current locale. If it returns False, Xlib locale-dependent functions for which the XLo-
caleNotSupported return status is defined will return XLocaleNotSupported. Other Xlib
locale-dependent routines will operate in the “C” locale.

222

Xlib - C Library Xll, Release 5

The client is responsible for selecting its locale and X modifiers. Clients should provide a
means for the user to override the clients’ locale selection at client invocation. Most single¬
display X clients operate in a single locale for both X and the host processing environment.
They will configure the locale by calling three functions: the host locale configuration function,
XSupportsLocale, and XSetLocaleModifiers.

The semantics of certain categories of X internationalization capabilities can be configured by
setting modifiers. Modifiers are named by implementation-dependent and locale-specific
strings. The only standard use for this capability at present is selecting one of several styles of
keyboard input method.

To configure Xlib locale modifiers for the current locale, use XSetLocaleModifiers.

char *XSetLocaleModifiers(mo^//zer_/m)
char * modifier_list\

modifierJist Specifies the modifiers.

XSetLocaleModifiers sets the X modifiers for the current locale setting. The modifier_list
argument is a null-terminated string of the form “{@category=value}", that is, having zero or
more concatenated category -value" entries where category is a category name and value
is the (possibly empty) setting for that category. The values are encoded in the current locale.
Category names are restricted to the POSIX Portable Filename Character Set.

The local host X locale modifiers announcer (on POSIX-compliant systems, the XMODIFIERS
environment variable) is appended to the modifier_list to provide default values on the local
host If a given category appears more than once in the list, the first setting in the list is used.
If a given category is not included in the full modifier list, the category is set to an
implementation-dependent default for the current locale. An empty value for a category expli¬
citly specifies the implementation-dependent default.

If the function is successful, it returns a pointer to a string. The contents of the string are such
that a subsequent call with that string (in the same locale) will restore the modifiers to the
same settings. If modifierjist is a NULL pointer, XSetLocaleModifiers also returns a pointer
to such a string, and the current locale modifiers are not changed.

If invalid values are given for one or more modifier categories supported by the locale, a
NULL pointer is returned, and none of the current modifiers are changed.

At program startup the modifiers that are in effect are unspecified until the first successful call
to set them. Whenever the locale is changed, the modifiers that are in effect become
unspecified until the next successful call to set them. Clients should always call
XSetLocaleModifiers with a non-NULL modifier_list after setting the locale, before they call
any locale-dependent Xlib routine.

The only standard modifier category currently defined is “im”, which identifies the desired
input method. The values for input method are not standardized. A single locale may use
multiple input methods, switching input method under user control. The modifier may specify
the initial input method in effect, or an ordered list of input methods. Multiple input methods
may be specified in a single im value string in an implementation-dependent manner.

The returned modifiers string is owned by Xlib and should not be modified or freed by the
client. It may be freed by Xlib after the current locale or modifiers is changed. Until freed, it
will not be modified by Xlib.

The recommended procedure for clients initializing their locale and modifiers is to obtain locale
and modifier announcers separately from one of the following prioritized sources:

• A command line option

• A resource

• The empty string ("")

223

Xlib - C Library Xll, Release 5

The first of these that is defined should be used. Note that when a locale command line option
or locale resource is defined, the effect should be to set all categories to the specified locale,
overriding any category-specific settings in the local host environment.

13.2. Locale and Modifier Dependencies

The internationalized Xlib functions operate in the current locale configured by the host
environment and X locale modifiers set by XSetLocaleModifiers, or in the locale and
modifiers configured at the time some object supplied to the function was created. For each
locale-dependent function, the following table describes the locale (and modifiers) dependency:

locale from... Affects the function in the.

setlocale

Locale Query/Configuration:

XSupportsLocale locale queried
XSetLocaleModifiers locale modified

setlocale

Resources:

XrmGetFileDatabase locale of XrmDatabase

XrmDatabase
XrmGetStringDatabase
XrmPutFileDatabase locale of XrmDatabase

setlocale

XrmLocaleOfDatabase

Setting Standard Properties:

XmbSetWMProperties encoding of supplied/retumed

setlocale XmbTextPropertyToTextList

text (some WM property
text in environment locale)

encoding of supplied/retumed

setlocale

XwcTextPropertyToTextList
XmbTextListToTextProperty
XwcTextListToTextProperty

Text Input:

XOpenIM

text

XIM input method selection
XIM XCreateIC XIC input method configuration

XLocaleQflM, etc. queried locale
XIC XmbLookupText keyboard layout.

XwcLookupText encoding of returned text

setlocale

Text Drawing:

XCreateFontSet charsets of fonts in XFontSet
XFontSet XmbDrawText, locale of supplied text.

XwcDrawText, etc. locale of supplied text.
XExtentsOfFontSet, etc. locale-dependent metrics

setlocale

XmbTextExtents,
XwcTextExtents, etc.

Xlib Errors:

XGetErrorDatabaseText locale of error message
XGetErrorText

224

Xlib - C Library XI1, Release 5

locale from... Affects the function... in the...

Clients may assume that a locale-encoded text string returned by an X routine can be passed to
a C-library routine, or vice-versa, if the locale is the same at the two calls.

All text strings processed by internationalized Xlib functions are assumed to begin in the initial
state of the encoding of the locale, if the encoding is state-dependent

All Xlib routines behave as if they do not change the current locale or X modifier setting.
(This means that if they do change locale or call XSetLocaleModifiers with a non-NULL
argument, they must save and restore the current state on entry and exit.) Also, Xlib functions
on implementations that conform to the ANSI C library do not alter the global state associated
with the ANSI C functions mblen, mbtowc, wctomb, and strtok.

133. Creating and Freeing a Font Set

Xlib international text drawing is done using a set of one or more fonts, as needed for the
locale of the text. Fonts are loaded according to a list of base font names supplied by the
client, and the charsets required by the locale. The XFontSet is an opaque type.

To create an international text drawing font set, use XCreateFontSet.

XFontSet XCreateFontSet(d/sp/ay, baseJontjxameJist, missingjharset Jist jeturn,
missingjharset_count jeturn, def_string_return)

Display * display,
char *base Jontjiame Jisc,
char * * * missing _char set Jist _return;
int *missing_charset_count_return;
char **def_string jeturn',

display Specifies the connection to the X server.

baseJontjxame Jist
Specifies the base font names.

missing jharset Jistjeturn
Returns the missing charsets.

missingjharsetjountjeturn
Returns the number of missing charsets.

defjtringjeturnRetnms the string drawn for missing charsets.

The XCreateFontSet function creates a font set for the specified display. The font set is
bound to the current locale when XCreateFontSet is called. The font_set may be used in
subsequent calls to obtain font and character information, and to image text in the locale of the
font_set.

The base_font_name_list argument is a list of base font names which Xlib uses to load the
fonts needed for the locale. The base font names are a comma-separated list. The string is
null-terminated, and is assumed to be in the Host Portable Character Encoding; otherwise, the
result is implementation dependent. Whitespace immediately on either side of a separating
comma is ignored.

Use of XLFD font names permits Xlib to obtain the fonts needed for a variety of locales from
a single locale-independent base font name. The single base font name should name a family
of fonts whose members are encoded in the various charsets needed by the locales of interest.

An XLFD base font name can explicitly name a charset needed for the locale. This allows the
user to specify an exact font for use with a charset required by a locale, fully controlling the
font selection.

225

Xlib - C Library XI1, Release 5

If a base font name is not an XLFD name, Xlib will attempt to obtain an XLFD name from
the font properties for the font. If this action is successful in obtaining an XLFD name, the
XBaseFontNameListOfFontSet function will return this XLFD name instead of the client-
supplied name.

The following algorithm is used to select the fonts that will be used to display text with the
XFontSet:

For each font charset required by the locale, the base font name list is searched for the first one
of the following cases that names a set of fonts that exist at the server:

1. The first XLFD-conforming base font name that specifies the required charset or a super¬
set of the required charset in its CharSetRegistry and CharSetEncoding fields. The
implementation may use a base font name whose specified charset is a superset of the
required charset, for example, an IS08859-1 font for an ASCII charset.

2. The first set of one or more XLFD-conforming base font names that specify one or more
charsets that can be remapped to support the required charset. The Xlib implementation
may recognize various mappings from a required charset to one or more other charsets,
and use the fonts for those charsets. For example, JIS Roman is ASCII with tilde and
backslash replaced by yen and overbar; Xlib may load an IS08859-1 font to support this
character set, if a JIS Roman font is not available.

3. The first XLFD-conforming font name, or the first non-XLFD font name for which an
XLFD font name can be obtained, combined with the required charset (replacing the
CharSetRegistry and CharSetEncoding fields in the XLFD font name). As in case 1,
the implementation may use a charset which is a superset of the required charset.

4. The first font name that can be mapped in some implementation-dependent manner to
one or more fonts that support imaging text in the charset.

For example, assume a locale required the charsets:

IS08859-1
JISX0208.1983
JISX0201.1976
GB2312-1980.0

The user could supply a base_font_name_list which explicitly specifies the charsets, insuring
that specific fonts get used if they exist:

"-JIS-Fixed-Medium-R-Normal-26-180-100-100-C-240-JISX0208.1983-0,\
-JIS-Fixed-Medium-R-Normal-26-180-100-100-C-l 20-JISX0201.1976-0,\
-GB-Fixed-Medium-R-Normal-26-180-100-100-C-240-GB2312-1980.0,\
-Adobe-Courier-Bold-R-Normal-25-180-75-75-M-150-ISO8859-1"

Or he could supply a base_font_name_list which omits the charsets, letting Xlib select font
charsets required for the locale:

"-JIS-Fixed-Medium-R-Normal-26-180-100-100-C-240,\
-JIS-Fixed-Medium-R-Normal--26-180-100-100-C-120,\
-GB-Fixed-Medium-R-Normal—26-180-100- 100-C-240,\
- Adobe-Courier-Bold-R-Normal-25-180-100-100-M-150"

Or he could simply supply a single base font name which allows Xlib to select from all avail¬
able fonts which meet certain minimum XLFD property requirements:

".*_*.*_Rqq0rmal--M 80-100-100-*-*"

If XCreateFontSet is unable to create the font set, either because there is insufficient memory
or because the current locale is not supported, XCreateFontSet returns NULL,
missing_charset_hst_retum is set to NULL, and missing_charset_count_retum is set to zero. If
fonts exist for all of the charsets required by the current locale, XCreateFontSet returns a

226

Xlib - C Library Xll, Release 5

valid XFontSet, missing_charset_list_retum is set to NULL, and missing_charset_count_retum
is set to zero.

If no font exists for one or more of the required charsets, XCreateFontSet sets
missing_charset_list_retum to a list of one or more null-terminated charset names for which no
font exists, and sets missing_charset_count_retum to the number of missing fonts. The char¬
sets are from the list of the required charsets for the encoding of the locale, and do not include
any charsets to which Xlib may be able to remap a required charset.

If no font exists for any of the required charsets, or if the locale definition in Xlib requires that
a font exist for a particular charset and a font is not found for that charset, XCreateFontSet
returns NULL. Otherwise, XCreateFontSet returns a valid XFontSet to font_set.

When an Xmb/wc drawing or measuring function is called with an XFontSet that has missing
charsets, some characters in the locale will not be drawable. If def_string_retum is non-
NULL, XCreateFontSet returns a pointer to a string which represents the glyph(s) which are
drawn with this XFontSet when the charsets of the available fonts do not include all font
glyph(s) required to draw a codepoint. The string does not necessarily consist of valid charac¬
ters in the current locale and is not necessarily drawn with the fonts loaded for the font set, but
the client can draw and measure the “default glyphs” by including this string in a string being
drawn or measured with the XFontSet.

If the string returned to def_string_retum is the empty string no glyphs are drawn, and the
escapement is zero. The returned string is null-terminated. It is owned by Xlib and should not
be modified or freed by the client. It will be freed by a call to XFreeFontSet with the associ¬
ated XFontSet. Until freed, its contents will not be modified by Xlib.

The client is responsible for constructing an error message from the missing charset and default
string information, and may choose to continue operation in the case that some fonts did not
exist.

The returned XFontSet and missing charset list should be freed with XFreeFontSet and
XFreeStringList, respectively. The client-supplied base_font_name_list may be freed by the
client after calling XCreateFontSet.

To obtains a list of XFontStruct structures and full font names given an XFontSet, use
XFontsOfFontSet.

int XFontsOfFontSet (font_set, fontjtruct_list_re turn, font_nameJist_ return)
XFontSet font jet;
XFontS truct * * *fontjtruct_list_return;
char ***font_name_list_return\

font jet Specifies the font set.

fontjtruct_list_return
Returns the list of font structs.

font_name_list_return
Returns the list of font names.

The XFontsOfFontSet function returns a list of one or more XFontStructs and font names
for the fonts used by the Xmb and Xwc layers, for the given font set. A list of pointers to the
XFontStruct structures is returned to font_struct_list_retum. A list of pointers to null-
terminated fully specified font name strings in the locale of the font set is returned to
font_name_list_retum. The font_name_list order corresponds to the font_struct_list order. The
number of XFontStruct structures and font names is returned as the value of the function.

Because it is not guaranteed that a given character will be imaged using a single font glyph,
there is no provision for mapping a character or default string to the font properties, font ID, or
direction hint for the font for the character. The client may access the XFontStruct list to
obtain these values for all the fonts currently in use.

227

Xlib - C Library XI1, Release 5

It is not required that fonts be loaded from the server at the creation of an XFontSet. Xlib
may choose to cache font data, loading it only as needed to draw text or compute text dimen¬
sions. Therefore, existence of the per_char metrics in the XFontStruct structures in the
XFontStructSet is undefined. Also, note that all properties in the XFontStruct structures are
in the STRING encoding.

The XFontStruct and font name lists are owned by Xlib and should not be modified or freed
by the client. They will be freed by a call to XFreeFontSet with the associated XFontSet.
Until freed, its contents will not be modified by Xlib.

To obtain the base font name list and the selected font name list given an XFontSet, use
XBaseFontNameListOfFontSet.

char *XBaseFontNameListOfFontSet(/bnr_lsd/)
XFontSet font jet',

font jet Specifies the font set.

The XBaseFontNameListOfFontSet function returns the original base font name list supplied
by the client when the XFontSet was created. A null-terminated string containing a list of
comma-separated font names is returned as the value of the function. Whitespace may appear
immediately on either side of separating commas.

If XCreateFontSet obtained an XLFD name from the font properties for the font specified by
a non-XLFD base name, the XBaseFontNameListOfFontSet function will return the XLFD
name instead of the non-XLFD base name.

The base font name list is owned by Xlib and should not be modified or freed by the client. It
will be freed by a call to XFreeFontSet with the associated XFontSet. Until freed, its con¬
tents will not be modified by Xlib.

To obtain the locale name given an XFontSet, use XLocaleOfFontSet.

char *XLocale01FontSet(/b«r_^r)
XFontSet fontjer,

font jet Specifies the font set.

The XLocaleOfFontSet function returns the name of the locale bound to the specified
XFontSet, as a null-terminated string.

The returned locale name string is owned by Xlib and should not be modified or freed by the
client. It may be freed by a call to XFreeFontSet with the associated XFontSet. Until freed,
it will not be modified by Xlib.

To free a font set, use XFreeFontSet.

void XFreeFontSet (display, font jet)
Display * display,
XFontSet font jet;

display Specifies the connection to the X server.

font jet Specifies the font set.

The XFreeFontSet function frees the specified font set. The associated base font name list,
font name list, XFontStruct list, and XFontSetExtents, if any, are freed.

13.4. Obtaining Font Set Metrics

Metrics for the internationalized text drawing functions are defined in terms of a primary draw
direction, which is the default direction in which the character origin advances for each
succeeding character in the string. The Xlib interface is currently defined to support only a

228

Xlib - C Library XI1, Release 5

left-to-right primary draw direction. The drawing origin is the position passed to the drawing
function when the text is drawn. The baseline is a line drawn through the drawing origin
parallel to the primary draw direction. Character ink is the pixels painted in the foreground
color and does not include interline or intercharacter spacing or image text background pixels.

The drawing functions are allowed to implement implicit text directionality control, reversing
the order in which characters are rendered along the primary draw direction in response to
locale-specific lexical analysis of the string.

Regardless of the character rendering order, the origins of all characters are on the primary
draw direction side of the drawing origin. The screen location of a particular character image
may be determined with XmbTextPerCharExtents or XwcTextPerCharExtents.

The drawing functions are allowed to implement context-dependent rendering, where the
glyphs drawn for a string are not simply a concatenation of the glyphs that represent each indi¬
vidual character. A string of two characters drawn with XmbDrawString may render
differently than if the two characters were drawn with separate calls to XmbDrawString. If
the client appends or inserts a character in a previously drawn string, the client may need to
redraw some adjacent characters in order to obtain proper rendering.

To find out about context-dependent rendering, use XContextDependentDrawing.

Bool XContextDependentDrawing(/cwr_ser)
XFontSet fontjef,

font_set Specifies the font set.

The XContextDependentDrawing function returns True if text drawn with the font_set
might include context-dependent drawing.

The drawing functions do not interpret newline, tab, or other control characters. The behavior
when non-printing characters other than space are drawn is implementation-dependent. It is the
client’s responsibility to interpret control characters in a text stream.

The maximum character extents for the fonts that are used by the text drawing layers may be
accessed by the XFontSetExtents structure:

typedef struct {
XRectangle max_ink_extent; /* over all drawable characters */
XRectangle max_logical_extent; /* over all drawable characters */

} XFontSetExtents:

The XRectangles used to return font set metrics are the usual Xlib screen-oriented XRectan-
gles, with x, y giving the upper left comer, and width and height always positive.

The max_ink_extent member gives the maximum extent, over all drawable characters, of the
rectangles which bound the character glyph image drawn in the foreground color, relative to a
constant origin. See XmbTextExtents and XwcTextExtents for detailed semantics.

The max_logical_extent member gives the maximum extent, over all drawable characters, of
the rectangles which specify minimum spacing to other graphical features, relative to a constant
origin. Other graphical features drawn by the client, for example, a border surrounding the
text, should not intersect this rectangle. The max_logical_extent member should be used to
compute minimum inter-line spacing and the minimum area which must be allowed in a text
field to draw a given number of arbitrary characters.

Due to context-dependent rendering, appending a given character to a string may increase the
string’s extent by an amount which exceeds the font’s max extent:

max possible added extent = (max_extent * <total # chars>) - prev_string_extent

The rectangles for a given character in a string can be obtained from XmbPerCharExtents or
XwcPerCharExtents.

229

Xlib - C Library Xll, Release 5

To obtain the maximum extents structure given an XFontSet, use XExtentsOfFontSet.

XFontSetExtents * XExtentsOfFontSet (/cwr_.s£0
XFontSet font jet',

fontjset Specifies the font set.

The XExtentsOfFontSet function returns an XFontSetExtents structure for the fonts used by
the Xmb and Xwc layers, for the given font set.

The XFontSetExtents structure is owned by Xlib and should not be modified or freed by the
client. It will be freed by a call to XFreeFontSet with the associated XFontSet. Until freed,
its contents will not be modified by Xlib.

To obtain the escapement in pixels of the specified text as a value, use XmbTextEscapement
or XwcTextEscapement.

int XmbTextEscapement(font_set, string, num_bytes)
XFontSet font jet',
char * string',
int num_bytes;

int XwcTextEscapement(/bnr_.ser, string, numjvchars)
XFontSet font jet',
wchar_t * string',
int numjvchars',

font jet Specifies the font set.

string Specifies the character string.

num_bytes Specifies the number of bytes in the string argument.

numjvchars Specifies the number of characters in the string argument.

The XmbTextEscapement and XwcTextEscapement functions return the escapement in pix¬
els of the specified string as a value, using the fonts loaded for the specified font set. The
escapement is the distance in pixels in the primary draw direction from the drawing origin to
the origin of the next character to be drawn, assuming that the rendering of the next character
is not dependent on the supplied string.

Regardless of the character rendering order, the escapement is always positive.

To obtain the overall_ink_retum and overall_logical_rctum arguments, the overall bounding
box of the string’s image, and a logical bounding box, use XmbTextExtents
or XwcTextExtents.

int XmbTextExtents(font_set, string, num_bytes, overall_return)
XFontSet font_ser,
char * string',
int num_bytes\
XRectangle * overall_ink_return;
XRectangle * overall_logical_return;

int XwcTextExtents(font_set, string, numjvchars, overalljeturn)
XFontSet fontjet;
wchar_t * string',
int numjvchars',
XRectangle * overallJnkjeturn',
XRectangle ^overallJo gicaljeturn;

fontjet Specifies the font set.

230

Xlib - C Library XI1, Release 5

string Specifies the character string.

numjbytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string argument.

overall_ink_return
Returns the overall ink dimensions.

overall_logical_return
Returns the overall logical dimensions.

The XmbTextExtents and XwcTextExtents functions set the components of the specified
overall_ink_retum and overall_logical_retum arguments to the overall bounding box of the
string’s image, and a logical bounding box for spacing purposes, respectively. They return the
value returned by XmbTextEscapement or XwcTextEscapement. These metrics are relative
to the drawing origin of the string, using the fonts loaded for the specified font set.

If the overall_ink_retum argument is non-NULL, it is set to the bounding box of the string’s
character ink. Note that the overall_ink_retum for a non-descending horizontally drawn Latin
character is conventionally entirely above the baseline, that is, overall_ink_retum.height <=
-overall_ink_retum.y. The overall_ink_retum for a nonkemed character is entirely at and to
the right of the origin, that is, overall_ink_retum.x >= 0. A character consisting of a single
pixel at the origin would set overall_ink_retum fields y = 0, x = 0, width = 1, height = 1.

If the overall_logical_retum argument is non-NULL, it is set to the bounding box which pro¬
vides minimum spacing to other graphical features for the string. Other graphical features, for
example, a border surrounding the text, should not intersect this rectangle.

When the XFontSet has missing charsets, metrics for each unavailable character are taken
from the default string returned by XCreateFontSet so that the metrics represent the text as it
will actually be drawn. The behavior for an invalid codepoint is undefined.

To determine the effective drawing origin for a character in a drawn string, the client should
call XmbTextPerCharExtents on the entire string, then on the character, and subtract the x
values of the returned XRectangles for the character. This is useful to redraw portions of a
line of text or to justify words, but for context-dependent rendering the client should not
assume that it can redraw the character by itself and get the same rendering.

To obtain per-character information for a text string, use XmbTextPerCharExtents or
XwcTextPerCharExtents.

Status XmbTextPerCharExtents (font_set, string, numjoytes, ink_arrayjeturn,
logical_array_return, array_size, num_chars_return, overall _return)

XFontSet font_set\
char * string',
int numjbytes',
XRectangle *ink_array_return\
XRectangle *logical_ar ray jeturn;
int array _size\
int *num_charsjeturn;
XRectangle * overallJnkjeturn',
XRectangle * overallJogicaljeturn;

231

Xlib - C Library Xll, Release 5

Status XwcTextPerCharExtents{fontjet, string, numjvchars, ink jirrayjeturn,
logicaljrr ay jeturn, array jize, num_chars_return, overall jeturn)

XFontSet font jet',
wchar_t * string',
int numjvchars',
XRectangle *inkjr ray jeturn;
XRectangle * logicaljirray jeturn',
int array jize\
int *numjharsjeturn',
XRectangle * overall_inkjeturn;
XRectangle * overall_lo gicaljeturn;

font_set Specifies the font set.

string Specifies the character string.

numjbytes Specifies the number of bytes in the string argument.

numjvchars Specifies the number of characters in the string argument.

ink jirray jeturnRetums the ink dimensions for each character.

logical jirray jeturn
Returns the logical dimensions for each character.

array_size Specifies the size of ink_array_retum and logical_array_retum. Note that the
caller must pass in arrays of this size.

numjharsjeturn
Returns the number characters in the string argument.

overallJnkjeturn
Returns the overall ink extents of the entire string.

overallJogicaljeturn
Returns the overall logical extents of the entire string.

The XmbTextPerCharExtents and XwcTextPerCharExtents return the text dimensions of
each character of the specified text, using the fonts loaded for the specified font set. Each suc¬
cessive element of ink_array_retum and logical_array_retum is set to the successive character’s
drawn metrics, relative to the drawing origin of the string, one XRectangle for each character
in the supplied text string. The number of elements of ink_array_retum and
logical_array_retum that have been set is returned to num_chars_retum.

Each element of ink_array_retum is set to the bounding box of the corresponding character’s
drawn foreground color. Each element of logical_array_retum is set to the bounding box
which provides minimum spacing to other graphical features for the corresponding character.
Other graphical features should not intersect any of the logical_array_retum rectangles.

Note that an XRectangle represents the effective drawing dimensions of the character, regard¬
less of the number of font glyphs that are used to draw the character, or the direction in which
the character is drawn. If multiple characters map to a single character glyph, the dimensions
of all the XRectangles of those characters are the same.

When the XFontSet has missing charsets, metrics for each unavailable character are taken
from the default string returned by XCreateFontSet, so that the metrics represent the text as it
will actually be drawn. The behavior for an invalid codepoint is undefined.

If the array_size is too small for the number of characters in the supplied text, the functions
return zero and num_chars_retum is set to the number of rectangles required. Otherwise, the
routines return a non-zero value.

If the overall_ink_retum or overall_logical_retum argument is non-NULL, XmbTextPer¬
CharExtents and XwcTextPerCharExtents return the maximum extent of the string’s
metrics to overall_ink_retum or overall_logical_retum, as returned by XmbTextExtents or
XwcTextExtents.

232

Xlib - C Library XI1, Release 5

13.5. Drawing Text Using Font Sets

The routines defined in this section draw text at a specified location in a drawable. They are
similar to the functions XDrawText, XDrawString, and XDrawImageString except that
they work with font sets instead of single fonts, and interpret the text based on the locale of
the font set instead of treating the bytes of the string as direct font indexes. See section 8.6 for
details of the use of GCs and possible protocol errors. If a BadFont error is generated, char¬
acters prior to the offending character may have been drawn.

The text is drawn using the fonts loaded for the specified font set; the font in the GC is
ignored, and may be modified by the routines. No validation that all fonts conform to some
width rule is performed.

The text functions XmbDrawText and XwcDrawText use the following structures,
typedef struct {

char *chars;
int nchars;
int delta;
XFontSet font_

} XmbTextltem;
set;

/* pointer to string */
/* number of characters */
/* pixel delta between strings */
/* fonts. None means don’t change */

typedef struct (
wchar__t *chars;
int nchars;
int delta;
XFontSet font_set;

} XwcTextltem;

/* pointer to wide char string */
/* number of wide characters */
/* pixel delta between strings */
/* fonts. None means don’t change */

To draw text using multiple font sets in a given drawable, use XmbDrawText or
XwcDrawText.

void XmbDrawText (^//.sp/ay, d, gc, x,'y, items, nitems)
Display *display\
Drawable d\
GC gc\
int x, y;
XmbTextltem * items',
int nitems’,

void XwcDrawText (display, d, gc, x, y, items, nitems)
Display * display,
Drawable d\
GC gc\
int x, y\
XwcTextltem * items',
int nitems'.

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

X

y Specify the x and y coordinates.

items Specifies an array of text items.

nitems Specifies the number of text items in the array.

XmbDrawText and XwcDrawText allow complex spacing and font set shifts between text
strings. Each text item is processed in turn, with the origin of a text element advanced in the

233

Xlib - C Library Xll, Release 5

primary draw direction by the escapement of the previous text item. A text item delta specifies
an additional escapement of the text item drawing origin in the primary draw direction. A
font_set member other than None in an item causes the font set to be used for this and subse¬
quent text items in the text_items list. Leading text items with font_set member set to None
will not be drawn.

XmbDrawText and XwcDrawText do not perform any context-dependent rendering between
text segments. Gients may compute the drawing metrics by passing each text segment to
XmbTextExtents and XwcTextExtents or XmbTextPerCharExtents and XwcTextPer*
Char Extents. When the XFontSet has missing charsets, each unavailable character is drawn
with the default string returned by XCreateFontSet. The behavior for an invalid codepoint is
undefined.

To draw text using a single font set in a given drawable, use XmbDrawString or XwcDraw-
String.

void XmbDrawString {display, d,font_set, gc, x, y, string, numjjytes)
Display * display,
Drawable d\
XFontSet font_set\
GC gc\
int x, y,
char * string',
int numjbytes'.

void XwcDrawString(<i/5p/(3y, d, font_set, gc, x, y, string, num_wchars)
Display * display,
Drawable d',
XFontSet font_set\
GC gc,
int x, y,
wchar_t * string',
int num wchars'.

display

d

font_set

gc

x

Specifies the connection to the X server.

Specifies the drawable.

Specifies the font set.

Specifies the GC.

y Specify the x and y coordinates.

string Specifies the character string.

numjbytes Specifies the number of bytes in the string argument.

num_wchars Specifies the number of characters in the string argument

XmbDrawString and XwcDrawString draw the specified text with the foreground pixel.
When the XFontSet has missing charsets, each unavailable character is drawn with the default
string returned by XCreateFontSet. The behavior for an invalid codepoint is undefined.

To draw image text using a single font set in a given drawable, use XmbDrawImageString or
XwcDrawImageString.

234

Xlib - C Library XI1, Release 5

void XmbDrawImageStringCd/.s'p/czy, d,font_set, gc, x, y, string, num_bytes)
Display * display,
Drawable d\
XFontSet font_set\
GC gc\
int x, y;
char * string’,
int num_bytes\

void XwcDrawImageString(^p/ay, d,font_set, gc, x, y, string, numjvchars)
Display * display,
Drawable d\
XFontSet font jet’,
GC gc;
int x, y,
wchar_t * string’,
int num wchars’.

display

d

font jet

gc
x

Specifies the connection to the X server.

Specifies the drawable.

Specifies the font set.

Specifies the GC.

y Specify the x and y coordinates.

string Specifies the character string.

numjbytes Specifies the number of bytes in the string argument.

numjvchars Specifies the number of characters in the string argument.

XmbDravvImageString and XwcDrawImageString fill a destination rectangle with the back¬
ground pixel defined in the GC and then paint the text with the foreground pixel. The filled
rectangle is the rectangle returned to overall_logical_retum by XmbTextExtents or XwcTex-
tExtents for the same text and XFontSet.

When the XFontSet has missing charsets, each unavailable character is drawn with the default
string returned by XCreateFontSet. The behavior for an invalid codepoint is undefined.

13.6. Input Method Overview

This section provides definitions for terms and concepts used for internationalized text input
and a brief overview of the intended use of the mechanisms provided by Xlib.

A large number of languages in the world use alphabets consisting of a small set of symbols
(letters) to form words. To enter text into a computer in an alphabetic language, a user usually
has a keyboard on which there exists key symbols corresponding to the alphabet. Sometimes,
a few characters of an alphabetic language are missing on the keyboard. Many computer
users, who speak a Latin alphabet based language only have a English-based keyboard. They
need to hit a combination of keystrokes in order to enter a character that does not exist directly
on the keyboard. A number of algorithms have been developed for entering such characters,
known as European input methods, the compose input method, or the dead-keys input method.

Japanese is an example of a language with a phonetic symbol set, where each symbol
represents a specific sound. There are two phonetic symbol sets in Japanese: Katakana and
Hiragana. In general, Katakana is used for words that are of foreign origin, and hiragana for
writing native Japanese words. Collectively, the two systems are called Kana. Each set con¬
sists of 48 characters.

235

Xlib - C Library XI1, Release 5

Korean also has a phonetic symbol set, called Hangul. Each of the 24 basic phonetic symbols
(14 consonants and 10 vowels) represents a specific sound. A syllable is composed of two or
three parts: the initial consonants, the vowels, and the optional last consonants. With Hangul,
syllables can be treated as the basic units on which text processing is done. For example, a
delete operation may work on a phonetic symbol or a syllable. Korean code sets include
several thousands of these syllables. A user types the phonetic symbols that make up the syll¬
ables of the words to be entered. The display may change as each phonetic symbol is entered.
For example, when the second phonetic symbol of a syllable is entered, the first phonetic sym¬
bol may change its shape and size. Likewise, when the third phonetic symbol is entered, the
first two phonetic symbols may change their shape and size.

Not all languages rely solely on alphabetic or phonetic systems. Some languages, including
Japanese and Korean, employ an ideographic writing system. In an ideographic system, rather
than taking a small set of symbols and combining them in different ways to create words, each
word consists of one unique symbol (or, occasionally, several symbols). The number of sym¬
bols may be very large: approximately 50,000 have been identified in Hanzi, the Chinese ideo¬
graphic system.

There are two major aspects of ideographic systems for their computer usage. First, the stan¬
dard computer character sets in Japan, China, and Korea include roughly 8,000 characters,
while sets in Taiwan have between 15,000 and 30,000 characters, which make it necessary to
use more than one byte to represent a character. Second, it obviously is impractical to have a
keyboard that includes all of a given language’s ideographic symbols. Therefore a mechanism
is required for entering characters so that a keyboard with a reasonable number of keys can be
used. Those input methods are usually based on phonetics, but there also exist methods based
on the graphical properties of characters.

In Japan, both Kana and Kanji are used. In Korea, Hangul and sometimes Hanja are used.
Now consider entering ideographs in Japan, Korea, China, and Taiwan.

In Japan, either Kana or English characters are typed and then a region is selected (sometimes
automatically) for conversion to Kanji. Several Kanji characters may have the same phonetic
representation. If that is the case with the string entered, a menu of characters is presented and
the user must choose the appropriate one. If no choice is necessary or a preference has been
established, the input method does the substitution directly. When Latin characters are con¬
verted to Kana or Kanji, it is called a romaji conversion.

In Korea, it is usually acceptable to keep Korean text in Hangul form, but some people may
choose to write Hanja-originated words in Hanja rather than in Hangul. To change Hangul to
Hanja, a region is selected for conversion and then the same basic method as described for
Japanese is followed.

Probably because there are well-accepted phonetic writing systems for Japanese and Korean,
computer input methods in these countries for entering ideographs are fairly standard. Key¬
board keys have both English characters and phonetic symbols engraved on them, and the user
can switch between the two sets.

The situation is different for Chinese. While there is a phonetic system called Pinyin promoted
by authorities, there is no consensus for entering Chinese text. Some vendors use a phonetic
decomposition (Pinyin or another), others use ideographic decomposition of Chinese words,
with various implementations and keyboard layouts. There are about 16 known methods, none
of which is a clear standard.

Also, there are actually two ideographic sets used: Traditional Chinese (the original written
Chinese) and Simplified Chinese. Several years ago, the People’s Republic Of China launched
a campaign to simplify some ideographic characters and eliminate redundancies altogether.
Under the plan, characters would be streamlined every five years. Characters have been
revised several times now, resulting in the smaller, simpler set that makes up Simplified
Chinese.

236

Xlib - C Library XI1, Release 5

13.6.1. Input Method Architecture

As shown in the previous section, there are many different input methods in use today, each
varying with language, culture, and history. A common feature of many input methods is that
the user may type multiple keystrokes in order to compose a single character (or set of charac¬
ters). The process of composing characters from keystrokes is called preediting. It may
require complex algorithms and large dictionaries involving substantial computer resources.

Input methods may require one or more areas in which to show the feedback of the actual
keystrokes, to propose disambiguation to the user, to list dictionaries, and so on. The input
method areas of concern are as follows.

• The Status area is intended to be a logical extension of the LEDs that exist on the physi¬
cal keyboard. It is a window which is intended to present the internal state of the input
method that is critical to the user. The status area may consist of text data and bitmaps
or some combination.

© The Preedit area is intended to display the intermediate text for those languages that are
composing prior to the client handling the data.

• The Auxiliary area is used for pop-up menus and customizing dialogs that may be
required for an input method. There may be multiple Auxiliary areas for any input
method. Auxiliary areas are managed by the input method independent of the client.
Auxiliary areas are assumed to be a separate dialog which is maintained by the input
method.

There are various user interaction styles used for preediting. The ones supported by Xlib are
as follows.

® For on-the-spot input methods, preediting data will be displayed directly in the applica¬
tion window. Application data is moved to allow preedit data to be displayed at the
point of insertion.

• Over-the-spot preediting means that the data is displayed in a preedit window that is
placed over the point of insertion.

• Off-the-spot preediting means that the preedit window is inside the application window
but not at the point of insertion. Often, this type of window is placed at the bottom of
the application window.

• Root-window preediting refers to input methods that use a preedit window that is the
child of Root Window.

It would require a lot of computing resources if portable applications had to include input
methods for all the languages in the world. To avoid this, a goal of the Xlib design is to allow
an application to communicate with an input method placed in a separate process. Such a pro¬
cess is called an input server. The server to which the application should connect is dependent
on the environment when the application is started up: what is the user language, the actual
encoding to be used for it. The input method connection is said to be locale dependent. It is
also user dependent: for a given language, the user can choose to some extent the user inter¬
face style of input method (if choice is possible among several).

Using an input server implies communicadon overhead, but applications can be migrated
without relinking. Input methods can be implemented either as a stub communicaung to an
input server or as a local library.

An input method may be based on a front-end or a back-end architecture. In front-end, there
are two separate connections to the X server: keystrokes go directly from X server to the input
method on one connection, other events to the regular client connection. The input method is
then acting as a filter, and sends composed strings to the client. Front-end requires synchroni¬
zation between the two connections to avoid lost key events or locking issues.

In back-end, a single X server connection is used. A dispatching mechanism must decide on
this channel to delegate appropriate keystrokes to the input method. For instance, it may retain

237

Xlib - C Library XI1, Release 5

a Help keystroke for its own purpose. In the case where the input method is a separate pro¬
cess (that is, a server), there must be a special communication protocol between the back-end
client and the input server.

Front-end introduces synchronization issues and filtering mechanism for non-character keys¬
trokes (Functions, Help, and so on). Back-end sometimes implies more communication over¬
head and more process switching. If all three processes are running on a single workstation (X
server, input server, client), there are two process switches for each keystroke in back-end, but
there is only one in frontend.

The abstraction used by a client to communicate with an input method is an opaque data struc¬
ture represented by the XIM data type. This data structure is returned by the XOpenIM
function, which opens an input method on a given display. Subsequent operations on this data
structure encapsulate all communication between client and input method. There is no need for
an X client to use any networking library or natural language package in order to use an input
method.

A single input server may be used for one or more languages, supporting one or more encod¬
ing schemes. But the strings returned from an input method will always be encoded in the
(single) locale associated with XIM object.

13.6.2. Input Contexts

Xlib provides the ability to manage a multithreaded state for text input. A client may be using
multiple windows, each window with multiple text entry areas, and the user possibly switching
among them at any time. The abstraction for representing state of a particular input thread is
called an input context. The Xlib representation of an input context is an XIC.

An input context is the abstraction retaining the state, properties, and semantics of communica¬
tion between a client and an input method. An input context is a combination of an input
method, a locale specifying the encoding of the character strings to be returned, a client win¬
dow, internal state information and various layout or appearance characteristics. The input
context concept somewhat matches for input the graphics context abstraction defined for graph¬
ics output.

One input context belongs to exactly one input method. Different input contexts may be asso¬
ciated with the same input method, possibly with the same client window. An XIC is created
with the XCreateIC function, providing an XIM argument, affiliating the input context to the
input method for its lifetime. When an input method is closed with XCIoselM, all of its
affiliated input contexts should not be used any more (and should preferably be destroyed
before closing the input method).

Considering the example of a client window with multiple text entry areas, the application pro¬
grammer could for example choose to implement:

• As many input contexts are created as text entry areas and the client will get the input
accumulated on each context each time it will lookup that context.

• A single context is created for a top level window in the application. If such window
contains several text entry areas, each time the user moves to another text entry area, the
client has to indicate changes in the context.

A range of choices can be made by application designers to use either a single or multiple
input contexts, according to the needs of their application.

13.6.3. Getting Keyboard Input

In order to obtain characters from an input method a client must call the function XmbLook-
upString or XwcLookupString with an input context created from that input method. Both a
locale and display are bound to an input method when it is opened, and an input context inher¬
its this locale and display. Any strings returned by XmbLookupString or XwcLookupString
will be encoded in that locale.

238

Xlib - C Library XI1, Release 5

13.6.4. Focus Management

For each text entry area in which the XmbLookupString or XwcLookupString routines are
used there will be an associated input context.

When the application focus moves to a text entry area, the application must set the input con¬
text focus to the input context associated with that area. The input context focus is set by cal¬
ling XSetICFocus with the appropriate input context.

Also, when the application focus moves out of a text entry area, the application should unset
the focus for the associated input context by calling XUnsetICFocus. As an optimization, if
XSetICFocus is called successively on two different input contexts, setting the focus on the
second will automatically unset the focus on the first.

Note that in order to set and unset the input context focus correctly, it will be necessary to
track application-level focus changes. Such focus changes do not necessarily correspond to X
server focus changes.

If a single input context is being used to do input for multiple text entry areas, it will also be
necessary to set the focus window of the input context whenever the focus window changes
(see XNFocusWindow under XSetICValues).

13.6.5. Geometry Management

In most input method architectures (on-the-spot being the notable exception), the input method
will perform the display of its own data. In order to provide better visual locality, it is often
desirable to have the input method areas embedded within a client. In order to do this the
client may need to allocate space for an input method. Xlib provides support that allows the
size and position of input method areas to be provided by a client. The input method areas
that are supported for geometry management are the Status area and the Preedit area.

The fundamental concept on which geometry management for input method windows is based
is the proper division of responsibilities between the client (or toolkit) and the input method.
The division of responsibilities is as follows:

• The client is responsible for the geometry of the input method window.

• The input method is responsible for the contents of the input method window.

An input method is able to suggest a size to the client, but it cannot suggest a placement. Also
the input method can only suggest a size. It does not determine the size, and it must accept
the size it is given.

Before a client provides geometry management for an input method, it must determine if
geometry management is needed. The input method indicates the need for geometry manage¬
ment by setting XIMPreeditArea or XIMStatusArea in its XIMStyles value returned by
XGetIMValues. When a client has decided that it will provide geometry management for an
input method, it indicates that decision by setting the XNInputStyle value in the XIC.

After a client has established with the input method that it will will do geometry management,
the client must negotiate the geometry with the input method. The geometry is negotiated by
the following steps.

• The client suggests an area to the input method by setting the XNAreaNeeded value for
that area. If the client has no constraints for the input method it either will not suggest an
area or will set the width and height to zero. Otherwise it will set one of the values.

• The client will get the XIC value XNAreaNeeded, The input method will return its
suggested size in this value. The input method should pay attention to any constraints
suggested by the client.

• The client sets the XIC value XNArea to inform the input method of the geometry of its
window. The client should try to honor the geometry requested by the input method.
The input method must accept this geometry.

239

Xlib - C Library XI1, Release 5

Clients doing geometry management must be aware that setting other IC values may affect the
geometry desired by an input method. For example, XNFontSet and XNLineSpacing may
change the geometry desired by the the input method.

The table of XIC values (see section 13.10) indicates the values that can cause the desired
geometry to change when they are set. It is the responsibility of the client to renegotiate the
geometry of the input method window when it is needed.

In addition, a geometry management callback is provided by which an input method can ini¬
tiate a geometry change.

13.6.6. Event Filtering

A filtering mechanism is provided to allow input methods to capture X events transparently to
clients. It is expected that toolkits (or clients) using XmbLookupString or XwcLookup-
String will call this filter at some point in the event processing mechanism to make sure that
events needed by an input method can be filtered by that input method.

If there were no filter, a client could receive and discard events that are necessary for the
proper functioning of an input method. The following provides a few examples of such
events:

• Expose events on preedit window in local mode.

• Events may be used by an input method to communicate with an input server. Such
input server protocol related events have to be intercepted if one does not want to disturb
client code.

• Key events can be sent to a filter before they are bound to translations such as Xt pro¬
vides.

Clients are expected to get the XIC value XNFilterEvents and augment the event mask for the
client window with that event mask. This mask may be zero.

13.6.7. Callbacks

When an on-the-spot input method is implemented, only the client can insert or delete preedit
data in place and possibly scroll existing text. This means the echo of the keystrokes has to be
achieved by the client itself, tightly coupled with the input method logic.

When a keystroke is entered, the client calls XmbLookupString or XwcLookupString. At
this point, in the on-the-spot case, the echo of the keystroke in the preedit has not yet been
done. Before returning to the client logic that handles the input characters, the lookup function
must call the echoing logic for inserting the new keystroke. If the keystrokes entered so far
make up a character, the keystrokes entered need to be deleted, and the composed character
will be returned. Hence, what happens is that, while being called by client code, input method
logic has to call back to the client before it returns. The client code, that is, a callback routine,
is called from the input method logic.

There are a number of cases where the input method logic has to call back the client. Each of
those cases is associated with a well-defined callback action. It is possible for the client to
specify, for each input context, what callback is to be called for each action.

There are also callbacks provided for feedback of status information and a callback to initiate a
geometry request for an input method.

13.7. Variable Argument Lists

Several input method functions have arguments which conform to ANSI C variable argument
list calling convention. Each function denoted with a “...” argument takes a variable length
list of name and value pairs where each name is a string and each value is of type XPointer.
The end of the list is identified by a name argument containing NULL.

240

Xlib - C Library XI1, Release 5

A variable length argument list may contain a nested list. If the name XVaNestedList is
specified in place of an argument name, then the following value is interpreted as a
XVaNestedList value which specifies a list of values logically inserted into the original list at
the point of declaration. The end of a nested list is identified with a NULL.

To allocate a nested variable argument list dynamically, use XVaCreateNestedList.

typedef void * XVaNestedList;

XVaNestedList XVaCreateNestedList(dummy, ...)
int dummy;

dummy Unused argument (required by ANSI C).

Specifies the variable length argument list.

The XVaCreateNestedList function allocates memory and copies its arguments into a single
list pointer which may be used as value for arguments requiring a list value. Any entries are
copied as specified. Data passed by reference is not copied; the caller must ensure data
remains valid for the lifetime of the nested list. The list should be freed using XFree when it
is no longer needed.

13.8. Input Method Functions

To open a connection, use XOpenIM.

XIM XOpenIM (display, db, resjiame, res_c lass)
Display * display,
XrmDataBase db\
char * resjiame',
char * res_c lass',

display Specifies the connection to the X server.

db Specifies a pointer to the resource database.

resjiame Specifies the full resource name of the application.

resjclass Specifies the full class name of the application.

The XOpenIM function opens an input method, matching the current locale and modifiers
specification. Current locale and modifiers are bound to the input method at opening time.
The locale associated with an input method cannot be changed dynamically. This implies the
strings returned by XmbLookupString or XwcLookupString, for any input context affiliated
with a given input method, will be encoded in the locale current at the time input method is
opened.

The specific input method to which this call will be routed is identified on the basis of the
current locale. XOpenIM will identify a default input method corresponding to the current
locale. That default can be modified using XSetLocaleModifiers for the input method
modifier.

The db argument is the resource database to be used by the input method for looking up
resources that are private to the input method. It is not intended that this database be used to
look up values that can be set as IC values in an input context. If db is NULL, no data base is
passed to the input method.

The resjiame and res_class arguments specify the resource name and class of the application.
They are intended to be used as prefixes by the input method when looking up resources that
are common to all input contexts that may be created for this input method. The characters
used for resource names and classes must be in the X portable character set. The resources
looked up are not fully specified if resjiame or res_class is NULL.

241

Xlib - C Library XI1, Release 5

The res_name and res_class arguments are not assumed to exist beyond the call to XOpenIM.
The specified resource database is assumed to exist for the lifetime of the input method.

XOpenIM returns NULL if no input method could be opened.

To close a connection, use XCloselM.

Status XCloselM(im)
XIM im;

im Specifies the input method.

The XCloselM function closes the specified input method.

To query an input method, use XGetIMValues.

char * XGetIMValues (im, ...)
XIM im;

im Specifies the input method.

Specifies the variable length argument list to get XIM values.

The XGetIMValues function presents a variable argument list programming interface for
querying properties or features of the specified input method. This function returns NULL if it
succeeds; otherwise, it returns the name of the first argument that could not be obtained.

Only one standard argument is defined by Xlib: XNQuerylnputStyle, which must be used to
query about input styles supported by the input method.

A client should always query the input method to determine which styles are supported. The
client should then find an input style it is capable of supporting.

If the client cannot find an input style that it can support it should negotiate with the user the
continuation of the program (exit, choose another input method, and so on).

The argument value must be a pointer to a location where the returned value will be stored.
The returned value is a pointer to a structure of type XIMStyles. Clients are responsible for
freeing the XIMStyles data structure. To do so, use XFree.

The XIMStyles structure is defined as follows,
typedef unsigned long XIMStyle;

#define XIMPreeditArea 0x0001L
#define XIMPreeditCallbacks 0x0002L
#define XIMPreeditPosition 0x0004L
#define XIMPreeditNothing 0x0008L
#define XIMPreeditNone 0x0010L

#define XIMStatusArea OxOlOOL
#define XIMStatusCallbacks 0x0200L
#define XIMStatusNothing 0x0400L
#define XIMStatusNone 0x0800L

typedef struct {
unsigned short count_styles;
XIMStyle * supported styles;

} XIMStyles;

An XIMStyles structure contains in its field count_styles, the number of input styles sup¬
ported. This is also the size of the array in the field supported_styles.

The supported styles is a list of bit mask combinations, which indicate the combination of
styles for each of the areas supported. These areas are described below. Each element in the

242

Xlib - C Library Xll, Release 5

list should select one of the bit mask values for each area. The list describes the complete set
of combinations supported. Only these combinations are supported by the input method.

The Preedit category defines what type of support is provided by the input method for preedit
information:

XIMPreeditArea

XIMPreeditPosition

XIMPreeditCallbacks

XIMPreeditNothing

XIMPreeditNone

If chosen, the input method would require the client to provide
some area values for it to do its preediting. Refer to XIC values
XNArea and XNAreaNeeded.
If chosen, the input method would require the client to provide
positional values. Refer to XIC values XNSpotLocation and
XNFocusWindow.
If chosen, the input method would require the client to define the
set of preedit callbacks. Refer to XIC values XNPreeditStartCalL
back, XNPreeditDoneCallback, XNPreeditDrawCallback, and
XNPreeditCaretCallback.
If chosen, the input method can function without any Preedit
values.
The input method does not provide any Preedit feedback. Any
Preedit value is ignored. This style is mutually exclusive with the
other Preedit styles.

The Status category defines what type of support is provided by the input method for status
information:

XIMStatusArea

XIMStatusCallbacks

XIMStatusNothing
XIMStatusNone

The input method requires the client to provide some area values
for it to do its Status feedback. See XNArea and
XNAreaNeeded.
The input method requires the client to define die set of status call¬
backs; XNStatusStartCallback, XNStatusDoneCallback, and
XNStatusDrawCallback.
The input method can function without any Status values.
The input method does not provide any Status feedback. If chosen,
any Status value is ignored. This style is mutually exclusive with
the other Status styles.

To obtain the display associated with an input method, use XDisplayOfIM.

Display * XDisplayOfIM(im)
XIM im\

im Specifies the input method.

The XDisplayOfIM function returns the display associated with the specified input method.

To get the locale associated with an input method, use XLocaleOfTM.

char * XLocaleOflMO'm)
XIM im;

im Specifies the input method.

The XLocaleOflM returns the locale associated with the specified input method.

13.9. Input Context Functions

An input context is an abstraction that is used to contain both the data required (if any) by an
input method and the information required to display that data. There may be multiple input
contexts for one input method. The programming interfaces for creating, reading, or modifying
an input context use a variable argument list. The name elements of the argument lists are

243

Xlib - C Library Xll, Release 5

referred to as XIC values. It is intended that input methods be controlled by these XIC values.
As new XIC values are created they should be registered with the X Consortium.

To create an input context use XCreateIC.

XIC XCreateIC(im, ...)
XIM im;

im Specifies the input method.

Specifies the variable length argument list to set XIC values.

The XCreateIC function creates a context within the specified input method.

Some of the arguments are mandatory at creation time, and the input context will not be
created if they are not provided. Those arguments are the input style and the set of text call¬
backs (if the input style selected requires callbacks). All other input context values can be set
later.

XCreateIC returns a NULL value if no input context could be created. A NULL value could
be returned for any of the following reasons:

• A required argument was not set.

• A read-only argument was set (for example, XNFilterEvents).

• The argument name is not recognized.

• The input method encountered an input method implementation dependent error.

XCreateIC can generate BadAtom, BadColor, BadPixmap, and BadWindow errors.

To destroy an input context, use XDestroylC.

void XDestroylC(ic)
XIC ic;

ic Specifies the input context.

XDestroylC destroys the specified input context.

To communicate to and synchronize with input method for any changes in keyboard focus
from the client side, use XSetICFocus and XUnsetICFocus.

void XSetlCFocus(ic)
XIC ic;

ic Specifies the input context.

The XSetICFocus function allows a client to notify an input method that the focus window
attached to the specified input context has received keyboard focus. The input method should
take action to provide appropriate feedback. Complete feedback specification is a matter of
user interface policy.

void XUnsetICFocus (ic)
XIC ic;

ic Specifies the input context.

The XUnsetICFocus function allows a client to notify an input method that the specified input
context has lost the keyboard focus and that no more input is expected on the focus window
attached to that input context. The input method should take action to provide appropriate
feedback. Complete feedback specification is a matter of user interface policy.

To reset the state of an input context to initial state, use XmbResetIC or XwcResetIC.

244

Xlib - C Library XI1, Release 5

char * XmbResetIC(ic)
XIC ic;

wchar_t * XwcResetIC (z'c)
XIC ic\

ic Specifies the input context.

The XmbResetIC and XwcResetIC functions reset input context to initial state. Any input
pending on_that context is deleted. Input method is required to clear preedit area, if any. and
update status accordingly. Calling XmbResetIC or XwcResetIC does not change the focus.

The return value of XmbResetIC is its current preedit string as a multibyte string. The return
value of XwcResetIC is its current preedit string as a wide character string. It is input
method implementation dependent whether these routines return a non-NULL string or NULL.

The client should free the returned string by calling XFree.

To get the input method associated with an input context, use XIMOfIC.

XIM XIMOfIC (zc)
XIC ic;

ic Specifies the input context.

The XIMOfIC function returns the input method associated with the specified input context.

Xlib provides two functions for setting and reading XIC values, respectively: XSetICValues
and XGetICValues. Both functions have a variable length argument list. In that argument
list, any XIC value’s name must be denoted with a character string using the X Portable Char¬
acter Set.

To set XIC values, use XSetICValues.

char * XSetICValues (ic, ...)
XIC ic;

ic Specifies the input context.

Specifies the variable length argument list to set XIC values.

The XSetICValues function returns NULL if no error occurred; otherwise, it returns the name
of the first argument that could not be set. An argument could be not set for any of the fol¬
lowing reasons:

® A read-only argument was set (for example, XNFilterEvents).

• The argument name is not recognized.

• The input method encountered an input method implementation dependent error.

Each value to be set must be an appropriate datum, matching the data type imposed by the
semantics of the argument.

XSetICValues can generate BadAtom, BadCoIor, BadCursor, BadPixmap, and BadWin-
dow errors.

To obtain XIC values, use XGetICValues.

char * XGetICValues(z'c, ...)
XIC ic;

ic Specifies the input context.

Specifies the variable length argument list to get XIC values.

245

Xlib - C Library XI1, Release 5

The XGetICValues function returns NULL if no error occurred; otherwise, it returns the name
of the first argument that could not be obtained. An argument could be not obtained for any of
the following reasons:

• The argument name is not recognized.

• The input method encountered an implementation dependent error.

Each argument value (following a name) must point to a location where the value is to be
stored. XGetICValues allocates memory to store the values, and client is responsible for free¬
ing each value by calling XFree.

13.10. XIC Value Arguments

The following tables describe how XIC values are interpreted by an input method depending
on the input style chosen by the user.

The first column lists the XIC values. The second column indicates which values are involved
in affecting, negotiating, and setting the geometry of the input method windows. The suben¬
tries under the third column indicate the different input styles that are supported. Each of these
columns indicates how each of the XIC values are treated by that input style.

The following Keys apply to these tables.

Keys Explanation

C This value must be set with XCreatelC.
D This value may be set using XCreatelC. If it is not set, a default is pro¬

vided.
G This value may be read using XGetICValues.
GN This value may cause geometry negotiation when its value is set by means

of XCreatelC or XSetICValues.
GR This value will be the response of the input method when any GN value is

changed.
GS This value will cause the geometry of the input method window to be set.
O This value must be set once and only once. It need not be set at create

time.
S This value may be set with XSetICValues.
ignored This value is ignored by the input method for the given input style.

XIC Value Geometry
Management

Preedit
Callback

Preedit
Position

Input Style
Preedit
Area

Preedit
Nothing

Preedit
None

Input Style C-G C-G C-G C-G C-G
Client Window O-G O-G O-G ignored ignored
Focus Window GN D-S-G D-S-G D-S-G D-S-G ignored
Resource Name ignored D-S-G D-S-G D-S-G ignored
Resource Class ignored D-S-G D-S-G D-S-G ignored
Geometry Callback ignored ignored D-S-G ignored ignored
FilterEvents G G G G ignored

Preedit
Area GS ignored D-S-G D-S-G ignored ignored
AreaNeeded GN-GR ignored ignored S-G ignored ignored
SpotLocation ignored C-S-G ignored ignored ignored
Colormap ignored D-S-G D-S-G D-S-G ignored
Foreground ignored D-S-G D-S-G D-S-G ignored
Background ignored D-S-G D-S-G D-S-G ignored

246

Xlib - C Library XI1, Release 5

XIC Value Geometry
Management

Preedit
Callback

Preedit
Position

Input Style
Preedit
Area

Preedit
Nothing

Preedit
None

Background Pixmap ignored D-S-G D-S-G D-S-G ignored
FontSet GN ignored C-S-G C-S-G D-S-G ignored
LineSpacing GN ignored D-S-G D-S-G D-S-G ignored
Cursor ignored D-S-G D-S-G D-S-G ignored
Preedit Callbacks C-S-G ignored ignored ignored ignored

XIC Value Geometry
Management

Status
Callback

Input Style
Status Status
Area Nothing

Status
None

Input Style C-G C-G C-G C-G
Client Window O-G O-G O-G ignored
Focus Window GN D-S-G D-S-G D-S-G ignored
Resource Name ignored D-S-G D-S-G ignored
Resource Class ignored D-S-G D-S-G ignored
Geometry Callback ignored D-S-G ignored ignored
FilterEvents G G G G

Status
Area GS ignored D-S-G ignored ignored
AreaNeeded GN-GR ignored S-G ignored ignored
Colormap ignored D-S-G D-S-G ignored
Foreground ignored D-S-G D-S-G ignored
Background ignored D-S-G D-S-G ignored
Background Pixmap ignored D-S-G D-S-G ignored
FontSet GN ignored C-S-G D-S-G ignored
LineSpacing GN ignored D-S-G D-S-G ignored
Cursor ignored D-S-G D-S-G ignored
Status Callbacks C-S-G ignored ignored ignored

13.10.1. Input Style

The XNInputStyle argument specifies the input style to be used. The value of this argument
must be one of the values returned by the XGetIMValues function with the XNQueryln-
putStyle argument specified in the supportcd_styles list.

Note that this argument must be set at creation time and cannot be changed.

13.10.2. Client Window

The XNClientWindow argument specifies to the input method the client window in which the
input method can display data or create subwindows. Geometry values for input method areas
are given with respect to the client window. Dynamic change of client window is not sup¬
ported. Note that this argument may be set only once and should be set before any input is
done using this input context. If it is not set the input method may not operate correctly.

If an attempt is made to set this value a second time with XSetICValues, the string
XNClientWindow will be returned by XSetICValues, and the client window will not be
changed.

247

Xlib - C Library XI1, Release 5

If the client window is not a valid window ID on the display attached to the input method, a
BadWindow error can be generated when this value is used by the input method.

13.10.3. Focus Window

The XNFocusWindow argument specifies the focus window. The primary purpose of the
XNFocusWindow is to identify the window that will receive the key event when input is
composed. In addition, the input method may possibly affect the focus window as follows:

• Select events on it

• Send events to it

• Modify its properties

• Grab keyboard within that window

The value associated to the argument must be of type Window. If the focus window is not a
valid window ID on the display attached to the input method, a BadWindow error can be gen¬
erated when this value is used by the input method.

When this XIC value is left unspecified, the input method will default focus window to client
window.

13.10.4. Resource Name and Class

The XNResourceName and XNResourceClass arguments are strings that specify the full
name and class used by the client to obtain resources for the client window. These values
should be used as prefixes for name and class when looking up resources that may vary
according to the input context. If these values are not set, the resources will not be fully
specified.

It is not intended that values which can be set as XIC values be set as resources.

13.10.5. Geometry Callback

The XNGeometryCallback argument is a structure of type XIMCallback (see section
13.10.7.10).

The XNGeometryCallback argument specifies the geometry callback which a client can set.
This callback is not required for correct operation of either an input method or a client. It can
be set for a client whose user interface policy permits an input method to request the dynamic
change of that input methods window. An input method that does dynamic change will need
to filter any events that it uses to initiate the change.

13.10.6. Filter Events

The XNFilterEvents argument returns the event mask that an input methods needs to have
selected for. The client is expected to augment its own event mask for the client window with
this one.

Note that this argument is read-only, is set by the input method at create time, and is never
changed.

Note also that the type of this argument is "unsigned long". Setting this value will cause an
error.

13.10.7. Preedit and Status Attributes

The XNPreeditAttributes and XNStatusAttributes arguments specify to input method the
attributes to be used for the Preedit and Status areas, if any. Those attributes are passed to
XSetICValues or XGetICValues as a nested variable length list. The names to be used in
these lists are as described in the following sections.

248

Xlib - C Library XI1, Release 5

13.10.7.1. Area

The value of the XNArea argument must be a pointer to a structure of type XRectangle. The
interpretation of the XNArea argument is dependent on the input method style that has been
set.

If the input method style is XIMPreeditPosition, XNArea specifies the clipping region within
which preediting will take place. If the focus window has been set, the coordinates are
assumed to be relative to the focus window. Otherwise, the coordinates are assumed to be
relative to the client window. If neither has been set, the results are undefined. If XNArea is
not specified, the input method will default the clipping region to the geometry of the
XNFocusWindow. If the area specified is NULL or invalid, the results are undefined.

If the input style is XIMPreeditArea or XIMStatusArea, XNArea specifies the geometry
provided by the client to the input method. The input method may use this area to display its
data, either Preedit or Status depending on the area designated. The input method may create a
window as a child of the client window with dimensions that fit the XNArea. The coordinates
are relative to the client window. If the client window has not been set yet, the input method
should save these values and apply them when the client window is set. If XNArea is not
specified, is set to NULL or is invalid, the results are undefined.

13.10.7.2. Area Needed

When set, the XNAreaNeeded argument specifies the geometry suggested by the client for
this area (Preedit or Status). The value associated with the argument must be a pointer to a
structure of type XRectangle. Note that the x, y values are not used and that non-zero values
for width or height are the constraints that the client wishes the input method to respect.

When read, the XNAreaNeeded argument specifies the preferred geometry desired by the
input method for the area.

This argument is only valid if the input style is XIMPreeditArea or XIMStatusArea. It is
used for geometry negotiation between the client and the input method and has no other effect
upon the input method (see section 13.6.5).

13.10.7.3. Spot Location

The XNSpotLocation argument specifies to the input method the coordinates of the “spot” to
be used by an input method executing with XNInputStyle set to XIMPreeditPosition. When
specified to any input method other than XIMPreeditPosition, this XIC value is ignored.

The x coordinate specifies the position where the next character would be inserted. The y
coordinate is the position of the baseline used by current text line in the focus window. The x
and y coordinates are relative to the focus window, if it has been set; otherwise, they are rela¬
tive to the client window. If neither the focus window nor the client window has been set, the
results are undefined.

Note that the value of the argument is a pointer to a structure of type XPoint.

13.10.7.4. Colormap

Two different arguments can be used to indicate what colormap the input method should use to
allocate colors: a colormap ID, or a standard colormap name.

The XNCoIormap argument is used to specify a colormap ID. The argument value is of type
Colormap. An invalid argument may generate a BadCoSorerror when it is used by the input
method.

The XNStdCoIormap argument is used to indicate the name of the standard colormap in
which input method should to allocate colors. The argument value is an Atom that should be
a valid atom for calling XGetRGBColormaps. An invalid argument may generate a BadA-
tom error when it is used by the input method.

249

Xlib - C Library XI1, Release 5

If colormap is left unspecified, it is defaulted to client window colormap.

13.10.7.5. Foreground and Background

The XNForeground and XNBackground arguments specify the foreground and background
pixel, respectively. The argument value is of type "unsigned long". It must be a valid pixel in
the input method colormap.

If these values are left unspecified, the default is determined by the input method.

13.10.7.6. Background Pixmap

The XNBackgroundPixmap argument specifies a background pixmap to be used as the back¬
ground of the window. The value must be of type Pixmap. An invalid argument may gen¬
erate a BadPixmap error when it is used by the input method.

If this value is left unspecified, the default is determined by the input method.

13.10.7.7. FontSet

The XNFontSet argument specifies to the input method what fontset is to be used. The argu¬
ment value is of type XFontSet.

If this value is left unspecified, the default is determined by the input method.

13.10.7.8. Line Spacing

The XNLineSpace argument specifies to the input method what line spacing is to be used in
preedit window if more than one line is to be used. This argument is of type "int".

If this value is left unspecified, the default is determined by the input method.

13.10.7.9. Cursor

The XNCursor argument specifies to the input method what cursor is to be used in the
specified window. This argument is of type Cursor.

An invalid argument may generate a BadCursor error when it is used by the input method. If
this value is left unspecified, the default is determined by the input method.

13.10.7.10. Preedit and Status Callbacks

A client that wishes to support the input style XIMPreeditCallbacks must provide a set of
preedit callbacks to the input method. The set of preedit callbacks are as follows:

XNPreeditStartCallback
XNPreeditDoneCallback
XNPreeditDrawCallback

XNPreeditCaretCallback

This is called when the input method starts preedit.
This is called when the input method stops preedit.
This is called when a number preedit keystrokes should be
echoed.
This is called to move text insertion point within preedit string

A client that wishes to support the input style XIMStatusCallbacks must provide a set of
status callbacks to the input method. The set of status callbacks are as follows:

XNStatusStartCallback This is called when the input method initializes status area.
XNStatusDoneCallback This is called when the input method no longer needs status

area.
XNStatusDrawCallback This is called when updating the status area is required.

The value of any status or preedit argument is a pointer to a structure of type XIMCallback.

typedef void (*XIMProc)0;

typedef struct {

250

Xlib - C Library XI1, Release 5

XPointer ciient_data;
XIMProc callback;

} XIMCallback;

Each callback has some particular semantics and will carry the data that expresses the environ¬
ment necessary to the client into a specific data structure. This paragraph only describes the
arguments to be used to set the callback. For a complete description of the semantics, see sec¬
tion 13.11.

Note that setting any of these values while doing preedit may cause unexpected results.

13.11, Callback Semantics

Callbacks are functions defined by clients or text drawing packages that are to be called from
the input method when selected events occur. Most clients will use a text editing package or a
toolkit and, hence, will not need to define such callbacks. This section defines the callback
semantics, when they are triggered, and what their arguments are. Note that this information is
mostly useful for X toolkit implementors.

Callbacks are mostly provided so that clients (or text editing packages) can implement on-the-
spot preediting in their own window. In that case, the input method needs to communicate and
synchronize with the client Input method needs to communicate changes in the preedit win¬
dow when it is under control of the client. Those callbacks allow the client to initialize the
preedit area, display a new preedit string, move the text insertion point inside preedit, terminate
preedit, or update the status area.

All callback functions follow the generic prototype;

void CallbackPrototypeO'c, client_data, cail_data)
XIC ic\
XPointer clientjdata',
SomeType call_data\

ic Specifies the input context.

clientjiata Specifies the additional client data.

call_data Specifies data specific to the callback.

The call_data argument is a structure that expresses the arguments needed to achieve the
semantics; that is, it is a a specific data structure appropriate to the callback. In cases where
no data is needed in the callback, this call_data argument is NULL. The client_data argument
is a closure that has been initially specified by the client when specifying the callback and
passed back. It may serve, for example, to inherit application context in the callback.

The following paragraphs describe the programming semantics and specific data structure asso¬
ciated with the different reasons.

13.11.1. Geometry Callback

The geometry callback is triggered by the input method to indicate that it wants the client to
negotiate geometry. The generic prototype is as follows:

void GeometryCallback(/c, clientjdata, call_data)
XIC ic\
XPointer clientjdata;
XPointer call jiata;

ic Specifies the input context.

clientjdata Specifies the additional client data.

call jiata Not used for this callback, always passed as NULL.

251

Xlib - C Library XI1, Release 5

Note that a GeometryCallback is called with a NULL call_data argument.

13.11.2. Preedit State Callbacks

When the input method turns input conversion on or off, a PreeditStartCallbaclc or Preedit-
DoneCallback callback is triggered in order to let the toolkit do the setup or the cleanup for the
preedit region.

int PreeditStartCallback (/c, client jiata, calljdata)
XIC ic,
XPointer client jiata',
XPointer calljdata;

ic Specifies the input context.

client jiata Specifies the additional client data.

calljdata Not used for this callback, always passed as NULL.

When preedit starts on the specified input context, the callback is called with a NULL call_data
argument. PreeditStartCallback will return the maximum size of the preedit string. Note that a
positive number indicates the maximum number of bytes allowed in the preedit string, and a
value of -1 indicates there is no limit

void PreeditDoneCallback (/c, client jiata, calljdata)
XIC ic;
XPointer client jiata;
XPointer calljdata;

ic Specifies the input context.

client jiata Specifies the additional client data.

calljdata Not used for this callback, always passed as NULL.

When preedit stops on the specified input context, the callback is called with a NULL call_data
argument. The client can release the data allocated by PreeditStartCallback.

PreeditStartCallback should initialize appropriate data needed for displaying preedit information
and for handling further PreeditDrawCallback calls. Once PreeditStartCallback is called, it will
not be called again before PreeditDoneCallback has been called.

13.11.3. PreeditDraw Callback

This callback is triggered to draw and insert, delete or replace, preedit text in the preedit
region. The preedit text may include unconverted input text such as Japanese kana, converted
text such as Japanese Kanji characters, or characters of both kinds. That string is either a mul¬
tibyte or wide character string, whose encoding matches the locale bound to the input context.
The callback prototype is as follows:

void PreeditDrawCallback(ic, client jiata, calljdata)
XIC ic;
XPointer client data',
XIMPreeditDrawCallbackStruct * calljdata',

ic Specifies the input context.

client jiata Specifies the additional client data.

call jiata Specifies the preedit drawing information.

The callback is passed a XIMPreeditDrawCallbackStruct structure in the call_data argument.
The text member of this structure contains the text to be drawn. After the string has been
drawn, the caret should be moved to the specified location.

The XIMPreeditDrawCallbackStruct structure is defined as follows:

252

Xlib - C Library XI1, Release 5

typedef struct __XIMPreeditDrawCallbackStruct {
int caret; /* Cursor offset within preedit string */
int chg_first; /* Starting change position */
int chgjength; /* Length of the change in character count */
XIMText *text;

} XIMPreeditDrawCallbackStruct;

The client must keep updating a buffer of the preedit text, the callback arguments referring to
indexes in that buffer. The call_data fields have specific meanings according to the operation:

• To indicate text deletion, the call_data specifies a NULL text field. The text to be
deleted is then the current text in buffer from position chg_first (starting at zero) on a
(character) length of chgjength.

• When text is non-NULL, it indicates insertion or replacement of text in the buffer.

A positive chg_length indicates that the characters starting from chg_first to
ch_first+chgjength must be deleted and must be replaced by text, whose length is
specified in the XIMText structure.

A chgjength value of zero indicates that text must be inserted right at the position
specified by chg_first. A value of zero for chg_first specifies the first character in the
buffer.

© The caret member is an index in the the preedit text buffer that specifies the character
after which the cursor should move after text has been drawn or deleted.

typedef struct _XIMText {
unsigned short length;
XIMFeedback * feedback;
Bool encoding Js_wchar,
union {

char * multi_byte;
wcharj * wide_char,
} string;

} XIMText;

The text string passed is actually a structure specifying:

• The length member is the text length in characters.

• The encoding Js_wchar member ia a value that indicates if the text string is encoded in
wide character or multibyte format. This value should be set by the client when it sets
the callback.

• The string member is the text string.

• The feedback member indicates rendering type.

The feedback member express the types of rendering feedback the callback should apply when
drawing text. Rendering of the text to be drawn is specified either in generic ways (for exam¬
ple, primary, secondary) or in specific ways (reverse, underline). When generic indications are
given, the client is free to choose the rendering style. It is necessary however that primary and
secondary are mapped to two distinct rendering styles.

T^ie-fedtjback member also specifies how the rendering of the text argument should be
achieved. If feedback is NULL, then rendering is assumed to be the same as rendering of
other characters in the text entry. Otherwise, it specifies an array defining the rendering of
each character of the string (hence the length of the array is length).

Ijf an input method wishes to indicate that it is only updating the feedback of the preedit text
without changing the content of it, the XIMText structure should contain a NULL value for
the string field, the number of characters affected in the length field, and the feedback field
should point to an array of XIMFeedback.

253

Xlib - C Library XI1, Release 5

Each element in the array is a bit mask represented by a value of type XIMFeedback. The
valid masks names are as follows:

typedef unsigned long XIMFeedback;

#define XIMReverse 1
#define XIMUnderline (1L«1)
#define XIMHighlight (1L«2)
#define XIMPrimary (1L«3)
#define XIMSecondary (1L«4)
#define XIMTertiary (1L«5)

13.11.4. PreeditCaretCallback

An input method may have its own “navigation keys” to allow the user to move the text
insertion point in the preedit area (for example, to move backward or forward). Consequently,
input method needs to indicate to the client that it should move the text insertion point. It then
calls the PreeditCaretCallback.

void PreeditCaretCallback(z'c, client_data, call_data)
XIC re;
XPointer client_data\
XIMPreeditCaretCallbackStruct *call_data\

ic Specifies the input context.

client_data Specifies the additional client data.

calljdata Specifies the preedit caret information.

The input method will trigger PreeditCaretCallback to move the text insertion point during
preedit. The call_data argument contains a pointer to an XIMPreeditCaretCallbackStruct
structure, which indicates where the caret should be moved. The callback must move the
insertion point to its new location and return, in field position, the new offset value from initial
position.

The XIMPreeditCaretCallbackStruct structure is defined as follows:

typedef struct _XIMPreeditCaretCallbackStruct {
int position; /* Caret offset within preedit string */
XIMCaretDirection direction; /* Caret moves direction */
XIMCaretStyle style; /* Feedback of the caret */

} XIMPreeditCaretCallbackStruct;

The XIMCaretStyle structure is defined as follows:

typedef enum {
XIMIsInvisible, /* Disable caret feedback */
XIMIsPrimary, /* UI defined caret feedback */
XIMIsSecondary, /* UI defined caret feedback */

} XIMCaretStyle;

The XIMCaretDirection structure is defined as follows:

typedef enum {
XIMForwardChar, XIMBackwardChar,
XIMForwardWord, XIMBackwardWord,
XIMCaretUp, XIMCaretDown,
XIMNextLine, XIMPreviousLine,
XIMLineStart, XIMLineEnd,
XIMAbsolutePosition,
XIMDontChange,

254

Xlib - C Library XI1, Release 5

} XIMCaretDirection;

The meaning of these values are defined as follows:

XIMForwardChar
XIMBackwardChar
XIMForwardWord
XIMBackwardWord
XIMCaretUp
XIMCaretDown
XIMPreviousLine
XIMNextLine
XIMLineStart

XIMLineEnd

XIMAbsolutePosition

XIMDontChange

Move caret forward one character position.
Move caret backward one character position.
Move caret forward one word position.
Move caret backward one word position.
Move caret up one line keeping current offset.
Move caret down one line keeping current offset.
Move caret up one line.
Move caret down one line.
Move caret to the beginning of the current display line that con¬
tains the caret.
Move caret to the end of the current display line that contains the
caret.
The callback must move to the location specified by the position
field of the callback data, indicated in characters, starting from the
beginning of the preedit text. Hence, a value of zero means move
back to beginning of the preedit text.
The caret position does not change.

13.11.5. Status Callbacks

An input method may communicate changes in the status of an input context (for example,
created, destroyed, or focus changes) with three status callbacks: StatusStartCallback, Status-
DoneCallback, and StatusDrawCallback.

When the input context is created or gains focus, the input method calls the StatusStartCallback
callback.

void StatusStartCallback(z'c, client_data, call_data)
XIC ic;
XPointer client_data\
XPointer calljlata;

ic Specifies the input context.

client_data Specifies the additional client data.

calljlata Not used for this callback, always passed as NULL.

The callback should initialize appropriate data for displaying status and be prepared to further
StatusDrawCallback calls. Once StatusStartCallback is called, it will not be called again before
StatusDoneCallback has been called.

When an input context is destroyed or when it loses focus, the input method calls StatusDone¬
Callback.

void StatusDoneCallback(/'c, client_data, calljlata)
XIC ic;
XPointer client_data;
XPointer calljlata;

ic Specifies the input context.

clientjlata Specifies the additional client data.

calljlata Not used for this callback, always passed as NULL.

255

Xlib - C Library XI1, Release 5

The callback may release any data allocated on StatusStart.

When an input context status has to be updated, the input method calls StatusDrawCallback.

void StatusDrawCallbackO'c, clientjiata, calljlata)
XIC ic\
XPointer client jiata’,
XIMStatusDrawCallbackStruct * calljlata;

ic Specifies the input context.

client_data Specifies the additional client data.

calljlata Specifies the status drawing information.

The callback should update the status area by either drawing a string, or imaging a bitmap in
the status area.

The XIMStatusDataType and XIMStatusDrawCallbackStruct structures are defined as fol¬
lows:

typedef enum {
XIMTextType,
XIMBitmapType,

} XIMStatusDataType:

typedef struct _XIMStatusDrawCallbackStruct {
XIMStatusDataType type;
union {

XIMText *text;
Pixmap bitmap:

} data;
} XIMStatusDrawCallbackStruct;

13.12. Event Filtering

Xlib provides the ability for an input method to register a filter internal to Xlib. This filter is
called by a client (or toolkit) by calling XFilterEvent after calling XNextEvent. Any client
that uses the XIM interface should call XFilterEvent to allow input methods to process their
events without knowledge of the client’s dispatching mechanism. A client’s user interface pol¬
icy may determine the priority of event filters with respect to other event handling mechanisms
(for example, modal grabs).

Clients may not know how many filters there are, if any, and what they do. They may only
know if an event has been filtered on return of XFilterEvent. Clients should discard filtered
events.

Bool XFilterEvent (event, w)
XEvent *event\
Window w;

event Specifies the event to filter.

w Specifies the window for which the filter is to be applied.

If the window argument is None, XFilterEvent applies the filter to the window specified in
the XEvent structure. The window argument is provided so that layers above Xlib that do
event redirection can indicate to which window an event has been redirected.

If XFilterEvent returns True, then some input method has filtered the event, and the client
should discard the event. If XFilterEvent returns False, then the client should continue pro¬
cessing the event.

256

Xlib - C Library XI1, Release 5

If a grab has occurred in the client, and XFilterEvent returns True, the client should ungrab
the keyboard.

13.13. Getting Keyboard Input

To get composed input from an input method, use XmbLookupString or XwcLookupString.

int XmbLookupString(ic, event, buffer_return, bytes_buffer, keysymjeturn, status jreturn)
XIC ic\
XKeyPressedEvent *evenr,
char * buffer jeturn;
int bytesJbuffer,
KeySym * key sym_re turn;
Status * status return;

int XwcLookupString (ic, event, bufferjeturn, bytes Jbuffer, keysym_return, statusjeturn)
XIC ic\
XKeyPressedEvent * event',
wchar_t * bufferjeturn',
int wc bars Jbuffer',
KeySym *keysym_return'.
Status * status _re turn',

ic Specifies the input context

event Specifies the key event to be used.

buffer jeturn Returns a multibyte string or wide character string (if any) from the input
method.

bytes Jbuffer
wchars ffuffer Specifies space available in return buffer.

keysymjeturn Returns the KeySym computed from the event if this argument is not NULL.

status jeturn Returns a value indicating what kind of data is returned.

The XmbLookupString and XwcLookupString functions return the string from the input
method specified in the buffer_retum argument. If no string is returned, the buffer_retum
argument is unchanged.

The KeySym into which the KeyCode from the event was mapped is returned in the
keysym_retum argument if it is non-NULL and the status_retum argument indicates that a
KeySym was returned. If both a string and a KeySym are returned, the KeySym value does
not necessarily correspond to the string returned.

Note that XmbLookupString returns the length of the string in bytes and that XwcLookup¬
String returns the length of the string in characters.

XmbLookupString and XwcLookupString return text in the encoding of the locale bound to
the input method of the specified input context.

Note that each string returned by XmbLookupString and XwcLookupString begins in the
initial state of the encoding of the locale (if the encoding of the locale is state-dependent).

Note

In order to insure proper input processing, it is essential that the client pass only
KeyPress events to XmbLookupString and XwcLookupString. Their behavior
when a client passes a KeyRelease event is undefined.

Gients should check the status_retum argument before using the other returned values. These
two functions both return a value to status_retum that indicates what has been returned in the
other arguments. The possible values returned are:

257

Xlib - C Library Xll, Release 5

XLookupBoth

XLookupKeySym

XLookupNone

XLookupChars

XBufferOverflow The input string to be returned is too large for ihe supplied
buffer_retum. The required size (XmbLookupString in bytes;
XwcLookupString in characters) is returned as the value of the
function, and the contents of buffer_retum and keysym_retum are
not modified. The client should recall the function with the same
event and a buffer of adequate size in order to obtain the string.
No consistent input has been composed so far. The contents of
buffer_retum and keysym_retum are not modified, and the function
returns zero.
Some input characters have been composed. They are placed in the
buffer_retum argument, and the string length is returned as the
value of the function. The string is encoded in the locale bound to
the input context. The contents of the keysym_retum argument is
not modified.
A KeySym has been returned instead of a string and is returned in
keysym_retum. The contents of the buffer_retum argument is not
modified, and the function returns zero.
Both a KeySym and a string are returned; XLookupChars and
XLookupKeySym occur simultaneously.

It does not make any difference if the input context passed as an argument to XmbLookup¬
String and XwcLookupString is the one currently in possession of the focus or not. Input
may have been composed within an input context before it lost the focus, and that input may
be returned on subsequent calls to XmbLookupString or XwcLookupString, even though it
does not have any more keyboard focus.

13.14. Input Method Conventions

The input method architecture is transparent to the client. However, clients should respect a
number of conventions in order to work properly. Gients must also be aware of possible
effects of synchronization between input method and library in the case of a remote input
server.

13.14.1. Client Conventions

A well-behaved client (or toolkit) should first query the input method style. If the client can¬
not satisfy the requirements of the supported styles (in terms of geometry management or call¬
backs), it should negotiate with the user continuation of the program or raise an exception or
error of some sort.

13.14.2. Synchronization Conventions

A KeyPress event with a KeyCode of zero is used exclusively as a signal that an input
method has composed input which can be return by XmbLookupString or XwcLookup¬
String. No other use is made of a KeyPress event with KeyCode of zero.

Such an event may be generated by either a front-end or a back-end input method in an imple¬
mentation dependent manner. Some possible ways to generate this event include:

• A synthetic event sent by an input method server

• An artificial event created by a input method filter and pushed onto a client’s event
queue

• A KeyPress event whose KeyCode value is modified by an input method filter

When callback support is specified by client, input methods will not take action unless they
explicitly called back the client and obtained no response (the callback is not specified or
returned invalid data).

258

Xlib - C Library XI1, Release 5

13.15. String Constants

The following symbols for string constants are defined in <X11/Xlib.h>. Although they are
shown here with particular macro definitions, they may be implemented as macros, as global
symbols, or as a mixture of the two. The string pointer value itself is not significant; clients
must not assume that inequality of two values implies inequality of the actual string data.

#define XNVaNestedList "XNVaNestedList"
#define XNQuerylnputStyle "query InputStyle"
#define XNClientWindow "clientWindow-
#define XNInputStyle "inputStyle"
#define XNFocusWindow "focusWindow"
#define XNResourceName "resourceName"
#define XNResourceClass "resourceClass"
#define XNGeometryCallback "geometryCallback"
#define XNFilterEvents "filterEvents"
#define XNPreeditStartCallback "preeditS tartCallback"
#define XNPreeditDoneCallback "preeditDoneCallback"
#define XNPreeditDrawCallback "preeditDrawCallback"
#define XNPreeditCaretCallback "preeditCaretCallback"
#define XNPreeditAttributes "preeditAttributes"
#define XNStatusStartCallback "statusStartCallback"
#define XNStatusDoneCallback "statusDoneCallback"
#define XNStatusDrawCallback "statusDrawCallback"
#define XNStatusAttributes "statusAttributes"
#define XNArea "area"
#define XNAreaNeeded "areaNeeded"
#define XNSpotLocation "spotLocation"
#define XNCoSormap "colorMap"
#define XNStdColormap "stdColorMap"
#define XNForeground "foreground"
#define XNBackground "background"
#define XNBackgroundPixmap "backgroundPixmap"
#define XNFontSet "fontSet"
#define XNLineSpace "lineSpace"
#define XNCursor "cursor"

259

Xlib - C Library XI1, Release 5

Chapter 14

Inter-Client Communication Functions

The Inter-Client Communication Conventions Manual, hereafter referred to as the ICCCM,
details the X Consortium approved conventions that govern inter-client communications. These
conventions ensure peer-to-peer client cooperation in the use of selections, cut buffers, and
shared resources as well as client cooperation with window and session managers. For further
information, see the Inter-Client Communication Conventions Manual.

Xlib provides a number of standard properties and programming interfaces that are ICCCM
compliant The predefined atoms for some of these properties are defined in the
<Xll/Xatom.h> header file, where to avoid name conflicts with user symbols their #define
name has an XA_ prefix. For further information about atoms and properties, see section 4.3.

Xlib’s selection and cut buffer mechanisms provide the primary programming interfaces by
which peer client applications communicate with each other (see sections 4.5 and 16.6). The
functions discussed in this chapter provide the primary programming interfaces by which client
applications communicate with their window and session managers as well as share standard
colormaps.

The standard properties that are of special interest for communicating with window and session
managers are:

Name Type Format Description

WM_CLASS STRING 8 Set by application programs to
allow window and session
managers to obtain the
application’s resources from the
resource database.

WM_CLIENT_MACHINE TEXT The string name of the machine on
which the client application is run¬
ning.

WM_COLORMAP_ WINDOWS WINDOW 32 The list of window IDs that may
need a different colormap than that
of their top-level window.

WM_COMMAND TEXT The command and arguments,
null-separated, used to invoke the
application.

WM_HINTS WM_HINTS 32 Additional hints set by the client
for use by the window manager.
The C type of this property is
XWMHints.

WM_ICON_NAME TEXT The name to be used in an icon.

WM_ICON_S IZE WM_ICON_SIZE 32 The window manager may set this
property on the root window to
specify the icon sizes it supports.
The C type of this property is
XlconSize.

260

Xlib - C Library Xll, Release 5

Name Type Format Description

WM_NAME TEXT The name of the application.

WM_N OR M AL_HINTS WM_SIZE_HINTS 32 Size hints for a window in its nor¬
mal state. The C type of this pro¬
perty is XSizeHints.

WM_PROTOCOLS ATOM 32 List of atoms that identify the com¬
munications protocols between the
client and window manager in
which the client is willing to parti¬
cipate.

WM_STATE WM_STATE 32 Intended for communication
between window and session
managers only.

WM_TRANS IENT_FOR WINDOW 32 Set by application programs to
indicate to the window manager
that a transient top-level window,
such as a dialog box.

The remainder of this chapter discusses:

• Client-to-window-manager communication

• Gient-to-session-manager communication

• Standard colormaps

14.1. Client to Window Manager Communication

This section discusses how to:

• Manipulate top-level windows

• Convert string lists

• Set and read text properties

• Set and read the WM_NAME property

• Set and read the WM_ICON_NAME property

• Set and read the WM_HINTS property

• Set and read the WM_NORMAL_HINTS property

• Set and read the WM_CLASS property

• Set and read the WM_TRANSIENT_FOR property

• Set and read the WM_PROTOCOLS property

• Set and read the WM_COLORMAP_WINDOWS property

• Set and read the WM_ICON_SIZE property

• Use window manager convenience functions

14.1.1. Manipulating Top-Level Windows

Xlib provides functions that you can use to change the visibility or size of top-level windows
(that is, those that were created as children of the root window). Note that the subwindows
that you create are ignored by window managers. Therefore, you should use the basic window
functions described in chapter 3 to manipulate your application’s subwindows.

261

Xlib - C Library XI1, Release 5

To request that a top-level window be iconified, use XlconifyWindow.

Status XlconifyWindow (dwp/oy, w, screenjiumber)
Display * display.
Window w;
int screenjiumber,

display Specifies the connection to the X server.

w Specifies the window.

screenjiumber Specifies the appropriate screen number on the host server.

The XlconifyWindow function sends a WM_CHANGE_STATE ClientMessage event with a
format of 32 and a first data element of IconicState (as described in section 4.1.4 of the
Inter-Client Communication Conventions Manual) and a window of w to the root window of
the specified screen with an event mask set to SubstructureNotifyMaskl Substruc-
tureRedirectMask. Window managers may elect to receive this message and if the window is
in its normal state, may treat it as a request to change the window’s state from normal to
iconic. If the WM_CHANGE_STATE property cannot be interned, XlconifyWindow does
not send a message and returns a zero status. It returns a nonzero status if the client message
is sent successfully; otherwise, it returns a zero status.

To request that a top-level window be withdrawn, use XWithdrawWindow.

Status XWithdrawWindow(d/.sp/ay, w, screenjiumber)
Display * display,
Window w;
int screenjiumber-,

display Specifies the connection to the X server,

w Specifies the window.

screenjiumber Specifies the appropriate screen number on the host server.

The XWithdrawWindow function unmaps the specified window and sends a synthetic
UnmapNotify event to the root window of the specified screen. Window managers may elect
to receive this message and may treat it as a request to change the window’s state to with¬
drawn. When a window is in the withdrawn state, neither its normal nor its iconic representa¬
tions is visible. It returns a nonzero status if the UnmapNotify event is successfully sent; oth¬
erwise, it returns a zero status.

XWithdrawWindow can generate a BadWindow error.

To request that a top-level window be reconfigured, use XReconfigureWMWindow.

Status XReconfigureWMWindow(display, w, screenjiumber, valuejnask, values)
Display * disp lay.
Window w;
int screenjiumber;
unsigned int valuejnaslc,
XWindowChanges *values\

display Specifies the connection to the X server,

w Specifies the window.

screenjiumber Specifies the appropriate screen number on the host server.

value jnask Specifies which values are to be set using information in the values structure.
This mask is the bitwise inclusive OR of the valid configure window values
bits.

262

Xlib - C Library Xll, Release 5

values Specifies the XWindowChanges structure.

The XReconfigureWMWindow function issues a ConfigureWindow request on the specified
top-level window. If the stacking mode is changed and the request fails with a BadMatch
error, the error is trapped by Xlib and a synthetic ConfigureRequestEvent containing the
same configuration parameters is sent to the root of the specified window. Window managers
may elect to receive this event and treat it as a request to reconfigure the indicated window. It
returns a nonzero status if the request or event is successfully sent; otherwise, it returns a zero
status.

XReconfigureWMWindow can generate BadValue and BadWindow errors.

14.1,2. Converting String Lists

Many of the text properties allow a variety of types and formats. Because the data stored in
these properties are not simple null-terminated strings, a XTextProperty structure is used to
describe the encoding, type, and length of the text as well as its value. The XTextProperty
structure contains:
typedef struct {

unsigned char *value; /* property data */
Atom encoding; /* type of property */
int format; /* 8, 16, or 32 */
unsigned long nitems; /* number of items in value */

} XTextProperty;

Xlib provides functions to convert localized text to or from encodings which support the inter¬
client communication conventions for text. In addition, functions are provided for converting
between lists of pointers to character strings and text properties in the STRING encoding.

The functions for localized text return a signed integer error status which encodes Success as
zero, specific error conditions as negative numbers, and partial conversion as a count of uncon¬
vertible characters.

#define XNoMemory
#define XLocaleNotSupported
#define XConverterNotFound

typedef enum {
XStringStyle, /*
XCompoundTextStyle, /*
XTextStyle, /*
XStdICCTextStyle /*

} XICCEncodingStyle;

-1
-2
-3

STRING */
COMPOUND_TEXT */
text in owner’s encoding (current locale) */
STRING, else COMPOUND TEXT */

To convert a list of text strings to an XTextProperty structure, use XmbTextListToTextPro-
perty or XwcTextListToTextProperty.

int XmbTextListToTextProperty(^«p/ay, list, count, style, textjprop_return)
Display * display,
char **list;
int count;
XICCEncodingStyle style',
XTextProperty *text_prop_return\

263

Xlib - C Library XI1, Release 5

int XwcTextListToTextProperty(display, list, count, style, text_prop_return)
Display * display',
wchar_t **list;
int count',
XICCEncodingStyle style',
XTextProperty *text_prop_return\

display Specifies the connection to the X server.

list Specifies a list of null-terminated character strings.

count Specifies the number of strings specified.

style Specifies the manner in which the property is encoded.

text_prop_returnRetiims the XTextProperty structure.

The XmbTextListToTextProperty and XwcTextListToTextProperty functions set the
specified XTextProperty value to a set of null-separated elements representing the concatena¬
tion of the specified list of null-terminated text strings. A final terminating null is stored at the
end of the value field of text_prop_retum but is not included in the nitems member.

The functions set the encoding field of text_prop_retum to an Atom for the specified display
naming the encoding determined by the specified style, and convert the specified text list to
this encoding for storage in the text_prop_retum value field. If the style XStringStyle or
XCompoundTextStyle is specified, this encoding is “STRING” or “COMPOUND_TEXT”,
respectively. If the style XTextStyle is specified, this encoding is the encoding of the current
locale. If the style XStdICCTextStyle is specified, this encoding is “STRING” if the text is
fully convertible to STRING, else “COMPOUND_TEXT”.

If insufficient memory is available for the new value string, the functions return XNoMemory.
If the current locale is not supported, the functions return XLocaleNotSupported. In both of
these error cases, the functions do not set text_prop_retum.

To determine if the functions are guaranteed not to return XLocaleNotSupported, use XSup-
portsLocale.

If the supplied text is not fully convertible to the specified encoding, the functions return the
number of unconvertible characters. Each unconvertible character is converted to an
implementation-defined and encoding-specific default string. Otherwise, the functions return
Success. Note that full convertibility to all styles except XStringStyle is guaranteed.

To free the storage for the value field, use XFree.

To obtain a list of text strings from an XTextProperty structure, use XmbTextPropertyTo-
TextList or XwcTextPropertyToTextList.

int XmbTextPropertyToTextList (dLp/ay, textjprop, list_return, count_return)
Display * display,
XTextProperty *text_prop\
char ***list_return',
int * countjeturn',

int XwcTextPropertyToTextList(dfsp/<2y, textjprop, list_return, count_return)
Display * display,
XTextProperty *text_prop\
wchar_t ***list_return',
int *count_return‘,

display Specifies the connection to the X server.

text_prop Specifies the XTextProperty structure to be used.

list_return Returns a list of null-terminated character strings.

264

Xlib - C Library XI1, Release 5

count jeturn Returns the number of strings.

The XmbTextPropertyToTextList and XwcTextPropertyToTextList functions return a list
of text strings in the current locale representing the null-separated elements of the specified
XTextProperty structure. The data in text_prop must be format 8.

Multiple elements of the property (for example, the strings in a disjoint text selection) are
separated by a null byte. The contents of the property are not required to be null-terminated;
any terminating null should not be included in text_prop.nitems.

If insufficient memory is available for the list and its elements, XmbTextPropertyToTextList
and XwcTextPropertyToTextList return XNoMemory. If the current locale is not sup¬
ported, the functions return XLocaleNotSupported. Otherwise, if the encoding field of
text_prop is not convertible to the encoding of the current locale, the functions return XCon-
verterNotFound. For supported locales, existence of a converter from COMPOUND TEXT,
STRING, or the encoding of the current locale is guaranteed if XSupportsLocale returns
True for the current locale (but the actual text may contain unconvertible characters.) Conver¬
sion of other encodings is implementation-dependent In all of these error cases, the functions
do not set any return values.

Otherwise, XmbTextPropertyToTextList and XwcTextPropertyToTextList return the list of
null-terminated text strings to list_retum, and the number of text strings to count_retum.

If the value field of text__prop is not fully convertible to the encoding of the current locale, the
functions return the number of unconvertible characters. Each unconvertible character is con¬
verted to a string in the current locale that is specific to the current locale. To obtain the value
of this string, use XDefaultString. Otherwise, XmbTextPropertyToTextList and
XwcTextPropertyToTextList return Success.

To free the storage for the list and its contents returned by XmbTextPropertyToTextList, use
XFreeStringList. To free the storage for the list and its contents returned by XwcTextPro¬
pertyToTextList, use XwcFreeStringList.

To free the in-memory data associated with the specified wide character string list, use
XwcFreeStringList.

void XwcFreeStringList(/wr)
wchar_ t **list\

list Specifies the list of strings to be freed.

The XwcFreeStringList function frees memory allocated by XwcTextPropertyToTextList.

To obtain the default string for text conversion in the current locale, use XDefaultString.

char *XDefaultString()

The XDefaultString function returns the default string used by Xlib for text conversion (for
example, in XmbTextListToTextProperty). The default string is the string in the current
locale which is output when an unconvertible character is found during text conversion. If the
string returned by XDefaultString is the empty string (""), no character is output in the con¬
verted text. XDefaultString does not return NULL.

The string returned by XDefaultString is independent of the default string for text drawing;
see XCreateFontSet to obtain the default string for an XFontSet.

The behavior when an invalid codepoint is supplied to any Xlib function is undefined.

The returned string is null-terminated. It is owned by Xlib and should not be modified or
freed by the client. It may be freed after the current locale is changed. Until freed, it will not
be modified by Xlib.

265

Xlib - C Library XI1, Release 5

To set the specified list of strings in the STRING encoding to a XTextProperty structure, use
XStringListToTextProperty.

Status XStringListToTextProperty (list, count, text_prop_return)
char **list\
int count;
XTextProperty *text_prop_return\

list Specifies a list of null-terminated character strings.

count Specifies the number of strings.

text_prop_returnRetums the XTextProperty structure.

The XStringListToTextProperty function sets the specified XTextProperty to be of type
STRING (format 8) with a value representing the concatenation of the specified list of null-
separated character strings. An extra null byte (which is not included in the nitems member) is
stored at the end of the value field of text_prop_retum. The strings are assumed (without
verification) to be in the STRING encoding. If insufficient memory is available for the new
value string, XStringListToTextProperty does not set any fields in the XTextProperty struc¬
ture and returns a zero status. Otherwise, it returns a nonzero status. To free the storage for
the value field, use XFree.

To obtain a list of strings from a specified XTextProperty structure in the STRING encoding,
use XTextPropertyToStringList.

Status XTextPropertyToStringList (text_prop, list_return, count_return)
XTextProperty *text_prop\
char ***list_return\
int * count_return\

text_prop Specifies the XTextProperty structure to be used.

listjeturn Returns a list of null-terminated character strings.

count_return Returns the number of strings.

The XTextPropertyToStringList function returns a list of strings representing the null-
separated elements of the specified XTextProperty structure. The data in text_prop must be
of type STRING and format 8. Multiple elements of the property (for example, the strings in a
disjoint text selection) are separated by NULL (encoding 0). The contents of the property are
not null-terminated. If insufficient memory is available for the list and its elements,
XTextPropertyToStringList sets no return values and returns a zero status. Otherwise, it
returns a nonzero status. To free the storage for the list and its contents, use XFreeS-
tringList.

To free the in-memory data associated with the specified string list, use XFreeStringList.

void XFreeStringList(/m)
char **list\

list Specifies the list of strings to be freed.

The XFreeStringList function releases memory allocated by XmbTextPropertyToTextList
and XTextPropertyToStringList, and the missing charset list allocated by XCreateFontSet.

14.1.3. Setting and Reading Text Properties

Xlib provides two functions that you can use to set and read the text properties for a given
window. You can use these functions to set and read those properties of type TEXT
(WM_NAME, WM_ICON_NAME, WM_COMMAND, and WM_CLIENT_MACHINE). In
addition, Xlib provides separate convenience functions that you can use to set each of these
properties. For further information about these convenience functions, see sections 14.1.4,

266

Xlib - C Library XI1, Release 5

14.1.5, 14.2.1, and 14.2.2, respectively.

To set one of a window’s text properties, use XSetTextProperty.

void XSetTextProperty(display, w, text_prop, property)
Display * display.
Window w;
XTextProperty *text_prop\
Atom property,

display Specifies the connection to the X server,

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

property Specifies the property name.

The XSetTextProperty function replaces the existing specified property for the named win¬
dow with the data, type, format, and number of items determined by the value field, the encod¬
ing field, the format field, and the nitems field, respectively, of the specified XTextProperty
structure. If the property does not already exist, XSetTextProperty sets it for the specified
window.

XSetTextProperty can generate BadAlloc, BadAtom, BadValue, and BadWindow errors.

To read one of a window’s text properties, use XGetTextProperty.

Status XGetTextProperty (display, w, text_prop_return, property)
Display * display.
Window w;
XTextProperty *text_prop_return\
Atom property,

display Specifies the connection to the X server,

w Specifies the window.

text_prop_returnRctums the XTextProperty structure.

property Specifies the property name.

The XGetTextProperty function reads the specified property from the window and stores the
data in the returned XTextProperty structure. It stores the data in the value field, the type of
the data in the encoding field, the format of the data in the format field, and the number of
items of data in the nitems field. An extra byte containing null (which is not included in the
nitems member) is stored at the end of the value field of text_prop_retum. The particular
interpretation of the property’s encoding and data as “text” is left to the calling application. If
the specified property does not exist on the window, XGetTextProperty sets the value field to
NULL, the encoding field to None, the format field to zero, and the nitems field to zero.

If it was able to read and store the data in the XTextProperty structure, XGetTextProperty
returns a nonzero status; otherwise, it returns a zero status.

XGetTextProperty can generate BadAtom and BadWindow errors.

14.L4. Setting and Reading the WM NAME Property

Xlib provides convenience functions that you can use to set and read the WM_NAME property
for a given window.

To set a window’s WM_NAME property with the supplied convenience function, use
XSetWMName.

267

Xlib - C Library XI1, Release 5

void XSetWMName (d/sp/ay, w, text_prop)
Display * display.
Window w;
XTextProperty *textjprop\

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

The XSetWMName convenience function calls XSetTextProperty to set the WM_NAME
property.

To read a window’s WM_NAME property with the supplied convenience function, use
XGetWMName.

Status XGetWMName {display, w, text_prop_return)
Display * display.
Window w;
XTextProperty *text_prop_return\

display Specifies the connection to the X server.

w Specifies the window.

text_prop_returnRetums the XTextProperty structure.

The XGetWMName convenience function calls XGetTextProperty to obtain the
WM_NAME property. It returns nonzero status on success; otherwise it returns a zero status.

The following two functions have been superseded by XSetWMName and XGetWMName,
respectively. You can use these additional convenience functions for window names that are
encoded as STRING properties.

To assign a name to a window, use XStoreName.

XStoreName(display, w, windowjname)
Display * display.
Window w\
char *window_name;

display Specifies the connection to the X server.

w Specifies the window.

window_name Specifies the window name, which should be a null-terminated string.

The XStoreName function assigns the name passed to window_name to the specified window.
A window manager can display the window name in some prominent place, such as the title
bar, to allow users to identify windows easily. Some window managers may display a
window’s name in the window’s icon, although they are encouraged to use the window’s icon
name if one is provided by the application. If the string is not in the Host Portable Character
Encoding the result is implementation dependent.

XStoreName can generate BadAHoc and BadWindow errors.

To get the name of a window, use XFetchName.

Status XFetchName(display, w, windowjiame_return)
Display * display.
Window w;
char **window name return'.

268

Xlib - C Library XI1, Release 5

display Specifies the connection to the X server,

w Specifies the window.

windowjurnie _return
Returns the window name, which is a null-terminated string.

The XFetehName function returns the name of the specified window. If it succeeds, it returns
nonzero; otherwise, no name has been set for the window, and it returns zero. If the
WM_NAME property has not been set for this window, XFetehName sets
window_name_retum to NULL. If the data returned by the server is in the Latin Portable
Character Encoding, then the returned string is in the Host Portable Character Encoding. Oth¬
erwise, the result is implementation dependent. When finished with it, a client must free the
window name string using XFree.

XFetehName can generate a BadWindow error.

14.1.5. Setting and Reading the WM_ICON_NAME Property

Xlib provides convenience functions that you can use to set and read the WM_ICON_NAME
property for a given window.

To set a window’s WM_ICON_NAME property, use XSetWMIconName.

void XSetWMIconName (dwp/tfy, w, text_prop)
Display * display.
Window w;
XTextProperty *text_prop\

display Specifies the connection to the X server.

w Specifies the window.

text_prop Specifies the XTextProperty structure to be used.

The XSetWMIconName convenience function calls XSetTextProperty to set the
WM_ICON_NAME property.

To read a window’s WM_ICON_NAME property, use XGetWMIconName.

Status XGetWMIconName(^Up/<3y, w, textjprop jeturn)
Display * display.
Window w;
XTextProperty *text_prop_return\

display Specifies the connection to the X server.

w Specifies the window.

text_prop_returnReiums the XTextProperty structure.

The XGet WMIconName convenience function calls XGetTextProperty to obtain the
WM_ICON_NAME property. It returns nonzero status on success; otherwise it returns a zero
status.

The next two functions have been superseded by XSetWMIconName and XGetWMIcon-
Name, respectively You can use these additional convenience functions for window names
that are encoded as STRING properties.

To set the name to be displayed in a window’s icon, use XSetlconName.

269

Xlib - C Library XI1, Release 5

XSetlconName(display, w, iconjiame)
Display * display;
Window w;
char * iconjiame;

display Specifies the connection to the X server.

w Specifies the window.

iconjiame Specifies the icon name, which should be a null-terminated string.

If the string is not in the Host Portable Character Encoding the result is implementation depen¬
dent. XSetlconName can generate BadAlIoc and BadWindow errors.

To get the name a window wants displayed in its icon, use XGetlconName.

Status XGetlconName (d/sp/oy, w, iconjiamejeturn)
Display * display;
Window w;
char ** iconjiame jeturn;

display Specifies the connection to the X server,

w Specifies the window.

iconjiame jeturn
Returns the window’s icon name, which is a null-terminated string.

The XGetlconName function returns the name to be displayed in the specified window’s icon.
If it succeeds, it returns nonzero; otherwise, if no icon name has been set for the window, it
returns zero. If you never assigned a name to the window, XGetlconName sets
icon_name_retum to NULL. If the data returned by the server is in the Latin Portable Charac¬
ter Encoding, then the returned string is in the Host Portable Character Encoding. Otherwise,
the result is implementation dependent. When finished with it, a client must free the icon
name string using XFree.

XGetlconName can generate a BadWindow error.

14.1.6. Setting and Reading the WM HINTS Property

Xlib provides functions that you can use to set and read the WM_HINTS property for a given
window. These functions use the flags and the XWMHints structure, as defined in the
<X11/Xutil.h> header file.

To allocate an XWMHints structure, use XAUocWMHints.

XWMHints *XAllocWMHints()

The XAUocWMHints function allocates and returns a pointer to a XWMHints structure.
Note that all fields in the XWMHints structure are initially set to zero. If insufficient memory
is available, XAUocWMHints returns NULL. To free the memory allocated to this structure,
use XFree.

The XWMHints structure contains:

/* Window manager hints mask bits */

#define InputHint (1L «
#define StateHint (1L «
#define IconPixmapHint (1L «
#define IconWindowHint (1L «
#define IconPositionHint (1L «
#define IconMaskHint (1L «

270

Xlib - C Library XI1, Release 5

#define WindowGroupHint
#define AIlHints

/* Values */

(1L « 6)
(InputHind StateHind IconPixmapHind
IconWindowHind IconPositionHind
IconMaskHind WindowGroupHint)

typedef struct {
long flags;
Bool input;

int initial_state;
Pixmap icon_pixmap;
Window icon_window;
int icon_x, icon_y;
Pixmap icon_mask;
XID window_group;
/* this structure may be

} XWMHints;

/* marks which fields in this structure are defined */
/* does this application rely on the window manager to
get keyboard input? */
/* see below */
/* pixmap to be used as icon */
/* window to be used as icon */
/* initial position of icon */
/* pixmap to be used as mask for icon_pixmap */
/* id of related window group */

extended in the future */

The input member is used to communicate to the window manager the input focus model used
by the application. Applications that expect input but never explicitly set focus to any of their
subwindows (that is, use the push model of focus management), such as X Version 10 style
applications that use real-estate driven focus, should set this member to True. Similarly,
applications that set input focus to their subwindows only when it is given to their top-level
window by a window manager should also set this member to True. Applications that
manage their own input focus by explicitly setting focus to one of their subwindows whenever
they want keyboard input (that is, use the pull model of focus management) should set this
member to False. Applications that never expect any keyboard input also should set this
member to False.

Pull model window managers should make it possible for push model applications to get input
by setting input focus to the top-level windows of applications whose input member is True.
Push model window managers should make sure that pull model applications do not break
them by resetting input focus to PointerRoot when it is appropriate (for example, whenever
an application whose input member is False sets input focus to one of its subwindows).

The definitions for the initial_state flag are:

#define WithdrawnState 0
#define NormalState 1 /* most applications start this way */

#define IconicState 3 /* application wants to start as an icon */

The icon_mask specifies which pixels of the icon_pixmap should be used as the icon. This
allows for nonrectangular icons. Both icon_pixmap and icon_mask must be bitmaps. The
icon_window lets an application provide a window for use as an icon for window managers
that support such use. The window_group lets you specify that this window belongs to a
group of other windows. For example, if a single application manipulates multiple top-level
windows, this allows you to provide enough information that a window manager can iconify
all of the windows rather than just the one window.

To set a window’s WM_HINTS property, use XSetWMHints.

271

Xlib - C Library XI1, Release 5

XSetWMHints (<fop/<2y, w, wmhints)
Display * display.
Window w;
XWMHints *wmhints\

display Specifies the connection to the X server.

w Specifies the window.

wmhints Specifies the XWMHints structure to be used.

The XSetWMHints function sets the window manager hints that include icon information and
location, the initial state of the window, and whether the application relies on the window
manager to get keyboard input.

XSetWMHints can generate BadAlloc and BadWindow errors.

To read a window’s WM_HINTS property, use XGetWMHints.

XWMHints *XGetWMHints(<fcp/oy, w)
Display * display.
Window w,

display Specifies the connection to the X server.

w Specifies the window.

The XGetWMHints function reads the window manager hints and returns NULL if no
WM_HINTS property was set on the window or returns a pointer to a XWMHints structure if
it succeeds. When finished with the data, free the space used for it by calling XFree.

XGetWMHints can generate a BadWindow error.

14.1.7. Setting and Reading the WM_NORMAL_HINTS Property

Xlib provides functions that you can use to set or read the WMNORMALHINTS property
for a given window. The functions use the flags and the XSizeHints structure, as defined in
the <X11/Xutil.h> header file.

To allocate an XSizeHints structure, use XAllocSizeHints.

XSizeHints *XAllocSizeHints()

The XAllocSizeHints function allocates and returns a pointer to a XSizeHints structure. Note
that all fields in the XSizeHints structure are initially set to zero. If insufficient memory is
available, XAllocSizeHints returns NULL. To free the memory allocated to this structure, use
XFree.

The XSizeHints structure contains:

/* Size hints mask bits */

#define USPosition (1L « 0) /* user specified x, y */
#define USSize (1L « 1) /* user specified width, height */
#define PPosition (1L « 2) /* program specified position */
#define PSize (1L « 3) /* program specified size */
#define PMinSize (1L « 4) /* program specified minimum size */
#define PMaxSize (1L « 5) /* program specified maximum size */
#define PResizelnc (1L « 6) /* program specified resize increments */
#define PAspect (1L « 7) /* program specified min and max aspect rai

*/

#define PBaseSize (1L « 8)
/

272

Xlib - C Library XI1, Release 5

#define PWinGravity (1L « 9)
#define PAHHints (PPositionlPSizdPMinSizd

PMaxSizelPResizelndPAspect)

/* Values */

typedef struct {
long flags;
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {

int x;
int y;

} min_aspect, max_aspect;
int base_width, base_height;
int win_gravity;

} XSizeHints;

The x, y, width, and height members are now obsolete and are left solely for compatibility rea¬
sons. The min_width and min_height members specify the minimum window size that still
allows the application to be useful. The max_width and max_height members specify the max¬
imum window size. The width_inc and height_inc members define an arithmetic progression
of sizes (minimum to maximum) into which the window prefers to be resized. The min_aspect
and max_aspect members are expressed as ratios of x and y, and they allow an application to
specify the range of aspect ratios it prefers. The base_width and base_height members define
the desired size of the window. The window manager will interpret the position of the win¬
dow and its border width to position the point of the outer rectangle of the overall window
specified by the win_gravity member. The outer rectangle of the window includes any borders
or decorations supplied by the window manager. In other words, if the window manager
decides to place the window where the client asked, the position on the parent window’s
border named by the win_gravity will be placed where the client window would have been
placed in the absence of a window manager.

Note that use of the PAHHints macro is highly discouraged.

/* marks which fields in this structure are defined */
/* Obsolete */
/* Obsolete */

/* numerator */
/* denominator */

To set a window’s WM_NORMAL_HINTS property, use XSetWMNormalHints.

void XSetWMNormalHints (display, w, hints)
Display * display.
Window w;
XSizeHints * hints;

display Specifies the connection to the X server,

w Specifies the window.

hints Specifies the size hints for the window in its normal state.

The XSetWMNormalHints function replaces the size hints for the WM_NORMAL_HINTS
property on the specified window. If the property does not already exist, XSetWMNor¬
malHints sets the size hints for the WM_NORMAL_HINTS property on the specified win¬
dow. The property is stored with a type of WM_SIZE_HINTS and a format of 32.

XSetWMNormalHints can generate BadAlloc and BadWindow errors.

273

Xlib - C Library XI1, Release 5

To read a window’s WM_NORMAL_HINTS property, use XGetWMNormalHints.

Status XGetWMNormalHints (display, w, hints_return, suppliedjeturn)
Display * display.
Window w;
XSizeHints * hints jeturn',
long *supplied_return;

display Specifies the connection to the X server.

w Specifies the window.

hints_return Returns the size hints for the window in its normal state.

supplied jeturn Returns the hints that were supplied by the user.

The XGetWMNormalHints function returns the size hints stored in the
WM_NORMAL_HINTS property on the specified window. If the property is of type
WMJSIZE HINTS, is of format 32, and is long enough to contain either an old (pre-ICCCM)
or new size hints structure, XGetWMNormalHints sets the various fields of the XSizeHints
structure, sets the supplied_retum argument to the list of fields that were supplied by the user
(whether or not they contained defined values), and returns a nonzero status. Otherwise, it
returns a zero status.

If XGetWMNormalHints returns successfully and a pre-ICCCM size hints property is read,
the suppliedjutum argument will contain the following bits:

(USPositionl USSizel PPositionl PSizel PMinSizel
PMaxSizel PResizelndPAspect)

If the property is large enough to contain the base size and window gravity fields as well, the
supplied_retum argument will also contain the following bits:

PBaseSizdPWinGravity

XGetWMNormalHints can generate a BadWindow error.

To set a window’s WM_SIZE_HINTS property, use XSetWMSizeHints.

void XSetWMSizeHints {display, w, hints, property)
Display * display.
Window w;
XSizeHints * hints'.
Atom property,

display Specifies the connection to the X server,

w Specifies the window.

hints Specifies the XSizeHints structure to be used.

property Specifies the property name.

The XSetWMSizeHints function replaces the size hints for the specified property on the
named window. If the specified property does not already exist, XSetWMSizeHints sets the
size hints for the specified property on the named window. The property is stored with a type
of WM_SIZE_HINTS and a format of 32. To set a window’s normal size hints, you can use
the XSetWMNormalHints function.

XSetWMSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

To read a window’s WM_SIZE_HINTS property, use XGetWMSizeHints.

274

Xlib - C Library XI1, Release 5

Status XGetWMSizeHints (dlsp/ay, w, hintsjeturn, supplied jeturn, property)
Display * display’.
Window w;
XSizeHints * hints jeiurn\
long * supplied jeturn’.
Atom property’,

display Specifies the connection to the X server.

' w Specifies the window.

hints jeturn Returns the XSizeHints structure.

supplied jeturn Returns the hints that were supplied by the user.

property Specifies the propeity name.

The XGetWMSizeHints function returns the size hints stored in the specified property on the
named window. If the property is of type WM_SIZE_HINTS, is of format 32, and is long
enough to contain either an old (pre-ICCCM) or new size hints structure, XGetWMSizeHints
sets the various fields of the XSizeHints structure, sets the supplied_retum argument to the list
of fields that were supplied by the user (whether or not they contained defined values), and
returns a nonzero status. Otherwise, it returns a zero status. To get a window’s normal size
hints, you can use the XGetWMNormalHints function.

If XGetWMSizeHints returns successfully and a pre-ICCCM size hints property is read, the
supplied_retum argument will contain the following bits:

(USPositionl USSizel PPositionl PSizd PMinSizel
PMaxSizelPResizelndPAspect)

If the property is large enough to contain the base size and window gravity fields as well, the
supplied_retum argument will also contain the following bits:

PBaseSizdPWinGravity

XGetWMSizeHints can generate BadAtom and BadWindow errors.

14X8. Setting and Reading the WM _CLASS Property

Xlib provides functions that you can use to set and get the WM_CLASS property for a given
window. These functions use the XClassHint structure, which is defined in the
<X11/Xutil.h> header file.

To allocate an XClassHint structure, use XAHocClassHint.

XClassHint *XA!locClassHint()

The XAHocClassHint function allocates and returns a pointer to a XClassHint structure.
Note that the pointer fields in the XClassHint structure are initially set to NULL. If
insufficient memory is available, XAHocClassHint returns NULL. To free the memory allo¬
cated to this structure, use XFree.

The XClassHint contains:

typedef struct {
char *res__name;
char *res_class;

} XClassHint;

The resjiame member contains the application name, and the res_class member contains the
application class. Note that the name set in this property may differ from the name set as
WM_NAME. That is, WM_NAME specifies what should be displayed in the title bar and,

275

Xlib - C Library XI1, Release 5

therefore, can contain temporal information (for example, the name of a file currently in an
editor’s buffer). On the other hand, the name specified as part of WMCLASS is the formal
name of the application that should be used when retrieving the application’s resources from
the resource database.

To set a window’s WM_CLASS property, use XSetClassHint.

XSetClassHmi(display, w, class_hints)
Display * display.
Window w;
XClassHint * class_hints\

display Specifies the connection to the X server,

w Specifies the window.

classJiints Specifies the XClassHint structure that is to be used.

The XSetClassHint function sets the class hint for the specified window. If the strings are
not in the Host Portable Character Encoding the result is implementation dependent.

XSetClassHint can generate BadAlIoc and BadWindow errors.

To read a window’s WM_CLASS property, use XGetClassHint.

Status XGetClassHint /ay, w, class Jiints_return)
Display * display.
Window w;
XClassHint * classJiints^return;

display Specifies the connection to the X server,

w Specifies the window.

classJiintsjeturn
Returns the XClassHint structure.

The XGetClassHint function returns the class hint of the specified window to the members of
the supplied structure. If the data returned by the server is in the Latin Portable Character
Encoding, then the returned strings are in the Host Portable Character Encoding. Otherwise,
the result is implementation dependent. It returns nonzero status on success; otherwise it
returns a zero status. To free resjiame and res_class when finished with the strings, use
XFree on each individually.

XGetClassHint can generate a BadWindow error.

14.L9. Setting and Reading the WMTRANSIENTFOR Property

Xlib provides functions that you can use to set and read the WM_TRANSIENT_FOR property
for a given window.

To set a window’s WM_TRANSIENT_F0R property, use XSetTransientForHint.

XSetTransientForHint(<fop/ay, w, prop_window)
Display * display.
Window w;
Window prop_window;

display Specifies the connection to the X server,

w Specifies the window.

propjvindow Specifies the window that the WM_TRANSIENT_FQR property is to be set to.

276

Xlib - C Library XI1, Release 5

The XSetTransientForHint function sets the WM_TRANSIENT_FOR property of the
specified window to the specified prop_window.

XSetTransientForHint can generate BadAUoc and BadWindow errors.

To read a window’s WM_TRANSIENT_FOR property, use XGetTransientForHint.

Status XGetTransientForHint (£/z.sp/<2)\ w, prop_window_return)
Display * display.
Window w;
Window * prop _window_re turn;

display Specifies the connection to the X server,

w Specifies the window.

prop ^windowjreturn
Returns the WM_TRANSIENT_FOR property of the specified window.

The XGetTransientForHint function returns the WM_TRANSIENT_FOR property for the
specified window. It returns nonzero status on success; otherwise it returns a zero status.

XGetTransientForHint can generate a BadWindow error.

14.L10. Setting and Reading the WM_ PROTOCOLS Property

Xlib provides functions that you can use to set and read the WM_PROTOCOLS property for a
given window.

To set a window’s WM_PROTOCOLS property, use XSetWMProtocols.

Status XSetWMProtocols (display, w, protocols, count)
Display * display;
Window w;
Atom *protocols;
int count;

display Specifies the connection to the X server,

w Specifies the window.

protocols Specifies the list of protocols.

count Specifies the number of protocols in the list.

The XSetWMProtocols function replaces the WM_PROTOCOLS property on the specified
window with the list of atoms specified by the protocols argument. If the property does not
already exist, XSetWMProtocols sets the WM_PROTOCOLS property on the specified win¬
dow to the list of atoms specified by the protocols argument. The property is stored with a
type of ATOM and a format of 32. If it cannot intern the WM_PROTOCOLS atom,
XSetWMProtocols returns a zero status. Otherwise, it returns a nonzero status.

XSetWMProtocols can generate BadAUoc and BadWindow errors.

To read a window’s WM PROTOCOLS property, use XGetWMProtocols.

Status XGetWMProtocols (display, w, protocolsjeturn, count_return)
Display * display;
Window w;
Atom **protocolsjeturn;
int * countjeturn;

display Specifies the connection to the X server.

211

Xlib - C Library XI1, Release 5

w Specifies the window.

protocols _retur nRetums the list of protocols.

count jeturn Returns the number of protocols in the list.

The XGetWMProtocols function returns the list of atoms stored in the WM PROTOCOLS
property on the specified window. These atoms describe window manager protocols in which
the owner of this window is willing to participate. If the property exists, is of type ATOM, is
of format 32, and the atom WM_PROTOCOLS can be interned, XGetWMProtocols sets the
protocols_retum argument to a list of atoms, sets the count_retum argument to the number of
elements in the list, and returns a nonzero status. Otherwise, it sets neither of the return argu¬
ments and returns a zero status. To release the list of atoms, use XFree.

XGetWMProtocols can generate a BadWindow error.

14.1.11. Setting and Reading the WM COLORMAP WINDOWS Property

Xlib provides functions that you can use to set and read the WM_COLORMAP_WINDOWS
property for a given window.

To set a window’s WM_CQLORMAP_WINDOWS property, use XSetWMCoIormapWin¬
dows.

Status XSetWMColormapWindows(d/sp/<2}\ w, colormap _windows, count)
Display * display;
Window w;
Window * color map_windows;
int count;

display Specifies the connection to the X server,

w Specifies the window.

colormap _windows
Specifies the list of windows.

count Specifies the number of windows in the list.

The XSetWMColormapWindows function replaces the WM_COLORMAP_WINDOWS pro¬
perty on the specified window with the list of windows specified by the colormap_windows
argument. It the property does not already exist, XSetWMColormapWindows sets the
WM_COLORMAP_WINDOWS property on the specified window to the list of windows
specified by the colormap_windows argument. The property is stored with a type of WIN¬
DOW and a format of 32. If it cannot intern the WM_COLORMAP_WINDOWS atom,
XSetWMColormapWindows returns a zero status. Otherwise, it returns a nonzero status.

XSetWMColormapWindows can generate BadAIIoc and BadWindow errors.

To read a window’s WM_COLORMAP_WINDOWS property, use XGetWMColormapWin-
dows.

Status XGetWMColormapWindows(<i/\s'p/<jy, w, colormap_windows jeturn, count_return)
Display * display.
Window w;
Window ** colormap ^windows_return;
int * count_return\

display Specifies the connection to the X server.

w Specifies the window.

colormap_windows jreturn
Returns the list of windows.

278

Xlib - C Library XI1, Release 5

count jeturn Returns the number of windows in the list.

The XGetWMColormapWindows function returns the list of window identifiers stored in the
WM_COLORMAP_WINDOWS property on the specified window. These identifiers indicate
the colormaps that the window manager may need to install for this window. If the property
exists, is of type WINDOW, is of format 32, and the atom WM_COLORMAP_WINDOWS
can be interned, XGetWMColormapWindows sets the windows_retum argument to a list of
window identifiers, sets the count_retum argument to the number of elements in the list, and
returns a nonzero status. Otherwise, it sets neither of the return arguments and returns a zero
status. To release the list of window identifiers, use XFree.

XGetWMColormapWindows can generate a BadWindow error.

14.L12. Setting and Reading the WM_ICQN_SIZE Property

Xlib provides functions that you can use to set and read the WM_ICON_SIZE property for a
given window. These functions use the XlconSize structure, which is defined in die
<X11/Xutil.h> header file.

To allocate an XlconSize structure, use XAllocXconSize.

XlconSize *XAllocIconSize()

The XAllocIconSize function allocates and returns a pointer to a XlconSize structure. Note
that all fields in the XlconSize structure are initially set to zero. If insufficient memory is
available, XAllocIconSize returns NULL. To free the memory allocated to this structure, use
XFree.

The XlconSize structure contains:

typedef struct {
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;

} XlconSize;

The width_inc and height_inc members define an arithmetic progression of sizes (minimum to
maximum) that represent the supported icon sizes.

To set a window’s WM_IC0N_S1ZE property, use XSetlconSizes.

XSetlconSizes{display, w, sizejist, count)
Display * display.
Window w;
XlconSize *sizejist\
int count;

display Specifies the connection to the X server,

w Specifies the window.

sizejist Specifies the size list.

count Specifies the number of items in the size list.

The XSetlconSizes function is used only by window managers to set the supported icon sizes.

XSetlconSizes can generate BadAIloc and BadWindow errors.

To read a window’s WM_ICON_SIZE property, use XGetlconSizes.

279

Xlib - C Library XI1, Release 5

Status XGetlconSizes toy, w, sizeJistjeturn, count_return)
Display * display;
Window w;
XlconSize **size_list_return;
int * countjeturn;

display Specifies the connection to the X server.

w Specifies the window.

size Jistjeturn Returns the size list.

count jeturn Returns the number of items in the size list.

The XGetlconSizes function returns zero if a window manager has not set icon sizes; other¬
wise, it return nonzero. XGetlconSizes should be called by an application that wants to find
out what icon sizes would be most appreciated by the window manager under which the appli¬
cation is running. The application should then use XSetWMHints to supply the window
manager with an icon pixmap or window in one of the supported sizes. To free the data allo¬
cated in size_list_retum, use XFree.

XGetlconSizes can generate a BadWindow error.

14.1.13. Using Window Manager Convenience Functions

The XmbSetWMProperties function stores the standard set of window manager properties,
with text properties in standard encodings for internationalized text communication. The stan¬
dard window manager properties for a given window are WM_NAME, WM_ICON_NAME,
WM_HINTS, WM_NORMAL_HINTS, WM_CLASS, WM_COMMAND,
WM_CLIENT_MACHINE, and WM_LOCALE_NAME.

void XmbSetWMProperties(display, w, window_name, iconjame, argv, argc,
normalJiints, wmjiints, class_hints)

Display * display;
Window w;
char *window_name;
char * iconjame;
char *argv[j;
int argc;
XSizeHints * normal Jiints;
XWMHints *wm_hints;
XClassHint * class hints;

display Specifies the connection to the X server.

w Specifies the window.

windowjiame Specifies the window name, which should be a null-terminated string.

iconjame Specifies the icon name, which should be a null-terminated string.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

hints Specifies the size hints for the window in its normal state.

wmjiints Specifies the XWMHints structure to be used.

class Jiints Specifies the XClassHint structure to be used.

The XmbSetWMProperties convenience function provides a simple programming interface
for setting those essential window properties that are used for communicating with other clients
(particularly window and session managers).

If the window_name argument is non-NULL, XmbSetWMProperties sets the WM_NAME
property. If the icon_name argument is non-NULL, XmbSetWMProperties sets the

280

Xlib - C Library XI1, Release 5

WM_ICON_NAME property. The window_name and icon_name arguments are null-
terminated strings in the encoding of the current locale. If the arguments can be fully con¬
verted to the STRING encoding, the properties are created with type “STRING”: otherwise,
the arguments are converted to Compound Text, and the properties are created with type
“COMPOUND_TEXT”.

If the normal_hints argument is non-NULL, XmbSetWM Properties calls XSetWMNor-
malHints, which sets the WM_NORMAL_HINTS property (see section 14.1.7). If the
wm_hints argument is non-NULL, XmbSetWMProperties calls XSetWMIlints, which sets
the WM_HINTS property (see section 14.1.6).

If the argv argument is non-NULL, XmbSetWMProperties sets the WM_COMMAND pro¬
perty from argv and argc. Note that an argc of 0 indicates a zero-length command.

The hostname of this machine is stored using XSetWMClientMachine (see section 14.2.2).

If the class_hints argument is non-NULL, XmbSetWMProperties sets the WMCLASS pro¬
perty. If the res_name member in the XClassHint structure is set to the NULL pointer and
the RESOURCE_NAME environment variable is set, the value of the environment variable is
substituted for res_name. If the res_name member is NULL, the environment variable is not
set, and argv and argv[0] are set, then the value of argv[0], stripped of any directory prefixes,
is substituted for res_name.

It is assumed that the supplied class_hints.res_name and argv, the RESOURCE_NAME
environment variable, and the hostname of this machine are in the encoding of the locale
announced for the LC_CTYPE category. (On POSIX-compliant systems, the LC_CTYPE, else
LANG environment variable). The corresponding WM_CLASS, WM_COMMAND, and
WM_CLIENT_MACHINE properties are typed according to the local host locale announcer.
No encoding conversion is performed prior to storage in the properties.

For clients that need to process the property text in a locale, XmbSetWMProperties sets the
WM_LOCALE_NAME property to be the name of the current locale. The name is assumed to
be in the Host Portable Character Encoding, and is converted to STRING for storage in the
property.

XmbSetWMProperties can generate BadAIIoc and BadWindow errors.

To set a window’s standard window manager properties with strings in the STRING encoding,
use XSetWMProperties. The standard window manager properties for a given window are
WM_NAME, WM_ICON_NAME, WM_HINTS, WM_NORMAL_HINTS, WM_CLASS,
WM COMMAND, and WM CLIENT MACHINE.

void XSetWMProperties (display, w, windowjxame, iconjiame, argv, argc, normalJiints, wmjiints, classJiii
Display * display.
Window w;
XTextProperty ^window jiame;
XTextProperty * iconjiame',
char **argv\
int argc,
XSizeHints * normal Jiints;
XWMHints * wmjiints;
XClassHint * class hints'.

display

w

windowjiame

iconjiame

argv

Specifies the

Specifies the

Specifies the

Specifies the

Specifies the

connection to the X server,

window.

window name, which should be a null-terminated string,

icon name, which should be a null-terminated string,

application’s argument list.

281

Xlib - C Library XI1, Release 5

argc

normalJiints

wm hints

Specifies the number of arguments.

Specifies the size hints for the window in its normal state.

Specifies the XWMHints structure to be used.

classjiints Specifies the XClassHint structure to be used.

The XSetWMProperties convenience function provides a single programming interface for
setting those essential window properties that are used for communicating with other clients
(particularly window and session managers).

If the window_name argument is non-NULL, XSetWMProperties calls XSetWMName,
which in turn, sets the WM_NAME property (see section 14.1.4). If the icon_name argument
is non-NULL, XSetWMProperties calls XSetWMIconName, which sets the
WM_ICQN_NAME property (see section 14.1.5). If the argv argument is non-NULL,
XSetWMProperties calls XSetCommand, which sets the WM_COMMAND property (see
section 14.2.1). Note that an argc of zero is allowed to indicate a zero-length command. Note
also that the hostname of this machine is stored using XSetWMClientMachine (see section
14.2.2).

If the normal_hints argument is non-NULL, XSetWMProperties calls XSetWMNor-
malHints, which sets the WM_NORMAL_HINTS property (see section 14.1.7). If the
wm_hints argument is non-NULL, XSetWMProperties calls XSetWMHints, which sets the
WM_HINTS property (see section 14.1.6).

If the classjiints argument is non-NULL, XSetWMProperties calls XSetCIassHint, which
sets the WM_CLASS property (see section 14.1.8). If the res_name member in the
XClassHint structure is set to the NULL pointer and the RESOURCE_NAME environment
variable is set, then the value of the environment variable is substituted for res_name. If the
res_name member is NULL, the environment variable is not set, and argv and argv[0] are set,
then the value of argv[0], stripped of any directory prefixes, is substituted for res_name.

XSetWMProperties can generate BadAlIoc and BadWindow errors.

14.2. Client to Session Manager Communication

This section discusses how to:

• Set and read the WM_COMMAND property

• Set and read the WM_CLIENT_MACHINE property

14.2.1. Setting and Reading the WM COMMAND Property

Xlib provides functions that you can use to set and read the WM_COMMAND property for a
given window.

To set a window’s WM COMMAND property, use XSetCommand.

XSetCommand {display, w, argv, argc)
Display * display.
Window w;
char **argv\
int argc;

display Specifies the connection to the X server,

w Specifies the window.

argv Specifies the application’s argument list.

argc Specifies the number of arguments.

The XSetCommand function sets the command and arguments used to invoke the application.
(Typically, argv is the argv array of your main program.) If the strings are not in the Host
Portable Character Encoding the result is implementation dependent.

282

Xlib - C Library Xll, Release 5

XSetCommand can generate BadAlloc and BadWindow errors.

To read a window’s WM_COMMAND property, use XGetCommand.

Status XGetCommand {display, w, argv_return, argc_return)
Display * display.
Window w;
char ***argv_return\
int *argc_return;

display Specifies the connection to the X server,

w Specifies the window.

argv_return Returns the application’s argument list.

argc_return Returns the number of arguments returned.

The XGetCommand function reads the WM_COMMAND property from the specified win¬
dow and returns a string list. If the WM COMMAND property exists, it is of type STRING
and format 8. If sufficient memory can be allocated to contain the string list, XGetCommand
fills in the argv__retum and argc_retum arguments and returns a nonzero status. Otherwise, it
returns a zero status. If the data returned by the server is in the Latin Portable Character
Encoding, then the returned strings are in the Host Portable Character Encoding. Otherwise,
the result is implementation dependent. To free the memory allocated to the string list, use
XFreeStringList.

14.2.2. Setting and Reading the WM CLIENT MACHINE Property

Xlib provides functions that you can use to set and read the WM_CLIENT_MACHINE pro¬
perty for a given window.

To set a window’s WM_CLIENT_MACHINE property, use XSetWMClientMachine.

void XSetWMClientMachine (d/sp/ay, w, text_prop)
Display * display;
Window w;
XTextProperty *text_prop\

display Specifies the connection to the X server,

w Specifies the window.

textjprop Specifies the XTextProperty structure to be used.

The XSetWMClientMachine convenience function calls XSetTextProperty to set the
WM_CLIENT_MACHINE property.

To read a window’s WM_CLIENT_MACHINE property, use XGetWMClientMachine.

Status XGetWMClientMachine(d/s/?/ay, w, text_prop_return)
Display * display.
Window w;
XTextProperty *text_prop_return\

display Specifies the connection to the X server.

w Specifies the window.

text_prop_returnRetums the XTextProperty structure.

The XGetWMClientMachine convenience function performs an XGetTextProperty on the
WM_CLIENT_MACHINE property. It returns nonzero status on success; otherwise it returns
a zero status.

283

Xlib - C Library XI1, Release 5

143. Standard Colormaps

Applications with color palettes, smooth-shaded drawings, or digitized images demand large
numbers of colors. In addition, these applications often require an efficient mapping from color
triples to pixel values that display the appropriate colors.

As an example, consider a three-dimensional display program that wants to draw a smoothly
shaded sphere. At each pixel in the image of the sphere, the program computes the intensity
and color of light reflected back to the viewer. The result of each computation is a triple of
RGB coefficients in the range 0.0 to 1.0. To draw the sphere, the program needs a colormap
that provides a large range of uniformly distributed colors. The colormap should be arranged
so that the program can convert its RGB triples into pixel values very quickly, because draw¬
ing the entire sphere requires many such conversions.

On many current workstations, the display is limited to 256 or fewer colors. Applications must
allocate colors carefully, not only to make sure they cover the entire range they need but also
to make use of as many of the available colors as possible. On a typical X display, many
applications are active at once. Most workstations have only one hardware look-up table for
colors, so only one application colormap can be installed at a given time. The application
using the installed colormap is displayed correctly, and the other applications “go technicolor”
and are displayed with false colors.

As another example, consider a user who is running an image processing program to display
earth-resources data. The image processing program needs a colormap set up with 8 reds, 8
greens, and 4 blues, for a total of 256 colors. Because some colors are already in use in the
default colormap, the image processing program allocates and installs a new colormap.

The user decides to alter some of the colors in the image by invoking a color palette program
to mix and choose colors. The color palette program also needs a colormap with eight reds,
eight greens, and four blues, so just like the image processing program, it must allocate and
install a new colormap.

Because only one colormap can be installed at a time, the color palette may be displayed
incorrectly whenever the image processing program is active. Conversely, whenever the
palette program is active, the image may be displayed incorrectly. The user can never match or
compare colors in the palette and image. Contention for colormap resources can be reduced if
applications with similar color needs share colormaps.

The image processing program and the color palette program could share the same colormap if
there existed a convention that described how the colormap was set up. Whenever either pro¬
gram was active, both would be displayed correctly.

The standard colormap properties define a set of commonly used colormaps. Applications that
share these colormaps and conventions display true colors more often and provide a better
interface to the user.

Standard colormaps allow applications to share commonly used color resources. This allows
many applications to be displayed in true colors simultaneously, even when each application
needs an entirely filled colormap.

Several standard colormaps are described in this section. Usually, a window manager creates
these colormaps. Applications should use the standard colormaps if they already exist.

To allocate an XStandardCoIormap structure, use XAIIocStandardColormap.

XStandardColormap *XAllocStandardColormap()

The XAIIocStandardColormap function allocates and returns a pointer to a XStandard¬
Colormap structure. Note that all fields in the XStandardColormap structure are initially set
to zero. If insufficient memory is available, XAIIocStandardColormap returns NULL. To
free the memory allocated to this structure, use XFree.

284

Xlib - C Library XI1, Release 5

The XStandardColormap structure contains:

/* Hints */

#define ReleaseByFreeingColormap ((XID) 1L)

/* Values */
typedef struct {

Colormap colormap;
unsigned long red_max;
unsigned long red_mult;
unsigned long green_max;
unsigned long green_mult;
unsigned long bluejnax;
unsigned long blue_mult;
unsigned long base_pixel;
VisuallD visualid;
XID killid;

} XStandardColormap;

The colormap member is the colormap created by the XCreateColormap function. The
red_max, greenjnax, and bluejnax members give the maximum red, green, and blue values,
respectively. Each color coefficient ranges from zero to its max, inclusive. For example, a com¬
mon colormap allocation is 3/3/2 (3 planes for red, 3 planes for green, and 2 planes for blue).
This colormap would have redjnax = 7, greenjnax = 7, and bluejnax = 3. An alternate allo¬
cation that uses only 216 colors is redjnax = 5, greenjnax = 5, and bluejnax = 5.

The redjnult, greenjnult, and bluejnult members give the scale factors used to compose a
full pixel value. (See the discussion of the base jfixel members for further information.) For a
3/3/2 allocation, redjnult might be 32, greenjnult might be 4, and bluejnult might be 1. For
a 6-colors-each allocation, redjnult might be 36, greenjnult might be 6, and bluejnult might
be 1.

The basejjixel member gives the base pixel value used to compose a full pixel value. Usually,
the basej)ixel is obtained from a call to the XAllocColorPlanes function. Given integer red,
green, and blue coefficients in their appropriate ranges, one then can compute a corresponding
pixel value by using the following expression:

(r * redjnult + g * greenjnult + b * bluejnult + basejnxel) & OxFFFFFFFF

For GrayScale colormaps, only the colormap, redjnax, redjnult, and basejuxel members are
defined. The other members are ignored. To compute a GrayScale pixel value, use the follow¬
ing expression:

(gray * redjnult + basejnxel) & OxFFFFFFFF

Negative multipliers can be represented by converting the 2’s complement representation of the
multiplier into an unsigned long and storing the result in the appropriate jnult field. The step
of masking by OxFFFFFFFF effectively converts the resulting positive multiplier into a nega¬
tive one. The masking step will take place automatically on many machine architectures,
depending on the size of the integer type used to do the computation.

The visualid member gives the ID number of the visual from which the colormap was created.
The killid member gives a resource ID that indicates whether the cells held by this standard
colormap are to be released by freeing the colormap ID or by calling the XKillClient function
on the indicated resource. (Note that this method is necessary for allocating out of an existing
colormap.)

The properties containing the XStandardColormap information have the type
RGB COLOR MAP.

285

Xlib - C Library XI1, Release 5

The remainder of this section discusses standard colormap properties and atoms as well as how
to manipulate standard colormaps.

14.3.1. Standard Colormap Properties and Atoms

Several standard colormaps are available. Each standard colormap is defined by a property, and
each such property is identified by an atom. The following list names the atoms and describes
the colormap associated with each one. The <Xll/Xatom.h> header file contains the
definitions for each of the following atoms, which are prefixed with XA_.

RGB_DEFAULT_MAP
This atom names a property. The value of the property is an array of XStandardCoIor-
map structures. Each entry in the array describes an RGB subset of the default color
map for the Visual specified by visual_id.

Some applications only need a few RGB colors and may be able to allocate them from
the system default colormap. This is the ideal situation because the fewer colormaps that
are active in the system the more applications are displayed with correct colors at all
times.

A typical allocation for the RGB_DEFAULT_MAP on 8-plane displays is 6 reds, 6
greens, and 6 blues. This gives 216 uniformly distributed colors (6 intensities of 36
different hues) and still leaves 40 elements of a 256-element colormap available for
special-purpose colors for text, borders, and so on.

RGB_BEST_MAP
This atom names a property. The value of the property is an XStandardColormap.

The property defines the best RGB colormap available on the screen. (Of course, this is
a subjective evaluation.) Many image processing and three-dimensional applications need
to use all available colormap cells and to distribute as many perceptually distinct colors
as possible over those cells. This implies that there may be more green values available
than red, as well as more green or red than blue.

For an 8-plane PseudoColor visual, RGB_BEST_MAP is likely to be a 3/3/2 allocation.
For a 24-plane DirectCoIor visual, RGB_BEST_MAP is normally an 8/8/8 allocation.

RG B_RED_MA P
RGB_GREEN_MAP
RGB_BLUE_MAP

These atoms name properties. The value of each property is an XStandardColormap.

The properties define all-red, all-green, and all-blue colormaps, respectively. These maps
are used by applications that want to make color-separated images. For example, a user
might generate a full-color image on an 8-plane display both by rendering an image three
times (once with high color resolution in red, once with green, and once with blue) and
by multiply-exposing a single frame in a camera.

RGB_GRAY_MAP
This atom names a property. The value of the property is an XStandardColormap.

The property describes the best Grayscale colormap available on the screen. As previ¬
ously mentioned, only the colormap, redjnax, red_mult, and base_pixel members of the
XStandardColormap structure are used for Grayscale colormaps.

14.3.2. Setting and Obtaining Standard Colormaps

Xlib provides functions that you can use to set and obtain an XStandardColormap structure.

To set an XStandardColormap structure, use XSetRGBColormaps.

286

Xlib - C Library Xll, Release 5

void XSetRGBColormaps (d/sp/ay, w, std_colormap, count, property)
Display * display.
Window w;
XStandardColormap *std_colormap\
int count".
Atom property,

display Specifies the connection to the X server.

w Specifies the window.

std_colormap Specifies the XStandardColormap structure to be used.

count Specifies the number of colormaps.

property Specifies the property name.

The XSetRGBColormaps function replaces the RGB colormap definition in the specified pro¬
perty on the named window. If the property does not already exist, XSetRGBColormaps sets
the RGB colormap definition in the specified property on the named window. The property is
stored with a type of RGB_COLOR_MAP and a format of 32. Note that it is the caller’s
responsibility to honor the ICCCM restriction that only RGB_DEFAULT_MAP contain more
than one definition.

The XSetRGBColormaps function usually is only used by window or session managers. To
create a standard colormap, follow this procedure:

1. Open a new connection to the same server.

2. Grab the server.

3. See if the property is on the property list of the root window for the screen.

4. If the desired property is not present:

• Create a colormap (unless using the default colormap of the screen).

• Determine the color characteristics of the visual.

• Call XAIlocCoIorPlanes or XAIlocColorCells to allocate cells in the colormap.

• Call XStoreColors to store appropriate color values in the colormap.

• Fill in the descriptive members in the XStandardColormap structure.

• Attach the property to the root window.

• Use XSetCIoseDownMode to make the resource permanent.

5. Ungrab the server.

XSetRGBColormaps can generate BadAlIoc, BadAtom, and BadWindow errors.

To obtain the XStandardColormap structure associated with the specified property, use
XGetRGBCoIormaps.

Status XGetRGBColormaps(d/.sp/tfy, w, std_colormap jeturn, count_return, property)
Display * display.
Window w;
XStandardColormap **std_colormap_return;
int *count_return\
Atom property,

display Specifies the connection to the X ser/er.

w Specifies the window.

std_colormap jreturn
Returns the XStandardColormap structure.

countjreturn Returns the number of colormaps.

287

Xlib - C Library Xll, Release 5

property Specifies the property name.

The XGetRGBColormaps function returns the RGB colormap definitions stored in the
specified property on the named window. If the property exists, is of type
RGB_COLOR_MAP, is of format 32, and is long enough to contain a colormap definition,
XGetRGBColormaps allocates and fills in space for the returned colormaps and returns a
nonzero status. If the visualid is not present, XGetRGBColormaps assumes the default visual
for the screen on which the window is located; if the killid is not present. None is assumed,
which indicates that the resources cannot be released. Otherwise, none of the fields are set,
and XGetRGBColormaps returns a zero status. Note that it is the caller’s responsibility to
honor the ICCCM restriction that only RGB_DEFAULT_MAP contain more than one
definition.

XGetRGBColormaps can generate BadAtom and BadWindow errors.

288

Xlib - C Library Xll, Release 5

Chapter 15

Resource Manager Functions

A program often needs a variety of options in the X environment (for example, fonts, colors,
icons, and cursors). Specifying all of these options on the command line is awkward because
users may want to customize many aspects of the program and need a convenient way to
establish these customizations as the default setting. The resource manager is provided for this
purpose. Resource specifications are usually stored in human-readable files and in server pro¬
perties.

The resource manager is a database manager with a twist In most database systems, you per¬
form a query using an imprecise specification, and you get back a set of records. The resource
manager, however, allows you to specify a large set of values with an imprecise specification,
to query the database with a precise specification, and to get back only a single value. This
should be used by applications that need to know what the user prefers for colors, fonts, and
other resources. It is this use as a database for dealing with X resources that inspired the name
“Resource Manager,” although the resource manager can be and is used in other ways.

For example, a user of your application may want to specify that all windows should have a
blue background but that all mail-reading windows should have a red background. With well-
engineered and coordinated applications, a user can define this information using only two lines
of specifications.

As an example of how the resource manager works, consider a mail-reading application called
xmh. Assume that it is designed so that it uses a complex window hierarchy all the way down
to individual command buttons, which may be actual small subwindows in some toolkits.
These are often called objects or widgets. In such toolkit systems, each user interface object
can be composed of other objects and can be assigned a name and a class. Fully qualified
names or classes can have arbitrary numbers of component names, but a fully qualified name
always has the same number of component names as a fully qualified class. This generally
reflects the structure of the application as composed of these objects, starting with the applica¬
tion itself.

For example, the xmh mail program has a name “xmh” and is one of a class of “Mail” pro¬
grams. By convention, the first character of class components is capitalized, and the first letter
of name components is in lowercase. Each name and class finally has an attribute (for exam¬
ple “foreground” or “font”). If each window is properly assigned a name and class, it is
easy for the user to specify attributes of any portion of the application.

At the top level, the application might consist of a paned window (that is, a window divided
into several sections) named “toe”. One pane of the paned window is a button box window
named “buttons” and is filled with command buttons. One of these command buttons is used
to incorporate new mail and has the name “incorporate”. This window has a fully qualified
name, “xmh.toc.buttons.incorporate”, and a fully qualified class,
“Xmh.Paned.Box.Command”. Its fully qualified name is the name of its parent,
“xmh.toc.buttons”, followed by its name, “incorporate”. Its class is the class of its parent,
“Xmh.Paned.Box”, followed by its particular class, “Command”. The fully qualified name of
a resource is the attribute’s name appended to the object’s fully qualified name, and the fully
qualified class is its class appended to the object’s class.

The incorporate button might need the following resources: Title string. Font, Foreground color
for its inactive state, Background color for its inactive state. Foreground color for its active
state, and Background color for its active state. Each resource is considered to be an attribute
of the button and, as such, has a name and a class. For example, the foreground color for the

289

Xlib - C Library XI1, Release 5

button in its active state might be named “activeForeground”, and its class might be “Fore¬
ground”.

When an application looks up a resource (for example, a color), it passes the complete name
and complete class of the resource to a lookup routine. The resource manager compares this
complete specification against the incomplete specifications of entries in the resource database,
find the best match, and returns the corresponding value for that entry.

The definitions for the resource manager are contained in <Xll/Xresource.h>.

15.L Resource File Syntax

The syntax of a resource file is a sequence of resource lines terminated by newline characters
or end of file. The syntax of an individual resource line is:

ResourceLine
Comment
IncludeFile
FileName
ResourceSpec
ResourceName
Binding
WhiteSpace
Component
ComponentName
NameChar
Value

Comment I IncludeFile I ResourceSpec I <empty lino
"!" {<any character except null or newlino)
"#" WhiteSpace "include" WhiteSpace FileName WhiteSpace
<valid filename for operating system>
WhiteSpace ResourceName WhiteSpace WhiteSpace Value
[Binding] {Component Binding} ComponentName
tt it | •* a|c **

(<space> I horizontal tab>)
"?" I ComponentName
NameChar {NameChar}
n^it j I "0" ”9" | ** "| ** **

{<any character except null or unescaped newlino}

Elements separated by vertical bar (1) are alternatives. Curly braces ({...}) indicate zero or
more repetitions of the enclosed elements. Square brackets ([...]) indicate that the enclosed ele¬
ment is optional. Quotes ("...") are used around literal characters.

IncludeFile lines are interpreted by replacing the line with the contents of the specified file.
The word "include" must be in lowercase. The filename is interpreted relative to the directory
of the file in which the line occurs (for example, if the filename contains no directory or con¬
tains a relative directory specification).

If a ResourceName contains a contiguous sequence of two or more Binding characters, the
sequence will be replaced with single "." character if the sequence contains only characters,
otherwise the sequence will be replaced with a single character.

A resource database never contains more than one entry for a given ResourceName. If a
resource file contains multiple lines with the same ResourceName, the last line in the file is
used.

Any whitespace character before or after the name or colon in a ResourceSpec are ignored. To
allow a Value to begin with whitespace, the two-character sequence “\space” (backslash fol¬
lowed by space) is recognized and replaced by a space character, and the two-character
sequence “\tab" (backslash followed by horizontal tab) is recognized and replaced by a hor¬
izontal tab character. To allow a Value to contain embedded newline characters, the two-
character sequence “\n” is recognized and replaced by a newline character. To allow a Value
to be broken across multiple lines in a text file, the two-character sequence “\newline”
(backslash followed by newline) is recognized and removed from the value. To allow a Value
to contain arbitrary character codes, the four-character sequence lt\nnn”, where each n is a
digit character in the range of “0”-“7”, is recognized and replaced with a single byte that
contains the octal value specified by the sequence. Finally, the two-character sequence “\\” is
recognized and replaced with a single backslash.

As an example of these sequences, the following resource line contains a value consisting of
four characters: a backslash, a null, a “z”, and a newline:

magic.values: \\\000\

290

Xlib - C Library XI1, Release 5

z\n

15.2. Resource Manager Matching Rules

The algorithm for determining which resource database entry matches a given query is the
heart of the resource manager. All queries must fully specify the name and class of the desired
resource (use of and "?" are not permitted). The library supports up to 100 components in
a full name or class. Resources are stored in the database with only partially specified names
and classes, using pattern matching constructs. An asterisk (*) is a loose binding and is used
to represent any number of intervening components, including none. A period (.) is a tight
binding and is used to separate immediately adjacent components. A question mark (?) is used
to match any single component name or class. A database entry cannot end in a loose binding;
the final component (which cannot be "?") must be specified. The lookup algorithm searches
the database for the entry that most closely matches (is most specific for) the full name and
class being queried. When more than one database entry matches the full name and class, pre¬
cedence rules are used to select just one.

The full name and class are scanned from left to right (from highest level in the hierarchy to
lowest), one component at a time. At each level, the corresponding component and/or binding
of each matching entry is determined, and these matching components and bindings are com¬
pared according to precedence rules. Each of the rules is applied at each level, before moving
to the next level, until a rule selects a single entry over all others. The rules (in order of pre¬
cedence) are:

1. An entry that contains a matching component (whether name, class, or"?") takes pre¬
cedence over entries that elide the level (that is, entries that match the level in a loose
binding).

2. An entry with a matching name takes precedence over both entries with a matching class
and entries that match using "?". An entry with a matching class takes precedence over
entries that match using "?".

3. An entry preceded by a tight binding takes precedence over entries preceded by a loose
binding.

To illustrate these rules, consider following the resource database entries:

xmh*Paned*activeForeground: red (entry A)
*incorporate.Foreground: blue (entry B)
xmh.toc*Command*activeForeground: green (entry C)
xmh.toc*?.Foreground: white (entry D)
xmh.toc*Command.activeForeground: black (entry E)

Consider a query for the resource:

xmh.toc.message functions. incorporate.activeForeground (name)
Xmh.Paned.Box.Command. Foreground (class)

At the first level (xmh, Xmh) rule 1 eliminates entry B. At the second level (toe, Paned) rule
2 eliminates entry A. At the third level (messagefunctions, Box) no entries are eliminated. At
the fourth level (incorporate. Command) rule 2 eliminates entry D. At the fifth level
(activeForeground, Foreground) rule 3 eliminates entry C.

15.3. Quarks

Most uses of the resource manager involve defining names, classes, and representation types as
string constants. However, always referring to strings in the resource manager can be slow,
because it is so heavily used in some toolkits. To solve this problem, a shorthand for a string
is used in place of the string in many of the resource manager functions. Simple comparisons
can be performed rather than string comparisons. The shorthand name for a string is called a

291

Xlib - C Library XI1, Release 5

quark and is the type XrmQuark. On some occasions, you may want to allocate a quark that
has no string equivalent.

A quark is to a string what an atom is to a string in the server, but its use is entirely local to
your application.

To allocate a new quark, use XrmUniqueQuark.

XrmQuark XrmUniqueQuark()

The XrmUniqueQuark function allocates a quark that is guaranteed not to represent any
string that is known to the resource manager.

Each name, class, and representation type is typedefd as an XrmQuark.

typedef int XrmQuark, *XrmQuarkList;
typedef XrmQuark XrmName;
typedef XrmQuark XrmClass;
typedef XrmQuark XrmRepresentation;
#define NULLQUARK ((XrmQuark) 0)

Lists are represented as null-terminated arrays of quarks. The size of the array must be large
enough for the number of components used.

typedef XrmQuarkList XrmNameList;
typedef XrmQuarkList XrmGassList;

To convert a string to a quark, use XrmStringToQuark or XrmPermStringToQuark.

#define XrmStringToName(string) XrmStringToQuark(string)
#define XnmStringToClass(string) XrmStringToQuark(string)
#define XrmStringToRepresentation(string) XrmStringToQuark(string)

XrmQuark XrmStringToQuark(.srwjg)
char * string',

XrmQuark XrmPermStringToQuark(.sm>zg)
char * string',

string Specifies the string for which a quark is to be allocated.

These functions can be used to convert from string to quark representation. If the string is not
in the Host Portable Character Encoding the conversion is implementation dependent. The
string argument to XrmStringToQuark need not be permanently allocated storage.
XrmPermStringToQuark is just like XrmStringToQuark, except that Xlib is permitted to
assume the string argument is permanently allocated, and hence that it can be used as the value
to be returned by XrmQuarkToString.

To convert a quark to a string, use XrmQuarkToString.

#define XrmNameToString(name) XrmQuarkToString(name)
#define XrmGassToString(class) XrmQuarkToString(class)
#define XrmRepresentationToString(type) XrmQuarkToString(type)

char *XrmQuarkToString(^uur/:)
XrmQuark quark',

quark Specifies the quark for which the equivalent string is desired.

292

Xlib - C Library XI1, Release 5

This function can be used to convert from quark representation to string. The string pointed to
by the return value must not be modified or freed. The returned string is byte-for-byte equal to
the original string passed to one of the string-to-quark routines. If no string exists for that
quark, XrmQuarkToString returns NULL. For any given quark, if XrmQuarkToString
returns a non-NULL value, all future calls will return the same value (identical address).

To convert a string with one or more components to a quark list, use XrmStringToQuark-
List.

#define XrmStringToNameList(str, name) XrmStringToQuarkList((str), (name))
#define XrmStringToClassList(str,class) XrmStringToQuarkList((str), (class))

void XrmStringToQuarkList(string, quarksjreturn)
char * string',
XrmQuarkList quarks_return\

string Specifies the string for which a quark list is to be allocated.

quarks jeturn Returns the list of quarks.

The XrmStringToQuarkList function converts the null-terminated string (generally a fully
qualified name) to a list of quarks. Note that the string must be in the valid ResourceName
format (see section 15.1). If the string is not in the Host Portable Character Encoding the
conversion is implementation dependent.

A binding list is a list of type XrmBindingList and indicates if components of name or class
lists are bound tightly or loosely (that is, if wildcarding of intermediate components is
specified).

typedef enum {XrmBindTightly, XrmBindLoosely} XrmBinding, *XrmBindingList;

XrmBindTightly indicates that a period separates the components, and XrmBindLoosely
indicates that an asterisk separates the components.

To convert a string with one or more components to a binding list and a quark list, use
XrmStringToBindingQuarkList.

XrmStringToBindingQuarkList(^rn>zg, bindings _return, quarks jreturn)
char * string',
XrmBindingList bindingsjeturn',
XrmQuarkList quarksjeturn',

string Specifies the string for which a quark list is to be allocated.

bindingsj’eturnReturns the binding list. The caller must allocate sufficient space for the bind¬
ing list before calling XrmStringToBindingQuarkList.

quarksj-eturn Returns the list of quarks. The caller must allocate sufficient space for the
quarks list before calling XrmStringToBindingQuarkList.

Component names in the list are separated by a period or an asterisk character. The string
must be in the format of a valid ResourceName (see section 15.1). If the string does not start
with a period or an asterisk, a tight binding is assumed. For example, “*a.b*c” becomes:

quarks: a b c
bindings: loose tight loose

15.4. Creating and Storing Databases

A resource database is an opaque type, XrmDatabase. Each database value is stored in an
XrmValue structure. This structure consists of a size, an address, and a representation type.
The size is specified in bytes. The representation type is a way for you to store data tagged by

293

Xlib - C Library XI1, Release 5

some application-defined type (for example, “font” or “color”). It has nothing to do with the
C data type or with its class. The XrmValue structure is defined as:

typedef struct {
unsigned int size;
XPointer addr,

} XrmValue, *XrmValuePtr,

* To initialize the resource manager, use Xrmlnitialize.

void XnmlnitializeO;

To retrieve a database from disk, use XrmGetFileDatabase.

XnnDatabase XrmGetFileDatabase(filename)
char * filename',

filename Specifies the resource database file name.

The XrmGetFileDatabase function opens the specified file, creates a new resource database,
and loads it with the specifications read in from the specified file. The specified file must con¬
tain a sequence of entries in valid ResourceLine format (see section 15.1). The file is parsed
in the current locale, and the database is created in the current locale. If it cannot open the
specified file, XrmGetFileDatabase returns NULL.

To store a copy of a database to disk, use XrmPutFileDatabase.

void XrmPutFileDatabase (database, storedjib)
XrmDatabase database',
char * stored_db;

database Specifies the database that is to be used.

stored jib Specifies the file name for the stored database.

The XrmPutFileDatabase function stores a copy of the specified database in the specified file.
Text is written to the file as a sequence of entries in valid ResourceLine format (see section
15.1). The file is written in the locale of the database. Entries containing resource names that
are not in the Host Portable Character Encoding, or containing values that are not in the encod¬
ing of the database locale, are written in an implementation-dependent manner. The order in
which entries are written is implementation dependent. Entries with representation types other
than “String” are ignored.

To obtain a pointer to the screen-independent resources of a display, use XResourceManager-
String.

char *XResourceManagerString(^wp/ury)
Display * display,

display Specifies the connection to the X server.

The XResourceManagerString returns the RESOURCE_MANAGER property from the
server’s root window of screen zero, which was returned when the connection was opened
using XOpenDisplay. The property is convened from type STRING to the current locale.
The conversion is identical to that produced by XmbTextPropertyToTextList for a singleton
STRING property. The returned string is owned by Xlib, and should not be freed by the
client. Note that the property value must be in a format that is acceptable to XrmGetString-
Database. If no property exists, NULL is returned.

To obtain a pointer to the screen-specific resources of a screen, use XScreenResourceString.

294

Xlib - C Library XI1, Release 5

char *XScreenResourceString(scrcert)
Screen * screen',

screen Specifies the screen.

The XStringResourceString returns the SCREEN_RESOURCES property from the root win¬
dow of the specified screen. The property is converted from type STRING to the current
locale. The conversion is identical to that produced by XmbTextPropertyToTextList for a
singleton STRING property. Note that the property value must be in a format that is accept¬
able to XrmGetStringDatabase. If no property exists, NULL is returned. The caller is
responsible for freeing the returned string, using XFree.

To create a database from a string, use XrmGetStringDatabase.

XrmDatabase XrmGetStringDatabase(data)
char *data\

data Specifies the database contents using a string.

The XrmGetStringDatabase function creates a new database and stores the resources
specified in the specified null-terminated string. XrmGetStringDatabase is similar to
XrmGetFileDatabase except that it reads the information out of a string instead of out of a
file. The string must contain a sequence of entries in valid ResourceLine format (see section
15.1). The string is parsed in the current locale, and the database is created in the current
locale.

To obtain locale name of a database, use XrmLocaleOfDatabase.

char * XrmLocaleOfDatabase (database)
Xrm Database database;

database Specifies the resource database.

The XrmLocaleOfDatabase function returns the name of the locale bound to the specified
database, as a null-terminated string. The returned locale name string is owned by Xlib and
should not be modified or freed by the client. Xlib is not permitted to free the string until the
database is destroyed. Until the string is freed, it will not be modified by Xlib.

To destroy a resource database and free its allocated memory, use XrmDestroyDatabase.

void XrmDestroyDatabase (database)
XrmDatabase database;

database Specifies the resource database.

If database is NULL, XrmDestroyDatabase returns immediately.

To associate a resource database with a display, use XrmSetDatabase.

void XrmSetDatabase {display, database)
Display * display,
XrmDatabase database;

display Specifies the connection to the X server.

database Specifies the resource database.

The XrmSetDatabase function associates the specified resource database (or NULL) with the
specified display. The database previously associated with the display (if any) is not destroyed.
A client or toolkit may find this function convenient for retaining a database once it is con¬
structed.

295

Xlib - C Library XI1, Release 5

To get the resource database associated with a display, use XrmGetDatabase.

XrmDatabase XrmGetDatabase(dwp/ay)
Display * display,

display Specifies the connection to the X server.

The XrmGetDatabase function returns the database associated with the specified display. It
returns NULL if a database has not yet been set.

15.5. Merging Resource Databases

To merge the contents of a resource file into a database, us XrmCombineFileDatabase.

void XrmCombineFileDatabase(/i/en<2me, target_db, override)
char *filename\
XrmDatabase * tar get jib',
Bool override;

filename Specifies the resource database file name.

target jib Specifies the resource database into which the source database is to be merged.

The XrmCombineFileDatabase function merges the contents of a resource file into a data¬
base. If the same specifier is used for an entry in both the file and the database, the entry in
the file will replace the entry in the database if override is True; otherwise, the entry in file is
discarded. The file is parsed in the current locale. If the file cannot be read a zero status is
returned; otherwise a nonzero status is returned. If target_db contains NULL, XrmCombine¬
FileDatabase creates and returns a new database to it. Otherwise, the database pointed to by
target_db is not destroyed by the merge. The database entries are merged without changing
values or types, regardless of the locale of the database. The locale of the target database is
not modified.

To merge the contents of one database into another database, use XrmCombineDatabase.

void XrmCombineDatabase(50urce_<i^, targetjlb, override)
XrmDatabase source jib, *target_db\
Bool override',

source db Specifies the resource database that is to be merged into the target database.

tar get jib Specifies the resource database into which the source database is to be merged.

override Specifies whether source entries override target ones.

The XrmCombineDatabase function merges the contents of one database into another. If the
same specifier is used for an entry in both databases, the entry in the source_db will replace
the entry in the target_db if override is True; otherwise, the entry in source_db is discarded.
If targetjlb contains NULL, XrmCombineDatabase simply stores source_db in it. Other¬
wise, source jib is destroyed by the merge, but the database pointed to by target_db is not des¬
troyed. The database entries are merged without changing values or types, regardless of the
locales of the databases. The locale of the target database is not modified.

To merge the contents of one database into another database with override semantics, use
XrmMergeDatabases,

void XrmMergeDatabases(j0u/re_d/?, target jib)
XrmDatabase source jib, * targetjlb',

source jib Specifies the resource database that is to be merged into the target database.

targetjlb Specifies the resource database into which the source database is to be merged.

The XrmMergeDatabases function merges the contents of one database into another. If the
same specifier is used for an entry in both databases, the entry in the source_db will replace

296

Xlib - C Library XI1, Release 5

the entry in the target_db (that is, it overrides target_db). If target_db contains NULL,
XrmMergeDatabases simply stores source_db in it Otherwise, source_db is destroyed by the
merge, but the database pointed to by target_db is not destroyed. The database entries are
merged without changing values or types, regardless of the locales of the databases. The
locale of the target database is not modified.

15.6. Looking Up Resources

To retrieve a resource from a resource database, use XrmGetResource, XrmQGetResource,
or XrmQGetSearchResource.

Bool XrmGetResource {database, strjiame, strjolass, strjypejeturn, value_return)
XrmDatabase database;
char * strjiame;
char *str_class;
char **str_type jeturn;
XrmValue *valuejeturn;

database Specifies the database that is to be used.

strjiame Specifies the fully qualified name of the value being retrieved (as a string).

str_class Specifies the fully qualified class of the value being retrieved (as a string).

strjypejeturn Returns the representation type of the destination (as a string).

value return Returns the value in the database.

Bool XrmQGetResource {database, quark jiame, quark_class, quark jypejeturn, value jeturn)
XrmDatabase database;
XrmNameList quark jiame;
XrmClassList quark_class;
XrmRepresentation * quarkjypejeturn;
XrmValue *value jeturn;

database Specifies the database that is to be used.

quark jiame Specifies the fully qualified name of the value being retrieved (as a quark).

quark_class Specifies the fully qualified class of the value being retrieved (as a quark).

quark jypejeturn
Returns the representation type of the destination (as a quark).

value jeturn Returns the value in the database.

The XrmGetResource and XrmQGetResource functions retrieve a resource from the
specified database. Both take a fully qualified name/class pair, a destination resource represen¬
tation, and the address of a value (size/address pair). The value and returned type point into
database memory; therefore, you must not modify the data.

The database only frees or overwrites entries on XrmPutResource, XrmQPutResource, or
XrmMergeDatabases. A client that is not storing new values into the database or is not
merging the database should be safe using the address passed back at any time until it exits. If
a resource was found, both XrmGetResource and XrmQGetResource return True; other¬
wise, they return False.

Most applications and toolkits do not make random probes into a resource database to fetch
resources. The X toolkit access pattern for a resource database is quite stylized. A series of
from 1 to 20 probes are made with only the last name/class differing in each probe. The
XrmGetResource function is at worst a 2" algorithm, where n is the length of the name/class
list. This can be improved upon by the application programmer by prefetching a list of

297

Xlib - C Library XI1, Release 5

database levels that might match the first part of a name/class list.

To obtain a list of database levels, use XrmQGetSearchList.

typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchList names, classes, list_return, listjength)
XrmDatabase database',
XrmNameList names',
XrmClassList classes',
XrmSearchList listjeturn',
int listjength'.

database

names

classes

list return

Specifies the database that is to be used.

Specifies a list of resource names.

Specifies a list of resource classes.

Returns a search list for further use. The caller must allocate sufficient space
for the list before calling XrmQGetSearchList.

listjength Specifies the number of entries (not the byte size) allocated for list_retum.

The XrmQGetSearchList function takes a list of names and classes and returns a list of data¬
base levels where a match might occur. The returned list is in best-to-worst order and uses the
same algorithm as XrmGetResource for determining precedence. If list_retum was large
enough for the search list, XrmQGetSearchList returns True; otherwise, it returns False.

The size of the search list that the caller must allocate is dependent upon the number of levels
and wildcards in the resource specifiers that are stored in the database. The worst case length
is 3", where n is the number of name or class components in names or classes.

When using XrmQGetSearchList followed by multiple probes for resources with a common
name and class prefix, only the common prefix should be specified in the name and class list to
XrmQGetSearchList.

To search resource database levels for a given resource, use XrmQGetSearchResource.

Bool XrmQGetSearchResource (list, name, class, type_return, value _return)
XrmSearchList list',
XrmName name',
XrmQass class',
XrmRepresentation * type _re turn',
XrmValue *value return'.

list Specifies the search list returned by XrmQGetSearchList.

name Specifies the resource name.

class Specifies the resource class.

type_return Returns data representation type.

valuejeturn Returns the value in the database.

The XrmQGetSearchResource function searches the specified database levels for the resource
that is fully identified by the specified name and class. The search stops with the first match.
XrmQGetSearchResource returns True if the resource was found; otherwise, it returns
False.

A call to XrmQGetSearchList with a name and class list containing all but the last com¬
ponent of a resource name followed by a call to XrmQGetSearchResource with the last com¬
ponent name and class returns the same database entry as XrmGetResource and
XrmQGetResource with the fully qualified name and class.

298

Xlib - C Library XI1, Release 5

15.7. Storing Into a Resource Database

To store resources into the database, use XrmPutResource or XrmQPutResource. Both
functions take a partial resource specification, a representation type, and a value. This value is
copied into the specified database.

void XrmPutResource {database, specifier, type, value)
XrmDatabase * database',
char *specifier\
char *type\
XrmValue *value\

database Specifies the resource database.

specifier Specifies a complete or partial specification of the resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmPutResource creates a new database and returns a pointer to
it. XrmPutResource is a convenience function that calls XrmStringToBindingQuarkList
followed by:

XrmQPutResource(database, bindings, quarks, XrmStringToQuark(type), value)

If the specifier and type are not in the Host Portable Character Encoding the result is imple¬
mentation dependent. The value is stored in the database without modification.

void XrmQPutResource {database, bindings, quarks, type, value)
XrmDatabase * database',
XrmBindingList bindings',
XrmQuarkList quarks',
XrmRepresentation type',
XrmValue * value',

database Specifies the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of the resource.

type Specifies the type of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmQPutResource creates a new database and returns a pointer
to it. If a resource entry with the identical bindings and quarks already exists in the database,
the previous value is replaced by the new specified value. The value is stored in the database
without modification.

To add a resource that is specified as a string, use XrmPutStringResource.

void XrmPutStringResource (database, specifier, value)
XrmDatabase * database',
char *specifier;
char * value',

database Specifies the resource database.

specifier Specifies a complete or partial specification of the resource.

value Specifies the value of the resource, which is specified as a string.

299

Xlib - C Library XI1, Release 5

If database contains NULL, XrmPutStringResource creates a new database and returns a
pointer to it. XrmPutStringResource adds a resource with the specified value to the specified
database. XrmPutStringResource is a convenience function that first calls XrmStringTo-
BindingQuarkList on the specifier and then calls XrmQPutResource, using a “String”
representation type. If the specifier is not in the Host Portable Character Encoding the result is
implementation dependent. The value is stored in the database without modification.

To add a string resource using quarks as a specification, use XrmQPutStringResource.

void XrmQPutStringResource {database, bindings, quarks, value)
XrmDatabase * database',
XrmBindingList bindings',
XrmQuarkList quarks',
char * value;

database Specifies the resource database.

bindings Specifies a list of bindings.

quarks Specifies the complete or partial name or the class list of the resource.

value Specifies the value of the resource, which is specified as a string.

If database contains NULL, XrmQPutStringResource creates a new database and returns a
pointer to it. XrmQPutStringResource is a convenience routine that constructs an
XrmValue for the value string (by calling strlen to compute the size) and then calls
XrmQPutResource, using a “String” representation type. The value is stored in the database
without modification.

To add a single resource entry that is specified as a string that contains both a name and a
value, use XrmPutLineResource.

void XrmPutLineResource (database, line)
XrmDatabase * database;
char *line;

database Specifies the resource database.

line Specifies the resource name and value pair as a single string.

If database contains NULL, XrmPutLineResource creates a new database and returns a
pointer to it. XrmPutLineResource adds a single resource entry to the specified database.
The line must be in valid ResourceLine format (see section 15.1). The string is parsed in the
locale of the database. If the ResourceName is not in the Host Portable Character Encoding
the result is implementation dependent. Note that comment lines are not stored.

15.8. Enumerating Database Entries

To enumerate the entries of a database, use XrmEnumerateDatabase.

#define XrmEnumAHLevels 0
#define XrmEnumOneLevel 1

Bool XrmEnumerateDatabase (database, name jprefx, class __p refix, mode, proc, arg)
XrmDatabase database;
XrmNameList namejprefix;
XrmClassList class_prefix;
int mode;
Bool (*proc)();
XPointer arg;

300

Xlib - C Library XI1, Release 5

database

name_prefix

classjprefix

mode

proc

arg

Specifies the resource database.

Specifies the resource name prefix.

Specifies the resource class prefix.

Specifies the number of levels to enumerate.

Specifies the procedure that is to be called for each matching entry.

Specifies the user-supplied argument that will be passed to the procedure.

The XrmEnumerateDatabase function calls the specified procedure for each resource in the
database that would match some completion of the given name/class resource prefix. The
order in which resources are found is implementation-dependent If mode is XrmEnu-
mOneLevel, then a resource must match the given name/class prefix with just a single name
and class appended. If mode is XrmEnumAllLevels, the resource must match the given
name/class prefix with one or more names and classes appended. If the procedure returns
True, the enumeration terminates and the function returns True. If the procedure always
returns False, all matching resources are enumerated and the function returns False.

The procedure is called with the following arguments:

(*proc)(database, bindings, quarks, type, value, arg)
XrmDatabase * database',
XrmBindingList bindings',
XrmQuarkList quarks;
XrmRepresentation *type\
XrmValue *value\
XPointer closure'.

The bindings and quarks lists are terminated by NULLQUARK. Note that pointers to the
database and type are passed, but these values should not be modified.

15.9. Parsing Command Line Options

The XrmParseCommand function can be used to parse the command line arguments to a
program and modify a resource database with selected entries from the command line.

typedef enum {
XrmoptionNoArg,
XrmoptionlsArg,
XrmoptionStickyArg,
XrmoptionSepArg,
XrmoptionResArg,
XrmoptionSkipArg,
XrmopdonSkipLine,
XrmoptionSkipNArgs

} XrmOptionKind;

/* Value is specified in XrmOptionDescRec.value */
/* Value is the option string itself */
/* Value is characters immediately following option */
/* Value is next argument in argv */
/* Resource and value in next argument in argv */
/* Ignore this option and the next argument in argv */
/* Ignore this option and the rest of argv */
/* Ignore this option and the next

XrmOptionDescRec.value arguments in argv */

Note that XrmoptionSkipArg is equivalent to XrmoptionSkipNArgs with the
XrmOptionDescRec.value field containing the value one. Note also that the value zero for
XrmoptionSkipNArgs indicates that only the option itself is to be skipped.

typedef struct {
char *option; /* Option specification string in argv */
char *specifier, /* Binding and resource name (sans application name) */
XrmOptionKind argKind; /* Which style of option it is */
XPointer value; /* Value to provide if XrmoptionNoArg or

XrmoptionSkipNArgs */
} XrmOptionDescRec, *XrmOptionDescList;

301

Xlib - C Library XI1, Release 5

To load a resource database from a C command line, use XrmParseCommand.

void XrmParseCommand {database, table, table_count, name, argc_in_out, argv_in_out)
XrmDatabase * database',
XnmOptionDescList table;
int table_count\
char *name;
int *argc_in_out;
char **argv_in_ouf.

database

table

table _count

name

argc_in_out

argv_in_out

Specifies the resource database.

Specifies the table of command line arguments to be parsed.

Specifies the number of entries in the table.

Specifies the application name.

Specifies the number of arguments and returns the number of remaining argu¬
ments.

Specifies the command line arguments and returns the remaining arguments.

The XrmParseCommand function parses an (argc, argv) pair according to the specified
option table, loads recognized options into the specified database with type “String,” and
modifies the (argc, argv) pair to remove all recognized options. If database contains NULL,
XrmParseCommand creates a new database and returns a pointer to it. Otherwise, entries
are added to the database specified. If a database is created, it is created in the current locale.

The specified table is used to parse the command line. Recognized options in the table are
removed from argv, and entries are added to the specified resource database. The table entries
contain information on the option string, the option name, the style of option, and a value to
provide if the option kind is XrmoptionNoArg. The option names are compared byte-for-byte
to arguments in argv, independent of any locale. The resource values given in the table are
stored in the resource database without modification. All resource database entries are created
using a “String” representation type. The argc argument specifies the number of arguments in
argv and is set on return to the remaining number of arguments that were not parsed. The
name argument should be the name of your application for use in building the database entry.
The name argument is prefixed to the resourceName in the option table before storing a data¬
base entry. No separating (binding) character is inserted, so the table must contain either a
period (.) or an asterisk (*) as the first character in each resourceName entry. To specify a
more completely qualified resource name, the resourceName entry can contain multiple com¬
ponents. If the name argument and the resourceNames are not in the Host Portable Character
Encoding the result is implementation dependent.

The following provides a sample option table:

static XrmOptionDescRec opTablef] = {
-background". "♦background”, XrmoptionSepArg, (XPointer) NULL},
’-bd". "♦borderColor", XrmoptionSepArg, (XPointer) NULL},
-bg". "♦background", XrmoptionSepArg, (XPointer) NULL},
’-borderwidth". "♦TopLevelShell.borderWidth", XrmoptionSepArg, (XPointer) NULL},
’-bordercolor". "♦borderColor", XrmoptionSepArg, (XPointer) NULL},
’-bw", "♦TopLevelShell.borderWidth", XrmoptionSepArg, (XPointer) NULL},
’-display", ".display". XrmoptionSepArg, (XPointer) NULL},
-fg", "♦foreground”, XrmoptionSepArg, (XPointer) NULL},
-fn", "♦font". XrmoptionSepArg, (XPointer) NULL},
’-font”, "♦font", XrmoptionSepArg, (XPointer) NULL},
’-foreground”, "♦foreground", XrmoptionSepArg, (XPointer) NULL},
’-geometry”, ".TopLevelShell.geometry", XrmoptionSepArg, (XPointer) NULL},
’-iconic”, ".TopLevelShell.iconic", XrmoptionNoArg, (XPointer) "on"}.
’-name”, ".name". XrmoptionSepArg, (XPointer) NULL},

302

Xlib - C Library XI1, Release 5

{"-title",
{"-xrin",

};

{ -nr,
{"-synchronous",

{"-reverse",

".TopLevelShell.title",
NULL,

"♦reverseVideo",
"♦reverseVideo",
"♦synchronous",

XrmoptionNoArg, (XPointer) "on"},
XrmoptionNoArg, (XPointer) "on"},
XrmoptionNoArg, (XPointer) "on"},
XrmoptionSepArg, (XPointer) NULL},
XrmoptionResArg, (XPointer) NULL},

In this table, if the -background (or -bg) option is used to set background colors, the stored
resource specifier matches all resources of attribute background. If the -borderwidth option is
used, the stored resource specifier applies only to border width attributes of class TopLevel-
Shell (that is, outer-most windows, including pop-up windows). If the -title option is used to
set a window name, only the topmost application windows receive the resource.

When parsing the command line, any unique unambiguous abbreviation for an option name in
the table is considered a match for the option. Note that uppercase and lowercase matter.

303

Xlib - C Library XI1, Release 5

The XKeycodeToKeysym function uses internal Xlib tables and returns the KeySym defined
for the specified KeyCode and the element of the KeyCode vector. If no symbol is defined,
XKeycodeToKeysym returns NoSymbol.

To obtain a key code for a key having a specific KeySym., use XKeysymToKeycode.

KeyCode XKeysymToKeycode {display, keysym)
Display * display;
KeySym keysym',

display Specifies the connection to the X server.

keysym Specifies the KeySym that is to be searched for.

If the specified KeySym is not defined for any KeyCode, XKeysymToKeycode returns zero.

The mapping between key codes and KeySyms is cached internal to Xlib. When this informa¬
tion is changed at the server, an Xlib function must be called to refresh the cache. To refresh
the stored modifier and keymap information, use XRefreshKeyboardMapping.

XRef reshKeyboardMappingC eventjnap)
XMappingEvent * event jnap',

eventjnap Specifies the mapping event that is to be used.

The XRefreshKeyboardMapping function refreshes the stored modifier and keymap informa¬
tion. You usually call this function when a MappimgWotify event with a request member of
MappingKeyboard or MappingModifier occurs. The result is to update Xlib’s knowledge
of the keyboard.

KeySyms have string names as well as numeric codes. To convert the name of the KeySym to
the KeySym code, use XStringToKeysym.

KeySym XStringToKeysym (erring)
char * string',

string Specifies the name of the KeySym that is to be converted.

Standard KeySym names are obtained from <Xll/keysymdef.h> by removing the XK_ prefix
from each name. KeySyms that are not part of the Xlib standard also may be obtained with
this function. Note that the set of KeySysms that are available in this manner and the mechan¬
isms by which Xlib obtains them is implementation dependent.

If the keysym name is not in the Host Portable Character Encoding the result is implementation
dependent If the specified string does not match a valid KeySym, XStringToKeysym returns
NoSymbol.

To convert a KeySyrn code to the name of the KeySym, use XKeysymToString.

char *XKeysymToString(keysym)
KeySym keysym',

keysym Specifies the KeySym that is to be converted.

The returned string is in a static area and must not be modified. The returned string is in the
Host Portable Character Encoding. If the specified KeySym is not defined, XKeysymTo¬
String returns a NULL.

16.1.1. Keysym Classification Macros

You may want to test if a KeySym is, for example, on the keypad or on one of the function
keys. You can use the KeySym macros to perfonn the following tests.

305

Xlib - C Library XI1, Release 5

Chapter 16

Application Utility Functions

Once you have initialized the X system, you can use the Xlib utility functions to:

® Obtain and classify KeySyms

® Allocate permanent storage

® Parse window geometry strings

• Manipulate regions

® Use cut buffers

® Determine the appropriate visual

® Manipulate images

• Manipulate bitmaps

• Use the context manager
As a group, the functions discussed in this chapter provide the functionality that is frequently
needed and that spans toolkits. Many of these functions do not generate actual protocol
requests to the server.

16.L Keyboard Utility Functions

This section discusses mapping between KeyCodes and KeySyms, names for KeySyms, and
KeySym classification macros. The functions in this section operate on an cached copy of the
server keyboard mapping. The first four KeySyms for each key code are modified according
to the rules given in section 12.7. If you want the untransformed KeySyms defined for a key,
you should only use the functions described in section 12.7.

To obtain a KeySym for the key code of an event, use XLookupKeysym.

KeySym XLookupKeysym(Aey_eve«r, index)
XKeyEvent *key_event\;
int index;

key_event Specifies the KeyPress or Key Release event.

index Specifies the index into the KeySyms list for the event’s KeyCode.

The XLookupKeysym function uses a given keyboard event and the index you specified to
return the KeySym from the list that corresponds to the KeyCode member in the
XKeyPressedEvent or XKeyReleasedEvent structure. If no KeySym is defined for the Key-
Code of the event, XLookupKeysym returns NoSymbol.

To obtain a KeySym for a specific key code, use XKeycodeToKeysym.

KeySym XKeycodeToKeysym {display, key code, index)
Display * display,
KeyCode key code’,
int index’,

display Specifies the connection to the X server.

keycode Specifies the KeyCode.

index Specifies the element of KeyCode vector.

304

Xlib - C Library XI1, Release 5

IsCursorKey (keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a cursor key.

IsFunctionKey (keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a function key.

IsKe ypadKey (keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a keypad key.

IsMiscFunctionKey (keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a miscellaneous function key.

IsModi fierKey (keysym)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a modifier key.

IsPFKey(/^y5yw)

keysym Specifies the KeySym that is to be tested.

Returns True if the specified KeySym is a PF key.

16.2. Latin-1 Keyboard Event Functions

Chapter 13 describes internationalized text input facilities, but sometimes it is expedient to
write an application that only deals with Latin-1 characters and ASCII controls, so Xlib pro¬
vides a simple function for that purpose. XLookupString handles the standard modifier
semantics described in section 12.7. This function does not use any of the input method facili¬
ties described in chapter 13, and does not depend on the current locale.

To map a key event to an ISO Latin-1 string, use XLookupString.

int XLookupString(eveut_,s truer, buffer_return, bytesjbuffer, keysym_return, statusJn_out)
XKeyEvent *event_struct\
char *buffer_return;
int bytesjbuffer-,
KeySym * key sym_re turn;
XComposeStatus * status Jn_out\

e\ent_struct Specifies the key event structure to be used. You can pass
XKeyPressedEvent or XKeyRelessedEvent.

buffer jeturn Returns the translated characters.

bytesJjuffer Specifies the length of the buffer. No more than bytes_buffer of translation are
returned.

306

Xlib - C Library XI1, Release 5

keysym_return Returns the KeySym computed from the event if this argument is not NULL.

status_in_out Specifies or returns the XComposeStatus structure or NULL.

The XLookupString function translates a key event to a KeySym and a string. The KeySym
is obtained by using the standard interpretation of the Shift, Lock, and group modifiers as
defined in the X Protocol specification. If the KeySym has been rebound (see XRe-
bindKeysym), the bound string will be stored in the buffer. Otherwise, the KeySym is
mapped, if possible, to an ISO Latin-1 character or (if the Control modifier is on) to an ASCII
control character, and that character is stored in the buffer. XLookupString returns the
number of characters that are stored in the buffer.

If present (non-NULL), the XComposeStatus structure records the state, which is private to
Xlib, that needs preservation across calls to XLookupString to implement compose process¬
ing. The creation of XComposeStatus structures is implementation dependent; a portable pro¬
gram must pass NULL for this argument.

XLookupString depends on the cached keyboard information mentioned in the previous sec¬
tion, so it is necessary to use XRefreshKeyboardMapping to keep this information up to
date.

To rebind the meaning of a KeySym for XLookupString, use XRebindKeysym.

XRebindKeysym(display, keysym, list, mod_count, string, numjbytes)
Display * display,
KeySym keysym;
KeySym list[]\
int mod_count;
unsigned char * string;
int num_bytes;

display

keysym

list

mod_count

string

numjjytes

Specifies the connection to the X server.

Specifies the KeySym that is to be rebound.

Specifies the KeySyms to be used as modifiers.

Specifies the number of modifiers in the modifier list.

Specifies the string that is copied and will be returned by XLookupString.

Specifies the number of bytes in the string argument.

The XRebindKeysym function can be used to rebind the meaning of a KeySym for the client.
It does not redefine any key in the X server but merely provides an easy way for long strings
to be attached to keys. XLookupString returns this string when the appropriate set of
modifier keys are pressed and when the KeySym would have been used for the translation. No
text conversions are performed; the client is responsible for supplying appropriately encoded
strings. Note that you can rebind a KeySym that may not exist.

16.3. Allocating Permanent Storage

To allocate some memory you will never give back, use Xpermalloc.

char *Xpermalloc(.szze)
unsigned int size;

The Xpermalloc function allocates storage that can never be freed for the life of the program.
The memory is allocated with alignment for the C type double. This function may provide
some performance and space savings over the standard operating system memory allocator.

307

Xlib - C Library XI1, Release 5

16.4. Parsing the Window Geometry

To parse standard window geometry strings, use XParseGeometry.

int XParseGeometry {parsestring, x_return, y_return, width return, heightjeturn)
char *parsestring;
int *x_return, *yjeturn',
unsigned int *width_return, * heightjeturn;

parsestring Specifies the string you want to parse.

xjreturn
yjeturn Return the x and y offsets.

widthjeturn
height_return Return the width and height determined.

By convention, X applications use a standard string to indicate window size and placement
XParseGeometry makes it easier to conform to this standard because it allows you to parse
the standard window geometry. Specifically, this function lets you parse strings of the form:

[=] [<width> {xX} <height>] [(+-} <xoffset> {+-} <yoffser>]

The fields map into the arguments associated with this function. (Items enclosed in <> are
integers, items in [] are optional, and items enclosed in {} indicate “choose one of.” Note that
the brackets should not appear in the actual string.) If the string is not in the Host Portable
Character Encoding the result is implementation dependent.

The XParseGeometry function returns a bitmask that indicates which of the four values
(width, height, xoffset, and yoffset) were actually found in the string and whether the x and y
values are negative. By convention, -0 is not equal to +0, because the user needs to be able to
say “position the window relative to the right or bottom edge.” For each value found, the
corresponding argument is updated. For each value not found, the argument is left unchanged.
The bits are represented by XValue, YValue, WidthValue, HeightValue, XNegative, or
YNegative and are defined in <X11/Xuti!.h>. They will be set whenever one of the values is
defined or one of the signs is set.

If the function returns either the XValue or YValue flag, you should place the window at the
requested position.

To construct a window’s geometry information, use XWMGeometry.

int XWMGeometry {display, screen, userjgeom, defjgeom, bwidth, hints, xjeturn, yjeturn,
width_return, heightjeturn, gravity_return)

Display * display;
int screen',
char *user_geom;
char * defjgeom;
unsigned int bwidth',
XSizeHints * hints',
int *x_return, *y jeturn;
int *widthjeturn',
int * height jeturn'.
int * gravityjeturn'.

display Specifies the

screen Specifies the

userjgeom Specifies the

defjgeom Specifies the

308

Xlib - C Library XI1, Release 5

bwidth Specifies the border width.

hints Specifies the size hints for the window in its normal state.

x_return
yjeturn Return the x and y offsets.

width _return
height jeturn Return the width and height determined.

gravity_return Returns the window gravity.

The XWMGeometry function combines any geometry information (given in the format used
by XParseGeometry) specified by the user and by the calling program with size hints (usually
the ones to be stored in WM_NORMAL_HINTS) and returns the position, size, and gravity
(NorthWestGravity, NorthEastGravity, SouthEastGravity, or SouthWestGravity) that
describe the window. If the base size is not set in the XSizeHints structure, the minimum size
is used if set. Otherwise, a base size of zero is assumed. If no minimum size is set in the
hints structure, the base size is used. A mask (in the form returned by XParseGeometry) that
describes which values came from the user specification and whether or not the position coor¬
dinates are relative to the right and bottom edges is returned. Note that these coordinates will
have already been accounted for in the x_retum and y_retum values.

Note that invalid geometry specifications can cause a width or height of zero to be returned.
The caller may pass the address of the hints win_gravity field as gravity_retum to update the
hints directly.

16.5. Manipulating Regions

Regions are arbitrary sets of pixel locations. Xlib provides functions for manipulating regions.
The opaque type Region is defined in <X11/Xutil.h>. Xlib provides functions that you can
use to manipulate regions. This section discusses how to:

• Create, copy, or destroy regions

• Move or shrink regions

• Compute with regions

• Determine if regions are empty or equal

• Locate a point or rectangle in a region

16.5.1. Creating, Copying, or Destroying Regions

To create a new empty region, use XCreateRegion.

Region XCreateRegionQ

To generate a region from a polygon, use XPolygonRegion.

Region XPolygonRegion (points, n,fill_rule)
XPoint points[]\
int n\
int fill_rule\

points Specifies an array of points.

n Specifies the number of points in the polygon.

fill_rule Specifies the fill-rule you want to set for the specified GC. You can pass
EvenOddRuIe or WindingRuIe.

The XPolygonRegion function returns a region for the polygon defined by the points array.
For an explanation of fill_rule, see XCreateGC.

To set the clip-mask of a GC to a region, use XSetRegion.

309

Xlib - C Library XI1, Release 5

XSetRegion{display, gc, r)
Display * display,
GC gc;
Region r;

display Specifies the connection to the X server.

gc Specifies the GC.

r Specifies the region.

The XSetRegion function sets the clip-mask in the GC to the specified region. Once it is set
in the GC, the region can be destroyed.

To deallocate the storage associated with a specified region, use XDestroyRegion.

XDestroyRegion (r)
Region r;

r Specifies the region.

16.5.2. Moving or Shrinking Regions

To move a region by a specified amount, use XOffsetRegion.

XOffsetRegion(r, dx, dy)
Region r;
int dx, dy;

r Specifies the region.

dx
dy Specify the x and y coordinates, which define the amount you want to move

the specified region.

To reduce a region by a specified amount, use XShrinkRegion.

XShrinkRegionO, dx, dy)
Region r ;
int dx, dy;

r Specifies the region.

dx
dy Specify the x and y coordinates, which define the amount you want to shrink

the specified region.

Positive values shrink the size of the region, and negative values expand the region.

16.5.3. Computing with Regions

To generate the smallest rectangle enclosing a region, use XCIipBox.

XClipBox(r, rectjeturn)
Region r;
XRectangle * rectjeturn;

r Specifies the region.

rectjeturn Returns the smallest enclosing rectangle.

The XCIipBox function returns the smallest rectangle enclosing the specified region.

To compute the intersection of two regions, use XIntersectRegion.

310

Xlib - C Library XI1, Release 5

XIntersectRegion(sra, srb, drjeturn)
Region sra, srb, drjeturn'.

sra
srb Specify the two regions with which you want to perform the computation.

dr_return Returns the result of the computation.

To compute the union of two regions, use XUnionRegion.

XUnionRegion(.sra, srb, dr_return)
Region sra, srb, dr_return;

sra
srb Specify the two regions with which you want to perform the computation.

dr_return Returns the result of the computation.

To create a union of a source region and a rectangle, use XUnionRectWithRegion.

XUnionRectWithRegion(rectangle, srcjegion, destjegionjeturn)
XRectangle * rectangle'.
Region srcjegion'.
Region destjegionjeturn',

rectangle Specifies the rectangle.

srcjegion Specifies the source region to be used.

destjegionjeturn
Returns the destination region.

The XUnionRectWithRegion function updates the destination region from a union of the
specified rectangle and the specified source region.

To subtract two regions, use XSubtractRegion.

XSubtractRegion(5ra, srb, drjeturn)
Region sra, srb, drjeturn'.

sra
srb Specify the two regions with which you want to perform the computation.

drjeturn Returns the result of the computation.

The XSubtractRegion function subtracts srb from sra and stores the results in dr_retum.

To calculate the difference between the union and intersection of two regions, use XXorRe-
gion.

XXorRegion(.sra, srb, drjeturn)
Region sra, srb, drjeturn',

sra
srb Specify the two regions with which you want to perform the computation.

drjeturn Returns the result of the computation.

16.5.4. Determining if Regions Are Empty or Equal

To determine if the specified region is empty, use XEmptyRegion.

Bool XEmptyRegion(r)
Region r;

311

Xlib - C Library XI1, Release 5

' r Specifies the region.

The XEmptyRegion function returns True if the region is empty.

To determine if two regions have the same offset, size, and shape, use XEqualRegion.

Bool XEqualRegion(rl, r2)
Region rl, r2\

rl
r2 Specify the two regions.

The XEqualRegion function returns True if the two regions have the same offset, size, and
shape.

16.5.5. Locating a Point or a Rectangle in a Region

To determine if a specified point resides in a specified region, use XPointlnRegion.

Bool XPointInRegion(r, x, y)
Region r;
int x, y;

r Specifies the region.

*

y Specify the x and y coordinates, which define the point.

The XPointlnRegion function returns True if the point (x, y) is contained in the region r.

To determine if a specified rectangle is inside a region, use XRectlnRegion.

int XRectInRegion(r, x, y, width, height)
Region r;
int x, y;
unsigned int width, height;

r Specifies the region,

x
y Specify the x and y coordinates, which define the coordinates of the upper-left

comer of the rectangle.

width
height Specify the width and height, which define the rectangle .

The XRectlnRegion function returns Rectangleln if the rectangle is entirely in the specified
region, RectangleOut if the rectangle is entirely out of the specified region, and Rectan-
glePart if the rectangle is partially in the specified region.

16.6. Using Cut Buffers

Xlib provides functions to manipulate cut buffers, a very simple form of “cut and paste”
inter-client communication. Selections are a much more powerful and useful mechanism for
interchanging data between clients (see section 4.5), and generally should be used instead of
cut buffers.

Cut buffers are implemented as properties on the first root window of the display. The buffers
can only contain text, in the STRING encoding. The text encoding is not changed by Xlib,
when fetching or storing. Eight buffers are provided and can be accessed as a ring or as expli¬
cit buffers (numbered 0 through 7).

To store data in cut buffer 0, use XStoreBytes.

312

Xlib - C Library XI1, Release 5

XStoreBytes(display, bytes, nbytes)
Display * display,
char * bytes',
int nbytes;

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.

nbytes Specifies the number of bytes to be stored.

Note that the data can have embedded null characters, and need not be null terminated. The
cut buffer’s contents can be retrieved later by any client calling XFetchBytes.

XStoreBytes can generate a BadAHoc error.

To store data in a specified cut buffer, use XStoreBuffer.

XStoreBuffer(d«p/ay, bytes, nbytes, buffer)
Display * display;
char * bytes;
int nbytes;
int buffer;

display Specifies the connection to the X server.

bytes Specifies the bytes, which are not necessarily ASCII or null-terminated.

nbytes Specifies the number of bytes to be stored.

buffer Specifies the buffer in which you want to store the bytes.

If an invalid buffer is specified, the call has no effect. Note that the data can have embedded
null characters, and need not be null terminated.

XStoreBuffer can generate a BadAHoc error.

To return data from cut buffer 0, use XFetchBytes.

char * XFetchBytes {display, nbytesjeturn)
Display * display;
int * nbytes jeturn;

display Specifies the connection to the X server.

nbytes jeturn Returns the number of bytes in the buffer.

The XFetchBytes function returns the number of bytes in the nbytes_retum argument, if the
buffer contains data. Otherwise, the function returns NULL and sets nbytes to 0. The
appropriate amount of storage is allocated and the pointer returned. The client must free this
storage when finished with it by calling XFree.

To return data from a specified cut buffer, use XFetchBuffer.

char *XFetchBuffer(d/\sp/ay, nbytes jeturn, buffer)
Display * display;
int * nbytes jeturn;
int buffer;

display Specifies the connection to the X server.

nbytes jeturn Returns the number of bytes in the buffer.

buffer Specifies the buffer from which you want the stored data returned.

The XFetchBuffer function returns zero to the nbytes_retum argument if there is no data in
the buffer or if an invalid buffer is specified.

313

Xlib - C Library XI1, Release 5

To rotate the cut buffers, use XRotateBuffers.

XRotateBuffers (d/sp/ay, rotate)
Display * display,
int rotate;

display Specifies the connection to the X server.

rotate Specifies how much to rotate the cut buffers.

The XRotateBuffers function rotates the cut buffers, such that buffer 0 becomes buffer n,
buffer 1 becomes n + 1 mod 8, and so on. This cut buffer numbering is global to the display.
Note that XRotateBuffers generates BadMatch errors if any of the eight buffers have not
been created.

16.7. Determining the Appropriate Visual Type

A single display can support multiple screens. Each screen can have several different visual
types supported at different depths. You can use the functions described in this section to
determine which visual to use for your application.

The functions in this section use the visual information masks and the XVisuallnfo structure,
which is defined in <X11/Xutil.h> and contains:

/* Visual information mask bits */

#define VisualNoMask 0x0
#define VisuallDMask 0x1
#define VisualScreenMask 0x2
#define VisualDepthMask 0x4
#define VisualClassMask 0x8
#define VisualRedMaskMask 0x10
#define VisualGreenMaskMask 0x20
#define VisualBlueMaskMask 0x40
#define VisualCoIormapSizeMask 0x80
#define VisualBitsPerRGBMask 0x100
#define VisualAIlMask Ox IFF

/* Values */

typedef struct {
Visual ^visual;
VisuallD visualid;
int screen;
unsigned int depth;
int class;
unsigned long redjnask;
unsigned long greenjnask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;

} XVisuallnfo;

To obtain a list of visual information structures that match a specified template, use XGet-
Visuallnfo.

314

Xiib - C Library Xll, Release 5

XVisuallnfo *XGetVisualInfo(d«p/oy, vinfojnask, vinfo jemplate, nitems jeturn)
Display * display,
long vinfojnask;
XVisuallnfo *vinfojemplate;
ini * nitems return;

display

vinfojnask

vinfojemplate

Specifies the connection to the X server.

Specifies the visual mask value.

Specifies the visual attributes that are to be used in matching the visual struc¬
tures.

nitems jeturn Returns the number of matching visual structures.

The XGetVSsuallnfo function returns a list of visual structures that have attributes equal to the
attributes specified by vinfo_template. If no visual structures match the template using the
specified vinfojnask, XGetVisuallnfo returns a NULL. To free the data returned by this
function, use XFree.

To obtain the visual information that matches the specified depth and class of the screen, use
XMatchVisuallnfo.

Status XMatchVisuallnfo /ay, screen, depth, class, vinfo jeturn)
Display * display;
int screen;
int depth;
int class;
XVisuallnfo *vinfojeturn;

display Specifies the connection to the X server.

screen Specifies the screen.

depth Specifies the depth of the screen.

class Specifies the class of the screen.

vinfo jeturn Returns the matched visual information.

The XMatchVisuallnfo function returns the visual information for a visual that matches the
specified depth and class for a screen. Because multiple visuals that match the specified depth
and class can exist, the exact visual chosen is undefined. If a visual is found, XMatch¬
Visuallnfo returns nonzero and the information on the visual to vinfo_retum. Otherwise,
when a visual is not found, XMatchVisuallnfo returns zero.

16.8. Manipulating Images

Xlib provides several functions that perform basic operations on images. All operations on
images are defined using an Xlmage structure, as defined in <X!1/Xlib.h>. Because the
number of different types of image formats can be very large, this hides details of image
storage properly from applications.

This section describes the functions for generic operations on images. Manufacturers can pro¬
vide very fast implementations of these for the formats frequently encountered on their
hardware. These functions are neither sufficient nor desirable to use for general image pro¬
cessing. Rather, they are here to provide minimal functions on screen format images. The
basic operations for getting and putting images are XGetXmage and XPutlmage.

Note that no functions have been defined, as yet, to read and write images to and from disk
files.

The Xlmage structure describes an image as it exists in tine client’s memory. The user can
request that some of the members such as height, width, and xoffset be changed when the
image is sent to the server. Note that bytes_per_line in concert with offset can be used to

315

Xlib - C Library Xll, Release 5

extract a subset of the image. Other members (for example, byte order, bitmap_unit, and so
forth) are characteristics of both the image and the server. If these members differ between the
image and the server, XPutlmage makes the appropriate conversions. The first byte of the
first line of plane n must be located at the address (data + (n * height * bytes_per_line)). For
a description of the Xlmage structure, see section 8.7.

To allocate sufficient memory for an Xlmage structure, use XCreatelmage.

Xlmage *XCreateImage(^p/ay, visual, depth, format, offset, data, width, height, bitmap_pad,
bytes _per_line)

Display * display.
Visual *visual;
unsigned int depth;
int format;
int offset;
char *data;
unsigned int width;
unsigned int height;
int bitmap_pad;
int bytesjperjine;

display

visual

depth

format

offset

data

width

height

bitmap _pad

bytes _per_line

Specifies the connection to the X server.

Specifies the Visual structure.

Specifies the depth of the image.

Specifies the format for the image. You can pass XYBitmap, XYPixmap, or
ZPixmap.

Specifies the number of pixels to ignore at the beginning of the scanline.

Specifies the image data.

Specifies the width of the image, in pixels.

Specifies the height of the image, in pixels.

Specifies the quantum of a scanline (8, 16, or 32). In other words, the start of
one scanline is separated in client memory from the start of the next scanline
by an integer multiple of this many bits.

Specifies the number of bytes in the client image between the start of one scan¬
line and the start of the next.

The XCreatelmage function allocates the memory needed for an Xlmage structure for the
specified display but does not allocate space for the image itself. Rather, it initializes the struc¬
ture byte-order, bit-order, and bitmap-unit values from the display and returns a pointer to the
Xlmage structure. The red, green, and blue mask values are defined for Z format images only
and are derived from the Visual structure passed in. Other values also arc passed in. The
offset permits the rapid displaying of the image without requiring each scanline to be shifted
into position. If you pass a zero value in bytes_per_line, Xlib assumes that the scanlines are
contiguous in memory and calculates the value of bytes_per_line itself.

Note that when the image is created using XCreatelmage, XGetlmage, or XSublmage, the
destroy procedure that the XDestroylmage function calls frees both the image structure and
the data pointed to by the image structure.

The basic functions used to get a pixel, set a pixel, create a subimage, and add a constant value
to an image are defined in the image object. The functions in this section are really macro
invocations of the functions in the image object and are defined in <X11/Xutil.h>.

To obtain a pixel value in an image, use XGetPixel.

316

Xlib - C Library XI1, Release 5

unsigned long XGetPixel(xzmuge, x, y)
Xlmage * ximage;
int x;
inty;

ximage Specifies the image,

x
y Specify the x and y coordinates.

The XGetPixel function returns the specified pixel from the named image. The pixel value is
returned in normalized format (that is, the least-significant byte of the long is the least-
significant byte of the pixel). The image must contain the x and y coordinates.

To set a pixel value in an image, use XPutPixel.

XPutPixel {ximage, x, y, pixel)
Xlmage * ximage;
int x;
int y;
unsigned long pixel;

ximage Specifies the image.

X

y
pixel

Specify the x and y coordinates.

Specifies the new pixel value.

The XPutPixel function overwrites the pixel in the named image with the specified pixel
value. The input pixel value must be in normalized format (that is, the least-significant byte of
the long is the least-significant byte of the pixel). The image must contain the x and y coordi¬
nates.

To create a subimage, use XSublmage.

Xlmage *XSubImage(xz'/mzgd, x, y, subimage jvidth, subimage Jieight)
Xlmage * ximage',
int x;
int y; *
unsigned int subimage jvidth;
unsigned int subimage Jieight',

ximage Specifies the image,

x
y Specify the x and y coordinates.

subimage_w/<i//iSpecifies the width of the new subimage, in pixels.

subimage_height$pec\f\es the height of the new subimage, in pixels.

The XSublmage function creates a new image that is a subsection of an existing one. It allo¬
cates the memory necessary for the new Xlmage structure and returns a pointer to the new
image. The data is copied from the source image, and the image must contain the rectangle
defined by x, y, subimage_width, and subimage_height.

To increment each pixel in an image by a constant value, use XAddPixel.

XAddPixel (xzmuge, value)
Xlmage * ximage',
long value',

317

Xlib - C Library XI1, Release 5

ximage Specifies the image.

value Specifies the constant value that is to be added.

The XAddPixel function adds a constant value to every pixel in an image. It is useful when
you have a base pixel value from allocating color resources and need to manipulate the image
to that form.

To deallocate the memory allocated in a previous call to XCreatelmage, use XDestroylm-
age.

XDestroylmage (xiVmzge)
Ximage * ximage’,

ximage Specifies the image.

The XDestroylmage function deallocates the memory associated with the Ximage structure.

Note that when the image is created using XCreatelmage, XGetlmage, or XSublmage, the
destroy procedure that this macro calls frees both the image structure and the data pointed to
by the image structure.

16.9. Manipulating Bitmaps

Xlib provides functions that you can use to read a bitmap from a file, save a bitmap to a file,
or create a bitmap. This section describes those functions that transfer bitmaps to and from the
client’s file system, thus allowing their reuse in a later connection (for example, from an
entirely different client or to a different display or server).

The X version 11 bitmap file format is:

#define name_width width
#define mzme_height height
#define name_x_hot x
#define name_y_hot y
static unsigned char name_bits[] = { OxAW,... }

The lines for the variables ending with _x_hot and _y_hot suffixes are optional because they
are present only if a hotspot has been defined for this bitmap. The lines for the other variables
are required. The word “unsigned” is optional; that is, the type of the _bits array can be char
or unsigned char. The _bits array must be large enough to contain the size bitmap. The bit¬
map unit is eight. The name is derived from the name of the file that you specified on the ori¬
ginal command line by deleting the directory path and extension.

To read a bitmap from a file, use XReadBitmapFile.

int XReadB itmapFile(display., d, filename, width_return, height_return, bitmap jeturn, x_hot_return,
y_hot_return)

Display * display,
Drawable d\
char *filename',
unsigned int *width_return, * heightjeturn',
Pixmap * bitmap jreturn;
int *x_hot_return, *y_hot_return;

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

filename Specifies the file name to use. The format of the file name is operating-system
dependent.

318

Xlib - C Library XI1, Release 5

width_return
height jeturn Return the width and height values of the read in bitmap file.

bitmap jeturn Returns the bitmap that is created.

xjiot jeturn
yjiotjeturn Return the hotspot coordinates.

The XReadBitmapFile function reads in a file containing a bitmap. The file is parsed in the
encoding of the current locale. The ability to read other than the standard format is implemen¬
tation dependent. If the file cannot be opened, XReadBitmapFile returns BitmapOpen-
Failed. If the file can be opened but does not contain valid bitmap data, it returns Bitmap-
Filelnvalid. If insufficient working storage is allocated, it returns BitmapNoMemory. If the
file is readable and valid, it returns BitmapSuccess.

XReadBitmapFile returns the bitmap’s height and width, as read from the file, to
width_retum and height_retum. It then creates a pixmap of the appropriate size, reads the bit¬
map data from the file into the pixmap, and assigns the pixmap to the caller’s variable bitmap.
The caller must free the bitmap using XFreePixmap when finished. If name_x_hot and
name_y_hot exist, XReadBitmapFile returns them to x_hot_retum and y_hot_retum; other¬
wise, it returns -1,-1.

XReadBitmapFile can generate BadAUoc and BadDrawable errors.

To write out a bitmap to a file, use XWriteBitmapFile.

int XWriteBitmapFile(^wp/ay, filename, bitmap, width, height, xjiot, yjiot)
Display * display,
char * filename’,
Pixmap bitmap’,
unsigned int width, height’,
int x_hot, y_hot;

display Specifies the connection to the X server.

filename Specifies the file name to use. The format of the file name is operating-system
dependent

bitmap Specifies the bitmap.

width
height Specify the width and height.

xjiot
yjiot Specify where to place the hotspot coordinates (or -1,-1 if none are present) in

the file.

The XWriteBitmapFile function writes a bitmap out to a file in the X version 11 format. The
file is written in the encoding of the current locale. If the file cannot be opened for writing, it
returns BitmapOpenFailed. If insufficient memory is allocated, XWriteBitmapFile returns
BitmapNoMemory; otherwise, on no error, it returns BitmapSuccess. If x_hot and y_hot are
not -1, -1, XWriteBitmapFile writes them out as the hotspot coordinates for the bitmap.

XWriteBitmapFile can generate BadDrawable and BadMatch errors.

To create a pixmap and then store bitmap-format data into it, use XCreatePixmapFromBit-
mapData.

319

Xlib - C Library XI1, Release 5

Pixmap XCreatePixmapFromBitmapDataC^p/ay, d, data, width, height, fg, bg, depth)
Display * display,
Drawable d\
char *data\
unsigned int width, height;
unsigned long fg, bg\
unsigned int depth-.

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the data in bitmap format.

width
height Specify the width and height.

fg
bg Specify the foreground and background pixel values to use.

depth Specifies the depth of the pixmap.

The XCreatePixmapFromBitmapData function creates a pixmap of the given depth and then
does a bitmap-format XPutlmage of the data into it. The depth must be supported by the
screen of the specified drawable, or a BadMatch error results.

XCreatePixmapFromBitmapData can generate BadAlloc and BadMatch errors.

To include a bitmap written out by XWriteBitmapFile in a program directly, as opposed to
reading it in every time at run time, use XCreateBitmapFromData.

Pixmap XCreateBitmapFromData(^wp/ay, d, data, width, height)
Display * display,
Drawable d\
char *data\
unsigned int width, height',

display Specifies the connection to the X server.

d Specifies the drawable that indicates the screen.

data Specifies the location of the bitmap data.

width
height Specify the width and height.

The XCreateBitmapFromData function allows you to include in your C program (using
#include) a bitmap file that was written out by XWriteBitmapFile (X version 11 format only)
without reading in the bitmap file. The following example creates a gray bitmap:

#include "gray.bitmap"

Pixmap bitmap;
bitmap = XCreateBitmapFromData(display, window, gray_bits, gray_width, gray_height);

If insufficient working storage was allocated, XCreateBitmapFromData returns None. It is
your responsibility to free the bitmap using XFreePixmap when finished.

XCreateBitmapFromData can generate a BadAlloc error.

16.10. Using the Context Manager

The context manager provides a way of associating data with an X resource ID (mostly typi¬
cally a window) in your program. Note that this is local to your program; the data is not stored
in the server on a property list. Any amount of data in any number of pieces can be associated
with a resource ID, and each piece of data has a type associated with it. The context manager

320

Xlib - C Library XI1, Release 5

requires knowledge of the resource ID and type to store or retrieve data.

Essentially, the context manager can be viewed as a two-dimensional, sparse array: one
dimension is subscripted by the X resource ID and the other by a context type field. Each
entry in the array contains a pointer to the data. Xlib provides context management functions
with which you can save data values, get data values, delete entries, and create a unique con¬
text type. The symbols used are in <X11/Xutil.h>.

To save a data value that corresponds to a resource ID and context type, use XSaveContext.

int XSaveContext(dL/?Lry, rid, context, data)
Display * display,
XID rid\
XContext context;
XPointer data’,

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is associated.

context Specifies the context type to which the data belongs.

data Specifies the data to be associated with the window and type.

If an entry with the specified resource ID and type already exists, XSaveContext overrides it
with the specified context. The XSaveContext function returns a nonzero error code if an
error has occurred and zero otherwise. Possible errors are XCNOMEM (out of memory).

To get the data associated with a resource ID and type, use XFindContext.

int XFindContext(dwp/ay, rid, context, data_return)
Display * display-,
XID rid-,
XContext context-,
XPointer *data_return\

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is associated.

context Specifies the context type to which the data belongs.

data_return Returns the data.

Because it is a return value, the data is a pointer. The XFindContext function returns a
nonzero error code if an error has occurred and zero otherwise. Possible errors are
XCNOENT (context-not-found).

To delete an entry for a given resource ID and type, use XDeleteContext.

int XDeleteContext(i/«p/ay, rid, context)
Display * display-,
XID rid\
XContext context,

display Specifies the connection to the X server.

rid Specifies the resource ID with which the data is associated.

context Specifies the context type to which the data belongs.

The XDeleteContext function deletes the entry for the given resource ID and type from the
data structure. This function returns the same error codes that XFindContext returns if called
with the same arguments. XDeleteContext does not free the data whose address was saved.

321

Xlib - C Library XI1, Release 5

To create a unique context type that may be used in subsequent calls to XSaveContext and
XFindContext, use XUniqueContext.

XContext XUniqueContextQ

322

Xlib - C Library Xll, Release 5

Appendix A

Xlib Functions and Protocol Requests

This appendix provides two tables that relate to Xlib functions and the X protocol. The fol¬
lowing table lists each Xlib function (in alphabetical order) and the corresponding protocol
request that it generates.

Xlib Function Protocol Request

XActivateScreenSaver
XAddHost
XAddHosts
XAddToSaveSet
XAllocColor
XAllocColorCells
XAllocColorPlanes
XAllocNamedColor
XAllowEvents
XAutoRepeatOff
XAutoRepeatOn
XBell
XChangeActivePointerGrab
XChangeGC
XChangeKeyboardControl
XChangeKeyboardMapping
XChangePointerControl
XChangeProperty
XChangeSaveSet
XChangeWindowAttributes
XCirculateSubwindows
XCirculateSubwindowsDown
XCirculateSubwindowsUp
XClearArea
XClearWindow
XConfigureWindow
XConvertSelection
XCopyArea
XCopyColormapAndFree
XCopyGC
XCopyPlane
XCreateBitmapFromData

XCreateColormap
XCreateFontCursor
XCreateCC
XCreateGlyphCursor
XCreatePixmap
XCreatePixmapCursor

ForceScreenSaver
ChangeHosts
ChangeHosts
ChangeSaveSet
AllocColor
AllocColorCells
AllocColorPlanes
AllocNamedColor
AllowEvents
Change Key boardControl
Change KeyboardControl
Bell
ChangeActivePointerGrab
ChangeGC
Change KeyboardControl
ChangeKeyboardMapping
ChangePointerControl
Change Property
ChangeSaveSet
ChangeWindowAttributes
Circulate Window
Circulate Window
Circulate Window
ClearArea
Clear Area
ConfigureWindow
ConvertSelection
CopyArea
CopyColormapAndFree
CopyGC
CopyPlane
CreateGC
CreatePixmap
FreeGC
Putlmage
CreateColormap
CreateGlyphCursor
CreateGC
CreateGlyphCursor
CreatePixmap
CreateCursor

323

Xlib - C Library XI1, Release 5

Xlib Function

XCreatePixmapFromData

XCreateSimple Window
XCreateWindow
XDefineCursor
XDeleteProperty
XDestroySubwindows
XDestroyWindow
XDisableAccessControl
XDrawArc
XDrawArcs
XDrawImageString
XDrawImageStringl6
XDrawLine
XDrawLines
XDrawPoint
XDrawPoints
XDrawRectangle
XDrawRectangles
XDrawSegments
XDrawString
XDrawStringl6
XDrawText
XDrawTextl6
XEnableAccessControl
XFetchBytes
XFetchName
XFiUArc
XFillArcs
XFillPolygon
XFillRectangle
XFillRectangles
XForceScreenSaver
XFreeColormap
XFreeColors
XFreeCursor
XFreeFont
XFreeGC
XFreePixmap
XGetAtomName
XGetClassHint
XGetFontPath
XGetGeometry
XGetlconName
XGetlconSizes
XGetlmage
XGetlnputFocus
XGetKeyboardControl
XGetKeyboardMapping
XGetModifierMapping

Protocol Request

CreateGC
CreatePixmap
FreeGC
Putlmage
CreateWindow
CreateWindow
Change Window Attributes
DeleteProperty
DestroySubwindows
DestroyWindow
SetAccessControl
PolyArc
PolyArc
ImageText8
ImageTextl6
PolySegment
PolyLine
PolyPoint
PolyPoint
PolyRectangle
PolyRectangle
PolySegment
PolyText8
PolyTextl6
PolyText8
PolyTextl6
SetAccessControl
GetProperty
GetProperty
PolyFillArc
PolyFillArc
FillPoly
PolyFillRectangle
PolyFillRectangle
ForceScreenSaver
FreeColormap
FreeColors
FreeCursor
GoseFont
FreeGC
FreePixmap
GetAtomName
GetProperty
GetFontPath
GetGeometry
GetProperty
GetProperty
Getlmage
GetlnputFocus
GetKeyboardControl
GetKeyboardMapping
GetModifierMapping

324

Xlib - C Library XI1, Release 5

Xlib Function Protocol Request

XGetMotionEvents
XGetModi fierMapping
XGetNormalHints
XGetPointerControl
XGetPointerMapping
XGetRGBColormaps
XGetScreenSaver
XGetSelectionOwner
XGetSizeHints
XGetTextProperty
XGetTransientForHint
XGetWMClientMachine
XGetWMColonnap Windows

GetMotionEvents
GetModifierMapping
GetProperty
GetPointerControl
GetPointerMapping
GetProperty
GetScreenSaver
GetSelectionOwner
GetProperty
GetProperty
GetProperty
GetProperty
GetProperty
IntemAtom

XGetWMHints
XGetWMIconName
XGetWMName
XGetWMNormalHints
XGetWMProtocols

GetProperty
GetProperty
GetProperty
GetProperty
GetProperty
IntemAtom

XGetWMSizeHints
XGetWindowAttributes

GetProperty
GetWindowAttributes

XGetWindowProperty
XGetZoom Hints
XGrabButton
XGrabKey
XGrabKeyboard
XGrabPointer
XGrabServer
Xlconify Window

GetGeometry
GetProperty
GetProperty
GrabButton
GrabKey
GrabKeyboard
GrabPointer
GrabServer
IntemAtom
SendEvent

XInitExtension
XInstallColormap
XIntemAtom
XKillQient
XListExtensions
XListFonts
XListFontsWithlnfo
XListHosts
XListlnstalledColormaps
XListProperties
XLoadFont
XLoadQueryFont

QueryExtension
InstallColormap
IntemAtom
KillClient
ListExtensions
ListFonts
ListFontsWithlnfo
ListHosts
ListlnstallcdColormaps
ListProperties
OpenFont
OpenFont
QueryFont

XLookupColor
XLowerWindow
XMapRaised

LookupColor
ConfigureWindow
ConfigureWindow
MapWindow

XMapSubwindows
XMapWindow
XMoveResize Window

MapSubwindows
MapWindow
ConfigureWindow

325

Xiib - C Library XI1, Release 5

Xlib Function Protocol Request

XMoveWindow
XNoOp
XOpenDisplay
XParseColor
XPutlmage
XQueryBestCursor
XQueryBestSize
XQueryBestS tipple
XQueryBestTile
XQueryColor
XQueryColors
XQueryExtension
XQueryFont
XQueryKeymap
XQueryPointer
XQueryTextExtents
XQueryTextExtents 16
XQueryTree
XRaiseWindow
XReadBitmapFile

XRecolorCursor
XReconfigureWMWindow

XRemoveFromSaveSet
XRemoveHost
XRemoveHosts
XReparentWindow
XResetScreenSaver
XResizeWindow
XRestackWindows
XRotateBuffers
XRotateWindowProperties
XSelectlnput
XSendEvent
XSetAccessControl
XSetArcMode
XSetBackground
XSetQassHint
XSetClipMask
XSetQipOrigin
XSetGipRectangles
XSetCloseDownMode
XSetCommand
XSetDashes
XSetFillRule
XSetFillStyle
XSetFont
XSetFontPath
XSetForeground

ConfigureWindow
NoOperation
CreateGC
LookupColor
Putlmage
QueryBestSize
QueryBestSize
QueryBestSize
QueryBestSize
QueryColors
QueryColors
QueryExtension
QueryFont
QueryKeymap
QueryPointer
QueryTextExtents
QueryTextExtents
QueryTree
ConfigureWindow
CreateGC
CreatePixmap
FreeGC
Putlmage
RecolorCursor
ConfigureWindow
SendEvent
ChangeSaveSet
ChangeHosts
ChangeHosts
ReparentWindow
ForceScreenSaver
ConfigureWindow
ConfigureWindow
RotateProperties
RotateProperties
ChangeWindowAttributes
SendEvent
SetAccessControl
ChangeGC
ChangeGC
ChangeProperty
ChangeGC
ChangeGC
SetClipRectangles
SetCloseDownMode
ChangeProperty
SetDashes
ChangeGC
ChangeGC
ChangeGC
SetFontPath
ChangeGC

326

Xlib - C Library XI1, Release 5

Xlib Function Protocol Request

XSetFunction
XSetGraphicsExposures
XSetlconName
XSetlconSizes
XSetlnputFocus
XSetLineAttributes
XSetModi fierMapping
XSetNormalHints
XSetPlaneMask
XSetPointerMapping
XSetRGBColormaps
XSetScreenSaver
XSetSelectionOwner
XSetSizeHints
XSetStandardProperties
XSetState
XSetStipple
XSetSubwindowMode
XSetTextProperty
XSetTile
XSetTransientForHint
XSetTSOrigin
XSetWMQientMachine
XSetWMColormapWindows

XSetWMHints
XSetWMIconName
XSetWMName
XSetWMNormalHints
XSetWMProperties
XSetWMProtocols

XSetWMSizeHints
XSetWindowBackground
XSetWindowBackgroundPixmap
XSetWindowBorder
XSetWindowBorderPixmap
XSetWindowBorderWidth
XSetWindowColormap
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreColor
XStoreColors
XStoreName
XStoreNamedColor
XSync
XSynchronize
XTranslateCoordinates
XUndefineCursor
XUngrabButton
XUngrabKey

ChangeGC
ChangeGC
ChangeProperty
Change Property
SetlnputFocus
ChangeGC
SetModifierMapping
ChangeProperty
ChangeGC
SetPointerMapping
ChangeProperty
SetScreenSaver
SetSelectionOwner
ChangeProperty
ChangeProperty
ChangeGC
ChangeGC
ChangeGC
ChangeProperty
ChangeGC
ChangeProperty
ChangeGC
ChangeProperty
ChangeProperty
IntemAtom
ChangeProperty
ChangeProperty
ChangeProperty
ChangeProperty
ChangeProperty
ChangeProperty
IntemAtom
ChangeProperty
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ChangeWindowAttributes
ConfigureWindow
ChangeWindowAttributes
ChangeProperty
ChangeProperty
ChangeProperty
StoreColors
StoreColors
ChangeProperty
StoreNamedColor
GetlnputFocus
GetlnputFocus
TranslateCoordinates
ChangeWindowAttributes
UngrabButton
UngrabKey

327

Xlib - C Library XI1, Release 5

Xlib Function Protocol Request

XUngrabKeyboard
XUngrabPointer
XUngrabServer
XUninstallColormap
XUnloadFont
XUnmapSubwindows
XUnmapWindow
XWarpPointer
XWithdrawWindow

UngrabKeyboard
UngrabPointer
UngrabServer
UninstallColormap
QoseFont
UnmapSubwindows
UnmapWindow
WarpPointer
SendEvent
UnmapWindow

328

Xlib - C Library XI1, Release 5

The following table lists each X protocol request (in alphabetical order) and the Xlib functions
that reference it.

Protocol Request Xlib Function

AllocColor
AllocColorCells
AllocColorPlanes
AllocNamedColor
AllowEvents
Bell
SetAccessControl

XAllocColor
XAllocColorCells
XAllocColorPlanes
XAllocNamedColor
XAllowEvents
XBell
XDisableAccessControl
XEnableAccessControl
XSetAccessControl

ChangeActivePointerGrab
SetGoseDownMode
ChangeGC

XChangeActivePointerGrab
XSetCloseDownMode
XChangeGC
XSetArcMode
XSetBackground
XSetClipMask
XSetClipOrigin
XSetFillRule
XSetFiUStyle
XSetFont
XSetForeground
XSetFunction
XSetGraphicsExposures
XSetLineAttributes
XSctPlaneMask
XSetState
XSetStipple
XSetSubwindowMode
XSctTile

ChangeHosts
XSctTSOrigin
XAddHost
XAddHosts
XRemoveHost
XRemoveHosts

ChangeKeyboardControl XAutoRepeatOff
XAutoRepeatOn
XChangeKeyboardControl

ChangeKeyboardMapping
ChangePointerGontrol
ChangeProperty

XChangeKeyboardMapping
XChangePointerControl
XChangeProperty
XSetClassHint
XSetCommand
XSetlconName
XSetlconSizes
XSetNormalHints
XSetRGBColormaps
XSetSizeHints
XSetStandardProperties
XSetTextProperty
XSetTransientForHint

329

Xlib - C Library XI1, Release 5

Protocol Request Xlib Function

ChangeSaveSet

ChangeWindowAttributes

CirculateWindow

ClearArea

CloseFont

Configu reWindow

ConvertSelection
CopyArea
CopyColormapAndFree
CopyGC
CopyPlane
CreateColormap
Create Cursor
CreateGC

XSetWMClientMachine
XSetWMColormapWindows
XSetWMHints
XSetWMIconName
XSetWMName
XSetWMNormalHints
XSetWMProperties
XSetWMProtocols
XSetWMSizeHints
XSetZoomHints
XStoreBuffer
XStoreBytes
XStoreName
XAddToSaveSet
XChangeSaveSet
XRemoveFromSaveSet
XChangeWindowAttributes
XDefineCursor
XSelectlnput
XSetWindowBackground
XSetWindowBackgroundPixmap
XSctWindowBorder
XSetWindowBorderPixmap
XSetWindowColormap
XUndefineCursor
XCirculateSubwindowsDown
XCirculateSubwindowsUp
XCirculateSubwindows
XQcarArea
XClearWindow
XFreeFont
XUnJoadFont
XConfigu re Window
XLowerWindow
XMapRaised
XMoveResizeWindow
XMove Window
XRaiseWindow
XReconfigureWMWindow
XRcsizcWindow
XRestackWindows
XSetWindowBorderWidth
XConvertSelection
XCopyArea
XCopyColormapAndFree
XCopyGC
XCopyPlane
XCreateColormap
XCreatePixmapCursor
XCreateGC
XCreateBitmapFromData
XCreatePixmapFromData

330

Xlib - C Library XI1, Release 5

Protocol Request Xlib Function

XOpenDisplay
XReadBitmapFile

CreateGlyphCursor XCreateFontCursor
XCreateGlyphCursor

CreatePixmap XCreatePixmap
XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

CreateWindow XCreateSimpleWindow
XCreateWindow

DeleteProperty XDeleteProperty
DestroySubwindows XDestroySubwindows
DestroyWindow XDestroyWindow
FillPoly XFillPolygon
ForceScreenSaver XActivateScreenSaver

XForceScreenSaver
XResetScreenSaver

FreeColormap XFreeColormap
FreeColors XFreeColors
FreeCursor XFreeCursor
FreeGC XFreeGC

XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

FreePixmap XFreePixmap
GetAtomName XGetAtomName
GetFontPath XGetFontPath
GetGeometry XGetGeometry

XGetWindowAttributes
Getlmage XGetlmage
GetlnputFocus XGetlnputFocus

XSync
XSynchronize

GetKeyboardControl XGetKeyboardControl
GetKeyboardMapping XGetKeyboardMapping
GetModi fierMapping XGetModifierMapping
GetMotionEvents XGetMotionEvents
GetPointerControl XGetPointerControl
GetPointerMapping XGetPointerMapping
GetProperty XFetchBytes

XFetchName
XGetClassHint
XGetlconName
XGetlconSizes
XGetNormalHints
XGetRGBColormaps
XGetSizeHints
XGetTextProperty
XGetT ransientForHint
XGetWMClientMachine
XGetWMColormapWindows
XGetWMHints

331

Xlib - C Library Xll, Release 5

Protocol Request Xlib Function

GetSelectionOwner
GetWindow Attributes
GrabButton
GrabKey
GrabKey board
GrabPointer
GrabServer
ImageTextl6
ImageText8
InstallColormap
IntemAtom

XGetWMIconName
XGetWMName
XGetWMNormalHints
XGetWMProtocols
XGetWMSizeHints
XGetWindowProperty
XGetZoomHints
XGetSelectionOwner
XGetWindowAttributes
XGrabButton
XGrabKey
XGrabKeyboard
XGrabPointer
XGrabServer
XDrawImageString 16
XDrawImageString
XInstallColormap
XGetWMColormapWindows
XGetWMProtocols
XlconifyWindow
XIntemAtom
XSetWMColormapWindows
XSetWMProtocols

KillClient
ListExtensions
ListFonts
ListFontsWithlnfo
ListHosts
ListlnstalledColormaps
ListProperties
LookupColor

XKillClient
XListExtensions
XListFonts
XListFontsWithlnfo
XListHosts
XListlnstalledColormaps
XListProperties
XLookupColor
XParseColor

MapSubwindows
MapWindow

XMapSubwindows
XMapRaised

NoOperation
OpenFont

XMapWindow
XNoOp
XLoadFont

PolyArc
XLoadQueryFont
XDrawArc
XDrawArcs

PolyFillArc XFillArc
XFillArcs

PolyFillRectangle XFillRectangle
XFillRectangles

PolyLine
PolyPoint

XDrawLines
XDrawPoint
XDrawPoints

PolyRectangle XDrawRectangle

PolySegment
XDrawRectangles
XDrawLine

PolyTextl6
XDrawSegments
XDrawStringl6

332

Xlib - C Library Xll, Release 5

Protocol Request Xlib Function

PolyText8
XDrawTextl6
XDrawString
XDrawText

Putlmage XPutlmage
XCreateBitmapFromData
XCreatePixmapFromData
XReadBitmapFile

QueryBestSize XQueryBestQirsor
XQueryBestSize
XQueryBestStipple
XQueryBestTile

QueryColors XQueryColor
XQueryColors

QueryExtension XInitExtension
XQueryExtension

QueryFont XLoadQueryFont
XQueryFont

QueryKeymap
QueryPointer
QueryTextExtents

XQueryKeymap
XQueryPointer
XQueryTextExtents
XQueryTextExtentsl6

QueryTree
RecolorCursor
ReparentWindow
RotateProperties

XQueryTree
XRecolorCursor
XReparentWindow
XRotateBuffers
XRotateWindowProperties

SendEvent Xlconify Window
XReconfigureWMWindow
XSendEvent
XWithdrawWindow

SetQipRectangles
SetGoseDownMode
SetDashes
SetFontPath
SetlnputFocus
SetModi fierMapping
SetPointerMapping
SetScreenSaver

XSetClipRectangles
XSetCloseDownMode
XSetDashes
XSetFontPath
XSetlnputFocus
XSetModi fierMapping
XSetPointerMapping
XGetScreenSaver
XSetScreenSaver

SetSelectionOwner
StoreColors

XSetSelectionOwner
XStoreColor
XStoreColors

StoreNamedColor
TranslateCoordinates
UngrabButton
UngrabKey
UngrabKey board
UngrabPointer
UngrabServer
UninstallColormap
UnmapSubwindows
UnmapWindow

XStoreNamedColor
XTranslateCoordinates
XUngrabButton
XUngrabKey
XUngrabKeyboard
XUngrabPointer
XUngrabServer
XUninstallColormap
XUnmapSubWindows
XUnmapWindow

333

Xlib - C Library XI1, Release 5

Protocol Request Xlib Function

XWithdrawWindow
WarpPointer XWarpPointer

334

Xlib - C Library XI1, Release 5

Appendix B

X Font Cursors

The following are the available cursors that can be used with XCreateFontCursor.

#define XC_X_cursor 0
#define XC_arrow 2
#define XC_based_arrow_down 4
#define XC_based_arrow_up 6
#define XC_boat 8
#define XC_bcgosity 10
#define XC_bottom_left_comer 12
#define XC_bottom_right_comer 14
#define XC_bottom_side 16
#define XC_bottom_tee 18
#define XC_box_spiraI 20
#define XC_center_ptr 22
#define XC_circle 24
#define XC_clock 26
#define XC_coffee_mug 28
#define XC_cross 30
#define XC_cross_reverse 32
#define XC_crosshair 34
#define XC_diamond_cross 36
#define XC_dot 38
#define XC_dot_box_mask 40
#define XC_double_arrow 42
#define XC_draft_large 44
#define XC_draft_small 46
#define XC_draped_box 48
#define XC_exchange 50
#define XC_fieur 52
#define XC_gobbler 54
#define XC_gumby 56
#define XC_handl 58
#define XC_hand2 60
#define XC_heart 62
#define XC_icon 64
#define XC_iron_cross 66
#define XC_left_ptr 68
#define XC_left_side 70
#define XC_left_tee 72
#define XC leftbutton 74

#define XC_ll_angle 76
#define XC_lr_angle 78
#define XC_man 80
#define XC_middlebutton 82
#define XC_mouse 84
#define XC_pencil 86
#define XC_pirate 88
#define XC_plus 90
#define XC_ question_arrow 92
#define XC_right _ptr 94
#define XC_right_side 96
#define XC_right_tee 98
#define XC_rightbutton 100
#define XC_rtl_logo 102
#define XC_sailboat 104
#define XC_sb_down_arrow 106
#define XC_sb_h_double_arrow 108
#define XC_sb_left_arrow 110
#define XC_sb_right_arrow 112
#define XC_sb_up_arrow 114
#define XC_sb_v_double_arrow 116
#define XC_shuttle 118
#define XC_sizing 120
#define XC_spider 122
#define XC_spraycan 124
#define XC_star 126
#define XC_target 128
#define XC_tcross 130
#define XC_top_left_arrow 132
#define XC_top_Ieft_comer 134
#define XC_top_right_corner 136
#define XC_top_side 138
#define XC_top_tee 140
#define XC_trek 142
#define XC_ul_angle 144
#define XC_umbrella 146
#define XC_ur_angle 148
#define XC_watch 150
#define XC xterm 152

335

Xlib - C Library Xll, Release 5

Appendix C

Extensions

Because X can evolve by extensions to the core protocol, it is important that extensions not be
perceived as second class citizens. At some point, your favorite extensions may be adopted as
additional parts of the X Standard.

Therefore, there should be little to distinguish the use of an extension from that of the core
protocol. To avoid having to initialize extensions explicitly in application programs, it is also
important that extensions perform “lazy evaluations” and automatically initialize themselves
when called for the first time.

This appendix describes techniques for writing extensions to Xlib that will run at essentially
the same performance as the core protocol requests.

Note

It is expected that a given extension to X consists of multiple requests. Defining
ten new features as ten separate extensions is a bad practice. Rather, they should
be packaged into a single extension and should use minor opcodes to distinguish
the requests.

The symbols and macros used for writing stubs to Xlib are listed in < XI 1/XIibint.h>.

Basic Protocol Support Routines

The basic protocol requests for extensions are XQueryExtension and XListExtensions.

Bool XQueryExtension(display, name, major_opcodejeturn, first_eventjeturn, firstjrrorjeturn)
Display * display,
char *name;
int *majorjpcode jeturn;
int * first_e\entjeturn;
int *firstjrrorjeturn;

display Specifies the connection to the X server.

name Specifies the extension name.

major_opcode_return
Returns the major opcode.

firstjventjeturn
Returns the first event code, if any.

Specifies the extension list.

XQueryExtension determines if the named extension is present. If the extension is not
present. False is returned; otherwise True is returned. If the extension is present, the major
opcode for the extension is returned to major_opcode_retum; otherwise, zero is returned. Any
minor opcode and the request formats are specific to the extension. If the extension involves
additional event types, the base event type code is returned to first_event_retum; otherwise,
zero is returned. The format of the events is specific to the extension. If the extension involves
additional error codes, the base error code is returned to first_error_retum; otherwise, zero is
returned. The format of additional data in the errors is specific to the extension.

If the extension name is not in the Host Portable Character Encoding the result is implementa¬
tion dependent. Case matters; the strings thing. Thing, and thinG are all considered different

336

Xlib - C Library Xll, Release 5

names.

char **XLisiExtcnsions(display, nextensionsjeturn)
Display * display,
int * nextensions_return;

display Specifies the connection to the X server.

nextensions jeturn
Returns the number of extensions listed.

XListExtensions returns a list of all extensions supported by the server. If the data returned
by the server is in the Latin Portable Character Encoding, then the returned strings are in the
Host Portable Character Encoding. Otherwise, the result is implementation dependent.

XFreeExtensionList(list)
char **list;

list Specifies the list of extension names.

XFreeExtensionList frees the memory allocated by XListExtensions.

Hooking into Xlib

These functions allow you to hook into the library'. They are not normally used by application
programmers but are used by people who need to extend the core X protocol and the X library
interface. The functions, which generate protocol requests for X, are typically called stubs.

In extensions, stubs first should check to see if they have initialized themselves on a connec¬
tion. If they have not, they then should call XInitExtension to attempt to initialize themselves
on the connection.

If the extension needs to be informed of GC/font allocation or deallocation or if the extension
defines new event types, the functions described here allow the extension to be called when
these events occur.

The XExtCodes structure returns the information from XInitExtension and is defined in
<X11/Xlib.h>:

typedef struct _XExtCodes {
int extension;
int major_opcode;
int first_event;
int first_error,

} XExtCodes;

XExtCodes *XInitExtension(display, name)
Display * display,
char *name\

display Specifies the connection to the X server.

name Specifies the extension name.

XInitExtension determines if the named extension exists. Then, it allocates storage for main¬
taining the information about the extension on the connection, chains this onto the extension
list for the connection, and returns the information the stub implementor will need to access the
extension. If the extension does not exist, XInitExtension returns NULL.

If the extension name is not in the Host Portable Character Encoding the result is implementa¬
tion dependent. Case matters; the strings thing. Thing, and thinG are all considered different
names.

The extension number in the XExtCodes structure is needed in the other calls that follow.
This extension number is unique only to a single connection.

/* public to extension, cannot be changed */
/* extension number */
/* major op-code assigned by server */
I* first event number for the extension */
/* first error number for the extension */

337

Xlib - C Library Xll, Release 5

XExtCodes *XAddExtension(<fcp/ay)
Display * display,

display Specifies the connection to the X server.

For local Xlib extensions, XAddExtension allocates the XExtCodes structure, bumps the
extension number count, and chains the extension onto the extension list. (This permits exten¬
sions to Xlib without requiring server extensions.)

Hooks into the Library

These functions allow you to define procedures that are to be called when various cir¬
cumstances occur. The procedures include the creation of a new GC for a connection, the
copying of a GC, the freeing of a GC, the creating and freeing of fonts, the conversion of
events defined by extensions to and from wire format, and the handling of errors.

All of these functions return the previous routine defined for this extension.

int (*XESetCloseDisplay(dup/<2y, extension, proc))()
Display * display,
int extension;
int (*proc)():;

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the routine to call when the display is closed.

You use this procedure to define a procedure to be called whenever XCIoseDisplay is called.
This procedure returns any previously defined procedure, usually NULL.

When XCIoseDisplay is called, your routine is called with these arguments:

(*proc)(display, codes)
Display * display,
XExtCodes * codes’,

int (*XESelCrQ?LteGC(display, extension, proc))()
Display * display,
int extension’,
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the routine to call when a GC is closed.

You use this procedure to define a procedure to be called whenever a new GC is created. This
procedure returns any previously defined procedure, usually NULL.

When a GC is created, your routine is called with these arguments:

{*proc){display, gc, codes)
Display * display,
GC gc\
XExtCodes * codes’,

int (*XESeiCopyGC(display, extension, proc))()
Display * display,
int extension’,

int (*proc)()\

display Specifies the connection to the X server.

338

Xlib - C Library XI1, Release 5

extension Specifies the extension number.

proc Specifies the routine to call when GC components are copied.

You use this procedure to define a procedure to be called whenever a GC is copied. This pro¬
cedure returns any previously defined procedure, usually NULL.

When a GC is copied, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display * display,
GC gc\
XExtCodes * codes',

int (*XESetFreeGC(<ii.s/?/tfy, extension, proc))()
Display * display,
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the routine to call when a GC is freed.

You use this procedure to define a procedure to be called whenever a GC is freed. This pro¬
cedure returns any previously defined procedure, usually NULL.

When a GC is freed, your routine is called with these arguments:

(*proc)(display, gc, codes)
Display * display;
GC gc;
XExtCodes * codes;

int (*XESetCreateFont(d«p/ay, extension, proc)){)
Display * display;
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the routine to call when a font is created.

You use this procedure to define a procedure to be called whenever XLoadQueryFont and
XQueryFont are called. This procedure returns any previously defined procedure, usually
NULL.

When XLoadQueryFont or XQueryFont is called, your routine is called with these argu¬
ments:

(*proc)(display,fs, codes)
Display * display;
XFontStruct *fs;
XExtCodes * codes;

int (*XESetFreeFont(^/5'/7/ay, extension, proc))()
Display * display;
int extension;
int (*proc)();

display Specifies the connection to the X server.

339

Xlib - C Library XI1, Release 5

extension Specifies the extension number.

proc Specifies the routine to call when a font is freed.

You use this procedure to define a procedure to be called whenever XFreeFont is called. This
procedure returns any previously defined procedure, usually NULL.

When XFreeFont is called, your routine is called with these arguments:

(*proc)(display,fs, codes)
Display * display,
XFontStruct *fs;
XExtCodes * codes'.

The next two functions allow you to define new events to the library. An XEvent structure
always has a type code (type int) as the first component. This uniquely identifies what kind of
event it is. The second component is always the serial number (type unsigned long) of the last
request processed by the server. The third component is always a boolean (type Bool) indicat¬
ing whether the event came from a SendEvent protocol request. The fourth component is
always a pointer to the display the event was read from. The fifth component is always a
resource ID of one kind or another, usually a window, carefully selected to be useful to toolkit
dispatchers. The fifth component should always exist, even if the event does not have a
natural “destination”; if there is no value from the protocol to put in this component, initialize
it to zero.

Note

There is an implementation limit such that your host event structure size cannot be
bigger than the size of the XEvent union of structures. There also is no way to
guarantee that more than 24 elements or 96 characters in the structure will be fully
portable between machines.

int (*XESetWireToEvent(tfwp/ay, event_number, proc)){)
Display * display,
int event_number\

Status (*proc)()\

display Specifies the connection to the X server.

eventjiumber Specifies the event code.

proc Specifies the routine to call when converting an event.

You use this procedure to define a procedure to be called when an event needs to be converted
from wire format (xEvent) to host format (XEvent). The event number defines which proto¬
col event number to install a conversion routine for. This procedure returns any previously
defined procedure.

Note

You can replace a core event conversion routine with one of your own, although
this is not encouraged. It would, however, allow you to intercept a core event and
modify it before being placed in the queue or otherwise examined.

When Xlib needs to convert an event from wire format to host format, your routine is called
with these arguments:

Status (*proc)(display, re, event)
Display * display,
XEvent *re\
xEvent *evenf.

340

Xlib - C Library XI1, Release 5

Your routine must return status to indicate if the conversion succeeded. The re argument is a
pointer to where the host format event should be stored, and the event argument is the 32-byte
wire event structure. In the XEvent structure you are creating, you must fill in the five
required members of the event structure. You should fill in the type member with the type
specified for the xEvent structure. You should copy all other members from the xEvent
structure (wire format) to the XEvent structure (host format). Your conversion routine should
return True if the event should be placed in the queue or False if it should not be placed in
the queue.

To initialize the serial number component of the event, call _XSetLastRequestRead with the
event and use the return value.

unsigned long _XSetLastRequestRead(<ii5p/uy, rep)
Display * display,
xGenericReply *rep;

display Specifies the connection to the X server.

rep Specifies the wire event structure.

This function computes and returns a complete serial number from the partial serial number in
the event.

Status (*XESetEventToWire(<iwp/ay, eventjiumber, proc)){)
Display * display,
int event_number\
int (*proc)()’,

display Specifies the connection to the X server.

event jiumber Specifies the event code.

proc Specifies the routine to call when converting an event.

You use this procedure to define a procedure to be called when an event needs to be converted
from host format (XEvent) to wire format (xEvent) form. The event number defines which
protocol event number to install a conversion routine for. This procedure returns any previ¬
ously defined procedure. It returns zero if the conversion fails or nonzero otherwise.

Note

You can replace a core event conversion routine with one of your own, although
this is not encouraged. It would, however, allow you to intercept a core event and
modify it before being sent to another client.

When Xlib needs to convert an event from host format to wire format, your routine is called
with these arguments:

(*proc)(display, re, event)
Display * display,
XEvent *re\
xEvent *event\

The re argument is a pointer to the host format event, and the event argument is a pointer to
where the 32-byte wire event structure should be stored. You should fill in the type with the
type from the XEvent structure. All other members then should be copied from the host for¬
mat to the xEvent structure.

341

Xlib - C Library XI1, Release 5

Bool (*XESetWireToError(<i/.s7?/ay, errorjiumber, proc)()
Display * display,
int error'jiumber;

Bool (*proc)():

display Specifies the connection to the X server.

error jiumber Specifies the error code.

proc Specifies the routine to call when an error is received.

This function defines a procedure to be called when an extension error needs to be converted
from wire format to host format. The error number defines which protocol error code to install
the conversion routine for. This procedure returns any previously defined procedure.

Use this function for extension errors that contain additional error values beyond those in a
core X error, when multiple wire errors must be combined into a single Xlib error, or when it
is necessary to intercept an X error before it is otherwise examined.

When Xlib needs to convert an error from wire format to host format, the routine is called with
these arguments:

Bool (*proc)(display, he, we)
Display * display,
XErrorEvent *he:
xError *we;

The he argument is a pointer to where the host format error should be stored. The structure
pointed at by he is guaranteed to be as large as an XEvent structure, and so can be cast to a
type larger than an XErrorEvent, in order to store additional values. If the error is to be
completely ignored by Xlib (for example, several protocol error structures will be combined
into one Xlib error), then the function should return False; otherwise it should return True.

int (*XESetError(display, extension, proc)){)
Display * display:
int extension;
int (*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the routine to call when an error is received.

Inside Xlib, there are times that you may want to suppress the calling of the external error han¬
dling when an error occurs. This allows status to be returned on a call at the cost of the call
being synchronous (though most such routines are query operations, in any case, and are typi¬
cally programmed to be synchronous).

When Xlib detects a protocol error in _XRepIy, it calls your procedure with these arguments:

int (*proc)(display, err, codes, retjtode)
Display * display:
xError *err:
XExtCodes * codes:
int *ret_code:

The err argument is a pointer to the 32-byte wire format error. The codes argument is a
pointer to the extension codes structure. The ret_code argument is the return code you may
want _XRepIy returned to.

If your routine returns a zero value, the error is not suppressed, and the client’s error handler is
called. (For further information, see section 11.8.2.) If your routine returns nonzero, the error
is suppressed, and _XReply returns the value of ret_code.

342

Xlib - C Library XI1, Release 5

char *(*XESetErrorString(dwp/ay, extension, proc))()
Display * display,
int extension;
char *(*proc)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the routine to call to obtain an error string.

The XGetErrorText function returns a string to the user for an error. XESetErrorString
allows you to define a routine to be called that should return a pointer to the error message.
The following is an example.

(*proc)(display, code, codes, buffer, nbytes)
Display * display,
int code ',
XExtCodes * codes',
char *buffer\
int nbytes'.

Your procedure is called with the error code for every error detected. You should copy nbytes
of a null-terminated string containing the error message into buffer.

void (*XESetPrintErrorValues(^wp/ay, extension, proc)){)
Display * display,
int extension;
void (*proc){)\

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the routine to call when an error is printed.

This function defines a procedure to be called when an extension error is printed, to print the
error values. Use this function for extension errors that contain additional error values beyond
those in a core X error. This function returns any previously defined procedure.

When Xlib needs to print an error, the routine is called with these arguments:

void (*proc)(display, ev,fp)
Display * display,
XErrorEvent *ev;
void *fp;

The structure pointed at by ev is guaranteed to be as large as an XEvent structure, and so can
be cast to a type larger than an XErrorEvent, in order to obtain additional values set by using
XESetWireToError. The underlying type of the fp argument is system dependent; on a
POSIX-compliant fp should be cast to type FILE*.

int (*XESetFlushGC(<i/5'/?/ay, extension, proc)){)
Display * display,
int extension',
int *(*pr<?c)();

display Specifies the connection to the X server.

extension Specifies the extension number.

proc Specifies the routine to call when a GC is flushed.

The XESetFIushGC procedure is identical to XESetCopyGC except that XESetFIushGC is
called when a GC cache needs to be updated in the server.

343

Xlib - C Library XI1, Release 5

Hooks onto Xlib Data Structures

Various Xlib data structures have provisions for extension routines to chain extension supplied
data onto a list. These structures are GC, Visual, Screen, ScreenFormat, Display, and
XFontStruct. Because the list pointer is always the first member in the structure, a single set
of routines can be used to manipulate the data on these lists.

The following structure is used in the routines in this section and is defined in <X11/Xlib.h>:

typedef struct _XExtData {
int number, /* number returned by XInitExtension */
struct _XExtData *next; /* next item on list of data for structure */
int (*free_private)0; /* if defined, called to free private */
XPointer private_data; /* data private to this extension. */

} XExtData;

When any of the data structures listed above are freed, the list is walked, and the structure’s
free routine (if any) is called. If free is NULL, then the library frees both the data pointed to
by the private_data member and the structure itself.

union { Display *display;
GC gc;
Visual *visual;
Screen *screen;
ScreenFormat *pixmap_format;
XFontStruct *font } XEDataObject;

XExtData **XEHeadQfExtensionList(object)
XEDataObject object;

object Specifies the object.

XEHeadOfExtensionList returns a pointer to the list of extension structures attached to the
specified object. In concert with XAddToExtensionList, XEHeadOfExtensionList allows an
extension to attach arbitrary data to any of the structures of types contained in XEDataObject.

XAddToExtensionListCsfrtfcmre, ext_data)

XExtData **structure',
XExtData *ext_data;

structure Specifies the extension list.

ext_data Specifies the extension data structure to add.

The structure argument is a pointer to one of the data structures enumerated above. You must
initialize ext_data->number with the extension number before calling this routine.

XExtData *XFindOnExtensionList(^rrucrure, number)
struct _XExtData **structure',
int number',

structure Specifies the extension list.

number Specifies the extension number from XInitExtension.

XFindOnExtensionList returns the first extension data structure for the extension numbered
number. It is expected that an extension will add at most one extension data structure to any
single data structure’s extension data list. There is no way to find additional structures.

The XAllocID macro, which allocates and returns a resource ID, is defined in <X11/Xlib.h>.

XAllocID (display)
Display * display;

344

Xlib - C Library XI1, Release 5

display Specifies the connection to the X server.

This macro is a call through the Display structure to the internal resource ID allocator. It
returns a resource ID that you can use when creating new resources.

GC Caching

GCs are cached by the library to allow merging of independent change requests to the same
GC into single protocol requests. This is typically called a write-back cache. Any extension
routine whose behavior depends on the contents of a GC must flush the GC cache to make
sure the server has up-to-date contents in its GC.

The FlushGC macro checks the dirty bits in the library’s GC structure and calls
_XF!ushGCCache if any elements have changed. The FlushGC macro is defined as follows:

FlushGC (display, gc)
Display * display,
GC gc\

display Specifies the connection to the X server.

gc Specifies the GC.

Note that if you extend the GC to add additional resource ID components, you should ensure
that the library stub sends the change request immediately. This is because a client can free a
resource immediately after using it, so if you only stored the value in the cache without forcing
a protocol request, the resource might be destroyed before being set into the GC. You can use
the XFlushGCCache procedure to force the cache to be flushed. The _XFlushGCCache
procedure is defined as follows:

_XFlushGCCache(<i/sp/ay, gc)
Display * display,
GC gc\

display Specifies the connection to the X server.

gc Specifies the GC.

Graphics Batching

If you extend X to add more poly graphics primitives, you may be able to take advantage of
facilities in the library to allow back-to-back single calls to be transformed into poly requests.
This may dramatically improve performance of programs that are not written using poly
requests. A pointer to an xReq, called last_req in the display structure, is the last request being
processed. By checking that the last request type, drawable, gc, and other options are the same
as the new one and that there is enough space left in the buffer, you may be able to just extend
the previous graphics request by extending the length field of the request and appending the
data to the buffer. This can improve performance by five times or more in naive programs. For
example, here is the source for the XDrawPoint stub. (Writing extension stubs is discussed in
the next section.)

#include "copyright.h"

include "Xlibint.h"

/* precompute the maximum size of batching request allowed */

static int size = sizeof(xPolyPointReq) + EPERBATCH * sizeof(xPoint);

XDrawPoint(dpy, d, gc, x, y)
register Display *dpy;
Drawable d;

345

Xlib - C Library XI1, Release 5

GC gc;
int x, y; /* INTI6 */

{

xPoint *point;
LockDisplay(dpy);
FlushGC(dpy, gc);

{

register xPolyPointReq *req = (xPolyPointReq *) dpy->last_req;
/* if same as previous request, with same drawable, batch requests */

if(
(req->reqType == X_PolyPoint)

&& (req->drawable == d)
&& (req->gc == gc->gid)
&& (req->coordMode == CoordModeOrigin)
&& ((dpy->bufptr + sizeof (xPoint)) <= dpy->bufmax)
&& (((char *)dpy->bufptr - (char *)req) < size)) {

point = (xPoint *) dpy->bufptr,
req->length += sizeof (xPoint) » 2;
dpy->bufptr += sizeof (xPoint);

}

else {
GetReqExtra(PolyPoint, 4, req); /* 1 point = 4 bytes */
req->drawable = d;
req->gc = gc->gid;
req->coordMode = CoordModeOrigin;
point = (xPoint *) (req + 1);
)

point->x = x;
point->y = y;
}

UnlockDisplay(dpy);
SyncHandleO;

}

To keep clients from generating very long requests that may monopolize the server, there is a
symbol defined in <X11/XIibint.h> of EPERBATCH on the number of requests batched.
Most of the performance benefit occurs in the first few merged requests. Note that FlushGC
is called before picking up the value of last_req, because it may modify this field.

Writing Extension Stubs

All X requests always contain the length of the request, expressed as a 16-bit quantity of 32
bits. This means that a single request can be no more than 256K bytes in length. Some
servers may not support single requests of such a length. The value of dpy->max_request_size
contains the maximum length as defined by the server implementation. For further informa¬
tion, see “X Window System Protocol.”

Requests, Replies, and Xproto.h

The <Xll/Xproto.h> file contains three sets of definitions that are of interest to the stub
implementor; request names, request structures, and reply structures.

You need to generate a file equivalent to <Xll/Xproto.h> for your extension and need to
include it in your stub routine. Each stub routine also must include <X11/Xlibint.h>.

The identifiers are deliberately chosen in such a way that, if the request is called
X_DoSomething, then its request structure is xDoSomethingReq, and its reply is

346

Xlib - C Library XI1, Release 5

xDoSomethingReply. The GetReq family of macros, defined in <X11/Xlibint.h>, takes advan¬
tage of this naming scheme.

For each X request, there is a definition in <Xll/Xproto.h> that looks similar to this:

#define X_DoSomething 42

In your extension header file, this will be a minor opcode, instead of a major opcode.

Request Format

Every request contains an 8-bit major opcode and a 16-bit length field expressed in units of
four bytes. Every request consists of four bytes of header (containing the major opcode, the
length field, and a data byte) followed by zero or more additional bytes of data. The length
field defines the total length of the request, including the header. The length field in a request
must equal the minimum length required to contain the request. If the specified length is
smaller or larger than the required length, the server should generate a BadLength error.
Unused bytes in a request are not required to be zero. Extensions should be designed in such a
way that long protocol requests can be split up into smaller requests, if it is possible to exceed
the maximum request size of the server. The protocol guarantees the maximum request size to
be no smaller than 4096 units (16384 bytes).

Major opcodes 128 through 255 are reserved for extensions. Extensions are intended to con¬
tain multiple requests, so extension requests typically have an additional minor opcode encoded
in the “spare” data byte in the request header, but the placement and interpretation of this
minor opcode as well as all other fields in extension requests are not defined by the core proto¬
col. Every request is implicitly assigned a sequence number (starting with one) used in replies,
errors, and events.

To help but not cure portability problems to certain machines, the B16 and B32 macros have
been defined so that they can become bitfield specifications on some machines. For example,
on a Cray, these should be used for all 16-bit and 32-bit quantities, as discussed below.

Most protocol requests have a corresponding structure typedef in <Xll/Xproto.h>, which
looks like:

typedef struct _DoSomethingReq {
CARD8 reqType; /* X_DoSomething */
CARD8 someDatum; /* used differently in different requests */
CARD 16 length B16; /* total # of bytes in request, divided by 4 */

/* request-specific data */

} xDoSomethingReq;

If a core protocol request has a single 32-bit argument, you need not declare a request structure
in your extension header file. Instead, such requests use <Xll/Xproto.h>’s xResourceReq
structure. This structure is used for any request whose single argument is a Window, Pixmap,
Drawable, GContext, Font, Cursor, Colormap, Atom, or VisuallD.

typedef struct _ResourceReq {
CARD8 reqType;
BYTE pad;
CARD 16 length B16;
CARD32 id B32;

} xResourceReq;

/* the request type, e.g. X_DoSomething */
/* not used */
/* 2 (= total # of bytes in request, divided by 4) */
/* the Window, Drawable, Font, GContext, etc. */

If convenient, you can do something similar in your extension header file.

In both of these structures, the reqType field identifies the type of the request (for example,
X_MapWindow or X_CreatePixmap). The length field tells how long the request is in units of

347

Xlib - C Library XI1, Release 5

4-byte longwords. This length includes both the request structure itself and any variable length
data, such as strings or lists, that follow the request structure. Request structures come in
different sizes, but all requests are padded to be multiples of four bytes long.

A few protocol requests take no arguments at all. Instead, they use <Xll/XprotoJi>’s xReq
structure, which contains only a reqType and a length (and a pad byte).

If the protocol request requires a reply, then <Xll/Xproto.h> also contains a reply structure
typedef:

typedef struct _DoSomethingReply {
BYTE type;
BYTE someDatum;
CARD 16 sequenceNumber B16;
CARD32 length B32;

/* always X_Reply */
/* used differently in different requests */
/* # of requests sent so far */
/* # of additional bytes, divided by 4 */

/* request-specific data */

} xDoSomethingReply;

Most of these reply structures are 32 bytes long. If there are not that many reply values, then
they contain a sufficient number of pad fields to bring them up to 32 bytes. The length field is
the total number of bytes in the request minus 32, divided by 4. This length will be nonzero
only if:

• The reply structure is followed by variable length data such as a list or string.

• The reply structure is longer than 32 bytes.

Only GetWindowAttributes, QueryFont, QueryKeymap, and GetKeyboardControI have
reply structures longer than 32 bytes in the core protocol.

A few protocol requests return replies that contain no data. <Xll/Xproto.h> does not define
reply structures for these. Instead, they use the xGenericReply structure, which contains only
a type, length, and sequence number (and sufficient padding to make it 32 bytes long).

Starting to Write a Stub Routine

An Xlib stub routine should always start like this:

#include "Xlibint.h"

XDoSomething (arguments, ...)
/* argument declarations */
{

register XDoSomethingReq *req;

If the protocol request has a reply, then the variable declarations should include the reply struc¬
ture for the request. The following is an example:

xDoSomethingReply rep;

Locking Data Structures

To lock the display structure for systems that want to support multithreaded access to a single
display connection, each stub will need to lock its critical section. Generally, this section is
the point from just before the appropriate GetReq call until all arguments to the call have been
stored into the buffer. The precise instructions needed for this locking depend upon the
machine architecture. Two calls, which are generally implemented as macros, have been pro¬
vided.

348

Xlib - C Library XI1, Release 5

LockDisplay(di splay)
Display * display,

UnlockDisplayC^sp/ay)
Display * display,

display Specifies the connection to the X server.

Sending the Protocol Request and Arguments

After the variable declarations, a stub routine should call one of four macros defined in
<Xll/XIibint.h>: GetReq, GetReqExtra, GetResReq, or GetEmptyReq. All of these
macros take, as their first argument, the name of the protocol request as declared in
<Xll/Xproto.h> except with X_ removed. Each one declares a Display structure pointer,
called dpy, and a pointer to a request structure, called req, which is of the appropriate type.
The macro then appends the request structure to the output buffer, fills in its type and length
field, and sets req to point to it.

If the protocol request has no arguments (for instance, X_GrabServer), then use GetEmp¬
tyReq.

GetEmptyReq (DoSomething, req);

If the protocol request has a single 32-bit argument (such as a Pixmap, Window, Drawable,
Atom, and so on), then use GetResReq. The second argument to the macro is the 32-bit
object. X_MapWindow is a good example.

GetResReq (DoSomething, rid, req);

The rid argument is the Pixmap, Window, or other resource ID.

If the protocol request takes any other argument list, then call GetReq. After the GetReq,
you need to set all the other fields in the request structure, usually from arguments to the stub
routine.

GetReq (DoSomething, req);
/* fill in arguments here */
req->argl = argl;
req->arg2 = arg2;

A few stub routines (such as XCreateGC and XCreatePixmap) return a resource ID to the
caller but pass a resource ID as an argument to the protocol request. Such routines use the
macro XAllocID to allocate a resource ID from the range of IDs that were assigned to this
client when it opened the connection.

rid = req->rid = XAllocIDO;
return (rid);

Finally, some stub routines transmit a fixed amount of variable length data after the request.
Typically, these routines (such as XMoveWindow and XSetBackground) are special cases of
more general functions like XMoveResizeWindow and XChangeGC. These special case
routines use GetReqExtra, which is the same as GetReq except that it takes an additional
argument (the number of extra bytes to allocate in the output buffer after the request structure).
This number should always be a multiple of four.

Variable Length Arguments

Some protocol requests take additional variable length data that follow the xDoSomethingReq
structure. The format of this data varies from request to request. Some requests require a
sequence of 8-bit bytes, others a sequence of 16-bit or 32-bit entities, and still others a
sequence of structures.

349

Xlib - C Library XI1, Release 5

It is necessary to add the length of any variable length data to the length field cf the request
structure. That length field is in units of 32-bit longwords. If the data is a string or other
sequence of 8-bit bytes, then you must round the length up and shift it before adding:

req->length += (nbytes+3)»2;

To transmit variable length data, use the Data macros. If the data fits into the output buffer,
then this macro copies it to the buffer. If it does not fit, however, the Data macro calls
_XSend, which transmits first the contents of the buffer and then your data. The Data mac¬
ros take three arguments: the Display, a pointer to the beginning of the data, and the number of
bytes to be sent.

Data(display, (char *) data, nbytes)',

Datal6{display, (short *) data, nbytes)',

Data32(display, (long *) data, nbytes)'.

Data, Datal6, and Data32 are macros that may use their last argument more than once, so
that argument should be a variable rather than an expression such as “nitems*sizeof(item)’\
You should do that kind of computation in a separate statement before calling them. Use the
appropriate macro when sending byte, short, or long data.

If the protocol request requires a reply, then call the procedure _XSend instead of the Data
macro. _XSend takes the same arguments, but because it sends your data immediately instead
of copying it into the output buffer (which would later be flushed anyway by the following call
on _XRep!y), it is faster.

Replies

If the protocol request has a reply, then call _XReply after you have finished dealing with all
the fixed and variable length arguments. _XRepiy flushes the output buffer and waits for an
xReply packet to arrive. If any events arrive in the meantime, _XReply places them in the
queue for later use.

Status _XRvp\y (display, rep, extra, discard)
Display * display',
xReply *rep‘,
int extra',
Bool discard;

display Specifies the connection to the X server.

rep Specifies the reply structure.

extra Specifies the number of 32-bit words expected after the replay.

discard Specifies if beyond the “extra” data should be discarded.

_XReply waits for a reply packet and copies its contents into the specified rep. _XReply han¬
dles error and event packets that occur before the reply is received. _XReply takes four argu¬
ments:

• A Display * structure

• A pointer to a reply structure (which must be cast to an xReply *)

• The number of additional 32-bit words (beyond sizeof(xReply) = 32 bytes) in the reply
structure

• A Boolean that indicates whether _XReply is to discard any additional bytes beyond
those it was told to read

Because most reply structures are 32 bytes long, the third argument is usually 0. The only core
protocol exceptions are the replies to GetWindowAttributes, QueryFont, QueryKeymap,

350

Xlib - C Library Xll, Release 5

and GetKeyboardControl, which have longer replies.

The last argument should be False if the reply structure is followed by additional variable
length data (such as a list or string). It should be True if there is not any variable length data.

Note

This last argument is provided for upward-compatibility reasons to allow a client
to communicate properly with a hypothetical later version of the server that sends
more data than the client expected. For example, some later version of GetWin-
dowAttributes might use a larger, but compatible, xGetWindowAttributesReply
that contains additional attribute data at the end.

_XReply returns True if it received a reply successfully or False if it received any sort of
error.

For a request with a reply that is not followed by variable length data, you write something
like:

_XReply(display, (xReply *)&rep, 0, True);
*retl = rep.retl;
*ret2 = rep.ret2;
*ret3 = rep.ret3;
UnlockDisplay(dpy);
SyncHandleO;
return (rep.ret4);

}

If there is variable length data after the reply, change the True to False, and use the appropri¬
ate _XRead function to read the variable length data.

_XRead(display, data_return, nbytes)
Display * display',
char *data_return\
long nbytes',

display Specifies the connection to the X server.

dataj-eturn Specifies the buffer.

nbytes Specifies the number of bytes required.

XRead reads the specified number of bytes into data_rctum.

_XRead\6(display, data_return, nbytes)
Display * display',
short *data_return\
long nbytes',

display Specifies the connection to the X server.

data_return Specifies the buffer.

nbytes Specifies the number of bytes required.

_XReadl6 reads the specified number of bytes, unpacking them as 16-bit quantities, into the
specified array as shorts.

_XRead32{display, datajeturn, nbytes)
Display * display',
long *data_return\
long nbytes'.

351

Xlib - C Library XI1, Release 5

display Specifies the connection to the X server.

datajeturn Specifies the buffer.

nbytes Specifies the number of bytes required.

_XRead32 reads the specified number of bytes, unpacking them as 32-bit quantities, into the
specified array as longs.

_XRead 16Pad(display, data_return, nbytes)
Display * display,
short * datajeturn',
long nbytes',

display Specifies the connection to the X server.

datajeturn Specifies the buffer.

nbytes Specifies the number of bytes required.

_XReadl6Pad reads the specified number of bytes, unpacking them as 16-bit quantities, into
the specified array as shorts. If the number of bytes is not a multiple of four, __XReadl6Pad
reads and discards up to three additional pad bytes.

_XReadPad(display, datajeturn, nbytes)
Display *display,;
char *datajeturn;
long nbytes',

display Specifies the connection to the X server.

datajeturn Specifies the buffer.

nbytes Specifies the number of bytes required.

_XReadPad reads the specified number of bytes into data_retum. If the number of bytes is
not a multiple of four, _XReadPad reads and discards up to three additional pad bytes.

Each protocol request is a little different. For further information, see the Xlib sources for
examples.

Synchronous Calling

To ease debugging, each routine should have a call, just before returning to the user, to a rou¬
tine called SyncHandle. This routine generally is implemented as a macro. If synchronous
mode is enabled (see XSynchronize), the request is sent immediately. The library, however,
waits until any error the routine could generate at the server has been handled.

Allocating and Deallocating Memory

To support the possible reentry of these routines, you must observe several conventions when
allocating and deallocating memory, most often done when returning data to the user from the
window system of a size the caller could not know in advance (for example, a list of fonts or a
list of extensions). The standard C library routines on many systems are not protected against
signals or other multithreaded uses. The following analogies to standard I/O library routines
have been defined:

XmallocO Replaces malloc()

XFreeO Replaces freeO

XcallocO Replaces calloc()

These should be used in place of any calls you would make to the normal C library routines.

If you need a single scratch buffer inside a critical section (for example, to pack and unpack
data to and from the wire protocol),
the general memory allocators may be too expensive to use (particularly in output routines.

352

Xlib - C Library XI1, Release 5

which are performance critical). The routine below returns a scratch buffer for your use:

char *_XAllocScratch(display, nbytes)
Display * display,
unsigned long nbytes',

display Specifies the connection to the X server.

nbytes Specifies the number of bytes required.

This storage must only be used inside of the critical section of your stub.

Portability Considerations

Many machine architectures, including many of the more recent RISC architectures, do not
correctly access data at unaligned locations; their compilers pad out structures to preserve this
characteristic. Many other machines capable of unaligned references pad inside of structures as
well to preserve alignment, because accessing aligned data is usually much faster. Because the
library and the server use structures to access data at arbitrary points in a byte stream, all data
in request and reply packets must be naturally aligned; that is, 16-bit data starts on 16-bit boun¬
daries in the request and 32-bit data on 32-bit boundaries. All requests must be a multiple of
32 bits in length to preserve the natural alignment in the data stream. You must pad structures
out to 32-bit boundaries. Pad information does not have to be zeroed unless you want to
preserve such fields for future use in your protocol requests. Floating point varies radically
between machines and should be avoided completely if at all possible.

This code may run on machines with 16-bit ints. So, if any integer argument, variable, or
return value either can take only nonnegative values or is declared as a CARD 16 in the proto¬
col, be sure to declare it as unsigned int and not as int. (This, of course, does not apply to
Booleans or enumerations.)

Similarly, if any integer argument or return value is declared CARD32 in the protocol, declare
it as an unsigned long and not as int or long. This also goes for any internal variables that
may take on values larger than the maximum 16-bit unsigned int.

The library currently assumes that a char is 8 bits, a short is 16 bits, an int is 16 or 32 bits,
and a long is 32 bits. The PackData macro is a half-hearted attempt to deal with the possibil¬
ity of 32 bit shorts. However, much more work is needed to make this work properly.

Deriving the Correct Extension Opcode

The remaining problem a writer of an extension stub routine faces that the core protocol does
not face is to map from the call to the proper major and minor opcodes. While there are a
number of strategies, the simplest and fastest is outlined below.

1. Declare an array of pointers, _NFILE long (this is normally found in <stdio.h> and is
the number of file descriptors supported on the system) of type XExtCodes. Make sure
these are all initialized to NULL.

2. When your stub is entered, your initialization test is just to use the display pointer passed
in to access the file descriptor and an index into the array. If the entry is NULL, then
this is the first time you are entering the routine for this display. Call your initialization
routine and pass it to the display pointer.

3. Once in your initialization routine, call XInitExtension; if it succeeds, store the pointer
returned into this array. Make sure to establish a close display handler to allow you to
zero the entry. Do whatever other initialization your extension requires. (For example,
install event handlers and so on.) Your initialization routine would normally return a
pointer to the XExtCodes structure for this extension, which is what would normally be
found in your array of pointers.

4. After returning from your initialization routine, the stub can now continue normally,
because it has its major opcode safely in its hand in the XExtCodes structure.

353

Xlib - C Library XI1, Release 5

Appendix D

Compatibility Functions

The X Version 11 and X Version 10 functions disqussed in this appendix are obsolete, have
been superseded by newer X Version 11 functions, and are maintained for compatibility rea¬
sons only.

X Version 11 Compatibility Functions

You can use the X Version 11 compatibility functions to:

• Set standard properties

• Set and get window sizing hints

• Set and get an XStandardColormap structure

• Parse window geometry

• Get X environment defaults

Setting Standard Properties

To specify a minimum set of properties describing the “quickie” application, use XSetStan-
dardProperties. This function has been superseded by XSetWMProperties and sets all or
portions of the WM_NAME, WM_ICON_NAME, WM_HINTS, WM_COMMAND, and
WM_NORMAL_HINTS properties.

XSetStandardProperties (d/sp/ay, w, window_name, iconjiame, iconpixmap, argv, urge, hints)
Display * display.
Window w;
char * window_name\
char *icon_name\
Pixmap icon_pixmap\
char **argv\
int argc\
XSizeHints * hints’.

display Specifies the connection to the X server,

w Specifies the window.

window jiame Specifies the window name, which should be a null-terminated string.

Specifies the icon name, which should be a null-terminated string.

Specifies the bitmap that is to be used for the icon or None.

Specifies the application’s argument list.

Specifies the number of arguments.

Specifies a pointer to the size hints for the window in its normal state.

The XSetStandardProperties function provides a means by which simple applications set the
most essential properties with a single call. XSetStandardProperties should be used to give
a window manager some information about your program’s preferences. It should not be used
by applications that need to communicate more information than is possible with XSetStan¬
dardProperties. (Typically, argv is the argv array of your main program.) If the strings are
not in the Host Portable Character Encoding the result is implementation dependent.

iconjiame

icon jpixmap

argv

arge

hints

354

Xlib - C Library XI1, Release 5

XSetStandardProperties can generate BadAlIoc and BadWindow errors.

Setting and Getting Window Sizing Hints

Xlib provides functions that you can use to set or get window sizing hints. The functions dis¬
cussed in this section use the flags and the XSizeHints structure, as defined in the
<X11/Xutil.h> header file, and use the WM_NORMAL_HINTS property.

To set the size hints for a given windpw in its normal state, use XSetNormalHints. This
function has been superseded by XSetWMNormalHints.

XSetNormalHints {display, w, hints)
Display * display.
Window w;
XSizeHints * hints’,

display Specifies the connection to the X server,

w Specifies the window.

hints Specifies a pointer to the size hints for the window in its normal state.

The XSetNormalHints function sets the size hints structure for the specified window. Appli¬
cations use XSetNormalHints to inform the window manager of the size or position desirable
for that window. In addition, an application that wants to move or resize itself should call
XSetNormalHints and specify its new desired location and size as well as making direct Xlib
calls to move or resize. This is because window managers may ignore redirected configure
requests, but they pay attention to property changes.

To set size hints, an application not only must assign values to the appropriate members in the
hints structure but also must set the flags member of the structure to indicate which informa¬
tion is present and where it came from. A call to XSetNormalHints is meaningless, unless the
flags member is set to indicate which members of the structure have been assigned values.

XSetNormalHints can generate BadAlIoc and BadWindow errors.

To return the size hints for a window in its normal state, use XGetNormalHints. This func¬
tion has been superseded by XGetWMNormalHints.

Status XGetNormalHints (display, w, hints _re turn)
Display * display.
Window w;
XSizeHints * hints _return\

display Specifies the connection to the X server,

w Specifies the window.

hints_return Returns the size hints for the window in its normal state.

The XGetNormalHints function returns the size hints for a window in its normal state. It
returns a nonzero status if it succeeds or zero if the application specified no normal size hints
for this window.

XGetNormalHints can generate a BadWindow error.

The next two functions set and read the WM_ZOOM_HINTS property.

To set the zoom hints for a window, use XSetZoomHints. This function is no longer sup¬
ported by the Inter-Client Communication Conventions Manual.

355

Xlib - C Library XI1, Release 5

XSetZoomHints w, zhints)
Display * display.
Window w;
XSizeHints * zhints;

display Specifies the connection to the X server.

w Specifies the window.

zhints Specifies a pointer to the zoom hints.

Many window managers think of windows in one of three states: iconic, normal, or zoomed.
The XSetZoomHints function provides the window manager with information for the window
in the zoomed state.

XSetZoomHints can generate BadAUoc and BadWindow errors.

To read the zoom hints for a window, use XGetZoomHints. This function is no longer sup¬
ported by the Inter-Client Communication Conventions Manual.

Status XGetZoomHints (dwp/ay, w, zhints_return)
Display * display.
Window w;
XSizeHints *zhints_return\

display Specifies the connection to the X server,

w Specifies the window.

zhints_return Returns the zoom hints.

The XGetZoomHints function returns the size hints for a window in its zoomed state. It
returns a nonzero status if it succeeds or zero if the application specified no zoom size hints for
this window.

XGetZoomHints can generate a BadWindow error.

To set the value of any property of type WM_SIZE_HINTS, use XSetSizeHints. This func¬
tion has been superseded by XSetWMSizeHints.

XSetSizeHints (display, w, hints, property)
Display * display.
Window w;
XSizeHints * hints'.
Atom property,

display Specifies the connection to the X server,

w Specifies the window.

hints Specifies a pointer to the size hints.

property Specifies the property name.

The XSetSizeHints function sets the XSizeHints structure for the named property and the
specified window. This is used by XSetNormalHints and XSetZoomHints, and can be used
to set the value of any property of type WM_SIZE_HINTS. Thus, it may be useful if other
properties of that type get defined.

XSetSizeHints can generate BadAlloc, BadAtom, and BadWindow errors.

To read the value of any property of type WM_SIZE_HINTS, use XGetSizeHints. This func¬
tion has been superseded by XGetWMSizeHints.

356

Xlib - C Library Xll, Release 5

Status XGetSizeHints(tfwp/ay, w, hints _return, property)
Display * display'.
Window w,
XSizeHints * hints_return\
Atom property;

display Specifies the connection to the X server,

w Specifies the window.

hints jeturn Returns the size hints.

property Specifies the property name.

XGetSizeHints returns the XSizeHints structure for the named property and the specified
window. This is used by XGetNormalHints and XGetZoomHints. It also can be used to
retrieve the value of any property of type WM_SIZE_HINTS. Thus, it may be useful if other
properties of that type get defined. XGetSizeHints returns a nonzero status if a size hint was
defined or zero otherwise.

XGetSizeHints can generate BadAtom and BadWindow errors.

Getting and Setting an XStandardColormap Structure

To get the XStandardColormap structure associated with one of the described atoms, use
XGetStandardColormap. This function has been superseded by XGetRGBColormap.

Status XGetStandardColormapC^wp/ity, w, colormapjeturn, property)
Display * display.
Window w;
XStandardColormap * colormapjeturn’.
Atom property, /* RGB_BEST_MAP, etc. */

display Specifies the connection to the X server,

w Specifies the window.

colormapjeturnRetums the colormap associated with the specified atom.

property Specifies the property name.

The XGetStandardColormap function returns the colormap definition associated with the
atom supplied as the property argument. XGetStandardColormap returns a nonzero status if
successftil, and zero otherwise. For example, to fetch the standard Grayscale colormap for a
display, you use XGetStandardColormap with the following syntax:

XGetStandardColormap(dpy, DefaultRootWindow(dpy), &cmap, XA_RGB_GRAY_MAP);

See section 14.3 for the semantics of standard colormaps.

XGetStandardColormap can generate BadAtom and BadWindow errors.

To set a standard colormap, use XSetStandardColormap. This function has been superseded
by XSetRGBColormap.

XSetStandardColormap(d/.sp/ay, w, colormap, property)
Display * display.
Window w;
XStandardColormap * colormap-.
Atom property, /* RGB_BEST_MAP, etc. */

display Specifies the connection to the X server,

w Specifies the window.

colormap Specifies the colormap.

357

Xlib - C Library XI1, Release 5

property Specifies the property name.

The XSetStandardCoIormap function usually is only used by window or session managers.

XSetStandardColormap can generate Bad Alloc, Bad Atom, BadDrawable, and Bad Win¬
dow errors.

Parsing Window Geometry

To parse window geometry given a user-specified position and a default position, use
XGeometry. This function has been superseded by XWMGeometry.

int XGeometry(display, screen, position, defaultjosition, bwidth, fwidth,/height, xadder,
yadder, xjeturn, yjeturn, width jeturn, height_return)

Display * display,
int screen;
char *position, * defaultjosition',
unsigned int bwidth',
unsigned int fwidth, /height',
int xadder, yadder',
int *x_return, *y jeturn',
int *width jeturn, * heightjeturn',

display Specifies the connection to the X server.

screen Specifies the screen.

position
defaultjositionSpccdy the geometry specifications.

bwidth Specifies the border width.

jheight
fwidth Specify the font height and width in pixels (increment size).

xadder
yadder Specify additional interior padding needed in the window.

xjeturn
yjeturn Return the x and y offsets.

v^idth jeturn
height jeturn Return the width and height determined.

You pass in the border width (bwidth), size of the increments fwidth and fheight (typically font
width and height), and any additional interior space (xadder and yadder) to make it easy to
compute the resulting size. The XGeometry function returns the position the window should
be placed given a position and a default position. XGeometry determines the placement of a
window using a geometry specification as specified by XParseGeometry and the additional
information about the window. Given a fully qualified default geometry specification and an
incomplete geometry specification, XParseGeometry returns a bitmask value as defined above
in the XParseGeometry call, by using the position argument.

The returned width and height will be the width and height specified by default_position as
overridden by any user-specified position. They are not affected by fwidth, fheight, xadder, or
yadder. The x and y coordinates are computed by using the border width, the screen width
and height, padding as specified by xadder and yadder, and the fheight and fwidth times the
width and height from the geometry specifications.

Obtaining the X Environment Defaults

The XGetDefault function provides a primitive interface to the resource manager facilities dis¬
cussed in chapter 15. It is only useful in very simple applications.

358

Xlib - C Library XI1, Release 5

char *XGetDefault(d/sp/oy, program, option)
Display * display,
char ^program;
char * option;

display Specifies the connection to the X server.

program Specifies the program name for the Xlib defaults (usually argv[0] of the main
program).

option Specifies the option name.

The XGetDefault function returns the value of the resource prog.option, where prog is the
program argument with the directory prefix removed and option must be a single component
Note that multi-level resources cannot be used with XGetDefault. The class "Program.Name"
is always used for the resource lookup. If the specified option name does not exist for this
program, XGetDefault returns NULL. The strings returned by XGetDefault are owned by
Xlib and should not be modified or freed by the client.

If a database has been set with XrmSetDatabase, that database is used for the lookup. Other¬
wise, a database is created as described below, and this is set in the display (as if by calling
XrmSetDatabase). The database is created in the current locale. To create a database, XGet¬
Default uses resources from the RESOURCE_MANAGER property on the root window of
screen zero. If no such property exists, a resource file in the user’s home directory is used.
On a POSIX-conformant system, this file is $HOME/.Xdefaults. After loading these defaults,
XGetDefault merges additional defaults specified by the XENVIRONMENT environment
variable. If XENVIRONMENT is defined, it contains a full path name for the additional
resource file. If XENVIRONMENT is not defined, XGetDefault looks for
$HOME/.XdefauIts-mzm£, where name specifies the name of the machine on which the appli¬
cation is running.

X Version 10 Compatibility Functions

You can use the X Version 10 compatibility functions to:

• Draw and fill polygons and curves

• Associate user data with a value

Drawing and Filling Polygons and Curves

Xlib provides functions that you can use to draw or fill arbitrary polygons or curves. These
functions are provided mainly for compatibility with X Version 10 and have no server support.
That is, they call other Xlib functions, not the server directly. Thus, if you just have straight
lines to draw, using XDrawLines or XDrawSegments is much faster.

The functions discussed here provide all the functionality of the X Version 10 functions
XDraw, XDrawFilled, XDrawPatterned, XDrawDashed, and XDrawTiled. They are as
compatible as possible given X Version ll’s new line drawing functions. One thing to note,
however, is that VertexDravvLastPoint is no longer supported. Also, the error status returned
is the opposite of what it was under X Version 10 (this is the X Version 11 standard error
status). XAppendVertex and XClearVertexFlag from X Version 10 also are not supported.

Just how the graphics context you use is set up actually determines whether you get dashes or
not, and so on. Lines are properly joined if they connect and include the closing of a closed
figure (see XDrawLines). The functions discussed here fail (return zero) only if they run out
of memory or are passed a Vertex list that has a Vertex with VertexStartCIosed set that is
not followed by a Vertex with VertexEndClosed set.

To achieve the effects of the X Version 10 XDraw, XDrawDashed, and XDrawPatterned,
use XDraw.

359

Xlib - C Library Xll, Release 5

#include <X11/X10.h>

Status XDraw{display, d, gc, vlist, vcount)
Display * display,
Drawable d\
GC gc\
Vertex *vlist\
int vcount',

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

vlist Specifies a pointer to the list of vertices that indicate what to draw.

vcount Specifies how many vertices are in vlist.

XDraw draws an arbitrary polygon or curve. The figure drawn is defined by the specified list
of vertices (vlist). The points are connected by lines as specified in the flags in the vertex
structure.

Each Vertex, as defined in <X11/X10.h>, is a structure with the following members:

typedef struct _Vertex {
short x,y;
unsigned short flags;

} Vertex;

The x and y members are the coordinates of the vertex that are relative to either the upper-left
inside comer of the drawable (if VertexRelative is zero) or the previous vertex (if VertexRe-
lative is one).

The flags, as defined in <X11/X10.h>, are as follows:

VertexRelative 0x0001
VertexDontDraw 0x0002
VertexCurved 0x0004
VertexStartClosed 0x0008
VertexEndCIosed 0x0010

/* else absolute */
/* else draw */
/* else straight */
/* else not */
/* else not */

• If VertexRelative is not set, the coordinates are absolute (that is, relative to the
drawable’s origin). The first vertex must be an absolute vertex.

• If VertexDontDraw is one, no line or curve is drawn from the previous vertex to this
one. This is analogous to picking up the pen and moving to another place before drawing
another line.

• If VertexCurved is one, a spline algorithm is used to draw a smooth curve from the
previous vertex through this one to the next vertex. Otherwise, a straight line is drawn
from the previous vertex to this one. It makes sense to set VertexCurved to one only if
a previous and next vertex are both defined (either explicitly in the array or through the
definition of a closed curve).

• It is permissible for VertexDontDraw bits and VertexCurved bits both to be one. This
is useful if you want to define the previous point for the smooth curve but do not want
an actual curve drawing to start until this point.

• If VertexStartClosed is one, then this point marks the beginning of a closed curve. This
vertex must be followed later in the array by another vertex whose effective coordinates
are identical and that has a VertexEndCIosed bit of one. The points in between form a
cycle to determine predecessor and successor vertices for the spline algorithm.

360

Xlib - C Library Xll, Release 5

This function uses these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, and dash-list.

To achieve the effects of the X Version 10 XDrawTiled and XDrawFilled, use
XDrawFilled.

include <X11/X10.h>

Status XDrawFilled(^/5p/<3y, d, gc, vlist, vcount)
Display * display,
Drawable d\
GC gc\
Vertex *vlist;
int vcount’,

display Specifies the connection to the X server.

d Specifies the drawable.

gc Specifies the GC.

vlist Specifies a pointer to the list of vertices that indicate what to draw.

vcount Specifies how many vertices are in vlist.

XDrawFilled draws arbitrary polygons or curves and then fills them.

This function uses these GC components: function, plane-mask, line-width, line-style, cap-style,
join-style, fill-style, subwindow-mode, clip-x-origin, clip-y-origin, and clip-mask. It also uses
these GC mode-dependent components: foreground, background, tile, stipple, tile-stipple-x-
origin, tile-stipple-y-origin, dash-offset, dash-list, fill-style, and fill-rule.

Associating User Data with a Value

These functions have been superseded by the context management functions (see section
16.10). It is often necessary to associate arbitrary information with resource IDs. Xlib provides
the XAssocTable functions that you can use to make such an association. Application pro¬
grams often need to be able to easily refer to their own data structures when an event arrives.
The XAssocTable system provides users of the X library with a method for associating their
own data structures with X resources (Pixmaps, Fonts, Windows, and so on).

An XAssocTable can be used to type X resources. For example, the user may want to have
three or four types of windows, each with different properties. This can be accomplished by
associating each X window ID with a pointer to a window property data structure defined by
the user. A generic type has been defined in the X library for resource IDs. It is called an
XID.

There are a few guidelines that should be observed when using an XAssocTable:

• All XIDs are relative to the specified display.

• Because of the hashing scheme used by the association mechanism, the following
rules for determining the size of a XAssocTable should be followed. Associations will
be made and looked up more efficiently if the table size (number of buckets in
the hashing system) is a power of two and if there are not more than 8 XIDs per
bucket.

To return a pointer to a new XAssocTable, use XCreateAssocTable.

XAssocTable *XCreateAssocTable(size)
int size’.

361

Xlib - C Library XI1, Release 5

size Specifies the number of buckets in the hash system of XAssocTable.

The size argument specifies the number of buckets in the hash system of XAssocTable. For
reasons of efficiency the number of buckets should be a power of two. Some size sugges¬
tions might be: use 32 buckets per 100 objects, and a reasonable maximum number of
objects per buckets is 8. If an error allocating memory for the XAssocTable occurs, a
NULL pointer is returned.

To create an entry in a given XAssocTable, use XMakeAssoc.

XMakeAssoc (display, table, xjd, data)
Display * display,
XAssocTable * table',
XID xjd;
char *data;

display Specifies the connection to the X server.

table Specifies the assoc table.

xjd Specifies the X resource ID.

data Specifies the data to be associated with the X resource ID.

XMakeAssoc inserts data into an XAssocTable keyed on an XID. Data is inserted into
the table only once. Redundant inserts are ignored. The queue in each association bucket is
sorted from the lowest XID to the highest XID.

To obtain data from a given XAssocTable, use XLookUpAssoc.

char *XLookUpAssoc(dw/?/tfy, table, xjd)
Display * display,
XAssocTable * table',
XID xjd',

display Specifies the connection to the X server.

table Specifies the assoc table.

xjd Specifies the X resource ID.

XLookUpAssoc retrieves the data stored in an XAssocTable by its XID. If an appropriately
matching XID can be found in the table, XLookUpAssoc returns the data associated with it.
If the x_id cannot be found in the table, it returns NULL.

To delete an entry from a given XAssocTable, use XDeleteAssoc.

XDeleteAssoc(display, table, xjd)
Display * display;
XAssocTable * table;
XID xjd;

display Specifies the connection to the X server.

table Specifies the assoc table.

xjd Specifies the X resource ID.

XDeleteAssoc deletes an association in an XAssocTable keyed on its XID. Redundant
deletes (and deletes of nonexistent XIDs) are ignored. Deleting associations in no way impairs
the performance of an XAssocTable.

To free the memory associated with a given XAssocTable, use XDestroyAssocTable.

362

Xlib - C Library XI1, Release 5

XDestroy AssocT able (table)
XAssocTable * table',

table Specifies the assoc table.

363

Xlib - C Library XI1, Release 5

Glossary

Access control list

X maintains a list of hosts from which client programs can be run. By default, only pro¬
grams on the local host and hosts specified in an initial list read by the server can use the
display. This access control list can be changed by clients on the local host. Some server
implementations can also implement other authorization mechanisms in addition to or in
place of this mechanism. The action of this mechanism can be conditional based on the
authorization protocol name and data received by the server at connection setup.

Active grab

A grab is active when the pointer or keyboard is actually owned by the single grabbing
client.

Ancestors

If W is an inferior of A, then A is an ancestor of W.

Atom

An atom is a unique ID corresponding to a string name. Atoms are used to identify pro¬
perties, types, and selections.

Background

An InputOutput window can have a background, which is defined as a pixmap. When
regions of the window have their contents lost or invalidated, the server automatically
tiles those regions with the background.

Backing store

When a server maintains the contents of a window, the pixels saved off-screen are known
as a backing store.

Base font name

A font name used to select a family of fonts whose members may be encoded in various
charsets. The CharSetRegistry and CharSetEncoding fields of an XLFD name identi¬
fy the charset of the font. A base font name may be a full XLFD name, with all fourteen

delimiters, or an abbreviated XLFD name containing only the first 13 fields of an
XLFD name, up to but not including CharSetRegistry, with or without the thirteenth
or a non-XLFD name. Any XLFD fields may contain wild cards.

When creating an XFontSet, Xlib accepts from the client a list of one or more base font
names which select one or more font families. They are combined with charset names
obtained from the encoding of the locale to load the fonts required to render text.

Bit gravity

When a window is resized, the contents of the window are not necessarily discarded. It is
possible to request that the server relocate the previous contents to some region of the
window (though no guarantees are made). This attraction of window contents for some
location of a window is known as bit gravity.

Bit plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a
bit plane or plane.

Bitmap

A bitmap is a pixmap of depth one.

364

Xlib - C Library XI1, Release 5

Border

An InputOutput window can have a border of equal thickness on all four sides of the
window. The contents of the border are defined by a pixmap, and the server automatical¬
ly maintains the contents of the border. Exposure events are never generated for border
regions.

Button grabbing

Buttons on the pointer can be passively grabbed by a client. When the button is pressed,
the pointer is then actively grabbed by the client.

Byte order

For image (pixmap/bitmap) data, the server defines the byte order, and clients with
different native byte ordering must swap bytes as necessary. For all other parts of the
protocol, the client defines the byte order, and the server swaps bytes as necessary.

Character

A member of a set of elements used for the organization, control, or representation of
text (ISO2022, as adapted by XPG3). Note that in 1SO2022 terms, a character is not
bound to a coded value until it is identified as part of a coded character set.

Character glyph

The abstract graphical symbol for a character. Character glyphs may or may not map
one-to-one to font glyphs, and may be context-dependent, varying with the adjacent char¬
acters. Multiple characters may map to a single character glyph.

Character set

A collection of characters.

Charset

An encoding with a uniform, state-independent mapping from characters to codepoints.
A coded character set.

For display in X, there can be a direct mapping from a charset to one font, if the width
of all characters in the charset is either one or two bytes. A text string encoded in an en¬
coding such as Shift-JIS cannot be passed directly to the X server, because the text imag¬
ing requests accept only single-width charsets (either 8 or 16 bits). Charsets which meet
these restrictions can serve as “font charsets”. Font charsets strictly speaking map font
indices to font glyphs, not characters to character glyphs.

Note that a single font charset is sometimes used as the encoding of a locale, for exam¬
ple, IS08859-1.

Children

The children of a window are its first-level subwindows.

Class

Windows can be of different classes or types. See the entries for InputOnly and Inpu-
tOutput windows for further information about valid window types.

Client

An application program connects to the window system server by some interprocess com¬
munication (IPC) path, such as a TCP connection or a shared memory buffer. This pro¬
gram is referred to as a client of the window system server. More precisely, the client is
the IPC path itself. A program with multiple paths open to the server is viewed as multi¬
ple clients by the protocol. Resource lifetimes are controlled by connection lifetimes, not
by program lifetimes.

365

Xlib - C Library XI1, Release 5

Clipping region

In a graphics context, a bitmap or list of rectangles can be specified to restrict output to a
particular region of the window. The image defined by the bitmap or rectangles is called
a clipping region.

Coded character

A character bound to a codepoint.

Coded character set

A set of unambiguous rules that establishes a character set and the one-to-one relationship
between each character of the set and its bit representation. (ISO2022, as adapted by
XPG3) A definition of a one-to-one mapping of a set of characters to a set of codepoints.

Codepoint

The coded representation of a single character in a coded character set.

Colormap

A colormap consists of a set of entries defining color values. The colormap associated
with a window is used to display the contents of the window; each pixel value indexes
the colormap to produce an RGB value that drives the guns of a monitor. Depending on
hardware limitations, one or more colormaps can be installed at one time so that windows
associated with those maps display with true colors.

Connection

The IPC path between the server and client program is known as a connection. A client
program typically (but not necessarily) has one connection to the server over which re¬
quests and events are sent.

Containment

A window contains the pointer if the window is viewable and the hotspot of the cursor is
within a visible region of the window or a visible region of one of its inferiors. The bord¬
er of the window is included as part of the window for containment. The pointer is in a
window if the window contains the pointer but no inferior contains the pointer.

Coordinate system

The coordinate system has X horizontal and Y vertical, with the origin [0, 0] at the upper
left. Coordinates are integral and coincide with pixel centers. Each window and pixmap
has its own coordinate system. For a window, the origin is inside the border at the inside
upper-left comer.

Cursor

A cursor is the visible shape of the pointer on a screen. It consists of a hotspot, a source
bitmap, a shape bitmap, and a pair of colors. The cursor defined for a window controls
the visible appearance when the pointer is in that window.

Depth

The depth of a window or pixmap is the number of bits per pixel it has. The depth of a
graphics context is the depth of the drawables it can be used in conjunction with graphics
output.

Device

Keyboards, mice, tablets, track-balls, button boxes, and so on are all collectively known
as input devices. Pointers can have one or more buttons (the most common number is
three). The core protocol only deals with two devices: the keyboard and the pointer.

366

Xlib - C Library XI1, Release 5

DirectColor

DirectColor is a class of colormap in which a pixel value is decomposed into three
separate subfields for indexing. The first subfield indexes an array to produce red intensi¬
ty values. The second subfield indexes a second array to produce blue intensity values.
The third subfield indexes a third array to produce green intensity values. The RGB (red,
green, and blue) values in the colormap entry can be changed dynamically.

Display

A server, together with its screens and input devices, is called a display. The Xlib
Display structure contains all information about the particular display and its screens as
well as the state that Xlib needs to communicate with the display over a particular con¬
nection.

Drawable

Both windows and pixmaps can be used as sources and destinations in graphics opera¬
tions. These windows and pixmaps are collectively known as drawabies. However, an
InputOnly window cannot be used as a source or destination in a graphics operation.

Encoding

A set of unambiguous rules that establishes a character set and a relationship between the
characters and their representations. The character set does not have to be fixed to a
finite pre-defined set of characters. The representations do not have to be of uniform
length. Examples are an ISO2022 graphic set, a state-independent or state-dependent
combination of graphic sets, possibly including control sets, and the X Compound Text
encoding.

In X, encodings are identified by a string which appears as: the CharSetRegistry and
CharSetEncoding components of an XLFD name; the name of a charset of the locale
for which a font could not be found; or an atom which identifies the encoding of a text
property or which names an encoding for a text selection target type. Encoding names
should be composed of characters from the X Portable Character Set.

Escapement

The escapement of a string is the distance in pixels in the primary draw direction from
the drawing origin to the origin of the next character (that is, the one following the given
string) to be drawn.

Event

Clients are informed of information asynchronously by means of events. These events
can be either asynchronously generated from devices or generated as side effects of client
requests. Events are grouped into types. The server never sends an event to a client un¬
less the client has specifically asked to be informed of that type of event. However,
clients can force events to be sent to other clients. Events are typically reported relative to
a window.

Event mask

Events are requested relative to a window. The set of event types a client requests rela¬
tive to a window is described by using an event mask.

Event propagation

Device-related events propagate from the source window to ancestor windows until some
client has expressed interest in handling that type of event or until the event is discarded
explicitly.

367

Xlib - C Library XI1, Release 5

Event synchronization

There are certain race conditions possible when demultiplexing device events to clients
(in particular, deciding where pointer and keyboard events should be sent when in the
middle of window management operations). The event synchronization mechanism allows
synchronous processing of device events.

Event source

The deepest viewable window that the pointer is in is called the source of a device-
related event.

Exposure event

Servers do not guarantee to preserve the contents of windows when windows are ob¬
scured or reconfigured. Exposure events are sent to clients to inform them when contents
of regions of windows have been lost

Extension

Named extensions to the core protocol can be defined to extend the system. Extensions to
output requests, resources, and event types are all possible and expected.

Font

A font is an array of glyphs (typically characters). The protocol does no translation or in¬
terpretation of character sets. The client simply indicates values used to index the glyph
array. A font contains additional metric information to determine interglyph and interline
spacing.

Frozen events

Clients can freeze event processing during keyboard and pointer grabs.

Font glyph

The abstract graphical symbol for an index into a font.

GC

GC is an abbreviation for graphics context. See Graphics context.

Glyph

An identified abstract graphical symbol independent of any actual image. (ISO/1EC/DIS
9541-1) An abstract visual representation of a graphic character, not bound to a
codepoint.

Glyph image

An image of a glyph, as obtained from a glyph representation displayed on a presentation
surface. (ISO/IEC/DIS 9541-1)

Grab

Keyboard keys, the keyboard, pointer buttons, the pointer, and the server can be grabbed
for exclusive use by a client. In general, these facilities are not intended to be used by
normal applications but are intended for various input and window managers to imple¬
ment various styles of user interfaces.

Graphics context

Various information for graphics output is stored in a graphics context (GC), such as
foreground pixel, background pixel, line width, clipping region, and so on. A graphics
context can only be used with drawables that have the same root and the same depth as
the graphics context.

Gravity

The contents of windows and windows themselves have a gravity, which determines how
the contents move when a window is resized. See Bit gravity and Window gravity.

368

Xlib - C Library XI1, Release 5

Grayscale

Grayscale can be viewed as a degenerate case of PseudoColor, in which the red, green,
and blue values in any given colormap entry are equal and thus, produce shades of gray.
The gray values can be changed dynamically.

Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by
Xlib on the host. If a string is said to be in the Host Portable Character Encoding,-then it
only contains characters from the X Portable Character Set, in the host encoding.

Hotspot

A cursor has an associated hotspot, which defines the point in the cursor corresponding to
the coordinates reported for the pointer.

Identifier

An identifier is a unique value associated with a resource that clients use to name that
resource. The identifier can be used over any connection to name the resource.

Inferiors

The inferiors of a window are all of the subwindows nested below it: the children, the
children’s children, and so on.

Input focus

The input focus is usually a window defining the scope for processing of keyboard input.
If a generated keyboard event usually would be reported to this window or one of its in¬
feriors, the event is reported as usual Otherwise, the event is reported with respect to
the focus window. The input focus also can be set such that all keyboard events are dis¬
carded and such that the focus window is dynamically taken to be the root window of
whatever screen the pointer is on at each keyboard event.

Input manager

Control over keyboard input is typically provided by an input manager client, which usu¬
ally is part of a window manager.

InputOnly window

An InputOnly window is a window that cannot be used for graphics requests. InputOn¬
ly windows are invisible and are used to control such things as cursors, input event gen¬
eration, and grabbing. InputOnly windows cannot have InputOutput windows as infe¬
riors.

InputOutput window

An InputOutput window is the normal kind of window that is used for both input and
output InputOutput windows can have both InputOutput and InputOnly windows
as inferiors.

Internationalization

The process of making software adaptable to the requirements of different native
languages, local customs, and character string encodings. Making a computer program
adaptable to different locales without program source modifications or recompilation.

ISO2022

ISO standard for code extension techniques for 7-bit and 8-bit coded character sets.

Key grabbing

Keys on the keyboard can be passively grabbed by a client. When the key is pressed, the
keyboard is then actively grabbed by the client.

369

Xlib - C Library Xll, Release 5

Keyboard grabbing

A client can actively grab control of the keyboard, and key events will be sent to that
client rather than the client the events would normally have been sent to.

Keysym

An encoding of a symbol on a keycap on a keyboard.

Latin-1

The coded character set defined by the IS08859-1 standard.

Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII
control characters. If a string is said to be in the Latin Portable Character Encoding, then
it only contains characters from the X Portable Character Set, not all of Latin-1.

Locale

The international environment of a computer program defining the “localized” behavior
of that program at run-time. This information can be established from one or more sets
of localization data. ANSI C defines locale-specific processing by C system library calls.
See ANSI C and the X/Open Portability Guide specifications for more details. In this
specification, on implementations that conform to the ANSI C library, the “current lo¬
cale” is the current setting of the LC_CTYPE setlocale category. Associated with each
locale is a text encoding. When text is processed in the context of a locale, the text must
be in the encoding of the locale. The current locale affects Xlib in its:

• Encoding and processing of input method text

• Encoding of resource files and values

• Encoding and imaging of text strings

• Encoding and decoding for inter-client text communication

Localization

The process of establishing information within a computer system specific to the opera¬
tion of particular native languages, local customs and coded character sets. (XPG3)

Locale name

The identifier used to select the desired locale for the host C library and X library func¬
tions. On ANSI C library compliant systems, the locale argument to the setlocale func¬
tion.

Mapped

A window is said to be mapped if a map call has been performed on it. Unmapped win¬
dows and their inferiors are never viewable or visible.

Modifier keys

Shift, Control, Meta, Super, Hyper, Alt, Compose, Apple, CapsLock, ShiftLock, and
similar keys are called modifier keys.

Monochrome

Monochrome is a special case of StaticGray in which there are only two colormap en¬
tries.

Multibyte

A character whose codepoint is stored in more than one byte; any encoding which can
contain multibyte characters; text in a multibyte encoding. The “char *” null-terminated
string datatype in ANSI C. Note that references in this document to multibyte strings im¬
ply only that the strings may contain multibyte characters.

370

Xlib - C Library XI1, Release 5

Obscure

A window is obscured if some other window obscures it. A window can be partially ob¬
scured and so still have visible regions. Window A obscures window B if both are view¬
able InputOutput windows, if A is higher in the global stacking order, and if the rectan¬
gle defined by the outside edges of A intersects the rectangle defined by the outside edges
of B. Note the distinction between obscures and occludes. Also note that window bord¬
ers are included in the calculation.

Occlude

A window is occluded if some other window occludes iL Window A occludes window
B if both are mapped, if A is higher in the global stacking order, and if the rectangle
defined by the outside edges of A intersects the rectangle defined by the outside edges of
B. Note the distinction between occludes and obscures. Also note that window borders
are included in the calculation and that InputOnly windows never obscure other win¬
dows but can occlude other windows.

Padding

Some padding bytes are inserted in the data stream to maintain alignment of the protocol
requests on natural boundaries. This increases ease of portability to some machine archi¬
tectures.

Parent window

If C is a child of P, then P is the parent of C.

Passive grab

Grabbing a key or button is a passive grab. The grab activates when the key or button is
actually pressed.

Pixel value

A pixel is an N-bit value, where N is the number of bit planes used in a particular win¬
dow or pixmap (that is, is the depth of the window or pixmap). A pixel in a window
indexes a colormap to derive an actual color to be displayed.

Pixmap

A pixmap is a three-dimensional array of bits. A pixmap is normally thought of as a
two-dimensional array of pixels, where each pixel can be a value from 0 to 2^-1, and
where N is the depth (z axis) of the pixmap. A pixmap can also be thought of as a stack
of N bitmaps. A pixmap can only be used on the screen that it was created in.

Plane

When a pixmap or window is thought of as a stack of bitmaps, each bitmap is called a
plane or bit plane.

Plane mask

Graphics operations can be restricted to only affect a subset of bit planes of a destination.
A plane mask is a bit mask describing which planes are to be modified. The plane mask
is stored in a graphics context.

Pointer

The pointer is the pointing device currently attached to the cursor and tracked on the
screens.

Pointer grabbing

A client can actively grab control of the pointer. Then button and motion events will be
sent to that client rather than the client the events would normally have been sent to.

371

Xlib - C Library XI1, Release 5

Pointing device

A pointing device is typically a mouse, tablet, or some other device with effective dimen¬
sional motion. The core protocol defines only one visible cursor, which tracks whatever
pointing device is attached as the pointer.

POSIX

Portable Operating System Interface, ISO/IEC 9945-1 (IEEE Std 1003.1).

POSIX Portable Filename Character Set

The set of 65 characters which can be used in naming files on a POSIX-compliant host
that are correctly processed in all locales. The set is:

a..z A..Z 0..9

Property

Windows can have associated properties that consist of a name, a type, a data format, and
some data. The protocol places no interpretation on properties. They are intended as a
general-purpose naming mechanism for clients. For example, clients might use properties
to share information such as resize hints, program names, and icon formats with a win¬
dow manager.

Property list

The property list of a window is the list of properties that have been defined for the win¬
dow.

PseudoColor

PseudoColor is a class of colormap in which a pixel value indexes the colormap entry to
produce an independent RGB value; that is, the colormap is viewed as an array of triples
(RGB values). The RGB values can be changed dynamically.

Rectangle

A rectangle specified by [x,y,w,h] has an infinitely thin outline path with comers at [x,y],
[x+w,y], [x+w,y+h], and [x, y+h]. When a rectangle is filled, the lower-right edges are
not drawn. For example, if w=h=0, nothing would be drawn. For w=h=l, a single pixel
would be drawn.

Redirecting control

Window managers (or client programs) may enforce window layout policy in various
ways. When a client attempts to change the size or position of a window, the operation
may be redirected to a specified client rather than the operation actually being performed.

Reply

Information requested by a client program using the X protocol is sent back to the client
with a reply. Both events and replies are multiplexed on the same connection. Most re¬
quests do not generate replies, but some requests generate multiple replies.

Request

A command to the server is called a request. It is a single block of data sent over a con¬
nection.

Resource

Windows, pixmaps, cursors, fonts, graphics contexts, and colormaps are known as
resources. They all have unique identifiers associated with them for naming purposes. The
lifetime of a resource usually is bounded by the lifetime of the connection over which the
resource was created.

372

Xlib - C Library Xll, Release 5

RGB values

RGB values are the red, green, and blue intensity values that are used to define a color.
These values are always represented as 16-bit, unsigned numbers, with 0 the minimum
intensity and 65535 the maximum intensity. The X server scales these values to match
the display hardware.

Root

The root of a pixmap or graphics context is the same as the root of whatever drawable
was used when the pixmap or GC was created. The root of a window is the root window
under which the window was created.

Root window

Each screen has a root window covering it. The root window cannot be reconfigured or
unmapped, but otherwise it acts as a full-fledged window. A root window has no parent.

Save set

The save set of a client is a list of other clients’ windows that, if they are inferiors of one
of the client’s windows at connection close, should not be destroyed and that should be
remapped if currently unmapped. Save sets are typically used by window managers to
avoid lost windows if the manager should terminate abnormally.

Scanline

A scanline is a list of pixel or bit values viewed as a horizontal row (all values having
the same y coordinate) of an image, with the values ordered by increasing the x coordi¬
nate.

Scanline order

An image represented in scanline order contains scanlines ordered by increasing the y
coordinate.

Screen

A server can provide several independent screens, which typically have physically in¬
dependent monitors. This would be the expected configuration when there is only a single
keyboard and pointer shared among the screens. A Screen structure contains the infor¬
mation about that screen and is linked to the Display structure.

Selection

A selection can be thought of as an indirect property with dynamic type. That is, rather
than having the property stored in the X server, it is maintained by some client (the own¬
er). A selection is global and is thought of as belonging to the user and being maintained
by clients, rather than being private to a particular window subhierarchy or a particular
set of clients. When a client asks for the contents of a selection, it specifies a selection
target type, which can be used to control the transmitted representation of the contents.
For example, if the selection is “the last thing the user clicked on,’’ and that is currently
an image, then the target type might specify whether the contents of the image should be
sent in XY format or Z format.

The target type can also be used to control the class of contents transmitted; for example,
asking for the “looks’’ (fonts, line spacing, indentation, and so forth) of a paragraph
selection, rather than the text of the paragraph. The target type can also be used for other
puiposes. The protocol does not constrain the semantics.

Server

The server, which is also referred to as the X server, provides the basic windowing
mechanism. It handles IPC connections from clients, multiplexes graphics requests onto
the screens, and demultiplexes input back to the appropriate clients.

373

Xlib - C Library XI1, Release 5

Server grabbing

The server can be grabbed by a single client for exclusive use. This prevents processing
of any requests from other client connections until the grab is completed. This is typical¬
ly only a transient state for such things as rubber-banding, pop-up menus, or executing
requests indivisibly.

Shift sequence

ISO2022 defines control characters and escape sequences which temporarily (single shift)
or permanently (locking shift) cause a different character set to be in effect (“invoking”
a character set).

Sibling

Children of the same parent window are known as sibling windows.

Stacking order

Sibling windows, similar to sheets of paper on a desk, can stack on top of each other.
Windows above both obscure and occlude lower windows. The relationship between si¬
bling windows is known as the stacking order.

State-dependent encoding

An encoding in which an invocation of a charset can apply to multiple characters in se¬
quence. A state-dependent encoding begins in an “initial state” and enters other “shift
states” when specific “shift sequences” are encountered in the byte sequence. In
ISO2022 terms, this means use of locking shifts, not single shifts.

State-independent encoding

Any encoding in which the invocations of the charsets are fixed, or span only a single
character. In ISO2022 terms, this means use of at most single shifts, not locking shifts.

StaticColor

StaticColor can be viewed as a degenerate case of PseudoColor in which the RGB
values are predefined and read-only.

StaticGray

StaticGray can be viewed as a degenerate case of Grayscale in which the gray values
are predefined and read-only. The values are typically linear or near-linear increasing
ramps.

Status

Many Xlib functions return a success status. If the function does not succeed, however,
its arguments are not disturbed.

Stipple

A stipple pattern is a bitmap that is used to tile a region to serve as an additional clip
mask for a fill operation with the foreground color.

STRING encoding

Latin-1, plus tab and newline.

String Equivalence

Two ISO Latin-1 STRING8 values are considered equal if they are the same length and
if corresponding bytes are either equal or are equivalent as follows: decimal values 65 to
90 inclusive (characters “A” to “Z”) are pairwise equivalent to decimal values 97 to
122 inclusive (characters “a” to “z”), decimal values 192 to 214 inclusive (characters
“A grave” to “O diaeresis”) are pairwise equivalent to decimal values 224 to 246 in¬
clusive (characters “a grave” to “o diaeresis”), and decimal values 216 to 222 inclusive
(characters “O oblique” to “THORN”) are pairwise equivalent to decimal values 246 to
254 inclusive (characters “o oblique” to “thorn”).

374

Xlib - C Library XI1, Release 5

Tile

A pixmap can be replicated in two dimensions to tile a region. The pixmap itself is also
known as a tile.

Timestamp

A timestamp is a time value expressed in milliseconds. It is typically the time since the
last server reset. Timestamp values wrap around (after about 49.7 days). The server,
given its current time is represented by timestamp T, always interprets timestamps from
clients by treating half of the timestamp space as being earlier in time than T and half of
the timestamp space as being later in time than T. One timestamp value, represented by
the constant CurrentTime, is never generated by the server. This value is reserved for
use in requests to represent the current server time.

TrueCoIor

TrueColor can be viewed as a degenerate case of DirectColor in which the subfields in
the pixel value directly encode the corresponding RGB values. That is, the colormap has
predefined read-only RGB values. The values are typically linear or near-linear increas¬
ing ramps.

Type

A type is an arbitrary atom used to identify the interpretation of property data. Types are
completely uninteipreted by the server. They are solely for the benefit of clients. X
predefines type atoms for many frequently used types, and clients also can define new
types.

Viewable

A window is viewable if it and all of its ancestors are mapped. This does not imply that
any portion of the window is actually visible. Graphics requests can be performed on a
window when it is not viewable, but output will not be retained unless the server is main¬
taining backing store.

Visible

A region of a window is visible if someone looking at the screen can actually see it; that
is, the window is viewable and the region is not occluded by any other window.

Whitespace

Any spacing character. On implementations that conform to the ANSI C library, whi¬
tespace is any character for which isspace returns true.

Window gravity

When windows are resized, subwindows may be repositioned automatically relative to
some position in the window. This attraction of a subwindow to some part of its parent
is known as window gravity.

Window manager

Manipulation of windows on the screen and much of the user interface (policy) is typical¬
ly provided by a window manager client.

375

Xlib - C Library XI1, Release 5

X Portable Character Set

A basic set of 97 characters which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a..z A..Z 0..9
!"#$%&’0*+.-./:;<=>?@[r_i {i r
<space>, <tab>, and <newline>

This is the left/lower half (also called the GO set) of the graphic character set of
IS08859-1 plus <space>, <tab>, and <newline>. It is also the set of graphic characters
in 7-bit ASCII plus the same three control characters. The actual encoding of these char¬
acters on the host is system dependent; see the Host Portable Character Encoding.

XLFD

The X Logical Font Description Conventions that define a standard syntax for structured
font names.

XY format

The data for a pixmap is said to be in XY format if it is organized as a set of bitmaps
representing individual bit planes with the planes appearing from most-significant to
least-significant bit order.

Z format

The data for a pixmap is said to be in Z format if it is organized as a set of pixel values
in scanline order.

References

ANSI Programming Language - C: ANSI X3.159-1989, December 14, 1989.

Draft Proposed Multibyte Extension of ANSI C, Draft 1.1, November 30, 1989 SC22/C
WG/SWG IPSJ/ITSCJ Japan.

X/Open Portability Guide, Issue 3, December 1988 (XPG3), X/Open Company, Ltd, Prentice-
Hall, Inc. 1989. ISBN 0-13-685835-8. (See especially Volume 3: XSI Supplementary
Definitions.)

POSIX: Information Technology - Portable Operating System Interface (POSIX) - Part 1: Sys¬
tem Application Program Interface (API) [C Language], ISO/IEC 9945-1.

ISO2022: Information processing - ISO 7-bit and 8-bit coded character sets - Code extension
techniques.

IS08859-1: Information processing - 8-bit single-byte coded graphic character sets - Part 1:
Latin alphabet No. 1.

Text of ISO/IEC/DIS 9541-1, Information Processing - Font Information Interchange - Part 1:
Architecture.

376

Xlib - C Library Xll, Release 5

#define, 50, 260

$

$HOME/.Xdefaults-/ia/n£, 359

$HOME/.Xdefaults, 359

/

/etc/ttys, 212

/etc/X?.hosts, 154

A

Above, 35, 36, 181

Access control list, 153, 364
Active grab, 201, 364
AllHints, 270
Alloc All, 68, 75

Allocation:

colormap, 71

read-only colormap cells, 71

allocation:

read-only colormap cells, 71, 72

read/write colormap cells, 73

read/write colormap planes, 73

AllocNamedColor, 196

AllocNone, 68

AllowEvents, 210

AllowExposures, 152, 153

AllPlanes, 8, 103

AllTemporary, 152

AlreadyGrabbed, 203, 206

Always, 17, 28,41,47, 172

Ancestors, 364
AnyButton, 204, 205

AnyKey, 207, 208

AnyModifier, 204, 205, 207, 208

AnyPropertyType, 52, 53

ArcChord, 107, 116, 129

ArcPieSlice, 102, 107, 116, 129

Arcs:

drawing, 124

filling, 128

Areas:

clearing, 118

copying, 119

AsyncBoth, 208, 209

AsyncKeyboard, 208, 209, 210

AsyncPointer, 208, 209, 210

Index

Atom, 49, 50, 249, 347, 349, 364
getting name, 51

interning, 51

predefined, 49, 260

Authentication, 153

AutoRepeatModeDefault, 213

AutoRepeatModeOff, 213, 214

AutoRepeatModeOn, 213, 214

B

B16, 347

B32, 347

Background, 364
Backing store, 364
BadAccess, 41, 42, 75, 76, 77, 154, 155, 156,

197, 205, 208

BadAlloc, 31, 32, 51, 54, 58, 59, 60, 68, 69, 107,

108, 110, 111, 112, 114, 115, 116, 117, 132, 133,

197, 219, 221, 267, 268, 270, 272, 273, 274,

276, 277, 278, 279, 281, 282, 283, 287, 313, 319,

320, 355, 356,358

BadAtom, 52, 53, 54, 55, 56, 57, 197, 198, 244,

245, 249, 267, 274, 275, 287, 288, 356, 357, 358

BadColor, 31, 42, 43, 69, 70, 71, 72, 73, 74, 75,

76, 77, 78, 79, 149, 150, 197, 198, 244, 245, 249

BadCursor, 31, 42, 43, 61, 197, 198, 203, 204,

205, 245, 250

BadDrawable, 47, 48, 58, 61, 107, 113, 114, 120,

122, 123, 124, 126, 127, 128, 129, 140, 141, 142,

144, 145, 146, 197, 198, 319, 358

BadFont, 60,' 107, 108, 115, 133, 134, 138, 140,

196, 197, 198, 233

BadGC, 20, 108, 109, 110, 111, 112, 114, 115,

116, 117, 120, 122, 123, 124, 126, 127, 128, 129,

138, 140, 141, 142, 144, 146, 197, 198

BadIDChoice, 197
Badlmplementation, 197, 198
BadLength, 197, 198, 220, 347

BadMatch, 24, 26, 29, 31, 32, 35, 36, 37, 41, 42,

43, 54, 55, 60, 68, 105, 106, 107, 108, 113, 114,

115, 116, 118, 119, 120, 122, 123, 124, 126, 127,

128, 129, 140, 141, 142, 144, 145, 146, 147, 148,

149, 197, 198, 211, 212, 213, 263, 314, 319, 320

BadName, 77, 132, 196, 197, 198
BadPixmap, 31, 42, 43, 59, 60, 107, 108, 114,

115, 197, 198, 244, 245, 250

BadRequest, 197, 198
Bad Value, 20, 30, 31, 32, 35, 37, 38, 40, 42, 51,

53, 54, 58, 59, 60, 68, 73, 74, 75, 76, 77, 78, 79,

106, 107, 108, 110, 111, 112, 113, 116, 117, 119,

120, 122, 123, 128, 144, 145, 146, 148, 150, 152,

377

Xlib - C Library Xll, Release 5

153, 154, 155, 156, 194, 197, 198, 203, 204,
205, 206, 208, 210, 212, 213, 214, 215, 216, 218,
219, 220, 221, 263, 267
BadWindow, 31, 32, 34, 35, 37, 38, 39, 40, 41,
42, 43, 44, 45, 47, 48, 49, 53, 54, 55, 56, 57, 68,
119, 148, 149, 150, 188, 194, 195, 197, 198,
203, 205, 206, 208, 211, 212, 244, 245, 248, 262,
263, 267, 268, 269, 270, 272, 273, 274, 275, 276,
277, 278, 279, 280, 281, 282, 283, 287, 288, 355,
356, 357, 358
Base font name, 364
Below, 35, 36
Bit:

gravity, 364
plane, 364

Bitmap, 2, 364
BitmapBitOrder, 15
BitmapFilelnvalid, 319
BitmapNoMemory, 319
BitmapOpenFailed, 319
BitmapPad, 15
Bitmapsuccess, 319
BitmapUnit, 14
BlackPixel, 8, 9
BlackPixelOfScreen, 16
Bool, 4, 159, 191, 192
Border, 365
Bottomlf, 35, 36, 37
Button 1, 165
Button 1 Mask, 165, 166
Button 1 Motion, 28
ButtonIMotionMask, 159, 163, 202
Button2, 165
Button2Mask, 165, 166
Button2Motion, 28
Button2MotionMask, 159, 202
Button3, 165
Button3Mask, 165, 166
Button3Motion, 28
Button3MotionMask, 159, 202
Button4, 165
Button4Mask, 165, 166
Button4Motion, 28
Button4MotionMask, 159, 202
Button5, 165
Button5Mask, 165, 166
Button5Motion, 28
Button5MotionMask, 159, 163, 202
Button:

grabbing, 204, 365
ungrabbing, 205

ButtonMotion, 28
ButtonMotionMask, 159, 160, 163, 202
ButtonPress, 28, 157, 160, 163, 168, 187, 205,
209

ButtonPressMask, 41, 159, 160, 163, 187, 202
ButtonRelease, 28, 157, 163, 168, 209
ButtonReleaseMask, 159, 163, 202
Byte:

order, 365

c

CallbackPrototype, 251
CapButt, 102, 104, 105, 111
CapNotLast, 104, 105, 111
CapProjecting, 104, 105, 111
CapRound, 104, 105, 111
CCC, 67

creation, 82
default, 67, 79, 80
freeing, 83
of colormap, 67, 79, 80

CellsOfScreen, 16
CenterGravity, 27, 46, 47
Changing:

pointer grab, 204
Character glyph, 365
Character set, 365
Character, 365
Charset, 365
CharSetEncoding, 226, 364, 367
CharSetRegistry, 226, 364, 367
Child window, 1
Child Window, 45
Children, 365
Chroma, 93, 94

maximum, 93, 94
CIE metric lightness, 90, 91, 92, 93

maximum, 90, 91, 92
minimum, 91, 93

CirculateNotify, 40, 157, 160, 165, 174, 179
CirculateRequest, 40, 157, 180, 187
Class, 365
Clearing:

areas, 118
windows, 119

Client White Point, 67
of Color Conversion Context, 81

Client, 365
ClientMessage, 50, 157, 159, 183, 262
ClientWhitePointOfCCC, 81
ClipByChildren, 102, 106, 117, 118
Clipping region, 365
Coded character set, 366
Coded character, 366
Codepoint, 366
Color Characterization Data, 100
Color Conversion Context, 67

creation, 67, 79, 82

378

Xlib - C Library XI1, Release 5

default, 67, 79, 80
freeing, 83
of colormap, 67, 79, 80

color conversion, 83
Color map, 63, 71
Color, 63

allocation, 71
color:

allocation, 71, 72, 73
conversion, 83
deallocation, 74
naming, 69, 70, 72, 77
querying, 78, 79
storing, 75, 76, 77

Colormap, 2, 20, 21, 249, 347, 366
colormap:

CCC of, 79, 80
ColormapChangeMask, 159, 182
Colormaplnstalled, 183
ColormapNotify, 41, 69, 149, 150, 157, 182
colormaps:

standard, 286
ColormapUninstalled, 183
Complex, 127, 128
ConfigureNotify, 36, 157, 160, 165, 174, 175,
179
ConfigureRequest, 2, 35, 37, 38, 39, 41, 157,
180, 181, 187
ConfigureRequestEvent, 263
ConfigureWindow, 181, 263
Connection, 366
ConnectionNumber, 9
Containment, 366
Control, 220
ControlMask, 165, 166, 202, 205
ConvertSelection, 185
Convex, 127, 128
Coordinate system, 366
CoordModeOrigin, 122, 123, 127
CoordModePrevious, 122, 123, 127, 128
Copy Area, 120
CopyFromParent, 25, 26, 29, 30, 41, 43
Copying:

areas, 119
planes, 120

CreateNotify, 31, 32, 157, 160, 174, 175, 176
CurrentTime, 56, 57, 160, 185, 186, 195, 201,
202, 203, 204, 206, 207, 208, 211, 375
Cursor, 2, 20, 21, 250, 347, 366

Initial State, 31
limitations, 61

CursorShape, 112, 113
Cut Buffers, 312
CWBackingPixel, 24
CWBackingPlanes, 24

CWBackingStore, 24
CWBackPixel, 24
CWBackPixmap, 24
CWBitGravity, 24
CWBorderPixel, 24
CWBorderPixmap, 24
CWBorderWidth, 35
CWColormap, 24
CWCursor, 24
CWDontPropagate, 24
CWEventMask, 24
CWHeight, 35
CWOverrideRedirect, 24
CWSaveUnder, 24
CWSibling, 35
CWStackMode, 35
CWWidth, 35
CWWinGravity, 24
CWX, 35
CWY, 35

D

Datal6, 350
Data32, 350
Data, 350
Debugging:

error event, 196
error handlers, 196
error message strings, 198
error numbers, 197
synchronous mode, 196

Default Protection, 154
DefaultBlanking, 152, 153
DefaultColormap, 9, 63
DefaultColormapOfScreen, 16
DefaultDepth, 10
DefaultDepthOfScreen, 17
DefaultExposures, 152, 153
DefaultGC, 10
DefaultGCOfScreen, 17
DefaultRootWindow, 10
DefaultScreen, 7, 8, 11
DcfaultScreenOfDisplay, 10
DefaultVisual, 11, 63
DefaultVisualOfScreen, 17
Depth, 366
Destination, 103
Destroy All, 20, 21
DestroyNotify, 32, 157, 160, 174, 176
Device Color Characterization, 99
device profile, 67, 100
Device, 366
DirectColor, 22, 23, 63, 68, 73, 74, 286, 366,
375

379

Xlib - C Library Xll, Release 5

Disable Access, 156
Display Functions, 103
Display, 7, 8, 20, 220, 344, 345, 349, 350, 367,
373

data structure, 8
structure, 367, 373

DisplayCells, 11
DisplayHeight, 15
DisplayHeightMM, 15
DisplayOfCCC, 80
DisplayOfScreen, 17
DisplayPlanes, 11
DisplayString, 12
DisplayWidth, 15
DisplayWidthMM, 16
DoBlue, 63, 70, 75, 76, 77, 78
DoesBackingStore, 17
DoesSaveUnders, 17
DoGreen, 63, 70, 75, 76, 77, 78
DontAllowExposures, 152, 153
DontPreferB tanking, 152, 153
DoRed, 63, 70, 75, 76, 77, 78
Drawable, 2, 347, 349, 367
Drawing:

arcs, 124
image text, 141
lines, 122
points, 121
polygons, 122
rectangles, 123
strings, 140
text items, 139

E

EastGravity, 27, 46, 47
EnableAccess, 156
Encoding, 367
EnterNotify, 157, 165, 166, 167, 168, 169, 171,
179,203
EnterWindowMask, 159, 165, 202
Environment:

DISPLAY, 7
Error:

codes, 197
handlers, 196
handling, 3

Escapement, 367
EvenOddRule, 102, 106, 107, 112, 309
event mask, 159
Event, 2, 157, 367

categories, 157
Exposure, 368
mask, 367
propagation, 187, 367

source, 368
synchronization, 367
types, 157

EventMaskOfScreen, 18
Events:

ButtonPress, 163
ButtonRelease, 163
CirculateNotify, 174
Circulate Request, 180
ClientMessage, 183
ColormapNotify, 182
ConfigureNotify, 175
ConfigureRequest, 181
CreateNotify, 175
DestroyNotify, 176
EnterNotify, 165
Expose, 172
Focusln, 168
FocusOut, 168
GraphicsExpose, 173
GravityNotify, 177
KeymapNotify, 171
KeyPress, 163
KeyRelease, 163
LeaveNotify, 165
MapNotify, 177
MappingNotify, 178
MapRequest, 181
MotionNotify, 163
NoExpose, 173
PropertyNotify, 184
ReparentNotify, 178
ResizeRequest, 182
SelectionClear, 184
SelectionNotify, 185
SelectionRequest, 185
UnmapNotify, 179
VisibilityNotify, 179

Expose, 2, 24, 26, 27, 28, 32, 33, 34, 35, 37, 38,
39, 118, 147, 152, 157, 165, 169, 172, 173, 179
ExposureMask, 159, 172
Extension, 368

F

False, 4, 17, 25, 28, 29, 33, 35, 37, 38, 39, 41,
47, 48, 49, 51, 77, 83, 119, 133, 159, 162, 165,
166, 181, 182, 183, 188, 190, 191, 192, 193, 194,
196, 202, 206, 222, 256, 271, 297, 298, 301, 336,
341, 342, 351
FamilyChaos, 154
FamilyDECnet, 154
Family Internet, 154

380

Xlib - C Library XI1, Release 5

Files:
SHOME/.Xdefaults, 359
/etc/ttys, 212
/etc/X?.hosts, 154
<sys/socket.h>, 155
<X11/Xlib„h>, 337, 344
<X11/Xlibint.h>, 336, 346, 347, 349
<Xll/Xproto.h>, 346, 347, 348, 349
<Xproto.h>, 348

Filling:
arcs, 128
polygon, 127
rectangles, 126

FillOpaqueS tippled, 105, 106, 112, 120
FillPolygon, 127
FillSolid, 102, 106, 112, 142
FiUStippled, 105, 106, 112
FillTiled, 106, 112
FlushGC, 345, 346
FocusChangeMask, 159, 168
Focusln, 157, 168, 169, 170, 171, 206, 207, 211,
212
FocusOut, 157, 165, 168, 169, 170, 171, 179,
206, 207, 211, 212
Font glyph, 368
Font, 2
font, 6
Font, 20, 21, 129, 347, 368
FontLeftToRight, 130, 136, 137, 138
FontRightToLeft, 130, 136, 137, 138
Fonts, 361

freeing font information, 132
getting information, 132
unloading, 132

Forget, 27
ForgetGravity, 25, 27, 46
fork, 12
Freeing:

colors, 74
resources, 24, 42, 43

Frozen events, 368
function set, 99

LINEAR_RGB, 99

G

gamut compression, 67
client data, 81
procedure, 81
setting in Color Conversion Context, 81

gamut handling, 67
gamut querying, 88
GC, 344, 368
GCArcMode, 101, 108
GCBackground, 101, 108

GCCapStyle, 101, 108
GCClipMask, 101, 108
GCClipXOrigin, 101, 108
GCClipYOrigin, 101
GCCLipYOrigin, 108
GCDashList, 101, 108
GCDashOffset, 101, 108
GCFillRule, 101, 108
GCFillStyle, 101, 108
GCFont, 101, 108
GCForeground, 101, 108
GCFunction, 101, 108
GCGraphicsExposures, 101, 108
GCJoinStyie, 101, 108
GCLineStyle, 101, 108
GCLineWidth, 101, 108
GContext, 2, 20, 21, 109, 132, 137, 138, 197,
347
GCPlaneMask, 101, 108
GCStipple, 101, 108
GCSubwindowMode, 101, 108
GCTile, 101, 108
GCTileStipXOrigin, 101, 108
GCTileStipYOrigin, 101, 108
GeometryCallback, 251
GetEmptyReq, 349
GetKeyboardControl, 348, 351
GetReq, 349
GetReqExtra, 349
GetResReq, 349
GetWindowAttributes, 348, 350, 351
Glyph image, 368
Glyph, 368
Grab, 368
Grabbing:

buttons, 204
keyboard, 206
keys, 207
pointer, 202
server, 151

GrabFrozen, 203, 206
GrablnvalidTime, 203, 206
GrabModeAsync, 162, 202, 203, 204, 206, 207
GrabModeSync, 202, 203, 204, 206, 207
GrabNotViewable, 203, 206
GrabSuccess, 202
Graphics context, 101, 368

initializing, 107
path, 104

GraphicsExpose, 107, 117, 119, 157, 158, 159,
173, 174
Gravity, 368
GravityNotify, 27, 36, 157, 160, 165, 174, 177,
179
Grayscale, 22, 23, 60, 63, 68, 73, 285, 286, 357,

381

Xlib - C Library Xll, Release 5

369,374
GXand, 103
GXandln verted, 103
GXandReverse, 103
GXclear, 103
GXcopy, 102, 103, 119, 142
GXcopy In verted, 103
GXequiv, 103
GXinvert, 103
GXnand, 103
GXnoop, 103
GXnor, 103
GXor, 103
GXorlnverted, 103
GXorReverse, 103
GXset, 103
GXxor, 103

H

Hash Lookup, 361
HeightMMOfScreen, 18
HeightOfScreen, 18
HeightValue, 308
Host Portable Character Encoding, 369
Hotspot, 369

I

IconicState, 262, 271
IconMaskHint, 270
IconPixmapHint, 270
IconPositionHint, 270
IconWindowHint, 270
Identifier, 369
Image text:

drawing, 141
ImageByteOrder, 14
Includelnferiors, 106, 117
Inferiors, 369
InitEx tension, 199
Input Control, 157
Input:

focus, 369
manager, 369

InputFocus, 194
InputHint, 270
InputOnly, 24, 25, 27, 28, 29, 30, 31, 32, 35, 42,
43, 46, 48, 58, 113, 114, 118, 119, 148, 172, 179,
197, 365, 367, 369, 371
InputOutput, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 46, 106, 364, 365, 369, 370
Internationalization, 369
IsCursorKey, 306
IsFunctionKey, 306

IsKeypadKey, 306
IsMiscFunctionKey, 306
IsModifierKey, 306
ISO2022, 369
IsPFKey, 306
isspace, 375
IsUnmapped, 47
IsUnviewable, 47
IsViewable, 47

J

JoinBevel, 105, 111
JoinMiter, 102, 105, 111
JoinRound, 105, 111

K

KBAutoRepeatMode, 212
KBBellDuration, 212
KBBellPercent, 212
KBBellPitch, 212
KBKey, 212
KBKeyClickPercent, 212
KBLed, 212
KBLedMode, 212
Key:

grabbing, 207, 369
ungrabbing, 208

Keyboard:
bell volume, 212
bit vector, 212
grabbing, 206, 370
keyclick volume, 212
ungrabbing, 206

KeymapNotify, 157, 171
KeymapStateMask, 159, 171
KeyMapStateMask, 202
KeyPress, 28, 157, 163, 171, 206, 207, 209, 213,
217, 257, 258, 304
KeyPressMask, 159, 163
KeyRelease, 28, 157, 163, 171, 206, 209, 213,
257, 304
KeyReleaseMask, 159, 163
Keysym, 370

L

LastKnownRequestProcessed, 12
Latin Portable Character Encoding, 370
Latin-1, 370
LeaveNotify, 157, 165, 166, 167, 168, 169, 179,
203
LeaveWindowMask, 159, 165, 202
LedModeOff, 213

382

Xlib - C Library Xll, Release 5

LedModeOn, 213
LineDoubleDash, 104, 106, 111
LineOnOfflDash, 104, 106, 111
Lines:

drawing, 122
LineSolid, 102, 104, 105, 111
Locale name, 370
Locale, 370
Localization, 370
Lock, 220
LockDisplay, 348
LockMask, 165, 166, 202, 205
LookupColor, 196
LowerHighest, 39, 40
LSBFirst, 14, 15

M

MapNotify, 33, 157, 160, 165, 174, 177, 179
Mapped window, 370
MappingBusy, 215, 221
MappingFailed, 221
MappingKeyboard, 178, 305
MappingModifier, 178, 305
MappingNotify, 157, 159, 174, 178, 215, 219,
220, 305
MappingPointer, 178
Mappings access, 215, 220
MapRequest, 33, 157, 180, 181, 182, 187
MapWindow, 21, 147
MaxCmapsOfScreen, 19
mblen, 225
mbtowc, 225
Menus, 151
MinCmapsOfScreen, 19
Modi, 220
Modi Mask, 165, 166, 202, 205
Mod2, 220
Mod2Mask, 165, 166, 202, 205
Mod3, 220
Mod3Mask, 165, 166, 202, 205
Mod4, 220
Mod4Mask, 165, 166, 202, 205
Mod5, 220
Mod5Mask, 165, 166, 202, 205
Modifier keys, 370
Monochrome, 370
MotionNotify, 157, 160, 163, 165, 195
Mouse:

programming, 212
MSBFirst, 14, 15

Multibyte, 370

N

NextRequest, 12, 197
NoEventMask, 28, 29, 159
NoExpose, 117, 120, 157, 159, 173
Nonconvex, 127, 128
None, 4, 25, 26, 29, 41, 42, 43, 47, 48, 49, 51,
53, 56, 57, 59, 60, 69, 102, 106, 115, 116, 118,
119, 139, 140, 162, 165, 166, 170, 171, 175, 181,
183, 185, 186, 202, 203, 204, 210, 211, 212, 234,
256, 288, 320,354
NoOperation, 19
Normals tate, 271
NorthEastGravity, 27, 46, 47, 309
NorthGravity, 27, 46, 47
NorthWestGravity, 25, 27, 46, 47, 309
NoSymbol, 218, 219, 304, 305
NotifyAncestor, 166, 167, 169
NotifyDetailNone, 169, 170, 171
NotifyGrab, 166, 167, 168, 171
NotifyHint, 163, 165
Notifylnferior, 166, 167, 169
NotifyNonlinear, 166, 167, 169, 170, 171
NotifyNonlinearVirtual, 166, 167, 169, 170, 171
NotifyNormal, 165, 166, 168, 169
NotifyPointer, 169, 170, 171
NotifyPointerRoot, 169, 170, 171
NotifyUngrab, 166, 167, 168, 171
NotifyVirtual, 166, 167, 169
NotifyWhileGrabbed, 168, 169
NotUseful, 17, 25, 28, 47
NULLQUARK, 301

o

Obscure, 370
Occlude, 371
OpenFont, 196
Opposite, 35, 36, 37
Output Control, 157
OwnerGrabButtonMask, 159, 162

P

PackData, 353
Padding, 371
PAllHints, 272, 273
Parent Window, 1, 45
ParentRelative, 24, 25, 26, 41, 42, 148
P Aspect, 272
Passive grab, 201, 371
PBaseSize, 272
Pixel value, 103, 371

383

Xlib - C Library Xll, Release 5

Pixmap, 2, 20, 21, 250, 347, 349, 371
Pixmaps, 361
PlaceOnBottom, 174, 181
PlaceOnTop, 174, 181
Plane, 371

copying, 120
mask, 103, 371

PlanesOfScreen, 19
PMaxSize, 272
PMinSize, 272
Pointer, 371

grabbing, 202, 204, 371
ungrabbing, 203

PointerMotion, 28
PointerMotionHintMask, 159, 163, 202
PointerMotionMask, 159, 160, 163, 202
PointerRoot, 21, 170, 171, 211, 212, 271
PointerWindow, 194
Pointing device, 371
Points:

drawing, 121
Polygons:

drawing, 122
filling, 127

PolyLine, 123, 124
POSIX Portable Filename Character Set, 372
POSIX System Call:

fork, 12
POSIX, 372
PPosition, 272
PreeditCaretCallback, 254
PreeditDoneCallback, 252
PreeditDrawCallback, 252
PreeditS tartCallback, 252
PreferBlanking, 152, 153
PResizelnc, 272
Property list, 372
Property, 372

appending, 54
changing, 54
deleting, 55
format, 54
getting, 52
listing, 53
prepending, 54
replacing, 54
type, 54

PropertyChangeMask, 159, 184
Property Delete, 184
PropertyNew Value, 184
PropertyNotify, 53, 54, 55, 157, 183, 184
PropModeAppend, 54
PropModePrepend, 54
PropModeReplace, 54

Protocol:
DECnet, 8
TCP, 8

ProtocolRevision, 13
ProtocolVersion, 12
Pseudocolor, 22, 23, 63, 68, 73, 74, 286, 369,
372,374
PSize, 272
Psychometric Chroma, 90, 91, 92

maximum, 90, 91, 92
Psychometric Hue Angle, 90, 91, 92, 93
PWinGravity, 272

Q

QLength, 13
QueryFont, 196, 348, 350
QueryKeymap, 348, 350
QueuedAfterFlush, 188, 189
QueuedAfterReading, 188, 189
QueuedAlready, 188, 189

R

RaiseLowest, 39, 40
read-only colormap cells, 70, 71

allocating, 71, 72
read/write colormap cells, 70

allocating, 73
read/write colormap planes:

allocating, 73
Rectangle, 372

filling, 126
Rectangleln, 312
RectangleOut, 312
RectanglePart, 312
Rectangles:

drawing, 123
Redirecting control, 372
Region, 309
ReleaseByFreeingColormap, 285
ReparentNotify, 147, 157, 160, 174, 178
ReplayKeyboard, 208, 209, 210
ReplayPointer, 208, 209, 210
Reply, 372
Request, 372
Requests, 157
ResizeRedirect, 182
ResizeRedirectMask, 33, 36, 41, 159, 187
ResizeRequest, 33, 36, 157, 180, 182, 187
Resource IDs, 2, 20, 361

Cursor, 2
Font, 2
freeing, 24, 42, 43
GContext, 2

384

Xlib - C Library Xll, Release 5

Pixmap, 2
Window, 2

Resource, 372
ResourceName, 300
RetainPermanent, 20, 21, 152
RetainTemporary, 20, 21, 152
RevertToNone, 211, 212
RevertToParent, 211, 212
RevertToPointerRoot, 211, 212
RGB values, 372
Root, 101, 373
RootWindow, 13, 237
RootWindowOfScreen, 19

S

Save set, 373
Save Unders, 28
Scanline, 373

order, 373
Screen White Point, 88
Screen, 1, 7, 8, 16, 17, 18, 19, 70, 84, 344, 373

structure, 373
ScreenCount, 13
ScreenFormat, 344
ScreenNumberOfCCC, 81
ScreenOfDisplay, 11
Screensaver Active, 153
ScreenSaverReset, 152, 153
ScreenWhitePointOfCCC, 81
Selection, 55, 373

converting, 57
getting the owner, 56
setting the owner, 56

SelectionClear, 56, 157, 159, 183, 184
SelectionNotify, 57, 157, 159, 183, 185, 194
SelectionRequest, 56, 57, 157, 159, 183, 185
SendEvent, 158, 340
Serial Number, 197
Server, 373

grabbing, 151, 373
ServerVendor, 13
sedocale, 222, 224, 370
SetModeDelete, 148
SetMode Insert, 148
Shift sequence, 374
Shift, 220
ShiftMask, 165, 166, 202, 205
Sibling, 374
Source, 103
SouthEastGravity, 27, 46, 47, 309
SouthGravity, 27, 46, 47
SouthWestGravity, 27, 46, 47, 309
special, 6
Stacking order, 1, 374

Standard Colormaps, 286
State-dependent encoding, 374
State-independent encoding, 374
StateHint, 270
StaticColor, 22, 23, 63, 68, 374
StaticGravity, 27, 46, 47
StaticGray, 22, 23, 60, 63, 68, 370, 374
Status, 2, 67, 374
StatusDoneCallback, 255
StatusDrawCallback, 256
StatusStart, 256
StatusStartCallback, 255
stdio.h, 353
Stipple, 374
StippleShape, 112, 113
STRING encoding, 374
String Equivalence, 374
Strings:

drawing, 140
strlen, 300
strtok, 225
StructureNotify, 174, 175, 176, 177, 178, 179
StructureNotifyMask, 159, 174, 175, 176, 177,
178, 179
SubstructureNotify, 174, 175, 176, 177, 178, 179
SubstructureNotifyMask, 159, 160, 174, 175, 176,
177, 178, 179, 262
SubstructureRedirectMask, 29, 33, 35, 36, 37, 38,
39, 40, 41, 159, 180, 181, 182, 187, 262
Success, 53, 263, 264, 265
SyncBoth, 208, 209
SyncHandle, 352
SyncKeyboard, 208, 209, 210
SyncPointer, 208, 209, 210

T

Text:
drawing, 139

this, 6
Tile, 2, 375

mode, 24
pixmaps, 24

TileShape, 112, 113
time, 201
Timestamp, 375
Toplf, 35, 36, 37
True, 4, 17, 28, 29, 33, 47, 48, 49, 53, 73, 74,
77, 83, 84, 86, 98, 102, 118, 119, 120, 131, 133,
147, 158, 159, 162, 165, 166, 173, 175, 176, 177,
179, 183, 184, 188, 190, 191, 192, 193, 194, 196,
202, 206, 216, 222, 229, 256, 257, 265, 271, 296,
297, 298, 301, 306, 312, 336, 341, 342, 351
TrueColor, 22, 23, 63, 68, 375

385

Xlib - C Library

Type, 375

u

Ungrabbing:
buttons, 205
keyboard, 206
keys, 208
pointer, 203

UngrabKeyboard, 207
UngrabPointer, 203
UnlockDisplay, 349
UnmapGravity, 27, 47, 179
UnmapNotify Event, 34, 35
UnmapNotify, 27, 34, 35, 157, 160, 165, 169,
174, 179, 262
UnmapWindow, 147
Unsorted, 116
USPosition, 272
USSize, 272

V

Value, 93, 94, 95
maximum, 93, 94
minimum, 95

VendorRelease, 14
Vertex, 359, 360
VertexCurved, 360
VertexDontDraw, 360
VertexDrawLastPoint, 359
VertexEndClosed, 359, 360
VertexRelative, 360
VertexStartClosed, 359, 360
Viewable, 375
VisibilityChangeMask, 159, 179
VisibilityFullyObscured, 180
VisibilityNotify, 30, 157, 165, 169, 174, 179,
180
VisibilityPartiallyObscured, 180
VisibilityUnobscured, 180
Visible, 375
Visual Classes:

Grayscale, 22
PseudoColor, 22
StaticColor, 22
StaticGray, 22
TrueColor, 22

Visual Type, 22
Visual, 22, 23,46, 316, 344
VisualAllMask, 314
VisualBitsPerRGBMask, 314
VisualBlueMaskMask, 314
VisualClassMask, 314
VisualColormapSizeMask, 314

Xll, Release 5

VisualDepthMask, 314
VisualGreenMaskMask, 314
VisuallD, 347
VisuallDMask, 314
VisualNoMask, 314
VisualOfCCC, 80
VisualRedMaskMask, 314
VisualScreenMask, 314

W

wctomb, 225
WestGravity, 27, 46, 47
WhenMapped, 17, 28, 41, 47, 172
white point adjustment, 67

client data, 82
procedure, 82
setting in Color Conversion Context, 82

white point, 67
WhitePixel, 8, 9
WhitePixelOfScreen, 16
Whitespace, 375
WidthMMOfScreen, 18
WidthOfScreen, 18
Width Value, 308
WindingRule, 106, 107, 112, 309
Window, 2, 20, 23, 248, 347, 349

attributes, 23
background, 42
clearing, 119
defining the cursor, 43
determining location, 308, 358
gravity, 375
icon name, 269
IDs, 361
InputOnly, 30, 369
InputOutput, 369
manager, 375
managers, 151
mapping, 24
name, 268
parent, 371
root, 373
RootWindow, 13
undefining the cursor, 44
XRootWindow, 13

WindowGroupHint, 270
Windows, 361
WithdrawnState, 271

X

X Portable Character Set, 375

386

Xlib - C Library XI1, Release 5

X10 compatibility:
XDraw, 359
XDrawDashed, 359
XDrawFilled, 359, 361
XDrawPattemed, 359
XDrawTiled, 359, 361

XI 1/cursorfont.h, 3
XI 1/keysym.h, 4, 217
XI 1/keysymdef.h, 3, 4, 217, 305
Xll/X.h, 2, 3, 103, 157, 159
Xll/XIO.h, 4, 360
Xll/Xatom.h, 3, 50, 133, 260, 286
Xll/Xcms.h, 3, 62
Xll/Xlib.h, 3, 4, 8, 62, 158, 259, 315, 337, 344
Xll/Xlibint.h, 4, 336, 346, 347, 349
Xll/Xproto.h, 4, 173, 197, 346, 347, 348, 349
Xll/Xprotostr.h, 4
Xll/Xresource.h, 3, 290
Xll/Xutil.h, 3, 270, 272, 275, 279, 308, 309,
314, 316, 321, 355
XActivateScreenSaver, 153
XAddExtension, 338
XAddHost, 154
XAddHosts, 154, 155
XAddPixel, 317, 318
XAddToExtensionList, 344
XAddToSaveSet, 148
XAllocClassHint, 275
XAllocColor, 68, 71, 73, 75, 87
XAllocColorCells, 68, 73, 75, 287
XAllocColorPlanes, 68, 73, 74, 75, 285, 287
XAllocIconSize, 279
XAllocID, 344, 349
XAllocNamedColor, 65, 68, 72, 73, 75
XAllocSizeHints, 272
XAllocStandardColormap, 284
XAllocWMHints, 270
XAllowEvents, 201, 203, 206, 208, 209, 210
XAllPlanes, 8
XAnyEvent, 158
X Append Vertex, 359
XArc, 121
XAssocTable, 361, 362
XAutoRepeatOff, 214
XAutoRepeatOn, 214
XBaseFontNameListOfFontSet, 226, 228
XBell, 214
XBitmapBitOrder, 15
XBitmapPad, 15
XBitmapUnit, 14
XBlackPixel, 9
XBlackPixelOfScreen, 16
XBufferOverflow, 258
XButtonEvent, 163
XButtonPressedEvent, 163, 165

XButtonReleasedEvent, 163, 165
XCellsOfScreen, 16
XChangeActivePointerGrab, 162, 204
XChangeGC, 108, 116, 349
XChangeKeyboardControl, 212, 213, 214
XChangeKeyboardMapping, 178, 218, 219
XChangePointerControl, 215, 216
XChangeProperty, 54, 184
XChangeSaveSet, 148
XChangeWindowAttributes, 24, 41, 42, 69, 149,
182, 187
XChar2b, 130, 137, 138, 140
XCharStruct, 129, 130, 131, 132, 136, 137, 138
XChecklfEvent, 190, 191
XCheckMaskEvent, 192
XCheckTypedEvent, 192, 193
XCheckTypedWindowEvent, 193
XCheckWindowEvent, 191, 192
XCirculateEvent, 174
XCirculateRequestEvent, 180
XCirculateSubwindows, 39, 40, 174, 180
XCirculateSubwindowsDown, 40, 174, 180
XCirculateSubwindowsUp, 40, 174, 180
XCIassHint, 275, 276, 280, 281, 282
XClearArea, 118, 119
XClearVertexFlag, 359
XClearWindow, 41, 119
XClientMessageEvent, 183
XClipBox, 310
XCloseDisplay, 19, 20, 338
XCloselM, 238, 242
XcmsAddColorSpace, 85, 87, 95, 96
XcmsAddFunctionSet, 95, 99
XcmsAllocColor, 71, 87
XcmsAllocNamedColor, 65, 72, 73
XcmsCCC, 80, 99
XcmsCCCOfColormap, 79
XcmsCCCofColormap, 79
XcmsCIELab, 64, 87
XcmsCIELabClipab, 85
XcmsCIELabClipL, 85
XcmsCIELabClipLab, 85
XcmsCIELabFormat, 63, 98
XcmsCIELabQueryMaxC, 85, 90
XcmsCIELabQueryMaxL, 90
XcmsCIELabQueryMaxLC, 91
XcmsCIELabQueryMinL, 91
XcmsCIELabToCIEXYZ, 98
XcmsCIELabWhiteShiftColors, 87
XcmsCIELuv, 65, 87
XcmsCIELuvClipL, 85
XcmsCIELuvClipLuv, 86
XcmsCIELuvClipuv, 85
XcmsCEELuvFormat, 63, 98
XcmsCIELuvQueryMaxC, 85, 91, 92

387

Xlib - C Library Xll, Release 5

XcmsCIELuvQueryMaxL, 92
XcmsCIELuvQueryMaxLC, 92, 93
XcmsCIELuvQueryMinL, 93
XcmsCIELuvToCIEuvY, 98
XcmsCIELuvWhiteShiftColors, 87
XcmsCIEuvY, 64, 87
XcmsCIEuvYFormat, 63, 81, 98
XcmsCIEuvYXpCIELuv, 98
XcmsCIEuvYToCIEXYZ, 98
XcmsCIEuvYToTekHVC, 98
XcmsCEExyY, 64
XcmsCIExyYFormat, 63, 81, 98
XcmsCIExyYToCIEXYZ, 98
XcmsCIEXYZ, 64, 84, 85, 87
XcmsCIEXYZFormat, 63, 81, 98
XcmsCIEXYZToCIELab, 98
XcmsOEXYZToCIEuvY, 98
XcmsCIEXYZToCIExyY, 98
XcmsCIEXYZToRGBi, 98
XcmsClientWhitePointOfCCC, 81
XcmsColor, 63, 73, 76, 77, 78, 79, 83, 84, 86,
95, 97, 98
XcmsColorFormat, 63
XcmsColorSpace, 96, 97, 98, 99, 100
XcmsColorSpaces, 96
XcmsCompressionProc, 84
XcmsConvertColors, 83
XcmsCreateCCC, 82, 83
XcmsDefaultCCC, 80
XcmsDisplayOfCCC, 80
XcmsFailure, 67, 70, 71, 82, 83, 91, 92, 93, 100
XcmsFormatOfPrefix, 64, 96, 99
XcmsFreeCCC, 80, 82, 83
XcmsFunctionSet, 99, 100
XcmsInitFailure, 100
XcmsInitNone, 100
XcmsInitSuccess, 100
XcmsLookupColor, 65, 70, 73
XcmsPad, 65
XcmsParseStringProc, 97
XcmsPerScmlnfo, 99, 100
XcmsPrefixOfFormat, 64, 96, 99
XcmsQueryBlack, 88
XcmsQueryBlue, 88, 89
XcmsQueryColor, 76, 78, 79
XcmsQueryColors, 77, 79
XcmsQueryGreen, 89
XcmsQueryRed, 89
XcmsQueryWhite, 89, 90
XcmsRGB, 64, 65, 87
XcmsRGBFormat, 63, 71, 73, 84, 98
XcmsRGBi, 64, 65, 84, 87
XcmsRGBiFormat, 63, 84, 98
XcmsRGBiToCIEXYZ, 98
XcmsRGBiToRGB, 98

XcmsRGBToRGBi, 98
XcmsScreenFreeProc, 100
XcmsScreenlnitProc, 100
XcmsScreenNumberOfCCC, 81
XcmsScreenWhitePointOfCCC, 81
XcmsSetCCCOfColormap, 79, 80
XcmsSetCompressionProc, 81, 82
XcmsSetWhiteAdjustProc, 82
XcmsSetWhitePoint, 81
XcmsStoreColor, 76
XcmsStoreColors, 76, 77
XcmsSuccess, 67, 70, 76, 77, 96, 100
XcmsSuccessWithCompression, 67, 70
XcmsTekHVC, 65, 87
XcmsTekHVCClipC, 86
XcmsTekHVCClipV, 86
XcmsTekHVCClipVC, 86
XcmsTekHVCFormat, 63, 98
XcmsTekHVCQueryMaxC, 88, 93
XcmsTekHVCQueryMaxV, 93, 94
XcmsTekHVCQueryMaxVC, 94
XcmsTekHVCQueryMaxVSamples, 94, 95
XcmsTekHVCQueryMinV, 95
XcmsTekHVCToCIEuvY, 98
XcmsTekHVCWhiteShifiColors, 87
XcmsUndefinedFormat, 63, 70, 72, 81, 96
XcmsVisualOfCCC, 80
XcmsWhiteAdjustProc, 86
XCNOENT, 321
XCNOMEM, 321
XColor, 61, 63, 65, 71, 75, 76, 77, 78
XColormapEvent, 183
XComposeStatus, 307
XCompoundTextStyle, 264
XConfigureEvent, 175
XConfigureRequesiEvent, 181
XConfigureWindow, 35, 36, 37, 175, 177, 181,
182
XConnectionNumber, 9
XContextDependentDrawing, 229
XConverterNoiFound, 263, 265
XConvertSeleciion, 57, 185
XCopyArea, 107, 117, 119, 120, 159, 173
XCopyColormapAndFree, 68, 69
XCopyGC, 107, 108
XCopyPlane, 58, 107, 117, 120, 159, 173
XCreateAssocTable, 361
XCreateBitmapFromData, 320
XCreaieColormap, 67, 68, 75, 285
XCreateFontCursor, 59, 335
XCreateFontSet, 224, 225, 226, 227, 228, 231,
232, 234, 235, 265, 266
XCreateGC, 101, 107, 108, 116, 173, 309, 349
XCreateGlyphCursor, 59, 60
XCreateIC, 224, 238, 244, 246

388

Xlib - C Library Xll, Release 5

XCreatelmage, 316, 318
XCreatePixmap, 58, 349
XCreatePixmapCursor, 60
XCreatePixmapFromBitmapData, 319, 320
XCreateRegion, 309
XCreateSimpleWindow, 30, 31, 32, 149, 176
XCreateWindow, 24, 30, 31, 41, 69, 149, 176,
187
XCreateWindowEvent, 176
XCrossingEvent, 165
XDefaultColormap, 9
XDefaultColormapOfScreen, 16
XDefaultDepth, 10
XDefaultDepthOfScreen, 17
XDefaultGC, 10
XDefaultGCOfScreen, 17
XDefaultRootWindow, 10
XDefaultScreen, 7, 8, 11
XDefaultScreenOfDisplay, 10
XDefaultSiring, 265
XDefaultVisual, 11
XDefaultVisualOfScreen, 17
XDefineCursor, 31, 43, 44
XDeleteAssoc, 362
XDeleteContext, 321
XDeleteModifiermapEntry, 220
XDeleteProperty, 55, 184
XDestroyAssocTable, 362
XDestroylC, 244
XDestroylmage, 316, 318
XDestroyRegion, 310
XDestroySubwindows, 32, 176
XDestroyWindow, 32, 176
XDestroyWindowEvent, 176
XDisableAccessControl, 156
XDisplayCells, 8, 11
XDisplayHeight, 8, 15
XDisplayHeightMM, 8, 15
XDisplayKeycodes, 217, 218, 219
XDisplayMotionBufferSize, 195
XDisplayName, 199
XDisplayOfIM, 243
XDisplayOfScreen, 17
XDisplayPlanes, 8, 11
XDisplayString, 12
XDisplayWidth, 8, 15
XDisplayWidihMM, 8, 16
XDoesBackingStore, 17
XDoesSaveUnders, 17
xDoSomethingReply, 348
xDoSomethingReq, 347, 349
XDraw, 359, 360
XDrawArc, 106, 124, 125, 126
XDrawArcs, 124, 125, 126
XDrawDashed, 359

XDrawFilled, 359, 361
XDrawImageStringl6, 141, 142
XDrawImageString, 139, 141, 142, 233
XDrawLine, 105, 118, 122, 123
XDrawLines, 122, 123, 359
XDrawPattemed, 359
XDrawPoint, 118, 121, 122, 345
XDrawPoints, 12, 121, 122
XDrawRectangle, 106, 118, 123, 124
XDrawRectangles, 12, 123, 124
XDrawSegments, 12, 105, 122, 123, 359
XDrawStringl6, 140, 141
XDrawString, 140, 141, 233
XDrawTextl6, 105, 138, 139, 140
XDrawText, 105, 138, 139, 140, 233
XDrawTiled, 359, 361
XEDataObject, 344
XEHeadOfExtensionList, 344
XEmptyRegion, 311, 312
XEnableAccessControl, 156
XEnterWindowEvent, 165, 166, 167, 168
XEqualRegion, 312
XErrorEvent, 196, 197, 342, 343
XESeiCloseDisplay, 338
XESetCopyGC, 338, 343
XESetCreateFont, 339
XESetCreateGC, 338
XESetError, 342
XESetErrorString, 342, 343
XESetEventToWire, 341
XESeiFlushGC, 343
XESeiFreeFont, 339
XESeiFreeGC, 339
XESeiPrimErrorValues, 343
XESetWireToError, 341, 343
XESetWireToEvent, 340
XEvent, 158, 159, 189, 190, 191, 192, 193, 194,
256, 340
xEvent, 340
XEvent, 341
xEvent, 341
XEvent, 342, 343
XEventMaskOfScreen, 18
XEventsQueued, 13, 188, 189
XExposeEvent, 172
XExtCodes, 337, 338, 353
XExtData, 344
XExtentsOfFontSet, 224, 230
XFetchBuffer, 313
XFetchBytes, 313
XFetchName, 268, 269
XFillArc, 105, 118, 128, 129
XFillArcs, 12, 107, 128, 129
XFillPolygon, 105, 106, 127, 128
XFillRectangle, 105, 118, 126, 127

389

Xlib - C Library XI1, Release 5

XFillRec tangles, 12, 126, 127
XFilterEvent, 256, 257
XFindContext, 321, 322
XFindOnExtensionList, 344
XFlush, 188
XFlushGC, 109
XFocusChangeEvent, 168
XFocusInEvent, 168, 169, 170, 171
XFocusOutEvent, 168, 169, 170, 171
XFontProp, 129
XFontSet, 224, 225 , 226, 227, 228, 230, 231,
232, 234, 235, 250, 265, 364
XFontSetExtents, 228, 229, 230
XFontsOfFontSet, 227
XFontS tract, 129, 130, 132, 133, 135, 136, 139,
227, 228, 344
XFontStructs, 227
XFontStnictSet, 228
XForceScreenSaver, 152, 153
XFree, 10, 14, 19, 45, 52, 53, 54, 150, 155, 195,
218, 241, 242, 245, 246, 264, 266, 269, 270, 272,
275, 276, 278, 279, 280, 284, 295, 313, 315
XFreeColormap, 69, 182, 183
XFreeColors, 68, 74, 75
XFreeCursor, 29, 61
XFreeExtensionList, 337
XFreeFont, 60, 133, 340
XFreeFontlnfo, 132, 135
XFreeFontNames, 134, 135
XFreeFontPath, 151
XFreeFontSet, 227, 228, 230
XFreeGC, 108, 109
XFreeModifiermap, 220, 221
XFreePixmap, 58, 59, 319, 320
XFreeStringList, 227, 265, 266, 283
XGContextFromGC, 109, 132
XGCValues, 101, 102, 108
xGenericRepIy, 348
XGeometry, 358
XGetAtomName, 51, 52
XGetClassHint, 276
XGetCommand, 283
XGetDefault, 358, 359
XGetErrorDatabaseText, 199, 224
XGetErrorText, 198, 199, 224, 343
XGetFontPath, 150, 151
XGetFontProperty, 133
XGetGC Values, 108
XGetGeometry, 47, 48
XGetlconName, 270
XGetlconSizes, 279, 280
XGedCValues, 245, 246, 248
XGetlmage, 144, 145, 315, 316, 318
XGetIMValues, 239, 242, 247
XGetlnputFocus, 212

XGetKeyboardControl, 213, 214
XGetKeyboardMapping, 218
XGetModifierMapping, 221
XGetMotionEvents, 163, 195
XGetNormalHints, 355, 357
XGetPixel, 316, 317
XGetPointerControl, 216
XGetPointerMapping, 215
XGetRGBColormap, 357
XGetRGBColormaps, 249, 287, 288
XGetScreenSaver, 153
XGetSelectionOwner, 56
XGetSizeHints, 356, 357
XGetStandardColormap, 357
XGetSublmage, 145, 146
XGetTextProperty, 267, 268, 269, 283
XGetTransientForHint, 277
XGetVisuallnfo, 314, 315
XGetWindowAttributes, 45, 46, 47
xGetWindowAttributesReply, 351
XGetWindow Property, 52, 53, 54, 184
XGetWMClientMachine, 283
XGetWMColormapWindows, 278, 279
XGetWMHints, 272
XGetWMIconName, 269
XGetWMName, 268
XGetWMNormalHints, 274, 275, 355
XGetWMProtocols, 277, 278
XGetWMSizeHints, 274, 275, 356
XGetZoomHints, 356, 357
XGrabButton, 162, 203, 204, 205, 209
XGrabKey, 207, 208, 209
XGrabKeyboard, 171, 201, 206, 207, 209
XGrabPointer, 165, 167, 201, 202, 203 , 204,
205, 209
XGrabServer, 151
XGraphicsExposeEvent, 158, 173, 174
XGravityEvent, 177
XHeightMMOfScreen, 18
XHeightOfScreen, 18
XHostAddress, 154
XIC, 224, 238, 239
XICCEncodingStyle, 263
XlconifyWindow, 262
XlconSize, 260, 279
XID, 4
XlfEvent, 190
XIM, 224, 238, 256
XIMAbsolutePosition, 255
Xlmage, 143, 144, 145, 315, 316, 317, 318
XlmageByteOrder, 14
XIMBackwardChar, 255
XIMBackwardWord, 255
XIMCallback, 248, 250
XIMCaretDirection, 254

390

Xlib - C Library XI1, Release 5

XIMCaretDown, 255
XIMCaretStyle, 254
XIMCaretUp, 255
XIMDontChange, 255
XIMFeedback, 253, 254
XIMForwardChar, 255
XIMForwardWord, 255
XIMHighlight, 254
XIMLineEnd, 255
XIMLineStart, 255
XIMNextLine, 255
XIMOfIC, 245
XIMPreeditArea, 239, 242, 243, 249
XIMPreeditCallbacks, 242, 243, 250
XIMPreeditCaretCallbackSiruct, 254
XIMPreeditDrawCallbackStruct, 252, 253
XIMPreedi tNone, 242, 243
XIMPreeditNothing, 242, 243
XIMPreeditPosilion, 242, 243, 249
XIMPreviousLine, 255
XIMPrimary, 254
XIMProc, 250
XIMReverse, 254
XIMSecondary, 254
XIMStatusArea, 239, 242, 243, 249
XIMStatusCallbacks, 242, 243, 250
XIMStatusDataType, 256
XIMStatusDrawCallbackStruct, 256
XIMStatusNone, 242, 243
XIMStatusNothing, 242, 243
XIMStyle, 242
XIMStyles, 239, 242
XIMTertiary, 254
XIMText, 253
XIMUnderline, 254
XInilExtension, 337, 353
XlnsertModifiermapEntry, 220
XlnstallColormap, 29, 41, 62, 149, 182
XIntemAtom, 49, 51
XIntersectRegion, 310
XKeyboardComrol, 212, 213
XKeyboardState, 214
XKeycodeToKeysym, 304, 305
XKeyEvent, 164
XKeymapEvent, 172
XKeyPressedEvent, 164, 165, 304, 306
XKeyReleasedEvent, 164, 165, 304, 306
XKeysymToKeycode, 305
XKeysymToString, 305
XKillClient, 151, 152, 285
XLasiKnownRequestProcessed, 12
XLeaveWi ndowEvent, 165, 166, 167, 168
XLFD, 376
XlibSpecificationRelease, 3
XLisiDepths, 10

XLisiExtensions, 336, 337
XListFonts, 134
XListFontsWithlnfo, 134, 135
XListHosts, 155
XListlnstalledColormaps, 150
XListPixmapFormats, 14
XListProperties, 53, 54
XLoadFont, 132, 133
XLoadQueryFont, 129, 132, 133, 135, 339
XLocaleNotSupported, 222, 263, 264, 265
XLocaleOfFontSet, 228
XLocaleOfIM, 224, 243
XLookUpAssoc, 362
XLookupBoth, 258
XLookupChars, 258
XLookupColor, 65, 69, 72
XLookupKeySym, 258
XLookupKeysym, 304
XLookupNone, 258
XLookupString, 306, 307
XLowerWindow, 39, 175, 181
XMakeAssoc, 362
XMapEvent, 177
XMappingEvent, 178
XMapRaised, 34, 175, 177, 181
XMapRequestEvent, 182
XMapSubwindows, 34, 177, 181
XMapWindow, 24, 31, 32, 33, 34, 177, 181, 182
XMaskEvent, 192
XMatchVisuallnfo, 10, 315
XMaxCmapsOfScreen, 19
XMaxRequestSize, 12
XmbDrawImageString, 234, 235
XmbDrawString., 229
XmbDrawString, 229, 234
XmbDrawText, 224, 233, 234
XmbLookupString, 238, 239, 240, 241, 257, 258
XmbLookupText, 224
XmbPeiCharExtents, 229
XmbResetIC, 244, 245
XmbSetWMProperties, 224, 280, 281
XmbTextEscapement, 230, 231
XmbTextExtents, 224, 229, 230, 231, 232, 234,
235
XmbTextltem, 233
XmbTextListToTextProperty, 224, 263, 264, 265
XmbTextPerCharExtents, 229, 231, 232, 234
XmbTextPropertyToTextList, 224, 264, 265, 266,
294, 295
XMinCmapsOfScreen, 19
XModifierKeymap, 219, 220, 221
XMotionEvent, 164
XMoveResizeWindow, 38, 175, 177, 181, 182,
349
XMoveWindow, 37, 175, 181, 349

391

Xlib - C Library XI1, Release 5

XNArea, 239, 243, 249, 259
XNAreaNeeded, 239, 243, 249, 259
XNBackground, 250, 259
XNBackgroundPixmap, 250, 259
XNClientWindow, 247, 259
XNColormap, 249, 259
XNCursor, 250, 259
XNegative, 308
XNewModifiermap, 219
XNextEvent, 2, 188, 189, 256
XNextRequest, 12
XNFilterEvents, 240, 244, 245, 248, 259
XNFocusWindow, 239, 243, 248, 249, 259
XNFontSet, 240, 250, 259
XNForeground, 250, 259
XNGeometryCailback, 248, 259
XNInputStyle, 239, 247, 249, 259
XNLineSpace, 250, 259
XNLineSpacing, 240
XNoExposeEvent, 173
XNoMemory, 263, 264, 265
XNoOp, 19
XNPreeditAttributes, 248, 259
XNPreeditCaretCallback, 243, 250, 259
XNPreediiDoneCallback, 243, 250, 259
XNPreediiDrawCallback, 243 , 250, 259
XNPreeditStartCallback, 243, 250, 259
XNQuerylnputStyle, 242, 247, 259
XNResourceClass, 248, 259
XNResourceName, 248, 259
XNSpotLocation, 243, 249, 259
XNStatusAttributes, 248, 259
XNStatusDoneCallback, 243, 250, 259
XNStatusDrawCallback,.243, 250, 259
XNStatusStartCallback, 243, 250, 259
XNStdColormap, 249, 259
XNVaNestedList, 259
XOffseiRegion, 310
XOpenDisplay, 7, 8, 11, 12, 22, 157, 199, 294
XOpenIM, 224, 238, 241, 242
XParseColor, 65, 69, 70
XParseGeometry, 308, 309, 358
XPeekEvent, 189
XPeeklfEvent, 190, 191
XPending, 188, 189
Xpermalloc, 307
XPixmapFormatValues, 14
XPlanesOfScreen, 19
XPoint, 121, 123, 249
XPointer, 4, 240
XPointerMovedEvent, 163, 164, 165
XPointlnRegion, 312
XPolygonRegion, 309
XPropertyEvent, 184
XProtocolRevision, 13

XProtocolVersion, 12
XPutBackEvent, 193
XPutlmage, 12, 143, 144, 315, 316, 320
XPutPixel, 317
XQLength, 13, 189
XQueryBestCursor, 59, 60, 61
XQueryBestSize, 112, 113
XQueryBestStipple, 113, 114
XQueryBestTile, 113
XQueryColor, 77, 78
XQueryColors, 77, 78
XQueryExtension, 336
XQueryFont, 132, 133, 339
XQueryKeymap, 215
XQueryPointer, 48, 49, 163
XQueryTextExtentsl6, 137, 138
XQueryTextExtents, 137, 138, 142
XQueryTree, 45
XRaiseWindow, 2, 39, 175, 181
XReadBitmapFile, 318, 319
XRebindKeysym, 307
XRecolorCursor, 59, 61
XReconfigureWMWindow, 262, 263
XRectangle., 249
XRectangle, 121, 232, 249
XRectangles, 229, 231, 232
XRectlnRegion, 312
XRefreshKeyboardMapping, 178, 305, 307
XRemoveFromSaveSet, 148, 149
XRemoveHost, 155
XRemoveHosts, 155, 156
XReparentEvent, 178
XReparentWindow, 147, 148, 177, 178
xReply, 350
xReq, 345, 348
XResetScreenSaver, 153
XResizeRequestEvent, 182
XResizeWindow, 37, 38, 175, 177, 181, 182
XResourceManagerString, 294
xResourceReq, 347
XRestackWindows, 40,41, 175, 181
XrmBindingList, 293
XrmBindLoosely, 293
XrmBindTighUy, 293
XrmCombineDatabase, 296
XrmCombineFileDatabase, 296
XrmDatabase, 224, 293
XrmDestroyDatabase, 295
XrmEnumAllLevels, 300, 301
XrmEnumerate Database, 300, 301
XrmEnumOneLevel, 300, 301
XrmGetDatabase, 296
XrmGetFileDatabase, 224, 294, 295
XrmGetResource, 297, 298
XrmGetStringDatabase, 224, 294, 295

392

Xlib - C Library Xll, Release 5

Xrmlnitialize, 294
XrmLocaleOfDatabase, 224, 295
XrmMergeDatabases, 296, 297
XrmOpiionDescRec.value, 301
XrmOptionDescRec, 301
XrmOptionKind, 301
XrmoptionNoArg, 302
XrmoptionSkipArg, 301
XrmoptionSkipNArgs, 301
XrmParseCommand, 301, 302
XrmPerrnStringToQuark, 292
XrmPutFileDatabase, 224, 294
XrmPuiLineResource, 300
XrmPuiResource, 297, 299
XrmPutStringResource, 299, 300
XrmQGetResource, 297, 298
XrmQGetSearchList, 298
XrmQGetSearchResource, 297, 298
XrmQPuiResource, 297, 299, 300
XrmQPutStringResource, 300
XrmQuark, 292
XrmQuarkToString, 292, 293
XrmSetDatabase, 295, 359
XrmStringToBindingQuarkList, 293, 299, 300
XrmStringToQuark, 292
XrmStringToQuarkList, 293
XrmUniqueQuark, 292
XrmValue, 293, 294, 300
XRootWindow, 13
XRootWindowOfScreen, 19
XRotateBuffers, 314
XRotateWindowProperties, 54, 55, 184
XSaveContext, 321, 322
XScreenCount, 13
XScreenNumberOfScreen, 17, 18
XScreenOfDisplay, 11
XScreenResourceString, 294
XSegment, 121, 123
XSelectlnput, 187, 188
XSelectionClearEvent, 184
XSelectionEvent, 185
XSelectionRequestEvent, 185
XSendEvent, 183, 185, 194
XServerVendor, 13
XSeiAccessConirol, 156
XSetAfterFunction, 196
XSetArcMode, 116
XSeiBackground, 110, 349
XSetClassHint, 276, 282
XSetClipMask, 115, 116
XSetClipOrigin, 115
XSetClipReciangles, 106, 108, 115, 116
XSetCloseDownMode, 20, 287
XSetCommand, 282, 283
XSeiDashes, 106, 108, 111, 112

XSeiErrorHandler, 196
XSetFillRule, 112
XSeiFillStyle, 112
XSeiFont, 114, 115
XSeiFontPath, 134, 150
XSetForeground, 101, 110
XSeiFunction, 110
XSetGraphicsExposures, 117, 173
XSetICFocus, 239, 244
XSeilconName, 269, 270
XSetlconSizes, 279
XSetICValues, 239, 245, 246, 247, 248
XSetlnputFocus, 211, 212
XSetlOEnrorHandler, 200
XSeiLineAttributes, 101, 111
XSetLocaleModifiers, 223, 224, 225, 241
XSetModifierMapping, 178, 220, 221
XSetNormalHints, 355, 356
XSeiPlaneMask, 110, 111
XSetPointerMapping, 178, 215
XSeiRegion, 106, 309, 310
XSetRGBColormap, 357
XSeLRGBColormaps, 286, 287
XSetScreenSaver, 152
XSetSelectionOwner, 20, 56, 184, 185
XSetSizeHints, 356
XSetStandardColormap, 357, 358
XSetStandardProperties, 354, 355
XSetState, 109, 110
XSetStippIe, 114
XSetSubwindowMode, 116, 117
XSetTextProperty, 267, 268, 269, 283
XSetTile, 114
XSetTransientForHint, 276, 277
XSetTS Origin, 114
XSetWindowAttributes, 24, 25, 41, 182, 187
XSetWindowBackground, 42
XSetWindowBackgroundPixmap, 42
XSeiWindowBorder, 42, 43
XSetWindowBorderPixmap, 43
XSetWindowBorderWidth, 38, 39, 175, 181
XSetWindowCoIormap, 43, 69, 149, 182
XSetWMClientMachine, 281, 282, 283
XSetWMColormapWindows, 278
XSetWMHints, 271, 272, 280, 281, 282
XSetWMIconName, 269, 282
XSetWMName, 267, 268, 282
XSetWMNormalHints, 273, 274, 281, 282, 355
XSetWMProperties, 281, 282, 354
XSetWMProtocols, 277
XSetWMSizeHints, 274, 356
XSetZoomHints, 355, 356
XShrinkRegion, 310
XSizeHints, 260, 272, 273, 274, 275, 309, 355,
356, 357

393

Xlib - C Library Xll, Release 5

XStandardColormap, 284, 285, 286, 287, 357
XStdICCTextStyle, 264
XStoreBuffer, 313
XStoreBytes, 312, 313
XStoreColor, 74, 75, 76
XStoreColors, 74, 75, 76, 77, 287
XStoreName, 268
XStoreNamedColor, 65, 74, 77
XStringListToTextProperty, 266
XStringResourceString, 295
XStringStyle, 264
XStringToKeysym, 305
XSublmage, 316, 317, 318
XSubtractRegion, 311
XSupportsLocale, 222, 223, 224, 264, 265
XSync, 2, 20, 188
XSynchronize, 196, 352
XTextExtentsl6, 136, 137, 138
XTextExtents, 136, 137, 138
XTextIteml6, 139
XTextltem, 138
XTextProperty, 263, 264, 265, 266, 267, 268,
269, 283
XTextPropertyToStringList, 266
XTextStyle, 264
XTextWidthl6, 135
XTextWidih, 135
XTimeCoord, 195
XTranslateCoordinates, 48
XUndefineCursor, 43, 44
XUngrabButton, 205
XUngrabKey, 208
XUngrabKeyboard, 20, 206, 207
XUngrabPointer, 20, 162, 165, 203
XUngrabServer, 20, 151
XUninstallColormap, 62, 69, 149, 150, 182
XUnionRectWithRegion, 311
XUnionRegion, 311
XUniqueContext, 322
XUnloadFont, 132, 133, 134
XUnmapEvent, 179
XUnmapSubwindows, 34, 35
XUnmapWindow, 34
XUnsetICFocus, 239, 244
XVaCreateNestedList, 241
XValue, 308
XVaNestedList, 241
XVendorRelease, 14
XVisibilityEvent, 179, 180
XVisuallDFromVisual, 23
XVisuallnfo, 22, 314
XWarpPointer, 210, 211
XwcDrawImageString, 234, 235
XwcDrawString, 234
XwcDrawText, 224, 233, 234

XwcFreeStringList, 265
XwcLookupString, 238, 239, 240, 241, 257, 258
XwcLookupText, 224
XwcPerCharExtents, 229
XwcResetIC, 244, 245
XwcTextEscapement, 230, 231
XwcTexlExtents, 224, 229, 230, 231, 232, 235
XwcTextltem, 233
XwcTextListToTextProperty, 224, 263, 264
XwcTextPerCharExtents, 229, 231, 232, 234
XwcTextPropertyToTextList, 224, 264, 265
XWhitePixel, 9
XWhitePixelOfScreen, 16
XWidthMMOfScreen, 18
XWidthOfScreen, 18
XWindowAttributes, 46
XWindowChanges, 35, 37, 263
XWindowEvent, 2, 188, 191
XWiihdrawWindow, 262
XWMGeometry, 308, 309, 358
XWMHinis, 260, 270, 271, 272, 280, 282
XWriteBitmapFile, 319, 320
XXorRegion, 311
XY format, 376
XYBitmap, 144, 316
XYPixmap, 144, 145, 316
X_CopyArea, 173
X_CopyPlane, 173
X_MapWindow, 349

Y

YNegative, 308
YSorted, 116
YValue, 308
YXBanded, 116
YXSorted, 116

Z

Z format, 376
ZPixmap, 144, 145, 316

XAllocScratch, 353
Xdebug, 196
XFlushGCCache, 345
XReadl6, 351
XReadl6Pad, 352
XRead32, 352
XRead, 351
XReadPad, 352
XReply, 342, 350, 351
XSend, 350

394

Xlib - C Library Xll, Release 5

XSetLastRequestRead, 341

395

X Toolkit Intrinsics - C Language Interface

X Window System

X Version 11, Release 5

First Revision - August, 1991

Joel McCormack

Digital Equipment Corporauon
Western Software Laboratory

Paul Ascnte

Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group

MIT X Consortium

The X Window System is a trademark of MIT.

Copyright © 1985. 1986, 1987. 1988, 1991 Massachusetts Institute of Technology, Cambridge, Massachusetts, and

Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appears in all copies and that both that copyright notice and this

permission notice appear in supporting documentation, and that the name of M.I.T. or Digital not be used in in

advertising or publicity pertaining to distribution of the software without specific, written prior permission. M.I.T

and Digital makes no representations about the suitability of the soft' re described herein for any purpose. It is

provided “as is” without express or implied warranty.

Table of Contents

Acknowledgments . iii

About This Manual . iv

Chapter 1 - Intrinsics and Widgets . 1

1.1. Intrinsics . 1

1.2. Languages . 1

13. Procedures and Macros . 2

1.4. Widgets . 2

1.4.1. Core Widgets . 2

1.4.1.1. CoreClassPart Structure . 3

1.4.1.2. CorePart Structure . 4

1.4.13. Core Resources. 5

1.4.1.4. CorePart Default Values . 5

1.4.2. Composite Widgets . 6

1.4.2.1. CompositeClassPart Structure . 6

1.4.2.2. CompositePart Structure . 7

1.4.23. Composite Resources . 7

1.4.2.4. CompositePart Default Values 7

1.4.3. Constraint Widgets. 8

1.4.3.1. ConstraintClassPart Structure .,. 8

1.4.3.2. ConstraintPart Structure . 9

1.4.33. Constraint Resources . 9

1.5. Implementation-Specific Types . 9

1.6. Widget Classing . 10

1.6.1. Widget Naming Conventions . 10

1.6.2. Widget Subclassing in Public .h Files . 11

1.6.3. Widget Subclassing in Private .h Files ... 12

1.6.4. Widget Subclassing in .c Files . 14

1.6.5. Widget Class and Superclass Look Up. 16

1.6.6. Widget Subclass Verification . 17

1.6.7. Superclass Chaining. 18

1.6.8. Class Initialization: class_initialize and class_part_initialize Procedures . 19

1.6.9. Initializing a Widget Class . 20

1.6.10. Inheritance of Superclass Operations . 20

1.6.11. Invocation of Superclass Operations... 21

1.6.12. Class Extension Records . 22

Chapter 2 - Widget Instantiation . 24

i

2.1. Initializing the X Toolkit . 24

2.2. Establishing the Locale. 28

2.3. Loading the Resource Database . 29

2.4. Parsing the Command Line . 32

2.5. Creating Widgets . 34

2.5.1. Creating and Merging Argument Lists. 34

2.5.2. Creating a Widget Instance . 36

2.5.3. Creating an Application Shell Instance . 38

2.5.4. Convenience Procedure to Initialize an Application . 39

2.5.5. Widget Instance Initialization: the initialize Procedure . 41

2.5.6. Constraint Instance Initialization: the ConstraintClassPart initialize Procedure
. 42

2.5.7. Nonwidget Data Initialization: the initialize_hook Procedure. 42

2.6. Realizing Widgets . 43

2.6.1. Widget Instance Window Creation: the realize Procedure. 44

2.6.2. Window Creation Convenience Routine . 45

2.7. Obtaining Window Information from a Widget . 45

2.7.1. Unrealizing Widgets. 47

2.8. Destroying Widgets . 47

2.8.1. Adding and Removing Destroy Callbacks . 48

2.8.2. Dynamic Data Deallocation: the destroy Procedure . 49

2.8.3. Dynamic Constraint Data Deallocation: the ConstraintClassPart destroy Pro¬
cedure . 49

2.9. Exiting from an Application . 50

Chapter 3 - Composite Widgets and Their Children. 51

3.1. Addition of Children to a Composite Widget: the insert_child Procedure . 52

3.2. Insertion Order of Children: the insert position Procedure . 52

3.3. Deletion of Children: the delcte_child Procedure . 53

3.4. Adding and Removing Children from the Managed Set . 53

3.4.1. Managing Children . 53

3.4.2. Unmanaging Children . 55

3.4.3. Determining If a Widget Is Managed . 55

3.5. Controlling When Widgets Get Mapped . 56

3.6. Constrained Composite Widgets ... 56

Chapter 4 - Shell Widgets . 58

4.1. Shell Widget Definitions. 58

4.1.1. ShellClassPart Definitions . 59

4.1.2. ShellPart Definition. 61

4.1.3. Shell Resources. 64

4.1.4. ShellPart Default Values . 65

Chapter 5 - Pop-Up Widgets. 69

5.1. Pop-Up Widget Types . 69

5.2. Creating a Pop-Up Shell . 70

ii

S3. Creating Pop-Up Children . 71

5.4. Mapping a Pop-Up Widget . 71

53. Unmapping a Pop-Up Widget . 73

Chapter 6 - Geometry Management . 75

6.1. Initiating Geometry Changes .. 75

6.2. General Geometry Manager Requests . 76

6.3. Resize Requests . 77

6.4. Potential Geometry Changes.?. 78

6.5. Child Geometry Management: the geometry_manager Procedure . 78

6.6. Widget Placement and Sizing . 80

6.7. Preferred Geometry. 81

6.8. Size Change Management: the resize Procedure . 83

Chapter 7 - Event Management... 84

7.1. Adding and Deleting Additional Event Sources. 84

7.1.1. Adding and Removing Input Sources . 84

7.1.2. Adding and Removing Timeouts . 85

7.2. Constraining Events to a Cascade of Widgets . 86

7.2.1. Requesting Key and Button Grabs . 87

73. Focusing Events on a Child . 91

7.4. Querying Event Sources . 92

73. Dispatching Events . 93

7.6. The Application Input Loop . 94

7.7. Setting and Checking the Sensitivity State of a Widget . 95

7.8. Adding Background Work Procedures. 96

7.9. X Event Filters. 96

7.9.1. Pointer Motion Compression . 96

7.9.2. Enter/Leave Compression . 97

7.9.3. Exposure Compression . 97

7.10. Widget Exposure and Visibility . 98

7.10.1. Redisplay of a Widget: the expose Procedure . 98

7.10.2. Widget Visibility. 99

7.11. X Event Handlers . 99

7.11.1. Event Handlers that Select Events . 100

7.11.2. Event Handlers that Do Not Select Events . 102

7.11.3. Current Event Mask . 103

Chapter 8 - Callbacks... 104

8.1. Using Callback Procedure and Callback List Definitions . 104

8.2. Identifying Callback Lists . 105

8.3. Adding Callback Procedures . 105

8.4. Removing Callback Procedures. 106

8.5. Executing Callback Procedures. 106

8.6. Checking the Status of a Callback List . 107

iii

Chapter 9 - Resource Management . 108

9.1. Resource Lists. 108

9.2. Byte Offset Calculations . 112

9.3. Superclass-to-Subclass Chaining of Resource Lists. 112

9.4. Subresources . 113

9.5. Obtaining Application Resources . 114

9.6. Resource Conversions . 115

9.6.1. Predefined Resource Converters . 115

9.6.2. New Resource Converters. 118

9.6.3. Issuing Conversion Warnings . 121

9.6.4. Registering a New Resource Converter . 121

9.6.5. Resource Converter Invocation . 124

9.7. Reading and Writing Widget State . 127

9.7.1. Obtaining Widget State . 127

9.7.1.1. Widget Subpart Resource Data: the gct_values_hook Procedure . 128

9.7.1.2. Widget Subpart State . 129

9.7.2. Setting Widget State . 130

9.7.2.1. Widget State: the set_values Procedure . 131

9.7.2.2. Widget State: the set_valucs_almost Procedure . 132

9.7.2.3. Widget State: the ConstraintClassPart sct_valucs Procedure . 133

9.7.2.4. Widget Subpart State . 133

9.7.2.5. Widget Subpart Resource Data: the sct_values_hook Procedure . 134

Chapter 10 - Translation Management . 135

10.1. Action Tables. 135

10.1.1. Action Table Registration . 136

10.1.2. Action Names to Procedure Translations . 137

10.1.3. Action Hook Registration . 137

10.2. Translation Tables . 138

10.2.1. Event Sequences . 139

10.2.2. Action Sequences. 139

10.2.3. Multi-click Time . 139

10J. Translation Table Management. 139

10.4. Using Accelerators . 141

10.5. KeyCode-to-KeySym Conversions . 143

10.6. Obtaining a KeySym in an Action Procedure . 145

10.7. KeySym-to-KeyCode Conversions . 146

10.8. Registering Button and Key Grabs For Actions . 146

10.9. Invoking Actions Directly. 147

10.10. Obtaining a Widget’s Action List . 148

Chapter 11 - Utility Functions . 149

11.1. Determining the Number of Elements in an Array . 149

11.2. Translating Strings to Widget Instances. 149

iv

11.3. Managing Memory Usage . 150

11.4. Sharing Graphics Contexts . 151

11.5. Managing Selections . 153

11.5.1. Setting and Getting the Selection Timeout Value . 153

11.5.2. Using Atomic Transfers . 154

11.5.2.1. Atomic Transfer Procedures . 154

11.5.2.2. Getting the Selection Value . 156

11.5.2.3. Setting the Selection Owner. 158

11.5.3. Using Incremental Transfers . 159

11.5.3.1. Incremental Transfer Procedures. 159

11.5.3.2. Getting the Selection Value Incrementally. 161

11.5.3.3. Setting the Selection Owner for Incremental Transfers . 163

11.5.4. Retrieving the Most Recent Timestamp. 164

11.6. Merging Exposure Events into a Region . 164

11.7. Translating Widget Coordinates. 164

11.8. Translating a Window to a Widget . 165

11.9. Handling Errors . 165

11.10. Setting WM COLORMAP WINDOWS . 169

11.11. Finding File Names . 170

Chapter 12 - Nonwidget Objects. 173

12.1. Data Structures. 173

12.2. Object Objects. 173

12.2.1. ObjectClassPart Structure. 173

12.2.2. ObjectPart Structure . 174

12.2.3. Object Resources. 175

12.2.4. ObjectPart Default Values . 175

12.2.5. Object Arguments To Intrinsics Routines . 175

12.2.6. Use of Objects . 176

12.3. Rectangle Objects. 176

12.3.1. RectObjClassPart Structure . 176

12.3.2. RectObjPart Structure . 178

12J.3. RectObj Resources. 178

12.3.4. RectObjPart Default Values. 178

12.3.5. Widget Arguments To Intrinsics Routines . 178

12.3.6. Use of Rectangle Objects. 179

12.4. Undeclared Class . 180

12.5. Widget Arguments To Intrinsics Routines. 180

Chapter 13 - Evolution of The Intrinsics . 182

13.1. Determining Specification Revision Level . 182

13.2. Release 3 to Release 4 Compatibility . 182

13.2.1. Additional Arguments . 182

13.2.2. set values almost Procedures . 183

v

13.2.3. Query Geometry ... 183

13.2.4. unrealizeCallback Callback List. 183

13.2.5. Subclasses of WMShell . 183

13.2.6. Resource Type Converters . 183

13.2.7. KeySym Case Conversion Procedure . 184

13.2.8. Nonwidget Objects. 184

133. Release 4 to Release 5 Compatibility . 184

13.3.1. baseTranslations Resource . 184

13.3.2. Resource File Search Path . 185

133.3. Customization Resource . 185

133.4. Per-Screen Resource Database . 185

133.5. Internationalization of Applications . 185

13.3.6. Permanently Allocated Strings . 186

133.7. Arguments to Existing Functions . 186

Appendix A - Resource File Format. 187

Appendix B - Translation Table Syntax ... 188

Appendix C - Compatibility Functions . 195

Appendix D - Intrinsics Error Messages . 204

Appendix E - Defined Strings . 207

Index . 212

Acknowledgments

The design of the XI1 Intrinsics was done primarily by Joel McCormack of Digital WSL.
Major contributions to the design and implementation also were done by Charles Haynes, Mike
Chow, and Paul Asente of Digital WSL. Additional contributors to the design and/or imple¬
mentation were:

Loretta Guarino-Reid (Digital WSL)
Rich Hyde (Digital WSL)
Susan Angebranndt (Digital WSL)
Terry Weissman (Digital WSL)
Mary Larson (Digital UEG)
Marie Manasse (Digital SRC)
Jim Gettys (Digital SRC)
Ralph Swick (Project Athena and Digital ERP)
Leo Treggiari (Digital SDT)
Ron Newman (Project Athena)
Mark Ackerman (Project Athena)
Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also deserve mention. Although the XI1 Intrinsics present
an entirely different programming style, they borrow heavily from the implicit and explicit con¬
cepts in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit’s sample widgets were by the above, as well
as by:

Ram Rao (Digital UEG)
Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the XI1 intrin-
sics.

Thanks go to A1 Mento of Digital’s UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of Berkeley for extensively reviewing early
drafts of it.

Finally, a special thanks to Mike Chow, whose extensive performance analysis of the X10
toolkit provided the justification to redesign it entirely for XI1.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

March, 1988

Vll

The current design of the Intrinsics has benefited greatly from the input of several dedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals have dedicated significant time to suggesting improvements to the Intrin¬
sics:

Steve Pitschke (Stellar)
Bob Miller (HP)
Fred Taft (HP)
Marcel Meth (AT&T)
Mike Collins (Digital)
Scott McGregor (Digital)
Julian Payne (ESS)
Gabriel Beged-Dov (HP)

Thanks go to each of them for the countless

C. Doug Blewett (AT&T)
David Schiferl (Tektronix)
Michael Squires (Sequent)
Jim Fulton (MIT)
Kerry Kimbrough (Texas Instruments)
Phil Karlton (Digital)
Jacques Davy (Bull)
Glenn Widener (Tektronix)

spent reviewing drafts and code.

Ralph R. Swick
External Research Group
Digital Equipment Corporation
MIT Project Athena

June, 1988

From Release 3 to Release 4, several new members joined the design team. We greatly appre¬
ciate the thoughtful comments, suggestions, lengthy discussions, and in some cases implemen¬
tation code contributed by each of the following:

Don Alecci (AT&T)
Donna Converse (MIT)
Nayeem Islam (Sun)
Keith Packard (MIT)
Richard Probst (Sun)

Ellis Cohen (OSF)
Clive Feather (IXI)
Dana Laursen (HP)
Chris Peterson (MIT)
Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by Bill
McMahon of Hewlett Packard and Frank Rojas of IBM. This has been an educational process
for many of us and Bill and Frank’s tutelage has carried us through. Vania Joloboff of the
OSF also contributed to the internationalization additions. The implementation efforts of Bill,
Gabe Beged-Dov, and especially Donna Converse for this release are also gratefully ack¬
nowledged.

Ralph R. Swick

viii

December, 1989
and
July, 1991

About This Manual

X Toolkit Intrinsics - C Language Interface is intended to be read by both application pro¬
grammers who will use one or more of the many widget sets built with the Intrinsics and by
widget programmers who will use the Intrinsics to build widgets for one of the widget sets.
Not all the information in this manual, however, applies to both audiences. That is, because
the application programmer is likely to use only a number of the Intrinsics functions in writing
an application and because the widget programmer is is likely to use many more, if not all, of
the Intrinsics functions in building a widget, an attempt has been made to highlight those areas
of information that are deemed to be of special interest for the application programmer. (It is
assumed the widget programmer will have to be familiar with all the information.) Therefore,
all entries in the table of contents that are printed in bold indicate the information that should
be of special interest to an application programmer.

It is also assumed that as application programmers become more familiar with the concepts dis¬
cussed in this manual they will find it more convenient to implement portions of their applica¬
tions as special-purpose or custom widgets. It is possible, none the less, to use widgets
without knowing how to build them.

Conventions Used in this Manual

This document uses the following conventions:

® Global symbols are printed in this special font. These can be either function names,
symbols defined in include files, data types, or structure names. Arguments to functions,
procedures, or macros are printed in italics.

• Each function is introduced by a general discussion that distinguishes it from other func¬
tions. The function declaration itself follows, and each argument is specifically
explained. General discussion of the function, if any is required, follows the arguments.

• To eliminate any ambiguity between those arguments that you pass and those that a
function returns to you, the explanations for all arguments that you pass start with the
word specifies or, in the case of multiple arguments, the word specify. The explanations
for all arguments that are returned to you start with the word returns or, in the case of
multiple arguments, the word return.

IX

Chapter 1

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network window system, specifically the X Window System. The Intrin¬
sics and a widget set make up an X Toolkit.

1.1. Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of interoperating
widget sets and application environments. The Intrinsics are a layer on top of Xlib, the C
Library X Interface. They extend the fundamental abstractions provided by the X Window
System while still remaining independent of any particular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture
for constructing and composing user interface components, known as widgets. This allows
programmers to extend a widget set in new ways, either by deriving new widgets from existing
ones (subclassing), or by writing entirely new widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was a widget class
named Core. In release 4 of the Intrinsics, three nonwidget superclasses were added above
Core. These superclasses are described in Chapter 12. The name of the class now at the root
of the Intrinsics class hierarchy is Object. The remainder of this specification refers uniformly
to widgets and Core as if they were the base class for all Intrinsics operations. The argument
descriptions for each Intrinsica procedure and Chapter 12 describe which operations are defined
for the nonwidget superclasses of Core. The reader may determine by context whether a
specific reference to widget actually means widget or object.

1.2. Languages

The Intrinsics are intended to be used for two programming purposes. Programmers writing
widgets will be using most of the facilities provided by the Intrinsics to construct user interface
components from the simple, such as buttons and scrollbars, to the complex, such as control
panels and property sheets. Application programmers will use a much smaller subset of the
Intrinsics procedures in combination with one or more sets of widgets to construct and present
complete user interfaces on an X display. The Intrinsics programming interfaces primarily
intended for application use are designed to be callable from most procedural programming
languages. Therefore, most arguments are passed by reference rather than by value. The inter¬
faces primarily intended for widget programmers arc expected to be used principally from the
C language. In these cases, the usual C programming conventions apply. In this specification,
the term client refers to any module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the header files
<X11/Intrinsic.h> and <Xll/StringDefs.h>, or their equivalent, and they may also include
<Xll/Xatoms.h> and <X11/Shell.h>. In addition, widget implementations should include
<Xll/IntrinsicP.h> instead of <X11/Intrinsic.h>.

The applications must also include the additional header files for each widget class that they
are to use (for example, <X11/Xaw/Label.h> or <Xll/Xaw/Scrollbar.h>). On a POSIX-
based system, the Intrinsics object library file is named libXt.a and is usually referenced as

-lXt when linking the application.

1

X Toolkit Intrinsics XI1 Release 5

13. Procedures and Macros

All functions defined in this specification except those specified below may be implemented as
C macros with arguments. C applications may use “#undef ’ to remove a macro definition
and ensure that the actual function is referenced. Any such macro will expand to a single
expression which has the same precedence as a function call and that evaluates each of its
arguments exactly once, fully protected by parentheses, so that arbitrary expressions may be
used as arguments.

The following symbols are macros that do not have function equivalents and that may expand
their arguments in a manner other than that described above: XtCheckSubclass, XtNew,
XtNumber, XtOffsetOf, XtOffset, and XtSetArg.

1.4. Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combina¬
tion of an X window and its associated input and display semantics and which is dynamically
allocated and contains state information. Some widgets display information (for example, text
or graphics), and others are merely containers for other widgets (for example, a menu box).
Some widgets are output-only and do not react to pointer or keyboard input, and others change
their display in response to input and can invoke functions that an application has attached to
them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized
and which contains the operations allowable on widgets of that class. Logically, a widget class
is the procedures and data associated with all widgets belonging to that class. These pro¬
cedures and data can be inherited by subclasses. Physically, a widget class is a pointer to a
structure. The contents of this structure are constant for all widgets of the widget class but
will vary from class to class. (Here, “constant” means the class structure is initialized at com¬
pile time and never changed, except for a one-time class initialization and in-place compilation
of resource lists, which takes place when the first widget of the class or subclass is created.)
For further information, see Section 2.5.

The distribution of the declarations and code for a new widget class among a public .h file for
application programmer use, a private .h file for widget program use, and the implementa¬
tion .c file is described in Section 1.6. The predefined widget cl. adhere to these conven¬
tions.

A widget instance is composed of two parts:

• A data structure which contains instance-specific values.

• A class structure which contains information that is applicable to all widgets of that
class.

Much of the input/output of a widget (for example, fonts, colors, sizes, border widths, and so
on) is customizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with
a discussion of widget classing.

1.4.1. Core Widgets

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined by the CoreClassPart and
CorePart structures.

2

X Toolkit Intrinsics XI1 Release 5

1.4.1.1. CoreClassPart Structure

All widget classes contain the fields defined in

typedef struct {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize
XtEnum class_inited;
XtlnitProc initialize;
XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;
Cardinal num_actions;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean compress_motion;
XtEnum compress_exposure;
Boolean compress_enterleave;
Boolean visiblejnterest;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtAcceptFocusProc accept_focus;
XtVersionType version;
XtPointer callback_private;
String tm_table;
XtGeometryHandler query_geometry;
XtStringProc display_accelerator;
XtPointer extension;

} CoreClassPart;

the CoreClassPart structure.

See Section 1.6
See Chapter 9
See Section 1.6
See Section 1.6
;See Section 1.6
See Section 1.6
See Section 2.5
See Section 2.5
See Section 2.6
See Chapter 10
See Chapter 10
See Chapter 9
See Chapter 9
Private to resource manager
See Section 7.9
See Section 7.9
See Section 7.9
See Section 7.10
See Section 2.8
See Chapter 6
See Section 7.10
See Section 9.7
See Section 9.7
See Section 9.7
See Section 9.7
See Section 7.3
See Section 1.6
Private to callbacks
See Chapter 10
See Chapter 6
See Chapter 10
See Section 1.6

All widget classes have the Core class fields as their first component. The prototypical
WidgetClass and CoreWidgetCiass are defined with only this set of fields.

typedef struct {
CoreClassPart core_class;

} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

Various routines can cast widget class pointers, as needed, to specific widget class types.

The single occurrences of the class record and pointer for creating instances of Core are

In IntrinsicP.h;

extern WidgetClassRec WidgetClassRec;
#define coreClassRec WidgetClassRec

In Intrinsic.h:

extern WidgetClass WidgetClass, CoreWidgetCiass;

3

X Toolkit Intrinsics XI1 Release 5

The opaque types Widget and WidgetClass and the opaque variable widgetClass are defined
for generic actions on widgets. In order to make these types opaque and ensure that the com¬
piler does not allow applications to access private data, the Intrinsics use incomplete structure
definitions in Intrinsic.h:

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

1.4.1.2. CorePart Structure

All widget instances contain the fields defined in the CorePart structure.

typedef struct CorePart {
Widget self; described below
WidgetClass widget_class; See Section 1.6

Widget parent; See Section 2.5
Boolean being_destroyed; See Section 2.8
XtCallbackList destroy_callbacks; See Section 2.8
XtPointer constraints; See Section 3.6
Position x; See Chapter 6
Position y; See Chapter 6
Dimension width; See Chapter 6
Dimension height; See Chapter 6
Dimension border width; See Chapter 6
Boolean managed; See Chapter 3
Boolean sensitive; See Section 7.7
Boolean ancestor sensitive; See Section 7.7
XtTranslations accelerators; See Chapter 10
Pixel border_pixel; See Section 2.6
Pixmap border_pixmap; See Section 2.6
WidgetList popup list; See Chapter 5
Cardinal num_popups; See Chapter 5
String name; See Chapter 9
Screen *screen; See Section 2.6
Colormap colormap; See Setcion 2.6
Window window; See Section 2.6
Cardinal depth; See Section 2.6
Pixel background_pixel; See Section 2.6
Pixmap background_pixmap; See Section 2.6
Boolean visible; See Section 7.10
Boolean mapped_when_managed; See Chapter 3

} CorePart;

All widget instances have the Core fields as their first component. The prototypical type Wid¬
get is defined with only this set of fields.

typedef struct {
CorePart core;

} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to make these types opaque and ensure that the compiler does not allow applications
to access private data, the Intrinsics use incomplete structure definitions in Intrinsic.h.

typedef struct _WidgetRec *Widget, *CoreWidget;

4

X Toolkit Intrinsics XI1 Release 5

1.4.1.3. Core Resources

The resource names, classes, and representation types specified in the coreClassRec resource list
are

Name Class Representation

XtNaccelerators XtCAccelerators XtRAcceleratorT able
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtN mapped WhenManaged XtCMappedWhenManaged XtRBoolean
XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranslations XtRT ranslationT able

Additional resources are defined for all widgets via the objectClassRec and rectObjClassRec
resource lists; see Sections 12.2 and 12.3 for details.

I.4.I.4. CorePart Default Values

The default values for the Core fields, which are filled in from the resource lists and by the initial¬
ize procedures, are

Field Default Value

self
widget_class
parent
being_destroyed
destroy _callbacks
constraints
x

y
width
height
border_width
managed
sensitive
ancestor_sensitive
accelerators
border_pixel
border_pixmap
popupjist
num_popups
name
screen

colormap
window
depth

Address of the widget structure (may not be changed).
widget_class argument to XtCreateWidget (may not be changed).
parent argument to XtCreateWidget (may not be changed).
Parent’s beingjdestroyed value.
NULL
NULL
0
0
0
0
1
False
True
logical AND of parent’s sensitive and ancestor_sensitive values.
NULL
XtDefaultForeground
XtUnspecifiedPixmap
NULL
0
name argument to XtCreateWidget (may not be changed).
Parent’s screen-, top-level widget gets screen from display specifier
(may not be changed).
Parent’s colormap value.
NULL
Parent’s depth-, top-level widget gets root window depth.

5

X Toolkit Intrinsics XI1 Release 5

background_pixel
background_pixmap
visible
m apped_when_m anaged

XtDefaultBackground
XtUnspecifiedPixmap
True
True

XtUnspecifiedPixmap is a symbolic constant guaranteed to be unequal to any valid Pixmap
id, None, and ParentRelative.

1.4.2. Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by the CompositeClassPart and CompositePart structures.

I.4.2.I. CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following class
fields.

typedef struct {
XtGeometryHandler geometryjnanager, See Chapter 6
XtWidgetProc change_managed; See Chapter 3
XtWidgetProc insert_child; See Chapter 3
XtWidgetProc delete_child; See Chapter 3
XtPointer extension; See Section 1.6

} CompositeClassPart;

The extension record defined for CompositeClassPart with recordjype equal to
NULLQUARK is CompositeClassExtensionRec.

typedef struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;
Boolean accepts_objects;

See Section 1.6.12
See Section 1.6.12
See Section 1.6.12
See Section 1.6.12
See Chapter 3

CompositeClassExtensionRec, *CompositeClassExtension;

Composite classes have the Composite class fields immediately following the Core class fields.

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetGass;

The single occurrences of the class record and pointer for creating instances of Composite are

In IntrinsicP.h:

extern CompositeClassRec compositeGassRec;

In Intrinsic.h:

extern WidgetClass compositeWidgetGass;

The opaque types CompositeWidget and CompositeWidgetGass and the opaque variable
compositeWidgetGass are defined for generic operations on widgets whose class is Compo¬
site or a subclass of Composite. The symbolic constant for the CompositeClassExtension

6

X Toolkit Intrinsics XI1 Release 5

version identifier is XtCompositeExtensionVersion (see Section 1.6.12). Intrinsic.!! uses an
incomplete structure definition to ensure that the compiler catches attempts to access private
data.

typedef struct _CompositeClassRec *CompositeWidgetClass;

1.4.22. CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the following
instance fields defined in the CompositePart structure.

typedef struct {
WidgetList children; See Chapter 3
Cardinal num_children; See Chapter 3
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 3.2

} CompositePart;

Composite widgets have the Composite instance fields immediately following the Core instance
fields.

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts
to access private data.

typedef struct _CompositeRec *CompositeWidget;

1.4.2J. Composite Resources

The resource names, classes, and representation types that are specified in the composi-
teCIassRec resource list are

Name Class Representation

XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtCInsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

I.4.2.4. CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite resource
list and by the Composite initialize procedure, are

Field Default Value

children
num_children
num_slots
insertjxjsition

NULL
0
0
Internal function to insert at end

7

X Toolkit Intrinsics XI1 Release 5

The children, num_children, and insertposition fields are declared as resources; XtNinsertPo-
sition is a settable resource, XtNchildren and XtNnumChildren may be read by any client but
should only be modified by the composite widget class procedures.

1.4.3. Constraint Widgets

The Constraint widget class is a subclass of the Composite widget class (see Section 3.6).
Constraint widgets maintain additional state data for each child; for example, client-defined
constraints on the child’s geometry. The additional data used by constraint widgets are defined
by the ConstraintClassPart and ConstraintPart structures.

I.4.3.I. ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class have the fol¬
lowing class fields.

typedef struct {
XtResourceList resources;
Cardinal num_resources;
Cardinal constraint_size;
XtlnitProc initialize;
XtWidgetProc destroy;
XtSetValuesFunc set_values;
XtPointer extension;

} ConstraintGassPart;

See Chapter 9
See Chapter 9
See Section 3.6
See Section 3.6
See Section 3.6
See Section 9.7.2
See Section 1.6

The extension record defined for ConstraintClassPart with recordjype equal to
NULLQUARK is ConstraintCIassExtensionRec.
typedef struct {

XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;
XtArgsProc get_values_hook;

See Section 1.6.12
See Section 1.6.12
See Section 1.6.12
See Section 1.6.12
See Section 9.7.1

) ConstraintGassExtensionRec, *ConstraintGassExtension;

Constraint classes have the Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintGassRec {
CoreClassPart core_class;
CompositeGassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintGassRec, *ConstraintWidgetGass;

The single occurrences of the class record and pointer for creating instances of Constraint are

In IntrinsicP.h:

extern ConstraintGassRec ConstraintGassRec;

In Intrinsic.h;

extern WidgetGass constraintWidgetGass;

The opaque types ConstraintWidget and ConstraintWidgetGass and the opaque variable
constraintWidgetGass are defined for generic operations on widgets whose class is Con¬
straint or a subclass of Constraint. The symbolic constant for the ConstraintClassExtension

8

X Toolkit Intrinsics XI1 Release 5

version identifier is XtConstraintExtensionVersion (see Section 1.6.12). Intrinsic.h uses an
incomplete structure definition to ensure that the compiler catches attempts to access private
data.

typedef struct _ConstraintGassRec *ConstraintWidgetGass;

I.4.3.2. ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint class have the
following unused instance fields defined in the ConstraintPart structure

typedef struct { int empty; } ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts
to access private data.

typedef struct _ConstraintRec *ConstraintWidget;

1.4.3J. Constraint Resources

The constraintClassRec core_class and constraint_class resources fields are NULL and the
num_resources fields are zero; no additional resources beyond those declared by the superc¬
lasses are defined for Constraint.

1.5. Implementation-specific Types

To increase the portability of widget and application source code between different system
environments, the Intrinsics define several types whose precise representation is explicitly
dependent upon, and chosen by, each individual implementation of the Intrinsics.

These implementation-defined types are

Boolean

Cardinal

Dimension

Position

XtPointer

A datum that contains a zero or nonzero value. Unless explicitly stated, clients
should not assume that the nonzero value is equal to the symbolic value True.

An unsigned integer datum with a minimum range of [0..2*16-1]

An unsigned integer datum with a minimum range of [0..2*16-1]

A signed integer datum with a minimum range of [-2*15.-2*15-1]

A datum large enough to contain the largest of a char*, int*, function pointer,
structure pointer, or long value. A pointer to any type or function, or a long
value may be converted to an XtPointer and back again and the result will com¬
pare equal to the original value. In ANSI C environments it is expected that
XtPointer will be defined as void*.

XtArgVal A datum large enough to contain an XtPointer, Cardinal, Dimension, or Posi¬
tion value.

XtEnum An integer datum large enough to encode at least 128 distinct values, two of
which are the symbolic values True and False. The symbolic values TRUE and
FALSE are also defined to be equal to True and False, respectively.

9

X Toolkit Intrinsics XI1 Release 5

In addition to these specific types, the precise order of the fields within the structure declara¬
tions for any of the instance part records ObjectPart, RectObjPart, CorePart, Composite-
Part, ShellPart, WMShellPart, TopLevelShellPart, and ApplicationShellPart is
implementation-defined. These structures may also have additional private fields internal to the
implementation. The ObjectPart, RectObjPart, and CorePart structures must be defined so
that any member with the same name appears at the same offset in ObjectRec, RectObjRec
and CoreRec (WidgetRec). No other relations between the offsets of any two fields may be
assumed.

1.6. Widget Classing

The widgetjclass field of a widget points to its widget class structure, which contains informa¬
tion that is constant across all widgets of that class. As a consequence, widgets usually do not
implement directly callable procedures; rather, they implement procedures, called methods, that
are available through their widget class structure. These methods are invoked by generic pro¬
cedures that envelop common actions around the methods implemented by the widget class.
Such procedures are applicable to all widgets of that class and also to widgets whose classes
are subclasses of that class.

All widget classes are a subclass of Core and can be subclassed further. Subclassing reduces
the amount of code and declarations necessary to make a new widget class that is similar to an
existing class. For example, you do not have to describe every resource your widget uses in
an XtResourceList. Instead, you describe only the resources your widget has that its super¬
class does not. Subclasses usually inherit many of their superclasses’ procedures (for example,
the expose procedure or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits none of the
procedures of its superclass, you should consider whether you have chosen the most appropri¬
ate superclass.

To make good use of subclassing, widget declarations and naming conventions are highly styl¬
ized. A widget consists of three files:

• A public .h file, used by client widgets or applications.

• A private .h file, used by widgets whose classes are subclasses of the widget class.

• A .c file, which implements the widget.

1.6.1. Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets and organize a
collection of widgets into an application. To ensure that applications need not deal with as
many styles of capitalization and spelling as the number of widget classes it uses, the following
guidelines should be followed when writing new widgets:

• Use the X library naming conventions that are applicable. For example, a record com¬
ponent name is all lower case and uses underscores (_) for compound words (for exam¬
ple, background_pixmap). Type and procedure names start with upper case and use cap¬
italization for compound words (for example, ArgList or XtSetValues).

• A resource name is spelled identically to the field name except that compound names use
capitalization rather than underscore. To let the compiler catch spelling errors, each
resource name should have a symbolic identifier prefixed with “XtN”. For example, the
background_pixmap field has the corresponding identifier XtNbackgroundPixmap, which
is defined as the string “backgroundPixmap”. Many predefined names are iisted in
<Xll/StringDefs.h>. Before you invent a new name, you should make sure there is not
already a name that you can use.

10

X Toolkit Intrinsics XI1 Release 5

• A resource class string starts with a capital letter and uses capitalization for compound
names (for example,“BorderWidth”). Each resource class string should have a symbolic
identifier prefixed with “XtC” (for example, XtCBorderWidth). Many predefined
classes are listed in <Xll/StringDefs.h>.

• A resource representation string is spelled identically to the type name (for example,
“TranslationTable”). Each representation string should have a symbolic identifier
prefixed with “XtR” (for example, XtRTranslationTable). Many predefined representa¬
tion types are listed in <Xll/StringDefs.h>.

• New widget classes start with a capital and use upper case*for compound words. Given
a new class name AbcXyz, you should derive several names:

Additional widget instance structure part name AbcXyzPart.

Complete widget instance structure names AbcXyzRec and _AbcXyzRec.

Widget instance structure pointer type name AbcXyzWidget.

Additional class structure part name AbcXyzClassPart.

Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.

Class structure pointer type name AbcXyzWidgetClass.

Class structure variable abcXyzClassRec.

Class structure pointer variable abcXyzWidgetClass.

• Action procedures available to translation specifications should follow the same naming
conventions as procedures. That is, they start with a capital letter, and compound names
use upper case (for example, “Highlight” and “NotifyClient”).

The symbolic identifiers XtN..., XtC... and XtR... may be implemented as macros, as global
symbols, or as a mixture of the two. The (implicit) type of the identifier is String. The
pointer value itself is not significant: clients must not assume that inequality of two identifiers
implies inequality of the resource name, class, or representation string. Clients should also
note that although global symbols permit savings in literal storage in some environments, they
also introduce the possibility of multiple definition conflicts when applications attempt to use
independently developed widgets simultaneously.

1.6.2. Widget Subclassing in Public .h Files

The public .h file for a widget class is imported by clients and contains

• A reference to the public .h file for the superclass.

• Symbolic identifiers for the names and classes of the new resources that this widget adds
to its superclass. The definitions should have a single space between the definition name
and the value and no trailing space or comment in order to reduce the possibility of com¬
piler warnings from similar declarations in multiple classes.

• Type declarations for any new resource data types defined by the class.

• The class record pointer variable used to create widget instances.

• The C type that corresponds to widget instances of this class.

• Entry points for new class methods.

For example, the following is the public .h file for a possible implementation of a Label wid¬
get:

#ifndef LABEL_H
#define LABEL_H

/* New resources */
#define XtNjustify "justify"'

11

X Toolkit Intrinsics XI1 Release 5

#define XtNforeground "foreground"
#define XtNlabel "label"
#define XtNfont "font"
#define XtNintemalWidth "intemalWidth"
#define XtNintemalHeight "intemalHeight"

/* Gass record pointer */
extern WidgetGass labelWidgetClass;

/* C Widget type definition */
typedef struct _LabelRec *LabelWidgct;

/* New class method entry points */
extern void LabelSetText();

/* Widget w */
/* String text */

extern String LabelGetText();
/* Widget w */

#endif LABEL_H

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned that they already may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget class. For example, the public .h file for the Con¬
straint widget class is Constraint.!!.

1.6.3. Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget
and contains

• A reference to the public .h file for the class.

• A reference to the private .h file for the superclass.

• Symbolic identifiers for any new resource representation types defined by the class. The
definitions should have a single space between the definition name and the value and no
trailing space or comment.

• A structure part definition for the new fields that the widget instance adds to its
superclass’s widget structure.

• The complete widget instance structure definition for this widget.

• A structure part definition for the new fields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint.

• The complete constraint structure definition if the widget class is a subclass of Con¬
straint.

• Type definitions for any new procedure types used by class methods declared in the wid¬
get class part

• A structure part definition for the new fields that this widget class adds to its superclass’s
widget class structure.

• The complete widget class structure definition for this widget.

12

X Toolkit Intrinsics XI1 Release 5

• The complete widget class extension structure definition for this widget, if any.

• The symbolic constant identifying the class extension version, if any.

• The name of the global class structure variable containing the generic class structure for
this class.

• An inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */
typedef struct {
/* Settable resources */

Pixel foreground;
XFontStruct *font;
String label; /* text to display */
XtJustify justify;
Dimension intemal_width; /* # pixels horizontal border */
Dimension intemal_height; /* # pixels vertical border */

/* Data derived from resources */
GC normal GC;
GC gray_GC;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label_width;
Dimension labeljteight;
Cardinal labeljen;
Boolean display_sensitive;

} LabelPart;

/* Full instance record declaration */
typedef struct _LabelRec {

CorePart core;
LabelPart label;

} LabelRec;

/* Types for Label class methods */
typedef void (*LabelSetTextProc)();

/* Widget w */
/* String text */

typedef String (*LabelGetTextProc)();
/* Widget w */

/* New fields for the Label widget class record */
typedef struct {

13

X Toolkit Intrinsics XI1 Release 5

LabelSetTextProc set_text;
LabelGetTextProc get_text;
XtPointer extension;

} Label ClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec (

CoreClassPart core_class;
LabelClassPart label_class;

} LabelClassRec;

/* Gass record variable */
extern LabelGassRec labelClassRec;

#define LabelInheritSetText((LabelSetTextProc)_XtInherit)
#define LabelInheritGetText((LabelGetTextProc)_XtInherit)
#endif LABELP_H

To accommodate operating systems with file name length restrictions, the name of the private
.h file is the first nine characters of the widget class followed by a capital P. For example, the
private .h file for the Constraint widget class is ConstrainP.h.

1.6.4. Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which
contains the following parts:

• Gass information (for example, superclass, classjiame, widget_size, classJnitialize, and
class jnited).

• Data constants (for example, resources and numjesources, actions and num_actions,
visible jnterest, compressjnotion, compress_exposure, and version)

• Widget operations (for example, initialize, realize, destroy, resize, expose, set_values,
acceptJocus, and any new operations specific to the widget).

The superclass field points to the superclass global class record, declared in the superclass
private .h file. For direct subclasses of the generic core widget, superclass should be initial¬
ized to the address of the widgetClassRec structure. The superclass is used for class chaining
operations and for inheriting or enveloping a superclass’s operations (see Sections 1.6.7, 1.6.9,
and 1.6.10).

The class jiame field contains the text name for this class, which is used by the resource
manager. For example, the Label widget has the string “Label”. More than one widget class
can share the same text class name. This string must be permanently allocated prior to or dur¬
ing the execution of the class initialization procedure and must not be subsequently deallocated.

The widget_size field is the size of the corresponding widget instance structure (not the size of
the class structure).

The version field indicates the toolkit implementation version number and is used for runtime
consistency checking of the X Toolkit and widgets in an application. Widget writers must set
it to the implementation-defined symbolic value XtVersion in the widget class structure initial¬
ization. Those widget writers who believe that their widget binaries are compatible with other
implementations of the Intrinsics can put the special value XtVersionDontCheck in the ver¬
sion field to disable version checking for those widgets. If a widget needs to compile alterna¬
tive code for different revisions of the Intrinsics interface definition, it may use the symbol
XtSpecificationRelease, as described in Chapter 13. Use of XtVersion allows the Intrinsics

14

X Toolkit Intrinsics XI1 Release 5

implementation to recognize widset binaries that were compiled with older implementations.

The exte- n field is for futur ward compatibility. If the widget programmer adds fields to
class parti, all subclass structL vouts change, requiring complete recompilation. To allow
clients to avoid recompilation, .xtension field at the end of each class part can point to a
record that contains any additL. a class information required.

All other fields are described in their respective sections.

The .c file also contains the declaration of the global class structure pointer variable used to
create instances of the class. The following is an abbreviated version of the .c file for a Label
widget. The resources table is described in Chapter 9.

/* Resources specific to Label */
static XtResource resources[] = {

{XtNforeground, XtCForcground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

(XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabclWidget, label.font),XtRString,
XtDefaultFont),

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

/* Forward declarations of procedures */
static void Classlnitializc();
static void InitializeO;
static void Realize();
static void SetText();
static void GetTextQ;

/* Class record constant */
LabelClassRec labelClassRec = {

/* core_class fields */
/* superclass */
/* class_name */
/* widget_size */
/* class_initialize */
/* class_part_initialize */
/* class_inited */
/* initialize */
/* initialize_hook */
/* realize */
/* actions */
/* num_actions */
/* resources */
/* num resources */

(W idgctClass)&corcClassRec,
"Label",
sizeof(LabelRec),
Classlnitialize,
NULL,
False,
Initialize,
NULL,
Realize,
NULL,
0,
resources,
XtNumber(resources),

15

X Toolkit Intrinsics XI1 Release 5

/* xrm_class */ NULLQUARK,
/* compress motion */ True,
/* compress_exposure */ True,
/* compress enterleave */ True,
/* visible interest */ False,
/* destroy */ NULL,
/* resize */ Resize,
/* expose */ Redisplay,
/* set values */ SctValues,
/* set_values hook */ NULL,
/* set values almost */ XtlnheritSetValues Almost,
/* get values hook */ NULL,
/* accept_focus */ NULL,
/* version */ XtVersion,
/* callback offsets */ NULL,
/* tm jable */ NULL,
/* query_geometry */ XtlnheritQueryGeometry,
/* display_accelerator */ NULL,
/* extension

}.
*/ NULL

{
/* Label class fields */

/* get_text */ GctTcxt,
/* set_text */ SctText,
/* extension

}
*/ NULL

)»

/* Gass record pointer */
WidgetClass labelWidgetClass = (WidgetGass) &IabelClassRec;

/* New method access routines */
void LabelSetText(w, text)

Widget w;
String text;

{

Label WidgetGass lwc = (Label WidgctGass)XtGass(w);
XtGieckSubclass(w, labelWidgetGass, NULL);
*(lwc->label_class.set_text)(w, text)

}

/* Private procedures */

1.6.5. Widget Class and Superclass Look Up

To obtain the class of a widget, use XtClass.

WidgetGass XtClass(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

16

X Toolkit Intrinsics XI1 Release 5

The XtClass function returns a pointer to the widget’s class structure.

To obtain the superclass of a widget, use XtSuperclass.

WidgetClass XtSuperclass(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtSuperclass function returns a pointer to the widget’s superclass class structure.

1.6.6. Widget Subclass Verification

To check the subclass to which a widget belongs, use XtlsSubclass.

Boolean XtIsSubclass(w, widget_class)
Widget w;
WidgetClass widget_class',

w Specifies the widget or object instance whose class is to be checked. Must be
of class Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass or any sub¬
class thereof.

The XtlsSubclass function returns True if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. Composite widgets that
need to restrict the class of the items they contain can use XtlsSubclass to find out if a widget
belongs to the desired class of objects.

To test if a given widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics
define macros or functions equivalent to XtlsSubclass for each of the built-in classes. These
procedures are XtlsObject, XtlsRectObj, XtlsWidget, XtlsComposite, XtlsConstraint,
XtlsShell, XtlsOverrideShell, XtlsWMShell, XtlsVendorShell, XtlsTransientShell, Xtls-
TopLevelShell and XtlsApplicationShell.

All these macros and functions have the same argument description.

Boolean Xtls<c/aw> (w)
Widget w;

w Specifies the widget or object instance whose class is to be checked. Must be
of class Object or any subclass thereof.

These procedures may be faster than calling XtlsSubclass directly for the built-in classes.

To check a widget’s class and to generate a debugging error message, use XtCheckSubclass,
defined in <Xll/IntrinsicP.h>:

void XtCheckSubclass(w, widget jslass, message)
Widget w;
WidgetGass widget_class\
String message;

w Specifies the widget or object whose class is to be checked. Must be of class
Object or any subclass thereof.

widget_class Specifies the widget class for which to test. Must be objectClass or any sub¬
class thereof.

message Specifies the message to be used.

17

X Toolkit Intrinsics XI1 Release 5

The XtCheckSubclass macro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. If the specified widget’s
class is not a subclass, XtCheckSubclass constructs an error message from the supplied mes¬
sage, the widget’s actual class, and the expected class and calls XtErrorMsg. XtCheckSub¬
class should be used at the entry point of exported routines to ensure that the client has passed
in a valid widget class for the exported operation.

XtCheckSubclass is only executed when the module has been compiled with the compiler
symbol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

1.6.7. Superclass Chaining

While most fields in a widget class structure arc self-contained, some fields are linked to their
corresponding fields in their superclass structures. With a linked field, the Intrinsics access the
field’s value only after accessing its corresponding superclass value (called downward super¬
class chaining) or before accessing its corresponding superclass value (called upward superclass
chaining). The self-contained fields are

In all widget classes:

In Composite widget classes:

In Constraint widget classes:

In Shell widget classes:

class jiame
classJnitialize
widget_size
realize
visiblejnterest
resize
expose
acceptJocus
compressjnotion
comp ress_exposure
compress_enterleave
set_values_almost
tmjable
version

geometry jnanager
change jnanaged
insert_child
delete_child
accepts _objects

constraint_size

root_geometry jnanager

With downward superclass chaining, the invocation of an operation first accesses the field from
the Object, RectObj, and Core class structures, then from the subclass structure, and so on
down the class chain to that widget’s class structure. These superclass-to-subclass fields are

class jpartJnitialize
getjvalues Jiook
initialize
initialize Jiook
setjvalues
set_values Jiook
resources

18

X Toolkit Intrinsics XI1 Release 5

In addition, for subclasses of Constraint, the following fields of the ConstraintClassPart and
ConstraintClassExtensionRec structures arc chained from the Constraint class down to the
subclass:

resources
initialize
set_values
get_values_hook

With upward superclass chaining, the invocation of an operation first accesses the field from
the widget class structure, then from the superclass structure, and so on up the class chain to
the Core, RectObj, and Object class structures. The subclass-to-superclass fields are

destroy
actions

For subclasses of Constraint, the following field of ConstraintClassPart is chained from the
subclass up to the Constraint class:

destroy

1.6.8, Class Initialization: classinitialize and class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some cases, how¬
ever, a class may need to register type converters or perform other sorts of once-only runtime
initialization.

Because the C language does not have initialization procedures that are invoked automatically
when a program starts up, a widget class can declare a class_initialize procedure that will be
automatically called exactly once by the Intrinsics. A class initialization procedure pointer is
of type XtProc:

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
classJnitialize field.

In addition to the class initialization that is done exactly once, some classes perform initializa¬
tion for fields in their parts of the class record. These are performed not just for the particular
class but for subclasses as well, and are done in the class’s class pan initialization procedure, a
pointer to which is stored in the classjpart Jnitialize field. The class_pan_initialize procedure
pointer is of type XtWidgetClassProc.

typedef void (*XtWidgetGassProc)(WidgetClass);
WidgetGass widget_class\

widget_class Points to the class structure for the class being initialized.

During class initialization, the class pan initialization procedures for the class and all its
superclasses are called in superclass-to-subclass order on the class record. These procedures
have the responsibility of doing any dynamic initializations necessary to their class’s part of the
record. The most common is the resolution of any inherited methods defined in the class. For
example, if a widget class C has superclasses Core, Composite, A, and B, the class record for
C first is passed to Core ’s class_pan_initialize procedure. This resolves any inherited Core
methods and compiles the textual representations of the resource list and action table that are
defined in the class record. Next, Composite’s class_pan_initialize procedure is called to ini¬
tialize the composite part of C’s class record. Finally, the class_part_initialize procedures for
A, B, and C, in that order, are called. For further information, see Section 1.6.9. Gasses that
do not define any new class fields or that need no extra processing for them can specify NULL

19

X Toolkit Intrinsics XI1 Release 5

in the classj>art_initialize field.

All widget classes, whether they have a class initialization procedure or not, must start with
their classjnited field False.

The first time a widget of a class is created, XtCreateWidget ensures that the widget class
and all superclasses are initialized, in superclass-to-subclass order, by checking each
classjnited field and, if it is False, by calling the class_initialize and the class_part_initialize
procedures for the class and all its superclasses. The Intrinsics then set the classjnited field to
a nonzero value. After the one-time initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class,

static void Qasslnitialize()

}

XtSetTypeConverter(XtRString, XtRJustify, CvtStringToJustify,
NULL, 0, XtCacheNone, NULL);

1.6.9. Initializing a Widget Class

A class is initialized when the first widget of that class or any subclass is created. To initialize
a widget class without creating any widgets, use XtlnitializeWidgetClass.

void XtInitializeWidgetQass(6>6yea_c/a^)
WidgetGass object_class\

object_class Specifies the object class to initialize. May be objectClass or any subclass
thereof.

If the specified widget class is already initialized, XtlnitializeWidgetClass returns immedi¬
ately.

If the class initialization procedure registers type converters, these type converters are not
available until the first object of the class or subclass is created or XtlnitializeWidgetClass is
called (see Section 9.6).

1.6.10. Inheritance of Superclass Operations

A widget class is free to use any of its superclass’s self-contained operations rather than imple¬
menting its own code. The most frequently inherited operations are

expose

realize

insert_child

delete_child

geometry _manager

set_values_almost

To inherit an operation xyz, specify the constant XtlnheritXyz in your class record.

Every class that declares a new procedure in its widget class part must provide for inheriting
the procedure in its class_partjnitialize procedure. The chained operations declared in Core
and Constraint records are never inherited. Widget classes that do nothing beyond what their
superclass does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copy¬
ing in the superclass’s value for that field if a match occurs. This special value, called the
inheritance constant, is usually the Intrinsics internal value _XtInherit cast to the appropriate
type. Xtlnherit is a procedure that issues an error message if it is actually called.

20

X Toolkit Intrinsics XI1 Release 5

For example, CompositeP.h contains these definitions:

tdefine XtlnheritGeometryManager ((XtGeometryHandler) _XtInherit)
#define XtlnheritChangeManaged ((XtWidgctProc) _XtInherit)
#define XtlnheritlnsertChild ((XtArgsProc) _XtInherit)
#define XtlnheritDeleteChild ((XtWidgetProc) _XtInherit)

Composite’s class_part_initialize procedure begins as follows:

static void CompositeClassPartlnitialize(widgctClass)
WidgetGass widgetClass;

{

Composite WidgetGass wc = (Composite WidgctClassjwidgetGass;
Composite WidgetGass super = (CompositeWidgctGass)wc->core_class.superclass;

if (wc->composite_class. geometry _manager == XtlnheritGeometryManager) {
wc->composite_class.geometry jnanager = super- >composite_class.geometry_manager;

}

if (wc->composite_class.changc_managed = XtlnheritChangeManaged) {
wc->composite_class.change_managed = super->composite_class.change_managed;

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may
declare any reserved value it wishes for the inheritance constant for its new fields. The follow¬
ing inheritance constants are defined:

For Core:

XtlnheritRealize

XtlnheritResize

XtlnheritExpose

XtlnheritSetValuesAlmost

XtlnheritAcceptFocus

XtlnheritQueryGeometry

XtlnheritTranslations

XtlnheritDisplayAccelerator

For Composite:

XtlnheritGeometryManager

XtlnheritChangeManaged

XtlnheritlnsertChild

XtlnheritDeleteChild

For Shell:

XtlnheritRootGeometryManager

1.6.11. Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For example, a
widget’s expose procedure might call its superclass’s expose and then perform a little more

21

X Toolkit Intrinsics XI1 Release 5

work on its own. For example, a Composite class with predefined managed children can
implement insert_child by first calling its superclass’s insert_child and then calling
XtManageChild to add the child to the managed set.

Note

A class method should not use XtSuperclass but should instead call the class
method of its own specific superclass directly through the superclass record. That
is, it should use its own class pointers only, not the widget’s class pointers, as the
widget’s class may be a subclass of the class whose implementation is being refer¬
enced.

This technique is referred to as enveloping the superclass’s operation.

1.6.12. Class Extension Records

It may be necessary at times to add new fields to already existing widget class structures. To
permit this to be done without requiring recompilation of all subclasses, the last field in a class
part structure should be an extension pointer. If no extension fields for a class have yet been
defined, subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint and Shell classes, subc¬
lasses can provide values for these fields by setting the extension pointer for the appropriate
part in their class structure to point to a statically declared extension record containing the
additional fields. Setting the extension field is never mandatory; code that uses fields in the
extension record must always check the extension field and take some appropriate default
action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from a single
extension field, extension records should be declared as a linked list and each extension record
definition should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record size;

next_extension

record_type

version

Specifies the next record in the list, or NULL.

Specifies the particular structure declaration to which each extension record
instance conforms.

Specifies a version id symbolic constant supplied by the definer of the
structure.

record_size Specifies the total number of bytes allocated for the extension record.

The recordjype field identifies the contents of the extension record and is used by the definer
of the record to locate its particular extension record in the list. The recordjype field is nor¬
mally assigned the result of XrmStringToQuark for a registered string constant. The Intrin¬
sics reserve all record type strings beginning with the two characters “XT” for future standard
uses. The value NULLQUARK may also be used by the class part owner in extension records
attached to its own class part extension field to identify the extension record unique to that par¬
ticular class.

The version field is an owner-defined constant that may be used to identify binary files that
have been compiled with alternate definitions of the remainder of the extension record data
structure. The private header file for a widget class should provide a symbolic constant for
subclasses to use to initialize this field. The record size field value includes the four common

22

X Toolkit Intrinsics XI1 Release 5

header fields and should normally be initialized with sizeof().

Any value stored in the class part extension fields of CompositeClassPart, Con-
straintCIassPart, or ShellClassFart must point to an extension record conforming to this
definition.

23

X Toolkit Intrinsics XI1 Release 5

Chapter 2

Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returned by
XtAppCreateSheli is the root of the widget tree instance. The widgets with one or more chil¬
dren are the intermediate nodes of that tree, and the widgets with no children of any kind are
the leaves of the widget tree. With the exception of pop-up children (see Chapter 5), this wid¬
get tree instance defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children, but
the Intrinsics provide a set of management mechanisms for constructing and interfacing
between composite widgets, their children, and other clients.

Composite widgets, that is, members of the class compositeWidgetClass, are containers for an
arbitrary but widget implementation-defined collection of children, which may be instantiated
by the composite widget itself, by other clients, or by a combination of the two. Composite
widgets also contain methods for managing the geometry (layout) of any child widget. Under
unusual circumstances, a composite widget may have zero children, but it usually has at least
one. By contrast, primitive widgets that contain children typically instantiate specific children
of known classes themselves and do not expect external clients to do so. Primitive widgets
also do not have general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, realization and
destruction) on composite widgets and all their children. Primitive widgets that have children
must be prepared to perform the recursive operations themselves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example, XtRealizeWidget
traverses the tree downward and recursively realizes all pop-up widgets and children of compo¬
site widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets
and children of composite widgets. The functions that fetch and modify resources traverse the
tree upward and determine the inheritance of resources from a widget’s ancestors. XtMake-
GeometryRequest traverses the tree up one level and calls the geometry manager that is
responsible for a widget child’s geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget that XtAppCreateSheli returns has a parent pointer of NULL.

To facilitate downward traversal of the widget tree, the children field of each composite widget
is a pointer to an array of child widgets, which includes all normal children created, not just
the subset of children that are managed by the composite widget’s geometry manager. Primi¬
tive widgets that instantiate children are entirely responsible for all operations that require
downward traversal below themselves. In addition, every widget has a pointer to an array of
pop-up children.

2.1. Initializing the X Toolkit

Before an application can call any Intrinsics function other than XtSetLanguageProc, it must
initialize the Intrinsics by using

• XtToolkitlnitialize, which initializes the Intrinsics internals.

• XtCreateApplicationContext, which initializes the per-application state.

• XlDisplaylnitialize or XtOpenDisplay, which initializes the per-display state.

• XtAppCreateSheli, which creates the root of a widget tree.

24

X Toolkit Intrinsics XI1 Release 5

or an application can call the convenience procedure XtAppInitialize which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale
mechanism should call XtSetLanguageProc prior to calling XtDisplaylnitialize, XtOpen-
Display, or XtAppInitialize.

Multiple instances of X Toolkit applications may be implemented in a single address space.
Each instance needs to be able to read input and dispatch events independently of any other
instance. Further, an application instance may need multiple display connections to have wid¬
gets on multiple displays. From the application’s point of view, multiple display connections
usually are treated together *as a single unit for purposes of event dispatching. To accommo¬
date both requirements, the Intrinsics define application contexts, each of which provides the
information needed to distinguish one application instance from another. The major component
of an application context is a list of one or more X Display pointers for that application. The
Intrinsics handle all display connections within a single application context simultaneously,
handling input in a round-robin fashion. The application context type XtAppContext is
opaque to clients.

To initialize the Intrinsics internals, use XtTooikitlnitialize.

void XtToolkitlnitializeO

The semantics of calling XtTooikitlnitialize more than once are undefined.

To create an application context, use XtCreateApplicationContext.

XtAppContext XtCreateApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque
type. Every application must have at least one application context.

To destroy an application context and close any remaining display connections in it, use
XtDestroyApplicationContext.

void XtDestroyApplicationContext(<3p/7_conrm)
XtAppContext app_contexr,

app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application context as soon
as it is safe to do so. If called from within an event dispatch (for example, in a callback pro¬
cedure), XtDestroyApplicationContext docs not destroy the application context until the
dispatch is complete.

To get the application context in which a given widget was created, use XtWidgetToApplica-
tionContext.

XtAppContext XtWidgetToAppiicationContcxt(w)
Widget w;

w Specifies the widget for which you want the application context. Must be of
class Object or any subclass thereof.

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context, use XtDisplaylnitialize.

25

X Toolkit Intrinsics Xll Release 5

void XtDisplaylnitializefappjro/nexr, display, application jxame, applicationjlass,
options, num_options, argc, argv)

XtAppContext app_contexr.
Display * display.
String application jiame;
String application_closs',
XrmOptionDescRec *options'.
Cardinal num_options\
int *argc\
String *argv\

app_context

display

application_name

application _class

options

num_options

argc

argv

Specifies the application context.

Specifies a previously opened display connection. Note that a single
display connection can be in at most one application context.

Specifies the name of the application instance.

Specifies the class name of this application, which is usually the generic
name for all instances of this application.

Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to XrmPar-
seCommand. For further information, see Section 15.9 in Xlib - C
Language X Interface and Section 2.4 of this specification.

Specifies the number of entries in the options list.

Specifies a pointer to the number of command line parameters.

Specifies the list of command line parameters.

The XtDisplaylnitialize function retrieves the language string to be used for the specified
display (see Section 11.11), calls the language procedure (if set) with that language string,
builds the resource database for the default screen, calls the Xlib XrmParseCommand func¬
tion to parse the command line, and performs other per-display initialization. After XrmPar¬
seCommand has been called, argc and argv contain only those parameters that were not in the
standard option table or in the table specified by the options argument. If the modified argc is
not zero, most applications simply print out the modified argv along with a message listing the
allowable options. On POSIX-based systems, the application name is usually the final com¬
ponent of argv[0]. If the synchronous resource is True, XtDisplaylnitialize calls the Xlib
XSynchronize function to put Xlib into synchronous mode for this display connection and any
others currently open in the application context. See Sections 2.3 and 2.4 for details on the
applicationjiame, application_class, options, and numjjptions arguments.

XtDisplaylnitialize calls XrmSetDatabase to associate the resource database of the default
screen with the display before returning.

26

X Toolkit Intrinsics XI1 Release 5

To open a display, initialize md then add it to an application context, use XtOpenDisplay.

Display *XtOpenDisplay(a/ it ext, displayjtring, applicationjiame, application^ lass,
options, t options, argc, argv)

XtAppContext app_comexv.
String display jtring'.
String applicationjiame'.
String applicationjlass',
XrmOptionDescRec *options:;
Cardinal num_options\
int *argc\
String *argv\

appjcontext

display _siring

applicationjiame

application jclass

options

Specifies the application context.

Specifies the display string, or NULL.

Specifies the name of the application instance, or NULL.

Specifies the class rwme of this application, which is usually the generic
name for all instant ' this application.

Specifies how to pai c command line for any application-specific
resources. The optic; argument is passed as a parameter to XrmPar-
seCommand.

numjxptions

argc

argv

Specifies the number of entries in the options list.

Specifies a pointer to the number of command line parameters.

Specifies the list of command line parameters.

The XtOpenDisplay function calls XOpenDisplay with the specified displayjtring. If
display jtring is NULL, XtOpenDisplay uses the current value of the -display option
specified in argv. If no display is specified in argv, the user’s default display is retrieved from
the environment. On POSIX-based systems, this is the value of the DISPLAY environment
variable.

If this succeeds, XtOpenDisplay then calls Xt Display Initialize and passes it the opened
display and the value of the -name option specified in argv as the application name. If no
-name option is specified and applicationjame is non-NULL, applicationjiame is passed to
XtDisplaylnitialize. If applicationjiame is NULL and if the environment variable
RESOURCE_NAME is set. the value of RESOURCE_NAME is used. Otherwise, the applica¬
tion name is the name used to ; ivoke the program. On implementations that conform to ANSI
C Hosted Environment support, the application name will be argv[0] less any directory and file
type components, that is, the final component of argv[0], if specified. If argv[Q>\ does not exist
or is the empty string, the application name is “main”. XtOpenDisplay returns the newly
opened display or NULL if it failed.

To close a display and remove it from an application context, use XtCloseDisplay.

void XtCloseDisplay (display)
Display *display\

display Specifies the display.

The XtCloseDisplay function calls XCloseDisplay with the specified display as soon as it is
safe to do so. If called from within an event dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applica¬
tions need only call XtCloseDisplay if they are to continue exe«. :ting after closing the display;
otherwise, they should call XtDestroyApplicationContext or just exit.

27

X Toolkit Intrinsics XI1 Release 5

22. Establishing the Locale

Resource databases are specified to be created in the current process locale. During display
initialization prior to creating the per-screen resource database, the Intrinsics will call out to a
specified application procedure to set the locale according to options found on the command
line or in the per-display resource specifications.

The callout procedure provided by the application is of type XtLanguageProc.

typedef String (*XtLanguageProc)(Display*, String, XtPointcr);
Display *display\
String Language;
XtPointer client_data\

display Passes the display.

language Passes the initial language value obtained from the command line or server
per-display resource specifications.

clientjdata Passes the additional client data specified in the call to XtSetLanguageProc.

The language procedure allows an application to set the locale to the value of the language
resource determined by XtDisplaylnitialize. The function returns a new language string that
will be subsequently used by XtDisplaylnitialize to establish the path for loading resource
files. The returned string will be copied by the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language procedure for use
by XtDisplaylnitialize use XtSetLanguageProc.

XtLanguageProc XtSetLanguageProc(app jrcwrm, proc, client_data)
XtAppContext appjeontexe,;
XtLanguageProc proc;
XtPointer client_data\

app_context Specifies the application context in which the language procedure is to be used,
or NULL.

proc Specifies the language procedure.

client_data Specified additional client data to be passed to the language procedure when it
is called.

XtSetLanguageProc sets the language procedure that will be called from XtDisplaylnitialize
for all subsequent Displays initialized in the specified application context. If app_context is
NULL, the specified language procedure is registered in all application contexts created by the
calling process, including any future application contexts that may be created. If proc is
NULL a default language procedure is registered. XtSetLanguageProc returns the previously
registered language procedure. If a language procedure has not yet been registered, the return
value is unspecified but if this return value is used in a subsequent call to XtSetLangu¬
ageProc, it will cause the default language procedure to be registered.

The default language procedure does the following:

• Sets the locale according to the environment. On ANSI C-based systems this is done by
calling setlocale(LC_ALL, language). If an error is encountered a warning message
is issued with XtWarning.

• Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued with XtWarning and the locale is set to “C”.

• Calls XSetLocaleModifiers specifying the empty string.

28

X Toolkit Intrinsics XII Release 5

• Returns the value of the current locale. On ANSI C-based systems this is the return
value from a final call to setlocale(LC_ALL, NULL).

A client wishing to use this mechanism to establish locale can do so by calling XtSetLangu-
ageProc prior to XtDisplaylnitialize, as in the following example.

Widget top;
XtSetJLanguageProc(NULL, NULL, NULL);
top = XtAppInitialize(...);

23. Loading the Resource Database

The XtDisplaylnitialize function first determines the language string to be used for the
specified display. It then creates a resource database for the default screen of the display by
combining the following sources in order, with the entries in the first named source having
highest precedence:

• Application command line (argc, argv).

• Per-host user environment resource file on the local host.

• Per-screen resource specifications from the server.

• Per-display resource specifications from the server or from
the user preference file on the local host.

® Application-specific user resource file on the local host.

® Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either internally,
or when XtScreenDatabase is called), it is created in the following manner using the sources
listed above in the same order:

® A temporary database, the “server resource database”, is created from the string
returned by XResourceManagerString or, if XResourceManagerString returns
NULL, the contents of a resource file in the user’s home directory. On POSIX-based
systems, the usual name for this user preference resource file is SHOME/.Xdefaults.

• If a language procedure has been set, XtDisplaylnitialize first searches the command
line for the option “-xnlLanguage”, or for a -xnm option that specifies the
xnlLanguage/XnlLanguage resource, as specified by Section 2.4. If such a resource is
found, the value is assumed to be entirely in XPCS, the X Portable Character Set. If
neither option is specified on the command line, XtDisplaylnitialize queries the server
resource database (which is assumed to be entirely in XPCS) for the resource
nowf.xnlLanguage. class C/&w.Xn!Language where name and Class are the
application_name and application^ lass specified to XtDisplaylnitialize. The language
procedure is then invoked with the resource value if found, else the empty string. The
string returned from the language procedure is saved for all future references in the
Intrinsics that require the per-display language string.

• The screen resource database is initialized by parsing the command line in the manner
specified by Section 2.4.

29

X Toolkit Intrinsics XI1 Release 5

• If a language procedure has not been set, the initial database is then queried for the
resource /uzme.xnlLanguage, class C/oss.XnlLanguage as specified above. If this data¬
base query fails, the server resource database is queried; if this query also fails, the
language is determined from the environment; on POSIX-based systems, this is done by
retrieving the value of the LANG environment variable. If no language string is found,
the empty string is used. This language string is saved for all future references in the
Intrinsics that require the per-display language string.

© After determining the language string, the user’s environment resource file is then
merged into the initial resource database if the file exists. This file is user-, host-, and
process-specific and is expected to contain user preferences that are to override those
specifications in the per-display and pcr-screen resources. On POSIX-based systems, the
user’s environment resource file name is specified by the value of the XENVIRONMENT
environment variable. If this environment variable does-not exist, the user’s home direc¬
tory is searched for a file named .Xdefaults-/u«r, where host is the host name of the
machine on which the application is running.

® The per-screen resource specifications arc then merged into the screen resource database,
if they exist. These specifications are the string returned by XScreenResourceString
for the respective screen and are owned entirely by the user.

« Next, the server resource database created earlier is merged into the screen resource data¬
base. The server property, and corresponding user preference file, are owned and con¬
structed entirely by the user.

• The application-specific user resource file from the local host is then merged into the
screen resource database. This file contains user customizations and is stored in a direc¬
tory owned by the user. Either the user or the application or both can store resource
specifications in the file. Each should be prepared to find and respect entries made by
the other. The file name is found by calling XrmSetDatabase with the current screen
resource database, after preserving the original display-associated database, then calling
XtResolvePathname with the parameters (display, NULL, NULL, NULL, path, NULL,
0, NULL) where path is defined in an opcrating-system-specific way. On POSIX-based
systems, path is defined to be the value of the environment variable XUSERFILESEAR-
CHPATH if this is defined. If XUSERFILESEARCHPATH is not defined, an
implementation-dependent default value is used. This default value is constrained in the
following manner:

- If the environment variable XAPPLRESDSR is not defined, the default XUSER¬
FILESEARCHPATH must contain at least six entries. These entries must contain
$HOME as the directory prefix, plus the following substitutions:

1. %C, %N, %L or %C, %N, %1, %t, %c
2. %C, %N, %1
3. %C, %N
4. %N, %L or %N, %1, %t, %c
5. %N, %1
6. %N

The order of these six entries within the path must be as given above. The order and
use of substitutions within a given entry is implementation dependent.

30

X Toolkit Intrinsics XI1 Release 5

- If XAPPLRESDIR is defined, the default XUSERFILESEARCHPATH must contain
at least seven entries. These entries must contain the following directory prefixes and
substitutions:

1. SXAPPLRESDIR with %C, %N, %L or %C, %N, %1, %t, %c
2. SXAPPLRESDIR with %C, %N, %1
3. SXAPPLRESDIR with %C, %N
4. SXAPPLRESDIR with %N, %L or %N, %\, %t, %c
5. SXAPPLRESDIR with %N, %l
6. SXAPPLRESDIR with %N
7. SHOME with %N

The order of these seven entries within the path must be as given above. The order
and use of substitutions within a given entry is implementation dependent.

• Lastly, the application-specific class resource file from the local host is merged into the
screen resource database. This file is owned by the application and is usually installed in
a system directory when the application is installed. It may contain site-wide customiza-
tions specified by the system manager. The name of the application class resource file is
found by calling XtResoivePathname with the parameters (display, “app-defaults”,
NULL, NULL, NULL, NULL, 0, NULL). This file is expected to be provided by the
developer of the application and may be required for the application to function properly.
A simple application that wants to be assured of having a minimal set of resources in the
absence of its class resource file can declare fallback resource specifications with
XtAppSetFallbackResources. Note that the customization substitution string is
retrieved dynamically by XtResoivePathname so that the resolved file name of the
application class resource file can be affected by any of the earlier sources for the screen
resource database, even though the contents of the class resource file have lowest pre¬
cedence. After calling XtResoivePathname, the original display-associated database is
restored.

To obtain the resource database for a particular screen, use XtScreenDatabase.

XrmDatabase XtScreenDatabaseCscre^/i)
Screen * screen',

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabase function returns the fully merged resource database as specified above,
associated with the specified screen. If the specified screen docs not belong to a Display ini¬
tialized by XtDisplaylnitialize, the results arc undefined.

To obtain the default resource database associated with a particular display, use XtDatabase.

XrmDatabase XtDatabase(«fcp/ay)
Display *display\

display Specifies the display.

The XtDatabase function is equivalent to XrmGetDatabase. It returns the database associ¬
ated with the specified display, or NULL if a database has not been set.

To specify a default set of resource values that will be used to initialize the resource database
if no application-specific class resource file is found (the last of the six sources listed above),

31

X Toolkit Intrinsics XI1 Release 5

use XtAppSetFallbackResources.

void XtAppSetFallbackResources(app_cwue;cr, specification Jist)
XtAppContext app_contexr,;
String * specificationJisr,

app_context Specifies the application context in which the fallback specifications will be
used.

specification_list Specifies a NULL-tcrminatcd list of resource specifications to preload the
database, or NULL.

Each entry in specification Jist points to a string in the format of XrmPutLineResource. Fol¬
lowing a call to XtAppSetFallbackResources, when a resource database is being created for a
particular screen and the Intrinsics are not able to find or read an application-specific class
resource file according to the rules given above and if specification Jist is not NULL the
resource specifications in specification Jist will be merged into the screen resource database in
place of the application-specific class resource file. XtAppSetFallbackResources is not
required to copy specificationjisr, the caller must ensure that the contents of the list and of the
strings addressed by the list remain valid until all displays are initialized or until XtAppSet¬
FallbackResources is called again. The value NULL for specification Jist removes any previ¬
ous fallback resource specification for the application context. The intended use for fallback
resources is to provide a minimal number of resources that will make the application usable (or
at least terminate with helpful diagnostic messages) when some problem exists in finding and
loading the application defaults file.

2.4. Parsing the Command Line

The XtOpenDisplay function first parses the command line for the following options:

-display Specifies the display name for XOpenDisplay.

-name Sets the resource name prefix, which overrides the application name passed to
XtOpenDisplay.

-xnllanguage Specifies the initial language string for establishing locale and for finding appli¬
cation class resource files.

XtDisplaylnitialize has a table of standard command line options that are passed to XrmPar-
seCommand for adding resources to the resource database, and it takes as a parameter addi¬
tional application-specific resource abbreviations. The format of this table is described in Sec¬
tion 15.9 in Xlib - C Language X Interface.

typedef enum {
XrmoptionNoArg, /*
XrmoptionlsArg, /*
XrmoptionStickyArg, /*
XrmoptionSepArg, /*
XrmoptionResArg, /*
XrmoptionSkipArg, /*
XrmoptionSkipNArgs, /*

/*

XrmoptionSkipLine /*
) XrmOptionKind;

Value is specified in OptionDescRec.value */
Value is the option string itself *1
Value is characters immediately following option */
Value is next argument in argv */
Use the next argument as input to XrmPutLineResource*/
Ignore this option and the next argument in argv */
Ignore this option and the next */
OptionDescRec.value arguments in argv */
Ignore this option and the rest of argv */

typedef struct (
char *option; /:
char *specifier, I
XrmOptionKind argKind; /:
XPointer value; /:

Option name in argv */
Resource name (without application name) */
Location of the resource value */
Value to provide if XrmoptionNoArg */

32

X Toolkit Intrinsics XI1 Release 5

} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Option String Resource Name Argument Kind Resource Value

-background background SepArg next argument
-bd ♦borderColor ScpArg next argument
-bg background SepArg next argument
-borderwidth .borderWidth ScpArg next argument
-bordercolor ♦borderColor SepArg next argument
-bw .borderWidth ScpArg next argument
-display .display ScpArg next argument

-fg * foreground SepArg next argument
-fn ♦font SepArg next argument
-font ♦font SepArg next argument
-foreground ♦foreground SepArg next argument
-geometry .geometry SepArg next argument
-iconic .iconic NoArg “true”
-name .name SepArg next argument
-reverse .reverseVideo NoArg “on”
-rv .reverseVideo NoArg “on”
+rv .reverseVideo NoArg “off”
-selectionTimeout .selectionTimeout ScpArg next argument
-synchronous .synchronous NoArg “on”
-asynchronous .synchronous NoArg “off”
-title .title ScpArg next argument
-xnllanguage .xnlLanguage ScpArg next argument
-xrm next argument RcsArg next argument

Note that any unique abbreviation for an option name in the standard table or in the application
table is accepted.

If reverseVideo is True, the values of XtDefaultForeground and XtDefaultBackground arc
exchanged for all screens on the Display.

The value of the synchronous resource specifics whether or not Xlib is put into synchronous
mode. If a value is found in the resource database during display initialization, XtDisplaylni-
tialize makes a call to XSynchronize for all display connections currently open in the applica¬
tion context. Therefore, when multiple displays are initialized in the same application context,
the most recent value specified for the synchronous resource is used for all displays in the
application context.

The value of the selectionTimeout resource applies to all displays opened in the same applica¬
tion context. When multiple displays are initialized in the same application context, the most
recent value specified is used for all displays in the application context.

The -xrm option provides a method of setting any resource in an application. The next argu¬
ment should be a quoted string identical in format to a line in the user resource file. For
example, to give a red background to all command buttons in an application named xmh, you
can start it up as

xmh -xrm ’xmh*Command.background: red’

When it parses the command line, XtDisplaylnitialize merges the application option table with
the standard option table before calling the Xlib XrmParseCommand function. An entry in

33

X Toolkit Intrinsics XI1 Release 5

the application table with the same name as an entry in the standard table overrides the stan¬
dard table entry. If an option name is a prefix of another option name, both names are kept in
the merged table. The Intrinsics reserve all option names beginning with the characters “-xt”
for future standard uses.

2.5. Creating Widgets

The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up traversal of
the widget tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application calls XtCreateWidget for all its widgets and adds
some (usually, most or all) of its widgets to their respective parents’ managed set by calling
XtManageChild. To avoid an 0(n2) creation process where each composite widget lays itself
out each time a widget is created and managed, parent widgets are not notified of changes in
their managed set during this phase.

After all widgets have been created, the application calls XtRealizeWidget with the top-level
widget to execute the second and third phases. XtRealizeWidget first recursively traverses the
widget tree in a postorder (bottom-up) traversal and then notifies each composite widget with
one or more managed children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry
negotiation. A parent deals with constraints on its size imposed from above (for example,
when a user specifies the application window size) and suggestions made from below (for
example, when a primitive child computes its preferred size). One difference between the two
can cause geometry changes to ripple in both directions through the widget tree. The parent
may force some of its children to change size and position and may issue geometry requests to
its own parent in order to better accommodate all its children. You cannot predict where any¬
thing will go on the screen until this process finishes.

Consequently, in the first and second phases, no X windows are actually created, because it is
likely that they will get moved around after creation. This avoids unnecessary requests to the
X ser/er.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-down) traversal of
the widget tree, allocates an X window to each widget by means of its realize procedure, and
finally maps the widgets that are managed.

2.5.1. Creating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource names and values. These are passed
as an arglist, a pointer to an array of Arg structures, which contains

typedef struct {
String name;
XtArgVal value;

) Arg, *ArgList;

where XtArgVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the size of an XtArgVal, the resource value
is stored directly in value; otherwise, a pointer to it is stored in value.

To set values in an ArgList, use XtSetArg.

34

X Toolkit Intrinsics XI1 Release 5

void XtSetArg(arg, name, value)
Arg arg'.
String name;
XtArgVal value',

arg Specifies the name lvalue pair to set.

name Specifies the name of the resource.

value Specifies the value of the resource if it will fit in an XtArgVal, else the
address.

The XtSetArg function is usually used in a highly stylized manner to minimize the probability
of making a mistake; for example:

Arg args(20];
int n;

n = 0;
XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;
XtSetValues(widget, args, n);

Alternatively, an application can statically declare the argument list and use XtNumber:

static Args args[] = {
{XtNheight, (XtArgVal) 100),
{XtNwidth, (XtArgVal) 200}.

};
XtSetValues(Widget, args, XtNumbcr(args));

Note that you should not use expressions with side effects such as auto-increment or auto¬
decrement within the first argument to XtSetArg. XtSetArg can be implemented as a macro
that evaluates the first argument twice.

To merge two arglist arrays, use XtMergeArgLists.

ArgList XtMergeArgLists(args/, num_argsl, args2, num_args2)
ArgList argsl'.
Cardinal numjxrgsl',
ArgList args2\
Cardinal num_args2\

argsl Specifies the first argument list.

num_argsl Specifies the number of entries in the first argument list.

args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined arglist arrays
and copies them into it. Note that it does not check for duplicate entries. The length of the
returned list is the sum of the lengths of the specified lists. When it is no longer needed, free
the returned storage by using XtFree.

All Intrinsics interfaces that require ArgList arguments have analogs conforming to the ANSI
C variable argument list (traditionally called “varargs”) calling convention. The name of the
analog is formed by prefixing “Va” to the name of the corresponding ArgList procedure;
e.g., XtVaCreateWidget. Each procedure named XtV^something takes as its last arguments,
in place of the corresponding ArgList/ Cardinal parameters, a variable parameter list of

35

X Toolkit Intrinsics XI1 Release 5

resource name and value pairs where each name is of type String and each value is of type
XtArgVal. The end of the list is identified by a name entry containing NULL. Developers
writing in the C language wishing to pass resource name and value pairs to any of these inter¬
faces may use the ArgList and varargs forms interchangeably.

Two special names are defined for use only in varargs lists: XtVaTypedArg and
XtVaNestedList.

#define XtVaTypedArg "XtVaTypedArg"

If the name XtVaTypedArg is specified in place of a resource name, then the following four
arguments are interpreted as a name/type/value/size tuple where name is of type String, type is
of type String, value is of type XtArgVal, and size is of type int. When a varargs list con¬
taining XtVaTypedArg is processed, a resource type conversion (see Section 9.6) is per¬
formed if necessary to convert the value into the format required by the associated resource. If
type is XtRString then value contains a pointer to the string and size contains the number of
bytes allocated, including the trailing null byte. If type is not XtRString, then if size is less
than or equal to sizeof(XtArgVal), the value should be the data cast to the type XtArgVal,
otherwise value is a pointer to the data. If the type conversion fails for any reason, a warning
message is issued and the list entry is skipped.

#define XtVaNestedList "XtVaNestedList"

If the name XtVaNestedList is specified in place of a resource name, then the following argu¬
ment is interpreted as an XtVarArgsList value, which specifies another varargs list that is log¬
ically inserted into the original list at the point of declaration. The end of the nested list is
identified with a name entry containing NULL. Varargs lists may nest to any depth.

To dynamically allocate a varargs list for use with XtVaNestedList in multiple calls, use
XtVaCreateArgsList.

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(imused, ...)
XtPointer unused;

unused This argument is not currently used and must be specified as NULL.

Specifies a variable parameter list of resource name and value pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into a single
list pointer, which may be used with XtVaNestedList. The end of both lists is identified by a
name entry containing NULL. Any entries of type XtVaTypedArg are copied as specified
without applying conversions. Data passed by reference (including Strings) are not copied,
only the pointers themselves; the caller must ensure that the data remain valid for the lifetime
of the created varargs list. The list should be freed using XtFree when no longer needed.

Use of resource files and the resource database is generally encouraged over lengthy arglist or
varargs lists whenever possible in order to permit modification without recompilation.

2.5.2. Creating a Widget Instance

To create an instance of a widget, use XtCreateWidget.

36

X Toolkit Intrinsics XI1 Release 5

Widget XtCreateWidget(rtome, object_class, parent, args, num_args)
String name;
WidgetGass objectjdass;
Widget parent,
ArgList args;
Cardinal num_args;

name

object_class

parent

args

Specifies the resource instance name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as any other
widget that is a child of the same parent.

Specifies the widget class pointer for the created object. Must be objectClass
or any subclass thereof.

Specifies the parent widget. Must be of class Object or any subclass thereof.

Specifies the argument list to override any other resource specifications.

numjirgs Specifies the number of entries in the argument list.

The XtCreateWidget function performs all the boilerplate operations of widget creation, doing
the following in order:

• Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

• If the specified class is not coreWidgetClass or a subclass thereof, and the parent’s
class is a subclass of compositeWidgetClass and either no extension record in the
parent’s composite class part extension field exists with the recordjype NULLQUARK
or the accepts _objects field in the extension record is False, XtCreateWidget issues a
fatal error, see Section 3.1 and Chapter 12.

• Allocates memory for the widget instance.

• If the parent is a member of the class constraintWidgetClass, allocates memory for the
parent’s constraints and stores the address of this memory into the constraints field.

• Initializes the Core nonresource data fields (for example, parent and visible).

• Initializes the resource fields (for example, background_pixel) by using the Core-
ClassPart resource lists specified for this class and all superclasses.

• If the parent is a member of the class constraint WidgetClass, initializes the resource
fields of the constraints record by using the ConstraintClassPart resource lists specified
for the parent’s class and all superclasses up to constraint WidgetClass.

® Calls the initialize procedures for the widget staning at the Object initialize procedure on
down to the widget’s initialize procedure.

• If the parent is a member of the class compositeWidgetClass, puts the widget into its
parent’s children list by calling its parent’s inscrt_child procedure. For further informa¬
tion, see Section 3.1.

® If the parent is a member of the class constraint WidgetClass, calls the Con¬
straintClassPart initialize procedures, starting at constraintWidgetCIass on down to
the parent’s ConstraintClassPart initialize procedure.

To create an instance of a widget using varargs lists, use XtVaCreateWidget.

Widget XtVaCreateWidget(rta/n£, object_class, parent, ...)
String name;
WidgetClass objeetjelass;
Widget parent,

name Specifies the resource name for the created widget.

37

X Toolkit Intrinsic* XI1 Release 5

object_class Specifies the widget class pointer lor the created object. Must be objectClass
or any subclass thereof.

parent Specifies the parent widget. Must be of class Object or any subclass thereof.

Specifies the variable argument list to override any other resource
specifications.

The XtVaCreateWidget procedure is identical in function to XtCreateWidget with the args
and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

2.5.3. Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique widget
tree which can potentially be on different screens or displays. An application uses
XtAppCreateShell to create independent widget trees.

Widget XtAppCreateShell(/io/ne, application_class, widgetjelass, display,
args, num_args)

String name'.
String application_class',
WidgetClass widget_class\
Display *display;
ArgList args'.
Cardinal num_args\

name Specifies the instance name of the shell widget. If name is NULL, the
application name passed to XtDisplayInitialize is used.

applicationjelass Specifies the resource class string to be used in place of the widget
classjiame string when widgetjelass is applicationShellWidgetClass or a
subclass thereof.

widgetjelass

display

args

num_args

Specifies the widget class for the top-level widget (e.g., applica¬
tionShellWidgetClass)

Specifies the display for the default screen and for the resource database
used to retrieve the shell widget resources.

Specifies the argument list to override any other resource specifications.

Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a new shell widget instance as the root of a widget
tree. The screen resource for this widget is determined by first scanning args for the
XtNscreen argument. If no XtNscreen argument is found, the resource database associated
with the default screen of the specified display is queried for the resource name.screen, class
Class.Screen where Class is the specified applicationjclass if widgetjelass is applica¬
tionShellWidgetClass or a subclass thereof. If widget jelass is not applicationShellWidget¬
Class or a subclass, Class is the class_name field from the CoreClassPart of the specified
widgetjelass. If this query fails, the default screen of the specified display is used. Once the
screen is determined, the resource database associated with that screen is used to retrieve all
remaining resources for the shell widget not specified in args. The widget name and Class as
determined above are used as the leftmost (i.e., root) components in all fully qualified resource
names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the name and Class as determined
above will be stored into the WM_CLASS property on the widget’s window when it becomes
realized. If the specified widgetjelass is applicationShellWidgetClass or a subclass thereof
the WMCOMMAND property will also be set from the values of the XtNargv and XtNargc

38

X Toolkit Intrinsics XI1 Release 5

resources.

To create multiple top-level shells within a single (logical) application, you can use one of two
methods:

• Designate one shell as the real top-level shell and create the others as pop-up children of
it by using XtCreatePopupShell.

• Have all shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what is the main window,
leads to resource specifications like the following:

xmail.geometry:... (the main window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource specifications
like the following:

xmail.headers.geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

To create a top-level widget that is the root of a widget tree using varargs lists, use
XtVaAppCreateShell.

Widget XtVaAppCreateShell(na/?ie, application_class, widgct_class, display, ...)
String name'.
String application_class\
WidgetClass widget_class\
Display *display;

name Specifies the instance name of the shell widget. If name is NULL, the applica¬
tion name passed to XtDisplayInitialize is used.

application_classSpecifies the resource class string to be used in place of the widget
classjiame string when widget_class is applicationShellWidgetCIass or a
subclass thereof.

widget_class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

Specifies the variable argument list to override any other resource
specifications.

The XtVaAppCreateShell procedure is identical in function to XtAppCreateShell with the
args and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

2.5.4. Convenience Procedure to Initialize an Application

To initialize the Intrinsics internals, create an appltion context, open and initialize a display,
and create the initial application shell instance, ar. lication may use XtAppInitialize or
XtVaAppInitialize.

39

X Toolkit Intrinsics XI1 Release 5

Widget XlApplmiializG(appj:ontext_return, applieation_class, options, num_options,
arge jn_out, argv jn_out, fallback_resources, args, numjargs)

XtAppContext *app_context_return:
String application _class\
XrmOptionDescList options'.
Cardinal num_options\
int *argc_in_out\
String *argv_in_ouf.
String *fallback_resources',
ArgList args'.
Cardinal num_args\

app_context_return

application_class

options

num_options

argc_in_out

argv_in_out

fallbackResources

args

num_args

Returns the application context, if non-NULL.

Specifies the class name of the application.

Specifies the command line options table.

Specifies the number of entries in options.

Specifies a pointer to the number of command line arguments.

Specifies a pointer to the command line arguments.

Specifies resource values to be used if the application class resource
file cannot be opened or read, or NULL.

Specifies the argument list to override any other resource specifications
for the created shell widget.

Specifies the number of entries in the argument list.

The XtAppInitialize function calls XtToolkitlnitiulize followed by XtCreateApplication-
Context, then calls XtOpenDisplay with display_string NULL and application_name NULL,
and finally calls XtAppCreateShell with applicationjiame NULL, widget_class application-
ShellWidgetClass, and the specified args and num_args and returns the created shell. The
modified arge and argv returned by XtDisplaylnitialize are returned in argc_in_out and
argv_in_out. If app_context_return is not NULL, the created application context is also
returned. If the display specified by the command line cannot be opened, an error message is
issued and XtAppInitialize terminates the application. Iffallback_resources is non-NULL,
XtAppSetFallbackResources is called with the value prior to calling XtOpenDisplay.

Widget XlVaApp\mtial\ze(app_context_return, application_class, options, num_options,
argc_in_out, argv_in_out, fallback_resources, ...)

XtAppContext *app_context_return\
String application_class\
XrmOptionDescList options'.
Cardinal num_options',
int *argc_in_our.
String *argv_in_ouf.
String *fallback_resources\

app_context_return

applicationjdass

options

num_options

argc_in_out

argv_in_out

Returns the application context, if non-NULL.

Specifies the class name of the application.

Specifies the command line options table.

Specifies the number of entries in options.

Specifies a pointer to the number of command line arguments.

Specifies the command line arguments array.

40

X Toolkit Intrinsics XI1 Release 5

fallbackjesources Specifies resource values to be used if the application class resource
file cannot be opened, or NULL.

Specifies the variable argument list to override any other resource
specifications for the created shell.

The XtVaAppInitialize procedure is identical in function to XtAppInitialize with the args
and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

2.5.5. Widget Instance Initialization: the initialize Procedure

The initialize procedure pointer in a widget class is of type XtlnitProc.

typedef void (*XtInitProc)(Widget, Widget, ArgList, Cardinal*);
Widget request;
Widget new,
ArgList args\
Cardinal *num_args\

request Specifies a copy of the widget with resource values as requested by the argu¬
ment list, the resource database, and the widget defaults.

new Specifies the widget with the new values, both resource and nonresource, that
are actually allowed.

args Specifies the argument list passed by the client, for computing derived resource
values. If the client created the widget using a varargs form, any resources
specified via XtVaTypedArg are converted to the widget representation and
the list is transformed into the ArgList format.

num_args Specifies the number of entries in the argument list.

An initialization procedure performs the following:

® Allocates space for and copies any resources referenced by address that the client is
allowed to free or modify after the widget has been created. For example, if a widget
has a field that is a String, it may choose not to depend on the characters at that address
remaining constant but dynamically allocate space for the string and copy it to the new
space. Widgets that do not copy one or more resources referenced by address should
clearly so state in their user documentation.

Note

It is not necessary to allocate space for or to copy callback lists.

• Computes values for unspecified resource fields. For example, if width and height are
zero, the widget should compute an appropriate width and height based on its other
resources.

Note

A widget may only directly assign its own width and height within the ini¬
tialize, initialize_hook, set_valucs and sct_values_hook procedures; see
Chapter 6.

• Computes values for uninitialized nonresource fields that are derived from resource
fields. For example, graphics contexts (GCs) that the widget uses are derived from
resources like background, foreground, and font.

An initialization procedure also can check certain fields for internal consistency. For example,
it makes no sense to specify a colormap for a depth that does not support that colormap.

41

X Toolkit Intrinsics XI1 Release 5

Initialization procedures are called in supcrclass-to-subclass order after all fields specified in the
resource lists have been initialized. The initialize procedure does not need to examine args
and num_args if all public resources are declared in the resource list Most of the initialization
code for a specific widget class deals with fields defined in that class and not with fields
defined in its superclasses.

If a subclass does not need an initialization procedure because it does not need to perform any
of the above operations, it can specify NULL for the initialize field in the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular,
size calculations of a superclass are often incorrect for a subclass, and in this case, the subclass
must modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width
and height calculated by the superclass initialize procedure are too small and need to be incre¬
mented by the size of the surround. The subclass needs to know if its superclass’s size was
calculated by the superclass or was specified explicitly. All widgets must place themselves
into whatever size is explicitly given, but they should compute a reasonable size if no size is
requested.

The request and new arguments provide the necessary information for a subclass to determine
the difference between an explicitly specified field and a field computed by a superclass. The
request widget is a copy of the widget as initialized by the arglist and resource database. The
new widget starts with the values in the request, but it has been updated by all superclass ini¬
tialization procedures called so far. A subclass initialize procedure can compare these two to
resolve any potential conflicts.

In the above example, the subclass with the visual surround can see if the width and height in
the request widget are zero. If so, it adds its surround size to the width and height fields in the
new widget. If not, it must make do with the size originally specified.

The new widget will become the actual widget instance record. Therefore, the initialization
procedure should do all its work on the new widget; the request widget should never be
modified. If the initialize procedure needs to call any routines that operate on a widget, it
should specify new as the widget instance.

2.5.6. Constraint Instance Initialization: the ConstraintClassPart initialize Procedure

The constraint initialization procedure pointer, found in the ConstraintClassPart initialize
field of the widget class record, is of type XtlnitProc. The values passed to the parent con¬
straint initialization procedures are the same as those passed to the child’s class widget initiali¬
zation procedures.

The constraints field of the request widget points to a copy of the constraints record as initial¬
ized by the arglist and resource database.

The constraint initialization procedure should compute any constraint fields derived from con¬
straint resources. It can make further changes to the new widget to make the widget and any
other constraint fields conform to the specified constraints, for example, changing the widget’s
size or position.

If a constraint class does not need a constraint initialization procedure, it can specify NULL for
the initialize field of the ConstraintClassPart in the class record.

2.5.7. Nonwidget Data Initialization: the initialize hook Procedure

42

X Toolkit Intrinsics XI1 Release 5

Note

The initialize_hook procedure is obsolete, as the same information is now available
to the initialize procedure. The procedure has been retained for those widgets that
used it in previous releases.

The initialize_hook procedure pointer is of type XtArgsProc:

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widget w;
ArgList args\
Cardinal *num_args\

Specifies the widget.

Specifies the argument list passed by the client. If the client created the widget
using a varargs form, any resources specified via XtVaTypedArg are con¬
verted to the widget representation and the list is transformed into the ArgList
format.

num_args Specifies the number of entries in the argument list.

If this procedure is not NULL, it is called immediately after the corresponding initialize pro¬
cedure or in its place if the initialize field is NULL.

The initialize_hook procedure allows a widget instance to initialize nonresource data using
information from the specified argument list as if it were a resource.

w

args

2.6. Realizing Widgets

To realize a widget instance, use XtRealizeWidget.

void XtRealizeWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realized, XtRealizeWidget simply returns. Otherwise it performs the
following:

• Binds all action names in the widget’s translation table to procedures (see Section
10.1.2).

• Makes a postorder traversal of the widget tree rooted at the specified widget and calls
each non-NULL changejnanaged procedure of all composite widgets that have one or
more managed children.

• Constructs an XSetWindowAttributes structure filled in with information derived from
the Core widget fields and calls the realize procedure for the widget, which adds any
widget-specific attributes and creates the X window.

• If the widget is not a subclass of compositeWidgetClass, XtRealizeWidget returns;
otherwise it continues and performs the following:

Descends recursively to each of the widget’s managed children and calls the real¬
ize procedures. Primitive widgets that instantiate children are responsible for real¬
izing those children themselves.

Maps all of the managed children windows that have mapped_when_managed
True. If a widget is managed but mapped_when_managed is False, the widget is
allocated visual space but is not displayed.

If the widget is a top-level shell widget (that is, it has no parent), and mapped_when_managed
is True, XtRealizeWidget maps the widget window.

43

X Toolkit Intrinsics XI1 Release 5

XtCreateWidget, XtVaCreateWidget, XtRealizeWidget, XtManageChildren,
XtUnmanageChildren, XtUnrealizeWidget, XtSetMappedWhenManaged, and XtDestroy-
Widget maintain the following invariants:

• If a composite widget is realized, then all its managed children are realized.

• If a composite widget is realized, then all its managed children that have
mappedjvhenjnanaged True arc mapped.

All Intrinsics functions and all widget routines should accept either realized or unrealized wid¬
gets. When calling the realize or change_managed procedures for children of a composite wid¬
get, XtRealizeWidget calls the procedures in reverse order of appearance in the Composite-
Part children list. By default, this ordering of the realize procedures will result in the stacking
order of any newly created subwindows being top-to-bottom in the order of appearance on the
list, and the most recently created child will be at the bottom.

To check whether or not a widget has been realized, use XtlsRealized.

Boolean XtlsRealized(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtlsRealized function returns True if the widget has been realized, that is, if the widget
has a nonzero window ID. If the specified object is not a widget, the state of the nearest wid¬
get ancestor is returned.

Some widget procedures (for example, set_valucs) might wish to operate differently after the
widget has been realized.

2.6.1. Widget Instance Window Creation: the realize Procedure

The realize procedure pointer in a widget class is of type XtRealizeProc.

typedef void (*XtRealizeProc)(Widget, XtValucMask*, XSetWindowAttributes*);
Widget w;
XtValueMask *value jnask:
XSetWindowAttributes * attributes',

w Specifies the widget.

valuejnask Specifies which fields in the attributes structure are used.

attributes Specifies the window attributes to use in the XCreateWindow call.

The realize procedure must create the widget’s window.

Before calling the class realize procedure, the generic XtRealizeWidget function fills in a
mask and a corresponding XSetWindowAttributes structure. It sets the following fields in
attributes and corresponding bits in value jnask based on information in the widget core struc¬
ture:

• The background_pixmap (or backgroundj?ixel if background_pixmap is
XtUnspecifiedPixmap) is filled in from the corresponding field.

• The borderjjixmap (or borderjyixel if border_pixmap is XtUnspecifiedPixmap) is
filled in from the corresponding field.

® The colormap is filled in from the corresponding field.

• The event jnask is filled in based on the event handlers registered, the event translations
specified, whether the expose field is non-NULL, and whether visible jnterest is True.

• The bit_gravity is set to NorthWestCravity if the expose field is NULL.

These or any other fields in attributes and the corresponding bits in value jnask can be set by
the realize procedure.

44

X Toolkit Intrinsics XII Release 5

Note that because realize is not a chained operation, the widget class realize procedure must
update the XSet Window Attributes structure with all the appropriate fields from non-Core
superclasses.

A widget class can inherit its realize procedure from its superclass during class initialization.
The realize procedure defined for coreWidgetClass calls XtCreateWindow with the passed
valuejnask and attributes and with window_class and visual set to CopyFromParent. Both
compositeWidgetClass and constraintWidgetCIass inherit this realize procedure, and most
new widget subclasses can do the same (see Section 1.6.10).

The most common noninherited realize procedures set bit_gravity in the mask and attributes to
the appropriate value and then create the window. For example, depending on its justification,
Label might set bitjgravity to WestGravity, CenterGravity, or EastGravity. Consequently,
shrinking it would just move the bits appropriately, and no exposure event is needed for
repainting.

If a composite widget’s children should be realized in an order other than that specified (to
control the stacking order, for example), it should call XtRealizeWidget on its children itself
in the appropriate order from within its own realize procedure.

Widgets that have children and whose class is not a subclass of compositeWidgetClass are
responsible for calling XtRealizeWidget on their children, usually from within the realize pro¬
cedure.

2.6.2. Window Creation Convenience Routine

Rather than call the Xlib XCreateWindow function explicitly, a realize procedure should nor¬
mally call the Intrinsics analog XtCreateWindow, which simplifies the creation of windows
for widgets.

void XtCreateWindow(w, window_class, visual, value jnask, attributes)
Widget w;
unsigned int window_class\
Visual *visual\
XtValueMask value jnask',
XSetWindowAttributes * attributes'.

w

window jolass

visual

value jnask

attributes

Specifies the widget that defines the additional window attributed. Must be of
class Core or any subclass thereof.

Specifies the Xlib window class (for example, InputOutput, InputOnlv, or
CopyFromParent).

Specifies the visual type (usually CopyFromParent).

Specifies which fields in the attributes structure are used.

Specifies the window attributes to use in the XCreateWindow call.

The XtCreateWindow function calls the Xlib XCreateWindow function with values from the
widget structure and the passed parameters. Then, it assigns the created window to the
widget’s window field.

XtCreateWindow evaluates the following fields of the widget core structure: depth, screen,
parent->core.window, x, y, width, height, and border_width.

2.7. Obtaining Window Information from a Widget

The Core widget class definition contains the screen and window ids. The window field may
be NULL for a while (see Sections 2.5 and 2.6).

The display pointer, the parent widget, screen pointer, and window of a widget are available to
the widget writer by means of macros and to the application writer by means of functions.

45

X Toolkit Intrinsics XI1 Release 5

Display *XtDi splay(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtDisplay returns the display pointer for the specified widget.

Widget XtParent(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

XtParent returns the parent object for the specified widget. The returned object will be of
class Object or a subclass.

Screen *XtScreen(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtScreen returns the screen pointer for the specified widget.

Window XtWindow(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

XtWindow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest widget ancestor
of a nonwidget object are available by means of XtDisplayOfObject, XtScreenOfObject, and
XtWindowOfObject.

Display *XtDisplayOfObject(o6/ecr)
Widget object;

object Specifies the object. Must be of class Object or any subclass thereof.

XtDisplayOfObject is identical in function to XtDisplay if the object is a widget; otherwise
XtDisplayOfObject returns the display pointer for the nearest ancestor of object that is of
class Widget or a subclass thereof.

Screen *XtScreenOfObject(0fc/'ecr)
Widget object.;

object Specifies the object. Must be of class Object or any subclass thereof.

XtScreenOfObject is identical in function to XtScreen if the object is a widget; otherwise
XtScreenOfObject returns the screen pointer for the nearest ancestor of object that is of class
Widget or a subclass thereof.

Window XtWindowOfObject(ofyecr)
Widget object;

object Specifies the object. Must be of class Object or any subclass thereof.

XtWindowOfObject is identical in function to XtWindow if the object is a widget; otherwise
XtWindowOfObject returns the window for the nearest ancestor of object that is of class
Widget or a subclass thereof.

46

X Toolkit Intrinsics XI1 Release 5

To retrieve the instance name of an object, use XtName.

String XtName(o6/ecr)
Widget objecr,

object Specifies the object whose name is desired. Must be of class Object or any
subclass thereof.

XtName returns a pointer to the instance name of the specified object. The storage is owned
by the Intrinsics and must not be modified. The name is not qualified by the names of any of
the object’s ancestors.

Several window attributes are locally cached in the widget instance. Thus, they can be set by
the resource manager and XtSetValues as well as used by routines that derive structures from
these values (for example, depth for deriving pixmaps, background_pixel for deriving GCs, and
so on) or in the XtCreateWindow call.

The x, y, width, height, and border_width window attributes are available to geometry
managers. These fields are maintained synchronously inside the Intrinsics. When an
XConfigureWindow is issued by the Intrinsics on the widget’s window (on request of its
parent), these values are updated immediately rather than some time later when the server gen¬
erates a ConfigureNotify event. (In fact, most widgets do not select SubstructureNotify
events.) This ensures that all geometry calculations arc based on the internally consistent
toolkit world rather than on either an inconsistent world updated by asynchronous
ConfigureNotify events or a consistent but slow world in which geometry managers ask the
server for window sizes whenever they need to lay out their managed children (see Chapter 6).

2.7.1. Unrealizing Widgets

To destroy the windows associated with a widget and its non-pop-up descendants, use XtUn-
realizeWidget.

void XtUnrealizeWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealized, XtUnrealizeWidget simply returns. Otherwise it per¬
forms the following:

• Unmanages the widget if the widget is managed.

• Makes a postorder (child-to-parent) traversal of the widget tree rooted at the specified
widget and, for each widget that has declared a callback list resource named “unrealize-
Callback”, executes the procedures on the XtNunrcaiizeCallback list.

• Destroys the widget’s window and any subwindows by calling XDestroy Window with
the specified widget’s window field.

Any events in the queue or which arrive following a call to XtUnrealizeWidget will be
dispatched as if the window(s) of the unrealized widgct(s) had never existed.

2.8. Destroying Widgets

The Intrinsics provide support

® To destroy all the pop-up children of the widget being destroyed and destroy all children
of composite widgets.

• To remove (and unmap) the widget from its parent.

• To call the callback procedures that have been registered to trigger when the widget is
destroyed.

47

X Toolkit Intrinsics XI1 Release 5

• To minimize the number of things a widget has to deallocate when destroyed.

• To minimize the number of XDestroyWindow calls when destroying a widget tree.

To destroy a widget instance, use XtDestroyWidget.

void XtDestroyWidget(w')
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtDestroyWidget function provides the only method of destroying a widget, including
widgets that need to destroy themselves. It can be called at any time, including from an appli¬
cation callback routine of the widget being destroyed. This requires a two-phase destroy pro¬
cess in order to avoid dangling references to destroyed widgets.

In phase 1, XtDestroyWidget performs the following:

• If the being-destroyed field of the widget is True, it returns immediately.

• Recursively descends the widget tree and sets the being-destroyed field to True for the
widget and all normal and pop-up children.

• Adds the widget to a list of widgets (the destroy list) that should be destroyed when it is
safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after wl on the destroy list,
then w2 is not a descendent, either normal or pop-up, of wl.

Phase 2 occurs when all procedures that should execute as a result of the current event have
been called, including all procedures registered with the event and translation managers, that is,
when the current invocation of XtDispatchEvent is about to return, or immediately if not in
XtDispatchEvent.

In phase 2, XtDestroyWidget performs the following on each entry in the destroy list in the
order specified:

• Calls the destroy callback procedures registered on the widget and all normal and pop-up
descendants in postorder (it calls child callbacks before parent callbacks).

• If the widget is not a pop-up child and the widget’s parent is a subclass of composite-
WidgetClass, and if the parent is not being destroyed, it calls XtUnmanageChild on
the widget and then calls the widget’s parent’s dclete_child procedure (see Section 3.3).

• If the widget is not a pop-up child and the widget’s parent is a subclass of constraint-
WidgetClass, it calls the ConstraintClassPart destroy procedure for the parent, then
for the parent’s superclass, until finally it calls the ConstraintClassPart destroy pro¬
cedure for constraintWidgetClass.

• Calls the destroy procedures for the widget and all normal and pop-up descendants in
postorder. For each such widget, it calls the CoreClassPart destroy procedure declared
in the widget class, then the destroy procedure declared in its superclass, until finally it
calls the destroy procedure declared in the Object class record.

• Calls XDestroyWindow if the specified widget is realized (that is, has an X window).
The server recursively destroys all normal descendant windows.

• Recursively descends the tree and destroys the windows for all realized pop-up descen¬
dants, deallocates all pop-up descendants, constraint records, callback lists, and if the
widget’s class is a subclass of composite WidgetClass, children.

2.8.1. Adding and Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget,
it should register a destroy callback procedure for the widget. The destroy callback procedures
use the mechanism described in Chapter 8. The destroy callback list is identified by the

48

X Toolkit Intrinsics XI1 Release 5

resource name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedure ClientDes¬
troy with client data to a widget by calling XtAddCallback.

XtAddCallback(w, XtNdestroyCallback, ClientDestroy, client_data)

Similarly, the following removes the application-supplied destroy callback procedure
ClientDestroy by calling XtRemoveCallback.

XtRemoveCallback(w, XtNdestroyCallback, ClientDestroy, client_data)

The ClientDestroy argument is of type XtCallbackProc; sec Section 8.1.

2.8.2. Dynamic Data Deallocation: the destroy Procedure

The destroy procedure pointers in the ObjectClassPart, RectObjClassPart, and Core-
ClassPart structures are of type XtWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widget w;

w Specifies the widget being destroyed.

The destroy procedures are called in subclass-to-supcrclass order. Therefore, a widget’s des¬
troy procedure only should deallocate storage that is specific to the subclass and should ignore
the storage allocated by any of its superclasses. The destroy procedure should only deallocate
resources that have been explicitly created by the subclass. Any resource that was obtained
from the resource database or passed in an argument list was not created by the widget and
therefore should not be destroyed by it. If a widget does not need to deallocate any storage,
the destroy procedure entry in its class record can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

• Calling XtFree on dynamic storage allocated with XtMalloc, XtCalloc, and so on.

• Calling XFreePixmap on pixmaps created with direct X calls.

• Calling XtReleaseGC on GCs allocated with XtGetGC.

• Calling XFreeGC on GCs allocated with direct X calls.

• Calling XtRemoveEventHandler on event handlers added to other widgets.

• Calling XtRemoveTimeOut on timers created with XtAppAddTimeOut.

• Calling XtDestroyWidget for each child if the widget has children and is not a subclass
of compositeWidgetClass.

During destroy phase 2 for each widget, the Intrinsics remove the widget from the modal cas¬
cade, unregister all event handlers, remove all key, keyboard, button, and pointer grabs and
remove all callback procedures registered on the widget. Any outstanding selection transfers
will time out.

2.8.3. Dynamic Constraint Data Deallocation: the ConstraintClassPart destroy Procedure

The constraint destroy procedure identified in the ConstraintClassPart structure is called for a
widget whose parent is a subclass of constraintWidgetClass. This constraint destroy pro¬
cedure pointer is of type XtWidgetProc. The constraint destroy procedures are called in
subclass-to-superclass order, starting at the class of the widget’s parent and ending at
constraintWidgetClass. Therefore, a parent’s constraint destroy procedure only should deal¬
locate storage that is specific to the constraint subclass and not storage allocated by any of its
superclasses.

49

X Toolkit Intrinsics XI1 Release 5

If a parent does not need to deallocate any constraint storage, the constraint destroy procedure
entry in its class record can be NULL.

2.9. Exiting from an Application

All X Toolkit applications should terminate by calling XtDestroyApplicationContext and
then exiting using the standard method for their operating system (typically, by calling exit for
POSIX-based systems). The quickest way to make the windows disappear while exiting is to
call XtUnmapWidget on each top-level shell widget. The Intrinsics have no resources
beyond those in the program image, and the X server will free its resources when its connec¬
tion to the application is broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy individual wid¬
gets or widget trees with XtDestroyWidget before calling XtDestroyApplicationContext in
order to ensure that any required widget cleanup is properly executed. The application
developer must refer to the widget documentation to learn if a widget needs to perform addi¬
tional cleanup beyond that performed automatically by the operating system. None of the wid¬
get classes defined by the Intrinsics require additional cleanup.

50

X Toolkit Intrinsics XI1 Release 5

Chapter 3

Composite Widgets and Their Children

Composite widgets (widgets whose class is a subclass of compositeWidgetCIass) can have an
arbitrary number of children. Consequently, they arc responsible for much more than primitive
widgets. Their responsibilities (either implemented directly by the widget class or indirectly by
Intrinsics functions) include

• Overall management of children from creation to destruction.

• Destruction of descendants when the composite widget is destroyed.

• Physical arrangement (geometry management) of a displayable subset of children (that is,
the managed children).

• Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedures XtCreateWidget and XtDes-
troyWidget. XtCreateWidget adds children to their parent by calling the parent’s
insert_child procedure. XtDestroyW'idget removes children from their parent by calling the
parent’s delete_child procedure and ensures that all children of a destroyed composite widget
also get destroyed.

Only a subset of the total number of children is actually managed by the geometry manager
and hence possibly visible. For example, a composite editor widget supporting multiple editing
buffers might allocate one child widget for each file buffer, but it might only display a small
number of the existing buffers. Widgets that arc in this displayable subset are called managed
widgets and enter into geometry manager calculations. The other children are called
unmanaged widgets and, by definition, are not mapped by the Intrinsics.

Children are added to and removed from their parent’s managed set by using XtManageChild,
XtManageChildren, XtUnmanageChild, and XtUnmanageChildren, which notify the
parent to recalculate the physical layout of its children by calling the parent’s changejrianaged
procedure. The XtCreateManagedWidget convenience function calls XtCreateWidget and
XtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state where they take up
physical space but do not show anything. Managed widgets are not mapped automatically if
their map_when_managed field is False. The default is True and is changed by using XtSet-
Mapped WhenManaged.

Each composite widget class declares a geometry manager, which is responsible for figuring
out where the managed children should appear within the composite widget’s window.
Geometry management techniques fall into four classes:

Fixed boxes

Homogeneous boxes

Heterogeneous boxes

Fixed boxes have a fixed number of children created by the parent.
All these children arc managed, and none ever makes geometry
manager requests.

Homogeneous boxes treat all children equally and apply the same
geometry constraints to each child. Many clients insert and delete
widgets freely.

Heterogeneous boxes have a specific location where each child is
placed. This location usually is not specified in pixels, because the
window may be resized, but is expressed rather in terms of the rela¬
tionship between a child and the parent or between the child and
other specific children. The class of heterogeneous boxes is usually a
subclass of Constraint .

51

X Toolkit Intrinsics XI1 Release 5

Shell boxes Shell boxes typically have only one child, and the child’s size is usu¬
ally exactly the size of the shell. The geometry manager must com¬
municate with the window manager, if it exists, and the box must
also accept ConfigureNotify events when the window size is
changed by the window manager.

3.1. Addition of Children to a Composite Widget: the insert child Procedure

To add a child to the parent’s list of children, Lhc XtCreateWidget function calls the parent’s
class routine insert_child. The inscrt_child procedure pointer in a composite widget is of type
XtWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widget w;

w Passes the newly created child.

Most composite widgets inherit their superclass’s operation. The insert_child routine in
CompositeWidgetClasscalls and inserts the child at the specified position in the children list,
expanding it if necessary.

Some composite widgets define their own insert_child routine so that they can order their chil¬
dren in some convenient way, create companion controller widgets for a new widget, or limit
the number or class of their child widgets. A composite widget class that wishes to allow
nonwidget children (see Chapter 12) must specify a CompositeCSassExtension extension
record as described in section 1.4.2.1 and set the accepts ^objects field in this record to True.
If the CompositeClassExlension record is not specified or the accepts_objects field is False,
the composite widget can assume that all its children are of a subclass of Core without an
explicit subclass test in the insert_child procedure.

If there is not enough room to insert a new child in the children array (that is, num_children is
equal to num_slots), the insert_child procedure must first reallocate the array and update
numjlots. The insert_child procedure then places the child at the appropriate position in the
array and increments the numjchildren field.

3.2. Insertion Order of Children: the insert position Procedure

Instances of composite widgets sometimes need to specify more about the order in which their
children are kept. For example, an application may want a set of command buttons in some
logical order grouped by function, and it may want buttons that represent file names to be kept
in alphabetical order without constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an XtNinsert-
Position resource. The insert_position procedure pointer in a composite widget instance is of
type XtOrderProc.

typedef Cardinal (*XtOrdcrProc)(Widgct);
Widget w;

w Passes the newly created widget.

Composite widgets that allow clients to order their children (usually homogeneous boxes) can
call their widget instance’s insert_position procedure from the class’s insert_child procedure to
determine where a new child should go in its children array. Thus, a client using a composite
class can apply different sorting criteria to widget instances of the class, passing in a different
insert_position procedure resource when it creates each composite widget instance.

The return value of the insert_position procedure indicates how many children should go
before the widget. Returning zero indicates that the widget should go before all other children,
and returning num_children indicates that it should go after all other children. The default

52

X Toolkit Intrinsics XI1 Release 5

insert_position function returns num_children and can be overridden by a specific composite
widget’s resource list or by the argument list provided when the composite widget is created.

33. Deletion of Children: the delete child Procedure

To remove the child from the parent’s children list, the XtDestroyWidget function eventually
causes a call to the Composite parent’s class dclctc_child procedure. The delete_child pro¬
cedure pointer is of type XtWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widget w;

w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that
create companion widgets define their own dclcte_child procedure to remove these companion
widgets.

3.4. Adding and Removing Children from the Managed Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to or the
removal of widgets from a composite widget’s managed set. These generic routines eventually
call the composite widget’s changejnanaged procedure if the procedure pointer is non-NULL.
The changejnanaged procedure pointer is of type XtWidgetProc. The widget argument
specifies the composite widget whose managed child set has been modified.

3.4.1. Managing Children

To add a list of widgets to the geometry-managed (and hence displayable) subset of their Com¬
posite parent, use XtManageChildren.

typedef Widget *WidgetList;

void XtManageChildren(c/iz7drert, num_children)
WidgetList children;
Cardinal num_children\

children Specifies a list of child widgets. Each child must be of class RectObj or any
subclass thereof.

num_children Specifies the number of children in the list.

The XtManageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent’s class is
not a subclass of compositeWidgetCIass.

• Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list, XtManageChildren ignores the child if it already is managed or is
being destroyed, and marks it if not.

• If the parent is realized and after all children have been marked, it makes some of the
newly managed children viewable:

Calls the changejnanaged routine of the widgets’ parent.

Calls XtRealizeWidget on each previously unmanaged child that is unrealized.

- Maps each previously unmanaged child that has map_when_managed True.

Managing children is independent of the ordering of children and independent of creating and
deleting children. The layout routine of the parent should consider children whose managed
field is True and should ignore all other children. Note that some composite widgets,

53

X Toolkit Intrinsics XI1 Release 5

especially fixed boxes, call XtManageChild from their inscrt_child procedure.

If the parent widget is realized, its changejnanaged procedure is called to notify it that its set
of managed children has changed. The parent can reposition and resize any of its children. It
moves each child as needed by calling XtMoveWidget, which first updates the x and y fields
and which then calls XMoveWindow.

If the composite widget wishes to change the size or border width of any of its children, it
calls XtResizeWidget, which first updates the width, height, and borderjvidth fields and then
calls XConfigureWindow. Simultaneous repositioning and resizing may be done with
XtConfigureWidget; see Section 6.6.

To add a single child to its parent widget’s set of managed children, use XtManageChild.

void XtManageChild(c/ti/(i)
Widget child',

child Specifies the child. Must be of class RectObj or any subclass thereof.

The XtManageChild function constructs a WidgetList of length 1 and calls XtManageChil-
dren.

To create and manage a child widget in a single procedure, use XtCreateManagedWidget or
XtVaCreateManagedWidget.

Widget XtCreateManagedWidget(Aiame, widget_class, parent, args, numjargs)
String name',
WidgetClass widget_class',
Widget parenr,
ArgList args'.
Cardinal num_args:

name Specifies the resource instance name for the created widget.

widget jlass Specifies the widget class pointer for the created widget. Must be rec-
tObjClass or any subclass thereof.

parent Specifies the parent widget. Must be of class Composite or any subclass
thereof.

args Specifies the argument list to override any other resource specifications.

numjargs Specifies the number of entries in the argument list.

The XtCreateManagedWidget function is a convenience routine that calls XtCreateWidget
and XtManageChild.

Widget XtVaCreateManagedWidget(/iame, widget jlass, parent, ...)
String name',
WidgetClass widget jlass:
Widget parenr,

name Specifies the resource instance name for the created widget.

widget jlass Specifies the widget class pointer for the created widget. Must be rec-
tObj Class or any subclass thereof.

parent Specifies the parent widget. Must be of class Composite or any subclass
thereof.

Specifies the variable argument list to override any other resource
specifications.

54

X Toolkit Intrinsics XI1 Release 5

XtVaCreateManagedWidget is identical in function to XtCreateManagedWidget with the
args and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

3.4.2. Unmanaging Children

To remove a list of children from a parent widget’s managed list, use XtUnmanageChildren.

void XtUnmanageChildren(c/z//<ircrt, num_children)
WidgetList children;
Cardinal num_children\

children Specifies a list of child widgets. Each child must be of class RectObj or any
subclass thereof.

num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:

• Issues an error if the children do not all have the same parent or if the parent is not a
subclass of compositeWidgetCIass.

• Returns immediately if the common parent is being destroyed: otherwise, for each unique
child on the list, XtUnmanageChildren performs the following:

- Ignores the child if it already is unmanaged or is being destroyed, and marks it if
not.

If the child is realized, it makes it nonvisiblc by unmapping it.

• Calls the change_managed routine of the widgets’ parent after all children have been
marked if the parent is realized.

XtUnmanageChildren does not destroy the child widgets. Removing widgets from a parent’s
managed set is often a temporary banishment, and some time later the client may manage the
children again. To destroy widgets entirely, XtDestroyWidget should be called instead; see
Section 2.9.

To remove a single child from its parent widget’s managed set, use XtUnmanageChild.

void XtUnmanageChild(c/i/W)
Widget child;

child Specifies the child. Must be of class RectObj or any subclass thereof.

The XtUnmanageChild function constructs a widget list of length 1 and calls XtUn¬
manageChildren.

These functions are low-level routines that are used by generic composite widget building rou¬
tines. In addition, composite widgets can provide widget-specific, high-level convenience pro¬
cedures.

3.4.3. Determining If a Widget Is Managed

To determine the managed state of a given child widget, use XtlsManaged.

Boolean XtlsManaged(w)
Widget w;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtlsManaged function returns True if the specified widget is of class RectObj or any
subclass thereof and is managed, or False otherwise.

55

X Toolkit Intrinsics XI1 Release 5

3.5. Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be overridden by
setting the XtNmappedWhenManaged resource for the widget when it is created or by setting
the mapjvhenjnanaged field to False.

To change the value of a given widget’s map_when_managed field, use XtSetMappedWhen-
Managed.

void XtSetMappedWhenManagcdfw, map_when_managed)
Widget w;
Boolean map_when_managed\

w Specifies the widget. Must be of class Core or any subclass thereof.

map_when_managed
Specifies a Boolean value that indicates the new value that is stored into the
widget’s map_when_managed field.

If the widget is realized and managed and if map_whenjnanaged is True, XtSetMap-
pedWhenManaged maps the window. If the widget is realized and managed and if
map_when_managed is False, it unmaps the window. XtSetMappedWhenManaged is a
convenience function that is equivalent to (but slightly faster than) calling XtSetValues and
setting the new value for the XtNmappedWhenManaged resource then mapping the widget as
appropriate. As an alternative to using XtSetMappedWhenManaged to control mapping, a
client may set mapped_when_managed to False and use XtMapWidget and XtUn-
mapWidget explicitly.

To map a widget explicitly, use XtMapWidget.

XtMapWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

To unmap a widget explicitly, use XtUnmapWidget.

XtUnmapWidget(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

3.6. Constrained Composite Widgets

The Constraint widget class is a subclass of compositeWidgetCIass. The name is derived
from the fact that constraint widgets may manage the geometry of their children based on con¬
straints associated with each child. These constraints can be as simple as the maximum width
and height the parent will allow the child to occupy or can be as complicated as how other
children should change if this child is moved or resized. Constraint widgets let a parent define
constraints as resources that are supplied for their children. For example, if the Constraint
parent defines the maximum sizes for its children, these new size resources are retrieved for
each child as if they were resources that were defined by the child widget’s class. Accord¬
ingly, constraint resources may be included in the argument list or resource file just like any
other resource for the child.

Constraint widgets have all the responsibilities of nonnal composite widgets and, in addition,
must process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has a constraints field, which is the address of a parent-specific structure

56

X Toolkit Intrinsics XI1 Release 5

that contains constraint information about the child. If a child’s parent does not belong to a
subclass of constraintWidgetClass, then the child’s constraints field is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their super¬
class. To allow this, widget writers should define the constraint records in their private .h file
by using the same conventions as used for widget records. For example, a widget class that
needs to maintain a maximum width and height for each child might define its constraint
record as follows:

typedef struct {
Dimension max_width, max_height;

} MaxConstraintPart;

typedef struct {
MaxConstraintPart max;

} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would define its
constraint record as follows:

typedef struct {
Dimension min_width, min_height;

} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as possible
by the Intrinsics. The Constraint class record part has several entries that facilitate this. All
entries in ConstraintCIassPart are fields and procedures that are defined and implemented by
the parent, but they are called whenever actions arc performed on the parent’s children.

The XtCreateWidget function uses the constraint_size field in the parent’s class record to
allocate a constraint record when a child is created. XtCreateWidget also uses the constraint
resources to fill in resource fields in the constraint record associated with a child. It then calls
the constraint initialize procedure so that the parent can compute constraint fields that are
derived from constraint resources and can possibly move or resize the child to conform to the
given constraints.

When the XtGetValues and XtSetValues functions arc executed on a child, they use the con¬
straint resources to get the values or set the values of constraints associated with that child.
XtSetValues then calls the constraint set_valucs procedures so that the parent can recompute
derived constraint fields and move or resize the child as appropriate. If a Constraint widget
class or any of its superclasses have declared a ConstruintClassExtension record in the Con¬
straintCIassPart extension fields with a record type of NULLQUARK and the
get_valu.esJiook field in the extension record is non-NULL, XtGetValues calls the
get_values_hook procedure(s) to allow the parent to return derived constraint fields.

The XtDestroyWidget function calls the constraint destroy procedure to deallocate any
dynamic storage associated with a constraint record. The constraint record itself must not be
deallocated by the constraint destroy procedure; XtDestroyWidget does this automatically.

57

X Toolkit Intrinsics XI1 Release 5

Chapter 4

Shell Widgets

Shell widgets hold an application’s top-level widgets to allow them to communicate with the
window manager. Shells have been designed to be as nearly invisible as possible. Clients
have to create them, but they should never have to worry atx)ut their sizes.

If a shell widget is resized from the outside (typically by a window manager), the shell widget
also resizes its managed child widget automatically. Similarly, if the shell’s child widget needs
to change size, it can make a geometry request to the shell, and the shell negotiates the size
change with the outer environment. Clients should never attempt to change the size of their
shells directly.

The four types of public shells are:

OverrideShell Used for shell windows that completely bypass the window
manager (for example, pop-up menu shells).

TransientShell Used for shell windows that have the VVM TRANSIENT FOR pro¬
perty set. The effect of this property is dependent upon the window
manager being used.

TopLevelShell Used for normal top-level windows (for example, any additional
top-level widgets an application needs).

ApplicationShell Used for the single main top-level window that the window
manager identifies us an application instance and that interacts with
the session manager.

4.1. Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that
directly contains them. Widgets at the top of the hierarchy do not have parent widgets.
Instead, they must deal with the outside world. To provide for this, each top-level widget is
encapsulated in a special widget, called a shell widget.

Shell widgets, whose class is a subclass of ihc Composite class, encapsulate other widgets and
can allow a widget to avoid the geometry clipping imposed by the parent-child window rela¬
tionship. They also can provide a layer of communication with the window manager.

The seven different types of shells are

Shell

OverrideShell

WMShell

VendorShell

The base class for shell widgets; provides the fields needed for all
types of shells. Shell is a direct subclass of compositeWidgetCIass.

A subclass of Shell; used for shell windows that completely bypass the
window manager.

A subclass of Shell; contains fields needed by the common window
manager protocol .

A subclass of WMShell; contains fields used by vendor-specific win¬
dow managers.

58

X Toolkit Intrinsics Xll Release 5

TransientShel! A subclass of VendorShell; used for shell windows that desire the
WM TRANSIENT FOR property.

TopLevelSheH A subclass of VendorShell; used for normal top level windows.

ApplicationShell A subclass of TopLevelSheH; used for an application’s main top-level
window.

Note that the classes Shell, WMShell, and VendorShell are internal and should not be instan¬
tiated or subclassed. Only OverrrideShell, TransicntShcll, TopLevelSheH, and ApplicationShell
are intended for public use.

4.1.1. SheUClassPart Definitions

Only the Shell class has additional class fields, which arc all contained in the ShellClassEx
tensionRec. None of the other Shell classes have any additional class fields:

typedef struct { XtPointer extension; } SheUClassPart, OverrideSheUClassPart,
WMShellClassPart, VendorShellClassPart, TransientShcllClassPart,
TopLevelSheUClassPart, ApplicationShcllClassPart;

The fuU Shell class record definitions are

typedef struct __ShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
SheUClassPart shell_class;

} SheUClassRec;

typedef struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;
XtGeometryHandler root_geometry_managcr,

} SheUClassExtensionRec, *ShellClassExtcnsion;

See Section 1.6.12
See Section 1.6.12
See Section 1.6.12
See Section 1.6.12
See below

typedef struct _OverrideShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
SheUClassPart shell_class;
OverrideSheUClassPart override_shcll_class;

} OverrideShellClassRec;

typedef struct _WMShellQassRec {
CoreClassPart core_class;
CompositeQassPart composite_class;
SheUClassPart shell_class;
WMSheUClassPart wm_sheU_class;

} WMSheUClassRec;

59

X Toolkit Intrinsics XI1 Release 5

typedef struct _VendorShellClassRec {
CoreClassPart core_class;
CompositeGassPart composite_class;
ShellGassPart shell_class;
WMShcllClassPan wm_shdl_class;
VendorShellGassPart vendor_shell_class;

} VendorShellGassRec;

typedef struct _TransientShcllClassRec {
CoreClassPart core_class;
CompositeGassPart composite_class;
ShellGassPart shell_class;
WMShellClassPart wm_sheil_class;
VendorShellGassPart vendor_shell_class;
TransientShellClassPart transient_shell_class;

} TransientShellClassRec;

typedef struct _TopLevelShellClassRec {
CoreClassPart core_class;
CompositeGassPart composite_class;
ShellGassPart shell_class;
WMShellClassPart wm_shcll_class;
VendorShellGassPart vendor_shell_class;
TopLevelShellGassPan top_level_shcll_class;

} TopLevelShellGassRec;

typedef struct _ApplicationShellClassRec {
CoreClassPart core_class;
CompositeGassPart composite_class;
ShellGassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellGassPart vendor_shell_class;
TopLevelShellGassPan top_level_shcll_class;
ApplicationShellClassPan application_shell_class;

} ApplicationShellGassRec;

The single occurrences of the class records and pointers for creating instances of shells are

extern ShellClassRec shellGassRec;
extern OverrideShellClassRec overrideShcllClassRcc;
extern WMShellClassRec wmShellClassRec;
extern VendorShellGassRec VendorShellGassRec;
extern TransientShellGassRec transientShellClassRcc;
extern TopLevelShellGassRec topLevelShcllClassRcc;
extern ApplicationShellGassRec applicationShcllClassRcc;

extern WidgetClass shellWidgetClass;
extern WidgetClass overrideShellWidgetClass;
extern WidgetClass wmShellWidgetGass;
extern WidgetClass vendorShellWidgetGass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass topLevelShellWidgetClass;
extern WidgetClass applicationShellWidgetClass;

The following opaque types and opaque variables arc defined for generic operations on widgets
whose class is a subclass of Shell.

60

X Toolkit Intrinsics XI1 Release 5
»

Types Variables

ShellWidget ShellWidgetClass
OverrideShell Widget OverrideShell WidgetCIass
WMShellWidget wmShell Widget Class
VendorShell Widget VendorShell WidgetCIass
TransientShell Widget transientShell WidgetCIass
TopLevelShell Widget topLevelShellWidgetClass
ApplicationShell Widget
ShellWidgetClass
OverrideShell WidgetCIass
WMShellWidgetClass
VendorShell WidgetCIass
TransientShell WidgetCIass
TopLevelShellWidgetCiass
ApplicationShell WidgetCIass

applicationSheil WidgetCIass

The declarations for all Intrinsics-defined shells c cpt VcndorShcll appear in Shell.h and
ShellP.h. VendorShell has separate public and prvatc .h files which are included by Shell.h
and ShellP.h.

Shell.h uses incomplete structure definitions to ensure that the compiler catches attempts to
access private data in any of the Shell instance or class data structures.

The symbolic constant for the ShellCIassExtension version identifier is XtShellExten-
sionVersion (see Section 1.6.12).

The root_geometry_manager procedure acts as the parent geometry manager for geometry
requests made by shell widgets. When a shell widget calls cither XtMakeGeometryRequest
or XtMakeResizeRequest, the root_geomctry_managcr procedure is invoked to negotiate the
new geometry with the window manager. If the window manager permits the new geometry',
the root_geometry_manager procedure should return XtGeometryYes; if the window manager
denies the geometry request or it does not change the window geometry within some timeout
interval (eceal to wrnjimeout in the case of WMShclls), the root_geometry_manager procedure
should rett XtGeometryNo if the wir low manager makes some alternative geometry
change, the oc_geometry_manager proc 'c may either return XtGeometryNo and handle
the new geometry as a resize, or may rctu. XtGeometryAlmost in anticipation that the shell
will accept the compromise. If the compromise is not accepted, the new size must then be
handled as a resize. Subclasses of Shell that wish to provide their own
root_geometry_manager procedures are strongly encouraged to use enveloping to invoke their
superclass’s rcot_geometry_manager procedure under most situations, as the window manager
interaction may be very complex.

If no ShellClassPart extension record is declared with recordjype equal to NULLQUARK,
then XtlnheritRootGeometryManager is assumed.

4.1.2. SheliPart Definition

The various shell widgets have die following additional instance fields defined in their widget
records:

61

X Toolkit Intrinsics XI1 Release 5

typedef struct {
String geometry;

XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean springjoaded;
Boolean popped_up;
Boolean allow_shell_resize;
Boolean client_specified;
Boolean save_undcr.
Boolean override_redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;
Visual* visual;

} ShellPart;

typedef struct { int empty; } OverrideShellPart;

typedef struct {
String title;
int wm_timeout;
Boolean wait_for_wm;
Boolean transient;
struct _01dXSizeHints {

long flags;
int x, y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {

int x;
int y;

} min_aspcct, max_aspcct;
} size_hints;
XWMHints wm_hints;
int base_width, base_height, win_graviiy;
Atom title_encoding;

} WMSheUPart;

typedef struct {
int vendor_specific;

} VendorshellPart;

typedef struct {
Widget transient_for;

} TransientShellPart;

typedef struct {
String icon_name;
Boolean iconic;
Atom icon_name_encoding;

} TopLevelShellPart;

62

X Toolkit Intrinsics Xll Release 5

typedef struct {
char *class;
XrmClass xrm_class;
int argc;
char **argv;

} ApplicationShellPart;

The full shell widget instance record definitions are

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;

} ShellRec, *ShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
OverrideShellPart override;

} OverrideShellRec, *OverrideShellWidgct;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;

} WMShellRec, *WMShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor,

} VendorShellRec, *VendorShell\Vidgeu

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor
TransientShellPart transient;

} TransientShellRec, *TransientShcllWidgct;

typedef struct (
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

63

X Toolkit Intrinsics XI1 Release 5

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor,
TopLevelShellPart topLevel;
ApplicationShellPart application;

} ApplicationShellRec, *ApplicationShcllWidget;

4.1.3. Shell Resources

The resource names, classes, and representation types specified in the shellClassRec resource
list are

Name Class Representation

XtNallowShellResize XtCAllowShcllRcsize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRcdircct XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUndcr XtRBoolean
XtNvisual XtCVisual XtR Visual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specified in the wmShellClassRec
resource list are

Name Class Representation

XtNbaseHeight XtCBascHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRInt
XtNheightlnc XlCHcightlnc XtRInt
XtNiconMask XtCIconMask XtRBitmap
XtNiconPixmap XtCIconPixmap XtRBitmap
XtNiconWindow XtCIconWindow XtRWindow
XtNiconX XtCIconX XtRInt
XtNiconY XtCIconY XtRInt
XtNinitialState XtCInitialState XtRInitialState
XtNinput XtCInput XtRBool
XtNmaxAspectX XtCMaxAspcctX XtRInt
XtNmaxAspectY XtCMaxAspcctY XtRInt
XtNmaxHeight XtCMaxHeight XtRInt
XtNmaxWidth XtCMaxWidth XtRInt
XtNminAspectX XtCMinAspcctX XtRInt
XtNminAspectY XtCMinAspcctY XtRInt
XtNminHeight XtCMinHeight XtRInt
XtNminWidth XtCMinWidth XtRInt
XtNtitle XtCTitle XtRString
XtNtitleEncoding XtCTitleEncoding XtRAtom

64

X Toolkit Intrinsics XI1 Release 5

XtNtransient
XtNwaitForWm
XtNwidthlnc
XtNwinGravity
XtNwindowGroup
XtNwmTimeout

XtCTransicnt XtRBoolean
XtCWaitForWm XtRBoolean
XtCWidthlnc XtRInt
XtCWinGravity XtRInt
XtCWindowGroup XtRWindow
XtCWmTimcout XtRInt

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that arc specified in the transient*
ShellClassRec resource list are

Name Class Representation

XtNtransientFor XtCTransientFor XtRWidget

The resource names, classes, and representation types that are specified in the
topLevelShellClassRec resource list are

Name Class Representation

XiNiconName
XtNiconNameEncoding
XtNiconic

XtCIconName XtRString
XtCIconNameEncoding XtRAtom
XtCIconic XtRBoolean

The resource names, classes, and representation types that are specified in the application
ShellClassRec resource list are

Name Class Representation

XtNargc
XtNargv

XtCArgc XtRInt
XtCArgv XtRStringArray

4.1.4. ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the Shell
resource lists and the Shell initialize procedures) are

Field Default Value

geometry
create_popup child_proc
grab_kind
spring_loaded
popped_up
allow_shell_resize
client_specified
save_under

NULL
NULL
(none)
(none)
False
False
(internal)
True for OvcrrideShcll and TransientShell,
False otherwise

override_redirect
popup_callback

True for OvcrrideShcll, False otherwise
NULL

65

X Toolkit Intrinsics XI1 Release 5

popdown_callback NULL
visual CopyFromParent

The geometry field specifies the size and position and is usually given only on a command line
or in a defaults file. If the geometry field is non-NULL when a widget of class WMShell is
realized, the geometry specification is parsed using XWMGeometry with a default geometry
string constructed from the values of x, y, width, height, widthjnc, and height_inc and the size
and position flags in the window manager size hints are set. If the geometry specifies an x or
y position, then USPosition is set. If the geometry specifies a width or height, then USSize is
set. Any fields in the geometry specification override the corresponding values in the Core x,
y, width, and height fields. If geometry is NULL or contains only a partial specification, then
the Core x, y, width, and height fields are used and PPosition and PSize are set as appropri¬
ate. The geometry string is not copied by any of the Intrinsics Shell classes; a client specify¬
ing the string in an arglist or varargs list must ensure that the value remains valid until the
shell widget is realized. For further information on the geometry string, see Section 10.3 in
Xlih - C Language X Interface.

The createjpopup _childjproc procedure is called by the XtPopup procedure and may remain
NULL. The grabjdnd, springJoaded, and popped_up fields maintain widget state information
as described under XtPopup, XtMenuPopup, XtPopdown, and XtMenuPopdown. The
allow jhelljesize field controls whether the widget contained by the shell is allowed to try to
resize itself. If allow_shell_resize is False, any geometry requests made by the child will
always return XtGeometryNo without interacting with the window manager. Setting
savejinder True instructs the server to attempt to save the contents of windows obscured by
the shell when it is mapped and to restore those contents automatically when the shell is
unmapped. It is useful for pop-up menus. Setting override jedirect True determines whether
the window manager can intercede when the shell window is mapped. The pop-up and pop-
down callbacks are called during XtPopup and XtPopdown. For further information on
override_redirect, see Section 3.2 in Xlib - C Language X Interface and Sections 4.1.10 and
4.2.2 in the Inter-Client Communication Conventions Manual.

The default values for Shell fields in WMShell and its subclasses are

Field Default Value

title Icon name, if specified, otherwise the application’s name.
wm timeout Five seconds, in units of milliseconds.
wait for wm True
transient True for TransientShell, False otherwise
min width XtUnspecifiedShelllnt
min height XtUnspecifiedShelllnt
max width XtUnspecifiedShelllnt
max_height XtUnspecifiedShelllnt
width inc XtUnspecifiedShelllnt
height inc XtUnspecifiedShelllnt
min aspect x XtUnspecifiedShelllnt
min aspect y XtUnspecifiedShelllnt
max aspect x XtUnspecifiedShelllnt
max aspect y XtUnspecifiedShelllnt
input False
initial state Normal
icon_pixmap None
icon window None
icon x XtUnspecifiedShelllnt
icon_y XtUnspecifiedShelllnt

66

X Toolkit Intrinsics XI1 Release 5

iconjnask
windowjgroup
base_width
base_height
win^gravity
title_encoding

None
XtUnspecifiedWindow

XtUnspecifiedShelllnt
XtUnspecifiedShelllnt
XtUnspecifiedShelllnt
See text

The title and title_en.cod.ing fields are stored in the WM NAME property on the shell’s win¬
dow by the WMShell realize procedure. If the title_encoding field is None, the title string is
assumed to be in the encoding of the current locale and the encoding of the WM NAME pro¬
perty is set to XStdICCTextStyle. If a language procedure has not been set the default value
of title^encoding is XA_STRING, otherwise the default value is None. The wmjimeout field
specifies, in milliseconds, the amount of time a shell is to wait for confirmation of a geometry
request to the window manager. If none comes back within that time, the shell assumes the
window manager is not functioning properly and sets wait_for_wm to False (later events may
reset this value). When waitJorjwm is False, the shell does not wait for a response but relies
on asynchronous notification. If transient is True, the WM_TRANSIENT_FOR property will
be stored on the shell window with a value as specified below. The interpretation of this pro¬
perty is specific to the window manager under which the application is run; see the Inter-Client
Communication Conventions Manual for more details. All other resources specify fields in the
window manager hints and the window manager size hints. The realize and sct_values pro¬
cedures of WMShell set the corresponding llag bits in the hints if any of the fields contain
non-default values. In addition, if a flag bit is set that refers to a field with the value
XtUnspecifiedShelllnt, the value of the field is modified as follows:

Field Replacement

base width, base height 0
width inc, height inc 1
max width, max height 32767
min width, min height 1
min_aspect_x, min aspect y -1
max aspect x, max aspect y -1
icon x, icon y -1
win gravity value returned by XWMGeometry if called,

else NorthWestGravity

If the shell widget has a non-NULL parent, then the realize and set_values procedures replace
the value XtUnspecifiedWindow in the window_group field with the window id of the root
widget of the widget tree if the root widget is realized. The symbolic constant
XtUnspecifiedWindowGroup may be used to indicate that the windowjgroup hint flag bit is
not to be set. If transient is True and the shell’s class is not a subclass of TransientShell and
window_group is not XtUnspecifiedWindowGroup the WMShell realize and set_values pro¬
cedures then store the WMTRANSIENTFOR property with the value of window_group.

Transient shells have the following additional resource:

Field Default Value

transient for NULL

67

X Toolkit Intrinsics XI1 Release 5

The realize and set_values procedures of TransicntShell store the WM_TRANSIENT_FOR pro¬
perty on the shell window if transient is True. If transientJor is non-NULL and the widget
specified by transientJor is realized, then its window is used as the value of the
WM_TRANSIENT_FOR property; otherwise, the value of window_group is used.

TopLevel shells have the the following additional resources:

Field Default Value

icon name Shell widget’s name
iconic False
icon name encoding See text

The iconjiame and icon_name_encoding fields arc stored in the WM_ICON_NAME property
on the shell’s window by the TopLevelShell realize procedure. If the iconjiame _encoding
field is None, the iconjiame string is assumed to be in the encoding of the current locale and
the encoding of the WM_ICON_NAME property is set to XStdICCTextStyle. If a language
procedure has not been set the default value of icon_name_encoding is XA_STRING, otherwise
the default value is None. The iconic field may be used by a client to request that the window
manager iconify or deiconify the shell; the TopLevelShell set_values procedure will send the
appropriate WM_CHANGE_STATE message (as specified by the Inter-Client Communication
Conventions Manual) if this resource is changed from False to True, and will call XtPopup
specifying grabjind as XtGrabNone if iconic is changed from True to False. The XiNi-
conic resource is also an alternative way to set the XtNinitialState resource to indicate that a
shell should be initially displayed as an icon; the TopLevelShell initialize procedure will set
initialjtate to IconicState if iconic is True.

Application shells have the following additional resources:

Field Default Value

arge
argv

0
NULL

The arge and argv fields are used to initialize the standard property WM_COMMAND. See
the Inter-Client Communication Conventions Manual for more informatioa

68

X Toolkit Intrinsics XI1 Release 5

Chapter 5

Pop-Up Widgets

Pop-up widgets are used to create windows outside of the window hierarchy defined by the
widget tree. Each pop-up child has a window that is a descendant of the root window, so that
the pop-up window is not clipped by the pop-up widget’s parent window. Therefore, pop-ups
are created and attached differently to their widget parent than normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it usually
does not operate upon them in any way. The popup Jist field in the CorePart structure con¬
tains the list of its pop-up children. This pop-up list exists mainly to provide the proper place
in the widget hierarchy for the pop-up to get resources and to provide a place for XtDes-
troyWidget to look for all extant children.

A composite widget can have both normal and pop-up children. A pop-up can be popped up
from almost anywhere, not just by its parent. The term child always refers to a normal,
geometry-managed widget on the composite widget’s list of children, and the term pop-up
child always refers to a widget on the pop-up list.

5.1. Pop-Up Widget Types

There are three kinds of pop-up widgets:

• Modeless pop-ups

A modeless pop-up (for example, a dialog box that does not prevent continued interac¬
tion with the rest of the application) can usually be manipulated by the window manager
and looks like any other application window from the user’s point of view. The applica¬
tion main window itself is a special case of a modeless pop-up.

• Modal pop-ups

A modal pop-up (for example, a dialog box that requires user input to continue) can
sometimes be manipulated by the window manager, and except for events that occur in
the dialog box, it disables user-event distribution to the rest of the application.

• Spring-loaded pop-ups

A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the win¬
dow manager, and except for events that occur in the pop-up or its descendants, it dis¬
ables user-event distribution to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded as if they were
the same. In fact, the same widget (for example, a ButtonBox or Menu widget) can be used
both as a modal pop-up and as a spring-loaded pop-up within the same application. The main
difference is that spring-loaded pop-ups are brought up with the pointer and, because of the
grab that the pointer button causes, require different processing by the Intrinsics. Further, all
user input remap events occurring outside the spring-loaded pop-up (e.g., in a descendant) are
also delivered to the spring-loaded pop-up after they have been dispatched to the appropriate
descendant, so that, for example, buttond- up can take down a spring-loaded pop-up no matter
where the button-up occurs.

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups can
constrain user events to the most recent such pop-up or allow user events to be dispatched to
any of the modal or spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicating with the
X window manager and therefore are subclasses of one of the Shell widget classes.

69

X Toolkit Intrinsics XI1 Release 5

5.2. Creating a Pop-Up Shell

For a widget to be popped up, it must be the child of a pop-up shell widget. None of the
Intrinsics-supplied shells will simultaneously manage more than one child. Both the shell and
child taken together are referred to as the pop-up. When you need to use a pop-up, you
always refer to the pop-up by the pop-up shell, not the child.

To create a pop-up shell, use XtCreatePopupShell.

Widget XtCreatePopupShell(rt(2A?i£, widget_class, parent, args, num_args)
String name\
WidgetGass widget_class'.
Widget parent.;
ArgList args\
Cardinal num_args\

name

widget_class

parent

Specifies the instance name for the created shell widget.

Specifies the widget class pointer for the created shell widget

Specifies the parent widget. Must be of class Core or any subclass thereof.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtCreatePopupShell function ensures that the specified class is a subclass of Shell and,
rather than using insert_child to attach the widget to the parent’s children list, attaches the shell
to the parent’s popupJist directly.

The screen resource for this widget is determined by first scanning args for the XtNscreen
argument. If no XtNscreen argument is found, the resource database associated with the
parent’s screen is queried for the resource name.scrccn, class Class.SctQen where Class is the
classjname field from the CoreCIassPart of the specified widget_class . If this query fails,
the parent’s screen is used. Once the screen is determined, the resource database associated
with that screen is used to retrieve all remaining resources for the widget not specified in args.

A spring-loaded pop-up invoked from a translation table via XtMenuPopup must already exist
at the time that the translation is invoked, so the translation manager can find the shell by
name. Pop-ups invoked in other ways can be created when the pop-up actually is needed.
This delayed creation of the shell is particularly useful when you pop up an unspecified
number of pop-ups. You can look to see if an appropriate unused shell (that is, not currently
popped up) exists and create a new shell if needed.

To create a pop-up shell using varargs lists, use XtVaCreatePopupShell.

Widget XtVaCreatePopupShell(/iame, widget_class, parent, ...)
String name',
WidgetClass widget_class\
Widget parent,

name Specifies the instance name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass thereof.

Specifies the variable argument list to override any other resource
specifications.

XtVaCreatePopupShell is identical in function to XtCreatePopupShell with the args and
numjargs parameters replaced by a varargs list as described in Section 2.5.1.

70

X Toolkit Intrinsics XI1 Release 5

5J. Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created either stati¬
cally or dynamically.

At startup, an application can create the child of the pop-up shell, which is appropriate for
pop-up children composed of a fixed set of widgets. The application can change the state of the
subparts of the pop-up child as the application state changes. For example, if an application
creates a static menu, it can call XtSetSensitive (or, in general, XtSetValues) on any of the
buttons that make up the menu. Creating the pop-up child early means that pop-up time is
minimized, especially if the application calls XtRealizeWidget on the pop-up shell at startup.
When the menu is needed, all the widgets that make up the menu already exist and need only
be mapped. The menu should pop up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed, which
minimizes application startup time and allows the pop-up child to reconfigure itself each time it
is popped up. In this case, the pop-up child creation routine might poll the application to find
out if it should change the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and call XtReal¬
izeWidget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either to make
last-minute changes to a pop-up child before it is popped up or to change it after it is popped
down. Note that excessive use of pop-up callbacks can make popping up occur more slowly.

5.4. Mapping a Pop-Up Widget

Pop-ups can be popped up through several mechanisms:

• A call to XtPopup or XtPopupSpringLoaded.

• One of the supplied callback procedures XtCallbackNone, XtCallbackNonexclusive, or
XtCallbackExclusive.

• The standard translation action XtMenuPopup.

Some of these routines take an argument of type XtGrabKind, which is defined as

typedef enum {XtGrabNone, XtGrabNonexclusivc, XtGrabExclusive) XtGrabKind;

The create_popup_child_proc procedure pointer in the shell widget instance record is of type
XtCreatePopupChildProc.

typedef void (*XtCreatePopupChildProc)(Widget);
Widget w;

w Specifies the shell widget being popped up.

To map a pop-up from within an application, use XtPopup.

void X\Popup(popup_shell, grab_kind)
Widget popup jheli,
XtGrabKind grab_kind\

popup_shell Specifies the shell widget.

grabjdnd Specifies the way in which user events should be constrained.

The XtPopup function performs the following:

• Calls XtCheckSubclass to ensure popupjheU's class is a subclass of

shellWidgetClass.

71

X Toolkit Intrinsics XI1 Release 5

• Raises the window and returns if the shell’s poppedjip field is already True.

• Calls the callback procedures on the shell’s popup_callback list, specifying a pointer to
the value of grabjcind as the calljlata argument.

• Sets the shell poppedjup field to True, the shell springJoaded field to False, and the
shell grabjcind field from grabjcind.

• If the shell’s createjopup jhild_proc field is non-NULL, XtPopup calls it with
popup jhell as the parameter.

• If grabjcind is either XtGrabNonexclusive or XtGrabExclusive, it calls

XtAddGrab{popup jhell, (,grabjcind == XtGrabExclusive), False)

• Calls XtRealizeWidget with popup_shell specified.

• Calls XMapRaised with the window of popup jhell.

To map a spring-loaded pop-up from within an application, use XtPopupSpringLoaded.

void X\PopupSpringLoadcd(popup jhell)
Widget popup jhell;

popup jhell Specifies the shell widget to be popped up.

The XtPopupSpringLoaded function performs exaedy as XtPopup except that it sets the
shell spring Joaded field to True and always calls XtAddGrab with exclusive True and
spring-loaded True.

To map a pop-up from a given widget’s callback list, you also can register one of the
XtCallbackNone, XtCallbackNonexclusive, or XtCallbackExclusive convenience routines
as callbacks, using the pop-up shell widget as the client data.

void XtCallbackNone(w, client_data, calljdata)
Widget w;
XtPointer clientjdata;
XtPointer calljdata;

w Specifies the widget.

clientjlata Specifies the pop-up shell.

calljdata Specifies the callback data argument, which is not used by this procedure.

void XtCallbackNonexclusivefw, client jdata, calljdata)
Widget w;
XtPointer clientjdata\
XtPointer calljdata;

w Specifies the widget.

client jdata Specifies the pop-up shell.

calljdata Specifies the callback data argument, which is not used by this procedure.

void XtCallback_Exclusive(w, client jdata, calljdata)
Widget w;
XtPointer client jdata;
XtPointer calljdata;

w Specifies the widget.

72

X Toolkit Intrinsics XI1 Release 5

client_data Specifies the pop-up shell.

call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive functions call
XtPopup with the shell specified by the client_data argument and grabjeind set as the name
specifies. XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive specify
XtGrabNone, XtGrabNonexclusive, and XtGrabExcIusive, respectively. Each function
then sets the widget that executed the callback list to be insensitive by calling XtSetSensitive.
Using these functions in callbacks is not required. In particular, an application must provide
customized code for callbacks that create pop-up shells dynamically or that must do more than
desensitizing the button.

Within a translation table, to pop up a menu when a key or pointer button is pressed or when
the pointer is moved into a widget, use XtMenuPopup, or its synonym, MenuPopup. From
a translation writer’s point of view, the definition for this translation action is

void XlMenuPopup(shell_name)
String shell_name\

shelljiame Specifies the name of the shell widget to pop up.

XtMenuPopup is known to the translation manager, which registers the corresponding built-in
action procedure XtMenuPopupAction using XtRegisterGrabAction specifying
owner_events True, event_mask ButtonPressMa.sk I ButtonReleaseMask, and pointerjnode
and keyboard jnode GrabModeAsync.

If XtMenuPopup is invoked on ButtonPress, it calls XtPopupSpringLoaded on the
specified shell widget. If XtMenuPopup is invoked on KeyPress or EnterWindow, it calls
XtPopup on the specified shell widget with grabjtind set to XtGrabNonexclusive. Other¬
wise, the translation manager generates a warning message and ignores the action.

XtMenuPopup tries to find the shell by searching the widget tree starting at the widget in
which it is invoked. If it finds a shell with the specified name in the pop-up children of that
widget, it pops up the shell with the appropriate parameters. Otherwise, it moves up the parent
chain to find a pop-up child with the specified name. If XtMenuPopup gets to the application
top-level shell widget and has not found a matching shell, it generates a warning and returns
immediately.

5.5. Unmapping a Pop-Up Widget

Pop-ups can be popped down through several mechanisms:

• A call to XtPopdown

• The supplied callback procedure XtCallbackPopdown

• The standard translation action XtMenuPopdown

To unmap a pop-up from within an application, use XtPopdown.

void XtPopdown(popup_5/ie//)
Widget popup_shell\

popup jhell Specifies the shell widget to pop down.

The XtPopdown function performs the following:

• Calls XtCheckSubcIass to ensure popup_shell's class is a subclass of
shellWidgetClass.

• Checks that the popped_up field of popup_shell is True; otherwise, it returns immedi¬
ately.

73

X Toolkit Intrinsics XI1 Release 5

• Unmaps popup_shell's window and, if override jedirect is False, sends a synthetic
UnmapNotify event as specified by the Inter-Client Communication Conventions
Manual.

• If popup_shell's grabjdnd is either XtGrabNonexclusive or XtGrabExclusive, it calls
XtRemoveGrab.

• Sets popup _shell's popped_up field to False.

• Calls the callback procedures on the shell’s popdownjallback list, specifying a pointer
to the value of the shell’s grabjdnd field as the call_data argument.

To pop down a pop-up from a callback list, you may use the callback XtCallbackPopdown.

void XtCallbackPopdown(w, client jiata, callJLata)
Widget w;
XtPointer client_data\
XtPo inter call_data\

w Specifies the widget.

client jiata Specifies a pointer to the XtPopdownID structure.

call jiata Specifies the callback data argument, which is not used by this procedure.

The XtCallbackPopdown function casts the clientjiata parameter to a pointer of type XtPop¬
downID.

typedef struct {
Widget shell_widget;
Widget enable_widget;

} XtPopdownIDRec, *XtPopdownID;

The shelljvidget is the pop-up shell to pop down, and the enable jvidget is usually the widget
that was used to pop it up in one of the pop-up callback convenience procedures.

XtCallbackPopdown calls XtPopdown with the specified shell jvidget and then calls XtSet-
Sensitive to resensitize enable jvidget.

Within a translation table, to pop down a spring-loaded menu when a key or pointer button is
released or when the pointer is moved into a widget, use XtMenuPopdown or its synonym,
MenuPopdown. From a translation writer’s point of view, the definition for this translation
action is

void XtMenuPopdown(^/tc//_/iamc)
String shelljiame\

shelljiame Specifies the name of the shell widget to pop down.

If a shell name is not given, XtMenuPopdown calls XtPopdown with the widget for which
the translation is specified. If shelljiame is specified in the translation table, XtMenuPop¬
down tries to find the shell by looking up the widget tree starting at the widget in which it is
invoked. If it finds a shell with the specified name in the pop-up children of that widget, it
pops down the shell; otherwise, it moves up the parent chain to find a pop-up child with the
specified name. If XtMenuPopdown gets to the application top-level shell widget and cannot
find a matching shell, it generates a warning and returns immediately.

74

X Toolkit Intrinsics XI1 Release 5

Chapter 6

Geometry Management

A widget does not directly control its size and location; rather, its parent is responsible for con¬
trolling them. Although the position of children is usually left up to their parent, the widgets
themselves often have the best idea of their optimal sizes and, possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its
parent, the Intrinsics provide the geometry management mechanism. Almost all composite
widgets have a geometry manager specified in the geometryjnanager field in the widget class
record that is responsible for the size, position, and stacking order of the widget’s children.
The only exception is fixed boxes, which create their children themselves and can ensure that
their children will never make a geometry request.

6.1. Initiating Geometry Changes

Parents, children, and clients each initiate geometry changes differently. Because a parent has
absolute control of its children’s geometry, it changes the geometry directly by calling
XtMoveWidget, XtResizeWidget, or XtConfigureWidget. A child must ask its parent for a
geometry change by calling XtMakeGeometryRequest or XtMakeResizeRequest. An appli¬
cation or other client code initiates a geometry change by calling XtSetValues on the
appropriate geometry fields, thereby giving the widget the opportunity to modify or reject the
client request before it gets propagated to the parent and the opportunity to respond appropri¬
ately to the parent’s reply.

When a widget that needs to change its size, position, border width, or stacking depth asks its
parent’s geometry manager to make the desired changes, the geometry manager can allow the
request, disallow the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geometry manager
may also rearrange and resize any or all of the other children that it controls. The geometry
manager can move children around freely using XtMoveWidget. When it resizes a child (that
is, changes the width, height, or border width) other than the one making the request, it should
do so by calling XtResizeWidget. The requesting child may be given special treatment; see
Section 6.5. It can simultaneously move and resize a child with a single call to
XtConfigureWidget.

Often, geometry managers find that they can satisfy a request only if they can reconfigure a
widget that they are not in control of; in particular, the composite widget may want to change
its own size. In this case, the geometry manager makes a request to its parent’s geometry
manager. Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended negotiation, win¬
dows are not actually allocated to widgets at application startup until all widgets are satisfied
with their geometry; see Sections 2.5 and 2.6.

Notes

1. The Intrinsics treatment of stacking requests is deficient in several areas. Stacking
requests for unrealized widgets are granted but will have no effect. In addition,
there is no way to do an XtSetValues that will generate a stacking geometry
request.

75

X Toolkit Intrinsics XI1 Release 5

2. After a successful geometry request (one that returned XtGeometryYes), a widget
does not know whether its resize procedure has been called. Widgets should have
resize procedures that can be called more than once without ill effects.

6.2. General Geometry Manager Requests

When making a geometry request, the child specifies an XtWidgetGeometry structure.

typedef unsigned long XtGeomctryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension borderjwidth;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

To make a general geometry manager request from a widget, use XtMakeGeometryRequest.

XtGeometryResult XtMakeGeometryRequest(w, request, reply_return)
Widget w;
XtWidgetGeometry *request,;
XtWidgetGeometry * reply_return\

w Specifies the widget making the request. Must be of class RectObj or any sub¬
class thereof.

request Specifies the desired widget geometry (size, position, border width, and stack¬
ing order).

reply_return Returns the allowed widget size, or may be NULL if the requesting widget is
not interested in handling XtGeometry Almost.

Depending on the condition, XtMakeGeometryRequest performs the following;

® If the widget is unmanaged or the widget’s parent is not realized, it makes the changes
and returns XtGeometryYes.

• If the parent’s class is not a subclass of compositeWidgetClass or the parent’s
geometryjnanager field is NULL, it issues an error.

• If the widget’s being destroyed field is True, it returns XtGeometryNo.

® If the widget x, y, width, height and, border_width fields are all equal to the requested
values, it returns XtGeometryYes; otherwise, it calls the parent’s geometryjnanager
procedure with the given parameters.

» If the parent’s geometry manager returns XtGeometryYes and if XtCWQueryOnly is
not set in request->requestjnode and if the widget is realized, XtMakeGeometry¬
Request calls the XConfigureWindow Xlib function to reconfigure the widget’s win¬
dow (set its size, location, and stacking order as appropriate).

• If the geometry manager returns XtGeometry Done, the change has been approved and
actually has been done. In this case, XtMakeGeometryRequest does no configuring
and returns XtGeometryYes. XtMakeGeometryRequest never returns
XtGeometry Done.

• Otherwise, XtMakeGeometryRequest just returns the resulting value from the parent’s
geometry manager.

76

X Toolkit Intrinsics XI1 Release 5

Children of primitive widgets are always unmanaged; therefore, XtMakeGeometryRequest
always returns XtGeometryYes when called by a child of a primitive widget.

The return codes from geometry managers are

typedef enum _XtGeometryResult {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} XtGeometryResult;

The requestjnode definitions are from <X11/X.h>.

#define cwx 0«0)
#define CWY (1«1)
#define CWWidth (1«2)
#define CWHeight (1«3)
#define CWBorderWidth (1 «4)
#define CWSibling (1«5)
#define CWStackMode (1«6)

The Intrinsics also support the following value.

#define XtCWQueryOnly (1«7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query as to
what would happen if this geometry request were made and that no widgets should actually be
changed.

XtMakeGeometryRequest, like the XConfigure Window Xlib function, uses request jnode
to determine which fields in the XtWidgetGeometry structure the caller wants to specify.

The stack mode definitions are from <X1J/X.h>:

#define Above 0
#define Below 1
#define Toplf 2
#define Bottomlf 3
#define Opposite 4

The Intrinsics also support the following value.

#define XtSMDontChange 5

For definition and behavior of Above, Below, Toplf, Bottomlf, and Opposite, see Section
3.7 in Xlib - C Language X Interface. XtSMDontChange indicates that the widget wants its
current stacking order preserved.

6.3. Resize Requests

To make a simple resize request from a widget, you can use XtMakeResizeRequest as an
alternative to XtMakeGeometryRequest.

XtGeometryResult XtMakeResizeRequestfw, width, height, width jeturn, heightjeturn)
Widget w;
Dimension width, heighr.
Dimension *width jeturn, *heightjeturn\

w Specifies the widget making the request. Must be of class RectObj or any sub¬
class thereof.

77

X Toolkit Intrinsics XI1 Release 5

width
height Specify the desired widget width and height.

width_return
heightjeturn Return the allowed widget width and height.

The XtMakeResizeRequest function, a simple interface to XtMakeGeometryRequest,
creates an XtWidgetGeometry structure and specifies that width and height should change by
setting requestjnode to CWWidth I CWHeight. The geometry manager is free to modify
any of the other window attributes (position or stacking order) to satisfy the resize request. If
the return value is XtGeometryAlmost, width_rcturn and heightjeturn contain a compromise
width and height. If these are acceptable, the widget should immediately call XtMakeResiz¬
eRequest again and request that the compromise width and height be applied. If the widget is
not interested in XtGeometryAlmost replies, it can pass NULL for width_return and
height_return.

6.4. Potential Geometry Changes

Sometimes a geometry manager cannot respond to a geometry request from a child without
first making a geometry request to the widget’s own parent (the original requestor’s
grandparent). If the request to the grandparent would allow the parent to satisfy the original
request, the geometry manager can make the intermediate geometry request as if it were the
originator. On the other hand, if the geometry manager already has determined that the origi¬
nal request cannot be completely satisfied (for example, if it always denies position changes), it
needs to tell the grandparent to respond to the intermediate request without actually changing
the geometry because it does not know if the child will accept the compromise. To accomplish
this, the geometry manager uses XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache enough information to
exactly reconstruct the intermediate request. If the grandparent’s response to the intermediate
query was XtGeometryAlmost, the geometry manager needs to cache the entire reply
geometry in the event the child accepts the parent’s compromise.

If the grandparent’s response was XtGeometryAlmost, it may also be necessary to cache the
entire reply geometry from the grandparent when XtCWQueryOnly is not used. If the
geometry manager is still able to satisfy the original request, it may immediately accept the
grandparent’s compromise and then act on the child’s request. If the grandparent’s comprom¬
ise geometry is insufficient to allow the child’s request and if the geometry manager is willing
to offer a different compromise to the child, the grandparent’s compromise should not be
accepted until the child has accepted the new compromise.

Note that a compromise geometry returned with XtGeometryAlmost is guaranteed only for
the next call to the same widget; therefore, a cache of size 1 is sufficient.

6.5. Child Geometry Management: the geometry manager Procedure

The geometry_manager procedure pointer in a composite widget class is of type
XtGeometryHandler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry
Widget w;
XtWidgetGeometry ^request.;
XtWidgetGeometry * geometryjeturn\

w Passes the widget making the request.

request Passes the new geometry the child desires.

geometry jeturn Passes a geometry structure in which the geometry manager may store a
compromise.

78

X Toolkit Intrinsics XI1 Release 5

A class can inherit its superclass’s geometry manager during class initialization.

A bit set to zero in the request’s requestjnode field means that the child widget does not care
about the value of the corresponding field, so the geometry manager can change this field as it
wishes. A bit set to 1 means that the child wants that geometry element changed to the value
in the corresponding field.

If the geometry manager can satisfy all changes requested and if XtCWQueryOnly is not
specified, it updates the widget’s x, y, width, height, and border_width fields appropriately.
Then, it returns XtGeometryYes, and the values pointed to by the geometryjeturn argument
are undefined. The widget’s window is moved and resized automatically by XtMake-
GeometryRequest.

Homogeneous composite widgets often find it convenient to treat the widget making the
request the same as any other widget, including reconfiguring it using XtConfigureWidget or
XtResizeWidget as part of its layout process, unless XtCWQueryOnly is specified. If it
does this, it should return XtGeometryDone to inform XtMakeGeometryRequest that it does
not need to do the configuration itself.

Note

To remain compatible with layout techniques used in older widgets (before
XtGeometryDone was added to the Intrinsics), a geometry manager should avoid
using XtResizeWidget or XtConfigureWidget on the child making the request
because the layout process of the child may be in an intermediate state in which it
is not prepared to handle a call to its resize procedure. A self-contained widget set
may choose this alternative geometry management scheme, however, provided that
it clearly warns widget developers of the compatibility consequences.

Although XtMakeGeometryRequest resizes the widget’s window (if the geometry manager
returns XtGeometryYes), it docs not call the widget class’s resize procedure. The requesting
widget must perform whatever resizing calculations arc needed explicitly.

If the geometry manager disallows the request, the widget cannot change its geometry. The
values pointed to by geometry return arc undefined, and the geometry manager returns
XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly but may be able to satisfy
a similar request. That is, it could satisfy only a subset of the requests (for example, size but
not position) or a lesser request (for example, it cannot make the child as big as the request but
it can make the child bigger than its current size). In such cases, the geometry manager fills in
the structure pointed to by geometry jeturn with the actual changes it is willing to make,
including an appropriate request jnode mask, and returns XtGeometryAlrnost. If a bit in
geometryjeturn->requestjnode is zero, the geometry manager agrees not to change the
corresponding value if geometry_return is used immediately in a new request. If a bit is 1, the
geometry manager does change that element to the corresponding value in geometry jeturn.
More bits may be set in geometryjeturn->requcst_modc than in the original request if the
geometry manager intends to change other fields should the child accept the compromise.

When XtGeometryAlrnost is returned, the widget must decide if the compromise suggested in
geometry jeturn is acceptable. If it is, the widget must not change its geometry directly;
rather, it must make another call to XtMakeGeometryRequest.

If the next geometry request from this child uses the geometry jeturn values filled in by the
geometry manager with an XtGeometryAlrnost return and if there have been no intervening
geometry requests on either its parent or any of its other children, the geometry manager must
grant the request, if possible. That is, if the child asks immediately with the returned
geometry, it should get an answer of XtGeometryYes. However, dynamic behavior in the
user’s window manager may affect the final outcome.

79

X Toolkit Intrinsics XI1 Release 5

To return XtGeometryYes, the geometry manager frequently rearranges the position of other
managed children by calling XtMoveWidget. However, a few geometry managers may some¬
times change the size of other managed children by calling XtResizeWidget or
XtConfigureWidget. If XtCWQueryOnly is specified, the geometry manager must return
data describing how it would react to this geometry request without actually moving or resizing
any widgets.

Geometry managers must not assume that the request and geometry jeturn arguments point to
independent storage. The caller is permitted to use the same field for both, and the geometry
manager must allocate its own temporary storage, if necessary.

6.6. Widget Placement and Sizing

To move a sibling widget of the child making the geometry request, the parent uses XtMo¬
veWidget.

void XtMoveWidget(w, x, y)
Widget w;
Position r.
Position y;

w Specifies the widget. Must be of class RectObj or any subclass thereof.

x
y Specify the new widget x and y coordinates.

The XtMoveWidget function returns immediately if the specified geometry fields are the same
as the old values. Otherwise, XtMoveWidget writes the new x and y values into the object
and, if the object is a widget and is realized, issues an Xlib XMoveWindow call on the
widget’s window.

To resize a sibling widget of the child making the geometry request, the parent uses
XtResizeWidget.

void XtResizeWidgetfw, width, height, border_width)
Widget w;
Dimension width'.
Dimension height'.
Dimension border_width\

w Specifies the widget. Must be of class RectObj or any subclass thereof.

width
height
border_width Specify the new widget size.

The XtResizeWidget function returns immediately if the specified geometry fields are the
same as the old values. Otherwise, XtResizeWidget writes the new width, height, and
border_width values into the object and, if the object is a widget and is realized, issues an
XConfigureWindow call on the widget’s window.

If the new width or height is different from the old values, XtResizeWidget calls the object’s
resize procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request, the parent
uses XtConfigureWidget.

80

X Toolkit Intrinsics XI1 Release 5

void XtConfigureWidget(w, x, y, width, height, border width)
Widget w\
Position r.
Position y;
Dimension width'.
Dimension heighr.
Dimension border_width:

w Specifies the widget. Must be of class RcctObj or apy subclass thereof.

x
y Specify the new widget x and y coordinates.

width
height
border_width Specify the new widget size.

The XtConfigureWidget function returns immediately if the specified new geometry fields are
ail equal to the current values. Otherwise, XtConfigureWidget writes the new x, y, width,
height, and border_width values into the object and, if the object is a widget and is realized,
makes an Xlib XConfigureWindow call on the widget’s window.

If the new width or height is different from its old value, XtConfigureWidget calls the
object’s resize procedure to notify it of the size change; otherwise, it simply returns.

To resize a child widget that already has the new values of its width, height, and border width,
the parent uses XtResizeWindow.

void XtResizeWindow(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

The XtResizeWindow function calls the XConfigureWindow Xlib function to make the win¬
dow of the specified widget match its width, height, and border width. This request is done
unconditionally because there is no inexpensive way to tell if these values match the current
values. Note that the widget’s resize procedure is not called.

There are very few times to use XtResizeWindow; instead, the parent should use
XtResizeWidget.

6.7. Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred geometries
of their children. They can use XtQueryGeometry to obtain the preferred geometry and, as
they see fit, can use or ignore any portion of the response.

To query a child widget’s preferred geometry, use XtQueryGeometry.

XtGeometryResult XtQueryGeometry(w, intended, preferred_return)
Widget w;
XtWidgeiGeometry * intended, *preferred_return\

w Specifies the widget. Must be of class Rec.tObj or any subclass thereof.

intended Specifies the new geometry the parent plans to give to the child, or NULL.

preferred_return Returns the child widget’s preferred geometry.

To discover a child’s preferred geometry, the child’s parent stores the new geometry in the
corresponding fields of the intended structure, sets the corresponding bits in
intended.requestjnode, and calls XtQueryGeometry. The parent should set only those fields
that are important to it so that the child can determine whether it may be able to attempt

81

X Toolkit Intrinsics XI1 Release 5

changes to other fields.

XtQueryGeometry clears all bits in the preferredjeturn->requestjnode field and checks the
query_geometry field of the specified widget’s class record. If query jgeometry is not NULL,
XtQueryGeometry calls the query_geometry procedure and passes as arguments the specified
widget, intended, and preferredjeturn structures. If the intended argument is NULL,
XtQueryGeometry replaces it with a pointer to an XtWidgetGeometry structure with
requestjnode equal to zero before calling the query_geometry procedure.

Note

If XtQueryGeometry is called from within a geometry_manager procedure for the
widget that issued XtMakeGeometryRequest or XtMakeResizeRequest, the
results are not guaranteed to be consistent with the requested changes. The change
request passed to the geometry manager takes precedence over the preferred
geometry.

The query_geometry procedure pointer is of type XtGeometryHandler.

typedef XtGeometryResult (*XtGeometryHandlcr)(Widgct, XtWidgetGeometry*, XtWidgetGeometry*
Widget w;
XtWidgetGeometry *request,;
XtWidgetGeometry *preferred_return;

w Passes the child widget whose preferred geometry is required.

request Passes the geometry changes which the parent plans to make.

preferred_return Passes a structure in which the child returns its preferred geometry.

The query_geometry procedure is expected to examine the bits set in request->request_mode,
evaluate the preferred geometry of the widget, and store the result in preferred_return (setting
the bits in preferredjeturn->requestjnode corresponding to those geometry fields that it cares
about). If the proposed geometry change is acceptable without modification, the
query_geometry procedure should return XtGeometryYes. If at least one field in
preferred jeturn with a bit set in preferredjeturn->requestjnode is different from the
corresponding field in request or if a bit was set in preferredjeturn->requestjnode that was
not set in the request, the query_geometry procedure should return XtGeometryAlmost. If
the preferred geometry is identical to the current geometry, the query_geometry procedure
should return XtGeometryNo.

Note

The query_geometry procedure may assume that no XtMakeResizeRequest or
XtMakeGeometryRequest is in progress for the specified widget; that is, it is not
required to construct a reply consistent with the requested geometry if such a
request were actually outstanding.

After calling the query_geometry procedure or if the query_geometry field is NULL, XtQuery¬
Geometry examines all the unset bits in preferred_return->requestjnode and sets the
corresponding fields in preferredjeturn to the current values from the widget instance. If
CWStackMode is not set, the stack jnode field is set to XtSMDontChange. XtQuery¬
Geometry returns the value returned by the query_geometry procedure or XtGeometryYes if
the query ^geometry field is NULL.

Therefore, the caller can interpret a return of XtGeometryYes as not needing to evaluate the
contents of the reply and, more important, not needing to modify its layout plans. A return of
XtGeometryAlmost means either that both the parent and the child expressed interest in at
least one common field and the child’s preference does not match the parent’s intentions or that

82

X Toolkit Intrinsics XI1 Release 5

the child expressed interest in a field that the parent might need to consider. A return value of
XtGeometryNo means that both the parent and the child expressed interest in a field and that
the child suggests that the field’s current value in the widget instance is its preferred value. In
addition, whether or not the caller ignores the return value or the reply mask, it is guaranteed
that the preferred_return structure contains complete geometry information for the child.

Parents are expected to call XtQueryGeometry in their layout routine and wherever else the
information is significant after change_managcd has been called. The first time it is invoked,
the changed_managed procedure may assume that the child’s current geometry is its preferred
geometry. Thus, the child is still responsible for storing values into its own geometry during
its initialize procedure.

6.8. Size Change Management: the resize Procedure

A child can be resized by its parent at any time. Widgets usually need to know when they
have changed size so that they can lay out their displayed data again to match the new size.
When a parent resizes a child, it calls XtResizeWidget, which updates the geometry fields in
the widget, configures the window if the widget is realized, and calls the child’s resize pro¬
cedure to notify the child. The resize procedure pointer is of type XtWidgetProc.

If a class need not recalculate anything when a widget is resized, it can specify NULL for the
resize field in its class record. This is an unusual case and should occur only for widgets with
very trivial display semantics. The resize procedure takes a widget as its only argument. The
x, y, width, height, and border_width fields of the widget contain the new values. The resize
procedure should recalculate the layout of internal data as needed. (For example, a centered
Label in a window that changes size should recalculate the starting position of the text.) The
widget must obey resize as a command and must not treat it as a request. A widget must not
issue an XtMakeGeometryRequest or XtMukeResizeRequest call from its resize procedure.

83

X Toolkit Intrinsics XI1 Release 5

Chapter 7

Event Management

While Xlib allows the reading and processing of events anywhere in an application, widgets in
the X Toolkit neither directly read events nor grab the server or pointer. Widgets register pro¬
cedures that are to be called when an event or class of events occurs in that widget.

A typical application consists of startup code followed by an event loop that reads events and
dispatches them by calling the procedures that widgets have registered. The default event loop
provided by the Intrinsics is XtAppMainLoop.

The event manager is a collection of functions to perform the following tasks:

• Add or remove event sources other than X server events (in particular, timer interrupts
and file input).

• Query the status of event sources.

• Add or remove procedures to be called when an event occurs for a particular widget.

• Enable and disable the dispatching of user-initiated events (keyboard and pointer events)
for a particular widget.

• Constrain the dispatching of events to a cascade of pop-up widgets.

• Register procedures to be called when specific events arrive.

Most widgets do not need to call any of the event handler functions explicitly. The normal
interface to X events is through the higher-level translation manager, which maps sequences of
X events, with modifiers, into procedure calls. Applications rarely use any of the event
manager routines besides XtAppMainLoop.

7.1. Adding and Deleting Additional Event Sources

While most applications are driven only by X events, some applications need to incorporate
other sources of input into the Intrinsics event-handling mechanism. The event manager pro¬
vides routines to integrate notification of timer events and file data pending into this mechan¬
ism.

The next section describes functions that provide input gathering from files. The application
registers the files with the Intrinsics read routine. When input is pending on one of the files,
the registered callback procedures are invoked.

7.1.1. Adding and Removing Input Sources

To register a new file as an input source for a given application context, use XtAppAddlnput.

Xtlnputld XtAppAddlnput(app_context, source, condition, proc, client_data)
XtAppContext app_contexr,
int source',
XtPointer condition',
XtlnputCallbackProc proc,
XtPointer client_data\

app_context Specifies the application context that identifies the application.

source Specifies the source file descriptor on a POSIX-based system or other
operating-system-dependent device specification.

84

X Toolkit Intrinsics XI1 Release 5

condition Specifies the mask that indicates a read, write, or exception condition or some
other operating-system-dependent condition.

proc Specifies the procedure to be called when the condition is found.

client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddlnput function registers with the Intrinsics read routine a new source of
events, which is usually file input but can also be file output. Note that file should be loosely
interpreted to mean any sink or source of data. XtAppAddlnput also specifies the conditions
under which the source can generate events. When an event is pending on this source, the
callback procedure is called.

The legal values for the condition argument are operating-system-dependent. On a POSIX-
based system, source is a file number and the condition is some union of the following:

XtlnputReadMask Specifies that proc is to be called when source has data to be read.

XtlnputWriteMask Specifies that proc is to be called when source is ready for writing.

XtlnputExceptMask Specifies that proc is to be called when source has exception data.

Callback procedure pointers used to handle file events are of type XtlnputCallbackProc.

typedef void (*XtInputCallbackProc)(XtPointcr, ini*, Xtlnputld*);
XiPointer client _data\
int *source\
Xtlnputld *id\

client_data Passes the client data argument that was registered for this procedure in
XtAppAddlnput.

source Passes the source file descriptor generating the event.

id Passes the id returned from the corresponding XtAppAddlnput call.

To discontinue a source of input, use XtRemovelnput.

void XtRemoveInput(h/)
Xtlnputld id\

id Specifies the id returned from the corresponding XtAppAddlnput call.

The XtRemovelnput function causes the Intrinsics read routine to stop watching for events
from the file source specified by id.

7.1.2. Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a callback procedure that a
specified time interval has elapsed. Timeout values arc uniquely identified by an interval id.

To register a timeout callback, use XtAppAddTimeOut.

Xtlntervalld XtAppAddTimeOut(<2/?p_coAUdx:r, interval, proc, clieni_data)
XtAppContext app_contexr,
unsigned long interval;
XtTimerCallbackProc proc,
XtPointer client_data\

Specifies the application context for which the timer is to be set.

Specifies the time interval in milliseconds.

Specifies the procedure to be called when the time expires.

Specifies an argument passed to the specified procedure when it is called.

app _context

interval

proc

client data

85

X Toolkit Intrinsics XI1 Release 5

The XtAppAddTimeOut function creates a timeout and returns an identifier for it. The
timeout value is set to internal. The callback procedure proc is called when XtAppNextEvent
or XtAppProcessEvent is next called after the time interval elapses, and then the timeout is

removed.

Callback procedure pointers used with timeouts arc of type XtTimerCallbackProc.

typedef void (*XtTimerCallbackProc)(XtPointcr, Xtlntervalld*);
XtPointer client_data\
Xtlntervalld * timer,

client_data Passes the client data argument that was registered for this procedure in
XtAppAddTimeOut.

timer Passes the id returned from the corresponding XtAppAddTimeOut call.

To clear a timeout value, use XtRemoveTimeOut.

void XtRemoveTimeOutfhmer)
Xtlntervalld timer,

timer Specifies the id for the timeout request to be cleared.

The XtRemoveTimeOut function removes the pending timeout. Note that timeouts are
automatically removed once they trigger.

7.2. Constraining Events to a Cascade of Widgets

Modal widgets are widgets that, except for the input directed to them, lock out user input to
the application.

When a modal menu or modal dialog box is popped up using XtPopup, user events (keyboard
and pointer events) that occur outside the modal widget should be delivered to the modal wid¬
get or ignored. In no case will user events be delivered to a widget outside the modal widget.

Menus can pop up submenus, and dialog boxes can pop up further dialog boxes, to create a
pop-up cascade. In this case, user events may be delivered to one of several modal widgets in
the cascade.

Display-related events should be delivered outside the modal cascade so that exposure events
and the like keep the application’s display up-todate. Any event that occurs within the cascade
is delivered as usual. The user events delivered to the most recent spring-loaded shell in the
cascade when they occur outside the cascade are called remap events and are KeyPress,
KeyRelease, ButtonPress, and ButtonRelease. The user events ignored when they occur
outside the cascade are MotionNotify and EnterNotify. All other events are delivered nor¬
mally. In particular, note that this is one way in which widgets can receive LeaveNotify
events without first receiving EnterNotify events; they should be prepared to deal with this,
typically by ignoring any unmatched LeaveNotify events.

XtPopup uses the XtAddGrab and XtRemoveGrab functions to constrain user events to a
modal cascade and subsequently to remove a grab when the modal widget is popped down.

To constrain or redirect user input to a modal widget, use XtAddGrab.

void XtAddGrab(w, exclusive, spring Joaded)
Widget w;
Boolean exclusive'.
Boolean spring Joaded',

w Specifies the widget to add to the modal cascade. Must be of class Core or any
subclass thereof.

86

X Toolkit Intrinsics XI1 Release 5

exclusive Specifies whether user events should be dispatched exclusively to this widget
or also to previous widgets in the cascade.

springJoaded Specifies whether this widget was popped up because the user pressed a
pointer button.

The XtAddGrab function appends the widget to the modal cascade and checks that exclusive
is True if spring Joaded is True. If this condition is not met, XtAddGrab generates a
warning message.

The modal cascade is used by XtDispatchEvent when it tries to dispatch a user event. When
at least one modal widget is in the widget cascade, XtDispatchEvent first determines if the
event should be delivered. It starts at the most recent cascade entry and follows the cascade up
to and including the most recent cascade entry added with the exclusive parameter True.

This subset of the modal cascade along with all descendants of these widgets comprise the
active subset. User events that occur outside the widgets in this subset are ignored or
remapped. Modal menus with submenus generally add a submenu widget to the cascade with
exclusive False. Modal dialog boxes that need to restrict user input to the most deeply nested
dialog box add a subdialog widget to the cascade with exclusive True. User events that occur
within the active subset are delivered to the appropriate widget, which is usually a child or
further descendant of the modal widget.

Regardless of where in the application they occur, remap events are always delivered to the
most recent widget in the active subset of the cascade registered with spring Joaded True, if
any such widget exists. If the event occurred in the active subset of the cascade but outside
the spring-loaded widget, it is delivered normally before being delivered also to the spring-
loaded widget. Regardless of where it is dispatched, the Intrinsics do not modify the contents
of the event.

To remove the redirection of user input to a modal widget, use XtRemoveGrab.

void XtRemoveGrab(w)
Widget w;

w Specifies the widget to remove from the modal cascade.

The XtRemoveGrab function removes widgets from the modal cascade starting at the most
recent widget up to and including the specified widget. It issues a warning if the specified
widget is not on the modal cascade.

7.2.1. Requesting Key and Button Grabs

The Intrinsics provide a set of key and button grab interfaces that are parallel to those provided
by Xlib and that allow the Intrinsics to modify event dispatching when necessary. X Toolkit
applications and widgets that need to passively grab keys or buttons or actively grab the key¬
board or pointer should use the following Intrinsics routines rather than the corresponding Xlib
routines.

To passively grab a single key of the keyboard, use XtGrabKey.

void XtGrabKey(widgef, keycode, modifiers, owner_events, pointer_mode, keyboardjnode)
Widget widger,
KeyCode keycode\
Modifiers modifiers'.
Boolean owner_events\
int pointer jnode, keyboard_mode\

widget Specifies the widget in whose window the key is to be grabbed. Must be of
class Core or any subclass thereof.

87

X Toolkit Intrinsics XI1 Release 5

keycode
modifiers
owner _events
pointerjnode
keyboardjnode Specify arguments to XGrabKey; see Section 12.2 in Xlib - C Language X

Interface.

XtGrabKey calls XGrabKey specifying the widget’s window as the grab window if the wid¬
get is realized. The remaining arguments arc exactly as for XGrabKey. If the widget is not
realized, or is later unrealized, the call to XGrabKey will be performed (again) when the wid¬
get is realized and its window becomes mapped. In the future, if XtDispatchEvent is called
with a KeyPress event matching the specified keycode and modifiers (which may be AnyKey
or Any Modifier, respectively) for the widget’s window, the Intrinsics will call XtUngrabKey -
board with the timestamp from the KeyPress event if cither of the following conditions is
true:

• There is a modal cascade and the widget is not in the active subset of the cascade and the
keyboard was not previously grabbed, or

• XFilterEvent returns True.

To cancel a passive key grab, use XtUngrabKey.

void XtUngrabKey(w/dg<?r, keycode, modifiers)
Widget widget;
KeyCode keycode;
Modifiers modifiers',

widget Specifies the widget in whose window the key was grabbed.

keycode
modifiers Specify arguments to XUngrabKey; see Section 12.2 in Xlib - C Language X

Interface.

The XtUngrabKey procedure calls XUngrabKey specifying the widget’s window as the
ungrab window if the widget is realized. The remaining arguments are exactly as for
XUngrabKey. If the widget is not realized, XtUngrabKey removes a deferred XtGrabKey
request, if any, for the specified widget, keycode, and modifiers.

To actively grab the keyboard, use XtGrabKeyboard.

int XtGrabKey boardfw/dger, owner _events, pointer jnode, key board jnode, time)
Widget widget'.
Boolean owner_events\
int pointer jnode, keyboard jnode'.
Time time',

widget Specifies the widget for whose window the keyboard is to be grabbed. Must
be of class Core or any subclass thereof.

owner_events
pointer jnode
keyboard jnode
time Specify arguments to XGrabKeyboard; see Section 12.2 in Xlib - C

Language X Interface.

If the specified widget is realized XtGrabKeyboard calls XGrabKeyboard specifying the
widget’s window as the grab window. The remaining arguments and return value are exactly

88

X Toolkit Intrinsics XI1 Release 5

as for XGrabKeyboard. If the widget is not realized, XGrabKeyboard immediately returns
GrabNotViewable. No future automatic ungrab is implied by XtGrabKeyboard.

To cancel an active keyboard grab, use XtUngrabKeyboard.

void XtUngrabKeyboard(vvufg£r, time)
Widget widger.
Time time;

widget Specifies the widget that has the active keyboard grab.

time Specifies the additional argument to XUngrabKeyboard; see Section 12.2 in
Xlib - C Language X Interface.

XtUngrabKeyboard calls XUngrabKeyboard with the specified time.

To passively grab a single pointer button, use XtGrabButton.

void XtGrabButton(vvi£fger, button, modifiers, owner_events, eventjnask, pointer jnode,
keyboard_mode, confine_to, cursor)

Widget widget;
int button;
Modifiers modifiers'.
Boolean ownerjvents:
unsigned int eventjnask',
int pointer_mode, keyboard jmode\
Window confine_to\
Cursor cursor,

widget Specifies the widget in whose window the button is to be grabbed. Must be of
class Core or any subclass thereof.

button
modifiers
owner_events
eventjnask
pointer jnode
keyboard jnode
confine jo
cursor Specify arguments to XGrabButton; see Section 12.1 in Xlib - C Language X

Interface.

XtGrabButton calls XGrabButton specifying the widget’s window as the grab window if
the widget is realized. The remaining arguments are exactly as for XGrabButton. If the wid¬
get is not realized, or is later unrealized, the call to XGrabButton will be performed (again)
when the widget is realized and its window becomes mapped. In the future, if
XtDispatchEvent is called with a ButtonPress event matching the specified button and
modifiers (which may be AnyButton or AnyModifier, respectively) for the widget’s window,
the Intrinsics will call XtUngrabPointer with the timestamp from the ButtonPress event if
either of the following conditions is true:

® There is a modal cascade and the widget is not in the active subset of the cascade and the
pointer was not previously grabbed, or

• XFilterEvent returns True.

To cancel a passive button grab, use XtUngrabButton.

89

X Toolkit Intrinsics XI1 Release 5

void XtUngrabButtonfwtdger, button, modifiers)
Widget widger
unsigned int button;
Modifiers modifiers;

widget Specifies the widget in whose window the button was grabbed.

button
modifiers Specify arguments to XUngrabButton; see Section 12.1 in Xlib - C Language

X Interface.

The XtUngrabButton procedure calls XUngrabButton specifying the widget’s window as
the ungrab window if the widget is realized. The remaining arguments are exactly as for
XUngrabButton. If the widget is not realized, XtUngrabButton removes a deferred
XtGrabButton request, if any, for the specified widget, button, and modifiers.

To actively grab the pointer, use XtGrabPointer.

int XtGrabPointerfw/Jger, owner_events, eventjnask, pointerjnode, keyboardjnode,
confine jo, cursor, time)

Widget widget'.
Boolean owner^events',
unsigned int event mask',
int pointer jnode, keyboard jnode'.
Window confinejo\
Cursor cursor.
Time time',

widget Specifies the widget for whose window the pointer is to be grabbed. Must be
of class Core or any subclass thereof.

owner_events
event jnask
pointer jnode
keyboard jnode
confine jo
cursor

time Specify arguments to XGrabPointer; see Section 12.1 in Xlib - C Language
X Interface.

If the specified widget is realized, XtGrabPointer calls XGrabPointer, specifying the
widget’s window as the grab window. The remaining arguments and return value are exactly
as for XGrabPointer. If the widget is not realized, XGrabPointer immediately returns
GrabNotViewable. No future automatic ungrab is implied by XtGrabPointer.

To cancel an active pointer grab, use XtUngrabPointer.

void XtUngrabPointerfvWdger, time)
Widget widger.
Time time',

widget Specifies the widget that has the active pointer grab.

time Specifies the time argument to XUngrabPointer; see Section 12.1 in Xlib - C
Language X Interface.

XtUngrabPointer calls XUngrabPointer with the specified time.

90

X Toolkit Intrirtsics XI1 Release 5

73. Focusing Events on a Child

To redirect keyboard input to a normal descendant of a widget without calling XSetlnput-
Focus, use XtSetKeyboardFocus.

void XtSetKeyboardFocus(sui?/ree, descendant)
Widget subtree, descendant;

subtree Specifies the subtree of the hierarchy for which the keyboard focus is to be set.
Must be of class Core or any subclass thereof.

descendant Specifies either the normal (non-pop-up) descendant of subtree to which key¬
board events are logically directed, or None. It is not an error to specify
None when no input focus was previously set. Must be of class Object or any
subclass thereof.

XtSetKeyboardFocus causes XtDispatchEvent to remap keyboard events occurring within
the specified subtree and dispatch them to the specified descendant widget or to an ancestor. If
the descendant’s class is not a subclass of Core, the descendant is replaced by its closest win¬
dowed ancestor.

When there is no modal cascade, keyboard events can be dispatched to a widget in one of five
ways. Assume the server delivered the event to the window for widget E (because of X input
focus, key or keyboard grabs, or pointer position).

• If neither E nor any of E’s ancestors have redirected the keyboard focus, or if the event
activated a grab for E as specified by a call to XtGrabKey with any value of
owner_events, or if the keyboard is actively grabbed by E with ownerjevents False via
XtGrabKeyboard or XtGrabKey on a previous key press, the event is dispatched to E.

• Beginning with the ancestor of E closest to the root that has redirected the keyboard focus
or E if no such ancestor exists, if the target of that focus redirection has in turn redirected
the keyboard focus, recursively follow this focus chain to find a widget F that has not
redirected focus.

- If E is the final focus target widget F or a descendant of F, the event is dispatched to E.

- If E is not F, an ancestor of F, or a descendant of F, and the event activated a grab for
E as specified by a call to XtGrabKey for E, XtUngrabKeyboard is called.

- If E is an ancestor of F, and the event is a key press, and either

+ E has grabbed the key with XtGrabKey and owner jevents False, or

+ E has grabbed the key with XtGrabKey and owner_events True, and the coordi¬
nates of the event are outside the rectangle specified by E’s geometry,

then the event is dispatched to E.

- Otherwise, define A as the closest common ancestor of E and F:

+ If there is an active keyboard grab for any widget via either XtGrabKeyboard or
XtGrabKey on a previous key press, or if no widget between F and A (nonin-
clusive) has grabbed the key and modifier combination with XtGrabKey and any
value of owner jevents, the event is dispatched to F.

+ Else, the event is dispatched to the ancestor of F closest to A that has grabbed the
key and modifier combination with XtGrabKey.

When there is a modal cascade, if the final destination widget as identified above is in the
active subset of the cascade, the event is dispatched; otherwise the event is remapped to a
spring-loaded shell or discarded. Regardless of where it is dispatched, the Intrinsics do not
modify the contents of the event.

When subtree or one of its descendants acquires the X input focus or the pointer moves into
the subtree such that keyboard events would now be delivered to the subtree, a Focusln event
is generated for the descendant if FocusChange events have been selected by the descendant.
Similarly, when subtree loses the X input focus or the keyboard focus for one of its ancestors,

91

X Toolkit Intrinsics XI1 Release 5

a FocusOut event is generated for descendant if FocusChange events have been selected by
the descendant.

A widget tree may also actively manage the X server input focus. To do so, a widget class
specifies an accept_focus procedure.

The accept_focus procedure pointer is of type XtAcceptFocusProc.

typedef Boolean (*XtAcceptFocusProc)(Widget, Time*);
Widget w;
Time *time\

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can call XSetlnputFocus explicitly, pursuant to the restric¬
tions of the Inter-Client Communication Conventions Manual. To allow outside agents, such
as the parent, to cause a widget to take the input focus, every widget exports an accept_focus
procedure. The widget returns a value indicating whether it actually took the focus or not, so
that the parent can give the focus to another widget. Widgets that need to know when they
lose the input focus must use the Xlib focus notification mechanism explicitly (typically by
specifying translations for Focusln and FocusOut events). Widgets classes that never want
the input focus should set the acceptJocus field to NULL.

To call a widget’s accept_focus procedure, use XtCallAcceptFocus.

Boolean XtCallAcceptFocus(w, time)
Widget w;
Time *time\

w Specifies the widget. Must be of class Core or any subclass thereof.

time Specifies the X time of the event that is causing the focus change.

The XtCallAcceptFocus function calls the specified widget’s accept_focus procedure, passing
it the specified widget and time, and returns what the accept_focus procedure returns. If
accept Jocus is NULL, XtCallAcceptFocus returns False.

7.4. Querying Event Sources

The event manager provides several functions to examine and read events (including file and
timer events) that are in the queue. The next three functions are Intrinsics equivalents of the
XPending, XPeekEvent, and XNextEvent Xlib calls.

To determine if there are any events on the input queue for a given application, use
XtAppPending.

XtlnputMask XtAppPending(app_context)
XtAppContext appjcontexr,

app_context Specifies the application context that identifies the application to check.

The XtAppPending function returns a nonzero value if there are events pending from the X
server, timer pending, or other input sources pending. The value returned is a bit mask that is
the OR of XtIMXEvent, XtIMTimer, and XtIMAlternateInput (see XtAppProcessEvent).
If there are no events pending, XtAppPending (lushes the output buffers of each Display in
the application context and returns zero.

To return the event from the head of a given application’s input queue without removing input
from the queue, use XtAppPeekEvent.

92

X Toolkit Intrinsics XU Release 5

Boolean XtAppPeekEvent(app_ccwe.xr, eventjetum)
XtAppContext app_contexr,
XEvent * event_return\

app_context Specifies the application context that identifies the application.

event_return Returns the event information to the specified event structure.

If there is an X event in the queue, XtAppPeekEvent copies it into event_return and returns
True. If no X input is on the queue, XtAppPeekEvent flushes the output buffers of each
Display in the application context and blocks until some input is available (possibly calling
some timeout callbacks in the interim). If the next available input is an X event,
XtAppPeekEvent fills in event_return and returns True. Otherwise, the input is for an input
source registered with XtAppAddlnput, and XtAppPeekEvent returns False.

To remove and return the event from the head of a given application’s X event queue, use
XtAppNextEvent.

void XtAppNextEvent(<ap/7_conr£xr, event_return)
XtAppContext app_contexr,
XEvent *event_return\

app_context Specifies the application context that identifies the application.

event_return Returns the event information to the specified event structure.

If the X event queue is empty, XtAppNextEvent flushes the X output buffers of each Display
in the application context and waits for an X event while looking at the other input sources and
timeout values and calling any callback procedures triggered by them. This wait time can be
used for background processing; sec Section 7.8.

IS. Dispatching Events

The Intrinsics provide functions that dispatch events to widgets or other application code.
Every client interested in X events on a widget uses XtAddEventHandler to register which
events it is interested in and a procedure (event handler) to be called when the event happens
in that window. The translation manager automatically registers event handlers for widgets
that use translation tables; see Chapter 10.

Applications that need direct control of the processing of different types of input should use
XtAppProcessEvent.

void XtAppProcessEvent(tfp/?_c<?rtrm, mask)
XtAppContext app_contexr,
XtlnputMask mask',;

app_context Specifies the application context that identifies the application for which to pro¬
cess input.

mask Specifies what types of events to process. The mask is the bitwise inclusive
OR of any combination of XtIMXEvent, XtIMTimer, and XtlMAlterna-
telnput. As a convenience, Intrinsic.h defines the symbolic name XtIMAll
to be the bitwise inclusive OR of these three event types.

The XtAppProcessEvent function processes one timer, input source, or X event. If there is
no event or input of the appropriate type to process, then XtAppProcessEvent blocks until
there is. If there is more than one type of input available to process, it is undefined which will
get processed. Usually, this procedure is not called by client applications; see XtAppMain-
Loop. XtAppProcessEvent processes timer events by calling any appropriate timer callbacks,
input sources by calling any appropriate input callbacks, and X events by calling
XtDispatchEvent.

93

X Toolkit Intrinsics XI1 Release 5

When an X event is received, it is passed to XtDispatchEvent, which calls the appropriate
event handlers and passes them the widget, the event, and client-specific data registered with
each procedure. If no handlers for that event are registered, the event is ignored and the
dispatcher simply returns.

To dispatch an event returned by XtAppNextEvent, retrieved directly from the Xlib queue, or
synthetically constructed, to any registered event filters or event handlers call
XtDispatchEvent.

Boolean XtDispatchEvent(6vc«r)
XEvent *evenr,;

event Specifies a pointer to the event structure to be dispatched to the appropriate
event handlers.

The XtDispatchEvent function first calls XFilterEvent with the event and the window of the
widget to which the Intrinsics intend to dispatch the event, or the event window if the Intrin¬
sics would not dispatch the event to any handlers. If XFilterEvent returns True and the
event activated a server grab as identified by a previous call to XtGrabKey or XtGrabBut-
ton, XtDispatchEvent calls XtUngrabKeyboard or XtUngrabPointer with the timestamp
from the event and immediately returns True. If XFilterEvent returns True and a grab was
not activated, XtDispatchEvent just immediately returns True. Otherwise, XtDispatchEvent
sends the event to the event handler functions that have been previously registered with the
dispatch routine. XtDispatchEvent returns True if XFilterEvent returned True, or if the
event was dispatched to some handler and False if it found no handler to which to dispatch
the event. XtDispatchEvent records the last timestamp in any event that contains a timestamp
(see XtLastTimestampProcessed), regardless of whether it was filtered or dispatched. If a
modal cascade is active with springJoaded True, and if the event is a remap event as defined
by XtAddGrab, XtDispatchEvent may dispatch the event a second time. If it does so,
XtDispatchEvent will call XFilterEvent again with the window of the spring-loaded widget
prior to the second dispatch and if XFilterEvent returns True, the second dispatch will not be
performed.

7.6. The Application Input Loop

To process all input from a given application in a continuous loop, use the convenience pro¬
cedure XtAppMainLoop.

void XiAppMz\nLoop(app_context)
XtAppContext app_contexp

app_context Specifies the application context that identifies the application.

The XtAppMainLoop function first reads the next incoming X event by calling XtAppNex¬
tEvent and then dispatches the event to the appropriate registered procedure by calling
XtDispatchEvent. This constitutes the main loop of X Toolkit applications, and, as such, it
does not return. Applications are expected to exit in response to some user action within a
callback procedure. There is nothing special about XtAppMainLoop; it is simply an infinite
loop that calls XtAppNextEvent and then XtDispatchEvent.

Applications can provide their own version of this loop, which tests some global termination
flag or tests that the number of top-level widgets is larger than zero before circling back to the
call to XtAppNextEvent.

94

X Toolkit Intrinsics XI1 Release 5

7.7. Setting and Checking the Sensitivity State of a Widget

Many widgets have.a mode in which they assume a different appearance (for example, are
grayed out or stippled), do not respond to user events, and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is insensitive, the event
manager does not dispatch any events to the widget with an event type of KeyPress,
KeyRelease, ButtonPress, ButtonRelease, MotionNotify, EnterNotify, LeaveNotify,
Focusln, or FocusOut.

A widget can be insensitive because its sensitive field is False or because one of its ancestors
is insensitive and thus the widget’s ancestor_sensitive field also is False. A widget can but
does not need to distinguish these two cases visually.

Note

Pop-up shells will have ancestorjensitive False if the parent was insensitive
when the shell was created. Since XtSetSensitive on the parent will not modify
the resource of the pop-up child, clients are advised to include a resource
specification of the form “*TransientShell.anccstorSensitive: True” in the applica¬
tion defaults resource file or to otherwise ensure that the parent is sensitive when
creating pop-up shells.

To set the sensitivity state of a widget, use XtSetSensitive.

void XtSetSensitive(w, sensitive)
Widget w;
Boolean sensitive;

w Specifies the widget. Must be of class RectObj or any subclass thereof.

sensitive Specifies whether the widget should receive keyboard, pointer, and focus
events.

The XtSetSensitive function first calls XtSetValues on the current widget with an argument
list specifying the XtNsensitive resource and the new value. If sensitive is False and the
widget’s class is a subclass of Composite, XtSetSensitive recursively propagates the new
value down the child tree by calling XtSetValues on each child to set ancestorjensitive to
False. If sensitive is True and the widget’s class is a subclass of Composite and the widget’s
ancestor_sensitive field is True, XtSetSensitive sets the ancestor jensitive of each child to
True and then recursively calls XtSetValues on each normal descendant that is now sensitive
to set ancestor jensitive to True.

XtSetSensitive calls XtSetValues to change the sensitive and ancestor jensitive fields of each
affected widget. Therefore, when one of these changes, the widget’s set_values procedure
should take whatever display actions are needed (for example, graying out or stippling the wid¬
get).

XtSetSensitive maintains the invariant that if the parent has either sensitive or
ancestor jensitive False, then all children have ancestor jensitive False.

To check the current sensitivity state of a widget, use XtlsSensitive.

Boolean XtlsSensitive(w)
Widget w;

w Specifies the object. Must be of class Object or any subclass thereof.

The XtlsSensitive function returns True or False to indicate whether user input events are
being dispatched. If object’s class is a subclass of RectObj and both sensitive and
ancestor sensitive are True, XtlsSensitive returns True; otherwise, it returns False.

95

X Toolkit Intrinsics XI1 Release 5

7.8. Adding Background Work Procedures

The Intrinsics have some limited support for background processing. Because most applica¬
tions spend most of their time waiting for input, you can register an idle-time work procedure
that will be called when the toolkit would otherwise block in XtAppNextEvent or
XtAppProcessEvent. Work procedure pointers arc of type XtWorkProc.

typedef Boolean (*XtWorkProc)(XtPointcr);
XlPointcr client_data\

client_data Passes the client data specified when the work procedure was registered.

This procedure should return True when it is done to indicate that it should be removed. If
the procedure returns False, it will remain registered and will be called again when the appli¬
cation is next idle. Work procedures should be very judicious about how much they do. If
they run for more than a small part of a second, interactive feel is likely to suffer.

To register a work procedure for a given application, use XtAppAddWorkProc.

XtWorkProcId XtAppAdd'WorkProc(app_context, proc, client_data)
XtAppContext app_context.;
XtWorkProc proc;
XtPointer client_data\

app_context Specifies the application context that identifies the application.

proc Specifies the procedure to be called when the application is idle.

client_data Specifies the argument passed to the specified procedure when it is called.

The XtAppAddWorkProc function adds the specified work procedure for the application
identified by app_context and returns an opaque unique identifier for this work procedure.
Multiple work procedures can be registered, and the most recently added one is always the one
that is called. However, if a work procedure adds another work procedure, the newly added
one has lower priority than the current one.

To remove a work procedure, either return True from the procedure when it is called or use
XtRemoveWorkProc.

void XtRemoveWorkProc! id)
XtWorkProcId id\

id Specifies which work procedure to remove.

The XtRemoveWorkProc function explicitly removes the specified background work pro¬
cedure.

7.9. X Event Filters

The event manager provides filters that can be applied to specific X events. The filters, which
screen out events that are redundant or arc temporarily unwanted, handle pointer motion
compression, enter/leave compression, and exposure compression.

7.9.1. Pointer Motion Compression

Widgets can have a hard time keeping up with a rapid stream of pointer motion events.
Further, they usually do not care about every motion event. To throw out redundant motion
events, the widget class field compressjnotion should be True. When a request for an event
would return a motion event, the Intrinsics check if there arc any other motion events for the
same widget immediately following the current one and, if so, skip all but the last of them.

96

X Toolkit Intrinsics XI1 Release 5

7.9.2. Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening events, as can happen
when the user moves the pointer across a widget without stopping in it, the widget class field
compress_enterleave should be True. These enter and leave events are not delivered to the
client if they are found together in the input queue.

7,9.3. Exposure Compression

Many widgets prefer to process a series of exposure events as a single expose region rather
than as individual rectangles. Widgets with complex displays might use the expose region as a
clip list in a graphics context, and widgets with simple displays might ignore the region
entirely and redisplay their whole window or might get the bounding box from the region and
redisplay only that rectangle.

In either case, these widgets do not care about getting partial exposure events. The
compress_exposure field in the widget class structure specifies the type and number of expo¬
sure events that will be dispatched to the widget’s expose procedure. This field must be initial¬
ized to one of the following values,

#define XtExposeNoCompress
#define XtExposeCompressSeries
#define XtExposeCompressMultiple
#define XtExposeCompressMaximal

optionally ORed with any combination of the
values):

XtExposeGraphicsExpose, XtExposeGraphicsExposeMerged and XtExposeNoExpose.

If the compress^exposure field in the widget class structure does not specify XtExposeNo¬
Compress, the event manager calls the widget’s expose procedure only once for a series of
exposure events. In this case, all Expose or GraphicsExpose events are accumulated into a
region. When the final event is received, the event manager replaces the rectangle in the event
with the bounding box for the region and calls the widget’s expose procedure, passing the
modified exposure event and the region. For more information on regions, see Section 16.5 in
Xlib - C Language X Interface.)

The values have the following interpretation:

XtExposeNoCompress

No exposure compression is performed: every selected event is individually dispatched to
the expose procedure with a region argument of NULL.

XtExposeCompressSeries

Each series of exposure events is coalesced into a single event, which is dispatched when
an exposure event with count equal to zero is reached.

XtExposeCompressMultiple

Consecutive series of exposure events are coalesced into a single event, which is
dispatched when an exposure event with count equal to zero is reached and either the
event queue is empty or the next event is not an exposure event for the same widget.

((XtEnum)False)
((XtEnum)True)
<implementation-defined>
<implcmentation-defined>

following flags (all with implementation-defined

97

X Toolkit Intrinsics XI1 Release 5

XtExposeCompressMaximal

All expose series currently in the queue for the widget are coalesced into a single event
without regard to intervening nonexposure events. If a partial series is in the end of the
queue, the Intrinsics will block until the end of the series is received.

The additional flags have the following meaning:

XtExposeGraphicsExpose

Specifies that GraphicsExpose events arc also to be dispatched to the expose procedure.
GraphicsExpose events will be compressed, if specified, in the same manner as Expose
events.

XtExposeGraphicsExposeMerged

Specifies in the case of XtExposeCompressMultiple and XtExposeCompressMaximal
that series of GraphicsExpose and Expose events arc to be compressed together, with
the final event type determining the type of the event passed to the expose procedure. If
this flag is not set, then only scries of the same event type as the event at the head of the
queue are coalesced. This flag also implies XtExposeGraphicsExpose.

XtExposeNoExpose

Specifies that NoExpose events are also to be dispatched to the expose procedure.
NoExpose events are never coalesced with other exposure events or with each other.

7.10. Widget Exposure and Visibility

Every primitive widget and some composite widgets display data on the screen by means of
direct Xlib calls. Widgets cannot simply write to the screen and forget what they have done.
They must keep enough state to redisplay the window or parts of it if a portion is obscured and
then reexposed.

7.10.1. Redisplay of a Widget: the expose Procedure

The expose procedure pointer in a widget class is of type XtExposeProc.

typedef void (*XtExposeProc)(Widgct, XEvcnt*, Region);
Widget w;
XEvent *evenr,;
Region region',

w Specifies the widget instance requiring redisplay.

event Specifies the exposure event giving the rectangle requiring redisplay.

region Specifies the union of all rectangles in this exposure sequence.

The redisplay of a widget upon exposure is the responsibility of the expose procedure in the
widget’s class record. If a widget has no display semantics, it can specify NULL for the
expose field. Many composite widgets serve only as containers for their children and have no

98

X Toolkit Intrinsics XI1 Release 5

expose procedure.

Note

If the expose procedure is NULL, XtRealizeWidget fills in a default bit gravity of
NorthWestGravity before it calls the widget’s realize procedure.

If the widget’s compress ^exposure class field specifics XtExposeNoCompress or the event
type is NoExpose (see Section 7.9.3), region is NULL; otherwise, the event is the final event
in the compressed series but x, y, width, and height contain the bounding box for region. The
region is created and destroyed by the Intrinsics, but the widget is permitted to modify the
region contents.

A small simple widget (for example, Label) can ignore the bounding box information in the
event and redisplay the entire window. A more complicated widget (for example, Text) can
use the bounding box information to minimize the amount of calculation and redisplay it does.
A very complex widget uses the region as a clip list in a GC and ignores the event informa¬
tion. The expose procedure is not chained and is therefore responsible for exposure of all
superclass data as well as its own.

However, it often is possible to anticipate the display needs of several levels of subclassing.
For example, rather than implement separate display procedures for the widgets Label, Push¬
button, and Toggle, you could write a single display routine in Label that uses display state
fields like

Boolean invert;
Boolean highlight;
Dimension highlight_width;

Label would have invert and highlight always False and highlight_width zero. Pushbutton
would dynamically set highlight and highlightjvidth, but it would leave invert always False.
Finally, Toggle would dynamically set all three. In this case, the expose procedures for Push¬
button and Toggle inherit their superclass’s expose procedure; see Section 1.6.10.

7.10.2. Widget Visibility

Some widgets may use substantial computing resources to produce the data they will display.
However, this effort is wasted if the widget is not actually visible on the screen, that is, if the
widget is obscured by another application or is iconificd.

The visible field in the core widget structure provides a hint to the widget that it need not com¬
pute display data. This field is guaranteed to be True by the time an exposure event is pro¬
cessed if any part of the widget is visible but is False if the widget is fully obscured.

Widgets can use or ignore the visible hint. If they ignore it, they should have visible jnterest
in their widget class record set False. In such cases, the visible field is initialized True and
never changes. If visible jnterest is True, the event manager asks for Visibility Notify events
for the widget and sets visible to True on VisibilityUnobscured or VisibilityPartiallyOb-
scured events and False on VisibilityFullyObscured events.

7.11. X Event Handlers

Event handlers are procedures called when specified events occur in a widget. Most widgets
need not use event handlers explicitly. Instead, they use the Intrinsics translation manager.
Event handler procedure pointers are of the type XtEventHandler.

99

X Toolkit Intrinsics XI1 Release 5

typedef void (*XtEventHandler)(Widget, XtPointer, XEvent*, Boolean*);
Widget w;
XtPointer client_data\
XEvent *evenr.
Boolean * continue_to_dispatch\

w Specifies the widget for which the event arrived.

client_data Specifies any client-specific information registered with the event handler.

event Specifies the triggering event.

continue _to _dispatch
Specifies whether the remaining event handlers registered for the current event
should be called.

After receiving an event and before calling any event handlers, the Boolean pointed to by
continue jo_dispatch is initialized to True. When an event handler is called, it may decide
that further processing of the event is not desirable and may store False in this Boolean, in
which case any handlers remaining to be called for the event will be ignored.

The circumstances under which the Intrinsics may add event handlers to a widget are currently
implementation-dependent. Gients must therefore be aware that storing False into the
continue_to_dispatch argument can lead to portability problems.

7.11.1. Event Handlers that Select Events

To register an event handler procedure with the dispatch mechanism, use XtAd
dEventHandler.

void XtAddEventHandler(w\ event jnask, nonmaskable, proc, client_data)
Widget w;
EventMask event_mask\
Boolean nonmaskable;
XtEventHandler proc,;
XtPointer client data'.

w

event_mask

nonmaskable

proc

client data

Specifies the widget for which this event handler is being registered. Must be
of class Core or any subclass thereof.

Specifies the event mask for which to call this procedure.

Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest, Selection-
Notify, ClientMessage, and MappingNotify).

Specifies the procedure to be called.

Specifies additional data to be passed to the event handler.

The XtAddEventHandler function registers a procedure with the dispatch mechanism that is
to be called when an event that matches the mask occurs on the specified widget. Each widgeL
has a single registered event handler list, which will contain any procedure-client_data pair
exactly once regardless of the manner in which it is registered. If the procedure is already
registered with the same client-data value, the specified mask augments the existing mask. If
the widget is realized, XtAddEventHandler calls XSelectlnput, if necessary. The order in
which this procedure is called relative to other handlers registered for the same event is not
defined.

To remove a previously registered event handler, use XtRemoveEventHandler.

100

X Toolkit Intrinsics XI1 Release 5

void XtRemoveEventHandler(w, eventjnask, nonmaskable, proc, client_data)
Widget w;
EventMask event jnask;
Boolean nonmaskable;
XtEventHandler proc.;
XtPointer client data;

w Specifies the widget for which this procedure is registered. Must be of class
Core or any subclass thereof.

event jnask

nonmaskable

proc

Specifies the event mask for which to unrcgister this procedure.

Specifies whether this procedure should be removed on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionCIear, SelectionRequest, Selection-
Notify, ClientMessage, and MappingNotify).

Specifies the procedure to be removed.

clientjiata Specifies the registered client data.

The XtRemoveEventHandler function unregisters an event handler registered with XtAd-
dEventHandler or XtlnsertEventHandler for the specified events. The request is ignored if
client jiata does not match the value given when the handler was registered. If the widget is
realized and no other event handler requires the event, XtRemoveEventHandler calls XSelec-
tlnput. If the specified procedure has not been registered or if it has been registered with a
different value of client jiata, XtRemoveEventHandler returns without reporting an error.

To stop a procedure registered with XtAddEventHandler or XtlnsertEventHandler from
receiving all selected events, call XtRemoveEventHandler with an event jnask of XtAl-
lEvents and nonmaskable True. The procedure will continue to receive any events that have
been specified in calls to XtAddRavvEventHandler or XtlnsertRawEventHandler.

To register an event handler procedure that receives events before or after all previously
registered event handlers, use XtlnsertEventHandler.

typedef enum (XtListHead, XiListTail) XtListPosition;

void XtlnsertEventHandler(w, event jnask, nonmaskable, proc, client jiata, position)
Widget w;
EventMask event jnask’.
Boolean nonmaskable',
XtEventHandler proc,
XtPointer client jiata',
XtListPosition position'.

w

event jnask

nonmaskable

proc

client jiata

position

Specifies the widget for which this event handler is being registered. Must be
of class Core or any subclass thereof.

Specifies the event mask for which to call this procedure.

Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionCIear, SelectionRequest, Selection-
Notify, ClientMessage, and MappingNotify).

Specifies the procedure to be called.

Specifies additional data to be passed to the client’s event handler.

Specifies when the event handler is to be called relative to other previously
registered handlers.

XtlnsertEventHandler is identical to XtAddEventHandler with the additional position argu¬
ment. If position is XtListHead, the event handler is registered so that it will be called before
any event handlers that were previously registered for the same widget. If position is

101

X Toolkit Intrinsics XI1 Release 5

XtListTail, the event handler is registered to be called after any previously registered event
handlers. If the procedure is already registered with the same clientjiata value, the specified
mask augments the existing mask and the procedure is repositioned in the list.

7.11.2. Event Handlers that Do Not Select Events

On occasion, clients need to register an event handler procedure with the dispatch mechanism
without explicitly causing the X server to select for that event. To do this, use XtAd-
dRawEventHandler.

void XtAddRawEventHandler(w, eventjnask, nonmaskable, proc, client_data)
Widget w;
EventMask eventjnask'.
Boolean nonmaskable',
XtEventHandler proc,
XtPo inter client data'.

w

eventjnask

nonmaskable

proc

client data

Specifies the widget for which this event handler is being registered. Must be
of class Core or any subclass thereof.

Specifies the event mask for which to call this procedure.

Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest, Selection-
Notify, ClientMessage, and MappingNotify).

Specifies the procedure to be called.

Specifies additional data to be passed to the client’s event handler.

The XtAddRawEventHandler function is similar to XtAddEventHandler except that it does
not affect the widget’s event mask and never causes an XSelectlnput for its events. Note that
the widget might already have those mask bits set because of other nonraw event handlers
registered on it. If the procedure is already registered with the same clientjdata, the specified
mask augments the existing mask. The order in which this procedure is called relative to other
handlers registered for the same event is not defined.

To remove a previously registered raw event handler, use XtRemoveRawEventHandler.

void XtRemoveRawEventHandlerfw, eventjnask, nonmaskable, proc, client jdata)
Widget w;
EventMask eventjnask'.
Boolean nonmaskable',
XtEventHandler proc,
XtPointer client data;

w

eventjnask

nonmaskable

proc

client data

Specifies the widget for which this procedure is registered. Must be of class
Core or any subclass thereof.

Specifies the event mask for which to unregister this procedure.

Specifies whether this procedure should be removed on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest, Selection-
Notify, ClientMessage, and MappingNotify).

Specifies the procedure to be registered.

Specifies the registered client data.

The XtRemoveRawEventHandler function unregisters an event handler registered with
XtAddRawEventHandler or XtlnsertRawEventHandler for the specified events without
changing the window event mask. The request is ignored if client jdata does not match the
value given when the handler was registered. If the specified procedure has not been

102

X Toolkit Intrinsics XI1 Release 5

registered or if it has been registered with a different value of client jiata, XtRemo-
veRawEventHandler returns without reporting an error.

To stop a procedure registered with XtAddRawEventHandler or Xtlnser¬
tRawEventHandler from receiving all nonselectcd events, call XtRemoveRawEventHandler
with an event jnask of XtAllEvents and nonmaskable True. The procedure will continue to
receive any events that have been specified in calls to XtAddEventHandler or Xtlnser-
tEventHandler.

To register an event handler procedure that receives events before or after all previously
registered event handlers without selecting for the events, use XtlnsertRawEventHandler.

void XtInsertRawEventHandler(w, event jnask, nonmaskable, proc, clientjiata, position)
Widget w;
EventMask event jnask'.
Boolean nonmaskable;
XtEventHandler proc,
XtPointer client_data\
XtListPosition position-.

w

event jnask

nonmaskable

proc

client jiata

position

Specifies the widget for which this event handler is being registered. Must be
of class Core or any subclass thereof.

Specifies the event mask for which to call this procedure.

Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose, NoExpose, SelectionClear, SelectionRequest, Selection-
Notify, ClientMessage, and MappingNotify).

Specifies the procedure to be registered.

Specifies additional data to be passed to the client’s event handler.

Specifies when the event handler is to be called relative to other previously
registered handlers.

The XtlnsertRawEventHandler function is similar to XtlnsertEventHandler except that it
does not modify the widget’s event mask and never causes an XSelectlnput for the specified
events. If the procedure is already registered with the same client jiata value, the specified
mask augments the existing mask and the procedure is repositioned in the list.

7.11.3. Current Event Mask

To retrieve the event mask for a given widget, use XtBuildEventMask.

EventMask XtBuildEventMask(w)
Widget w;

w Specifies the widget. Must be of class Core or any subclass thereof.

The XtBuildEventMask function returns the event mask representing the logical OR of all
event masks for event handlers registered on the widget with XtAddEventHandler and Xtln¬
sertEventHandler and all event translations, including accelerators, installed on the widget.
This is the same event mask stored into the XSetWindowAttributes structure by XtReal-
izeWidget and sent to the server when event handlers and translations are installed or removed
on the realized widget.

103

X Toolkit Intrinsics XI1 Release 5

Chapter 8

Callbacks

Applications and other widgets often need to register a procedure with a widget that gets called
under certain prespecified conditions. For example, when a widget is destroyed, every pro¬
cedure on the widget’s destroy fallbacks list is called to notify clients of the widget’s impend¬
ing doom.

Every widget has an XtNdestroyCallbacks callback list resource. Widgets can define additional
callback lists as they see fit. For example, the Pushbutton widget has a callback list to notify
clients when the button has been activated.

Except where otherwise noted, it is the intent that all Intrinsics functions may be called at any
time, including from within callback procedures, action routines, and event handlers.

8.1. Using Callback Procedure and Callback List Definitions

Callback procedure pointers for use in callback lists arc of type XtCallbackProc.

typedef void (*XtCaUbackProc)(Widget, XtPointcr, XtPointcr);
Widget w;
XtPointer client_data\
XtPointer call_data\

w Specifies the widget owning the list in which the callback is registered.

client_data Specifies additional data supplied by the client when the procedure was
registered.

call_data Specifies any callback-specific data the widget wants to pass to the client. For
example, when Scrollbar executes its XtNihumbChanged callback list, it
passes the new position of the thumb.

The client_data argument provides a way for the client registering the callback procedure also
to register client-specific data, for example, a pointer to additional information about the wid¬
get, a reason for invoking the callback, and so on. The clientjiata value may be NULL if all
necessary information is in the widget. The calljlata argument is a convenience to avoid hav¬
ing simple cases where the client could otherwise always call XtGetValues or a widget-
specific function to retrieve data from the widget. Widgets should generally avoid putting
complex state information in calljdata. The client can use the more general data retrieval
methods, if necessary.

Whenever a client wants to pass a callback list as an argument in an XtCreateWidget, XtSet-
Values, or XtGetValues call, it should specify the address of a NULL-terminated array of
type XtCallbackList.

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data clientDataA and
clientDataB, respectively, is

104

X Toolkit Intrinsics XI1 Release 5

static XtCallbackRec callbacks}] = {
(A, (XtPointer) clientDataA},
(B, (XtPointer) clientDataB},
{(XtCallbackProc) NULL, (XtPointer) NULL}

};

Although callback lists are passed by address in arglists and varargs lists, the Intrinsics recog¬
nize callback lists throught the widget resource list and will copy the contents when necessary.
Widget initialize and set_values procedures should not allocate memory for the callback list
contents. The Intrinsics automatically do this, potentially using a different structure for their
internal representation.

8.2. Identifying Callback Lists

Whenever a widget contains a callback list for use by clients, it also exports in its public .h file
the resource name of the callback list. Applications and client widgets never access callback
list fields directly. Instead, they always identify the desired callback list by using the exported
resource name. All the callback manipulation functions described in this chapter except
XtCallCallbackList check to see that the requested callback list is indeed implemented by the
widget.

For the Intrinsics to find and correctly handle callback lists, they must be declared with a
resource type of XtRCallback. The internal representation of a callback list is
implementation-dependent; widgets may make no assumptions about the value stored in this
resource if it is non-NULL. Except to compare the value to NULL (which is equivalent to
XtCallbackStatus XtCallbackHasNone), access to callback list resources must be made
through other Intrinsics procedures.

8.3. Adding Callback Procedures

To add a callback procedure to a widget’s callback list, use XtAddCallback.

void XtAddCallback(w, callbackjiame, callback, clientjdata)
Widget w;
String callbackjiame',
XtCallbackProc callbackr,
XtPointer client jdata',

w Specifies the widget. Must be of class Object or any subclass thereof.

callbackjiame Specifies the callback list to which the procedure is to be appended.

callback Specifies the callback procedure.

clientjiata Specifies additional data to be passed to the specified procedure when it is
invoked, or NULL.

A callback will be invoked as many times as it occurs in the callback list.

To add a list of callback procedures to a given widget’s callback list, use XtAddCallbacks.

void XtAddCallbacks(w, callback jiame. callbacks)
Widget w;
String callback_name\
XtCallbackList callbacks',

w Specifies the widget. Must be of class Object or any subclass thereof.

callbackjiame Specifies the callback list to which the procedures are to be appended.

105

X Toolkit Intrinsics XI1 Release 5

callbacks Specifies the null-terminated list of callback procedures and corresponding
client data.

8.4. Removing Callback Procedures

To delete a callback procedure from a widget’s callback list, use XtRemoveCallback.

void XtRemovcCallbackfw, callback_name, callback, clicntjiata)
Widget w;
String callback_name\
XtCallbackProc callback,;
XtPointer client_data\

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_name Specifies the callback list from which the procedure is to be deleted.

callback Specifies the callback procedure.

client_data Specifies the client data to match with the registered callback entry.

The XtRemoveCallback function removes a callback only if both the procedure and the client
data match.

To delete a list of callback procedures from a given widget’s callback list, use XtRemoveCall-
backs.

void XtRemoveCallbacks(w, callback_name, callbacks)
Widget w;
String callback_name\
XtCallbackList callbacks;

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_name Specifies the callback list from which the procedures are to be deleted.

callbacks Specifies the null-terminated list of callback procedures and corresponding
client data.

To delete all callback procedures from a given widget’s callback list and free all storage asso¬
ciated with the callback list, use XtRemoveAIICallbacks.

void XtRemoveAllCallbacksfu', callback jiame)
Widget w;
String callback_name\

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_name Specifies the callback list to be cleared.

8.5. Executing Callback Procedures

To execute the procedures in a given widget’s callback list, specifying the callback list by
resource name, use XtCallCallbacks.

void XtCallCallbacksfw, callback_name, calljiata)
Widget w;
String callback_name\
XtPointer call_data\

w Specifies the widget. Must be of class Object or any subclass thereof.

106

X Toolkit Intrinsics XI1 Release 5

callbackjiame Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to each of the callback pro¬
cedure in the list, or NULL.

XtCallCaUfaacks calls each of the callback procedures in the list named by callbackjiame in
the specified widget, passing the client data registered with the procedure and call-data.

To execute the procedures in a callback list, specifying the callback list by address, use
XtCallCallbackList.

void XtCallCaUbackListfwzJgcr, callbacks, calljiaia)
Widget widger,
XtCallbackUst callbacks',
XtPointer call_data\

widget Specifies the widget instance that contains the callback list. Must be of class
Object or any subclass thereof.

callbacks Specifies the callback list to be executed.

calljdata Specifies a callback-list-specific data value to pass to each of the callback pro¬
cedures in the list, or NULL.

The callbacks parameter must specify the contents of a widget or object resource declared with
representation type XtRCallback. If callbacks is NULL, XtCallCallbackList returns
immediately; othera/iese it calls each of the callback procedures in the list, passing the client
data and call data.

8.6. Checking the Status of a Callback List

To find out the status of a given widget’s callback list, use XtHasCallbacks.

typedef enum {XtCallbackNoList, XtCallbackHasNonc, XtCallbackHasSome} XtCalibackStatus;

XtCallbackStatus XtHasCallbacks(w, callbackjiame)
Widget w;
String callbackjiame;

w Specifies the widget. Must be of class Object or any subclass thereof.

callbackjiame Specifies the callback list to be checked.

The XtHasCallbacks function first checks to sec if the widget has a callback list identified by
callbackjiame. If the callback list does not exist, XtHasCallbacks returns XtCallbackNoL¬
ist. If the callback list exists but is empty, it returns XtCallbackHasNone. If the callback
list exists and has at least one callback registered, it returns XtCallbackHasSome.

107

X Toolkit Intrinsics XI1 Release 5

Chapter 9

Resource Management

A resource is a field in the widget record wiih a corresponding resource entry in the resources
list of the widget or any of its superclasses. This means that the field is settable by
XtCreateWidget (by naming the field in the argument list), by an entry in a resource file (by
using either the name or class), and by XtSetValues. In addition, it is readable by XtGet-
Values. Not ail fields in a widget record are resources. Some are for bookkeeping use by the
generic routines Gike managed and being-destroyed). Others can be for local bookkeeping,
and still others are derived from resources (many graphics contexts and pixmaps).

Widgets typically need to obtain a large set of resources at widget creation time. Some of the
resources come from the argument list supplied in the call to XtCreateWidget, some from the
resource database, and some from the internal defaults specified by the widget. Resources are
obtained first from the argument list, then from the resource database for all resources not
specified in the argument list, and last, from the internal default, if needed.

9.1. Resource Lists

A resource entry specifies a field in the widget, the textual name and class of the field that
argument lists and external resource files use to refer to the field, and a default value that the
field should get if no value is specified. The declaration for the XtResource structure is

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset;
String default_type;
XtPointer default_addr;

} XtResource, *XtResourceList;

When the resource list is specified as the CoreClassPart, ObjectClassPart, Rec-
tObjClassPart, or ConstraintClassPart resources field the strings pointed to by
resource_name, resource Jclass, resource jype, and default jype must be permanently allo¬
cated prior to or during the execution of the class initialization procedure and must not be sub¬
sequently deallocated.

The resourcejiame field contains the name used by clients to access the field in the widget.
By convention, it starts with a lower-case letter and is spelled exactly like the field name,
except all underscores (_) are deleted and the next letter is replaced by its upper-case counter¬
part. For example, the resource name for background_pixel becomes backgroundPixel.
Resource names beginning with the two-character sequence “xt” and resource classes begin¬
ning with the two-character sequence “Xt” arc reserved to the Intrinsics for future standard
and implementation-dependent uses. Widget header files typically contain a symbolic name for
each resource name. All resource names, classes, and types used by the Intrinsics are named
in <Xll/StringDefs.h>. The Intrinsics’s symbolic resource names begin with “XtN” and are
followed by the string name (for example, XtNbackgroundPixel for backgroundPixel).

108

X Toolkit Intrinsics XI1 Release 5

The resource_class field contains the class string used in resource specification files to identify
the field. A resource class provides two functions:

• It isolates an application from different representations that widgets can use for a similar
resource.

• It lets you specify values for several actual resources with a single name. A resource
class should be chosen to span a group of closely related fields.

For example, a widget can have several pixel resources: background, foreground, border, block
cursor, pointer cursor, and so on. Typically, the background defaults to white and everything
else to black. The resource class for each of these resources in the resource list should be
chosen so that it takes the minimal number of entries in the resource database to make the
background offwhite and everything else darkbluc.

In this case, the background pixel should have a resource class of “Background” and all the
other pixel entries a resource class of “Foreground”. Then, the resource file needs only two
lines to change all pixels to offwhite or darkblue:

♦Background: offwhite
♦Foreground: darkblue

Similarly, a widget may have several font resources (such as normal and bold), but all fonts
should have the class Font. Thus, changing all fonts simply requires only a single line in the
default resource file:

♦Font: 6x13

By convention, resource classes arc always spelled starting with a capital letter to distinguish
them from resource names. Their symbolic names are preceded with “XtC” (for example,
XtCBackground).

The resourcejype field gives the physical representation type of the resource and also encodes
information about the specific usage of the field. By convention, it starts with an upper-case
letter and is spelled identically to the type name of the field. The resource type is used when
resources are fetched to convert from the resource database fonnat (usually String) or the for¬
mat of the resource default value (almost anything, but often String) to the desired physical
representation (see Section 9.6). The Intrinsics define the following resource types:

Resource Type Structure or Field Type

XtRAcceleratorTable
XtRAtom
XtRBitmap
XtRBoolean
XtRBool
XtRCallback
XtRCardinal
XtRCoIor
XtRColormap
XtRCursor
XtRDimension
XtRDisplay
XtREnum
XtRFile
XtRFIoat
XtRFont
XtRFontSet
XtRFontStruct

XtAccclcrators
Atom
Pixmap, depth=l
Boolean
Bool
XtCallbackList
Cardinal
XColor
Colormap
Cursor
Dimension
Display*
XtEnum
FILE*
lloat
Font
XFontSct
XFontSlruct*

109

X Toolkit Intrinsics XI1 Release 5

Resource Type Structure or Field Type

XtRFunction (*)()
XtRGeometry char*, format as defined by XPar-

seGeometry
XtRInitialState int
XtRInt int
XtRLongBoolean long
XtRObject Object
XtRPixel Pixel
XtRPixmap Pixmap
XtRPointer XtPointer
XtRPosition Position
XtRScreen Screen*
XtRShort short
XtRString Siring
XtRStringArray String*
XtRStringTable String*
XtRTransIationTable XtTranslations
XtRUnsignedChar unsigned char
XtRVisual Visual*
XtRVVidget Widget
XtRWidgetClass WidgctClass
XtRWidgetList WidgctList
XtRWindow Window

<Xll/StringDefs.h> also defines the following resource types as a convenience for widgets,
although they do not have any corresponding data type assigned: XtREditMode, XtRJustify,
and XtROrientation.

The resource_size field is the size of the physical representation in bytes; you should specify it
as sizeof(ryp^) so that the compiler fills in the value. The resource_offset field is the offset in
bytes of the field within the widget. You should use the XtOffsetOf macro to retrieve this
value. The defaultjype field is the representation type of the default resource value. If
defaultjype is different from resource jype and the default value is needed, the resource
manager invoices a conversion procedure from default jype to resource jype. Whenever possi¬
ble, the default type should be identical to the resource type in order to minimize widget crea¬
tion time. However, there are sometimes no values of the type that the program can easily
specify. In this case, it should be a value for which the converter is guaranteed to work (for
example, XtDefaultForeground for a pixel resource). The default_addr field specifies the
address of the default resource value. As a special case, if default jpe is XtRString, then the
value in the default_addr field is the pointer to the string rather than a pointer to the pointer.
The default is used if a resource is not specified in the argument list or in the resource data¬
base, or if the conversion from the representation type stored in the resource database fails,
which can happen for various reasons (for example, a misspelled entry in a resource file).

Two special representation types (XtRImmcdiate and XtRCallProc) are usable only as default
resource types. XtRImmediate indicates that the value in the defaultjddr field is the actual
value of the resource rather than the address of the value. The value must be in the correct
representation type for the resource, coerced to an XtPointer. No conversion is possible,
since there is no source representation type. XtRCallProc indicates that the value in the
defaultjiddr field is a procedure pointer. This procedure is automatically invoked with the
widget, resource_ojfset, and a pointer to an XrmValue in which to store the result.
XtRCallProc procedure pointers are of type XtResourceDefaultProc.

no

X Toolkit Intrinsics XI1 Release 5

typedef void (*XtResourceDefaultProc)(Widget, int, XrmValue*);
Widget w;
int offset,
XrmValue *value\

w Specifies the widget whose resource value is to be obtained.

offset Specifies the offset of the field in the widget record.

value Specifies the resource value descriptor to return.

The XtResourceDefaultProc procedure should till in the value->addr field with a pointer to
the resource value in its correct representation type.

To get the resource list structure for a particular class, use XtGetResourceList.

void XtGetResourceList(c/a?.s, resourcesjeturn, numjesources jeturn)',
WidgetGass class',
XtResourceList * resources jeturn'.
Cardinal * numjesources jeturn',

class Specifies the object class to be queried. It must be objectClass or any
subclass thereof.

resources jeturn Returns the resource list.

num_resources_return Returns the number of entries in the resource list.

If XtGetResourceList is called before the class is initialized, it returns the resource list as
specified in the class record. If it is called after the class has been initialized, XtGetResour¬
ceList returns a merged resource list that includes the resources for all superclasses. The list
returned by XtGetResourceList should be freed using XtFree when it is no longer needed.

To get the constraint resource list structure for a particular widget class, use XtGetConstrain-
tResourceList.

void XtGetConstraintResourceList(c/a.«, resources jeturn, num_resources_return)
WidgetClass class',
XtResourceList * resources jeturn'.
Cardinal *numjesourcesjeturn',

class Specifies the object class to be queried. It must be objectClass or any
subclass thereof.

resources jeturn Returns the constraint resource list.

num_resources_return Returns the number of entries in the constraint resource list.

If XtGetConstraintResourceList is called before the widget class is initialized, the resource
list as specified in the widget class Constraint part is returned. If XtGetConstraintResour¬
ceList is called after the widget class has been initialized, the merged resource list for the class
and all Constraint superclasses is returned. If the specified class is not a subclass of con¬
straint WidgetClass, * resourcesjeturn is set to NULL and *num_resources_return is set to
zero. The list returned by XtGetConstraintResourceList should be freed using XtFree when
it is no longer needed.

The routines XtSetValues and XtGetValues also use the resource list to set and get widget
state; see Sections 9.7.1 and 9.7.2.

Here is an abbreviated version of a possible resource list for a Label widget;

/* Resources specific to Label */
static XtResource resources[] = {
{XtNforeground, XtCForeground, XtRPixel, sizcof(Pixel),

111

X Toolkit Intrinsics XI1 Release 5

XtOffsetOf(LabelRec, label.foreground), XiRString, XtDefaultForeground},
(XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),

XtOffsetOf(LabelRec, label.font), XiRString, XtDefaultFont},
{XtNlabel, XtCLabel, XiRString, sizcof(String),

XtOffsetOffLabelRec, labcl.label), XiRString, NULL},

The complete resource name for a field of a widget instance is the concatenation of the appli¬
cation shell name (from XtAppCreateShell), the instance names of all the widget’s parents up
to the top of the widget tree, the instance name of the widget itself, and the resource name of
the specified field of the widget. Similarly, the full resource class of a field of a widget
instance is the concatenation of the application class (from XtAppCreateShell), the widget
class names of all the widget’s parents up to the top of the widget tree, the widget class name
of the widget itself, and the resource class of the specified field of the widget.

92. Byte Offset Calculations

To determine the byte offset of a field within a structure type, use XtQffsetOf.

Cardinal XtOffsctOf{structure jype. fieldjame)
Type structure jype\
Field fieldjame\

structurejype Specifies a type that is declared as a structure.

fieldjiame Specifies the name of a member within the structure.

The XtOffsetOf macro expands to a constant expression that gives the offset in bytes to the
specified structure member from the beginning of the structure. It is normally used to statically
initialize resource lists and is more portable than XtOffset, which serves the same function.

To determine the byte offset of a field within a structure pointer type, use XtOffset.

Cardinal XtOffset (pointer _type, field_name)
Type pointer_type\
Field fieldjiame;

pointer jype Specifies a type that is declared as a pointer to a structure.

fieldjiame Specifies the name of a member within the structure.

The XtOffset macro expands to a constant expression that gives the offset in bytes to the
specified structure member from the beginning of tine structure. It may be used to statically
initialize resource lists. XtOffset is less portable than XtOffsetOf,

93. SupercIass-to-Subclass Chaining of Resource Lists

The XtCreateWidget function gets resources as a superclass-to-subclass chained operation.
That is, the resources specified in the objectClass resource list are fetched, then those in rec-
tObjClass, and so on down to the resources specified for this widget’s class. Within a class,
resources are fetched in the order they are declared.

In general, if a widget resource field is declared in a superclass, that field is included in the
superclass’s resource list and need not be included in the subclass’s resource list. For exam¬
ple, the Core class contains a resource entry for background pixel. Consequently, the imple¬
mentation of Label need not also have a resource entry for backgroundjixel. However, a sub¬
class, by specifying a resource entry for that field in its own resource list, can override the

112

X Toolkit Intrinsics Xll Release 5

resource entry for any field declared in a superclass. This is most often done to override the
defaults provided in the superclass with new ones. At class initialization time, resource lists
for that class are scanned from the superclass down to the class to look for resources with the
same offset A matching resource in a subclass will be reordered to override the superclass
entry. If reordering is necessary, a copy of the superclass resource list is made to avoid
affecting other subclasses of the superclass.

Also at class initialization time, the Intrinsics produce an internal representation of the resource
list to optimize access time when creating widgets. In order to save memory, the Intrinsics
may overwrite the storage allocated for the resource list in the class record; therefore, widgets
must allocate resource lists in writable storage and must not access the list contents directly
after the classjnitialize procedure has returned.

9.4. Subresources

A widget does not do anything to retrieve its own resources; instead, XtCreate Widget does
this automatically before calling the class initialize procedure.

Some widgets have subparts that are not widgets but for which the widget would like to fetch
resources. Such widgets call XtGetSubresources to accomplish this.

void XtGetSubresourcesfw, base, name, class, resources, num_resources, args, num_args)
Widget w;
XtPointer base'.
String name'.
String class',
XtResourceList resources'.
Cardinal numResources',
ArgList args'.
Cardinal num_args\

Specifies the object used to qualify the subpart resource name and class. Must
be of class Object or any subclass thereof.

Specifies the base address of the subpart data structure into which the resources
will be written.

name Specifies the name of the subpan.

class Specifies the class of the subpan.

resources Specifies the resource list for the subpart.

numResources Specifies the number of entries in the resource list.

args Specifies the argument list to override any other resource specifications.

numRirgs Specifies the number of entries in the argument list.

The XtGetSubresources function constructs a name and class list from the application name
and class, the names and classes of all the object’s ancestors, and the object itself. Then it
appends to this list the name and class pair passed in. The resources are fetched from the
argument list, the resource database, or the default values in the resource list. Then they are
copied into the subpan record. If args is NULL, num_args must be zero. However, if
numRirgs is zero, the argument list is not referenced.

XtGetSubresources may overwrite the specified resource list with an equivalent representation
in an internal format, which optimizes access time if the list is used repeatedly. The resource
list must be allocated in writable storage, and the caller must not modify the list contents after
the call if the same list is to be used again. Resources fetched by XtGetSubresources are
reference-counted as if they were referenced by the specified object. Subresources might there¬
fore be freed from the conversion cache and destroyed when the object is destroyed, but not
before then.

w

base

113

X Toolkit Intrinsics XI1 Release 5

To fetch resources for widget subparts using varargs lists, use XtVaGetSubresources.

void XtVaGetSubresources(w, base, name, class, resources, num_resources, ...)
Widget w,
XtPointer base'.
String name'.
String class',
XtResourceList resources'.
Cardinal num resources;

w Specifies the object used to qualify the subpart resource name and class. Must
be of class Object or any subclass thereof.

base Specifies the base address of the subpart data structure into which the resources
will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resources Specifies the number of entries in the resource list.

Specifies the variable argument list to override any other resource
specifications.

XtVaGetSubresources is identical in function to XtGetSubresources with the args and
num_args parameters replaced by a varargs list, as described in Section 2.5.1.

9.5. Obtaining Application Resources

To retrieve resources that are not specific to a widget but apply to die overall application, use
XtGetApplicationResources.

void XtGetApplicationResources(w, base, resources, num_resources, args, num_args)
Widget w;
XtPointer base',
XtResourceList resources'.
Cardinal num_resources\
ArgList args'.
Cardinal num_args\

w Specifies the object that identifies the resource database to search (the database
is that associated with the display for this object). Must be of class Object or
any subclass thereof.

base Specifies the base address into which the resource values will be written.

resources Specifies the resource list.

num_resourc.es Specifies the number of entries in the resource list.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtGetApplicationResources function first uses the passed object, which is usually an
application shell widget, to construct a resource name and class list. The full name and class
of the specified object (that is, including its ancestors, if any) is logically added to the front of
each resource name and class. Then it retrieves the resources from the argument list, the
resource database, or the resource list default values. After adding base to each address,
XtGetApplicationResources copies the resources into the addresses obtained by adding base
to each offset in the resource list. If args is NULL, num_args must be zero. However, if
num_args is zero, the argument list is not referenced. The portable way to specify application
resources is to declare them as members of a structure and pass the address of the structure as

114

X Toolkit Intrinsics XI1 Release 5

the base argument

XtGetApplicationResources may overwrite the specified resource list with an equivalent
representation in an internal format, which optimizes access time if the list is used repeatedly.
The resource list must be allocated in writable storage, and the caller must not modify the list
contents after the call if the same list is to be used again. Any per-display resources fetched
by XtGetApplicationResources will not be freed from the resource cache until the display is
closed.

To retrieve resources for the overall application using varargs lists, use XtVaGetApplication-
Resources.

void XtVaGetApplicationResourcesOv, base, resources, numResources, ...)
Widget w;
XtPointer base;
XtResourceList resources'.
Cardinal num_resources\

w Specifies the object that identifies the resource database to searen the database
is that associated with the display for this object). Must be of cuss Object or
any subclass thereof.

base Specifies the base address into which the resource values will be written.

resources Specifies the resource list for the subpart.

num resources Specifies die number of entries in the resource list.

Specifies the variable argument list to override any other resource
specifications.

XtVaGetApplicationResources is identical in function to XtGetApplicationResources with
the args and num_args parameters replaced by a varargs list, as described in Section 2.5.1.

9.6. Resource Conversions

The Intrinsics provide a mechanism for registering representation converters that are automati¬
cally invoked by the resource-fetching routines. The Intrinsics additionally provide and register
several commonly used converters. This resource conversion mechanism serves several pur¬
poses:

• It permits user and application resource files to contain textual representations of nontex¬
tual values.

® It allows textual or other representations of default resource values that are dependent on
the display, screen, or colormap, and thus must be computed at runtime.

• It caches conversion source and result data. Conversions that require much computation
or space (for example, string-to-translation-table) or that require round-trips to the server
(for example, string-to-font or string-to-color) are performed only once.

9.6.1. Predefined Resource Converters

The Intrinsics define all the representations used in the Object, RectObj, Core, Composite,
Constraint, and Shell widget classes. The Intrinsics register the following resource converters
that accept input values of representation tvpe XtRString.

Target Representation Converter Nu e Additional Args

XtRAcceleratorTable XtCvtStringToAcceleratorTable

115

X Toolkit Intrinsics XI1 Release 5

XtRAtom
XtRBoolean
XtRBool
XtRCursor
XtRDimension
XtRDisplay
XtRFile
XtRFIoat
XtRFont
XtRFontSet
XtRFontStruct
XtRInitialState
XtRInt
XtRPixel
XtRPosition
XtRShort
XtRTranslationTable
XtRUnsignedChar
XtRVisual

XtCvtStringToAtom
XtCvtStringToBoolean
XtCvtStringToBool
XtCvtStringToCursor
XtCvtStringToDimension
XtCvtStringToDisplay
XtCvtStringToFile
XtCvtStringToFloat
XtCvtStringToFont
XtCvtStringToFontSet
XtCvtStringToFontStruct
XtCvtStringToInitialState
XtCvtStringToInt
XtCvtStringToPixel
XtCvtStringToPosition
XtCvtStringToShort
XtCvtStringToTranslationTable
XtCvtStringToUnsignedChar
XtCvtStringTo Visual Screen*, Cardinal depth

Display*
Display*, String locale
Display*

Display*

colorConvertArgs

Display*

The String-to-Pixel conversion has two predefined constants that are guaranteed to work and
contrast with each other: XtDefaultForeground and XtDefaultBackground. They evaluate
to the black and white pixel values of the widget’s screen, respectively. If the application
resource reverseVideo is True, they evaluate to the white and black pixel values of the
widget’s screen, respectively. Similarly, the String-to-Font and String-to-FontStruct converters
recognize the constant XtDefaultFont and evaluate this in the following manner:

• Query the resource database for the resource whose full name is “XtDefaultFont”, class
“XtDefaultFont” (that is, no widget name/class prefixes) and use a type XtRString
value returned as the font name, or a type XtRFont or XtRFontStruct value directly as
the resource value.

• If the resource database docs not contain a value for XtDefaultFont, class XtDefaultFont,
or if the returned font name cannot be successfully opened, an implementation-defined
font in IS08859-1 character set encoding is opened. (One possible algorithm is to per¬
form an XListFonts using a wildcard font name and use the first font in the list. This
wildcard font name should be as broad as possible to maximize the probability of locat¬
ing a useable font; for example, "-*-*-*-R-*-*-*-120-*-*-*-*-ISO8859-l".)

• If no suitable IS08859-1 font can be found, issue a warning message and return False.

The String-to-FontSet converter recognizes the constant XtDefaultFontSet and evaluate this in
the following manner:

• Query the resource database for the resource whose full name is “XtDefaultFontSet”,
class “XtDefaultFontSet” (that is, no widget namc/class prefixes) and use a type
XtRString value returned as the base font name list, or a type XtRFontSet value
directly as the resource value.

• If the resource database does not contain a value for XtDefaultFontSet, class XtDefault¬
FontSet, or if a font set cannot be successfully created from this resource, an
implementation-defined font set is created. (One possible algorithm is to perform an
XCreateFontSet using a wildcard base font name. This wildcard base font name
should be as broad as possible to maximize the probability of locating a useable font; for
example, "-*-*-*-R-*-*-*-l20-*-*-*-*”.)

• If no suitable font set can be created, issue a warning message and return False.

116

X Toolkit Intrinsics XI1 Release 5

If a font set is created but missing_charsetJist is not empty, a warning is issued and the partial
font set is returned. The Intrinsics register the String-to-FontSet converter with a conversion
argument list that extracts the current process locale at the time the converter is invoked. This
ensures that the converter is invoked again if the same conversion is required in a different
locale.

The String-to-InitialState conversion accepts the values NormalState or IconicState as
defined by the Inter-Client Communication Conventions Manual.

The String-to-Visual conversion calls XMatchVisuailnfo using the screen and depth fields
from the core part and returns the first matching Visual on the list. The widget resource list
must be certain to specify any resource of type XtRVisual after the depth resource. The
allowed string values are the visual class names defined in X Window System Protocol, Section
8; StaticGray, StaticColor, TrueCoIor, Grayscale, PseudoCoIor, and DirectCoIor.

The Intrinsics register the following resource converter that accepts an input value of represen¬
tation type XtRColor.

Target Representation Convener Name Additional Args

XtRPixel XtCvtColorToPixel

The Intrinsics register the following resource conveners that accept input values of representa¬
tion type XtRInt.

Target Representation Convener Name Additional Args

XtRBoolean
XtRBooi
XtRColor
XtRDimension
XtRFloat
XtRFont
XtRPixel
XtRPixmap
XtRPosition
XtRShort
XtRUnsignedChar

XtCvtlntToBoolean
XtCvtlntToBool
XtCvtlntToColor
XtCvtlntToDimension
XtCvtlntToFloat
XtCvtlntToFont
XtCvtlntToPixel
XtCvtlntToPixmap
XtCvtlntToPosition
XtCvtlntToShort
XtCvtlntToUnsignedChar

colorConvertArgs

The Intrinsics register the following resource convener that accept'
tation type XtRPixel.

i an input value of represen-

Target Representation Convener Name Additional Args

XtRColor XtCvtPixelToColor

117

X Toolkit Intrinsics XI1 Release 5

9.6.2. New Resource Converters

Type converters use pointers to XrmValue structures (defined in <Xll/Xresource.h>; see
Section 15.4 in Xlib - C Language X Interface) for input and output values.

typedef struct {
unsigned int size;
XPointer addr,

} XrmValue, *XrmValuePtr,

The addr field specifies the address of the data and the size field gives the total number of
significant bytes in the data. For values of type String, addr is the address of the first charac¬
ter and size includes the NUL terminating byte.

A resource converter procedure pointer is of type XtTypeConverter.

typedef Boolean (*XtTypeConverter)(Display*. XrmValue*, Cardinal*,
XrmValue*, XrmValue*, XtPointer*);

Display *display;
XrmValue *args\
Cardinal *num_args\
XrmValue *from\
XrmValue *to\
XtPointer *converter data;

display

args

numjargs

from

to

Specifies the display connection with which this conversion is associated.

Specifies a list of additional XrmValue arguments to the converter if addi¬
tional context is needed to perform the conversion, or NULL. For example,
the String-to-Font converter needs the widget’s screen, and the Stnng-to-Pixel
converter needs the widget’s screen and colormap.

Specifies the number of entries in args.

Specifies the value to convert.

Specifies a descriptor for a location into which to store the converted value.

converter_data Specifies a location into which the converter may store convener-specific data
associated with this conversion.

The display argument is normally used only when generating error messages, to identify the
application context (with the function XtDisplayToApplicationContext).

The to argument specifies the size and location into which the convener should store the con¬
vened value. If the addr field is NULL, the convener should allocate appropriate storage and
store the size and location into the to descriptor. If the type convener allocates the storage, it
remains under the ownership of the convener and must not be modified by the caller. The
type convener is permitted to use static storage for this purpose, and therefore the caller must
immediately copy the data upon return from the converter. If the addr field is not NULL, the
convener must check the size field to ensure that sufficient space has been allocated before
storing the convened value. If insufficient space is specified, the convener should update the
size field with the number of bytes required and return False without modifying the data at the
specified location. If sufficient space was allocated by the caller, the converter should update
the size field with the number of bytes actually occupied by the converted value. For con¬
vened values of type XtRString, the size should include the NULL terminating byte, if any.
The converter may store any value in the location specified in converter_data\ this data will be
passed to the destructor, if any, when the resource is freed by the Intrinsics.

The convener must return True if the conversion was successful and False otherwise. If the
conversion cannot be performed because of an improper source value, a warning message
should also be issued with XtAppWarningMsg.

118

X Toolkit Intrinsics XI1 Release 5

Most type converters just take the data described by the specified from argument and return
data by writing into the location specified in the to argument. A few need other information,
which is available in args. A type converter can invoke another type converter, which allows
differing sources that may convert into a common intermediate result to make maximum use of
the type converter cache.

Note that if an address is written into to->addr, it cannot be that of a local variable of the con¬
verter because the data will not be valid after the converter returns. Static variables may be
used, as in the following example. If the converter modifies the resource database, the changes
affect any in-progress widget creation, XtGetApplicationResources, or XtGetSubresources
in an implementation-defined manner, however, insertion of new entries or changes to existing
entries is allowed and will not directly cause an error.

The following is an example of a converter that takes a string and converts it to a Pixel.
Note that the display parameter is only used to generate error messages; the Screen conversion
argument is still required to inform the Intrinsics that the convened value is a function of the
particular display (and colormap).

#define done(type, value) \

(

if (toVal->addr != NULL) {
if (toVal->size < sizeof(type)) {

toVal->size = sizeof(type);
return False;

}

(type)(toVal->addr) = (value);

else {
static type static_val;
static_val = (value);
toVal->addr = (XPointer)&static_val;

}

toVal->size = sizeof(type);
return True;

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

static Boolean CvtStringToPixel(dpy, args, num_args, fromVal, toVal, converier_data)
Display *dpy;
XrmValue *args;
Cardinal *num_args;
XrmValue *fromVal;
XrmValue *toVal;
XtPointer *converter_data;

(

static XColor
XColor
Screen
Colormap
Status
char

screenColor,
exactColor;
*screen;
colormap;
status;
message[1000];

if (*num_args != 2)
XtAppErrorMsg(XtDisplayToApplicationContcxt(dpy),

"cvtStringToPixel", "wrongParametcrs", "XiToolkitError",
"String to pixel conversion needs screen and colormap arguments",

119

X Toolkit Intrinsics Xll Release 5

(String *)NULL, (Cardinal *)NULL);

screen = *((Screen**) args[0].addr);
colormap = *((Colormap *) args[l].addr);

LowerCase((char *) fromVal->addr, message);

if (strcmp(message, "xtdefaultbackground") == 0) done(&WhitePixelOfScrcen(screen), Pixel);
if (strcmp(message, "xtdcfaultforcground") == 0) donc(&BlackPixelOfScreen(scrcen), Pixel);

status = XAllocNamedColor(DisplayOfScrccn(scrccn), colormap, (char*)fromVal->addr,
&screenColor, &exactCo!or);

if (status == 0) {
String params[l];
Cardinal num_params = 1;
params[0] = (String)fromVal->addr.
XtAppWamingMsg(XtDisplayToAppIicationContcxt(dpy),

"cvtStringToPixel", "noColormup”, "XiToolkitError",
"Cannot allocate colormap entry for\"%s\"", params, &num_params);

) else {
done(&scrcenColor.pixel, Pixel);

/* converter_data not used here */

};

All type converters should define some set of conversion values for which they are guaranteed
to succeed so these can be used in the resource defaults. This issue arises only with conver¬
sions, such as fonts and colors, where there is no string representation that all server imple¬
mentations will necessarily recognize. For resources like these, the converter should define a
symbolic constant in the same manner as XtDefaultForeground XtDefaultBackground, and
XtDefaultFont.

To allow the Intrinsics to deallocate resources produced by type converters, a resource destruc¬
tor procedure may also be provided.

A resource destructor procedure pointer is of type XtDestructor.

typedef void (*XtDestructor) (XtAppContcxt, XrmValue*, XtPointer, XrmValue*, Cardinal*);
XtAppContext app\
XrmValue *to;
XtPointer converter_data\
XrmValue *args;
Cardinal *num_args\

app Specifies an application context in which the resource is being freed.

to Specifies a descriptor for the resource produced by the type converter.

converter_data Specifies the converter-specific data returned by the type converter.

args Specifies the additional converter arguments as passed to the type convener
when the conversion was performed.

numjirgs Specifies the number of entries in args.

The destructor procedure is responsible for freeing the resource specified by the to argument,
including any auxiliary storage associated with that resource, but not the memory directly
addressed by the size and location in the to argument nor the memory specified by args.

120

X Toolkit Intrinsics XI1 Release 5

9.6.3. Issuing Conversion Warnings

The XtDisplayStringConversionWarning procedure is a convenience routine for resource
type converters that convert from string values.

void XtDisplayStringConversionWaming(dw/?/ay, fromjalue, tojype)
Display *display;
String fromjalue, tojype;

display Specifies the display connection with which the conversion is associated.

fromjalue Specifies the string that could not be converted.

tojype Specifies the target representation type requested.

The XtDisplayStringConversionWarning procedure issues a warning message using
XtAppWarningMsg with name “conversionError”, type “string”, class “XtToolkitError”,
and the default message “Cannot convert "fromjalue" to type tojype".

To issue other types of warning or error messages, the type converter should use XtAppWar¬
ningMsg or XtAppErrorMsg.

To retrieve the application context associated with a given display connection, use XtDisplay-
ToApplicationContext.

XtAppContext XtDisplayToApplicationContext(display)
Display *display\

display Specifies an open and initialized display connection.

The XtDisplayToApplicationContext function returns the application context in which the
specified display was initialized. If the display is not known to the Intrinsics, an error message
is issued.

9.6.4. Registering a New Resource Converter

When registering a resource converter, the client must specify the manner in which the conver¬
sion cache is to be used when there are multiple calls to the converter. Conversion cache con¬
trol is specified via an XtCacheType argument.

typedef int XtCacheType;

An XtCacheType field may contain one of the following values:

XtCacheNone

Specifies that the results of a previous conversion may not be reused to satisfy any other
resource requests; the specified converter will be called each time the converted value is
required.

XtCacheAll

Specifies that the results of a previous conversion should be reused for any resource
request that depends upon the same source value and conversion arguments.

XtCacheByDisplay

Specifies that the results of a previous conversion should be used as for XtCacheAll but
the destructor will be called, if specified, if XtCloseDisplay is called for the display con¬
nection associated with the converted value, and the value will be removed from the
conversion cache.

121

X Toolkit Intrinsics XI1 Release 5

The qualifier XtCacheRefCount may be ORed wiih any of the above values. If
XtCacheRefCount is specified, calls to XtCreateWidget, XtCreateManagedWidget,
XtGetApplicationResources and XtGetSubresources that use the converted value will be
counted. When a widget using the converted value is destroyed, the count is decremented, and
if the count reaches zero, the destructor procedure will be called and the converted value will
be removed from the conversion cache.

To register a type converter for all application contexts in a process, use XtSetTypeConverter
and to register a type converter in a single application context, use XtAppSetTypeConverter.

void XtSetTypeConverteiX/rcwwype, tojype, converter, convert_args, num_args,
cache jype, destructor)

String fromjype'.
String tojype;
XtTypeConverter converter;
XtConvertArgList convert_args‘.
Cardinal numjrgs;
XtCacheType cache jype',
XtDestructor destructor:;

fromjype

tojype

converter

convert_args

num_args

cache jype

destructor

Specifies the source type.

Specifies the destination type.

Specifies the resource type converter procedure.

Specifies additional conversion arguments, or NULL.

Specifies the number of entries in convert_args.

Specifies whether or not resources produced by this converter are sharable or
display-specific and when they should be freed.

Specifies a destroy procedure for resources produced by this conversion, or
NULL if no additional action is required to deallocate resources produced by
the converter.

void XtAppSetTypeConverter(appjontext, fromjype, tojype, converter, convertjirgs,
numjirgs, cache jype, destructor)

XtAppContext appjontexr.
String fromjype;
String tojype',
XtTypeConverter converter,
XtConvertArgList convert_args\
Cardinal numjrgs',
XtCacheType cachejype\
XtDestructor destructor.

appjontext

fromjype

tojype

converter

convert_args

numjrgs

cache jype

Specifies the application context.

Specifies the source type.

Specifies the destination type.

Specifies the resource type converter procedure.

Specifies additional conversion arguments, or NULL.

Specifies the number of entries in convert_args.

Specifies whether or not resources produced by this converter are sharable or
display-specific and when they should be freed.

122

X Toolkit Intrinsics XI1 Release 5

destructor Specifies a destroy procedure for resources produced by this conversion, or
NULL if no additional action is required to deallocate resources produced by
the convener.

XtSetTypeConverter registers the specified type converter and destructor in all application
contexts created by the calling process, including any future application contexts that may be
created. XtAppSetTypeConverter registers the specified type converter in the single applica¬
tion context specified. If the samefromjype and tojype are specified in multiple calls to
either function, the most recent overrides the previous ones.

For the few type converters that need additional arguments, the Intrinsics conversion mechan¬
ism provides a method of specifying how these arguments should be computed. The
enumerated type XtAddressMode and the structure XtConvertArgRec specify how each
argument is derived. These are defined in <X11/Intrinsic.h>.

typedef enum {
/* address mode

XtAddress,
XtBaseOffset,
Xtlmmediate,
XtResourceString,
XtResourceQuark,
XtWidgetBaseOffset,
XtProcedureArg

} XtAddressMode;

parameter representation */
/* address */
/* offset */
/* constant */
/* resource name string */
/* resource name quark */
/* offset */
/* procedure to call */

typedef struct {
XtAddressMode addressjnode;
XtPointer addressjd;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

The size field specifies the length of the data in bytes. The addressjnode field specifies how
the addressjd field should be interpreted. XtAddress causes addressjd to be interpreted as
the address of the data. XtBaseOffset causes addressjd to be interpreted as the offset from
the widget base. Xtlmmediate causes addressjd to be interpreted as a constant.
XtResourceString causes addressjd to be interpreted as the name of a resource that is to be
converted into an offset from the widget base. XtResourceQuark causes addressjd to be
interpreted as the result of an XrmStringToQuark conversion on the name of a resource,
which is to be converted into an offset from the widget base. XtWidgetBaseOffset is similar
to XtBaseOffset except that it searches for the closest windowed ancestor if the object is not
of a subclass of Core (See Chapter 12). XtProcedureArg specifies that addressjd is a
pointer to a procedure to be invoked to return the conversion argument. If XtProcedureArg
is specified, addressjd must contain the address of a function of type XtConvertArgProc.

typedef void (*XtConvertArgProc)(Widget, Cardinal*, XrmValue*);
Widget object.
Cardinal *size\
XrmValue *value\

object Passes the object for which the resource is being converted, or NULL if the
converter was invoked by XtCallConverter or XtDirectConvert.

size Passes a pointer to the size field from the XtConvertArgRec.

value Passes a pointer to a descriptor into which the procedure must store the conver¬
sion argument.

123

X Toolkit Intrinsics XI1 Release 5

When invoked, the XtConvertArgProc procedure must derive a conversion argument and
store the address and size of the argument in the location pointed to by value.

In order to permit recntrancy, the XtConvertArgProc should return the address of storage
whose lifetime is no shorter than the lifetime of object. If object is NULL, the lifetime of the
conversion argument must be no shorter than the lifetime of the resource with which the
conversion argument is associated. The Intrinsics do not guarantee to copy this storage but do
guarantee not to reference it if the resource is removed from the conversion cache.

The following example illustrates how to register the CvtStringToPixel routine given earlier:

static XtConvertArgRec colorConvertArgs[] = {
{XtWidgetBaseOffsct, (XtPointcr)XlOffsct(Widget, core.screcn), sizeof(Screen*)},
(XtWidgetBaseOffset, (XtPointcr)XtOffsct(Widget, core.colormap),sizeof(Colonmap)}

};

XtSetTypeConverter(XtRString, XtRPixel, CvtStringToPixel,
colorConvertArgs, XtNumber(coIorConvertArgs), XtCacheByDisplay, NULL);

The conversion argument descriptors colorConvertArgs and screenConvertArg are
predefined by the Intrinsics. Both take the values from the closest windowed ancestor if the
object is not of a subclass of Core. The screenConvertArg descriptor puts the widget’s
screen field into args[0], The colorConvertArgs descriptor puts the widget’s screen field into

and the widget’s colormap field into argsfll.

Conversion routines should not just put a descriptor for the address of the base of the widget
into arg5[0] and use that in the routine. They should pass in the actual values on which the
conversion depends on. By keeping the dependencies of the conversion procedure specific, it
is more likely that subsequent conversions will find what they need in the conversion cache.
This way the cache is smaller and has fewer and more widely applicable entries.

If any conversion arguments of type XtBaseOffset, XtResourceString, XtResourceQuark,
and XtWidgetBaseOffset are specified for conversions performed by XtGetApplication-
Resources, XtGetSubresources, XtVaGetApplicationResources or XtVaGetSubresources,
the arguments are computed with respect to the specified widget, not the base address or
resource list specified in the call.

If the XtConvertArgProc modifies the resource database, the changes affect any in-progress
widget creation, XtGetApplicationResources, or XtGetSubresources in an implementation-
defined manner, however, insertion of new entries or changes to existing entries is allowed and
will not directly cause an error.

9,6.5. Resource Converter Invocation

All resource-fetching routines (for example, XtGetSubresources, XtGetApplication¬
Resources, and so on) call resource converters if the resource database or varargs list specifics
a value that has a different representation from the desired representation or if the widget’s
default resource value representation is different from the desired representation.

To invoke explicit resource conversions, use XtConvertAndStore or XtCallConverter.

typedef XtPointer XtCacheRef;

124

X Toolkit Intrinsics XI1 Reieuse 5

Boolean XtCallConverter(display, converter, conversion_args, num_args, from, to_in_out, cache_ref_retui
Display* display,
XtTypeConvertcr converter,
XrmValuePtr conversion_args\
Cardinal num_args\
XrmValuePtr from',
XrmValuePtr to_in_our,
XtCacheRef * cache_ref_return\

display Specifies the display with which the conversion is to be associated.

converter Specifies the conversion procedure to be called.

o?/iv£r.s/c>rt_arg.ySpecifies the additional conversion arguments needed to perform the conver¬
sion, or NULL.

num_args Specifies the number of entries in conversion_args.

from Specifies a descriptor for the source value.

to_in_out Returns the converted value.

cache_ref_returnRctums a conversion cache id.

The XtCallConverter function looks up the specified type converter in the application context
associated with the display and, if the converter was not registered or was registered with
cache type XtCacheAl! or XtCacheByDisplay looks in the conversion cache to see if this
conversion procedure has been called with the specified conversion arguments. If so, it checks
the success status of the prior call, and if the conversion failed, XtCallConverter returns
False immediately; otherwise it checks the size specified in the to argument and, if it is greater
than or equal to the size stored in the cache, copies the information stored in the cache into the
location specified by to->addr, stores the cache size into to->size, and returns True. If the
size specified in the to argument is smaller than the size stored in the cache, XtCallConverter
copies the cache size into to->size and returns False. If the converter was registered with
cache type XtCacheNone or no value was found in the conversion cache, XtCallConverter
calls the converter and, if it was not registered with cache type XtCacheNone, enters the
result in the cache. XtCallConverter then returns what the converter returned.

The cache_ref_return field specifics storage allocated by the caller in which an opaque value
will be stored. If the type converter has been registered with the XtCacheRefCount modifier
and if the value returned in cache_ref_return is non-NULL, then the caller should store the
cache_ref_return value in order to decrement the reference count when the convened value is
no longer required. The cache_ref_return argument should be NULL if the caller is unwilling
or unable to store the value.

To explicitly decrement the reference counts for resources obtained from XtCallConverter,
use XtAppReleaseCacheRefs.

void XtAppReleaseCachcRefs(app_cewm, refs)
XtAppContext app_contexr,
XtCacheRef *refs\

app_context Specifies the application context.

refs Specifies the list of cache references to be released.

XtAppReleaseCacheRefs decrements the reference count for the conversion entries identified
by the refs argument. 'This argument is a pointer to a NULL-terminated list of XtCacheRef
values. If any reference count reaches zero, the destructor, if any, will be called and the
resource removed from the conversion cache.

125

X Toolkit Intrinsics XI1 Release 5

As a convenience to clients needing to explicitly decrement reference counts via a callback
function, the Intrinsics define two callback procedures, XtCallbackReleaseCacheRef and
XtCallbackReleaseCacheRefList.

void XtCallbackReleaseCacheRef(tf6/<?cr, client jiata, calljdata)
Widget objecr
XtPointer client jiata',
XtPointer calljdata',

object Specifies the object with which the resource is associated.

client jiata Specifies the conversion cache entry to be released.

calljdata Is ignored.

This callback procedure may be added to a callback list to release a previously returned
XtCacheRef value. When adding the callback, the callback client jiata argument must be
specified as the value of the XtCacheRef data cast to type XtPointer.

void XtCallbackReleaseCacheRclListfobyecr, client jiata, calljdata)
Widget objecr,
XtPointer client jiata',
XtPointer calljdata',

object Specifies the object with which the resources are associated.

client jiata Specifies the conversion cache entries to be released.

calljdata Is ignored.

This callback procedure may be added to a callback list to release a list of previously returned
XtCacheRef values. When adding the callback, the callback client jiata argument must be
specified as a pointer to a NULL-terminated list of XtCacheRef values.

To lookup and call a resource converter, copy the resulting value, and free a cached resource
when a widget is destroyed, use XtConvertAndStore.

Boolean XtConvertAndStorefobyccr, fromjype, from, tojype, toJn_out)
Widget object'.
String fromjype',
XrmValuePtr from'.
String tojype',
XrmValuePtr toJn_our,

Specifies the object to use for additional arguments, if any are needed, and the
destroy callback list. Must be of class Object or any subclass thereof.

Specifies the source type.

Specifies the value to be converted.

Specifies the destination type.

Specifies a descriptor for storage into which the converted value will be
returned.

The XtConvertAndStore function looks up the type converter registered to convert fromjype
to tojype, computes any additional arguments needed, and then calls XtCallConverter (or
XtDirectConvert if an old-style converter was registered with XtAddConverter or XtAp-
pAddConverter; see Appendix C) with thq from and toJn_out arguments. The to_in_out
argument specifies the size and location into which the converted value will be stored and is
passed directly to the converter. If the location is specified as NULL, it will be replaced with
a pointer to private storage and the size will be returned in the descriptor. The caller is
expected to copy this private storage immediately and must not modify it in any way. If a

object

fromjype

from

tojype

to in out

126

X Toolkit Intrinsics XI1 Release 5

non-NULL location is specified, the caller must allocate sufficient storage to hold the converted
value and must also '^rify the size of that storage in the descriptor. The size field will be
modified on return tc '.dicate the actual size of the converted data. If the conversion succeeds,
XtConvertAndStore returns True; otherwise, it returns False.

XtConvertAndStore adds XtCallbackReleaseCacheRef to the destroyCallback list of the
specified object if the conversion returns an XtCacheRef value. The resulting resource should
not be referenced after the object has been destroyed.

XtCreateWidget performs processing equivalent to XtConvertAndStore when initializing the
object instance. Because there is extra memory overhead required to implement reference
counting, clients may distinguish those objects that are never destroyed before the application
exits from those that may be destroyed and whose resources should be deallocated.

To specify whether reference counting is to be enabled for the resources of a particular object
when the object is created, the client can specify a value for the Boolean resource XtNinitial-
ResourcesPersistent, class XtCInitialResourcesPersistent.

When XtCreateWidget is called, if this resource is not specified as False in either the arglist
or the resource database, then the resources referenced by this object are not reference-counted,
regardless of how the type converter may have been registered. The effective default value is
True; thus clients that expect to destroy one or more objects and want resources deallocated
must explicitly specify False for XtNinitialResourcesPersistent.

The resources are still freed and destructors called when XtCloseDisplay is called if the
conversion was registered as XtCacheByDisplay.

9.7. Reading and Writing Widget State

Any resource field in a widget can be read or written by a client. On a write operation, the
widget decides what changes it will actually allow and updates all derived fields appropriately.

9.7.1. Obtaining Widget State

To retrieve the current values of resources associated with a widget instance, use XtGet-
Values.

void XtGetValues(ob/ecr, args, num_args)
Widget object,
ArgList args\
Cardinal num_args\

object Specifies the object whose resource values are to be returned. Must be of class
Object or any subclass thereof.

args Specifies the argument list of name/address pairs that contain the resource
names and the addresses into which the resource values are to be stored. The
resource names are widget-dependent.

numjargs Specifies the number of entries in the argument list.

The XtGetValues function starts with the resources specified for the Object class and proceeds
down the subclass chain to the class of the object. The value field of a passed argument list
must contain the address into which to copy the contents of the corresponding object instance
field. If the field is a pointer type, the lifetime of the pointed-to data is defined by the object
class. For the Intrinsics-defined resources, the following lifetimes apply

• Not valid following any operation that modifies the resource;

- XtNchildren resource of composite widgets.

- All resources of representation type XtRCallback.

127

X Toolkit Intrinsics XI1 Release 5

• Remain valid at least until the widget is destroyed:

- XtNaccelerators, XtNtranslations.

• Remain valid until the Display is closed:

- XtNscreen.

It is the caller’s responsibility to allocate and deallocate storage for the copied data according
to the size of the resource representation type used within the object.

If the class of the object’s parent is a subclass of constraintWidgetClass, XtGetValues then
fetches the values for any constraint resources requested. It starts with the constraint resources
specified for constraintWidgetClass and proceeds down the subclass chain to the parent’s
constraint resources. If the argument list contains a resource name that is not found in any of
the resource lists searched, the value at the corresponding address is not modified. If any
get_values_hook procedures in the object’s class or superclass records are non-NULL, they are
called in superclass-to-subclass order after all the resource values have been fetched by XtGet¬
Values. Finally, if the object’s parent is a subclass of constraintWidgetClass, and if any of
the parent’s class or superclass records have declared ConstraintClassExtension records in
the Constraint class part extension field with a record type of NULLQUARK and if the
get_values_hook field in the extension record is non-NULL, XtGetValues calls the
get_values_hook procedures in superclass-to-subclass order. This permits a Constraint parent
to provide nonresource data via XtGetValues.

Get_values_hook procedures may modify the data stored at the location addressed by the value
field, including (but not limited to) making a copy of data whose resource representation is a
pointer. None of the Intrinsics-defmed object classes copy data in this manner. Any operation
that modifies the queried object resource may invalidate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using varargs lists,
use XtVaGetValues.

void XtVaGetValues(o6/ecr,...)
Widget object.;

object Specifies the object whose resource values are to be returned. Must be of class
Object or any subclass thereof.

Specifies the variable argument list for the resources to be returned.

XtVaGetValues is identical in function to XtGetValues with the args and num_args parame¬
ters replaced by a varargs list, as described in Section 2.5.1. All value entries in the list must
specify pointers to storage allocated by the caller to which the resource value will be copied.
It is the caller’s responsibility to ensure that sufficient storage is allocated. If XtVaTypedArg
is specified, the type argument specifies the representation desired by the caller and the size
argument specifies the number of bytes allocated to store the result of the conversion. If the
size is insufficient, a warning message is issued and the list entry is skipped.

9.7.1.1. Widget Subparf Resource Data: the get values hook Procedure

Widgets that have subparts can return resource values from them through XtGetValues by
supplying a get_values_hook procedure. The get_values_hook procedure pointer is of type
XtArgsProc.

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widget w;
ArgList args\
Cardinal *num_args\

128

X Toolkit Intrinsics XII Release 5

w Specifies the widget whose subpart resource values are to be retrieved.

args Specifies the argument list that was passed to XtGetValues or the transformed
varargs list passed to XtVaGetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources should call XtGetSubvalues in the get_values_hook pro¬
cedure and pass in its subresource list and the args and num_args parameters.

9.7.1.2. Widget Subpart State

To retrieve the current values of subpart resource data associated with a widget instance, use
XtGetSubvalues. For a discussion of subpart resources, see Section 9.4.

void XtGetSubvaluesffowe, resources, numjesources, args, num_args)
XtPointer base',
XtResourceList resources'.
Cardinal numjesources',
ArgList args'.
Cardinal numjirgs',

base Specifies the base address of the subpart data structure for which the resources
should be retrieved.

Specifies the subpart resource list.

Specifies the number of entries in the resource list.

Specifies the argument list of name/address pairs that contain the resource
names and the addresses into which the resource values are to be stored.

numjirgs Specifies the number of entries in the argument list.

The XtGetSubvalues function obtains resource values from the structure identified by base.
The value field in each argument entry must contain the address into which to store the
corresponding resource value. It is the caller’s responsibility to allocate and deallocate this
storage according to the size of the resource representation type used within the subpart. If the
argument list contains a resource name that is not found in the resource list, the value at the
corresponding address is not modified.

resources

numjesources

args

To retrieve the current values of subpart resources associated with a widget instance using
varargs lists, use XtVaGetSubvalues.

void XtVaGetSubvalues(bos£, resources, numjesources, ...)
XtPointer base',
XtResourceList resources'.
Cardinal numjesources',

base Specifies the base address of the subpart data structure for which the resources
should be retrieved.

resources Specifies the subpart resource list.

numjesources Specifies the number of entries in the resource list.

Specifies a variable argument list of name/address pairs that contain the
resource names and the addresses into which the resource values are to be
stored.

XtVaGetSubvalues is identical in function to XtGetSubvalues with the args and numjirgs
parameters replaced by a varargs list, as described in Section 2.5.1. XtVaTypedArg is not
supported for XtVaGetSubvalues. If XtVaTypedArg is specified in the list, a warning mes¬
sage is issued and the entry is then ignored.

129

X Toolkit Intrinsics XI1 Release 5

9.7.2. Setting Widget State

To modify the current values of resources associated with a widget instance, use XtSetValues.

void XtSetValues(<?6/'ecr, args, numjirgs)
Widget object
ArgList args;
Cardinal numjrgs',

object Specifies the object whose resources are to be modified. Must be of class
Object or any subclass thereof.

args Specifies the argument list of name/valuc pairs that contain the resources to be
modified and their new values.

numjirgs Specifies the number of entries in the argument list.

The XtSetValues function starts with the resources specified for the Object class fields and
proceeds down the subclass chain to the object. At each stage, it replaces the object resource
fields with any values specified in the argument list. XtSetValues then calls the set_values
procedures for the object in superclass-to-subclass order. If the object has any non-NULL
setjalues_hook fields, these are called immediately after the corresponding set_values pro¬
cedure. This procedure permits subclasses to set subpan data via XtSetValues.

If the class of the object’s parent is a subclass of constraintWidgetCIass, XtSetValues also
updates the object’s constraints. It starts with the constraint resources specified for con-
straintWidgetClass and proceeds down the subclass chain to the parent’s class. At each
stage, it replaces the constraint resource fields with any values specified in the argument list. It
then calls the constraint set_values procedures from constraintWidgetClass down to the
parent’s class. The constraint sct_values procedures arc called with widget arguments, as for
all set_values procedures, not just the constraint records, so that they can make adjustments to
the desired values based on full information about the widget. Any arguments specified that
do not match a resource list entry are silently ignored.

If the object is of a subclass of RectObj, XtSetValues determines if a geometry request is
needed by comparing the old object to the new object. If any geometry changes are required,
XtSetValues restores the original geometry and makes the request on behalf of the widget.a If
the geometry manager returns XtGeometryYes, XtSetValues calls the object’s resize pro¬
cedure. If the geometry manager returns XtGeometryDone, XtSetValues continues, as the
object’s resize procedure should have been called by the geometry manager. If the geometry
manager returns XtGeometryNo, XtSetValues ignores the geometry request and continues.
If the geometry manager returns XtGeometryAlmost, XtSetValues calls the
set_values_almost procedure, which determines what should be done. XtSetValues then
repeats this process, deciding once more whether the geometry manager should be called.

Finally, if any of the set_values procedures returned True, and the widget is realized, XtSet¬
Values causes the widget’s expose procedure to be invoked by calling XClearArea on the
widget’s window.

To modify the current values of resources associated with a widget instance using varargs lists,
use XtVaSetValues.

void XtVaSetValues(ob/'ecr, ...)
Widget objecr,

object Specifies the object whose resources arc to be modified. Must be of class
Object or any subclass thereof.

Specifies the variable argument list of name/value pairs that contain the
resources to be modified and their new values.

XtVaSetValues is identical in function to XtSetValues with the args and numjrgs parame¬
ters replaced by a varargs list, as described in Section 2.5.1.

130

X Toolkit Intrinsics XI1 Release 5

9.7.2.L Widget State: the set values Procedure

The set_values procedure pointer in a widget class is of type XtSetValuesFunc.

typedef Boolean (*XtSetValuesFunc)(Widget, Widget, Widget, ArgList, Cardinal*);
Widget current
Widget request
Widget new,
ArgList args\
Cardinal *num_args\

current

request

new

args

Specifies a copy of the widget as it was before the XtSetValues call.

Specifies a copy of the widget with all values changed as asked for by the
XtSetValues call before any class set_values procedures have been called.

Specifies the widget with the new values that are actually allowed.

Specifies the argument list passed to XtSetValues or the transformed argument
list passed to XtVaSetValues.

numjtrgs Specifies the number of entries in the argument list.

The set_values procedure should recompute any field derived from resources that are changed
(for example, many GCs depend on foreground and background pixels). If no recomputation
is necessary and if none of the resources specific to a subclass require the window to be
redisplayed when their values are changed, you can specify NULL for the set_vaiues field in
the class record.

Like the initialize procedure, set_values mostly deals only with the fields defined in the sub¬
class, but it has to resolve conflicts with its superclass, especially conflicts over width and
height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular,
size calculations of a superclass are often incorrect for a subclass and, in this case, the subclass
must modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width
and height calculated by the superclass sct_valucs procedure are too small and need to be
incremented by the size of the surround. The subclass needs to know if its superclass’s size
was calculated by the superclass or was specified explicitly. All widgets must place them¬
selves into whatever size is explicitly given, but they should compute a reasonable size if no
size is requested. How does a subclass know the difference between a specified size and a size
computed by a superclass?

The request and new parameters provide the necessary information. The request widget is a
copy of the widget, updated as originally requested. The new widget starts with the values in
the request, but it has additionally been updated by all superclass set_values procedures called
so far. A subclass set_values procedure can compare these two to resolve any potential
conflicts. The set_values procedure need not refer to the request widget unless it must resolve
conflicts between the current and new widgets. Any changes the widget needs to make,
including geometry changes, should be made in the new widget.

In the above example, the subclass with the visual surround can see if the width and height in
the request widget are zero. If so, it adds its surround size to the width and height fields in the
new widget. If not, it must make do with the size originally specified. In this case, zero is a
special value defined by the class to permit the application to invoke this behavior.

The new widget is the actual widget instance record. Therefore, the set_values procedure
should do all its work on the new widget; the request widget should never be modified. If the
set_values procedure needs to call any routines that operate on a widget, it should specify new
as the widget instance.

Before calling the set_values procedures, the Intrinsics modify the resources of the request
widget according to the contents of the arglist; if the widget names all its resources in the class

131

X Toolkit Intrinsics XI1 Release 5

resource list, it is never necessary to examine the contents of args.

Finally, the set_values procedure must return a Boolean that indicates whether the widget needs
to be redisplayed. Note that a change in the geometry fields alone does not require the
set_values procedure to return True; the X server will eventually generate an Expose event, if
necessary. After calling all the set_values procedures, XtSetValues forces a redisplay by cal¬
ling XClearArea if any of the set_values procedures returned True. Therefore, a set_values
procedure should not try to do its own redisplaying.

Set_values procedures should not do any work in response to changes in geometry because
XtSetValues eventually will perform a geometry request, and that request might be denied. If
the widget actually changes size in response to a call to XtSetValues, its resize procedure is
called. Widgets should do any geometry-related work in their resize procedure.

Note that it is permissible to call XtSetValues before a widget is realized. Therefore, the
set_values procedure must not assume that the widget is realized.

9.7.2.2. Widget State: the set_values_almost Procedure

The set_values_almost procedure pointer in the widget class record is of type XtAlmostProc.

typedef void (*XtAlmostProc)(Widget, Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widget old;
Widget new,
XtWidgetGeometry *requesr,
XtWidgetGeometry *reply,

old Specifies a copy of the object as it was before the XtSetValues call.

new Specifies the object instance record.

request Specifies the original geometry request that was sent to the geometry manager
that caused XtGeometryAlmost to be returned.

reply Specifies the compromise geometry that was returned by the geometry manager
with XtGeometryAlmost.

Most classes inherit the set_values_almost procedure from their superclass by specifying
XtlnheritSetValuesAlmost in the class initialization. The set_values_almost procedure in
rectObjClass accepts the compromise suggested.

The set_values_almost procedure is called when a client tries to set a widget’s geometry by
means of a call to XtSetValues, and the geometry manager cannot satisfy the request but
instead returns XtGeometryNo or XtGeometryAlmost and a compromise geometry. The
new object is the actual instance record. The x, y, width, height, and border_width fields con¬
tain the original values as they were before the XtSetValues call and all other fields contain
the new values. The request parameter contains the new geometry request that was made to
the parent. The reply parameter contains reply->request_mode equal to zero if the parent
returned XtGeometryNo and contains the parent’s compromise geometry otherwise. The
set_values_almost procedure takes the original geometry and the compromise geometry and
determines if the compromise is acceptable or whether to try a different compromise. It
returns its results in the request parameter, which is then sent back to the geometry manager
for another try. To accept the compromise, the procedure must copy the contents of the reply
geometry into the request geometry; to attempt an alternative geometry, the procedure may
modify any part of the request argument; to terminate the geometry negotiation and retain the
original geometry, the procedure must set request->request_mode to zero. The geometry fields
of the old and new instances must not be modified directly.

132

X Toolkit Intrinsics XI1 Release 5

9.7.23. Widget State: the ConstraintClassPart set_values Procedure

The constraint set_values procedure pointer is of type XtSetValuesFunc. The values passed
to the parent’s constraint set_values procedure are the same as those passed to the child’s class
set_values procedure. A class can specify NULL for the setjalues field of the Con-
straintPart if it need not compute anything.

The constraint set_values procedure should recompute any constraint fields derived from con¬
straint resources that are changed. Further, it may modify other widget fields as appropriate.
For example, if a constraint for the maximum height of a widget is changed to a value smaller
than the widget’s current height, the constraint sct_values procedure may reset the height field
in the widget.

9Z7.2.4. Widget Subpart State

To set the current values of subpart resources associated with a widget instance, use XtSet-
Subvalues. For a discussion of subpart resources, see Section 9.4.

void XtSetSubvalues(fow£, resources, num_resources, args, num_args)
XtPointer base;
XtResourceList resources',
Cardinal numjesources',
ArgList args\
Cardinal num_args\

base Specifies the base address of the subpart data structure into which the resources
should be written.

resources Specifies the subpart resource list.

numjesources Specifies the number of entries in the resource list.

args Specifies the argument list of name/valuc pairs that contain the resources to be
modified and their new values.

num_args Specifies the number of entries in the argument list.

The XtSetSubvalues function updates the resource fields of the structure identified by base.
Any specified arguments that do not match an entry in the resource list are silently ignored.

To set the current values of subpart resources associated with a widget instance using varargs
lists, use XtVaSetSubvalues.

void XtVaSetSubvalues(fotfe, resources, numjesources, ...)
XtPointer base',
XtResourceList resources'.
Cardinal numjesources',

base Specifies the base address of the subpart data structure into which the resources
should be written.

resources Specifies the subpart resource list.

numjesources Specifies the number of entries in the resource list.

Specifies the variable argument list of name/value pairs that contain the
resources to be modified and their new values.

XtVaSetSubvalues is identical in function to XtSetSubvalues with the args and numjirgs
parameters replaced by a varargs list, as described in Section 2.5.1. XtVaTypedArg is not
supported for XtVaSetSubvalues. If an entry containing XtVaTypedArg is specified in the
list, a warning message is issued and the entry is ignored.

133

X Toolkit Intrinsics XI1 Release 5

9.7.2J. Widget Subpart Resource Data: the set_values_hook Procedure

Note

The set_values_hook procedure is obsolete, as the same information is now avail¬
able to the set_values procedure. The procedure has been retained for those wid¬
gets that used it in versions prior to Release 4.

Widgets that have a subpart can set the subpart resource values through XtSetValues by sup¬
plying a set_values_hook procedure. The sct_valucs_hook procedure pointer in a widget class
is of type XtArgsFunc.

typedef Boolean (*XtArgsFunc)(Widget, Arglist, Cardinal*);
Widget w;
Arglist args\
Cardinal *num_args\

w Specifies the widget whose subpart resource values are to be changed.

args Specifies the argument list that was passed to XtSetValues or the transformed
varargs list passed to XtVaSetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources may call XtSetValues from the set_values_hook procedure
and pass in its subresource list and the args and num_args parameters.

134

X Toolkit Intrinsics XI1 Release 5

Chapter 10

Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping of user events into
widget behavior by using the event manager. Instead, they provide a default mapping of
events into behavior that you can override.

The translation manager provides an interface to specify and manage the mapping of X event
sequences into widget-supplied functionality, for example, calling procedure Abe when the y
key is pressed.

The translation manager uses two kinds of tables to perform translations:

• The action tables, which are in the widget class structure, specify the mapping of exter¬
nally available procedure name strings to the corresponding procedure implemented by
the widget class.

• A translation table, which is in the widget class structure, specifies the mapping of event
sequences to procedure name strings.

You can override the translation table in the class structure for a specific widget instance by
supplying a different translation table for the widget instance. The resources XtNtranslations
and XtNbaseTranslations are used to modify the class default translation table; see Section
10.3.

10.1. Action Tables

All widget class records contain an action table, an array of XtActionsRec entries. In addi¬
tion, an application can register its own action tables with the translation manager so that the
translation tables it provides to widget instances can access application functionality directly.
The translation action procedure pointer is of type XtActionProc.

typedef void (*XtActionProc)(Widget, XEvent*, String*, Cardinal*);
Widget w;
XEvent *event;
String *params;
Cardinal *num_params\

w

event

params

Specifies the widget that caused the action to be called.

Specifies the event that caused the action to be called. If the action is called
after a sequence of events, then the last event in the sequence is used.

Specifies a pointer to the list of strings that were specified in the translation
table as arguments to the action, or NULL.

numjparams Specifies the number of entries in params.

typedef struct _XtActionsRec {
String string;
XtActionProc proc;

) XtActionsRec, *XtActionList;

The string field is the name used in translation tables to access the procedure. The proc field
is a pointer to a procedure that implements the functionality.

When the action list is specified as the CoreClassPart actions field the string pointed to by
string must be permanently allocated prior to or during the execution of the class initialization

135

X Toolkit Intrinsics XI1 Release 5

procedure and must not be subsequently deallocated.

Action procedures should not assume that the widget in which they are invoked is realized; an
accelerator specification can cause an action procedure to be called for a widget that does not
yet have a window. Widget writers should also note which of a wideet’s callback lists are
invoked from action procedures and warn clients not to assume the fidget is realized in those
callbacks.

For example, a Pushbutton widget has procedures to take the following actions:

• Set the button to indicate it is activated.

• Unset the button back to its normal mode.

• Highlight the button borders.

• Unhighlight the button borders.

• Notify any callbacks that the button has been activated.

The action table for the Pushbutton widget class makes these functions available to translation
tables written for Pushbutton or any subclass. The string entry is the name used in translation
tables. The procedure entry (usually spelled identically to the string) is the name of the C pro¬
cedure that implements that function:

XtActionsRec actionTable[] = {
("Set", Set},
{"Unset", Unset),
("Highlight", Highlight),
"Unhighlight", Unhighlight)

{"Notify", Notify),

The Intrinsics reserve all action names and parameters starting with the characters “Xt” for
future standard enhancements. Users, applications, and widgets should not declare action
names or pass parameters starting with these characters except to invoke specified built-in
Intrinsics functions.

10.1.1. Action Table Registration

The actions and num_actions fields of CoreCIassPart specify the actions implemented by a
widget class. These are automatically registered with the Intrinsics when the class is initialized
and must be allocated in writable storage prior to Core class_part initialization, and never deal¬
located. To save memory and optimize access, the Intrinsics may overwrite the storage in
order to compile the list into an internal representation.

To declare an action table within an application and register it with the translation manager,
use XtAppAddActions.

void XtAppAddActions(<3pp_co/trexr, actions, num_actions)
XtAppContext app_contexr,
XtActionList actions',;
Cardinal num_actions\

app_context Specifies the application context.

actions Specifies the action table to register.

num_actions Specifies the number of entries in this action table.

136

X Toolkit Intrinsics XI1 Release 5

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table containing XtMenuPopup and XtMenuPopdown as part of XtCreateApplica-
tionContext.

10.1.2. Action Names to Procedure Translations

The translation manager uses a simple algorithm to resolve the name of a procedure specified
in a translation table into the actual procedure specified in an action table. When the widget is
realized, the translation manager performs a search for the name in the following tables, in
order:

e The widget’s class and all superclass action tables, in subclass-to-superclass order.

• The parent’s class and all superclass action tables, in subclass-to-superclass order, then
on up the ancestor tree.

• The action tables registered with XtAppAddActions and XtAddActions from the most
recently added table to the oldest table.

As soon as it finds a name, the translation manager stops the search. If it cannot find a name,
the translation manager generates a warning message.

10.1.3. Action Hook Registration

An application can specify a procedure that will be called just before every action routine is
dispatched by the translation manager. To do so, the application supplies a procedure pointer
of type XtActionHookProc.

typedef void (*XtActionHookProc)(Widgct, XtPointer, String, XEvent*, String*, Cardinal*);
Widget w;
XtPointer client_daia\
String action_name;
XEvent* evenr.
String* params;
Cardinal* numjparams\

w Specifies the widget whose action is about to be dispatched.

client_data Specifies the application-specific closure that was passed to XtAppAddAc-
tionHook.

action jiame Specifies the name of the action to be dispatched.

event Specifies the event argument that will be passed to the action routine.

params Specifies the action parameters that will be passed to the action routine.

num_params Specifies the number of entries in params.

Action hooks should not modify any of the data pointed to by the arguments other than the
client_data argument.

To add an action hook, use XtAppAddActionHook.

XtActionHookld XtAppAddActionHookfapp, proc, client_data)
XtAppContext app\
XtActionHookProc proc,
XtPointer client_data\

app Specifies the application context.

proc Specifies the action hook procedure.

137

X Toolkit Intrinsics XI1 Release 5

clientjlata Specifies application-specific data to be passed to the action hook.

XtAppAddActionHook adds the specified procedure to the front of a list maintained in the
application context. In the future, when an action routine is about to be invoked for any wid¬
get in this application context, either through the translation manager or via XtCallAc-
tionProc, the action hook procedures will be called in reverse order of registration just prior to
invoking the action routine.

Action hook procedures are removed automatically and the XtActionHooklds destroyed when
the application context in which they were added is destroyed.

To remove an action hook procedure without destroying the application context, use XtRemo-
veActionKook.

void XtRemoveActionHook(fi/)
XtActionHookld id;

id Specifies the action hook id returned by XtAppAddActionHook.

XtRemoveActionHook removes the specified action hook procedure from the list in which it
was registered.

10.2. Translation Tables

All widget, instance records contain a translation table, which is a resource with a default value
specified elsewhere in the class record. A translation table specifies what action procedures are
invoked for an event or a sequence of events. A translation table is a string containing a list of
translations from an event sequence into one or more action procedure calls. The translations
are separated from one another by newline characters (ASCII LF). The complete syntax of
translation tables is specified in Appendix B.

As an example, the default behavior of Pushbutton is

• Highlight on enter window.

© Unhighlight on exit window.

• Invert on left button down.

• Call callbacks and reinvert on left button up.

The following illustrates Pushbutton’s default translation table:

static String defaultTranslations =
"<EnterWindow>:Highlight()\n\
<LeaveWindow>:Unhighlight()\n\
<BtnlDown>: Set()\n\
<BtnlUp>: NotifyO UnsctQ";

The tmjable field of the CoreClassPart should be filled in at class initialization time with the
string containing the class’s default translations. If a class wants to inherit its superclass’s
translations, it can store the special value XtlnheritTranslations into tmjable. In Core’s
class part initialization procedure, the Intnnsics compile this translation table into an efficient
internal form. Then, at widget creation time, this default translation table is combined with the
XLNtranslations and XtNbaseTranslations resources; see Section 10.3.

The resource conversion mechanism automatically compiles string translation tables that are
specified in the resource database. If a client uses translation tables that are not retrieved via a
resource conversion, it must compile them itself using XtParseTranslationTable.

The Intrinsics use the compiled form of the translation table to register the necessary events
with the event manager. Widgets need do nothing other than specify the action and translation
tables for events to be processed by the translation manager.

138

X Toolkit Intrinsics XI1 Release 5

10.2.1. Event Sequences

An event sequence is a comma-separated list of X event descriptions that describes a specific
sequence of X events to map to a set of program actions. Each X event description consists of
three parts: The X event type, a prefix consisting of the X modifier bits, and an event-specific
suffix.

Various abbreviations are supported to make translation tables easier to read. The events must
match incoming events in left-to-right order to trigger the action sequence.

10.2.2. Action Sequences

Action sequences specify what program or widget actions to take in response to incoming X
events. An action sequence consists of space-separated action procedure call specifications.
Each action procedure call consists of the name of an action procedure and a parenthesized list
of zero or more comma-separated string parameters to pass to that procedure. The actions are
invoked in left-to-right order as specified in the action sequence.

10.2.3. Multi-click Time

Translation table entries may specify actions that are taken when two or more identical events
occur consecutively within a short time interval, called the multi-click time. The multi-click
time value may be specified as an application resource with name “multiClickTime” and class
“MultiClickTime” and may also be modified dynamically by the application. The multi-click
time is unique for each Display value and is retrieved from the resource database by
XtDisplaylnitiaiize. If no value is specified, the initial value is 200 milliseconds.

To set the multi-click time dynamically, use XtSetMultiClickTime.

void XtSctMultiGickTimefd/sp/ay, time)
Display *display\
int time;

display Specifies the display connection.

time Specifies the multi-click time in milliseconds.

XtSetMultiClickTime sets the time interval used by the translation manager to determine
when multiple events are interpreted as a repeated event. When a repeat count is specified in a
translation entry, the interval between the timestamps in each pair of repeated events (e.g.,
between two ButtonPress events) must be less than the multi-click time in order for the trans¬
lation actions to be taken.

To read the multi-click time, use XtGetMultiClickTime.

int XtGetMultiClickTime(<i/.yp/ay)
Display *display\

display Specifies the display connection.

XtGetMultiClickTime returns the time in milliseconds that the translation manager uses to
determine if multiple events are to be interpreted as a repeated event for purposes of matching
a translation entry containing a repeat count.

10J. Translation Table Management

Sometimes an application needs to merge its own translations with a widget’s translations. For
example, a window manager provides functions to move a window. The window manager
wishes to bind this operation to a specific pointer button in the title bar without the possibility

139

X Toolkit Intrinsics XI1 Release 5

of user override and bind it to other buttons that may be overridden by the user.

To accomplish this, the window manager should first create the title bar and then should merge
the two translation tables into the title bar’s translations. One translation table contains the
translations that the window manager wants only if the user has not specified a translation for a
particular event or event sequence (i.e., those that may be overridden). The other translation
table contains the translations that the window manager wants regardless of what the user has
specified.

Three Intrinsics functions support this merging:

XtParseTransIationTable Compiles a translation table.

XtAugmentTranslations Merges a compiled translation table into a widget’s com¬
piled translation table, ignoring any new translations that
conflict with existing translations.

XtOverrideTranslations Merges a compiled translation table into a widget’s com¬
piled translation table, replacing any existing translations
that conflict with new translations.

To compile a translation table, use XtParseTransIationTable.

XtTranslations XtParseTranslationTable(ra/?/e)
String table;

table Specifies the translation table to compile.

The XtParseTransIationTable function compiles the translation table, provided in the format
given in Appendix B, into an opaque internal representation of type XtTranslations. Note
that if an empty translation table is required for any purpose, one can be obtained by calling
XtParseTransIationTable and passing an empty string.

To merge additional translations into an existing translation table, use XtAugmentTransla¬
tions.

void XtAugmentTranslationsfw, translations)
Widget w;
XtTranslations translations:;

w Specifies the widget into which the new translations are to be merged. Must
be of class Core or any subclass thereof.

translations Specifies the compiled translation table to merge in.

The XtAugmentTranslations function merges the new translations into the existing widget
translations, ignoring any #replace, #augment, or #override directive that may have been
specified in the translation string. The translation tabic specified by translations is not altered
by this process. XtAugmentTranslations logically appends the string representation of the
new translations to the string representation of the widget’s current translations and reparses
the result with no warning messages about duplicate left-hand sides, then stores the result back
into the widget instance; i.e., if the new translations contain an event or event sequence that
already exists in the widget’s translations, the new translation is ignored.

To overwrite existing translations with new translations, use XtOverrideTranslations.

void XtOverrideTranslationsO, translations)
Widget w;
XtTranslations translations;

140

X Toolkit Intrinsics XI1 Release 5

w Specifies the widget into which the new translations are to be merged. Must be
of class Core or any subclass thereof.

translations Specifies the compiled translation table to merge in.

The XtOverrideTranslations function merges the new translations into the existing widget
translations, ignoring any #replace, #augment, or #override directive that may have been
specified in the translation string. The translation table specified by translations is not altered
by this process. XtOverrideTranslations logically appends the string representation of the
widget’s current translations to the string representation of the new translations and reparses
the result with no warning messages about duplicate left-hand sides, then stores the result back
into the widget instance; i.e., if the new translations contain an event or event sequence that
already exists in the widget’s translations, the new translation overrides the widget’s transla¬
tion.

To replace a widget’s translations completely, use XtSetValues on the XiNtranslations
resource and specify a compiled translation table as the value.

To make it possible for users to easily modify translation tables in their resource files, the
string-to-translation-table resource type converter allows the string to specify whether the table
should replace, augment, or override any existing translation table in the widget. To specify
this, a sharp sign (#) is given as the first character of the table followed by one of the key¬
words “replace”, “augment”, or “override” to indicate whether to replace, augment, or over¬
ride the existing table. The replace or merge operation is performed during the Core instance
initialization and during the Core set_values invocation. Each merge operation produces a new
translation resource value; if the original tables were shared by other widgets, they are
unaffected. If no directive is specified, “#rcplacc” is assumed.

At instance initialization the XtNtranslations resource is first fetched. Then, if it was not
specified or did not contain “#rcplace”, the resource database is searched for the resource
XtNbaseTranslations. If XtNbaseTranslations is found it is merged into the widget class trans¬
lation table. Then the widget translations field is merged into the result, or into the class
translation table if XtNbaseTranslations was not found. This final table is then stored into the
widget translations field. If the XtNtranslations resource specified “#replace” no merge is
done. If neither XtNbaseTranslations or XtNtranslations are specified, the class translation
table is copied into the widget instance.

To completely remove existing translations, use XtUnimstallTranslations.

void XtUninstallTranslations(w)
Widget w;

w Specifies the widget from which the translations are to be removed. Must be
of class Core or any subclass thereof.

The XtUninstallTransIations function causes the entire translation table for the widget to be
removed.

10.4. Using Accelerators

It is often desirable to be able to bind events in one widget to actions in another. In particular,
it is often useful to be able to invoke menu actions from the keyboard. The Intrinsics provide
a facility, called accelerators, that lets you accomplish this. An accelerator table is a translation
table that is bound with its actions in the context of a particular widget, the source widget.
The accelerator table can then be installed on one or more destination widgets. When an event
sequence in the destination widget would cause an accelerator action to be taken, and if the
source widget is sensitive, the actions are executed as though triggered by the same event

141

X Toolkit Intrinsics XI1 Release 5

sequence in the accelerator source widget. The event is passed to the action procedure without
modification. The action procedures used within accelerators must not assume that the source
widget is realized nor that any fields of the event arc in reference to the source widget’s win¬
dow if the widget is realized.

Each widget instance contains that widget’s exported accelerator table as a resource. Each
class of widget exports a method that takes a displayablc string representation of the accelera¬
tors so that widgets can display their current accelerators. The representation is the accelerator
table in canonical translation table form (see Appendix B). The display_accelerator procedure
pointer is of type XtStringProc.

typedef void (*XtStringProc)(Widget, String);
Widget w;
String string;

w Specifies the source widget that supplied the accelerators.

string Specifies the string representation of the accelerators for this widget.

Accelerators can be specified in resource files, and the string representation is the same as for a
translation table. However, the interpretation of the #augment and #override directives
applies to what will happen when the accelerator is installed; that is, whether or not the
accelerator translations will override the translations in the destination widget. The default is
#augment, which means that the accelerator translations have lower priority than the destina¬
tion translations. The #replace directive is ignored for accelerator tables.

To parse an accelerator table, use XtParseAcceleratorTable.

XtAccelerators XtParseAcceleratorTablefsource)
String source;

source Specifies the accelerator tabic to compile.

The XtParseAcceleratorTable function compiles the accelerator table into an opaque internal
representation. The client should set the XtNaccclcrators resource of each widget that is to be
activated by these translations to the returned value.

To install accelerators from a widget on another widget, use XtlnstallAccelerators.

void XtInstallAccelerators(tf^rmdho/t, source)
Widget destination;
Widget source;

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the widget from which the accelerators are to come. Must be of class
Core or any subclass thereof.

The XtlnstallAccelerators function installs the accelerators resource value from source onto
destination by merging the the source accelerators into the destination translations. If the
source display_accelerator field is non-NULL, XtlnstallAccelerators calls it with the source
widget and a string representation of the accelerator table, which indicates that its accelerators
have been installed and that it should display them appropriately. The string representation of
the accelerator table is its canonical translation table representation.

As a convenience for installing all accelerators from a widget and all its descendants onto one
destination, use XtlnstallAllAccelerators.

142

X Toolkit Intrinsics XI1 Release 5

void XtInstallAllAccelerators(desr/'/iar/c>rt, source)
Widget destination;
Widget source:

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the root widget of the widget tree from which the accelerators are to
come. Must be of class Core or any subclass thereof.

The XtlnstallAUAccelerators function recursively descends the widget tree rooted at source
and installs the accelerators resource value of each widget encountered onto destination. A
common use is to call XtlnstallAUAccelerators and pass the application main window as the
source.

10.5. KeyCode-to-KeySym Conversions

The translation manager provides support for automatically translating KeyCodes in incoming
key events into KeySyms. KeyCode-to-KeySym translator procedure pointers are of type
XtKeyProc.

typedef void (*XtKeyProc)(Display*. KeyCode, Modifiers, Modifiers*, KeySym*);
Display *display\
KeyCode keycode\
Modifiers modifiers;
Modifiers * modifiers _return\
KeySym *kerysym_return\

display

keycode

modifiers

modifiers _re turn

keysym_return

Specifies the display that the KcyCodc is from.

Specifies the KeyCode to translate.

Specifies the modifiers to the KcyCodc.

Specifies a location in which to store a mask that indicates the subset of all
modifiers that are examined by the key translator.

Specifies a location in which to store the resulting KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any given key
translator function, modifiers jeturn will be a constant that indicates the subset of all modifiers
that are examined by the key translator.

The KeyCode-to-KeySym translator procedure must be implemented such that multiple calls
with the same display, keycode, and modifiers return the same result until either a new case
converter (XtCaseProc) is installed or a MappingNotify event is received.

The Intrinsics maintain tables internally to map KeyCodes to KeySyms for each open display.
Translator procedures and other clients may share a single copy of this table to perform the
same mapping.

To return a pointer to the KeySym-to-KeyCode mapping table for a particular display, use
XtGetKeysymTabSe.

KeySym *XtGetKeysymTable(d/s/?/ay, min_keycode jeturn, keysyms_per_keycodejeturn)
Display *display;
KeyCode *min_keycode jeturn',
int *keysymsjjer_keycode_return:

display Specifies the display whose table is required.

min_keycode_return
Returns the minimum KcyCodc valid for the display.

143

X Toolkit Intrinsics XI1 Release 5

keysyms jperJceycodejeturn
Returns the number of KeySyms stored for each KeyCode.

XtGetKeysymTable returns a pointer to the Intrinsics’ copy of the server’s KeyCode-to-
KeySym table. This table must not be modified. There are keysyms jperJceycodejeturn
KeySyms associated with each KeyCode, located in the table with indices starting at index

(test_keycode - min_keycode_retum) * keysyms_per_keycode_retum

for KeyCode test Jceycode. Any entries that have no KeySyms associated with them contain
the value NoSymboI. Clients should not cache the KcySym table but should call XtGet¬
KeysymTable each time the value is needed, as the table may change prior to dispatching each
event.

For more information on this table, see Section 12.7 in Xlib - C Language X Interface.

To register a key translator, use XtSetKeyTranslator.

void XtSetKeyTranslatorf^fsp/cry, proc)
Display ^display,
XtKeyProc proc,

display Specifies the display from which to translate the events.

proc Specifies the procedure to perform key translations.

The XtSetKeyTranslator function sets the specified procedure as the current key translator.
The default translator is XtTranslateKey, an XtKeyProc that uses the Shift, Lock, and group
modifiers with the interpretations defined in X Window System Protocol, Section 5. It is pro¬
vided so that new translators can call it to get default KcyCode-to-KeySym translations and so
that the default translator can be reinstalled.

To invoke the currently registered KeyCode-to-KcySym translator, use XtTransIateKeycode.

void XtTranslateKeycodefcfop/ay, keycodc, modifiers, modifiersjeturn, keysymjeturn)
Display *display;
KeyCode keycodc.
Modifiers modifiers'.
Modifiers * modifiersjeturn;
KeySym * keysymjeturn'.

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCodc.

modifiersjeturn Returns a mask that indicates the modifiers actually used to generate the
KeySym.

keysymjeturn Returns the resulting KeySym.

The XtTransIateKeycode function passes the specified arguments directly to the currently
registered KeyCode-to-KeySym translator.

To handle capitalization of nonstandard KeySyms, the Intrinsics allow clients to register case
conversion routines. Case converter procedure pointers are of type XtCaseProc.

typedef void (*XtCaseProc)(Display*, KeySym, KeySym*, KeySym*);
Display *display,
KeySym keysym',
KeySym * lowerjeturn',
KeySym * upperjeturn'.

144

X Toolkit Intrinsics XI1 Release 5

display

keysym

lower_return

upper_return

If there is no

Specifies the display connection for which the conversion is required.

Specifies the KeySyrn to convert.

Specifies a location into which to store the lower-case equivalent for the

KeySyrn.

Specifies a location into which to store the upper-case equivalent for the

KeySyrn.

case distinction, this procedure should store the KeySyrn into both return values.

To register a case converter, use XtRegisterCaseConverter.

void XtRegisterCaseConverterfd/sp/ay, proc, start, stop)
Display *display;
XtCaseProc proc,
KeySyrn start:,
KeySyrn stop',

display Specifies the display from which the key events are to come.

proc Specifies the XtCaseProc to do the conversions.

start Specifies the first KeySyrn for which this converter is valid.

stop Specifies the last KeySyrn for which this converter is valid.

The XtRegisterCaseConverter registers the specified case convener. The start and stop argu¬
ments provide the inclusive range of KeySyms for which this converter is to be called. The
new converter overrides any previous converters for KeySyms in that range. No interface
exists to remove converters; you need to register an identity converter. When a new converter
is registered, the Intrinsics refresh the keyboard state if necessary. The default convener
understands case conversion for all Latin KeySyms defined in X Window System Protocol,
Appendix A.

To determine upper- and lower-case equivalents for a KeySyrn, use XtConvertCase.

void XlCon\QTlCase(display, keysym, lower_return, upper_return)
Display *display\
KeySyrn keysym',
KeySyrn * lower_return',
KeySyrn * upper_return\

display Specifies the display that the KeySyrn came from.

keysym Specifies the KeySyrn to convert.

lower jeturn Returns the lower-case equivalent of the KeySyrn.

upper jeturn Returns the upper-case equivalent of the KeySyrn.

The XtConvertCase function calls the appropriate convener and returns the results. A user-
supplied XtKeyProc may need to use this function.

10.6. Obtaining a KeySyrn in an Action Procedure

When an action procedure is invoked on a KeyPress or KeyRelease event, it often has a need
to retrieve the KeySyrn and modifiers corresponding to the event that caused it to be invoked.
In order to avoid repeating the processing that was just performed by the Intrinsics to match
the translation entry, the KeySyrn and modifiers are stored for the duration of the action pro¬
cedure and are made available to the client.

To retrieve the KeySyrn and modifiers that matched the final event specification in the transla¬
tion table entry, use X tG el Action Keysym

145

X Toolkit Intrinsics XI1 Release 5

KeySym XtGetActionKeysym(eve/ir, modifiersjeturn)
XEvent *event,;
Modifiers * modifiers jeturn;

event Specifies the event pointer passed to the action procedure by the Intrinsics.

modifiers jeturn Returns the modifiers that caused the match, if non-NULL.

If XtGetActionKeysym is called after an action procedure has been invoiced by the Intrinsics
and before that action procedure returns, and if the event pointer has the same value as the
event pointer passed to that action routine, and if the event is a KeyPress or KeyRelease
event, then XtGetActionKeysym returns the KeySym that matched the final event
specification in the translation table and, if modifiers jeturn is non-NULL, the modifier state
actually used to generate this KeySym; otherwise, if the event is a KeyPress or KeyRelease
event, then XtGetActionKeysym calls XtTransIateKeycode and returns the results; else it
returns NoSymbol and does not examine modifiers jeturn.

Note that if an action procedure invoked by the Intrinsics invokes a subsequent action pro¬
cedure (and so on) via XtCallActionProc, the nested action procedure may also call
XtGetActionKeysym to retrieve the Intrinsics’ KeySym and modifiers.

10.7. KeySym-to-KeyCode Conversions

To return the list of KeyCodes that map to a particular KeySym in the keyboard mapping table
maintained by the Intrinsics, use XtKeysymToKeycodeList.

void XtKeysymToKeycodeList(dLp/ay, keysym, key codes jeturn, key count jeturn)
Display *display;
KeySym keysym;
Key Code ** key codesjeturn;
Cardinal *keycountjeturn;

display

keysym

key codes jeturn

keycount jeturn

Specifies the display whose table is required.

Specifies the KeySym for which to search.

Returns a list of KeyCodes that have keysym associated with them, or
NULL if keycount jeturn is 0.

Returns the number of KeyCodes in the kcycode list.

The XtKeysymToKeycodeList procedure returns all the KeyCodes that have keysym in their
entry for the keyboard mapping table associated with display. For each entry in the table, the
first four KeySyms (groups 1 and 2) are interpreted as specified by X Window System Protocol,
Section 5. If no KeyCodes map to the specified KeySym, keycount jeturn is zero and
* key codesjeturn is NULL.

The caller should free the storage pointed to by key codes jeturn using XtFree when it is no
longer useful. If the caller needs to examine the KcyCode-to-KcySym table for a particular
KeyCode, it should call XtGetKeysymTable.

10,8. Registering Button and Key Grabs For Actions

To register button and key grabs for a widget’s window according to the event bindings in the
widget’s translation table, use XtRegisterGrabAction.

void XtRegisterGrabAction(acnon jroc, owner jvents, eventjnask, pointerjnode, keyboardjnode)
XtActionProc action jroc;
Boolean owner events;
unsigned int event jnask;
int pointer jnode, keyboard jnode;

146

X Toolkit Intrinsics XI1 Release 5

action_proc Specifies the action procedure to search for in translation tables.

owner _events
eventjnask
pointerjnode
key boardjnode Specify arguments to XtGrabButton or XtGrabKey.

XtRegisterGrabAction adds the specified action_proc to a list known to the translation
manager. When a widget is realized, or when the translations of a realized widget or the
accelerators installed on a realized widget arc modified, its translation table and any installed
accelerators are scanned for action procedures on this list. If any are invoked on ButtonPress
or KeyPress events as the only or final event in a sequence, the Intrinsics will call XtGrab¬
Button or XtGrabKey for the widget with every button or KeyCode which maps to the event
detail field, passing the specified owner jevents, event jnask, pointer jnode, and
keyboard jnode. For ButtonPress events, the modifiers specified in the grab are determined
directly from the translation specification and confinejo and cursor are specified as None.
For KeyPress events, if the translation table entry specifies colon (:) in the modifier list, the
modifiers are determined by calling the key translator procedure registered for the display and
calling XtGrabKey for every combination of standard modifiers which map the KeyCode to
the specified event detail KeySym, and ORing any modifiers specified in the translation table
entry, and event jnask is ignored. If the translation table entry does not specify colon in the
modifier list, the modifiers specified in the grab arc those specified in the translation table entry
only. For both ButtonPress and KeyPress events, don’t-care modifiers are ignored unless the
translation entry explicitly specifies “Any” in the modifiers field.

If the specified action_proc is already registered for the calling process, the new values will
replace the previously specified values for any widgets that become realized following the call,
but existing grabs are not altered on currently-realized widgets.

When translations or installed accelerators arc modified for a realized widget, any previous key
or button grabs registered as a result of the old bindings are released if they do not appear in
the new bindings and are not explicitly grabbed by the client with XtGrabKey or XtGrab¬
Button .

10.9. Invoking Actions Directly

Normally action procedures are invoked by the Intrinsics when an event or event sequence
arrives for a widget. To invoke an action procedure directly, without generating (or synthesiz¬
ing) events, use XtCallActionProc.

void XtCallActionProc(w/dger, action, event, params, numjparams)
Widget widger.
String action-,
XEvent *evenr.
String *params\
Cardinal num jparams\

widget Specifies the widget in which the action is to be invoked. Must be of class
Core or any subclass thereof.

action Specifies the name of the action routine.

event Specifies the contents of the event passed to the action routine.

params Specifies the contents of the params passed to the action routine.

num_params Specifies the number of entries in params.

XtCallActionProc searches for the named action routine in the same manner and order as
translation tables are bound, as described in Section 10.1.2, except that application action tables
are searched, if necessary, as of the time of the call to XtCallActionProc. If found, the action

147

X Toolkit Intrinsics XI1 Release 5

routine is invoked with the specified widget, event pointer, and parameters. It is the responsi¬
bility of the caller to ensure that the contents of the event, params, and num_params arguments
are appropriate for the specified action routine and, if necessary, that the specified widget is
realized or sensitive. If the named action routine cannot be found, XtCallActionProc gen¬
erates a warning message and returns.

10.10. Obtaining a Widget’s Action List

Occasionally a subclass will require the pointers to one or more of its superclass’s action pro¬
cedures. This would be needed, for example, in order to envelope the superclass’s action. To
retrieve the list of action procedures registered in the superclass’s actions field, use XtGetAc-
tionList.

void XtGetActionList(w(Jger_c/a55, actionsjeturn, num_actions_return)
WidgetGass widget_class\
XtActionList * actions_return\
Cardinal *num_actions_return\

widget_class Specifies the widget class whose actions are to be returned.

actions jeturn Returns the action list.

num_actions_return
Returns the number of action procedures declared by the class.

XtGetActionList returns the action table defined by the specified widget class. This table
does not include actions defined by the superclasses. If widget_class is not initialized, or is not
coreWidgetClass or a subclass thereof, or if the class docs not define any actions,
* actions jeturn will be NULL and *num_actions_rcturn will be zero. If * actionsjeturn is
non-NULL the client is responsible for freeing the table using XtFree when it is no longer
needed.

148

X Toolkit Intrinsics XI1 Release 5

Chapter 11

Utility Functions

The Intrinsics provide a number of utility functions that you can use to

• Determine the number of elements in an array.

• Translate strings to widget instances.

• Manage memory usage.

• Share graphics contexts.

• Manipulate selections.

• Merge exposure events into a region.

• Translate widget coordinates.

• Locate a widget given a window id.

• Handle errors.

• Set the WM_COLORMAP_WINDOWS property.

• Locate files by name with string substitutions.

11.1. Determining the Number of Elements in an Array

To determine the number of elements in a fixed-size array, use XtNumber.

Cardinal XtNumber(array)
Array Type array,

array Specifies a fixed-size array of arbitrary type.

The XtNumber macro returns the number of elements allocated to the array.

11.2. Translating Strings to Widget Instances

To translate a widget name to a widget instance, use XtNameToWidget.

Widget XtNameToWidgetfrc/ercAice, names)
Widget reference;
String names',

reference Specifies the widget from which the search is to start. Must be of class Core
or any subclass thereof.

names Specifies the partially qualified name of the desired widget.

The XtNameToWidget function searches for a descendant of the reference widget whose
name matches the specified names. The names parameter specifies a simple object name or a
series of simple object name components separated by periods or asterisks. XtName¬
ToWidget returns the descendant with the shortest name matching the specification according
to the following rules, where child is either a pop-up child or a normal child if the widget’s
class is a subclass of Composite :

• Enumerate the object subtree rooted at the reference widget in breadth-first order, quali¬
fying the name of each object with the names of all its ancestors up to but not including
the reference widget. The ordering between children of a common parent is not defined.

149

X Toolkit Intrinsics XI1 Release 5

• Return the first object in the enumeration that matches the specified name, where each
. component of names matches exactly the corresponding component of the qualified
object name, and asterisk matches any series of components, including none.

• If no match is found, return NULL.

Since breadth-first traversal is specified, the descendant with the shortest matching name (i.e.,
the fewest number of components), if any, will always be returned. However, since the order
of enumeration of children is undefined and since the Intrinsics do not require that all children
of a widget have unique names, XtNameToWidget may return any child that matches if there
are multiple objects in the subtree with the same name. Consecutive separators (periods or
asterisks) including at least one asterisk are treated as a single asterisk. Consecutive periods
are treated as a single period.

1U. Managing Memory Usage

The Intrinsics’ memory management functions provide uniform checking for null pointers and
error reporting on memory allocation errors. These functions are completely compatible with
their standard C language runtime counterparts malloc, calloc, realloc, and free with the fol¬
lowing added functionality:

• XtMalloc, XtCalloc, and XtRealloc give an error if there is not enough memory.

• XtFree simply returns if passed a NULL pointer.

• XtRealloc simply allocates new storage if passed a NULL pointer.

See the standard C library documentation on malloc, calloc, realloc, and free for more infor¬
mation.

To allocate storage, use XtMalloc.

char *XtMallocCs/ze)
Cardinal size4,

size Specifies the number of bytes desired.

The XtMalloc function returns a pointer to a block of storage of at least the specified size
bytes. If there is insufficient memory to allocate the new block, XtMalloc calls XtErrorMsg.

To allocate and initialize an array, use XtCalloc.

char *XtCalloc(Aium, size)
Cardinal num4.
Cardinal size4,

num Specifies the number of array elements to allocate.

size Specifies the size of each array element in bytes.

The XtCalloc function allocates space for the specified number of array elements of the
specified size and initializes the space to zero. If there is insufficient memory to allocate the
new block, XtCalloc calls XtErrorMsg. XtCalloc returns the address of the allocated
storage.

To change the size of an allocated block of storage, use XtRealloc.

char *XtRealloc(prr, num)
char *ptr.
Cardinal num4,

ptr Specifies a pointer to the old storage allocated with XtMalloc, XtCalloc, or
XtRealloc, or NULL.

150

X Toolkit Intrinsics XI1 Release 5

num Specifies number of bytes desired in new storage.

The XtRealloc function changes the size of a block of storage, possibly moving it. Then it
copies the old contents (or as much as will fit) into the new block and frees the old block. If
there is insufficient memory to allocate the new block, XtRealloc calls XtErrorMsg. If ptr is
NULL, XtRealloc simply calls XtMalloc. XtRealloc then returns the address of the new
block.

To free an allocated block of storage, use XtFree.

void XtFree(prr)
char *ptr\

ptr Specifies a pointer to a block of storage allocated with XtMalloc, XtCalloc,
or XtRealloc, or NULL.

The XtFree function returns storage, allowing it to be reused. If ptr is NULL, XtFree returns
immediately.

To allocate storage for a new instance of a type, use XtNew.

type *XiNew(type)
type r,

type Specifies a previously declared type.

XtNew returns a pointer to the allocated storage. If there is insufficient memory to allocate
the new block, XtNew calls XtErrorMsg. XtNew is a convenience macro that calls XtMal¬
loc with the following arguments specified:

((type *) XtMalloc((unsigned) sizcof(typc)))

The storage allocated by XtNew should be freed using XtFree.

To copy an instance of a string, use XtNewString.

String XtNewString(srrmg)
String string;

string Specifies a previously declared string.

XtNewString returns a pointer to the allocated storage. If there is insufficient memory to allo¬
cate the new block, XtNewString calls XtErrorMsg. XtNewString is a convenience macro
that calls XtMalloc with the following arguments specified:

(strcpy(XtMalloc((unsigned)strlen(str) + 1), str))

The storage allocated by XtNewString should be freed using XtFree.

11.4. Sharing Graphics Contexts

The Intrinsics provide a mechanism whereby cooperating objects can share a graphics context
(GC), thereby reducing both the number of GCs created and the total number of server calls in
any given application. The mechanism is a simple caching scheme and allows for clients to
declare both modifiable and nonmodifiable fields of the shared GCs.

To obtain a shareable GC with modifiable fields, use XtAllocateGC.

151

X Toolkit Intrinsics XI1 Release 5

GC XtAllocateGC(w/'<iger, depth, value jnask, values, dynamic jnask, unusedjnask)
Widget object.
Cardinal depth',
XtGCMask value jnask-,
XGCValues *values\
XtGCMask dynamic jnask',
XtGCMask unused mask-.

object

depth

value jnask

values

dynamic jnask

unused mask

Specifies an object, giving the screen for which the returned GC is valid,
be of class Object or any subclass thereof.

Specifies the depth for which the returned GC is valid, or 0.

Specifies fields of the GC that arc initialized from values.

Specifies the values for the initialized fields.

Specifies fields of the GC that may be modified by the caller.

Specifies fields of the GC that will not be used by the caller.

Must

The XtAUocateGC function returns a shareable GC that may be modified by the client. The
screen field of the specified widget or of the nearest widget ancestor of the specified object and
the specified depth argument supply the root and drawable depths for which the GC is to be
valid. If depth is zero the depth is taken from the depth field of the specified widget or of the
nearest widget ancestor of the specified object.

The value jnask argument specifics fields of the GC that will be initialized with the respective
member of the values structure. The dynamic jnask argument specifies fields that the caller
intends to modify during program execution. The caller must insure that the corresponding GC
field is set prior to each use of the GC. The unused jnask argument specifies fields of the GC
that are of no interest to the caller. The caller may make no assumptions about the contents of
any fields specified in unused jnask. The caller may assume that at all times all fields not
specified in either dynamic jnask or unused jnask have their default value if not specified in
value jnask or the value specified by values. If a field is specified in both value jnask and
dynamic jnask, the effect is as if it were specified only in dynamic jnask and then immediately
set to the value in values. If a field is set in unused jnask and also in either value jnask or
dynamic jnask, the specification in unused jnask is ignored.

XtAUocateGC tries to minimize the number of unique GCs created by comparing the argu¬
ments with those of previous calls and returning an existing GC when there are no conflicts.
XtAUocateGC may modify and return an existing GC if it was allocated with a nonzero
unused mask.

To obtain a shareable GC with no modifiable fields, use XtGetGC.

GC XtGet GC(object, value jnask, values)
Widget object
XtGCMask valuejnask',
XGC Values * values',

object Specifies an object, giving the screen and depth for which the returned GC is
valid. Must be of class Object or any subclass thereof.

value jnask Specifies which fields of the values structure are specified.

values Specifies the actual values for this GC.

152

X Toolkit Intrinsics XI1 Release 5

The XtGetGC function returns a shareable, read-only GC. The parameters to this function are
the same as those for XCreateGC except that an Object is passed instead of a Display.
XtGetGC is equivalent to XtAllocateGC with depth, dynamic_mask, and unusedjnask all
zero.

XtGetGC shares only GCs in which all values in the GC returned by XCreateGC are the
same. In particular, it does not use the value jnask provided to determine which fields of the
GC a widget considers relevant. The value jnask is used only to tell the server which fields
should be filled in from values and which it should fill in with default values.

To deallocate a shared GC when it is no longer needed, use XtReleaseGC.

void XtReleaseGC(o£y'ecr, gc)
Widget object,
GC gc\

object Specifies any object on the Display for which the GC was created. Must be of
class Object or any subclass thereof.

gc Specifies the shared GC obtained with either XtAllocateGC or XtGetGC.

References to shareable GCs are counted and a free request is generated to the server when the
last user of a given GC releases it.

11.5. Managing Selections

Arbitrary widgets in multiple applications can communicate with each other by means of the
Intrinsics global selection mechanism, which conforms to the specifications in the Inter-Client
Communication Conventions Manual. The Intrinsics supply functions for providing and receiv¬
ing selection data in one logical piece (atomic transfers) or in smaller logical segments (incre¬
mental transfers).

The incremental interface is provided for a selection owner or selection requestor that cannot or
prefers not to pass the selection value to and from the Intrinsics in a single call. For instance,
either an application that is running on a machine with limited memory may not be able to
store the entire selection value in memory, or a selection owner may already have the selection
value available in discrete chunks, and it would be more efficient not to have to allocate addi¬
tional storage to copy the pieces contiguously. Any owner or requestor that prefers to deal
with the selection value in segments can use the incremental interfaces to do so. The transfer
between the selection owner or requestor and the Intrinsics is not required to match the under¬
lying transport protocol between the application and the X server, the Intrinsics will break a
too large selection into smaller pieces for transport if necessary and will coalesce a selection
transmitted incrementally if the value was requested atomically.

11.5.1. Setting and Getting the Selection Timeout Value

To set the Intrinsics selection timeout, use XtAppSetSelectionTimeout.

void XtAppSetSelectionTimeout(ap/?_a?/?re.xr, timeout)
XtAppContext app_context\
unsigned long timeout,

app_context Specifies the application context.

timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, use XtAppGetSelectionTimeout.

153

X Toolkit Intrinsics XI1 Release 5

unsigned long XtAppGetSelectionTimeout(ap/?_ccw£;tr)
XtAppContext app contexr,

app_context Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout value, in mil¬
liseconds. The selection timeout is the time within which the two communicating applications
must respond to one another. The initial timeout value is set by the selectionTimeout applica¬
tion resource as retrieved by XtDisplaylnitialize. If selectionTimeout is not specified, the
default is five seconds.

113,2. Using Atomic Transfers

When using atomic transfers, the owner will completely process one selection request at a
time. The owner may consider each request individually, since there is no possibility for over¬
lap between evaluation of two requests.

11.5.2.1. Atomic Transfer Procedures

The following procedures are used by the selection owner when providing selection data in a
single unit.

The procedure pointer specified by the owner to supply the selection data to the Intrinsics is of
type XtConvertSelectionProc.

typedef Boolean (*XtConvertSelectionProc)(Widgct, Atom*, Atom*. Atom*,
XtPointcr*, unsigned long*, int*);

Widget w;
Atom *selection\
Atom *targer.
Atom *type_return\
XtPointer * value jreturn\
unsigned long * length _return\
int *format_return\

vv

selection

target

type_return

value return

Specifies the widget that currently owns this selection.

Specifies the atom naming the selection requested (for example,
XA PRIMARY or XASECONDARY).

Specifies the target type of the selection that has been requested, which indi¬
cates the desired information about the selection (for example. File Name,
Text, Window).

Specifies a pointer to an atom into which the property type of the convened
value of the selection is to be stored. For instance, either File Name or Text
might have property type XA_STRING.

Specifies a pointer into which a pointer to the converted value of the selection
is to be stored. The selection owner is responsible for allocating this storage.
If the selection owner has provided an XtSeiectionDoneProc for the selection,
this storage is owned by the selection owner, otherwise, it is owned by the
Intrinsics selection mechanism, which frees it by calling XtFree when it is
done with it.

length_return Specifies a pointer into which the number of elements in value^return, each of
size indicated by formatjeturn, is to be stored.

format jeturn Specifies a pointer into which the size in bits of the data elements of the selec¬
tion value is to be stored.

154

X Toolkit Intrinsics XI1 Release 5

This procedure is called by the Intrinsics selection mechanism to get the value of a selection as
a given type from the current selection owner. It returns True if the owner successfully con¬
verted the selection to the target type or False otherwise. If the procedure returns False, the
values of the return arguments are undefined. Each XtConvertSelectionProc should respond
to target value TARGETS by returning a value containing the list of the targets into which it
is prepared to convert the selection. The value returned in format_return must be one of 8, 16,
or 32 to allow the server to byte-swap the data if necessary.

This procedure does not need to worry about responding to the MULTIPLE or the TIMES¬
TAMP target values (see Section 2.6.2 in the Inter-Client Communication Conventions
Manual). A selection request with the MULTIPLE target type will be transparently
transformed into a series of calls to this procedure, one for each target type, and a selection
request with the TIMESTAMP target value will be answered automatically by the Intrinsics
using the time specified in the call to XtOwnSelection or XtOwnSelectionlncremental.

To retrieve the SelectionRequest event that triggered the XtConvertSelectionProc procedure,
use XtGetSelectionRequest.

XSelectionRequestEvent *XtGetSclectionRequcst(w, selection, requested)
Widget w;
Atom selection;
XtRequestld request Jd,

w Specifies the widget that currently owns this selection. Must be of class Core
or any subclass thereof.

selection Specifies the selection being processed.

requestJd Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

XtGetSelectionRequest may only be called from within an XtConvertSelectionProc pro¬
cedure and returns a pointer to the SelectionRequest event that caused the conversion pro¬
cedure to be invoked. Request Jd specifies a unique id for the individual request in the case
that multiple incremental transfers are outstanding. For atomic transfers, request Jd must be
specified as NULL. If no SelectionRequest event is being processed for the specified widget,
selection, and request Jd, XtGetSelectionRequest returns NULL.

The procedure pointer specified by the owner when it desires notification upon losing owner¬
ship is of type XtLoseSelectionProc.

typedef void (*XtLoseSelectionProc)(Widget, Atom*);
Widget w;
Atom * selection',

w Specifies the widget that has lost selection ownership.

selection Specifies the atom naming the selection.

This procedure is called by the Intrinsics selection mechanism to inform the specified widget
that it has lost the given selection. Note that this procedure does not ask the widget to relinqu¬
ish the selection ownership; it is merely informative.

The procedure pointer specified by the owner when it desires notification of receipt of the data
or when it manages the storage containing the data is of type XtSelectionDoneProc.

155

X Toolkit Intrinsics XI1 Release 5

typedef void (*XtSelectionDoneProc)(Widget, Atom*, Atom*);
Widget w;
Atom *selection;
Atom * target;

w Specifies the widget that owns the converted selection.

selection Specifies the atom naming the selection that was converted.

target Specifies the target type to which the conversion was done.

This procedure is called by the Intrinsics selection mechanism to inform the selection owner
that a selection requestor has successfully retrieved a selection value. If the selection owner
has registered an XtSelectionDoneProc, it should expect it to be called once for each conver¬
sion that it performs, after the converted value has been successfully transferred to the reques¬
tor. If the selection owner has registered an XtSelectionDoneProc, it also owns the storage
containing the converted selection value.

11.5.2.2. Getting the Selection Value

The procedure pointer specified by the requestor to receive the selection data from the Intrin¬
sics is of type XtSelectionCallbackProc.

typedef void (*XtSclectionCaUbackProc)(Widgct, XtPointcr, Atom*, Atom*, XtPointer, unsigned long*,
Widget w;
XtPointer client_data\
Atom *selection;
Atom *type\
XtPointer value,
unsigned long *length\
int *format;

w

client_data

selection

type

value

Specifies the widget that requested the selection value.

Specifies a value passed in by the widget when it requested the selection.

Specifies the name of the selection that was requested.

Specifies the representation type of the selection value (for example,
XA_STRING). Note that it is not the target that was requested (which the
client must remember for itself) but the type that is used to represent the target.
The special symbolic constant XT_CONVERT_FAIL is used to indicate that
the selection conversion failed because the selection owner did not respond
within the Intrinsics selection timeout interval.

Specifies a pointer to the selection value. The requesting client owns this
storage and is responsible for freeing it by calling XtFree when it is done with
it.

length Specifies the number of elements in value.

format Specifies the size in bits of the data elements of value.

This procedure is called by the Intrinsics selection mechanism to deliver the requested selection
to the requestor.

If the SelectionNotify event returns a property of None, meaning the conversion has been
refused because there is no owner for the specified selection or die owner cannot convert the
selection to the requested target for any reason, the procedure is called with a value of NULL
and a length of zero.

To obtain the selection value in a single logical unit, use XtGetSelectionValue or XtGet-
SelectionValues.

156

X Toolkit Intrinsics XI1 Release 5

void XtGetSelectionValue(w, selection, target, callback, clientjiata, time)
Widget w;
Atom selection;
Atom target;
XtSelectionCallbackProc callback-,
XtPointer clientjiata'.
Time time;

w

selection

target

callback

Specifies the widget making the request. Must be of class Core or any sub¬
class thereof.

Specifies the particular selection desired; for example, XA_PRIMARY.

Specifies the type of information needed about the selection.

Specifies the procedure to be called when the selection value has been
obtained. Note that this is how the selection value is communicated back to
the client.

clientjiata Specifies additional data to be passed to the specified procedure when it is
called.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValue function requests the value of the selection converted to the target
type. The specified callback will be called at some time after XtGetSelectionValue is called,
when the selection data is received from the X server. It may be called before or after XtGet¬
SelectionValue returns. For more information about selection, target, and time, see Section
2.6 in the Inter-Client Communication Conventions Manual.

void XtGetSelectionValues(w, selection, targets, count, callback, clientjiata, time)
Widget w;
Atom selection-.
Atom *targets\
int count,
XtSelectionCallbackProc callback',
XtPointer * client jiata-.
Time time'.

w Specifies the widget making the request. Must be of class Core or any sub¬
class thereof.

selection

targets

count

callback

Specifies the particular selection desired (that is, primary or secondary).

Specifies the types of information needed about the selection.

Specifies the length of the targets and clientjiata lists.

Specifies the callback procedure to be called with each selection value
obtained. Note that this is how the selection values are communicated back to
the client.

clientjiata Specifies a list of additional data values, one for each target type, that are
passed to the callback procedure when it is called for that target.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValues function is similar to multiple calls to XtGetSelectionValue
except that it guarantees that no other client can assert ownership between requests and there¬
fore that all the conversions will refer to the same selection value. The callback is invoked

157

X Toolkit Intrinsics XI1 Release 5

once for each target value with the corresponding client data. For more information about
selection, target, and time see Section 2.6 in the Inter-Client Communication Conventions
Manual.

11.5.2.3. Setting the Selection Owner

To set the selection owner and indicate that the selection value will be provided in one piece,
use XtOwnSelection.

Boolean XtOwnSelection(w, selection, time, convertjproc, lose_selection, done_proc)
Widget w;
Atom selection'.
Time time',
XtConvertSelectionProc convert_proc,
XtLoseSelectionProc lose_selection\
XtSelectionDoneProc donejproc.

w

selection

time

convert_proc

Specifies the widget that wishes to become the owner. Must be of class Core
or any subclass thereof.

Specifies the name of the selection (for example, XA_PRIMARY).

Specifies the timestamp that indicates when the ownership request was ini¬
tiated. This should be the timestamp of the event that triggered ownership; the
value CurrentTime is not acceptable.

Specifies the procedure to be called whenever a client requests the current
value of the selection.

lose_selection Specifies the procedure to be called whenever the widget has lost selection
ownership, or NULL if the owner is not interested in being called back.

done_proc Specifies the procedure called after the requestor has received the selection
value, or NULL if the owner is not interested in being called back.

The XtOwnSelection function informs the Intrinsics selection mechanism that a widget wishes
to own a selection. It returns True if the widget successfully becomes the owner and False
otherwise. The widget may fail to become the owner if some other widget has asserted owner¬
ship at a time later than this widget. The widget can lose selection ownership either because
some other client asserted later ownership of the selection or because the widget voluntarily
gave up ownership of the selection. The lose_sclcction procedure is not called if the widget
fails to obtain selection ownership in the first place.

If a done_proc is specified, the client owns the storage allocated for passing the value to the
Intrinsics. If done jproc is NULL, the convcrt_proc must allocate storage using XtMalloc.
XtRealloc, or XtCalloc, and the value specified will be freed by the Intrinsics when the
transfer is complete.

Usually, a selection owner maintains ownership indefinitely until some other client requests
ownership, at which time the Intrinsics selection mechanism informs the previous owner that it
has lost ownership of the selection. However, in response to some user actions (for example,
when a user deletes the information selected), the application may with to explicitly inform the
Intrinsics that it no longer is to be the selection owner by using XtDisownSelection.

void XtDisownSelection(w, selection, time)
Widget w;
Atom selection'.
Time time;

w Specifies the widget that wishes to relinquish ownership.

158

X Toolkit Intrinsics XI1 Release 5

selection Specifies the atom naming the selection being given up.

time Specifies the timestamp that indicates when the request to relinquish selection
ownership was initiated.

The XtDisownSelection function informs the Intrinsics selection mechanism that the specified
widget is to lose ownership of the selection. If the widget docs not currently own the selec¬
tion, either because it lost the selection or because it never had the selection to begin with,
XtDisownSelection does nothing.

After a widget has called XtDisownSelection, its convert procedure is not called even if a
request arrives later with a timestamp during the period lhat this widget owned the selection.
However, its done procedure will be called if a conversion that started before the call to XtDi¬
sownSelection finishes after the call to XtDisownSelection.

lli.3. Using Incremental Transfers

When using the incremental interface, an owner may have to process more than one selection
request for the same selection, converted to the same target, at the same time. The incremental
functions take a request_id argument, which is an identifier lhat is guaranteed to be unique
among all incremental requests that are active concurrently.

For example, consider the following:

• Upon receiving a request for the selection value, the owner sends the first segment.

• While waiting to be called to provide the next segment value but before sending it, the
owner receives another request from a different requestor for the same selection value.

• To distinguish between the requests, the owner uses the requestjd value. This allows
the owner to distinguish between the first requestor, which is asking for the second seg¬
ment, and the second requestor, which is asking for the first segment.

lli.3.1. Incremental Transfer Procedures

The following procedures are used by selection owners who wish to provide the selection data
in multiple segments.

The procedure pointer specified by the incremental owner to supply the selection data to the
Intrinsics is of type XtConvertSelectionlncrProc.

typedef XtPointer XtRequcstld;

typedef Boolean (*XtConvertSelectionIncrProc)(Widgct, Atom*, Atom*, Atom*, XtPointer*,
unsigned long*, int*, unsigned long*, XtPointer, XtRequestld*);

Widget w;
Atom *selection\
Atom *target\
Atom *type_return\
XtPointer *value_return\
unsigned long *length_return\
int *format_return\
unsigned long *maxjengtfr,
XtPointer client_data\
XtRequestld *request_id\

w Specifies the widget that currently owns this selection.

selection Specifies the atom that names the selection requested.

159

X Toolkit Intrinsics XI1 Release 5

target Specifies the type of information required about the selection.

type jeturn Specifies a pointer to an atom into which the property type of the converted
value of the selection is to be stored.

valuejeturn

lengthjeturn

format jeturn

max_length

Specifies a pointer into which a pointer to the converted value of the selection
is to be stored. The selection owner is responsible for allocating this storage.

Specifies a pointer into which the number of elements in value jeturn, each of
size indicated by format jeturn, is to be stored.

Specifies a pointer into which the size in bits of the data elements of the selec¬
tion value is to be stored so that the server may byte-swap the data if neces¬
sary.

Specifies the maximum number of bytes which may be transferred at any one
time.

client_data Specifies the value passed in by the widget when it took ownership of the
selection.

requestJd Specifies an opaque identification for a specific request.

This procedure is called repeatedly by the Intrinsics selection mechanism to get the next incre¬
mental chunk of data from a selection owner who has called XtOwnSelectionlncremental. It
must return True if the procedure has succeeded in convening the selection data or False oth¬
erwise. On the first call with a particular request id, the owner must begin a new incremental
transfer for the requested selection and target. On subsequent calls with the same request id,
the owner may assume that the previously supplied value is no longer needed by the Intrinsics;
that is, a fixed transfer area may be allocated and returned in value_return for each segment to
be transferred. This procedure should store a non-NULL value in value_return and zero in
length jeturn to indicate that the entire selection has been delivered. After returning this final
segment, the request id may be reused by the Intrinsics to begin a new transfer.

To retrieve the SelectionRequest event that triggered the selection conversion procedure, use
XtGetSelectionRequest, described in Section 11.5.2.1.

The procedure pointer specified by the incremental selection owner when it desires notification
upon no longer having ownership is of type XtLoseSelectionlncrProc.

typedef void (*XtLoseSelectionIncrProc)(Widgct, Atom*, XtPointer);
Widget w;
Atom *selection\
XtPointer clientjlata\

w Specifies the widget that has lost the selection ownership.

selection Specifies the atom that names the selection.

client_data Specifies the value passed in by the widget when it took ownership of the
selection.

This procedure, which is optional, is called by the Intrinsics to inform the selection owner that
it no longer owns the selection.

The procedure pointer specified by the incremental selection owner when it desires notification
of receipt of the data or when it manages the storage containing the data is of type XtSelec-
tionDonelncrProc.

160

X Toolkit Intrinsics XI1 Release 5

typedef void (*XtSelectionDoneIncrProc)(Widget, Atom*, Atom*, XtRequestld*, XtPointer);
Widget w;
Atom *selection;
Atom *targer.;
XtRequestld *request_id',
XtPointer client_data\

Specifies the widget that owns the selection.

Specifies the atom that names the selection being transferred.

Specifies the target type to which the conversion was done.

Specifies an opaque identification for a specific request.

Specified the value passed in by the widget when it took ownership of the
selection.

This procedure, which is optional, is called by the Intrinsics after the requestor has retrieved
the final (zero-length) segment of the incremental transfer to indicate that the entire transfer is
complete. If this procedure is not specified, the Intrinsics will free only the final value
returned by the selection owner using XtFree.

The procedure pointer specified by the incremental selection owner to notify it if a transfer
should be terminated prematurely is of type XtCancelConvertSelectionProc.

typedef void (*XtCancelConvertSelcctionProc)(Widgct, Atom*, Atom*, XtRequestld*, XtPointer);
Widget w;
Atom *selection'.
Atom * target',
XtRequestld *request_id\
XtPointer client jdata'.

Specifies the widget that owns the selection.

Specifies the atom that names the selection being transferred.

Specifies the target type to which the conversion was done.

Specifies an opaque identification for a specific request.

Specifies the value passed in by the widget when it took ownership of the
selection.

This procedure is called by the Intrinsics when it has been determined by means of a timeout
or other mechanism that any remaining segments of the selection no longer need to be
transferred. Upon receiving this callback, the selection request is considered complete and the
owner can free the memory and any other resources that have been allocated for the transfer.

w

selection

target

requested

client data

w

selection

target

requested

client data

11.5.3.2. Getting the Selection Value Incrementally

To obtain the value of the selection using incremental transfers, use XtGetSelectionValueln-
cremental or XtGetSelectionValuesIncremental.

void XtGetSelectionValueIncremental(w, selection, target, selectionjcallback, client_data, time)
Widget w;
Atom selection'.
Atom targer,
XtSelectionCallbackProc selectionjcallback',
XtPointer clientjdata'.
Time time'.

w Specifies the widget making the request. Must be of class Core or any sub¬
class thereof.

161

X Toolkit Intrinsics XI1 Release 5

selection Specifies the particular selection desired.

target Specifies the type of information needed about the selection.

selection _callback
Specifies the callback procedure to be called to receive each data segment.

client_data Specifies client-specific data to be passed to the specified callback procedure
when it is invoked.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuelncremental function is similar to XtGetSelectionValue except that
the selection_callback procedure will be called repeatedly upon delivery of multiple segments
of the selection value. The end of the selection value is indicated when selection-Callback is
called with a non-NULL value of length zero, which must still be freed by the client. If the
transfer of the selection is aborted in the middle of a transfer (for example, because to
timeout), the selection_callback procedure is called with a type value equal to the symbolic
constant XTCONVERTFAIL so that the requestor can dispose of the partial selection
value it has collected up until that point. Upon receiving XTCONVERTFAIL, the request¬
ing client must determine for itself whether or not a partially completed data transfer is mean¬
ingful. For more information about selection, target, and time, see Section 2.6 in the Inter-
Client Communication Conventions Manual.

void XtGetSelectionValuesIncrcmcntal(vv, selection, targets, count, selection_callback, client_data, time
Widget w;
Atom selection'.
Atom *targets',;
int counr,
XtSelectionCallbackProc selection_callback\
XtPointer * client_data\
Time time'.

w Specifies the widget making the request. Must be of class Core or any sub¬
class thereof.

selection Specifies the particular selection desired.

targets Specifies the types of information needed about the selection.

count Specifies the length of the targets and client_data lists.

selection_callback
Specifies the callback procedure to be called to receive each selection value.

clientjiata Specifies a list of client data (one for each target type) values that are passed to
the callback procedure when it is invoked for the corresponding target.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuesIncremental function is similar to XtGetSelectionValuelncremen¬
tal except that it takes a list of targets and client data. XtGetSelectionValuesIncremental is
equivalent to calling XtGetSelectionValuelncremental successively for each
target!client_data pair except that XtGetSelectionValuesIncremental does guarantee that all
the conversions will use the same selection value because the ownership of the selection cannot
change in the middle of the list, as would be possible when calling XtGetSelectionValueln¬
cremental repeatedly. For more information about selection, target, and time, see Section 2.6
in the Inter-Client Communication Conventions Manual.

162

X Toolkit Intrinsics XI1 Release 5

11.5.3J. Setting the Selection Owner for Incremental Transfers

To set the selection owner when using incremental transfers, use XtOwnSelectionlncremen-
tal.

Boolean XtOwnSelectionIncremental(w, selection, time, convert^callback, lose fallback,
done_callback, cancel_callback, cllent_data)

Widget w;
Atom selection;
Time time',
XtConvertSelectionlncrProc convert_callback\
XtLoseSelectionlncrProc lose-Callback',
XtSelectionDonelncrProc done_callback\
XtCancelConvertSelectionProc cancel_callback\
XtPointer client_data\

Specifies the widget that wishes to become the owner. Must be of class
Core or any subclass thereof.

Specifies the atom that names the selection.

Specifies the timestamp that indicates when the selection ownership request
was initiated. This should be the timestamp of the event that triggered
ownership; the value CurrentTime is not acceptable.

Specifies the procedure to be called whenever the current value of the
selection is requested.

Specifies the procedure to be called whenever the widget has lost selection
ownership, or NULL if the owner is not interested in being notified.

Specifies the procedure called after the requestor has received the entire
selection, or NULL if the owner is not interested in being notified.

Specifies the callback procedure to be called when a selection request
aborts because a timeout expires, or NULL if the owner is not interested in
being notified.

Specifies the argument to be passed to each of the callback procedures
when they are called.

The XtOwnSelectionlncremental procedure informs the Intrinsics incremental selection
mechanism that the specified widget wishes to own the selection. It returns True if the
specified widget successfully becomes the selection owner or False otherwise. For more infor¬
mation about selection, target, and time, see Section 2.6 in the Inter-Client Communication
Conventions Manual.

If a done_callback procedure is specified, the client owns the storage allocated for passing the
value to the Intrinsics. If done_callback is NULL, the convcrt_callback procedure must allo¬
cate storage using XtMalloc, XtRealloc, or XtCalloc, and the final value specified will be
freed by the Intrinsics when the transfer is complete. After a selection transfer has started,
only one of the done_callback or cancel_callback procedures will be invoked to indicate com¬
pletion of the transfer.

The lose_callback procedure does not indicate completion of any in-progress transfers; it will
be invoked at the time a SelectionClear event is dispatched regardless of any active transfers,
which are still expected to continue.

A widget that becomes the selection owner using XtOwnSelectionlncremental may use
XtDisownSelection to relinquish selection ownership.

w

selection

time

convert_callback

lose_callback

done _callback

cancel-callback

client data

163

X Toolkit Intrinsics XI1 Release 5

11.5.4. Retrieving the Most Recent Timestamp

To retrieve the timestamp from the most recent call to XtDispatchEvent that contained a
timestamp, use XtLastTimestampProcessed.

Time XtLastTimestampProcessed(d/.sp/ay)
Display *display\

display Specifies an open display connection.

If no KeyPress, KeyRelease, ButtonPress, ButtonRelease, MotionNotify, EnterNotify,
LeaveNotify, PropertyNotify, or SelectionCIear event has yet been passed to
XtDispatchEvent for the specified display, XtLastTimestampProcessed returns zero.

11.6. Merging Exposure Events into a Region

The Intrinsics provide an XtAddExposureToRegion utility function that merges Expose and
GraphicsExpose events into a region for clients to process at once rather than processing indi¬
vidual rectangles. For further information about regions, see Section 16.5 in Xlib - C
Language X Interface.

To merge Expose and GraphicsExpose events into a region, use XtAddExposureToRegion.

void XtAddExposureToRegion(evm, region)
XEvent *evenr.
Region region;

event Specifies a pointer to the Expose or GraphicsExpose event.

region Specifies the region object (as defined in <XI 1/XutiI.h>).

The XtAddExposureToRegion function computes the union of the rectangle defined by the
exposure event and the specified region. Then it stores the results back in region. If the event
argument is not an Expose or GraphicsExpose event, XtAddExposureToRegion returns
without an error and without modifying region.

This function is used by the exposure compression mechanism; see Section 7.9.3.

11.7. Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root window absolute coordi¬
nates, use XtTranslateCoords.

void XtTranslateCoords(w, x, y, rootx_return, rooty_return)
Widget w;
Position x, y\
Position *rootx_return, * rooty _re turn',

w Specifies the widget. Must be of class RectObj or any subclass thereof,

x
y Specify the widget-relative x and y coordinates.

rootx_return
rooty_return Return the root-relative x and y coordinates.

While XtTranslateCoords is similar to the Xlib XTranslateCoordinates function, it does not
generate a ser/er request because all the required information already is in the widget’s data
structures.

164

X Toolkit Intrinsics XI1 Release 5

11.8. Translating a Window to a Widget

To translate a given window and display pointer into a widget instance, use XtWin-

dowToWidget.

Widget XtWindowToWidget(dwp/ay, window)
Display *display\
Window window,

display Specifies the display on which the window is defined.

window Specifics the window for which you want the widget.

If there is a realized widget whose window is the specified window on the specified display,
XtWindowToWidget returns that widget; otherwise, it returns NULL.

11.9. Handling Errors

The Intrinsics allow a client to register procedures that will be called whenever a fatal or non-
fatal error occurs. These facilities are intended for both error reporting and logging and for
error correction or recovery.

Two levels of interface are provided;

• A high-level interface that takes an error name and class and retrieves the error message
text from an error resource database.

• A low-level interface that takes a simple string to display.

The high-level functions construct a string to pass to the lower-level interface. The strings
may be specified in application code and will be overridden by the contents of an external
system-wide file, the “error database file”. The location and name of this file is implementa¬
tion dependent.

Note

The application-context-spccific error handling is not implemented on many sys¬
tems, although the interfaces are always present. Most implementations will have
just one set of error handlers for all application contexts within a process. If they
are set for different application contexts, the ones registered last will prevail.

To obtain the error database (for example, to merge with an application- or widget-specific
database), use XtAppGetErrorDatabase.

XrmDatabase *XtAppGetErrorDatabase(app_coAi/exr)
XtAppContext app_contexr,

app_context Specifies the application context.

The XtAppGetErrorDatabase function returns the address of the error database. The Intnn-
sics do a lazy binding of the error database and do not merge in the database file until the first
call to XtAppGetErrorDatabaseText.

For a complete listing of all errors and warnings that can be generated by the Intrinsics, see
Appendix D.

The high-level error and warning handler procedure pointers are of type XtErrorMsgHandler.

165

X Toolkit Intrinsics Xll Release 5

typedef void (*XtErrorMsgHandler)(String, String, String, String, String*, Cardinal*);
String name'.
String type:
String class'.
String defaultp'.
String *params\
Cardinal *numjparams\

name Specifies the name to be concatenated with the specified type to form the
resource name of the error message.

type Specifies the type to be concatenated with the name to form the resource name
of the error message.

class Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error database entry is found.

params Specifies a pointer to a list of parameters to be substituted in the message.

numjparams Specifies the number of entries in params.

The specified name can be a general kind of error, like “invalidParameters” or “invalidWin-
dow”, and the specified type gives extra information such as the name of the routine in which
the error was detected. Standard printf notation is used to substitute the parameters into the
message.

An error message handler can obtain the error database text for an error or a warning by cal¬
ling XtAppGetErrorDatabaseText.

void XtAppGetErrorDatabaseText(app_awre.rr, name, type, class, default, buffer_return, nbytes, databa
XtAppContext app_contexr.
String name, type, class'.
String default'.
String buffer_return\
int nbytes',
XrmDatabase database'.

app _context

name
type

class

default

buffer_return

nbytes

database

Specifies the application context.

Specify the name and type concatenated to form the resource name of the error
message.

Specifies the resource class of the error message.

Specifies the default message to use if an error database entry is not found.

Specifies the buffer into which the error message is to be returned.

Specifies the size of the buffer in bytes.

Specifies the name of the alternative database to be used, or NULL if the appli¬
cation context’s error database is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the error database or
returns the specified default message if one is not found in the error database. To form the full
resource name and class when querying the database, the name and type are concatenated with
a single between them and the class is concatenated with itself with a single if it does
not already contain a

To return the application name and class as passed to XtDisplaylnitialize for a particular
Display, use XtGetApplicationNameAndClass.

166

X Toolkit Intrinsics XI1 Release 5

void XtGetApplicationNameAndClass(d/5p/ay, namejeturn, class_return)
Display* display;
String* name jeturn;
String* class jeturn:

display Specifies an open display connection that has been initialized with XtDisplay-
Initialize.

name jeturn Returns the application name.

class jeturn Returns the application class.

XtGetApplicationNameAndClass returns the application name and class passed to
XtDisplaylnitialize for the specified display. If the display was never initialized or has been
closed, the result is undefined. The returned strings are owned by the Intrinsics and must not
be modified or freed by the caller.

To register a procedure to be called on fatal error conditions, use XtAppSetEr-
rorMsgHandler.

XtErrorMsgHandler XtAppSetErrorMsgHandlcr(app_cc>nrcj:r, msgjxandler)
XtAppContext appjontexr,;
XtErrorMsgHandler msgjxandler;

appjontext Specifies the application context.

msgjxandler Specifies the new fatal error procedure, which should not return.

XtAppSetErrorMsgHandler returns a pointer to the previously installed high-level fatal error
handler. The default high-level fatal error handler provided by the Intrinsics is named XtDe-
faultErrorMsg and constructs a string from the error resource database and calls XtError.
Fatal error message handlers should not return. If one docs, subsequent Intrinsics behavior is
undefined.

To call the high-level error handler, use XtAppErrorMsg.

void XtAppErrorMsg (appjontext, name, type, class, default, params, num jarams)
XtAppContext appjontexr,;
String name:
String type:
String class:
String default:
String * params:
Cardinal *numjarams:

appjontext Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num jarams Specifies the number of entries in params.

The Intrinsics internal errors all have class “XtToolkitError”.

To register a procedure to be called on nonfatal error conditions, use XtAppSetWar-
ningMsgHandler.

167

X Toolkit Intrinsics XI1 Release 5

XtErrorMsgHandler XtAppSetWarningMsgHandler(<2pp_co/irdxr, msgjiandler)
XtAppContext app_contexr,
XtErrorMsgHandler msgjiandler,

app_context Specifies the application context.

msgjiandler Specifies the new nonfatal error procedure, which usually returns.

XtAppSetWarningMsgHandler returns a pointer to the previously installed high-level warn¬
ing handler. The default high-level warning handler provided by the Intrinsics is named
_XtDefaultVVarningMsg and constructs a string from the error resource database and calls
XtVVarning.

To call the installed high-level warning handler, use XtAppWarningMsg.

void XtAppWamingMsg(app_coAU£;tr, name, type, class, default, params, num jparams)
XtAppContext app_contexr.
String name:
String type'.
String class'.
String default'.
String *params\
Cardinal *num_params;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num jparams Specifies the number of entries in params.

The Intrinsics internal warnings all have class “XtToolkitError”.

The low-level error and warning handler procedure pointers are of type XtErrorHandler.

typedef void (*XtErrorHandler)(String);
String message',

message Specifies the error message.

The error handler should display the message string in some appropriate fashion.

To register a procedure to be called on fatal error conditions, use XtAppSetErrorHandler.

XtErrorHandler XtAppSetErrorHandler(a/?p_coAir^, handler)
XtAppContext app_contexr,
XtErrorHandler handler,

app_context Specifies the application context.

handler Specifies the new fatal error procedure, which should not return.

XtAppSetErrorHandler returns a pointer to the previously installed low-level fatal error
handler. The default low-level error handler provided by the Intrinsics is _XtDefaultError.
On POSIX-based systems, it prints the message to standard error and terminates the applica¬
tion. Fatal error message handlers should not return. If one does, subsequent Intrinsics
behavior is undefined.

168

X Toolkit Intrinsics XI1 Release 5

To call the installed fatal error procedure, use XtAppError.

void XlAppError(app_context, message)
XtAppContext app ^context
String message;

app_context Specifies the application context.

message Specifies the message to be reported.

Most programs should use XtAppErrorMsg, not XtAppError, to provide for customization
and internationalization of error messages.

To register a procedure to be called on nonfatal error conditions, use XtAppSetWar-
ningHandler.

XtErrorHandler XtAppSetWamingHandlcrfappjrortrex/, handler)
XtAppContext app_contexr.;
XtErrorHandler handler,

app_context Specifies the application context.

handler Specifies the new nonfatal error procedure, which usually returns.

XtAppSetWarningHandler returns a pointer to the previously installed low-level warning
handler. The default low-level warning handler provided by the Intrinsics is XtDe-
faultWarning. On POSIX-based systems, it prints the message to standard error and returns
to the caller.

To call the installed nonfatal error procedure, use XtAppWarning.

void XtAppWaming(ap/?_context, message)
XtAppContext appjcontexr,;
String message;

app_context Specifies the application context.

message Specifies the nonfatal error message to be reported.

Most programs should use XtAppWarningMsg, not XtAppWarning, to provide for customi¬
zation and internationalization of warning messages.

11.10. Setting WMCOLORMAPWINDOWS

A client may set the value of the WM_COLORMAP_WINDOWS property on a widget’s window
by calling XtSetWMColormapWindows.

void XtSetWMColormapWindows(w/<fger, list, count)
Widget widget'.
Widget* list;
Cardinal count,

widget Specifies the widget on whose window the WM_COLORMAP_WINDOWS pro¬
perty will be stored. Must be of class Core or any subclass thereof.

list Specifies a list of widgets whose windows are potentially to be listed in the
WM_COLORMAP_WINDOWS property.

count Specifies the number of widgets in list.

XtSetWMColormapWindows returns immediately if widget is not realized or if count is 0.
Otherwise, XtSetWMColormapWindows constructs an ordered list of windows by examining
each widget in list in turn and ignoring the widget if it is not realized, or adding the widget’s
window to the window list if the widget is realized and if its colormap resource is different

169

X Toolkit Intrinsics XI1 Release 5

from the colonmap resources of all widgets whose windows are already on the window list.

Finally, XtSetWMColormapWindows stores the resulting window list in the
WM_COLORMAP_WINDOWS property on the specified widget’s window. Refer to Section
4.1.8 in the Inter-Client Communication Conventions Manual for details of the semantics of the
WM_COLORMAP_WINDOWS property.

11.11. Finding File Names

The Intrinsics provide procedures to look for a file by name, allowing string substitutions in a
list of file specifications. Two routines are provided for this; XtFindFile and XtResolvePath-
name. XtFindFile uses an arbitrary set of client-specified substitutions, and XtResoIvePath-
name uses a set of standard substitutions corresponding to the X/Open Portability Guide
language localization conventions. Most applications should use XtResolvePathname.

A string substitution is defined by a list of Substitution entries.

typedef struct {
char match;
String substitution;

} SubstitutionRec, ^Substitution;

File name evaluation is handled in an operating-system-dependent fashion by an XtFilePredi-
cate procedure.

typedef Boolean (*XtFilePredicate)(String);
String filename;

filename Specifies a potential filename.

A file predicate procedure will be called with a string that is potentially a file name. It should
return True if this string specifics a file that is appropriate for the intended use and False oth¬
erwise.

To search for a file using substitutions in a path list, use XtFindFile.

String XtFindFile(par/z, substitutions, num_substitutions, predicate)
String path;
Substitution substitutions'.
Cardinal numsubstitutions',
XtFilePredicate predicate',

path Specifies a path of file names, including substitution characters.

substitutions Specifies a list of substitutions to make into the path.

num_substitutions Specifies the number of substitutions passed in.

predicate Specifies a procedure called to judge each potential file name, or NULL.

The path parameter specifies a string that consists of a scries of potential file names delimited
by colons. Within each name, the percent character specifies a string substitution selected by
the following character. The character sequence specifies an embedded colon that is not
a delimiter, the sequence is replaced by a single colon. The character sequence “%%”
specifies a percent character that does not introduce a substitution; the sequence is replaced by
a single percent character. If a percent character is followed by any other character, XtFind¬
File looks through the specified substitutions for that character in the match field and if found
replaces the percent and match characters with the string in the corresponding substitution field.
A substitution field entry of NULL is equivalent to a pointer to an empty string. If the operat¬
ing system does not interpret multiple embedded name separators in the path (i.e., in
POSIX) the same way as a single separator, XtFindFile will collapse multiple separators into

170

X Toolkit Intrinsics XI1 Release 5

a single one after performing all string substitutions. Except for collapsing embedded separa¬
tors, the contents of the string substitutions arc not interpreted by XtFindFile and may there¬
fore contain any operating-system-dependent characters, including additional name separators.
Each resulting string is passed to the predicate procedure until a string is found for which the
procedure returns True; this string is the return value for XtFindFile. If no string yields a
True return from the predicate, XtFindFile returns NULL.

If the predicate parameter is NULL, an internal procedure that checks if the file exists, is read¬
able, and is not a directory will be used.

It is the responsibility of the caller to free the relumed siring using XtFree when it is no
longer needed.

To search for a file using standard substitutions in a path list, use XtResolvePathname.

String XtResolvePathname(disp/ay, type, filename, suffix, path, substitutions, num_substitutions, predicate)
Display *display:
String type, filename, suffix, path;
Substitution substitutions:
Cardinal numsubstitutions:
XtFilePredicate predicate:

display Specifies the display to use to find the language for language substitutions.

type
filename
suffix Specify values to substitute into the path.

path Specifies the list of file specifications, or NULL.

substitutions Specifies a list of additional substitutions to make into the path, or NULL.

numsubstitutions Specifies the number of entries in substitutions.

predicate Specifies a procedure called to judge each potential file name, or NULL.

The substitutions specified by XtResolvePathname arc determined from the value of the
language string retrieved by XtDisplaylnitialize for the specified display. To set the language
for all applications specify “*xrtlLanguage: lang" in the resource database. The format and
content of the language string are implementation-defined. One suggested syntax is to com¬
pose the language string of three parts; a “language part”, a “territory part” and a
“codeset part”. The manner in which this composition is accomplished is implementation-
defined and the Intrinsics make no interpretation of the parts other than to use them in substitu¬
tions as described below.

XtResolvePathname calls XtFindFile with the following substitutions in addition to any
passed by the caller and returns the value returned by XtFindFile;

%N The value of the filename parameter, or the application’s class name if filename is
NULL.

%T The value of the type parameter.

%S The value of the suffix parameter.

%L The language string associated with the specified display.

%l The language part of the display’s language string.

%t The territory part of the display’s language string.

%c The codeset part of the display’s language string.

%C The customization string retrieved from the resource database associated with dispay.

If a path is passed to XtResolvePathname, it will be passed along to XtFindFile. If the path
argument is NULL, the value of the XFILESEARCHPATH environment variable will be
passed to XtFindFile. If XFILESEARCHPATH is not defined, an implementation-specific

171

X Toolkit Intrinsics XI1 Release 5

default path will be used which contains at least 6 entries. These entries must contain the fol¬
lowing substitutions:

1. %C, %N, %S, %T, %L or %C, %N, %S, %T, %1, %t, %c
2. %C, %N, %S, %T, %1
3. %C, %N. %S, %T
4. %N, %S, %T, %L or %N, %S, %T, %1, %t, %c
5. %N, %S. %T, %1
6. %N, %S, %T

The order of these six entries within the path must be as given above. The order and use of
substitutions within a given entry is implementation dependent. If the path begins with a
colon, it will be preceded by %N%S. If the path includes two adjacent colons, %N%S will
be inserted between them.

The type parameter is intended to be a category of files, usually being translated into a direc¬
tory in the pathname. Possible values might include “app-defaults”, “help”, and “bitmap”.

The suffix parameter is intended to be appended to the file name. Possible values might
include “.txt”, “.dat”, and “.bm”.

A suggested value for the default path on POSIX-bascd systems is

/usr/lib/Xl l/%L/%T/%N%C%S:/usr/lib/Xl 1/%1/%T/%N%C%S:\

/usr/lib/Xl l/%T/%N%C%S:/usr/lib/Xl 1/%L/%T/%N%S:\
/usr/lib/Xl l/%l/%T/%N%S:/usr/lib/Xl 1/%T/%N%S

Using this example, if the user has specified a language, it will be used as a subdirectory of
/usr/lib/Xl 1 that will be searched for other files. If the desired file is not found there, the
lookup will be tried again using just the language part of the specification. If the file is not
there, it will be looked for in /usr/lib/Xl 1. The type parameter is used as a subdirectory of the
language directory or of /usr/lib/Xl 1, and suffix is appended to the file name.

The customization string is obtained by querying the resource database currently associated
with the display (the database returned by XrmGetDatabase) for the resource
applicationjiame.customization, class application^ lass.Customization where
application_name and application_class are the values returned by XtGetApplication-
NameAndClass. If no value is specified in the database, the empty string is used.

It is the responsibility of the caller to free the returned string using XtFree when it is no
longer needed.

172

X Toolkit Intrinsics XI1 Release 5

Chapter 12

Nonwidget Objects

Although widget writers are free to treat Core as the base class of the widget hierarchy, there
are actually three classes above it. These classes arc Object, RectObj, (Rectangle Object) and
{unnamed) and members of these classes are referred to generically as objects. By convention,
the term widget refers only to objects that arc a subclass of Core, and the term nonwidget
refers to objects that are not a subclass of Core. In the preceding portion of this specification,
the interface descriptions indicate explicitly whether the generic widget argument is restricted to
particular subclasses of Object. Sections 12.2.5, 12.3.5, and 12.5 summarize the permissible
classes of the arguments to, and return values from, each of the Intrinsics routines.

12.1. Data Structures

In order not to conflict with previous widget code, the data structures used by nonwidget
objects do not follow all the same conventions as those for widgets. In particular, the class
records are not composed of parts but instead arc complete data structures with filler for the
widget fields they do not use. This allows the static class initializers for existing widgets to
remain unchanged.

12.2. Object Objects

The Object object contains the definitions of fields common to all objects. It encapsulates the
mechanisms for resource management. All objects and widgets are members of subclasses of
Object, which is defined by the ObjectClassPart and ObjectPart structures.

12.2.1. ObjectClassPart Structure

The common fields for all object classes arc defined in the ObjectClassPart structure. All
fields have the same purpose, function, and restrictions as the corresponding fields in Core-
ClassPart; fields whose names arc obj/t for some integer n are not used for Object, but exist
to pad the data structure so that it matches Core’s class record. The class record initialization
must fill all obj/t fields with NULL or zero as appropriate to the type.

typedef struct _QbjectClassPart (
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc classjnitialize;
XtWidgetClassProc class_partjnitializc;
XtEnum class_inited;
XtlnitProc initialize;
XtArgsProc initialize_hook;
XtProc obj 1;
XtPointer obj2;
Cardinal obj3;
XtResourceList resources;
Cardinal num resources;

173

X Toolkit Intrinsics XI1 Release 5

XrmClass xrm_class;
Boolean obj4;
XtEnum obj5;
Boolean obj6;
Boolean obj7;
XtWidgetProc destroy;
XtProc obj8;
XtProc obj9;
XtSetValuesFunc sct_valucs;
XtArgsFunc set_values_hook;
XtProc objlO;
XtArgsProc get_values_hook;
XtProc obj 11;
XtVersionType version;
XtPointer callback_private;
String obj 12;
XtProc obj 13;
XtProc obj 14;
XtPointer extension;

} ObjectClassPart;

The prototypical ObjectClass consists of just the ObjectClassPart.

typedef struct _ObjectGassRec {
ObjectClassPart object_class;

} ObjectClassRec, *ObjectClass;

The predefined class record and pointer for ObjectClassRec are

In IntrinsicP.h;
extern ObjectClassRec ObjectClassRec;

In Intrinsic.h:
extern WidgetClass objectGass;

The opaque types Object and ObjectClass and the opaque variable objectClass are defined
for generic actions on objects. Intrinsic.h uses an incomplete structure definition to ensure
that the compiler catches attempts to access private data:

typedef struct _ObjectGassRec* ObjectClass;

12.2.2. ObjectPart Structure

The common fields for all object instances are defined in the ObjectPart structure. All fields
have the same meaning as the corresponding fields in CorePart.

typedef struct _ObjectPart {
Widget self;
WidgetGass widget_class;
Widget parent;
Boolean being_destroyed;
XtCallbackList destroy_callbacks;
XtPointer constraints;

} ObjectPart;

174

X Toolkit Intrinsics XI1 Release 5

All object instances have the Object fields as their first component. The prototypical type
Object is defined with only this set of fields. Various routines can cast object pointers, as
needed, to specific object types.

In IntrinsicPh:
typedef struct _ObjectRec {

ObjectPart object;
} ObjectRec, *Object;

In Intrinsic.h:
typedef struct _ObjectRec *Object;

12,2.3. Object Resources

The resource names, classes, and representation types specified in the objectGassRec resource
list are

Name Class Representation

XtNdestroyCallback XtCCallback XtRCallback

12.2.4. ObjectPart Default Values

All fields in ObjectPart have the same default values as the corresponding fields in
CorePart.

12.2.5. Object Arguments To Intrinsics Routines

The WidgetClass arguments to the following procedures may be objectClass or any subclass:

XtlnitializeWidgetCIass, XtCreateWidget, XtVaCreateWidget

XtlsSubdass, XtCheckSubclass

XtGetResourceList, XtGetConstraintResourceList

The Widget arguments to the following procedures may be of class Object or any subclass:

XtCreateWidget, XtVaCreateWidget

XtAddCallback, XtAddCailbacks, XtRemoveCallback, XtRemoveCallbacks,
XtRemoveAHCallbacks, XtCaliCallbacks, XtHasCallbacks, XtCallCallbackList

XtCIass, XtSuperdass, XtlsSubdass, XtCheckSubclass, XtlsObject, XtlsRectObj,
XtlsWidget, XtlsComposite, XtlsConstraint, XtlsShell, XtlsOverrideShell,
XtlsWMShell, XtlsVendorShell, XtlsTransientShell, XtlsToplevelShell, XtlsAppli-
cationShell.

XtlsManaged, XtlsSensitive
(both will return False if argument is not a subclass of RectObj)

XtlsRealized
(returns the state of the nearest windowed ancestor if class of argument is not a subclass
of Core)

175

X Toolkit Intrinsics XI1 Release 5

XtWidgetToApplicationContext

XtDestroyWidget

XtParent, XtDispiayOfObject, XtScreenOfObject, XtWindowOfObject

XtSetKeyboardFocus (descendant)

XtGetGC, XtReleaseGC

XtName

XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

XtGetSubresources, XtGetApplicationResources, XtVaGetSubresources,
XtVaGetApplicationResources

XtConvert, XtConvertAndStore

The return value of the following procedures will be of class Object or a subclass:

XtCreateWidget, XtVaCreateWidget

XtParent

XtNameToWidget

The return value of the following procedures will be ob.jectClass or a subclass:

XtClass, XtSuperclass

12.2.6. Use of Objects

The Object class exists to enable programmers to use the Intrinsics’ classing and resource¬
handling mechanisms for things smaller and simpler than widgets. Objects make obsolete
many common uses of subresources as described in sections 9.4, 9.7.2.4, and 9.7.2.5.

Composite widget classes that wish to accept nonwidget children must set the accepts _objects
field in the CompositeCSassExtension structure to True. XtCreateWidget will otherwise
generate an error message on an attempt to create a nonwidget child.

Of the classes defined by the Intrinsics, only ApplicationShcll accepts nonwidget children, and
the class of any nonwidget child must not be rectObjClass or any subclass. The intent of
allowing Object children of ApplicationShcll is to provide clients a simple mechanism for
establishing the resource-naming root of an object hierarchy.

123. Rectangle Objects

The class of rectangle objects is a subclass of Object that represents rectangular areas. It
encapsulates the mechanisms for geometry management, and is called RcctObj to avoid conflict
with the Xlib Rectangle data type.

123.1. RectObjCIassPart Structure

As with the ObjectCIassPart structure, all fields in the RectObjCIassPart structure have the
same purpose and function as the corresponding fields in CoreClassPart; fields whose names
are recur for some integer n are not used for RcctObj but exist to pad the data structure so that
it matches Core’s class record. The class record initialization must fill all recur fields with
NULL or zero as appropriate to the type.

typedef struct _RectObjClassPart (
WidgetClass superclass:

176

X Toolkit Intrinsics XI1 Release 5

String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetQassProc class_part_initializc;
XtEnum class_inited;
XtlnitProc initialize;
XtArgsProc initialize_hook;
XtProc recti;
XtPointer rect2;
Cardinal rect3;
XtResourceList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean rect4;
XtEnum recti;
Boolean rect6;
Boolean rect7;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_vaJucs;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc gct_values_hook;
XtProc rect9;
XtVersionType version;
XtPointer caliback_private;
String rectlO;
XtGeometryHandler query_gcomciry;
XtProc recti 1;
XtPointer extension ;

} RectObjClassPart;

The RectObj class record consists of just the RectObjClassPart.

typedef struct _RectObjClassRec {
RectObjClassPart rect_class;

} RectObjClassRec, *RectObjClass;

The predefined class record and pointer for RectObjClassRec are

In Intrinsic.h:
extern RectObjClassRec rectObjClassRec;

In Intrinsic.h;
extern WidgetClass rectObjClass;

The opaque types RectObj and RectObjClass and the opaque variable rectObjClass are
defined for generic actions on objects whose class is RectObj or a subclass of RectObj.
Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts
to access private data:

typedef struct _RectObjClassRec* RectObjClass;

177

X Toolkit Intrinsics XI1 Release 5

123.2. RectObjPart Structure

In addition to the ObjectPal fields, RectObj objects have the following fields defined in the
RectObjPart structure. All fields have the same meaning as the corresponding field in
CorePart.

typedef struct ^RectObjPart {
Position x, y;
Dimension width, height;
Dimension border_width;
Boolean managed;
Boolean sensitive;
Boolean ancestor_sensitive;

} RectObjPart;

RectObj objects have the RectObj fields immediately following the Object fields.

typedef struct _RectObjRec {
ObjectPart object;
RectObjPart rectangle;

} RectObjRec, *RectObj;

In Intrinsic.h:
typedef struct ^RectObjRec* RectObj;

12.3.3. RectObj Resources

The resource names, classes, and representation types that are specified in the rec-
tObjClassRec resource list are

Name Class Representation

XtNancestorSensitive XtCSensitive XtRBoolean
XtNborderWidth XtCBorderWidth XtRDimension
XtNheight XtCHcight XtRDimension
XtNsensitive XtCSensitive XiRBoolean
XtNwidth XtCWidth XtRDimension
XtNx XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

12.3.4. RectObjPart Default Values

All fields in RectObjPart have the same default values as the corresponding fields in
CorePart.

123.5. Widget Arguments To Intrinsics Routines

The WidgetClass arguments to the following procedures may be rectObjClass or any sub¬
class:

XtCreateManagedWidget, XtVaCreateManagedWidget

The Widget arguments to the following procedures may be of class RectObj or any subclass:

178

X Toolkit Intrinsics XI1 Release 5

XtConfigureWidget, XtMoveWidget, XtResizeWidget

XtMakeGeometryRequest, XtMakeResizeRequest

XtManageChildren, XtManageChild, XtUnmanageChildren, XtUnmanageChild

XtQueryGeometry

XtSetSensitive

XtTranslateCoords

The return value of the following procedures will be of class RectObj or a subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget

12J.6. Use of Rectangle Objects

RectObj can be subclassed to provide widgetlike objects (sometimes called gadgets) that do not
use windows and do not have features often unused in simple widgets. This can save memory
resources both in the server and in applications but requires additional support code in the
parent. In the following discussion, rectobj refers only to objects whose class is RectObj or a
subclass of RectObj but not Core or a subclass of Core.

Composite widget classes that wish to accept rectobj children must set the accepts_objects field
in the CompositeClassExtension extension structure to True. XtCreateVVidget or
XtCreateManagedWidget will otherwise generate an error if called to create a nonwidget
child. If the composite widget supports only children of class RcctObj or a subclass (i.e., not
of the general Object class), it must declare an inscrt_child procedure and check the subclass of
each new child in that procedure. None of the classes defined by the Intrinsics accept rectobj
children.

If gadgets are defined in an object set, the parent is responsible for much more than the parent
of a widget. The parent must request and handle input events that occur for the gadget and is
responsible for making sure that when it receives an exposure event the gadget children get
drawn correctly. Rectobj children may have expose procedures specified in their class records,
but the parent is free to ignore them, instead drawing the contents of the child itself. This can
potentially save graphics context switching. The precise contents of the exposure event and
region arguments to the RectObj expose procedure arc not specified by the Intrinsics; a particu¬
lar rectangle object is free to define the coordinate system origin (self-relative or parent-
relative) and whether or not the rectangle or region is assumed to have been intersected with
the visible region of the object.

In general, it is expected that a composite widget that accepts nonwidget children will docu¬
ment those children it is able to handle, since a gadget cannot be viewed as a completely self-
contained entity, as can a widget. Since a particular composite widget class is usually
designed to handle nonwidget children of only a limited set of classes, it should check the
classes of newly added children in its insen_child procedure to make sure that it can deal with
them.

The Intrinsics will clear areas of a parent window obscured by rectobj children, causing expo¬
sure events, under the following circumstances:

• A rectobj child is managed or unmanaged.

• In a call to XtSetValues on a rectobj child, one or more of the set_values procedures
returns True.

• In a call to XtConfigureWidget on a rectobj child, areas will be cleared corresponding
to both the old and the new child geometries, including the border, if the geometry
changes.

179

X Toolkit Intrinsics XI1 Release 5

• In a call to XtMoveWidget on a rectobj child, areas will be cleared corresponding to
both the old and the new child geometries, including the border, if the geometry changes.

• In a call to XtResizeWidget on a rectobj child, an single rectangle will be cleared
corresponding to the larger of the old and the new child geometries if they are different.

• In a call to XtMakeGeometryRequest (or XtMakeResizeRequest) on a rectobj child
with XtQueryOnly not set, if the manager returns XtGeometryYes, two rectangles will
be cleared corresponding to both the old and the new child geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj children
are free to define any semantics desired if the child geometries overlap, including making this
an error.

When a rectobj is playing the role of a widget, developers must be reminded to avoid making
assumptions about the object passed in the Widget argument to a callback procedure.

12.4. Undeclared Class

The Intrinsics define an unnamed class between RectObj and Core for possible future use by
the X Consortium. The only assumptions that may be made about the unnamed class are

• the core_class.superclass field of coreWidgetClassRec contains a pointer to the
unnamed class record.

• a pointer to the unnamed class record when dereferenced as an ObjectClass will contain
a pointer to rectObjClassRec in its object_class.superclass field.

Except for the above, the contents of the class record for this class and the result of an attempt
to subclass or to create a widget of this unnamed class arc undefined.

12.5. Widget Arguments To Intrinsics Routines

The WidgetClass arguments to the following procedures must be of class Shell or a subclass:

XtCreatePopupShell, XtVaCreatePopupShell, XtAppCreateShell, XtVaAppCreate-
Shell

The Widget arguments to the following procedures must be of class Core or any subclass:

XtCreatePopupShell, XtVaCreatePopupShell

XtAddEventHandler, XtAddRawEventHandler, XtRemoveEventHandler,
XtRemoveRawEventHandler, XtlnsertEventHandler, XtlnsertRawEventHandler

XtAddGrab, XtRemoveGrab, XtGrabKey, XtGrabKeyboard, XtUngrabKey,
XtUngrabKeyboard, XtGrabButton, XtGrabPointer, XtUngrabButton,
XtUngrabPointer

XtBuildEventMask

XtCreateWindow, XtDisplay, XtScreen, XtWindow

XtNameToWidget

XtGetSelectionValue, XtGetSelectionValues, XtOwnSelection, XtDisownSelection,
XtOwnSelectionlncremental, XtGetSelectionValuelncremental, XtGetSelection-
Valueslncremental,
XtGetSelectionRequest

XtlnstallAccelerators, XtlnstallAIIAccelerators (both destination and source)

XtAugvnentTranslations, XtOverrideTransIations, XtUninstallTranslations,
XtCallActionProc

180

X Toolkit Intrinsics XI1 Release 5

XtMapWidget, XtUnmapWidget

XtRealizeWidget, XtUnrealizeWidget

XtSetMappedWhenManaged

XtCallAcceptFocus, XtSetKeyboardFocus (subtree)

XtResizeWindow

XtSetWMColormap Windows

The Widget arguments to the following procedures must be of class Composite or any sub¬
class:

XtCreateManagedWidget, XtVaCreateManagedWidget

The Widget arguments to the following procedures must be of a subclass of Shell:

XtPopdown, XtCallbackPopdown, XtPopup, XtCallbackNone, XtCallbackNonex-
clusive, XtCallbackExclusive, XtPopupSpringLoaded

The return value of the following procedure will be of class Core or a subclass:

XtWindowTo Widget

The return value of the following procedures will be of a subclass of Shell :

XtAppCreateShell, XtVaAppCreateShell, XtAppInitialize, XtVaAppInitialize,
XtCreatePopupShell, XtVaCreatePopupShell

181

X Toolkit Intrinsics XI1 Release 5

Chapter 13

Evolution of The Intrinsics

The interfaces described by this specification have undergone several sets of revisions in the
course of adoption as an X Consortium standard specification. Having now been adopted by
the Consortium as a standard part of the X Window System, it is expected that this and future
revisions will retain backward compatibility in the sense that fully conforming implementations
of these specifications may be produced that provide source compatibility with widgets and
applications written to previous Consortium standard revisions.

The Intrinsics do not place any special requirement on widget programmers to retain source or
binary compatibility for their widgets as they evolve, but several conventions have been esta¬
blished to assist those developers who want to provide such compatibility.

In particular, widget programmers may wish to conform to the convention described in Section
1.6.12 when defining class extension records.

13.1. Determining Specification Revision Level

Widget and application developers who wish to maintain a common source pool that will build
properly with implementations of the Intrinsics at different revision levels of these
specifications but that take advantage of newer features added in later revisions may use the
symbolic macro XtSpecificationRelease.

#define XtSpecificationRelease 5

As the symbol XtSpecificationRelease was new to Release 4, widgets and applications desir¬
ing to build against earlier implementations should test for the presence of this symbol and
assume only Release 3 interfaces if the definition is not present.

13.2. Release 3 to Release 4 Compatibility

At the data structure level. Release 4 retains binary compatibility with Release 3 (the first X
Consortium standard release) for all data structures except WMShellPart,
TopLevelShellPart, and TransientSheilPart. Release 4 changed the argument type to most
procedures that now take arguments of type XtPointer and structure members that are now of
type XtPointer in order to avoid potential ANSI C conformance problems. It is expected that
most implementations will be binary compatible with the previous definition.

Two fields in CoreClassPart were changed from Boolean to XtEnum to allow implementa¬
tions additional freedom in specifying the representations of each. This change should require
no source modification.

13.2.1. Additional Arguments

Arguments were added to the procedure definitions for XtlnitProc, XtSetValuesFunc, and
XtEventHandler to provide more information and to allow event handlers to abort further
dispatching of the current event (caution is advised!). The added arguments to XtlnitProc and
XtSetValuesFunc make the initialize_hook and sct_values_hook methods obsolete, but the
hooks have been retained for those widgets that used them in Release 3.

182

X Toolkit Intrinsics XI1 Release 5

13.2.2. set_vaIues_almost Procedures

The use of the arguments by a set_values_almost procedure was poorly described in Release 3
and was inconsistent with other conventions.

The current specification for the manner in which a sct_values_almost procedure returns infor¬
mation to the Intrinsics is not compatible with the Release 3 specification, and all widget
implementations should verify that any sct_valucs_almost procedures conform to the current
interface.

No known implementation of the Intrinsics correctly implemented the Release 3 interface, so it
is expected that the impact of this specification change is small.

13.2.3. Query Geometry

A composite widget layout routine that calls XtQueryGeometry is now expected to store the
complete new geometry in the intended structure; previously the specification said “store the
changes it intends to make”. Only by storing the complete geometry does the child have any
way to know what other parts of the geometry may still be flexible. Existing widgets should
not be affected by this, except to take advantage of the new information.

13.2.4. unrealizeCallback Callback List

In order to provide a mechanism for widgets to be notified when they become unrealized
through a call to XtUnrealizeVVidget, the callback list name “unrealizeCallback” has been
defined by the Intrinsics. A widget class that requires notification on unrealize may declare a
callback list resource by this name. No class is required to declare this resource, but any class
that did so in a prior revision may find it necessary to modify the resource name if it does not
wish to use the new semantics.

13.2.5. Subclasses of WMShell

The formal adoption of the Inter-Client Communication Conventions Manual as an X Consor¬
tium standard has meant the addition of four fields to WMShellPart and one field to
TopLevelShellPart. In deference to some widget libraries that had developed their own addi¬
tional conventions to provide binary compatibility, these live new fields were added at the end
of the respective data structures.

To provide more convenience for TransicntShells, a field was added to the previously empty
TransientShellPart. On some architectures the size of the part structure will not have
changed as a result of this.

Any widget implementation whose class is a subclass of TopLevelShell or TransientShell must
at minimum be recompiled with the new data structure declarations. Because WMShellPart
no longer contains a contiguous XSizeHints data structure, a subclass that expected to do a
single structure assignment of an XSizeHints structure to the sizejiints field of WMShellPart
must be revised, though the old fields remain at the same positions within WMShellPart.

13.2.6. Resource Type Converters

A new interface declaration for resource type converters was defined to provide more informa¬
tion to converters, to support conversion cache cleanup with resource reference counting, and
to allow additional procedures to be declared to free resources. The old interfaces remain (in
the compatibility section) and a new set of procedures was defined that work only with the
new type convener interface.

In the now obsolete old type convener interface, conveners are reminded that they must return
the size of the convened value as well as its address. The example indicated this, but the

183

X Toolkit Intrinsics XI1 Release 5

description of XtConverter was incomplete.

13.2.7. KeySym Case Conversion Procedure

The specification for the XtCaseProc function type has been changed to match the Release 3
implementation, which included necessary additional information required by the function (a
pointer to the display connection), and corrects the argument type of the source KeySym
parameter. No known implementation of the Intrinsics implemented the previously docu¬
mented interface.

13.2.8. Nonwidget Objects

Formal support for nonwidget objects is new to Release 4. A prototype implementation was
latent in at least one Release 3 implementation of the Intrinsics, but the specification has
changed somewhat. The most significant change is the requirement for a composite widget to
declare the CompositeClassExtension record with the accepts_objects field set to True in
order to permit a client to create a nonwidget child.

The addition of this extension field ensures that composite widgets written under Release 3 will
not encounter unexpected errors if an application attempts to create a nonwidget child. In
Release 4 there is no requirement that all composite widgets implement the extra functionality
required to manage windowless children, so the accept_objects field allows a composite widget
to declare that it is not prepared to do so.

13.3. Release 4 to Release S Compatibility

At the data structure level. Release 5 retains complete binary compatibility with release 4. The
specification of the ObjectPart, RectObjPart, CorePart, CompositePart, ShellPart,
WMShellPart, TopLevelShellPart, and ApplicationShellPart instance records was made
less strict to permit implementations to add internal fields to these structures. Any implementa¬
tion that chooses to do so would, of course, force a recompilation. The Xlib specification for
XrmValue and XrmQptionDescRec was updated to use a new type, XPointer, for the addr
and value fields respectively, to avoid ANSI C conformance problems. The definition of
XPointer is binary compatible with the previous implementation.

13J.1. baseTranslations Resource

A new pseudo-resource, XtNbaseTranslations, was defined to permit application developers to
specify translation tables in application defaults files while still giving end users the ability to
augment or override individual event sequences. This change will affect only those applica¬
tions that wish to take advantage of the new functionality, or those widgets that may have pre¬
viously defined a resource named “baseTranslations”.

Applications wishing to take advantage of the new functionality would change their application
defaults file, e.g., from

app.widget.translations: value

to

app.widget.baseTranslations: value

If it is important to the application to preserve complete compatibility of the defaults file
between different versions of the application running under Release 4 and Release 5, the full
translations can be replicated in both the “translations” and the “baseTranslations” resource.

184

X Toolkit Intrinsics XI1 Release 5

13.3.2. Resource File Search Path

The current specification allows implementations greater flexibility in defining the directory
structure used to hold the application class and per-user application defaults files. Previous
specifications required the substitution strings to appear in the default path in a certain order,
preventing sites from collecting all the files for a specific application together in one directory.
The Release 5 specification allows the default path to specify the substitution strings in any
order within a single path entry'. Users will need to pay close attention to the documentation
for the specific implementation to know where to find these files and how to specify their own
XFILESEARCHPATH and XUSERFILESEARCHPATH values when overriding the sys¬
tem defaults.

133.3. Customization Resource

XtResolvePathname supports a new substitution string, %C, for specifying separate applica¬
tion class resource files according to arbitrary user-specified categories. The primary motiva¬
tion for this addition was separate monochrome and color application class defaults files. The
substitution value is obtained by querying the current resource database for the application
resource name “customization”, class “Customization”. Any application that previously used
this resource name and class will need to be aware of the possibly conflicting semantics.

133.4. Per-Screen Resource Database

To allow a user to specify separate preferences for each screen of a display, a per-screen
resource specification string has been added and multiple resource databases are created; one
for each screen. This will affect any application that modified the (formerly unique) resource
database associated with the display subsequent to the Intrinsics database initialization. Such
applications will need to be aware of the particular screen on which each shell widget is to be
created.

Although the wording of the specification changed substantially in the description of the pro¬
cess by which the resource database(s) is initialized, the net effect is the same as in prior
releases with the exception of the added per-screen resource specification and the new customi¬
zation substitution string in XtResolvePathname.

133.5. Internationalization of Applications

Internationalization as defined by ANSI is a technology that allows support of an application in
a single locale. In adding support for internationalization to the Intrinsics the restrictions of
this model have been followed. In particular, the new Intrinsics interfaces are designed to not
preclude an application from using other alternatives. For this reason, no Intrinsics routine
makes a call to establish the locale. However, a convenience routine to establish the locale at
initialize time has been provided, in the form of a default procedure that must be explicitly
installed if the application desires ANSI C locale behavior.

As many objects in X, particularly resource databases, now inherit the global locale when they
are created, applications wishing to use the ANSI C locale model should use the new function
XtSetLanguageFroc to do so.

The internationalization additions also define event filters as a part of the Xlib Input Method
specifications. The Intrinsics enable the use of event filters through additions to
XtDispatchEvent. Applications that may not be dispatching all events through

185

X Toolkit Intrinsics XI1 Release 5

XtDispatchEvent should be reviewed in the context of this new input method mechanism.

In order to permit internationalization of error messages the name and path of the error data¬
base file is now allowed to be implementation dependent. No adequate standard mechanism
has yet been suggested to allow the Intrinsics to locate the database from localization informa¬
tion supplied by the client.

The previous specification for the syntax of the language string specified by xnlLanguage has
been dropped to avoid potential conflicts with other standards. The language string syntax is
now implementation-defined. The example syntax cited is consistent with the previous
specification.

13J.6. Permanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was added to allow the
resource manager to avoid copying certain string constants. The Intrinsics specification was
updated to explicitly require the Object class jiame, resource jiame, resource_class,
resourcejype, defaultjype in resource tables, Core actions string field, and Constraint
resource jiame, resource_class, resource jype, and defaultjype resource fields to be per¬
manently allocated. This explicit requirement is expected to affect only applications that may
create and destroy classes on the fly.

13.3.7. Arguments to Existing Functions

The args argument to XtAppInitialize, XtVaAppInitiulize, XtOpenDisplay, XtDisplaylni-
tialize, and Xtlnitialize were changed from Cardinal* to int* to conform to pre-existing con¬
vention and avoid otherwise annoying typecasting in ANSI C environments.

186

X Toolkit Intrinsics XI1 Release 5

Appendix A

Resource File Format

A resource tile contains text representing the default resource values for an application or set
of applications.

The format of resource files is defined by Xlib - C Language X Interface and is reproduced
here for convenience only.

The format of a resource specification is

ResourceLine
Comment
IncludeFile
FileName
ResourceSpec
ResourceName
Binding
WhiteSpace
Component
ComponentName
NameChar
Value

= Comment I IncludeFile I ResourceSpec I <empty lino
= “!” [<any character except null or newlino}
= “#” WhiteSpace “include” WhiteSpace FileName WhiteSpace
= <valid filename for operating systcm>
= WhiteSpace ResourceName WhiteSpace WhiteSpace Value
= [Binding] [Component Binding) ComponentName
_ i» > > | i * * > >

= [<space> I horizontal tab>}
= “?” I ComponentName
= NameChar (NameChar)
= "a”-“z“ I “A“-“Z“ I “0“-“9” I I
= [<any character except null or unescaped newlino)

Elements separated by vertical bar (I) arc alternatives. Curly braces ({...}) indicate zero or
more repetitions of the enclosed elements. Square brackets ([...]) indicate that the enclosed ele¬
ment is optional. Quotes (“...’’) are used around literal characters.

If the last character on a line is a backslash (\), that line is assumed to continue on the next
line.

To allow a Value to begin with whitespace, the two-character sequence “\space" (backslash
followed by space) is recognized and replaced by a space character, and the two-character
sequence “\tab” (backslash followed by horizontal tab) is recognized and replaced by a hor¬
izontal tab character.

To allow a Value to contain embedded newline characters, the two-character sequence “\n“ is
recognized and replaced by a newline character. To allow a Value to be broken across multi¬
ple lines in a text file, the two-character sequence “\newline" (backslash followed by newline)
is recognized and removed from the value.

To allow a Value to contain arbitrary character codes, the four-character sequence “\nnn”,
where each n is a digit character in the range of “0’’-“7’\ is recognized and replaced with a
single byte that contains the octal value specified by the sequence. Finally, the two-character
sequence “\\” is recognized and replaced with a single backslash.

187

X Toolkit Intrinsics XI1 Release 5

Appendix B

Translation Table Syntax

Notation

Syntax is specified in EBNF notation with the following conventions:

[a] Means either nothing or “a”
{ a } Means zero or more occurrences of “a”
(alb) Means either “a” or “b”
\n Is the newline character

All terminals are enclosed in double quotation marks (“ ”). Informal descriptions are enclosed
in angle brackets (< >).

Syntax

The syntax of a translation table is

translationTable
directive
production
ihs
keyseq
keychar
event
modifierjist
modifier
count
modifier_name
event_type
detail
rhs
name
namechar
params
string
quoted_string
escape_char
unquoted_string

= [directive] { production }
= (“#replace” I “#ovcrridc” I “#augment”) “\n”
= lhs rhs “\n”
= (event I keyseq) { (event I keyseq) }
= keychar (keychar)
_ j- | | i.y. j <.150 Latin 1 character

= [modifierjist] “<”cvcntjypc“>” [“(” count[“+”] “)”] (detail)
_ ^ (modifier)) I “None”

= modifier_name
= (“1” I “2” I “3” I “4” I ...)
= <keysym> I <sec ModificrNamcs table below>
= <see Event Types table below>
= <event specific details>
= { name “(” (paramsl “)”)
= namechar { namechar)
= { “a”-“z” I “A”-“Z” I “0”-“9” I I }
= string string)
= quotcd_string I unquoted_string
=. (<Latin 1 character> I cscapc_char) (“W”].
=

= (cLatin 1 character except space, tab, “\n”, “)”>}

The params field is parsed into a list of String values that will be passed to the named action
procedure. A quoted string may contain an embedded quotation mark if the quotation mark is
preceded by a single backslash (\). The three-character sequence “W” is interpreted as “sin¬
gle backslash followed by end-of-string”.

Modifier Names

The modifier field is used to specify standard X keyboard and button modifier mask bits.
Modifiers are legal on event types KeyPress, KeyRelease, ButtonPress, ButtonRelease,
MotionNotify, EnterNotify, LeaveNotify, and their abbreviations. An error is generated

188

X Toolkit Intrinsics XI1 Release 5

when a translation table that contains modifiers for any other events is parsed,

e If the modifier list has no entries and is not “None”, it means “don't care’’ on all

modifiers.

• If an exclamation point (!) is specified at the beginning of the modifier list, it means that
the listed modifiers must be in the correct state and no other modifiers can be asserted.

• If any modifiers are specified and an exclamation point (!) is not specified, it means that
the listed modifiers must be in the correct state and “don’t care” about any other
modifiers.

® If a modifier is preceded by a tilde (~), it means that that modifier must not be asserted.

• If “None” is specified, it means no modifiers can be asserted.

• If a colon (:) is specified at the beginning of the modifier list, it directs the Intrinsics to
apply any standard modifiers in the event to map the event keycode into a KeySym. The
default standard modifiers are Shift and Lock, with the interpretation as defined in X
Window System Protocol, Section 5. The resulting KeySym must exactly match the
specified KeySym, and the nonstandard modifiers in the event must match the modifier
list. For example, “:<Key>a” is distinct from “:<Key>A”, and “:Shift<Key>A” is
distinct from “:<Key>A”

• If both an exclamation point (!) and a colon (:) arc specified at the beginning of the
modifier list, it means that the listed modifiers must be in the correct state and that no
other modifiers except the standard modifiers can be asserted. Any standard modifiers in
the event are applied as for colon (:) above.

• If a colon (:) is not specified, no standard modifiers arc applied. Then, for example,
“<Key>A” and “<Key>a” are equivalent.

In key sequences, a circumflex O is an abbreviation for the Control modifier, a dollar sign ($)
is an abbreviation for Meta, and a backslash (\) can be used to quote any character, in particu¬
lar a double quote ("), a circumflex O, a dollar sign ($), and another backslash (\). Briefly:

No Modifiers: None <cvent> detail
Any Modifiers: <cvcnt> detail
Only these Modifiers: ! modi mod2 <event> detail
These modifiers and any others: modi mod2 <cvcnt> detail

The use of “None” for a modifier list is identical to the use of an exclamation point with no
modifers.

Modifier Abbreviation Meaning

Ctrl
Shift
Lock
Meta
Hyper
Super

h
su
a

c
s

m

Control modifier bit
Shift modifier bit

Meta key modifier
Hyper key modifier
Super key modifier
Alt key modifier

Lock modifier bit

Alt
Modi
Mod2
Mod3
Mod4
Mod5
Buttonl

Modi modifier bit
Mod2 modifier bit
Mod3 modifier bit
Mod4 modifier bit
Mod5 modifier bit
Buttonl modifier bit
Button2 modifier bit
Button3 modifier bit
Button4 modifier bit

Button2
Button3
Button4

189

X Toolkit Intrinsics XI1 Release 5

Modifier Abbreviation Meaning

Button5 Button5 modifier bit
None No modifiers
Any Any modifier combination

A key modifier is any modifier bit one of whose corresponding KeyCodes contains the
corresponding left or right KeySym. For example, “m” or “Meta” means any modifier bit
mapping to a KeyCode whose KeySym list contains XK_Mcta_L or XK_Meta_R. Note that
this interpretation is for each display, not global or even for each application context. The
Control, Shift, and Lock modifier names refer explicitly to the corresponding modifier bits;
there is no additional interpretation of KeySyms for these modifiers.

Because it is possible to associate arbitrary KeySyms with modifiers, the set of key modifiers
is extensible. The <keysym> syntax means any modifier bit whose corresponding Key-
Code contains the specified KeySym name.

A modifier_list/KeySym combination in a translation matches a modifiers/KeyCode combina¬
tion in an event in the following ways;

1. If a colon (;) is used, the Intrinsics call the display’s XtKeyProc with the KeyCode and
modifiers. To match, (modifiers & 'modifiers_return) must equal modifier Jist, and
keysym_return must equal the given KeySym.

2. If (:) is not used, the Intrinsics mask off all don’t-care bits from the modifiers. This
value must be equal to modifier Jist. Then, for each possible combination of don’t-care
modifiers in the modifier list, the Intrinsics call the display’s XtKeyProc with the Key-
Code and that combination ORed with the carcd-about modifier bits from the event.
Keysym_return must match the KeySym in the translation.

Event Types

The event-type field describes XEvent types. In addition to the standard Xlib symbolic event
type names, the following event type synonyms arc defined;

Type

Key
KeyDown
KeyUp
BtnDown
BtnUp
Motion
PtrMoved
MouseMoved
Enter
EnterWindow
Leave
LeaveWindow
Focusln
FocusOut
Keymap
Expose
GrExp
NoExp
Visible

Meaning

KeyPress
KeyPress
KeyRelease
ButtonPress
ButtonRelease
MotionNotify
MotionNotify
MotionNotify
EnterNotify
EnterNotify
LeaveNotify
LeaveNotify
Focusln
FocusOut
KeymapNotify
Expose
GraphicsExpose
NoExpose
VisibilityNotify

190

X Toolkit Intrinsics XI1 Release 5

Type Meaning

Create CreateNotify

Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify
ConfigureReq ConfigureRequest
Grav GravityNotify
ResReq ResizeRequest
Circ CirculateNotify
CircReq CirculateRequest
Prop PropertyNotify
SelClr SelectionClear
SelReq SelectionRequest
Select SelectionNotify
Clrmap ColormapNotify
Message ClientMessage
Mapping MappingNotify

The supported abbreviations are:

Abbreviation Event Type Including

Ctrl KeyPress with Control modifier
Meta KeyPress with Meta modifier
Shift KeyPress with Shift modifier
BtnlDown ButtonPress with Button 1 detail
BtnlUp ButtonRelease with Button 1 detail
Bm2Down ButtonPress with Button2 detail
Btn2Up ButtonRelease with Button2 detail
Btn3Down ButtonPress with Button3 detail
Btn3Up ButtonRelease with Bulton3 detail
Btn4Down ButtonPress with Button4 detail
Btn4Up ButtonRelease with Button4 detail
Bm5Down ButtonPress with Bulton5 detail
BtnSUp ButtonRelease with Button5 detail
BtnMotion MotionNotify with any button modifier
BmlMotion MotionNotify with Button 1 modifier
Bm2Motion MotionNotify with Button2 modifier
Bm3Motion MotionNotify with Button3 modifier
Btn4Motion MotionNotify with Button4 modifier
Bm5Motion MotionNotify with Button5 modifier

The detail field is event-specific and normally corresponds to the detail field of the correspond¬
ing event as described by X Window System Protocol, Section 11. The detail field is supported
for the following event types:

Event Event Field

191

X Toolkit Intrinsics XI1 Release 5

KeyPress KeySym from event detail (kcycodc)

KeyRelease KeySym from event detail (kcycodc)

ButtonPress button from event detail
ButtonRelease button from event detail
MotionNotify event detail
EnterNotify event mode
LeaveNotify event mode
Focusln event mode
FocusOut event mode
PropertyNotify atom
SelectionCIear selection
SelectionRequest selection
SelectionNotify selection
ClientMessage type
MappingNotify request

If the event type is KeyPress or KeyRelease, the detail field specifies a KeySym name in
standard format which is matched against the event as described above, for example, <Key>A.

For the PropertyNotify, SelectionCIear, SelectionRequest, SelectionNotify and ClientMes-
sage events the detail field is specified as an atom name; for example,
<Message>WM_PROTOCOLS. For the MotionNotify, EnterNotify, LeaveNotify, Focu-
sln, FocusOut and MappingNotify events, either the symbolic constants as defined by X
Window System Protocol, Section 11, or the numeric values may be specified.

If no detail field is specified, then any value in the event detail is accepted as a match.

A KeySym can be specified as any of the standard KeySym names, a hexadecimal number
prefixed with “Ox” or “OX”, an octal number prefixed with “0” or a decimal number. A
KeySym expressed as a single digit is interpreted as the corresponding Latin 1 KeySym, for
example, “0” is the KeySym XK_0. Other single character KeySyms are treated as literal
constants from Latin 1, for example, “!” is treated as 0x21. Standard KeySym names are as
defined in <Xll/keysymdef.h> with the “XK_” prefix removed.

Canonical Representation

Every translation table has a unique, canonical text representation. This representation is passed
to a widget’s display_accelerator procedure to describe the accelerators installed on that wid¬
get. The canonical representation of a translation table is (see also “Syntax”)

translationTable
production
lhs
event
modifierjist
modifier
count
modifier_name
event_type
detail
rhs
name
namechar
params
string
quoted_string
escape_char

= { production }
= Lhs rhs “\n”
= event { “,” event }
= [modifierjist] “<”evcntjypc“>” [“(” count[“+”] “)”] (detail)
= [“!”] [“:”] (modifier)
= [“"”] modifier_name
= (“1“ I “2” I “3” I “4” I ...)
= <keysym> ! <sce canonical modifier names below>
= <see canonical event types bclow>
= <evcnt specific dctails>
= (name “(” [params] “)” }
= namechar { namechar)
= { “a”-“z” I “A”-“Z” I “0”-“9” I “_” I “-” }
= string (",” string)
= quoted_string
= (<Latin 1 character I cscapc_char) (“\\”] ..

192

X Toolkit Intrinsics XI1 Release 5

The canonical modifier names are

Ctrl Modi Buttonl
Shift Mod2 Button2
Lock Mod3 Button3

Mod4 Button4
Mod5 Button5

canonical event types are

KeyPress KeyRelease
ButtonPress ButtonRelease
MotionNotify EnterNotify
LeaveNotify Focusln
FocusOut KeymapNotify
Expose GraphicsExpose,
NoExpose VisibilityNotify
CreateNotify DestroyNotify
UnmapNotify MapNotify
MapRequest ReparentNotify
ConfigureNotify ConfigureRequest
GravityNotify ResizeRequest
CirculateNotify CirculateRequest
PropertyNotify SelectionClear
SelectionRequest SelectionNotify
ColormapNotify ClientMessage

Examples

• Always put more specific events in the table before more general ones:

Shift <BtnlDown> : twas()\n\
<BtnlDown> : brilligO

• For double-click on Button 1 Up with Shift, use this specification:

Shift<BtnlUp>(2) : and()

This is equivalent to the following line with appropriate timers set between events:

Shift<BtnlDown>,Shift<BtnlUp>,Shift<BtnlDown>,Shift<BtnlUp> : and()

• For double-click on Buttonl Down with Shift, use this specification:

Shift<BtnlDown>(2) : the()

This is equivalent to the following line with appropriate timers set between events:

Shift<BtnlDown>,Shift<BtnlUp>,Shift<BtnlDown> : the()

• Mouse motion is always discarded when it occurs between events in a table where no
motion event is specified:

<BtnlDown>,<BtnlUp> : slithyO

193

X Toolkit Intrinsics XI1 Release 5

This is taken, even if the pointer moves a bit between the down and up events. Simi¬
larly, any motion event specified in a translation matches any number of motion events.
If the motion event causes an action procedure to be invoked, the procedure is invoked
after each motion event.

• If an event sequence consists of a sequence of events that is also a noninitial subse¬
quence of another translation, it is not taken if it occurs in the context of the longer
sequence. This occurs mostly in sequences like the following:

<BtnlDown>,<BtnlUp> : tovcs()\n\
<BtnlUp> : did()

The second translation is taken only if the button release is not preceded by a button
press or if there are intervening events between the press and the release. Be particularly
aware of this when using the repeat notation, above, with buttons and keys, because their
expansion includes additional events; and when specifying motion events, because they
are implicitly included between any two other events. In particular, pointer motion and
double-click translations cannot coexist in the same translation table.

• For single click on Button 1 Up with Shift and Meta, use this specification:

Shift Meta <BtnlDown>, Shift Mcta<BtnlUp>: gyre()

• For multiple clicks greater or equal to a minimum number, a plus sign (+) may be
appended to the final (rightmost) count in an event sequence. The actions will be
invoked on the count-th click and each subsequent one arriving within the multi-click
time interval. For example:

Shift <BtnlUp>(2+) : and()

• To indicate EnterNotify with any modifiers, use this specification:

<Enten> : gimbleO

• To indicate EnterNotify with no modifiers, use this specification:

None <Enter> : in()

• To indicate EnterNotify with Buttonl Down and ButtonZ Up and “don’t care” about
the other modifiers, use this specification:

Buttonl ~Button2 <Entcr> : thc()

• To indicate EnterNotify with Buttonl down and Button2 down exclusively, use this
specification:

! Buttonl Button2 <Entcr> : wabc()

You do not need to use a tilde (') with an exclamation point (!).

194

X Toolkit Intrinsics XI1 Release 5

Appendix C

Compatibility Functions

In prototype versions of the X Toolkit each widget class implemented an Xt<Wufger>Create
(for example, XtLabelCreate) function, in which most of the code was identical from widget
to widget. In the Intrinsics, a single generic XtCreateWidget performs most of the common
work and then calls the initialize procedure implemented for the particular widget class.

Each Composite class also implemented the procedures Xt< Widget>Add and an
Xt<VV7^ger>Delete (for example, XtButtonBoxAddButton and XtButtonBoxDeleteButton).
In the Intrinsics, the Composite generic procedures XtManageChildren and XtUn-
manageChildren perform error checking and screening out of certain children. Then they call
the changejnanaged procedure implemented for the widget’s Composite class. If the widget’s
parent has not yet been realized, the call to the changejnanaged procedure is delayed until
realization time.

Old style calls can be implemented in the X Toolkit by defining one-line procedures or macros
that invoke a generic routine. For example, you could define the macro XtLabelCreate as:

#defme XtLabelCreate(name, parent, args, numjargs) \
((LabelWidget) XtCreateWidgctfnarae, labelWidgetClass, parent, args, num_args))

Pop-up shells in some of the prototypes automatically performed an XtManageChild on their
child within their insert_child procedure. Creators of pop-up children need to call
XtManageChild themselves.

As a convenience to people converting from earlier versions of the toolkit without application
contexts, the following routines exist: Xtlnitialize, XtMainLoop, XtNextEvent, XtPro-
cessEvent, XtPeekEvent, XtPending, XtAddlnput, XtAddTimeOut, XtAddWorkProc,
XtCreateApplicationShell, XtAddActions, XtSetSeiectionTimeout, and XtGetSelection-
Timeout.

Widget Xllriiuahze(shell_name, applicationjelass, options, nutn_options, arge, argv)
String shell_name\
String application_class\
XrmOptionDescRec options[]\
Cardinal num_options\
int *argc\
String argv[]\

shelljname This parameter is ignored; therefore, you can specify NULL.

application_c/awSpecifies the class name of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to XrmParseCom-
mand.

num_options Specifies the number of entries in the options list.

arge Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.

195

X Toolkit Intrinsics XI1 Release 5

Xtlnitialize calls XtToolkitlnitialize to initialize the toolkit internals, creates a default appli¬
cation context for use by the other convenience routines, calls XtOpenDisplay with
display_string NULL and applicationjiame NULL, and finally calls XtAppCreateShell with
application_name NULL and returns the created shell. The semantics of calling Xtlnitialize
more than once are undefined. This routine has been replaced by XtAppInitialize.

void XtMainLoop(void)

XtMainLoop first reads the next alternate input, timer, or X event by calling XtNextEvent.
Then it dispatches this to the appropriate registered procedure by calling XtDispatchEvent.
This routine has been replaced by XtAppMainLoop.

void XtNextEvent(eve/zr_remr/i)
XEvent * eventjeturn:

eventjeturn Returns the event information to the specified event structure.

If no input is on the X input queue for the default application context, XtNextEvent flushes
the X output buffer and waits for an event while looking at the alternate input sources and
timeout values and calling any callback procedures triggered by them. This routine has been
replaced by XtAppNextEvent. Xtlnitialize must be called before using this routine.

void XtProcessEvent(/7uu/:)
XtlnputMask mask:

mask Specifies the type of input to process.

XtProcessEvent processes one X event, timeout, or alternate input source (depending on the
value of mask), blocking if necessary. It has been replaced by XtAppProcessEvent. Xtlni¬
tialize must be called before using this function.

Boolean XlPeckEvenlieventjeturn)
XEvent * event_return\

eventjeturn Returns the event information to the specified event structure.

If there is an event in the queue for the default application context, XtPeekEvent fills in the
event and returns a nonzero value. If no X input is on the queue, XtPeekEvent flushes the
output buffer and blocks until input is available, possibly calling some timeout callbacks in the
process. If the input is an event, XtPeekEvent fills in the event and returns a nonzero value.
Otherwise, the input is for an alternate input source, and XtPeekEvent returns zero. This rou¬
tine has been replaced by XtAppPeekEvent. Xtlnitialize must be called before using this
routine.

Boolean XtPendingO

XtPending returns a nonzero value if there are events pending from the X server or alternate
input sources in the default application context. If there are no events pending, it flushes the
output buffer and returns a zero value. It has been replaced by XtAppPending. Xtlnitialize
must be called before using this routine.

Xtlnputld XtAddlnputCsource, condition, proc, client_data)
int source:
XtPointer condition:
XtlnputCallbackProc proc:
XtPointer client data:

196

X Toolkit Intrinsics XI1 Release 5

source

condition

proc

client data

Specifies the source file descriptor on a POSIX-based system or other
operating-system-dependent device specification.

Specifies the mask that indicates either a read, write, or exception condition or
some operating-system-dependent condition.

Specifies the procedure called when input is available.

Specifies the parameter to be passed to proc when input is available.

The XtAddlnput function registers in the default application context a new source of events,
which is usually file input but can also be file output. (The word file should be loosely inter¬
preted to mean any sink or source of data.) XtAddlnput also specifies the conditions under
which the source can generate events. When input is pending on this source in the default
application context, the callback procedure is called. This routine has been replaced by XtAp-
pAddlnput. Xtlnitialize must be called before using this routine.

Xtlntervalld XtAddTimeOut(mterva/, proc, clientjlata)
unsigned long interval;
XtTimerCallbackProc proc:
XtPointer clientjlata:

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when time expires.

clientjlata Specifies the parameter to be passed to proc when it is called.

The XtAddTimeOut function creates a timeout in the default application context and returns
an identifier for it. The timeout value is set to interval. The callback procedure will be called
after the time interval elapses, after which the timeout is removed. This routine has been
replaced by XtAppAddTimeOut, Xtlnitialize must be called before using this routine.

XtWorkProcId XtAddWorkProc(prc»c, clientjlata)
XtWorkProc proc:
XtPointer clientjlata:

proc Procedure to call to do the work.

clientjlata Client data to pass to proc when it is called.

This routine registers a work procedure in the default application context. It has been replaced
by XtAppAddWorkProc. Xtlnitialize must be called before using this routine.

Widget XtCreateApplicationShell(mz/?j£, widget jelass, args, numjirgs)
String name:
WidgetClass widget_class:
ArgList args:
Cardinal num_args:

name This parameter is ignored; therefore, you can specify NULL.

widget_class Specifies the widget class pointer for the created application shell widget.
This will usually be topLevelShellWidgetCIass or a subclass thereof.

args Specifies the argument list to override any other resource specifications.

numjirgs Specifies the number of entries in args.

The procedure XtCreateApplicationShell calls XtAppCreateShell with application_name
NULL, the application class passed to Xtlnitialize, and the default application context created
by Xtlnitialize. This routine has been replaced by XtAppCreateShell.

197

X Toolkit Intrinsics XI1 Release 5

An old-format resource type converter procedure pointer is of type XtConverter.

typedef void (*XtConverter)(XrmValue*, Cardinal*, XrmValue*, XrmValue*);
XrmValue *args\
Cardinal *numjrgs\
XrmValue *from\
XrmValue *to\

args Specifies a list of additional XrmValue arguments to the converter if addi¬
tional context is needed to perform the conversion, or NULL.

num_args Specifies the number of entries in args.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted value.

Type converters should perform the following actions:

• Check to see that the number of arguments passed is correct.

• Attempt the type conversion.

• If successful, return the size and pointer to the data in the to argument; otherwise, call
XtWarningMsg and return without modifying the to argument.

Most type converters just take the data described by the specified from argument and return
data by writing into the specified to argument. A few need other information, which is avail¬
able in the specified argument list. A type converter can invoke another type converter, which
allows differing sources that may convert into a common intermediate result to make max¬
imum use of the type converter cache.

Note that the address returned in to->addr cannot be that of a local variable of the converter
because this is not valid after the converter returns. It should be a pointer to a static variable.

The procedure type XtConverter has been replaced by XtTypeConverier.

The XtStringConversionWarning function is a convenience routine for old-format resource
converters that convert from strings.

void XtStringConversionWamingCsrc, dstjype)
String sre, dstjype;

sre Specifies the string that could not be converted.

dstjype Specifies the name of the type to which the string could not be converted.

The XtStringConversionWarning function issues a warning message with name “conver-
sionError”, type “string”, class “XtToolkitError, and the default message string “Cannot
convert "sre" to type dstjype". This routine has been superseded by XtDisplayStringCon-
versionWarning.

To register an old-format converter, use XtAddConverter or XtAppAddConverter.

void XtAddConvertcr(/h?m_/ype, tojype, converter, convert_args, numjrgs)
String fromjype\
String tojype\
XtConverter converter,
XtConvertArgList convert_args\
Cardinal num_args\

fromjype Specifies the source type.

to_type Specifies the destination type.

198

X Toolkit Intrinsics XU Release 5

converter

convert_args

num_args

Specifies the type converter procedure.

Specifies how to compute the additional arguments to the converter, or NULL.

Specifies the number of entries in convert_args.

XtAddConverter is equivalent in function to XtSetTypeConverter with cachejype equal to
XtCacheAll for old-format type conveners. It has been superseded by XtSetTypeConverter.

void XtAppAddConvener(tf/?/?_c<3/um, fromjpe, tojype, converter, convert_args, num_args)
XtAppContext appjontext:
String fromjype'.
String tojype',
XtConverter converter,
XtConvertArgList convert_args\
Cardinal numjrgs'.

app_context Specifies the application context.

from jype Specifies the source type.

tojype Specifies the destination type.

converter Specifies the type convener procedure.

convert_args Specifies how to compute the additional arguments to the convener, or NULL.

num_args Specifies the number of entries in convertjrgs.

XtAppAddConverter is equivalent in function to XtAppSetTypeConverter with cache jype
equal to XtCacheAll for old-format type conveners. It has been superseded by XtAppSet¬
TypeConverter.

To invoke resource conversions, a client may use XtConvert or, for old-format conveners
only, XtDirectConvert.

void XtCon\zn.(yv, from jype, from, tojype, tojeturn)
Widget w;
String fromjype',
XrmValuePtr from;
String tojype-,
XrmValuePtr to return'.

w

fromjype

from

tojype

to return

Specifies the widget to use for additional arguments, if any are needed, ol

Specifies the source type.

Specifies the value to be convened.

Specifies the destination type.

Returns the convened value.

void XtDirectConvert(c0/ivmer, args, numjirgs, from, tojeturn)
XtConverter converter,
XrmValuePtr args\
Cardinal num_args\
XrmValuePtr from',
XrmValuePtr to return;

199

X Toolkit Intrinsics XI1 Release 5

converter

args

num_args

from

to return

Specifies the conversion procedure to be called.

Specifies the argument list that contains the additional arguments needed to
perform the conversion (often NULL).

Specifies the number of entries in args.

Specifies the value to be converted.

Returns the converted value.

The XtConvert function looks up the type converter registered to convert fromjype to
tojype, computes any additional arguments needed, and then calls XtDirectConvertor
XtCallConverter. The XtDirectConvert function looks in the converter cache to see if this
conversion procedure has been called with the specified arguments. If so, it returns a descrip¬
tor for information stored in the cache; otherwise, a calls the converter and enters the result in
the cache.

Before calling the specified converter, XtDirectConvert sets the return value size to zero and
the return value address to NULL. To determine if the conversion was successful, the client
should check to_return.addr for non-NULL. The data returned by XtConvert must be copied
immediately by the caller, as it may point to static data in the type converter.

XtConvert has been replaced by XtConvertAndStore, and XtDirectConvert has been
superseded by XtCallConverter.

To deallocate a shared GC when it is no longer needed, use XtDestroyGC.

void XtDestroyGC(w, gc)
Widget w;
GC gc\

w Specifies any object on the display for which the shared GC was created.
Must be of class Object or any subclass thereof.

gc Specifies the shared GC to be deallocated.

References to sharable GCs arc counted and a free request is generated to the server when the
last user of a given GC destroys it. Note that some earlier versions of XtDestroyGC had
only a gc argument. Therefore, this function is not very portable, and you are encouraged to
use XtReleaseGC instead.

To declare an action table in the default application context and register it with the translation
manager, use XtAddActions.

void XtAddActionsections, numjictions)
XtActionList actions;
Cardinal num_actions\

actions Specifies the action table to register.

num_actions Specifies the number of entries in actions.

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table for XtMenuPopup and XtMenuPopdown as part of X Toolkit initialization.
This routine has been replaced by XtAppAddActions. Xtlnitialize must be called before
using this routine.

To set the Intrinsics selection timeout in the default application context, use XtSetSelection-
Timeout.

200

X Toolkit Intrinsics XI1 Release 5

void XtSetSelectionTimeout(r/m£<9wr)
unsigned long timeout

timeout Specifies the selection timeout in milliseconds. This routine has been replaced
by XtAppSetSelectionTimeout. Xtlnitialize must be called before using this
routine.

To get the current selection timeout value in the default application context, use XtGetSelec-
tionTimeout.

unsigned long XtGctSelectionTimeoutO

The selection umeout is the time within which the two communicating applications must
respond to one another. If one of them does not respond within this interval, the Intrinsics
abort the selection request.

This routine has been replaced by XtAppGetSelectionTimeout. Xtlnitialize must be called
before using this routine.

To obtain the global error database (for example, to merge with an application- or widget-
specific database), use XtGetErrorDatabase.

XrmDatabase *XtGetErrorDatabase()

The XtGetErrorDatabase function returns the address of the error database. The Intrinsics
do a lazy binding of the error database and do not merge in the database file until the first call
to XtGetErrorDatbaseText. This routine has been replaced by XtAppGetErrorDatabase.

An error message handler can obtain the error database text for an error or a warning by cal¬
ling XtGetErrorDatabaseText.

void XtGetErrorDatabaseText(rtame, type, class, default, buffer jeturn, nbytes)
String name, type, class'.
String default.
Suing buffer_return',
int nbytes'.

name
type

class

default

buffer_return

nbytes

Specify the name and type that arc concatenated to form the resource name of
the error message.

Specifies the resource class of the error message.

Specifies die default message to use if an error database entry is not found.

Specifies the buffer into which the error message is to be returned.

Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error database asso¬
ciated with the default application context or returns the specified default message if one is not
found in the error database. To form the full resource name and class when querying the
database, the name and type are concatenated with a single between them and the class is
concatenated with itself with a single if it does not already contain a This roudne
has been superseded by XtAppGetErrorDatabaseText.

To register a procedure to be called on fatal error conditions, use XtSetErrorMsgHandler.

void XtSetErrorMsgHandler(m.sg_/j(2Ahi/£r)
XtErrorMsgHandler msgjiandler.

201

X Toolkit Intrinsics XI1 Release 5

msgjiandler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics constructs a string from the error resource
database and calls XtError. Fatal error message handlers should not return. If one does,
subsequent Intrinsics behavior is undefined. This routine has been superseded by
XtAppSetErrorMsgHandler.

To call the high-level error handler, use XtErrorMsg.

void XtErrorMsgfmzme, type, class, default, params, numjparams)
String name\
String type'.
String class'.
String default’
String * params-.
Cardinal *num_params\

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num jparams Specifies the number of entries in params.

This routine has been superseded by XtAppErrorMsg.

To register a procedure to be called on nonfatal error conditions, use XtSetWar-
ningMsgHandler.

void XtSetWamingMsgHandler(A?wg_/zaAu//er)
XtErrorMsgHandler msgjiandler,

msgjiandler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics constructs a string from the error
resource database and calls XtWarning. This routine has been superseded by
XtAppSet WarningMsgHandler.

To call the installed high-level warning handler, use XtWarningMsg.

void XtWamingMsg(rta/7ie, type, class, default, params, numjrarams)
String name\
String type-.
String class'.
String defaulr.
String *params\
Cardinal *numjparams',

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.

params Specifies a pointer to a list of values to be stored in the message.

num jparams Specifies the number of entries in params.

This routine has been superseded by XtAppWarningMsg.

202

X Toolkit Intrinsics XI1 Release 5

To register a procedure to be called on fatal error conditions, use XtSetErrorHandler.

void XtSetErrorHandler(/tami/cr)
XtEnrorHandler handler,

handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics is _XtError. On POSIX-based systems,
it prints the message to standard error and terminates the application. Fatal error message
handlers should not return. If one does, subsequent X Toolkit behavior is undefined. This
routine has been superseded by XtAppSetErrorHandler.

To call the installed fatal error procedure, use XtError.

void XlError(message)
String message;

message Specifies the message to be reported.

Most programs should use XtAppErrorMsg, not XtError, to provide for customization and
internationalization of error messages. This routine has been superseded by XtAppError.

To register a procedure to be called on nonfatal error conditions, use XtSetWarningHandler.

void XtSetWamingHandlcK/uzmf/er)
XtErrorHandler handler;

handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics is XtWarning. On POSIX-based
systems, it prints the message to standard error and returns to the caller. This routine has been
superseded by XtAppSetWarningHandler.

To call the installed nonfatal error procedure, use XlYVarning.

void XtWamingfmc^agc)
String message;

message Specifies the nonfatal error message to be reported.

Most programs should use XtAppWarningMsg, not XtWarning, to provide for customiza¬
tion and internationalization of warning messages. This routine has been superseded by
XtAppWarning.

203

X Toolkit Intrinsics XI1 Release 5

Appendix D

Intrinsics Error Messages

All Intrinsics errors and warnings have class “XtToolkitError”. The following two tables
summarize the common errors and warnings that can be generated by the Intrinsics. Addi¬
tional implementation-dependent messages arc permitted.

Error Messages

Name Type Default Message

allocEiror calloc

allocError malloc

allocError realloc

communication Error select

intemalError shell

invalidArgCount xtGetValues

invalidArgCount xtSetValues

invalidClass cons train tSct Value

invalidClass xtAppCreatcShcll

invalidClass XtCreatePopupShell

invalidClass xtCreateWidgct

invalidClass XtPopdown

invalidClass XtPopup

invalidDimension xtCreateWindow

invajidDimension shellRealize

invalidDisplay xtlnitialize

invalidGeometry Manager XtMakeGcometryRequest

invalidParameter removePopupFromParcnt

invalidParameler XtAddlnput

invalidParameters xtMcnuPopupAction

invalidParent realize

invalidParent XtCreatePopupShell

invalidParent xtCreateWidgct

invalidParent xiMakeGeomctry Request

invalidParent XtMakeGcometryRequest

invalidParent xtManageChildren

invalidParent xtUnmanageChildren

invalidProcedure inheritance Proc

invalidProcedure realizcProc

invalidWindow evenlHandlcr

Cannot perform calloc

Cannot perform malloc

Cannot perform realloc

Select failed

Shell’s window manager interaction is broken

Argument count > 0 on NULL argument list in XtGet-

Valucs

Argument count > 0 on NULL argument list in XtSet-

Valucs

Subclass of Constraint required in CallConstraintSet-

Valucs

XiAppCrcatcShell requires non-NULL widget class

XtCreatePopupShell requires non-NULL widget class

XtCrcatcWidget requires non-NULL widget class

XtPopdown requires a subclass of shellWidgetClass

XtPopup requires a subclass of shellWidgetClass

Widget %s has zero width and/or height

Shell widget %s has zero width and/or height

Can’t Open display

XtMakeGcometryRequest - parent has no geometry

manger

RemovcPopupFromParent requires non-NULL popuplist

invalid condition passed to XtAddlnput

MenuPopup wants exactly one argument

Application shell is not a windowed widget?

XtCreatePopupShell requires non-NULL parent

XtCreatcWidget requires non-NULL parent

XtMakeGcometryRequest - NULL parent. Use Set-

Values instead

XtMakeGcometryRequest - parent not composite

Attempt to manage a child when parent is not Compo¬

site

Attempt to unmanage a child when parent is not Com¬

posite

Unresolved inheritance operation

No realize class procedure defined

Event with wrong window

204

X Toolkit Intrinsics Xll Release 5

missingEvent

noAppContext

noPer Display

noPerDisplay

noSelectionPropetties

nullProc

subclassMismatch

shell

widgetToApplicationContcxt

closeDisplay

getPerDisplay

freeSclectionProperty

insertChild

xtCheckSubclass

Events are disappearing from under Shell

Couldn’t find ancestor with display information

Couldn’t find per display information

Couldn’t find per display information

internal error: no selection property context for display

NULL insert child procedure

Widget class %s found when subclass of %s expected:

%s

Trying to merge translation tables with cycles, and

can’t resolve this cycle.

translationError mergingTablcsWithCyclos

Warning Messages

Name Type Default Message

ambiguousParent xtManageChildren Not all children have same parent in XtManageChildren

ambiguousParent xtUnmanageChildrcn Not all children have same parent in XtUnmanageChil¬

drcn

communicationError windowManager Window Manager is confused

conversionError string Cannot convert string "%s" to type %s

displayError invalidDisplay Can't find display structure

grabError xtAddGrab XtAddGrab requires exclusive grab if spring loaded is

TRUE

grabError grabDestroyCallback XtAddGrab requires exclusive grab if spring loaded is

TRUE

grabError xtRemovcGrab XtRemovcGrab asked to remove a widget not on the

grab list

initializationError xtlnitialize Initializing Resource Lists twice

invalidArgCount getResources argument count > 0 on NULL argument list

invalidCallbackList xtAddCallbacks Cannot find callback list in XtAddCallbacks

invalidCallbackList xtCallC’allback Cannot find callback list in XtCallCallbacks

invalidCallbackList xtOverridcCallback Cannot find callback list in XtOverrideCallbacks

invalidCallbackList xtRemoveAllCallback Cannot find callback list in XtRemoveAilCallbacks

invalidCallbackList xtRemovcCallbacks Cannot find callback list in XtRemoveCallbacks

invalidChild xtManageChildren null child passed to XtManageChildren

invalidChild xtUnmanageChildrcn Null child passed to XtUnmanageChildrcn

invalidDepth set Values Can’t change widget depth

invalidCeomecry xtMakeGeometry Request Shell subclass did not take care of geometry in XtSet-

Values

invalidParameters compile Accelerators String to AcceleratorTable needs no extra arguments

invalidParameters compileTranslations String to TranslationTable needs no extra arguments

invalidParameters mergeTranslations MergeTM to TranslationTable needs no extra arguments

invalidParameters xtMenuPopdown XiMcnuPopdown called with num_params != 0 or I

invalidParent xtCopyFromParent CopyFromParent must have non-NULL parent

invalidPopup xtMenuPopup Can’t find popup in XtMenuPopup

invalidPopup xtMenuPopdown Can’t find popup m XtMenuPopdown

invalidPopup unsupportedOperation Pop-up menu creation is only supported on ButtonPress

or EntcrNotify events.

invalidPopup unsupportcdOperation Pop-up menu creation is only supported on ButtonPress

or EntcrNotify events.

invalidProcedure deleteChild null delete child procedure in XtDestroy

205

X Toolkit Intrinsics

invalidProcedure

invalidProcedure

invalidResourceCount

invalidResourceName

invalidShell

invalidSizeOvenride

invalidTypcOverride

invalidWidget

missingCharsctList

noColormap

registerWindowError

registerWindowError

translation error

translation error

translationError

translationError

translationError

translationEnor

translationEnor

translationParseErior

translationParse Error

translationParse Error

typeConversionError

versionMismatch

wrongParameters

wrongParameters

wrong P arame ters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrongParameters

wrong P arame ters

wrongParameters

wrongParameters

wrongParameters

wrong Parameters

wrongParameters

wrongParameters

wrong Parame ters

wrongParameters

wrongParameters

inputHandlcr

set values_almost

getResourccs

computeArgs

xtTranslateCoords

xtDependcncies

xt Dependencies

removePopupFromParcnt

cvtStringToFontSct

cvtStringToPixel

xtRegisterWindow

xtUnregistcr Window

nullTable

nullTable

ambiguous Actions

mergingNullTable

nullTable

unboundActions

xtTranslate Initialize

showLine

parscEnor

parscStnng

noConvcrtcr

widget

cvtlntOrPixclToXColor

cvtlntToBool

cvtlntToBoolean

cviIntToFont

cvtlntToPixcl

cvtlntToPixmap

cvtlntToShort

cvtStringToBool

cvtStringToBoolean

cvtStringToCursor

cvtStringToDisplay

cvtStringToFile

cvtStringToFont

cvtStringToFontSet

cvtStringToFontStruct

cvtSlringToInt

cvtStringToPixel

cvtStringToShort

cvtStringToUnsigncdChar

cvtXColorToPixel

XI1 Release 5

XtRcmovelnput: Input handler not found

set_values_almost procedure shouldn’t be NULL

resource count > 0 on NULL resource list

Cannot find resource name %s as argument to conver¬

sion

Widget has no shell ancestor

Representation size %d must match superclass’s to

override %s

Representation type %s must match superclass’s to

override %s

RemovcPopupFromParent.widget not on parent list

Missing charsets in Siring to FontSet conversion

Cannot allocate colormap entry for "%s"

Attempt to change already registered window.

Attempt to unregister invalid window.

Can’t remove accelerators from NULL table

Tried to remove non-existant accelerators

Overriding earlier translation manager actions.

Old translation table was null, cannot modify.

Can’t translate event thorugh NULL table

Actions not found: %s

Initializing Translation manager twice.

... found while parsing ’%s’

translation table syntax error: %s

Missing

No type converter registered for ’%s’ to '%s' conver¬

sion.

Widget class %s version mismatch: widget %d vs.

intrinsics %d.

Pixel to color conversion needs screen and colormap

arguments

Integer to Bool conversion needs no extra arguments

Integer to Boolean conversion needs no extra arguments

Integer to Font conversion needs no extra arguments

Integer to Pixel conversion needs no extra arguments

Integer to Pixmap conversion needs no extra arguments

Integer to Short conversion needs no extra arguments

String to Bool conversion needs no extra arguments

String to Boolean conversion needs no extra arguments

String to cursor conversion needs screen argument

String to Display conversion needs no extra arguments

String to File conversion needs no extra arguments

String to font conversion needs screen argument

String to FontSet conversion needs display and locale

arguments

String to cursor conversion needs screen argument

String to Integer conversion needs no extra arguments

String to pixel conversion needs screen and colormap

arguments

String to Integer conversion needs no extra arguments

Siring to Integer conversion needs no extra arguments

Color to Pixel conversion needs no extra arguments

206

X Toolkit Intrinsics Xll Release 5

Appendix E

Defined Strings

The StringDefs.h header file contains definitions for the following resource name, class, and
representation type symbolic constants.

Resource names:

Symbol Definition

XtNaccelerators
XtNallowHoriz
XtNallowVert
XtNancestorSensitive
XtNbackground
XtNbackgroundPixmap
XtNbitmap
XtNborderColor
XtNborder
XtNborderPixmap
XtNborderWidth
XtNcallback
XtNchildren
XtNcolormap
XtNdepth
XtNdestroyCallback
XtNeditType
XtNfile
XtNfont
XtNfontSet
XtNforceBars
XtNforeground
XtNfunction
XtNheight
XtNhighlight
XtNhSpace
XtNindex
XtNinitialResourcesPersistent
XtNinnerHeight
XtNinnerWidth
XtNinnerWindow
XtNinsertPosition
XtNintemalHeight
XtNintemalWidth
XtNjumpProc
XtNjustify
XtNknobHeight
XtNknoblndent
XtNknobPixel
XtNknobWidth

"accelerators"
"allowHoriz"
"allowVcrt"
"anccstorScnsitive"
"background"
"backgroundPixmap"
"bitmap"
"bordcrColor"
"bordcrColor"
"borderPixmap"
"bordcrWidth"
"callback"
"children"
"colormap”
"depth"
"destroyCallback"
"editTypc"
"file”
"font"
"fontSct"
"forceBars"
"foreground"
"function”
"height"
"highlight"
"hSpace"
"index"
"initialRcsourccsPcrsistcnt"
"innerHcight"
"innerWidth"
"inncrWindow"
"insertPosilion"
"intemalHeight"
"intemalWidth"
"jumpProc"
"justify"
"knobHeight"
"knoblndent"
"knobPixel"
"knobWidth"

207

X Toolkit Intrinsics XI1 Release 5

XtNlabel "label"
XtNlength "length"
XtNlowerRight "lowerRight"
XtNmappedWhenManaged "mapped WhcnManaged"
XtNmenuEntry "menuEntry"
XtNname "name"
XtNnotify "notify"
XtNnumChildren "numChildren"
XtNorientation "orientation"
XtNparameter "parameter"
XtNpixmap "pixmap"
XtNpopupCallback "popupCallback"
XtNpopdownCallback "popdownCallback"
XtNresize "resize"
XtNreverseVideo "reverseVidco"
XtNscreen "screen"
XtNscrollProc "scrollProc"
XtNscrollDCursor "scrollDCursor"
XtNscrollHCursor "scrollHCursor"
XtNscrollLCursor "scrollLCursor"
XtNscrollRCursor "scrollRCursor"
XtNscrollUCursor "scrollUCursor"
XtNscrollVCursor "scrollVCursor"
XtNselection "selection"
XtNselectionArray "sclcctionArray”
XtNsensitive "sensitive"
XtNshown "shown"
XtN space "space"
XtNstring "string"
XtNtextOptions "textOptions"
XtNtextSink "textSink"
XtNtextSource "textSourcc"
XtNthickness "thickness"
XtNthumb "thumb"
XtNthumbProc "thumbProc"
XtNtop "top"
XtNtranslations "translations"
X tNun real i ze Cal 1 bac k "unrcalizeCallback"
XtNupdate "update"
XtNuseBottom "useBottom”
XtNuseRight "useRight"
XtNvalue "value"
XtNvSpace "vSpace"
XtNwidth "width"
XtNwindow "window"
XtNx "x"
XtNy "y"

Resource classes:

Symbol Definition

XtCAccelerators "Accelerators"
XtCBackground "Background"

208

X Toolkit Intrinsics XI1 Release 5

XtCBitmap
XtCBoolean
XtCBorderColor
XtCBorderWidth
XtCCallback
XtCColormap
XtCColor
XtCCursor
XtCDepth
XtCEditType
XtCEventBindings
XtCFile
XtCFont
XtCFontSet
XtCForeground
XtCFraction
XtCFunction
XtCHeight
XtCHSpace
XtCIndex
XtCInitialResourcesPersistent
XtCInscrtPosition
XtCInterval
XtCJustify
XtCKnoblndent
XtCKnobPixel
XtCLabel
XtCLength
XtCMappedWhenManagcd
XtCMargin
XtCMenuEntry
XtCNotify
XtCOrientation
XiCParameter
XtCPixmap
XtCPosition
XtCReadOnly
XtCResize
XtCReverseVideo
XtCScreen
XtCScrollProc
XtCScrollDCursor
XtCScrollHCursor
XtCScrollLCursor
XtCScrollRCursor
XtCScrollUCursor
XtCScrollVCursor
XtCSelection
XtCSensitive
XtCSelectionArray
XtCSpace
XtCString
XtCTextOptions
XtCTextPosition

’Bitmap"
’Boolean"
'BordcrColor"
’BordcrWidth"
’Callback"
’Colormap"
’Color"
’Cursor"
’Depth"
’EditTypc"
’EventBindings"
’File"
’Font"
’FontSet"
’Foreground"
’Fraction"
’Function"
’Height"
'HSpace"
’Index"
’InitialRcsourccsPcrsistent"
’InsertPosition"
’Interval"
’Justify"
’Kooblndcnt"
’KnobPixel"
’Label"
’Length”
’Mapped WhcnManagcd”
’Margin"
’McnuEntry”
’Notify"
’Orientation"
'Parameter"
’Pixmap"
’Position"
’Readonly"
’Resize"
’ReverseVidco”
’Screen"
’ScrollProc"
’ScrollDCursor"
’ScrollHCursor"
’ScrolLLCursor”
’ScrollRCursor"
’ScrollUCursor"
’ScrollVCursor"
’Selection"
’Sensitive"
’SelcctionArray"
’Space"
'String"
’TextOptions"
"TextPosition"

209

X Toolkit Intrinsics XI1 Release 5

XtCTextSink "TextSink"
XtCTextSource "TcxtSourcc"
XtCThickness "Thickness"
XtCThumb "Thumb"
XtCTranslations "Translations"
XtCValue "Value"
XtCVSpace "VSpace"
XtCWidth "Width"
XtCWindow "Window"
XtCX "X"

XtCY "Y"

Resource representation types:

Symbol Definition

XtRAcceleratorTable "AccelcratorTable"
XtRAtom "Atom”
XtRBitmap "Bitmap"
XtRBool "Bool"
XtRBoolean "Boolean"
XtRCallback "Callback"
XtRCaliProc "CallProc"
XtRCardinal "Cardinal"
XtRColor "Color"
XtRColormap "Colormap”
XtRCursor "Cursor"
XtRDimension "Dimension”
XtRDisplay "Display"
XtREditMode "EditMode"
XtREnum "Enum"
XtRFile "File”
XtR Float "Float"
XtRFont "Font"
XtRFontSet "FontSct"
XtRFontStruct "FontStruct"
XtRFunction "Function"
XtRGeometry "Geometry"
XtRImmediate "Immediate"
XtRInitialState "InitialStatc"
XtRInt "Int"
XtRJustify "Justify"
XtRLongBoolean XtRBool
XtRObject "Object"
XtROrientation "Orientation"
XtRPixel "Pixel"
XtRPixmap "Pixmap"
XtRPointer "Pointer"
XtRPosition "Position"
XtRScreen "Screen"
XtRShort "Short"
XtRString "String"
XtRStringArray "String Array"
XtRStringTable "StringTable"

210

X Toolkit Intrinsics XI1 Release 5

XtRUnsignedChar "UnsigncdChar"
XtRTranslationTable "TranslationTable"
XtRVisual "Visual"
XtR Widget "Widget"
XtRWidgetGass "WidgetGass"
XtRWidgetList "WidgetList"
XtR Window "Window"

Boolean enumeration constants:

Symbol Definition

XtEoff "off’
XtEfalse "false"
XtEno "no"
XtEon "on"
XtEtrue "true"
XtEyes "yes"

Orientation enumeration constants:

Symbol Definition

XtEvertical "venical"
XtEhorizontal "horizontal"

Text edit enumeration constants:

Symbol Definition i

XtEtextRead
XtEtextAppend
XtEtextEdit

"read"
"append"
"edit"

Color enumeration constants:

Symbol Definition

XtExtdefaultbackground
XtExtdefaultforeground

"xtdefaultbackground"
"xtdcfaultforcground"

Font constant:

Symbol Definition

XtExtdefaultfont "xtdefaultfont"

211

X Toolkit Intrinsics XI1 Release 5

Index

XtVaCreateWidget, 35 ButtonReleaseMask, 73

#augment, 140, 141, 142
#override, 140, 141, 142
#replace, 140, 141, 142

$

SHOME, 30

A

Above, 77
Accelerator, 141
accept_focus procedure, 92
Action Table, 136
actions, 136
action_proc procedure, 135
AnyButton, 89
AnyKey, 88
AnyModifier, 88, 89
applicationShellWidgetClass, 38, 40
applicationShellClassRec, 65
application context, 25
ApplicationShell, 58
ApplicationShellPart, 10, 184
ApplicationShellWidget, 61, 63
applicationShellWidgetClass, 38, 39
ApplicationShellWidgetClass, 61
applicationShellWidgetClass, 61
Arg, 34
ArgList, 10, 34, 35, 36, 41, 43

B

Below, 77
Boolean, 9, 127, 182
Bottomlf, 77
ButtonPress, 73, 86, 89, 95, 139, 147, 164, 188,
190, 191, 193
ButtonPressMask, 73
ButtonRelease, 86, 95, 164, 188, 190, 191, 193

C

calloc, 150
Cardinal, 9, 35, 186
Center-Gravity, 45
Chaining, 41, 42, 112

Subclass, 18
superclass, 18

change_managed procedure, 53
CirculateNotify, 190, 193
CirculateRequest, 190, 193
Class Initialization, 19
class initialize procedure, 19, 113
class_name, 14
ClientMessage, 100, 101, 102, 103, 190, 192, 193
colorConvertArgs, 115, 117, 124
ColormapNotify, 190, 193
compositeWidgetClass, 48
Composite widgets, 51
Composite, 6
CompositcClassExtension, 6, 52, 176, 179, 184
CompositeClassExtensionRec, 6
CompositeCIassPart, 6, 23
compositcClassRec, 7
CompositeP.h, 21
Composite Part, 6, 7, 10, 44, 184
CompositeWidget, 6, 7

Resources, 7
CompositeWidgetClass, 6
compositeWidgetClass, 6, 24, 37, 43, 45, 48, 49,
51
CompositeWidgetClass, 52
compositeWidgetClass, 53, 55, 56, 58, 76
compress_enterleave field, 97
compress_expose field, 97
compress_motion field, 96
Configure Window, 75
ConfigureNotify, 47, 52, 190, 193
ConligureRequest, 190, 193
ConstrainP.h, 14
constraintWidgetClass, 48, 49
Constraint.!!, 12
Constraint, 8

get_values_hook, 57
ConstraintClassExtension, 8, 57, 128
ConstraintClassExtensionRec, 8, 19
ConstraintClassPart, 8, 19, 23, 37, 42, 48, 49, 57,
108
constrainiClassRec, 9
ConstraintPart, 8, 9, 133

212

X Toolkit Intrinsics Xll Release 5

ConstraintWidget, 8, 9
ConstraintWidgetClass, 8
constraintWidgetClass, 8, 37, 45, 48, 49, 57, 111,
128, 130
CopyFromParent, 45, 65
Core, 1, 2, 3
CoreClassPart, 2, 3, 37, 38, 48, 49, 70, 108, 135,
136, 138, 173, 176, 182
coreClassRec, 5
CorePart, 2, 4, 10, 69, 174, 175, 178, 184
CoreRec, 10
Core Widget, 4

Resources, 5
CoreWidgetClass, 3
coreWidgetClass, 37, 45, 148
coreWidgetClassRec, 180
CreateNotify, 190, 193
create_popup_child_proc, 71
CurrentTime, 157, 158, 162, 163
CWBorderWidth, 77
CWHeight, 77, 78
CWSibling, 77
CWStackMode, 77, 82
CWWidth, 77, 78
CWX, 77
CWY, 77

D

delete_child procedure, 53
Destroy Callbacks, 48, 104
destroy procedure, 49
destroyCallback, 127
DestroyNotify, 190, 193
Dimension, 9
DirectColor, 117
Display, 25, 31
display_accelerator procedure, 142
display_accelerator, 192

E

EastGravity, 45
EnterNotify, 86, 95, 164, 188, 190, 192, 193, 194
EnterWindow, 73
Events, 92
exit, 50
expose procedure, 98
Expose, 97, 98, 132, 164, 190, 193

F

False, 5, 9, 20, 37, 43, 51, 52, 55, 56, 65, 66, 67,
68, 72, 74, 87, 91, 92, 93, 94, 95, 96, 99, 100,
116, 118, 125, 127, 155, 158, 160, 163, 170, 175

FocusChange, 91, 92
Focusln, 91, 92, 95, 190, 192, 193
FocusOut, 92, 95, 190, 192, 193
font, 5
free, 150

G

Geometry Management, 75
geometry_manager procedure, 75
get_values_hook procedure, 57, 128
Grabbing Input, 86
GrabModeAsync, 73
GrabNotViewable, 89, 90
GraphicsExpose,, 193
GraphicsExpose, 97, 98, 100, 101, 102, 103, 164,
190
GravityNotify, 190, 193
Grayscale, 117

I

IconicState, 68, 117
Inheritance, 18, 41, 42, 45, 112
Initialization, 19, 41, 42
initialize procedure, 41, 42
initialize_hook procedure, 43
Input Grabbing, 86
InpulOnly, 45
InputOutput, 45
insert_child procedure, 22, 52, 70, 195
Intrinsic.h, 3, 4, 6, 7, 8, 9, 93, 174, 175, 177, 178
IntrinsicP.h, 3, 6, 8, 174, 175

K

key modifier, 190
KcymapNotify, 190, 193
KeyPress, 73, 86, 88, 95, 145, 146, 147, 164,
188, 190, 191, 192, 193
KeyRelease, 86, 95, 145, 146, 164, 188, 190,
192, 193

L

language procedure, 28
LC_ALL, 28, 29
LeaveNotify, 86, 95, 164, 188, 190, 192, 193
libXLa, 1

M

malloc, 150
MapNotify, 190, 193
MappingNotify, 100, 101, 102, 103, 143, 190,

213

X Toolkit Intrinsics XI1 Release 5

192
MapRequest, 190, 193
MenuPopdown, 74
MenuPopup, 73
MoLionNotify, 86, 95, 164, 188, 190, 191, 192,
193
muItiClickTime, 139

N

NoExpose, 98, 99, 100, 101, 102, 103, 190, 193
None, 6, 67, 68, 91, 147, 156
Normals tate, 117
NorthWestGravity, 44, 99
NoSymbol, 144, 146

o

Object, 1, 173, 174, 175
objectClass, 20, 111, 112
ObjectClass, 174
objectClass, 174, 175, 176
ObjectClass, 180
ObjectClassPart, 49, 108, 173, 174, 176
objectClassRec, 5
ObjectClassRec, 174
objectClassRec, 175
ObjectPal 10, 173, 174, 175, 178, 184
ObjectRec, 10, 175
Opposite, 77
OverrideShell, 58
OverrideShellWidget, 61
OverrideShellWidgetClass, 61
overrideShellWidgetClass, 61

P

ParentRelative, 6
Pixel, 119
pop-up, 69

child, 69, 70
list, 69
shell, 70

Position, 9
PPosition, 66
printf, 166
Property Notify, 164, 190, 192, 193
PseudoColor, 117
PSize, 66

Q

query_geometry procedure, 82

R

realize procedure, 45
realloc, 150
Rectangle, 176
RectObj, 176, 177
rectObjClass, 112, 132, 176
RectObjClass, 177
rectObjClass, 177, 178
RectObjClassPart, 49, 108, 176, 177
rectObjClassRec, 5
RectObjClassRec, 177
rectObjClassRec, 178, 180
RectObjPart, 10, 178, 184
RectObjRec, 10, 178
RcparcntNotify, 190, 193
resize procedure, 83
RcsizeRequest, 190, 193
Resource Management, 108
Resources:

muItiClickTime, 139
re verse Video, 116
sclcctionTimcout, 33
synchronous, 33
xnlLanguage, 29
xtDefaultFont, 116
xtDcfaultFontSet, 116

root_geometry_manager procedure, 61

s

Screen, 119
screcnConvertArg, 124
SclcctionClear, 100, 101, 102, 103, 163, 164,
190, 192, 193
SelcctionNotify, 100, 101, 102, 103, 156, 190,
192, 193
SelectionRequest, 100, 101, 102, 103, 155, 160,
190, 192, 193
Selections:

atomic, 154
incremental, 159
MULTIPLE, 155
TIMESTAMP, 155

SclectionTimeout, 33, 154
sctlocale, 28, 29
sct_values procedure, 131, 133
sct_values_almost procedure, 132
set_values_hook procedure, 130, 134
Shell.h, 61
Shell, 58

crcate_popup_child_proc, 71
root_geometry_manager, 61

214

X Toolkit Intrinsics Xll Release 5

wm_timeout, 61
ShellClassExtension, 59, 61
ShellGassExtensionRec, 59
ShellClassPart, 23, 61
shellClassRec, 64
ShellP.h, 61
ShellPan, 10, 61, 184
ShellWidget, 61, 63

Resources, 64
ShellWidgetClass, 61
shellWidgetClass, 61, 71, 73
sizeof, 23, 110
special, 5
StaticColor, 117
StaticGray, 117
String Constants:

miscellaneous, 211
representation types, 210
resource classes, 208
resource names, 207

String, 11, 36, 41, 109, 118
string, 119
String, 188
StringDefs.h, 207
Subclass Chaining, 18
Substitution, 170
SubstructureNotify, 47
Superclass Chaining, 18, 41, 42, 112
superclass, 14
synchronous, 33

T

TARGETS, 155
this, 5
Toplf, 77
TopLevel, 68
TopLevelShell, 58

resources, 65
topLevelShellClassRec, 65
TopLevelShellPart, 10, 182, 183, 184
TopLevelShell Widget, 61
TopLevelShellWidgetClass, 61
topLevelShellWidgetClass, 61, 197
transientshellGassRec, 65
TransientShell, 58

resources, 65
Transients hellPart, 182, 183
Transients hell Widget, 61
TransientShellWidgetClass, 61
transientShellWidgetClass, 61
Translation tables, 138, 188
True, 5, 9, 17, 26, 33, 43, 44, 48, 51, 52, 53, 55,
56, 65, 66, 67, 68, 72, 73, 76, 87, 88, 89, 91, 93,
94, 95, 96, 97, 99, 100, 101, 103, 116, 118, 125,

127, 130, 132, 155, 158, 160, 163, 170, 171, 176,
179, 184
TrucColor, 117

u

UnmapNotify, 74, 190, 193
unreal izcCallback, 47
USPosition, 66
USSizc, 66

V

varargs, 35
VendorShell, 58
VcndorShcllWidget, 61
VendorShellWidgetClass, 61
vcndorShcllWidgetClass, 61
version, 14
Visibility, 99
VisibilityFullyObscured, 99
VisibililyNotify, 99, 190, 193
VisibilityPartiallyObscured, 99
VisibililyUnobscured, 99

W

WestGravity, 45
Widget, 4

class extension records, 22
class initialization, 20, 113

WidgetClass, 3, 4
WidgetClass, 4
widgciClassRec, 14
WidgctList, 54
WidgctRec, 10
widgct_class, 10
widgct_size, 14
WMShell, 58

resources, 64
wmShellClassRec, 64
WMShellPart,, 182
WMShellPart, 10, 183, 184
WMShellWidget, 61
WMShell WidgetClass, 61
wmShellWidgetClass, 61
WM_CLASS, 38
WM_COLORMAP_WINDOWS, 169
WM_COMMAND, 38
wmjimeout, 61

X

XI 1/Intrinsic.h, 1, 123
XI 1/IntrinsicP.h, 1, 17

215

X Toolkit Intrinsic^ XI1 Release 5

XI 1/keysymdef.h, 192
XI 1/Shell.h, 1
XI 1/StringDefs.h, 1, 10, 11, 108, 110
Xll/X.h, 77
XI 1/Xatoms.h, 1
XI 1/Xaw/Label.h, 1
XI 1/Xaw/Scrollbar.h, 1
XI 1/Xresource.h, 118
XI 1/Xutil.h, 164
XAPPLRESDIR, 30
XA_PRIMARY, 154, 157, 158
XA_SECONDARY, 154
XA_STRING, 154, 156
XClearArea, 130, 132
XCloseDisplay, 27
XConfigureWindow, 47, 54, 76, 77, 80, 81
XCreateFontSet, 116
XCreateGC, 153
XCreaieWindow, 44, 45
XDestroyWindow, 47, 48
XFILESE ARCHPATH, 171, 185
XFiherEvent, 88, 89, 94
XFreeGC, 49
XFreePixmap, 49
XGrabBuuon, 89
XGrabKey, 88
XGrabKeyboard, 88, 89
XGrabPointer, 90
XListFonts, 116
XMapRaised, 72
XMatchVisuallnfo, 117
xmh, 33
XMoveWindow, 54, 80
XNextEvent, 92
xnlLanguage, 29, 171, 186
XOpenDisplay, 27, 32
XParseGeometry, 109
XPeekEvent, 92
XPending, 92
XPointer, 184
XResourceManagerSiring, 29
XrmGetDatabase, 31, 172
XrmOptionDescRec, 32, 184
XrmParseCommand, 26, 27, 32, 33, 195
XrmPutLineResource, 32
XrmSeLDatabase, 26, 30
XrmStringToQuark, 22, 123
Xrm Value, 110, 118, 184, 198
XScreenResourceSiring, 30
XSelectlnput, 100, 101, 102, 103
XSetlnpuiFocus, 91, 92
XSetLocaleModifiers, 28
XSetWindowAttributes, 43, 44, 45, 103
XSizeHints, 183
XStdICCTextStyle, 67, 68

XSupportsLocale, 28
XSynchronize, 26, 33
XtAcceptFocusProc, 92
XtActionHookld, 138
XtAcuonHookProc, 137
XtActionList, 135
XLAcuonProc, 135
XtActionsRcc, 135
XtAddAcuons, 137, 195, 200
XtAddCallback, 49, 105, 175
XtAddCallbacks, 105, 175
XtAddConverter, 126, 198, 199
XtAddEventHandler, 93, 100, 101, 102, 103, 180
XtAddExposureToRegion, 164
XtAddGrab, 72, 86, 87, 94, 180
XtAddlnput, 195, 196, 197
XtAddRawEventHandler, 101, 102, 103, 180
XtAddress, 123
XtAddrcssModc, 123
XtAddTimeOut, 195, 197
XtAddWorkProc, 195, 197
XtAllEvents, 101, 103
XtAllocateGC, 151, 152, 153
XlAlmostProc, 132
XtAppAddlnput, 85
XtAppAddTimeOut, 86
XtAppAddActionHook., 137
XtAppAddActionHook, 137, 138
XtAppAddAcuons, 136, 137, 200
XtAppAddConverter, 126, 198, 199
XtAppAddlnput, 84, 85, 93, 197
XtAppAddTimeOut, 49, 85, 86, 197
XtAppAddWorkProc, 96, 197
XtAppContext, 25
XtAppCrcateShell, 24, 38, 39, 40, 112, 180, 181,
196, 197
XtAppError, 169, 203
XtAppErrorMsg, 121, 167, 169, 202, 203
XtAppGetErrorDatabase, 165, 201
XtAppGetErrorDatabaseText, 165, 166, 201
XtAppGeiSelectionTimeout, 153, 154, 201
XtAppInitialize, 25, 39, 40, 41, 181, 186, 196
XiAppMainLoop, 84 , 93 , 94, 196
XiAppNcxtEvent, 86, 93, 94, 96, 196
XtAppPeekEvent, 92, 93, 196
XtAppPending, 92, 196
XtAppProcessEvent, 86, 92, 93, 96, 196
XtAppReleaseCacheRefs, 125
XtAppSetErrorHandler, 168, 203
XtAppSetErrorMsgHandler, 167, 202
XtAppSetFallbackResources, 31, 32, 40
XtAppSetSelectionTimeout, 153, 201
XtAppSetTypeConverter, 122, 123, 199
XtAppSetWaiming Handler, 169, 203
XtAppSetWamingMsgHandler, 167, 168, 202

216

X Toolkit Intrinsics Xll Release 5

XtAppWaming, 169, 203
XtAppWamingMsg, 118, 121, 168, 169, 202,
203
XtArgsFunc, 134
XtArgsProc, 43, 128
XtArgVal, 9, 34, 35, 36
XtAugmentTranslations, 140, 180
XtBaseOffset, 123, 124
XtBuildEventMask, 103, 180
XtButtonBoxAddButton, 195
XtButtonBoxDeleteButton, 195
XtCacheAll, 121, 125, 199
XtCacheByDisplay, 121, 125, 127
XtCacheNone, 121, 125
XtCacheRef, 125, 126, 127
XtCacheRefCount, 122, 125
XtCacheType, 121
XtCallAcceptFocus, 92, 181
XtCallActionProc, 138, 146, 147, 148, 180
XtCallbackExclusive, 71, 72, 73, 181
XtCallbackHasNone, 105, 107
XtCallbackKasSome, 107
XtCallbackList, 104
XtCallbackNoList, 107
XtCallbackNone, 71, 72, 73, 181
XtCallbackNonexclusive, 71, 72, 73, 181
XtCallbackPopdown, 73, 74, 181
XtCallbackProc, 49, 104
XtCallbackRec, 104
XtCallbackReleaseCacheRef, 126, 127
XtCallbackReleaseCacheRcfList, 126
XtCallbackStatus, 105
XtCallCallbackList, 105, 107, 175
XtCallCallbacks, 106, 107, 175
XiCallConverter, 123, 124, 125, 126, 200
XiCalloc, 49, 150, 151, 158, 163
XiCancelConvenSelcctionProc, 161
XtCaseProc, 143, 144, 145, 184
XtCheckSubclass, 2, 17, 18, 71, 73, 175
XtClass, 16, 17, 175, 176
XiCloseDisplay, 27, 121, 127
XtCompositeExtensionVersion, 7
XtConfigureWidget, 54, 75, 79, 80, 81, 179
XtConstraintExtensionVersion, 9
XtConvert, 176, 199, 200
XtConvertAndSiore, 124, 126, 127, 176, 200
XtConvertArgProc, 123, 124
XtConvertArgRec, 123
XtConvertCase, 145
XiConverter, 184, 198
XtConvertSelectionlncrProc, 159
XtConvertSelectionProc, 154, 155
XtCreateApplicationContext, 24, 25, 40, 137
XtCreateApplicationShell, 195, 197
XtCreateManagedWidget, 51, 54, 55, 122, 178,

179, 181
XtCrcaicPopupChiidProc, 71
XtCreatePopupShell, 39, 70, 180, 181
XtCreateWidget, 5, 20, 34, 36, 37, 38, 44, 51,
52, 54, 57, 104, 108, 112, 113, 122, 127, 175,
176, 179, 195
XiCreaieWindow, 45, 47, 180
XlCviColorToPixel, 117
XiCvdntToBool, 117
XtCvtlntToBoolean, 117
XtCvtlntToColor, 117
XiCvtlntToDimension, 117
XtCvtlntToFloat, 117
XtCvtlntToFont, 117
XtCvtlntToPixel, 117
XiCvtlntToPixmap, 117
XiCvtlntToPosition, 117
XtCvtlntToShort, 117
XtCvtlntToUnsignedChar, 117
XiCvtPixclToColor, 117
XtCvtSiringToAcceleratorTable, 115
XtCvtStringToAtom, 115
XiCviStringToBool, 115
XtCvtStringToBoolean, 115
XtCvtStringToCursor, 115
XiCvtStringToDimension, 115
XiCviStringToDisplay, 115
XiCvtSiringToFile, 115
XtCviStringToFloat, 115
XiCvtStringToFont, 115
XtCvtStringToFontSet, 115
XtCvtStringToFontStruct, 115
XtCvtStringToInitialState, 115
XtCvtStringToInt, 115
XtCvtStringToPixel, 115
XiCviStringToPosiuon, 115
XiCviSiringToShort, 115
XtCviStringToTranslationTable, 115
XtCvtStringToUnsignedChar, 115
XiCvtStringToVisual, 115
XiCWQueryOnly, 76, 77, 78, 79, 80
XiDatabase, 31
XiDcfaultBackground, 5, 33, 116, 120
XtDcfaultFont, 116, 120
XiDcfauliForuSet, 116
XtDcfaultForeground, 5, 33, 110, 116, 120
XtDestroyWidget, 44
XiDestroyApplicationContext, 25, 27, 50
XtDcstroyGC, 200
XtDestroyWidget, 24, 48, 49, 50, 51, 53, 55, 57,
69, 176
XtDcstnjctor, 120
XtDirectConvert, 123, 126, 199, 200
XtDisownSclection, 158, 159, 163, 180
XtDispatchEvent, 48, 87, 88, 89, 91, 93, 94, 164,

217

X Toolkit Intrinsics Xll Release 5

185, 196

X(Display, 46, 180

XtDisplaylnitialize, 24, 25, 26, 27, 28, 29, 31,

32, 33, 38, 39, 40, 139, 154, 166, 167, 171, 186

XiDisplayOfObject, 46, 176

XtDisplayStringConversionWaming, 121, 198

XtDispIayToApplicadonContext, 118, 121
XiEnum, 9, 182

X(Error, 167, 202, 203
X(ErrorHandler, 168
XtErrorMsg, 18, 150, 151, 202
XtErrorMsgHandler, 165
XiEveniHandler, 99, 182

XtExposeCompressMaximal, 98

XtExposeCompressMultiple, 97, 98

XtExposeCompressSeries, 97
XtExposeGraphicsExpose, 97, 98
XiExposeGraphicsExposeMerged, 97, 98
XtExposeNoCompress, 97, 99

XtExposeNoExpose, 97, 98
XtExposeProc, 98
XtFilePredicate, 170
XtEindFile, 170, 171

XtFree, 35, 36, 49, 111, 146, 148, 150, 151, 154,

156, 161, 171, 172

XtGeometryAlmost, 61, 76, 78, 79, 82, 130, 132

XiGeometryDone, 76, 79, 130

XiGeometryHandler, 78, 82

XtGeometryMask, 76

XiGeometryNo, 61, 66, 76, 79, 82, 83, 130, 132

XtGeometryResult, 77

XtGeometryYes, 61, 76, 77, 79, 80, 82, 130, 180

XtGetActionKeysym, 145, 146

XtGetAciionList, 148
XtGetApplicationNameAndClass, 166, 167, 172

XtGetApplicationResources, 114, 115, 119, 122,

124, 176

XtGetConstrairuResourceList, 111, 175

XtGeiErrorDaiabase, 201
XtGetErrorDatabaseText, 201
XtGetErrorDatbaseText, 201

XtGetGC, 49, 152, 153, 176

XtGetKeysymTable, 143, 144, 146

XtGetMuldClickTime, 139
XtGeiResourceList, 111, 175

XtGetSelectionRequest, 155, 160, 180

XtGeiSeleciionTimeout, 195, 201
XtGetSelectionValue, 156, 157, 162, 180

XtGetSelectionValuelncremental, 161, 162, 180

XtGetSelectionValues, 156, 157, 180

XtGetSelectionValuesIncremental, 161, 162, 180

XtGetSubresources, 113, 114, 119, 122, 124, 176

XtGetSub values, 129
XtGetValues, 57, 104, 108, 111, 127, 128, 129,

176

XtGrabButton, 89, 90, 94, 147, 180

XiGrabExclusive, 72, 73, 74

XiGrabKey, 87, 88, 91, 94, 147, 180

XtGrabKeyboard, 88, 89, 91, 180

XtGrabKind, 71

XiGrabNone, 68, 73

XiGrabNonexclusive, 72, 73, 74

XtGrabPointer, 90, 18Q

XiHasCallbacks, 107, 175

XdMAll, 93

XdMAltematelnput, 92, 93

Xtimmediaie, 123
XUMTimer, 92, 93

XdMXEvent, 92, 93

Xllnhcnt, 20

XlinhcritAcceptFocus, 21

XdnhcritChangeManaged, 21

XdnhcritDcletcChild, 21
XlInhcritDisplayAccelerator, 21

XdnhcriiExpose, 21
XllnhcritGcometryManager, 21

XtlnhcridnserlChild, 21

XiInhcritQueryGeometry, 21

XdnhcntRealize, 21

XdnhcriiResize, 21

XtinhcriiRootGeometryManager, 21, 61

XtlnhcriiSctValuesAlmost, 21, 132

XtlnhcritTranslaiions, 21, 138

X(Initialize, 186, 195, 196, 197, 200, 201

XdniualizeWidgetClass, 20, 175

XtlnitProc, 41, 42, 182

XtlnputCallbackProc, 85

XUnputExceptMask, 85

XtlnputReadMask, 85

XdnputWriteMask, 85

XdnscrtEvcntHandler, 101, 103, 180

XdnsertRawEventHandler, 101, 102, 103, 180

XdnstallAccelerators, 142, 180

XtlnstallAllAccelerators, 142, 143, 180

XdsApplicationShcll, 17, 175

XdsComposite, 17, 175

XdsConstraint, 17, 175

XdsManagcd, 55, 175

XdsObject, 17, 175
XdsOvemdcShell, 17, 175

XdsRcalizcd, 44, 175

XdsRcctObj, 17, 175

XdsScnsitive, 95, 175

XdsShcll, 17, 175

XdsSubclass, 17, 175

XdsTopLcvelShell, 17
XdsToplevclShell, 175

XdsTransicntShell, 17, 175

XdsVendorShell, 17, 175

XdsWidget, 17, 175

218

X Toolkit Intrinsics XI1 Release 5

XtlsWMShell, 17, 175
XtKeyProc, 143, 144, 145, 190
XtKeysymToKeycodeList, 146
XtLabelCreate, 195
XtLanguageProc, 28
XtLastTimestampProcessed, 94, 164
XtListHead, 101
XtListPosition, 101
XtListTail, 101
XtLoseSelectionlncrProc, 160
XtLoseSelectionProc, 155
XtMainLoop, 195, 196
XtMakeGeometryRequest, 24, 61, 75, 76, 77, 78,
79, 82, 83, 179, 180
XtMakeResizeRequest, 61, 75, 77, 78, 82, 83,
179, 180
XtMalloc, 49, 150, 151, 158, 163
XtManageChild, 22, 34, 51, 54, 179, 195
XtManageChildren, 44, 51, 53, 54, 179, 195
XtMapWidget, 56, 181
XtMenuPopdown, 66, 73, 74, 137, 200
XtMenuPopup, 66, 70, 71, 73, 137, 200
XtMenuPopupAction, 73
XiMergeArgLists, 35
XtMoveWidget, 75
XtMoveWidget, 54, 75, 80, 179, 180
XtName, 47, 176
XiNameToWidget, 149, 150, 176, 180
XtNchildren, 8
XtNew, 2, 151
XtNewString, 151
XtNextEvent, 195, 196
XtNinitialResourcesPersistent, 127
XtNinsertPosition, 8, 52
XtNnumChildren, 8
XtNumber, 2, 35, 149
XtNunrealizeCallback, 47
XtOffset, 2, 112
XtOffsetOf, 2, 110, 112
XtOpenDisplay, 24, 25, 27, 32, 40, 186, 196
XtOrderProc, 52
XtOverrideTranslations, 140, 141, 180
XtOwnSelection, 155, 158, 180
XtOwnSelecdonlncremental, 155, 160, 163, 180
XtParent, 46, 176
XiParseAcceleratorTable, 142
XtParseTranslationTable, 138, 140
XtPeekEvent, 195, 196
XtPending, 195, 196
XtPointer, 9, 110, 126, 182
XtPopdown, 66, 73, 74, 181
XiPopdownID, 74
XtPopup, 66, 68, 71, 72, 73, 86, 181
XtPopupSpringLoaded, 71, 72, 73, 181
XiProc, 19

XiProcedurcArg, 123
XtProcessEvent, 195, 196
XiQueryGeometry, 81, 82, 33, 179, 183

XlQucryOnly, 180

XtRAccelcratorTable, 109, 115

XTranslatcCoordinates, 164

XlRAtom, 109, 115

XiRBitmap, 109

XlRBooI, 109, 115, 117

XtR Boolean, 109, 115, 117

XiRCallback, 105, 107, 109

XiRCardinal, 109

XtRColor, 109, 117

XtRColormap, 109

XtRCursor, 109, 115

XtRDimension, 109, 115, 117

XiRDisplay, 109, 115

XtRealizcProc, 44
XtRcalizeWidget, 24, 34, 43, 44, 45, 53, 71, 72,
99, 103, 181
XiRealloc, 150, 151, 158, 163
XtREditMode, 110
XtRcgisterCaseConverter, 145
XtRegistcrGrabAction, 73, 146, 147
XiRclcascGC, 49, 153, 176, 200
XtRcmovcActionHook, 138
XtRcmoveAllCallbacks, 106, 175
XiRcmovcCallback, 49, 106, 175
XiRcmovcCallbacks, 106, 175
XtRcmovcEventHandler, 49, 100, 101, 180
XiRcmovcGrab, 74, 86, 87, 180
XiRcmovcInpui, 85
XtRcmovcRawEventHandler, 102, 103, 180
XiRcmovcTimcOut, 49, 86
XiRcmovcWorkProc, 96
XlREnum, 109
XiRcqucstld, 159
XtRcsizcWidget, 54, 75, 79, 80, 81, 83, 179, 180
XiResizeWindow, 81, 181
XtRcsolvcPathname, 30, 31, 170, 171, 185
XtRcsource, 108
XiResourceDefaultProc, 110, 111
XtRcsourceList, 10, 108
XtResourceQuark, 123, 124
XtResourceString, 123, 124
XLRFile, 109, 115
XiR Float, 109, 115, 117
XtRFont, 109, 115, 116, 117
XtRFontSet, 109, 115, 116
XtRFon [Struct, 109, 115, 116
XtRFunction, 109
XlRGcometry, 109
XiRIniualState, 109, 115
XlRInt, 109, 115, 117
XlRJustify, 110

219

X Toolkit Intrinsics XI1 Release 5

XtRLongBoolean, 109
XtRObject, 109
XtROrientation, 110
XtRPixel, 109, 115, 117
XtRPixmap, 109, 117
XtRPointer, 109
XtRPosition, 109, 115, 117
XtRScreen, 109
XtRShort, 109, 115, 117
XtRStnng, 109, 110, 115, 116, 118
XiRStringArray, 109
XtRStringTable, 109
XtRTranslationTable, 109, 115
XtRUnsignedChar, 109, 115, 117
XtRVisual, 109, 115, 117
XtRWidget, 109
XtRWidgetClass, 109
XtRWidgetList, 109
XtRWindow, 109
XtScreen, 46, 180
XiScreenDatabase, 29, 31
XtScreenOfObject, 46, 176
XtSelectionCallbackProc, 156
XtSelectionDonelncrProc, 160
XtSelectionDoneProc, 154, 155, 156
XtSeiArg, 2, 34, 35
XtSetErrorHandler, 203
XtSetErrorMsgHandler, 201
XiSetKeyboardFocus, 91, 176, 181
XtSetKeyTranslator, 144
XtSetLanguageProc, 24, 25, 28, 29, 185
XtSetMappedWhenManaged, 44, 51, 56, 181
XtSetMultiClickTime, 139
XtSetSelectionTimeout, 195, 200
XtSetSensitive, 71, 73, 74, 95, 179
XtSetSubvalues, 133
XtSetTypeConverter., 199
XiSetTypeConverter, 122, 123, 199
XtSetValues, 10, 47, 56, 57, 71, 75, 95, 104, 108,
111, 130, 131, 132, 134, 141, 176, 179
XtSetValuesFunc, 131, 133, 182
XtSetWamingHandler, 203
XtSetWamingMsgHandler, 202
XiSetWMColormapWindows, 169, 170, 181
XtShellExtensionVersion, 61
XtSMDontChange, 77, 82
XtSpecificationRelease, 14, 182
XtStringConversionWaming, 198
XtStringProc, 142
XtSuperclass, 17, 22, 175, 176
XtTimerCallbackProc, 86
XtToolkitlnitialize, 24, 25, 40, 196
XtTranslaieCoords, 164, 179
XtTranslateKey, 144
XtTranslaieKeycode, 144, 146

XtTranslations, 140
XiTypcConverter, 118, 198
XtUngrabButton, 89, 90, 180
XtUngrabKey, 88, 180
XtUngrabKeyboard, 88, 89, 91, 94, 180
XiUngrabPointer, 89, 90, 94, 180
XtUmnstallTranslaiions, 141, 180
XtUnmanageChildren, 44
XtUnmanageChild, 48, 51, 55, 179
XtUnmanageChildren, 51, 55, 179, 195
XtUnmapWidget, 50, 56, 181
XtUnrealizeWidget, 44 , 47, 181, 183
XtUnspecifiedPixmap, 5, 6, 44
XtUnspecifiedShelllnt, 66, 67
XtUnspecifiedWindow, 66, 67
XtUnspecifiedWindowGroup, 67
XtVaAppCreateShell, 39, 180, 181
XtVaAppIniualize, 39, 40. 41, 181, 186
XtVaCrcatcArgsList, 36
XtVaCreateManagedWidgct, 54, 55, 178, 179,
181
XtVaCreatcPopupShell, 70, 180, 181
XtVaCrcateWidget, 37, 38,44, 175, 176
XiVaGetApplicationRcsources, 115, 124, 176
XtVaGctSubrcsourccs, 114, 124, 176
XtVaGetSubvaiues, 129
XtVaGetValues, 128, 129, 176
XtVaNestedList, 36
XtVarArgsList, 36
XtVaSetSubvalues, 133
XtVaSetValues, 130, 131, 134, 176
XtVaTypcdArg, 36, 41, 43, 128, 129, 133
XtVersion, 14
XtVcrsionDontCheck, 14
XtWaming, 28, 168, 202, 203
XtWamingMsg, 198, 202
XtWidgctBascOffset, 123, 124
XtWidgetClassProc, 19
XtWidgetGeometry, 76, 77, 78, 82
XtWidgetProc, 49, 52, 53, 83
XtWidgetToApplicationContext, 25, 176
XtWindow, 46, 180
XiWindowOfObject, 46, 176
XtWindowToWidget, 165, 181
XtWorkProc, 96
XT_CONVERT_FAIL, 156, 162
XUngrabButton, 90
XUngrabKey, 88
XUngrabKeyboard, 89
XUngrabPointer, 90
XUSERFILESEARCHPATH, 30, 185

220

X Toolkit Intrinsics XI1 Release 5

XWMGeometry, 66, 67

FALSE, 9
LANG, 30
NULLQUARK, 6, 8, 22, 37, 57, 61, 128
RESOURCE NAME, 27
TRUE, 9
WM_CHANGE_STATE, 68

WM_COMMAND, 68

W M_ICON_NAM E, 68

WM~NAME, 67
WM~TRANSIENT_FOR, 58, 67, 68
XAPPLRESDIR, 30, 31
XENVIRONMENT, 30
XFILESEARCHPATH, 171
XUSERFILESEARCHPATH, 30, 31

XtDefaulLError, 168
XtDefauliErrorMsg, 167
XtDefauliWaming, 169
XtDefaultWamingMsg, 168
XiError, 203
Xtlnherit, 20
XtWaming, 203

221

Bitmap Distribution Format

Version 2.1

MIT X Consortium Standard

X Version 11, Release 5

Copyright 1984, 1987, 1988 Adobe Systems, Inc.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in supporting documentation.

The Bitmap Distribution Format (BDF), Version 2.1, is an X Consortium standard for font interchange,
intended to be easily understood by both humans and computers.

File Format

Character bitmap information will be distributed in an USASCII-encoded, human-readable form. Each
file is encoded in the printable characters (octal 40 through 176) of USASCII plus carnage return and
linefeed. Each file consists of a sequence of vanable-length lines. Each line is terminated either by a
carriage return (octal 015) and linefeed (octal 012) or by just a linefeed.

The information about a particular family and face at one size and orientation will be contained in one
file. The file begins with information pertaining to the face as a whole, followed by the information
and bitmaps for the individual characters.

A font bitmap description file has the following general form, where each item is contained on a
separate line of text in the file. Tokens on a line are separated by spaces. Keywords are in upper-case,
and must appear in upper-case in the file.

1. The word STARTFONT followed by a version number indicating the exact file format used. The
version described here is 2.1. '

2. Lines beginning with the word COMMENT may appear anywhere between the STARTFONT line
and the ENDFONT line. These lines are ignored by font compilers.

3. The word FONT followed by either the XLFD font name (as specified in pan III) or some private
font name. Creators of private font name syntaxes are encouraged to register unique font name
prefixes with the X Consortium to prevent naming conflicts. Note that the name continues all the
way to the end of the line and may contain spaces.

4. The word SIZE followed by the point size of the characters, the x resolution, and the y resolution

of the device for which these characters were intended.

5. The word FONTBOUNDINGBOX followed by the width in x, height in y, and the x and y dis¬
placement of the lower comer from the origin. (See the examples in the next section.)

6. Optionally, the word STARTPROPERTIES followed by the number of properties (p) that follow.

7. Then come p lines consisting of a word for the property name followed by either an integer or
string surrounded by double-quote (octal 042). Internal double-quote characters are indicated by
using two in a row.

- 2 -

Properties named FONT_ASCENT, FONT_DESCENT, and DEFAULT_CHAR should be pro¬
vided to define the logical font-ascent and font-descent and the default-char for the font. These
properties will be removed from the actual font properties in the binary form produced by a com¬
piler. If these properties are not provided, a compiler may reject the font or may compute (arbi¬
trary) values for these properties.

8. The property section, if it exists, is terminated by ENDPROPERTIES.

9. The word CHARS followed by the number of character segments (c) that follow.

10. Then come c character segments of the form:

a. The word STARTCHAR followed by up to 14 characters (no blanks) of descriptive name of
the glyph.

b. The word ENCODING followed by one of the following forms:

i. <n> - the glyph index, that is, a positive integer representing the character code used
to access the glyph in X requests, as defined by the encoded character set given by
the CHARSET_REGISTRY-CHARSET_ENCODING font properties for XLFD con¬
forming fonts. If these XLFD font properties are not defined, the encoding scheme is
font-dependent.

ii. -1 <n> - equivalent to form above. This syntax is provided for backward compatibil¬
ity with previous versions of this specification and is not recommended for use with
new fonts.

iii. -1 - an unencoded glyph. Some font compilers may discard unencoded glyphs, but,
in general, the glyph names may be used by font compilers and X servers to imple¬
ment dynamic mapping of glyph repertoires to character encodings as seen through
the X protocol.

c. The word SWIDTH followed by the scalable width in x and y of character. Scalable
widths are in units of 1/1000th of the size of the character. If the size of the character is p
points, the width information must be scaled by p/1000 to get the width of the character in
printer’s points. This width information should be considered as a vector indicating the
position of the next character’s origin relative to the origin of this character. To convert
the scalable width to the width in device pixels, multiply SWIDTH times p/1000 times r/72,
where r is the device resolution in pixels per inch. The result is a real number giving the
ideal print width in device pixels. The actual device width must of course be an integral
number of device pixels and is given in the next entry. The SWIDTH y value should
always be zero for a standard X font.

d. The word DWIDTH followed by the width in x and y of the character in device units.
Like the SWIDTH, this width information is a vector indicating the position of the next
character’s origin relative to the origin of this character. Note that the DWIDTH of a given
“hand-tuned” WYSIWYG glyph may deviate slightly from its ideal device-independent
width given by SWIDTH in order to improve its typographic characteristics on a display.
The DWIDTH y value should always be zero for a standard X font.

e. The word BBX followed by the width in x (BBw), height in y (BBh) and x and y displace¬
ment (BBox, BBoy) of the lower left comer from the origin of the character.

f. The optional word ATTRIBUTES followed by the attributes as 4 hex-encoded characters.
The interpretation of these attributes is undefined in this document.

g. The word BITMAP.

h. h lines of hex-encoded bitmap, padded on the right with zeros to the nearest byte (that is,
multiple of 8).

i. The word ENDCHAR.

11. The file is terminated with the word ENDFONT.

Metric Information

Figures 1 and 2 best illustrate the bitmap format and character metric information.

- 4 -

^_BBox

BBw^

BBw = 9, BBh = 22, BBox = -2, BBoy = -6
D WIDTH = 80

SWIDTH] = 355 0

“+” = character origin and width

Figure 1: An example of a descender

- 5 -

__^ BBox

^ BBw ^

BBh

BBoy

■ !■ IH
ala ■
mm ■
■IB

□□□
llMJ

+ +

BBh = 6, BBw = 4, BBox = +2, BBoy = +12
DWIDTH = 5 0

SWIDTH = 223 0

Figure 2: An example with the origin outside the bounding box

- 6 -

An Example File

The following is an abbreviated example of a bitmap file containing the specification of two characters
(the j and quoteright in figures 1 and 2).

STARTFONT 2.1
COMMENT This is a sample font in 2.1 format.
FONT - Adobe-Helvedca-Bold-R-Normal--24-240-75-75-P-65-ISO8859-1
SIZE 24 75 75
FONTBOUNDINGBOX 9 24 -2 -6
ST ARTPROPERTIES 19
FOUNDRY "Adobe"
FAMILY "Helvetica"
WEIG HT_N A ME "Bold"
SLANT "R"
SETWIDTH_NAME "Normal"
ADD_STYLE NAME ""
PIXEL_SIZE 24
POENT_SIZE 240
RESOLUTION_X 75
RESOLUTION_Y 75
SPACING "P"
A VERAG E_WIDTH 65
CHARSET_REGISTRY "IS08859"
CHARSET_ENCODING "1"
MIN_SPACE 4
FONT_ASCENT 21
FONT_DESCENT 7
COPYRIGHT "Copyright (c) 1987 Adobe Systems, Inc."
NOTICE "Helvetica is a registered trademark of Linotype Inc."
ENDPROPERTIES
CHARS 2
STARTCHAR j
ENCODING 106
SWIDTH 355 0
DWIDTH 8 0
BBX 9 22 -2 -6
BITMAP

0380
0380
0380
0380
0000
0700
0700
0700
0700
0E00
0EQ0
OEOO

0E00
OEOO

1C00
1C00
1CO0

- 7 -

1C00
3COO
7800
FOOO
EOOO
ENDCHAR
STARTCHAR quoteright
ENCODING 39
S WIDTH 223 0
DWIDTH 5 0
BBX 4 6 2 12
ATTRIBUTES 01C0
BITMAP
70
70
70
60
E0
CO
ENDCHAR
ENDFONT

☆ U S. GOVERNMENT PRINTING OFFICE:1994-300-574/84127

