
International Standard •3 8879 /

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION»ME)KflyHAPOflHAR OPrAHU3AL|Ufl FIO CTAHflAPTH3ALlMM»ORGANISATION INTERNATIONALE DE NORMALISATION

Information processing — Text and office systems —
Standard Generalized Markup Language (SGML)
Traitement de /'information — Systemes bureautiques — Langage standard generalise de balisage f SGML)

First edition — 1986-10-15

Adopted for Use by

the Federol Government

FIPS PUB 152

See Notice on Inside

Front Cover

—JK—

468
. A8A3

//152

1988

UDC 681.3.06 Ref. No. ISO 8879-1986 (E)

Descriptors : data processing, documentation, logical structure, programming (computers), artificial languages, programming languages

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of
national standards bodies (ISO member bodies). The work of preparing International
Standards is normally carried out through ISO technical committees. Each member
body interested in a subject for which a technical committee has been established has
the right to be represented on that committee. International organizations, govern¬
mental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to
the member bodies for approval before their acceptance as International Standards by
the ISO Council. They are approved in accordance with ISO procedures requiring at
least 75 % approval by the member bodies voting.

International Standard ISO 8879 was prepared by Technical Committee ISO/TC 97, In¬
formation processing systems.

Users should note that all International Standards undergo revision from time to time
and that any reference made herein to any other International Standard implies its
latest edition, unless otherwise stated.

NATIONAL INSTITUTE OF STANDARDS &'
TECHNOLOGY

Research Mormatksn Center
Gakhersburg, MD £06^9

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in

Federal Information Processing Standards Publication 152, Standard General¬

ized Markup Language (SGML). For a complete list of publications available

in the Federal Information Processing Standards Series, write to the Stand¬

ards Processing Coordinator (ADP), National Institute of Standards and

Technology, Gaithersburg, MD 20899.

© International Organization for Standardization, 1986 •

Printed in Switzerland

ISO 8879-1986(E)

Contents

0 Introduction . 1
0.1 Background. 1
0.2 Objectives .2
0.3 Organization .3

1 Scope . 4

2 Field of Application .4

3 References.5

4 Definitions .5

5 Notation . 20
5.1 Syntactic Tokens. 21
5.2 Ordering and Selection Symbols. 21

6 Entity Structure . 21
6.1 SGML Document. 21
6.2 SGML Entities . 21

6.2.1 S Separator. 22
6.2.2 Entity End. 22
6.2.3 Implied SGML Declaration. 22

6.3 Non-SGML Data Entity . 22

7 Element Structure . 22
7.1 Prolog. 22
7.2 Document Element .22

7.2.1 Limits.22
7.3 Element .22

7.3.1 Omitted Tag Minimization . 22
7.3.1.1 Start-tag Omission. 22
7.3.1.2 End-tag Omission. 23

7.3.2 Data Tag Minimization . 23
7.3.3 Quantities. 23

7.4 Start-tag. 23
7.4.1 Minimization . 23

7.4.1.1 Empty Start-tag . 23
7.4.1.2 Unclosed Start-tag. 24
7.4.1.3 NET-enabling Start-tag . 24

7.4.2 Quantities. 24
7.5 End-tag. 24

7.5.1 Minimization . 24
7.5.1.1 Empty End-tag . 24
7.5.1.2 Unclosed End-tag. 24
7.5.1.3 Null End-tag . 24

7.6 Content. 24
7.6.1 Record Boundaries. 25

7.7 Document Type Specification. 25
7.7.1 General Entity References . 25
7.7.2 Parameter Entity References. 25

7.8 Generic Identifier (Gl) Specification . 26
7.8.1 Rank Feature. 26

7.8.1.1 Full Generic Identifier . 26
7.8.1.2 Rank Stem . 26

7.9 Attribute Specification List. 26

iii

ISO 8879-1986(E)

7.9.1 Minimization .26
7.9.1.1 Omitted Attribute Specification. 26
7.9.1.2 Omitted Attribute Name .26

7.9.2 Quantities. 26
7.9.3 Attribute Value Specification .26

7.9.3.1 Minimization. 27
7.9.4 Attribute Value. 27

7.9.4.1 Syntactic Requirements . 27
7.9.4.2 Fixed Attribute . 27
7.9.4.3 General Entity Name. 27
7.9.4.4 Notation . 27
7.9.4.5 Quantities. 27

8 Processing Instruction . 27
8.1 Quantities . 28

9 Common Constructs . 28
9.1 Replaceable Character Data . 28
9.2 Character Data . 28

9.2.1 SGML Character. 28
9.2.2 Function Character. 28

9.3 Name . 28
9.3.1 Quantities. 28

9.4 Entity References . 28
9.4.1 Quantities. 28
9.4.2 Limits . 28
9.4.3 Obfuscatory Entity References. 29
9.4.4 Named Entity Reference. 29
9.4.5 Reference End. 29
9.4.6 Short Reference . 29

9.4.6.1 Equivalent Reference String. 29
9.5 Character Reference . 30
9.6 Delimiter Recognition. 30

9.6.1 Recognition Modes. 30
9.6.2 Contextual Constraints. 31
9.6.3 Order of Recognition. 32
9.6.4 Delimiters Starting with the Same Character. 32
9.6.5 Short References with Blank Sequences .. 32

9.6.5.1 Quantities. 32
9.6.6 Name Characters . 32

9.7 Markup Suppression. 32
9.8 Capacity. 32

10 Markup Declarations: General .34
10.1 Parts of Declarations . 34

10.1.1 Parameter Separator . 34
10.1.2 Parameter Literal . 34

10.1.2.1 Quantities. 34
10.1.3 Group.34

10.1.3.1 Quantities. 34
10.1.4 Declaration Separator.34
10.1.5 Associated Element Type. 35
10.1.6 External Identifier . 35

10.1.6.1 Quantities. 35
10.1.6.2 Capacities. 35

10.1.7 Minimum Literal . 35
10.1.7.1 Quantities. 35

10.2 Formal Public Identifier. 35
10.2.1 Owner Identifier. 35

10.2.1.1 ISO Owner Identifier . 35
10.2.1.2 Registered Owner Identifier. 35

iv

ISO 8879-1986(E)

10.2.1.3 Unregistered Owner Identifier . 36
10.2.2 Text Identifier.36

10.2.2.1 Public Text Class.36
10.2.2.2 Public Text Description . 36
10.2.2.3 Public Text Language . 36
10.2.2.4 Public Text Designating Sequence. 36
10.2.2.5 Public Text Display Version .37

10.3 Comment Declaration. 37
10.4 Marked Section Declaration. 37

10.4.1 Quantities. 37
10.4.2 Status Keyword Specification. 37

10.5 Entity Declaration . 38
10.5.1 Entity Name . 38

10.5.1.1 Quantities. 38
10.5.1.2 Capacities.38

10.5.2 Entity Text.38
10.5.3 Data Text . 38
10.5.4 Bracketed Text. 39

10.5.4.1 Quantities. 39
10.5.5 External Entity Specification. 39

11 Markup Declarations: Document Type Definition .39
11.1 Document Type Declaration. 39
11.2 Element Declaration .40

11.2.1 Element Type.40
11.2.1.1 Ranked Element.40
11.2.1.2 Quantities.40

11.2.2 Omitted Tag Minimization .40
11.2.3 Declared Content.40
11.2.4 Content Model.40

11.2.4.1 Connector.41
11.2.4.2 Occurrence Indicator.41
11.2.4.3 Ambiguous Content Model .41
11.2.4.4 Data Tag Group .41
11.2.4.5 Quantities.42

11.2.5 Exceptions .42
11.2.5.1 Inclusions.42
11.2.5.2 Exclusions.42

11.3 Attribute Definition List Declaration .42
11.3.1 Quantities.42
11.3.2 Attribute Name .42
11.3.3 Declared Value .43
11.3.4 Default Value. 43

11.3.4.1 Quantities.43
11.3.4.2 Capacities.43

11.4 Notation Declaration.43
11.5 Short Reference Mapping Declaration .44
11.6 Short Reference Use Declaration .44

11.6.1 Use in Document Type Declaration.44
11.6.2 Use in Document Instance .44
11.6.3 Current Map.44

12 Markup Declarations: Link Process Definition.44
12.1 Link Type Declaration.44

12.1.1 Simple Link Specification.45
12.1.2 Implicit Link Specification.45
12.1.3 Explicit Link Specification.45

12.1.3.1 Limits .45
12.1.4 Link Type Declaration Subset.45

12.1.4.1 Parameter Entities.45
12.1.4.2 Link Attributes .45

v

ISO 8879-1986(E)

12.1.4.3 Simple Link.45
12.2 Link Set Declaration . 45

12.2.1 Source Element Specification.46
12.2.2 Result Element Specification . 46

12.3 Link Set Use Declaration . 46
12.3.1 Use in Link Type Declaration .46
12.3.2 Use in Document Instance .46
12.3.3 Current Link Set.46

13 SGML Declaration .47
13.1 Document Character Set .47

13.1.1 Character Set Description . 47
13.1.1.1 Base Character Set.47
13.1.1.2 Described Character Set Portion .47

13.1.2 Non-SGML Character Identification. 48
13.2 Capacity Set. 48
13.3 Concrete Syntax Scope .48
13.4 Concrete Syntax . 49

13.4.1 Public Concrete Syntax.49
13.4.2 Shunned Character Number Identification .49
13.4.3 Syntax-reference Character Set. 50
13.4.4 Function Character Identification. 50
13.4.5 Naming Rules . 50
13.4.6 Delimiter Set . 51

13.4.6.1 General Delimiters . 51
13.4.6.2 Short Reference Delimiters. 51

13.4.7 Reserved Name Use. 51
13.4.8 Quantity Set. 51

13.5 Feature Use. 52
13.5.1 Markup Minimization Features . 52
13.5.2 Link Type Features . 52
13.5.3 Other Features. 52

13.6 Application-specific Information . 53

14 Reference and Core Concrete Syntaxes . 53

15 Conformance. 53
15.1 Conforming SGML Document . 53

15.1.1 Basic SGML Document. 53
15.1.2 Minimal SGML Document. 53
15.1.3 Variant Conforming SGML Document. 53

15.2 Conforming SGML Application.53
15.2.1 Application Conventions. 53
15.2.2 Conformance of Documents. 53
15.2.3 Conformance of Documentation. 53

15.3 Conforming SGML System. 53
15.3.1 Conformance of Documentation. 54
15.3.2 Conformance to System Declaration. 54
15.3.3 Support for Reference Concrete Syntax . 54
15.3.4 Support for Reference Capacity Set . 55
15.3.5 Consistency of Parsing. 55
15.3.6 Application Conventions. 55

15.4 Validating SGML Parser. 56
15.4.1 Error Recognition . 56
15.4.2 Identification of SGML Messages . 56
15.4.3 Content of SGML Messages. 56

15.5 Documentation Requirements. 56
15.5.1 Standard Identification . 56
15.5.2 Identification of SGML Constructs.56
15.5.3 Terminology. 57
15.5.4 Variant Concrete Syntax. 57

vi

ISO 8879-1986(E)

15.6 System Declaration.. 57
15.6.1 Concrete Syntaxes Supported . 57

15.6.1.1 Concrete Syntax Changes. 57
15.6.1.2 Character Set Translation. 57

15.6.2 Validation Services. 58

Annexes

A Introduction to Generalized Markup . 59

A.1 The Markup Process. 59
A.2 Descriptive Markup. 60
A.3 Rigorous Markup. 62
A.4 Conclusion. 64
A.5 Acknowledgments. 65
A. 6 Bibliography . 65

B Basic Concepts . 66

B. 1 Documents, Document Type Definitions, and Procedures . 66
B.1.1 Documents. 66
B.1.2 Document Type Definitions. 66
B.1.3 Procedures . 67

B.2 Markup.67
B.3 Distinguishing Markup from Text. 68

B.3.1 Descriptive Markup Tags . 68
B.3.2 Other Markup. 69
B.3.3 Record Boundaries. 69

B.3.3.1 Record Boundaries in Data. 70
B.3.3.2 Record Boundaries in Markup . 70

B.4 Document Structure .70
B.4.1 Document Type Definitions. 70
B.4.2 Element Declarations . 71

B.4.2.1 Content Models . 71
B.4.2.2 Connectors and Occurrence Indicators.71
B.4.2.3 Entity References in Models. 72
B.4.2.4 Name Groups. 72
B.4.2.5 Data Characters.73
B.4.2.6 Empty Content . 73
B.4.2.7 Non-SGML Data. 73
B.4.2.8 Summary of Model Delimiters . 74

B.5 Attributes. 74
B.5.1 Specifying Attributes. 74

B.5.1.1 Names. 74
B.5.1.2 Attribute Values. 75

B.5.2 Declaring Attributes . 75
B.5.2.1 Attribute Definition Syntax . 75
B.5.2.2 Complex Attribute Values. 76
B.5.2.3 Name Token Groups . 77
B.5.2.4 Changing Default Values. 77

B.6 Entities. 78
B.6.1 Entity Reference Syntax . 78
B.6.2 Declaring Entities . 78

B.6.2.1 Processing Instructions.79
B.6.2.2 Entities with Entity References. 79
B.6.2.3 External Entities. 79
B.6.2.4 Public Entities. 80

B.7 Characters. 80

vii

ISO 8879-1986(E)

B.7.1 Character Classification. 80
B.7.2 Character References. 81
B.7.3 Using Delimiter Characters as Data . 82

B.8 Marked Sections. 83
B.8.1 Ignoring a Marked Section.83
B.8.2 Versions of a Single Document . 84
B.8.3 Unparsable Sections. 84
B.8.4 Temporary Sections . 85
B.8.5 Keyword Specification . 85
B.8.6 Defining a Marked Section as an Entity. 85

B.9 Unique Identifier Attributes . 86
B.10 Content Reference Attributes. 86
B.11 Content Model Exceptions . 87

B.11.1 Included Elements. 87
B.11.2 Excluded Elements . 87

B.12 Document Type Declaration. 88
B.13 Data Content . 88

B.13.1 Data Content Representations. 89
B.13.1.1 Character Data (PCDATA, CDATA, and RCDATA) . 89
B.13.1.2 Non-SGML Data (NDATA). 89

B.13.2 Data Content Notations. 90
B.13.2.1 Notations for Character Data . 90
B.13.2.2 Notations for Non-SGML Data. 91
B.13.2.3 Specifying Data Content Notations. 91

B.14 Customizing. 92
B.14.1 The SGML Declaration . 92

B.14.1.1 Optional Features . 92
B. 14.1.2 Variant Concrete Syntax. 92

B. 14.2 Impact of Customization. 92
B. 15 Conformance. 93

C Additional Concepts . 94

C. 1 Markup Minimization Features . 94
C. 1.1 SHORTTAG: Tags With Omitted Markup. 94

C. 1.1.1 Unclosed Short Tags. 95
C.1.1.2 Empty Tags. 95
C.1.1.3 Attribute Minimization. 95

C.1.2 OMITTAG: Tags May be Omitted. 96
C.1.2.1 Tag Omission Concepts .97
C.1.2.2 Specifying Minimization . 97
C.1.2.3 End-tag Omission: Intruding Start-tag . 98
C.1.2.4 End-tag Omission: End-tag of Containing Element. 98
C.1.2.5 Start-tag Omission: Contextually Required Element .99
C.1.2.6 Combination with Short Tag Minimization. 99
C.1.2.7 Markup Minimization Considerations . 99

C.1.3 SHORTREF: Short Reference Delimiters May Replace
Complete Entity References. 100

C.1.3.1 Typewriter Keyboarding: Generalized WYSIWYG. 100
C.1.3.2 Typewriter Keyboarding Example: Defining a Short

Reference Map. 100
C.1.3.3 Typewriter Keyboarding Example: Activating a Short

Reference Map. 101
C.1.3.4 Tabular Matter Example . 102
C.1.3.5 Special Requirements. 103

C.1.4 DATATAG: Data May Also be a Tag . 103
C.1.5 RANK: Ranks May be Omitted from Tags. 106

C.2 LINK Features: SIMPLE, IMPLICIT, and EXPLICIT . 107
C.2.1 Link Process Definitions. 108

C.3 Other Features . 108

viii

ISO 8879-1986(E)

C.3.1 CONCUR: Document Instances May Occur Concurrently. 108
C.3.2 SUBDOC: Nested Subdocument Entities May Occur. 109
C. 3.3 FORMAL: Public Identifiers are Formal. 109

D Public Text. 110

D.1 Element Sets. 110
D. 1.1 Common Element Types. 110
D.1.2 Pro Forma Element Types . 110

D.2 Data Content Notations. 110
D.3 Variant Concrete Syntaxes. Ill

D.3.1 Multicode Concrete Syntaxes . Ill
D. 4 Entity Sets . Ill

D.4.1 General Considerations . 112
D.4.1.1 Format of Declarations . 112
D.4.1.2 Corresponding Display Entity Sets. 113
D.4.1.3 Entity Names . 113
D.4.1.4 Organization of Entity Sets . 114

D.4.2 Alphabetic Characters . 114
D.4.2.1 Latin . 114
D.4.2.2 Greek Alphabetic Characters. 117
D.4.2.3 Cyrillic Alphabetic Characters . 119

D.4.3 General Use. 121
D.4.3.1 Numeric and Special Graphic Characters. 121
D.4.3.2 Diacritical Mark Characters . 123
D.4.3.3 Publishing Characters. 123
D.4.3.4 Box and Line Drawing Characters. 125

D.4.4 Technical Use . 126
D.4.4.1 General. 126
D.4.4.2 Greek Symbols. 128
D.4.4.3 Alternative Greek Symbols. 129

D. 4.5 Additional Mathematical Symbols. 130
D.4.5.1 Ordinary Symbols . 130
D.4.5.2 Binary and Large Operators. 130
D.4.5.3 Relations . 131
D.4.5.4 Negated Relations. 133
D.4.5.5 Arrow Relations. 134
D. 4.5.6 Opening and Closing Delimiters. 135

E Application Examples . 136

E. 1 Document Type Definition. 136
E.2 Computer Graphics Metafile . 140
E. 3 Device-Independent Code Extension. 140

E. 3.1 Code Extension Facilities . 140
E. 3.1.1 Avoiding False Delimiter Recognition . 141
E. 3.1.2 Eliminating Device and Code Dependencies. 143

F implementation Considerations. 145

F. 1 A Model of SGML Parsing. 145
F. 1.1 Physical Input. 145

F. 1.1.1 Entities . 145
F.1.1.2 Record Boundaries . 145

F.1.2 Recognition Modes . 145
F.1.3 Markup Minimization. 146
F.1.4 Translation. 147
F.1.5 Command Language Analogy . 147

ix

ISO 8879-1986(E)

F.2 Initialization . 147
F.2.1 Initial Procedure Mapping. 147
F.2.2 Link Process Specification . 147
F. 2.3 Concurrent Document Instances . 147

F.3 Dynamic Procedure Mapping. 148
F. 4 Error Handling . 148

G Conformance Classification and Certification. 149

G. 1 Classification Code. 149
G. 1.1 Feature Code. 149
G.1.2 Validation Code. 150
G.1.3 Syntax Code . 151

G. 2 Certification Considerations . 151

H Theoretical Basis for the SGML Content Model . 152

H. 1 Model Group Notation . 152
H.2 Application of Automata Theory . 152
H. 3 Divergence from Automata Theory. 153

I Nonconforming Variations . 154

I. 1 Fixed-length Generic Identifiers . 154
1.2 Single Delimiter . 154

Figures

1 Character Classes: Abstract Syntax. 29

2 Character Classes: Concrete Syntax . 30

3 Reference Delimiter Set: General. 31

4 Reference Delimiter Set: Short References. 33

5 Reference Capacity Set. 49

6 Reference Quantity Set . 52

7 Reference Concrete Syntax. 54

8 Typical SGML Declaration for Basic SGML Document. 55

9 Element Markup. 69

10 Start-tag with 2 Attributes .75

11 Multicode Basic Concrete Syntax. 112

12 Graphics Metafile Attributes (1 of 2): Encoding and View. 141

13 Graphics Metafile Attributes (2 of 2): Size and Rotation. 142

14 Function Characters for Device-Independent Multicode Concrete
Syntaxes. 143

x

ISO 8879-1986(E)

15 FSV Conformance Classification 150

xi

ISO 8879-1986(E)

Information Processing — Text and Office Systems —
Standard Generalized Markup Language (SGML)

0 Introduction

This International Standard specifies a language for
document representation referred to as the
“Standard Generalized Markup Language” (SGML).
SGML can be used for publishing in its broadest
definition, ranging from single medium conventional
publishing to multi-media data base publishing.
SGML can also be used in office document
processing when the benefits of human readability
and interchange with publishing systems are
required.

0.1 Background

A document can be viewed in the abstract as a
structure of various types of element. An author
organizes a book into chapters that contain
paragraphs, for example, and figures that contain
figure captions. An editor organizes a magazine
into articles that contain paragraphs that contain
words, and so on.

Processors treat these elements in different ways.
A formatting program might print headings in a
prominent type face, leave space between
paragraphs, and otherwise visually convey the
structure and other attributes to the reader. An
information retrieval system would perhaps assign
extra significance to words in a heading when
creating its dictionary.

Although this connection between a document's
attributes and its processing now seems obvious, it
tended to be obscured by early text processing
methods. In the days before automated typesetting,
an editor would “mark up” a manuscript with the
specific processing instructions that would create
the desired format when executed by a compositor.
Any connection between the instructions and the
document's structure was purely in the editor's
head.

Early computerized systems continued this
approach by adding the process-specific "markup”
to the machine-readable document file. The markup
still consisted of specific processing instructions,
but now they were in the language of a formatting
program, rather than a human compositor. The file
could not easily be used for a different purpose, or
on a different computer system, without changing all
the markup.

As users became more sophisticated, and as text
processors became more powerful, approaches
were developed that alleviated this problem.
“Macro calls” (or “format calls”) were used to
identify points in the document where processing
was to occur. The actual processing instructions
were kept outside of the document, in “procedures”
(or “macro definitions” or “stored formats”), where
they could more easily be changed.

While the macro calls could be placed anywhere in
a document, users began to recognize that most
were placed at the start or end of document
elements. It was natural, therefore, to choose
names for such macros that were “generic
identifiers” of the element types, rather than names
that suggested particular processing (for example,
“heading” rather than “format-17”), and so the
practice of “generic coding” (or “generalized
tagging”) began.

Generic coding was a major step towards making
automated text processing systems reflect the
natural relationship between document attributes
and processing. The advent of “generalized markup
languages” in the early 1970's carried this trend
further by providing a formal language base for
generic coding. A generalized markup language
observes two main principles:

0.1 Backpround 1

ISO 8879-1986(E)

a) Descriptive markup predominates and is
distinguished from processing instructions.

Descriptive markup includes both generic
identifiers and other attributes of document
elements that motivate processing
instructions. The processing instructions,
which can be in any language, are normally
collected outside of the document in
procedures.

As the source file is scanned for markup and
the various elements are recognized, the
processing system executes the procedures
associated with each element and attribute for
that process. For other processes, different
procedures can be associated with the same
elements and attributes without changing the
document markup.

When a processing instruction must be entered
directly in a document, it is delimited
differently from descriptive markup so that it
can easily be located and changed for different
processes.

b) Markup is formally defined for each type of
document.

A generalized markup language formalizes
document markup by incorporating “document
type definitions”. Type definitions include a
specification {like a formal grammar) of which
elements and attributes can occur in a
document and in what order. With this
information it is possible to determine whether
the markup for an individual document is
correct (that is, complies with the type
definition) and also to supply markup that is
missing, because it can be inferred
unambiguously from other markup that is
present.

NOTE - a more detailed introduction to the concepts of generic
coding and the Standard Generalized Markup Language can be
found in annex A.

0.2 Objectives

The Standard Generalized Markup Language
standardizes the application of the generic coding
and generalized markup concepts. It provides a
coherent and unambiguous syntax for describing
whatever a user chooses to identify within a
document. The language includes:

— An “abstract syntax” for descriptive markup of
document elements.

— A “reference concrete syntax” that binds the
abstract syntax to particular delimiter
characters and quantities. Users can define

2

alternative concrete syntaxes to meet their
requirements.

— Markup declarations that allow the user to
define a specific vocabulary of generic
identifiers and attributes for different document
types.

— Provision for arbitrary data content. In
generalized markup, “data” is anything that is
not defined by the markup language. This can
include specialized “data content notations”
that require interpretation different from general
text: formulas, images, non-Latin alphabets,
previously formatted text, or graphics.

— Entity references: a non-system-specific
technique for referring to content located
outside the mainstream of the document, such
as separately-written chapters, pi characters,
photographs, etc.

— Special delimiters for processing instructions to
distinguish them from descriptive markup.
Processing instructions can be entered when
needed for situations that cannot be handled by
the procedures, but they can easily be found
and modified later when a document is sent to a
different processing system.

For a generalized markup language to be an
acceptable standard, however, requires more than
just providing the required functional capabilities.
The language must have metalinguistic properties,
in order to satisfy the constraints imposed by the
need to use it in a multiplicity of environments. The
major constraints, and the means by which the
Standard Generalized Markup Language addresses
them, can be summarized as follows:

a) Documents “marked up” with the language
must be processable by a wide range of text
processing and word processing systems.

The full form of the language, with all optional
features, offers generality and flexibility that
can be exploited by sophisticated systems;
less powerful systems need not support the
features. To facilitate interchange between
dissimilar systems, an “SGML declaration”
describes any markup features or concrete
syntax variations used in a document.

b) The millions of existing text entry devices must
be supported.

SGML documents, with the reference concrete
syntax, can easily be keyboarded and
understood by humans, without machine
assistance. As a result:

0 Introduction

ISO 8879-1986(E)

— Use of SGML need not await the
development and acceptance of a new
generation of hardware — just software to
process the documents on existing
machines.

— Migration to such a new generation (when it
comes) will be easier, as users will already
be familiar with SGML.

c) There must be no character set dependency,
as documents might be keyed on a variety of
devices.

The language has no dependency on a
particular character set. Any character set that
has bit combinations for letters, numerals,
space, and delimiters is acceptable.

d) There must be no processing, system, or
device dependencies.

Generalized markup is predominantly
descriptive and therefore inherently free of
such dependencies. The occasional
processing instruction is specially delimited so
it can be found and converted for interchange,
or when a different process renders the
instruction irrelevant.

References to external parts of a document are
indirect. The mappings to real system storage
are made in “external entity declarations” that
occur at the start of the document, where they
can easily be modified for interchange.

The concrete syntax can be changed with the
SGML declaration to accommodate any
reserved system characters.

e) There must be no national language bias.

The characters used for names can be
augmented by any special national characters.
Generic identifiers, attribute names, and other
names used in descriptive markup are defined
by the user in element and entity declarations.

The declaration names and keywords used in
markup declarations can also be changed.

Multiple character repertoires, as used in
multi-lingual documents, are supported.

f) The language must accommodate familiar
typewriter and word processor conventions.

The “short reference” and “data tag”
capabilities support typewriter text entry
conventions. Normal text containing
paragraphs and quotations is interpretable as
SGML although it is keyable with no visible
markup.

g) The language must not depend on a particular
data stream or physical file organization.

The markup language has a virtual storage
model in which documents consist of one or
more storage entities, each of which is a
sequence of characters. All real file access is
handled by the processing system, which can
decide whether the character sequence should
be viewed as continuous, or whether it should
reflect physical record boundaries.

h) “Marked up” text must coexist with other data.

A processing system can allow text that
conforms to this International Standard to
occur in a data stream with other material, as
long as the system can locate the start and end
of the conforming text.

Similarly, a system can allow data content not
defined by SGML to occur logically within a
conforming document. The occurrence of such
data is indicated by markup declarations to
facilitate interchange.

i) The markup must be usable by both humans
and programs.

The Standard Generalized Markup Language
is intended as a suitable interface for
keyboarding and interchange without
preprocessors. It allows extensive tailoring to
accommodate user preferences in text entry
conventions and the requirements of a variety
of keyboards and displays.

However, it is recognized that many
implementers will want to take advantage of
the language's information capture capabilities
to provide intelligent editing or to create SGML
documents from a word processing front-end
environment. SGML accommodates such uses
by providing the following capabilities:
— Element content can be stored separately

from the markup.
— Control characters can be used as

delimiters.
— Mixed modes of data representation are

permitted in a document.
— Multiple concurrent logical and layout

structures are supported.

0.3 Organization

The organization of this International Standard is as
follows:

a) The physical organization of an SGML
document as an entity structure is specified in
clause 6.

0.3 Organization 3

ISO 8879-1986(E)

b) The logical organization of an SGML document
as an element structure, and its representation
with descriptive markup, is specified in clause
7.

c) Processing instructions are discussed in
clause 8.

d) Common markup constructs, such as
characters, entity references, and processing
instructions, are covered in clause 9.

e) Markup declarations with general applicability
(comment, entity, and marked section) are
specified in clause 10.

f) Markup declarations that are used primarily to
specify document type definitions (document
type, element, notation, short reference
mapping, and short reference use) are defined
in clause 11.

g) Markup declarations that are used primarily to
specify link process definitions (link type, link
attribute, link set, and link set use) are defined
in clause 12.

h) The SGML declaration, which specifies the
document character set, capacity set, concrete
syntax, and features, is defined in clause 13.

i) The reference concrete syntax is defined in
clause 14.

j) Conformance of documents, applications, and
systems is defined in clause 15.

There are also a number of annexes containing
additional information; they are not integral parts of
the body of this International Standard.

NOTE — This International Standard is a formal specification of

a computer language, which may prove difficult reading for those

whose expertise is in the production of documents, rather than

compilers. Annexes A, B, and C discuss the main concepts in an

informal tutorial style that should be more accessible to most

readers. However, the reader should be aware that those

annexes do not cover all SGML constructs, nor all details of those

covered, and subtle distinctions are frequently ignored in the

interest of presenting a clear overview.

1 Scope

This International Standard:

a) Specifies an abstract syntax known as the
Standard Generalized Markup Language
(SGML). The language expresses the
description of a document's structure and
other attributes, as well as other information
that makes the markup interpretable.

b) Specifies a reference concrete syntax that
binds the abstract syntax to specific characters
and numeric values, and criteria for defining
variant concrete syntaxes.

c) Defines conforming documents in terms of
their use of components of the language.

d) Defines conforming systems in terms of their
ability to process conforming documents and
to recognize markup errors in them.

e) Specifies how data not defined by this
International Standard (such as images,
graphics, or formatted text) can be included in
a conforming document.

NOTE — This International Standard does not:

a) Identify or specify “standard” document types, document

architectures, or text structures.

b) Specify the implementation, architecture, or markup error

handling of conforming systems.

c) Specify how conforming documents are to be created.

d) Specify the data stream, message handling system, file

structure, or other physical representation in which

conforming documents are stored or interchanged, or any

character set or coding scheme into or from which

conforming documents might be translated for such

purposes.

e) Specify the data content representation or notation for

images, graphics, formatted text, etc., that are included in a

conforming document.

2 Field of Application

The Standard Generalized Markup Language can be
used for documents that are processed by any text
processing or word processing system. It is
particularly applicable to:

a) Documents that are interchanged among
systems with differing text processing
languages.

b) Documents that are processed in more than
one way, even when the procedures use the
same text processing language.

Documents that exist solely in final formatted form
are not within the field of application of this
International Standard.

4 2 Field of Application

ISO 8879-1986(E)

3 References

ISO 639, Codes for the representation of names of
languages.

ISO 646, Information processing — 7-bit coded
character set for information interchange.

ISO 9069, Information processing — SGML support
facilities — SGML Document Interchange Format
(SDIF).V

ISO 9070, Information processing — SGML support
facilities — Registration procedures for public textV

The following references are used in conjunction
with illustrative material:

ISO 2022, Information processing — ISO 7~bit and
8-bit coded character sets — Code extension
techniques.

ISO 3166, Codes for the representation of names of
countries.

ISO 4873, Information processing — ISO 8-bit code
for information interchange — Structure and rules for
implementation.

ISO 6937, Information processing — Coded character
sets for text communication.

ISO 8632/2, Information processing systems —
Computer graphics — Metafile for the storage and
transfer of picture description information — Part 2:
Character encoding. ^

ISO 8632/4, Information processing systems —
Computer graphics — Metafile for the storage and
transfer of picture description information — Part 4:
Clear text encoding

4 Definitions

NOTE — The typographic conventions described in 5.1 are

employed in this clause.

For the purposes of this International Standard, the
following definitions apply:

4.1 abstract syntax (of SGML): Rules that define
how markup is added to the data of a document,
without regard to the specific characters used to
represent the markup.

4.2 active document type (declaration): A
document type declaration with respect to which
an SGML entity is being parsed.

11 At present at the stage of draft.

4.3 active link type (declaration): A link type
declaration with respect to which an SGML entity
is being parsed.

4.4 ambiguous content model: A content model
for which an element or character string occurring
in the document instance can satisfy more than
one primitive content token without look-ahead.

NOTE — Ambiguous content models are prohibited In SGML

4.5 application: Text processing application.

4.6 application convention: Application-specific
rule governing the text of a document in areas that
SGML leaves to user choice.

NOTE — There are two kinds: content conventions and markup

conventions.

4.7 application-specific information: A
parameter of the SGML declaration that specifies
information required by an application and/or its
architecture.

NOTE — For example, the information could identify an

architecture and/or an application, or otherwise enable a

system to determine whether it can process the document.

4.8 associated element type: An element type
associated with the subject of a markup
declaration by its associated element type
parameter.

4.9 attribute (of an element): A characteristic
quality, other than type or content.

4.10 attribute definition: A member of an
attribute definition list; it defines an attribute name,
allowed values, and default value.

4.11 attribute definition list: A set of one or more
attribute definitions defined by the attribute
definition list parameter of an attribute definition
list declaration.

4.12 attribute (definition) list declaration: A
markup declaration that associates an attribute
definition list with one or more element types.

4.13 attribute list: Attribute specification list.

4.14 attribute list declaration: Attribute definition
list declaration.

4.15 attribute specification: A member of an
attribute specification list; it specifies the value of a
single attribute.

4.16 attribute (specification) list: Markup that is a
set of one or more attribute specifications.

4 Definitions 5

ISO 8879-1986(E)

NOTE — Attribute specification lists occur in start-tags and link

sets.

4.17 attribute value literal: A delimited character
string that is interpreted as an attribute value by
replacing references and ignoring or translating
function characters.

4.18 available public text: Public text that is
available to the general public, though its owner
may require payment of a fee or performance of
other conditions.

4.19 B sequence: An uninterrupted sequence of
upper-case letter “B” characters; in a string
assigned as a short reference, it denotes a blank
sequence whose minimum length is the length of
the B sequence.

4.20 base document element: A document
element whose document type is the base
document type.

4.21 base document type: The document type
specified by the first document type declaration in
a prolog.

4.22 basic SGML document: A conforming SGML
document that uses the reference concrete syntax
and capacity set and the SHORTTAG and
OMITTAG markup minimization features.

NOTE- It also uses the SHORTREF feature by virtue of using

the reference concrete syntax.

4.23 bit: Binary digit; that is, either zero or one.

4.24 bit combination: An ordered collection of
bits, interpretable as a binary number.

4.25 blank sequence: An uninterrupted sequence
of SPACE and/or SEPCHAR characters.

4.26 capacity: A named limit on some aspect of
the size or complexity of a document, expressed
as a number of points that can be accumulated for
a kind of object or for all objects.

NOTE — The set of capacities is defined by the abstract

syntax, but values are assigned to them by individual

documents and SGML systems.

4.27 capacity set: A set of assignments of
numeric values to capacity names.

NOTE — In an SGML declaration, the capacity set identifies the

maximum capacity requirements of the document (its actual

requirements may be lower). A capacity set can also be defined

by an application, to limit the capacity requirements of

documents that implementations of the application must

process, or by a system, to specify the capacity requirements

that it is capable of meeting.

4.28 CDATA: Character data.

4.29 CDATA entity: Character data entity.

4.30 chain of (link) processes: Processes,
performed sequentially, that form a chain in which
the source of the first process is an instance of the
base document type, and the result of each
process but the last is the source for the next. Any
portion of the chain can be iterated.

NOTE — For example, a complex page makeup application

could include three document types—logical, galley, and

page-and two link processes—justification and castoff. The

justification process would create an instance of a galley from

an instance of a logical document, and the castoff process would

in turn create pages from the galleys. The two processes could

be iterated, as decisions made during castoff could require re¬

justification of the galleys at different sizes.

4.31 character: An atom of information with an
individual meaning, defined by a character
repertoire.

NOTES

1 There are two kinds: graphic character and control character.

2 A character can occur in a context in which it has a meaning,

defined by markup or a data content notation, that supercedes

or supplements its meaning in the character repertoire.

4.32 (character) class: A set of characters that
have a common purpose in the abstract syntax,
such as non-SGML characters or separator
characters.

NOTE — Specific characters are assigned to character classes

in four different ways:

a) explicitly, by the abstract syntax (Special, Digit, LC

Letter, and UC Letter)-,

b) explicitly, by the concrete syntax (LCNMSTRT,

FUNCHAR, SEPCHAR, etc.):

c) implicitly, as a result of explicit assignments made to

delimiter roles or other character classes (DELMCHAR

and DATACHAR)', or
d) explicitly, by the document character set (NONSGML).

4.33 character data: Zero or more characters
that occur in a context in which no markup is
recognized, other than the delimiters that end the
character data. Such characters are classified as
data characters because they were declared to be
so.

4.34 character data entity: An entity whose text
is treated as character data when referenced and
is not dependent on a specific system, device, or
application process.

6 4 Definitions

ISO 8879-1986(E)

4.35 character entity set: A public entity set
consisting of general entities that are graphic
characters.

NOTES

1 Character entities are used for characters that have no coded

representation in the document character set, or that cannot be

keyboarded conveniently, or to achieve device independence

for characters whose bit combinations do not cause proper

display on all output devices.

2 There are two kinds of character entity sets: definitional and

display.

4.36 character number: A number that
represents the base-10 integer equivalent of the
coded representation of a character, obtained by
treating the sequence of bit combinations as a
single base-2 integer.

4.37 character reference: A reference that is
replaced by a single character.

NOTE — There are two kinds: named character reference and

numeric character reference.

4.38 character repertoire: A set of characters
that are used together. Meanings are defined for
each character, and can also be defined for control
sequences of multiple characters.

NOTE — When a character occurs in a control sequence, the

meaning of the sequence supercedes the meanings of the

individual characters.

4.39 character set: A mapping of a character
repertoire onto a code set such that each
character is associated with its coded
representation.

4.40 (character) string: A sequence of
characters.

4.41 class: Character class.

4.42 code extension: The use of a single coded
representation for more than one character,
without changing the document character set.

NOTE — When multiple national languages occur in a

document, graphic repertoire code extension may be useful.

4.43 code set: A set of bit combinations of equal
size, ordered by their numeric values, which must
be consecutive.

NOTE — For example, a code set whose bit combinations have

8 bits (an “8-bit code”) could consist of as many as 256 bit

combinations, ranging in value from 00000000 through 11111111

(0 through 255 In the decimal number base), or it could consist of

any contiguous subset of those bit combinations.

4.44 code set position: The numeric value of a bit
combination in a code set.

4.45 coded representation: The representation of
a character as a sequence of one or more bit
combinations of equal size.

4.46 comment: A portion of a markup declaration
that contains explanations or remarks intended to
aid persons working with the document.

4.47 comment declaration: A markup declaration
that contains only comments.

4.48 concrete syntax (of SGML): A binding of the
abstract syntax to particular delimiter characters,
quantities, markup declaration names, etc.

4.49 concrete syntax parameter: A parameter of
the SGML declaration that identifies the concrete
syntax used in document elements and (usually)
Prologs.

NOTE — The parameter consists of parameters that identify

the syntax-reference character set, function characters,

shunned characters, naming rules, delimiter use, reserved

name use, and quantitative characteristics.

4.50 conforming SGML application: An SGML
application that requires documents to be
conforming SGML documents, and whose
documentation meets the requirements of this
International Standard.

4.51 conforming SGML document: An SGML
document that complies with all provisions of this
International Standard.

4.52 containing element: An element within
which a subelement occurs.

4.53 content: Characters that occur between the
start-tag and end-tag of an element in a document
instance. They can be interpreted as data, proper
subelements, included subelements, other
markup, or a mixture of them.

NOTE - If an element has an explicit content reference, or its

declared content is “EMPTY”, the content is empty. In such

cases, the application itself may generate data and process it as

though it were content data.

4.54 content convention: An application
convention governing data content, such as a
restriction on length, allowable characters, or use
of upper-case and lower-case letters.

4 Definitions 7

ISO 8879-1986(E)

NOTE — A content convention is essentially an informal data

content notation, usually restricted to a single element type.

4.55 (content) model: Parameter of an element
declaration that specifies the model group and
exceptions that define the allowed content of the
element.

4.56 content model nesting level: The largest
number of successive grpo or dtgo delimiters that
occur in a content model without a corresponding
grpc or dtgc delimiter.

4.57 content reference (attribute): An impliable
attribute whose value is referenced by the
application to generate content data.

NOTE — When an element has an explicit content reference,

the element's content in the document instance is empty.

4.58 contextual sequence: A sequence of one or
more markup characters that must follow a
delimiter string within the same entity in order for
the string to be recognized as a delimiter.

4.59 contextually optional element: An element
a) that can occur only because it is an

inclusion: or
b) whose content token in the currently

applicable model group is a contextually
optional token.

4.60 contextually optional token: A content token
that

a) is an inherently optional token; or
b) has a plus occurrence indicator and has

been satisfied; or
c) is in a model group that is itself a

contextually optional token, no tokens of
which have been satisfied.

4.61 contextually required element: An element
that is not a contextually optional element and

a) whose generic identifier is the document
type name; or

b) whose currently applicable model token is a
contextually required token.

NOTE — An element could be neither contextually required

nor contextually optional; for example, an element whose

currently applicable model token is in an or group that has

no inherently optional tokens.

4.62 contextually required token: A content token
that

a) is the only one in its model group; or
b) is in a seq group

i) that
— is itself a contextually required token;

or

— contains a token which has been
satisfied;

and
ii) all preceding tokens of which

— have been satisfied; or
— are contextually optional.

4.63 control character: A character that controls
the interpretation, presentation, or other
processing of the characters that follow it; for
example, a tab character.

4.64 control sequence: A sequence of
characters, beginning with a control character, that
controls the interpretation, presentation, or other
processing of the characters that follow it; for
example, an escape sequence.

4.65 core concrete syntax: A variant of the
reference concrete syntax that has no short
reference delimiters.

4.66 corresponding content (of a content token):
The element(s) and/or data in a document instance
that correspond to a content token.

4.67 current attribute: An attribute whose current
(that is, most recently specified) value is its default
value.

NOTE — The start-tag cannot be omitted for the first

occurrence of an element with a current attribute.

4.68 current element: The open element whose
start-tag most recently occurred (or was omitted
through markup minimization),

4.69 current link set: The link set associated with
the current element by a link set use declaration in
the element content or link type definition. If the
current element has no associated link set, the
previous current link set continues to be the
current link set.

4.70 current map: The short reference map
associated with the current element by a short
reference use declaration in the element content or
document type definition. If the current element
has no associated map, the previous current map
continues to be the current map.

4.71 current rank: A number that is appended to
a rank stem in a tag to derive the generic identifier.
For a start-tag it is the rank suffix of the most
recent element with the identical rank stem, or a
rank stem in the same ranked group. For an end-
tag it is the rank suffix of the most recent open
element with the identical rank stem.

4.72 data: The characters of a document that
represent the inherent information content;
characters that are not recognized as markup.

8 4 Definitions

ISO 8879-1986(E)

4.73 data character: An SGML character that is
interpreted as data in the context in which it
occurs, either because it was declared to be data,
or because it was not recognizable as markup.

4.74 data content: The portion of an element's
content that is data rather than markup or a
subelement.

4.75 data content notation: An application-
specific interpretation of an element's data
content, or of a non-SGML data entity, that usually
extends or differs from the normal meaning of the
document character set.

NOTE — It is specified for an element's content by a notation

attribute, and for a non-SGML data entity by the notation name

parameter of the entity declaration.

4.76 data tag: A string that conforms to the data
tag pattern of an open element. It serves both as
the end-tag of the open element and as character
data in the element that contains it.

4.77 data tag group: A model group token that
associates a data tag pattern with a target element
type.

NOTE — Within an instance of a target element, the data

content and that of any subelements is scanned for a string that

conforms to the pattern (a “data tag”).

4.78 data tag pattern: A data tag group token that
defines the strings that, if they occurred in the
proper context, would constitute a data tag.

4.79 declaration: Markup declaration.

4.80 declaration subset: A delimited portion of a
markup declaration in which other declarations
can occur.

NOTE — Declaration subsets occur only in document type, link

type, and marked section declarations.

4.81 declared concrete syntax: The concrete
syntax described by the concrete syntax parameter
of the SGML declaration.

4.82 dedicated data characters: Character class
consisting of each SGML character that has no
possible meaning as markup; a member is never
treated as anything but a data character.

4.83 default entity: The entity that is referenced
by a general entity reference with an undeclared
name.

4.84 default value: A portion of an attribute
definition that specifies the attribute value to be
used if there is no attribute specification for it.

4.85 definitional (character) entity set: A
character entity set whose purpose is to define
entity names for graphic characters, but not
actually to display them. Its public identifier does
not include a public text display version.

NOTE — During processing, the system replaces a definitional

entity set with a corresponding display character entity set for

the appropriate output device.

4.86 delimiter characters: Character class that
consists of each SGML character, other than a
name character or function character, that occurs
in a string assigned to a delimiter role by the
concrete syntax.

4.87 delimiter-in-context: A character string that
consists of a delimiter string followed immediately
in the same entity by a contextual sequence.

4.88 delimiter role: A role defined by the abstract
syntax, and filled by a character string assigned by
the concrete syntax, that involves identifying parts
of the markup and/or distinguishing markup from
data.

4.89 delimiter set: A set of assignments of
delimiter strings to the abstract syntax delimiter
roles.

4.90 delimiter set parameter: A parameter of an
SGML declaration that identifies the delimiter set
used in the declared concrete syntax.

4.91 delimiter (string): A character string
assigned to a delimiter role by the concrete syntax.

4.92 descriptive markup: Markup that describes
the structure and other attributes of a document in
a non-system-specific manner, independently of
any processing that may be performed on it. In
particular, it uses tags to express the element
structure.

4.93 device-dependent version (of public text):
Public text whose formal public identifier differs
from that of another public text only by the addition
of a public text display version, which identifies the
display devices supported or coding scheme used.

4.94 digits: Character class composed of the 10
Arabic numerals from “0” through “9”.

4.95 display (character) entity set: An entity set
with the same entity names as a corresponding
definitional character entity set, but which causes
the characters to be displayed. It is a device¬
dependent version of the corresponding
definitional entity set.

4 Definitions 9

ISO 8879-1986(E)

4.96 document: A collection of information that is
processed as a unit. A document is classified as
being of a particular document type.

NOTE — In this International Standard, the term almost

invariably means (without loss of accuracy) an SGML document.

4.97 document architecture: Rules for the
formulation of text processing applications.

NOTE — For example, a document architecture can define:

a) attribute semantics for use in a variety of element

definitions;

b) element classes, based on which attributes the

elements have;

c) structural rules for defining document types in terms of

element classes;

d) link processes, and how they are affected by the values

of attributes; and/or

e) information to accompany a document during

interchange (a “document profile”).

4.98 document character set: The character set
used for all markup in an SGML document, and
initially (at least) for data.

NOTE — When a document is interchanged between systems,

its character set is translated to the receiving system character

set.

4.99 document element: The element that is the
outermost element of an instance of a document
type; that is, the element whose generic identifier
is the document type name.

4.100 document instance: Instance of a document
type.

4.101 document instance set: The portion of an
SGML document entity or SGML subdocument
entity in the entity structure that contains one or
more instances of document types. It is co¬
extensive with the base document element in the
element structure.

NOTE — When the concurrent instance feature is used,

multiple instances can exist in a document, and data and markup

can be shared among them.

4.102 document type: A class of documents
having similar characteristics; for example,
journal, article, technical manual, or memo.

4.103 (document) type declaration: A markup
declaration that contains the formal specification of
a document type definition.

4.104 document type declaration subset: The
element, entity, and short reference sets occurring
within the declaration subset of a document type
declaration.

NOTE — The external entity referenced from the document

type declaration is considered part of the declaration subset.

4.105 document (type) definition: Rules,
determined by an application, that apply SGML to
the markup of documents of a particular type. A
document type definition includes a formal
specification, expressed in a document type
declaration, of the element types, element
relationships and attributes, and references that
can be represented by markup. It thereby defines
the vocabulary of the markup for which SGML
defines the syntax.

NOTE — A document type definition can also include

comments that describe the semantics of elements and

attributes, and any application conventions.

4.106 document type specification: A portion of a
tag or entity reference that identifies the document
type instances within which the tag or entity
reference will be processed.

4.107 ds (separator): A declaration separator,
occurring in declaration subsets.

4.108 DTD: Document type definition.

4.109 effective status (of a marked section): The
highest priority status keyword specified on a
marked section declaration.

4.110 element: A component of the hierarchical
structure defined by a document type definition; it
is identified in a document instance by descriptive
markup, usually a start-tag and end-tag.

NOTE — An element is classified as being of a particular

element type.

4.111 element declaration: A markup declaration
that contains the formal specification of the part of
an element type definition that deals with the
content and markup minimization.

4.112 element set: A set of element declarations
that are used together.

NOTE — An element set can be public text.

4.113 element structure: The organization of a
document into hierarchies of elements, with each
hierarchy conforming to a different document type
definition.

4.114 element type: A class of elements having
similar characteristics; for example, paragraph,
chapter, abstract, footnote, or bibliography.

4.115 element (type) definition: Application-
specific rules that apply SGML to the markup of
elements of a particular type. An element type

10 4 Definitions

ISO 8879-1986(E)

definition includes a formal specification,
expressed in element and attribute definition list
declarations, of the content, markup minimization,
and attributes allowed for a specified element type.

NOTE — An element type definition is normally part of a

document type definition.

4.116 element type parameter: A parameter of an
element declaration that identifies the type of
element to which the definition applies.

NOTE — The specification can be direct, in the form of an

individual generic identifier or member of a name group, or

indirect, via a ranked element or member of a ranked group.

4.117 empty link set: A link set in which all result
element types are implied and no attributes are
specified.

4.118 empty map: A short reference map in which
all delimiters are mapped to nothing.

NOTE — The empty map need not (and cannot) be declared

explicitly, but can be referenced by its reserved name, which is

“#EMPTY” in the reference concrete syntax.

4.119 end-tag: Descriptive markup that identifies
the end of an element.

4.120 entity: A collection of characters that can be
referenced as a unit.

NOTES

1 Objects such as book chapters written by different authors, pi

characters, or photographs, are often best managed by

maintaining them as individual entities.

2 The physical organization of entities is system-specific, and

could take the form of files, members of a partitioned data set,

components of a data structure, or entries in a symbol table.

4.121 entity declaration: A markup declaration
that assigns an SGML name to an entity so that it
can be referenced.

4.122 entity end (signal): A signal from the system
that an entity's replacement text has ended.

4.123 entity manager: A program (or portion of a
program or a combination of programs), such as a
file system or symbol table, that can maintain and
provide access to multiple entities.

4.124 entity reference: A reference that is
replaced by an entity.

NOTE — There are two kinds: named entity reference and

short reference.

4.125 entity set: A set of entity declarations that
are used together.

NOTE — An entity set can be public text.

4.126 entity structure: The organization of a
document into one or more separate entities.

NOTE — The first entity is an SGML document entity, it

contains entity references that indicate where the other entities

belong with respect to it.

4.127 entity text: The entity declaration parameter
that specifies the replacement text, either by
including it in a parameter literal, or by pointing to
it with an external identifier.

4.128 equivalent reference string: A character
string, consisting of an entity reference and
possibly an RE and/or RS, that replaces a short
reference when a document is converted from a
concrete syntax that supports short references to
one that does not.

4.129 escape sequence: A control sequence
whose first character is escape (ESC).

4.130 exceptions: A parameter of an element
declaration that modifies the effect of the
element's content model, and the content models
of elements occurring within it, by permitting
inclusions and prohibiting exclusions.

4.131 exclusions: Elements that are not allowed
anywhere in the content of an element or its
subelements even though the applicable content
model or inclusions would permit them optionally.

4.132 explicit content reference: A content
reference that was specified in an attribute
specification.

4.133 explicit link (process definition): A link
process definition in which the result element
types and their attributes and multiple sets of link
attribute values can be specified.

4.134 external entity: An entity whose text is not
incorporated directly in an entity declaration; its
system identifier and/or public identifier is
specified instead.

NOTE - A document type or link type declaration can include

the identifier of an external entity containing all or part of the

declaration subset; the external identifier serves simultaneously

as both the entity declaration and the entity reference.

4.135 external identifier: A parameter that
identifies an external entity or data content
notation.

4 Definitions 11

ISO 8879-1986(E)

NOTE — There are two kinds: system identifier and public

identifer.

4.136 fixed attribute: An attribute whose specified
value (if any) must be identical to its default value.

4.137 formal public identifier: A public identifier
that is constructed according to rules defined in
this International Standard so that its owner
identifier and the components of its text identifier
can be distinguished.

4.138 formal public identifier error: An error in the
construction or use of a formal public identifer,
other than an error that would prevent it being a
valid minimum literal.

NOTE - A formal public identifier error can occur only if

“FORMAL YES” is specified on the SGML declaration. A failure

of a public identifier to be a minimum literal, however, is always

an error.

4.139 function character: A markup character,
assigned by the concrete syntax, that can perform
some SGML function in addition to potentially
being recognized as markup. If it is not recognized
as markup in a context in which data is allowed it
is treated as data (unless the language dictates
special treatment, as in the case of the RE and RS
function characters).

4.140 function character identification parameter:
A parameter of an SGML declaration that identifies
the characters assigned to the RE, RS, and SPACE
functions, and allows additional functions to be
defined.

4.141 GO set: In graphic repertoire code
extension, the virtual character set that represents
the document character set graphic characters
whose character numbers are below 128, in their
normal code set positions.

4.142 general delimiter (role): A delimiter role
other than a short reference.

4.143 general entity: An entity that is referenced
from within the content of an element or an
attribute value literal.

4.144 general entity reference: A named entity
reference to a general entity.

4.145 generic identifier: A name that identifies the
element type of an element.

4.146 Gl: Generic identifier.

4.147 graphic character: A character, such as a
letter, digit, or punctuation, that normally occupies
a single position when text is displayed.

4.148 graphic repertoire code extension: Code
extension in which multiple graphic character sets
are mapped onto positions of the document code
set by using shift functions to invoke virtual
character sets.

4.149 group: The portion of a parameter that is
bounded by a balanced pair of grpo and grpc
delimiters or dtgo and dtgc delimiters.

NOTE — There are five kinds: name group, name token group,

model group, data tag group, and data tag template group. A

name, name token, or data tag template group cannot contain a

group, but a model group can contain a model group and a data

tag group can contain a data tag template group.

4.150 ID: Unique identifier.

4.151 ID reference list: An attribute value that is a
list of ID reference values.

4.152 ID reference value: An attribute value that is
a name specified as an id value of an element in
the same document instance.

4.153 ID value: An attribute value that is a name
that uniquely identifies the element; that is, it
cannot be the same as any other id value in the
same document instance.

4.154 impliable attribute: An attribute for which
there need not be an attribute specification, and
whose value is defined by the application when it
is not specified.

4.155 implicit link (process definition): A link
process definition in which the result element
types and their attributes are all implied by the
application, but multiple sets of link attribute
values can be specified.

4.156 inert function characters: Character class
consisting of function characters whose additional
SGML “function” is to do nothing.

4.157 included subelement: A subelement that is
not permitted by its containing element's model,
but is permitted by an inclusion exception.

4.158 inclusions: Elements that are allowed
anywhere in the content of an element or its
subelements even though the applicable model
does not permit them.

4.159 inherently optional token: A model group
token that:

a) has an opt or rep occurrence indicator; or
b) is an or group, one of whose tokens is

inherently optional; or
c) is an and or seq group, all of whose tokens

are inherently optional.

12 4 Definitions

ISO 8879-1986(E)

4.160 instance (of a document type): The data and
markup for a hierarchy of elements that conforms
to a document type definition.

4.161 interpreted parameter literal: The text of a
parameter literal, exclusive of the literal delimiters,
in which character and parameter entity
references have been replaced.

4.162 ISO owner identifier: An owner identifier,
consisting of an ISO publication number or
character set registration number, that is used
when a public identifier identifies, or is assigned
by, an ISO publication, or identifies an ISO
registered character set.

4.163 ISO text description: A public text
description, consisting of the last element of an
ISO publication title (without part designation, if
any), that is used when a public identifier identifies
an ISO publication.

4.164 keyword: A parameter that is a reserved
name defined by the concrete syntax, as opposed
to arbitrary text.

NOTE — In parameters where either a keyword or a name

defined by an application could be specified, the keyword is

always preceded by the reserved name indicator. An

application is therefore able to define names without regard to
whether those names are also used by the concrete syntax.

4.165 link attribute: An attribute of a source
element type that is meaningful only in the context
of a particular process that is performed on the
source document instance.

4.166 link process: A process that creates a new
instance of some document type (the result) from
an existing instance of the same or another
document type (the source). Processes can be
chained, so that the result of one is the source for
the next.

NOTE — Examples of link processes include editing, in which
the source and result document types are usually the same, and
formatting, in which they are usually different.

4.167 link process definition: Application-specific
rules that apply SGML to describe a link process.
A link process definition includes a formal
specification, expressed in a link type declaration,
of the link between elements of the source and
result, including the definitions of source attributes
applicable to the link process (“link attributes”).

NOTES

1 A link process definition can also include comments that

describe the semantics of the process, including the meaning of
the link attributes and their effect on the process.

2 There are three kinds of link process definitions: simple,
Implicit, and explicit.

4.168 link set: A named set of associations,
declared by a link set declaration, in which
elements of the source document type are linked
to elements of the result document type. For each
element link, source link attributes and result
element attributes can be specified.

4.169 link set declaration: A markup declaration
that defines a link set.

4.170 link type declaration: A markup declaration
that contains the formal specification of a link
process definition.

4.171 link type declaration subset: The entity sets,
link attribute sets, and link set and link set use
declarations, that occur within the declaration
subset of a link type declaration.

NOTE — The external entity referenced from the link type
declaration is considered part of the declaration subset.

4.172 locking shift: A shift function that applies
until another locking shift function occurs.

4.173 lower-case letters: Character class
composed of the 26 unaccented small letters from
"a” through “z”.

4.174 lower-case name characters: Character
class consisting of each additional lower-case
name character assigned by the concrete syntax.

4.175 lower-case name start characters:
Character class consisting of each additional
lower-case name start character assigned by the
concrete syntax.

4.176 LPD: Link process definition.

4.177 map: Short reference map.

4.178 markup: To add markup to a document.

4.179 marked section: A section of the document
that has been identified for a special purpose, such
as ignoring markup within it.

4.180 marked section declaration: A markup
declaration that identifies a marked section and
specifies how it is to be treated.

4.181 marked section end: The closing delimiter
sequence of a marked section declaration.

4.182 marked section start: The opening delimiter
sequence of a marked section declaration.

4 Definitions 13

ISO 8879-1986(E)

4.183 markup: Text that is added to the data of a
document in order to convey information about it.

NOTE — There are four kinds of markup: descriptive markup

(tags), references, markup declarations, and processing

instructions.

4.184 markup character: An SGML character that,
depending on the context, could be interpreted
either as markup or data.

4.185 markup convention: Application convention
governing markup, such as a rule for the
formulation of an entity name, or a preferred
subset of allowed short reference delimiters.

4.186 (markup) declaration: Markup that controls
how other markup of a document is to be
interpreted.

NOTE — There are 13 kinds: SGML, entity, element, attribute

definition list, notation, document type, link type, link set, link

use, marked section, short reference mapping, short reference

use, and comment.

4.187 (markup) minimization feature: A feature of
SGML that allows markup to be minimized by
shortening or omitting tags, or shortening entity
references.

NOTE — Markup minimization features do not affect the

document type definition, so a minimized document can be sent

to a system that does not support these features by first

restoring the omitted markup. There are five kinds:

SHORTTAG, OMITTAG, SHORTREF, DATATAG, and RANK.

4.188 markup-scan-in characters: Character class
consisting of function characters that restore
markup recognition if it was suppressed by the
occurrence of a markup-scan-out character.

4.189 markup-scan-out characters: Character
class consisting of function characters that
suppress markup recognition until the occurrence
of a markup-scan-in character or entity end.

4.190 markup-scan-suppress characters: A
character class consisting of function characters
that suppress markup recognition for the
immediately following character in the same entity
(if any).

4.191 minimal SGML document: A conforming
SGML document that uses the core concrete
syntax throughout, no features, and the reference
capacity set.

4.192 minimization feature: Markup minimization
feature.

4.193 model: Content model.

4.194 model group: A component of a content
model that specifies the order of occurrence of
elements and character strings in an element's
content, as modified by exceptions specified in the
content model of the element and in the content
models of other open elements.

4.195 multicode basic concrete syntax: A
multicode variant of the basic concrete syntax in
which markup is not recognized when code
extension is in use.

4.196 multicode concrete syntax: A concrete
syntax that allows code extension control
characters to be SGML characters.

4.197 multicode core concrete syntax: A
multicode variant of the core concrete syntax in
which markup is not recognized when code
extension is in use.

4.198 name: A name token whose first character
is a name start character.

4.199 name character: A character that can occur
in a name: name start characters, digits, and
others designated by the concrete syntax.

4.200 name group: A group whose tokens are
required to be names.

4.201 name start character: A character that can
begin a name: letters, and others designated by
the concrete syntax.

4.202 name token: A character string, consisting
solely of name characters, whose length is
restricted by the NAMELEN quantity.

NOTE - A name token that occurs in a group is also a token;

one that occurs as an attribute value is not.

4.203 name token group: A group whose tokens
are required to be name tokens.

4.204 named character reference: A character
reference consisting of a delimited function name.

4.205 named entity reference: An entity reference
consisting of a delimited name of a general entity
or parameter entity (possibly qualified by a
document type specification) that was declared by
an entity declaration.

NOTE — A general entity reference can have an undeclared

name if a default entity was declared.

4.206 naming rules parameter: A parameter of an
SGML declaration that identifies additions to the

14 4 Definitions

ISO 8879-1986(E)

standard name alphabet character classes and
specifies the case substitution.

4.207 non-SGML character: A character in the
document character set whose coded
representation never occurs in an SGML entity.

4.208 non-SGML data entity: An entity whose
characters are not interpreted in accordance with
this International Standard, and in which,
therefore, no SGML markup can be recognized.

NOTE — The interpretation of a non-SGML data entity is

governed by a data content notation, which may be defined by

another International Standard.

4.209 NONSGML: The class of non-SGML
characters, defined by the document character set.

4.210 normalized length (of an attribute
specification list): A length calculated by ignoring
the actual characters used for delimiting and
separating the components and counting an extra
fixed number per component instead.

4.211 notation attribute: An attribute whose value
is a notation name that identifies the data content
notation of the element's content.

NOTE - A notation attribute does not apply when there is an

explicit content reference, as the element's content will be

empty.

4.212 notation declaration: A markup declaration
that associates a name with a notation identifier.

4.213 notation identifier: An external identifier that
identifies a data content notation in a notation
declaration. It can be a public identifier if the
notation is public, and, if not, a description or other
information sufficient to invoke a program to
interpret the notation.

4.214 notation name: The name assigned to a
data content notation by a notation declaration.

4.215 number: A name token consisting solely of
digits.

4.216 number token: A name token whose first
character is a digit.

NOTE-A number token that occurs in a group is also a token;

one that occurs as an attribute value is not.

4.217 numeric character reference: A character
reference consisting of a delimited character
number.

4.218 object capacity: The capacity limit for a
particular kind of object, such as entities defined or
characters of entity text.

4.219 omitted tag minimization parameter: A
parameter of an element declaration that specifies
whether a technically valid omission of a start-tag
or end-tag is considered a reportable markup
error.

4.220 open element: An element whose start-tag
has occurred (or been omitted through markup
minimization), but whose end-tag has not yet
occurred (or been omitted through markup
minimization).

4.221 open entity: An entity that has been
referenced but whose entity end has not yet
occurred.

4.222 open marked section declaration: A marked
section declaration whose marked section start
has occurred but whose marked section end has
not yet occurred.

4.223 owner identifier: The portion of a public
identifier that identifies the owner or originator of
public text.

NOTE — There are three kinds: ISO, registered, and

unregistered.

4.224 parameter: The portion of a markup
declaration that is bounded by parameter
separators (whether required or optional). A
parameter can contain other parameters.

4.225 parameter entity: An entity that is
referenced from a markup declaration parameter.

4.226 parameter entity reference: A named entity
reference to a parameter entity.

4.227 parameter literal: A parameter or token
consisting of delimited replaceable parameter
data.

4.228 parsed character data: Zero or more
characters that occur in a context in which text is
parsed and markup is recognized. They are
classified as data characters because they were
not recognized as markup during parsing.

4.229 PCDATA: Parsed character data.

4.230 PI entity: Processing instruction entity.

4.231 point: A unit of capacity measurement,
roughly indicative of relative storage requirements.

4.232 procedure: Processing defined by an
application to operate on elements of a particular
type.

4 Definitions 15

ISO 8879-1986(E)

NOTES

1 A single procedure could be associated with more than one

element type, and/or more than one procedure could operate on

the same element type at different points in the document.

2 A procedure is usually part of a procedure set.

4.233 procedure set: The procedures that are
used together for a given application process.

NOTE — In SGML applications, a procedure set usually

constitutes the application processing for a link process

definition.

4.234 processing instruction: Markup consisting
of system-specific data that controls how a
document is to be processed.

4.235 processing instruction entity: An entity
whose text is treated as the system data of a
processing instruction when referenced.

4.236 prolog: The portion of an SGML document
or SGML subdocument entity that contains
document type and link type declarations.

4.237 proper subelement: A subelement that is
permitted by its containing element's model.

4.238 ps (separator): A parameter separator,
occurring in markup declarations.

4.239 public identifier: A minimum literal that
identifies public text.

NOTES

1 The public identifiers in a document can optionally be

interpretable as formal public identifiers.

2 The system is responsible for converting public identifiers to

system identifiers.

4.240 public text: Text that is known beyond the
context of a single document or system
environment, and which can be accessed with a
public identifier.

NOTES

1 Examples are standard or registered document type

definitions, entity sets, element sets, data content notations, and

other markup constructs (see annex D).

2 Public text is not equivalent to published text; there is no

implication of unrestricted public access. In particular, the

owner of public text may choose to sell or license it to others, or

to restrict its access to a single organization.

3 Public text simplifies access to shared constructs, reduces the

amount of text that must be interchanged, and reduces the

chance of copying errors.

4.241 public text class: The portion of a text
identifier that identifies the SGML markup
construct to which the public text conforms.

4.242 public text description: The portion of a text
identifier that describes the public text.

4.243 public text designating sequence: The
portion of a text identifier, used when public text is
a character set, that contains an ISO 2022 escape
sequence that designates the set.

4.244 public text display version: An optional
portion of a text identifier that distinguishes among
public text that has a common public text
description by describing the devices supported or
coding scheme used. If omitted, the public text is
not device-dependent.

4.245 public text language: The portion of a text
identifier that specifies the natural language in
which the public text was written.

NOTE - It can be the language of the data, comments, and/or

defined names.

4.246 quantity: A numeric restriction on some
aspect of markup, such as the maximum length of
a name or the maximum nesting level of open
elements.

NOTE — Quantities are defined by the abstract syntax, but

specific values are assigned to them by the concrete syntax.

4.247 quantity set: A set of assignments of
numeric values to quantity names.

4.248 ranked element: An element whose generic
identifier is composed of a rank stem and a rank
suffix. When a ranked element begins, its rank
suffix becomes the current rank for its rank stem,
and for the rank stems in the ranked group {if any)
of which the rank stem is a member.

4.249 ranked group: A group of rank stems that
share the same current rank. When any ranked
element whose stem is in the group begins, its
rank suffix becomes the current rank for all rank
stems in the group.

4.250 rank stem: A name from which a generic
identifier can be derived by appending the current
rank.

4.251 rank suffix: A number that is appended to a
rank stem to form a generic identifier.

16 4 Definitions

ISO 8879-1986(E)

NOTE — The numbers are usually sequential, beginning with

1, so the resulting generic identifiers suggest the relative ranks

of their elements (for example, HI, H2, and H3 for levels of

heading elements, where "H” is the rank stem).

4.252 record: A division of an SGML entity,
bounded by a record start and a record end
character, normally corresponding to an input line
on a text entry device.

NOTES

1 It is called a “record” rather than a “line” to distinguish it

from the output lines created by a text formatter.

2 An SGML entity could consist of many records, a single

record, or text with no record boundary characters at all (which

can be thought of as being part of a record or without records,

depending on whether record boundary characters occur

elsewhere in the document).

4.253 record boundary (character): The record
start (RS) or record end (RE) character.

4.254 record end: A function character, assigned
by the concrete syntax, that represents the end of
a record.

4.255 record start: A function character, assigned
by the concrete syntax, that represents the start of
a record.

4.256 reference: Markup that is replaced by other
text, either an entity or a single character.

4.257 reference capacity set: The capacity set
defined in this International Standard.

4.258 reference concrete syntax: A concrete
syntax, defined in this International Standard, that
is used in all SGML declarations.

4.259 reference delimiter set: The delimiter set,
defined in this International Standard, that is used
in the reference concrete syntax.

4.260 reference quantity set: The quantity set
defined by this International Standard.

4.261 reference reserved name: A reserved name
defined by this International Standard.

4.262 registered owner identifier: An owner
identifier that was constructed in accordance with
ISO 9070. It is unique among registered owner
identifiers, and is distinguishable from ISO owner
identifiers and unregistered owner identifiers.

4.263 replaceable character data: Character data
in which a general entity reference or character
reference is recognized and replaced.

NOTE — Markup that would terminate replaceable character

data is not recognized in the replacement text of entities

referenced within it.

4.264 replaceable parameter data: Character data
in which a parameter entity reference or character
reference is recognized and replaced.

NOTE — Markup that would terminate replaceable parameter

data is not recognized in the replacement text of entities

referenced within it.

4.265 replacement character: The character that
replaces a character reference.

4.266 replacement text: The text of the entity that
replaces an entity reference.

4.267 reportable markup error: A failure of a
document to conform to this International Standard
when it is parsed with respect to the active
document and link types, other than:

a) an ambiguous content model;
b) an exclusion that could change a group's

required or optional status in a model;
c) exceeding a capacity limit;
d) an error in the SGML declaration;
e) the occurrence of a non-SGML character; or
f) an formal public identifier error.

4.268 required attribute: An attribute for which
there must always be an attribute specification for
the attribute value.

4.269 reserved name: A name defined by the
concrete syntax, rather than by an application,
such as a markup declaration name.

NOTE — Such names appear in this International Standard as

syntactic literals.

4.270 reserved name use parameter: A parameter
of the SGML declaration that specifies any
replacement in the declared concrete syntax for a
reference reserved name.

4.271 result document type (of a link): A document
type, a new instance of which is created as the
result of a link process.

4.272 result element type (of a link): An element
that is defined in the result document type
declaration.

4.273 s (separator): A separator, consisting of
separator characters and other non-printing
function characters, that occurs in markup and in
element content.

4.274 satisfied token: A content token whose
corresponding content has occurred.

4 Definitions 17

ISO 8879-1986(E)

4.275 SDATA entity: Specific character data
entity.

4.276 separator: An s, ds, ps, or ts.

4.277 separator characters: A character class that
consists of function characters that are allowed in
separators and that will be replaced by Space in
those contexts in which RE is replaced by Space.

4.278 SGML: Standard Generalized Markup
Language

4.279 SGML application: Rules that apply SGML
to a text processing application. An SGML
application includes a formal specification of the
markup constructs used in the application,
expressed in SGML It can also include a non-
SGML definition of semantics, application
conventions, and/or processing

NOTES

1 The formal specification of an SGML application normally

includes document type definitions, data content notations, and

entity sets, and possibly a concrete syntax or capacity set. If

processing is defined by the application, the formal specification

could also include link process definitions.

2 The formal specification of an SGML application constitutes

the common portions of the documents processed by the

application. These common portions are frequently made

available as public text.

3 The formal specification is usually accompanied by comments

and/or documentation that explains the semantics, application

conventions, and processing specifications of the application.

4 An SGML application exists independently of any

implementation. However, if processing is defined by the

application, the non-SGML definition could include application

procedures, implemented in a programming or text processing

language.

4.280 SGML character: A character that is
permitted in an SGML entity.

4.281 SGML declaration: A markup declaration
that specifies the character set, concrete syntax,
optional features, and capacity requirements of a
document's markup. It applies to all of the SGML
entities of a document.

4.282 SGML document: A document that is
represented as a sequence of characters,
organized physically into an entity structure and
logically into an element structure, essentially as
described in this International Standard. An SGML
document consists of data characters, which
represent its information content, and markup

characters, which represent the structure of the
data and other information useful for processing it.
In particular, the markup describes at least one
document type definition, and an instance of a
structure conforming to the definition.

4.283 SGML document entity: The SGML entity
that begins an SGML document. It contains, at a
minimum, an SGML declaration, a base document
type declaration, and the start and end (if not all) of
a base document element.

4.284 SGML entity: An entity whose characters
are interpreted as markup or data in accordance
with this international Standard.

NOTE — There are three types of SGML entity: SGML

document entity, SGML subdocument entity, and SGML text

entity.

4.285 SGML parser: A program (or portion of a
program or a combination of programs) that
recognizes markup in conforming SGML
documents.

NOTE — If an analogy were to be drawn to programming

language processors, an SGML parser would be said to perform

the functions of both a lexical analyzer and a parser with

respect to SGML documents.

4.286 SGML subdocument entity: An SGML entity
that conforms to the SGML declaration of the
SGML document entity, while conforming to its
own document type and link type declarations. It
contains, at a minimum, a base document type
declaration and the start and end of a base
document element.

4.287 SGML system: A system that includes an
SGML parser, an entity manager, and both or
either of:

a) an implementation of one or more SGML
applications; and/or

b) facilities for a user to implement SGML
applications, with access to the SGML
parser and entity manager.

4.288 SGML text entity: An SGML entity that
conforms to the SGML declaration of the SGML
document entity, and to the document type and link
type declarations to which the entity from which it
is referenced conforms.

4.289 shift function: In graphic repertoire code
extension, a control sequence or control character
that invokes a graphic character set.

NOTE — There are two kinds: single shift and locking shift.

4.290 short reference: Short reference string.

18 4 Definitions

ISO 8879-1986(E)

4.291 short reference delimiter role: A delimiter
role to which zero or more strings can be assigned
by the concrete syntax. When a short reference
string is recognized, it is replaced by the general
entity to whose name it is mapped in the current
map, or is treated as a separator or data if it is
mapped to nothing.

4.292 (short reference) map: A named set of
associations, declared by a short reference
mapping declaration, in which each short reference
delimiter is mapped to a general entity name or to
nothing.

4.293 short reference mapping declaration: A
markup declaration that defines a short reference
map.

4.294 short reference set: A set of short reference
mapping, short reference use, and entity
declarations that are used together.

NOTE- A short reference set can be public text.

4.295 short reference (string): A character string
assigned to the short reference delimiter role by
the concrete syntax.

4.296 short reference use declaration: A markup
declaration that associates a short reference map
with one or more element types, or identifies a
new current map for the current element.

4.297 shunned character (number): A character
number, identified by a concrete syntax, that
should be avoided in documents employing the
syntax because some systems might erroneously
treat it as a control character.

4.298 significant SGML character: A markup
character or minimum data character.

4.299 simple link (process definition): A link
process definition in which the result element
types and their attributes are all implied by the
application, and only one set of link attribute
values can be specified. The source document
type must be the base.

4.300 single shift: A shift function that applies to
the following character only.

4.301 source document type (of a link): A
document type, an existing instance of which is the
source of a link process.

4.302 source element type (of a link): An element
type that is defined in the source document type
declaration.

4.303 space: A function character, assigned by
the concrete syntax, that represents a space.

4.304 specific character data entity: An entity
whose text is treated as character data when
referenced. The text is dependent on a specific
system, device, or application process.

NOTE — A specific character data entity would normally be

redefined for different applications, systems, or output devices.

4.305 Standard Generalized Markup Language: A
language for document representation that
formalizes markup and frees it of system and
processing dependencies.

4.306 start-tag: Descriptive markup that identifies
the start of an element and specifies its generic
identifier and attributes.

4.307 status keyword: A marked section
declaration parameter that specifies whether the
marked section is to be ignored and, if not,
whether it is to be treated as character data,
replaceable character data, or normally.

4.308 string: Character string.

4.309 subelement: An element that occurs in the
content of another element (the “containing
element") in such a way that the subelement
begins when the containing element is the current
element.

4.310 syntax-reference character set: A character
set, designated by a concrete syntax and known to
all potential users of the syntax, that contains
every significant SGML character. It enables a
concrete syntax to be defined without regard to the
particular document or system character sets with
which it might be used.

4.311 system character set: The character set
used in an SGML system.

4.312 system declaration: A declaration, included
in the documentation for a conforming SGML
system, that specifies the features, capacity set,
concrete syntaxes, and character set that the
system supports, the data content notations that it
can interpret, and any validation services that it
can perform.

4.313 system identifier: System data that specifies
the file identifier, storage location, program
invocation, data stream position, or other system-
specific information that locates an external entity.

4.314 tag: Descriptive markup.

4 Definitions 19

ISO 8879-1986(E)

NOTE — There are two kinds: start-tag and end-tag.

4.315 target element: An element whose generic
identifier is specified in a data tag group

4.316 text: Characters.

NOTE — The characters could have their normal character set

meaning, or they could be interpreted in accordance with a data

content notation as the representation of graphics, images, etc.

4.317 text identifier: The portion of a public
identifier that identifies a public text so that it can
be distinguished from any other public text with the
same owner identifier.

NOTE - It consists of a public text class, an optional

unavailable text indicator, a public text description, a public text

language, and an optional public text display version.

4.318 text processing application: A related set of
processes performed on documents of related
types.

NOTE — Some examples are:

a) Publication of technical manuals for a software

developer: document types include installation,

operation, and maintenance manuals; processes

Include creation, revision, formatting, and page layout

for a variety of output devices.

b) Preparation of manuscripts by independent authors for

members of an association of publishers: document

types Include book, journal, and article; creation is the

only defined process, as each publisher has its own

methods of formatting and printing.

c) Office correspondence: document types include memos,

mail logs, and reports; processes include creation,

revision, simple formatting, storage and retrieval, memo

log update, and report generation.

4.319 token: The portion of a group, including a
complete nested group (but not a connector), that
is bounded by token separators (whether required
or optional).

4.320 total capacity: A limit on the sum of all
object capacities.

4.321 ts (separator): A token separator, occurring
in groups.

4.322 type definition: Document type definition.

4.323 unavailable public text: Public text that is
available only to a limited population, selected by
its owner.

4.324 unique identifier: A name that uniquely
identifies an element.

4.325 unregistered owner identifier: An owner
identifier that can be distinguished from registered
owner identifiers and ISO owner identifiers. As it
is not constructed according to a registration
standard, it could duplicate another unregistered
owner identifier.

4.326 upper-case letters: Character class
composed of the 26 capital letters from “A”
through “Z”.

4.327 upper-case name characters: Character
class consisting of the upper-case forms of the
corresponding lower-case name characters.

4.328 upper-case name start characters:
Character class consisting of the upper-case forms
of the corresponding lower-case name start
characters.

4.329 validating SGML parser: A conforming
SGML parser that can find and report a reportable
markup error if (and only if) one exists.

4.330 variant concrete syntax: A concrete syntax
other than the reference concrete syntax or core
concrete syntax.

4.331 variant (conforming) SGML document: A
conforming SGML document that uses a variant
concrete syntax.

4.332 virtual character set: In graphic repertoire
code extension, one of the character sets, known
as GO, G1, G2, or G3, that represents the mapping
of a real graphic character set, designated by an
escape sequence, to a document code set position
previously announced by an escape sequence.

5 Notation

NOTE — This clause describes the notation used in this

International Standard to define the Standard Generalized

Markup Language. This notation is not part of SGML itself

(although there are some similarities between them), and

therefore this clause should be considered as affecting only the

presentation of this International Standard, not the substance.

The SGML abstract syntax is specified by formal
syntax productions, each of which defines a
“syntactic variable”. A production consists of a
reference number (in square brackets), the name of
the syntactic variable being defined, an equals sign,
and an expression that constitutes the definition.

[number] syntactic variable = expression

The expression is composed of one or more
“syntactic tokens", parenthesized expressions, and
symbols that define the ordering and selection
among them.

20 5 Notation

ISO 8879-1986(E)

5.1 Syntactic Tokens

The following list shows the syntactic token types
using the typographic conventions employed for
them in this International Standard, together with
the source of their definitions:

syntactic variable. A syntactic token that is defined
by a syntax production.

“SYNTACTIC LITERAL”. A syntactic token
consisting of a reserved name that is to be entered
in markup exactly as it is shown in the syntax
production, except that corresponding lower-case
letters can be used if upper-case translation of
general names is specified by the concrete syntax.
Syntactic literals are defined whenever they occur in
a syntax production, and the definition is applicable
only in the context of that production.

delimiter role A syntactic token that represents a
delimiter string. Delimiter roles are defined in
figure 3, which also lists the strings assigned to
general delimiter roles by the reference concrete
syntax. Strings assigned to the shortref delimiter
role are shown in figure 4.

TERMINAL VARIABLE. A syntactic token that
represents a character class whose members are
not necessarily the same in all SGML documents.
Terminal variables whose members are assigned by
the concrete syntax are defined in figure 2. (The
NONSGML variable, whose members are assigned
by the document character set, is defined in 13.1.2.)

Terminal Constant. A syntactic token that
represents either an entity end signal, or a
character class whose members are the same in all
SGML documents. Terminal constants are defined
in figure 1.

5.2 Ordering and Selection Symbols

If there is more than one syntactic token in an
expression, the ordering and selection among them
is determined by symbols that connect them, as
follows:

, All must occur, in the order shown.
& All must occur, in any order,
j One and only one must occur.

Each selected syntactic token must occur once and
only once unless the contrary is indicated by a suffix
consisting of one of the following symbols:

? Optional (0 or 1 time).
+ Required and repeatable (1 or more times).
* Optional and repeatable (0 or more times).

The occurrence suffixes are applied first, then the
ordering connectors. Parentheses can be used as
in mathematics to change these priorities.

6 Entity Structure

6.1 SGML Document

An SGML document is physically organized in an
entity structure. The first entity is an SGML
document entity, it contains entity references that
indicate where the other entities belong with respect
to it.

[1] SGML document = SGML document entity,
(SGML subdocument entity |
SGML text entity \ non-SGML data entity)*

NOTES

1 This International Standard does not constrain the physical

organization of the document within the data stream, message

handling protocol, file system, etc., that contains it. In particular,

separate entities could occur in the same physical object, a single

entity could be divided between multiple objects, and the objects

could occur in any order.

2 This International Standard does not constrain the characters

that can occur in a data stream outside of the SGML entities.

Such characters would be interpreted according to applicable

standards and conventions.

3 The SGML Document Interchange Format (SDIF) standardized

in ISO 9069 allows an SGML document to be managed

conveniently as a single object, while still preserving the entity

structure.

6.2 SGML Entities

[2] SGML document entity = SGML declaration,
s*, prolog, s*, document instance set, Ee

[3] SGML subdocument entity = prolog, s*,
document instance set, Ee

[4] SGML text entity = SGML character*, Ee

The characters of an SGML entity are parsed in
accordance with this International Standard to
recognize the SGML declaration, prolog, and
document instance set, and their constituent parts.

Each SGML character is parsed in the order it
occurs, in the following manner:

a) The character is tested to see if it is part of a
delimiter string (see 9.6). If a general delimiter
string is recognized, the appropriate delimiter
action is performed. If a short reference is
recognized, it is treated as specified in 9.4.6.

6.2 SGML Entities 21

ISO 8879-1986(E)

b) If the character is not part of a delimiter string,
or it is part of an unmapped short reference, it
is tested to see if it is a separator; if so, it is
ignored.

c) If the character is not part of a delimiter or a
separator, it is treated as data.

If an SGML character is a function character, its
function is performed in addition to any other
treatment it may receive.

6.2.1 S Separator

[5] s = SPACE \ RE \ RS \ SEPCHAR

An SGML character is not considered part of an s if
it can be interpreted as some other markup. If it is
considered part of an s it is ignored.

6.2.2 Entity End

An Ee is an entity end signal.

NOTE — An Ee is not a character and is never treated as data.

It can occur only where expressly permitted.

A system can represent an Ee in any manner that
will allow it to be distinguished from SGML
characters.

NOTE — For example, an Ee could be represented by the bit

combination of a non-SGML character, if any have been assigned.

6.2.3 Implied SGML Declaration

While a document is processed exclusively by a
single system, the system can imply the SGML
declaration. The declaration must be present
explicitly, however, if the document is subsequently
sent to another system.

6.3 Non-SGML Data Entity

[6] non-SGML data entity = character*, Ee

NOTE - A non-SGML data entity is declared with a notation

parameter that identifies how the data is to be interpreted.

7 Element Structure

7.1 Prolog

[7] prolog = other prolog*,
base document type declaration,
{document type declaration \
other prolog)*, (link type declaration |
other prolog)*

[8] other prolog = comment declaration \
processing instruction \ s

[9] base document type declaration =
document type declaration

An SGML document or subdocument entity
conforms to the document type and link process
definitions that are specified by the document type
and link type declarations, respectively, in its
prolog. An SGML text entity conforms to the prolog
to which the entity from which it is referenced
conforms. Parsing of an SGML entity is done with
respect to those document and link types that are
considered to be active.

NOTE — The system normally identifies the active document

and link types to the SGML parser during initialization (see clause

F.2).

Document type declarations in addition to the base
are permitted only if “CONCUR YES” or “EXPLICIT
YES" is specified on the SGML declaration.

7.2 Document Element

[10] document instance set
= base document element

[11] base document element = document element

[12] document element = element

7.2.1 Limits

Instances of document type definitions other than
the base are permitted only to the limit specified on
the “CONCUR” parameter of the SGML declaration.

7.3 Element

[13] element = start-tag?, content, end-tag?

If an element has a declared content of “EMPTY”, or
an explicit content reference, the end-tag must be
omitted.

NOTE — This requirement has nothing to do with markup

minimization.

7.3.1 Omitted Tag Minimization

If “OMITTAG YES” is specified on the SGML
declaration, a tag can be omitted as provided in this
sub-sub-clause, as long as the omission would not
create an ambiguity.

NOTE - a document type definition may consider a technically

valid omission to be a markup error (see 11.2.2).

7.3.1.1 Start-tag Omission

The start-tag can be omitted if the element is a
contextually required element and any other

22 7 Element Structure

ISO 8879-1986(E)

elements that could occur are contextually optional
elements, except if:

a) the element type has a required attribute or
declared content, or

b) the content of the instance of the element is
empty.

An omitted start-tag is treated as having an empty
attribute specification list.

7.3.1.2 End-tag Omission

The end-tag can be omitted for a document element,
or for an element that is followed either

a) by the end-tag of another open element, or
b) by an element or SGML character that is not

allowed in its content.

NOTE — An element that is not allowed because it is an

exclusion has the same effect as one that is not allowed

because no token appears for it in the model group.

7.3.2 Data Tag Minimization

If “DATATAG YES” is specified on the SGML
declaration, the end-tag can be omitted for an
element that is the corresponding content of a data
tag group.

The data content of the (target) element and its
subelements is scanned for a string that conforms to
one of the data tag templates in the element's data
tag pattern. That string, plus any succeeding
characters that conform to the data tag padding
template, are considered the element's data tag.
The data tag is treated both as the end-tag of the
target element and as character data in its
containing element.

NOTE-a generic identifier that occurs as a target element in a

data tag group could also occur in other contexts as an element

token. In those contexts, it would not be scanned for a data tag. It

could also occur in other data tag groups, possibly with different

data tag patterns.

The data content of the target element is scanned a
character at a time. At each character, the longest
possible data tag template in the data tag pattern is
matched. If more than one target element is an
open element, then at each character the templates
of the most recently opened target element are
tested first. If there is no match, the templates of the
next most recently opened target element are
tested, and so on.

NOTE - A data tag will therefore terminate the most recently

opened target element whose data tag pattern it satisfies.

The matching of a data tag pattern to the content
occurs after recognition of markup and replacement
of references in the content, but before any RE or RS
characters are ignored.

NOTE — The data tag pattern can therefore contain named

character references to RE and RS.

A data tag cannot be recognized in any context in
which end-tags are not recognized; for example,
within a CDATA marked section.

In matching the data tag padding template, the
template characters can be omitted, used once, or
repeated indefinitely. The last (or only) use can stop
short of the full template.

7.3.3 Quantities

The number of open elements cannot exceed the
“TAGLVL” quantity.

The length of a data tag cannot exceed the
“DTAGLEN” quantity.

7.4 Start-tag

[14] start-tag = (stago,
document type specification,
generic identifier specification,
attribute specification list, s*, tagc) \
minimized start-tag

7.4.1 Minimization

[15] minimized start-tag = empty start-tag |
unclosed start-tag | net-enabling start-tag

A start-tag can be a minimized start-tag only if
“SHORTTAG YES” is specified on the SGML
declaration.

7.4.1.1 Empty Start-tag

[16] empty start-tag = stago,
document type specification, s*, tagc

A start-tag can be an empty start-tag only if the
element is in the base document instance, in which
case the tag's generic identifier specification is
assumed to be:

a) if “OMITTAG YES” is specified on the SGML
declaration, the generic identifier of the most
recently started open element in the base
document type; or

b) if “OMITTAG NO” is specified on the SGML
declaration, the generic identifier of the most
recently ended element in the base document
type; or

7.4 Start-tag 23

ISO 8879-1986(E)

c) if there was no such previous applicable
element, the generic identifier of the document
element.

An empty start-tag is treated as having an empty
attribute specification list.

7.4.1.2 Unclosed Start-tag

[17] unclosed start-tag = stago,
document type specification,
generic identifier specification,
attribute specification list, s*

A start-tag can be an unclosed start-tag only if it is
followed immediately by the character string
assigned to the stago or etago delimiter role,
regardless of whether the string begins a valid
delimiter-in-context sequence.

7.4.1.3 NET-enabling Start-tag

[18] net-enabling start-tag = stago,
document type specification,
generic identifier specification,
attribute specification list, s*, net

A start-tag can be a net-enabling start-tag only if its
element is in the base document instance.

7.4.2 Quantities

The length of a start-tag, before resolution of
references in the attribute specification list and
exclusive of the stago and tagc or net delimiters,
cannot exceed the “TAGLEN” quantity.

7.5 End-tag

[19] end-tag = (etago,
document type specification,
generic identifier specification, s*, tagc) |
minimized end-tag

An end-tag ends the most recently started open
element, within the instance of the document type
specified by the document type specification, whose
generic identifier is specified by the generic
identifier specification.

7.5.1 Minimization

[20] minimized end-tag = empty end-tag |
unclosed end-tag \ null end-tag

An end-tag can be a minimized end-tag only if
“SHORTTAG YES” is specified on the SGML
declaration.

7.5.1.1 Empty End-tag

[21] empty end-tag = etago, s*, tagc

If an end-tag is an empty end-tag, its generic
identifier is that of the most recently started open
element in the base document instance. If there
was no such element, the end-tag is an error.

7.5.1.2 Unclosed End-tag

[22] unclosed end-tag = etago,
document type specification,
generic identifier specification, s*

An end-tag can be an unclosed end-tag only if it is
followed immediately by the character string
assigned to the stago or etago delimiter role,
regardless of whether the string begins a valid
delimiter-in-context sequence.

7.5.1.3 Null End-tag

[23] null end-tag = net

The net is recognized as a null end tag only if the
start-tag of an open element in the base document
type was a net-enabling start-tag. It is assumed to
be the end tag of the most recently started such
element.

7.6 Content

[24] content = mixed content \ element content \
replaceable character data | character data

[25] mixed content = (data character | element |
other content)*

[26] element content = (element | other content |
s)*

[27] other content = comment declaration \
short reference use declaration |
link type use declaration |
processing instruction \ shortref \
character reference \
general entity reference |
marked section declaration j Ee

An element's declared content or content model
determines which of the four types of content it has,
or whether it is empty, except that the content must
be empty if the element has an explicit content
reference.

The content of an element declared to be character
data or replaceable character data is terminated
only by an etago delimiter-in-context (which need
not open a valid end-tag) or a valid net. Such
termination is an error if it would have been an error
had the content been mixed content.

24 7 Element Structure

ISO 8879.1986(E)

NOTE — Content characters could be classed as data content

for either of two reasons:

a) Declared character data.

The element's entire content was declared to be character

data or replaceable character data by the declared content

parameter of the element declaration.

b) Parsed character data.

The element was declared to have mixed content, and an

SGML character within it was parsed as data because it

was not recognized as markup.

7.6.1 Record Boundaries

If an RS in content is not interpreted as markup, it is
ignored.

Within content, an RE remaining after replacement
of all references and recognition of markup is
treated as data unless its presence can be
attributed solely to markup. That is:

a) The first RE in an element is ignored if no RS,
data, or proper subelement preceded it.

b) The last RE in an element is ignored if no data
or proper subelement follows it.

c) An RE that does not immediately follow an RS
or RE is ignored if no data or proper
subelement intervened.

In applying these rules to an element, subelement
content is ignored; that is, a proper or included
subelement is treated as an atom that ends in the
same record in which it begins.

NOTE — For example, in

record l<outer><sub>
record 2</sub>
</outer>record 3

the first RE In the outer element is at the end of record 2. It is

treated as data if “sub” is a proper subelement of “outer”, but is

ignored if “sub” is an included element, because no data or

proper subelement would have preceded it in the outer element.

In either case, the first RE in the subelement is at the end of

record 1; it is ignored because no data or proper subelement

preceded it in the subelement.

An RE is deemed to occur immediately prior to the
first data or proper subelement that follows it (that
is, after any intervening markup declaration,
processing instruction, or included subelement).

NOTES

1 A specific character data entity, non-SGML data entity, or

SGML subdocument entity, is treated as data, while a processing

instruction entity is not.

2 Although the handling of record boundaries is defined by

SGML, there is no requirement that SGML documents must be

organized in records.

3 No entity, including the SGML document entity and external

entities, is deemed to start with an RS or end with an RE unless it

really does.

7.7 Document Type Specification

[28] document type specification = name group?

Markup containing a document type specification is
processed only if:

a) a name in the name group is that of an active
document type; or

b) there is no name group (that is, the document
type specification is empty).

NOTE — An effect of this requirement is that markup with an

empty document type specification (that is, no name group) will

apply to all document instances (or the only one).

A name group can be specified only if “CONCUR
YES” or “EXPLICIT YES” is specified on the SGML
declaration.

7.7.1 General Entity References

A general entity must have been declared in the
document type declaration of each active document
type named in the document type specification or, if
the specification was empty or the entity was not so
declared, in the base document type declaration.

NOTE — An effect of this requirement is that a general entity

declared in the base document type (including the default entity)

can be referenced in an instance of any document type in which

no general entity with the same name was defined.

7.7.2 Parameter Entity References

A name group cannot be specified for a parameter
entity reference within a document type declaration
or link type declaration. Such an entity must have
been declared within the same document type
declaration or, in the case of the link type
declaration, within the source document type
declaration.

7.7 Document Type Specification 25

ISO 8879.1986(E)

7.8 Generic Identifier (Gl) Specification

[29] generic identifier specification =
generic identifier | rank stem

[30] generic identifier = name

A generic identifier is valid only if it was specified as
an element type in the document type definition and:

a) it was named in the content model of the
element declaration for the element in which it
occurred; or

b) it was named in an applicable inclusions
exception; or

c) it is the document type name and it occurred in
the start-tag or end-tag of the document
element.

7.8.1 Rank Feature

If “RANK YES” is specified on the SGML declaration,
the provisions of this sub-sub-clause apply.

7.8.1.1 Full Generic Identifier

If the full generic identifier is specified for a ranked
element, its rank suffix becomes the current rank for
its rank stem, and for the rank stems in any ranked
group of which the rank stem is a member.

7.8.1.2 Rank Stem

A generic identifier specification can be a rank stem
if it was declared via a ranked element or member of
a ranked group in an applicable element declaration.

Specifying a rank stem is equivalent to specifying
the generic identifier that is derived by appending
the current rank to it. It is an error to specify a rank
stem if no element previously occurred to establish
the current rank for that stem.

7.9 Attribute Specification List

[31] attribute specification list =
attribute specification*

[32] attribute specification = s*, {name, s*, vi,
s*)?, attribute value specification

The validity of the attribute specification list is
determined by the attribute definition list associated
with the element. If there is no associated attribute
definition list, the attribute specification list must be
empty.

Every attribute for which there is an attribute
definition, other than an impliable attribute, must be
specified (unless markup minimization is used, as
described in 7.9.1.1).

There can be only one attribute specification for
each attribute definition.

The leading s can only be omitted from an attribute
specification that follows a delimiter.

7.9.1 Minimization

7.9.1.1 Omitted Attribute Specification

If “SHORTTAG YES” or “OMITTAG YES” is specified
on the SGML declaration:

a) There need be an attribute specification only
for a required attribute, and for a current
attribute on the first occurrence of any element
in whose attribute definition list it appears.
Other attributes will be treated as though
specified with an attribute value equal to the
declared default value.

b) If there is an attribute value specification for a
current attribute, the specified attribute value
will become the default value. The new default
affects all elements associated with the
attribute definition list in which the attribute
was defined.

7.9.1.2 Omitted Attribute Name

If “SHORTTAG YES” is specified on the SGML
declaration, the name and vi can be omitted if the
attribute value specification is an undelimited name
token that is a member of a group specified in the
declared value for that attribute.

NOTE — A name token can occur in only one group in an

attribute definition list (see 11.3.3)

7.9.2 Quantities

The normalized length of the attribute specification
list is the sum of the normalized lengths of each
attribute name and attribute value specified, which
cannot exceed the “ATTSPLEN” quantity.

The normalized length of an attribute name is the
“NORMSEP” quantity plus the number of characters
in the name.

7.9.3 Attribute Value Specification

[33] attribute value specification =
attribute value \ attribute value literal

[34] attribute value literal = (lit,
replaceable character data*, lit) \ (lita,
replaceable character data*, lita)

An attribute value literal is interpreted as an
attribute value by replacing references within it,
ignoring Ee and RS, and replacing an RE or
SEPCHAR with a SPACE

26 7 Element Structure

ISO 8879-1986(E)

7.9.3.1 Minimization

If “SHORTTAG YES” is specified on the SGML
declaration, an attribute value specification can be
an attribute value (that is, not an attribute value
literal) provided that it contains nothing but name
characters.

7.9.4 Attribute Value

[35] attribute value = character data \
general entity name | id value |
id reference value | id reference list | name
| name list \ name token | name token list |
notation name | number j number list \
number token \ number token list

[36] id value = name

[37] id reference list = name list

[38] id reference value = name

[39] name list = name, (s +, name)*

[40] name token list = name token, (s +,
name token)*

[41] notation name = name

[42] number list = number, (s +, number)*

[43] number token list = number token, (s +,
number token)*

The declared value parameter of an attribute
definition determines which of the fourteen types of
attribute value must be specified.

7.9.4.1 Syntactic Requirements

An attribute value must conform to the declared
value.

If the declared value includes a group, the attribute
value must be a token in that group.

An empty attribute value literal can be specified orrly
for an attribute value whose type is character data.

7.9.4.2 Fixed Attribute

The specified attribute value for a fixed attribute
must be its default value.

7.9.4.3 General Entity Name

The value of a general entity name attribute must be
the name of an SGML subdocument entity or non-
SGML data entity. If the attribute was specified in a
start-tag, the entity definition must apply to each
document instance in which the tag occurs. If the

attribute is a link attribute, the definition must apply
to the source document type.

NOTE — The notation of a non-SGML data entity must apply to

the same document types as the entity.

7.9.4.4 Notation

The attribute value of a notation attribute must be a
notation name that was declared in the same
document type declaration as the element.

It is an error to specify a value for a notation
attribute if there is an explicit content reference.

NOTE — As the element's content will be empty, it is pointless to

specify a notation for it. Even if the content reference were to a

non-SGML data entity, the applicable notation would be specified

by the notation name parameter of the entity declaration.

7.9.4.5 Quantities

The normalized length of an attribute value, whether
specified directly or interpreted from an attribute
value literal, is the “NORMSEP” quantity plus:

a) for an id reference list, name list, name token
list, number list, or number token list (even if
there is only one token in the list), the sum of
the number of characters in each token in the
list, plus the “NORMSEP” quantity for each
token in the list; or

b) for all others, the number of characters in the
value, plus the “NORMSEP” quantity for each
reference to a “CDATA” or “SDATA” entity.

The normalized length of an attribute value cannot
exceed the “LITLEN” quantity.

In a single start tag, the total number of names in id
reference value and id reference list attribute values,
whether defaulted or specified, cannot exceed the
“GRPCNT” quantity.

8 Processing Instruction

[44] processing instruction = pio, system data,
pic

[45] system data = character data

Processing instructions are deprecated, as they
reduce portability of the document. If a processing
instruction must be used, it should be defined as an
entity, so that the system data will be confined to the
prolog, where a recipient of the document can more
easily locate and modify it.

8 Processing Instruction 27

ISO 8879-1986(E)

A processing instruction that returns data must be
defined as an “SDATA" entity and entered with an
entity reference. One that does not return data
should be defined as a “PI” entity.

No markup is recognized in system data other than
the delimiter that would terminate it.

NOTE — The characters allowed in system data and their

interpretation are defined by the system. If it is desired to allow

non-SGML characters or the pic delimiter character in system

data, an alternative way of entering them should be provided so

that the actual characters do not occur in the document.

8.1 Quantities

The length of a processing instruction, exclusive of
its delimiters, cannot exceed the “PILEN” quantity.

9 Common Constructs

9.1 Replaceable Character Data

[46] replaceable character data =
(data character | character reference \
general entity reference | Ee)*

Markup that would terminate replaceable character
data is not recognized in an entity that was
referenced from within the same replaceable
character data.

An Ee can occur in replaceable character data only if
the reference to the entity it terminates occurred in
the same replaceable character data.

9.2 Character Data

[47] character data = data character*

[48] data character = SGML character

[49] character = SGML character \ NONSGML

NOTE - A non-SGML character can be entered as a data

character within an SGML entity by using a character reference.

9.2.1 SGML Character

[50] SGML character = markup character \
DATACHAR

[51] markup character = name character |
function character \ DELMCHAR

[52] name character = name start character \
Digit | LCNMCHAR \ UCNMCHAR

[53] name start character = LC Letter | UC Letter
| LCNMSTRT | UCNMSTRT

9.2.2 Function Character

[54] function character = RE | RS \ SPACE \
SEPCHAR | MSOCHAR | MSICHAR \
MSSCHAR|FUNCHAR

9.3 Name

[55] name = name start character,
name character*

[56] number = Digit +

[57] name token = name character +

[58] number token = Digit, name character*

The upper-case form of each character in a name,
name token, number, or number token, as specified
by the “NAMECASE” parameter of the SGML
declaration, is substituted for the character actually
entered.

9.3.1 Quantities

The length of a name, name token, number, or
number token, cannot exceed the “NAMELEN”
quantity.

9.4 Entity References

The replacement text of an entity reference must
comply with the syntactic and semantic
requirements that govern the context of the
reference. For purposes of this rule, a reference to
an SGML subdocument entity or a non-SGML data
entity is treated like a reference to a data character.

NOTE — Such entities can also be accessed by a general entity

name attribute.

A reference to an undeclared entity is an error
unless there is an applicable default entity (see
9.4.4).

A reference to an entity that has already been
referenced and has not yet ended is invalid (i.e.,
entities cannot be referenced recursively).

9.4.1 Quantities

The number of open entities (except for the
unreferenced SGML document entity in which the
document begins) cannot exceed the “ENTLVL”
quantity.

9.4.2 Limits

The number of open SGML subdocument entities
cannot exceed the quantity specified on the
“SUBDOC” parameter of the SGML declaration.

28 9 Common Constructs

ISO 8879-1986(E)

Variable Characters Numbers Description
Digit 0-9 48 - 57 Digits
Ee (system signal; not a character) Entity end signal
LC Letter a - z 97-122 Lower-case letters
Special '() + .-•/: = ? 39 - 41 43 -47 58 61 63 Special minimum data characters
UC Letter A-Z 65-90 Upper-case letters

Figure 1 — Character Classes: Abstract Syntax

9.4.3 Obfuscatory Entity References 9.4.5 Reference End

Any use of entity references that obscures the
markup is deprecated.

NOTE — Most such abuses are prohibited by the syntax of

SGML The following principles should be observed (those that

say “must” are restatements of syntax rules, stated formally

elsewhere, that enforce the principles):

a) The opening delimiter of a tag, processing instruction,

declaration, literal, or other delimited text, must be in the

same entity as the closing delimiter. An entity must not

end in delimited text unless it began there, and an entity

that begins there must end there.

b) The content of an element or marked section that was

declared to be character data or replaceable character

data must (and other elements should) start and end in the

same entity.

c) An element's start-tag and end-tag (and a marked section's

marked section start and marked section end) should be in

the same entity, or they should be the replacement text of

entities whose references are in the same entity.

d) In a markup declaration, a reference must be replaced

either by zero or more consecutive complete parameters

(with any intervening ps separators), or, within a group, by

one or more consecutive complete tokens (with any

intervening ts separators and/or connectors).

9.4.4 Named Entity Reference

[59] general entity reference = ero,
document type specification, name,
reference end

[60] parameter entity reference = pero,
document type specification, name,
reference end

An entity name is required to be declared by an
entity declaration before it can be used in a named
entity reference, except that an undeclared name
can be used in a general entity reference to refer to
the default entity, if one was defined.

[61] reference end = (refc \ RE)7

NOTE — Ending a reference with an RE has the effect of

suppressing the record end.

The refc or RE can be omitted only if the reference is
not followed by a name character, or by a character
that could be interpreted as the omitted reference
end.

9.4.6 Short Reference

If a short reference is mapped to a general entity
name in the current map, it is treated as markup
and replaced by the named entity. If the short
reference is mapped to nothing, each character in
the delimiter string is treated as an s separator if it
can be recognized as such, and if not it is treated as
data.

9.4.6.1 Equivalent Reference String

A short reference can be removed from a document
by replacing it with an equivalent reference string
that contains a named entity reference. The entity
name must be that to which the short reference is
mapped in the current map.

If the short reference contains any quantity of RS or
RE characters, the equivalent reference string will
include a single RS or RE, or both, as shown in the
following list:

Short Reference
No RS or RE
RS, no RE
RE, no RS
Both RS and RE

Equivalent Reference String
ero, name, refc
RS, ero, name, refc
ero, name, RE
RS, ero, name, RE

NOTES

1 Equivalent reference strings are used when a document is

converted from a concrete syntax that supports short references

to one that does not.

9.4 Entity References 29

ISO 8879-1986(E)

Variable Characters Numbers Description
DATACHAR (implicit) (implicit) Dedicated data characters
DELMCHAR (implicit) (implicit) Delimiter characters
FUNCHAR (none) (none) Inert function characters
LCNMCHAR 45 46 Lower-case name characters
LCNMSTRT (none) (none) Lower-case name start characters
MSICHAR (none) (none) Markup-scan-in characters
MSOCHAR (none) (none) Markup-scan-out characters
MSSCHAR (none) (none) Markup-scan-suppress characters
RE 13 Record end character
RS 10 Record start character
SEPCHAR 9 Separator characters
SPACE 32 Space character
UCNMCHAR 45 46 Upper-case name characters
UCNMSTRT (none) (none) Upper-case name start characters

Figure 2 — Character Classes: Concrete Syntax

2 A single RS and/or RE is preserved in the equivalent reference

string to prevent records from becoming joined, and possibly

exceeding a system's maximum length restriction. They are not

recognized as data: the RS because it never is, and the RE

because it serves as the reference end.

9.5 Character Reference

[62] character reference = cro, (function name \
character number), reference end

[63] function name = “RE” | “RS" | “SPACE” |
name

[64] character number = number

A name specified as a function name must have
been specified as an added function in the concrete
syntax.

A character reference should be used when a
character could not otherwise be entered
conveniently in the text.

A replacement character is considered to be in the
same entity as its reference.

A replacement character is treated as though it
were entered directly except that the replacement
for a numeric character reference is always treated
as data.

NOTES

1 A system can determine its own internal representation for a

replacement character. Care should be taken to distinguish a

normal function character (entered directly or as a replacement

for a named character reference) from one that replaces a

numeric character reference.

2 When a document is translated to a different document

character set, the character number of each numeric character

reference must be changed to the corresponding character

number of the new set.

9.6 Delimiter Recognition

A delimiter string is recognized as satisfying a
delimiter role only within the particular recognition
mode (or modes) in which the role is meaningful
and, in some cases, only if a contextual constraint is
satisfied. The roles, their recognition modes, and
any contextual constraints on their recognition, are
listed in figure 3. Also shown are the strings
assigned to general delimiters in the reference
delimiter set, and the character numbers of those
strings in the translation-reference character set of
the reference concrete syntax. The strings assigned
as short reference delimiters in the reference
delimiter set are shown in figure 4.

9.6.1 Recognition Modes

The recognition modes are:

Mode Meaning
CON Recognized in content and in the marked

section of marked section declarations that
occur in content.

CXT Recognized as part of the contextual
sequence of a “CON” or “DS” mode
delimiter-in-context. (See below.)

30 9 Common Constructs

ISO 8879-1986(E)

Name String Number Mode
AND & 38 GRP
COM — 45 45 CXT MD
CRO &# 38 35 CON LIT
DSC] 93 DS MD
DSO [91 CXT MD
DTGC] 93 GRP
DTGO [91 GRP
ERO & 38 CON LIT
ETAGO </ 60 47 CON
GRPC) 41 GRP
GRPO (40 CXT GRP MD
LIT " 34 GRP LIT MD TAG
LITA r 39 GRP LIT MD TAG
MDC > 62 CXT MD
MDO <! 60 33 CON DS
MINUS - 45 MD
MSC]] 93 93 CON DS
NET / 47 CON TAG
OPT ? 63 GRP
OR 1 124 GRP
PERO % 37 DS GRP MD
PIC > 62 PI
PIO <? 60 63 CON DS
PLUS + 43 GRP MD
REFC ! 59 REF
REP * 42 GRP
RNI # 35 GRP MD
SEQ 44 GRP
SHORTREF CON
STAGO < 60 CON TAG
TAGC > 62 CXT TAG
VI — 61 TAG

Constraint Description of Role
And connector
Comment start or end

CREF Character reference open
Declaration subset close
Declaration subset open
Data tag group close
Data tag group open

NMS Entity reference open
Gl End-tag open

Group close
Group open
Literal start or end
Literal start or end (alternative)
Markup declaration close

DCL Markup declaration open
Minus; exclusion

MSE Marked section close
ELEM Null end-tag

Optional occurrence indicator
Or connector

NMS Parameter entity reference open
Processing instruction close
Processing instruction open
Required and repeatable; inclusion
Reference close
Optional and repeatable
Reserved name indicator
Sequence connector
Short reference (see figure 4)

Gl Start-tag open
Tag close
Value indicator

Figure 3 — Reference Delimiter Set: General

DS Recognized in a declaration subset and in
the marked section of marked section
declarations that occur in a declaration
subset.

GRP Recognized in a group.
LIT Recognized in a literal.
MD Recognized in a markup declaration (other

than in a group or declaration subset).
PI Recognized in a processing instruction.
REF Recognized in a general entity reference,

parameter entity reference, or character
reference.

TAG recognized in a start-tag or end-tag.

9.6.2 Contextual Constraints

The most common constraint is that the delimiter
string must start a delimiter-in-context in which it is
followed by one of the listed contextual sequences:

CREF name start character or Digit
DCL name start character, com, dso, or mdc
Gl name start character, or, if “SHORTTAG

YES” is specified on the SGML declaration,
tagc, or, if “CONCUR YES” is specified on
the SGML declaration, grpo

MSE mdc
NMS name start character, or, if “CONCUR YES”

is specified on the SGML declaration, grpo

Another contextual constraint is:

ELEM In “CON” mode, recognized only within an
element whose start-tag was a net-
enabling start-tag-, in “TAG” mode, no
constraints.

9.6 Delimiter Recognition 31

ISO 8879-1986(E)

9.6.3 Order of Recognition

Delimiter strings (including any required contextual
sequences) are recognized in the order they occur,
with no overlap.

NOTE — For example, if “abc” and “bed” are delimiter strings,

and the document contains “abede”, then “abc” will be

recognized and parsing will continue at “d”, so “bed” will not be

recognized.

This rule holds true even if the recognized delimiter
is semantically incorrect, or is a short reference that
is mapped to nothing.

NOTE — For example, in the reference delimiter set, the solidus

(/) will be recognized as part of an etago delimiter-in-context

rather than as the net, even if the end-tag Gl was not declared, or

is not the Gl of an open element.

9.6.4 Delimiters Starting with the Same
Character

If multiple delimiter strings start with the same
character, only the longest delimiter string or
delimiter-in-context among them will be recognized
at a given point in the document.

NOTE — For example, if "ab” and “abc” are delimiters and the

document contains “abed”, then “abc" will be recognized and

parsing will continue at “d”, so “ab” will not be recognized.

This rule holds true even if the longer delimiter is
semantically incorrect, or is a short reference that is
mapped to nothing.

NOTE - if, in the previous example, “ab” and “abc” were short

reference delimiters, short reference “abc” alone would be

recognized and short reference “ab” would not be, even if short

reference “abc” were mapped to nothing in the current map and

short reference “ab” were mapped to an entity.

9.6.5 Short References with Blank
Sequences

If there is a B sequence in the definition of a short
reference delimiter, it will cause recognition of a
blank sequence in the content. The minimum length
of the blank sequence is the length of the B
sequence.

NOTE — That is, one B means one or more blanks, two B's

means two or more blanks, etc.

A string that could be recognized as more than one
delimiter will be considered the string of the most
specific delimiter that it satisfies.

NOTE — For example, a tab character would be recognized as

“&#TAB;” in preference to “B”, and three spaces would be

recognized as “BBB” in preference to “BB”.

9.6.5.1 Quantities

The length of a blank sequence recognized as a
short reference cannot exceed the “BSEQLEN”
quantity. If an actual blank sequence is longer, only
the first “BSEQLEN” characters will be included in
the short reference string, and parsing will resume
with the following character.

9.6.6 Name Characters

If a name start character is assigned to a delimiter
role, it will be recognized as a delimiter (in
preference to recognition as a name start character)
if a name token has not already begun; if found
within a name token, it will be treated as a name
character.

If general upper-case substitution is specified by the
“NAMECASE” parameter of the SGML declaration,
then for purposes of delimiter recognition, a name
character assigned to a delimiter role is treated as
though it were its upper-case form.

9.7 Markup Suppression

An MSOCHAR suppresses recognition of markup
until an MSICHAR or entity end occurs. An
MSSCHAR does so for the next character in the
same entity (if any).

NOTE — An MSOCHAR occurring in character data or other

delimited text will therefore suppress recognition of the closing

delimiter. An MSSCHAR could do so if it preceded the delimiter.

If markup recognition has not been suppressed by
an MSOCHAR, an MSICHAR has no effect on
markup recognition, but is not an error.

If markup recognition has been suppressed by an
MSOCHAR, a subsequent MSOCHAR or MSSCHAR
has no effect on markup recognition, but is not an
error.

An MSOCHAR that follows an MSSCHAR has no
effect on markup recognition.

9.8 Capacity

The size and complexity of a document must not
exceed the number of capacity points allowed by the
document capacity set for the objects occurring in
the document.

The names of the total and individual capacities,
together with the values assigned to them in the
reference capacity set, are shown in figure 5. The
set's public identifier is:

ISO 8879-1986//CAPACITY Reference//EN

32 9 Common Constructs

ISO 8879.1986(E)

String Number Description
&#TAB; 9 Horizontal tab
&#RE; 13 Record end
&#RS; 10 Record start
&#RS;B 10 66 Leading blanks
&#RS;&#RE; 10 13 Empty record
&#RS;B&#RE; 10 66 13 Blank record
B&#RE; 66 13 Trailing blanks
&#SPACE; 32 Space
BB 66 66 Two or more blanks
" 34 Quotation mark
35 Number sign
% 37 Percent sign
' 39 Apostrophe

(40 Left parenthesis

) 41 Right parenthesis
* 42 Asterisk
+ 43 Plus sign

, 44 Comma
- 45 Hyphen
— 45 45 Two hyphens

58 Colon
; 59 Semicolon
= 61 Equals sign

@ 64 Commercial at

c 91 Left square bracket

] 93 Right square bracket
A 94 Circumflex accent

95 Low line

{ 123 Left curly bracket

1 124 Vertical line

} 125 Right curly bracket
126 Tilde

Figure 4 — Reference Delimiter Set: Short References

The points accumulated for each type of object
cannot exceed the value of that object's individual
capacity, and the total points for all objects cannot
exceed the “TOTALCAP” value.

The capacity values must be sufficient for the
greatest capacity requirement among the possible
sets of concurrent instances or chains of link
processes that could be processed at once.

Points are counted for the SGML document entity
and SGML text entities referenced from it, plus the
set of possible open subdocument entities and
SGML text entities referenced from them that would
require the largest capacity.

NOTE — As an example of capacity calculation, when a concrete

syntax with 32 short references and a "NAMELEN" of 8 is used, a

capacity of 30818 or more would be required to accommodate a

document with 100 entities averaging 70 characters (800 + 7000),

200 element types (1600) with 2000 tokens in content models

(16000) and 25 exceptions groups with a total of 50 names

(200 + 400), 50 attributes with default values averaging 20

characters (400 + 1000) and 100 attribute name tokens (800), 5

data content notations with identifiers averaging 50 characters

(40 + 250), 50 ID and 50 IDREF attributes (400 + 400), 5 short

reference maps (5x(8 + (8x32)) = 1320), and a single implicit link

type declaration with 4 link sets, each containing 5 source

element names (40+168).

9.8 Capacity 33

ISO 8879-1986(E)

10 Markup Declarations: General

NOTE — The declaration names and keywords in the syntax

productions are reference reserved names that can be redefined

for a variant concrete syntax with the reserved name use

parameter of the SGML declaration.

10.1 Parts of Declarations

10.1.1 Parameter Separator

[65] ps = s | Ee | parameter entity reference \
comment

A parameter entity reference can be used wherever
a parameter could occur. The entity must consist of
zero or more of the consecutive complete
parameters that follow the ps in which the reference
occurs, together with any intervening ps separators.
The entity must end within the same declaration.

An Ee can occur in a ps only if the reference to the
entity it terminates occurs in a ps in the same
declaration.

A required ps that is adjacent to a delimiter or
another ps can be omitted if no ambiguity would be
created thereby.

A ps must begin with an s if omitting it would create
an ambiguity.

10.1.2 Parameter Literal

[66] parameter literal = (lit,
replaceable parameter data, lit) \ (lita,
replaceable parameter data, lita)

[67] replaceable parameter data =
(data character \ character reference |
parameter entity reference | Ee)*

A parameter literal is interpreted as a parameter (or
token) by replacing references while the declaration
is being processed.

Except for parameter entity and character
references, no markup is recognized in a parameter
literal other than the terminal lit or lita, and those
are not recognized within the replacement text of a
reference.

NOTE — If the literal is in the entity text parameter of an entity

declaration, markup characters In its text could be recognized

when the entity is referenced.

An Ee can occur in replaceable parameter data only
if the reference to the entity it terminates occurred
in the same replaceable parameter data.

10.1.2.1 Quantities

The length of an interpreted parameter literal cannot
exceed the “LITLEN” quantity (unless some other
restriction is applied in the context in which it is
used).

10.1.3 Group

[68] name token group = grpo, ts*, name token,
(ts*, connector, ts*, name token)*, ts*,
grpc

[69] name group = grpo, ts*, name, (ts*,
connector, ts*, name)*, ts*, grpc

[70] ts = s | Ee | parameter entity reference

Only one type of connector should be used in a
single name group or name token group.

NOTE — No specific type of connector is mandated, so that a

group defined in an entity can be referenced as both a model

group (where the specific connector is meaningful) and a name

group (where it is not).

A token can occur only once in a single name group
or name token group.

A parameter entity reference can be used anywhere
in a group that a token could occur. The entity must
consist of one or more of the consecutive complete
tokens that follow the ts in which the reference
occurs in the same group (i.e., at the same nesting
level), together with any surrounding or intervening
ts separators and any intervening connectors. The
entity must end within the same group.

An Ee can occur in a ts only if:

— the ts follows a token (as opposed to a
connector, grpo, or dtgo), and

— the reference to the entity the Ee terminates
occurs in the same group (i.e., at the same
nesting level).

10.1.3.1 Quantities

The number of tokens in a group cannot exceed the
“GRPCNT” quantity.

10.1.4 Declaration Separator

[71] ds = s | Ee | parameter entity reference \
comment declaration \
processing instruction |
marked section declaration

A parameter entity reference in a ds must refer to an
entity that consists of zero or more complete
markup declarations and/or ds separators.

34 10 Markup Declarations: General

ISO 8879-1986(E)

An Ee can occur in a ds only if the reference to the
entity it terminates occurs in a ds in the same
parameter.

10.1.5 Associated Element Type

[72] associated element type = generic identifier
| name group

Each name in the name group must be a generic
identifier.

10.1.6 External Identifier

[73] external identifier = (“SYSTEM” |
(“PUBLIC”, ps + , public identifier)), (ps + ,
system identifier)?

[74] public identifier = minimum literal

[75] system identifier = (lit, system data, lit) |
(//fa, system data, lita)

The system identifier can be omitted if the system
can generate it from the public identifier and/or
other information available to it.

If “FORMAL YES” is specified on the SGML
declaration, a public identifier is interpreted as a
formal public identifier (see 10.2) and a formal public
identifier error can occur.

NOTE — It is still a minimum literal, and all requirements

pertaining to minimum literals apply.

10.1.6.1 Quantities

The length of a system identifier, exclusive of
delimiters, cannot exceed the “LITLEN” quantity.

10.1.6.2 Capacities

The number of characters of entity text counted
towards the ENTCHCAP capacity for an external
identifier is that of its system identifier component,
whether specified or generated (and exclusive of
delimiters).

10.1.7 Minimum Literal

[76] minimum literal = (lit, minimum data, lit) \
(lita, minimum data, lita)

[77] minimum data = minimum data character*

[78] minimum data character = RS \ RE \ SPACE
| LC Letter | UC Letter \ Digit \ Special

A minimum literal is interpreted by ignoring RS and
replacing a sequence of one or more RE and/or
SPACE characters with a single SPACE

10.1.7.1 Quantities

The length of an interpreted minimum literal,
exclusive of delimiters, cannot exceed the “LITLEN”
quantity of the reference quantity set, regardless of
the concrete syntax used.

10.2 Formal Public Identifier

[79] formal public identifier = owner identifier,
"II", text identifier

A formal public identifier cannot contain consecutive
solidi (“II") except where expressly permitted by
this sub-clause.

NOTE — As a public identifier is a minimum literal, RS

characters are removed, and sequences of one or more RE

and/or SPACE characters replaced by a single SPACE, prior to

interpretation as a formal public identifier. The minimum literal

length limitation applies to the interpreted text (see 10.1.7.1).

10.2.1 Owner Identifier

[80] owner identifier = ISO owner identifier |
registered owner identifier \
unregistered owner identifier

NOTE — In formulating an owner identifier, standards such as

ISO 3166 can be helpful.

10.2.1.1 ISO Owner Identifier

[81] ISO owner identifier = minimum data

The usual form of ISO owner identifier can be used
only when the public identifier identifies an ISO
publication or is assigned within one. It consists of
the ISO publication number, without the language
suffix.

NOTE — For example, the ISO owner identifier for public text

defined in this document is “ISO 8879-1986” in all translations. If

the public text is translated, that fact is indicated by specifying the

appropriate public text language in the text identifier.

A special form of ISO owner identifier can be used
only when the public text is an ISO registered
character set and the public text class is
“CHARSET”. It consists of the string "ISO
Registration Number ”, followed by the registration
number of the character set.

10.2.1.2 Registered Owner Identifier

[82] registered owner identifier = “ +//”,
minimum data

NOTE — A registered owner identifier could be a citation of a

national or industry standard, or some other unique identifier

assigned in accordance with ISO 9070.

10.2 Formal Public Identifier 35

ISO 8879-1986(E)

10.2.1.3 Unregistered Owner Identifier

[83] unregistered owner identifier =
minimum data

NOTE — An unregistered owner identifier could be a

(presumably unique) designation created by a trade organization

or other user community, or by an individual.

10.2.2 Text Identifier

[84] text identifier = public text class, SPACE,
unavailable text indicator?,
public text description,
(public text language \
public text designating sequence), (“//”,
public text display version)?

[85] unavailable text indicator =

If the unavailable text indicator is present, the text is
unavailable public text; otherwise, it is available
public text.

If the public text class is “CHARSET”, the text
identifier includes a public text designating
sequence; otherwise, it includes a public text
language.

A text identifier cannot be the same as another text
identifier in a formal public identifier that has the
same owner identifier.

NOTE - If two public texts with the same owner have the same

public text description, they must be of different classes, versions,

etc.

10.2.2.1 Public Text Class

[86] public text class = name

The name must be one that identifies an SGML
construct in the following list:

Name SGML Construct
CAPACITY capacity set
CHARSET character data
DOCUMENT SGML document
DTD document type declaration subset
ELEMENTS element set
ENTITIES entity set
LPD link type declaration subset
NONSGML non-SGML data entity
NOTATION character data
SHORTREF short reference set
SUBDOC SGML subdocument entity
SYNTAX concrete syntax
TEXT SGML text entity

The name must be entered with upper-case letters.

NOTE —- When appropriate, a system can use the public text

class to determine strategies for converting the public text from its

Interchange form into a referenceable entity that uses the system

character set and concrete syntax.

10.2.2.2 Public Text Description

[87] public text description = ISO text description
| minimum data

An ISO text description can be used only when the
public identifier identifies an ISO publication. It
consists of the last element of the publication title,
without the part number designation (if any).

NOTE — For example, the ISO text description for ISO 8632/4 is

“Clear text encoding”.

10.2.2.3 Public Text Language

[88] public text language = name

The public text language must be a two-character
name, entered with upper-case letters. The name
must be the language code from ISO 639 that
identifies the principal natural language used in the
public text.

NOTES

1 The natural language will affect the usability of some public text

classes more than others.

2 The portions of text most likely to be influenced by a natural

language include the data, defined names, and comments.

3 A system can use the public text language to facilitate

automatic language translation.

10.2.2.4 Public Text Designating Sequence

[89] public text designating sequence
= minimum literal

The minimum literal must be the external form of a
designating escape sequence prescribed by ISO
2022 for the character set referenced by the public
identifier. If the public text is an ISO registered
character set, the designating escape sequence
must be a registered escape sequence for that set.

NOTES

1 For example, the external form of the registered GO designating

sequence for the graphic characters of ISO 646 IRV (registered

character set 002) is:

ESC 2/8 4/0

36 10 Markup Declarations: General

ISO 8879.1986(E)

2 For registered character sets, the public text designating

sequence uniquely identifies the public text. For other character

sets, it uniquely identifies the public text with respect to a

particular owner identifier.

10.2.2.5 Public Text Display Version

[90] public text display version = minimum data

The public text display version must be omitted if the
public text class is “CAPACITY”, “CHARSET”,
“NOTATION”, or “SYNTAX”. For other classes, if
the public text is device-dependent, the text
identifier must include a public text display version
that describes the devices supported or coding
scheme used.

When a system accesses public text for which a
public text display version could have been specified
but was not, it must substitute the best available
device-dependent version for the display device in
use. If there is none, no substitution occurs.

NOTE — This mechanism is particularly useful with character

entity sets.

10.3 Comment Declaration

[91] comment declaration = mdo, (comment, (s |
comment)*)?, mdc

[92] comment = com, SGML character*, com

No markup is recognized in a comment, other than
the com delimiter that terminates it.

10.4 Marked Section Declaration

[93] marked section declaration =
marked section start,
status keyword specification, dso,
marked section, marked section end

[94] marked section start = mdo, dso

[95] marked section end = msc, mdc

[96] marked section = SGML character*

The marked section must comply with the syntactic
and semantic requirements that govern the context
in which the marked section declaration occurs.

A marked section end that occurs outside of a
marked section declaration is an error.

10.4.1 Quantities

The number of open marked section declarations
cannot exceed the “TAGLVL” quantity.

10.4.2 Status Keyword Specification

[97] status keyword specification = (ps + ,
qualified status keyword \ status keyword \
“TEMP”)*, ps*

[98] qualified status keyword =
status keyword qualifier, status keyword

[99] status keyword qualifier = name group

[100] status keyword = “CDATA” | “IGNORE” |
“INCLUDE” | “RCDATA”

where

IGNORE specifies that the section is treated as
though there were no characters in the
marked section, except that a nested
marked section declaration is
recognized so that the correct ending
can be found, but its status keyword
specification is ignored.

INCLUDE specifies that the marked section is not
to be ignored.

CDATA specifies that the marked section is
treated as character data.

RCDATA specifies that the marked section is
treated as replaceable character data.

TEMP identifies the section as a temporary
part of the document that might need to
be removed at a later time.

In the event of a conflicting specification, the status
keywords have the following priority (highest shown
first):

“IGNORE”
“CDATA”
“RCDATA”
“INCLUDE”

If none is specified, “INCLUDE” is assumed.

A qualified status keyword is ignored unless the
name group includes the name of an active
document type or active link type.

A qualified status keyword can be specified only if
“CONCUR YES” or “EXPLICIT YES” is specified on
the SGML declaration.

10.4 Marked Section Declaration 37

ISO 8879-1986(E)

If the effective status is “CDATA” or “RCDATA”, a
nested marked section declaration within the
marked section in the same entity is not allowed; the
marked section declaration is terminated by the first
marked section end.

If the effective status is “IGNORE”, an Ee is not
allowed in the marked section.

NOTE — The scan of an “IGNORE”, “CDATA”, or “RCDATA”

marked section ignores virtually all markup but marked section

ends. As a result, processing instructions, attribute values,

literals, character data elements, and comments are not
recognized to be such, so their characters are also scanned. This
could cause erroneous results if the characters look like marked
sections. In most cases, problems can be avoided by entering
such characters with references, instead of directly.

10.5 Entity Declaration

[101] entity declaration — mdo, “ENTITY”, ps +,
entity name, ps +, entity text, ps*, mdc

10.5.1 Entity Name

[102] entity name = general entity name |
parameter entity name

[103] general entity name = name | (rni,
“DEFAULT”)

[104] parameter entity name = pero, ps +, name

where

DEFAULT means the entity is the default entity.

An attempt to redefine an entity is ignored, but is not
an error.

NOTE — This requirement allows an entity declaration in a
document type declaration subset to take priority over a later
declaration of the same entity in a public document type definition.

The ps in a parameter entity name is required, even
though it follows a delimiter.

10.5.1.1 Quantities

A name in a parameter entity name must be at least
one character shorter than the “NAMELEN”
quantity.

10.5.1.2 Capacities

Points are counted towards the “ENTCAP” capacity
for the default entity, and for each unique entity
name that is defaulted in one or more references.

Points are counted towards the “ENTCHCAP”
capacity for the default entity. They are counted for

defaulted entities only if a system identifier is
generated.

10.5.2 Entity Text

[105] entity text = parameter literal | data text \
bracketed text \
external entity specification

If a parameter literal alone is specified as the entity
text, the interpreted parameter literal is the
replacement text of the entity.

An Ee is deemed to be present at the end of the
replacement text; it is not entered explicitly.

10.5.3 Data Text

Data text is treated as character data when
referenced, regardless of the context in which the
entity reference occurs. It is specified as a
parameter literal, whose characters, after resolution
of references in the usual manner, will comprise the
entity text.

[106] data text = (“CDATA” | “SDATA” | “PI”),
ps +, parameter literal

where

CDATA means the interpreted parameter
literal is the replacement text of a
character data entity.

SDATA means the interpreted parameter
literal is the replacement text of a
specific character data entity.

PI means the interpreted parameter
literal is the replacement text of a
processing instruction data entity.

“CDATA” or “SDATA” can be specified only if the
entity name is a general entity name.

A processing instruction that returns data must be
defined as an “SDATA” entity.

NOTES

1 A “CDATA" or “SDATA” entity must be referenced in a
context In which character data can occur, and a “Pi” entity in a
context In which a processing instruction could occur.

2 “SDATA” is normally specified if the entity would be redefined
for different applications, systems, or output devices; for example,
if the data contained processing instructions, or characters not
present in the translation-reference character set.

38 10 Markup Declarations: General

ISO 8879-1986(E)

10.5.4 Bracketed Text

[107] bracketed text = (“STARTTAG” | “ENDTAG"
| "MS” | “MD"), ps +, parameter literal

where the keywords mean that the entity consists of
the interpreted parameter literal bracketed with
delimiters, as follows:

STARTTAG means preceded by stago and
followed by tagc.

ENDTAG means preceded by etago and
followed by tagc.

MS means preceded by a marked
section start and followed by a
marked section end.

MD means preceded by mdo and
followed by mdc.

NOTE — Bracketed text is simply text with delimiter characters;

there is no requirement that the entities form valid start-tags or

other constructs. As usual, the validity of the entity is determined

in context whenever the entity is referenced.

10.5.4.1 Quantities

The length of an interpreted parameter literal in
bracketed text cannot exceed the “LITLEN” quantity,
less the length of the bracketing delimiters.

10.5.5 External Entity Specification

[108] external entity specification
= external identifier, (ps + , entity type)?

[109] entity type = “SUBDOC” | (“NDATA”, ps + ,
notation name)

where

SUBDOC means the entity is an SGML
subdocument entity.

NDATA means the entity is a non-SGML data
entity.

The entity type can be specified only if the entity
name is a general entity name.

If the entity type is omitted, the entity is an SGML
text entity.

The notation name must be declared in the same
document type definition as the entity.

NOTE - it need not have been defined prior to this declaration,

but must be defined prior to a reference to the entity.

A non-SGML data entity can reference (in its own
notation) other non-SGML data entities and SGML sub¬
document entities. Such entities should be declared in
the same document type definition as it is.

“SUBDOC” can be specified only if “SUBDOC YES”
is specified on the SGML declaration.

11 Markup Declarations: Document Type
Definition

11.1 Document Type Declaration

[110] document type declaration = mdo,
"DOCTYPE”, ps +, document type name,
(ps +, external identifier)?, (ps +, dso,
document type declaration subset, dsc)?,
ps*, mdc

[111] document type name = generic identifier

[112] document type declaration subset =
(entity set \ element set \
short reference set)*

[113] entity set = (entity declaration \ ds)*

[114] element set = (element declaration |
attribute definition list declaration \
notation declaration \ ds)*

[115] short reference set = (entity declaration |
short reference mapping declaration |
short reference use declaration | ds)*

The document type name must be a generic
identifier that does not occur as a document type
name or link type name in the same prolog.

The external identifer points to an entity that is
referenced at the end of the declaration subset and
is considered to be part (or all) of it. The effective
document type definition is the combination of the
declarations entered in the subset and the external
ones.

NOTE — A parameter entity declaration In the subset will have

priority over another declaration for that entity in the external

entity, as the external entity is parsed later.

A document type declaration must contain an
element declaration for the document type name.

A short reference set is permitted only in the base
document type declaration.

11.1 Document Type Declaration 39

ISO 8879-1986(E)

11.2 Element Declaration

[116] element declaration = mdo, “ELEMENT”,
ps +, element type, (ps +,
omitted tag minimization)?, ps +,
(declared content | content model), ps*,
mdc

The order in which elements and characters occur
within an element in the document instance must
comply with the element type definition specified in
the element declaration.

The omitted tag minimization parameter and its
preceding ps can be omitted only if “OMITTAG NO”
is specified on the SGML declaration.

11.2.1 Element Type

[117] element type = generic identifier \
name group \ ranked element |
ranked group

Within a document type definition, a generic
identifier can be specified only once in an element
type parameter, whether directly or indirectly.

If the element type is a group, the group members
are defined in the order their names occur, and the
definition applies to each of them.

If the element type is a name group, each name is a
generic identifier.

11.2.1.1 Ranked Element

[118] ranked element = rank stem, ps +,
rank suffix

[119] ranked group = grpo, ts*, rank stem, (ts*,
connector, ts*, rank stem)*, ts*, grpc, ps + ,
rank suffix

[120] rank stem = name

[121] rank suffix = number

The generic identifier specified by a ranked element
or member of a ranked group is the rank stem with
the rank suffix appended.

11.2.1.2 Quantities

The length of a generic identifier cannot exceed the
“NAMELEN” quantity.

11.2.2 Omitted Tag Minimization

[122] omitted tag minimization =
start-tag minimization, ps +,
end-tag minimization

[123] start-tag minimization = “O” | minus

[124] end-tag minimization = “O” | minus

where

O means that omission of the tag under the
conditions specified in 7.3.1 is not a
markup error.

minus means that omission of the tag under the
conditions specified in 7.3.1 is a markup
error.

minus should be specified for start-tag minimization
if omission is prohibited by 7.3.1.

“O” should be specified for end-tag minimization if
the element has a declared value of “EMPTY”.

NOTE — Specifying “o” serves as a reminder that empty

elements do not have end-tags (although this has nothing to do

with markup minimization).

11.2.3 Declared Content

[125] declared content = “CDATA” | “RCDATA” |
“EMPTY”

where

RCDATA means that the content is replaceable
character data.

CDATA means that the content is character
data.

EMPTY means the content is empty.

11.2.4 Content Model

[126] content model = {model group | “ANY”),
(ps +, exceptions)?

[127] model group = grpo, ts*, content token, (ts*,
connector, ts*, content token)*, ts*, grpc,
occurrence indicator?

[128] content token = primitive content token |
model group

[129] primitive content token = (rni, “PCDATA”) |
element token \ data tag group

[130] element token = generic identifier,
occurrence indicator?

where

ANY means the content is mixed content in
which parsed character data and any
elements defined in the same document
type definition are allowed.

40 11 Markup Declarations: Document Type Definition

ISO 8879-1986(E)

PCDATA means parsed character data is allowed.

NOTE — The rni distinguishes this keyword from

an element token of “PCDATA”.

If “#PCDATA” or a data tag group is present in a
model group, the element's content is mixed
content; if not, it is element content. In either case,
the elements and data characters of the content
must conform to the content model by satisfying
model group tokens and exceptions in the following
order of priority:

a) a repetition of the most recent satisfied token,
if it has a rep or plus occurrence indicator; or

b) some other token in a model group, possibly as
modified by exclusion exceptions(see 11.2.5);
or

c) a token in an inclusion exceptions group (see
11.2.5.1).

NOTE — For example, in an instance of the following element

<!element e (a+ | b)+>

successive “a” elements will satisfy repetitions of the element

token, rather than repetitions of the model group.

All data characters occurring between successive
tags are considered to satisfy a single “//PCDATA”
token, even if some were declared to be character
data by a marked section declaration.

11.2.4.1 Connector

[131] connector = and \ or \ seq

If there is more than one content token in a model
group, the ordering and selection among their
corresponding content is determined by the
connector, as follows:

seq All must occur, in the order entered.
and All must occur, in any order.
or One and only one must occur.

Only one kind of connector can occur in a single
model group (but a model group nested within it
could have a different connector).

11.2.4.2 Occurrence Indicator

[132] occurrence indicator = opt | plus \ rep

The corresponding content of each selected content
token must occur once and only once unless the
contrary is indicated by the token's occurrence
indicator, as follows:

opt Optional (0 or 1 time).
plus Required and repeatable (1 or more times).
rep Optional and repeatable (0 or more times).

The “#PCDATA" content token is regarded as
having an occurrence indicator of rep.

An inherently optional token is treated as having an
opt occurrence indicator if none is specified, or as
having a rep occurrence indicator if plus is
specified.

11.2.4.3 Ambiguous Content Model

A content model cannot be ambiguous; that is, an
element or character string that occurs in the
document instance must be able to satisfy only one
primitive content token without look-ahead.

NOTE — For example, the content model in

<!element e ((a, b?), b)>

is ambiguous because after an “a” element occurs, a “b”

element could satisfy either of the remaining tokens. The

ambiguity can be avoided by using intermediate elements, as in:

<!element e (f, b)>
<!element f (a, b?)>

Here the token satisfied by “b” is determined unambiguously by

whether the “f" element ends before the “b” occurs. (The

theoretical basis of content models is discussed in annex H.)

11.2.4.4 Data Tag Group

[133] data tag group = dtgo, ts*, generic identifier,
ts*, seq, ts*, data tag pattern, ts*, dtgc

[134] data tag pattern = (data tag template group \
data tag template), (ts*, seq, ts*,
data tag padding template)?

[135] data tag template group = grpo,ts*,
data tag template, (ts*, or, ts*,
data tag template)*, ts*, grpc

[136] data tag template = parameter literal

[137] data tag padding template =
parameter literal

A data tag group is interpreted as a seq group with
two tokens: an element Gl followed by “//PCDATA”.

NOTE — For example, with the reference delimiter set, the

model group

([hours, (" | " "], minutes)

is treated as though it were

11.2 Element Declaration 41

ISO 8879-1986(E)

((hours, //PCDATA), minutes)

A data tag group can only be present in the base
document type declaration.

A parameter literal in a data tag pattern is
interpreted in the normal manner, except that a
numeric character reference to a non-SGML
character or function character is prohibited.

11.2.4.5 Quantities

The content model nesting level cannot exceed the
“GRPLVL” quantity.

The grand total of the tokens at all levels of a model
group cannot exceed the “GRPGTCNT” quantity.

The length of an interpreted parameter literal in a
data tag pattern cannot exceed the “DTEMPLEN”
quantity.

11.2.5 Exceptions

[138] exceptions = (exclusions, (ps +,
inclusions)?) | inclusions

The exceptions apply anywhere in an instance of the
element, including subelements whose content is
mixed content or element content.

At any point in a document instance, if an element is
both an applicable inclusion and an exclusion, it is
treated as an exclusion.

11.2.5.1 Inclusions

[139] inclusions = plus, name group

Inclusions modify the effect of model groups to
which they apply in the manner shown in the
following example: given that “Q” is a generic
identifier or group in the model group, “x” is its
occurrence indicator (or empty if there is no
occurrence indicator), and “R1” through “Rn” are
applicable inclusions, then a token

Qx

is treated as though it were

(R1|R2|...|Rn)*,(Q,(Rl|R2|...|Rn)*)x

An element that can satisfy an element token in the
content model is considered to do so, even if the
element is also an inclusion.

NOTES

1 Inclusions should not be used for contextual subelements.

They should be used only for elements that are not logically part

42

of the content at the point where they occur in the document, such

as index entries or floating figures.

2 An RE that follows an inclusion will normally be ignored, while

one that follows a proper subelement will be treated as data (see

7.6.1).

11.2.5.2 Exclusions

[140] exclusions = minus, name group

Exclusions modify the effect of model groups to
which they apply by precluding options that would
otherwise have been available (just as though the
user had chosen to leave optional elements out of
the document).

It is an error if an exclusion attempts to modify the
effect of a model group in any other way. In
particular, it is an error if:

a) an exclusion applies to tokens other than those
in inclusions, those having an opt or rep
occurrence indicator, or those that are
members of or groups; or

b) an exclusion attempts to change a token's
required or optional status.

NOTE — For example, it is prohibited to exclude all

members of a required model group, as the group would

then no longer be required.

11.3 Attribute Definition List Declaration

[141] attribute definition list declaration = mdo,
“ATTLIST”, ps +, associated element type,
ps +, attribute definition list, ps*, mdc

[142] attribute definition list = attribute definition,
(ps +, attribute definition)*

[143] attribute definition = attribute name, ps +,
declared value, ps +, default value

An associated element type cannot be associated
with another attribute definition list in the same
declaration subset in which this list occurs.

11.3.1 Quantities

The total number of attribute names and name
tokens in the attribute definition list cannot exceed
the "ATTCNT” quantity.

11.3.2 Attribute Name

[144] attribute name = name

An attribute name can be specified only once in the
same attribute definition list.

11 Markup Declarations: Document Type Definition

ISO 8879-1986(E)

11.3.3 Declared Value where

[145] declared value = “CDATA” | "ENTITY” |
“ID” | “IDREF” | “IDREFS” | “NAME” |
“NAMES" | “NMTOKEN" | “NMTOKENS” |
“NUMBER” | “NUMBERS” | “NUTOKEN” |
“NUTOKENS” | notation |
name token group

[146] notation = “NOTATION", ps +, name group

FIXED means the attribute is a fixed
attribute.

REQUIRED means the attribute is a required
attribute.

CURRENT means the attribute is a current
attribute.

where CONREF means the attribute is a content
reference attribute.

CDATA means the attribute value
character data.

is

ENTITY means the attribute value
general entity name.

is a

ID means the attribute value is
value.

an id

IDREF means the attribute value is
reference value.

an id

IDREFS means the attribute value is
reference list.

an id

NAME means the attribute value
name.

is a

NAMES means the attribute value
name list.

is a

NMTOKEN means the attribute value
name token.

is a

NMTOKENS means the attribute value
name token list.

is a

NOTATION means the attribute value is a
notation name that identifies the
data content notation of the
element's content. The name
group specifies the
notation names.

permissible

NUMBER means the attribute
number.

value is a

NUMBERS means the attribute
number list.

value is a

NUTOKEN means the attribute
number token.

value is a

NUTOKENS means the attribute
number token list.

value is a

IMPLIED means the attribute is an impliable
attribute.

NOTE — Specifying an empty literal is not

equivalent to specifying “IMPLIED”.

If an attribute value is specified in this parameter, it
must conform to the syntactic requirements
specified in 7.9.4.1 .

NOTE — Further testing of general entity name and notation

values is performed when the default value is used in an attribute

specification.

If the declared value is “ID”, the default value must
be “IMPLIED” or “REQUIRED”.

“CONREF” cannot be declared for an element
whose declared content is “EMPTY”.

11.3.4.1 Quantities

“CONREF”, “REQUIRED”, and “IMPLIED” have
normalized lengths of zero.

11.3.4.2 Capacities

In calculating “ATTCHCAP" requirements, the
default value of a current attribute is given the
length of the longest value specified for the attribute
in the document.

“ID” and “NOTATION” can each be declared only
once in the attribute definition list.

A token cannot occur more than once in an attribute
definition list, even in different groups.

“NOTATION” cannot be declared for an element
whose declared content is “EMPTY”.

11.3.4 Default Value

[147] default value ” ((rn/, “FIXED”, ps +)?,
attribute value specification) j (mi,
(“REQUIRED” | “CURRENT” | “CONREF” |
“IMPLIED”))

11.4 Notation Declaration

[148] notation declaration = mdo, “NOTATION”,
ps +, notation name, ps +,
notation identifier, ps*, mdc

[149] notation identifier = external identifier

NOTE — The notation identifier should contain sufficient

information to allow the notation interpreter to be invoked with the

proper parameters.

The notation name cannot be specified on another
notation declaration in the same document type
definition.

11.4 Notation Declaration 43

ISO 8879-1986(E)

If a notation identifier includes a public identifier and
“FORMAL YES” is specified on the SGML
declaration, the public text class must be
“NOTATION”.

11.5 Short Reference Mapping Declaration

[150] short reference mapping declaration = mdo,
“SHORTREF”, ps +, map name, (ps +,
parameter literal, ps +, name) +, ps*, mdc

[151] map name = name

The map name cannot be specified on another short
reference mapping declaration in the same
document type definition.

The interpreted parameter literal is a short reference
delimiter that is mapped to the name of a general
entity that is defined in the same document type
definition.

NOTE — A general entity is required because the short

reference will be replaced by a named entity reference if the

document is sent to a system that does not support short

references, and parameter entity references are not permitted in

content.

A short reference delimiter can be mapped only
once in a short reference mapping declaration.

If a short reference delimiter is not specified it is
considered to be mapped to nothing.

11.6 Short Reference Use Declaration

[152] short reference use declaration = mdo,
“USEMAP", ps +, map specification, (ps +,
associated element type)?, ps*, mdc

[153] map specification = map name \ (rni,
“EMPTY”)

where

EMPTY means the map is the empty map.

11.6.1 Use in Document Type Declaration

If the declaration occurs in a document type
declaration, the associated element type must be
specified. The named map will become the current
map whenever an element of an associated type
becomes the current element.

The map name must be defined on a short reference
mapping declaration in the same document type
declaration.

NOTE - it need not have been defined prior to this declaration,

but must be defined prior to becoming the current map.

44

Specifying an associated element type that is
already associated with a map is not an error, but is
ignored.

11.6.2 Use in Document Instance

If the declaration occurs in a document instance, an
associated element type cannot be specified. The
map becomes the current map for this instance of
the current element.

The map name must have been defined on a short
reference mapping declaration in the document type
definition to which the instance conforms.

11.6.3 Current Map

A map is the current map as long as its associated
element is the current element. It can become
superceded for an instance of the element: either
temporarily by a subelement becoming the current
element, or permanently by a short reference use
declaration occurring in an instance of the element.

If an element type has no associated short reference
map, the current map for an instance of the element
is the map that is current when the instance begins.
If the element is a document element, the current
map will be the empty map.

12 Markup Declarations: Link Process
Definition

12.1 Link Type Declaration

[154] link type declaration = mdo, “LINKTYPE”,
ps +, link type name,
(simple link specification |
implicit link specification \
explicit link specification), (ps +,
external identifier)?, (ps + , dso,
link type declaration subset, dsc)?, ps*,
mdc

[155] link type name = name

The link type name must be different from any other
link type name or document type name in the same
prolog.

The external identifer points to an entity that is
referenced at the end of the declaration subset and
is considered to be part (or all) of it. The effective
link process definition is the combination of the
declarations entered in the subset and the external
ones.

NOTE — A parameter entity declaration in the subset will have

priority over another declaration for that entity in the external

entity, as the external entity is parsed later.

12 Markup Declarations: Link Process Definition

ISO 8879-1986(E)

12.1.1 Simple Link Specification

[156] simple link specification = rn/, “SIMPLE",
mi, “IMPLIED"

where

SIMPLE means the link is a simple link.

IMPLIED means the result document type name
is implied by the application.

If a simple link is specified, “SIMPLE YES" must be
specified on the SGML declaration link type features
parameter.

The source document type is the base document
type.

12.1.2 Implicit Link Specification

[157] implicit link specification =
source document type name, rni,
“IMPLIED”

where

IMPLIED means the result document type name
is implied by the application.

If an implicit link is specified, “IMPLICIT YES” must
be specified on the SGML declaration link type
features parameter.

The source document type name must be the base
document type name.

12.1.3 Explicit Link Specification

[158] explicit link specification =
source document type name,
result document type name

[159] source document type name
= document type name

[160] result document type name
= document type name

If an explicit link is specified, “EXPLICIT YES” must
be specified on the SGML declaration link type
features parameter.

The source document type name must be the base
document type, or another document type that is a
result document type in a chain of processes.

Each document type name must previously have
been specified on a document type declaration in
the same prolog.

12.1.3.1 Limits

The number of link processes in the longest chain
cannot exceed the quantity specified for “EXPLICIT"
on the link type features parameter of the SGML
declaration.

12.1.4 Link Type Declaration Subset

[161] link type declaration subset =
link attribute set?, (link set declaration |
link set use declaration \ entity set)*

[162] link attribute set =
(attribute definition list declaration |
entity set)*

12.1.4.1 Parameter Entities

Entity declarations in the declaration subset must
define parameter entities. When this link type is
active, the entity declarations are treated as if they
occurred at the end of the source document type
declaration subset.

A link type declaration can contain parameter entity
references to entities defined in the source
document type declaration, as well as in its own
declaration subset.

12.1.4.2 Link Attributes

An associated element type of an attribute definition
list must be a source element type.

The declared value of a link attribute cannot be “ID”,
“IDREF", “IDREFS", or “NOTATION”.

“CONREF” cannot be specified for a link attribute.

12.1.4.3 Simple Link

If the declaration defines a simple link, the
declaration subset must consist solely of a link
attribute set that contains no more than one
attribute definition list declaration. The list must be
associated with the base document element type,
and can define only fixed attributes.

12.2 Link Set Declaration

[163] link set declaration = mdo, “LINK”, ps + ,
link set name, (ps + ,
source element specification, ps +,
result element specification) +, ps*, mdc

[164] link set name = name

The link set name cannot be specified on another
link set declaration in the same link type definition.

12.2 Link Set Declaration 45

ISO 8879-1986(E)

A source element can be linked to a given result
element, or to “^IMPLIED”, only once in a link set.

NOTE — That is, a given source/result pairing must be unique in

a link set.

12.2.1 Source Element Specification

[165] source element specification =
associated element type,
link attribute specification?

[166] link attribute specification = ps + ,dso,
attribute specification list, ps*, dsc

An associated element type in a source element
specification must be defined in the source
document type declaration.

The validity of a link attribute specification list is
determined by the attribute definition list associated
with the source element type in the link type
declaration subset. All element types associated
with an attribute specification must be associated
with the same definition.

The link attribute specification must be omitted if its
attribute specification list is empty.

12.2.2 Result Element Specification

[167] result element specification = (rni,
“IMPLIED") | (generic identifier,
result attribute specification?)

[168] result attribute specification = ps + ,dso,
attribute specification list, ps*, dsc

where

IMPLIED means the result element is implied
by the application.

A result element generic identifier must be defined
in the result document type declaration.

The validity of the result attribute specification list is
determined by the attribute definition list associated
with the result element in the result element
document type declaration.

The result attribute specification must be omitted if
its attribute specification list is empty.

12.3 Link Set Use Declaration

[169] link set use declaration = mdo, “USELINK”,
ps +, link set specification, ps +,
(associated element type | link type name),
ps*, mdc

46

[170] link set specification = link set name \ (rni,
“EMPTY”)

where

EMPTY means the link set is the empty link set.

12.3.1 Use in Link Type Declaration

If the declaration occurs in a link type declaration,
an associated element type must be specified. The
named link set will become the current link set
whenever an element of an associated type
becomes the current element.

The link set name must be defined on a link set
declaration in the same link type declaration.

NOTE - It need not have been defined prior to this declaration,

but must be defined prior to becoming the current link set.

An associated element type must be an element
type defined in the source document type
declaration. If it is already associated with a link set
in this link type declaration, the specification is
ignored, but is not an error.

12.3.2 Use in Document Instance

If the declaration occurs in a document instance, a
link type name must be specified. The link set
becomes the current link set for this instance of the
current element.

The link type name must be that of the link type
declaration in which the link set was defined.

12.3.3 Current Link Set

A link set is the current link set as long as its
element is the current element. It can become
superceded for an instance of the element: either
temporarily by a subelement becoming the current
element, or permanently by a link set use
declaration occurring in an instance of the element.

If an element type has no associated link set, the
current link set for an instance of the element is the
link set that is current when the instance begins. If
the element is a document element, the current link
set is the empty link set.

12 Markup Declarations: Link Process Definition

ISO 8879-1986(E)

13 SGML Declaration

[171] SGML declaration = mdo, “SGML”, ps + ,
“ISO 8879-1986”, ps + ,
document character set, ps +, capacity set,
ps +, concrete syntax scope, ps +,
concrete syntax, ps +, feature use, ps +,
application-specific information, ps*, mdc

The reference concrete syntax must be used in the
SGML declaration, regardless of the concrete syntax
used in the remainder of the document.

Only markup characters (in the reference concrete
syntax) and minimum data characters can be used
in the parameters and comments, although the
replacement text of a character reference could be
an SGML character other than a markup or
minimum data character.

NOTES

1 The SGML declaration is intended for human consumption (in
printed form!) as well as for machine processing, as it enables the

recipient of a document to determine whether a system can

process it “as is”, whether character translation or other

algorithmic conversion is needed (for example, if document
markup features or a different delimiter set were used), or
whether conversion that could require manual intervention is
needed (for example, if document type features or a different
quantity set were used).

2 A character reference such as “Þ” is valid because the
reference consists solely of markup and minimum data
characters, even though the replacement text does not.

3 No entity references can occur in an SGML declaration
(because no entities could have been declared).

13.1 Document Character Set

[172] document character set = “CHARSET”,
ps +, character set description

The document character set must include a coded
representation, as a single bit combination, for each
significant SGML character.

NOTE - If the document uses two concrete syntaxes, the
markup characters of both are significant SGML characters.

As part of the translation of a document to a new
character set, the character numbers in this
parameter and any numeric character references in
the document must be changed.

NOTE - It is recognized that the recipient of a document must

be able to translate it to his system character set before the
document can be processed by machine. There are two basic
approaches to communicating this information:

a) If the character set is standard, registered, or otherwise

capable of being referenced by an identifying name or

number, that identifier can be communicated to the

recipient of the document. The communication must

necessarily occur outside of the document; for example, in

a field of the document interchange data stream, or via

other (probably non-electronic) media.

b) For other character sets, a human-readable copy of the

SGML declaration will provide sufficient information.

13.1.1 Character Set Description

[173] character set description =
(base character set, ps -f,
described character set portion) +

The described character set portions must
collectively describe each character number in the
described character set once and only once.

13.1.1.1 Base Character Set

[174] base character set = “BASESET”, ps + ,
public identifier

The public identifier is a human-readable identifier
of the base character set.

NOTE — For example, a standard or registered name or

number, or other designation that will be understood by the

expected recipients of the document.

If “FORMAL YES” is specified on the other features
parameter, the public identifier must be a formal
public identifier with a public text class of
“CHARSET”.

13.1.1.2 Described Character Set Portion

[175] described character set portion =
“DESCSET”, (ps + ,
character description) +

[176] character description =
described set character number, ps +,
number of characters, ps +,
(base set character number |
minimum literal | “UNUSED”)

[177] described set character number
= character number

[178] base set character number
= character number

[179] number of characters = number

where

13.1 Document Character Set 47

ISO 8879-1986(E)

UNUSED means that no meaning is assigned to
the specified character numbers in the
described set.

The specified number of characters in the described
character set, beginning with the specified
described set character number, are assigned
meanings as follows:

a) If a base set character number is specified, the
meanings are those of the corresponding
characters in the base character set, beginning
with the specified base set character number.

NOTE — If a base set character number is unused, no

meaning is assigned to the corresponding described set

character number.

b) If a minimum literal is specified, the meaning
or meanings are as described in the literal.

NOTE - A minimum literal should be specified only if no

character in the base character set has the desired

meaning.

c) If “UNUSED” is specified, no meanings are
assigned.

13.1.2 Non-SGML Character Identification

Each character number to which no meaning is
assigned by the character set description is added
to NONSGML, thereby identifying it as a non-SGML
character.

NOTE — After receipt and translation of a document, the non-

SGML characters may be different because the new document

character set may map control characters to different coded

representations.

A shunned character must be identified as a non-
SGML character, unless it is a significant SGML
character.

NOTES

1 For example, in figure 8, characters numbered 9, 10, and 13,

which are shunned characters, are nevertheless not assigned as

non-SGML characters because they are function characters.

2 If the document uses two concrete syntaxes, the shunned

characters of both are subject to this requirement.

13.2 Capacity Set

[180] capacity set = “CAPACITY”, ps +,
((“PUBLIC”, ps +, public identifier) |
(“SGMLREF”, (ps +, name, ps +,
number) +))

The specified name is a name given to a capacity in
figure 5. The capacity is assigned the value
indicated by the specified number.

The reference capacity set value is used for any
capacity for which no replacement is assigned by
this parameter.

NOTE — The “SGMLREF” keyword, which is required (and

therefore redundant) when a public identifier is not used, is a

reminder of this rule for human readers of the SGML declaration.

The capacity values must express limits that are not
exceeded by the document. They must be sufficient
for the greatest capacity requirement among the
possible sets of concurrent instances or chains of
link processes that could be processed at once.

The value assigned to “TOTALCAP” must equal or
exceed the largest individual capacity.

If “FORMAL YES” is specified on the other features
parameter, the public identifier must be a formal
public identifier with a public text class of
“CAPACITY”.

13.3 Concrete Syntax Scope

This parameter specifies whether a declared
concrete syntax must be used for the entire
document, or whether the reference concrete syntax
can be used in the prologs.

[181] concrete syntax scope = “SCOPE”, ps + ,
(“DOCUMENT” | “INSTANCE”)

where

DOCUMENT means the declared concrete
syntax is used throughout the
document.

INSTANCE means the reference concrete
syntax is used in prologs and the
declared concrete syntax is used in
document instance sets.

If “INSTANCE” is specified, the declared concrete
syntax must meet the following requirements:

a) the syntax-reference character set must be the
same as that of the reference concrete syntax;

b) the significant SGML characters must be such
that the start of a document instance set is
always distinguishable from the end of its
prolog; and

c) the quantity set values must equal or exceed
those of the reference quantity set.

48 13 SGML Declaration

ISO 8879-1986(E)

Name Value Points Object for which capacity points are counted
TOTALCAP 35000 (total) Grand total of individual capacity points.
ENTCAP 35000 NAMELEN Entity defined.
ENTCHCAP 35000 1 Character of entity text.
ELEMCAP 35000 NAMELEN Element defined.
GRPCAP 35000 NAMELEN Token at any level in a content model.
EXGRPCAP 35000 NAMELEN Exclusion or inclusion exceptions group.
EXNMCAP 35000 NAMELEN Name in an exclusion or inclusion exceptions group.
ATTCAP 35000 NAMELEN Attribute defined.
ATTCHCAP 35000 1 Character of default attribute value (keyword counts as zero).
AVGRPCAP 35000 NAMELEN Token defined in an attribute value name group or name token

group.
NOTCAP 35000 NAMELEN Data content notation defined.
NOTCHCAP 35000 1 Character in a notation identifier.
IDCAP 35000 NAMELEN ID attribute specified (explicitly or by default).
IDREFCAP 35000 NAMELEN IDREF attribute specified (explicitly or by default).
MAPCAP 35000 NAMELEN (plus NAMELEN for each short reference delimiter in the concrete

syntax) Short reference map declared.
LKSETCAP 35000 NAMELEN Link types or link sets defined.
LKNMCAP 35000 NAMELEN Document type or element in a link type or link set declaration.

Figure 5 — Reference Capacity Set

13.4 Concrete Syntax

[182] concrete syntax — “SYNTAX”, ps + ,
(public concrete syntax j

(shunned character number identification,
ps +, syntax-reference character set, ps +,
function character identification, ps +,
naming rules, ps 4-, delimiter set, ps 4-,
reserved name use, ps +, quantity set))

The reference concrete syntax or core concrete
syntax should be used unless a variant concrete
syntax is necessitated by such requirements as the
keyboard, display capabilities, or characteristics of
the national language.

13.4.1 Public Concrete Syntax

[183] public concrete syntax = “PUBLIC”, ps +,
public identifier, (ps +, “SWITCHES”, (ps + ,
character number, ps 4-,
character number) 4)?

where

SWITCHES means that markup characters in
the specified concrete syntax have
been switched.

The pairs of character numbers are in the syntax-
reference character set of the public concrete
syntax. The first of each pair is a markup character

in the identified concrete syntax and the second is a
character that substitutes for it in every instance in
which the first character was used.

NOTE — The concrete syntax that results from the switches

must meet all the usual requirements, just as if it had been

declared explicitly.

If “FORMAL YES” is specified on the other features
parameter, the public identifier must be a formal
public identifier with a public text class of
“SYNTAX”.

13.4.2 Shunned Character Number
Identification

[184] shunned character number identification =
“SHUNCHAR", ps + , ("NONE” |
((“CONTROLS” | character number), (ps + ,.
character number)*))

where

NONE means there are no shunned
character numbers.

CONTROLS means that any character number
that the document character set
considers to be the coded
representation of a control
character, and not a graphic
character, is a shunned character.

13.4 Concrete Syntax 49

ISO 8879-1986(E)

Each specified character number is identified as a
shunned character number.

NOTE — Character numbers in this parameter need not (and

should not) be changed when a document is translated to another

character set.

13.4.3 Syntax-reference Character Set

[185] syntax-reference character set =
character set description

13.4.5 Naming Rules

[189] naming rules = “NAMING”, ps + ,
“LCNMSTRT”, ps +, parameter literal,
ps + , “UCNMSTRT”, ps + ,
parameter literal, ps +, “ICNMCHAR”,
ps +, parameter literal, ps +,
“UCNMCHAR”, ps +, parameter literal,
ps + , “NAMECASE”, ps + , “GENERAL”,
ps + , (“NO” | “YES”), ps + , “ENTITY”,
ps + , (“NO” | “YES”)

The syntax-reference character set must include a
coded representation, as a single bit combination, of
each significant SGML character.

13.4.4 Function Character Identification

[186] function character identification =
“FUNCTION”, ps + , “RE”, ps + ,
character number, ps + , “RS", ps + ,
character number, ps +, “SPACE”, ps +,
character number, {ps +, added function,
ps +, function class, ps +,
character number)*

where

LCNMSTRT means each character in the literal
(if any) is added to LCNMSTRT.

UCNMSTRT Each character in the literal (if any)
is added to UCNMSTRT as the
associated upper-case form of the
character in the corresponding
position of LCNMSTRT.

LCNMCHAR means each character in the literal
(if any) is added to LCNMCHAR.

[187] added function = name

[188] function class = “FUNCHAR” | “MSICHAR” |
“MSOCHAR”|“MSSCHAR”(“SEPCHAR”

where the keywords identify the added function, as
follows:

FUNCHAR means an inert function character.

SEPCHAR means a separator character.

MSOCHAR means a markup-scan-out character.

UCNMCHAR Each character in the literal (if any)
is added to UCNMCHAR as the
associated upper-case form of the
character in the corresponding
position of LCNMCHAR.

NAMECASE specifies whether upper-case
substitution is to be performed for
entity references and entity names
(“ENTITY”) and/or for all other
names, name tokens, number
tokens, and delimiter strings
(“GENERAL”).

MSICHAR means a markup-scan-in character.

MSSCHAR means a markup-scan-suppress
character.

The character with the specified character number
in the syntax-reference character set is assigned to
the function.

A character can be assigned to only one function.

YES means an LC Letter will
be replaced by the
corresponding UC Letter,
and a character in
LCNMSTRT or LCNMCHAR
will be replaced by its
associated upper-case form.

NO means no upper-case
substitution will take place.

An added function cannot be “RE”, “RS”, “SPACE”, The upper-case form of a name character can be the
or another added function. same as the lower-case.

“MSICHAR” must be specified for at least one
added function if “MSOCHAR” is specified for an
added function.

NOTE — When code extension is used, shift characters could be

assigned to markup suppression functions to avoid false delimiter

recognition, but only by sacrificing the ability to use entity

references to obtain device independence (see clause E.3)

A character assigned to LCNMCHAR, UCNMCHAR,
LCNMSTRT, or UCNMSTRT cannot be an LC Letter,
UC Letter , Digit, RE, RS, SPACE, or SEPCHAR

A character assigned to LCNMCHAR or UCNMCHAR
cannot be assigned to LCNMSTRT or UCNMSTRT.

50 13 SGML Declaration

ISO 8879-1986(E)

UCNMCHAR must have the same number of
characters as LCNMCHAR; UCNMSTRT must have
the same number of characters as LCNMSTRT.

13.4.6 Delimiter Set

[190] delimiter set = “DELIM”,ps + ,
general delimiters, ps +,
short reference delimiters

13.4.6.1 General Delimiters

A delimiter or delimiter-in-context must differ from
every other delimiter and delimiter-in-context that
can be recognized in the same mode.

The use of a name start character or Digit in a
delimiter string is deprecated.

[191] general delimiters = “GENERAL”, ps + ,
“SGMLREF”, (ps +, name, ps +,
parameter literal)*

The specified name is a name given to a general
delimiter role in figure 3. The interpreted parameter
literal is assigned to the role.

General delimiter roles not assigned by this
parameter are assigned as in the reference
delimiter set.

NOTE — The “SGMLREF” keyword, which is required (and

therefore redundant), is a reminder of this rule for human readers

of the SGML declaration.

A general delimiter string cannot consist solely of
function characters. A general delimiter string that
contains such characters in combination with others
is permitted, but is deprecated.

13.4.6.2 Short Reference Delimiters

[192] short reference delimiters = “SHORTREF”,
ps + , (“SGMLREF” j “NONE”), (ps +,
parameter literal)*

where

SGMLREF means that the short references
assigned by the reference delimiter
set are included in this delimiter set.

NONE means that no short reference
delimiters are assigned except for
those assigned by this parameter.

The interpreted parameter literal is assigned as a
short reference delimiter string.

A parameter literal can have a single B sequence,
which cannot be preceded or followed by a blank

sequence or by a reference to a character that can
occur in a blank sequence.

A short reference string longer than a single
character is deprecated unless the string is a
common keyboarding convention or coding
sequence.

A short reference string is deprecated if:

a) it contains all, or the start, of a delimiter or
delimiter-in-context that is recognized in CON
mode; and

b) it is likely to create the impression that the
delimiter was erroneously ignored.

NOTE — In applying this requirement, remember that a short

reference is recognized as a delimiter even when it is not mapped

to an entity. Therefore, a general delimiter within it will never be

recognized as such.

13.4.7 Reserved Name Use

[193] reserved name use = “NAMES”, ps +,
“SGMLREF”, (ps +, name, ps +, name)*

The first of each pair of names is a reference
reserved name, and the second is a name that is to
replace it in the declared concrete syntax.

NOTE — Reserved names that occur only in the SGML

declaration, including delimiter role, quantity, and capacity

names, cannot be replaced, as the SGML declaration is always in

the reference concrete syntax.

The reference reserved name is used for any
reserved name for which no replacement is
assigned by this parameter.

NOTE — The “SGMLREF” keyword, which is required (and

therefore redundant), is a reminder of this rule for human readers

of the SGML declaration.

The replacement for a reference reserved name
cannot be another reference reserved name, or a
replacement for one.

13.4.8 Quantity Set

[194] quantity set = “QUANTITY”, ps + ,
“SGMLREF”, (ps + , name, ps +, number)*

The specified name is a name given to a quantity in
figure 6, which also shows the value assignments
that constitute the reference quantity set. The
designated quantity is assigned the value indicated
by the specified number.

The reference quantity set value is used for any
quantity for which no replacement is assigned by
this parameter.

13.4 Concrete Syntax 51

ISO 8879-1986(E)

Name Value Description of Quantity
ATTCNT 40 Number of attribute names and name tokens in an element's attribute definitions.
ATTSPLEN 960 Normalized length of a start-tag's attribute specifications.
BSEQLEN 960 Length of a blank sequence in a short reference string.
DTAGLEN 16 Length of a data tag.
DTEMPLEN 16 Length of a data tag template or pattern template (undelimited).
ENTLVL 16 Nesting level of entities (other than primary).
GRPCNT 32 Number of tokens in a group.
GRPGTCNT 96 Grand total of tokens at all levels of a model group.
GRPLVL 16 Nesting level of model groups (including first level).
LITLEN 240 Length of a literal or delimited attribute value (undelimited).
NAMELEN 8 Length of a name, name token, number, etc.
NORMSEP 2 Used in lieu of counting separators ih calculating normalized lengths.
PILEN 240 Length of a processing instruction (undelimited).
TAGLEN 960 Length of a start-tag (undelimited).
TAGLVL 24 Nesting level of open elements.

Figure 6 — Reference Quantity Set

NOTE — The “SGMLREF” keyword, which is required (and

therefore redundant), is a reminder of this rule for human readers

of the SGML declaration.

13.5 Feature Use

[195] feature use = “FEATURES”, ps + ,
markup minimization features, ps 4-,
link type features, ps +, other features

13.5.1 Markup Minimization Features

[196] markup minimization features = “MINIMIZE”,
ps +, “DATATAG", ps +, (“NO” | “YES”),
ps + , “OMITTAG”, ps +, (“NO” | “YES”),
ps + , “RANK”, ps + , (“NO” | “YES”), ps +,
“SHORTTAG”, ps + , (“NO” | “YES”)

where

NO
YES
DATATAG

OMITTAG

RANK

SHORTTAG

means the feature is not used.
means the feature is used.
means data characters may serve
simultaneously as tags.
means some tags may be omitted
altogether.
means element ranks may be
omitted from tags,
means short tags with omitted
delimiters, attribute specifications,
or generic identifiers may be used.

NOTE — The use of short references is not specified in this

parameter because it is specified by the "SHORTREF”

parameter.

13.5.2 Link Type Features

[197] link type features = “LINK”, ps+ , “SIMPLE”,
ps +, (“NO” | “YES”), ps +, “IMPLICIT”,
ps + , (“NO” | “YES”), ps +, “EXPLICIT”,
ps + , (“NO” j (“YES”, ps + , number))

where

NO
YES
EXPLICIT

IMPLICIT

SIMPLE

means the feature is not used,
means the feature is used,
means explicit link process
definitions may be used and the
longest chain of link processes has
the specified number of links (1 or
more).
means implicit link process
definitions may be used,
means simple link process definitions
may be used.

13.5.3 Other Features

[198] other features = “OTHER”, ps + , “CONCUR”,
ps + , ("NO” | (“YES”, ps + , number)), ps +,
"SUBDOC”, ps + , (“NO” | (“YES”, ps + ,
number)), ps +, “FORMAL”, ps +, (“NO” |
“YES”)

where

NO means the feature is not used.
YES means the feature is used.
CONCUR means instances of the specified

number of document types (1 or
more) may occur concurrently with an
instance of the base document type.

52 13 SGML Declaration

ISO 8879-1986(E)

SUBDOC means the specified number of SGML
subdocument entities (1 or more) may
be open at one time.

FORMAL means that public identifiers are
interpreted as formal public
identifiers.

13.6 Application-specific Information

[199] application-specific information =
“APPINFO”, ps + , (“NONE” |
minimum literal)

where

NONE means that no application-specific
information has been specified.

The minimum literal specifies application-specific
information that is applicable to the document.

14 Reference and Core Concrete Syntaxes

The reference concrete syntax is defined by the
SGML declaration concrete syntax parameter shown
in figure 7. Its public identifier is:

“ISO 8879-1986//SYNTAX Reference//EN"

The core concrete syntax is the same as the
reference concrete syntax, except that “NONE” is
specified for the “SHORTREF” parameter. Its public
identifier is:

“ISO 8879-1986//SYNTAX Core//EN”

NOTE — The syntax-reference character set of the reference

concrete syntax is ISO 646 IRV. That set consists of characters

numbered 0 through 127, which correspond to the like-numbered

characters in ISO 4873 and ISO 6937. The set was chosen

because it is the simplest standard character set that contains all

of the significant SGML characters used in the reference concrete

syntax. This choice does not restrict the document character sets

that can be used, nor their size.

15 Conformance

15.1 Conforming SGML Document

If an SGML document complies with all provisions of
this International Standard it is a conforming SGML
document.

15.1.1 Basic SGML Document

If a conforming SGML document uses the reference
concrete syntax throughout, the reference capacity
set, and only the SHORTTAG and OMITTAG
features, it is a basic SGML document.

NOTE — A typical SGML declaration for a basic SGML document

is shown in figure 8. Only the document character set parameter

can differ from one basic SGML document to another.

15.1.2 Minimal SGML Document

If a conforming SGML document uses the core
concrete syntax, the reference capacity set, and no
features, it is a minimal SGML document.

15.1.3 Variant Conforming SGML
Document

If a conforming SGML document uses a variant
concrete syntax, it is a variant conforming SGML
document.

15.2 Conforming SGML Application

If an SGML application meets the requirements of
this sub-clause it is a conforming SGML application.

15.2.1 Application Conventions

A conforming SGML application's conventions can
affect only areas that are left open to specification
by applications.

NOTE — Some examples are: naming conventions for elements

and entities, or a content convention that data characters not in

the translation-reference character set always be entered by

references rather than directly.

15.2.2 Conformance of Documents

A conforming SGML application shall require its
documents to be conforming SGML documents, and
shall not prohibit any markup that this International
Standard would allow in such documents.

NOTE — For example, an application markup convention could

recommend that only certain minimization functions be used, but

could not prohibit the use of other functions if they are allowed by

the formal specification.

15.2.3 Conformance of Documentation

A conforming SGML application's documentation
shall meet the requirements of this International
Standard (see 15.5).

15.3 Conforming SGML System

If an SGML system meets the requirements of this
sub-clause it is a conforming SGML system.

NOTE — An effect of this sub-clause is to require that a

conforming SGML system be able to process a minimal SGML

document.

15.3 Conforming SGML System 53

ISO 8879-1986(E)

SYNTAX

SHUNCHAR CONTROLS 0 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 127 255

BASESET "ISO 646- - 1983//CHARSET
International Reference Version (IRV)//ESC 2/5 4/0

DESCSET 0 128 0
FUNCTION RE 13

RS 10
SPACE 32
TAB SEPCHAR 9

NAMING LCNMSTRT
MM

UCNMSTRT
Iff!

LCNMCHAR ft _ M
-- Lower-case hyphen, period are --

UCNMCHAR M _ M -- same as upper-case (45 46).
NAMECASE GENERAL YES

ENTITY NO
DELIM GENERAL SGMLREF

SHORTREF SGMLREF
NAMES SGMLREF
QUANTITY SGMLREF

Figure 7 — Reference Concrete Syntax

15.3.1 Conformance of Documentation

A conforming SGML system's documentation shall
meet the requirements of this International Standard
(see 15.5).

15.3.2 Conformance to System Declaration

A conforming SGML system shall be capable of
processing any conforming SGML document that is
not inconsistent with the system's system
declaration (see 15.6).

NOTE — As this International Standard does not define data

content notations or system data, a system's inability to process

such text does not affect whether it is a conforming SGML system.

15.3.3 Support for Reference Concrete
Syntax

A conforming SGML system shall be able to parse
documents in the reference concrete syntax in
addition to any variant concrete syntax that it may
support.

NOTE — This requirement can be satisfied by converting from

the reference to the system concrete syntax when a document is

received.

A conforming SGML system that can create or
revise SGML documents shall be able to do so for
SGML documents that use the reference concrete
syntax.

NOTE — This requirement can be satisfied by converting from

the system to the reference concrete syntax when a document is

to be exported.

If a conforming SGML system allows a user to edit
SGML markup directly, it must also allow the
reference concrete syntax to be edited directly.

If an SGML system does not support short
references in any syntax, the core concrete syntax
can be used instead of the reference concrete
syntax.

NOTES

1 A system can meet the requirement to support the reference

concrete syntax by using separate programs or modules.

2 This requirement should not be interpreted to require that

interchange be restricted to the reference concrete syntax;

documents can be interchanged in variant concrete syntaxes as

well.

54 15 Conformance

ISO 8879-1986(E)

<!SGML "ISO 8879-1986"
-- This document is a basic SGML document. --

CHARSET
-- 8-bit document character set whose first 128 characters

are the same as the syntax-reference character set.
BASESET "ISO 646-1983//CHARSET

International Reference Version (IRV)//ESC 2/5 4/0"
DESCSET 0 9 UNUSED

9 2 9
11 2 UNUSED
13 1 13
14 18 UNUSED
32 95 32

127 1 UNUSED
BASESET "ISO Registration Number 109//CHARSET

EGMA-94 Right Part of Latin Alphabet Nr. 3//ESC 2/13 4/3"
DESCSET 128 32 UNUSED

160 5 32
165 1 "SGML User's Group logo"
166 88 38 -- Includes 5 unused for NONSGML --
254 1 127 -- Move 127 to unused position as --
255 1 UNUSED -- 255 is shunned character number --

CAPACITY PUBLIC "ISO 8879-1986//CAPACITY Reference//EN"
SCOPE DOCUMENT
SYNTAX PUBLIC "ISO 8879-1986//SYNTAX Reference//EN"

FEATURES
MINIMIZE DATATAG NO OMITTAG YES RANK NO SHORTTAG YES
LINK SIMPLE NO IMPLICIT NO EXPLICIT NO
OTHER CONCUR NO SUBDOC NO FORMAL NO

APPINFQ NONE>

Figure 8 — Typical SGML Declaration for Basic SGML Document

15.3.4 Support for Reference Capacity Set

A conforming SGML system shall be able to parse
documents whose capacities are no greater than
those of the reference capacity set. If SGML
documents can be created with the system, the
system shall be able to create documents whose
capacities are no greater than those of the
reference capacity set.

15.3.5 Consistency of Parsing

A conforming SGML system shall parse the same
document identically for all applications and
processes that operate on it.

NOTES

1 An application program, using normal interfaces to the SGML

parser, should not be able to affect the state of the parse, such as

by generating text and causing it to be parsed as though it were

part of the document. Documentation for application developers

should make them aware of this requirement.

2 This requirement enables a system to be tested for

conformance without having to test every application.

15.3.6 Application Conventions

A conforming SGML system shall not enforce
application conventions as though they were
requirements of this International Standard.

15.3 Conforming SGML System 55

ISO 8879-1986(E)

NOTE —Warnings of the violation of application conventions can

be given, but they must be distinguished from reports of markup

errors.

15.4 Validating SGML Parser

If an SGML parser in a conforming SGML system
meets the requirements of this sub-clause, it is a
validating SGML parser.

NOTE — A conforming SGML system need not have a validating

SGML parser. Implementors can therefore decide whether to

incur the overhead of validation in a given system. A user whose

text editing system allowed the validation and correction of SGML

documents, for example, would not require the validation process

to be repeated when the documents are processed by a

formatting system.

15.4.1 Error Recognition

A validating SGML parser shall find and report a
reportable markup error if one exists, and shall not
report an error when none exists.

A validating SGML parser can optionally report:

a) an ambiguous content model;
b) an exclusion that could change a group's

required or optional status in a model;
c) a failure to observe a capacity limit;
d) an error in the SGML declaration;
e) the occurrence of a non-SGML character; or
f) a formal public identifier error.

NOTE — This International Standard does not specify how a

markup error should be handled, beyond the requirement for

reporting it. In particular, it does not state whether the erroneous

text should be treated as data, and/or whether an attempt should

be made to continue processing after an error is found.

15.4.2 Identification of SGML Messages

Reports of SGML markup errors, including optional
reports, shall be identified as SGML messages in
such a manner as to distinguish them clearly from
all other messages.

15.4.3 Content of SGML Messages

A report of an SGML markup error, including an
optional report, shall state the nature and location of
the error in sufficient detail to permit its correction.

NOTE — This requirement is worded to allow implementors

maximum flexibility to meet their user and system requirements.

More precise suggestions are made in clause F.4.

15.5 Documentation Requirements

The objectives of this International Standard will be
met most effectively if users, at all levels, are aware
that SGML documents conform to an International
Standard that is independent of any application or
parser. The documentation of a conforming SGML
system or application shall further such awareness.

NOTE — These requirements are intended to help users apply

knowledge gained from one SGML system to the use of other

systems, not to inhibit a casual and friendly writing style.

15.5.1 Standard Identification

Standard identification shall be in the national
language of the documentation.

Standard identification text shall be displayed
prominently

a) in a prominent location in the front matter of all
publications {normally the title page and cover
page);

b) on all identifying display screens of programs;
and

c) in all promotional and training material.

For applications, the identification text is:

An SGML Application Conforming to
International Standard ISO 8879 --
Standard Generalized Markup Language

For systems, the identification text is:

An SGML System Conforming to
International Standard ISO 8879 --
Standard Generalized Markup Language

The documentation for a conforming SGML system
shall include a system declaration (see 15.6).

15.5.2 Identification of SGML Constructs

The documentation shall distinguish SGML
constructs from application conventions and system
functions, and shall identify the SGML constructs as
being part of the Standard Generalized Markup
Language.

NOTE — The objective of this requirement is for the user to be

aware of which constructs are common to all SGML systems, and

which are unique to this one. This will reduce the experienced

user's learning time for a new system or application.

This International Standard shall be cited as a
reference for supported SGML constructs that are
not specifically documented for the system or
application. For example, if, for simplicity's sake,
only a subset of some function is presented (such as

56 15 Conformance

ISO 8879-1986(E)

by omitting some of the options of the entity
declaration), it shall be stated clearly that other
options exist and can be found in this International
Standard.

15.5.3 Terminology

All SGML constructs shall be introduced using the
terminology of this International Standard,
translated to the national language used by the
publication or program.

Such standard terminology should be used
throughout the documentation. If, notwithstanding,
a non-standard equivalent is used for a standard
term, it must be introduced in context and it shall
not conflict with any standard SGML terms,
including terms for unsupported or undocumented
constructs.

15.6.1 Concrete Syntaxes Supported

This parameter specifies the concrete syntaxes that
the system SGML parser can parse, the translation
of their markup characters into the system character
set, and any allowed variations.

[201] concrete syntaxes supported = (ps + ,
concrete syntax, {ps +,
concrete syntax changes)?, (ps +,
character set translation)?) +

A concrete syntax parameter is specified, as on the
SGML declaration, for each concrete syntax that the
system can parse. One of the specified concrete
syntaxes must be either the reference concrete
syntax, if short references are supported for any
concrete syntax, or the core concrete syntax if they
are not.

15.5.4 Variant Concrete Syntax 15.6.1.1 Concrete Syntax Changes

If a variant concrete syntax is used, that fact shall be
made clear to the user. The rules of that syntax
shall not be attributed to SGML.

15.6 System Declaration

This parameter describes concrete syntaxes that
the system can parse, that are minor modifications
of the specified concrete syntax. The keywords
define the nature and extent of the permitted
changes.

[200] system declaration = mdo, “SYSTEM”, ps + ,
capacity set, ps +, feature use, ps +,
concrete syntax scope, ps +,
concrete syntaxes supported, ps +,
validation services, ps*, mdc

A system declaration must meet the same syntax
requirements as an SGML declaration with respect
to the concrete syntax used, data characters
allowed, etc.

The capacity set parameter is specified as on the
SGML declaration, except that the capacity of the
system is being described, rather than the capacity
requirements of a document.

The feature use parameter is specified as on the
SGML declaration, except that the ability of the
system to support a feature is being described,
rather than the characteristics of a document that
uses the feature.

The concrete syntax scope parameter is specified as
on the SGML declaration, except that the ability of
the system to support two syntaxes at once is being
described, rather than whether a document uses
two syntaxes.

[202] concrete syntax changes = “CHANGES”,
ps + , (“SWITCHES” | (“DELIMLEN”, ps + ,
number, ps + , “SEQUENCE”, ps + , (“YES” |
“NO”), ps +, “SRCNT”, ps + , number))

where

SWITCHES

DELIMLEN

SEQUENCE

SRCNT

means that markup characters in
the specified concrete syntax can
be switched, provided that each
replacement substitutes for its
original character in every instance
in which that character was used,
means new strings that do not
exceed the specified number of
characters (1 or more) can be
assigned to the delimiter roles,
indicates whether a blank
sequence can be used in short
reference delimiters. If so, it is
considered to have a length of 1
character.
means that different short
reference delimiters can be
assigned, as long as they do not
exceed the specified number (0 or
more).

NOTE — The system declaration should include comments to 15.6.1.2 Character Set Translation
indicate which data content notations and types of system data the

system can support. The character set translation parameter defines, in
the same form as on the SGML declaration, the
translation to the system character set from the

15.6 System Declaration 57

ISO 8879-1986(E)

translation-reference character set of the specified
concrete syntax.

If a number of concrete syntaxes have the same
translation-reference character set, this parameter
must be specified for only one of them, and will
apply to all.

15.6.2 Validation Services

The validation services parameter specifies whether
a system has a validating SGML parser, and which,
if any, optional validation services it provides.

[203] validation services = “VALIDATE”, ps +,
“GENERAL”, ps + , (“NO” | “YES”), ps + ,
“MODEL”, ps + , (“NO” | “YES”), ps + ,
“EXCLUDE”, ps + , (“NO” | “YES”), ps + ,
“CAPACITY”, ps + , (“NO” | “YES”), ps + ,
“NONSGML”, ps + , (“NO” | “YES”), ps 4-,
“SGML”, ps + , (“NO” | “YES”), ps + ,
"FORMAL”, ps + , (“NO” | “YES”)

where:

NO
YES
GENERAL

MODEL

EXCLUDE

CAPACITY

NONSGML

SGML

FORMAL

means the service is not provided,
means the service is provided,
means a reportable markup error
will be found and reported,
means an ambiguous content
model will be reported,
means an exclusion that could
change a group's required or
optional status in a model will be
reported.
means that exceeding a capacity
limit will be reported,
means the occurrence of at least
one non-SGML character, but not
necessarily all, will be reported,
means an error in the SGML
declaration will be reported,
means a formal public identifier
error will be reported.

58 15 Conformance

ISO 8879-1986(E)

Annex A

Introduction to Generalized Markup

(This annex does not form an integral part of this International Standard.)

A.1 The Markup Process

Text processing and word processing systems typically require additional information to be interspersed
among the natural text of the document being processed. This added information, called "markup”, serves two
purposes:

a) Separating the logical elements of the document; and

b) Specifying the processing functions to be performed on those elements.

In publishing systems, where formatting can be quite complex, the markup is usually done directly by the user,
who has been specially trained for the task. In word processors, the formatters typically have less function, so
the (more limited) markup can be generated without conscious effort by the user. As higher function printers
become available at lower cost, however, the office workstation will have to provide more of the functionality of
a publishing system, and “unconscious” markup will be possible for only a portion of office word processing.

It is therefore important to consider how the user of a high function system marks up a document. There are
three distinct steps, although he may not perceive them as such.

a) He first analyzes the information structure and other attributes of the document; that is, he identifies each
meaningful separate element, and characterizes it as a paragraph, heading, ordered list, footnote, or
some other element type.

b) He then determines, from memory or a style book, the processing instructions (“controls”) that will
produce the format desired for that type of element.

c) Finally, he inserts the chosen controls into the text.

Here is how the start of this paper looks when marked up with controls in a typical text processing formatting
language:

.SK 1
Text processing and word processing systems typically
require additional information to be interspersed among
the natural text of the document being processed.
This added information, called "markup, ' serves two purposes:
.TB 4
.OF 4
.SK 1
1. Separating the logical elements of the document; and
.OF 4
.SK 1
2. Specifying the processing functions to be
performed on those elements.
.OF 0
.SK 1 •

Adapted from Goldfarb, Charles F., "A Generalized Approach to Document Markup”, SIGPLAN Notices, June
1981, by permission of the author and the Association for Computing Machinery.

A.1 The Markup Process

ISO 8879-1986(E)

The .SK, .TB, and OF controls, respectively, cause the skipping of vertical space, the setting of a tab stop, and
the offset, or “hanging indent”, style of formatting. (The not sign (—■) in each list item represents a tab code,
which would otherwise not be visible.)

Procedural markup like this, however, has a number of disadvantages. For one thing, information about the
document's attributes is usually lost. If the user decides, for example, to center both headings and figure
captions when formatting, the "center” control will not indicate whether the text on which it operates is a
heading or a caption. Therefore, if he wishes to use the document in an information retrieval application,
search programs will be unable to distinguish headings—which might be very significant in information
content—from the text of anything else that was centered.

Procedural markup is also inflexible. If the user decides to change the style of his document (perhaps because
he is using a different output device), he will need to repeat the markup process to reflect the changes. This
will prevent him, for example, from producing double-spaced draft copies on an inexpensive computer line
printer while still obtaining a high quality finished copy on an expensive photocomposer. And if he wishes to
seek competitive bids for the typesetting of his document, he will be restricted to those vendors that use the
identical text processing system, unless he is willing to pay the cost of repeating the markup process.

Moreover, markup with control words can be time-consuming, error-prone, and require a high degree of
operator training, particularly when complex typographic results are desired. This is true (albeit less so) even
when a system allows defined procedures (“macros”), since these must be added to the user's vocabulary of
primitive controls. The elegant and powerful TeX system (2), for example, which is widely used for
mathematical typesetting, includes some 300 primitive controls and macros in its basic implementation

These disadvantages of procedural markup are avoided by a markup scheme due to C. F. Goldfarb, E. J.
Mosher, and R. A. Lorie (3, 4). It is called “generalized markup” because it does not restrict documents to a
single application, formatting style, or processing system. Generalized markup is based on two novel
postulates:

a) Markup should describe a document's structure and other attributes rather than specify processing to be
performed on it, as descriptive markup need be done only once and will suffice for all future processing.

b) Markup should be rigorous so that the techniques available for processing rigorously-defined objects like
programs and data bases can be used for processing documents as well.

These postulates will be developed intuitively by examining the properties of this type of markup.

A.2 Descriptive Markup

With generalized markup, the markup process stops at the first step: the user locates each significant element
of the document and marks it with the mnemonic name (“generic identifier”) that he feels best characterizes it.
The processing system associates the markup with processing instructions in a manner that will be described
shortly.

A notation for generalized markup, known as the Standard Generalized Markup Language (SGML), has been
developed by a Working Group of the International Organization for Standardization (ISO). Marked up in SGML,
the start of this paper might look like this:

<P>
Text processing and word processing systems typically
require additional information to be interspersed among
the natural text of the document being processed.
This added information, called <q>markup</q>, serves two purposes:

Separating the logical elements of the document; and
Specifying the processing functions to be
performed on those elements.

60 A Generalized Markup

ISO 8879-1986(E)

Each generic identifier (Gl) is delimited by a less-than symbol (<) if it is at the start of an element, or by less-
than followed by solidus (</) if it is at the end. A greater-than symbol (>) separates a Gl from any text that
follows it.”') The mnemonics P, Q, OL, and LI stand, respectively, for the element types paragraph, quotation,
ordered list, and list item. The combination of the Gl and its delimiters is called a “start-tag" or an “end-tag”,
depending upon whether it identifies the start or the end of an element.

This example has some interesting properties:

a) There are no quotation marks in the text; the processing for the quotation element generates them and
will distinguish between opening and closing quotation marks if the output device permits.

b) The comma that follows the quotation element is not actually part of it. Here, it was left outside the
quotation marks during formatting, but it could just as easily have been brought inside were that style
preferred.

c) There are no sequence numbers for the ordered list items; they are generated during formatting.

T^e source text, in other words, contains only information; characters whose only role is to enhance the
presentation are generated during processing.

If, as postulated, descriptive markup like this suffices for all processing, it must follow that the processing of a
document is a function of its attributes. The way text is composed offers intuitive support for this premise.
Such techniques as beginning chapters on a new page, italicizing emphasized phrases, and indenting lists, are
employed to assist the reader's comprehension by emphasizing the structural attributes of the document and
its elements.

From this analysis, a 3-step model of document processing can be constructed:

a) Recognition: An attribute of the document is recognized, eg., an element with a generic identifier of
“footnote”.

b) Mapping: The attribute is associated with a processing function. The footnote Gl, for example, could be
associated with a procedure that prints footnotes at the bottom of the page or one that collects them at the
end of the chapter.

c) Processing: The chosen processing function is executed.

Text formatting programs conform to this model. They recognize such elements as words and sentences,
primarily by interpreting spaces and punctuation as implicit markup. Mapping is usually via a branch table.
Processing for words typically involves determining the word's width and testing for an overdrawn line;
processing for sentences might cause space to be inserted between them.2)

In the case of low-level elements such as words and sentences the user is normally given little control over the
processing, and almost none over the recognition. Some formatters offer more flexibility with respect to higher-
level elements like paragraphs, while those with powerful macro languages can go so far as to support
descriptive markup. In terms of the document processing model, the advantage of descriptive markup is that it
permits the user to define attributes—and therefore element types—not known to the formatter and to specify
the processing for them.

For example, the SGML sample just described includes the element types “ordered list” and “list item”, in
addition to the more common “paragraph”. Built-in recognition and processing of such elements is unlikely.
Instead, each will be recognized by its explicit markup and mapped to a procedure associated with it for the
particular processing run. Both the procedure itself and the association with a Gl would be expressed in the
system's macro language. On other processing runs, or at different times in the same run, the association
could be changed. The list items, for example, might be numbered in the body of a book but lettered in an
appendix.

1) Actually, these characters are just defaults. SGML permits a choice of delimiter characters.

2) The model need not be reflected in the program architecture; processing of words, for example, could be built into the main recognition

loop to improve performance.

A.2 Descriptive Markup 61

ISO 8879-1986(E)

So far the discussion has addressed only a single attribute, the generic identifier, whose value characterizes an
element's semantic role or purpose. Some descriptive markup schemes refer to markup as “generic coding”,
because the Gl is the only attribute they recognize (5). In generic coding schemes, recognition, mapping, and
processing can be accomplished all at once by the simple device of using GIs as control procedure names.
Different formats can then be obtained from the same markup by invoking a different set of homonymous
procedures. This approach is effective enough that one notable implementation, the SCRIBE system, is able to
prohibit procedural markup completely (1).

Generic coding is a considerable improvement over procedural markup in practical use, but it is conceptually
insufficient. Documents are complex objects, and they have other attributes that a markup language must be
capable of describing. For example, suppose the user decides that his document is to include elements of a
type called “figure” and that it must be possible to refer to individual figures by name. The markup for a
particular figure element known as “angelfig” could begin with this start-tag:

<fig id=angelfig>

“Fig”, of course, stands for “figure”, the value of the generic identifier attribute. The Gl identifies the element
as a member of a set of elements having the same role. In contrast, the “unique identifier” (ID) attribute
distinguishes the element from all others, even those with the same Gl. (It was unnecessary to say “Gl=fig”,
as was done for ID, because in SGML it is understood that the first piece of markup for an element is the value
of its Gl).

The Gl and ID attributes are termed “primary” because every element can have them. There are also
“secondary” attributes that are possessed only by certain element types. For example, if the user wanted
some of the figures in his document to contain illustrations to be produced by an artist and added to the
processed output, he could define an element type of “artwork”. Because the size of the externally-generated
artwork would be important, he might define artwork elements to have a secondary attribute, “depth”.^ This
would result in the following start-tag for a piece of artwork 24 picas deep:

<artwork depth=24p>

The markup for a figure would also have to describe its content. “Content” is, of course, a primary attribute,
the one that the secondary attributes of an element describe. The content consists of an arrangement of other
elements, each of which in turn may have other elements in its content, and so on until further division is
impossible.2) One way in which SGML differs from generic coding schemes is in the conceptual and notational
tools it provides for dealing with this hierarchical structure. These are based on the second generalized
markup hypothesis, that markup can be rigorous.

A.3 Rigorous Markup

Assume that the content of the figure “angelfig” consists of two elements, a figure body and a figure caption.
The figure body in turn contains an artwork element, while the content of the caption is text characters with no
explicit markup. The markup for this figure could look like this:^

1) “ Depth = ” is not simply the equivalent of a vertical space control word. Although a full-page composition program could produce the

actual space, a galley formatter might print a message instructing the layout artist to leave it. A retrieval program might simply index

the figure and ignore the depth entirely.

2) One can therefore speak of documents and elements almost interchangeably: the document is simply the element that is at the top of

the hierarchy for a given processing run. A technical report, for example, could be formatted both as a document in its own right and as

an element of a journal.

3) Like “Gl = ”, “content= ” can safely be omitted. It is unnecessary when the content is externally generated, it is understood when the

content consists solely of tagged elements, and for data characters it is implied by the delimiter (>) that ends the start-tag.

62 A Generalized Markup

ISO 8879-1986(E)

<fig id=angelfig>
<figbody>
<artwork depth=24p>

</artwork>
</figbody>
<figcap>Three Angels Dancing

</figcap>
</fig>

The markup rigorously expresses the hierarchy by identifying the beginning and end of each element in
classical left list order. No additional information is needed to interpret the structure, and it would be possible
to implement support by the simple scheme of macro invocation discussed earlier. The price of this simplicity,
though, is that an end-tag must be present for every element.

This price would be totally unacceptable had the user to enter all the tags himself. He knows that the start of a
paragraph, for example, terminates the previous one, so he would be reluctant to go to the trouble and expense
of entering an explicit end-tag for every single paragraph just to share his knowledge with the system. He
would have equally strong feelings about other element types he might define for himself, if they occurred with
any great frequency.

With SGML, however, it is possible to omit much markup by advising the system about the structure and
attributes of any type of element the user defines. This is done by creating a “document type definition”, using
a construct of the language called an “element declaration”. While the markup in a document consists of
descriptions of individual elements, a document type definition defines the set of all possible valid markup of a
type of element.

An element declaration includes a description of the allowable content, normally expressed in a variant of
regular expression notation. Suppose, for example, the user extends his definition of “figure” to permit the
figure body to contain either artwork or certain kinds of textual elements. The element declaration might look
like this:1)

<!-- ELEMENTS MIN
<!ELEMENT fig - -
<!ELEMENT figbody - 0

<!ELEMENT artwork - 0
<!ELEMENT figcap - 0

CONTENT (EXCEPTIONS) -->
(figbody, figcap?)>
(artwork | (p | ol | ul)+)>

EMPTY>

(#PCDATA)>

The first declaration means that a figure contains a figure body and, optionally, can contain a figure caption
following the figure body. (The hyphens will be explained shortly.)

The second says the body can contain either artwork or an intermixed collection of paragraphs, ordered lists,
and unordered lists. The “O” in the markup minimization field (“MIN”) indicates that the body's end-tag can be
omitted when it is unambiguously implied by the start of the following element. The preceding hyphen means
that the start-tag cannot be omitted.

The declaration for artwork defines it as having an empty content, as the art will be generated externally and
pasted in. As there is no content in the document, there is no need for ending markup.

The final declaration defines a figure caption's content as 0 or more characters. A character is a terminal,
incapable of further division. The “O” in the “MIN” field indicates the caption's end-tag can be omitted. In
addition to the reasons already given, omission is possible when the end-tag is unambiguously implied by the
end-tag of an element that contains the caption.

It is assumed that p, ol, and ul have been defined in other element declarations.

With this formal definition of figure elements available, the following markup for “angelfig” is now acceptable:

1 i The question mark (?) means an element is optional, the comma (,) that it follows the preceding element in sequence, the asterisk (*)

that the element can occur 0 or more times, and the plus (+) that it must occur 1 or more times. The vertical bar (|) is used to separate
alternatives. Parentheses are used for grouping as in mathematics.

A.3 Rigorous Markup 63

ISO 8879-1986(E)

<fig id=angelfig>
<figbody>
<artwork depth=24p>
<£igcap>Three Angels Dancing
</fig>

There has been a 40% reduction in markup, since the end-tags for three of the elements are no longer needed.

— As the element declaration defined the figure caption as part of the content of a figure, terminating the
figure automatically terminated the caption.

— Since the figure caption itself is on the same level as the figure body, the <figcap> start-tag implicitly
terminated the figure body.

— The artwork element was self-terminating, as the element declaration defined its content to be empty.1 2)

A document type definition also contains an “attribute definition list declaration" for each element that has
attributes. The definitions include the possible values the attribute can have, and the default value if the
attribute is optional and is not specified in the document.

Here are the attribute list declarations for “figure” and “artwork”:

<! -- ELEMENTS NAME VALUE DEFAULT -->
<!ATTLIST fig id ID #IMPLIED>
<!ATTLIST artwork depth CDATA #REQUIRED>

The declaration for figure indicates that it can have an ID attribute whose value must be a unique identifier
name. The attribute is optional and does not have a default value if not specified.

In contrast, the depth attribute of the artwork element is required. Its value can be any character string.

Document type definitions have uses in addition to markup minimization.^) They can be used to validate the
markup in a document before going to the expense of processing it, or to drive prompting dialogues for users
unfamiliar with a document type. For example, a document entry application could read the description of a
figure element and invoke procedures for each element type. The procedures would issue messages to the
terminal prompting the user to enter the figure ID, the depth of the artwork, and the text of the caption. The
procedures would also enter the markup itself into the document being created.

The document type definition enables SGML to minimize the user's text entry effort without reliance on a
“smart” editing program or word processor. This maximizes the portability of the document because it can be
understood and revised by humans using any of the millions of existing “dumb” keyboards. Nonetheless, the
type definition and the marked up document together still constitute the rigorously described document that
machine processing requires.

A.4 Conclusion

Regardless of the degree of accuracy and flexibility in document description that generalized markup makes
possible, the concern of the user who prepares documents for publication is still this: can the Standard
Generalized Markup Language, or any descriptive markup scheme, achieve typographic results comparable to
procedural markup? A recent publication by Prentice-Hall International (6) represents empirical corroboration
of the generalized markup hypotheses in the context of this demanding practical question.

It is a textbook on software development containing hundreds of formulas in a symbolic notation devised by the
author. Despite the typographic complexity of the material (many lines, for example, had a dozen or more font
changes), no procedural markup was needed anywhere in the text of the book. It was marked up using a
language that adhered to the principles of generalized markup but was less flexible and complete than the
SGML (4).

1) SGML actually allows the markup to be reduced even further than this.

2) Some complete, practical document type definitions may be found in (4), although they are not coded In SGML.

64 A Generalized Markup

ISO 8879-1986(E)

The available procedures supported only computer output devices, which were adequate for the book's
preliminary versions that were used as class notes. No consideration was given to typesetting until the book
was accepted for publication, at which point its author balked at the time and effort required to re-keyboard and
proofread some 350 complex pages. He began searching for an alternative at the same time the author of this
paper sought an experimental subject to validate the applicability of generalized markup to commercial
publishing.

In due course both searches were successful, and an unusual project was begun. As the author's processor
did not support photocomposers directly, procedures were written that created a source file with procedural
markup for a separate typographic composition program. Formatting specifications were provided by the
publisher, and no concessions were needed to accommodate the use of generalized markup, despite the
marked up document having existed before the specifications.1)

The experiment was completed on time, and the publisher considers it a complete success (7).2) The
procedures, with some modification to the formatting style, have found additional use in the production of a
variety of in-house publications.

Generalized markup, then, has both practical and academic benefits. In the publishing environment, it reduces
the cost of markup, cuts lead times in book production, and offers maximum flexibility from the text data base.
In the office, it permits interchange between different kinds of word processors, with varying functional abilities,
and allows auxiliary “documents", such as mail log entries, to be derived automatically from the relevant
elements of the principal document, such as a memo.

At the same time, SGML's rigorous descriptive markup makes text more accessible for computer analysis.
While procedural markup (or no markup at all) leaves a document as a character string that has no form other
than that which can be deduced from analysis of the document's meaning, generalized markup reduces a
document to a regular expression in a known grammar. This permits established techniques of computational
linguistics and compiler design to be applied to natural language processing and other document processing
applications.

A.5 Acknowledgments

The author is indebted to E. J. Mosher, R. A. Lorie, T. I. Peterson, and A. J. Symonds—his colleagues during the
early development of generalized markup—for their many contributions to the ideas presented in this paper, to
N. R. Eisenberg for his collaboration in the design and development of the procedures used to validate the
applicability of generalized markup to commercial publishing, and to C. B. Jones and Ron Decent for risking
their favorite book on some new ideas.

A.6 Bibliography

1 B. K. Reid, “The Scribe Document Specification Language and its Compiler”, Proceedings of the
International Conference on Research and Trends in Document Preparation Systems, 59-62 (1981).

2 Donald E. Knuth, TAU EPSILON CHI, a system for technical text, American Mathematical Society,
Providence, 1979.

3 C. F. Goldfarb, E. J. Mosher, and T. I. Peterson, “An Online System for Integrated Text Processing”,
Proceedings of the American Society for Information Science, 7, 147-150 (1970).

4 Charles F. Goldfarb, Document Composition Facility Generalized Markup Language: Concepts and Design
Guide, Form No. SH20-9188-1, IBM Corporation, White Plains, 1984.

5 Charles Lightfoot, Generic Textual Element Identification—A Primer, Graphic Communications Computer
Association, Arlington, 1979.

6 C. B. Jones, Software Development: A Rigorous Approach, Prentice-Hall International, London, 1980.
7 Ron Decent, personal communication to the author (September 7, 1979).

”0 On the contrary, the publisher took advantage of generalized markup by changing some of the specifications after he saw the page

proofs.

2) This despite some geographical complications: the publisher was in London, the book's author in Brussels, and this paper's author in

California. Almost all communication was done via an international computer network, and the project was nearly completed before all

the participants met for the first time.

A.6 Bibliography 65

ISO 8879-1986(E)

Annex B

Basic Concepts

(This annex does not form an integral part of this International Standard.)

This annex describes some of the basic concepts of the Standard Generalized Markup Language (SGML).
Before beginning it, the reader should consult annex A to gain an initial familiarity with generic coding and
generalized markup.

NOTE — The reader should be aware that this annex does not cover all basic SGML constructs, nor all details of those covered, and subtle

distinctions are frequently ignored in the interest of presenting a clear overview.

B.1 Documents, Document Type Definitions, and Procedures

The fundamental concept of generalized markup is the relationship between documents, document type
definitions, and procedures.

B.1.1 Documents

In generalized markup, the term “document” does not refer to a physical construct such as a file or a set of
printed pages. Instead, a document is a logical construct that contains a document element, the top node of a
tree of elements that make up the document's content. A book, for example, could contain “chapter” elements
that in turn contain “paragraph” elements and “picture” elements.

Eventually, the terminal nodes of this document tree are reached and the actual characters or other data are
encountered. If paragraphs, for example, were terminal, their content would be characters, rather than other
elements. If photographs were terminal they would contain neither elements nor characters, but some
noncharacter data that represents an image.

The elements are distinguished from one another by additional information, called markup, that is added to the
data content. A document thus consists of two kinds of information: data and markup.

B.1.2 Document Type Definitions

An element's markup consists of a start-tag at its beginning and an end-tag at its end. The tags describe the
characteristic qualities of the element.

One of these characteristics is the generic identifier, which identifies the “type” of the element (manual,
paragraph, figure, list, etc). In addition, there can be other characteristics, called “attributes”, that further
qualify the generic identifier.

An individual document's markup tags describe its structure of elements. That is, they indicate which elements
occur in the document's content, and in what order. That structure must conform to rules that define the
permitted structures for all documents of a given type; that is, those documents having the same generic
identifier.

The rules that define the possible structures are part of a document type definition of that type of document. A
document type definition specifies:

a) The generic identifiers (GIs) of elements that are permissible in a document of this type.

b) For each Gl, the possible attributes, their range of values, and defaults.

c) For each Gl, the structure of its content, including
i) which subelement GIs can occur and in what order;
ii) whether text characters can occur;
iii) whether noncharacter data can occur.

66 B Basic Concepts

ISO 8879-1986(E)

A document type definition does not specify:

a) The delimiters that are used to indicate markup.

b) Anything about the ways in which the document can be formatted or otherwise processed.

B.1.3 Procedures

Markup tags describe a document's structure of elements; they do not say how to process that structure. Many
kinds of processing are possible, one of which is to format the text.

Formatting can be thought of as mapping the element structure onto paper or a display screen with graphic arts
conventions. For example, the element "paragraph” could be displayed by setting the text of the element off
from surrounding text with blank lines. Alternatively, it could be displayed by indenting its first line.

Processing is handled by procedures, which are written in the language of a formatter or other processing
system. When a document is processed, a procedure is associated with each generic identifier (that is, with
each type of element). The procedure then processes the content of the element. In the case of formatting, for
example, the procedure performs the actions that render an element into printed text or another display form.

Thus, production of a document begins when a user creates the text, marking it up as a particular document
type. One of the facilities that can process that document is a formatter, which could have more than one set of
procedures available.

For example, a document called “mybook”, marked up as a “TechManual” document type, could be formatted
in a number of ways by using a different procedure set each time. One set could produce output in single
column CRT display style, another set in two column printed report style, and a third set in still another style.

When developing a completely new text application, then, a designer would create document type definitions,
using the Standard Generalized Markup Language. Probably, he would also implement one or more procedure
sets, using the languages of the systems that are to process the documents.

B.2 Markup

Markup is text that is added to the data of a document in order to convey information about it. In SGML, the
markup in a document falls into four categories:

a) Descriptive Markup (“Tags”)

Tags are the most frequent and the most important kind of markup. They define the structure of the
document, as described above.

b) Entity Reference

Within a system, a single document can be stored in several parts, each in a separate unit of system
storage, called an entity. (Depending on the system, an entity could be a file, a data set, a variable, a data
stream object, a library member, etc.)

Separate entities are connected by entity references that can occur in a document's markup. An entity
reference is a request for text—the entity—to be imbedded in the document at the point of the reference.
The entity could have been defined either earlier within the document or externally.

The entity reference capability includes the functions commonly called symbol substitution and file
imbedding.

c) Markup Declaration

Declarations are statements that control how the markup is interpreted. They can be used to define
entities and to create document type definitions.

d) Processing Instructions

6.2 Markup 67

ISO 8879-1986(E)

These are instructions to the processing system, in its own language, to take some specific action. Unlike
the other kinds of markup, processing instructions are system-dependent, and are usually application-
dependent as well. They normally need to be changed if the document is processed differently (for
example, formatted in a different style), or on a different system.

An SGML system must recognize these four kinds of markup and handle them properly: that is, it must have an
“SGML parser”. The parser need not be a single dedicated program; as long as a system can perform the
parsing process, it can be said to have an SGML parser.

Markup occurs in a document according to a rigid set of rules. Some of the rules are dictated by SGML; they
apply to all types of document. Other rules are defined by the document type definition for the type of document
being processed.

Employing the rules of SGML, the markup parser must:

a) Scan the text of each element's content to distinguish the four kinds of markup from one another and from
the data. (Noncharacter content data is not scanned by the parser.)

b) Replace entity references by their entities.

c) Interpret the markup declarations.

d) Give control to the processing system to execute processing instructions.

e) Interpret the descriptive markup tags to recognize the generic identifiers (“GIs”) and attributes, and,
following the rules of the document type:
i) Determine whether each Gl and its attributes are valid.
ii) Track the location in the document structure.

0 Give control to the processing system to execute the procedure associated with the Gl. (Once again,
there is no actual requirement for separate programs. “Giving control” means only that the ensuing
processing is not defined by this International Standard.)

B.3 Distinguishing Markup from Text

The markup discussed in this section applies to all document types. The delimiter characters used are the
delimiter set of the reference concrete syntax. (They will be discussed as if there were only one concrete
syntax, although SGML allows variant concrete syntaxes to be defined.)

B.3.1 Descriptive Markup Tags

Descriptive markup tags identify the start and end of elements. There are three special character strings that
are important (see figure 9):

STAGO Start-TAG Open

This is a delimiter that indicates the beginning of a start-tag. In the figure, “ < ” is the stago.

TAGC TAG Close

The string from the stago to the tagc is called the start-tag. In it the generic identifier (“Gl”) and all
the attributes are given. In the figure, “quote” was the Gl and “ > ” is used for the tagc.

ETAGO End-TAG Open

This is a two-character delimiter that indicates the beginning of an end-tag. In the figure, “ </” is the
etago. Between the tagc of the start-tag and the etago of the end-tag is the content of the element,
which can include data characters and subordinate elements. (Noncharacter data is kept separately;
it will be discussed later.) The end-tag contains a repetition of the Gl to make the markup easier to
read.

68 B Basic Concepts

ISO 8879-1986(E)

End-tag

Content
1
1

1 |

Start-tag !

. . . This is

\ | |

1 II II 1
an <quote>example</quote> of SGML . . .

1 1 II 1
STAGO

1 1 II
1 ! ! ! i i

TAGC 1 ! 1 i i i i
ETAGO

1 1

i
TAGC 1

Figure 9 — Element Markup

The scheme just described is the most general way of delimiting an element. SGML, though, allows a number
of techniques of markup minimization that allow the shortening of tags, and even their omission. These
techniques, which are available as optional features, will be described later.

B.3.2 Other Markup

An entity reference begins with an “entity reference open” (ero) delimiter and ends with a “reference close”
(refc). These are the ampersand and semicolon, respectively, in the following example:

The &SGML; supports publishing and office systems.

A markup declaration is delimited by “markup declaration open” {mdo) and “markup declaration close” (mdc)
delimiters, and a processing instruction by a “processing instruction open” (p/o) and a “processing instruction
close” {pic).

here is an imbedded <!markup declaration> example
and an imbedded <?processing instruction example

To summarize:

String Name Meaning
& ERO Opens a named entity reference

REFC Closes a reference.
<! MDO Opens a markup declaration.
> MDC Closes a markup declaration.
<? PIO Opens a processing instruction.
> PIC Closes a processing instruction.

B.3.3 Record Boundaries

Not every text processing system breaks its storage entities into records. In those that do, the record
boundaries are represented by function characters known as the “record start” (RS) and “record end” (RE).
The record boundaries could be used as general delimiter characters in a variant concrete syntax, or as a
special form of delimiter that serves as a “short entity reference”. If a record boundary is not a delimiter, its
treatment depends on where it occurs.

8.3 Distinguishing Markup from Text 69

ISO 8879-1986(E)

B.3.3.1 Record Boundaries in Data

In attribute values {discussed later) and in the data content of an element, record starts are ignored. The
record ends, though, are treated as part of the data because they might be significant to a processor of the
document. A formatter, for example, normally interprets a record end as a space.

However, record ends are ignored when they are caused by markup. That is:

— Record ends are ignored at the start or end of the content. For example,

<P>
Short paragraph data.
</p>

is the same as

<p>Short paragraph data.</p>

— Record ends are ignored after a record that contains only processing instructions or markup declarations.
As a result,

<P>
Starting data
<?instruction 1>
<?instruction 2>
ending data.

</p>

and

<p>Starting data
<?instruction 1><?instruction 2>ending data.</p>

are equivalent. In other words, as far as the flow of data characters is concerned, declarations and
processing instructions are simply ignored.

B.3.3.2 Record Boundaries in Markup

In tags or declarations, both record starts and record ends are treated as spaces. They serve as internal
separators within the markup (as do horizontal tabs, incidentally).

The meaning of record boundaries within processing instructions depends on the processing system.

B.4 Document Structure

SGML tags serve two purposes:

a) They show the structural relationships among the elements of the document.

b) They identify each element's generic identifier (Gl) and attributes.

The rules for specifying structure and attributes are defined by SGML for all documents. (Some rules have
already been introduced; the others will be discussed later.) The particular elements and attributes allowed in
a document, though, are defined by that document's type definition.

B.4.1 Document Type Definitions

A generic identifier (Gl) identifies an element as a member of a class, or “type”. A document type definition is
a set of markup declarations that apply to all documents of a particular type.

The three most important kinds of declaration that can occur in a document type definition are:

70 B Basic Concepts

ISO 8879-1986(E)

a) An element declaration, which defines the GIs that can occur in each element, and in what order.

b) An attribute definition list declaration, which defines the attributes that can be specified for an element,
and their possible values.

c) An entity declaration, which defines the entities that can be referred to in documents of this type. For
example, entity references can simplify the keying of frequently used lengthy phrases:

<!ENTITY SGML "Standard Generalized Markup Language">

To avoid repetitive keying, the document type definition is usually stored as a separate entity. It is then
incorporated in each document by means of a document type declaration that identifies the document type and
serves as a reference to the external entity.

B.4.2 Element Declarations

Elements can occur in a document only according to the rules of the document type definition. For example,
unless the definition allows a paragraph inside a figure, it would be an error to put one there. The element
declaration is used to define these rules.

B.4.2.1 Content Models

For each element in the document, the application designer specifies two element declaration parameters: the
element's Gl and a content model of its content. The model parameter defines which subelements and
character strings can occur in the content.

For example, the declaration for a textbook might look like this:

<!ELEMENT textbook (front, body, rear) >

Here, “textbook" is the Gl whose content is being defined, and “(front, body, rear)” is the model that defines it.
The example says that a textbook contains the GIs “front”, “body”, and “rear”. (The GIs probably stand for
“front matter”, “body matter”, and “rear matter”, but this is of interest only to humans, not to the SGML
parser.)

A model is a kind of group, which is a collection of connected members, called tokens. A group is bounded by
parentheses, the “group open” (grpo) and “group close” (grpc) delimiters. The parentheses are required even
when the model group contains but a single token.

The tokens in a model group are GIs. There are also delimiters called connectors that put the GIs in order, and
other delimiters, called occurrence indicators, that show how many times each Gl can occur.

B.4.2.2 Connectors and Occurrence Indicators

A connector is used between GIs, to show how they are connected. The textbook model uses the “sequence”
connector (seg), the comma. It means that the elements must follow one another in the document in the same
sequence as their GIs occur in the model.

An occurrence indicator is used after the Gl to which it applies. There are none in the textbook example: each
element must therefore occur once and only once. To make the front matter and rear matter optional, the
question mark, which is the optional occurrence indicator {opt), would be used.

<!ELEMENT textbook (front?, body, rear?) >

So far only the top level of a textbook has been defined. The type definition must also have structure
declarations for “front”, “body”, and “rear”, then for the elements contained in “front”, “body”, and “rear”, and
so on down to the data characters.

For the purposes of a simple example, the body can be assumed to be just a sequence of many paragraphs.
That is, the only Gl allowed in the body is “p” (for paragraph), but it can occur many times. To indicate multiple
paragraphs, the Gl is followed by a plus sign, which is the “required and repeatable” occurrence indicator
(plus).

B.4 Document Structure 71

ISO 8879-1986(E)

<!ELEMENT body (p+) >

The plus sign indicates that there must be at least one paragraph in the body. If, for some reason, it were
desirable to allow a body to have no paragraphs at all, the added symbol would be an asterisk, which is the
“optional and repeatable” occurrence indicator (rep).

<!ELEMENT body (p*) >

Suppose a textbook could have examples in the body, as well as paragraphs. If the Gl for an example were
“xmp”, “many paragraphs or examples” would be indicated like this:

<!ELEMENT body (p | xmp)+ >

The vertical bar is the “or” connector (or). The expression "p | xmp” means “either a paragraph or an
example".

Although a model group contains tokens, it is itself a single token to which an occurrence indicator can apply.
The grouping is needed in the example because the occurrence indicators (“?”, “ + ”, and “*”) have higher
precedence than the connectors (“,” and “|”).

Therefore, it would not be effective to say

<!ELEMENT body (p+ | xmp+) >

because it would mean “either many paragraphs or many examples” rather than the desired “many intermixed
paragraphs or examples”.

There is one more kind of connector to consider. Suppose the front matter of the textbook had a title page that
contained a title, an author's name, and a publisher, but in any order. The seq connector cannot be used
because that requires a specific order. Nor can the or connector, because that chooses only one of the three
elements.

Instead, the ampersand (“&”), which is the “and” connector (and) should be used. It indicates that all of the GIs
in the model group must occur, but in any order.

<!ELEMENT titlepage (title & author & publisher) >

B.4.2.3 Entity References in Models

Suppose two elements have almost the same content model, but not quite.

<!ELEMENT body (p | xmp | hi | h2 | h3 | h4)+ >
<!ELEMENT rear (p j hi | h2 j h3 j h4)+ >

Here, the body and rear matter both have paragraphs and headings, but only the body can have examples.

Repetitive parts of markup declaration parameters can be handled with entity references, just like repetitive
text in a document. The only difference is that entity references used in declaration parameters (“parameter
entity references”) begin with a special character, the percent sign (“%”), called the “parameter entity
reference open” delimiter (pero). The pero must also be used in the entity declaration to show that the entity
being defined is a parameter entity (but as a separate parameter so it won't be misinterpreted as a reference).

<!ENTITY % hlto4 "hi | h2 | h3 | h4" >
<!ELEMENT body (p | xmp j %hlto4;)+ >
<!ELEMENT rear (p j %hlto4;)+ >

B.4.2.4 Name Groups

There is another use for groups. The body matter and rear matter might have the same structure declaration.

72

<!ELEMENT body (p | xmp)+ >
<!ELEMENT rear (p j xmp)+ >

B Basic Concepts

ISO 8879-1986(E)

Keying effort could be saved and the similarity emphasized by letting the declaration apply to a group of
elements.

<!ELEMENT (body | rear) (p | xmp)+ >

B.4.2.5 Data Characters

Up to now, all of the elements discussed contained only other elements. Eventually, though, an application
must deal with the actual data, that is, the point where there are no more tags.

Data can be referred to in a model with the reserved name “//PCDATA”, which means “zero or more parsed
data characters”. As it has, in effect, a built-in rep occurrence indicator, none can be added to it explicitly. The
declaration

<!ELEMENT p (//PCDATA) >

says that a paragraph is a string of zero or more characters (including record ends and spaces).

Incidentally, the reason “#PCDATA” is in upper-case is simply as a reminder that it is defined by the markup
parser. In the reference concrete syntax, the markup parser ignores the case of all names, except those of
entities.

In most documents, elements that contain data characters can also contain other tagged elements. Such
elements normally include short quotations, footnote and figure references, various types of highlighted
phrases, and specialized references or citations defined for a particular document type.

For example, the structure of a paragraph might be defined as:

<!ENTITY % phrase "quote | citation | reference" >
<!ELEMENT p (//PCDATA | %phrase;)* >

These declarations indicate that a paragraph contains characters mixed with “phrase” elements. There can be
none or many of them.

The incidentally, is a delimiter called the “reserved name indicator” (rni) that is used whenever a reserved
name is specified in a context where a user-created name could also occur. The rni makes it clear that
“//PCDATA” is not a Gl.

B.4.2.6 Empty Content

An element can be defined for which the user never enters the content: for example, a figure reference for
which a procedure will always generate the content during processing. To show an empty element, a keyword
is used to declare the content instead of the usual parenthesized model group:

<!ELEMENT figref EMPTY >

An element that is declared to be empty cannot have an end-tag. (None is needed, because there is no content
to be ended by it.)

B.4.2.7 Non-SGML Data

If the body of the textbook contained photographs, the element declaration could be

<!ELEMENT body (p | photo)+ >

A photo is typically represented by a string of bits that stand for the colors of the various points in the picture.
These bit combinations do not have the same meaning as the characters in text and in markup; they have to be
interpreted as a unique notation that is not defined by SGML.

As the markup parser does not scan non-SGML data, it must be stored in a separate entity whose name is
given by a special attribute (discussed later). The element content will be empty.

B.4 Document Structure 73

ISO 8879-1986(E)

<!ELEMENT photo EMPTY >

B.4.2.8 Summary of Model Delimiters

The following list summarizes the delimiters used in models and their character strings in the reference
delimiter set:

— Grouping:
String Name
(GRPO
) GRPC

Meaning
Opens a group. The expression within the group is treated as a unit for other operations.
Closes a group.

Occurrence Indicators:
String Name Meaning
? OPT Optional: can occur 0 or 1 time.
+ PLUS Required and repeatable: must occur 1 or more times.
* REP Optional and repeatable: can occur 0 or more times.

— Connectors:
String Name
, SEQ

! OR
& AND

Meaning
All of the connected elements must occur in the document in the same sequence as in
the model group.

One and only one of the connected elements must occur.
All of the connected elements must occur in the document, but in any order.

— Other:
String Name Meaning
RNI Identifies a reserved name to distinguish it from a user-specified name.

B.5 Attributes

A descriptive tag normally includes the element's generic identifier (GS) and may include attributes as well.
The Gl is normally a noun; the attributes are nouns or adjectives that describe significant characteristics of the
Gl. (The use of verbs or formatting parameters, which are procedural rather than descriptive, is strongly
discouraged because it defeats the purpose of generalized markup.)

The particular attributes allowed for a given element are defined by the type definition, which also determines
the range of values that an attribute can have and what the default values are.

B.5.1 Specifying Attributes

A sample tag with two attributes is shown in figure 10.

The attributes follow the G! in the start-tag. Each attribute is specified by giving its name, the value indicator
delimiter (W), and the attribute value. In the example, the attribute named “security” was given the value
“Internal Use", and the attribute “sender” was given the value “LTG”.

B.5.1.1 Names

Attribute names, such as “security" and “sender” in the example, share certain properties with other kinds of
markup language names already encountered, such as entity names and GIs, A name must consist only of
characters that have been designated as “name characters", and it must start with one of a subset of the name
characters called the “name start" characters.

Normally (that is, in the reference concrete syntax), the name characters are the letters, digits, period, and
hyphen, and the name start characters are the letters only. Lower-case letters in a name are normally treated
as though they were upper-case, so it makes no difference in which case a name is keyed. In entity names,
though, the case is significant.

A name normally has a maximum length of eight characters, but a system could define a variant quantity set in
which name length and other quantitative characteristics of the language could differ from the reference
concrete syntax.

74 B Basic Concepts

ISO 8879-1986(E)

Attribute Attribute
Name

1
j

Value

1
l

<memo
1 1
security =

1

1

"internal Use" sender = "LTG">
1 |

VI 1
1 |

LIT .1 1

Figure 10 — Start-tag yvith 2 Attributes

B.5.1.2 Attribute Values

The value of an attribute consists of data characters and entity references, bounded by delimiters called “literal
delimiters” (lit), which are normally quotation marks ("). Alternative literal delimiters (lita), normally
apostrophes ('), can also be used, but the two types cannot be paired with one another.

An empty attribute value is indicated by two lit delimiters in succession:

<listing name=Jones phone="555-1234" altphone="M>

Record ends and tabs in an attribute value are replaced by spaces. Record start characters are ignored (that
is, removed).

The following list summarizes the delimiter roles and their string assignments in the reference delimiter set:

String Name Meaning
= VI Value Indicator
tt LIT Literal Delimiter
/ LITA Literal Delimiter (Alternative)

B.5.2 Declaring Attributes

For every element, the document type definition must contain information that establishes the element's
attributes. This is done with an attribute definition list declaration. If there is no attribute definition list for an
element, then the element simply has no attributes.

B.5.2.1 Attribute Definition Syntax

The attribute definition list declaration begins with the associated element type to which the attribute definition
list applies. The declaration can specify a single Gl or a group of them, in which case the same attributes apply
to all members of the group.

The declaration also includes, for each attribute, an attribute definition consisting of

a) the attribute name,
b) its allowable values (declared value), and
c) a default value that will be used if the attribute is not specified in the document and omitted tag markup

minimization is in effect (described later).

8.5 Attributes 75

ISO 8879-1986(E)

The attribute list has more parameters than the declarations that have been shown up to now. When dealing
with lengthy declarations, it is helpful to add explanatory comments to them. In a markup declaration,
comments can occur between any parameters, or a declaration could consist solely of comments.

Comments begin and end with two hyphens, the “comment delimiter” (com). One use for comments is to put a
heading over the parameters:

<!-- ELEMENTS NAME VALUE DEFAULT -->

The attribute definition list requires that some of the parameters be repeated for each attribute of the element.
As declarations can span record boundaries, a tabular form of entry can be used if desired. The following
declarations for the memo element in figure 10 are in tabular form:

<!-- ELEMENTS CONTENT -->
<!ELEMENT memo (from, to, subject, body, sig, cc?)>
<!-- ELEMENTS NAME VALUE DEFAULT -->
<!ATTLIST memo status (final|draft)"final"

security CDATA //REQUIRED
version NUMBER M0l"
sender NAME //IMPLIED

>

The meaning of the attribute definition list is as follows:

status The “status” attribute must have a value of “final” or “draft”. As the attribute was not specified
in figure 10, the parser will act as though the default value of “final” was entered.

security The “security” attribute has a string of zero or more characters as its value. The keyword
“REQUIRED” in the default parameter indicates that the attribute must always be specified in the
document.

version The value of the "version” attribute must be a string of 1 or more digits. The default value is the
string “01”.

sender The “sender” attribute must have a syntactically valid SGML name as a value. The keyword
“IMPLIED” indicates that the attribute is optional, and that the value will be supplied by the
application if the attribute is not specified in the document. (In figure 10 it was specified as
“LTG”.)

Note that delimiters can be omitted from the default value when it is composed entirely of name characters.
(The default value parameter keywords begin with the mi, so they cannot be confused with application-defined
names.) In the above example, the default values “final” and “01” could have been entered without delimiters.

Since the topic of comments was introduced, it should also be noted that an empty markup declaration
(“ <! > ”) is also a comment. It can be used to separate parts of the source document with no danger of being
misinterpreted as a use of the “short reference” feature (discussed later), as a blank record might be.

B.5.2.2 Complex Attribute Values

An attribute value might logically consist of a number of elements. For example, an illustration of output
displayed by a computer could have two colors associated with it: green and black. As an attribute can be
specified only once in a tag,

<display color=black color=green>

could not be entered, as it would be an error.

However, by declaring the value “NAMES” for the “color” attribute, both colors can be specified in a single
attribute value:

76 B Basic Concepts

ISO 8879.1986(E)

<!ELEMENT display (p+)>
<!ATTLIST display color NAMES "white black">
<!>
<display color="black green">

The “NAMES" keyword means “a list of one or more SGML names, separated by spaces, record ends, record
starts, or horizontal tab characters”. Some other declared value keywords that allow lists are:

NUMBERS a list of one or more numbers.
NMTOKENS a list of one or more name tokens (like names, but they need not start with a name start

character: for example, “-abc 123 12.3 123a .123”).
NUTOKENS a list of one or more number tokens (like name tokens, but the first character must be a digit:

for example, “123 12.3 123a 0.123”, but not “ 123 456”).

The singular forms “NMTOKEN” and “NUTOKEN” can be used when only a single token is permitted. (Note
that an rni is not needed for the declared value parameter keywords, as a user-defined name cannot be
specified for that parameter.)

A complex attribute could be avoided altogether in this case by defining two separate attributes:

<!ELEMENT display (p+)>
<!ATTLIST display bgcolor NAME "white" fgcolor NAME "black">
<!>

<display bgcolor=black fgcolor=green>

B.5.2.3 Name Token Groups

An attribute value can be restricted to a member of a group of unique names or name tokens, called a name
token group:

<!-- ELEMENTS
<!ELEMENT memo
<!— ELEMENTS NAME
<!ATTLIST memo status
>

Given the above declaration, either

<memo status="draft">

or

<memo status="final">

can be specified. Any other value for the “status” attribute would be incorrect.

A name token can appear only once in the attribute definition list that applies to a single element type. It is
translated to upper-case in the same way as a name.

B.5.2.4 Changing Default Values

If the default value is specified as “CURRENT”, the default will automatically become the most recently
specified value. This allows an attribute value to be “inherited” by default from the previous element of the
same type. (This effect should be kept in mind when adding or deleting tags that specify a current attribute.)

CONTENT -->
(from, to, subject, body, sig, cc?)>
VALUE DEFAULT -->
(final|draft)"final"

B.5 Attributes 77

ISO 8879-1986(E)

B.6 Entities

Entity references and parameter entity references have figured prominently in some of the examples that have
already appeared. Although an entity has a superficial resemblance to a programming language variable, it is
actually a portion of the document, and as such, it is a constant. References permit a number of useful
techniques:

a) A short name can be used to refer to a lengthy or text string, or to one that cannot be entered conveniently
with the available keyboard.

b) Parts of the document that are stored in separate system files can be imbedded.

c) Documents can be exchanged among different systems more easily because references to system-
specific objects (such as characters that cannot be keyed directly) can be in the form of entity references
that are resolved by the receiving system.

d) The result of a dynamically executed processing instruction (such as an instruction to retrieve the current
date) can be imbedded as part of the document.

B.6.1 Entity Reference Syntax

There are two kinds of named entity reference. A general entity reference can be used anywhere in the content
of elements and delimited attribute values. Parameter entity references can be used within markup declaration
parameters that are delimited with lit or lita delimiters. They can also be used to refer to consecutive complete
parameters or group tokens, with their intervening separators.

A general entity reference is a name delimited by an “entity reference open” (ero), normally an ampersand,
and a “reference close” (refc), normally a semicolon:

printed at &site; on

If an entity reference is followed by a space or record end, the refc can be omitted:

printed at &site on

A parameter entity reference is the same, except that it begins with a “parameter entity reference open” (pero),
normally a percent sign. (Incidentally, “normally”, in the context of delimiter strings, means “in the reference
delimiter set”.)

The distinction between general and parameter entities is made so that the document preparer can make up
entity names without having to know whether the same names were used by the support personnel who
created the markup declarations for the document type.

The following list summarizes the delimiters used in entity references and their character strings in the
reference concrete syntax:

String Name Meaning
& ERO Entity Reference Open
% PERO Parameter Entity Reference Open
; REFC Reference Close

B.6.2 Declaring Entities

Before an entity can be referred to it must be declared with an entity declaration. There are two main
parameters: the entity name and the entity text. The declaration

<!ENTITY uta "United Typothetae of America">

means that a reference to the name “uta” (that is, “&uta;”) in the document will be the equivalent of entering
the text “United Typothetae of America”. The entity text is delimited by lit (or lita) delimiters (like an attribute
value), and is known as a “parameter literal”.

78 B Basic Concepts

ISO 8879-1986(E)

An entity does not inherently begin with a record start or end with a record end. If record boundaries are
wanted around an entity, they should be put around the entity reference. The source

<p>The &uta; is a printing organization.</p>

resolves to

<p>The United Typothetae of America is a printing organization.</p>

while the source

<p>Printing organizations:
&uta;
Society of Scientific, Technical, and Medical Publishers

</p>

resolves to

<p>Printing organizations:
United Typothetae of America
Society of Scientific, Technical, and Medical Publishers
</p>

However, if a record end, rather than a refc, is used to terminate an entity reference, the following record is
concatenated to the entity.

&uta
, Inc.

resolves to

United Typothetae of America, Inc.

B.6.2.1 Processing Instructions

A processing instruction can be stored as an entity. It will be ignored when the entity is created but executed
when a reference to the entity occurs.

<!ENTITY page PI "newpage; space 3" >

The keyword “PI” indicates that the entity will be interpreted as a processing instruction when referenced.

B.6.2.2 Entities with Entity References

A parameter entity is declared by specifying a pero as the first parameter, ahead of the entity name:

<!ENTITY % bullet "o" >

Parameter entities can be referenced within a parameter literal:

<!ENTITY prefix "%bullet; " >

The reference to “%bullet;” is resolved when the “prefix” entity is declared. It is not resolved on each
reference to the “prefix” entity.

B.6.2.3 External Entities

In many text processing systems, there are multiple classes of storage, such as files, library members, macro
definitions, and symbols for text strings. Such system dependencies can be kept out of the body of the
document by referencing external storage objects as entities:

<!ENTITY part2 SYSTEM>

B.6 Entities 79

ISO 8879-1986(E)

If the entity name is not sufficient to enable the system to identify the storage object, additional information
(called the “system identifier”) can be specified:

<!ENTITY part2 SYSTEM "user,sectionX3.textfile" >

The system identifier is delimited in the same manner as a parameter literal. The nature and syntax of the
system identifier depends on a component of an SGML system called the entity manager, whose job it is to
convert entity references into real system addresses.

B.6.2.4 Public Entities

An external entity that is known beyond the context of an individual document or system environment is called
a “public entity”. It is given a “public identifier” by an international, national, or industry standard, or simply by
a community of users who wish to share it.

One application of public entities would be shared document type definitions. Another would be shared “entity
sets” of entity declarations that support the graphic symbols and terminology of specialized subject areas, such
as mathematics or chemistry.

Public entities are declared in a manner similar to other external entities, except that a “public identifier
specification” replaces the keyword "SYSTEM”:

<!ENTITY % ISOgrkl
PUBLIC "ISO 8879-1986//ENTITIES Greek Letters//EN">

The specification consists of the keyword “PUBLIC”, the public identifier, which is delimited like a literal, and an
optional system identifier (omitted in the example). The public identifier can contain only letters, digits, space,
record ends and starts, and a few special characters; they are collectively known as the “minimum data”
characters.

B.7 Characters

Each character in a document occupies a position in the document's character set. The total number of
positions depends on the size of the code set; that is, on the number of binary digits (“bits") used to represent
each character.

For example, the character set known as ISO 846 International Reference Version (ISO 646 IRV) is a 7-bit set.
There are 128 bit combinations possible with 7 bits, ranging from the values 0 through 127 in the decimal
number base. In 8-bit sets, 256 bit combinations are possible. The position number, or character number, is the
base-10 integer equivalent of the bit combination that represents the character.

It is also possible to employ “code extension techniques”, in which a bit combination can represent more than
one character. Use of such techniques with SGML is discussed in clause E.3.

B.7.1 Character Classification

Many character sets have been defined, to accommodate a variety of national alphabets, scientific notations,
keyboards, display devices, and processing systems. In each, the sequence of bit combinations is mapped to a
different repertoire of digits, letters, and other characters. Any character set large enough to represent the
markup characters (name characters, delimiters, and function characters) and the minimum data characters,
can be used in an SGML document.

SGML classifies the characters as follows:

function characters The record end and record start, which have already been explained, are function
characters, as is the space. The reference concrete syntax adds the horizontal tab
(TAB), which is used to separate tokens in markup declarations and tags (along with
the space, RS, and RE characters). Function characters can also serve as data
characters, and can occur in short reference delimiters (explained later).

80 B Basic Concepts

ISO 8879-1986(E)

name characters These are characters that can be used in a name. They always include the upper-case
and lower-case letters A through Z and the digits 0 through 9; the reference concrete
syntax adds the period and hyphen. Each name character (other than the digits and
upper-case letters) has an associated upper-case form that is used for case
substitution in names (except for entity names, in the reference concrete syntax). A
subset of the name characters, called the name start characters, consists of the lower¬
case and upper-case letters, plus any other characters that a concrete syntax allows
to start a name.

delimiter set These are characters that, in varying contexts, will cause the text to be construed as
markup, rather than as data.

non-SGML characters These are characters that a document character set identifies as not occurring in
SGML entities, chosen in part from candidates specified by the concrete syntax. The
reference concrete syntax, for example, classifies the control characters in this way
(except for the few that are used as function characters). Non-SGML characters occur
in non-SGML data (such as images) that are in external entities, and in the “envelope”
of the file systems, data streams, etc., that contain or transmit the document. A
system can also use them for its own purposes, such as padding or delimiting during
processing, as there is no possibility of confusing them with markup or data
characters.

data characters All other characters, such as punctuation and mathematical symbols that are not used
as delimiters, are data characters. (Markup characters can also be data, when they
occur in a context in which they are not recognized as markup. Such data is called
“parsed character data”.)

B.7.2 Character References

It is rarely convenient, or even possible, to enter every character directly:

a) There may be no key for it on the entry device.
b) It may not be displayable.
c) It may be a non-SGML character that cannot occur directly as a markup or data character.
d) It may be a function character that you want treated as data, rather than given its SGML function.

For such situations, a technique called a “character reference” is available to enter the character indirectly.
(For visibility, the following illustrations will use a character that could have been keyed, the hyphen.) The two
declarations in the following example are equivalent in any character set in which the hyphen is character
number 45:

<!ENTITY hyphen >
<!ENTITY hyphen >

In the entity declarations illustrated so far, the literals contained only character data as the entity text. In the
above example, the second declaration contains a character reference. The character reference begins with a
“character reference open” delimiter {&#) and ends with a refc delimiter, but instead of a name it contains a
character number.

A literal can have a mix of character data and character references. The following declarations are also
equivalent:

<!ENTITY finis >
<!ENTITY finis "-|-" >

Character references can also be entered directly in attribute values and data content, just as entity references
can.

The function characters can also be referenced by named character references: &#RS;, &#RE;, &#SPACE;, and
&#TAB;. This form of reference is used when the character's function is wanted; the character number form is
used to avoid the function and enter the character as data.

B.7 Characters 81

ISO 8879-1986(E)

The following list summarizes the delimiters used in character references and their character strings in the
reference concrete syntax:

String Name Meaning
&# CRO Character Reference Open
; REFC Reference Close

B.7.3 Using Delimiter Characters as Data

The Standard Generalized Markup Language does not compel the use of particular characters as delimiters.
Instead, it defines delimiter roles as part of an “abstract syntax” and allows character strings to be assigned to
them as part of a concrete syntax definition. Although there are many such roles, the user's ability to enter
data characters freely is essentially unimpeded because:

— Most of the delimiters occur only within markup declarations or tags; only a few occur in the content of
elements.

— The same characters are used for more than one role.

— The delimiter roles that are meaningful in content are contextual; they will only be recognized when
followed by an appropriate contextual sequence {or are otherwise enabled). For example, the ero is only
recognized when it is followed by a name start character.

— Most delimiters are multicharacter strings, which reduces the chance of their occurring as data.

— A multicharacter delimiter or a “delimiter-in-context” will not be recognized if an entity starts or ends within
it.

Because of the last point, ambiguity can always be avoided by using a reference to enter the data character.
Only two entities are needed for most situations in the reference delimiter set, and three more will handle the
special cases:

<!ENTITY amp >
<!ENTITY It "<" >

The entity references “&” and “<” can be used freely in text whenever the ampersand or less-than sign
are wanted, as the use of the reference terminates a delimiter-in-context.

<!ENTITY rsqb "]" >

The right square bracket entity can be used similarly to avoid recognition of a marked section end (discussed
later).

<!ENTITY sol CDATA >

The solidus is a valid delimiter only when the SHORTTAG feature is used (explained later), and even then it
must specifically be enabled for an element. As the delimiter is a single character and requires no contextual
sequence, the entity reference alone is not enough to assure that it will be treated as data. The “CDATA”
keyword is therefore specified; it causes an entity's text to be treated as character data, even though it may
look like a delimiter.

<! ENTITY quot >

The “"" (quotation mark) entity is needed only for the rare instance in which both the lit and //fa delimiter
characters occur as data in the same literal. Normally, if a literal contained the lit character, it would be
delimited with //fa delimiters, and vice versa.

82 B Basic Concepts

ISO 8879-1986(E)

B.8 Marked Sections

A marked section is a section of a document that is entered as a parameter of a marked section declaration in
order to label it for a special purpose, such as disabling delimiters within it, or ignoring the section during
certain processing runs.

B.8.1 Ignoring a Marked Section

If a document is processed on two different systems, a processing instruction that applies to one will not be
understood by the other. The markup parser can be made to ignore one of the instructions if the section of the
document that contains it is marked as a section to be ignored:

<![IGNORE [<?instruction for System A>]]>

The marked section declaration in the example consists of five parts:

a) the marked section start, which consists of the mdo delimiter followed by the “declaration subset open”
delimiter (dso), normally a left square bracket;

<![

b) the status keywords, in this case, the single keyword “IGNORE”;

IGNORE

c) another “declaration subset open” delimiter (dso) to indicate the start of the marked section content;

d) the content;

<?instruction for System A>

e) and the marked section end, consisting of the “marked section close” delimiter (msc), normally two right
square brackets (to balance the two dso delimiters) followed by the mdc.

]]>

The processing instruction for the other system would be marked as one to be included:

<![INCLUDE [
<?instruction for System B>

]]>

Sending the document to system A requires exchanging the status keywords for the two sections. This can be
done most easily by using two parameter entities, one for each processing system. One entity would contain
the character string “IGNORE” and the other would contain “INCLUDE”:

<!ENTITY % systema "IGNORE" >
<!ENTITY % systemb "INCLUDE" >

The “IGNORE” keyword would not be used directly in any marked section declaration. Instead, there would be
a reference to one of the two system-dependent entities. Given the previous declarations, the instruction for
“System A” in the following example will be ignored, while the one for “System B” will be executed:

<![%systema;[<?instruction for System A>]]>
<![%systemb;[<?instruction for System B>]]>

Every other marked section in the document that refers to “%systema;” or “%systemb;” will be affected
similarly.

Now, if the two entity declarations are reversed, as follows,

B.8 Marked Sections 83

ISO 8879-1986(E)

<!ENTITY % systema "INCLUDE" >
<!ENTITY % systemb "IGNORE" >

every marked section in the document that refers to “%systemb;” will be ignored.

Note that even though the section content is ignored, enough parsing is done to recognize nested marked
section starts and ends, so the correct end will be used for the section.

B.8.2 Versions of a Single Document

A document could be published in multiple versions whose text differs slightly. SGML allows all versions of
such a document to be processed without duplicating the text of the common portions. The version-dependent
text is entered in marked sections, using the technique just described, while the common text is not:

<![%vl; [text for version 1]]>
<![%v2; [text for 2nd version]]>
common text for both versions
<![%vl; [more text for version 1]]>
<![%v2; [more text for 2nd version]]>

Now, if the following entity declarations are defined:

<!ENTITY % vl "INCLUDE" >
<!ENTITY % v2 "IGNORE" >

version 1 will be processed, as follows:

text for version 1
common text for both versions
more text for version 1

If the entity declarations are reversed:

<!ENTITY % vl "IGNORE" >
<!ENTITY % v2 "INCLUDE" >

version 2 will be processed, as follows:

text for 2nd version
common text for both versions
more text for 2nd version

B.8.3 Unparsable Sections

A marked section can be labeled as one that is not to be parsed:

<![CDATA [
<?instruction>
<p>A paragraph with an &entityx;
reference that is not recognized.</p>
<?instruction>

]]>

The content of the section is treated as character data, so the two processing instructions and the entity
reference will not be recognized or processed as such.

If it is necessary to resolve entity references and character references while ignoring other delimiters, the
content can be treated as replaceable character data like this:

84 B Basic Concepts

ISO 8879-1986(E)

<![RCDATA [
<?instruction>
<p>A paragraph with an &entityx;
reference that is recognized.</p>
<?instruction>

]]>

CDATA and RCDATA marked sections are not nestable, as are IGNORE marked sections. The first marked
section end will terminate them.

B.8.4 Temporary Sections

A marked section can be flagged as temporary for easy identification and removal:

<![TEMP[<?newpage>]]>

Such sections are useful for temporary “fixes” when a processor does not get things quite right.

B.8.5 Keyword Specification

To facilitate keyword entry with entity references, the four status keywords and “TEMP” can be used
concurrently, and duplicates are permitted. This allows multiple entity references to be used in a single
marked section declaration with no possibility of an error being caused by their resolving to conflicting or
duplicate keywords.

The status keywords are prioritized as follows:

IGNORE
CDATA
RCDATA
INCLUDE

If no status keyword is specified, “INCLUDE” is assumed.

B.8.6 Defining a Marked Section as an Entity

A marked section can be defined as an entity so it can be incorporated at many points in the document:

<!ENTITY phrasel MS
"RCDATA[
a repeated phrase with
a <tag> example
" >

Given this declaration, the input

This is &phrasel; in it.

will resolve to

This is <![RCDATA[
a repeated phrase with
a <tag> example
]] > in it.

The “<tag>” was not recognized as markup because of the “RCDATA” keyword on the marked section
declaration.

Note that there was no record start before the marked section nor a record end after it. The following example
would have produced them:

B.8 Marked Sections 85

ISO 8879-1986(E)

This is
&phrasel;
in it.

A marked section is not parsed or processed as such when the entity is defined. The marked section start and
marked section end are added automatically.

B.9 Unique Identifier Attributes

A unique identifier (“ID") is an attribute that names an element to distinguish it from all other elements. An
SGML markup parser can perform common processing for ID attributes, thereby minimizing the implementation
effort for procedures.

The purpose of IDs is to allow one element to refer to another: for example, to allow a figure reference to refer
to a figure. Normally, the procedure for the figure would associate some data with the ID (such as the figure
number). The figure reference procedure would retrieve the data and print it.

Although the markup parser is normally unaware of the meaning of particular attributes, it can be told when an
attribute is a unique identifier:

<!-- ELEMENT
<!ELEMENT figure
<!-- ELEMENT NAME
<!ATTLIST figure id

CONTENT
(figbody,
VALUE
ID

-->

figcap)>
DEFAULT -->
#IMPLIED>

Only one ID attribute is allowed for an element.

The value of a unique identifier attribute must be a name that is different from the value of any other ID attribute
in the document. As with most names, the upper-case form is used, regardless of how it was entered.

The element that does the referencing must have a “unique identifier reference” attribute, indicated in the
declared value by the “IDREF” keyword:

<!-- ELEMENT CONTENT -->
<!ELEMENT figref EMPTY>
<!-- ELEMENT NAME VALUE DEFAULT -->
<!ATTLIST figref refid IDREF #IMPLIED>

The value of an ID reference attribute must be a name that is the same as that of some element's ID attribute.
As usual, the upper-case form ofthe name is employed.

B.10 Content Reference Attributes

Some documents are formatted and printed as separate chapters. Separate formatting prevents automatic
figure references across chapter boundaries, although they would still be possible within a chapter. An
element definition could support the two types of figure reference by specifying that the content could
sometimes be empty (the intra-chapter case), and that at other times it will be entered explicitly (the cross¬
chapter case).

The condition for emptiness is the specification of an attribute that is designated in the attribute definition as a
“content reference” attribute. (Everything else about the attribute behaves in its usual manner.) The
designation is made by entering the keyword “#CONREF” as the default value:

<!-- ELEMENTS CONTENT -->
<!ELEMENT figref (fignum, #PCDATA)>
<!-- ELEMENTS NAME VALUE DEFAULT -->
<!ATTLIST figref refid IDREF #CONREF>

The keyword means that the attribute is a content reference attribute, and also that it is an impliable attribute
(the same as if the default value were “^IMPLIED”).

86 B Basic Concepts

ISO 8879-1986(E)

In the following example, the first “figref” has empty content, while the second has both a “fignum” and a
character string:

Here is text with a generated figure reference to
<figref refid=figdavis>and a user-entered
reference to <figref><fignum>A-l</fignum>in the
Appendix</figref> as well.

The first “figref" did not (and could not) have an end-tag because the element was identified as empty by the
explicit content reference.

An element that just happens to be empty because its content model is optional and no content is entered is not
treated in this way. Such an incidentally empty element must have an end-tag (unless markup minimization is
used, as explained later), because it is impossible to tell from the start-tag whether an instance of the element
is actually empty.

It would be pointless (and is therefore prohibited) to designate a content reference attribute for an element that
is declared to be empty.

To summarize (and expand slightly): content reference attributes can be designated for any element type that
is not declared empty. When one or more such attributes has an explicit value specified on the start-tag, that
instance of the element is considered empty, and no end-tag is permitted for it.

B.11 Content Model Exceptions

The content model specifies the elements that occur at the top level of the content (the subelements). However,
there are instances when it may be necessary to refer to elements that are further down. An optional
parameter of the element declaration, called the “exceptions” parameter, is used for this purpose.

B.11.1 Included Elements

In an indexed book, entry elements for the index could be interspersed anywhere in the source. During
formatting, the procedures would collect, sort, and merge them, along with their page numbers, and print the
index.

It is cumbersome to express the relationship of the book to its index entries in the usual way, as the entries
would have to be included in almost every model group. Instead, the exceptions parameter can be employed:

<!-- ELEMENTS CONTENT (EXCEPTIONS)? -->
<!ELEMENT textbook (front?, body, rear?) +(entry)>

The plus sign is the plus delimiter. Here it means that index entries can occur anywhere in a textbook, even
among the data characters. This portion of an exceptions parameter is called an “inclusion” group.

(Incidentally, the question mark on the heading comment is just a reminder that the exceptions parameter is
optional.)

B.11.2 Excluded Elements

It might be desirable to keep some element from showing up at any level of an element being defined. For
example, figures could be kept from nesting with the following declaration:

<!-- ELEMENTS
<!ELEMENT fig
<!ELEMENT figbody
<!ELEMENT p

CONTENT (EXCEPTIONS)? -->
(figbody, figcap?) -(fig)>
(artwork | p+) >
(//PCDATA | fig) >

The content model clearly does not allow a figure to occur at the top level of another figure, but the figure body
could contain a paragraph that could contain a figure. The exceptions parameter with the minus prefix (hyphen)
prevents such occurrences; it is called an “exclusion” group.

B.11 Content Model Exceptions 87

ISO 8879-1986(E)

A Gl can be in an exclusion group only if its token in all affected model groups has an opt or rep occurrence
indicator, or is in an or group or an applicable inclusion group. In other words, you cannot exclude anything
with an exclusion group that the model group requires to be in the document. It follows from this that you
cannot use an exclusion group to change the required or optional status of a token; for example, you cannot
exclude all the members of a required or group, thereby rendering it no longer required.

It is possible to specify both exclusion and inclusion exception groups, in that order.

<!-- ELEMENTS CONTENT (EXCEPTIONS)? -->
<!ELEMENT fig (figbody, figcap?) -(fig|xmp) +(gloss)>

If the same Gl is in both an exclusion and an inclusion group, whether in the same content model or in the
content models of different open elements, its presence in the exclusion group governs.

B.12 Document Type Declaration

The document type of an SGML document is identified by a “document type declaration”, which occurs in the
“prolog” of the document, before any data. The element, attribute list, and other declarations that have been
discussed, which constitute the document type definition, are grouped in a parameter called the “declaration
subset”:

<!DOCTYPE manual [
<!ELEMENT manual (front?, body, rear?) +(entry)>
<!-- Remainder of declarations constituting the

document type definition go here. -->
]>

The left and right square brackets are the “declaration subset open” (cfso) and “declaration subset close” (dsc)
delimiters, respectively.

The part of an SGML document that occurs after the prolog, and which contains the data and descriptive
markup, is called an “instance” of the document type (or just “document instance”).

If, as is usual, a number of documents conform to the same document type definition, a single copy of the
definition can be kept in an external entity and referenced from the documents. The entity can simultaneously
be declared and referenced by specifying an external identifier on the document type declaration:

<!DOCTYPE manual PUBLIC "-//Cave Press//DTD Manual//EN">

Where the entire definition is external, as in the above example, no declaration subset is needed. Normally, an
external definition and a subset are used together, with the subset containing things like entity declarations that
apply only to the one document.

<!DOCTYPE manual PUBLIC "-//Stutely Press//DTD Manual//EN" [
<!ENTITY title "AIBOHPHOBIA: Fear of Palindromes">
<!-- Remainder of local declarations supplementing

the document type definition go here. -->
]>

The external entity is technically considered part of the subset, as if a reference to it occurred just before the
dsc. This allows the declarations in the document to be executed first, which gives them priority over those in
the external entity.

B.13 Data Content

The data content of a document is the portion that is not markup. It has two major characteristics:

a) Its representation determines whether the markup parser can scan it.

There are two main classes: character data, in which the bit combinations represent characters, and bit
data, in which the bit combinations (singly or collectively) usually represent binary values.

88 B Basic Concepts

ISO 8879-1986(E)

b) Its notation determines how the character or bit strings will be interpreted by the procedures.

In a natural language notation, for example, the character string "delta” might be interpreted as an
English word, while in a scientific notation it could be interpreted as a single graphic, a Greek letter.

B.13.1 Data Content Representations

The Standard recognizes two data representations: character data that conforms to the Standard, and non-
SGML character or bit data that does not.

B.13.1.1 Character Data (PCDATA, CDATA, and RCDATA)

In character data, each bit combination represents a character in the document character set.

Before a character can be considered character data, it normally must be parsed to determine whether it is
markup. Such characters are represented in a model group by the keyword “PCDATA”.

In a paragraph with the following structure, a character could either be data or part of a “phrase” or “quote”
element tag:

<!ELEMENT p (#PCDATA | phrase | quote)* >

A character could also be part of a markup declaration, processing instruction, entity reference, or other
markup that is allowed in the content of an element. Only if it is not a tag or other markup would it be treated
as data and passed to a procedure for processing.

A character used for markup is not normally passed to a procedure, but when the optional “DATATAG” feature
(discussed later) is used, a character could be both markup and data. A space, for example, could serve as the
end-tag for a word and still be part of the data of the sentence in which the word occurs.

It is also possible to enter character data directly, without it being parsed for markup in the usual way. An
element declaration can declare its content to contain character data by specifying a keyword, rather than a
content model:

<!ELEMENT formula CDATA >

Note that no rni was required, because a user-defined name cannot be specified for this parameter (except
within model group delimiters).

If an element contains declared character data, it cannot contain anything else. The markup parser scans it
only to locate an etago or net; other markup is ignored. Only the correct end-tag (or that of an element in which
this element is nested) will be recognized.

A variation of CDATA, called replaceable character data, is specified with the keyword “RCDATA”. It is like
CDATA except that entity references and character references are recognized.

B.13.1.2 Non-SGML Data (NDATA)

Non-SGML data is data that is not parsable in accordance with this Standard. It is either data in an undefined
character set, bit data, or some mix of the two. In undefined character set data, the bit combinations represent
characters, but not in the document character set. In bit data, the bit combinations, although they can be
managed as characters, do not represent a character repertoire in the usual way.

As non-SGML data cannot be scanned by the markup parser, and may contain bit combinations that could, for
example, erroneously cause the operating system to terminate the file, it must be stored in an external entity.
Its location is made known to the parser by an entity declaration, in the usual manner, except for additional
parameters identifying it as non-SGML data:

<!ENTITY japan86 SYSTEM NDATA kanji>

B.13 Data Content 89

ISO 8879-1986(E)

Non-SGML data can be entered only in general entities whose declaration specifies the NDATA keyword and
the name of a data content notation (explained later). Such an entity can be referenced with a general entity
reference anywhere in the content that a reference is recognized and a data character could occur.

If it is desired to associate attributes with the non-SGML data, a dedicated element type can be defined for it.
An NDATA element must have empty content and an attribute definition for an “ENTITY” (“general entity
name”) attribute whose value is the name of the external entity.

<!ELEMENT Japanese EMPTY>
<!ATTLIST Japanese file ENTITY //REQUIRED

subject (poetry|prose) prose
>

The markup for a “japanese” element includes the entity name as the value of the “file" attribute:

<japanese file="japan86">

An external entity attribute can be defined for any element, even one with a content model. The application
determines, as with all attributes, how its value relates to the element content for the processing being
performed.

B.13.2 Data Content Notations

The difference between one type of non-SGML data and another (or one kind of character data and another, for
that matter) lies in the data content notation. The notation is not significant to the markup parser, but it is quite
significant to humans and procedures.

An enormous number of data content notations are possible. However, they tend to fall into a few distinct
classes.

B.13.2.1 Notations for Character Data

Some common classes of notation for character data are natural languages, scientific notations, and formatted
text.

Natural Languages:

When a natural language notation is used, the procedures interpret the characters as implicitly marked text
elements. For example, a sequence of characters bounded by interword spaces could be recognized as a
“word” element, a sequence of words terminated by suitable punctuation as a “phrase” or “sentence”
element, and so on. In such notations, an RE is usually interpreted as an interword space.

For additional flexibility, a natural language text notation can be supplemented by explicit markup for
specialized variants of elements that are normally implicit (for example, quoted phrases, programming
keywords, emphasized phrases).

In conventional text processing systems, implicit markup conventions and the trade-offs between explicit and
implicit markup are built in. In SGML, the data tag markup minimization feature (discussed later) allows a user
to specify the extent to which such elements will be recognized by the markup parser and the extent to which
they will be interpreted by the procedures as part of the data content notation.

Natural language notations occur in elements such as paragraphs, list items, and headings. The content is
usually mixed content, in which data characters are intermixed with subelements.

Scientific Notations:

These notations look like natural language notations, but the words and phrases are meaningful to the
application. In a mathematical notation, for example, the phrase “3 over 4” could be interpreted as the fraction
“3/4”.

90 B Basic Concepts

ISO 8879-1986(E)

Scientific notations occur in elements such as formulas, equations, chemical structures, formal grammars,
music, and so on. The element content is usually CDATA or RCDATA, which allows systems that cannot
interpret the scientific notation to process the element as if a natural language notation had been used.

Formatted Text:

Formatted text notations are similar to natural language notations, and features of both might be incorporated
in a single notation. Their purpose is to identify elements of the “layout structure” produced by a previous
formatting application. Formatted text notations include character sequences that identify formatted line
endings, spaces and hyphens introduced for alignment purposes, font change codes, superscripts and
subscripts, etc.

These notations are found in the same element types as natural language notations (paragraphs, headings,
etc.) and, when the optional concurrent document type feature is used (discussed later), in elements of the
layout structure of the formatted document. The content is normally mixed content.

B.13.2.2 Notations for Non-SGML Data

In NDATA entities, the bit combinations (singly or collectively) can represent undefined characters, binary
values, or a mixture of binary values and characters.

Undefined Characters:

Natural language, scientific, and formatted text notations are found in NDATA just as in CDATA, but in other
than the document character set. The data could, for example, employ code extension techniques that assign
multiple bit combinations to a single character, while the document character set does not. Such a scheme is
used for languages that require more characters than there are bit combinations in the document character set.

Binary Values:

Binary values can be interpreted as grey scale or color values for pixels in an image, digitized audio, musical
wave forms, or as other sets of numeric or logical values. The principal application of binary value notations in
text processing is in the representation of illustration elements: half-tones, photographs, etc.

Record boundaries are frequently ignored in binary notations, but need not be.

Mixed Binary and Character:

A scientific or formatted text data notation could use a mixture of characters and binary fields. Such notations
are treated as unparsable NDATA notations because bit combinations in the binary fields could erroneously be
interpreted as markup delimiters.

B.13.2.3 Specifying Data Content Notations

The set of data content notations used in the document must be declared with notation declarations. Each
declaration specifies the name of a data content notation used in the document, together with descriptive
information about it:

<!NOTATION eqn PUBLIC "-//local//NOTATION EQN Formula//EN">
<!NOTATION tex PUBLIC "-//local//NOTATION TeX Formula//EN">
<!NOTATION lowres SYSTEM "SCAN.MODULE" -- Low resolution scan -->

An element's data content notation is specified with a notation attribute. The attribute's declared value is the
keyword “NOTATION” followed by an additional parameter, a name group:

<!-- ELEMENTS
<!ELEMENT formula
<!-- ELEMENTS NAME
<!ATTLIST formula data
<!>

CONTENT -->
RCDATA>
VALUE DEFAULT -->
NOTATION(eqn|tex) #REQUIRED>

<formula data="eqn">3 over 4</formula>

B.13 Data Content 91

ISO 8879-1986(E)

The name group contains the valid values of the attribute.

B.14 Customizing

Many of the characteristics of the Standard Generalized Markup Language can be tailored to meet special
needs.

B.14.1 The SGML Declaration

The tailoring of a document is described in its SGML declaration, a markup declaration that appears as the first
thing in a document. The SGML declaration is normally provided automatically by the markup parser, but if a
document's tailoring differs from what a processing system expects, the SGML declaration must be entered
explicitly.

There are two main categories of tailoring: using optional features of SGML and defining an variant concrete
syntax.

B.14.1.1 Optional Features

There are eleven optional features that can be used:

SHORTREF
CONCUR
DATATAG
OMITTAG
RANK
SHORTTAG
SUBDOC
FORMAL
SIMPLE
IMPLICIT
EXPLICIT

Short entity reference delimiters
Concurrent document type instances
Data tag minimization
Omitted tag minimization
Omitted rank suffix minimization
Short tag minimization
Nested subdocuments
Formal public identifiers
Simple link process
Implicit link process
Explicit link process

They are described in annex C.

B.14.1.2 Variant Concrete Syntax

The heart of SGML is the “abstract syntax” that defines the manner in which such markup constructs as
generic identifiers, attributes, and entity references are used. The delimiter characters, declaration names and
keywords, length restrictions, etc., that have been discussed in this Annex constitute a particular mapping of
the abstract syntax to a real set of characters and quantities, known as the “reference concrete syntax”.

SGML allows a document to employ a variant concrete syntax to meet the needs of system environments,
national languages, keyboards, and so on. The characteristics of the concrete syntax are declared on the
SGML declaration in the following categories:

a) Delimiter assignments, including short entity reference delimiters.

b) Character use, including identification of function characters and candidates for non-SGML characters.

c) Naming rules, including name character alphabet and case translation.

d) Definition of substitute declaration names, keywords, and other reserved names.

e) Quantitative characteristics, such as the maximum length of names and attribute values.

B.14.2 Impact of Customization

An SGML document that uses the reference concrete syntax and no features (known as a “minimal SGML
document”) will be interchangeable among all SGML systems. Over time, though, it is expected that other
combinations of features and variant concrete syntaxes will come into wide use. Some possibilities are:

92 B Basic Concepts

ISO 8879-1986(E)

a) Documents that are keyed directly by humans for publishing applications will probably use the
SHORTREF, SHORTTAG, and OMITTAG features. (Those that use only these features and the reference
concrete syntax are known as “basic SGML documents”.)

b) Documents that will be used for linguistic analysis or in connection with structured data bases will
probably use the DATATAG feature.

c) Documents produced by intelligent word processors will probably use little minimization. Such systems
will also employ the concurrent document type feature so that unformatted “logical structures” and
formatted “layout structures” can be represented simultaneously.

d) User organizations will define feature menus to meet their special requirements.

B.15 Conformance

A document that complies with this International Standard in every respect is known as a “conforming SGML
document”. A system that can process such a document is known as a “conforming SGML system”. This
International Standard sets no requirements on the architecture, the method of implementation, or the handling
of markup errors, employed by conforming systems.

B.15 Conformance 93

ISO 8879-1986(E)

Annex C

Additional Concepts

(This annex does not form an integral part of this International Standard.)

This annex introduces the optional features that can be used in an SGML document. There are three
categories: markup minimization, link type, and other features.

— Markup minimization features

These features allow markup to be minimized by shortening or omitting tags, or shortening entity
references. Markup minimization features do not affect the document type definition, so a minimized
document can be sent to a system that does not support these features by first restoring the omitted
markup.

The features are SHORTTAG, OMITTAG, SHORTREF, DATATAG, and RANK.

— Link type features

These features allow the use of “link process definitions”, which specify how a source document should be
processed to produce a result document of another type (such as a formatted document).

Link processes are specified in link type declarations, which are independent of document type declarations
or any other markup. However, they must be removed before sending a document to a system that does
not support these features.

The link type features are SIMPLE, IMPLICIT, and EXPLICIT, which refer to the degree of control that can be
exercised in specifying the result document.

— Other features

These features allow elements and entities to be redefined for different parts of the document, and public
identifiers to be interpreted for automatic processing. They do affect the document type definition, so a
document using these features may require modification before sending it to a system that does not
support them.

The features are CONCUR, SUBDOC, and FORMAL.

Use of the optional features is indicated on the feature use parameter of the SGML declaration (except for
SHORTREF, whose use is indicated by the concrete syntax, and by its own “short reference mapping”
declarations).

C.1 Markup Minimization Features

The markup minimization features are:

SHORTTAG

OMITTAG
SHORTREF
DATATAG
RANK

means short tags with omitted delimiters, attribute specifications, or generic identifiers may
be used.
means some tags may be omitted altogether.
means short reference delimiters may be used instead of complete entity references,
means data characters may serve simultaneously as tags,
means element ranks may be omitted from tags.

C.1.1 SHORTTAG: Tags With Omitted Markup

A short tag is one from which part or all of the usual markup has been omitted.

94 C Additional Concepts

ISO 8879-1986(E)

C.1.1.1 Unclosed Short Tags

The tagc can be omitted from a tag that is immediately followed by another one.

For example, this markup:

<chapter><p>A short chapter.</p></chapter>

can be abbreviated to this:

<ehapter<p>A short chapter.</p</chapter>

by omitting the tagc from the “chapter" start-tag and the "p” end-tag.

C.1.1.2 Empty Tags

An empty short tag is one in which no Gl or attributes are specified; the tag consists solely of its delimiters. The
parser assumes, for an empty end-tag, that the Gl is the same as that of the most recent open element. For
example, the following would be equivalent with short tag minimization:

This is a <q>quoted</q> word.
This is a <q>quoted</> word.

For empty start-tags, when the omitted tag feature is not also enabled, the parser uses the Gl of the most
recently ended element and the default values of the attributes. Using both empty start- and end-tags, a list
could be marked up as follows:

<!ELEMENT -- CONTENT EXCEPTIONS? --
1 list (item+)
2 item (p | list)*
>

<list>
<item>This is the first item (what else ?)</>
<>This is the second item.</>
<>This is the third and last item.</>
</list>

(See C.1.2.6 for use of the short tag feature when the omitted tag feature is enabled.)

Markup can be reduced further by using the single character “null end tag” (net) delimiter (normally “/”) that is
enabled by the short tag feature. A net is interpreted as an empty end-tag only for an element in which it was
also used as (that is, in place of) the tagc delimiter.

<p>This paragraph has
a <q/quotation/ in it and
a solidus (/) that is data.</p>

The following list summarizes the delimiters used with the short tag feature and their character strings in the
reference delimiter set:

String Name Meaning
I NET Null end-tag.

C.1.1.3 Attribute Minimization

All or part of an attribute specification list can be omitted under the following circumstances:

Value Delimiters:

The delimiters can be omitted from the specification of an attribute value if the value is limited to name
characters.

C. 1 Markup Minimization Features 95

ISO 8879-1986(E)

<standard security=public>

Note that entity references are not permitted in such attribute values.

Defaulting:

If an attribute was declared with an actual default value, or the keywords “//IMPLIED” or "//CONREF”, the
complete specification for it can be omitted. The attribute will be treated as though the default value had been
specified for it. (This rule also applies to current attributes after they have once been specified.)

Names:

An attribute's name and vi delimiter can be omitted if its declared value included a name group or name token
group.

This form of minimization is useful when the attribute values imply the attribute name. A memo, for example,
might have a “status” attribute whose value was either “draft” or “final”.

CONTENT -->
(from, to, subject, body, sig, cc?)>
VALUE DEFAULT -->
(final|draft) final >

The usual markup for the attribute:

<memo status="draft">

<!-- ELEMENTS
<!ELEMENT memo
<!-- ELEMENTS NAME
<!ATTLIST memo status

would be cumbersome in this instance, since “draft” implies “status”. With SHORTTAG minimization, however,
either

<memo status="draft">

or

<memo status=draft>

or

<memo draft>

could be entered in the document.

Omitting attribute names tends to make the document markup more ambiguous. This effect can be ameliorated
if the groups are kept small and the name tokens chosen are descriptive adjectives that imply the attribute
name (for example, "NEW | REVISED", "SECRET | INTERNAL | PUBLIC"). In the following example, the
“compact” attribute is better from this standpoint than is “emphasis”:

<!-- ELEMENTS CONTENT -->
<!ELEMENT list (item*)>
<!-- ELEMENTS NAME VALUE DEFAULT -->
<!ATTLIST list compact (compact) //IMPLIED

emphasis (0|1|2|3) 0
>

C.1.2 OMITTAG: Tags May be Omitted

A type definition establishes the possible variations in structure among documents of its type. An individual
document, therefore, need not contain as much markup.

96 C Additional Concepts

ISO 8879-1986(E)

C.1.2.1 Tag Omission Concepts

Assume that a class of magazine article documents, with a Gl of “article”, has the following type definition:

<!-- ELEMENTS CONTENT >
<!ELEMENT article (title, body) >
<!ELEMENT title (//PCDATA) >
<!ELEMENT body (p*) >
<!ELEMENT p (//PCDATA | list)* >
<!ELEMENT list (item+) >
<!ELEMENT item (//PCDATA, (p | list)*) >

The full markup for an instance of an article might look something like this:

<article>
<title>The Cat</title>
<body>
<p>A cat can:
<list>
<item>jump</item>
<item>meow</item>
</list>
</p>
<p>It has 9 lives.

</P>
</body>
</article>

Note that the type definition says that a paragraph cannot immediately contain another paragraph; it can
contain only text characters and lists. Similarly, a list item cannot immediately contain another list item (even
though it could contain another list). As a result, the markup can be minimized by omitting many of the end-
tags:

<article>
<title>The Cat</title>
<body>
<p>A cat can:
<list>
<itera>jump
<item>meow
</list>
<p>It has 9 lives.
</article>

It is possible to omit the item end-tag: the occurrence of another item indicates the end of the previous one
(because an item cannot contain an item). The paragraph end-tag is omissible by the same reasoning (a
paragraph cannot contain another paragraph).

Finally, it is logical that the end of an element should also be the end of everything it contains. In this way, the
article end-tag ends the body and the last paragraph as well as the article.

(The markup could be minimized still further, as the reader will no doubt realize.)

0.1.2.2 Specifying Minimization

Markup minimization is a good thing, but not if it makes it harder to detect markup errors. In the last example,
had the list end-tag been omitted, it would have been implied by the article end-tag, just as the body end-tag
was.

C. 1 Markup Minimization Features 97

ISO 8879-1986(E)

<article>
<title>The Gat</title>
<body>
<p>A cat can:
<list>
<item>jump
<item>meow
<p>It has 9 lives.
</article>

This would not have been the author's intention, though, as the last paragraph would erroneously have been
made part of the last item in the list.

To prevent such misinterpretations, there are two parameters on the element declaration that specify the
omitted tag minimization that is allowed for an element. When “OMITTAG YES” is specified on the SGML
declaration, the omitted tag feature is enabled, and the two minimization parameters are then required in all
element declarations.

C.1.2.3 End-tag Omission: Intruding Start-tag

An end-tag is omissible when its element's content is followed by the start-tag of an element that cannot occur
within it. This was the case for the paragraph and item end-tags in the article example. The element
declarations would look like this:

<!-- ELEMENTS MIN
<!ELEMENT p - 0
<!ELEMENT list - -
<!ELEMENT item - 0

and have the following meaning:

CONTENT >
(//PCDATA | list)* >
(item+) >
(//PCDATA, (p | list)*) >

a) The “MIN” heading identifies a pair of parameters for start-tag and end-tag minimization. Both
parameters must be specified.

b) The “O” indicates that omitted tag minimization is allowed for the end-tag of the “p” and “item” elements.

c) The hyphen is the minus delimiter; it indicates that no minimization is allowed for the start-tags.

Recall that an end-tag must always be omitted if an element has empty content, because anything that follows
the start-tag must then be part of the containing element. Although this rule has nothing to do with markup
minimization, it is helpful to mark the “O” as a reminder that no end-tags will be found in the document.

<!ELEMENT figref - 0 EMPTY>

C.1.2.4 End-tag Omission: End-tag of Containing Element

A contained element's end-tag is omissible when it is followed by the end-tag of an element that contains it.

<! -- ELEMENTS MIN CONTENT >
<!ELEMENT list - - (item-1-) >
<!ELEMENT item - 0 (//PCDATA) >

The above declaration allows the end-tag of the third item to be omitted from the following list, because it is
implied by the list end-tag:

<list>
<item>This is the first item (what else ?)</item>
<item>This is the second item.</item>
<item>This is the third and last item.
</list>

98 C Additional Concepts

ISO 8879-1986(E)

C.1.2.5 Start-tag Omission: Contextually Required Element

A start-tag is omissible when the element type is contextually required and any other element types that could
occur are contextually optional.

Combined with the other minimization discussed previously, the element declaration would be:

<! — ELEMENTS MIN CONTENT >

<!ELEMENT list - - (item+) >
<!ELEMENT item 0 0 (//PCDATA) >

and the list could be marked up like this:

<list>
This is the first item (what else ?)
<item>This is the second item.
<item>This is the third and last item.
</list>

The start-tag was omissible for the first item because it was required; it could not be omitted for the subsequent
items because they were optional.

Even when an element is contextually required, its start-tag cannot be omitted if the element type has required
attributes or a declared content, or if the instance of the element is empty.

C.1.2.6 Combination with Short Tag Minimization

When short tag and omitted tag minimization are both enabled, empty start- and end-tags are treated uniformly:
they are given the Gl of the most recent open element. The two forms of minimization can be used together, as
in the following example:

<!--

<!ELEMENT
<!ELEMENT
<!ELEMENT
<list>
<item>This Is the first item (what else ?)
<>This is the second item.
<>This is the third and last item.
</list>

ELEMENTS MIN CONTENT >

P - 0 (//PCDATA | list)* >
list - - (item+) >
item 0 0 (//PCDATA, (p | list)*) >

Note that it was necessary to say “ </list> ” instead of “ </> ” at the end, because the latter would have meant
“item end-tag”, rather than “list end-tag”. Alternatively, “</> </>” could have been entered to mean “end
the item, then end the list”.

Now consider what happens when the markup is minimized further by removing the first item start-tag:

<list>
This is the first item (what else ?)
<>This is the second item.
<>This is the third and last item.
</list>

The identical results are achieved because when the first empty tag was encountered, “item” and not "list” was
the open element, even though “item” was implied by “O” minimization rather than entered explicitly.

C.1.2.7 Markup Minimization Considerations

Short tag minimization requires the user (and the markup parser) to know the current location in the
document's structure, and to understand attribute list declarations. Omitted tag minimization, though, also
requires knowledge of the element declarations.

C. 1 Markup Minimization Features 99

ISO 8879-1986(E)

This difference should be considered in deciding what kind of minimization the user can be expected to handle
properly, as omitting a tag could result in a document that, while free of SGML errors, is not what the user
intended.

C.1.3 SHORTREF: Short Reference Delimiters May Replace Complete Entity References

Short references are single characters or short strings that can replace complete delimited entity references.
They can be used to emulate common typewriter keyboarding and to simplify the entry of elements with
repetitive structures.

C.1.3.1 Typewriter Keyboarding: Generalized WYSIWYG

Some word processors offer text entry operators an interface similar to that of the typewriters on which many
operators were trained. On typewriters, each function key produces an immediate formatting result as it is
struck: a carriage return starts a new line, a tab key generates horizontal space, and so on. Word processors
that emulate this characteristic of typewriters are sometimes known as “WYSIWYG” systems—for “what you
see is what you get”.

The characters produced by function keys are specific processing instructions. Like all processing instructions,
they limit a document to a single formatting style, executable only on machines that understand the
instructions.

SGML, though, can offer the benefit of familiar typewriter keyboarding while still maintaining the generality of
the document. With short references, typewriter function key characters can be interpreted as descriptive
markup. For example, the declarations

<!ENTITY ptag STARTTAG "p" >
<!SHORTREF Wysiwyg "&#TAB;" ptag

"&#RS;&#RE;" ptag >

map both the tab and the line feed, carriage return sequence (empty record) to the start-tag for a paragraph
element. The actual formatting for a paragraph depends, as always, on the application procedure, just as if the
start-tag had been entered explicitly. But the entry device still produces the tabbing or extra line called for by
the function characters, thereby giving the user the immediate visual feedback that is such an important aspect
of WYSIWYG systems.

The markup declarations have effectively created “generalized WYSIWYG”, in which typewriter function
characters are interpreted as generalized markup while retaining their visual effect. Moreover, the user can
freely intermix generalized WYSIWYG with explicit tags, using whichever is most convenient for a particular
part of the document. This ability can be particularly helpful for complex elements, such as multipage tables
with running headings, where typewriter functions do not offer a convenient and generally accepted entry
convention.

C.1.3.2 Typewriter Keyboarding Example: Defining a Short Reference Map

With short references, a user can create SGML documents with common word processing entry conventions,
rather than conscious entry of markup. A large number of character strings are defined as short reference
delimiters in the reference concrete syntax. Those containing “invisible” function characters and the quotation
mark are particularly useful for supporting common keyboarding; they are:

String
&#TAB;
&#RE;
&#RS;
&#RS;B
&#RS;&#RE;
&#RS;B&#RE;
B&#RE;
&#SPACE;
BB

Description
Horizontal tab
Record end
Record start
Leading blanks (record start, one or more spaces and/or tabs)
Empty record (record start, record end)
Blank record (record start, one or more spaces and/or tabs, record end)
Trailing blanks (one or more spaces and/or ta.bs, record end)
Space
Two or more blanks (two or more spaces and/or tabs)
Quotation mark

100 C Additional Concepts

ISO 8879-1986(E)

Each short reference delimiter can be associated with an entity name in a table called a "short reference map”.
A delimiter that is not “mapped" to an entity is treated as data. Entity definition is done in the usual manner,
with an entity declaration. The mapping is done with a "short reference mapping declaration". The following
example defines an empty record as a reference to the paragraph start-tag:

<!ENTITY ptag "<p>">
<!SHORTREF mapl "&//RS; &//RE;" ptag>

The “SHORTREF" declaration defines a map named “mapl”. The map contains only one explicit mapping: the
empty record short reference is mapped to the entity “ptag”. Whenever this map is current (explained later),
an empty record will be replaced by the entity reference. For example,

Last paragraph text.

Next paragraph text.

will be interpreted as

Last paragraph text.
&ptag;
Next paragraph text.

which will instantaneously, upon resolution of the entity reference, be reinterpreted as

Last paragraph text.

<P>
Next paragraph text.

As no other short reference strings were mapped, they will be treated as data while this map is current.

C.1,3.3 Typewriter Keyboarding Example: Activating a Short Reference Map

Normally, a map is made current by associating its name with an element type in a “short reference use”
declaration. The following example causes “mapl” to become the current map whenever a “chapter” begins:

<!USEMAP mapl chapter>

Whenever a chapter begins, mapl will become current and will remain current except within any nested
subelements that are themselves associated with maps.

A short reference map need not be associated with every element type. An element that has none will simply
use whichever map is current at its start. In the following example, the quote and chapter elements have maps,
but the paragraph element does not:

<!ENTITY Ptag "<p>" -- paragraph start-tag >
<!ENTITY qtag "<quote>" >
<!ENTITY qendtag ,,</quote>" >
<!SHORTREF chapmap "&//RS;&//RE;" ptag

» tt f , _ .
qtag >

<!SHORTREF qmap qendtag>
<!USEMAP chapmap chapter>
<!USEMAP qmap q>
<!ELEMENT chapter (p*) >
<!ELEMENT P (q|//PCDATA)* >
<!ELEMENT q (//PCDATA) >

When a paragraph element begins, “chapmap” will remain current; it maps the quotation mark to the “qtag”
entity, which contains the quote start-tag. Once the quote element begins, “qmap” becomes the current map,
and the quotation mark will be replaced by a reference to the “qendtag” entity, which contains the quote end-
tag. At the end of the quote, the paragraph element resumes, and with it the “chapmap” short reference map.

C. 1 Markup Minimization Features 101

ISO 8879-1986(E)

The markup

<chapter<p>Here is "a quotation" in the text.</p>

is now the equivalent of

<chapter<p>Here is <quote>a quotation</quote> in the text.</p>

The declarations allow the quotation mark to serve as the start-tag and end-tag of quotation elements, rather
than being treated as data. Formatting procedures could therefore use opening and closing curved quotation
marks to distinguish the start and end of the quotation, which would not otherwise be possible with normal
typing conventions.

Incidentally, when declaring an entity whose replacement text is a tag, the following forms of entity declaration
can be used:

<!ENTITY qtag STARTTAG "quote" >
<!ENTITY qendtag ENDTAG "quote" >

The “STARTTAG” and “ENDTAG” keywords allow the tag delimiters to be omitted. They also allow a system to
optimize the handling of the entity because it knows it will most likely be used as a tag rather than as data.

Short entity references can be used only in elements whose content was defined by a model {that is, not in
CDATA or RCDATA). They cannot be used in attribute values or declaration parameters.

C.1.3.4 Tabular Matter Example

Many printable characters are defined as short reference delimiters in the reference concrete syntax (see
figure 4). These characters can be used as substitutes for the more lengthy general entity references, which
allows a more concise and visual style of markup when appropriate, as in tables:

<!ENTITY row "<row><col>" >
<!ENTITY col "</col><col>" >
<!ENTITY endrow "</col></row>" >
<!SHORTREF tablemap

I! / II
(row

"|" col
")" endrow >

<!USEMAP tablemap table>
<!ELEMENT table (row*)>
<!ATTLIST table columns NUMBER #REQUIRED>
<!ELEMENT row (col+)>
<!ELEMENT col (#PCDATA)>
<!>

<table columns=3>
(rowl,coll|rowl,col2|rowl,col3)
(row2,coll|row2,col2 j row2,col3)
(row3,collj row3,col2 j row3,col3)
(row4,collj row4,col2 j row4,col3)
</table>
<! >

The example allows the parentheses and the vertical bar (|) to be used as entity references. (As short
references are only recognized in content, there is no danger of the vertical bar being construed as an or
connector.) The text will resolve to the following:

<table columns=3>
<row><col>rowl,coll</col><col>rowl,col2</col><col>rowl,col3</col></row>
<row><col>row2,coll</col><col>row2,col2</col><col>row2,col3</col></row>
<row><col>row3,coll</col><col>row3,col2</col><col>row3,co!3</col></row>
<row><col>row4,coll</col><col>row4,col2</col><col>row4,col3</col></row>
</table>

102 C Additional Concepts

ISO 8879-1986(E)

The “tablemap” is current only during the table so that the short reference delimiters can be used as data in
the rest of the document.

C.1.3.5 Special Requirements

Although short reference maps are normally associated with specific element types, it is possible to use a short
reference use declaration to select one arbitrarily:

<figure>
Opening text of figure (uses normal figure map).
<!USEMAP graphics -- Enable character graphics short refs -->
Remaining text of figure (uses "graphics" map).
</figure>

The map named in the declaration (here “graphics”) replaces the current map for the most recently started
element (here “figure”), just as if it had been named on the “figure” element declaration. However, it applies
only to this instance of a figure, not to any other. If the normal figure map is required later in this figure, it must
be activated with a short reference use declaration, but for later figures it will become current automatically.

It is possible to cancel all mappings by using the reserved map name “#EMPTY” instead of a normal map
name. The “empty” map, which causes all short reference delimiters to be treated as data (or separators), will
be current under the same circumstances as a normal map would have been.

Short references, though powerful, are not adequate for interpreting arbitrary existing documents as if they had
been marked up with SGML. They are intended to let a user supplement normal SGML markup with familiar
word processing entry conventions. In conjunction with the other markup minimization techniques, short
references make it possible to eliminate most conscious markup, even without an “intelligent” word processor.

C.1.4 DATATAG: Data May Also be a Tag

The data tag minimization feature allows a content model to define data characters that will be interpreted as
tags while remaining part of the data content.

The techniques of markup minimization discussed so far go a long way toward creating text that appears
almost free of markup. The following list, for example, has no visible explicit markup within it:

C.1 Markup Minimization Features 103

ISO 8879-1986(E)

<!ENTITY itemtag STARTTAG jobitem --JOBITEM
<!SH0RTREF listmap "&#RS;" itemtag >
<!USEMAP listmap joblist>
<!-- ELEMENTS MIN CONTENT -->
<!ELEMENT joblist - - (jobitem+)>
<!ELEMENT jobitem - 0 (#PCDATA)>
<joblist>
Sharon Adler, Vice Chairman
Larry Beck, Secretary
Anders Berglund, Publisher
Aaron Bigman, Past Member
Jim Cox, Past Member
Bill Davis, Chairman
Joe Gangemi, Member
Charles Goldfarb, Editor
Mike Goodfellow, Consultant
Randy Groves, Member
Charles Lightfoot, Past Member
Sperling Martin, Past Member
Bettie McDavid Mason, Consultant
Jim Mason, Member
Lynn Price, Theoretician
Stanley Rice, Pioneer
Norm Scharpf, Observer
Craig Smith, Theoretician
Joan Smith, Publicist
Ed Smura, Member
Bill Tunnicliffe, Member
Kit von Suck, Member
</joblist>

The end-tag for each “jobitem” but the last is omissible because it is followed by a jobitem start-tag. The last is
implied by the end of the list. The start-tags are present explicitly, but not visible, because they are in entities
referenced by a non-printing short reference delimiter (the record start). The list thus appears completely
marked up with only two tags consciously entered by the user, but there is more that could be done.

The element declaration states that a “jobitem” is merely a sequence of characters. A reader, however, sees it
as containing separate “name” and “job” elements because the comma and spaces identify the job title as
clearly as a start-tag would have. Such a situation, in which the conventions used in the data can
unambiguously identify elements within it, is known as data tag minimization.

The SGML data tag feature allows these conventions
use of a data tag pattern:

<!-- ELEMENTS MIN CONTENT -
<!ELEMENT jobitem - 0 ([name, ",
<!ELEMENT name 0 0 (#PCDATA)>
<!ELEMENT job 0 0 (#PCDATA)>

to be expressed in an element declaration through the

" "], j°b)>

The declaration states (among other things) that:

a) The start-tag for a “name” is omissible because it must be the first thing in a “jobitem”.

b) The “name” end-tag is omissible when it occurs in a “jobitem”, because it is implied by the comma and
spaces of the data tag pattern.

c) The “job” start-tag is omissible because a “job” element is not allowed in a “name”.

d) The “job" end-tag is omissible because it is implied by the end of the “jobitem”.

The complete declaration for the “joblist” would appear as follows:

104 C Additional Concepts

ISO 8879-1986(E)

<!ENTITY
<!SHORTREF
<!USEMAP
<! --
<!ELEMENT
<!ELEMENT
<!ELEMENT

itemtag
listmap
listmap
ELEMENTS
jobitem
name
job

STARTTAG jobitem --JOBITEM start-tag-->
"&//RS;n itemtag >
joblist>
MIN CONTENT -->
- 0 ([name, ", ", " "], job)>
0 0 (//PCDATA)>
0 0 (//PCDATA)>

Characters are normally either data or markup, but not both. The essence of data tag minimization is that
characters are both data and a tag at the same time. A data tag is an end-tag that conforms to a data tag
pattern that follows the data tag's element in a data tag group in its containing element's model. In the above
example, the data tag group is

r ^ ft ft it ii i [name, , ,]

The group is a seq group, bracketed by the “data tag group open” {dtgo) and “data tag group close” (dtgc)
delimiters (normally "[” and “]”), instead of the usual group delimiters, to indicate its special nature. There
are three tokens in the group:

a) The Gl of the minimizable element:

name

b) The data tag template, which in this case is a single literal, but could also be an or group made up of
literals:

II II

J

The literal means “a comma followed by a space”.

c) A data tag padding template (which is optional):

II II

It means that zero or more spaces could follow the required comma and space to constitute the data tag.

Thus, any string consisting of a comma and one or more spaces that occurs after a “name” element begins in a
“jobitem" will be construed as the “name” end-tag. It will also, however, be considered part of the data of the
“jobitem”.

Note the differences between a data tag and a short reference whose entity is an end-tag:

a) The short reference string is markup, not data.

b) The short reference is recognized in any element whose map has it mapped to an entity. The data tag is
recognized only when its element is open and the containing element is that in whose model the data tag
group occurred.

c) The short reference is a constant string; the data tag can be any of a number of strings that conform to the
data tag pattern.

Data tag minimization is useful for applications that analyze text. The following example uses data tags to
identify sentences and words within a paragraph:

C. 1 Markup Minimization Features 105

ISO 8879.1986(E)

<!ENTITY % stop '(

<!ENTITY % pause '(

'. &//RE;"
'7&//RE;"
'!&//RE;"

')

"):

- 0
0 0
0 0

1 " ".)&//RE; " 1 "•)
"? " "?)&//RE; " j "?)

1 "! " "!)&//RE; " 1 "O
&//RE;" 1 ", " 1 ", &//RE; "
; &//RE;" j : ", 1 ": &//RE;"
)&//RE;" 1 ",) " 1 ",)&//RE;
;)&//RE;m 1 "O " 1 ":)&//RE;
), &//RE;" 1 "); " 1 ") ; &//RE;
) : &//RE;")' >

)' >

<!ELEMENT p
<!ELEMENT sentence
<!ELEMENT word
<p>The first sentence ends here.
The second sentence ends
here.
This is the third sentence. The
fourth sentence ends, not here!,

</p>

([sentence, %stop;]+)>
([word, %pause;, " "]+)>
(//PCDATA)>

but here!

In the example, a word end-tag is a “pause” character string followed by zero or more spaces. All words but
the last in each sentence have a data tag that conforms to this pattern.

The sentence end-tag is a “stop” character string that ends with either a record end or two spaces. When the
tag is recognized, an omitted end-tag for the last word is implied by the usual “end of containing element” rule.

Care must be taken with text entry when using data tag minimization. In the following example, an abbreviation
will erroneously be treated as a sentence end-tag:

I wonder whether Mrs. G.
will read this.

The following list summarizes the delimiters enabled by the data tag feature and their character strings in the
reference delimiter set:

Char Name Meaning
[DTGO Data tag group open.
] DTGC Data tag group close.

C.1.5 RANK: Ranks May be Omitted from Tags

The rank of an element is its level of nesting. In many document types, rank is only implied by the beginning
and ending of nested elements, such as lists, and is never specified explicitly in the document markup.

Some markup designers, though, prefer to use explicit rank designations for some elements, such as headings
and paragraphs {for example, pi, p2). Such elements tend to have declarations like:

<! - - ELEMENTS MIN CONTENT -->
<!ELEMENT pi - 0
<!ELEMENT p2 - 0
<!ELEMENT p3 - 0
<!ELEMENT p4 - 0

and document markup like:

(//PCDATA, p2*)>
(//PCDATA, p3*)>
(//PCDATA, p4*)>
(//PCDATA)>

<pl>Text of 1st level paragraph.
<pl>Another 1st level paragraph.
<p2>Nested 2nd level paragraph.
<p2>Another 2nd level paragraph.
<pl>Back to 1st level.

106 C Additional Concepts

ISO 8879-1986(E)

The SGML RANK feature offers a more convenient way of specifying rank explicitly. An element can be
designated a ranked element by dividing its Gl into a rank stem and a rank suffix, which must be a number.

<!-- ELEMENTS MIN CONTENT -->
<! ELEMENT pi - 0 (//PCDATA, p2*)>
<!ELEMENT p 2 - 0 (//PCDATA, p3*)>
<!ELEMENT p 3 - 0 (//PCDATA, p4*)>
<! ELEMENT p 4 - 0 (//PCDATA)>

When the rank feature is used, a rank stem can be entered in a tag instead of the complete Gl. The complete Gl
will be derived from the stem and the last rank suffix specified for an element with that stem.

<pl>Text of 1st level paragraph.
<p>Another 1st level paragraph.
<p2>Nested 2nd level paragraph.
<p>Another 2nd level paragraph.
<pl>Back to 1st level.

A group of element types can share the same rank if they have identical content models. Such a group is called
a ranked group. For example, if a document had normal paragraphs, numbered paragraphs, and bulleted
paragraphs, each might contain any of the three at the next level down. The declaration

<!-- ELEMENTS MIN CONTENT —>
<!ELEMENT (p|n|b) 1 - 0 (//PCDATA, (p2 |n2 |b2)*)>
<!ELEMENT (pjnjb) 2 - 0 (//PCDATA, (p3 jn3 |b3)*)>
<! ELEMENT (pjnjb) 3 - 0 (//PCDATA, (p4 j n4 j b4)*)>
<!ELEMENT (pjnjb) 4 - 0 (//PCDATA)>

lets a document contain:

<pl>Text of 1st level paragraph.
<n>Numbered 1st level paragraph.
<p2>Nested 2nd level paragraph.
Bulleted 2nd level paragraph.
<pl>Back to 1st level.

C.2 LINK Features: SIMPLE, IMPLICIT, and EXPLICIT

The discussion thus far has been confined to markup for a single document type: the logical, or abstract,
structure of a source document that is to be processed. However, the result of processing a document is also a
document, albeit one that might have a radically different document type definition.

For example, a document that conforms to a one-dimensional source document type with a logical structure
composed of chapters, sections, and paragraphs, will, after formatting, also conform to a two-dimensional
result document type with a “layout” structure whose elements are pages, columns, text blocks, and lines.

The two document types will coincide at certain points, certainly at the highest (document) level and possibly at
others. A chapter in the logical structure, for instance, might correspond to a “page set” in the layout structure.

SGML supports multiple document types in two different ways:

a) Link process definitions: document type definitions can be linked to specify how a document can be
transformed from one type (the “source”) to another (the “result"); for example, how the markup that
would describe the data in terms of the result layout structure should be generated from the source logical
markup.

b) Concurrent document instances: the markup for instances of multiple document types can exist
concurrently in a single document.

C.2 LINK Features: SIMPLE, IMPLICIT, and EXPLICIT 107

ISO 8879-1986(E)

C.2.1 Link Process Definitions

Link set declarations can be Used in applications such as formatting to specify how logical elements in the
source (for example, paragraphs or list items) should be transformed into layout elements in the result (for
example, text blocks).

For example, if “para” and “item” elements were defined in the source, and a “block” element were defined in
the result with an “indent” attribute, then

<!LINK docset para block [indent=3]
item block [indent=5]

>

would cause a paragraph to be formatted as a text block with an indent of 3. List items would also be formatted
as text blocks, but with an indention of 5. The source text:

<item>Text of list item.</item>

would become the result text:

<block indent=5>Text of list item.</block>

For all other cases (assuming SHORTTAG minimization), all other attributes of the block would have their
default values, as defined in the block's element declaration.

The LINK features are described in detail in clause 12.

C.3 Other Features

The remaining features are:

CONCUR means that instances of the specified number of document types (1 or more) may occur
concurrently with the base document type.

SUBDOC means the specified number of open subdocument entities (1 or more) may be nested in the
SGML document.

FORMAL means that public identifiers are to be interpreted formally.

C.3.1 CONCUR: Document Instances May Occur Concurrently

It is sometimes useful to maintain information about a source and a result document type simultaneously in the
same document, as in “what you see is what you get” (WYSIWYG) word processors. There, the user appears to
interact with the formatted output, but the editorial changes are actually made in the source, which is then
reformatted for display.

There are also cases in which even more than two such “views” of the document can be useful, such as
maintaining multiple formatted results for instant display on both a CRT and a printer while still having the
logical document type available for other applications.

The concurrent document instance feature supports multiple concurrent structural views in addition to the
abstract view. It allows the user to associate element, entity, and notation declarations with particular
document type names, via multiple document type declarations.

The document type names are then prefixed to tags and entity references, thus permitting multiple alternative
sets of start-tags, end-tags, and entities to be used in a document in addition to the base set. Other markup and
data can be associated with an instance of a particular document type by means of marked sections whose
“INCLUDE” or “IGNORE” status is set by a qualified keyword associated with that type.

In the previous example, if the layout document type were called “layout", the concurrent markup for the
formatted list item would be (without markup minimization):

108 C Additional Concepts

ISO 8879-1986(E)

<item>
<(layout)block indent=5>Text of list item.
</item>
</(layout)block>

C.3.2 SUBDOC: Nested Subdocument Entities May Occur

A document in SGML is made up of one or more entities. The one in which the document begins is called an
“SGML document entity”; it is the one that contains the SGML declaration that identifies the features and
concrete syntax used throughout the document. The SGML document entity also contains one or more
document type definitions, and is marked up to conform to one or more of those definitions.

An entity that conforms to SGML markup is called an “SGML entity”. An SGML entity can contain references to
“non-SGML data entities” that contain only data that cannot be parsed, or to other SGML entities that don't
contain their own document type definitions, called “SGML text entities”.

When the subdocument feature is used, an SGML entity can also contain references to “SGML subdocument
entities”, which do contain their own document type definitions. An SGML subdocument entity must conform to
the SGML declaration of the SGML document entity, but in other respects it establishes its own environment.
The document types and entity declarations of the entity referencing a subdocument are suspended while the
subdocument entity is open, and restored when it ends. Current rank begins anew in the subdocument, as do
unique identifiers, so there can be no ID references between the SGML document and its subdocuments.

Subdocuments are referenced in the same manner as non-SGML data entities. A general entity reference can
be used anywhere in content that it can be recognized, and where a data character could occur (that is, in
mixed content or in replaceable character data). Alternatively, an element can be declared to have a general
entity name attribute that locates the subdocument entity:

<! ENTITY artl SYSTEM SUBDOO
<!ELEMENT article - - EMPTY>
<!ATTLIST article file ENTITY #REQUIRED>
<!>
<p>This topic is treated in the next article.</p>
<article file=artl>

Note that the element type need not be the same as the document type of the subdocument entity. The latter is
specified by the document type declaration within it.

This feature allows separately created documents of various types to be incorporated into a single document,
such as an anthology.

C.3.3 FORMAL: Public Identifiers are Formal

When this feature is used, public identifiers have a formal structure with a number of components.

a) An owner identifier, which can be an ISO publication number, an identifier that conforms to a registration
standard to guarantee uniqueness, or a private (“unregistered”) identifier.

b) A public text class, which identifies the kind of text being registered: SGML document, entity set,
document type definition, and so on.

c) A public text identifier which names the registered text.

d) A designation of the natural language used, in the form of a standard two-character name.

e) An optional version, which identifies the output devices supported for device-dependent public text that is
available in versions for more than one device. A system can automatically substitute the best version for
the device in use during a given process.

C.3 Other Features 109

ISO 8879-1986(E)

Annex D

Public Text

(This annex does not form an integral part of this International Standard.)

SGML specifies how markup such as generic identifiers, attributes, and entity references is recognized, but no
specific GIs or other names are part of the language. The vocabulary is made up by users to meet their needs,
and is defined in the document type and link process definitions.

Substantial benefit can be derived from individual use of SGML (as was the case with earlier generic coding
and generalized markup language designs). However, trade organizations, technical societies, and similar
groups desiring to interchange documents could benefit further by sharing document type definitions and other
markup constructs.

To this end, SGML includes a syntax for referencing text with public identifiers. This annex describes some
applications for public text, and defines some public entity sets for immediate use.

D.1 Element Sets

Sets of element declarations can be created for elements that normally do not exist as independent documents,
but which can occur in a variety of document types.

D.1.1 Common Element Types

There are certain elements that have well-recognized common forms that can occur in a variety of documents.
Some involve specialized data content notations as well (see below).

Some examples from the United States, with sources of existing specifications, are:

a) Legal citations (Harvard Law Review)
b) Mathematical formulas (Association of American Publishers)
c) Chemical formulas (American Chemical Society)
d) Bibliography entries (Library of Congress)
e) Name and address (direct mail organizations, directory publishers, telephone companies)

D.1.2 Pro Forma Element Types

There are a number of element configurations that occur in a variety of documents and elements, but usually
with differences in the GIs, or other variations. Public pro forma descriptions of such configurations would
serve as guides for constructing specific descriptions that a user might require.

Examples of such elements are:

a) Paragraph (for typical formatting applications)
b) Paragraph (for detailed syntactic or other analysis)
c) Tables
d) Nested ranked paragraph structures
e) Lists

D.2 Data Content Notations

There are commonly used data content notations that could be adapted for use with SGML and given public
identifiers.

For example, the EQN mathematical notation could be adapted as follows:

110 D Public Text

ISO 8879-1986(E)

a) The commands that indicate the start and end of an EQN statement are not needed, as the tags for a
formula element would serve that function.

b) The remainder of EQN could be used unmodified as the data content notation (possibly supplemented by
descriptive markup for some of the mathematical elements).

<p>The formula,
<q><formula notation=EQN>E equals m
times c squared</formula></q>
should provide speedy enlightenment.</p>

D.3 Variant Concrete Syntaxes

The shunned character identification and function character identification parameters of the reference concrete
syntax were chosen to maximize the chance of successful interchange with the widest possible set of SGML
systems. Unlike dedicated word processors, text processing applications frequently reside in operating system
environments over which they have no control, and which do not necessarily conform to ISO standards
governing system architecture and communications. In such cases, a bit combination that SGML would treat as
data might be interpreted as a control character by the operating system, resulting in abnormal behavior. To
prevent such errors, the reference concrete syntax prohibits direct occurrence in the document of any bit
combinations that might be construed as controls, except for four universally recognized function characters.

For some national languages, however, additional function characters are needed so that code extension
techniques can be used to allow keyboards and displays to respond to changes in the character repertoire as
text is entered or revised. This sub-clause defines two public variant concrete syntaxes that allow function
characters for code extension to occur in SGML entities in a manner that prevents them, or the additional
graphic characters, from mistakenly being interpreted as markup.

D.3.1 Multicode Concrete Syntaxes

The multicode basic concrete syntax is described by the SGML declaration concrete syntax parameter shown in
figure 11. Its public identifier is:

"ISO 8879-1986//SYNTAX Multicode Basic//EN”

The multicode core concrete syntax is the same as the multicode basic concrete syntax, except that “NONE” is
specified for the “SHORTREF” parameter. Its public identifier is:

“ISO 8879-1986//SYNTAX Multicode Core//EN”

These syntaxes allow markup to be recognized only in the GO set because a shift to G1, G2, or G3 begins with a
function character that suppresses markup recognition.

The LSO function restores markup recognition while shifting back to GO. It must be entered after an escape
sequence occurs to allow further markup recognition.

NOTE — Techniques for device-independent code extension that allow mixed use of ISO 2022 and non-ISO 2022 devices are discussed in

clause E.3.

D.4 Entity Sets

Tens of thousands of graphic characters are used in the publishing of text, of which relatively few have been
incorporated into standard coded character sets. Even where standard coded representations exist, however,
there may be situations in which they cannot be keyboarded conveniently, or in which it is not possible to
display the desired visual depiction of the characters.

To help overcome these barriers to successful interchange of SGML documents, this sub-clause defines
character entity sets for some of the widely-used special graphic characters. The entity repertoires are based
on applicable published and proposed International Standards for coded character sets, and current industry
and professional society practice.

D.4 Entity Sets 111

ISO 8879-1986(E)

SYNTAX

SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 127 255

BASESET "iso 646-1983//CHARSET
International Reference Version (IRV)//ESC 2/5 4/0"

DESCSET 0 14 0
14 1 "LSO in ISO 2022"
15 1 "LSI in ISO 2022"
16 112 16

128 14 UNUSED
142 1 "SS2 in ISO 2022"
143 1 "SS3 in ISO 2022"
144 112 UNUSED

FUNCTION RE 13
RS 10
SPACE 32
TAB SEPCHAR 9
-- Functions for graphic repertoire code extension --
-- Markup is recognized only in the GO set. --
ESC MSOCHAR 27 -- Escape --
LSO MSICHAR 15 -- Locking-shift zero (GO set) -
LSI MSOCHAR 14 -- Locking-shift one (G1 set) --

-- LS1R, LS2, LS2R, LS3, and
LS3R are ESC sequences --

SS2 MSSCHAR 142 -- Single-shift two (G2 set) --
SS3 MSSCHAR 143 -- Single-shift three (G3 set) -

NAMING LCNMSTRT
tm

UCNMSTRT mi

LCNMCHAR
II _ II -- Lower-case hyphen, period are --

UCNMCHAR
II II -- same as upper-case (45 46).

NAMECASE GENERAL YES
ENTITY NO

DELIM GENERAL SGMLREF
SH0RTREF SGMLREF

NAMES SGMLREF
QUANTITY SGMLREF

Figure 11 — Multicode Basic Concrete Syntax

NOTE — Entity repertoires are necessarily larger and more repetitious than character sets, as they deal in general with higher-level

constructs. For example, unique entities have been defined for each accented Latin alphabetic character, while a character set might

represent such characters as combinations of letters and diacritical mark characters. These public entity sets should therefore not be

construed as requirements for new standard coded character sets.

D.4.1 General Considerations

This sub-sub-clause discusses design criteria applicable to the public entity sets included in this annex.

D.4.1.1 Format of Declarations

The entity sets published here are definitional; the entity text simply consists of the entity name in square
brackets, and there is a comment describing the symbol, rather than a (possibly) device-dependent coded
representation of it:

112 D Public Text

ISO 8879-1986(E)

<!ENTITY frac78 SDATA "[frac78]M--=fraction seven-eighths-->

If, as in the above example, the comment contains an equals sign, the description is essentially that given the
character in ISO 6937, which also contains a visual depiction of the character.

If, as in the following example, the comment includes a name (of any length) preceded by a solidus, the name is
an identifier of a visual depiction of the character in MathSci, an expansion of mathfile, 26-Apr-85, published by
the American Mathematical Society, 201 Charles St., Providence, Rl 02940, U.S.A..

<!ENTITY frown SDATA "[frown]"--/frown R: down curve-->

A comment can include an ISO 6937 description, one or more MathSci identifiers, or none or all of them.

NOTE — In the MathSci document, an identifier is preceded by a reverse solidus, rather than a solidus.

A comment can include a single upper-case letter, followed by a colon, as in the previous example. The letter
indicates that in conventional mathematical typesetting, the character is treated differently from an ordinary
character, as follows:

Letter Treated as:
A Relation (arrow)
B Binary operator
C Closing delimiter
L Large operator
N Relation (negated)
O Opening delimiter
P Punctuation
R Relation

D.4.1.2 Corresponding Display Entity Sets

A system will need to provide corresponding display entity sets for the output devices it supports, in which the
entity text is replaced by processing instructions or character sequences that will produce the desired visual
depiction. The entity name and descriptive comment would, of course, remain the same. For example, the
declaration

<!ENTITY frac78 SDATA "7/8"--=fraction seven-eighths-->

might be used in a display character entity set for output devices that did not support ISO 6937/2, while

<!ENTITY frac78 SDATA "ß"---fraction seven-eighths-->

might be used in an entity set for 8-bit coded devices that did. For a text formatter driving a photocomposer, a
declaration like the following might be used:

<!ENTITY frac78 SDATA "?bf pi;?pf"--=fraction 7/8-->

NOTE — All of the entity declarations use the “SDATA” keyword as a reminder that the entity text could be system-specific character data
that might require modification for different output devices and applications.

D.4.1.3 Entity Names

The entity names are derived from the English language. They were chosen for maximum mnemonic value,
consistent with the logical and systematic use of abbreviations.

NOTE -- Translations may be desired for other languages.

The entity names are case-sensitive, so the case of letters within the name can identify the case of the
character, indicate the doubling of a line, or be used for some other convention.

D.4 Entity Sets 113

ISO 8879-1986(E)

The entity names are limited to six characters in length, and employ only letters and numerals, so they can be
used with a variety of concrete syntaxes.

NOTE- If shorter names are desired for frequently used entities, they can be defined in the documents where the frequent use occurs.

Some characters have different semantic connotations in different application contexts. Multiple entities were
defined for some of them.

NOTE - if a different name would be more expressive in the context of a particular document, the entity can be redefined within the

document.

D.4.1.4 Organization of Entity Sets

The entity sets were organized principally to reflect the structure of the ISO 6937 character sets, or to group
large numbers of similar characters together. This organization is not likely to be optimal for most applications,
which will normally require a mix of entities from a number of sets. Permission is granted to copy all or part of
the public entity sets in this sub-clause in any form for use with conforming SGML systems and applications,
provided the ISO copyright notice {including the permission-to-copy text) is included in all copies. In particular,
entities can be copied from a number of public sets to form a new set, provided the ISO copyright notice is
included in the new set.

NOTE - If the same entity name occurs in more than one public set, and both are needed in a document, an entity with a different name

should be declared for one of them within the document.

D.4.2 Alphabetic Characters

This group of character entity sets uses a consistent naming scheme in which the character, or a transliteration
of it, is followed by an abbreviation for the accent, and/or a designator of a non-Latin alphabet. The character is
capitalized in the entity name when the entity represents its capital form.

D.4.2.1 Latin

This entity set consists of Latin alphabetic characters used in Western European languages, other than those in
UC Letter and LC Letter.

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOlatl PUBLIC

"ISO 8879-1986//ENTITIES Added Latin 1//EN">
%IS01atl;

<!ENTITY aacute
<!ENTITY Aacute
<!ENTITY acirc
<!ENTITY Acirc
<!ENTITY agrave
<!ENTITY Agrave
<!ENTITY aring
<!ENTITY Aring
<!ENTITY atilde
<!ENTITY Atilde
<!ENTITY auml
<!ENTITY Auml
<!ENTITY aelig
<!ENTITY AElig
<!ENTITY ccedil
<!ENTITY Ccedil
<!ENTITY eth

SDATA "[aacute]
SDATA "[Aacute]
SDATA "[acirc]
SDATA "[Acirc]
SDATA "[agrave]
SDATA "[Agrave]
SDATA "[aring]
SDATA "[Aring]
SDATA "[atilde]
SDATA "[Atilde]
SDATA "[auml]
SDATA "[Auml]
SDATA "[aelig]
SDATA "[AElig]
SDATA "[ccedil]
SDATA "[Ccedil]
SDATA "[eth

-=small a, acute accent-->
-=capital A, acute accent-->
-=small a, circumflex accent-->
-=capital A, circumflex accent-->
-=small a, grave accent-->
-=capital A, grave accent-->
-=small a, ring-->
-=capital A, ring-->
-=small a, tilde-->
-=capital A, tilde-->
-=small a, dieresis or umlaut mark-->
-=capital A, dieresis or umlaut mark-->
-=small ae diphthong (ligature)-->
-=capital AE diphthong (ligature)-->
-=small c, cedilla-->
-=capital C, cedilla-->
-=smal1 eth, Icelandic-->

114 D Public Text

ISO 8879-1986(E)

<!ENTITY ETH
<!ENTITY eacute
<!ENTITY Eacute
<!ENTITY ecirc
<!ENTITY Ecirc
<!ENTITY egrave
<!ENTITY Egrave
<!ENTITY euml
<!ENTITY Euml
<!ENTITY iacute
<!ENTITY Iacute
<!ENTITY icirc
<!ENTITY Icirc
<!ENTITY Igrave
<!ENTITY Igrave
<!ENTITY iuml
<!ENTITY Iuml
<!ENTITY ntilde
<!ENTITY Ntilde
<!ENTITY oacute
<!ENTITY Oacute
<!ENTITY ocirc
<!ENTITY Ocirc
<!ENTITY ograve
<!ENTITY Ograve
<!ENTITY os lash
<!ENTITY Os lash
<!ENTITY otilde
<!ENTITY Otilde
<!ENTITY ouml
<!ENTITY Ouml
<!ENTITY szlig
<!ENTITY thorn
<!ENTITY THORN
<!ENTITY uacute
<!ENTITY Uacute
<!ENTITY ucirc
<!ENTITY Ucirc
<!ENTITY ugrave
<!ENTITY Ugrave
<! ENTITY uuml
<!ENTITY Uuml
<!ENTITY yacute
<!ENTITY Yacute
<!ENTITY yuml

SDATA "[ETH]"--=capital Eth, Icelandic-->
SDATA "[eacute]"--=small e, acute accent-->
SDATA "[Eacute]M--=capital E, acute accent-->
SDATA "[ecirc]"--=small e, circumflex accent-->
SDATA "[Ecirc]"--=capital E, circumflex accent-->
SDATA "[egrave]"--=small e, grave accent-->
SDATA "[Egrave]"--=capital E, grave accent-->
SDATA "[euml]"--=small e, dieresis or umlaut mark-->
SDATA "[Euml j"--“capital E, dieresis or umlaut mark-->
SDATA "[iacute]"--=smal1 i, acute accent-->
SDATA "[Iacute]"~-=capital I, acute accent-->
SDATA "[icirc]"--=small i, circumflex accent-->
SDATA "[Icirc]"--=capitai I, circumflex accent-->
SDATA "[igrave]"--=small i, grave accent-->
SDATA "[Igrave]"--^capital I, grave accent-->
SDATA "[iuml]"--=small i, dieresis or umlaut mark-->
SDATA "[Iuml]"--^capital I, dieresis or umlaut mark-->
SDATA "[ntilde]"---small n, tilde-->
SDATA "[Ntilde]"--=capital N, tilde-->
SDATA "[oacute]"--=small o, acute accent-->
SDATA "[Oacute]"---capital 0, acute accent-->
SDATA "[ocirc]"---small o, circumflex accent.-->
SDATA "[Ocirc]"---capital 0, circumflex accent-->
SDATA "[ograve]"---small o, grave accent-->
SDATA "[Ograve]"--^capital 0, grave accent-->
SDATA "[oslash]"---small o, slash-->
SDATA "[Oslash]"---capital 0, slash-->
SDATA "[otilde]"-~-small o, tilde-->
SDATA "[Otilde]"--^capital 0, tilde-->
SDATA "[ouml]"---small o, dieresis or umlaut mark-->
SDATA "[Ouml]"---capital 0, dieresis or umlaut mark-->
SDATA "[szlig]"---small sharp s, German (sz ligature)-->
SDATA "[thorn]"--=small thorn, Icelandic-->
SDATA "[THORN]"--=capital THORN, Icelandic-->
SDATA "[uacute]"--^small u, acute accent-~>
SDATA " [Uacute]" - -‘-capital U, acute accent-->
SDATA "[ucirc]"---small u, circumflex accent -->
SDATA "[Ucirc]"--—capital U, circumflex accent-->
SDATA "[ugrave]"---small u, grave accent-->
SDATA "[Ugrave]"---capital U, grave accent -->
SDATA "[uuml]"--=small u, dieresis or umlaut mark-->
SDATA "[Uuml]"---capital U, dieresis or umlaut mark-->
SDATA "[yacute]"---small y, acute accent-->
SDATA "[Yacute]"--^capital Y, acute accent-->
SDATA "[yuml]"--=small y, dieresis or umlaut mark-->

This entity set contains additional Latin alphabetic characters.

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % IS01at2 PUBLIC

"ISO 8879-1986//ENTITIES Added Latin 2//EN">
%IS01at2;

-->

<!ENTITY abreve SDATA "[abreve]"--=small a, breve-->
<!ENTITY Abreve SDATA "[Abreve]"---capital A, breve-->
<!ENTITY amacr SDATA "[amacr]"---small a, macron-~>
<!ENTITY Amacr SDATA "[Amacr]"-'■“capital A, macron-->

D.4 Entity Sets 115

ISO 8879-1536(E)

<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY

ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY

<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY

aogon
Aogon
cacute
Cacute
ccaron
Ccaron
ccirc
Ccirc
cdot
Cdot
dcaron
Dcaron
dstrok
Dstrok
ecaron
Ecaron
edot
Edot
emacr
Emacr
eogon
Eogon
gacute
gbreve
Gbreve
Gcedil
gcirc
Gcirc
gdot
Gdot
hcirc
Hcirc
hstrok
Hstrok
Idot
Imacr
imacr

ijlig
IJlig
inodot
iogon
logon
itilde
Itilde
jcirc
Jcirc
kcedil
Kcedil
kgreen
lacute
Lacute
lcaron
Lcaron
lcedil
Lcedil
lmidot
Lmidot
lstrok
Lstrok
nacute
Nacute
eng

SDATA "[aogon]"--=small a, ogonek-->
SDATA "[Aogon]"--=capital A, ogonek-->
SDATA "[cacute]"--=small c, acute accent-->
SDATA "[Cacute]"--=capital C, acute accent-->
SDATA "[ccaron]"--=small c, caron-->
SDATA "[Ccaron]"--=capital C, caron-->
SDATA "[ccirc]"--=small c, circumflex accent-->
SDATA "[Ccirc j"--=capital C, circumflex accent-->
SDATA "[cdot]"--=small c, dot above-->
SDATA "[Cdot]"--=capital C, dot above-->
SDATA "[dcaron]"--=sraall d, caron-->
SDATA "[Dcaron]"--=capital D, caron-->
SDATA "[dstrok]"--=small d, stroke-->
SDATA "[Dstrok]"--=capital D, stroke-->
SDATA "[ecaron]"--=small e, caron-->
SDATA "[Ecaron]"--=capital E, caron-->
SDATA "[edot]"--=small e, dot above-->
SDATA "[Edot]"--=capital E, dot above-->
SDATA "[emacr]"--=small e, macron-->
SDATA "[Emacr]"--=capital E, macron-->
SDATA "[eogon]"--=small e, ogonek-->
SDATA "[Eogon]"--=capital E, ogonek-->
SDATA "[gacute]"--=small g, acute accent-->
SDATA "[gbreve]"--=small g, breve-->
SDATA "[Gbreve]"--=capital G, breve-->
SDATA "[Gcedil]"--=capital G, cedilla-->
SDATA "[gcirc]"--=smal1 g, circumflex accent-->
SDATA "[Gcirc]"--=capital G, circumflex accent-->
SDATA "[gdot]"--=small g, dot above-->
SDATA "[Gdot]"--=capital G, dot above-->
SDATA "[hcirc]"--=small h, circumflex accent-->
SDATA "[Hcirc]"--=capital H, circumflex accent-->
SDATA "[hstrok]"--=small h, stroke-->
SDATA "[Hstrok]"--=capital H, stroke-->
SDATA "[Idot]"--=capital I, dot above-->
SDATA "[Imacr]"--=capital I, macron-->
SDATA "[imacr]"--=small i, macron-->
SDATA "[ijlig]"--=small ij ligature-->
SDATA "[IJlig]"--=capital IJ ligature-->
SDATA "[inodot]"--=sma11 i without dot-->
SDATA "[iogon]"--=small i, ogonek-->
SDATA "[logon]"--=capital I, ogonek-->
SDATA "[itilde]"--=small i, tilde-->
SDATA "[Itilde]"--=capital I, tilde-->
SDATA "[jcirc]"--=small j, circumflex accent-->
SDATA "[Jcirc j"--=capital J, circumflex accent-->
SDATA "[kcedil]"--=small k, cedilla-->
SDATA "[Kcedil]"--=capital K, cedilla-->
SDATA "[kgreen]"--=small k, Greenlandic-->
SDATA "[lacute]"--=small 1, acute accent-->
SDATA "[Lacutej"--=capital L, acute accent-->
SDATA "[lcaron]"--=small 1, caron-->
SDATA "[Lcaron]"--=capital L, caron-->
SDATA "[lcedil]"--=small 1, cedilla-->
SDATA "[Lcedil]"--=capital L, cedilla-->
SDATA "[lmidot]"--=small 1, middle dot-->
SDATA "[Lmidot]"--=capital L, middle dot-->
SDATA "[lstrok]"--=small 1, stroke-->
SDATA "[Lstrok]"--=capital L, stroke-->
SDATA "[nacute]"--=small n, acute accent-->
SDATA "[Nacute]"--=capital N, acute accent-->
SDATA "[eng]"--=small eng, Lapp-->

116 D Public Text

ISO 8879-1986(E)

ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY
ENTITY

ENG
napos
ncaron
Ncaron
ncedil
Ncedil
odblac
Odblac
Omacr
omacr
oelig
OElig
racute
Racute
rcaron
Rcaron
rcedil
Rcedil
sacute
Sacute
scaron
Scaron
scedil
Scedil
scire
Scire
tcaron
Tcaron
tcedil
Tcedil
tstrok
Tstrok
ubreve
Ubreve
udblac
Udblac
umacr
Umacr
uogon
Uogon
uring
Uring
utilde
Utilde
wcirc
Wcirc
ycirc
Ycirc
Yuml
zacute
Zacute
zcaron
Zcaron
zdot
Zdot

SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA

tt

tt

It

ft

If

It

IV

II

II

It

II

It

II

II

VI

It

It

II

II

II

VI

II

II

II

II

II

II

II

tl

II

II

It

It

It

II

II

It

It

II

It

VI

II

It

II

II

It

VI

IV

II

It

II

tt

VI

VI

VI

[ENG
[napos]
[ncaron]
[Ncaron]
[ncedil]
[Ncedil]
[odblac]
[Odblac]
[Omacr]
[omacr]
[oelig]
[OElig]
[racute]
[Racute]
[rcaron]
[Rcaron]
[rcedil]
[Rcedil]
[sacute]
[Sacute]
[scaron]
[Scaron]
[scedil]
[Scedil]
[scire]
[Scire]
[tcaron]
[Tcaron]
[tcedil]
[Tcedil]
[tstrok]
[Tstrok]
[ubreve]
[Ubreve]
[udblac]
[Udblac]
[umacr]
[Umacr]
[uogon]
[Uogon]
[uring]
[Uring]
[utilde]
[utilde]
[wcirc]
[Wcirc]
[ycirc]
[Ycirc]
[Yuml]
[zacute]
[Zacute]
[zcaron]
[Zcaron]
[zdot]
[Zdot]

VI

II

tt

VI

IV

VI

II

II

II

II

II

II

VI

II

II

VI

II

II

II

IV

II

II

It

II

II

II

II

II

IV

II

It

II

It

II

II

II

IV

VI

VI

II

II

II

tt

II

It

II

II

VI

II

II

•I

II

It

II

IV

D.4.2.2 Greek Alphabetic Characters

■=capital ENG, Lapp-->
■=small n, apostrophe-->
-=small n, caron-->
-=capital N, caron-->
-=small n, cedilla-->
■=capital N, cedilla-->
■=small o, double acute accent-->
•=capital 0, double acute accent-->
■=capital 0, macron-->
■=small o, macron-->
■=small oe ligature-->
■=capital OE ligature-->
■=small r, acute accent-->
■=capital R, acute accent-->
■=small r, caron-->
■=capital R, caron-->
■=small r, cedilla-->
■=capital R, cedilla-->
■=small s, acute accent-->
■=capital S, acute accent-->
■=small s, caron-->
■=capital S, caron-->
■=small s, cedilla-->
■=capital S, cedilla-->
■=small s, circumflex accent-->
■=capital S, circumflex accent-->
■=small t, caron-->
•=capital T, caron-->
•=small t, cedilla-->
■=capital T, cedilla-->
■=small t, stroke-->
■=capital T, stroke-->
■=small u, breve-->
■=capital U, breve-->
•=small u, double acute accent-->
■=capital U, double acute accent-->
■=small u, macron-->
■=capital U, macron-->
•=small u, ogonek-->
•=capital U, ogonek-->
■=small u, ring-->
•=capital U, ring-->
■=small u, tilde-->
“capital U, tilde-->
“small w, circumflex accent-->
“capital W, circumflex accent-->
=small y, circumflex accent-->

■=capital Y, circumflex accent-->
=capital Y, dieresis or umlaut mark-->
“small z, acute accent-->
=capital Z, acute accent-->
“small z, caron-->
“capital Z, caron-->
“small z, dot above-->
“capital Z, dot above-->

This entity set consists of the letters of the Greek alphabet. The entity names reflect their intended use as
language characters, rather than as symbols in formulas. (Greek character entities for technical use are
defined below.)

D.4 Entity Sets 117

ISO 8879-1986(E)

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOgrkl PUBLIC

"ISO 8879-1986//ENTITIES Greek Letters//EN">
%ISOgrkl;

-->

<!ENTITY agr SDATA ' [agr
<!ENTITY Agr SDATA "[Agr
<!ENTITY bgr SDATA "[bgr
<!ENTITY Bgr SDATA "[Bgr
<!ENTITY ggr SDATA "[ggr
<!ENTITY Ggr SDATA "[Ggr
<!ENTITY dgr SDATA "[dgr
<!ENTITY Dgr SDATA "[Dgr
<!ENTITY egr SDATA [egr
<!ENTITY Egr SDATA "[Egr
<!ENTITY zgr SDATA ' [zgr
<!ENTITY Zgr SDATA "[Zgr
<!ENTITY eegr SDATA "[eegr
<!ENTITY EEgr SDATA "[EEgr
<!ENTITY thgr SDATA "[thgr
<!ENTITY THgr SDATA "[THgr
<!ENTITY igr SDATA "[igr
<!ENTITY Igr SDATA "[Igr
<!ENTITY kgr SDATA "[kgr
<!ENTITY Kgr SDATA "[Kgr
<!ENTITY Igr SDATA [lgr
<!ENTITY Lgr SDATA "[Lgr
<!ENTITY mgr SDATA "[mgr
<!ENTITY Mgr SDATA "[Mgr
<!ENTITY ngr SDATA "[ngr
<!ENTITY Ngr SDATA " [Ngr
<!ENTITY xgr SDATA "[xgr
<!ENTITY Xgr SDATA "[Xgr
<!ENTITY ogr SDATA "[ogr
<!ENTITY Ogr SDATA "[Ogr
<!ENTITY Pgr SDATA "[Pgr
<!ENTITY Pgr SDATA "[Pgr
<!ENTITY rgr SDATA "[rgr
<!ENTITY Rgr SDATA "[Rgr
<!ENTITY sgr SDATA "[sgr
<!ENTITY Sgr SDATA "[Sgr
<!ENTITY sfgr SDATA "[sfgr
<!ENTITY tgr SDATA '[tgr
<!ENTITY Tgr SDATA "[Tgr
<!ENTITY ugr SDATA "[ngr
<!ENTITY Ugr SDATA "[Ugr
<!ENTITY phgr SDATA '[phgr
<!ENTITY PHgr SDATA [PHgr
<!ENTITY khgr SDATA [khgr
<!ENTITY KHgr SDATA "[KHgr
<!ENTITY psgr SDATA "[psgr
<!ENTITY PSgr SDATA "[psgr
<!ENTITY ohgr SDATA [ohgr
<!ENTITY OHgr SDATA "[OHgr

]"--=smal1 alpha, Greek-->
j"--=capital Alpha, Greek-->
]"--=small beta, Greek-->
]"--=capital Beta, Greek-->
]"--=small gamma, Greek-->
]"--=capital Gamma, Greek-->
]"--=smal1 delta, Greek-->
]"--=capital Delta, Greek-->
]"--=small epsilon, Greek-->
]"--=capital Epsilon, Greek-->
]"--=small zeta, Greek-->
j"--=capital Zeta, Greek-->
]"--=smal1 eta, Greek-->
]"--=capital Eta, Greek-->
]"--=small theta, Greek-->
]"--=capital Theta, Greek-->
]"--=smal1 iota, Greek-->
]"--=capital Iota, Greek-->
]"--=small kappa, Greek-->
]"--=capital Kappa, Greek-->
]"--=small lambda, Greek-->
]"--=capital Lambda, Greek-->
]"--=small mu, Greek-->
]"--=capital Mu, Greek-->
]"--=small nu, Greek-->
]"--=capital Nu, Greek-->
]"--=smal1 xi, Greek-->
]"--=capital Xi, Greek-->
]"--=small omicron, Greek-->
]"--=capital Omicron, Greek-->
]"--=smal1 pi, Greek-->
]"--=capital Pi, Greek-->
]"--=small rho, Greek-->
]"--=capital Rho, Greek-->
]"--=small sigma, Greek-->
j"--=capital Sigma, Greek-->
]"--=final small sigma, Greek-->
j"--=small tau, Greek-->
]"--=capital Tau, Greek-->
]"--=small upsilon, Greek-->
]"--=capital Upsilon, Greek-->
]"--=small phi, Greek-->
]"--=capital Phi, Greek-->
]"--=small chi, Greek-->
]"--=capital Chi, Greek-->
]"--=small psi, Greek-->
]"--=capital Psi, Greek-->
]"--=small omega, Greek-->
]"--=capital Omega, Greek-->

This entity set contains additional characters needed for Monotoniko Greek.

118 D Public Text

ISO 8879-1986(E)

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % IS0grk2 PUBLIC

"ISO 8879-1986//ENTITIES Monotoniko Greek//EN">
%IS0grk2;

<!ENTITY aacgr
<!ENTITY Aacgr
<!ENTITY eacgr
<!ENTITY Eacgr
<!ENTITY eeacgr
<!ENTITY EEacgr
<!ENTITY idigr
<!ENTITY Idigr
<!ENTITY iacgr
<!ENTITY Iacgr
<!ENTITY idiagr
<!ENTITY oacgr
<!ENTITY Oacgr
<!ENTITY udigr
<!ENTITY Udigr
<!ENTITY uacgr
<!ENTITY Uacgr
<!ENTITY udiagr
<!ENTITY ohacgr
<!ENTITY OHacgr

SDATA "[aacgr]"--=small alpha, accent, Greek-->
SDATA "[Aacgr]"--=capital Alpha, accent, Greek-->
SDATA "[eacgr]"--=small epsilon, accent, Greek-->
SDATA "[Eacgr]"--=capital Epsilon, accent, Greek-->
SDATA "[eeacgr]"--=small eta, accent, Greek-->
SDATA "[EEacgr]"--=capital Eta, accent, Greek-->
SDATA "[idigr]"--=small iota, dieresis, Greek-->
SDATA "[Idigr]"--=capital Iota, dieresis, Greek-->
SDATA "[iacgr]"--=small iota, accent, Greek-->
SDATA "[Iacgr]"--=capital Iota, accent, Greek-->
SDATA "[idiagr]"--=small iota, dieresis, accent, Greek-->
SDATA "[oacgr]"--=smal1 omicron, accent, Greek-->
SDATA "[Oacgr]"--=capital Omicron, accent, Greek-->
SDATA "[udigr]"--=small upsilon, dieresis, Greek-->
SDATA "[Udigr]"--=capital Upsilon, dieresis, Greek-->
SDATA "[uacgr]"--=small upsilon, accent, Greek-->
SDATA "[Uacgr]"--=capital Upsilon, accent, Greek-->
SDATA "[udiagr]"--=small upsilon, dieresis, accent, Greek-->
SDATA "[ohacgr]"--=small omega, accent, Greek-->
SDATA "[OHacgr]"--^capital Omega, accent, Greek-->

D.4.2.3 Cyrillic Alphabetic Characters

This entity set consists of Cyrillic characters used in the Russian language.

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOcyrl PUBLIC

"ISO 8879-1986//ENTITIES Russian Cyrillic//EN">
%ISOcyrl;

-->

<!ENTITY acy SDATA "[acy] - -=small a, Cyrillic-->
<!ENTITY Acy SDATA "[Acy] - -=capital A, Cyrillic-->
<!ENTITY bey SDATA "[bey]"- -=small be, Cyrillic-~>
<!ENTITY Bey SDATA "[Bey] - -=capital BE, Cyrillie-->
<!ENTITY vcy SDATA "[vcy] - -=smal1 ve, Cyrillie-“>
<!ENTITY Vcy SDATA "[Vcy] * -=capital VE, Cyrillic-->
<!ENTITY gey SDATA "[gey] “ -=small ghe, Cyrillic-->
<!ENTITY Gey SDATA "[Gey] - -=capital GHE, Cyrillic--
<!ENTITY dey SDATA "[dcy] - -=smal1 de, Cyrillic-->
<!ENTITY Dcy SDATA "[Dcy]"- -=capital DE, Cyrillic-->
<!ENTITY iecy SDATA "[iecy]"- -=small ie, Cyrillic-->
<!ENTITY IEcy SDATA "[IEcy]"- -=capital IE, Cyrillic-->
<!ENTITY iocy SDATA "[iocy]"- -=smal1 io, Russian-->
<!ENTITY IOcy SDATA "[IOcy]"- -=capital 10, Russian-->
<!ENTITY zhey SDATA "[zhey]"- -=small zhe, Cyrillic-->
<!ENTITY ZHcy SDATA "[ZHcy]”- -=capital ZHE, Cyrillic--:
<!ENTITY zey SDATA "[zey]"- -=small ze, Cyrillic-->

D.4 Entity Sets 119

ISO 8879-1936(E)

<!ENTITY Zcy SDATA "[Zcy] - -=capital ZE, Cyrillic-->
<!ENTITY icy SDATA "[icy] - -=small i, Cyrillic-->
<!ENTITY Icy SDATA || [Icy] - -=capital I, Cyrillic-->
<!ENTITY jcy SDATA [jcy] - -=small short i, Cyrillic-->
<!ENTITY Jcy SDATA n[Jcy] - -=capital short I, Cyrillic-->
<!ENTITY key SDATA [key]'- -=small ka, Cyrillic-->
<!ENTITY Key SDATA | [Kcy 1 - -=capital KA, Cyrillic-->
<!ENTITY Icy SDATA [icy 1 - -=small el, Cyrillic-->
<!ENTITY Ley SDATA „ [Lcy 1 - -=capital EL, Cyrillic-->
<!ENTITY mey SDATA [mcy] - -=small em, Cyrillic-->
<!ENTITY Mcy SDATA " [Mcy 1 “ -=capital EM, Cyrillic-->
<!ENTITY ncy SDATA

If r
[ncy] - -=small en, Cyrillic-->

<!ENTITY Ncy SDATA [Ncy] - -=capital EN, Cyrillic-->
<!ENTITY ocy SDATA "[ocy] - -=small o, Cyrillic-->
<!ENTITY Ocy SDATA [Ocy] - -=capital 0, Cyrillic-->
<!ENTITY pey SDATA [pcy] - -=small pe, Cyrillic-->
<!ENTITY Pcy SDATA [Pcy] - -=capital PE, Cyrillic-->
<!ENTITY rcy SDATA [rcy] - -=smal1 er, Cyrillic-->
<!ENTITY Rcy SDATA "[Rcy 1 - -=capital ER, Cyrillic-->
<!ENTITY scy SDATA [scy] - -=small es, Cyrillic-->
<!ENTITY Scy SDATA "[Scy] - -=capital ES, Cyrillic-->
<!ENTITY tcy SDATA || [tcy] - -=small te, Cyrillic-->
<!ENTITY Tcy SDATA [Tcy] " -=capital TE, Cyrillic-->
<!ENTITY ucy SDATA [ucy] - -=smal1 u, Cyrillic-->
<!ENTITY Ucy SDATA [Ucy] - -=capital U, Cyrillic-->
<!ENTITY fey SDATA [fey] - -=small ef, Cyrillic-->
<!ENTITY Fey SDATA [Fey] - ~=capital EF, Cyrillic-->
<!ENTITY khey SDATA "[khey] - -=small ha, Cyrillic-->
<!ENTITY KHcy SDATA "[KHcy] - -=capital HA, Cyrillic-->
<!ENTITY tscy SDATA "[tscy] - -=small tse, Cyrillic-->
<!ENTITY TScy SDATA "[TScy] - -=capital TSE, Cyrillic-->
<!ENTITY chcy SDATA "[chcy] - -=small che, Cyrillic-->
<!ENTITY CHcy SDATA "[CHey] - -=capital CHE, Cyrillic-->
<!ENTITY shey SDATA "[shey] - -=small sha, Cyrillic-->
<!ENTITY SHcy SDATA "[SHcy]"- -=capital SHA, Cyrillic-->
<!ENTITY shchcy SDATA [shchcy] - -=small shcha, Cyrillic-->
<!ENTITY SHCHey SDATA "[SHCHey]"- -=capital SHCHA, Cyrillic-->
<!ENTITY hardey SDATA "[hardey]"- -=small hard sign, Cyrillic-->
<!ENTITY HARDey SDATA "[HARDey]"- -=capital HARD sign, Cyrillic-->
<!ENTITY ycy SDATA [ycy] - -=small yeru, Cyrillic-->
<!ENTITY Ycy SDATA [Ycy] - -=capital YERU, Cyrillic-->
<!ENTITY softcy SDATA [softcy] - -=small soft sign, Cyrillic-->
<!ENTITY SOFTcy SDATA "[SOFTcy]"- -=capital SOFT sign, Cyrillie-->
<!ENTITY ecy SDATA [ecy] - -=small e, Cyrillic-->
<!ENTITY Ecy SDATA II [Ecy] - -=capital E, Cyrillic-->
<!ENTITY yucy SDATA [yucy] - -=small yu, Cyrillic-->
<!ENTITY YUcy SDATA "[YUcy] - -=capital YU, Cyrillic-->
<!ENTITY yacy SDATA "[yacy

] "
-=small ya, Cyrillic-->

<!ENTITY YAcy SDATA [YAcy] - -=capital YA, Cyrillic-->
<!ENTITY numero SDATA "[numerc >]"- -=numero sign-->

This entity set consists of Cyrillic characters that are not used in the Russian language.

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % IS0cyr2 PUBLIC

"ISO 8879-1986//ENTITIES Non-Russian Cyrillic//EN">
%IS0cyr2;

120 D Public Text

ISO 8879-1986(E)

-->
<!ENTITY djey SDATA "[djey]"- -=small dje, Serbian-->
<!ENTITY DJcy SDATA "[DJcy]"■ -=capital DJE, Serbian-->
<!ENTITY gjcy SDATA "[gjcy]"- -=small gje, Macedonian-->
<!ENTITY GJcy SDATA "[GJcy]"- -=capital GJE Macedonian-->
<!ENTITY jukey SDATA "[jukcy]"- -=small je, Ukrainian-->
<!ENTITY Jukcy SDATA "[Jukcy]"- -=capital JE, Ukrainian-->
<!ENTITY dscy SDATA "[dscy]"- -=smal1 dse, Macedonian-->
<!ENTITY DScy SDATA "[DScy 3"- -^capital DSE, Macedonian-->
<!ENTITY iukey SDATA "[iukey 3 - -=small i, Ukrainian-->
<!ENTITY lukey SDATA "[Iukey]"- -^capital I, Ukrainian-->
<!ENTITY yicy SDATA "[yicy]"- -=small yi, Ukrainian-->
<!ENTITY Ylcy SDATA "[Ylcy]"- -=capital YI, Ukrainian-->
<!ENTITY jsercy SDATA [jsercy] - -=small je, Serbian-->
<!ENTITY Jsercy SDATA "[Jsercy]"- -=capital JE, Serbian-->
<!ENTITY Ijcy SDATA [Ijcy -=small Ije, Serbian-->
<!ENTITY LJcy SDATA "[LJcy]"- -=capital LJE, Serbian-->
<!ENTITY njcy SDATA "[njcy 3 - -=small nje, Serbian-->
<!ENTITY NJcy SDATA [NJcy]"- -=capital NJE, Serbian-->
<!ENTITY tshey SDATA "[tshey 3 - --small tshe, Serbian-->
<!ENTITY TSHcy SDATA "[TSHcy]"- --capital TSHE, Serbian-->
<!ENTITY kjcy SDATA "[kjcy]"- --small kje Macedonian-->
<»ENTITY KJcy SDATA "[KJcy 3"- -^capital KJE, Macedonian-->
<!ENTITY ubrey SDATA "[ubrcy]"- --small u, Byelorussian-->
<!ENTITY Ubrcy SDATA "[Ubrcy]"- -^capital U, Byelorussian-->
<!ENTITY dzey SDATA "[dzey]"- -=small dze, Serbian-->
<1 ENTITY DZcy SDATA "[DZcy 3 - -“capital dze, Serbian-->

D.4.3 General Use

0,4.3.1 Numeric and Special Graphic Characters

This set includes, among others, minimum data characters and reference concrete syntax markup characters.
Such characters are normally directly keyable, but when they are assigned to delimiter roles, an entity
reference may be needed to enter them as data.

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOnum PUBLIC

"ISO 8879-1986//ENTITIES Numeric and Special Graphic//EN”>
%IS0num;

<!ENTITY half SDATA
<!ENTITY fracl2 SDATA
<!ENTITY fracl4 SDATA
<!ENTITY frac34 SDATA
<!ENTITY fracl8 SDATA
<!ENTITY frac38 SDATA
<!ENTITY frac58 SDATA
<!ENTITY frac78 SDATA

"[half]"--=fraction
"[£racl2]"--^fraction
"[£racl4]"---fraction
"[frac34]"--^fraction
"[fraclS]"--^fraction
"[frac38]"---fraction
"[frac58]"---fraction
"[frac78]"--~£raction

one-half-->
one-ha1f-->
one-quarter-->
three-quarters-->
one-eighth-~>
three-eighths-->
five-eighths-->
seven-eighths -->

<lENTITY supl
<!ENTITY sup2
<!ENTITY sup3

SDATA "[supl
SDATA "[sup2
SDATA "[sup3

]"--=superscript one-->
]"---superscript two-->
]"---superscript three-->

<!ENTITY plus
<!ENTITY plusmn
<!ENTITY It

SDATA "[plus 3"---plus sign B:-- >
SDATA "[plusmn]"--/pm B: =plus-or-minus sign-->
SDATA "[It]"--=less-than sign R:-->

D.4 Entity Sets 121

ISO 8879-1986(E)

<! ENTITY equals SDATA ft [equals]"
<! ENTITY gt SDATA fl

[gt]"
<! ENTITY divide SDATA

ft [divide]"
<! ENTITY times SDATA

ft
[times]"

<t ENTITY curren SDATA
If

[curren]"
<! ENTITY pound SDATA !» [pound]"
<! ENTITY dollar SDATA ft

[dollar]"
<! ENTITY cent SDATA

If
[cent j

<! ENTITY yen SDATA
ft

[yen]"

<! ENTITY num SDATA
M

[num]"
<! ENTITY percnt SDATA

ff
[percnt]"

<! ENTITY amp SDATA II [amp]"
<! ENTITY ast SDATA If [ast]
<! ENTITY commat SDATA

It
[commat]M

<1 ENTITY lsqb SDATA II [lsqb]"
<! ENTITY bsol SDATA II [bsol]"
<! ENTITY rsqb SDATA

If
[rsqb]"

<! ENTITY lcub SDATA II [lcub]"
<! ENTITY horbar SDATA

If
[horbar]"

<! ENTITY verbar SDATA II
[verbar]"

<! ENTITY rcub SDATA
If

[rcub j
<! ENTITY micro SDATA

If
[micro j"

<! ENTITY ohm SDATA
It [ohm >

<t ENTITY deg SDATA If [deg]"
<! ENTITY ordm SDATA II [ordm j
<! ENTITY ordf SDATA

II
[ordf]"

<! ENTITY sect SDATA It [sect]"
<! ENTITY para SDATA If [para]"
<! ENTITY middot SDATA It

[middot]"
<! ENTITY larr SDATA

II
[larr]"

<! ENTITY rarr SDATA
ft

[rarr]"
<t ENTITY uarr SDATA

II
[uarr]"

<! ENTITY darr SDATA II
[darr]"

<! ENTITY copy SDATA
II

[copy]"
<! ENTITY reg SDATA

II
[reg j

<! ENTITY trade SDATA If
[trade]"

<! ENTITY brvbar SDATA II
[brvbar]"

<! ENTITY not SDATA
II

[not j
<! ENTITY sung SDATA

II
[sung]"

<! ENTITY excl SDATA II [excl]"

<! ENTITY iexcl SDATA
II

[iexcl]"

<! ENTITY quot SDATA
II

[quot]"

<! ENTITY apos SDATA ft
[apos]"

<! ENTITY lpar SDATA II
[lpar]"

<! ENTITY rpar SDATA
II

[rpar]'|

<! ENTITY comma SDATA
If

[comma]"

<! ENTITY lowbar SDATA If
[lowbar]"

<! ENTITY hyphen SDATA II
[hyphen]"

<! ENTITY period SDATA II
[period]"

<! ENTITY sol SDATA II
[sol]"

<! ENTITY colon SDATA If
[colon]"

<! ENTITY semi SDATA II
[semi]"

<! ENTITY quest SDATA
II

[quest j"
<! ENTITY iquest SDATA II

[iquest]"

< t ENTITY laquo SDATA If
[laquo j"

<! ENTITY raquo SDATA II
[raquo j"

<! ENTITY Is quo SDATA II
[lsquo j"

<! ENTITY rsquo SDATA II
[rsquo]"

<! ENTITY ldquo SDATA If
[ldquo]"

--=equals sign R:-->
--=greater-than sign R:-->
--/div B: =divide sign-->
--/times B: =multiply sign-->

--=general currency sign-->
--=pound sign-->
--=dollar sign-->
--=cent sign-->
--/yen =yen sign-->

--=number sign-->
--=percent sign-->
--=ampersand-->
--/ast B: ^asterisk-->
--=commercial at-->
--/lbrack 0: =left square bracket-->
--/backslash =reverse solidus-->
--/rbrack C: =right square bracket-->
--/Ibrace 0: =left curly bracket-->
--=horizontal bar-->
--/vert =vertical bar-->
--/rbrace C: =right curly bracket-->
--=micro sign-->
--=ohm sign-->
--=degree sign-->
--=ordinal indicator, masculine-->
--=ordinal indicator, feminine-->
--=section sign-->
--=pilcrow (paragraph sign)-->
--/centerdot B: =middle dot-->
--/leftarrow /gets A: =leftward arrow-->
--/rightarrow /to A: =rightward arrow-->
--/uparrow A: =upward arrow-->
--/downarrow A: =downward arrow-->
--=copyright sign-->
--/circledR registered sign-->
--=trade mark sign-->
--=broken (vertical) bar-->
--/neg /lnot =not sign-->
--=music note (sung text sign)-->

--=exclamation mark-->
--=inverted exclamation mark-->
--=quotation mark-->
--=apostrophe-->
--0: =left parenthesis-->
--C: right parenthesis-->
--P: =comma-->
~-=low line-->
--=hyphen-->
--=full stop, period-->
--=solidus-->
--/colon P:-->
--=semicolon P:-->
--=question mark-->
--=inverted question mark-->
--=angle quotation mark, left-->
--=angle quotation mark, right-->
--=single quotation mark, left-->
--=single quotation mark, right-->
--=double quotation mark, left-->

122 D Public Text

ISO 8879-1986(E)

<!ENTITY rdquo SDATA "[rdquo]"--=double quotation mark, right-->
<!ENTITY nbsp SDATA "[nbsp j"--=no break (required) space-->
<!ENTITY shy SDATA "[shy]"--=soft hyphen-->

D.4.3.2 Diacritical Mark Characters

These entities are considered to represent independent characters.

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOdia PUBLIC

"ISO 8879-1986//ENTITIES Diacritical Marks//EN">
%ISOdia;

-->
<!ENTITY acute SDATA "[acute]"- -=acute accent-->
<!ENTITY breve SDATA "[breve]"- -=breve-->
<!ENTITY caron SDATA "[caron]"- -=caron-->
<!ENTITY cedil SDATA "[cedil]”- -=cedilla-->
<!ENTITY circ SDATA "[circ]"- -=circumflex accent-->
<!ENTITY dblac SDATA "[dblac]”- -=double acute accent-->
<!ENTITY die SDATA "[die]"- -=dieresis -->
<!ENTITY dot SDATA " [dot]"“ -=dot above-->
<!ENTITY grave SDATA "[grave

]"■
-=grave accent-->

<!ENTITY macr SDATA "[macr]"- -=macron-->
<!ENTITY ogon SDATA "[ogon i;;- -=ogonek-->
<!ENTITY ring SDATA "[ring i - -=ring-->
<!ENTITY tilde SDATA "[tilde]"- -=tilde-->
<!ENTITY uml SDATA " [uml]n- -=umlaut mark-->

D.4.3.3 Publishing Characters

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOpub PUBLIC

"ISO 8879-1986//ENTITIES Publishing//EN">
%ISOpub;

<!ENTITY emsp
<!ENTITY ensp
<!ENTITY emspl3
<!ENTITY emspl4
<!ENTITY numsp
<!ENTITY puncsp
<!ENTITY thinsp
<!ENTITY hairsp
<!ENTITY radash
<!ENTITY ndash
<!ENTITY dash
<!ENTITY blank
<!ENTITY he11ip
<!ENTITY nldr
<!ENTITY fracl3
<!ENTITY frac23
<!ENTITY fracl5

SDATA "[emsp]"--=em space-->
SDATA "[ensp]"--=en space (l/2-em)-->
SDATA "[emsp3]"--=l/3-em space-->
SDATA "[emsp4]"--=l/4-em space-->
SDATA "[numsp]"--=digit space (width of a number)-->
SDATA "[puncsp]"--=punctuation space (width of comma)-->
SDATA "[thinsp]"--=thin space (l/6-em)-->
SDATA "[hairsp]"--=hair space-->
SDATA "[mdash]"--=em dash-->
SDATA "[ndash]"--=en dash-->
SDATA "[dash]"--=hyphen (true graphic)-->
SDATA "[blank]"--=significant blank symbol-->
SDATA "[hellip]"--=ellipsis (horizontal)-->
SDATA "[nldr]"--=double baseline dot (en leader)-->
SDATA "[fracl3]"--=fraction one-third-->
SDATA "[frac23]"~-=fraction two-thirds-->
SDATA "[fracl5]"--=fraction one-fifth-->

D.4 Entity Sets 123

ISO 8879-1986(E)

<!ENTITY frac25 SDATA
tf

[frac25]
<!ENTITY frac35 SDATA

Vt
[frac35]

<!ENTITY frac45 SDATA
tf

[frac45]
<!ENTITY fracl6 SDATA

It [fracl6]
<!ENTITY frac56 SDATA

tt
[frac56]

<!ENTITY incare SDATA
ft

[incare]
<!ENTITY block SDATA ft [block]
<!ENTITY uhblk SDATA tt [uhblk]
<!ENTITY lhblk SDATA

tt
[lhblk]

<!ENTITY blkl4 SDATA If [blkl4]
<!ENTITY blkl2 SDATA

ff
[blkl2]

<!ENTITY blk34 SDATA
tt

[blk34]
<!ENTITY marker SDATA

ff
[marker]

<!ENTITY cir SDATA
ft
[cir]

<!ENTITY squ SDATA
tt

[squ
<!ENTITY rect SDATA

fl
[rect]

<!ENTITY utri SDATA
ft
[utri]

<!ENTITY dtri SDATA
tt
[dtri]

<!ENTITY star SDATA ff [star]
<!ENTITY bull SDATA tt [bull]
<!ENTITY squf SDATA tf [squf]
<!ENTITY utrif SDATA ft

[utrif]
<!ENTITY dtrif SDATA

tt
[dtrif]

<!ENTITY ltrif SDATA
tt
[ltrif]

<!ENTITY rtrif SDATA
ft
[rtrif]

<!ENTITY clubs SDATA
tt

[clubs]
<! ENTITY diams SDATA

ft
[diams]

<!ENTITY hearts SDATA tt [hearts]
<!ENTITY spades SDATA tt [spades]
<!ENTITY malt SDATA ff [malt]
<!ENTITY dagger SDATA tf

[dagger]
<!ENTITY Dagger SDATA

tt
[Dagger]

<!ENTITY check SDATA
tt

[check]
<!ENTITY cross SDATA

tf
[ballot]

<! ENTITY sharp SDATA
It

[sharp]
<!ENTITY flat SDATA

ft
[flat]

<!ENTITY male SDATA
tf

[male j
<!ENTITY female SDATA

tt
[female]

<!ENTITY phone SDATA tt [phone]
<!ENTITY telrec SDATA ft [telrecj
<!ENTITY copysr SDATA ft

[copysr]
<!ENTITY caret SDATA

ft
[caret j

<!ENTITY lsquor SDATA
tt

[lsquor]
<!ENTITY ldquor SDATA

ft
[ldquor]

<!ENTITY fflig SDATA
ft

[fflig]
<!ENTITY filig SDATA

tt

[filig 1
<!ENTITY fjlig SDATA ff

[fjlig]
<!ENTITY ffilig SDATA

ft
[ffilig]

<!ENTITY ffilig SDATA tt [ffilig]
<!ENTITY filig SDATA

ft

[filig]

<!ENTITY mldr SDATA
tt

[mldr]
<!ENTITY rdquor SDATA

tf
[rdquor]

<!ENTITY rsquor SDATA
ff

[rsquor]
<!ENTITY veilip SDATA

ft
[veilip]

<!ENTITY hybu11 SDATA
ff

[hybull]
<!ENTITY loz SDATA ff

[loz]
<!ENTITY lozf SDATA tt

[lozf j
<!ENTITY ltri SDATA ff

[ltri]
<!ENTITY rtri SDATA

ft
[rtri j

--=fraction two-fifths-->
--=fraction three-fifths-->
--=fraction four-fifths-->
--=fraction one-sixth-->
--=fraction five-sixths-->
--=in-care-of symbol-->
--=full block-->
--=upper half block-->
--=lower half block-->
--=25% shaded block-->
--=50% shaded block-->
--=75% shaded block-->
--=histogram marker-->
--/circ B: =circle, open-->
--=square, open-->
--=rectangle, open-->
--/triangle =up triangle, open-->
--/triangledown =down triangle, open-->
--=star, open-->
--/bullet B: =round bullet, filled-->
--/blacksquare =sq bullet, filled-->
--/blacktriangle =up tri, filled-->
--/blacktriangledown =dn tri, filled-->
--/blacktriangleleft R: =1 tri, filled-
--/blacktriangleright R: =r tri, filled
--/clubsuit =club suit symbol-->
--/diamondsuit =diamond suit symbol-->
--/heartsuit =heart suit symbol-->
--/spadesuit =spades suit symbol-->
--/maltese =maltese cross-->
--/dagger B: =dagger-->
--/ddagger B: =double dagger-->
--/checkmark =tick, check mark-->
--=ballot cross-->
--/sharp =musical sharp-->
--/flat =musical flat-->
--=male symbol-->
--=female symbol-->
--=telephone symbol-->
--=telephone recorder symbol-->
--=sound recording copyright sign-->
--=caret (insertion mark)-->
--=rising single quote, left (low)-->
--=rising dbl quote, left (low)-->

--small ff li.gature-->
--small fi ligature-->
--small fj ligature-->
--small ffi ligature-->
--small ffl ligature-->
--small fl ligature-->

--em leader-->
--rising dbl quote, right (high)-->
--rising single quote, right (high)-->
--vertical ellipsis-->

--rectangle, filled (hyphen bullet)-->
--/lozenge - lozenge or total mark-->
--/blacklozenge - lozenge, filled-->
--/triangleleft B: 1 triangle, open-->
--/triangleright B: r triangle, open-->

>

->

124 D Public Text

<!ENTITY starf SDATA "[starf]"--/bigstar star, filled-->

<!ENTITY natur
<!ENTITY rx
<!ENTITY sext

SDATA "[natur]
SDATA "[rx !
SDATA "[sext]

--/natural - music natural-->
--pharmaceutical prescription (Rx)-
--sextile (6-pointed star)-->

<!ENTITY target
<!ENTITY dlcrop
<!ENTITY drcrop
<!ENTITY ulcrop
<!ENTITY urcrop

SDATA
SDATA
SDATA
SDATA
SDATA

"[target]
"[dlcrop]
"[drcrop]
"[ulcrop]
"[urcrop]

--register mark or target-->
--downward left crop mark -->
--downward right crop mark -->
--upward left crop mark -->
--upward right crop mark -->

D.4.3.4 Box and Line Drawing Characters

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISObox PUBLIC

"ISO 8879-1986//ENTITIES Box and Line Drawing//EN">
%ISObox;

-->

<!-- All names are in the form: boxl234, where:
box = constants that identify a box drawing entity.
1&2 = v, V, u, U, d, D, Ud, or uD, as follows:

v = vertical line for full height,
u = upper half of vertical line,
d = downward (lower) half of vertical line.

3&4 = h, H, 1, L, r, R, Lr, or 1R, as follows:
h = horizontal line for full width.
1 = left half of horizontal line,
r = right half of horizontal line.

In all cases, an upper-case letter means a double or heavy line

<!ENTITY boxh SDATA "[boxh]
<!ENTITY boxv SDATA "[boxv]
<!ENTITY boxur SDATA "[boxur]
<!ENTITY boxul SDATA "[boxul]
<!ENTITY boxdl SDATA "[boxdl]
<!ENTITY boxdr SDATA "[boxdr]
<!ENTITY boxvr SDATA "[boxvr]
<!ENTITY boxhu SDATA "[boxhu]
<!ENTITY boxvl SDATA "[boxvl]
<!ENTITY boxhd SDATA "[boxhd]
<!ENTITY boxvh SDATA "[boxvh]
<!ENTITY boxvR SDATA "[boxvR]
<!ENTITY boxhU SDATA "[boxhU]
<!ENTITY boxvL SDATA "[boxvL]
<!ENTITY boxhD SDATA "[boxhD]
<!ENTITY boxvH SDATA "[boxvH]
<!ENTITY boxH SDATA "[boxH]
<!ENTITY boxV SDATA "[boxV]
<!ENTITY boxUR SDATA "[boxUR)
<!ENTITY boxUL SDATA "[boxUL]
<!ENTITY boxDL SDATA "[boxDL]
<!ENTITY boxDR SDATA "[boxDR]
<!ENTITY boxVR SDATA "[boxVR]
<!ENTITY boxHU SDATA "[boxHU]
<!ENTITY boxVL SDATA "[boxVL]
<!ENTITY boxHD SDATA "[boxHD]

--horizontal line -->
--vertical line-->
--upper right quadrant-->
--upper left quadrant-->
--lower left quadrant-->
--lower right quadrant-->
--upper and lower right quadrants--
--upper left and right quadrants-->
--upper and lower left quadrants-->
--lower left and right quadrants-->
--all four quadrants-->
--upper and lower right quadrants--
--upper left and right quadrants-->
--upper and lower left quadrants-->
--lower left and right quadrants-->
--all four quadrants-->
--horizontal line-->
--vertical line-->
--upper right quadrant-->
--upper left quadrant-->
--lower left quadrant-->
--lower right quadrant-->
--upper and lower right quadrants--
--upper left and right quadrants-->
--upper and lower left quadrants-->
--lower left and right quadrants-->

D.4 Entity Sets

ISO 8879-1986(E)

<!ENTITY boxVH
<!ENTITY boxVr
<!ENTITY boxHu
<!ENTITY boxVl
<!ENTITY boxHd
<!ENTITY boxVh
<!ENTITY boxuR
<!ENTITY boxUl
<!ENTITY boxdL
<!ENTITY boxDr
<!ENTITY boxUr
<!ENTITY boxuL
<!ENTITY boxDl
<!ENTITY boxdR

SDATA "[boxVH]
SDATA "[boxVr]
SDATA "[boxHu]
SDATA "[boxVl]
SDATA "[boxHd]
SDATA "[boxVh]
SDATA "[boxuR]
SDATA "[boxUl]
SDATA "[boxdL]
SDATA "[boxDr]
SDATA "[boxUr]
SDATA "[boxuL]
SDATA "[boxDl]
SDATA "[boxdR]

D.4.4 Technical Use

--all four quadrants-->
--upper and lower right quadrants-->
--upper left and right quadrants-->
--upper and lower left quadrants-->
--lower left and right quadrants-->
--all four quadrants-->
--upper right quadrant-->
--upper left quadrant-->
--lower left quadrant-->
--lower right quadrant-->
--upper right quadrant-->
--upper left quadrant-->
--lower left quadrant-->
--lower right quadrant-->

As many technical symbols can be used in more than one context, the entity names in this category normally
describe the graphic visually, rather than attempting to convey the semantic concept that is usually associated
with it.

The following abbreviations are used with substantial consistency:

Prefixes:
I = left; r = right; u = up; d = down; h = horizontal; v = vertical
b = back, reversed
cu = curly
g = greaterthan; I = less than;
n = negated;
o = in circle
s = small, short;
sq = square shaped
thk = thick;
x = extended, long, big;

Bodies:
ap = approx;
arr = arrow; har = harpoon
pr = precedes; sc = succeeds
sub = subset; sup = superset

Suffixes:
b = boxed;
f = filled, black, solid
e = single equals; E = double equals;
hk = hook
s = slant
t = tail
w = wavy, squiggly;
2= two of

Upper-case letter means "doubled" (or sometimes "two of")

NOTE — Visual depictions of most of the technical use entities are identified by their entity names in Association of American Publishers

Electronic Manuscript Series: Markup of Mathematical Formulas, published by the Association of American Publishers, !nc., 2005

Massachusetts Avenue, N.W., Washington, DC 20036, U.S.A.

D.4.4.1 General

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:

126 D Public Text

ISO 8879-1986(E)

<!ENTITY X ISOtech PUBLIC
"ISO 8879-1986//ENTITIES General Technical//EN">

%ISOtech;

<!ENTITY aleph SDATA
<!ENTITY and SDATA
<!ENTITY ang90 SDATA
<!ENTITY angsph SDATA
<!ENTITY ap SDATA
<!ENTITY becaus SDATA
<!ENTITY bottom SDATA
<!ENTITY cap SDATA
<!ENTITY cong SDATA
<!ENTITY conint SDATA
<!ENTITY cup SDATA
<!ENTITY equiv SDATA
<!ENTITY exist SDATA
<!ENTITY forall SDATA
<!ENTITY fnof SDATA
<!ENTITY ge SDATA
<!ENTITY iff SDATA
<! ENTITY inf in SDATA
<!ENTITY int SDATA
<!ENTITY isin SDATA
<!ENTITY lang SDATA
<!ENTITY lArr SDATA
<!ENTITY le SDATA
<!ENTITY minus SDATA
<!ENTITY mnplus SDATA
<!ENTITY nabla SDATA
<!ENTITY ne SDATA
<!ENTITY ni SDATA
<!ENTITY or SDATA
<!ENTITY par SDATA
<!ENTITY part SDATA
<!ENTITY permil SDATA
<!ENTITY perp SDATA
<!ENTITY prime SDATA
<!ENTITY Prime SDATA
<!ENTITY prop SDATA
<!ENTITY radic SDATA
<!ENTITY rang SDATA
<!ENTITY rArr SDATA
<!ENTITY sim SDATA
<!ENTITY sime SDATA
<!ENTITY square SDATA
<!ENTITY sub SDATA
<!ENTITY sube SDATA
<!ENTITY sup SDATA
<!ENTITY supe SDATA
<!ENTITY there4 SDATA
<!ENTITY Verbar SDATA

<!ENTITY angst SDATA
<!ENTITY bernou SDATA
<!ENTITY compfn SDATA
<!ENTITY Dot SDATA
<!ENTITY DotDot SDATA
<!ENTITY hamilt SDATA
<!ENTITY lagran SDATA
<!ENTITY lowast SDATA
<!ENTITY not in SDATA

ft

II

If

Vf

!»

t»

tf

If

ft

ft

ft

tf

ft

ft

It

ft

ft

ft

tf

tt

ft

tf

tt

ft

tt

tt

ft

tt

ft

tf

ft

tt

tf

tf

ft

ft

tf

ft

tt

tf

tt

ft

tt

ft

tf

ft

ft

ft

[aleph]"--/aleph =aleph, Hebrew-->
[and]"--/wedge /land B: =logical and-->
[ang90]"--=right (90 degree) angle-->
[angsph]"--/sphericalangle =angle-spherical-->
[ap]"--/approx R: =approximate-->
[becaus]"--/because R: =because-->
[bottom]"--/bot B: =perpendicular-->
[cap]"--/cap B: =intersection-->
[cong]"--/cong R: =congruent with-->
[conint]"--/oint L: =contour integral operator-->
[cup]"--/cup B: =union or logical sum-->
[equiv]"--/equiv R: =identical with-->
[exist]"--/exists =at least one exists-->
[forall]"--/forall =for all-->
[fnof]"--=function of (italic small f)-->
[ge]"““/geq /ge R: =greater-than-or-equal-->
[iff]"--/iff =if and only if-->
[infin j"--/infty =infinity-->
[int]"--/int L: =integral operator-->
[isin]"--/in R: =set membership-->
[lang]"--/langle 0: =left angle bracket-->
[lArr]"--/Leftarrow A: =is implied by-->
[le]"--/leq /le R: =less-than-or-equal-->
[minus j"--B: =minus sign-->
[mnplus]"--/mp B: =minus-or-plus sign-->
[nabla j"--/nabla =del, Hamilton operator-->
[ne]"--/ne /neq R: =not equal-->
[ni j"--/ni /owns R: =contains-->
[or]"--/vee /lor B: =logical or-->
[par]"--/parallel R: =parallel-->
[part]"--/partial =partial differential-->
[permil]"--=per thousand-->
[perp]"--/perp R: =perpendicular-->
[prime]"--/prime =prime or minute-->
[Prime j"--=double prime or second-->
[prop]"--/propto R: =is proportional to-->
[radic]"--/surd =radical-->
[rang]"--/rangle C: =right angle bracket-->
[rArr]"--/Rightarrow A: =implies-->
[sim]"--/sim R: =similar-->
[sime]"--/simeq R: =similar, equals-->
[square]"--/square B: =square-->
[sub]"--/subset R: =subset or is implied by-->
[sube]"--/subseteq R: =subset, equals-->
[sup]"--/supset R: =superset or implies-->
[supe j"--/supseteq R: =superset, equals-->
[there4]"--/therefore R: =therefore-->
[Verbar]"--/Vert =dbl vertical bar-->

"[angst]"--Angstrom =capital A, ring-->
"[bernou]"--Bernoulli function (script capital B)-->
"[compfn]"--B: composite function (small circle)-->
"[Dot]"--=dieresis or umlaut mark-->
"[DotDot]"--four dots above-->
"[hamilt]"--Hamiltonian (script capital H)-->
"[lagran]"--Lagrangian (script capital L)-->
"[lowast]"--low asterisk-->
"[notin]"--N: negated set membership-->

D.4 Entity Sets 127

ISO 8879-1986(E)

<!ENTITY order SDATA
<!ENTITY phmmat SDATA
<!ENTITY tdot SDATA
<!ENTITY tprime SDATA
<!ENTITY wedgeq SDATA

"[order]"--order of (script small o)-->
"[phmmatj"--physics M-matrix (script capital M)-->
"[tdot]"--three dots above-->
"[tprime]"--triple prime-->
"[wedgeq]"--R: corresponds to (wedge, equals)-->

D.4.4.2 Greek Symbols

This entity set defines the Greek character names for use as variable names in technical applications.

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % IS0grk3 PUBLIC

"ISO 8879-1986//ENTITIES Greek Symbols//EN">
%IS0grk3;

<!ENTITY alpha SDATA "[alpha]"- -=small alpha, Greek-->
<!ENTITY beta SDATA "[beta]"- -=small beta, Greek-->
<!ENTITY gamma SDATA "[gamma] - -=small gamma, Greek-->
<!ENTITY Gamma SDATA "[Gamma -=capital Gamma, Greek-->
<!ENTITY gammad SDATA "[gammad]"- -/digamma-->
<!ENTITY delta SDATA "[delta] - -=small delta, Greek-->
<!ENTITY Delta SDATA "[Delta]"- -=capital Delta, Greek-->
<!ENTITY epsi SDATA "[epsi]"- -=small epsilon, Greek-->
<!ENTITY epsiv SDATA "[epsiv i;;- -/varepsilon-->
<!ENTITY epsis SDATA "[epsis i - -/straightepsilon-->
<!ENTITY zeta SDATA "[zeta r- -=small zeta, Greek-->
<!ENTITY eta SDATA "eta -=small eta, Greek-->
<!ENTITY thetas SDATA "[thetas]"- -straight theta-->
<!ENTITY Theta SDATA "[Theta]n- -=capital Theta, Greek-->
<!ENTITY thetav SDATA "[thetav]"- -/vartheta - curly or open theta-->
<!ENTITY iota SDATA "[iota]- -=small iota, Greek-->
<!ENTITY kappa SDATA "[kappa]*:- -=small kappa, Greek-->
<!ENTITY kappav SDATA "[kappav]"- -/varkappa-->
<!ENTITY lambda SDATA "[lambda]"- -=small lambda, Greek-->
<!ENTITY Lambda SDATA "[Lambda]"- -=capital Lambda, Greek-->
<!ENTITY mu SDATA [mu r- -=small mu, Greek-->
<!ENTITY nu SDATA " [nu r- -=small nu, Greek-->
<!ENTITY xi SDATA "[xi]M- -=small xi, Greek-->
<!ENTITY Xi SDATA "[Xi]*- -=capital Xi, Greek-->
<!ENTITY pi SDATA [pi]"- -=small pi, Greek-->
<!ENTITY piv SDATA ;;[Piv r- -/varpi-->
<!ENTITY Pi SDATA [pi] - -=capital Pi, Greek-->
<!ENTITY rho SDATA "[rho r- -=small rho, Greek-->
<!ENTITY rhov SDATA "[rhov]■;- -/varrho-->
<!ENTITY sigma SDATA "[sigma i - -=small sigma, Greek-->
<!ENTITY Sigma SDATA "[Sigma]"■ -—capital Sigma, Greek-->
<!ENTITY sigmav SDATA [sigmav] - -/varsigma-->
<!ENTITY tau SDATA "[tau]- -=smal1 tau, Greek-->
<!ENTITY upsi SDATA "[upsi]•;- -=smal1 upsilon, Greek-->
<!ENTITY Upsi SDATA "[Upsi] - -=capital Upsilon, Greek-->
<!ENTITY phis SDATA "[phis r- -/straightphi - straight phi-->
<!ENTITY Phi SDATA "[Phi r- -=capital Phi, Greek-->
<!ENTITY phiv SDATA [phiv]'" -/varphi - curly or open phi-->
<!ENTITY chi SDATA "[chi]"“ -=small chi, Greek-->
<!ENTITY psi SDATA "[psi]M- -=small psi, Greek-->
<!ENTITY Psi SDATA " [Ps i]"- -=capital Psi, Greek-->
<!ENTITY omega SDATA [omega]"- -=small omega, Greek-->

128 D Public Text

ISO 8879-1986(E)

<!ENTITY Omega SDATA "[Omega]"--=capital Omega, Greek-->

D.4.4.3 Alternative Greek Symbols

The characters in this entity set can be used in conjunction with the preceding one when a separate class of
variables is required. By convention, they are displayed in a different font or style (usually emboldened).

<! --

<! --

-->

(C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

Character entity set. Typical invocation:
<!ENTITY % IS0grk4 PUBLIC

"ISO 8879-1986//ENTITIES Alternative Greek Symbols//EN">
%IS0grk4;

<!ENTITY b.alpha SDATA [b.alpha]
<!ENTITY b.beta SDATA [b.beta]
<!ENTITY b.gamma SDATA "[b.gamma]
<!ENTITY b.Gamma SDATA "[b.Gamma]
<!ENTITY b.gammad SDATA "[b.gammad]
<!ENTITY b.delta SDATA "[b.delta]
<!ENTITY b.Delta SDATA "[b.Delta]
<!ENTITY b.epsi SDATA "[b.epsi]
<!ENTITY b. epsiv SDATA "[b.epsiv]
<!ENTITY b. epsis SDATA "[b.epsis]
<!ENTITY b.zeta SDATA "[b.zeta]
<!ENTITY b. eta SDATA "[b.eta]
<!ENTITY b.thetas SDATA "[b.thetas]
<!ENTITY b.Theta SDATA "[b.Theta]
<!ENTITY b.thetav SDATA "[b.thetav]
<!ENTITY b.iota SDATA [b.iota]
<!ENTITY b.kappa SDATA "[b.kappa]
<!ENTITY b.kappav SDATA [b.kappav]
<!ENTITY b.lambda SDATA "[b.lambda]
<!ENTITY b.Lambda SDATA "[b.Lambda]
<!ENTITY b. mu SDATA [b.mu]
<!ENTITY b. nu SDATA "[b.nu]
<!ENTITY b. xi SDATA "[b.xi]
<!ENTITY b. Xi SDATA "[b.Xi]
<!ENTITY b. pi SDATA "[b.pi]
<!ENTITY b. Pi SDATA [b. Pi]
<!ENTITY b.piv SDATA "[b.piv]
<!ENTITY b. rho SDATA "[b.rho]
<!ENTITY b.rhov SDATA "[b.rhov]
<!ENTITY b.sigma SDATA "[b.sigma]
<!ENTITY b.Sigma SDATA [b.Sigma]
<!ENTITY b.sigmav SDATA [b.sigmav]
<!ENTITY b. tau SDATA [b.tau]
<!ENTITY b.upsi SDATA "[b.upsi]
<!ENTITY b.Upsi SDATA "[b.Upsi]
<!ENTITY b.phis SDATA "[b.phis]
<!ENTITY b. Phi SDATA "[b.Phi]
<!ENTITY b.phiv SDATA "[b.phiv]
<!ENTITY b. chi SDATA "[b.chi]
<!ENTITY b.psi SDATA "[b.psi]
<!ENTITY b. Psi SDATA "[b.Psi]
<!ENTITY b.omega SDATA "[b.omega]
<!ENTITY b.Omega SDATA "[b.Omega]

--small alpha, Greek-->
-“small beta, Greek-->
-=small gamma, Greek-->
-“capital Gamma, Greek-->
-/digamma-->
--small delta, Greek-->
-=capital Delta, Greek-->
-“Small epsilon, Greek-->
-/varep si1on-->
~/straightepsilon-->
-—small zeta, Greek-->
-=small eta, Greek-->
-straight theta-->
--capital Theta, Greek-->
-/vartheta - curly or open theta-->
-“small iota, Greek-->
--small kappa, Greek-->
-/varkappa-->
--small lambda, Greek-~>
-^capital Lambda, Greek-->
-—small mu, Greek-->
--small nu, Greek-->
--small xi, Greek-->
--capital Xi, Greek-->
--small pi, Greek-->
--capital Pi, Greek-->
-/varpi-->
--small rho, Greek-->
-/varrho-->
-—small sigma, Greek-->
-“capital Sigma, Greek-->
-/varsigma-->
--small tau, Greek-->
--small upsilon, Greek-->
-—capital Upsilon, Greek-->
-/straightphi - straight phi-->
--capital Phi, Greek-->
-/varphi - curly or open phi-->
--small chi, Greek-->
-“small psi, Greek-->
-=capital Psi, Greek-->
--small omega, Greek-->
--capital Omega, Greek-->

D.4 Entity Sets 129

ISO 8879-1986(E)

D.4.5 Additional Mathematical Symbols

D.4.5.1 Ordinary Symbols

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOamso PUBLIC

"ISO 8879-1986//ENTITIES Added Math Symbols: Ordinary//EN">
%ISOamso;

<! ENTITY ang SDATA
<! ENTITY angmsd SDATA
<! ENTITY beth SDATA
<! ENTITY bprime SDATA
<! ENTITY comp SDATA
<! ENTITY daleth SDATA
<! ENTITY ell SDATA
<! ENTITY empty SDATA
<! ENTITY gimel SDATA
<! ENTITY image SDATA
<! ENTITY inodot SDATA
<! ENTITY jnodot SDATA
<! ENTITY nexist SDATA
<! ENTITY oS SDATA
<! ENTITY planck SDATA
<! ENTITY real SDATA
<! ENTITY sbsol SDATA
<! ENTITY vprime SDATA
<! ENTITY weierp SDATA

[ang]
[angmsd]
[beth]
[bprime]
[comp]
[daleth]
[ell]
[empty]
[gimel]
[image]
[inodot]
[jnodot]
[nexist]
[oS]
[planck]
[real]
[sbsol]
[vprime]
[weierpj

--/angle - angle-->
--/measuredangle - angle-measured-->
--/beth - beth, Hebrew-->
--/backprime - reverse prime-->
--/complement - complement sign-->
--/daleth - daleth, Hebrew-->
--/ell - cursive small 1-->
--/emptyset /varnothing =small o, slash-->
--/gimel - gimel, Hebrew-->
--/Im - imaginary-->
--/imath =small i, no dot-->
--/jmath - small j, no dot-->
--/nexists - negated exists-->
--/circledS - capital S in circle-->
--/hbar /hslash - Planck’s over 2pi-->
--/Re - real-->
--/sbs - short reverse solidus-->
--/varprime - prime, variant-->
--/wp - Weierstrass p-->

D.4.5.2 Binary and Large Operators

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOamsb PUBLIC

"ISO 8879-1986//ENTITIES Added Math Symbols: Binary Operators//EN">
%ISOamsb;

<!ENTITY amalg
<!ENTITY Barwed
<!ENTITY barwed
<!ENTITY Cap
<!ENTITY Cup
<!ENTITY cuvee
<!ENTITY cuwed
<!ENTITY diam
<!ENTITY divonx
<!ENTITY intcal
<!ENTITY lthree
<!ENTITY ltimes
<!ENTITY minusb
<!ENTITY oast
<!ENTITY ocir
<!ENTITY odash

SDATA "[amalg]
SDATA "[Barwed]
SDATA "[barwed]
SDATA "[Cap
SDATA "[Cup
SDATA "[cuvee]
SDATA "[cuwed]
SDATA "[diam]
SDATA "[divonx]
SDATA "[intcal]
SDATA "[lthree]
SDATA "[ltimes]
SDATA "[minusb]
SDATA "[oast]
SDATA "[ocir]
SDATA "[odash]

--/amalg B: amalgamation or coproduct-->
--/doublebarwedge B: log and, dbl bar-->
--/barwedge B: logical and, bar above-->
--/Cap /doublecap B: dbl intersection-->
--/Cup /doublecup B: dbl union-->
--/curlyvee B: curly logical or-->
--/curlywedge B: curly logical and-->
--/diamond B: open diamond-->
--/divideontimes B: division on times-->
--/intercal B: intercal-~>
--/leftthreetimes B:-->
--/ltimes B: times sign, left closed-->
--/boxminus B: minus sign in box-->
--/circledast B: asterisk in circle-->
--/circledcirc B: open dot in circle-->
--/circleddash B: hyphen in circle-->

130 D Public Text

ISO 8879-1986(E)

<!ENTITY odot
<!ENTITY ominus
<!ENTITY oplus
<!ENTITY osol
<!ENTITY otimes
<!ENTITY plusb
<!ENTITY plusdo
<!ENTITY rthree
<!ENTITY rtimes
<!ENTITY sdot
<!ENTITY sdotb
<!ENTITY setmn
<!ENTITY sqcap
<!ENTITY sqcup
<!ENTITY ssetmn
<!ENTITY sstarf
<!ENTITY timesb
<!ENTITY top
<!ENTITY uplus
<!ENTITY wreath
<!ENTITY xclrc
<!ENTITY xdtri
<!ENTITY xutri
<!ENTITY coprod
<!ENTITY prod
<!ENTITY sum

SDATA "[odot]"--/odot B: middle dot in circle-->
SDATA "[ominus]"--/ominus B: minus sign in circle-->
SDATA "[oplus]"--/oplus B: plus sign in circle-->
SDATA "[osol]"--/oslash B: solidus in circle-->
SDATA "[otimes]"--/otimes B: multiply sign in circle-->
SDATA "[plusb]"--/boxplus B: plus sign in box-->
SDATA "[plusdo]"--/dotplus B: plus sign, dot above-->
SDATA "[rthree]"--/rightthreetimes B:-->
SDATA "[rtimes]"--/rtimes B: times sign, right closed-->
SDATA "[sdot]"--/cdot B: small middle dot-->
SDATA "[sdotb]"--/dotsquare /boxdot B: small dot in box-->
SDATA "[setmn j"--/setminus B: reverse solidus-->
SDATA "[sqcap]"--/sqcap B: square intersection-->
SDATA "[sqcup]"--/sqcup B: square union-->
SDATA "[ssetmn]"--/smallsetminus B: sm reverse solidus-->
SDATA "[sstarf]"--/star B: small star, filled-->
SDATA "[timesb]"--/boxtimes B: multiply sign in box-->
SDATA "[top]"--/top B: inverted perpendicular-->
SDATA "[uplus]"--/uplus B: plus sign in union-->
SDATA "[wreath]"--/wr B: wreath product-->
SDATA "[xcirc]"--/bigcirc B: large circle-->
SDATA "[xdtri]"--/bigtriangledown B: big dn tri, open-->
SDATA "[xutri]"--/bigtriangleup B: big up tri, open-->
SDATA "[coprod]"--/coprod L: coproduct operator-->
SDATA "[prod]"-~/prod L: product operator-->
SDATA "[sum]"--/sum L: summation operator-->

D.4.5.3 Relations

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOamsr PUBLIC

"ISO 8879-1986//ENTITIES Added Math Symbols: Relations//EN">
%ISOamsr;

- ->

<!ENTITY ape SDATA
<!ENTITY asymp SDATA
<!ENTITY bcong SDATA
<!ENTITY bepsi SDATA
<!ENTITY bowtie SDATA
<!ENTITY bsim SDATA
<!ENTITY bsime SDATA
<!ENTITY bump SDATA
<!ENTITY bumpe SDATA
<!ENTITY cire SDATA
<!ENTITY colone SDATA
<!ENTITY cuepr SDATA
<!ENTITY cuesc SDATA
<!ENTITY cupre SDATA
<!ENTITY dashv SDATA
<!ENTITY ecir SDATA
<!ENTITY ecolon SDATA
<!ENTITY eDot SDATA
<!ENTITY esdot SDATA
<!ENTITY efDot SDATA
<!ENTITY egs SDATA
<!ENTITY els SDATA
<!ENTITY erDot SDATA

DA Entity Sets

"[ape]"--/approxeq R: approximate, equals-->
"[asymp]"--/asymp R: asymptotically equal to-->
"[bcong]"--/backcong R: reverse congruent-->
"[bepsi]"--/backepsilon R: such that-->
"[bowtie]"--/bowtie R:-->
"[bsim]"--/backsim R: reverse similar-->
"[bsime]"--/backsimeq R: reverse similar, eq-->
"[bump]"--/Bumpeq R: bumpy equals-->
"[bumpe]"--/bumpeq R: bumpy equals, equals-->
"[cire]"--/circeq R: circle, equals-->
"[colone]"--/coloneq R: colon, equals -->
"[cuepr]"--/curlyeqprec R: curly eq, precedes-->
"[cuesc]"--/curlyeqsucc R: curly eq, succeeds-->
"[cupre]"--/curlypreceq R: curly precedes, eq-->
"[dashv]"--/dashv R: dash, vertical-->
"[ecir]"--/eqcirc R: circle on equals sign-->
"[ecolon]"--/eqcolon R: equals, colon-->
"[eDot]"--/doteqdot /Doteq R: eq, even dots-->
"[esdot]"--/doteq R: equals, single dot above-->
"[efDot]"--/fallingdotseq R: eq, falling dots-->
"[egs]"--/eqslantgtr R: equal-or-gtr, slanted-->
"[els]"--/eqslantless R: eq-or-less, slanted-->
"[erDot]"--/risingdotseq R: eq, rising dots-->

131

ISO 8879-1986(E)

<!ENTITY fork SDATA
<!ENTITY frown SDATA
<!ENTITY gap SDATA
<!ENTITY gsdot SDATA
<!ENTITY gE SDATA
<!ENTITY gel SDATA
<!ENTITY gEl SDATA
<!ENTITY ges SDATA
<!ENTITY Gg SDATA
<!ENTITY gl SDATA
<!ENTITY gsim SDATA
<!ENTITY Gt SDATA
<!ENTITY lap SDATA
<!ENTITY ldot SDATA
<!ENTITY IE SDATA
<!ENTITY lEg SDATA
<!ENTITY leg SDATA
<!ENTITY les SDATA
<!ENTITY lg SDATA
<!ENTITY LI SDATA
<!ENTITY lsim SDATA
<!ENTITY Lt SDATA
<!ENTITY Itrie SDATA
<!ENTITY mid SDATA
<!ENTITY models SDATA
<!ENTITY Pr SDATA
<!ENTITY prap SDATA
<!ENTITY pre SDATA
<!ENTITY prsim SDATA
<!ENTITY rtrie SDATA
<!ENTITY samalg SDATA
<!ENTITY sc SDATA
<!ENTITY scap SDATA
<!ENTITY sccue SDATA
<!ENTITY see SDATA
<!ENTITY scsim SDATA
<!ENTITY sfrown SDATA
<!ENTITY smid SDATA
<!ENTITY smile SDATA
<!ENTITY spar SDATA
<!ENTITY sqsub SDATA
<!ENTITY sqsube SDATA
<!ENTITY sqsup SDATA
<!ENTITY sqsupe SDATA
<!ENTITY ssmile SDATA
<!ENTITY Sub SDATA
<!ENTITY subE SDATA
<!ENTITY Sup SDATA
<!ENTITY supE SDATA
<!ENTITY thkap SDATA
<!ENTITY thksim SDATA
<!ENTITY trie SDATA
<!ENTITY twixt SDATA
<!ENTITY vdash SDATA
<!ENTITY Vdash SDATA
<!ENTITY vDash SDATA
<!ENTITY veebar SDATA
<!ENTITY vltri SDATA
<!ENTITY vprop SDATA
<!ENTITY vrtri SDATA
<!ENTITY Vvdash SDATA

]"
]"
]"
]”
]"
]"
]"
]”
]"
]"
]"
]"
]"
]"
]"
]"
]”
]"

]”
]"
]"

"[fork]"
"[frown]"

"[gap]"
"[gsdot

;; [g£
[gel

"[gEl

!![ges
tGg

81. [gsim
"[Gt

i; i iap
"[ldot
"[IE
"[lEg
"[leg
"[les

n[lg
"[LI
"[lsim
"[Lt
"[Itrie
"[mid
"[models j"
Mr i VI

[pr]

>rap |
[pre]

"[prsim]"
"[rtrie]"
"[samalgj"
"[sc]"

[scap i
Mr 111 [sccue 1

[see]
"[scsim]"
"[sfrown]"
"[smid]"

[smile 1
"[spar]"
"[sqsub]"
"[sqsube]"
"[sqsup]"
"[sqsupe]"
"[ssmilel"
"[Sub]"
"[subE]"
"[Sup]"
"[supE]"
"[thkap]"
"[thksim]"
"[trie]"
"[twixt]"
"[vdash]"
"[Vdash]"
"[vDash]"
"[veebar]"
"[vltri]"
•Vprop j;;
[vrtri]"

"[Vvdash]"

--/pitchfork R: pitchfork-->
--/frown R: down curve-->
--/gtrapprox R: greater, approximate-->
--/gtrdot R: greater than, single dot-->
--/geqq R: greater, double equals-->
--/gtreqless R: greater, equals, less-->
--/gtreqqless R: gt, dbl equals, less-->
--/geqslant R: gt-or-equal, slanted-->
--/ggg /Gg /gggtr R: triple gtr-than-->
--/gtrless R: greater, less-->
--/gtrsim R: greater, similar-->
--/gg R: dbl greater-than sign-->
--/lessapprox R: less, approximate-->
--/lessdot R: less than, with dot-->
--/leqq R: less, double equals-->
--/lesseqqgtr R: less, dbl eq, greater-->
--/lesseqgtr R: less, eq, greater-->
--/leqslant R: less-than-or-eq, slant-->
--/lessgtr R: less, greater-->
--/LI /111 /llless R: triple less-than-->
--/lesssim R: less, similar-->
—/II R: double less-than sign-->
--/trianglelefteq R: left triangle, eq-->
--/mid R:-->
--/models R:-->
--/prec R: precedes-->
--/precapprox R: precedes, approximate-->
--/preceq R: precedes, equals -->
--/precsim R: precedes, similar-->
--/trianglerighteq R: right tri, eq-->
--/smallamalg R: small amalg-->
--/succ R: succeeds-->
--/succapprox R: succeeds, approximate-->
--/succcurlyeq R: succeeds, curly eq-->
--/succeq R: succeeds, equals-->
--/succsim R: succeeds, similar-->
•-/smallfrown R: small down curve-->
--/shortmid R:-->
--/smile R: up curve-->
--/shortparallel R: short parallel-->
--/sqsubset R: square subset-->
--/sqsubseteq R: square subset, equals-->
--/sqsupset R: square superset-->
--/sqsupseteq R: square superset, eq-->
--/smallsmile R: small up curve-->
--/Subset R: double subset-->
--/subseteqq R: subset, dbl equals-->
--/Supset R: dbl superset-->
--/supseteqq R: superset, dbl equals -->
--/thickapprox R: thick approximate-->
■-/thicksim R: thick similar-->
--/triangleq R: triangle, equals-->
--/between R: between-->
--/vdash R: vertical, dash-->
--/Vdash R: dbl vertical, dash-->
--/vDash R: vertical, dbl dash-->
--/veebar R: logical or, bar below-->
--/vartriangleleft R: 1 tri, open, var-->
--/varpropto R: proportional, variant-->
■-/vartriangleright R: r tri, open, var-->
-/Vvdash R: triple vertical, dash-->

132 D Public Text

ISO 8879-1986(E)

D.4.5.4 Negated Relations

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOamsn PUBLIC

"ISO 8879-1986//ENTITIES
Added Math Symbols: Negated Relations//EN">

%ISOarasn;

<! ENTITY gnap SDATA
ft

[gnap]"
<! ENTITY gne SDATA

Vf
[gne]"

<! ENTITY gnE SDATA
It

[gnE 3
<! ENTITY gnsim SDATA

If
[gnsim 3

<! ENTITY gvnE SDATA
tf

[gvnE 3"
<! ENTITY lnap SDATA ft [lnap 3"
<! ENTITY InE SDATA If [InE 3"
<! ENTITY lne SDATA tf [lne 3"
<! ENTITY lnsim SDATA ft [lnsim 3
<! ENTITY lvnE SDATA If [lvnE 3
<! ENTITY nap SDATA

It [nap 3"
<! ENTITY ncong SDATA

ff
[ncong 3"

<! ENTITY nequiv SDATA
ft

[nequiv]
<! ENTITY ngE SDATA

ff
[ngE 3"

<! ENTITY nge SDATA
ft [nge 3

<! ENTITY nges SDATA
ff [nges 3”

<t ENTITY ngt SDATA ft
[ngt 3"

<! ENTITY nle SDATA
f f

[nle 3"
<! ENTITY nlE SDATA tf [nlE 3"
<! ENTITY nles SDATA If [nles 3"
<! ENTITY nit SDATA

ff [nit 1 <! ENTITY nltri SDATA
ft
[nltri

<! ENTITY nltrie SDATA
ft
[nltrie]

<! ENTITY nmid SDATA
ft

[nmid 3"
<! ENTITY npar SDATA

ff
[npar 3”

<! ENTITY npr SDATA
ft

[npr 3
<! ENTITY npre SDATA

ff
[npre 3”

<! ENTITY nrtri SDATA
tf
[nrtri 3"

<! ENTITY nrtrie SDATA ft [nrtrie]
<! ENTITY nsc SDATA

ff
[nsc 3

<! ENTITY nsce SDATA
ff [nsce 3"

<! ENTITY nsim SDATA
ft

[nsim 3"
<! ENTITY nsime SDATA

ft [nsime 3"
<! ENTITY nsmid SDATA

ft
[nsmid 3"

<! ENTITY nspar SDATA
ff

[nspar 3"
<! ENTITY nsub SDATA

ft
[nsub 3

<! ENTITY nsube SDATA
ft

[nsube 3”
<! ENTITY nsubE SDATA tf [nsubE 3"
<! ENTITY ns up SDATA

ft
[nsup 3"

<! ENTITY nsupE SDATA ff [nsupE 3"
<! ENTITY nsupe SDATA ft [nsupe 3" <! ENTITY nvdash SDATA ff [nvdash]
<! ENTITY nvDash SDATA ft [nvDash]"
<! ENTITY nVDash SDATA

tf
[nVDash]"

<! ENTITY nVdash SDATA
ft

[nVdash]"
<! ENTITY prnap SDATA

tf [prnap 3"
<! ENTITY prnE SDATA

ff
[prnE 3"

<! ENTITY prnsim SDATA
ft

[prnsim]
<! ENTITY scnap SDATA It [scnap 3"

--/gnapprox N: greater, not approximate-->
--/gneq N: greater, not equals-->
--/gneqq N: greater, not dbl equals-->
--/gnsim N: greater, not similar-->
--/gvertneqq N: gt, vert, not dbl eq-->
--/Inapprox N: less, not approximate-->
--/lneqq N: less, not double equals-->
--/lneq N: less, not equals-->
--/lnsim N: less, not similar-->
--/lvertneqq N: less, vert, not dbl eq-->
--/napprox N: not approximate-->
--/ncong N: not congruent with-->
--/nequiv N: not identical with-->
--/ngeqq N: not greater, dbl equals-->
--/ngeq N: not greater-than-or-equal-->
--/ngeqslant N: not gt-or-eq, slanted-->
--/ngtr N: not greater-than-->
--/nleq N: not less-than-or-equal-->
--/nleqq N: not less, dbl equals-->
--/nleqslant N: not less-or-eq, slant-->
--/nless N: not less-than-->
--/ntriangleleft N: not left triangle-->
--/ntrianglelefteq N: not 1 tri, eq-->
--/nmid-->
--/nparallel N: not parallel-->
--/nprec N: not precedes-->
--/npreceq N: not precedes, equals-->
--/ntriangleright N: not rt triangle-->
--/ntrianglerighteq N: not r tri, eq-->
--/nsucc N: not succeeds-->
--/nsucceq N: not succeeds, equals-->
--/nsim N: not similar-->
--/nsimeq N: not similar, equals-->
--/nshortmid-->
--/nshortparallel N: not short par-->
--/nsubset N: not subset-->
--/nsubseteq N: not subset, equals-->
--/nsubseteqq N: not subset, dbl eq-->
--/nsupset N: not superset-->
--/nsupseteqq N: not superset, dbl eq-->
--/nsupseteq N: not superset, equals-->
--/nvdash N: not vertical, dash-->
--/nvDash N: not vertical, dbl dash-->
--/nVDash N: not dbl vert, dbl dash-->
--/nVdash N: not dbl vertical, dash-->
--/precnapprox N: precedes, not approx-->
--/precneqq N: precedes, not dbl eq-->
--/precnsim N: precedes, not similar-->
--/succnapprox N: succeeds, not approx-->

D.4 Entity Sets 133

ISO 8879-1986(E)

<!ENTITY scnE
<!ENTITY scnsim
<!ENTITY subne
<!ENTITY subnE
<!ENTITY supne
<!ENTITY supnE
<!ENTITY vsubnE
<!ENTITY vsubne
<!ENTITY vsupne
<!ENTITY vsupnE

SDATA "[scnE]"--/succneqq N: succeeds, not dbl eq-->
SDATA "[scnsim]"--/succnsim N: succeeds, not similar-->
SDATA "[subne j"--/subsetneq N: subset, not equals-->
SDATA "[subnE]"--/subsetneqq N: subset, not dbl eq-->
SDATA "[supne]"--/supsetneq N: superset, not equals -->
SDATA "[supnE]"--/supsetneqq N: superset, not dbl eq-->
SDATA "[vsubnE]"--/subsetneqq N: subset not dbl eq, var-->
SDATA "[vsubne]"--/subsetneq N: subset, not eq, var-->
SDATA "[vsupne]"--/supsetneq N: superset, not eq, var-->
SDATA "[vsupnE]"--/supsetneqq N: super not dbl eq, var-->

D.4.5.5 Arrow Relations

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOamsa PUBLIC

"ISO 8879-1986//ENTITIES Added Math Symbols: Arrow Relations//EN">
%ISOamsa;

<!ENTITY cularr SDATA
<!ENTITY curarr SDATA
<!ENTITY dArr SDATA
<!ENTITY darr2 SDATA
<!ENTITY dharl SDATA
<!ENTITY dharr SDATA
<!ENTITY lAarr SDATA
<!ENTITY Larr SDATA
<!ENTITY larr2 SDATA
<!ENTITY larrhk SDATA
<!ENTITY larrlp SDATA
<!ENTITY larrtl SDATA
<!ENTITY lhard SDATA
<!ENTITY lharu SDATA
<!ENTITY hArr SDATA
<!ENTITY harr SDATA
<!ENTITY lrarr2 SDATA
<!ENTITY rlarr2 SDATA
<!ENTITY harrw SDATA
<!ENTITY rlhar2 SDATA
<!ENTITY lrhar2 SDATA
<!ENTITY lsh SDATA
<!ENTITY map SDATA
<!ENTITY mumap SDATA
<!ENTITY nearr SDATA
<!ENTITY nlArr SDATA
<!ENTITY nlarr SDATA
<!ENTITY nhArr SDATA
<!ENTITY nharr SDATA
<!ENTITY nrarr SDATA
<!ENTITY nrArr SDATA
<!ENTITY nwarr SDATA
<!ENTITY olarr SDATA
<!ENTITY orarr SDATA
<!ENTITY rAarr SDATA
<!ENTITY Rarr SDATA
<!ENTITY rarr2 SDATA
<!ENTITY rarrhk SDATA
<!ENTITY rarrIp SDATA

"[cularr]"--/curvearrowleft A: left curved arrow -->
"[curarr]"--/curvearrowright A: rt curved arrow -->
"[dArr]"--/Downarrow A: down dbl arrow -->
"[darr2]"--/downdownarrows A: two down arrows -->
"[dharl]"--/downleftharpoon A: dn harpoon-left -->
"[dharr]"--/downrightharpoon A: down harpoon-rt -->
"[lAarr]"--/Lleftarrow A: left triple arrow -->
"[Larr]"--/twoheadleftarrow A:-->
"[larr2]"--/leftleftarrows A: two left arrows -->
"[larrhk]"--/hookleftarrow A: left arrow-hooked -->
"[larrlp]"--/looparrowleft A: left arrow-looped -->
"[larrtl]"--/leftarrowtail A: left arrow-tailed -->
"[lhard]"--/leftharpoondown A: 1 harpoon-down -->
"[lharu]"--/leftharpoonup A: left harpoon-up -->
"[hArr]"--/Leftrightarrow A: l&r dbl arrow -->
"[harr]"--/leftrightarrow A: l&r arrow -->
"[lrarr2]"--/leftrightarrows A: 1 arr over r arr -->
"[rlarr2]"--/rightleftarrows A: r arr over 1 arr -->
"[harrw]"--/leftrightsquigarrow A: l&r arr-wavy -->
"[rlhar2]"--/rightleftharpoons A: r harp over 1 -->
"[lrhar2]"--/leftrightharpoons A: 1 harp over r -->
"[lsh]"--/Lsh A:-->
"[map]"~-/mapsto A:-->
"[mumap]"--/multimap A:-->
"[nearr]"--/nearrow A: NE pointing arrow -->
"[nlArr]" - - /nLe ftar row A: not implied by -->
"[nlarr]"--/nleftarrow A: not left arrow -->
"[nhArr]"--/nLeftrightarrow A: not l&r dbl arr -->
"[nharr]"--/nleftrightarrow A: not l&r arrow -->
"[nrarr]"--/nrightarrow A: not right arrow -->
"[nrArr]"--/nRightarrow A: not implies -->
"[nwarr]"--/nwarrow A: NW pointing arrow -->
"[olarr]"--/circlearrowleft A: 1 arr in circle -->
"[orarr]"--/circlearrowright A: r arr in circle -->
"[rAarr]"--/Rrightarrow A: right triple arrow -->
"[Rarr]"--/twoheadrightarrow A:-->
"[rarr2]"--/rightrightarrows A: two rt arrows -->
"[rarrhk]"--/hookrightarrow A: rt arrow-hooked -->
"[rarrlp]"--/looparrowright A: rt arrow-looped -->

134 D Public Text

ISO 8879-1986(E)

<!ENTITY rarrtl
<!ENTITY rarrw
<!ENTITY rhard
<!ENTITY rharu
<!ENTITY rsh
<!ENTITY drarr
<!ENTITY dlarr
<!ENTITY uArr
<!ENTITY uarr2
<!ENTITY vArr
<!ENTITY varr
<!ENTITY uharl
<!ENTITY uharr
<!ENTITY xlArr
<!ENTITY xhArr
<!ENTITY xharr
<!ENTITY xrArr

SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA
SDATA

If

ft

ff

ft

tf

ft

tf

tf

ft

tf

ff

ff

ft

ff

ft

ft

ff

[rarrtl]"--/rightarrowtail A: rt arrow-tailed -->
[rarrw]"--/squigarrowright A: rt arrow-wavy -->
[rhard j"--/rightharpoondown A: rt harpoon-down -->
[rharu]"--/rightharpoonup A: rt harpoon-up -->
[rsh]"--/Rsh A:-->
[drarr]"--/searrow A: downward rt arrow -->
[dlarr]"--/swarrow A: downward 1 arrow -->
[uArr ["--/Uparrow A: up dbl arrow -->
[uarr2]"--/upuparrows A: two up arrows -->
[vArr]"--/Updownarrow A: up&down dbl arrow -->
[varr]"--/updownarrow A: up&down arrow -->
[uharl]"--/upleftharpoon A: up harpoon-left -->
[uharr]"--/uprightharpoon A: up harp-r-->
[xlArr]"--/Longleftarrow A: long 1 dbl arrow -->
[xhArr]"--/Longleftrightarrow A: long l&r dbl arr-->
[xharr ["--/longleftrightarrow A: long l&r arr -->
[xrArr jM--/Longrightarrow A: long rt dbl arr -->

D.4.5.6 Opening and Closing Delimiters

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Character entity set. Typical invocation:
<!ENTITY % ISOamsc PUBLIC

"ISO 8879-1986//ENTITIES Added Math Symbols: Delimiters//EN">
%ISOamsc;

<!ENTITY rceil
<!ENTITY rfloor
<!ENTITY rpargt
<!ENTITY urcorn
<!ENTITY drcorn
<!ENTITY lceil
<!ENTITY lfloor
<!ENTITY lpargt
<!ENTITY ulcorn
<!ENTITY dlcorn

SDATA "[rceil]"--/rceil C: right ceili.ng-->
SDATA "[rfloor]"--/rfloor C: right floor-->
SDATA "[rpargt]"--/rightparengtr C: right paren, gt-->
SDATA "[urcorn]"--/urcorner C: upper right corner-->
SDATA "[drcorn]"--/lrcorner C: downward right corner-->
SDATA "[lceil]"--/lceil 0: left ceiling-->
SDATA "[lfloor]"--/lfloor 0: left floor-->
SDATA "[lpargt]"--/leftparengtr 0: left parenthesis, gt-->
SDATA "[ulcorn]"--/ulcorner 0: upper left corner-->
SDATA "[dlcorn]"--/llcorner 0: downward left corner-->

D.4 Entity Sets 135

ISO 8879-1986(E)

Annex E

Application Examples

(This annex does not form an integral part of this International Standard .)

E.1 Document Type Definition

The following example is supplied as an illustration of a practical document type definition. It is primarily
intended to illustrate the correct use of markup declarations, but it follows good design practices as well.

<!-- (C) International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!-- Public document type definition. Typical invocation:
<!DOCTYPE general PUBLIC "ISO 8879-1986//DTD General Document//EN" [

<!ENTITY % ISOnum PUBLIC
"ISO 8879-1986//ENTITIES Numeric and Special Graphic//EN">

<!ENTITY % ISOpub PUBLIC
"ISO 8879-1986//ENTITIES Publishing//EN">

%ISOnum; %ISOpub;
(Parameter entities and additional elements can be defined here.)

]>
- ->

<!ENTITY % doctype "general" -- Document type generic identifier -->
<!--This is a document type definition for a "general" document.
It contains the necessary elements for use in many applications, and is
organized so that other elements can be added in the document type
declaration subset. -->

<! --

-->

<!-- Entity Naming Conventions -->

Prefix = where used:
p. = in paragraphs (also in phrases if .ph suffix)
s. = in sections (i.e., among paragraphs)
ps. = in paragraphs and sections
i. = where allowed by inclusion exceptions
m. = content model or declared content
a. = attribute definition
NONE= specific use defined in models

Suffix = allowed content:
.ph = elements whose content is %m.ph
.d = elements whose content has same definition
NONE= elements with unique definitions

<!ENTITY % p.em.ph
<!ENTITY % p.rf.ph
<!ENTITY % p.rf.d
<!ENTITY % p.zz.ph
<!ENTITY % ps.ul.d
<!ENTITY % ps.list
<!ENTITY % ps.elem
<!ENTITY % ps.zz
<!ENTITY % s.p.d
<!ENTITY % s.top
<!ENTITY % s.zz

<!-- Element Tokens -->
"hpl|hp2|hp3|hpO|cit" -- Emphasized phrases -->
"hdref|figref" -- Reference phrases -->
"fnrefjliref" -- References (empty) -->
"(%p.em.ph;)|(%p.rf.ph;)|(%p.rf.d;)" -- All phrases -->
"ol|sl|ul|nl" -- Unit-item lists -->
"%ps.ul.d;|dl|gl" -- All lists -->
"xmp|lq|linesjtbl|address|artwork" -- Other elements -->
"(%ps.elem;)|(%ps.list;)" -- Para/sect subelements -->
"p|note" -- Simple paragraphs -->
"topi|top2|top3|top4" -- Topics -->
"(%s.p.d;)j(%ps.zz;)|(%s.top;)" -- Section subelements -->

136 E Application Examples

ISO 8879-1986(E)

<!ENTITY % i.float
<!ENTITY % fm.d
<!ENTITY % bra.d

"fig|fn" -- Floating elements -->
"abstract|preface" --Front matter-->
"glossaryjbibliog" -- Back matter -->

<!ENTITY % m.ph
<!ENTITY % m.p
<!ENTITY % m.pseq
<!ENTITY % m.top

<!-- Model Groups -->
"(//PCDATA|(%p.zz.ph;))*" -- Phrase model -->
"(#PCDATA|(%p.zz.ph;)|(%ps.zz;))*" -- Paragraph model -->
"(p, ((%s.p.d;)|(%ps.zz;))*)" -- Paragraph sequence -->
"(th?, p, (%s.zz;)*)" -- Topic model -->

<! --

<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

<!-- Document Structure -->
ELEMENTS MIN CONTENT (EXCEPTIONS) -->
%doctype; - - (frontm?, body, appendix?, backm?)

+(ix|%i.float;)>
frontm - 0 (titlep, (%fm.d;|hi)*, toe?, figlist?)>
body - 0 (hO+|hl+)>
appendix - 0 (hl+)>
backm - 0 ((%bm.d;|hi)*, index?)>
(toe|figlist|index) -- Table of contents, figure list,

- 0 EMPTY -- and index have generated content ->

<! -- Title Page Elements -->
< t - - ELEMENTS MIN CONTENT (EXCEPTIONS) -->
<!ELEMENT titlep - 0 (title & doenum? & date? & abstract? &

(author|address|%s.zz;)*)>
<!ELEMENT (doenum|date|author)

- 0 (//PCDATA) -- Document number, etc. -->
<!ELEMENT title - 0 (tline+) -- Document title -->
<!ELEMENT t line 0 0 %m.ph; -- Title line -->

<! - - Headed Sections -->
<! -- ELEMENTS MIN CONTENT (EXCEPTIONS) -->
<!ELEMENT hO - 0 (hOt, (%s.zz;)*, hl+) -- Part -->
<!ELEMENT (hi|%bm. d; |%fm.c i;)

- 0 (hit, (%s.zz;)*, h2*) -- Chapter -->
<!ELEMENT h2 - 0 (h2t, (%s.zz;)*, h3*) -- Section -->
<!ELEMENT h3 - 0 (h3t, (%s.zz;)*, h4*) -- Subsection -->
<! ELEMENT h4 - 0 (h4t, (%s.zz;)*) -- Sub-subsection -->
<!ELEMENT (hOt|hit|h2t|h3t|h4t)

0 0 %m.ph; -- Headed section titles -->

<! -- Topics (Captioned Subsections) -->
<! -- ELEMENTS MIN CONTENT (EXCEPTIONS) -->
<!ELEMENT topi - 0 %m.top; -(topi) -- Topic 1 -->
<!ELEMENT top2 - 0 %m.top; -(top2) -- Topic 2 -->
<!ELEMENT top3 - 0 %m.top; -(top3) -- Topic 3 -->
<!ELEMENT top4 - 0 %m.top; -(top4) -- Topic 4 -->
<!ELEMENT th - 0 %m.ph; -- Topic heading -->

<!-- Elements in Sections or Paragraphs -->
<! - ELEMENTS MIN CONTENT (EXCEPTIONS) -->
<!ELEMENT address - - (aline+)>
<!ELEMENT aline 0 0 %m.ph; -- Address line -->
<!ELEMENT artwork - 0 EMPTY>
<!ELEMENT dl - - ((dthd+, ddhd)?, (dt+, dd)*)>
<!ELEMENT dt - 0 %m.ph; -- Definition term -->
<!ELEMENT (dthd|ddhd)- 0 (//PCDATA) -- Headings for dt and dd -->
<!ELEMENT dd - 0 Xm.pseq; -- Definition description -->
<!ELEMENT gl - - (gt, (gd|gdg)*) -- Glossary list -->
<!ELEMENT gt - 0 (//PCDATA) -- Glossary term -->
<!ELEMENT gdg - 0 (gd+) -- Glossary definition group -->
<!ELEMENT gd - 0 %m.pseq; -- Glossary definition -->

E. 1 Document Type Definition 137

ISO 8879-1986(E)

<!ELEMENT (%ps.ul.d;) - - (li*) -- Unit item lists -->
<!ELEMENT li - 0 %m.pseq; -- List item -->
<!ELEMENT lines 0 0 %m.pseq; -- Line elements -->
<!ELEMENT (lq|xmp) - - %m.pseq; -(%i.float;) -- Long quote -->
<!ELEMENT (%s.p.d;) - 0 %m.p; -- Paragraphs -->

<!-- Table -->
<! -- ELEMENTS MIN CONTENT (EXCEPTIONS) -->
<!ELEMENT tbl - - (hr*, fr*, r+)>
<!ELEMENT hr - 0 (h+) -- Heading row -->
<!ELEMENT fr - 0 (f+) -- Footing row -->
<!ELEMENT r 0 0 (c+) -- Row (body of table) -->
<!ELEMENT c 0 0 %m.pseq; -- Cell in body row -->
<!ELEMENT (f|h) 0 0 (//PCDATA) -- Cell in fr or hr -->

<!-- Phrases -->
<! - - ELEMENTS MIN CONTENT (EXCEPTIONS) -->
<!ELEMENT (%p.em.ph;) - - %m.ph; -- Emphasized phrases -->
<!ELEMENT q - - %m.ph; -- Quotation -->
<!ELEMENT (%p.rf.ph;) - - %m.ph; -- Reference phrases -->
<!ELEMENT (%p.rf.d;) - 0 EMPTY -- Generated references -->

<! _. ■ Includable Subelements -->
<!-- ELEMENTS MIN CONTENT (EXCEPTIONS) -->
<!ELEMENT fig - - (figbody, (figcap, figdesc?)?) -(%i.float;)>
<!ELEMENT figbody 0 0 %m.pseq; -- Figure body -->
<!ELEMENT figcap - 0 %m.ph; -- Figure caption -->
<!ELEMENT figdesc - 0 %m.pseq; -- Figure description -->
<!ELEMENT fn - - %m.pseq; -(%i.float;) -- Footnote -->
<!ELEMENT ix - 0 (//PCDATA) -- Index entry -->

<!-- Attribute Definition Lists -->
<!-- As this document type definition is intended for basic SGML

documents, in which the LINK features are not supported, it was
necessary to include link attributes in the definitions.

-->
<!-- ELEMENTS NAME VALUE DEFAULT -->
<!ATTLIST %doctype; security CDATA //IMPLIED

status CDATA ft f!

version CDATA //IMPLIED>
<!ATTLIST title stitle CDATA //IMPLIED>
<!ATTLIST (hO|hi|h2|%bm.d;|%fm.d;)

id ID //IMPLIED
stitle CDATA //IMPLIED>

<!ATTLIST (h3|h4) id ID //IMPLIED>
<!ATTLIST artwork sizex NMTOKEN textsize

-- Default is current text width in column. --
sizey NUTOKEN //REQUIRED

-- (Sizes are specified in the units supported by the
application in which this declaration appears;
for sizex, the keyword "textsize" can be used
to mean "the width at which previous text was set").

- ->
<!ATTLIST gl compact (compact) //IMPLIED

termhi NUMBER 2>
<!ATTLIST dl compact (compact) //IMPLIED

headhi NUMBER 2
termhi NUMBER 2
tsize NUMBERS 9

-- The number of dt elements per dd must equal the
number of numbers specified for tsize (here 1).
The number of dthd elements must be the same.

138 E Application Examples

ISO 8879-1986(E)

-->

<! ATTLIST
<!ATTLIST
<!ATTLIST
<!ATTLIST

gd
(%ps.ul.d;)
li
xmp

<!ATTLIST tbl

source CDATA //IMPLIED>
compact (compact) //IMPLIED>
id ID //IMPLIED>
depth NUTOKEN //IMPLIED
keep NMTOKEN all
lines (flow|lines) lines>
cols NUMBERS //REQUIRED

-- The number of c elements per r must equal
the number of numbers specified for cols
(similarly, the number of h per hr and f per

-->

fr).

<!ATTLIST c heading (h) //IMPLIED
-- If h is
_>

specified , cell is row heading.

<!ATTLIST (%p.rf.ph;) refid IDREF //CONREF
page (yes|no) yes>

<!ATTLIST fnref refid IDREF //REQUIRED>
<!ATTLIST liref refid IDREF //REQUIRED

page (yes|no) yes>
<!ATTLIST fig id ID //IMPLIED

frame (box|rule|none) none
place (top j fixed|bottom) top
width (column|page) page
align (left|center|right) center
lines (flowjlines) lines>

<!ATTLIST ix id ID //IMPLIED
print CDATA //IMPLIED
see CDATA //IMPLIED
seeid IDREF //IMPLIED>

<!ATTLIST fn id ID //IMPLIED>

<!-- Entities for Short References -->
C”T>ATvr*T'An T* __ n „ _ _U „ j.- _ <!ENTITY ptag STARTTAG "p" -- Paragraph start-tag -->

<!ENTITY qtag STARTTAG "q" Quoted phrase start-tag -->
<!ENTITY qetag ENDTAG "q"

endtag ENDTAG n,t
Quoted phrase end-tag -->

<!ENTITY - - Empty end-tag for any element --

<!SHORTREF docmap -- Map for general use --
"&//RS; &//RE;" ptag -- Blank line is <p> --

<!USEMAP

1 ft t

docmap %doctype;>
qtag -- " is <q> -->

<!SHORTREF qmap -- Map for quoted phrases --

<!USEMAP

f t» f

qmap q>
qetag -- " is </q> -->

<!SHORTREF ixmap -- Map for index entries --

<!USEMAP
"&//RE;"

ixmap ix>
endtag -- Record end is </> -->

The capacity calculation for this document type definition is as follows:

23 entities declared with 732 characters of text.
78 element types declared with 696 model tokens and

8 exception groups with 13 names.
39 attributes declared with 23 group members and

80 characters of default value text.
0 IDs and 0 ID references specified.
0 data content notations with 0 text characters.
3 short reference maps declared.

8644 capacity points required (24% of 35000 permitted).

£. 1 Document Type Definition 139

ISO 8879-1986(E)

E.2 Computer Graphics Metafile

Pictures generated by a computer graphics program can be included in an SGML document by the techniques
illustrated in figure 12 and figure 13.

The illustrated notations are encodings of the Computer Graphics Metafile (CGM). As SGML delimiters could
occur in such a file, it should be incorporated with a content reference so that it will not be scanned by the
SGML parser. It can safely be merged into an SGML entity only if it was examined and found not to contain
delimiters that would be recognized in replaceable character data, or if it was pre-processed to convert such
delimiters to entity references.

Note that the “graphic” element contains no attributes for positioning or referencing it. The element is
analagous to formatted text or to white space left for paste-in art (like the “artwork" element in the document
type definition in clause E.1), in that it normally is formatted at the same point in the logical document as it is
entered. To move it elsewhere, or to frame it, or to give it an ID by which it can be referenced, it is necessary to
include it in the body of a figure element.

If the element declaration for “graphic” were stored in the file “graphic.etd”, the following declaration would
allow graphic metafiles to occur in figures within a “general” document:

<!DOCTYPE general PUBLIC "ISO 8679-1986//DTD General DocumentZ/EN" [
<!ENTITY % ps.elem "graphic|xmp|lq|lines|tbljaddress|artwork">
<!ENTITY % graphic SYSTEM "graphic.etd">
%graphic;

]>

E.3 Device-Independent Code Extension

NOTE — This clause is intended only to exemplify approaches to using ISO 2022 graphic repertoire code extension techniques with SGML;
not all combinations of the techniques are discussed, nor is a complete design offered for any one of them. The reader is assumed to have a
knowledge of ISO 2022, ISO 4873, and ISO 6937.

SGML documents can contain multiple graphic character repertoires by employing the code extension
techniques of ISO 2022. Moreover, these techniques can be supplemented with SGML entity references and
short references to achieve a degree of freedom from device and code dependencies that is not possible with
code extension alone.

The basic principle behind code extension is that a bit combination can represent more than one character:
which character depends on the control characters and escape sequences that have preceded it. When using
code extension with SGML, then, it is necessary to allow code extension control characters in SGML entities in
a manner that precludes confusing delimiters with them, or with the extended characters.

E.3.1 Code Extension Facilities

Those facilities that require the least user effort and parsing overhead to avoid confusion with delimiters when
markup suppression is not used, are those in which ail graphic markup characters are in the GO set, which
occupies the left (or only) side of the code table, and the code is:

a) 8-bit, with a G1 set always occupying the right. The G1 character repertoire can be changed as needed
with the appropriate designating escape sequence. No locking shifts are used.

b) 8-bit, with G1, G2, and G3 sets invoked by locking shifts into the right side of the code table. If more than
three supplementary sets are needed, the G1, G2, and G3 character repertoires can be changed with the
appropriate designating escape sequences.

c) 7-bit or 8-bit, with characters from the G2 and G3 sets invoked by single shifts into the left (or only) side of
the code table. As above, the G2 and G3 character repertoires can be changed as needed. In 8-bit codes,
this facility can be combined with either of the other two.

Illustrated in figure 14 is the function character identification parameter that should replace that of the
multicode basic concrete syntax when using the above code extension facilities.

140 E Application Examples

ISO 8879-1986(E)

<!NOTATION cgmchar PUBLIC
"ISO 8632/2//NOTATION Character encoding//EN" -->

<!NOTATION cgmclear PUBLIC
"ISO 8632/4//NOTATION Clear text encoding//EN" -->

<!ELEMENT graphic - 0 RCDATA>
<!ATTLIST graphic

NAME VALUE DEFAULT --
file ENTITY //CONREF
-- The external entity containing the metafile.

If not specified, the metafile is the syntactic
content of the element.

coding NOTATION (cgmclear|cgmchar) cgmclear
-- Data content notation when the metafile is not

external. Ignored if it is external because
notation is specified on the entity declaration.

picnum NUMBER 1
-- Sequence number of picture if the metafile

contains more than one.

xO CDATA --lower left corner-- //IMPLIED
xl CDATA //IMPLIED
yO CDATA --upper right corner--//IMPLIED

yi CDATA //IMPLIED
Coordinates of view port into picture, in
virtual device coordinates (a real number in
the format -n.nEn). Defaults are the numbers
that refer to the VDC extent.

Figure 12 — Graphics Metafile Attributes (1 of 2): Encoding and View

E.3.1.1 Avoiding False Delimiter Recognition

When code extension is done with a single G1 set in conformance with ISO 4873 there is little or no possibility of
false delimiter recognition. Other code extension techniques introduce a greater possibility, which can be
avoided if the implementor and/or user observe the following practices:

a) All markup, including short references and entity references, must be done in the GO set.

b) If an entity shifts to a supplementary set, it must return to the GO set (unless the purpose of the entity was
to effect the shift).

c) Escape sequences other than shift functions (for example, designator and announcer sequences) should
be entered in comment declarations.

A com delimiter string should be assigned that does not appear in any of the non-shifting escape
sequences. With the reference delimiter set, for example, all public escape sequences up to five
characters long, and private ones of up to three characters, can be entered in comment declarations with
no possibility of false delimiter recognition.

E.3 Device-Independent Code Extension 141

ISO 8879-1986(E)

sizex NMTOKEN //IMPLIED
sizey NUTOKEN //IMPLIED
-- Either sizex or sizey can be specified, or both

(in the units supported by the DTD in
which this declaration appears; for sizex, the
keyword "textsize" can be used to mean "the
width at which previous text was set").
If either is specified alone, the scaling,
alignx, and aligny attributes are ignored,
as scaling will necessarily be uniform.

scaling (uniform|nonunif) uniform
alignx (left|center|right) center
aligny (top|middle|bottom) middle
-- If both sizex and sizey are specified, then

if scaling is nonuniform, alignx and aligny
are ignored as the actual x and y will equal
the specified sizex and sizey. Else, the
actual x and y will be such that one will
equal its specified size and the other will
be less than its specified size. The alignx
or aligny attribute will apply to the one
that is less than its specified size.

—-

-- The following table summarizes the
relationship between the size, scaling,
and alignment attributes:

SizeX SizeY Scaling AlignX AlignY
(yes) (no)
(no) (yes)
(yes) (yes) nonunif
(yes) (yes) uniform if x<SizeX if y<SizeY --

—*_*_*_* _*_*_*-*-*-* _*_*-*■-*-*-*-*-*-*-*_*-*■—

orient (0|90|180|270) 0
-- Angle of rotation in degrees. --

Figure 13 — Graphics Metafile Attributes (2 of 2): Size and Rotation

Non-shifting escape sequences can also be entered in mixed content, but only if they contain no delimiter
strings that could be recognized, or if short references are defined to prevent false recognition, as explained
below.

d) Strings that occur in shift functions should not be assigned to delimiter roles recognized in the CON
recognition mode unless short references are defined to prevent false recognition.

For example, in the reference delimiter set, the right curly bracket, the tilde, and the vertical bar are short
reference delimiters, but they are also found in the LS1R, LS2R, and LS3R shift sequences required when
G2 and G3 sets are used. As they are short reference delimiters, they could easily be disabled by simply
never mapping them to entities. But if they are needed, they can be kept available by defining the LS2R
and LS3R sequences to be short references that are never mapped to entities.

142 E Application Examples

ISO 8879.1986(E)

FUNCTION RE 13
RS 10
SPACE 32
TAB SEPCHAR 9
-- Functions for graphic repertoire code extension --
-- Markup is recognized while they are in use. --
ESC FUNCHAR 27 -- Escape --
LSO FUNCHAR 15 -- Locking-shift zero (GO set) --

-- LS1R, LS2R, and LS3R
are ESC sequences --

SS2 FUNCHAR 142 -- Single-shift two (G2 set) --
SS3 FUNCHAR 143 -- Single-shift three (G3 set) --

Figure 14 — Function Characters for Device-lndependent Multicode Concrete Syntaxes

The following parameters would be added to the short reference delimiters parameter of the SGML declaration:

SHORTREF SGMLREF
-- Added SHORTREFs to prevent false recognition of --
-- single-character SHORTREFs when preceded by ESC --
"&#ESC;|" -- LS3R contains SHORTREF "|" --
"&#ESC;}" -- LS2R contains SHORTREF "j" --
n&#ESC;~" -- LS2R contains SHORTREF --

As a longer delimiter string is always recognized in preference to a shorter one contained in it (even if the
longer is a short reference that is mapped to nothing), the vertical bar and right curly bracket will not
erroneously be recognized as delimiters when they occur within shift sequences.

e) If single shifts are used, each sequence comprised of SS2 or SS3 followed by the bit combination of the
first character of a delimiter string recognized in CON mode must be defined as a short reference to
prevent false recognition of the delimiter, in the manner previously described.

In the reference delimiter set, the affected characters are the ampersand (&), less-than sign (<),
right square bracket (]), and solidus (/), plus the first character of the short reference delimiters
that begin with a graphic character.

E.3.1.2 Eliminating Device and Code Dependencies

An SGML document that uses ISO 2022 code extension facilities can be submitted to other systems or devices
that use the same facilities. In such cases, the concrete syntaxes described in D.3.1 can be used, and the
techniques described in this sub-clause are not needed. However, not all systems or devices to which an
SGML document might be directed will support all of the ISO 2022 code extension techniques. Many formatters
and photocomposers, for example, will require specialized font change and positioning commands to
accomplish what code extension achieves with escape sequences and shifts.

The usual SGML technique for achieving output independence is to use an entity reference for any character
that is not in both the GO set and the translation-reference character set. While the entity name remains
constant, the definition varies depending on the output system, in the manner explained in clause D.4. The
public entity sets defined in that clause can be used for this purpose; they contain entity names for the present
and proposed character repertoires defined by ISO 6937, among others.

When code extension is used for document creation, the burden of entering entity references can greatly be
reduced, as each supplementary set character can be defined as a short reference and mapped to the

E.3 Device-Independent Code Extension 143

ISO 8879-1986(E)

appropriate entity. This is not possible, however, when the characters occur in a context in which short
references are not recognized, such as a character data element or marked section, or where markup

inction characters.

144 E Application Examples

ISO 8879-1986(E)

Annex F

Implementation Considerations

(This annex does not form an integral part of this International Standard.)

An SGML system presents two faces—one to the marked up document and one to the application programs that
process the marked up document.

The requirements and permitted variations for the document interface are specified in the body of this
International Standard. The interface to the application programs is not standardized, but this annex identifies
some useful markup support functions for SGML systems that allow user-developed programs access to the
SGML parser and entity manager.

The discussion is in general terms and does not cover all aspects of implementation. It is intended solely to
provide the flavor of some implementation issues, and in no sense should it be considered a specification.

F.1 A Model of SGML Parsing

As a background for the discussion of functions, it is necessary to have in mind a model of the SGML parsing
process.

NOTE —This section should not be construed as a requirement for a particular SGML parser architecture or implementation techniques.

Any terms that might suggest the contrary (such as, for example, procedure, stack, service routine) are used only as a means of expressing

functional capabilities.

Moreover, the model described here is merely one the developers of SGML have found useful during design discussions: it is not the only

model possible, may not be the best, is certainly incomplete, and may even be internally inconsistent. It is helpful, though, for understanding

how an SGML parser can relate to other components of a system, and is offered for that purpose only.

F.1.1 Physical Input

The SGML parser does not read a physical input stream. All input management is handled by the entity
manager. The parser is invoked by the system and given characters to parse.

F.1.1.1 Entities

When the parser recognizes an entity reference it tells the entity manager, which treats the new entity as the
physical input source until the entity ends, at which point the entity manager advises the parser (i.e., it
generates an Ee). The entity manager will then obtain succeeding input from the original entity.

The parser considers entity boundaries to be significant when recognizing multi-character delimiters and
delimiters-in-context, and when ensuring that entity references in delimited text do not violate the prescriptions
of the language. Otherwise, it sees only a continuous string of characters, without regard to the entities in
which they occur.

F.1.1.2 Record Boundaries

If the document contains record boundaries, they are processed as defined in this International Standard. The
recognition of delimiter strings that contain record boundaries is done during the initial parse of the input. The
determination that a data RE should be ignored (as required by 7.6.1), however, cannot be done until all
references have been resolved and minimized markup has been normalized.

F.1.2 Recognition Modes

A significant property of SGML is the distinction among delimiter recognition modes, as described in 9.6.1.
After the prolog, the document is initially scanned in CON mode, with text characters processed as defined in
7.6, until one of the following occurrences causes a change of mode:

F.1 A Model of SGML Parsing 145

ISO 8879-1986(E)

— Descriptive markup (start-tag or end-tag):

Parsing continues in TAG mode.

The Gl is identified and the attributes and their values are validated and saved, with defaults supplied for
the unspecified attributes. The procedure associated with the Gl is then given control, along with a pointer
to the attribute names and values.

Depending upon the application, the procedure might need to save all of the element's content before
processing it, or it could simply modify the application state and then return control. When an element's
procedure saves the content, the procedures for elements nested within it must also process their content
and return it to the saved text.

NOTE - it is a violation of this International Standard for a system to save unparsed text and later parse it as though it had occurred

at a different place in the document. Instead, the text must be parsed as it is found, and the internal form of the parsed text (including

information about GIs, attributes, etc.) is what should be saved for later use.

After the system returns control, parsing resumes in CON mode after the tagc (or equivalent).

— Processing instruction:

The instruction is parsed as CDATA (in PI mode) and the resulting character string, after removal of the
delimiters, is passed to the application program. The program executes the instruction and returns control.
Parsing resumes in CON mode after the pic.

— Markup declaration:

The start and name are identified; parsing proceeds in MD mode to identify the individual parameters and
the end of the declaration. The individual declaration's semantic routine is then called to execute the
declaration, and control is returned.

— References.

The reference is parsed in REF mode to determine the name (or character number) and find the reference
close.

If it is a character reference, the parser replaces it with the correct character within the current entity. If the
reference is to a non-SGML character or to a function character as data, the character is flagged to keep it
from being confused with a normal character.

If it is an entity reference, the entity name is passed to the entity manager, which updates the pointer to the
input buffers and returns control. For short references not mapped to an entity, the reference is treated as
described in 9.4.6.

— Data: Data characters can be passed to the procedure as they are found, or they can be buffered until
some markup occurs. In the latter case, the location and length of the data are passed to the procedure,
and parsing continues at the markup.

The passed data string may contain flagged characters from character references, which the system must
be able to handle.

F.1.3 Markup Minimization

Markup minimization allows a user to omit all or part of an element's start-tag or end-tag.

For SHORTTAG minimization, a system must keep track of the current location in the element structure,
typically by maintaining a record of GIs of open elements. It is also necessary to interpret attribute definitions,
but it is not necessary to understand the content models unless validation services are provided.

For the OMITTAG and DATATAG features, however, knowledge of the content models is essential.

146 F Implementation Considerations

ISO 8879-1986(E)

NOTE - It Is a violation of this International Standard to allow markup minimization support to be handled by user-written application

programs, as that introduces the possibility that a document will be parsed differently by different applications,

F.1.4 Translation

SGML assumes that the document character set is the same as the system character set; that is, that the SGML
parser need not be cognizant of any translation. Any required translation is done by the system prior to
processing, or during processing in a manner that is transparent to the SGML parser.

F.1.5 Command Language Analogy

SGML descriptive tags are the antithesis of procedural language commands, and document type designers, in
particular, should be discouraged from thinking of them as similar. Nonetheless, there are analogies that can
be drawn between an element's attributes and a command's parameters that might aid an implementor's
understanding.

SGML Term
attribute definition list
attribute definition
attribute specification list
attribute specification

Programming Term
formal parameter list
formal parameter
actual parameter list
actual parameter

Note that, unlike many formal parameter lists, the order of the individual attribute definitions does not prescribe
an order in which the attribute specifications must occur.

F.2 Initialization

The user must be able to specify certain information to the system at the start of a run, some of which, like the
active document types and link types, must be made available to the SGML parser. The manner of passing the
information is system-specific.

F.2.1 Initial Procedure Mapping

The user must specify the mappings between element types, on the one hand, and the procedures to be
executed for them, on the other.

This could be in the form of the name of a single procedure (for example, the procedure for the document
element) which would set up the mappings for the other elements. The parser itself does not need this
information, but if it were available the parser could return the appropriate procedure name whenever it
returned descriptive tag information.

F.2.2 Link Process Specification

In formatting, the document type of the unformatted document is often called the “logical structure”, and the
document type of the formatted document is called the “layout structure”. An SGML document that is to be
formatted will always contain a logical structure (normally the base document type). If an explicit link process
is to be used, it will also contain the document type definition for a layout structure (“generic layout structure"),
and possibly a fully formatted instance of one.

For a formatting application, the user must specify, when invoking processing, the link type that will generate
an instance of the desired layout structure from the logical structure, together with any parameters needed by
the application. This information is not maintained as part of the document markup because it varies from one
application run to another. However, the markup does contain the link type declarations that specify which
elements of the layout structure are produced from the elements of the logical structure.

F.2.3 Concurrent Document Instances

A fully formatted instance is not normally used for a formatting application, as it is the result of such an
application. It is more likely to be used in an indexing or cataloging process, where line and page numbers
from the layout structure are used in conjunction with information from the logical structure. Here, the linkage
between the two structures at the top level and between subelements is a permanent characteristic of the

F.2 Initialization 147

ISO 8879-1986(E)

document, and is expressed by the juxtaposition of tags from the two document types. At initialization time, the
user must specify the two document types whose instances are to be processed.

F.3 Dynamic Procedure Mapping

A system should support procedure mapping as a dynamic process available to procedures, since, in some
applications, the procedure for an element type might specify the processing of its subelements. For example,
in a formatting application, the procedure for an element of the type “body” might specify that elements of the
type “heading” are to be set in a Roman font, while the procedure for the generic identifier “appendix” might
specify that “heading” elements occurring within it should be set in italics.

In other words, the heading element can be thought of as being qualified by the type of elements within whose
bounds it occurs. The model of a surname and personal name suggests itself: the heading shares something
in common with all other headings (same personal name), but that is modified by the fact that it is part of a
body or an appendix (two different surnames).

F.4 Error Handling

This International Standard requires that a report of a markup error include its nature and location.
Implementors are free to decide on the best means of satisfying that requirement, given their unique system
environments and user interfaces.

Some general considerations to keep in mind are:

a) The location in the entity structure can be expressed as an entity name, and a record number and
character position within it. The location could also include:
i) a list of open entities;
ii) the location in the entity structure where each open entity was referenced;
iii) for each open entity accessed by a short reference, the map name and short reference string.

b) The location in the element structure may be just as useful as that in the entity structure. It can be
expressed as a list of currently open elements.

c) When reporting the nature of an error, consideration should be given to markup minimization or other
features that may be in use that could affect the user's perception of the error.

148 F Implementation Considerations

ISO 8879-1986(E)

Annex G

Conformance Classification and Certification

(This annex does not form an integral part of this International Standard.)

This International Standard offers a variety of conformance options to SGML systems. It is expected that
agencies that certify conformance will want to define a meaningful subset of these options for testing. They will
also need a simple way to classify certified systems that will precisely identify the features and syntax
variations that the systems support.

This annex describes a classification scheme that satisfies both these objectives, and discusses some of the
implications for certification agencies.

G.1 Classification Code

The classification scheme is summarized in figure 15. The scheme assigns SGML systems a conformance
classification code that consists of three subordinate codes: feature, syntax, and validation. For this reason,
the conformance classification code can be called an “FSV”.

For example, the FSV “0768RS064” is composed of feature code “0768”, syntax code “RS”, and validation code
“064". It is the classification code for a system that can validate basic SGML documents with no features or
validation options.

According to the figure, the classification name is “basic, validating”. If the validation code were “000”, the
validation suffix would change, and the classification name would be “basic, non-validating”.

As the features, concrete syntax, and validation options of a conforming system can vary independently of one
another, it is not possible to define a single conformance classification hierarchy. Instead, there are two
hierarchies, one based on the feature code and one on the validation code, as shown in the figure.

G.1.1 Feature Code

The feature code is determined by summing the factors assigned in the following list to each supported feature:

Feature Weight
FORMAL
CONCUR
EXPLICIT
IMPLICIT
SIMPLE
SUBDOC
RANK

1
2
4
8
16
32
64

DATATAG 128
OMITTAG 256
SHORTTAG 512

If necessary, the code is padded with high-order zeros to make it the same length as the largest possible code.

The feature numbers are weighted (they are powers of two) so that the feature code will uniquely identify the
features that are supported. For example, a feature code of 0384 means that the DATATAG and OMITTAG
features are supported, and no others.

NOTE — The method described works when all features are specified independently and each is either supported or unsupported; that is,

there are two possible values for each feature, 0 (unsupported) and 1 (supported). In the general case, there are N possible values, V,

ranging from V = Q through V= N-1. For each feature, there is a factor, F, which is the product of N times the previous feature's factor, G (G

is 1 for the first feature). The weight for a given value, W(V), is the product of V times G. (To summarize: F= N*G and W(V) = V*G, where the

asterisk means multiplication.)

G.1 Classification Code 149

ISO 8879-1986(E)

| CONFORMANCE CLASS NAME |FEATURE | SYNTAX|VALID. |VALIDATION|
1
i

j CODE: F j CODE: S|CODE: Vj SUFFIX j
|

|Minimal j 0000| CS
1

|000]non- 1
jMinimal with options j 0001-0767 j CS joOO jvalidatingj
j Basic 0768 j RS j 000 i
|Basic with options j 0769-1023 j RS j 000 1 i
| Full
1_

j 1024j RS j 000 j
___ |

|Multicode minimal | 0000| MC 1000 1
|Multicode minimal with options j 0001-0767 j MC j ooo s
jMulticode basic 0768 j MB j 000 s 1
jMulticode basic with options j 0769-1023 j MB j ooo | !
jMulticode full
1_

1024 j MB j 000 i
1

|Minimal | 0000| CS |064 |validating!
jMinimal with options j 0001-0767 j CS |064 i
j Basic 0768 j RS |064 i i
jBasic with options j 0769-1023 j RS j 064 : !
|Full
1_

j 1024j RS j 064 i i
_1

|Multicode minimal | 00001 MC 1064 | 1
|Multicode minimal with options j 0001-0767 j MC j 064 i S
jMulticode basic 0768 j MB j 064 1
jMulticode basic with opts j 0769-1023 j MB 1064 | j
jMulticode full
1_

1024 j MB j 064 j j
1

|Minimal | 0000| CS |065-127|validating!
jMinimal with options j 0001-0767 j CS j065-127j with i
j Basic 0768 j RS j065-127j options j
(Basic with options j 0769-1023 j RS j065-127j
j Full
l_

j 1024j RS j 065-127 j !
_1

1
|Multicode minimal | 0000| MC

1 1
|065-127 j 1

|Multicode minimal with options j 0001-0767 j MC j 065-127 j j
jMulticode basic 0768 j MB j065-127j ;
|Multicode basic with opts j 0769-1023 j MB j 065-127 j S
jMulticode full j 1024j MB j 065-127 j j

Figure 15 — FSV Conformance Classification

G.1.2 Validation Code

The validation code is determined by summing the factors assigned in the following list to each supported
validation feature:

Feature Weight
CAPACITY 1
EXCLUDE 2
SGML 4
MODEL 8
FORMAL 16
NONSGML 32
GENERAL 64

If necessary, the code is padded with high-order zeros to make it the same length as the largest possible code.

150 G Conformance Classification and Certification

ISO 8879-1986(E)

A system that did only general validation would have a validation code of 064. As this International Standard
requires general validation as a prerequisite to any of the validation options, the only possible validation codes
would be 000, and 064 through 127.

NOTE — if modifying this scheme, GENERAL must have the highest weight, and no validation code can be lower than the weight for

GENERAL, unless it is 0.

G.1.3 Syntax Code

The code for the concrete syntax is one of those in the following list:

Code Concrete Syntax
CS Core concrete syntax
RS Reference concrete syntax
MC Multicode core concrete syntax
MB Multicode basic concrete syntax

The listed syntaxes are those defined in this document.

The classification scheme assumes that conformance will be tested for a single concrete syntax used in both
the prolog and the document element.

G.2 Certification Considerations

It is important to note that a conformance classification scheme is not a constraint on either certification
agencies or implementors. Conformance is defined in clause 15 of this International Standard, and is
expressed formally in a system declaration, for which a conformance classification code is only an informal
partial summary.

An implementor can choose to offer as many features and concrete syntax variations as it thinks its users will
require. A certification agency can offer testing for as narrow or wide a group of these as it wishes. As a result,
a given certification may not include all of the function that the tested system claims to offer, but that does not
mean the system failed to conform to this International Standard. It simply means that, with respect to certain
functions of the system, the certification agency offers no opinion on whether it conforms.

Certification agencies should feel free to modify the suggested classification scheme to meet their
requirements, or to ignore it altogether. An agency, however, regardless of the classification scheme it adopts,
must recognize that it cannot declare a system to be conforming or nonconforming by any criteria other than
those specified in this International Standard. In particular, it cannot consider a system to be non-conforming
solely because its mix of functions does not fit the agency's classification scheme. The agency must certify (or
not, as the testing indicates) as to those functions that it is willing to test, and declare that it has no opinion as
to the others.

G.2 Certification Considerations 151

ISO 8879-1986(E)

Annex H

Theoretical Basis for the SGML Content Model

(This annex does not form an integral part of this International Standard.)

The SGML model group notation was deliberately designed to resemble the regular expression notation of
automata theory, because automata theory provides a theoretical foundation for some aspects of the notion of
conformance to a content model. This annex defines the relationship between model group notation and
regular expressions, and discusses some ways in which model groups behave like automata and some ways in
which they do not.

H.1 Model Group Notation

The SGML model group notation corresponds to the regular expression notation of automata theory, or reduces
to it in the following manner:

a) and groups reduce to an or group of seq group permutations; for example:

(a & b)

is equivalent to the regular expression (or SGML model group):

((a, b) | (b, a))

b) a token with an opt occurrence indicator reduces to the same token in an or group with the null token; for
example:

(a?)

is equivalent to the regular expression:

(a |)

(which, incidentally, is not a valid SGML model group).

H.2 Application of Automata Theory

Checking for conformance to a content model is essentially equivalent to the problem of recognizing (accepting
or rejecting) regular expressions, and regular expressions therefore provide a useful theoretical basis for some
aspects of context checking in SGML.

It can be shown (by Kleene's theorem) that a regular expression is equivalent to a deterministic finite
automaton (DFA). A parser could in theory, therefore, handle any model group by reducing it to a regular
expression and constructing a DFA with state transition paths corresponding to the tokens of the model group.
Practice, however, presents some difficulties.

One problem arises in the reduction of and groups. Since the number of required seq group permutations is a
factorial function, even small and groups can lead to an intractably large number of corresponding seq groups.
An and group with six members, for example, would require 6!, or 720, seq groups.

Another problem lies with the construction of the DFA. One method is first to construct a nondeterministic finite
automaton (NFA) directly from the regular expression, then to derive a deterministic equivalent. Although this
and other algorithms for DFA construction are non-polynomial and hardly intractable for the human-readable
models envisaged by SGML, they may be too resource-intensive for some implementations.

This International Standard avoids these problems by eliminating the need to construct a DFA. This it does by
prohibiting models that are ambiguous or require “look-ahead”; that is, a model group is restricted so that, in

152 H Content Model Theory

ISO 8879-1986(E)

any given context, an element (or character string) in the document can correspond to one and only one
primitive content token (see 11.2.4.3). In effect, the allowable set of regular expressions is reduced to those
whose corresponding NFA can be traversed deterministically, because either:

a) from a given node there can leave only one arc sequence that contains but a single labeled arc whose
label is that of the corresponding content; or

b) if more than one such arc sequence can leave the node, only one of them can enter it, and this sequence
is given priority by the rules of SGML.

As a result, context checking can be done by simplified algorithms that use only NFAs.

The restriction is justifiable in principle because human beings must also perform context checking when
creating the document, and they are more likely to do this successfully if the regular expressions are kept
simple. The restriction is also justifiable in practice because a desired document structure can always be
obtained, despite the restriction, by introducing intermediate elements.

H.3 Divergence from Automata Theory

No assumptions should be made about the general applicability of automata theory to content models. For
example, it should be noted that content models that reduce to equivalent regular expressions are not
necessarily equivalent for other purposes. In particular, the determination of whether a start-tag is technically
omissible depends on the exact form of expression of the content model. Minimization would be permitted for
“b” in

(a?, b)

while it would not be permitted in

((a,b)|b)

even though both models reduce to equivalent regular expressions.

H.3 Divergence from Automata Theory 153

ISO 8879-1986(E)

Annex I

Nonconforming Variations

(This annex does not form an integral part of this Internationa! Standard.)

Historically, many of the benefits of generalized markup have been obtained by using a procedural text
processing language as though it were a descriptive language. That approach is necessarily less effective than
using the Standard Generalized Markup Language, which was designed specifically for the purpose of
describing documents.

This annex discusses some common departures from this International Standard that occur when procedural
languages are used for descriptive markup.

1.1 Fixed-length Generic Identifiers

In a fixed-length Gl language, no attributes are supported, and there is no tagc. The content begins with the
first character after the start-tag Gl.

The following example uses 2-character GIs:

<paThis is a paragraph with
a <sqshort quotation</sqin it.</pa

Some drawbacks to fixed-length GIs are:

— The source document can be difficult for a human to read (although machines have no trouble).

— Some “natural" tag mnemonics will be unusable in combination because of their length (e g., “p” for
paragraph and “hi” for head-level-1 cannot be used together).

— Document types that have attributes cannot be processed.

A document created with fixed-length GIs can be converted to an SGML document (provided no other
differences exist) by inserting the tagc delimiter.

1.2 Single Delimiter

In a single delimiter language, the same character is used for the stago, etago, ero, mdo, and pio delimiter
roles.

This approach introduces a number of restrictions:

— GIs, entity names, declaration names, processing instruction names, and processing macro names must all
be different from one another, as there is no other way to distinguish them.

— End-tags can be entered only when the context offers no possibility of confusing them with start-tags, as
they look the same.

Some drawbacks to the use of a single delimiter are:

— The structure of the document is no longer apparent to a human reader because descriptive tags cannot
easily be distinguished from processing instructions, markup declarations, or entity references.

— Processing instructions, which apply only to a single application and system, cannot easily be located for
modification if the document is used in a different application or system.

154 I Nonconforming Variations

ISO 8879.1986(E)

— A document type designer must be aware of every processing instruction and macro name and cannot use
the same names for GIs. Similarly, a text programmer cannot create a new macro without making sure that
no Gl exists with the same name.

— Document interchange is severely limited because of the difficulty in preventing a document's GIs from
conflicting with a receiving system's macro names.

An obvious solution to these problems is to use naming conventions to distinguish the types of name. For
example, declaration names could begin with an exclamation mark, processing instruction names with a
question mark, and so on.

<!ENTITY abc SYSTEM>
<?NEWPAGE>

The SGML reference concrete syntax uses multiple-character strings as delimiters, thereby creating the visual
effect of a single delimiter with naming conventions, but with none of the drawbacks.

1.2 Single Delimiter 155

.

►

)

I

I

i

i

