
NATIONAL INSTITUTE OF STANDARDS &
TECHNOLOGY

Research information Center
Gaithersburg, MD 20899

IEEE P1003.1/Draft 12
October 12,1987

Portable Operating System Interface
for Computer Environments

Sponsor

Technical Committee on Operating Systems
of the

IEEE Computer Society

Unapproved Draft. All rights reserved by IEEE. Do not specify or claim
conformance to this document._

©1988 by

The Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street, New York, NY 10017, USA

“ *JK iVo part of this publication may be reproduced in any form,
rn in an electronic retrieval system or otherwise,

without the prior written permission of the publisher.
* A 8A 3
#151 z.Z

1988

P1003.1 Draft

Portable Operating System Interface
for Computer Environments

Sponsor

Technical Committee on Operating Systems
of the
IEEE

Computer Society

P1003.1 / DRAFT 12
October 12,1987

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal
Information Processing Standards Publication 151, POSIX: Portable Operating System
Interface for Computer Environments. For a complete list of publications available in the
Federal Information Processing Standards Series, write to the Standards Processing
Coordinator (ADP), National Computer and Telecommunications Laboratory, National
Institute of Standards and Technology, Gaithersburg, MD 20899.

USER NOTE: Draft 12 of IEEE 1003.1 is not the most current version of this standard and is
not identical to IEEE Std 1003.1-1988. IEEE Std 1003.1-1988 is the published version of Draft
13, which was approved by the IEEE Standards Board on August 22,1988._

1 Foreword

2 (This Foreword is not a part of IEEE Std 1003.1, IEEE Standard Portable Operating c
3 System Interface for Computer Environments.) c

4 The purpose of this standard is to define a standard operating system interface and 8
5 environment based on the UNIX* Operating System documentation to support
6 application portability at the source level. This is intended for systems implementors and

7 applications software implementors.

8 In its present form, the standard focuses primarily on the C Language interface to the

9 operating system.

10 IEEE Std 1003.1 is the first of a group of proposed standards known colloquially, and c
11 collectively, as POSIXt. The other POSIX standards are described in Appendix A. c

12 Organization of the Standard s

13 The standard is divided into four parts: 8

14 • Statement of scope (Chapter 1) 8

15 • Definitions and global concepts (Chapter 2) 8

16 • The various interface facilities (Chapters 3 through 9) 8

17 • Data interchange format (Chapter 10) 8

18 This foreword and the appendices are not considered part of the standard.

19 Most of the sections describe a single service interface. The C Language binding for the c
20 service interface is given in the subsection labeled Synopsis. The Description
21 subsection provides a specification of the operation performed by the service interface, c

22 Some examples may be provided to illustrate the interfaces described. In most cases
23 there are also Returns and Errors subsections specifying return values and possible
24 error conditions. References are used to direct the reader to other related sections. 9
25 Additional material to complement sections in the standard may be found in Rationale 9
26 and Notes, Appendix B. This appendix provides historical perspectives into the 9
27 technical choices made by the 1003.1 Working Group. It also provides information to 9

28 emphasize consequences of the interfaces described in the corresponding section of the 9
29 standard. 9

* UNIX is a registered trademark of AT&T,

t POSIX is pronounced pahz-icks, similar to positive.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

3

30 In publishing this standard, both the IEEE and the 1003.1 Working Group simply intend

31 to provide a yardstick against which various operating system implementations can be
32 measured for conformance. It is not the intent of either the IEEE or the 1003.1 Working

33 Group to measure or rate any products, to reward or sanction any vendors of products for

34 conformance or lack of conformance to this standard, or to attempt to enforce this

35 standard by these or any other means. The responsibility for determining the degree of

36 conformance or lack thereof with this standard rests solely with the individual who is

37 evaluating the product claiming to be in conformance with the standard. (See 9

38 Verification Testing §A.2.3 for additional information on this subject.) 9

39 Base Documents

40 The various interface facilities described herein are based on the 1984 /usr/group

41 Standard derived and published by the /usr/group Standards Committee, Santa Clara,

42 California. The 1984 /usr/group Standard, and subsequent work of the 1003.1 Working

43 Group is largely based on UNIX Seventh Edition, System III, System V, 4.2BSD, and b

44 4.3BSD documentation, but wherever possible, compatibility with other UNIX-derived

45 systems and compatible systems has been maintained.

46 The IEEE is grateful to both AT&T and /usr/group for permission to use their materials.

47 9

48 Extensions and Supplements to this Standard 9

49 Activities to extend this standard to address additional requirements are in progress and 9

50 similar efforts can be anticipated in the future. This is an outline of how these extensions 9

51 will be incorporated, and also how users of this document can keep track of that status. 9

52 Extensions are approved as “Supplements” to this document, following the IEEE 9

53 Standards Procedures. 9

54 Approved Supplements are published separately and distributed with orders from the 9
55 IEEE for this document until the full document is reprinted and such supplements are 9

56 incorporated in their proper positions. 9

57 If you have any question about the completeness of your version, you may contact the 9

58 IEEE Computer Society {phone # to be provided) or the IEEE Standards Office {phone # 9
59 to be provided) to determine what supplements have been published. Published 9
60 supplements will be available for a modest fee. 9

61 Supplements are numbered in the same format as the main document, and with unique 9
62 positions as either subsections or main sections. A supplement may include new 9

63 subsections in various sections of the main document as well as new main sections. 9

64 Supplements may include new sections in already approved supplements. However, the 9

65 overall numbering shall be unique so that two supplements do not use the same numbers 9

66 unless one replaces the other. 9

67 Supplements may contain either required functions or optional facilities. Supplements 9

68 may add additional conformance requirements (see Conformance §2.2) defining new 9

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

A

classes of conforming systems or applications. 9

70 It is desirable, but perhaps not avoidable, that supplements do not change the 9

71 functionality of the already defined facilities. 9

72 Supplements are not used to provide a general update of the standard. This is done 9

73 through the review procedure as specified by the IEEE. 9

74 The following areas are under active consideration at this time, or are expected to 9

75 become active in the near future. 9

76 • Shell and Utility facilities — P1003.2 (see Shell and Utilities §A.2.2); 9

77 • Verification Testing — P1003.3 (see Verification Testing §A.2.3); 9

78 • Real Time facilities — P1003.4 (see Real Time Extensions §A.2.4); c

79 • Secure/Trusted System considerations; c

80 • FORTRAN Language bindings; c

81 • Ada* Language bindings; c

82 • Language-independent service descriptions; c

83 • An overall guide to POSIX-based or related Open Systems standards. c

84 (See Appendix A for additional information.) If you have interest in participating in the 9

85 working groups addressing these issues, please send your name, address, and phone 9

86 number to the: 9

87 Secretary, IEEE Standards Board 9

88 Institute of Electrical and Electronics Engineers, Inc. 9

89 345 East 47th Street 9

90 New York, NY 10017 9

91 and ask to have this forwarded to the chairperson of the appropriate PI003 working 9

92 group. 9

* Ada is a trademark of the Department of Defense.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

5

93 Editor's Notes c

94 This section will not appear in the final document. It is used for editorial comments c

95 concerning Draft 12. c

96 This draft uses small numbers in the right margin in lieu of change bars. “8” denotes c

97 changes from Draft 7 (the Trial Use Standard) to Draft 8. “9" denotes changes from c

98 Draft 8 to Draft 9. “A’' denotes changes from Draft 9 to Draft 10 (in hex). “B” denotes c

99 changes from Draft 10 to Draft 11 (in hex). ' 'C'' denotes changes from Draft 11 to Draft c

100 12 (in hex). Deleted text uses the same symbols, but will generally be noted by a blank c

101 line containing only the change symbol. It should be noted that, due to the algorithms c

102 used by troff, some change symbols are overlaid by a following change on the same line, c
103 and are therefore obscured. For the future, we will continue hexadecimally and hope c

104 that Full Use is achieved before Draft 16. The Full Use standard will have neither c

105 change marks or line numbers. The correctness or format of these symbols are not c

106 ballotable issues. c

107 All of the header paragraphs in the Errors sections have changed slightly (“shall return c
108 —1” replaces “shall fail"); these changes are not marked. c

109 Please report typographical errors and editorial changes directly to: C

110 Hal Jespersen c
111 UniSoft Corporation c

112 6121 Hollis Street c

113 Emeryville, CA 94608-2092 c

114 (415)420-6448 c

115 UUCP: {uunet,amdahl,sun}lunisoftlhlj c

116 (Electronic mail is preferred.) c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

c.

117 IEEE Std 1003.1 was prepared by the 1003.1 Working Group, sponsored by the Technical
118 Committee on Operating Systems of the IEEE Computer Society.

119 At the time this standard was approved, the membership of the 1003.1 Working Group

120 was as follows:

121 Editor’s Note: This list will be included in the final printed standard.

122 Steering Committee B

123 B

124 Joseph Boykin Chair. TCOS C

125 James Isaak Chair, PI003.1 C

126 Hal Jespersen Technical Editor, PI003.1 C

127 Shane P. McCarron Secretary, PI003.1 C

128 Donn S. Terry Co-Chair, P1003.1 C

129 Working Group

130 Name Name Name

131 Name Name Name

132 Name Name Name

133 The following persons were members of the 1003.1 Balloting Group that approved the
134 standard for submission to the IEEE Standards Board:

135
136
137

Heinz Lycklama
Michael Lambert
John S. Quarterman

lusrlgroup Institutional Representative

X/OPEN Institutional Representative

USENIX Institutional Representative

138

139
140
141

Editor’s Note: This list will be included in the final printed standard.

Name Name Name

Name Name Name

Name Name Name

C

C

c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7

Contents

SECTION PAGE

1. Scope . .. 17

2. Definitions and General Requirements. 19
2.1 Terminology. 19
2.2 Conformance . 20
2.3 General Terms .. 22
2.4 General Concepts.'. 30
2.5 Error Numbers. 32
2.6 Primitive System Data Types. 37
2.7 Environment Description. 37
2.8 C Language Definitions. 39
2.9 Numerical Limits. 39
2.10 Symbolic Constants . 43

3. Process Primitives . 47
3.1 Process Creation . 47

3.1.1 Process Creation. 47

3.1.2 Execute a File.. . 49

3.2 Process Termination. 52
3.2.1 Wait for Process Termination. 53
3.2.2 Terminate a Process. 55

3.3 Signals. 57
3.3.1 Signal Names. 57
3.3.2 Send a Signal to a Process. 62

3.3.3 Manipulate Signal Sets. 64
3.3.4 Examine and Change Signal Action 65
3.3.5 Examine and Change Blocked Signals. 67

3.3.6 Examine Pending Signals . 68
3.3.7 Wait for a Signal. 69

3.4 Timer Operations . 70

3.4.1 Process Alarm Clock. 70

3.4.2 Suspend Process Execution . . . 71

3.4.3 Delay Process Execution. 72

4. Process Environment. 73
4.1 Process Identification. 73

4. LI Get Process and Parent Process IDs. 73
4.2 User Identification. 73

4.2.1 Get Real User, Effective User, Real Group, and Effective
Group IDs. 73

UNAITROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

SECTION PAGE

4.2.2 Set User and Group IDs. 74
4.2.3 Get Supplementary Group IDs. 75

4.2.4 Get User Name . 76
4.3 Process Groups. . 78

4.3.1 Get Process Group ID . . '. 78

4.3.2 Set Process Group ID. 78
4.3.3 Set Process Group ID for Job Control. 79

4.4 System Identification .. 80

4.4.1 System Name. 80

4.5 Time .. 81
4.5.1 Get System Time. 81

4.5.2 Process Times. 82
4.6 Environment Variables. 83

4.6.1 Environment Access. 83

4.7 Terminal Identification .. . 84
4.7.1 Generate Terminal Pathname. 84

4.7.2 Determine Terminal Device Name. 85

4.8 Configurable System Variables .. 85
4.8.1 Get Configurable System Variables . 85

5. Files and Directories .. 87

5.1 Directories. 87
5.1.1 Format of Directory Entries. 87

5.1.2 Directory Operations. 88

5.2 Working Directory. 90

5.2.1 Change Current Working Directory 90

5.2.2 Working Directory Pathname. 91

5.3 General File Creation . . 92

5.3.1 Open a File 92
5.3.2 Create a New File or Rewrite an Existing One 95

5.3.3 Set File Creation Mask .. 95
5.3.4 Link to a File .. 96

5.4 Special File Creation. 97

5.4.1 Make a Directory. 97
5.4.2 Make a FIFO Special File . *. 99

5.5 File Removal ..100

5.5.1 Remove Directory Entries.100

5.5.2 Remove a Directory.102

5.5.3 Rename a File. 103

5.6 File Characteristic? ..106
5.6:1 File Characteristics: Header File and Data Structure 106

5.6.2 Get File Status.108

5.6.3 File Accessibility. 110
5.6.4 Change File Modes.Ill

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

SECTION PAGE

5.6.5 Change Owner and Group of a File.112
5.6.6 Set File Access and Modification Times.114

5.7 Configurable Pathname Variables.116
5.7.1 Get Configurable Pathname Variables.116

6. Input and Output Primitives.119

6.1 Pipes.119
6.1.1 Create an Inter-Process Channel.119

6.2 File Descriptor Manipulation. 120

6.2.1 Duplicate an Open File Descriptor.120

6.3 File Descriptor Deassignment. 121
6.3.1 Close a File.121

6.4 Input and Output .. 122
6.4.1 Read from a File.122
6.4.2 Write toaFile ..124

6.5 Control Operations on Files.127
6.5.1 Data Definitions for File Control Operations.127
6.5.2 File Control .128

6.5.3 Reposition Read/Write File Offset.133

7. Device- and Class-Specific Functions.135
7.1 General Terminal Interface . .. 135

7.1.1 Interface Characteristics.135
7.1.1.1 Description.. . 135
7.1.1.2 Opening a Terminal Device File .135

7.1.1.3 Process Groups.135
7.1.1.4 The Controlling Terminal .136

7.1.1.5 Job Access Control. 136
7.1.1.6 Input Processing and Reading Characters 137
7.1.1.7 Canonical Mode Input Processing.138

7.1.1.8 Non-Canonical Mode Input Processing 138
7.1.1.9 Writing Characters and Output

Processing.140

7.1.1.10 Special Characters.140
7.1.1.11 Modem Disconnect.. 141
7.1.1.12 Closing a Terminal Device File 141

7.1.2 Settable Parameters . ..142
7.1.2.1 Synopsis ..142
7.1.2.2 ter/nios Structure.142

7.1.2.3 Input Modes.142
7.1.2.4 Output Modes.144
7.1.2.5 Control Modes.144

7.1.2.6 Local Modes ..147
7.1.2.7 Special Control Characters. 148

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

SECTION PAGE

7.2 General Terminal Interface Control Functions 149
7.2.1 Get and Set State. 149

7.2.2 Line Control Functions151
7.2.3 Get Distinguished Process Group ID.153
7.2.4 Set Distinguished Process Group ID.154

8. C Language Library.' . . 155

8.1 Referenced C Language Routines ..155
8.1.1 Extensions to asctime () Function156

8.L2 Extensions to setlocaleQ Function.158

8.2 FILE-Type C Language Functions 160
8.2.1 Map a Stream Pointer to a File Descriptor. 160

8.2.2 Open a Stream on a File Descriptor 161

8.3 Other C Language Functions.162

8.3.1 Non-Local Jumps162

8.3.2 Specify Signal Handling163

9. System Databases. 165

9.1 System Databases.165
9.2 Database Access ..i66

9.2.1 Group Database Access ..166

9.2.2 User Database Access .167

10. Data Interchange Format. 169

10.1 Archive/Interchange File Format. 169

10.1.1 cpio Archive Format.169

10.1.2 Multiple Volumes ..173

APPENDICES

A. Related Standards.175
A.l Related Standards — Open System Architecture.175

A.2 Standards Closely Related to the 1003.1 Document 176

A.2.1 C Language Standard.* 176
A.2.2 Shell and Utilities.176

A.2.3 Verification Testing. 178
A.2.4 Real Time Extensions ..178
A.2.5 Language Standards ..178
A.2.6 Networking Standards.178
A.2.7 Graphics Standards.179

A.2.8 Data Base Standards . ..179

A.3 Industry Open Systems Publications.180

A.4 US Government Standards .180
A.4.1 Federal Information Processing Standards (FIPS) 180

A.4.2 Trusted Systems. 180

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

SECTION PAGE

B. Rationale and Notes., . 181
B.l Introduction.. ..182

B.1.1 Scope.183
B.1.2 Purpose.183

B. 1.2.1 Application Oriented.183
B.1.2.2 Interface, Not Implementation.183
B.l.2.3 Source, Not Object, Portability.184
B.1.2.4 The C Language and X3J11.184
B.1.2.5 No Super-User, No System

Administration.184

B.1.2.6 Minimal Interface, Minimally Defined.184

B. 1.2.7 Broadly Implementable.184
B. 1.2.8 Minimal Changes to Historical

Implementations.185

B. 1.2.9 Minimal Changes to Existing Application

Code.185
B.1.2.10 IEEE Consensus Process.185

B.1.2.11 IEEE Balloting Process.186
B.1.3 Base Documents . ..188

B.1.3.1 Related Standards and Documents.188
B.1.3.2 Historical Implementations.188
B.1.3.3 Specific Derivations.189
B.1.3.4 Working Documents.190

B.1.4 C Language, X3J11, and P1003.1 191
B. 1.4.1 Solely by P1003.1. 192
B.1.4.2 Solely by X3J11.192

B 1.4.3 By Neither P1003.1 nor X3J11.193
B.1.4.4 Base by PI003.1, Additions by X3J11. 193

B.1.4.5 BasebyX3Jll, Additions by P1003.1. 193
B.1.4.6 Related Functions by Both.193

B.1.5 Organization.194
B.1.5.1 Organization of the Standard .194
B. 1.5.2 Organization of this Appendix.195
B. 1.5.3 Typographical Conventions.195

B.2 Definitions and General Requirements ..196
B.2.1 Terminology.* . 196
B.2.2 Conformance.197
B.2.3 General Terms.200
B.2.4 General Concepts.204
B.2.*5 Error Numbers. 207
B.2.6 Primitive System Data Types.209

B.2.7 Environment Description.210

B.2.8 C Language Definitions.. . 211

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

SECTION PAGE

B.2.9 Numerical Limits. 211
B.2.10 Symbolic Constants.215

B.3 Process Primitives... 216

B.3.1 Process Creation.216
B.3.2 Process Termination.217

B.3.3 Signals.220
B.3.4 Timer Operations.226

B.4 Process Environment 227
B.4.1 Process Identification.227
B.4.2 User Identification 227

B.4.3 Process Groups ..*.229

B.4.4 System Identification ..230

B.4.5 Time... 230
B.4.6 Environment Variables.231

B.4.7 Terminal Identification' 231

B.4.8 Configurable System Variables.232

B.5 Files and Directories. 233

B.5.1 Directories.233
B.5.2 Working Directory. 235

B.5.3 General File Creation..236
B.5.4 Special File Creation.237

B.5.5 File Removal.237
B.5.6 File Characteristics. 238
B.5.7 Configurable Pathname Variables.240

B.6 Input and Output Primitives.241
B.6.1 Pipes242

B.6.2 File Descriptor Manipulation.243

B.6.3 File Descriptor Deassignment 243
B.6.4 Input and Output ..243

B.6.5 Control Operations on Files.247

B.7 Device- and Class-Specific Functions250

B.7.1 General Terminal Interface.252

B.7.2 General Terminal Interface Control Functions.255
B.8 C Language Library .256

B.8.1 Referenced C Language Routines 256
B.8.2 FILE-Type C Language Functions260
B.8.3 Other C Language Functions . 260

B.9 System Databases.261

B.9.1 System Databases.261
B.9.2 Database Access.262

B. 10 Data Interchange Format.262

B.10.1 Archive/Interchange File Format.262
B.ll Bibliographic Notes .268

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

SECTION PAGE

B. 11.1 Related Standards268
B.11.2 Historical Implementations . ..269
B. l 1.3 Historical Application Programming Tutorials.271

C. Comparison to System V Interface Definition.273

C.l Overall Contents.274

C. 1.1 Operating System Primitives .274
C.1.2 Library Routines.274
C.1.3 Special Files.275
C.l.4 Minimal Directory Tree Structure.275

C.1.5 Multiple Groups.275
C.1.6 Job Control.275
C.1.7 Enhanced Signals.275
C.l.8 Configurable System Variables.276
C.1.9 Terminal I/O .. 276

C.2 Specific Differences.276
C.2.1 Error Numbers. 276
C.2.2 General Terms.277

C.2.3 Data Types. 277
C.2.4 Environment Variables.277

C.2.5 fork().277
C.2.6 execO.278
C.2.7 wait().278
C.2.8 _exit(). 278
C.2.9 <signal.h>.279
C.2.10 kiU() .. 279
C.2.11 signal(). 279

C.2.12 times().. . 280
C.2.13 open().280
C.2.14 unlink().280

C.2.15 rmdirQ.280

C.2.16 <sys/stat.h>.281

C.2.17 access().281

C.2.18 chown().281

C.2.19 utime().281

C.2.20 closeO.281

C.2.21 readO. 282
C.2.22 write(). 282
C.2.23 <fcntl.h>.283
C.2.24 fcntl().283
C.2.*25 lseek().283

C.2.26 Terminal I/O. 283

D. Alternative Archive/Data Interchange Format.285

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

SECTION PAGE

D. l Extended tar Format. 285

D. 1.1 References*.... 289

E. Alternative waitQ Functions.291
E. l Process Termination . 291

E. 1.1 Wait for Process Termination.291

Identifier Index.295

Topical Index .301

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Portable Operating System Interface c

for Computer Environments

1. Scope

1 This standard defines a standard operating system interface and environment to support 8
2 application portability at the source code level. It is intended to be used by both
3 application developers and system implementors.

4 Initially, the focus of the standard will be on the C language interface. In future c
5 revisions, this will be divided into several parts. The first part will provide a functional c
6 definition of the service interfaces. The following parts will specify the binding between c
7 these service interfaces and specific programming languages, with the second part c
8 describing the C language binding. c

9 This effort entails four major components: c

10 1. Definitions for terminology and objects referred to in the standard (in the 8
11 case of objects, their structure, operations that modify objects, and the
12 effects of these operations);

13 2. System service interfaces and subroutines; c

14 3. C language binding for the system services; c

15 4. Interface issues, including portability, error handling, and recovery. 9

16 The following areas are outside of the scope of this standard: 8

17 • User interface (shell) and associated commands

18 • Network protocols

19 • Graphics interfaces

20 • Data base management system interfaces

21 • Record I/O considerations

1 Scope

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

17

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

22 • Object or binary code portability

23 (See Appendix A for information about ongoing efforts in some of these areas.)

24 This standard describes the external characteristics and facilities that are of importance to
25’ applications developers, rather than on the internal construction techniques employed to
26 achieve these capabilities. Special emphasis is placed on those functions and facilities
27 that are needed in a wide variety of commercial applications.

28 This standard has been defined exclusively at the source code level. The objective is that
29 a Strictly Conforming Application source program can be compiled to execute on a
30 conforming implementation.

18

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Scope

2. Definitions and General Requirements B

1 2.1 Terminology

2 The following terms are used in this standard: a

3 implementation defined a

4 A value or behavior is implementation defined if the implementation defines and a

5 documents the requirements for correct program construct and correct data. a

6 may a

7 With respect to implementations, the word may is to be interpreted as an optional a

8 feature that is not required in this standard and can be provided. With respect to a

9 Strictly Conforming Applications, the word may means that the optional feature a

10 shall not be used. a

11 shall a

12 In this standard, the word shall is to be interpreted as a requirement on the a

13 implementation or on Strictly Conforming Applications, where appropriate. a

14 should a

15 With respect to implementations, the word should is to be interpreted as an a

16 implementation recommendation, but not a requirement With respect to a

17 applications, the word should is to be interpreted as recommended programming a

18 practice for applications and a requirement for Strictly Conforming Applications, a

19 undefined a

20 A value or behavior is undefined if the standard imposes no portability a

21 requirements for erroneous program construct, erroneous data, or use of an a

22 indeterminate value. a

23 unspecified a

24 A value or behavior is unspecified if the standard imposes no portability a

25 requirements for a correct program construct or correct data. a

2.1 Terminology

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to tin's document

19

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

26 2.2 Conformance

27 2.2.1 Implementation Conformance

28 Z.2.1.1 Requirements
29 A conforming implementation shall meet all of the following criteria:

30 The system shall support all required interfaces defined within this standard, c
31 These interfaces shall support the functional behavior described herein.

32 The system may provide additional functions or facilities not required by this c
33 standard. Nonstandard extensions should be identified as such in the system c
34 documentation. Nonstandard extensions, when used, may change the behavior of -c
35 functions or facilities defined by this standard. In such cases, the system c
36 documentation shall define an environment in which an application can be run c
37 with the behavior specified by the standard. In no case shall such an environment c
38 require modification of a Strictly Conforming Application. c

39 2.2.1.2 Documentation b
40 A document with the following information shall be available for an implementation c
41 claiming conformance to IEEE Std 1003.1. This document shall have the same structure c
42 as this standard, with the information presented in the appropriately numbered sections, c
43 The document shall not contain information about extended facilities or capabilities c
44 outside the scope of this standard. c

45 The document shall contain a conformance statement that indicates the full name, c
46 number, and date of the standard that applies. The conformance section may also list c
47 software standards approved by ISO or any ISO member body that are available for use c
48 by a Conforming Application. Applicable characteristics where documentation is c
49 required by one of these standards, or by standards of government bodies, may also be c
50 included. c

51 The document shall describe the contents of the <limits.h> and <unistd.h> headers, c
52 stating values, the conditions under which those values may change, and the limits of c
53 such variations. c

54 The document should describe the nature of the implementation for all implementation c
55 defined features identified in this standard. c

56 The document should specify the behavior of the implementation in those sections of this c
57 standard where it is stated that implementations may vary. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

20 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

58 2.2.2 Application Conformance b
59 All applications claiming conformance to this standard shall use only Conforming b
60 Languages §2.2.3, and shall fall within one of the following categories: b

61 2.2.2.1 Strictly Conforming Application b

62 A Strictly Conforming Application is an application that requires only the facilities b

63 described in this standard and the applicable language standards. Such an application b
64 shall accept any behavior described in this standard as implementation defined, and for b

65 symbolic constants, shall accept any value in the range permitted by this standard. Such b
66 applications are permitted to adapt to the availability of facilities whose availability is b

67 indicated by the constants in <limits.h> §2.9 and <unistd.h> §2.10. b

68 2.2.2.2 Conforming Application b
69 A Conforming Application is an application that uses only the facilities described in b

70 this standard and approved Conforming Language bindings for any ANSI standard, b
71 Such an application shall include in Its statement of conformance all options and limit b
72 dependencies, all other ANSI standards used, and any other applications required. b

73 2.2.2.3 Conforming Application Using Extensions b

74 A Conforming Application Using Extensions is an application that differs from a b

75 Conforming Application only in that it uses non-standard facilities which are consistent b

76 with this standard. Such an application shall fully document its requirements for these b
77 extended facilities, in addition to the documentation required of a Conforming b

78 Application. b

79 2.2.3 Language Conformance b
80 As of this version of IEEE Std 1003.1, the standard has been described only in terms of c

81 the “C” programming language. In the future, it is expected that language bindings for b
82 other programming languages will be described as well. b

83 2.2.3.1 C Language Binding b
84 The ANSI/X3.159-198x Programming Language C Standard will be used as a basis for a c
85 C language binding to IEEE Std 1003.1. Included in the ANSI standard are definitions of b
86 C library functions that will be required upon its final adoption. Any C language b
87 implementation providing the facilities listed in chapter 8 of this standard shall be b
88 deemed conforming, provided that the implementation clearly states that its C language b

89 does not conform to ANS1IX3.159-198x Programming Language C Standard and its C b
90 implementation acts only as an interim binding. b

91 The following rules apply to the usage of C language library functions; each of the b
92 statements in this section applies to the detailed function descriptions in Chapters 3 b
93 through 9, unless explicitly stated otherwise: b

•

94 If the argument to a function has an invalid value (such as a value outside the b
95 domain of the function, or a pointer outside the address space of the program, or a b

96 NULL pointer), the behavior is undefined. b

2.2 Conformance

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

21

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

97 Any function declared in a header may also be implemented as a macro defined in b

98 the header, so a library function should not be declared explicitly if its header is b
99 included. b

100 An application may use #undef to remove any macro’s definition to insure that b

101 an actual function is referenced. b

102 Any invocation of a library function that is implemented as a macro shall expand b

103 to code that evaluates each of its arguments only once, fully protected by b

104 parentheses where necessary, so it is generally safe to use arbitrary expressions as b

105 arguments. b

106 Provided that a library function can be declared without reference to any type b

107 defined in a header, it is also permissible to declare the function, either explicitly b

108 or implicitly, and use it without including its associated header. b

109 If a function that accepts a variable number of arguments is not declared b

110 (explicitly, or by including its associated header), the behavior is undefined. b

111 2.3 General Terms

112 The following terms are used in this standard:

113 c

114 access mode b

115 An access mode is a form of access permitted to a file. Each implementation shall b

116 provide separate read, write, and execute/search access modes. b

117 address space

118 The range of memory locations that can be referenced by a process. a

119 appropriate privileges b

120 Each implementation shall provide a means of associating privileges with a b
121 process with regard to the function calls and function call options defined in this b
122 standard that need special privileges. b

123 background process c

124 A process that is not in the (non-zero) distinguished process group of its c
125 controlling terminal. See Job Access Control §7.1.1.5. c

126 block special file c

127 A file that refers to a device. A block special file is normally distinguished from a c

128 character special file by providing a more structured interface to the device. c

129 character special file c

130 A file that refers to a device. A character special file has no defined structure and c

131 its use is implementation defined. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

22 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

132 child process 8
133 See process. 8

134 clock tick 8
135 A rate used within the system for scheduling and accounting. The rate is defined 8

136 by {CLK_TCK}, which is the number of intervals per second. 8

137 controlling process b
138 The process group leader that established the connection to the controlling b

139 terminal. b

140 controlling terminal 8
141 A terminal that is associated with a process group. Certain input sequences from 8

142 the controlling terminal (see General Terminal Interface §7.1) cause signals to 8

143 be sent to all processes in the process group associated with the controlling 8

144 terminal. 8

145 current working directory 9
146 See working directory. 9

147 device 9
148 A computer peripheral or an object that appears to the application as such. 9

149 directory 8
150 A directory is a file that contains directory entries. No two directory entries in 8
151 the same directory shall have the same name. c

152 directory entry (or link) g
153 An object that associates a filename with a file. Several directory entries can 8

154 associate names with the same file. 8

155 dot 9
156 The filename consisting of a single dot character (.). See pathname resolution 9
157 §2.4. 9

158 dot-dot 9
159 The filename consisting solely of two dot characters (. .). See pathname 9
160 resolution §2.4. 9

161 effective group ID s
162 An attribute of a process that is used in determining file access permissions (see 8
163 file access permissions §2.4). See group ID. This value is subject to change 8

164 during the process lifetime, as described in setgid() §4.2.2 and exec §3.1.2. 8

165 effective user ID 8

166 An attribute of a process that is used in determining file access permissions (see 8
167 file access permissions §2.4). See user ID. This value is subject to change during 8

168 the process lifetime, as described in setuid() §4.2.2 and exec §3.1.2. 8

2.3 General Terms

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

23

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

169 Epoch c
170 The Epoch refers to the time at 0 hours, 0 minutes, 0 seconds, Coordinated c

171 Universal Time on January 1, 1970. The value seconds since the Epoch refers to c
172 the difference in seconds between the referenced time and the Epoch, not counting c

173 leap seconds. c

174 FIFO special file (or FIFO) 8

175 A FIFO special file is a file. Data written to a FIFO special file is read on a first- &

176 in-first-out basis. Other characteristics of FIFOs are described under open() 9

177 §5.3.1, read{) §6.4.1, write() §6.4.2, and lseek{) §6.5.3. 9

178 file s
179 An object that can be written to and/or read from. A file has certain attributes, 8

180 including access permissions and type. File types include regular file, character 8

181 special file, block special file, FIFO special file, and directory. Other types of s'
182 files may be defined by the implementation. 8

183 file descriptor 8
184 A file descriptor is a per-process unique, non-negative integer used to identify a 8
185 file for the purpose of file access. 8

186 file group class c
187 A process is in the file group class of a file if the process is not in the file owner c
188 class and if the effective group ID or one of the supplementary group IDs of the c

189 process matches the group ID associated with the file. Other members may be c
190 implementation defined. c

191 file mode b

192 The file mode contains the file permission bits and other characteristics of the file, c

193 as described in <sys/stat.h> §5.6.1. c

194 filename 8

195 Names consisting of 1 to {NAME_MAX} bytes may be used to name a file. The c

196 characters composing the name may be selected from the set of all character-values c

197 excluding the slash character and those containing the null byte (octal zero). The 9

198 filenames dot and dot-dot have special meaning; see pathname resolution §2.4. 8
199 A filename is sometimes referred to as a pathname component. 8

200 file offset c
201 The file offset specifies the position in the file where the next I/O operation begins, c

202 Each open file description associated with a regular file or special file has a file c

203 offset. There is no file offset specified for a pipe or FIFO. c

204 file other class c

205 A process is in the file other class if the process is not in the file owner class or c

206 file group class. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

24 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

207 file owner class c

208 A process is in the file owner class of a file if the effective user ID of the process c
209 matches the user ID of the file. c

210 file permission bits a

211 The file permission bits are used, along with other information, to determine if a c
212 process has read, write, or execute/search permission to a file. The bits are divided c
213 into three parts: owner, group, and other. Each part is used with the corresponding c

214 file class of processes. These bits are contained in the file mode, as described in c
215 <sys/stat.h> §5.6.1. The detailed usage of the file permission bits in access c
216 decisions is described in file access permissions §2.4. c

217 file serial number 8
218 A file serial number is a per-file system unique identifier for a file. File serial 8
219 numbers are not necessarily unique throughout the system. 8

220 file system 8
221 A collection of files and certain of their attributes. It provides a name space for file 9
222 serial numbers referring to those files. 9

223 foreground process c
224 A process that is in the (non-zero) distinguished process group of its controlling c
225 terminal. See Job Access Control §7.1.1.5. c

226 group ID 8
227 Each system user is a member of at least one group. A group is identified by an 8
228 integer known as a group ID, which must be between zero and {UID_MAX}, 8

229 inclusive. When the identity of a group is associated with a process, a group ID 8
230 value is referred to as a real group ID, an effective group ID, one of the (optional) c
231 supplementary group IDs, or an (optional) saved set-group-ID. 8

232 Job Control Option 8
233 Job control allows users to selectively stop (suspend) the execution of processes 8
234 and continue (resume) their execution at a later point. The user typically employs 8

235 this facility via the interactive interface jointly supplied by the terminal I/O driver 8
236 and a command interpreter. Conforming implementations may optionally 8

237 support job control facilities; the presence of this option is indicated to the c
238 application at compile time or run time by the definition of the c
239 {_POSIX_JOB_CONTROL} symbol; see Symbolic Constants §2.10). Portions of 8

240 the standard operating system interface that are required only on implementations 8
241 that support the Job Control Option are so labeled. 8

242 job control process group leader 8

243 A‘job control process group leader is a process that called the jcsetpgrp () 8

244 function to become a process group leader. Job control process group leaders 8

245 can exist on implementations that support the Job Control Option. 8

2.3 General Terms

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

25

Std 1003.1—Draft 17 PORTABLE OPERATING SYSTEM INTERFACE

246

247
248

249

250

251
252

253

As contrasted with a session process group leader, a job control process group

leader is one of a set of processes all belonging to the same process group that
are typically controlled as a unit via the Job Control Option signaling

mechanisms. While there is usually only one session process group leader per

login session, there are usually many job control process group leaders. Side

effects typically associated with login session creation and destruction that are
performed for session process group leaders (such as effecting terminal

affiliation) are not performed for job control process group leaders.

254 link
255 See directory entry.

256 link count
257 The link count of a file is the number of directory entries that refer to that file.

258 mode
259 The mode of a file is a collection of attributes that specifies the file’s type and its

260 access permissions. (See file access permissions §2.4).

261 open file
262 A file that is currently associated with a file descriptor.

263 open file description
264 An open file description records how a process or group of processes are

265 accessing a file. Each file descriptor refers to exactly one open file description,

266 but an open file description can be referred to by more than one file descriptor.

267 A file offset, file status §6.5.1.2.5, and file access modes §6.5.1.2.6 are attributes

268 of an open file description.

269 parent directory
270 A directory is known as a parent directory of all files that are referenced by its

271 directory entries, with the exception of the directory entries for dot and dot-dot.

272 parent process

273 See process.

274 parent process ID

275 A new process is created by a currently active process. The parent process ID of

276 a process is the process ID of its creator, for the lifetime of the creator. After the

277 creator’s lifetime has ended, the parent process ID is the process ID of an

278 implementation defined process.

279 path prefix
280 A path prefix is a pathname, with an optional ending slash, that refers to a

281 directory.

282 pathname
283 A pathname is a string that is used to identify a file. It consists of, at most.

8

8

8

8

8

8

8

8

8

8

9

9

8

8

8

8

8

C
c

c

c
c
c

A

A

A

9

9

8

8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

26 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

284 {PATH_MAX} bytes, including the terminating null character. It has an optional b

285 beginning slash, followed by zero or more filenames separated by slashes. 8
286 Multiple successive slashes are considered the same as one slash. The 9
287 interpretation of the pathname is described under pathname resolution §2.4. 9

288 pathname component c
289 See filename. c

290 pipe 8
291 A pipe is an unnamed object created by the pipe,{) dup,{) or fcntl{) functions that 8
292 behaves identically to a FIFO special file for input and output. 8

293 portable filename character set
294 The following set of graphical characters shall be portable across conforming c

295 implementations of IEEE Std 1003.1: c

296 ABCDEFGH I JKLMNOP QRS TUVWXYZ

297 abcdefghijklmnopqrstuvwxyz

298 0123456789 . _ - C

299 The last three characters are the dot, underscore, and hyphen characters, c
300 respectively. The hyphen should not be used as the first character of a portable c

301 filename. c

302 privilege b
303 See appropriate privileges. b

304 process 8
305 An address space and single thread of control that executes within that address 8

306 space, and its required system resources. A process is created by another process 8
307 issuing the forkf) function. The process that issues forkf) is known as the parent 8

308 process, and the new process created by the fork {) as the child process. 8

309 process ID
310 Each active process in the system is uniquely identified during its lifetime by a

311 positive integer less than or equal to {PID_MAX} called a process ID. A process
312 ID may be re-used by the system after the process lifetime ends, provided the

313 process was not a process group leader. If a process group leader’s lifetime

314 ends, its process ID shall not be re-used until all processes in the process group

315 terminate.

316 process group 8
317 Each active process is a member of a process group that is identified by a process 8
318 group ID. A newly created process joins the process group of which its creator is 8

319 a member. 8

320 process group ID
321 The process group ID is the process ID of the initial process group leader.

2.3 General Terms

UNAPPROVED DRAFT. AH Rights Reserved by IEEE.

Do not specify or claim.conformance to this document

27

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

322 process group leader • 8
323 A process group leader is a process whose process ID is the same as its process 8
324 group ID. Any process that is not a process group leader may detach itself from 8

325 its process group and become the process group leader of a new process group 8

326 by calling either the setpgrp() or the jcsetpgrp() function, which can cause a 8

327 process to become either a session process group leader or a job control process 8

328 group leader, respectively. Job control process group leaders can exist on 8

329 implementations that support the Job Control Option. 8

330 process lifetime
331 After a process is created with a fork() function, it is considered active. Its thread

332 of control and address space exist until it terminates. It then enters an inactive

333 state where certain resources may be returned to the system, although some

334 resources, such as the process ID are still in use. When another process executes a a

335 waitQ or wait2() function for an inactive process, the remaining resources are 8

336 returned to the system. The last resource to be returned to the system is the

337 process ID. At this time, the lifetime of the process ends.

338 read-only file system 9

339 An implementation defined characteristic of a file system that restricts file system 9

340 modifications. 9

341 real group ID 8

342 The attribute of a process that, at the time of process creation, identifies the group 8

343 of the user who created the process. See group ID. This value is subject to 8
344 change during the process lifetime, as described in setgid() §4.2.2. 8

345 real user ID 8
346 The attribute of a process that, at the time of process creation, identifies the user 8

347 who created the process. See user ID. This value is subject to change during the 8

348 process lifetime, as described in setuid() §4.2.2. 8

349 regular file 8
350 A file that is a randomly accessible sequence of bytes, with no further structure a

351 imposed by the system. a

352 root directory 9

353 A directory, associated with a process, that is used in pathname resolution §2.4 9

354 for pathnames that begin with a slash. 9

355 b

356 saved set-group-ID 8
357 When the saved set-group-ID option is implemented, the saved set-group-ID is 8

358 an attribute of a process that allows some flexibility in the assignment of the 8

359 effective group ID attribute, as described in setgidQ §4.2.2, and exec §3.1.2. 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

28 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

360 saved set-user-ID 8
361 When the saved set-user-ID option is implemented, the saved set-user-ID is an 8
362 attribute of a process that allows some flexibility in the assignment of the effective 8

363 user ID attribute, as described in setuid() §4.2.2, and exec §3.1.2. 8

364 session process group leader 8

365 A session process group leader is a process that called the setpgrpi) function to 8

366 become a process group leader. When the Job Control Option is not 8

367 implemented, this term is a synonym for process group leader. When the Job 8

368 Control Option is implemented, this term is used to distinguish the functionality 8

369 of the setpgrp() function from that of the jcsetpgrp () function, which establishes a 8

370 job control process group leader. 8

371 As contrasted with a job control process group leader, there is typically only one 8

372 session process group leader per login session and it is the main command 8
373 interpreter for the session. All processes created during the session are 8
374 descendants of the session process group leader and members of the same 8

375 process group. 8

376 signal 9

377 A mechanism by which a process may be notified of, of affected by, an event 9

378 occurring in the system. Examples of such events include hardware exceptions and 9

379 specific actions by processes. The term signal is also used to refer to the event 9

380 itself. 9

381 slash a

382 The term slash is used to represent the literal character This character is also c

383 known as “solidus” in ISO DIS 8895/1. c

384 b

385 supplementary group ID

386 A process has up to {NGROUPS_MAX} supplementary group IDs used in

387 determining file access permissions, in addition to the effective group ID. The 8

388 supplementary group IDs of a process are set to the supplementary group IDs 8
389 of the parent process when the process is created. 8

390 system 8

391 The term system is used in this standard to refer to an implementation of this 8
392 standard. 8

393 system process c

394 A process that runs on behalf of the system. It may have special implementation c

395 defined characteristics. c

396 terminal (or terminal device) 8
397 A character special file that obeys the specifications of’the General Terminal 9

398 Interface §7.1. 9

2.3 General Terms

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

29

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

399 terminal group ID c
400 The attribute of a process that is used to identify the controlling terminal for a b

401 login session. All processes in a process group that have a controlling terminal b
402 share the same controlling terminal. That is, the terminal group ID is either c
403 cleared or has the same value for all processes in a process group. c

404 user ID 8
405 Each system user is identified by an integer known as a user ID, which must be 8
406 between zero and {UID_MAX}, inclusive. When the identity of a user is 8
407 associated with, a process, a user ID value is referred to as a real user ID, an 8

408 effective user ID, or an (optional) saved set-user-ID. 8

409 working directory (or current working directory) 9

410 A directory, associated with a process, that is used in pathname resolution §2.4 9
411 for pathnames that do not begin with a slash. 9

412 2.4 General Concepts

413 file access permissions c
414 File access control is provided using the file permission bits along with c
415 other information. These bits are set at file creation, open() §5.3.1 or c
416 creat{) §5.3.2, and are changed by chmod{) §5.6.4. These bits are read by c
417 stat() orfstatO §5.6.2. c

418 Whenever a process requests file access permission for read, write, or c
419 execute/search, the following applies: c

420 If the process has appropriate privileges to override the access c
421 mechanism: c

422 If read, write, or directory search is requested, access is c
423 granted. c

424 If execute permission is requested, access is granted if at c
425 least one of the execute file permission bits is set, or if an c
426 implementation defined access mechanism is enabled that c
427 allows execute permission; otherwise, access is denied. c

428 Otherwise, the access mechanism is: c

429 If the requested access permission bit is set in the part c
430 (owner/group/other) of the file permission bits that c
431 corresponds to the file class (owner/group/other) of the c
432 process, or if an implementation defined access mechanism c

433 is enabled that allows the requested permission, access is c
434 granted, unless the process is denied access by an c
435 implementation defined constraint. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

30 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

436 Otherwise, access is denied. c

437 An implementation may provide an alternative access mechanism, c
438 enabled explicitly by the user, that does not necessarily use the file c
439 permission bits. This alternative access mechanism shall: c

440 • Specify appropriate file permission bits for the owner, group, c
441 and other classes of the file to be returned by stat{) or fstat{). c

442 • Be enabled only by explicit user action. c

443 • Be disabled after the file permission bits are changed by c

444 chmod{). c

445 file hierarchy 9
446 Files in the system are organized in a hierarchical structure in which all of 9
447 the non-terminal nodes are directories and all of the terminal nodes are c
448 any other type of file. Because multiple directory entries may refer to 9
449 the same file, the hierarchy is properly described as a directed graph.

450 filename portability
451 Filenames should be constructed from the portable filename character
452 set because the use of other characters can be confusing or ambiguous in
453 certain contexts.

454 file times update c
455 Each file has three associated time values that are updated when file data c
456 has been accessed, file data has been modified, or file status has been c
457 changed, respectively. These values are returned in the file characteristics c
458 structure, as described in <sys/stat.h> §5.6.1. c

459 For each function in this standard that reads or writes file data or changes c

460 the file status, the appropriate time-related fields are noted as “marked- c
461 for-update.” At an update point in time, any marked fields are set to the c
462 current time and the update marks are cleared. One such update point is c

463 when the file is no longer open by any process. Additional update points c
464 are implementation defined. Updates are not done for files on read-only c
465 file systems. c

466 pathname resolution 9
467 Pathname resolution is performed for a process to resolve a pathname 9

468 to a particular file in a file hierarchy. There may be multiple pathnames 9

469 that resolve to the same file. 9

470 Each filename in the pathname is located in the directory specified by its 9

471 predecessor (for example, in the pathname fragment “a/b”, file “b” is 9

472 located in directory “a”). Pathname resolution fails if this cannot be 9
473 accomplished. If the pathname begins with a slash, the predecessor of 9

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

2.4 General Concepts 31

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

474 the first filename in the pathname is taken to be the root directory of the 9

475 process (such pathnames are referred to as absolute pathnames). If the 9

476 pathname does not begin with a slash, the predecessor of the first 9
477 filename of the pathname is taken to be the current working directory 9

478 of the process (such pathnames are referred to as relative pathnames). 9

479

480

481
482

483
484

485

The interpretation of a pathname component is dependent on the values c

of {NAME_MAX} and {_POSIX_NO_TRUNC} associated with the path c
prefix of that component. If any pathname component is longer than c

{NAME_MAX}, and {_POSIX_NO_TRUNC} is in effect for the path c

prefix of that component (see pathconf{) §5.7.1), the implementation c

shall consider this an error condition. Otherwise, the implementation shall c

use the first {NAME_MAX} bytes of the pathname component. c

486 The special filename, dot, refers to the directory specified by its 9

487 predecessor. The special filename, dot-dot, refers to the parent 9
488 directory of its predecessor directory. As a special case, in the root 9

489 directory, dot-dot may refer to the root directory itself. 9

490

491
492

493
494

A pathname consisting of a single slash resolves to the root directory of 9

the process. If {_POSIX_PATHNAME_NULL} is defined, a null c
pathname (a pathname consisting of a null string) resolves to the c

current working directory of the process; otherwise, a null pathname is c

invalid. c

495 9

496 2.5 Error Numbers

497 Most functions provide an error number in the external variable errno, which is defined 9

498 as: 9

499 extern int errno; 9

500 This variable is defined only after calls to functions for which it is explicitly stated to be b

501 set. The variable errno should only be examined when it is indicated to be valid by a

j 12 function’s return value. No function defined in this standard sets errno to zero to indicate b

503 an error.

504 If more than one error occurs in processing a function call, this standard does not define

505 in what order the errors are detected; therefore, any one of the possible errors may be

506 returned.

507 Implementations may support additional errors not included in this list, may generate

508 errors included in this list under circumstances other than those described here, or may

509 contain extensions or limitations that prevent some errors from occurring. The Errors 9

510 subsection in each function description specifies which error conditions shall be required 9

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

32 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

511 and which may be implementation defined. Implementations shall not generate an error

512 number different from the ones described here for error conditions described in this

513 standard.

514 The following symbolic names identify the possible error numbers, in the context of 8

515 functions specifically defined in this standard; these general descriptions are more B

516 precisely defined in the Errors sections of functions that return them. Only these

517 symbolic names should be used in programs, since the actual value of the error number is

518 implementation defined. All values shall be unique numbers. The implementation B

519 defined values for these names can be found in the header <errno.h>.

520 [E2BIG] Arg list too long

521 The sum of the number of bytes used by the new process image’s

522 argument list and environment list is greater than the system-

523 imposed limit of {ARG_MAX} bytes.

524 [EACCES] Permission denied

525 An attempt was made to access a file in a way forbidden by its file 9

526 access permissions. 8

527 [EAGAIN] Resource temporarily unavailable 8

528 This is a temporary condition and later calls to the same routine 8

529 may complete normally. 8

530 A

531 [EBADF] Bad file number 8

532 A file descriptor argument is out of range, refers to no open file, or 8

533 a read (write) request is made to a file that is only open for writing 8

534 (reading). 8

535 [EBUSY] Resource busy 8

536 An attempt was made to make use of a system resource that is not 8

537 currently available because it is being used by another process in a 8

538 manner that would conflict with the request being made by this 8

539 process. 8

540 [ECHILD] No child processes 8

541 A waitQ or wait!() function was executed by a process that had 8

542 no existing or unwaited-for child processes.

543 [EDEADLK] Resource deadlock would occur

544 A process that has locked a system resource would have been put

545 to sleep while attempting to access a resource locked by another

546 process.

547 [EDOM] Domain error B

548 Defined in ANSI1X3.159-198x Programming Language C B

549 Standard; an input argument is outside the defined domain of the B

2.5 Error Numbers

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

33

Std 1003.1- —Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

550 mathematical function. B

551 [EEXIST] File exists

552 An existing file was mentioned in an inappropriate context, for

553 instance, as the new link name in a link() function.

554 [EFAULT] Bad address

555 The system detected an invalid address in attempting to use an

556 argument of a call. The reliable detection of this error is

557 implementation defined; however, implementations that do detect B
558 this condition shall use this value. B

559 [EFBIG] File too large

560 The size of a file would exceed an implementation defined C
561 maximum file size. C

562 [EINTR] Interrupted function call C
563 An asynchronous signal (such as SIGINT or SIGQUIT; see the

564 description of header <signal.h> §3.3.1) was caught by the process c
565 during the execution of an interruptible function. If the signal c
566 handler performs a normal return, the interrupted function' call may c

567 return this error condition. c

568 [EINVAL] Invalid argument

569 Some invalid argument (for example, mentioning an undefined

570 signal in a signal() function or a killQ function).

571 [EIO] Input/output error

572 Some physical input or output error has occurred. This error may 8

573 be reported on a subsequent operation on the same file descriptor. 8

574 Any other error-causing operation on the same file descriptor may 8

575 cause the [EIO] error indication to be lost. 8

576 [EISDIR] Is a directory

577 An attempt was made to open a directory with write mode

578 specified.

579 [EMFTLE] Too many open files

580 An attempt was made to open more than the maximum number of

581 {OPEN_MAX} file descriptors allowed in this process.

582 [EMLINK] Too many links B

583 An attempt was made to have the link count of a single file exceed 8

584 {LINK_MAX}. 8

585 [ENAMETOOLONG] Filename too long

586 The size of a pathname string exceeds {PATH_MAX}, or a C

587 pathname component is longer than {NAME_MAX} while c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

34 Definitions and General Requirements

Std 1003.1—Draft 12 FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

588 {_POSIX_NO_TRUNC} is in effect c

589 [ENFILE] Too many open files in system

590 Too many files are currently open in the system. The system has B

591 reached its predefined limit for simultaneously open files and B
592 temporarily cannot accept requests to open another one.

593 [ENODEV] No such device

594 An attempt was made to apply an inappropriate function to a

595 device; for example, trying to read a write-only device such as a

596 printer.

597 [ENOENT] No such file or directory

598 A component of a specified pathname does not exist, or the A

599 pathname is an empty string. A

600 [ENOEXEC] Exec format error

601 A request is made to execute a file that, although it has the

602 appropriate permissions, is not in the proper format. A

603 [ENOLCK] No locks available. B

604 A system-imposed limit on the number of simultaneous file and B

605 record locks has been reached and no more are currently available. B

606 [ENOMEM] Not enough space

607 The new process image requires, more memory than is allowed by

608 the hardware or system-imposed memory management constraints.

609 [ENOSPC] No space left on device

610 During a write() function on a regular file or when extending a

611 directory, there is no free space left on the device.

612 [ENOTDIR] Not a directory

613 A component of the specified pathname exists, but it is not a B
614 directory, when a directory was expected. B

615 [ENOTEMPTY] Directory not empty B

616 A directory with entries other than dot and dot-dot was supplied B

617 when an empty directory was expected. B

618 [ENOTTY] Inappropriate I/O control operation A

619 A control function has been attempted for a file or special file for A

620 which the operation is inappropriate. A

621 [ENXIO] No such device or address

622 Input or output on a special file refers to a device that does not 8

623 exist, or makes a request beyond the limits of the device. It may 8

624 also occur when, for example, a tape drive is not on-line or no disk 8

625 pack is loaded on a drive. 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

2.5 Error Numbers 35

Std 1003.1- -Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

626 [EFERM] Operation not permitted 8

627 An attempt was made to perform an operation limited to processes B

628 with appropriate privileges or to the owner of a file or other B

629 resource. B

630 [EPEPE] Broken pipe 8

631 A write on a pipe or FIFO for which there is no process to read the 8

632 data. This condition normally generates the signal SIGPIPE; the 8

633 error is returned if the signal is ignored. 8

634 [ERANGEJ Result too large 8

635 Defined in ANSI/X3.159-198x Programming Language C C

636 Standard; the result of the function is too large to fit in the 8

637 available space. 8

638 [EROFS] Read only file system

639 An attempt was made to modify a file or directory on a file system

640 that is read only.

641 [ESPIPE] Invalid seek

642 An IseekO function was issued on a pipe or FIFO.

643 [ESRCH] No such process

644 No process can be found corresponding to that specified by the

645 given process ID.

646 [EXDEV] Improper link

647 A link to a file on another file system was attempted.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

36 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

648 2.6 Primitive System Data Types

649 Some data types used by the various system functions are not defined as part of this
650 standard, but are defined by the implementation. These types are then defined in the

651 header <sys/types.h>, which contains definitions for at least the following types:

Defined Type Description

clockJ Used for system times (in (CLK_TCK}ths of a 8
second) 8

dev t Used for device numbers

ino t Used for file serial numbers
modejt Used for some file attributes, e.g. file type, file 9

access permissions 9

nlink t Used for link counts 9

off t Used for file sizes

timej Used for system times (in seconds)

uid_t Used for user IDs and group IDs 9

660 All of the types listed above shall be integral types. b

661 Additional type definitions may also be given in this header. c

662

663
664

665

666
667
668
669

670

671

672

673
674

675

676

677

2.7 Environment Description

An array of strings called the environment is made available when a process begins. This
array is pointed to by the external variable environ, which is defined as:

extern char **environ;

These strings have the form “name=value". There is no meaning associated with the c
order of the strings in the environment. If more than one string in a process’s a

environment has the same name, the consequences are undefined. The following names
may be defined and have the indicated meaning if they are defined:

HOME Name of the user’s initial working directory, from the

password database (see description of the header <pwd.h>

§9.2.2).

IFS Characters used as field separators. The format of this string is a

currently not defined as part of this standard. a

LANG Specifies the name of the pre-defined setting for locale. c

LC_CTYPE Specifies the name of the locale for character classification. c

LC_COLLATE Specifies the name of the locale for collation information. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

2.7 Environment Description 37

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

678

679

680

681

682

683
684

685

686

687

688
689
690
691
692

693
694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711
712

713
714

715

LC TIME Specifies the name of the locale for date/time formatting c

information. c

LC_NUMERIC Specifies the name of the locale containing numeric editing c

(i.e., radix character) information. c

LOGNAME

MAIL

PATH

PS1

PS2

SHELL

TERM

TZ

The name of the user’s login account, corresponding to the
login name in the password database (see description of the
header <pwd.h>).

System mailer information. The format of this string is a

currently not defined as part of this standard. a

The sequence of path prefixes that certain commands and
functions apply in searching for a file known by an incomplete

pathname (a pathname without a leading slash). The prefixes
are separated by a colon (:). When a non-zero-length prefix is 9

applied to an incomplete pathname, a slash is inserted between 9

the prefix and the incomplete pathname. A zero-length prefix 9

is a special prefix that indicates the current working directory. 9

It appears as two adjacent colons (“::”), as an initial colon

preceding the rest of the list, or as a trailing colon following

the rest of the list. The list is searched from left to right until

an executable program by the specified name is found. If the

filename being sought contains a slash, the search through path b

prefixes is not done. b

Prompting string for interactive programs. The format of this a

string is currently not defined as part of this standard. a

Prompting string for interactive programs. The format of this a

string is currently not defined as part of this standard. a

The shell command interpreter name. The format of this string a

is currently not defined as part of this standard. a

The terminal type for which output is to be prepared. This

information is used by commands and application programs

wishing to exploit special capabilities specific to a terminal.

Time zone information. The format of this string is defined in c

asctime() §8.1.1. c

It is recommended that the environment variable names, consist solely of characters from

the portable filename character set. Other valid characters may be permitted by an

implementation, but use of them by an application may limit its portability. Upper- and

lowercase letters retain their unique identities and are not folded together. It is b

recommended that only capital letters, underscores, and numbers be used for

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

38 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

716 environment variable names and that the first character be a letter.

717
718
719

720
721

722

The values that the environment variables may be assigned are not restricted except that
they are considered to end with a null byte and the total space used to store the
environment and the arguments to the process is limited to {ARG_MAX} bytes.

Other name=value pairs may be placed in the environment by manipulating the environ
variable or by using envp arguments when creating a process (see exec §3.1.2).

723 2.8 C Language Definitions

724 Certain terms used in this standard are considered to be defined by the C programming 8

725 language. The following terms are defined in the ANSI1X3.159-198x Programming 8
726 Language C Standard (see C Language Standard §A.2.1): 8

727 NULL 8

728 byte c

729 character

730 character array

731 string

732 empty string

733 The term NULL pointer in this standard is equivalent to. the term null pointer used in
734 the ANSI/X3.159-198x Programming Language C Standard.

735 2.9 Numerical Limits

736 The following subsections list magnitude limitations imposed by a specific a

737 implementation. A standard conforming implementation shall define each of the values a

738 specified below as a symbolic constant in the header <limits.h>. The values given below a

739 shall be replaced by restricted constant expressions suitable for use in #if preprocessing a

740 directives. The braces notation, {LIMIT}, is used in the standard to indicate these values, a

741 but the braces are not part of the name. a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

2.9 Numerical Limits 39

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

742 2.9.1 C Language Limits A
743 Certain limits used in this standard are considered to be defined in the C programming a

744 language. The following limits are defined in the ANSI/X3.159-198x Programming a

745 Language C Standard (see C Language Standard §A.2.1): a

746 CHAR_BIT A

747 CHAR_MAX A

748 CHAR_MIN A

749 CLK_TCK C

750 INTMAX A

751 INT_MXN A

752 LONG_MAX A

753 LONG_MIN A

754 SCHAR_MAX A

755 SCHAR_MIN A

756 SHRT_MAX A

757 SHRT_MIN A

758 UCHAR_MAX A

759 UINT_MAX A

760 ULONG_MAX A

761 ushrtJmax A

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

40 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

762 2.9.2 Run-Time Invariant Values a

763 The following magnitude limitations shall be fixed for a specific implementation. A a

764 Strictly Conforming Application shall assume that the value supplied by <limits.h> in a

765 a specific implementation is that which pertains whenever the Strictly Conforming a

766 Application is run under that implementation. A specific instance of a specific a

767 implementation shall not vary the value from that supplied by <limits.h> for that a

768 implementation. a

Name _Description__ Minimum Value a

MAXJNPUT

NGROUPS_MAX

PASS_MAX

PID_MAX

UID MAX

Maximum number of bytes

allowed in a terminal input queue

Maximum number of
simultaneous supplementary

group IDs per process

Maximum number of bytes in a
password (not a string length;

does not include a terminating
null)

Maximum value for a process ID
Maximum value for a user or
group ED

256

0

8

30000
32000

c
c

A

A

A

B

B

B

B

A

A

A

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

2.9 Numerical Limits 41

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

795 2.9.3 Run-Time Invariant Values (Possibly Indeterminate) c

796 A definition of one of the following values shall be omitted from the <Iimits.h> on a
797 specific implementations where the corresponding value is equal to or greater than the a
798 stated minimum, but is indeterminate. This depends, for example, on the amount of a

799 available memory space on a specific instance of a specific implementation. a

Name Description Minimum Value A

ARG_MAX Maximum length of arguments 4096 B
for exec() in bytes, including B
environ data B

CHILD MAX Maximum number of 6 C
simultaneous processes per C
user ID C

MAX_CANON Maximum number of bytes in a 256 B
terminal canonical input line. B
(See Canonical Mode Input B
Processing §7.1.1.7.) B

OPEN_MAX Maximum number of files that 16 C
one process can have open at any C
given time C

815 2.9.4 Pathname Variable Values c

816 The following values may be constants within an implementation, or may vary from one c

817 pathname to another. For example, file systems or directories may have different c

818 characteristics. c

819 A definition of one of the following values shall be omitted from the <limits.h> on c

820 specific implementations where the corresponding value is equal to or greater than the c
821 stated minimum, but is indeterminate. The actual value supported for a specific c
822 pathname shall be provided by the pathconf{) §5.7.1 function. c

Name Description Minimum Value c

NAME MAX

PATH MAX

Maximum number of bytes in a 14 c

file name (not a string length; c

does not include a terminating c

null). c

Maximum number of bytes in a 255 c
pathname (not a string length; c

does not include a terminating c

null). c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

42 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

833 2.9.5 Run-Time Increasable Values
834 The following magnitude limitations shall be fixed by specific implementations. A
835 Strictly Conforming Application shall assume that the value supplied by <Iimits.h> in
836 a specific implementation is the minimum that pertains whenever the Strictly
837 Conforming Application is run under that implementation. A specific instance of a
838 specific implementation may increase the value relative to that supplied by <limits.h>
839 for that implementation.

Name _Description_ Minimum Value

LINK_MAX Maximum value of a file’s link 8 c

count c

PIPE_BUF Maximum number of bytes that 512 c
is guaranteed to be atomic when c
writing to a pipe c

845 c

846 2.10 Symbolic Constants

847 A conforming implementation shall have a header with the name <unistd.h>. This file

848 defines the symbolic constants and structures referenced elsewhere in the standard and
849 not already defined or declared in some other header. When used, it shall be referenced

850 as follows:

851 #include <unistd.h>

852 The constants defined in this file are shown below. The actual values of the constants are
853 implementation defined.

854 2.10.1 Symbolic constants for the access{) function

Constant _Description_

R_OK Test for read Permission

W OK Test for write Permission
X_OK Test for execute or search'Permission
F_OK Test for existence of file

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

2.10 Symbolic Constants 43

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

860 B

866 2.10.2 Symbolic constant for the lseek{) function

Constant _Description_

SEEK_SET Set file offset to offset c
SEEK_CUR Set file offset to current plus offset c

SEEK_END Set file offset to EOF plus offset c

871 b

872 2.10.3 Compile time symbolic constants for portability specifications c
873 These , constants may be used by the application, at compile time, to determine which c
874 optional facilities are present and what actions shall be taken by the implementation. c

875 Some of these symbols may have more liberal, or less restrictive, values at the time of c

876 execution. Although a Strictly Conforming Application can rely on the values compiled c

877 from the <unistd.h> header to afford it portability on all instances of an implementation, c

878 it may choose to interrogate a value at run time to take advantage of the current c

879 configuration. See sysconff) §4.8.1. c

880 {_POSIX_EXIT_SIGHUP} c

881 If defined, if the process is a session process group leader, the c
882 _exit() §3.2.2 function will send the SIGHUP signal to all c

883 processes with group IDs equal to that of the calling process. c

884 {JPOSIX_JOB_CONTROL} c

885 If this symbol is defined, it indicates that the implementation c
886 supports the Job Control Option. c

887 {_POSIX_KILL_PID_NEG 1} c
888 If defined, a killQ §3.3.2 function call with pid of-1 will send the c

889 signal to the sending process; otherwise, the sending process will c

890 be excluded. c

891 {_POSIX_KILL_SAVED} c
892 If defined, and if {_POSIX_SAVED_IDS} is also defined, the killO c
893 §3.3.2 uses the saved set-user-ID instead of the effective user-ID. c

894 {_POSIX_PATHNAME_NULL} c
895 If defined, a null pathname resolves to the current working c
896 directory; otherwise, a null pathname is considered invalid. c

897 {_POSIX_PGID_CLEAR} c
898 If defined, if the process is a session process group leader, the c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

44 Definitions and General Requirements

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

899 _exit() §3.2.2 function will cause all process group IDs equal to c

900 that of the calling process to have their process group IDs set to c

901 zero. c

902 {POSIXS A VED_IDS} c
903 If defined, the exec() §3.1.2 saves the effective user and group IDs. c

904 {_POSIX_VERSION} c
905 The integer value 198803. This value will change with each c
906 published version or revision of this standard to indicate the (4- c
907 digit) year and (2-digit) month that the standard was approved by c

908 the IEEE Standards Board. Editor’s Note: The value 198803 is c
909 tentative as of this draft. The published Full Use Standard will c
910 contain the value that should be used by applications; however, it c

911 is guaranteed to not be less than 198803. c

912 2.10.4 Execution time symbolic constants for portability specifications c
913 These constants may be used by the application, at execution time, to determine which c

914 optional facilities are present and what actions shall be taken by the implementation in c
915 some circumstances described by this standard as implementation defined, c

916 If any of the following constants are not defined in the header <unistd.h>, the value c
917 varies depending on the file to which it is applied. See pathconff) §5.7.1. c

918 If any of the following are defined to have value -1 in the header <unistd.h>, the c
919 implementation shall not provide the option on any file. If any of the following are c
920 defined to have a value other than -1 in the header <unistd.h>, the implementation shall c
921 provide the option on all applicable files. c

922 All of the following, whether defined in <unistd.h> or not, may be queried with respect c

923 to a specific file using the pathconff) or fpathconff) functions. c

924 {_POSIX_CHOWN_RESTRICTED} c

925 The use of the chown{) §5.6.5 function is restricted to a process c

926 with appropriate privileges. c

927 {_POSIX_CHOWN_SUP_GRP} c

928 The use of the chownf) §5.6.5 function is restricted to changing c
929 the group ID of a file only to the effective group ID of the process c
930 or to one of its supplementary group IDs. c

931 {JPOSIXDIRDOTS} c
932 An “empty directory” contains entries for dot and dot-dot; c
933 otherwise it must be completely empty. c

934 (_POS IX_G ROUP_P ARENT} c
935 A newly created file, directory, or FIFO receives the group ID of its c

936 parent directory; otherwise, the process’s effective group ID is c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

2.10 Symbolic Constants 45

Std 1(X)3.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

937 used. c

938 {_POSIX_LINK_DIR} c

939 Any user is allowed to link() §5.3.4 or unlink() §5.5.1 directories. c

940 {_PO S IX_N OUTRUN C} c
941 Pathname components longer than {NAME_MAX} generate an c

942 error. c

943 {_POSIX_UTIME_OWNER} c

944 The owner of a file is allowed to use the utime() §5.6.6 function c

945 with a non-NULL argument c

946 {_POS EX__V_DI S A B LE} c
947 Terminal special characters defined in <termios.h> §7.1.2 can be c

948 disabled using this character value, if it is defined. See tcgetattrQ c

949 and tcsetattrQ §7.2.1. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

46 Definitions and General Requirements

3. Process Primitives

1 The functions described in this chapter perform the most primitive operating system

2 services dealing with processes, interprocess signals, and timers. All attributes of a
3 process that are specified in this standard shall remain unchanged by a process primitive 8
4 unless the description of that process primitive states explicitly that the attribute is
5 changed.

6 3.1 Process Creation

7 Running a program takes two steps: first, the fork() function is called to produce a new
8 process, then that new process calls one of the exec functions to start the new program.

9 3.1.1 Process Creation
10 Function: fork{)

11 3.1.1.1 Synopsis

12 int fork ()

13 3.1.1.2 Description

14 The fork() function shall cause creation of a new process. The new process (child
15 process) shall be an exact copy of the calling process (parent process) except for the
16 following:

17 The child process has a unique process ID. If the implementation supports the Job b
18 Control Option, the child process ID also does not match any active process group b
19 ID. b

20 The child process has a different parent process ID (which is the process ID of the
21 parent process).

22 The child process has its own copy of the parent’s file descriptors. Each of the c

23 child’s file descriptors refers to the same open file description with the c
24 corresponding file descriptor of the parent c

25 The child process’s values of tmsjitime, tms jtime, tmsjcutime, and tmsjcstime

26 are set to zero (see rimes() §4.5.2).

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

3.1 Process Creation 47

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

27 File locks previously set by the parent are not inherited by the child. (See/cnr/() b
28 §6.5.2.)

29 Pending alarms are cleared for the child process. (See alarm() §3.4.1.) B

30 The set of signals pending for the child process is initialized to the empty set. 8
31 (See <signal.h> §3.3.1.) 8

32 All other process characteristics defined by this standard shall be the same in the parent 8

33 and the child processes. The inheritance of process characteristics not defined by this b
34 standard is implementation defined and shall be documented in the system b

35 documentation. (See Documentation §2.2.1.2.) b

36 If during theforkQ function call, a signal is directed to a group of processes of which the c

37 child process is a member, whether or not the signal is delivered to the child process is c

38 undefined. (See killQ §3.3.2.) c

39 3.1.1.3 Returns
40 Upon successful completion, fork() shall return to the child process a value of zero and

41 shall return to the parent process the process ID of the child process, and both processes
42 shall continue to execute from the fork() function. Otherwise, a value of -1 shall be

43 returned to the parent process, no child process shall be created, and errno shall be set to

44 indicate the error.

45 3.1.1.4 Errors

46 If any of the following conditions occur, the forkf) function shall return -1 and set errno b

47 to the corresponding value: b

48 [EAGAIN] The system lacked the necessary resources to create another b

49 process, or; the system-imposed limit on the total number of b

50 processes under execution by a single user would be exceeded. b

51 9

52 For each of the following conditions, if the condition is detected, the fork() function shall b

53 return -1 and set errno to the corresponding value: b

54 [ENOMEM] The process requires more space than the system is able to supply.

55 3.1.1.5 References
56 alarmQ §3.4.1, exec §3.1.2,/c/zr/() §6.5.2, kill() §3.3.2, timest,) §4.5.2, wait §3.2.1. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

48 Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

57 3.1.2 Execute a File
58 Functions: execl(), execv(), execle(), execve(), execlp(), execvpQ

59 3.1.2.1 Synopsis

60
61

int execl (path, argO, argl,..., argn, (char *) 0)
char *path, *arg0, *argl,..., +argn;

62
63

int execv (path, argv)

char *path, *argv[];

64

65

int execle (path, argO, argl,..., argn, (char *) 0, envp)

char *path, *arg0, *argl,..., *argn, *envp[];

66
67

int execve (path, argv, envp);

char *path, *argv[], *envp[];

68
69

int execlp (file, argO, argl,..., argn, (char *) 0)
char *file, *arg0, *argl,..., *argn;

>•••>

70
71

int execvp (file, argv)
char *file, *argv[];

72 extern char **environ;

73 3.1.2.2 Description
74 The exec family of functions shall replace the current process image with a new process

75 image. The new image is constructed from a regular, executable file called the new

16 process image file. There shall be no return from a successful exec, because the calling b

77 process image is overlaid by the new process image.

78 When a C program is executed as a result of this call, it shall be entered as a C language
79 procedure call as follows:

80 extern char **environ;

81 int main (argc, argv) 8

82 int argc;

83 char **argv;

84 where argc is the argument count (one or greater), argv is an array of character pointers
85 to the arguments themselves and environ is an array of character pointers to the b

86 environment strings. The environ array is terminated by a NULL pointer. c

87 The arguments specified by a program with one of the exec functions shall be passed on
88 to the new process image in the corresponding main() arguments.

89 The argument path points to a pathname that identifies the new process image file.

90 The argument file points to the new process image file. If the file argument does not b
91 contain a slash character, the path prefix for this file is obtained by a search of the

92 directories passed as the environment variable PATH (see Environment Description

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

3.1 Process Creation 49

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

93 §2.7). If this environment variable is not present, the results of the search are b
94 implementation defined. b

95 The arguments argO, argl, ..., argn are pointers to null-terminated character strings.

96 These strings constitute the argument list available to the new process image. The list is

97 terminated by a NULL pointer. The argument argO should point to a filename that is
98 associated with the process being started by one of the exec functions.

99 The argument argv is an array of character pointers to null-terminated strings. The last
100 member of this array shall be a NULL pointer. These strings constitute the argument list

101 available to the new process image. The value in <zrgv[0] should point to a filename that

102 is associated with the process being started by one of the exec functions.

103 The argument envp is an array of character pointers to null-terminated strings. These

104 strings constitute the environment for the new process image. The envp array is

105 terminated by a NULL pointer.

106 For those forms not containing an envp pointer (execl(), execv(), execlpQ, and execvpO)

107 the environment is taken from the external variable environ.

108 The number of bytes available for the new process’s combined argument and 8
109 environment lists is {ARG_MAX}. The implementation shall specify in the system 8

110 documentation (see Documentation §2.2.1.2) whether null terminators, pointers, and/or 8

111 any alignment bytes, are included in this total. 8

112 File descriptors open in the calling process image remain open in the new process image,
113 except for those whose close-on-exec flag FD_CLOEXEC is set (see/cnr/() §6.5.2, b

114 <fcntl.h> §6.5.1). For those file descriptors that remain open, all attributes of the open c

115 file description remain unchanged. c

116 The file locks held by a process are not affected by the exec functions. See/cnr/() §6.5.2. b

117 Signals set to the default action (SIG_DFL) in the calling process image shall be set to the

118 default action in the new process image. Signals set to be ignored (SIGJGN) by the

119 calling process image shall be set to be ignored by the new process image. Signals set to

120 be caught by the calling process image shall be set to the default action in the new
121 process image (see sigactionQ §3.3.4). c

122 If the set-user-ID mode bit of the new process image file is set (see chmod() §5.6.4), the

123 effective user ID of the new process image is set to the owner ID of the new process
124 image file. Similarly, if the set-group-ID mode bit of the new process image file is set,

125 the effective group ID of the new process image is set to the group ID of the new process
126 image file. The real user ID, real group ID, and supplementary group IDs of the new
127 process image remain the same as those of the calling process image. If b

128 {_POSIX_SAVED_IDS} is defined, the effective user ID and effective group ID of the new b

129 process shall be saved (as the saved set-uscr-ID and the saved set-group-ID) for use by

130 the setuid() function.

50

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

131
132

133

134

135

136

137

138

139

140

141

142

143

144

145
146

147
148
149

150
151
152

153
154

155

156
157

158
159

160
161
162

163

The new process image also inherits at least the following attributes from the calling

process image:

process ID

parent process ID

process group ID

terminal group ID c

time left until an alarm clock signal (see alarm() §3.4.1)

current working directory

root directory

file mode creation mask (see umask() §5.3.3)

process signal mask (see sigprocmaskQ §3.3.5) c

pending signals (see sigpendingi) §3.3.6) c

tms_utime, tms_stime, tms_cutime, and tmsjcstime (see times() §4.5.2)

Upon successful completion, the exec functions shall mark for update the st_atime field c
of the file. If the exec() function failed but was able to locate the process image file, c
whether the st_atime field is marked for update is unspecified. c

3.1.2.3 Returns
If one of the exec functions returns to the calling process image, an error has occurred;
the return value shall be -1, and err no shall be set to indicate the error.

3.1.2.4 Errors
If any of the following conditions occur, the exec functions shall return -1 and set errno b

to the corresponding value: b

[E2BIG] The number of bytes used by the new process image’s argument
list and environment list is greater than the system-imposed limit
of {ARG_MAX} bytes.

[EACCES] Search permission is denied for a directory listed in the new
process image file’s path prefix, or the new process file is not a
regular file, or the new process image file denies execution
permission.

[ENAMETOOLONG] C
The length of the path or file argument exceeds {PATH_MAX}, or c

a pathname component is longer than {NAME_MAX} while c
{_POSIX_NO_TRUNC} is in effect c

3.1 Process Creation

UNAPPROVED DRAFT. AH Rights Reserved by IEEE.

Do not specify or claim conformance to this document

51

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

164 [ENOENT] One or more components of the new process image file’s pathname

165 do not exist

166 [ENOEXEC] The new process image file has the appropriate access permission,

167 but is not in the proper format a

168 s

169 [ENOTDIR] A component of the new process image file’s path prefix is not a

170 directory.

171 9

172 For each of the following conditions, if the condition is detected, the functions shall b

173 return -1 and return the corresponding value in errno: b

174 B

175 [ENOMEM] The new process image requires more memory than is allowed by

176 the hardware or system-imposed memory management constraints.

177 3.1.2.5 References
178 alarm() §3.4.1, chmod() §5.6.4, _ex/r() §3.2.2,/c/ir/() §6.5.2,fork() §3.1.1, <signal.h> c

179 §3.3.1, sigprocmask() §3.3.5, sigpending() §3.3.6, stat() §5.6.2, <sys/stat.h> §5.6.1, c

180 timesi) §4.5.2, umask() §5.3.3, Environment Description §2.7. c

181 3.2 Process Termination

182 There are three kinds of process termination: 8

183 Normal termination occurs by a return from main{) or when requested with the 8

184 exir() or _ex/r() functions. 8

185 Simple abnormal termination occurs when some signals are received (see 8

186 <signal.h> §3.3.1). 8

187 Abnormal termination with actions occurs when requested with the abort () 8

188 function or when other signals are received. Actions taken, if any, are c
189 implementation defined. c

190 The exit() and abort() functions shall be as described in the ANSI1X3.159-198x

191 Programming Language C Standard (see C Language Standard §A.2.1). Both exitQ

192 and abort() shall terminate a process with the consequences specified in _exit{) §3.2.2,

193 except that the status made available to waitQ or \vait2 () by abortQ shall be that of a

194 process terminated by the SIGABRT signal.

195 A parent process can suspend its execution to wait for termination of a child process with

196 the wait() or wait2Q functions.

52

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

197 3.2.1 Wait for Process Termination
198 Functions: waitQ, wait2() 8

199 3.2.1.1 Synopsis

200 int wait (star Joe)
201 int *stat_loc;
202 b

203 #include <sys/wait.h> 8
204 int wait2 (statjoc, options) 8

205 int * statjoc; 8
206 int options; 8

207 3.2.1.2 Description
208 The header <sys/wait.h> defines the following arguments for the wait2() function: 8

Constant __ Description (wait2() only)_ g

WNOHANG return immediately if no children to wait for 8
WUNTRACED also return status for stopped children 8

212 The wait() function suspends execution of a process until one of its children terminates.
213 The termination of a child process causes wait() to return. If several child processes c
214 have terminated, which child’s information is returned by a call to wait() is unspecified, c
215 Signals or implementation defined conditions may cause the return of wait() prior to the
216 termination of a child. If a child process has terminated prior to the call on wait(), return

217 shall be immediate.

218 If statjoc is not (int *) 0, information called status shall be stored in the location pointed
219 to by statjoc as follows:

220 If the child process terminated due to an _exit() function, the low order 8 bits of

221 status (corresponding to the octal value 0377) shall be zero, and the 8 bits

222 corresponding to the octal value 0177400 shall contain the low order 8 bits of the
223 argument that the child process passed to _exit() (see _exit() §3.2.2).

224 If the child process terminated due to a signal that was not caught, the low order 6
225 bits of status (corresponding to the octal value 077) shall contain the number of
226 the signal that caused the termination, and the 8 bits corresponding to the octal
227 value 0177400 shall be zero. In addition, if the bit that would be masked by the

228 octal value 0200 is set, an abnormal termination with actions occurred (see c
229 <signa!.h> §3.3.1). c

230 Jf the wait() function returned due to an implementation defined condition, the bit
231 of status corresponding to the octal value 0100 shall be set The value of the
232 other bits of status are implementation defined and the child may not have

233 terminated. If the child has terminated, a subsequent wait() function shall return

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

3.2 Process Termination 53

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

234 its status.

235 If a parent process terminates without waiting for its child processes to terminate, its
236 children shall be assigned a new parent process ID corresponding to an implementation b

237 defined system process. The wa/r() function shall only return successfully on the

238 termination of a child process or due to an implementation defined change in status of a

239 child process.

240 If the implementation supports the Job Control Option, the wait2() function shall be c
241 provided as an alternate interface to provide both non-blocking status collection and the c
242 collection of the status of children that are stopped. The statjoc argument is defined as c

243 above. If the options argument is zero, the behavior shall be identical to wait{). c
244 Otherwise, the options argument consists of the logical OR of the following flags: c

245 WNOHANG Return immediately, even if there are no children to wait for. In c

246 this case, a return value of zero shall indicate that no children have c

247 terminated (or stopped, if WUNTRACED is also set). c

248 WUNTRACED Return the status of stopped children. If the child process has c

249 stopped due to the delivery of a. SIGTTIN, SIGTTOU, SIGTSTP, or c

250 SIGSTOP signal, its status may be collected using this option. c

251 If WUNTRACED is set and the status of a stopped child process is reported, the 8 bits of c

252 status (corresponding to the octal value 0177400) shall contain the number of the signal c

253 that caused the process to stop and the low order 8 bits (corresponding to the octal value c

254 0377) shall be set to the octal value 0177. c

255 3.2.1.3 Returns
256 If the wait() function returns due to the receipt of a signal by the calling process, a value

257 of -1 shall be returned to the calling process and errno shall be set to [EINTR]. If the

258 waitQ function returns due to a terminated child process, the process ID of the child shall

259 be returned to the calling process. Otherwise, a value of-1 shall be returned, and errno

260 shall be set to indicate the error.

261 If wait2() is called, the WNOHANG option is used, and there are no stopped or 8

262 terminated children, then a value of zero is returned. Otherwise, a value of-1 is returned 8
263 and errno shall be set to indicate the error. s

UNAPPROVED DRAFT. Al! Rights Reserved by IEEE.

Do not specify or claim conformance to this document

54 Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

264 3.2.1.4 Errors
265 If any of the following conditions occur, the wait() and wait2() functions shall return -1 b

266 and set errno to the corresponding value: b

267 [ECHILD] The calling process has no existing unwaited-for child processes.

268 [EINTR] The waitQ function was terminated by a signal. The value pointed
269 to by statjoc may be undefined.

270 If any of the following conditions occur, the wait2() function shall return -1 and set b

271 errno to the corresponding value: b

272 [EINVAL] The wait2() was called with an invalid options value. b

273 b

274 3.2.1.5 References
275 exec §3.1.2, _exit() §3.2.2,fork() §3.1.1, pause () §3.4.2, times() §4.5.2, sigactionQ c

276 §3.3.4. c

277

278

279

280

281

282

283

284

285
286
287

288
289
290

291

292
293
294

295
296

3.2.2 Terminate a Process
Function: _exit()

3.2.2.1 Synopsis

void _exit (status)

int status;

3.2.2.2 Description
The _exit() function shall terminate the calling process with the following consequences:

All open file descriptors in the calling process are closed.

If the parent process of the calling process is executing a waitQ or wait2(), it is 8
notified of the calling process’s termination and the low order 8 bits of status are
made available to it; see wait §3.2.1. c

If the parent process of the calling process is not executing a waitQ or wait2() 8
function, the exit status code is saved for return to the parent process whenever
the parent process executes a subsequent waitQ or wait2().

B

Termination of a process does not terminate its children. Children of a terminated b

process shall be assigned a new parent process ID, corresponding to an b

implementation defined system process. b
• i

If the implementation supports the SIGCLD signal, a SIGCLD shall be sent to the c

parent process. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

3.2 Process Termination 55

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

297 If the process is a controlling process, and if {_POSIX_EXIT_SIGHlJP} is defined, c

298 the SIGHUP signal shall be sent to each process that has a process group ID equal c
299 to that of the calling process; otherwise, the signal shall not be sent. c

300 If the process is a session process group leader, and if {_POSIX_PGID_CLEAR} is c

301 defined, the the process group ID shall be set to zero for each process that had a c

302 process group ID equal to that of the calling process; otherwise, the group IDs c

303 shall not be affected. c

304 If the implementation supports the Job Control Option and if the calling process 8
305 has child processes that are stopped, they shall be sent SIGHUP and SIGCONT 8

306 signals. 8

307 If the implementation supports the Job Control Option, and if the process is a c

308 controlling process, the terminal group ID shall be cleared of all processes that c

309 match the terminal group ID of the calling process. c

310 rhese consequences shall occur on process termination for any reason.

311 Application programs should use the C language function exit(), defined in the 9
312 ANSI/X3.159-198x Programming Language C Standard, rather than _exit(). The 9

313 function _exit{) is included to clearly define the termination consequences for all 9

314 processes. If a program reaches the end of a main() procedure, the return value is 9

315 undefined. 9

316 3.2.2.3 Returns
317 The _exit() function cannot return to its caller.

318 3.2.2.4 References
319 closed') §6.3.1, sigactionQ §3.3.4, wait §3.2.1. c

56

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

320 3.3 Signals

321 3.3.1 Signal Names

322 3.3.1.1 Synopsis s

323 ^include <signal.h> 8

324 3.3.1.2 Description 8
325 The <signal.h> header declares the sigsetj type and the sigaction structure. It also a
326 defines the following symbolic constants, each of which expands to a distinct constant a

327 expression of the type void(*)(), whose value matches no declarable function. c

Symbolic
Constant

SIG_DFL

SIG IGN

Description

request for default signal handling

request that signal be ignored
c

331 The type sigsetj is used to represent sets of signals. It is always an integral or structure 9
332 type. Several functions used to manipulate objects of type sigsetj are defined in 8
333 sigsetops §3.3.3. , 8

334 The <signal.h> header also declares the constants that are used to refer to the signals that a
335 occur in the system. Each of the signals defined by this standard shall have distinct, b
336 positive integral values. The value zero is reserved for use as the null signal (see killQ b

337 §3.3.2). An implementation may define additional signals that may occur in the system. b

3.3 Signals

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

57

«
 <

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

338 The following constants shall be defined by all implementations: a

Symbolic

Constant

Default

Action

Required Signals

Description

A
A
A
A

SIGABRT 2 abnormal termination signal, such as is B
initiated by the abort{) function (as B
defined in the ANSI/X3.159-198x B
Programming Language C Standard) B

SIGALRM 1 timeout signal, such as initiated by the B
alarmQ function (see a!arm() §3.4.1) B

SIGFPE 2 erroneous arithmetic operation, such as B
division by zero or an operation B
resulting in overflow B

SIGHUP 1 hangup detected on controlling B
terminal (see Modem Disconnect B
§7.1.1.11) or death of process group B
leader (see _exit{) §3.2.2) B

SIGILL 2 detection of an invalid hardware B
instruction B

SIGINT 1 interactive attention signal (see Special C
Characters §7.1.1.10) C

SIGKILL 1 termination signal (cannot be caught or B
ignored) B

SIGPIPE 1 write on a pipe with no readers (see c
write() §6.4.2) C

SIGQUIT 2 interactive termination signal (see c
Special Characters §7.1.1.10) c

SIGSEGV 2 detection of an invalid memory B
reference B

SIGTERM 1 termination signal B

SIGUSR1 1 reserved as application defined signal 1

L

B
SIGUSR2 1 reserved as application defined signal 2 B

58

UNATPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Process Primitives

FOR COMPUTER ENVIRONMENTS Sid 1003.1—Draft 12

367 In addition, if the implementation supports the Job Control Option, the following a

constants shall be defined:

Job

Symbolic Default
Constant Action

Control Option Signals

Description

A

A

A
A
A

SIGCLD 3 child process terminated (see exit() c
§3.2.2) c

SIGCONT 5 continue if stopped (cannot be ignored) B

SIGSTOP 4 stop signal (cannot be caught or ignored) B

SIGTSTP 4 interactive stop signal (see Special C

Characters §7.1.1.10) c
SIGTTIN 4 background read attempted from control c

terminal (see Job Access Control c
§7.1.1J) c

SIGTTOU 4 background write attempted to control c
terminal (see Job Access Control c
§7.1.1.5) c

378 The constant SIGCLD may be defined in implementations that do not not support the Job b
379 Control Option. If SIGCLD is defined, it shall behave as specified in this standard. b

380 Default actions for the preceding tables are as follows: a

381 1 Simple abnormal termination (see Process Termination §3.2). a

382 2 Abnormal termination with actions (see Process Termination §3.2). a

383 3 Ignore the signal. a

384 4 Stop the process if it is currently executing; otherwise, ignore the signal. a

385 5 Continue the process if it is currently stopped; otherwise, ignore the signal. a

386 b

387 A signal is said to be generated for (or sent to) a process when the event that causes the b

388 signal first occurs. Examples of such events include detection of hardware faults, timer a

389 expiration, and terminal activity; as well as the invocation of the killQ function. The a

390 same event may generate signals for multiple processes. a

391 Each process has an action to be taken in response to each signal defined by the system, a

392 A signal is said to be delivered to a process when the appropriate action for the process a

393 and sigftal is taken. The action taken in response to a signal is determined at the time the a

394 signal is delivered. This determination is independent of the means by which the signal a

395 was originally generated. a

3.3 Signals

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

59

>
 »

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

396 During the time between the generation of a signal and its delivery, the signal is said to a

397 be pending. Ordinarily, this interval cannot be detected by an application. However, a a
398 signal can be blocked from delivery to a process, in which case it remains pending until it a
399 is unblocked. Each process has a signal mask that defines the set of signals currently a

400 blocked from delivery to it The signal mask for a process is initialized from that of its b

401 parent The sigaction (), sigprocmask(), and sigsuspend() functions control the b

402 manipulation of the signal mask. If a subsequent occurrence of a pending signal is b

403 generated, it is implementation defined as to whether the signal is delivered more than b
404 once. b

405 When SIGCONT is generated for a process, all pending stop signals (SIGSTOP, SIGTSTP, c
406 SIGTTIN, SIGTTOU) for that process shall be discarded. Conversely, when any stop c
407 signal is generated for a process, any pending SIGCONT signals for that process shall be c

408 discarded. c

409 An implementation shall document any conditions not specified by this standard under b

410 which the implementation generates signals. (See Documentation §2.2.1.2.) b

411 3.3.1.3 Signal Actions b

412 There are three types of actions that can be associated with a signal: SIG_DFL, SIG_IGN, b

413 or a pointer to a function. Initially, all signals shall be set to SIG_DFL or SIG_IGN prior a

414 to entry of the mainf) routine (see exec §3.1.2). The actions prescribed by these values a

415 are as follows: a

416 SIG_DFL— signal-specific default action a

417 The default actions for the signals defined in this standard are specified in the b

418 preceding tables. b

419 If the default action is to stop the process, the execution of that process is b
420 temporarily suspended. When a process stops, a SIGCLD signal shall be b

421 generated for its parent process, if the parent process has set the SA_CLDSTOP b
422 flag (see sigactionQ §3.3.4). While a process is stopped, any additional-signals 8

423 that are sent to the process shall not be delivered until the process is continued. 9

424 An exception to this is 5IGKILL, which always terminates the receiving 9

425 process. Another exception is SIGCONT, which always causes the receiving 9
426 process to continue. For implementations that support the Job Control Option, b

427 a process whose parent has terminated shall be sent a SIGKILL signal if the b

428 SIGTSTP, SIGTTIN, or SIGTTOU signals are generated for the process. b

429 If a signal action is set to SIG_DFL while the signal is pending, the signal shall c

430 remain pending. c

431 SIG_IGN— ignore signal 8
432 Delivery of the signal shall have no effect on the process. b

433 The system shall not allow the action for the signals SIGKILL, SIGSTOP, or b

434 SIGCONT to be set to SIG_IGN. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

60 Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

435 If a signal action is set to SIG_IGN while the signal is pending, the pending c

436 signal shall be discarded. c

437 If a process sets the action for the SIGCLD signal to SIG_IGN, the behavior is b

438 implementation defined. b

439
440
441
442
443
444

445

pointer to a function — catch signal b
On delivery of the signal, the receiving process is to execute the signal- 8
catching function at the specified address. The signal number is passed as the 8
first argument to the signal-catching function. Other implementation specific 8
and signal-specific arguments are allowed. After returning from the signal- 8
catching function, the receiving process shall resume execution at the point it 8
was interrupted. 8

446 If a signal action is set to a pointer to a function while the signal is pending, the c
447 signal shall remain pending. c

448 The action taken upon normal return from a signal-catching function for

449 signals SIGFPE, SIGELL, or S1GSEGV is implementation defined. 8

450 The system shall not allow a process to catch the signals SIGKILL and 9

451 SIGSTOP. 9

452 If a process establishes a signal-catching function for the SIGCLD signal while b
453 it has any child processes, the behavior is implementation defined. b

454 If a process attempts to establish a signal-catching function for the SIGCONT b
455 signal, the behavior is implementation defined. b

456
457
458
459
460
461

When signal-catching functions are invoked asynchronously with process b
execution, the behavior of some of the functions defined by this standard is b
unspecified if they are called from a signal-catching function. The following b
table defines a set of functions that shall be reentrant with respect to signals b
(that is, applications may invoke them, without restriction, from signal- b
catching functions): b

462 _exit() access() alarm () B

463 chdirQ chmodQ chownQ B

464 close f) creatf) dup2 () B

465 dupQ exeef) fcntl () B

466 fork() fstat() getegidf) B

467 geteuidf) getgidO get groupsQ B

468 getpgrp () getpid () getppidO B

469 getuidO jc getpgrp () jcsctpgrpO B

470 kilK) linkQ Iseekf) B

3.3 Signals

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

61

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

471 mkdir Q mkfifo 0 openQ B
472 pause 0 pipe() readQ B
473 rename Q rmdirQ setgidQ B
474 setpgrpQ setuidQ sigactionf) B
475 sigaddsetQ sigdelsetQ sigfillsetQ B
476 siginitsetQ sigismemberQ signal 0 B
477 sigpending () sigprocmaskQ sigsuspendQ B
478 sleep () staff) tcdrainQ B
479 tcflowQ tcflushQ tcgetattrf) B
480 tcgetpgrpQ tcsendbreakQ tcsetattrQ B
481 tcsetpgrpQ timeQ times () B
482 umaskQ unarm Q unlink () B
483 ustat() utimeQ wait2Q B
484 waitQ write () B

485 All IEEE Std 1003.1 functions not in the above table and all functions defined b
486 in the ANSI/X3.159-198x Programming Language C Standard not stated to be b
487 callable from a signal-catching function are considered to be unsafe with b

488 respect to signals. If any function that is unsafe is interrupted by a signal- b

489 catching function that then calls any function that is unsafe, the behavior is b
490 undefined. b

491 c

492 3.3.2 Send a Signal to a Process

493 Function: killQ

494 3.3.2.1 Synopsis

495 #include <signal.h>

496 int kill (pid, sig)

497 int pid, sig;

498 3.3.2.2 Description

499 The killQ function shall send a signal to a process or a group of processes specified by

500 pid. The signal to be sent is specified by sig and is either one from the list given in

501 <signal.h> §3.3.1 or zero. If sig is zero (the null signal), error checking is performed but

502 no signal is actually sent The null signal can be used to check the validity of pid.

503 For a process to have permission to send a signal to a process designated by pid, the real 8

504 or effective user ID of the sending process must match the real or effective user ID of the 8

505 receiving process, unless the sending process has appropriate privileges. If both c

506 (_POSIX_KILL_SAVED) and (_POSIX_SAVEDJDS) are defined, the saved set-user-ID c

507 of the receiving process shall be checked in place of its effective user ID. If a receiving 9

508 process’s effective user ID has been altered through use of the S__ISUID mode bit (see b

62

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

509 <sys/stat.h> §5.6.1), it may still receive a signal sent by the parent process or by a 9

510 process with the same real user ID. The calling process may be restricted from sending a c

511 signal by implementation defined constraints. c

512 If pid is greater than zero, sig shall be sent to the process whose process ID is equal to

513 pid.

514 If pid is zero, sig shall be sent to all processes (excluding an implementation defined set 9

515 of system processes) whose process group ID is equal to the process group ID of the c

516 sender. c

517 If pid is -1, sig shall be sent to all processes (excluding the special set of system 8
518 processes). If {_POSIX_KILL_PID_NEGl} is defined, sig also shall be sent to the sending c
519 process; otherwise, it shall not be sent to the sending process. c

520 If pid is negative but not -1, sig shall be sent to all processes whose process group ID is
521 equal to the absolute value of pid. The absolute value of pid shall not exceed
522 {PID_MAX}.

523 If the value of pid causes sig to be generated for the sending process, and if sig is not b
524 blocked, then either sig or at least one pending unblocked signal shall be delivered to the b
525 sending process before the killQ function returns. b

526 As a single special case on implementations that support the Job Control Option, if the b
527 sending process has a controlling terminal, the killQ function shall allow the SIGCONT b

528 signal to be sent to any process that has the same controlling terminal as the sending b

529 process. b

530 A process may be restricted from sending a signal, including the null signal, to a c
531 particular process by implementation defined constraints. c

532 The killQ function is successful if the process has permission to send sig to any of the b
533 processes specified by pid. If the killQ function fails, no signal shall be sent. 9

534 3.3.2.3 Returns
535 Upon successful completion, the function shall return a value of zero. Otherwise, a value
536 of-1 shall be returned and crrno shall be set to indicate the error.

537 3.3.2.4 Errors

3.3 Signals

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

63

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

538 If any of the following conditions occur, the kill() function shall return -1 and set errno b
539 to the corresponding value: B

540 [EINVAL] The value of the sig argument is not a valid signal number.

541 [EPERM] The process does not have permission to send the signal to any b
542 receiving process. B

543 [ESRCH] No process can be found corresponding to that specified by pid.

544 3.3.2.5 References

545 gctpid() §4.1.1, setpgrp() §4.3.2, sigaction() §3.3.4, <signal.h> §3.3.1. B

546

547 3.3.3 Manipulate Signal Sets g
548 Functions: siginitset(), sigfillset(), sigaddset(), sigdelset(), sigismember() B

549 3.3.3.1 Synopsis g

550 #include <signal.h>

551 int siginitset {set) B

552 sigset_t *set; B

553 int sigfilfset (set) b
554 sigset_t *set; B

555 B

556 int sigaddset (set, signo) b
557 sigset_t *set; B

558 int signo; B

559 int sigdelset (set, signo) b

560 sigset_t *set; b
561 int signo; b

562 int sigismember (set, signo) b
563 sigset_t *set; b

564 int signo; B

565 3.3.3.2 Description g

566 The sigsetops primitives manipulate sets of signals. They operate on data objects 8

567 addressable by the application, not on any set of signals known to the system, such as the 8

568 set blocked from delivery to a process or the set pending for a process (see <signal.h> g

569 §3.3.1).** 8

570 The siginitsct() function initializes the signal set pointed to by the argument set, such b
571 that all signals defined in this standard are excluded. Applications shall call siginitset() b

572 at least once for each object of type sigsetj prior to any other use of that object b

64

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

573 The sigfillsctQ function initializes the signal set pointed to by the argument set, such that b
574 all signals defined in this standard are included. b

575 The sigaddset() and sigdelset{) functions respectively add and delete the individual 8
576 signal specified by the value of the argument signo from the signal set pointed to by the b
577 argument set. b

578 The sigismember{) function tests whether the signal specified by the value of the b
579 argument signo is a member of the set pointed to by the argument set. 8

580 b

581 3.3,3.3 Returns 8
582 Upon successful completion, the sigismembcr() function returns a value of one if the 8
583 specified signal is a member of the specified set, or a value of zero if it is not. Upon 8
584 successful completion, the other functions return a value of zero. For all of the above b
585 functions, if an error is detected, a value of -1 is returned and errno is set to indicate the 8
586 error. 8

587 3.3.3.4 Errors 8
588 If any of the following conditions occur, the sigaddset{), sigdelsct{), and sigismember() b
589 functions shall return -1 and set errno to the corresponding value: b

590 [EINVAL] The value of the signo argument is not a valid signal number. 8

591 b

592 3.3.3.5 References 8
593 sigaction() §3.3.4, <signal.h> §3.3.1, sigpendingi) §3.3.6, sigprocmask{) §3.3.5, 8

594 sigsuspendQ §3.3.7. 8

595 3.3.4 Examine and Change Signal Action 8

596 Function: sigaction() 8

597 3.3.4.1 Synopsis 8

598 #include <signal.h> 8

599 int sigaction (sig, act, oact) 8

600 int sig; 8
601 struct sigaction *act, *oact; 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to tin's document

3.3 Signals

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

602

603
604

605

606
607

614

615
616

617

618

619

620
621

625

626

627

628

629

630

631
632

633

634

635

636

3.3.4.2 Description

The sigactionQ function allows the calling process to examine and/or specify the action
to be taken on delivery of a specific signal. The argument sig specifies the signal;
acceptable values are defined in <signal.h> §3.3.1.

The structure sigaction, used to describe an action to be taken, is defined in the header
<signal.h> to include at least the following members:

Member Member ^ . .

Type Name ___J__

void(*)() sa_handler SIG_DFL, SIG_IGN, or pointer to a function
sigsetj sa_mask set of signals to be blocked during execution of

signal-catching function

int sa_flags special flags to be used when delivering signal

If the argument act is not NULL, it points to a structure specifying the action to be taken
when delivering the specified signal. If the argument oact is not NULL, the action

previously associated with the signal is stored in the location pointed to by the argument

oact. If the argument act is NULL, signal handling is unchanged; thus, the call can be
used to inquire about the current handling of a given signal.

The sa Jags field can be used to modify the delivery of the specified signal. If sig is

SIGCLD and the implementation supports the Job Control Option, the following flag bit,
defined in the header <signal.h>, can be set in sa Jlags:

Symbolic

Constant

SA_CLDSTOP

Description

Also generate SIGCLD when children stop

An implementation may define additional flag bits in the sa Jlags field.

When a signal is caught by a- signal-catching function installed by the sigaction()

function, a new signal mask is calculated and installed for the duration of the signal-

catching function (or until a sigprocmaskQ or sigsuspend{) function is made). This

mask is formed by tailing the union of the current signal mask and the set associated with

the action for the signal being delivered, and then including the signal being delivered. If
and when the user’s signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is

explicitly requested (by another call to the sigaction() function), or until one of the exec

functions is called.

8

8

8

8

8

8

8
8
8

8

8

8

8

8

8

8

8

8

8

8

8

8
8
8

8.

C

9

8

8

8

8

8

8

8

8

8

B

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

66 Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1— Draft 12

637 The set of signals specified by the sajnask field pointed to by the argument act is not 8
638 allowed to block those signals that cannot be ignored, as defined in <signa!.h> §3.3.1. c
639 This shall be enforced by the system without causing an error to be indicated. c

640 If the sigaction () function fails, no new signal handler is installed. 9

641 3.3.4.3 Returns 8
642 Upon successful completion a value of zero is returned. Otherwise, a value of -1 is 8
643 returned and errno is set to indicate the error. 8

644 3.3.4.4 Errors 8
645 If any of the following conditions occur, the sigaction() function shall return -1 and set b

646 errno to the corresponding value: b

647 [EINVAL] The value of the sig argument is not a valid signal number, or an 8

648 attempt is made to supply an action for a signal that cannot be 8
649 caught or ignored. See <signal.h> §3.3.1. g

650 b

651 3.3.4.5 References 8
652 killQ §3.3.2, <signal.h> §3.3.1. sigprocmask{) §3.3.5, sigsetops §3.3.3, sigsuspend{) 8

653 §3.3.7. 8

654 3.3.5 Examine and Change Blocked Signals 8

655 Function: sigprocmask() g

656 3.3.5.1 Synopsis 8

657 #include <signal.h> 8

658 int sigprocmask (how, set, oset) 8

659 int how; 8
660 sigset_t *set, *oset; 8

661 3.3.5.2 Description 8
662 The sigprocmaskQ function is used to examine and/or change the calling process’s signal 8
663 mask. If the value of the argument set is not NULL, it points to a set of signals to be used 8
664 to change the currently blocked set 8

665 The value of the argument how indicates the manner in which the set is changed, and b

666 shall consist of one of the following values, as defined in the header <signal.h> §3.3.1: b

667 SIG_BLOCK The resulting set shall be the union of the current set and the b

668 signal set pointed to by the argument set. b

669 SlG_UNBLOCK The resulting set shall be the intersection of the current set and b

670 the complement of the signal set pointed to by the argument b

671 set. b

3.3 Signals

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

67

Sid 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

672 SIG_SETMASK The resulting set shall be the signal set pointed to by the b

673 argument set. b

674 If the argument oset is not NULL, the previous mask is stored in the space pointed to by 8

675 oset. If the value of the argument set is NULL, the value of the argument how is not 8
676 significant and the process’s signal mask is unchanged; thus, the call can be used to 8

677 enquire about currently blocked signals. 8

678 If there are any pending unblocked signals after the call to the sigprocmask() function, at b

679 least one of those signals shall be delivered before the sigprocmask () function returns. B

680 It is not possible to block those signals that cannot be ignored, as documented in 8

681 <signal.h> §3.3.1; this shall be enforced by the system without causing an error to be c

682 indicated. c

683 If the sigprocmaskQ function fails, the process’s signal mask is not changed. 9

684 3.3.S.3 Returns 8

685 Upon successful completion a value of zero is returned. Otherwise, a value of -1 is 8

686 returned and errno is set to indicate the error. 8

687 3.3.S.4 Errors 8

688 If any of the following conditions occur, the sigprocmaskQ function shall return -1 and b
689 set errno to the corresponding value: b

690 [EINVAL] The value of the how argument is not equal to one of the defined 8

691 values. 8

692 b

693 33.5.5 References 8
694 sigactionQ §3.3.4, <signal.h> §3.3.1. sigpendingQ §3.3.6, sigsetops §3.3.3, 8

695 sigsuspendQ §3.3.7. 8

696 3.3.6 Examine Pending Signals 8

697 Function: sigpendingQ 8

698 3.3.6.1 Synopsis 8

699 #inc!ude <signai.h> 8

700 int sigpcnding (ser) 8

701 sigset_t *set; 8

68

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

702 3.3.6.2 Description g
703 The sigpcnding() function shall store the set of signals that are blocked from delivery g
704 and pending for the calling process, in the space pointed to by the argument set. 8

705 3.3.6.3 Returns 8
706 Upon successful completion a value of zero is returned. Otherwise, a value of -1 is 8
707 returned and errno is set to indicate the error. 8

708 3.3.6.4 Errors c
709 This standard does not specify any error conditions that are required to be detected for c
710 the sigpcnding () function. Some errors may be detected under implementation defined c

711 conditions. c

712 3.3.6.5 References 8
713 <signal.h> §3.3.1, sigprocmask() §3.3.5, sigsetops §3.3.3. 8

714 3.3.7 Wait for a Signal 8

715 Function: sigsuspend() 8

716 3.3.7.1 Synopsis 8

717 #include <signal.h> 8

718 int sigsuspend (sigmask) 8
719 sigset_t *sigmask; 8

720 3.3.7.2 Description 8
721 The sigsuspend() function replaces the process’s signal mask with the set of signals 8
722 pointed to by the argument sigmask and then suspends the process until delivery of a b
723 signal whose action is either to execute a signal-catching function or to terminate the b
724 process. b

725 If the action is to terminate the process, the sigsuspcnd() function shall not return. If the b
726 action is to execute a signal-catching function, the sigsuspend() shall return after the b
727 signal-catching function returns, with the signal mask restored to the set that existed prior b

728 to the sigsuspend() call. b

729 b

730 It is not possible to block those signals that cannot be ignored, as documented in 8
731 <signal.h> §3.3.1; this shall be enforced by the system without causing an error to be c

732 indicated. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

3.3 Signals 69

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

733 3.3.7.3 Returns

734 Since the sigsuspend() function suspends process execution indefinitely, there is no 9

735 successful completion return value. A value of-1 is returned and errno is set to indicate b
736 the error. b

737 3.3.7.4 Errors 9

738 If any of the following conditions occur, the sigsuspend() function shall return -1 and set b

739 errno to the corresponding value: b

740 [EINTR] A signal is caught by the calling process and control is returned 8
741 from the signal-catching function. 8

742 b

743 3.3.7.S References g
744 pause() §3.4.2, sigaction() §3.3.4, <signal.h> §3.3.1, sigpendingQ §3.3.6, 8

745 sigprocmaskQ §3.3.5, sigsetops §3.3.3. 8

746 3.4 Timer Operations

747 A process can suspend itself for a specific period of time with the sleep() function or

748 suspend itself indefinitely with the pause() function until a signal arrives. The alarmQ
749 function schedules a signal to arrive at a specific time, so a paused) suspension need not
750 be indefinite.

751 3.4.1 Process Alarm Clock

752 Function: alarm()

753 3.4.1.1 Synopsis

754 unsigned int alarm (seconds) c

755 unsigned int seconds', c

756 3.4.1.2 Description

757 The alarm() function shall instruct the calling process’s alarm clock to send the signal

758 S1GALRM to the calling process after the number of real time seconds specified by c

759 seconds have elapsed; see signal^).

760 Processor scheduling delays may cause the process to not actually begin handling the 9

761 signal until after the desired time. Also, an alarm may occur up to one second early. 9

762 Alarm requests are not stacked; successive calls reset the calling process’s alarm clock.

763 If seconds is 0, any previously made alarm() request is canceled. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

70 Process Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

764 3.4.1.3 Returns
765 The alarm()function shall return the amount of time remaining in the calling process’s b
766 alarm clock from the previous alarm() request or zero if there is no previous alarm()

767 request.

76S 3.4.1.4 References
769 exec §3.1.2,/or&() §3.1.1,pause() §3.4.2, sigactionQ §3.3.4. c

770 3.4.2 Suspend Process Execution
771 Function: paused)

772 3.4.2.1 Synopsis

773 int pause ()

774 3.4.2.2 Description
775 The pause() function suspends the calling process until delivery of a signal whose action b
776 is either to execute a signal-catching function or to terminate the process. b

777 If the action is to terminate the process, the pause () function shall not return. b

778 If the action is to execute a signal-catching function, the paused) function shall return b
779 after the signal-catching function returns. b

780 3.4.2.3 Returns
781 Since thepause{) function suspends process execution indefinitely, there is no successful 9
782 completion return value. A value of-1 is returned and errno is set to indicate the error. 9

783 3.4.2.4 Errors 9
784 If any of the following conditions occur, the pause() function shall return -1 and set b
785 errno to the corresponding value: b

786 [EINTR] A signal is caught by the calling process and control is returned 9
787 from the signal-catching function. 9

788 3.4.2.5 References
789 alarm{) §3.4.1, kill{) §3.3.2, sigaction{) §3.3.4, wait §3.2.1. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

3.4 Timer Operations 71

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

790 3.4.3 Delay Process Execution

791 Function: sleep()

792 3.4.3.1 Synopsis

793 unsigned int sleep (seconds)
794 unsigned int seconds;

795 3.4.3.2 Description
796 The sleep() function shall cause the current process to be suspended from execution for

797 the number of seconds specified by the argument. The actual suspension time may be

798 less than that requested for two reasons:

799 1. because of timer imprecision, and 8

800 2. because any caught signal shall terminate the sleep() function following execution

801 of that signal’s catching routine.

802 The suspension time may be longer than requested by an arbitrary amount due to the

803 scheduling of other activity in the system.

804 The routine shall behave as if implemented by setting an alarm signal and pausing until it

805 (or some other signal) occurs. The previous state of the alarm signal shall be saved and

806 restored. The calling process may have set up an alarm signal before calling sleep(); if c

807 the sleep () time exceeds the time until such alarm signal, the process sleeps only until

808 the alarm signal would have occurred, and the caller’s alarm catch routine is executed

809 just before the sleep () routine returns, but if the sleep() time is less than the time until

810 such alarm, the prior alarm time shall go off at the same time it would have without the

811 intervening sleep().

812 3.4.3.3 Returns

813 The value returned by the sleep() function shall be the unslept amount (the requested

814 time minus the time actually slept). This return value may be non-zero in cases where

815 the caller had an alarm set to go off earlier than the end of the requested time, or where c

816 sleep () was interrupted due to another caught signal.

817 3.4.3.4 References
818 alarm{) §3.4.1, pause() §3.4.2, sigaction{) §3.3.4. C

72

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Process Primitives

4. Process Environment

1 4.1 Process Identification

2 4.1.1 Get Process and Parent Process IDs

3 Functions: getpid{), getppid{)

4 4.1.1.1 Synopsis

5 int getpid ()

6 int getppid ()

7 4.1.1.2 Description

8 The getpid() function returns the process ID of the calling process.

9 The getppid{) function returns the parent process ID of the calling process.

10 4.1.1.3 References
11 exec §3.1.2,fork{) §3.1.1, killQ §3.3.2. 8

12 4.2 User Identification

13 4.2.1 Get Real User, Effective User, Real Group, and Effective Group IDs
14 Functions: getuidQ, geteuid(), getgid(), getegid{)

15 4.2.1.1 Synopsis

16 #include <sys/types.h> B

17 uid_t getuid () 8

18 uid_t geteuid () 8

19 uid_t getgid () 8

20 uid_t getegid () 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

4.2 User Identification 73

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

21 4.2.1.2 Description

22 The getuidQ function returns the real user ID of the calling process.

23 The geteuidQ function returns the effective user ID of the calling process.

24 The getgidQ function returns the real group ID of the calling process.

25 The getegid() function returns the effective group ID of the calling process.

26 4.2.1.3 References

27 setuidQ §4.2.2.

28 4.2.2 Set User and Group IDs

29 Functions: setuidQ, setgidQ

30 4.2.2.1 Synopsis

31 #include <sys/types.h> b

32 int setuid (uid) c

33 uid_t uid; 8

34 int setgid (gid) c

35 uid_t gid; 8

36 4.2.2.2 Description
37 If {_POSIX_SAVED_IDS} is defined: c

38 If the process has appropriate privileges, the setuid() function sets the real user c
39 ID, effective user ID, and the saved set-user-ID to uid. c

40 If the process does not have appropriate privileges, but uid is equal to the real c
41 user ID or the saved set-user-ID, the setuidQ function sets the effective user ID to c

42 uid; the real user ID and saved set-user-ID remain unchanged. c

43 If the process has appropriate privileges, the setgidQ function sets the real group c
44 ID, effective group ID, and the saved set-group-ID to gid. c

45 If the process does not have appropriate privileges, but gid is equal to the real c
46 group ID or the saved set-group-ID, the setgidQ function sets the effective group c

47 ID to gid; the real group ID and saved set-group-ID remain unchanged. c

48 Otherwise: c

49 If the process has appropriate privileges, the setuidQ function sets the real user ID c

50 and effective user ID to uid. c

51 If the process does not have appropriate privileges, but uid is equal to the real c

52 user ID, the setuidQ function sets the effective user ID to uid; tire real user ID c

53 remains unchanged. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

74 Process Environment

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

54

55

56
57
58

59

60
61

62

63
64

65
66

67
68
69

70
71

72
73

74

75
76

77

78
79

If the process has appropriate privileges, the setgid{) function sets the real group c
ID and effective group ID to gid. c

If the process does not have appropriate privileges, but gid is equal to the real c
group ID, the setgid{) function sets the effective group ID to gid; the real group c

ID remains unchanged. c

4.2.2.3 Returns
Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is
returned and err no is set to indicate the error.

4.2.2.4 Errors
If any of the following conditions occur, the setuid() function shall return -1 and set b

err no to the corresponding value: b

[EINVAL] The value of the uid argument is less than zero or exceeds
{UID_MAX}.

[EPERM] The process does not have appropriate privileges and uid does not b

match the real user ID or, if {_POSIX_SAVED_IDS} is defined, the c
saved set-user-ID. c

If any of the following conditions occur, the setgid{) function shall return -1 and set b

errno to the corresponding value: b

[EINVAL] The value of the gid argument is less than zero or exceeds
{UID_MAX}.

[EPERM] The process does not have appropriate privileges and gid does not b

match the real group ID or, if {_POSIX_SAVED_IDS} is defined, c
the saved set-group-ID. c

B

4.2.2.5 References
exec §3.1.2, getuid{) §4.2.1.

80 4.2.3 Get Supplementary Group IDs
81 Function: getgroups()

82 4.2.3.1 Synopsis

83 #include <sys/types.h> b

84 int getgroups (gidsetsize, grouplist)
85 int gidsetsize;

86 uid_t grouplist[]; c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

4.2 User Identification 75

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

87 4.2.3.2 Description
88 The getgroups{) function fills in the array grouplist with the supplementary group IDs of a

89 the calling process. The gidsetsize argument gives the length of the supplied array
90 grouplist. The actual number of supplementary group IDs is returned. The values of

91 array entries with indices larger than or equal to the returned value are undefined. As a c
92 special case, if the gidsetsize argument is zero, getgroups () returns the number of c
93 supplemental group IDs associated with the calling process without modifying the array c
94 pointed to by the grouplist argument c

95 Implementation of getgroups () is optional on systems that have defined

96 {NGROUPS_MAX} to be zero.

97 4.2.3.3 Returns
98 The number of supplementary group IDs is returned if successful. A return value of -1

99 indicates failure and errno is set to indicate the error.

100 4.2.3.4 Errors
101 If any of the following conditions occur, the getgroups() function shall return -1 and set b
102 errno to the corresponding value: b

103 [EINVAL] The gidsetsize argument is less than the number of supplementary

104 group IDs.

105 b

106 4.2.3.5 References
107 setgid() §4.2.2.

108 4.2.4 Get User Name
109 Functions: getlogin(), cuserid()

110 4.2.4.1 Synopsis

111 char *getlogin ()

112 #include <stdio.h>

113 char *cuserid (s)
114 char *s;

115

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

76 Prnrp« Fnvirnnment

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

116 4.2.4.2 Description
117 These functions return a string giving a name of the user associated with the current
118 process. The cuseridQ function returns a name associated with the effective user ID of
119 the process, and the gedoginQ function returns the name associated by the login activity

120 with the control terminal. c

121 The recommended procedure is either to call the cuserid() function, or to call gedogin() 8
122 and, if it fails, to call the getpwuid() function with the value returned by the getuidQ

123 function.

124 The gedoginQ function returns a pointer to the user’s login name. The same user ID may

125 be shared by several login names. Therefore, to ensure that the correct password
126 database entry is found, the gedoginQ function should be used with the getpwnamQ

127 function.

128 If gedoginQ returns a non-NULL pointer, then that pointer is to the name the user logged
129 in under, even if there are several login names with the same user ID.

130 The cuserid() function generates a character representation of the login name of the
131 owner of the current process. If s is not a NULL pointer, it is assumed that s points to an
132 array of at least L_cuserid characters; the representation is returned in this array. The

133 symbolic constant L_cuserid is defined in <stdio.h>, and shall have a value greater than c

134 zero. c

135 4.2.4.3 Returns
136 The gedoginQ function returns a pointer to a string containing the user’s login name, or a

137 NULL pointer if the user’s login name cannot be found.

138 If s is a NULL pointer, the result from cuseridQ is generated in an area that may be

139 static, the address of which is returned. If the login name cannot be found, cuserid()

140 returns NULL. If s is not a NULL pointer, s is returned. If the login name cannot be

141 found, the null character '\0' shall be placed at *s.

142 The return value from gedoginQ may point to static data that is overwritten by each call.

143 The implementation of the cuseridQ function may use the getpwnamQ function, so the
144 results of a user’s call to either routine may be overwritten by a subsequent call to the
145 other routine.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

4.2 User Identification 77

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

146 4.2.4.4 Errors c
147 This standard does not specify any error conditions that are required to be detected for c
148 the cuseridQ function. Some errors may be detected under implementation defined c
149 conditions. c

150 4.2.4.5 References
151 getpwentQ §9.2.2, getpwuidQ §9.2.2.

152 4.3 Process Groups

153 4.3.1 Get Process Group ID
154 Function: getpgrpQ

155 4.3.1.1 Synopsis

156 Int getpgrp ()

157 4.3.1.2 Description
158 The getpgrp () function returns the process group ID of the calling process.

159 4.3.1.3 References
160 setpgrp() §4.3.2, sigaction() §3.3.4. c

161 4.3.2 Set Process Group ID
162 Function: setpgrp()

163 4.3.2.1 Synopsis

164 int setpgrp ()

165 4.3.2.2 Description
166 The setpgrp() function shall set the process group ID of the calling process to the process c
167 ID of the calling process and return the new process group ID. If the calling process is c
168 not already the process group leader, it becomes a session process group leader and c

169 releases its controlling terminal by clearing the terminal group ID. c

170 4.3.2.3 Returns
171 The setpgrp () function returns the value of the new process group ID.

172 4.3.2.4 References
173 exec §3.1.2, _exit{) §3.2.2,fork() §3.1.1, getpidQ §4.1.1, kill{) §3.3.2, sigactionQ c
174 §3.3.4. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

78 Process Environment

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

175 4.3.3 Set Process Group ID for Job Control a

176 Function: jcsetpgrp() a

177 4.3.3.1 Synopsis a

178 int jcsetpgrp (pgrp) a

179 int pgrp; a

180 4.3.3.2 Description a

181 This function is provided if the implementation supports the Job Control Option. a

182 The jcsetpgrp() function shall set the process group ID of the calling process to pgrp. If b

183 pgrp is equal to the process ID of the calling process, the calling process becomes a job b
184 control process group leader unless the process is already the process group leader. c

185 4.3.3.3 Returns a

186 Upon successful completion, the jcsetpgrp {) function returns a value of zero. Otherwise, - a

187 a value of -1 is returned and errno is set to indicate the error. a

188 4.3.3.4 Errors a

189 If any of the following conditions occur, the jcsetpgrp () function shall return -1 and set b
190 errno to the corresponding value: b

191 [EINVAL] The value of the pgrp argument is less than or equal to zero or a

192 exceeds {PID_MAX}. a

193 The calling process is the process group leader and the pgrp c

194 argument does not match the process ID. c

195 [EPERM] The value of the pgrp argument is greater than zero and less than a

196 or equal to {PID_MAX} and there are processes already in the c
197 process group indicated by pgrp and none of these processes have b

198 the same controlling terminal as the calling process. b

199 [ENOTTY] The calling process does not have a controlling terminal. b

200 4.3.3.5 References a

201 tcsetpgrp () §7.2.4. a

4.3 Process Groups

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

79

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

202 4.4 System Identification

203 4.4.1 System Name

204 Function: uname {)

205 4.4.1.1 Synopsis

206 #include <sys/utsname.h>

207 int uname {name)

208 struct utsname *name;

209 4.4.1.2 Description

210 The uname () function stores information identifying the current operating system in the
211 structure pointed to by the argument name.

212 The structure utsname is defined in the header <sys/utsname.h>, and contains at least the

213 following members:

Member

Name
Description

sysname. Name of this implementation of

the operating system

nodename Name of this node within

an implementation specified

communications network

release Current release level of this

implementation

version Current version level of this release

machine Name of the hardware type that

the system is running on

226 Each of these data items is a null-terminated character array. Additional, implementation

227 defined, information may also be included in the structure.

228 The format of each member is implementation defined. The system documentation (see

229 Documentation §2.2.1.2) shall specify the source and format of each member and may

230 specify the range of values for each member.

8

8

8
8
8

8

8

8

8

8

8

8

8

8

8

8

8

B

80

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Process Environment

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

231 4.4.1.3 Returns
232 Upon successful completion, a non-negative value is returned. Otherwise, a value of -1

233 is returned and errno is set to indicate the error.

234 b

235 4.4.1.4 Errors c
236 This standard does not specify any error conditions that are required to be detected for c
237 the unameQ function. Some errors may be detected under implementation defined c
238 conditions. c

239 4.5 Time

240 4.5.1 Get System Time
241 Function: time{)

242 4.5.1.1 Synopsis

243 #include <time.h> c

244 b
245 time_t time (tloc)

246 time__t *tloc;

247 4.5.1.2 Description
248 The timeQ function returns the value of time in seconds since the Epoch (see Epoch c
249 §2.3). c

250 If the argument tloc is not a NULL pointer, the return value is also stored in the location b
251 pointed to by tloc.

252 4.5.L3 Returns
253 Upon successful completion, time{) returns the value of time. Otherwise, a value of
254 ((time_t) -1) is returned and errno is set to indicate the error.

255 b

256 4.5.1.4 Errors c
257 This standard does not specify any error conditions that are required to be detected for c
258 the time{) function. Some errors may be detected under implementation defined c

259 conditions. c

4.5 Time

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

81

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

260 4.5.2 Process Times
261 Function: times ()

262 4.5.2.1 Synopsis

263 #include <sys/types.h>
264 #include <sys/times.h>

265 c!ock_t times (buffer) 8
266 struct tms *buffer;

267 4.5.2.2 Description
268 The times() function shall fill the structure pointed to by buffer with time-accounting

269 information. The tms structure is defined in <sys/times.h>; it shall contain at least the
270 following members:

Member

Type

Member

Name
Description

O
O

O
O

O
C

clock_t tms_utime User CPU time 8
clockJ ' tms_stime System CPU time 8
clock t tms_cutime User CPU time of descendants 8
clock t tms_cstime System CPU time of descendants 8

277 All times are in {CLK_TCK}ths of a second. Additional data elements may also be c

278 declared in this structure. c

279 The times of a child process are included in the times of the parent when a waitf) or 8

280 wait2 () function returns the process ID of a terminated child. See wait §3.2.1. If a child 8

281 process has not waited for its terminated children, their times shall not be included in its 8

282 times. 8

283 The value tms_utime is the CPU time used while executing instructions of the calling c

284 process. c

285 The value tmsjstime is the CPU time used by the system on behalf of the calling process.

286 The value tms_cutime is the sum of the tmsjxtime s and tms_cutimes of the child

287 processes.

288 The value tms_cstime is the sum of the tms_sdmes and tms_cstimes of the child

289 processes.

82

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

Process Environment

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

290 4.5.2.3 Returns
291 Upon successful completion, times() shall return the elapsed real time, in {CLK_TCK}ths
292 of a second, since an arbitrary point in the past (for example, system start-up time). This
293 point does not change from one invocation of times () within the process to another. The
294 return value may overflow the possible range of type clock j. If the times() function 8
295 fails, a value of ((clock_t) -1) is returned and errno is set to indicate the error.

296 b

297 4.5.2.4 References
298 exec §3.1.2,/or&() §3.1.1, time{) §4.5.1, wait() §3.2.1.

299 4.6 Environment Variables

300 4.6.1 Environment Access
301 Function: getenvQ

302 4.6.1.1 Synopsis

303 char *getenv (name)

304 char *name;

305 4.6.1.2 Description

306 The getenv() function searches the environment list (see Environment Description

307 §2.7) for a string of the form name-value, and returns a pointer to value if such a string is
308 present. If the specified name cannot be found, a NULL pointer is returned.

309 4.6.1.3 Errors c

310 This standard does not specify any error conditions that are required to be detected for c
311 the getenv() function. Some errors may be detected under implementation defined c

312 conditions. c

313 4.6.1.4 References
314 environ §3.1.2, Environment Description §2.7.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

4.6 Environment Variables 83

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

315 4.7 Terminal Identification

316 4.7.1 Generate Terminal Pathname

317 Function: ctermidQ

318 4.7.1.1 Synopsis

319 #include <stdio.h>

320 char *ctermid (.s)

321 char *s;

322 B

323 4.7.1.2 Description
324 The ctermid() function generates a string that, when used as a pathname, refers to the

325 controlling terminal for the current process.

326 If the ctermid() function returns a pathname, access to the file is not guaranteed. 9

327 4.7.1.3 Returns
328 If s is a NULL pointer, the string is stored in an internal static area, the contents of which
329 may be overwritten at the next call to ctermidQ, and the address of which is returned;

330 otherwise s is assumed to point to a character array of at least L_ctermid elements; the

331 string is placed in this array and the value of s is returned. The symbolic constant
332 L_ctermid is defined in <stdio.h>, and shall have a value greater than zero. c

333 The ctermidQ function shall return an empty string if the pathname for the controlling c

334 terminal cannot be determined. c

335 9

336 4.7.1.4 Errors c

337 This standard does not specify any error conditions that are required to be detected for c
338 the ctermidi) function. Some errors may be detected under implementation defined c

339 conditions. c

340 4.7.1.5 References
341 ttyname() §4.7.2.

84

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Process Environment

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

342 4.7.2 Determine Terminal Device Name
343 Functions: tty name (), isatty ()

344 4.7.2.1 Synopsis

345 char *ttyname ifildes)
346 int fildes;

347 int isatty {fildes)

348 int fildes;

349 4.7.22 Description

350 The tty name () function returns a pointer to a string containing a null-terminated c
351 pathname of the terminal associated with file descriptor fildes. 8

352 The return value of tty name () may point to static data that is overwritten by each call. 9

353 The isatty () function returns 1 if fildes is a valid file descriptor associated with a 8
354 terminal, zero otherwise. 8

355 4.7.2J Returns
356 The tty name () function returns a NULL pointer if fildes is not a valid file descriptor
357 associated with a terminal device!

358 9

359 4.7.2.4 Errors c

360 This standard does not specify any error conditions that are required to be detected for c
361 the tty name () function. Some errors may be detected under implementation defined c
362 conditions. c

363 4.8 Configurable System Variables b

364 4.8.1 Get Configurable System Variables b

365 Function: sysconfiQ b

366 4.8.1.1 Synopsis b

367 ^include <unisid.h> b

368 long sysconf (name) c
369 int name; b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

4.8 Configurable System Variables 85

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

370 4.8.1.2 Description b
371 The sysconfO function provides a method for the application to determine the current b
372 value of a configurable system limit or option (variable). b

373 The name argument represents the system variable to be queried. The following table b
374 lists the system variables from <Iimits.h> §2.9 or <unistd.h> §2.10 that can be returned b
375 by sysconfO, and the symbolic constants, defined in <unistd.h>, that are the b

b 376 corresponding values used for name'.

Variable

ARG_MAX

CHELD_MAX

CLK_TCK

NGROUPS_MAX
OPEN_MAX

PASS_MAX
PID_MAX
UID_MAX

_POSIX_EXIT_SIGHUP

_POS IX_J OB _CONTROL
_POS IX_KILL_PID_NEG 1

_POSIX_KILL_SAVED

_POSIX_PGID_CLEAR

_POSIX_SAVED_IDS

_POSIX_VERSION

406 4.8.1.3 Returns

name Value b

SC_ARG_MAX b

SC_CHILD_MAX b
SC_CLK_TCK c

SC_NGROUPS_MAX c
S C_OPEN_M AX c

SC_PAS S_M AX c
SC_PID_MAX c
SC_UID_MAX c

SC_EXIT_SIGHUP c

SC_JOB_CONTROL c
SC_KILL_PID_NEG1 c

SC_KILL_S A VED c
*SC_PGID_CLEAR ' c

"SC_SAVED_IDS c

SC VERSION c

B
407 If the variable corresponding to name is not defined on the system, or if name is an b
408 invalid value, the sysconfO function returns -1. b

409 Otherwise, the sysconfO function returns the current variable value on the system. The b
410 value returned shall not be more restrictive than the corresponding value described to the b

411 application when it was compiled with the implementation’s <limits.h> §2.9 or b

412 <unistd.h> §2.10. The value shall not change during the lifetime of the calling process. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

86 Process Environment

5. Files and Directories

1 The functions in this section perform the operating system services dealing with the c

2 creation and removal of files and directories and the detection and modification of their c
3 characteristics. They also provide the primary methods a process will use to gain access c
4 to files and directories for subsequent I/O operations (see Input and Output Primitives c

5 §6). c

6 5.1 Directories

7 5.1.1 Format of Directory Entries

8 5.1.1.1 Synopsis

9 #include <sys/types.h> b

10 #include <dirent.h> b

11 5.1.1.2 Description
12 The header <dirent.h> defines a structure and a defined type used by the directory

13 routines.

14 A
15 The internal format of directories is implementation defined.

16 The routine readdirQ returns a pointer to an object of type struct dirent that includes the b
17 member:

Member

Type

Member
Name

Description

char [] d_name Null-terminated filename

22 The character array djiame is of unspecified size, but the number of characters b
23 preceding the terminating null character shall not exceed {NAME_MAX}. b

• ft

24 Additional, implementation defined, structure elements may also be declared in this

25 structure by the header <dirent.h>. c

26 c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.1 Directories 87

«
o

 a

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

27 9.

28 5.1.1.3 References
29 directory §5.1.2. a

30 5.1.2 Directory Operations
31 Functions: opendir(),readdir(),rewinddir(),closedir()

32 5.1.2.1 Synopsis

33 #include <sys/types.h> b
34 #include <dirent.h> b

35 DIR *opendir (dirname) b
36 char * dirname; b

37 struct dirent *readdir (dirp) b
38 DIR *dirp; b

39 void rewinddir (dirp) B

40 DIR*dz>p; B

41 int closedir (dirp) b
42 DIR *dirp; B

43 5.1.2.2 Description
44 The type DIR, which is defined in the header <dirent.h> §5.1.1, represents a directory b
45 stream, which is an ordered sequence of all the directory entries in a particular directory, c

46 Directory entries represent files; files may be removed from a directory or added to a c

47 directory asynchronous to the operations described in this section. c

48 The opendir() function opens a directory stream corresponding to the directory named by b

49 the dirname argument. The directory stream is positioned at the first entry. c

50 If a file is removed from or added to the directory after the most recent call to opendir() c
51 or rewinddirQ, whether a subsequent call to readdir() returns an entry for that file is c

52 unspecified. c

53 The readdir() function returns a pointer to a structure representing the directory entry at b

54 the current position in the directory stream to which dirp refers, and positions the b

55 directory stream at the next entry. It returns a NULL pointer upon reaching the end of the b

56 directory stream. b

57 The readdir() function shall not return directory entries containing empty names. If c

58 {_POSIX_DIR_DOTS} is in effect for dirname, entries for dot or dot-dot shall be c

59 returned; otherwise they shall not be returned. c

60 The pointer returned by readdir() points to data which may be overwritten by another b
61 call to rcaddir() on the same directory stream. This data shall not be overwritten by b

62 another call to readdirQ on a different directory stream. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

88 Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

63 Upon successful completion, the readdirQ function shall mark for update the st_atxme c

64 field of the directory. c

65 The rewinddirQ function resets the position of the directory stream to which dirp refers b
66 to the beginning of the directory. It also causes the directory stream to refer to the b

67 current state of the corresponding directory, as a call to opendirQ would have done. It b
68 does not return a value. If dirp does not refer to a directory stream, the effect is c

69 undefined. c

70 The closedirQ function closes the directory stream referred to by dirp and returns a value b
71 of zero if successful. Otherwise, it returns -1 indicating an error. Upon return, the value c
72 of dirp may no longer point to an accessible object of type DIR. c

73 5.1.2.3 Returns
74 Upon successful completion, opendirQ returns a pointer to an object of type DIR. s
75 Otherwise, a value of NULL is returned and errno is set to indicate the error. 8

76 Upon successful completion, readdirQ returns a pointer to an object of type struct s
77 dirent. When an error is encountered, a value of NULL is returned and errno is set to 8
78 indicate the error. When the end of the directory is encountered, a value of NULL is 8
79 returned and errno is not changed. 8

80 Upon successful completion, closedirQ returns a value of zero. Otherwise, a value of-1 8
81 is returned and errno is set to indicate the error. 8

82 5.1.2.4 Errors 8
83 If any of the following conditions occur, the opendirQ function shall return -1 and set b

84 errno to the corresponding value: b

85 [EACCES] Search permission is denied for any component of dirname or read c
86 permission is denied for dirname. c

87 [EMFILE] Too many file descriptors are currently open for the process. 8

88 [ENOTDIR] A component of dirname is not a directory. 8

89 b

90 For each of the following conditions, if the condition is detected, the readdirQ function c

91 shall return -1 and set errno to the corresponding value: c

92 [EBADF] The dirp argument does not refer to an open directory stream. b

93 b

i'

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.1 Directories 89

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

94 For each of the following conditions, if the condition is detected, the closedirQ function c
95 shall return -1 and set errno to the corresponding value: c

96 [EBADF] The dirp argument does not refer to an open directory stream. b

97 5.1.2.5 References
98 <dirent.h> §5.1.1.

99 5.2 Working Directory

100 5.2.1 Change Current Working Directory
101 Function: chdirQ

102 5.2.1.1 Synopsis

103 int chdir (path)
104 char *path;

105 5.2.1.2 Description
106 The path argument points to the pathname of a directory. The chdir() function causes

107 the named directory to become the current working directory, that is, the starting point

108 for path searches of pathnames not beginning with slash.

109 If the chdir() function fails, the current working directory shall remain unchanged.

110 5.2.1.3 Returns
111 Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is

112 returned and errno is set to indicate the error.

113 5.2.1.4 Errors
114 If any of the following conditions occur, the chdir() function shall return -1 and set

115 errno to the corresponding value:

116 [EACCES] Search permission is denied for any component of the pathname.

117 [ENAMETOOLONG]
The path argument exceeds {PATH_MAX} in length, or a

pathname component is longer than {NAME_MAX} while

{_POSIX_NO_TRUNC} is in effect

A component of the pathname is not a directory.

The named directory does not exist or path is an empty string.

118
119

120

121 [ENOTDIR]

122 [ENOENT]

B

B

B

9

B

B

C
C

c

c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

90 Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

123 5.2.1.5 References
124 getcwdQ §5.2.2.

125

126

127

128
129
130

131
132

133
134

135

136
137
138

139

140
141

142

143

144

145

146
147

148
149

150

151
152

5.2.2 Working Directory Pathname

Function: getcwdQ

5.2.2.1 Synopsis

char *getcwd (buf, size) b
char *buf; b
int size; b

5.2.2.2 Description
The routine getcwdQ) copies the absolute pathname of the current working directory to a

thr. character array pointed to by the argument buf and returns a pointer to the result. The
size argument is the size in bytes of the character array pointed to by the buf argument. If a
buf is a NULL pointer, the behavior of getcwdQ is undefined. c

5.2.2.3 Returns
If successful, the buf argument is returned. A NULL pointer is returned if an error occurs
and the variable errno is set to indicate the error. The contents of buf after an error is c

undefined. c

5.2.2.4 Errors
If any of the following conditions occur, the getcwdQ function shall return -1 and set b

errno to the corresponding value: b

[EINVAL] The size argument is less than or equal to zero. c

[ERANGE] The size argument is greater than zero, but is smaller than the a
length of the pathname.

For each of the following conditions, if the condition is detected, the getcwdQ function c
shall return -1 and set errno to the corresponding value: c

[EACCES] Read or search permission was denied for a component of the c
pathname. c

B

5.2.2.5 References
chdirQ §5.2.1.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.2 Working Directory 91

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

153 5.3 General File Creation

154

155

156

157

158

159

160

161

162

163
164

165

166

167

168

169

170

171
172

173
174

5.3.1 Open a File
Function: openQ

5.3.1.1 Synopsis

#include <sys/types.h> b

#include <fcntl.h> c

int open {path, oflag,...)

char *path; •' -

int oflag;

5.3.1.2 Description
The open() function establishes the connection between a file and a file descriptor. It c
creates an open file description that refers to a file and a file descriptor that refers to that c
open file description. The file descriptor is used by other I/O functions to refer to that a

file. The path argument points to a pathname naming a file.

The open() function shall return a file descriptor for the named file which is the lowest b

file descriptor not currently open for that process. The open file description is new, and c
therefore the file descriptor does not share it with any other process in the system. The c
file status flags and file access modes of the open file description shall be set according to

the value of oflag. The value of oflag is the bitwise inclusive OR of values from the 8
following list. See <fcnt!.h> §6.5.1 for the definitions of- the symbolic constants, c
Implementations may define additional flags, whose names shall begin with “0_.” b

Applications shall specify exactly one of the first three values (file access modes) below b

175 in the value of oflag'. B

176 OJRDONLY Open for reading only.

177 OJWRONLY Open for writing only.

178 0_RDYYR Open for reading and writing.

179 Any combination of the remaining flags may be specified in the value of oflag:

O APPEND 180

181

182

183

184

185

186

187

188

If set, the file offset shall be set to the end of the file prior to

each write.

Q_CREAT This option requires a third argument, mode, which is of type

modej. If the file exists, this flag has no effect Otherwise, the

file is created; the file’s user ID shall be set to the process’s
a, effective user ID; if {_POSIX_GROUP_PARENT} is in effect for

path, the file’s group ID shall be set to the group ID of the

directory in which the file is being created; otherwise, the file’s

group ID shall be set to the process’s effective group ID. The

B

c
c
c
c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to tin's document

92 Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

189
190
191
192

193
194

195
196

197

198
199

200

201
202
203
204

205

206
207
208
209
210

211
212

213
214

215

216

217
218

219

220

221
222

223
224

225

file permission bits (see <sys/stat.h> §5.6.1) shall be set to the b
value of mode except those set in the process’s file mode
creation mask (see umask() §5.3.3). When bits in mode other a

than the file permission bits are set, the effect is implementation a

defined. The mode argument does not affect whether the file is
opened for reading, for writing, or for both.

0_EXCL If 0_EXCL and 0_CREAT are set, open() shall fail if the file
exists. If 0_EXCL is set and 0_CREAT is not set, the result is a

implementation defined. a
♦

0_NONBLOCK

A

When opening a FIFO with 0_RDONLY or 0_WRONLY set:

If 0_NONBLOCK is set:
An open() for reading-only shall return without
delay. An openQ for writing-only shall return an
error if no process currently has the file open for
reading.

If 0_NONBLOCK is clear:
An open{) for reading-only shall block until a
process opens the file for writing. An open() for
writing-only shall block until a process opens the
file for reading.

When opening a block special or character special file that b
supports nonblocking opens: b

If 0_NONB LOCK is set: b
The open() shall return without waiting for the b
device to be ready or available. Subsequent b

behavior of the device is device specific. b

If 0_NONBLOCK is clear: b
The open() shall wait until the device is ready or b

available before returning. b

Otherwise, the behavior of 0_NONBLOCK is unspecified. b

0_TRUNC If the file exists and is a regular file, it shall be truncated to zero b
length and the mode and owner shall be unchanged.

it

If 0_CREAT is set and the file did not previously exist, upon successful completion, the c
open() function shall mark for update the stjatime, st_ctime, and stjntimc fields of the c
file and the stjctime and stjntime fields of the parent directory. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.3 General File Creation 93

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

226 If 0_TRUNC is set and the file did previously exist, upon successful completion, the
227 open () function shall mark for update the stjetime and stjntime fields of the file.

228 53.1.3 Returns
229 Upon successful completion, the function shall open the file and return a non-negative
230 integer representing the lowest numbered unused file descriptor. Otherwise, it shall

231 return -1 and shall set errno to indicate the error. No files shall be created or modified if

232 the function returns —1.

233 5.3.1.4 Errors
234 If any of the following conditions occur, the openQ function shall return -1 and set errno

235 to the corresponding value: ••

236

237

238

239

[EACCES] Search permission is denied on a component of the path prefix, or

the file exists and the permissions specified by oflag are denied, or

the file does not exist and write permission is denied for the parent
directory of the file to be created.

240 [EEXIST] 0_CREAT and 0_EXCL are set, and the named file exists.

241 [EINTR] The openQ operation was terminated prematurely by a signal.

242
243

[EISDIR] The named file is a directory and the oflag argument specifies write
or read/write access.

244 [EMFILE] Too many file descriptors are currently in use by this process.

245
246

247

248

[ENAMETOOLONG]
The length of the path string exceeds {PATH_MAX}, or a

pathname component is longer than {NAME_MAX} while

{_POSIX_NO_TRUNC} is in effect

249 [ENFILE] Too many files are currently open in the system.

250

251

252

[ENOENT] 0_CREAT is not set and the named file does not exist; or
0_CREAT is set and either the path prefix does not exist or the

path argument points to an empty string.

253
254

[ENOSPC] The directory or file system which would contain the new file

cannot be extended.

255 [ENOTDIR] A component of the path prefix is not a directory.

256
257

[ENXIO] 0_NONBLOCK is set, the named file is a FIFO, 0_WRONLY is set,
and no process has the file open for reading.

258

259

260

t[EROFS] The named file resides on a read-only file system and either

0_WRONLY, 0_RD\VR, or 0_CREAT (if file does not exist) is set

in the oflag argument

c
c

c

B

B

C

C

C
c

A
A

C

c
c
c

94

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

261 5.3.1.5 References

262 close() §6.3.1, crear() §5.3.2, dup() §6.2.1, exec §3.1.2,fcntl() §6.5.2, <fcnll.h> §6.5.1, b

263 lscck() §6.5.3, readO §6.4.1, sigaction() §3.3.4, statQ §5.6.2, <sys/stat.h> §5.6.1, b

264 write () §6.4.2, umask () §5.3.3.

265 5.3.2 Create a New File or Rewrite an Existing One
266 Function: creat()

267 5.3.2.1 Synopsis

268 #include <sys/types.h>

269 int creat {path, mode) c
270 char *path;

271 mode_t mode; g

272 S.3.2.2 Description

273 g

274 The function call

275 creat (path, mode);

276 is equivalent to

277 Open (path, OJWRONLY | 0__CREAT | OJTRUNC, mode) ;

278 9

279 S.3.2.3 References
280 open() §5.3.1, <sys/stat.h> §5.6.1. b

281 5.3.3 Set File Creation Mask

282 Function: umaskQ

283 5.3.3.1 Synopsis

284 #include <s}s/types.h>

285 mode l umask (cmask)

286 modest cmask;

287 S.3.3.2 Description

288 The umask() routine sets the process’s file mode creation mask to cmask and returns the
289 previous value of the mask. Only the file permission bits (see <sys/stat.h> §5.6.1) of 8
290 cmask are used. 8

« ft

291 The process’s file mode creation mask is used during openQ, creatQ, mkdirQ, and c
292 mkffoQ functions to turn off permission bits in die mode argument supplied. Bit b

293 positions that are set in cmask are cleared in the mode of the created file. b

c
8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.3 General File Creation 95

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

294 5.3.3.3 Returns
295 The previous value of the file mode creation mask is returned.

296 5.3.3.4 References
297 chmodQ §5.6.4, creatQ §5.3.2, mkdirQ §5.4.1, mkfifoQ §5.4.2, open() §5.3.1, a

298 <signal.h> §3.3.1, <sys/stat.h> §5.6.1. b

299 5.3.4 Link to a File
300 Function: linkQ

301 5.3.4.1 Synopsis

302 int link {pathl,path2)

303 char * pathl y*path2;

304 5.3.4.2 Description

305 The argument path l points to a pathname naming an existing file. The argument path2

306 points to a pathname naming the new directory entry to be created. The linkQ function

307 shall create a new link for the existing file. The link count of the file is incremented by 8

308 one. 8

309 If the linkQ function fails, no link shall be created. 9

310 If pathl names a directory, the effect of this function is dependent on the definition of c

311 {_POSIX_LINK_DIR}. If in effect for pathl, the link is created, subject to any other c

312 restrictions listed for the function; otherwise, the linking of a directory shall be c
313 disallowed and the function shall fail. c

314 Upon successful completion, the linkQ function shall mark for update the st_ctime field c

315 of the file. Also, the st_ctime and stjntimc fields of the directory that contains the new c

316 entry are marked for update. c

317 S.3.4.3 Returns

318 Upon successful completion, linkQ shall return a value of zero. Otherwise, a value of-1

319 is returned and crrno is set to indicate the error.

320 5.3.4.4 Errors
321 If any of the following conditions occur, the linkQ function shall return -1 and set errno b

322 to the corresponding value: b

323
324

325

[EACCES] A component of either path prefix denies search permission, or the
requested link requires writing in a directory with a mode that

denies write permission.

326 [EEXIST]
«

The hnk named by path2 exists.

327

328

[EMLINK] The number of links to the file named by pathl would exceed

{LINK_MAX}.

96

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

329
330

331
332

333
334

335

336

337

338
339
340
341

342
343

344

345
346

347

348

[ENAMETOOLONG]

The length of the pathl or path2 string exceeds {PATH_MAX}, or

a pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect

[ENOENT] A component of either path prefix does not exist; the file named by
pathl does not exist; or either pathl or path2 points to an empty

string.

[ENOSPC] The directory that would contain the link cannot be extended.

[ENOTDIR] A component of either path prefix is not a directory.

[EPERM] The file named by pathl is a directory and the implementation
restricts the linking of directories to processes with appropriate
privileges, and the calling process does not have appropriate

privileges.

[EROFS] The requested link requires writing in a directory on a read-only
file system.

[EXDEV] The link named by path2 and the file named by pathl are on

different file systems and the implementation does not support
links between file systems.

5.3.4.S References
rename() §5.5.3, unlink() §5.5.1.

c
c
c
c

B

B

B

B

A

A

A

8

8

349 5.4 Special File Creation

350 5.4.1 Make a Directory

351 Function: mkdir()

352 5.4.1.1 Synopsis

353 #include <sys/types.h>

354 int mkdir (path, mode)

355 char *path;

356 modest mode;

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.4 Special File Creation 97

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

357

358
359
360

361
362

363
364

365

366

367

368

369
370

371

372

373
374

375

376
377

378

379

380

381

382

383
384

385
o c

DOO

387

388

389

390

391

392

393

5.4.1.2 Description

The mkdirQ routine creates a new directory with name path. The file permission bits of c

the new directory are initialized from mode. The file permission bits of the mode 9

argument are modified by the process’s file creation mask (see umask() §5.3.3). When a

bits in mode other than the file permission bits are set, the effect is implementation a

defined. a

The directory’s owner ID is set to the process’s effective user ID. If c

{_POSIX_GROUP_PARENT} is in effect for path, the directory’s group ID shall be set to c

the group ID of the directory in which the directory is being created; otherwise, the c

directory’s group ID shall be set to the process’s effective group ID. c

If {_POSIX_DIR_DOTS} is in effect for path, the newly created directory shall contain c
only entries for dot and dot-dot; otherwise the directory shall be empty. c

Upon successful completion, the mkdirQ function shall mark for update the st_atime, c

st_ctime, and stjntime fields of the directory. Also, the st_ctime and stjntime fields of c

the directory that contains the new entry are marked for update. c

5.4.1.3 Returns
A return value of zero indicates success. A return value of -1 indicates that an error has

occurred and an error code is stored in errno. No directory shall be created if the return

value is —1.

5.4.1.4 Errors

If any of the following conditions occur, the mkdirQ function shall return -1 and set b

errno to the corresponding value: b

[EACCES] Search permission is denied on a component of the path prefix, or
write permission is denied on the parent directory of the directory

to be created.

[EEX1ST] The named file exists.

[EMLINK] The link count of the parent directory would exceed 8

{LINK_MAX}.

[ENAMETOOLONG] c
The length of the path argument exceeds {PATH_MAX}, or a c

pathname component is longer than {NAME_MAX} while c

{_POSIX_NO_TRUNC} is in effect c

[ENOENT] A component of the path prefix does not exist or the path argument

points to an empty string.

{ENOSPC] The file system does not contain enough space to hold the contents
of the new directory or to extend the parent directory of the new

directory.

98

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

394 [ENOTDIR] A component of the path prefix is not a directory.

395 [EROFS] The path prefix resides on a read-only file system.

396 5.4.1.5 References
397 chmodQ §5.6.4, stat() §5.6.2, <sys/stat.h> §5.6.1, umask() §5.3.3. b

398 5.4.2 Make a FIFO Special File

399 Function: mkfifo {)

400 5.4.2.1 Synopsis

401 #include <sys/types.h> b

402 int mkfifo {path, mode)

403 char *path;
404 mode_t mode; 8

405 5.4.2.2 Description
406 The mkfifo() routine creates a new FIFO special file named by the pathname pointed to by
407 path. The mode of the new FIFO is initialized from mode. The file permission bits of 9
408 the mode argument are modified by the process’s file creation mask (see umaskf) §5.3.3). a

409 When bits in mode other than the file permission bits are set, the effect is implementation a

410 defined. a

411 The FIFO’s owner ID shall be set to the process’s effective user ID. If c

412 {_POSIX_GROUP_PARENT} is in effect for path, the FIFO’s group ID shall be set to the c

413 group ID of the directory in which the FIFO is being created; otherwise, the FIFO’s group c
414 ID shall be set to the process’s effective group ID. c

415 Upon successful completion, the mkfifo{) function shall mark for update the stjatime, c

416 stjctime, and stjntime fields of the file. Also, the st_ctime and st_mtime fields of the c

417 directory that contains the new entry are marked for update. c

418 5.4.2.3 Returns
419 Upon successful completion a value of zero is returned. Otherwise, a value of -1 is
420 returned, no FIFO is created, and crrno is set to indicate the error.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.4 Special File Creation 99

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

421 5.4.2.4 Errors

422 If any of the following conditions occur, the mkfifo() function shall return -1 and set B

423 errno to the corresponding value: B

424 [EACCES] A component of the path prefix denies search permission.

425 [EEXIST] The named file already exists.

426 [ENAMETOOLONG] c
427 The length of the path string exceeds {PATH_MAX}, or a c
428 pathname component is longer than {NAME MAX} while c
429 {_POSIX_NO_TRUNC} is in effect c

430 [ENOENT] A component of the path prefix does not exist or the path argument

431 points to an empty string.

432 [ENOSPC] The directory that would contain the new file cannot be extended
433 or the file system is out of file allocation resources.

434 [ENOTDIR] A component of the path prefix is not a directory.

435 [EROFS] The named file resides on a read-only file system.

436 5.4.2.5 References
437 chmodQ §5.6.4, exec §3.1.2,pipeQ §6.1.1, stat() §5.6.2, <sys/stat.h> §5.6.1, umask() B

438 §5.3.3.

439 5.5 File Removal

440 5.5.1 Remove Directory Entries
441 Function: unlink ()

442 5.5.1.1 Synopsis

443 int unlink (path)

444 char *path;

445 5.5.1.2 Description
446 The unlink() function shall remove the link named by the pathname pointed to by path 8

447 and decrement the link count of the file referenced by the link. a

448 When the file’s link count becomes zero and no process has the file open, the space

449 occupied by the file shall be freed and the file shall no longer be accessible. If one or c

450 more processes have the file open when the last link is removed, the removal shall be c

451 postponed until all references to the file have been closed.
*

452 If path names a directory, the effect of this function is dependent on the definition of c

453 {JPOSIX_LINK_DIR}. If in effect for path, the link is removed, subject to any other c
454 restrictions listed for the function; otherwise, the unlinking of a directory shall be c

100

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

455

456

457

458

459

460
461
462

463

464

465
466

467
46&

469

470
471
472
473

474

475

476

477
478

479
480

481
482

483
484

485

disallowed and the function shall fail. Applications should use rmdirQ to remove a

directory.

Upon successful completion, the unlink() function shall mark for update the st_ctime and c

stjniime fields of the parent directory. Also, if the file’s link count is not zero, the c
st_ctime field of the file shall be marked for update. c

5.5.1.3 Returns
Upon successful completion, a value of zero shall be returned. Otherwise, a value of -1 c
shall be returned and errno shall be set to indicate the error. If —1 is returned, the named c

file shall not be changed. c

5.5.1.4 Errors
If any of the following conditions occur, the unlink() function shall return -1 and set b

errno to the corresponding value: b

[EACCES] Search permission is denied for a component of the path prefix, or
write permission is denied on the directory containing the link to
be removed.

[ENAMETOOLONG] c
The length of the path argument exceeds {PATH_MAX}, or a c

pathname component is longer than {NAME_MAX} while c
{_POSIX_NO_TRUNC} is in effect c

[ENOENT] The named file does not exist or the path argument points to an
empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The directory entry to be unlinked is part of a read-only file
system.

For each of the following conditions, if the condition is detected, the unlink() function b
shall return -1 and set errno to the corresponding value: b

[EBUSY] The file named by the path argument cannot be unlinked because it
is being used by the system or another process.

[EPERM] The named file is a directory and the implementation restricts the b

unlinking of directories to processes with appropriate privileges, b
and the calling process does not have appropriate privileges. b

5.5 File Removal

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to tins document

101

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

486 5.5.1.5 References

487 eloseQ §6.3.1, link() §5.3.4, open() §5.3.1, rename() §5.5.3, rmdir() §5.5.2.

488 5.5.2 Remove a Directory

489 Function: rmdirQ

490 5.5.2.1 Synopsis

491 int rmdir (path)
492 char *path;

493 5.5.2.2 Description
494 The rmdir() function removes a directory whose name is given by path. If c
495 {_POSIX_DIR_DOTS} is in effect for path, the directory shall be removed only if there c

496 are no entries other than dot or dot-dot; otherwise the directory shall be removed only if c
497 it has no entries. c

498 If the directory is the root directory or the current working directory, the effect of this c

499 function is implementation defined. c

500 Upon successful completion, the rmdir() function shall mark for update the st_ctime and c
501 stjntime fields of the parent directory. c

502 5.5.2.3 Returns

503 A return value of zero indicates success. A return value of -1 indicates that an error has

504 occurred and an error code has been stored in errno. c

505 S.5.2.4 Errors
506 If any of the following conditions occur, the rmdir() function shall return -1 and set b

507 errno to the corresponding value: b

508 [EACCES] Search permission is denied on a component of the path or write

509 permission is denied on the parent directory of the directory to be

510 removed.

511 [EEXIST] or [ENOTEMPTY] B
512 The path argument names a directory containing files other than b
513 dot and dot-dot. b

514

515

516

517

[ENAMETOOLONG] c
The length of the path argument exceeds {PATH_MAX}, or a c

pathname component is longer than {NAME_MAX} while c

{_POSIX_NO_TRUNC} is in effect c

518

519

[ENOENT] The path argument names a non-existent directory or points to an

empty string.

520 [ENOTDIR] A component of the path is not a directory.

102

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

521 [EROFS] The directory entry to be removed resides on a read-only file
522 system.

523 For each of the following conditions, if the condition is detected, the rmdir() function b
524 shall return -1 and set errno to the corresponding value: b

525 [EBUSY] The directoiy to be removed is currently in use by the system or
526 another process.

527 5.S.2.5 References
528 mkdirQ §5.4.1, unlink() §5.5.1.

529 5.5.3 Rename a File
530 Function: rename()

531 5.5.3.1 Synopsis

532 int rename (old, new)

533 char *old;

534 char *new;

535 5.5.3.2 Description

536 The re name () function changes the name of a file. The old argument points to the
537 pathname of the file to be renamed. The new argument points to the new pathname of the
538 file.

539 If the old argument and the new argument both refer to links to the same existing file, the c
. 540 renameQ function shall return successfully and perform no other action. c

541 If the old argument points to the pathname of a file that is not a directory, the new g
542 argument shall not point to the pathname of a directory. If the link named by the new g
543 argument exists, it shall be removed and old renamed to new. In this case, c

544 implementations shall ensure that a link named new remains visible to other processes c
545 throughout the renaming operation. .Write access permission is required for both the
546 directory containing old and the directory containing new.

547 If the old argument points to the pathname of a directory, the new argument shall not g
548 point to the pathname of a file that is not a directory. If the directory named by the new g

549 argument exists, it shall be removed and old renamed to new. In this case, c
550 implementations shall ensure that a link named new remains visible to other processes c
551 throughout the renaming operation. Thus, if new names an existing directory, the c

552 directory shall be required to have only the entries dot and dot-dot, if c
553 {JPOSIXJDIRJOOTS} is in effect for new; if {_POSIX_DlR_DOTS} is not in effect, the c
554 existing .directory shall be required to be empty. The new pathname shall not name a c
555 descendant of old. Write access permission is required for the directory' containing old c
556 and the directory containing new. If the old argument points to the pathname of a c
557 directory, write access permission may be required for the directory named by old, and, c

558 if it exists, the directory named by new. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.5 File Removal 103

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

559 Upon successful completion, the rename() function shall mark for update the st_ctime c

560 and stjntime fields of the parent directory of each file. c

561 5.5.3.3 Returns
562 A return value of zero indicates success. A return value of -1 indicates that an error has

563 occurred and an error code has been stored in errno.

564 5.5.3.4 Errors
565 If any of the following conditions occur, the rename() function shall return -1 and set B
566 errno to the corresponding value: B

567 [EACCES] A component of either path prefix denies search permission; or one

568 of the directories containing old or new denies write permissions; C

569 or, write permission is required and is denied for a directory C

570 pointed to by the old or new argument. C

571 [EEXIST] or [ENOTEMPTY] B

572 The link named by new is a directory containing entries other than

573 dot and dot-dot

574 [EINVAL] The new directory is an ancestor or a descendant of the old A

575 directory. A

576 [EISDIR] The new argument points to a directory and the old argument 8

577 points to a file that is not a directory. 8

578 [ENAMETOOLONG] C

579 The length of the old or new argument exceeds {PATH_MAX}, or C

580 a pathname component is longer than {NAME_MAX} while c
581 {_POSIX_NO_TRUNC} is in effect c

582 [ENOENT] The link named by the old argument does not exist or either old or

583 new points to an empty string.

584 [ENOSPC] The directory that would contain new cannot be extended.

585 [ENOTDIR] A component of either path prefix is not a directory; or the old

586 argument names a directory and the new argument names a
587 nondirectory file.

588 c

589 [EROFS] The requested operation requires writing in a directory on a read¬

590 only file system. -

104

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

591 For each of the following conditions, if the condition is detected, the rename() function
592 shall return -1 and set errno to the corresponding value:

593 [EBUSY] The link named by old or new is currently in use by the system or
594 another process.

595

596 [EXDEV] The links named by new and old are on different file systems.

597 5.53.5 References
598 linkQ §5.3.4, rmdir{) §5.5.2, unlink() §5.5.1.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.5 File Removal 105

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

599 5.6 File Characteristics

600 5.6.1 File Characteristics: Header File and Data Structure

601 5.6.1.1 Synopsis

602 ^include <sys/types.h>

603 #include <sys/stat.h>

604 5.6.1.2 Description

605 The header <sys/stat.h> defines the structure stat returned by the functions ,

606 fstatQ. \

Member Member
Description

Type Name

mode_t st_mode File mode (see list below)
ino t st_ino File serial number
dev^t st_dev ID of device containing a directory

entry for this file.

File serial number and device ID

taken together uniquely identify the
file within the system.

devj st_rdev ID of device. This entry is valid only

for character special or block special

files.

nlink t st nlink Number of links
uid t st uid User ID of the file’s owner
uidjt st_gid Group ID of the file’s group

offj st_size For regular files, this is the file size

in bytes. For other file types, the use

of this field is unspecified.

time_t st_atime Time of last access
time_t stjntime Time of last data modification

time t st ctime Time of last file status change

628 All of the described members must appear in the stat structure. The stat structure may

629 also include other data elements as well. The structure members stjnode, st_ino,

630 st_dev, st_uid, st_gid, and stjntime shall have meaningful values for all file types

631 defined in this standard. The value of the member st_rdcv is implementation defined.

632 The value of the member stjxlink shall be set to the number of links to the file.

633 5.6.1.2.1 <sys/sfat.h> File Types
634 The following macros shall test whether a file is of the specified type. The value m

635 supplied to the macros is the value of stjnode from a struct stat. The macro evaluates to

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

106 Files and Directories

B

B

8

8

8

B

B

B

C

c

c
A

A

B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

636 a non-zero value if the test is true, zero if the test is false.

637 S_ISDIR(m) Test macro for directory file

638 S_ISCHR(m) Test macro for character special file

639 S_ISBLK(m) Test macro for block special file

640 S_ISREG(m) Test macro for regular file

641 S_ISFIFO(m) Test macro for FIFO special file

642

643

5.6.1.2.2 <sys/stat.h> File Modes
The stjnode value is bit-encoded with the following masks and bits:

644

645

S_IRWXU Read, write, search (if a directory), or execute (otherwise)
permissions mask for the file owner class.

646 S_IRUSR Read permission bit for the file owner class.

647 S_IWUSR Write permission bit for the file owner class.

648
649

S_IXUSR Search (if a directory) or execute (otherwise)
permissions bit for the file owner class.

650
651

S_IRWXG Read, write, search (if a directory), or execute (otherwise)
permissions mask for the file group class.

652 S_IRGRP Read permission bit for the file group class.

653 S_IWGRP Write permission bit for the file group class.

654

655

S_IXGRP Search (if a directory) or execute (otherwise)

permissions bit for the file group class.

656
657

S_IRWXO Read, write, search (if a directory), or execute (otherwise)
permissions mask for the file other class.

658 S_IROTH Read permission bit for the file other class.

659 S_IWOTH Write permission bit for the file other class.

660

661

S_IXOTH Search (if a directory) or execute (otherwise)
permissions bit for the file other class.

662

663
664

S_ISUID Set user ID on execution. The process’s effective user ID shall be

set to that of the owner of the file when the file is run as a program
(see exec). This bit should be cleared on any write .to the file.

665

666
667

6JSGID Set group ID on execution. Set effective group ID on the process

to the file’s group when the file is run as a program (see exec).

This bit should be cleared on any write to the file.

C
c

c

c

c

c

c
c

c
c

c

c

c
c

c
c

c

c

c

c

A

A
A

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.6 File Characteristics 107

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

668 The file permission bits are defined to be those corresponding to the bitwise inclusive 8
669 OR of S_IR\VXU, S_IRWXG, and S_IRWXO. g

670 5.6.1.2.3 <sys/stat.h> Time Entries b
671 The time-related fields of struct stat are as follows:

672 st_atime Accessed file data, e.g. readf). c

673 st_mtime Modified file data, e.g. write Q. c

674 st_ctime Changed file status, e.g. chmod{). c

675 These times are updated as described by file, times update §2.4. c

676 All the functions in this standard that change these fields directly describe those changes c

677 in the context of the functions’ definitions. Other functions that directly change st_atime, c

678 stjntime, or st_ctime shall be implementation defined. c

679 Times are given in seconds since the Epoch (see Epoch §2.3). c

680 5.6.1.3 References c
681 climodQ §5.6.4, chown() §5.6.5, creatf) §5.3.2, link{) §5.3.4, mkdir{) §5.4.1, mkfifo{) b
682 §5.4.2,pipe() §6.1.1, readf) §6.4.1, unlink{) §5.5.1, utimeQ §5.6.6, write{) §6.4.2, 8

683 remove () (ANS1IX3.159-198x Programming Language C Standard).

684
685

686

687
688

689
690
691

692
693
694

695
696
697
698
699

700
701

5.6.2 Get File Status
Functions: stat{),fstat{)

5.6.2.1 Synopsis

#include <sys/types.h>
#include <sys/stat.h>

int stat {path, buf)
char *path;
struct stat *buf;

int fstat {fildes,buf)
int fildes;
struct stat *buf;

5.6.2.1 Description
The path argument points to a pathname naming a file. Read, write or execute
permission for the named file is not required, but all directories listed in the pathname
leading to the file must be searchable. The stat{) function obtains information about the
named file and writes it to the area pointed to by the buf argument.

Similarly, the fstat() function obtains information about an open file known by the file
descriptor fildes.

B

108

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

702 Additional implementation defined access constraints may cause the stat{) and fstat() c
703 functions to fail. c

704 Both functions update any time-related fields as described in file times update §2.4 c
705 before writing into the stat structure. c

706 The buf is taken to be a pointer to a stat structure, as defined in the header <sys/stat.h> b

707 §5.6.1, into which information is placed concerning the file.

708 5.6.2.3 Returns
709 Upon successful completion a value of zero shall be returned. Otherwise, a value of -1 c
710 shall be returned and errno shall be set to indicate the error. c

711 5.6.2.4 Errors

712 If any of the following conditions occur, the stat{) function shall return -1 and set errno b

713 to the corresponding value: b

714 [EACCES] Search permission is denied for a component of the path prefix. c

715 [ENAMETOOLONG] C
716 The length of the path argument exceeds {PATH_MAX}, or a c
717 pathname component is longer than {NAME_MAX} while c
718 {_POSIX_NO_TRUNC} is in effect c

719 [ENOEN'T] The named file does not exist or the path argument points to an
720 empty string.

721 [ENOTDIR] A component of the path prefix is not a directory.

722 If any of the following conditions occur, the fstat{) function shall return -1 and set errno b
723 to the corresponding value: b

724 [EBADF] The fildes argument is not a valid file descriptor.

725 b

726 5.6.2.5 References

727 creat() §5.3.2, dup() §6.2.1 ,fcntl{) §6.5.2, open{) l53.\,pipe{) §6.1.1, <sys/stat.h> b

728 §5.6.1.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.6 File Characteristics 109

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

729

730

731

732

733

734

735
736

737

738

, 739

740
741

742

743
744

745
746
747

748

749
750

751

752

753

754

755

756
757

758

759

760
761

762

763

5.6.3 File Accessibility
Function: access()

5.6.3.1 Synopsis

#include <unistd.h>

int access (path, amode)

char *path;
int amode;

5.6.3.2 Description
The access() function checks the accessibility of the file named by the pathname pointed

to by the path argument for the file access permissions indicated by amode, using the real

user ID in place of the effective user ID and the real group ID in place of the effective

group ID.

The value of amode is either the bitwise inclusive OR of the access permissions to be
checked (R_OK, W_OK, and X_OK) or the existence test, F_OK. See Symbolic

Constants §2.10 for the description of these symbolic constants.

If any access permission is to be checked, each shall be checked individually, as
described in file access permissions §2.4. If the process has appropriate privileges, an
implementation may substitute search permissions for execute permission.

5.6.3.3 Returns
If the requested access is permitted, a value of zero shall be returned. Otherwise, a value
of-1 shall be returned and errno shall be set to indicate the error.

5.6.3.4 Errors
If any of the following conditions occur, the access() function shall return -1 and set

errno to the corresponding value:

[EACCES] The permissions specified by amode are denied, or search
permission is denied on a component of the path prefix.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while

{_POSIX_NO_TRUNC} is in effect

[ENOENT] The path argument points to an empty string or to the name of a

file that does not exist

[ENOTD1R] A component of the path prefix is not a directory.

[EROFS] Write access requested for a file on a read-only file system.

B

B

C

c
c
c

c
c
c

c
c
c

c
c

B

B

A
A

C
C
c
c

A
A

A

A

110

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

764 For each of the following conditions, if the condition is detected, the access() function c

765 shall return -1 and set errno to the corresponding value: c

766 [EINVAL] Invalid value specified for amode. c

767 5.63.5 References 8
768 chmod{) §5.6.4, stat{) §5.6.2, <unistd.h> §2.10. 8

769 5.6.4 Change File Modes 8
770 Function: chmod() 8

771 5.6.4.1 Synopsis 8

772 #include <sys/types.h> 8

773 #include <sys/stat.h> b

774 int chmod (path, mode) 8

775 char *path; 8

776 mode_t mode; 8

777 5.6.4.2 Description 8
778 The path argument shall point to a pathname naming a file. If the effective user ID of the c
779 calling process matches the file owner or has appropriate privileges, the chmodQ c

780 function shall set the file mode, as described in <sys/stat.h> §5.6.1, of the named file c
781 from the corresponding bits in the mode argument. These bits define access permissions c
782 for the user associated with the file, the group associated with the file, and all others, as c
783 described in file access permissions §2.4. Additional implementation defined c
784 restrictions may cause the S_ISUID and S_1SGID bits in mode to be ignored. c

785 If the calling process does not have appropriate privileges, and if the group ID of the file 8
786 does not match the effective group ID or one of the supplementary group IDs, bit SJSGID 8
787 (set group ID on execution) in the file’s mode shall be cleared upon successful return c
788 from chmod(). c

789 The effect on file descriptors for files open at the time of the chmod() function is 8
790 implementation defined. 8

791 Upon successful completion, the chmodQ function shall mark for update the st_ctime c

792 field of the file. c

793 S.6.4.3 Returns 8
794 Upon successful completion, the function shall return a value of zero. Otherwise, a value 8

795 of -1 shall be returned and errno shall be set to indicate the error. If -1 is returned, no 8
796 change to the file mode shall have occurred. 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.6 File Characteristics 111

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

797 S.6.4.4 Errors s
798 If any of the following conditions occur, the chmod{) function shall return -1 and set B

799 errno to the corresponding value: B

800 [EACCES] Search permission is denied on a component of the path prefix.

801 [ENAMETOOLONG] C

802 The length of the path argument exceeds {PATH_MAX}, or a c
803 pathname component is longer than {NAME MAX} while c
804 {_POSIX_NO_TRUNC} is in effect c

805 [ENOTDIR] A component of the path prefix is not a directory.

806 [ENOENT] The named file does not exist or the path argument points to an

807 empty string.

808 [EPERM] The effective user ID does not match the owner of the file and the B

809 calling process does not have the appropriate privileges. B

810 [EROFS] The named file resides on a read-only file system.

811 S.6.4.5 References

812 chownQ §5.6.5, mkdirQ §5.4.1, mkfifoQ §5.4.2, statQ §5.6.2, <sys/stat.h> §5.6.1. B

813 5.6.5 Change Owner and Group of a File

814 Function: chownQ

815 5.6.5.1 Synopsis

816 #include <sys/types.h> B

817 int chown (path, owner, group)

818 char *path;

819 uid_t owner, group; 8

820 5.6.52 Description

821 The path argument points to a pathname naming a file. The user ID and group ID of the

822 named file are set to the numeric values contained in owner and group respectively.

823 Only processes with an effective user ID equal to the user ID of the file or with b

824 appropriate privileges may change the ownership of a file. If c
825 {_POSIX__CHOWN_RESTRICTED} is in effect for path, this operation is restricted to c

826 processes with appropriate privileges. If {_POSIX_CHOWN_SUP_GRP} is in effect for c

827 path, the implementation limits a process with an effective user ID equal to the user ID of b

828 the file, but without appropriate privileges, to changing the group ID of a file only to the b

829 effective group ID of the process or to one of the supplementary group IDs. b

830 The set-user-ID (S_ISUID) and set-group-ID (S__ISGID) bits of the file mode shall be c
831 cleared upon successful return from chownQ, unless the the call is made by a process c

832 with appropriate privilege, in which case it is implementation defined whether those bits c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

112 Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

833 are altered. If the chown() function is successfully invoked on a file that is not a regular

834 file, these bits may be cleared. These bits are defined in <sys/stat.h> §5.6.1.

835 Upon successful completion, the chownQ function shall mark for update the st_ctime c

836 field of the file. c

837 5.6.5.3 Returns
838 Upon successful completion, a value of zero shall be returned. Otherwise, a value of -1 c

839 shall be returned and errno shall be set to indicate the error. If-1 is returned, no change c
840 shall be made in the owner and group of the file. c

841 S.6.5.4 Errors
842 If any of the following conditions occur, the chown() function shall return -1 and set b

843 errno to the corresponding value: b

844 [EACCES] Search permission is denied on a component of the path prefix.

845 [ENAMETOOLONG] c
846 The length of the path argument exceeds {PATH_MAX}, or a c
847 pathname component is longer than {NAME_MAX} while c
848 {_POSIX_NO_TRUNC} is in effect c

849 [ENOTDIR] A component of the path prefix is not a directory.

850 [ENOENT] The named file does not exist or the path argument points to an
851 empty string.

852 [EPERM] The effective user ID does not match the owner of the file or the b
853 calling process does not have appropriate privileges. b

854 [EROFS] The named file resides on a read-only file system.

855 For each of the following conditions, if the condition is detected, the chmodtf function c

856 shall return -1 and set errno to the corresponding value: c

857 [EINVAL] The owner or group ID supplied is outside the range of zero to c

858 {UID_MAX}, inclusive. c

859 5.6.S.5 References
860 chmodQ §5.6.4, <sys/stat.h> §5.6.1. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

5.6 File Characteristics 113

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

861 5.6.6 Set File Access and Modification Times
862 Function: utime ()

863 5.6.6.1 Synopsis

864 #include <sys/types.h>
865 ^include <utime.h>

866 int utime (path, times)

867 char *path;

868 struct utimbuf *umes\

869 S.6.6.2 Description
870 The argument path points to a pathname naming a file. The utime() function sets the
871 access and modification times of the named file.

872 If the times argument is NULL, the access and modification times of the file are set to the

873 current time. The effective user ID of the process must match the owner of the file, or the c

874 process must have write permission or appropriate privilege, to use the utime() function c

875 in this manner.. c

876 If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the

877 access and modification times are set to the values contained in the designated structure, c

878 If {_POSIX_UTIME_0WNER} is in effect for path, the owner of the file shall be c

879 permitted to use the utime() function in this way, otherwise such use shall be restricted to b

880 processes with appropriate privileges. b

881 The utimbuf structure is defined by the header <utime.h>, and includes the following

882 members:

Member Member
Description

Type Name

timejt actime Access time
timejt modtime Modification time

887 The times in the utimbuf structure are measured in seconds since the Epoch (see Epoch c

888 §2.3). c

889 Upon successful completion, the utimeQ function shall mark for update the stjctime field c

890 of the file. c

114

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

891
892
893
894

895
896
897

898
899

900
901

902

903
904

905

906
907

908

909
910
911
912

913

914

915

5.6.6.3 Returns
Upon successful completion, the function shall return a value of zero. Otherwise, a value c
of -1 shall be returned, errno is set to indicate the error, and the file times shall not be c
affected. c

5.6.6.4 Errors
If any of the following conditions occur, the utime() function shall return -1 and set b

errno to the corresponding value: b

[EACCES] Search permission is denied by a component of the path prefix; or b

the times argument is NULL and the effective user ID of the b

process does not match the owner of the file and write access is b

denied. b

[ENAMETOOLONG] C

The length of the path argument exceeds {PATH_MAX}, or a c

pathname component is longer than {NAME_MAX} while c

{_POSIX_NO_TRUNC} is in effect c

[ENOENT] The named file does not exist or the path argument points to an
empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The times argument is not NULL and the calling process’s c
effective user ID has write access but does not match the owner of c
the file (if {_POSIX_UTIME_OWNER} is in effect) and the calling b

process does not have the appropriate privileges. b

[EROFS] The file resides on a read-only file system.

S.6.6.5 References

<sys/stat.h> §5.6.1. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.6 File Characteristics 115

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

916 5.7 Configurable Pathname Variables

917 5.7.1 Get Configurable Pathname Variables b
918 Functions: pathconf{), fpathconf() B

919 5.7.1.1 Synopsis b

920 long pathconf {path, name) c
921 char *path; b
922 int name; B

923 long fpathconf (fildes, name) c
924 int fildes, name', b

925 5.7.1.2 Description b

926 The pathconf() and fpathconf() functions provide a method for the application to b
927 determine the current value of a configurable limit or option (variable) that is associated b
928 with a file or directory. b

929 For pathconf(), the path argument points to the pathname of a file or directory. For b
930 fpathconf (), the fildes argument is an open file descriptor. b

931 The name argument represents the variable to be queried relative to that file or directory, b

932 The following table lists the pathname variables from <limits.h> §2.9 or <unistd.h> b

933 §2.10 that can be gotten by pathconf() or fpathconf(), and the symbolic constants, b

934 defined in <unistd.h>, that are the corresponding values used for name: b

Variable name Value B

FCHR_MAX

LINK_MAX
MAX_CANON

MAXJNPUT

NAME_MAX

PATH_MAX.

PIPE_BUF

_POSIX_CHOWN_RESTRICTED

_P0S1X_CH0WN_SUP_GRP

_POSIX_DIR_DOTS

_POSIX_GROUP_PARENT

_POSIX_LINK_DIR

_POSIX_NO_TRUNC

_POS I X_UT I ME_0 WNER

POSIX V DISABLE

PCJFCHR_MAX

PC_LINK_MAX
*PC_MAX_CANON

PC_MAX_INPUT
PC_N A M E_MA X

’PC_PATH_MAX

PCJPIPE_BUF

’PC_CH0W_RESTRICTED

’PC_CH0WN_SUP_GRP

PC_D1R_D0TS

_PC_GROUP_PARENT

PC_LINK_DIR

PC_N 0_T R UNC

PC_UTIM E_0 WNER

PC V DISABLE

B

B
B

B

B

C
c
c
c
c
c
c
c
c
c

UNAPPROVED DRAFT. AM Rights Reserved by IEEE.

Do not specify or claim conformance to this document

116 Files and Directories

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

950 5.7.1.3 Returns B
951 If the variable corresponding to name is not defined on the system, or if name is an b
952 invalid value, or if the implementation does not support the association of name with the b
953 file specified by path, or if the process did not have the appropriate privileges to query b
954 the file specified by path, or path does not exist, the pathconf{) function returns —1. b

955 If the variable corresponding to name is not defined on the system, or if name is an b
956 invalid value, or if the implementation does not support the association of name with the b

957 file specified by filedes, the fpathconf{) function returns —1. b

958 Otherwise, the pathconfQ or fpathconf{) functions return the current variable value for b

959 the file or directory. The value returned shall not be more restrictive than the b

960 corresponding value described to the application when it was compiled with the b
961 implementation’s <limits.h> §2.9 or <unistd.h> §2.10. b

962 c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

5.7 Configurable Pathname Variables 117

:■ >j

• ■ ■

6. Input and Output Primitives

1 The functions in this chapter deal with input and output from files and pipes. Functions c
2 are also specified which deal with the coordination and management of file descriptors c
3 and I/O activity. c

4 6.1 Pipes

5 6.1.1 Create an Inter-Process Channel

6 Function: pipe()

7 6.1.1.1 Synopsis

8 int pipe (fildes)

9 int fildes [2];

10 6.1.1.2 Description

11 The pipe() function shall create a pipe and place two file descriptors, one each into the c
12 arguments fildes[0] and fildes [1], that refer to the open file descriptions for the read and c
13 write end of the pipe. Their integer values shall be the two lowest available at the time of
14 the pipe() function call. The 0_N0NBL0CK flag shall be clear on both file descriptors.
15 (ThtfcntlQ function can be used to set the 0_NONBLOCK flag.)

16 Data can be written to file descriptor fildes[\\ and read from file descriptor fildes[0]. A
17 read on file descriptor fi!des[0] shall access the data written to file descriptor fildes [l] on
18 a first-in-first-out basis.

19 s

20 An attempt to write on fildes [0] or to read on fildes [1] shall fail.

21 Upon successful completion, the pipe() function shall mark for update the st_atime, c
22 st_ctime, and stjjitime fields of the pipe. c

6.1 Pipes

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

119

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

23

24

25

26

27
28

29
30

31
32

33

34

35

6.1.13 Returns
Upon successful completion, the function shall return a value of zero. Otherwise, a value
of -1 shall be returned and errno shall be set to indicate the error.

6.1.1.4 Errors
If any of the following conditions occur, the pipe () function shall return -1 and set errno

to the corresponding value:

[EMFELE] More than {OPEN_MAX} minus two file descriptors are already in
use by this process.

[ENFILE] The number of simultaneously open files in the system would
exceed a system-imposed limit.

6.1.1.5 References
fcntl{) §6.5.2, openQ §5.3.1, read() §6.4.1, write() §6.4.2.

B

B

B

B

B

36 6.2 File Descriptor Manipulation

37 6.2.1 Duplicate an Open File Descriptor

38 Functions: dup(),dup2()

39 6.2.1.1 Synopsis

40 int dup (fildes)
41 int fildes;

42 int dup2 {fildes,fildes2)

43 int fildes, fildes2;

44 6.2.1.2 Description

45 The dup() and dup2 () functions provide an alternate interface to the service provided by
46 the fcntl () function using the F_DUPFD command. The call

47 fid = dup (fildes);

48 shall be equivalent to

49 fid - fcntl (fildes, FJDUPFD, 0);

50 The call

51

52

53
54

fid = dup2 (fildes, fildes2);

shall be equivalent to

close (fildes2);

fid = fcntl (fildes, F DUPFD, fildes2);

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

120 Input and Output Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

55 except for the following:

56 Iffildes2 is not a valid file descriptor, the dup2 () function shall return [EBADF]. c

57 Iffildes is a valid file descriptor and is equal to fildes2, the dup2() function shall

58 return fildes2 without closing it

59 c

60 6.2.1.3 Returns
61 Upon successful completion, the function shall return a file descriptor. Otherwise, a
62 value of -1 shall be returned and errno shall be set to indicate the enror.

63 6.2.1.4 Errors
64 If any of the following conditions occur, the dup() and dup2{) functions shall return -1 b

65 and set errno to the corresponding value: ' b

66 [EBADF] The argument fildes is not a valid file descriptor or fildes2 is out of
67 range.

68 [EMFELE] The number of file descriptors would exceed {OPEN_MAX}. b

69 6.2.1.5 References
70 close{) §6.3.1, creat{) §5.3.2, exec §3.1.2, fcntl{) §6.5.2, open() §5.3.1,pipe() §6.1.1. b

71 6.3 File Descriptor Deassignment

72 6.3.1 Close a File
73 Function: close{)

74 6.3.1.1 Synopsis

75 int close {fildes)
76 \nt fildes;

77 6.3.1.2 Description

78 The fildes argument is a file descriptor. The closeQ function shall deallocate (i.e., make c
79 available for return by subsequent open(Ys, etc., executed by the process) the file
80 descriptor indicated by fildes. All outstanding record locks owned by the process on the c

81 file descriptor indicated by fildes shall be removed (that is, unlocked).

82 If the close() function is interrupted by a signal that is to be caught, it shall return -1 b

83 with errno set to [EINTR] and the state of fildes is implementation defined. When all file b
84 descriptors associated with a pipe or FIFO special file have been closed, any data b
85 remaining in the pipe or FIFO shall be discarded. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

6.3 File Descriptor Deassignment 121

Sid 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

86 6.3.1.3 Returns

87 Upon successful completion, a value of zero shall be returned. Otherwise, a value of-1
88 shall be returned and errno shall be set to indicate the error.

89 6.3.1.4 Errors

90 If any of the following conditions occur, the close () function shall return -1 and set b
91 errno to the corresponding value: b

92 [EBADF] The fildes argument is not a valid file descriptor.

93 [EINTR] The close function was terminated prematurely by a signal. b

94 6.3.1.5 References

95 creat{) §5.3.2, dup() §6.2.1, exec §3.1.2,/cnf/() §6.5.2,fork() §3.1.1, openQ §5.3.1, b

96 pipeQ §6.1.1.

97 6.4 Input and Output

98 6.4.1 Read from a File

99 Function: read()

100 6.4.1.1 Synopsis

101 int read (fildes, buf, nbyte)

102 int fildes;

103 char *buf;

104 unsigned nbyte; 9

105 6.4.1.2 Description

106 The fildes argument is an open file descriptor.

107 The read{) function shall attempt to read nbyte bytes from the file associated with fildes

108 into the buffer pointed to by buf.

109 On a regular file or other file capable of seeking, read() shall start at a position in the file c

110 given by the file offset associated with fildes. Before successful return from read(), the c
111 file offset shall be incremented by the number of bytes actually read.

112 On a file not capable of seeking, the read() shall start from the current position. Tne c

113 value of a file offset associated with such a file is undefined. c

114 Upon successful completion, the read() function shall return the number of bytes b

115 actually read and placed in the buffer. This number shall never be greater than nbyte. b

116 The value returned may be less than nbyte if the number of bytes left in the file is less b

117 than nbyje, if the read() request was interrupted by a signal, or if the file is a pipe (or b

118 FIFO) or special file and has fewer than nbyte bytes immediately available for reading, b

119 For example, a read{) from a file associated with a terminal may return one typed line of b

120 data. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

122 Input and Output Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

121 If a read() is interrupted by a signal before it reads any data, it shall return -1 with errno b

122 set to [EINTR]. b

123 If a readQ is interrupted by a signal after it has successfully read some data, either it b
124 shall return -1 with errno set to [EINTR], or it shall return the number of bytes read. A b
125 read() from a pipe or FIFO shall never return with errno set to [EINTR] if it has b

126 transferred any data. b

127 If an end-of-file has been reached, zero shall be returned. The result of subsequent 8
128 read{) requests on fildes is implementation defined. 8

129 The value of nbyte shall not be greater than {INT_MAX}; otherwise, the result is a

130 implementation defined. a

131 When attempting to read from an empty pipe (or FIFO):

132 If no process has the pipe open for writing, read() shall return zero to indicate b

133 end-of-file. b

134 If some process has the pipe open for writing and 0_N0NBL0CK is set, read()

135 shall return a -1 and set errno [EAGAIN].

136 If some process has the pipe open for writing and 0_N0NBL0CK is clear, read() 8
137 shall block until some data is written or the pipe is closed by all processes that 8
138 had opened the pipe for writing. 8

139 When attempting to read a file (other than a pipe or FIFO) that supports nonblocking a

140 reads and has no data currently available:

141 If 0_NONBLOCK is set, read{) shall return a -1 and set errno to [EAGAIN].

142 If 0_NONBLOCK is clear, read() shall block until some data becomes available. 8

143 The use of the 0_N0NBL0CK flag has no effect if there is some data available. 9

144 8

145 For any portion of a regular file, prior to the end-of-file, that has not been written, readQ a

146 shall return bytes with value zero. a

147 Upon successful completion, the read{) function shall mark for update the stjnime field c

148 of the file. c

149 6.4.1.3 Returns
150 Upon successful completion, read() shall return an integer indicating the number of

151 bytes actually read. Otherwise, read() shall return a value of-1 and set errno to indicate b

152 the error, and the content of the buffer pointed to by buf is indeterminate. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

6.4 Input and Output 123

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

153
154

155

6.4.1.4 Errors

If any of the following conditions occur, the read() function shall return -1 and set errno

to the corresponding value:

156
157

[EAGAIN] The 0_NONBLOCK flag is set for the file descriptor and the
process would be delayed in the read operation.

158 [EBADF] The fildes argument is not a valid file descriptor open for reading.

159

160

161

[EINTR] The read operation was terminated due to the receipt of a signal,

and either no data was transferred or the implementation does not
report partial transfer for this file.

162

163
164

165

6.4.1.5 References

creatQ §5.3.2, dup() §6.2.1 ,fcntl() §6.5.2, lseck() §6.5.3, openQ §5.3.1,pipe() §6.1.1,
sigaction() §3.3.4.

B

B

B

B

B

B

C

C

166 6.4.2 Write to a File

167 Function: write 0

168 6.4.2.1 Synopsis

169 int write (fildes, buf, nbyte)

170 int fildes;

171 char *buf\

172 unsigned nbyte; 9

173 6.4.2.2 Description

174 The fildes argument is an open file descriptor.

175 The write() function shall attempt to write nbyte bytes from the buffer pointed to by buf

176 to the file associated with the fildes.

Ill On a regular file or other file capable of seeking, the actual writing of data shall proceed a

178 from the position in the file indicated by the file offset associated with fildes. Before c

179 successful return from write(), the file offset shall be incremented by the number of bytes c
180 actually written.

181 On a file not capable of seeking, the write() shall start from the current position. The c

182 value of a file offset associated with such a file is undefined.

183 If the 0_APPEND flag of the file status flags is set, the file offset shall be set to the end of c
184 the file prior to each write. c

185 If a wri{b() requests that more bytes be written than there is room for (for example, the

186 physical end of a medium), only as many bytes as there is room for shall be written. For
187 example, suppose there is space for 20 bytes more in a file before reaching a limit A

188 write of 512 bytes would return 20. The next write of a non-zero number of bytes would

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

124 Input and Output Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

189 give a failure return (except as noted below).

190 Upon successful completion, the write () function shall return the number of bytes b
191 actually written to the file associated with fildes. This number shall never be greater than b

192 nbyte. b

193 If a write () is interrupted by a signal before it writes any data, it shall return -1 with b
194 err no set to [EINTR]. B

195 If wrire() is interrupted by a signal after it successfully writes some data, either it shall b
196 return -1 with err no set to [EINTR], or it shall return the number of bytes written. A b
197 write() to a pipe or FIFO shall never return with errno set to [EINTR] if it has transferred b

198 any data and nbyte is less than or equal to {PIPE_BUF}. b

199 The value of nbyte shall not be greater than {INT_MAX}; otherwise, the result is a

200 implementation defined. a

201 Write requests to a pipe (or FIFO) shall be handled the same as a regular file with the

202 following exceptions:

203 There is no file offset associated with a pipe, hence each write request shall c
204 append to the end of the pipe.

205 c

206 Write requests of {PIPE_BUF} bytes or less shall not be interleaved with data
207 from other processes doing writes on the same pipe. Writes of greater than
208 {PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries, with 8

209 writes by other processes, whether or not the 0_NONBLOCK flag of the file status 8

210 flags is set 8

211 If the 0_NONBLOCK flag is clear, a write request may cause the process to block, 8
212 but on normal completion it shall return nbyte. 8

213 If the 0_NONBLOCK flag is set, write () requests shall be handled differently, in c
214 the following ways: the write() function shall not block the process; write c
215 requests for {PIPE BIJF} or fewer bytes shall either succeed completely and c
216 return nbyte, or return -1 and set errno to [EAGAIN]. c

217 When attempting to write to a file descriptor (other than a pipe or FIFO) that supports a

218 nonblocking writes and cannot accept the data immediately: a

219 If the 0_NONBLOCK flag is clear, write() shall block until the data can be 8

220 accepted. 8

221 If the 0_NON'BLOCK flag is set, writc() shall not block the process. If some data 8

222 can be written without blocking the process, write{) shall write what it can and 8
223 return the number of bytes written. Otherwise, it shall return -1 and errno shall 8

224 be set to [EAGAIN]. 8

UNAPPROVED DRAFT. A!! Rights Reserved by IEEE.

Do not specify or claim conformance to this document

6.4 Input and Output 125

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

225

226
227

228
229
230

231

232

233
234

235

236

237

238

239

240
241

242

243

244

245
246
247

248

249

250

251

Upon successful completion, the write () function shall mark for update the st_ctime and
stjntime fields of the file.

6.4.2.3 Returns
Upon successful completion, write () shall return an integer indicating the number of
bytes actually written. Otherwise, it shall return a value of -1 and set errno to indicate
the error.

6.4.2.4 Errors
If any of the following conditions occur, the write() function shall return -1 and set

errno to the corresponding value:

[EAGAIN] The 0_NONBLOCK flag is set for the file descriptor and the

process would be delayed in the write operation.

The fldes argument is not a valid file descriptor open for writing.

c
c

[EBADF]

[EFBIG]

[EINTR]

[ENOSPC]

[EPIPE]

An attempt was made to write a file that exceeds an
implementation defined maximum file size.

The write operation was terminated due to the receipt of a signal,

and either no data was transferred or the implementation does not
report partial transfers for this file.

There is no free space remaining on the device containing the file.

An attempt is made to write to a pipe (or FIFO) that is not open for

reading by any process. A SIGPIPE signal shall also be sent to the

process.

6.4.2.5 References

creatO §5.3.2, dup() §6.2.1, fcntl{) §6.5.2, lseek() §6.5.3, openQ §5.3.1 ,pipe() §6.1.1,

sigactionQ §3.3.4.

c
c

B

B

B

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

126 Input and Output Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

252 6.5 Control Operations on Files

253 6.5.1 Data Definitions for File Control Operations

254 6.5.1.1 Synopsis

255 #indude <fcntl.h>

256 6.5.1.2 Description
257 The header <fcntl.h> §6.5.1 defines the following requests and arguments for the/cnt/()

258 and open() functions.

259 6.5.1.2.1 cmd values for/cnr/Q 8

Constant _ Description__ g

F_DUPFD Duplicate file descriptor 8
F_GETFD Get file descriptor flags 8
F_GETLK Get record locking information b
F_SETFD Set file descriptor flags 8
F_GBTFL Get file status flags 8
F_SETFL Set file status flags 8
F_SETLK Set record locking information b
F_SETLKW Set record locking information; wait if blocked b

269 6.5.I.2.2 File descriptor flags used for/cnr/() s

Constant _ Description_- g

FD_CLOEXEC Close the file descriptor upon execution 8
of an exec function 8

272 6.5.1.2.3 l_type values for record locking with/c/zr/() b

Constant Description §

F_RDLCK Shared or read lock b

FJJNLCK Unlock b
F_WRLCK Exclusive or write lock b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

6.5 Control Operations on Files 127

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

277 6.5.1.2.4 oflag values for open()

Constant _Description A

0_CREAT Create file if it doesn’t exist

0_EXCL Exclusive use flag

0_TRUNC Truncate flag

282 6.5.1.2.5 File status flags used for open() and fcntlQ

Constant Description g

0_APPEND Set append mode a
0_NONBLOCK No delay i

286 6.5.1.2.6 File access modes used for openQ and/cnr/() b

Constant _Description_ b

0_RDONLY Open for reading only b

0_RDWR Open for reading and writing b

0_WRONLY Open for writing only b

291 6.5.1.2.7 Mask for use with file access modes c

Constant _Description_ c

0_ACCM0DE Mask for file access modes c

294 6.5.1.3 References
295 fcntl() §6.5.2, open{) §5.3.1.

296 6.5.2 File Control

297 Function: fcntl ()

298 6.5.2.1 Synopsis

299 #include <sys/types.h> b

300 #include <unistd.h>

301 #include <fcntl.h>

302 int fcntl {fildes, cmd,...)

303 int fildes, cmd;

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

128 Input and Output Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

304

305
306

307
308

309

310
311
312

313

314

315
316

317
318

319
320

321
322

323

324

325
326

327
328
329
330
331
332

333
334

335

336

337
338
339

340
341

6.5.2.2 Description
The function fcntl{) provides for control over open files. The argument fildes is a file

descriptor.

The available values for and are defined in the header <fcntl.h> §6.5.1, which shall

include:

FJDUPFD Return a new file descriptor which is the lowest numbered
available (i.e., not already open) file descriptor greater than or
equal to the third argument, arg, taken as an integer of type int.
The new file descriptor refers to the same open file description as

the original file descriptor, and shares any locks.

The FD_CLOEXEC flag associated with the new file descriptor is

cleared to keep the file open across calls to the exec family of
functions.

FGETFD Get the file descriptor flags defined in Table 6.5.1.2.2 that are

associated with the file descriptor fildes. If the FD CLOEXEC bit
in the third argument, taken as type int, is zero the file shall remain
open across exec functions; otherwise the file shall be closed upon
successful execution of the exec function. File descriptor flags are

associated with a single file descriptor and do not affect other file
descriptors that refer to the same file.

F_SETFD Set the file descriptor flags defined in Table 6.5.1.2.2, that are
associated with fildes, to the third argument, arg, taken as type int.
This is zero or FD_GLOEXEC, as described for F_GETFD.

F GETFL Get the file status flags, defined in Table 6.5.1.2.5, and file access
modes for the open file description associated with fildes. The file

access modes defined in Table 6.5.1.2.6 can be extracted from the
return value using the mask 0_ACCMODE, which is defined in
<fcntl.h> §6.5.1. File status flags and file access modes are

associated with the open file description and do not affect other file
descriptors that refer to the same file with different open file

descriptions.

F_SETFL Set the file status flags, defined in Table 6.5.1.2.5, for the open file
description associated with fildes from the corresponding bits in

the third argument, arg, taken as type int. The file access mode
shall not be changed. If any other bits are set in arg, the result is
implementation defined.

The following commands are available for record locking. Record locking shall be

supported for regular files, and may be supported for other files.

c

c
c
c
c

c

8

c

c

c
c
c

8

C

B

B

B

B

C

C

C

C

C

B

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

6.5 Control Operations on Files 129

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

342

343
344

345

346
347

348

349

350

351
352
353
354

355
356

357

358

359

360

361
362

363

364

365
366

F_GETLK Get the first lock which blocks the lock description pointed to by a

the third argument, arg, taken as a pointer to type struct flock (see b

below). The information retrieved overwrites the information a
passed to fcntlQ in the structure flock. If no lock is found that a

would prevent this lock from being created, then the structure shall b

be left unchanged except for the lock type which shall be set to a
FJJNLCK. A

F_SETLK Set or clear a file segment lock according to the lock description a

pointed to by the third argument, arg, taken as a pointer to type b

struct flock (see below). F_SETLK is used to establish shared (or a
. read) locks (F_RDLCK) or exclusive (or write) locks, (F_WRLCK), a

as well as remove either type of lock (F_UNLCK). FJRDLCK, a

F_WRLCK, and FJJNLCK are defined by the <fcntl.h> §6.5.1 a
header. If a shared or exclusive lock cannot be set, fcntl() shall b
return immediately. a

F_SETLKW This command is the same as F_SETLK except that if a shared or a

exclusive lock is blocked by other locks, the process shall wait b

until the request can be satisfied. If a signal that is to be caught is b

received while fcntlQ is waiting for a region, the/cnr/() shall be b

interrupted. Upon return from the process’s signal handler, fcntlQ b

shall return -1 with errno set to [EINTR], and the lock operation b

shall not be done. b

The structure flock, defined by the <fcntl.h> §6.5.1 header, describes a lock. It describes a
the type (l_rype), starting offset (l_whence), relative offset (l_start), size {IJen), and a

process-ID (/_pid):

Member Member
Description

Type Name •

short l_type F_RDLCK, F_WRLCK, FJJNLCK
short l_whence flag for starting offset

offj l_start relative offset in bytes

offj IJen size; if 0 then until EOF
int Ijpid process ID of the process holding the lock,

returned with F GETLK

375 When a shared lock has been set on a segment of a file, other processes shall be able to a

376 set shared locks on that segment or a portion of it. A shared lock prevents any other a

377 process from setting an exclusive lock on any portion of the protected area. A request for b

378 a shared'lock shall fail if the file descriptor was not opened with read access. b

379 An exclusive lock shall prevent any other process from setting a shared lock or an a

380 exclusive lock on any portion of the protected area. A request for an exclusive lock shall b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

130 Input and Output Primitives.

>
 »

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

381 fail if the file descriptor was not opened with write access. B

382 The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END to indicate that the a

383 relative offset, l_start bytes, w'ill be measured from the start of the file, current position, a

384 or end of the file, respectively. The value of lJen is the number of consecutive bytes to a

385 be locked. If lJen is negative, the result is implementation defined. The /_pid field is b
386 only used with F_GETLK to return the process ID of the process holding a blocking lock. b

387 Locks may start and extend beyond the current end of a file, but shall not start or extend c
388 before the beginning of the file. A lock shall be set to extend to the end of file if lJen is c
389 set to zero. If the flock struct has l_whence and l_start that point to the beginning of the b

390 file, and lJen of zero, the entire file shall be locked. b

391 The calling process shall have only one type of lock set for each byte in the file. Before b
392 successful return from a F_SETLK or F_SETLKW request, the previous lock type for each b
393 byte in the specified region shall be replaced by the new lock type. All locks associated a

394 with a file for a given process shall be removed when a file descriptor for that file is a

395 closed by that process or the process holding that file descriptor terminates. Locks are b
396 not inherited by a child process created using the fork() function. a

397 A potential for deadlock occurs if a process controlling a locked region is put to sleep by b
398 attempting to lock another process’s locked region. If the system detects that sleeping a

399 until a locked region is unlocked would cause a deadlock, the fcntl{) function shall fail a

400 with an [EDEADLK] error.

401 6.5.2.3 Returns
402 Upon successful completion, the value returned shall depend on cmd as follows: c

Request _Return Value_

F_DUPFD A new file descriptor.

F_GETFD Value of the flags defined in Table 6.5.1.2.2, but 8
the return value shall not be negative.

F_SETFD Value other than -1.
FJ3ETFL Value of file status flags and access modes, but c

the return value shall not be negative. c

F_SETFL Value other than-1.

F_GETLK Value other than -1. a

F_SETLK Value other than -1. a

F_SETLKW Value other than -1. a

411 Otherwise, a value of-1 shall be returned and errno shall be set to indicate the error. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

6.5 Control Operations on Files 131

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

412 6.5.2.4 Errors
413 If any of the following conditions occur, the/cnr/() function shall return -1 and set errno b
414 to the corresponding value: b

415 [EACCES] The argument cmd is F_SETLK, the type of lock (Ijype) is a A
416 shared lock (F_RDLCK) or exclusive lock (F_WRLCK), and the A
417 segment of a file to be locked is already exclusive-locked by A
418 another process, or the type is an exclusive lock and some portion C
419 of the segment of a file to be locked is already shared-locked or A
420 . exclusive-locked by another process.

421 [EBADF] The fildes argument is not a valid file descriptor.

422 The argument cmd is F_SETLK or F_SETLKW, the type of lock A

423 (Ijype) is a shared lock (F_RDLCK), and fildes is not a valid file A
424 descriptor open for reading. A

425 The argument cmd is FJSETLK or F_SETLKW, the type of lock A

426 (Ijype) is an exclusive lock (F_WRLCK), and fildes is not a valid A
427 file descriptor open for writing. A

428 [EINTR] The argument cmd is F_SETLKW and the function was interrupted B

429 by a signal. B

430 [EINVAL] The argument cmd is F_DUPFD and the third argument is negative C

431 or greater than or equal to {OPEN_MAX}.

432 The argument cmd is F_GETLK, F_SETLK, or F_SETLKW and the A

433 data arg points to is not valid, or fildes refers to a file that does not B

434 support locking. B

435 [EMFELE] The argument cmd is F_DUPFD and {OPEN_MAX} file descriptors

436 are currently in use by this process. A

437 [ENOLCK] The argument cmd is F_SETLK or F_SETLKW and satisfying the B

438 lock or unlock request would result in the number of locked B

439 regions in-the system exceeding a system-imposed limit B

440 For each of the following conditions, if the condition is detected, the fcntl() function B
44! shall return -1 and set errno to the corresponding value: B

442 [EDEADLK] The argument cmd is F_SETLKW and a deadlock condition was B

443 detected. B

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

132 Input and Output Primitives

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

444 6.5.2.5 References
445 close () §6.3.1, exec §3.1.2, openQ §5.3.1, <fcntl.h> §6.5.1, sigaction() §3.3.4. c

446 6.5.3 Reposition ReadAVrite File Offset c

447 Function: lseek()

448 6.5.3.1 Synopsis

449 #include <sys/types.h>
450 -^include <unistd.h>

451 off_t lseek (fildes, offset, whence)

452 \n(fildes, whence; c

453 off_t offset;

454 6.5.3.2 Description
455 The fildes argument is an open file descriptor. The lseek() function shall set the file c
456 offset for the open file description associated with fildes as follows: c

457 If whence is SEEK_SET, the offset is set to offset bytes. c

458 If whence is SEEK_CUR, the offset is set to its current value plus offset bytes. c

459 If whence is SEEK_END, the offset is set to the size of the file plus offset bytes. c

460 The symbolic constants SEEK_SET, SEEK_CUR, SEEK_END are defined in the header

461 <unistd.h> §2.10.

462 Some devices are incapable of seeking. The value of the file offset associated with such c
463 a device is undefined. c

464 The lseek{) function shall allow the file offset to be set beyond the end of existing data in c
465 the file. If data is later written at this point, subsequent reads of data in the gap shall a

466 return bytes with the value zero until data is actually written into the gap.

467 The lseek() function shall not, by itself, extend the size of a file. 9

468 6.5.3.3 Returns
469 Upon successful completion, the function shall return the resulting offset location as c
470 measured in bytes from the beginning of the file. .Otherwise, it shall return a value of
471 (off_t) -1, shall set errno to indicate the error, and the file offset shall remain unchanged, c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

6.5 Control Operations on Files

I

133

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

472 6.5.3.4 Errors

473 If any of the following conditions occur, the lseek() function shall return -1 and set b
474 errno to the corresponding value: b

475 [EB ADF] The fildes argument is not a valid file descriptor.

476 [EINVAL] The whence argument is not a proper value, or the resulting file c
477 offset would be invalid. c

478 [ESPIPE] The fildes argument is associated with a pipe or FIFO.

479 6.5.3.S References

480 creat{) §5.3.2, dup() §6.2.1 ,fcntl() §6.5.2, open{) §5.3.1, readQ §6.4.1, sigaction() c

481 §3.3.4, write() §6.4.2, <unistd.h> §2.10. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

134 Input and Output Primitives

7. Device- and Class-Specific Functions

1 7.1 General Terminal Interface 8

2 7.1.1 Interface Characteristics 8

3 7.1.1.1 Description 8
4 This section describes a general terminal interface that shall be provided to control a

5 asynchronous communications ports. It is implementation defined whether this interface a

6 supports network connections and/or synchronous ports. 8

7 7.1.1.2 Opening a Terminal Device File 8
8 When a terminal file is opened, it normally causes the process to wait until a connection s
9 is established. In practice, user programs seldom open these files; they are opened by 8

10 special programs and become a user’s standard input, output, and error files. 8

11 As described in open() §5.3.1, opening a terminal device file with the 0_N0NBL0CK 8
12 flag clear shall cause the process to block until the connection is established. If the 8
13 0_N0NBL0CK flag is set, the open() function shall return a file descriptor without 8

14 waiting for a connection to be established. 8

15 7.1.1.3 Process Groups 8
16 A terminal may have a distinguished process group associated with it. This distinguished 8
17 process'group plays a special role in handling signal-generating input characters, as 8
18 discussed below in Special Characters §7.1.1.10. 8

19 If the implementation supports the Job Control Option (if {_POSIX_JOB_CONTROL} is c
20 defined; see Symbolic Constants §2.10), command interpreter processes* supporting job c
21 control can allocate the terminal to different jobs, or process groups, by placing related 8

22 processes in a single process group and associating this process group with the terminal. 8

23 A terminal’s associated process group may be set or examined by a process, assuming the c

* The P1003.2 forking Group is working on a definition and description of command interpreters. See
Shell and Utilities §A.2.2.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7.1 General Terminal Interface 135

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

24 permission requirements in this section are met; see tcgetpgrp() §7.2.3 and tcsetpgrpQ c
25 §7.2.4. The terminal interface aids in this allocation by restricting access to the terminal 8
26 by processes that are not in the current process group; see Job Access Control §7.1.1.5. 8

27 7.1.1.4 The Controlling Terminal 8
28 A terminal may belong to a.process as its controlling terminal. If a process that is a 8
29 “session process group leader,” and that does not have a controlling terminal, opens a 8
30 terminal file not already associated with a process group, the terminal associated with 8
31 that terminal file becomes the controlling terminal for that process, and the terminal’s 8
32 distinguished process group is set to the process group of that process. c

33 The controlling terminal is inherited by a child process during a forkf) function. A 8
34 process relinquishes its controlling terminal when it changes its process group using a 8
35 setpgrp() function. 8

36 When controlling process terminates, the distinguished process group of its controlling c
37 terminal is set to zero (indicating no distinguished process group). This allows the 8
38 terminal to be acquired as a controlling terminal by a new session process group leader. 8

39 7.1.1.5 Job Access Control 8
40 If a process is in the distinguished process group of its controlling terminal, or the c

41 distinguished process group is zero (that is, if the process is a foreground process), then c
42 read operations shall be allowed as described below in Input Processing and Reading c

43 Characters §7.1.1.6. For those implementations that do not support the Job Control c

44 Option, a background process shall also be allowed to read from its controlling terminal, c

45 For those implementations that support the Job Control Option, if a process is not in the c
46 (non-zero) distinguished process group of its controlling terminal (that is, if the process is c

47 a background process), then any attempts to read from that terminal. shall cause the c

48 process group to be sent a SIGTTIN signal unless the reading process is ignoring or c

49 blocking the SIGTTIN signal. If the process is ignoring or blocking the SIGTTIN signal, c

50 the process is instead returned an [EIO] error and no signal is sent to the process. The c

51 default action of the SIGTTIN signal is to stop the process to which it is sent. See Signal c

52 Names §3.3.1. c

53 It is frequently undesirable for background processes to write to their controlling a

54 terminal. If TOSTOP (see Local Modes §7.1.2.6) is set, then attempts by a background a

55 process to write to its controlling.terminal shall cause the process group to be sent a a
56 SIGTTOU signal, which, by default, will cause the members of the process group to stop, a

57 If TOSTOP is not set or the process is ignoring or blocking SIGTTOU signals, the process a

58 is allowed to write to the terminal and the SIGTTOU signal is not sent. Certain calls that a

59 set terminal parameters are treated in this same fashion, except that TOSTOP is ignored; a

60 however, the effect is identical to that of terminal writes when TOSTOP is set See c

61 Control'Functions §7.2. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

136 Device- and Class-Specific Functions

FOR COMPUTER ENVIRONMENTS Sid 1003.1—Draft 12

62 7.1.1.6 Input Processing and Reading Characters 8
63 A terminal device associated with a terminal device file may operate in full-duplex mode, 9

64 so that characters may arrive even while output is occurring. Each terminal device file 9

65 has associated with it an input queue, into which incoming characters are stored by the 9

66 system before being read by a process. The system may impose a limit, {MAX_INPUT}, c
67 on the number of bytes that may be stored in the input queue. The behavior of the a

68 system when this limit is exceeded is implementation defined. a

69 Two general kinds of input processing are available, determined by whether the terminal 8
70 device file is in canonical mode or non-canonical mode. These modes are described in 8

71 the Canonical Mode Input Processing §7.1.1.7 and Non-Canonical Mode Input 8
72 Processing §7.1.1.8. Additionally, input characters are processed according to the 8
73 cjflag (see Input Modes §7.1.2.3) and cjflag (see Local Modes §7.1.2.6) fields. Such 8
74 processing can include echoing, which in general means transmitting input characters 8
75 immediately back to the terminal when they are received from the terminal. This is 8
76 useful for terminals that can operate in full-duplex mode. The manner in which 8
77 characters are provided to a process reading from a terminal device file is very dependent 8
78 on whether the terminal file is in canonical or non-canonical mode. 8

79 Another dependency is whether the 0_N0NBLOCK flag is set by open () or fcntl{). If the 8

80 0_N0NBL0CK flag is clear, then the read request shall shall block until data is available b

81 or a signal has been received. If the 0_N0NBLOCK flag is set, then the read request shall 8
82 complete, without blocking, in one of three ways: 8

83 1. If there is enough data available to satisfy the entire request, the read shall s

84 complete successfully, having read all the requested data, and return the a
85 number of bytes read. a

86 2. If there is not enough data available to satisfy the entire request, the read 8
87 shall complete successfully, having read as much data as possible, and 8

88 return the number of bytes it was able to read. 8

89 3. If there is no data available, the read shall return a -1, with err no set to 8
90 EAGAIN. 8

. 91 When data is available depends on whether the input processing mode is canonical or c
92 non-canonical. The following sections. Canonical Mode Input Processing §7.1.1.7 and c
93 Non-Canonical Mode Input Processing §7.1.1.8, describe each of these input c
94 processing modes. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7.1 General Terminal Interface 137

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

95 7.1.1.7 Canonical Mode Input Processing g
96 In canonical mode input processing, terminal input is processed in units of lines. A line 8
97 is delimited by a new-line ('\n'). character, an end-of-file (EOF) character, or an end- 9

98 of-line (EOL) character. See the Special Characters §7.1.1.10 for more information on 9

99 EOF and EOL. This means that a read request shall not be satisfied until an entire line has c
100 been typed, or a signal has been received. Also, no matter how many characters are 8
101 requested in the read call, at most one line shall be returned. It is not, however, s

102 necessary to read a whole line at once; any number of characters, even one, may be 8
103 requested in a read without losing information. 8

104 If {MAX_CANON} is defined, it is a limit on the number of bytes in a line. The behavior a
105 of the system when this limit is exceeded is implementation defined. a

106 Erase and kill processing occurs during input. The ERASE character erases the last c

107 character typed in the current input line. c

108 ERASE shall not erase beyond the beginning of the current input line. The KILL 8

109 character kills (deletes) the entire current input line, and optionally outputs a new-line 8

110 character. All these characters operate on a keystroke basis, independently of any 8
111 backspacing or tabbing that may have been done. 8

112 9

113 7.1.1.8 Non-Canonical Mode Input Processing 8
114 In non-canonical mode input processing, input characters are not assembled into lines, s

115 and erase and kill processing does not occur. The values of the special characters MIN b

116 and TIME are used to determine how to process the characters received. MIN and TIME c

117 are defined by the c_cc array of special control characters. c

118 MIN represents the minimum number of characters that should be received when the read 8

119 is satisfied (i.e., the characters are returned to the user). TIME is a timer of 0.1 second b

120 granularity that is used to time out bursty and short term data transmissions. If MIN is b

121 greater than {MAXJNPUT}, the response to the request is implementation defined. The 8

122 four possible values for MIN and TIME and their interactions are described below. b

123 7.1.1.8.1 Case A: MIN > 0, TIME > 0 b
124 In this case TIME serves as an intercharacter timer and is activated after the first character 8

125 is received. Since it is an intercharacter timer, it is reset after a character is received. The 8

126 interaction between MIN and TIME is as follows: as soon as one character is received, b

127 the intercharacter timer is started. If MIN characters are received before the b
128 intercharacter timer expires (remember that the timer is reset upon receipt of each 8

129 character), the read is satisfied. If the timer expires before MIN characters are received, b

130 the characters received to that point are returned to the user. Note that if TIME expires at b
131 least one character shall be returned because the timer would not have been enabled 8

132 unless a character was received. In this case (MIN > 0, TIME > 0) the read shall block c
133 until the MIN and TIME mechanisms are activated by the receipt of the first character. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

138 Device- and Class-Specific Functions

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

134 7.1.1.8.2 Case B: MIN >0, TIME = 0 B
135 In this case, since the value of TIME is zero, the timer plays no role and only MIN is b
136 significant. A pending read is not satisfied until MIN characters are received (i.e., the c
137 pending read shall block until MIN characters are received). A program that uses this 8
138 case to read record-based terminal I/O may block indefinitely in the read operation. b

139 7.1.1.8.3 Case C: MIN = 0, TIME >0 b
140 In this case, since MIN = 0, TIME no longer represents an intercharacter timer. It now 8
141 serves as a read timer that is activated as soon as the read{) function is processed. A 8

142 read is satisfied as soon as a single character is received or the read timer expires. Note 8
143 that in this case if the timer expires, no character shall be returned. If the timer does not 8
144 expire, the only way the read can be satisfied is if a character is received. In this case the 8
145 read shall not block indefinitely waiting for a character; if no character is received within b

146 TIME*0.1 seconds after the read is initiated, the read shall return with zero characters. b

147 7.1.1.8.4 Case D: MIN = 0, TIME = 0 b

148 The minimum of either the number of characters requested or the number of characters c
149 currently available shall be returned without waiting for more characters to be input c

150 7.1.1.8.5 Comparison of the Different Cases of MIN, TIME Interaction b
151 Some points to note about MIN and TIME: b

152 1. In the preceding explanations one may notice that the interactions of MIN and b
153 TIME are not symmetric. For example, when MIN > 0 and TIME = 0, TIME has no b
154 effect. However, in the opposite case where MIN = 0 and TIME > 0, both MIN and b

155 TIME play a role in that MIN is satisfied with the receipt of a single character. b

156 2. Also note that in case A (MIN > 0, TIME > 0), TIME represents an intercharacter b

157 timer while in case C (MIN = 0, TIME > 0) TIME represents a read timer. 8

158 These two points highlight the dual purpose of the MIN/TIME feature. Cases A and B, b
159 where MIN > 0, exist to handle burst mode activity (e.g., file transfer programs) where a b
160 program would like to process at least MIN characters at a time. In case A, the 8
161 intercharacter timer is activated by a user as a safety measure; while in case B, it is 8

162 turned off. 8

163 Cases C and D exist to handle single character timed transfers. These cases are readily 8
164 adaptable to screen-based applications that need to know if a character is present in the 8
165 input queue before refreshing the screen. In case C the read is timed; while in case D, it is 8

166 not. 8

167 Another important note is that MIN is always just a minimum. It does not denote a record b
168 length. That is, if a program does a read of 20 bytes, MIN is 10, and 25 characters are 8
169 present, £0 characters shall be returned to the user. 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7.1 General Terminal Interface 139

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

170 7.1.1.9 Writing Characters and Output Processing
171 When a process writes one or more characters to a terminal device file, they are
172 processed according to the c_ofiag (see Output Modes §7.1.2.4) The implementation
173 may provide a buffering mechanism; as such, when a call to write() completes, all of the
174 characters written have been scheduled for transmission to the device, but the
175 transmission will not necessarily have completed.

176

177 7.1.1.10 Special Characters
178 Certain characters have special functions on input and/or output These functions are
179 summarized as follows:

180
181
182

INTR Special character on input and is recognized if the ISIG flag is
enabled. Generates a S1GINT signal which is sent to all processes
in the distinguished process group associated with the terminal

183
184
185

QUIT Special character on input and is recognized if the ISIG flag is
enabled. Generates a SIGQUIT signal which is sent to all processes
in the distinguished process group associated with the terminal.

186
187
188

ERASE Special character on input and is recognized if the ICANON flag is
set Erases the preceding character. It shall not erase beyond the
start of a line, as delimited by an NL, EOF, or EOL character.

189
190
191

KILL Special character on input and is recognized if the ICANON flag is
set. Deletes the entire line, as delimited by a NL, EOF, or EOL
character.

192

193
194
195
196
197
198
199

EOF Special character on input and is recognized if the ICANON flag is
set. When received, all the characters waiting to be read are
immediately passed to the program, without waiting for a new-
line, and the EOF is discarded. Thus, if there are no characters
waiting (that is, the EOF occurred at the beginning of a line), zero
characters shall be passed back, representing an end-of-file
indication.

200
201

NL Special character on input and is recognized if the ICANON flag is
set. Is the line delimiter (/\n/). It cannot be changed.

202
203

EOL Special character on input and is recognized if the ICANON flag is
set. Is an additional line delimiter, like NL.

204
205
206
207

SUSP Special character on input and is recognized if the ISIG flag is
enabled (Job Control Option only). Generates a SIGTSTP signal
which is sent to all processes in the distinguished process group
associated with the terminal.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

8

8

9

9

9

9

C

8

8

8

A

8

8

A

9

9

A

9

A

A
8

8

9

A

8

8

8

8

8

8

A
9

A
8

A

8

8

8

140 Device- and Class-Specific Functions

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

208 STOP Special character on both input and output and is recognized if the a

209 IXON (input) or IXOFF (output) flag is set. (ASCII DC3) Can be 8
210 used to temporarily suspend output. It is useful with CRT 8
211 terminals to prevent output from disappearing before it can be c

212 read. c

213 START Special character on both input and output and is recognized if the a

214 IXON (input) or IXOFF (output) flag is set. (ASCII DC1) Can be 8

215 used to resume output that has been suspended by a STOP c
216 character. c

217 The START and STOP characters cannot be changed. The values for INTR, QUIT, 8
218 ERASE, KILL, EOF, EOL, SUSP (Job Control Option only), shall be changeable to suit a

219 individual tastes. b

220 If {_POSIX_V_DISABLE} is in effect for the terminal file, special character functions can b
221 be disabled individually. b

222 If two or more special characters have the same value, the function performed when that 8
223 character is received is undefined. 8

224 A special character is recognized not only by its value, but also by its context; e.g., an c
225 implementation may define multi-byte sequences that have a meaning different from the c
226 meaning of the bytes when considered individually. Implementations may also define c
227 additional single-byte functions. c

228 7.1.1.11 Modem Disconnect 8
229 When a modem disconnect is detected by the terminal interface, a SIGHUP signal is sent 8
230 to all processes in the distinguished process group associated with the terminal. Unless 8
231 other arrangements have been made, this signal causes the processes to terminate. If 8
232 SIGHUP is ignored or caught, any subsequent read returns with an end-of-file indication c

233 until the device is closed. Thus programs that read a terminal file and test for end-of-file 8
234 can terminate appropriately after a disconnect 8

235 7.1.1.12 Closing a Terminal Device File 8
236 The last process to close a terminal device file shall cause any output to be sent to the b
237 device and any input to be discarded. If HUPCL is set in the control modes, and the b
238 communications port supports a disconnect function, the terminal device shall perform a b

239 disconnect b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7.1 General Terminal Interface 141

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

240

241

242

243
244

245
246

254

255
256

274

275

276

277

278

7.1.2 Settable Parameters g

7.1.2.1 Synopsis s

#include <termios.h> g

7.1.2.2 termios Structure g

Routines that need to control certain terminal I/O characteristics shall do so by using the 8

termios structure as defined in the header <termios.h>. The members of this structure 8
include (but are not limited to): 8

Member

Type
Array

Size

Member

Name
Description

unsigned long c_iflag input modes
unsigned long c_oflag output modes
unsigned long c_cflag control modes
unsigned long c_lflag local modes
unsigned char [] NCCS c_cc control chars

The total size of the termios structure is implementation defined. c

7.1.2.3 Input Modes 8
The c_iflag field describes the basic terminal input control: s

Mask
Name

Description
8
8
8

BRKINT Signal interrupt on break. 8
ICRNL Map CR to NL on input. 8
IGNBRK Ignore break condition. 8
IGNCR Ignore CR. 8
IGNPAR Ignore characters with parity errors. 8

INLCR Map NL to CR on input 8
INPCK Enable input parity check. 8
1STREP Strip character. 8

IXOFF Enable start/stop input control. 9

IXON Enable start/stop output control. 8

PARMRX Mark parity errors. 8

If IGNBRK is set, a break condition (a character framing error with data all zeroes) 8

detected on input is ignored, that is, not put on the input queue and therefore not read by 8

any process. Otherwise if BRK1NT is set, the break condition shall generate a single 8

SIGINT.Signal and flush both the input and output queues. If neither IGNBRK or BRKINT b
is set, a break condition is read as a single '\0'. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

142 Device- and Class-Specific Functions

«
«

<

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

279 If IGNPAR is set, a byte with a framing or parity error (other than break) is ignored. c

280 If PARMRK is set, a byte with a framing and parity error (other than break) that is not b

281 ignored is given to the application as the three-character sequence '\377', '\0',X, where b

282 ,\377', '\0' is a two-character flag preceding each sequence and X is the data of the b

283 character received in error. To avoid ambiguity in this case, if ISTRIP is not set, a valid b
284 character of '\377' is given to the application as ,\377/, '\377'. If PARMRK is not set, b
285 a framing or parity error (other than break) that is not ignored is given to the application b
286 as a single character '\0'. B

287 If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity g
288 checking is disabled, allowing output parity generation without input parity errors. Note - 8
289 that whether input parity checking is enabled or disabled is independent of whether parity 8
290 detection is enabled or disabled. If parity detection is enabled but input parity checking 8
291 is disabled, the hardware to which the terminal is connected shall recognize the parity bit, 8
292 but the terminal special file shall not check whether this bit is set correctly or not. 8

293 If ISTRIP is set, valid input characters are first stripped to 7 bits, otherwise all 8 bits are 8
294 processed. 8

295 If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, 8

296 a received CR character is ignored (not read). Otherwise if ICRNL is set, a received CR 8
297 character is translated into a NL character. 8

298 If 1XON is set, start/stop output control is enabled. A received STOP character shall 8
299 suspend output and a received START character shall restart output. When IXON is set, b
300 START and STOP characters are not read, but merely perform flow control functions, b
301 When IXON is not set, the START and STOP characters are read. b

302 9

303 If IXOFF is set, start/stop input control is enabled. The system shall transmit STOP 9
304 characters, which are intended to cause the terminal device to stop transmitting data, as 9
305 needed to prevent the number of characters in the input queue from exceeding c

306 {MAX_INPUT}, and shall transmit START characters, which are intended to cause the 8

307 terminal device to resume transmitting data, as soon as the device can continue 8
308 transmitting data without risk of overflowing the input queue. The precise conditions 8

309 under which STOP and START characters are transmitted are implementation defined. 9

310 The initial input control value after open() is implementation defined. 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7.1 General Terminal Interface 143

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

311 7.1.2.4 Output Modes
312 The c_oflag field specifies the terminal interface’s treatment of output:

Mask

Name

OPOST

Description

Perform output processing.

8

8

8
8

8

318 If OPOST is set, output characters are processed in an implementation defined fashion so 9

319 that lines of text are modified to appear appropriately on the terminal device, otherwise 8
320 characters are transmitted without change. 8

321 The initial output control value after open() is implementation defined. 8

322 7.1.2.5 Control Modes 8

323 The cjoflag field describes the hardware control of the terminal; not all values specified 8

324 are required to be supported by the underlying hardware: 8

Mask

Name .
Description

8
8

CLOCAL Ignore modem status lines. 8

CREAD Enable receiver. 8

CSIZE Character size: 8

CS5 5 bits 8

CS6 6 bits 8

CS7 7 bits 8

CS8 8 bits 8

CSTOPB Send two stop bits, else one. 8

HUPCL Hang up on last close. 8

PARENB Parity enable. 8

PARODD Odd parity, else even. 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

144 Device- and Class-Specific Functions

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

341 In addition, the input and output baud rates are also stored in the c_cflag field. The 9

342 following values are supported: 9

Name Description 9

BO Hang up 9

B50 50 baud 9

B75 75 baud 9

B110 110 baud 9

B134 134.5 baud 9

B150 150 baud 9

B200 200 baud 9

B300 300 baud 9

B600 600 baud 9

B1200 1200 baud 9

B1800 1800 baud 9

B2400 2400 baud 9

B4800 4800 baud 9

B9600 9600 baud 9

B19200 19200 baud 9

B38400 38400 baud 9

360 The following interfaces are provided for getting and setting the values of the input and a

361 output baud rates: a

362 int cfgetospeed (termios_p) c
363 struct termios * termios_p; A

364 int cfsetospeed (termios_py speed) C
365 struct termios * termios_p; A

366 int speed; ' A

367 int cfgctispeed (termios_p) C
368 struct termios * termios_p; A

369 int efsetispeed (termios_p, speed) C
370 struct termios * termios_p\ A

371 int speed; A

372 The termios_p argument is a pointer to a termios structure. c

373 cfgetospeed{) returns the output baud rate stored in c_cflag pointed to by termios_p. c

374 cfsetospecd{) sets the output baud rate stored in the c_cfiag pointed to by termios_p to c
375 speed. The zero baud rate, BO, is used to terminate the connection. If BO is specified, 8

376 the modem control lines shall no longer be asserted. Normally, this will disconnect the 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7.1 General Terminal Interface 145

8

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

377 line.

378 cfgetispeed() returns the input baud rate stored in c_cflag. c

379 cfsetispeedQ sets the input baud rate stored in c_cfiag to speed. If the input baud rate is 8

380 set to zero, the input baud rate will be specified by the value of the output baud rate. For 8

381 any particular hardware, unsupported baud rate changes are ignored. This refers both to 8
382 changes to baud rates not supported by the hardware, and to changes setting the input and 8

383 output baud rates to different values if the hardware does not support this. 8

384 The CSIZE bits specify , the character size in bits for both transmission and reception. 8

385 This size does not include the parity bit, if any. If CSTOPB is set, two stop bits are used, 8

386 otherwise one stop bit For example, at 110 baud, two stop bits are normally used. 8

387 If CREAD is set, the receiver is enabled. Otherwise, no characters shall be received. 8

38S If PARENB is set, parity generation and detection is enabled and a parity bit is added to 8

389 each character. If parity is enabled, PARODD specifies odd parity if set, otherwise even 8

390 parity is used. 8

391 If HUPCL is set, the modem control lines for the port shall be lowered when the last 8

392 process with the port open closes the port or the process terminates. The modem 8

393 connection shall be broken. If HUPCL is not set, the control lines are not altered. 8

394 If CLOCAL is set, a connection does not depend on the state of the modem status lines. If 8
395 CLOCAL is clear, the modem status lines shall be monitored. 8

396 Under normal circumstances, a call to the open() function shall wait for the modem 8
397 connection to complete. However, if the 0_NONBLOCK flag is set (see openQ §5.3.1) or 8
398 if CLOCAL has been set, the openQ function shall return immediately without waiting 8
399 for the connection. For those files on which the connection has not been established, or 8

400 on which a modem disconnect has occurred, and for which CLOCAL is not set, both 8

401 read{) and writeQ shall return a zero character count For read(), this is equivalent to an s

402 end-of-file condition. 8

403 If the object for which the control modes are set is not an asynchronous serial connection, 8

404 some of the modes may be ignored; e.g., if an attempt is made to set the baud rate on a 8
405 network connection to a terminal on another host, the baud rate may or may not be set on 8

406 the connection between that terminal and the machine it is directly connected to. ?

407 The initial hardware control value after openQ is implementation defined. 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to tin's document

146 Device- and Class-Specific Functions

FOR COMPUTER ENVIRONMENTS Sid 1003.1—Draft 12

408 7.1.2.6 Local Modes
409 The cjflag field of the argument structure is used to control various functions:

Mask

Name
Description

ECHO Enable echo.

ECHOE Echo ERASE as an error-correcting backspace.
ECHOK Echo KILL.
ECHONL Echo '\n'.

ICANON Canonical input (erase and kill processing).

ISIG Enable signals.
NOFLSH Disable flush after interrupt, quit, or suspend.
TOSTOP Send SIGTTOU for background output

423 If ECHO is set, input characters are echoed back to the terminal. If ECHO is not set, input
424 characters are not echoed.

425 If ECHOE and ICANON are set, the ERASE character shall cause the terminal to erase the
426 character from the display, if possible.

427 If ECHOK and ICANON are set, the KILL character shall either cause the terminal to erase
428 the line from the display or shall echo the '\n' character after the KILL character.

429 If ECHONL and ICANON are set, the '\n' character shall be echoed even if ECHO is not

430 set

431 If ISIG is set, each input character is checked against the special control characters INTR,
432 QUIT, and SUSP (Job Control Option only). If an input character matches one of these
433 control characters, the function associated with that character is performed. If ISIG is not
434 set, no checking is done. Thus these special input functions are possible only if ISIG is

435 set

436 If ICANON is set, canonical processing is enabled. This enables the erase and kill edit

437 functions, and the assembly of input characters into lines delimited by NL, EOF, and
438 EOL, as described in Canonical Mode Input Processing §7.1.1.7.

439 If ICANON is not set, read requests are satisfied directly from the input queue. A read

440 shall not be satisfied until at least MIN characters have been received or the timeout value

441 TIME expired between characters. The time value represents tenths of seconds. See the
442 Non-Canonical Mode Input Processing §7.1.1.8 section for more details.

443

444 If NOFLSH is set, the normal flush of the input and output queues associated with the

445 INTR, QUIT, and SUSP (Job Control Option only) characters shall not be done.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

8

8

8
8

8

B

B

9

8

8

8

9

8

8

C

C

c
c

c
c

c
c
c
c
c

c
9

8

8

B

8

8

9

8

8

7.1 General Terminal Interface 147

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

446 If TOSTOP (Job Control Option only) is set, the signal SIGTTOU is sent to the process a

447 group of a process that tries to write to its controlling terminal if it is not in the a
448 distinguished process group for that terminal. This signal, by default, stops the members a

449 of the process group. Otherwise, the output generated by that process is output to the a

450 current output stream. Processes that are blocking or ignoring SIGTTOU signals are c

451 excepted and allowed to produce output and the SIGTTOU signal is not sent c

452 The initial local control value after openQ is implementation defined. 9

453 7.1.2.7 Special Control Characters g

454 The special control characters values are defined by the array c_cc. The subscript name 8

455 and description for each element in both canonical and non-canonical modes are as b
456 follows: b

Canonical
Subscript

Non-Canonical
Subscript

Description
B
B

VEOF EOF character B
VEOL EOL character B
VERASE ERASE character B
VINTR VINTR INTR character B
VKILL KILL character B

VMIN MIN value B
VQUIT VQUIT QUIT character B
VSUSP VSUSP SUSP character B

VTIME TIME value B

469 The subscript values shall be unique, except that the VMIN and VTIME subscripts may b

470 have the same values as the VEOF and VEOL subscripts, respectively. b

471 The VSUSP index shall be defined only if the Job Control Option is supported. 8

472 The number of elements in the c_cc array, NCCS, is implementation defined. c

473 The initial values of all control characters are implementation defined. 8

474 If {_POSIX_V_DISABLE} is in effect for the terminal file, and the value of one of the b

475 special control characters is {_POSIX_V_DISABLE}, that function shall be disabled. The b
476 {_POSIX_V_DISABLE} character is always read if received, and never causes a special b

477 character function. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

148 Device- and Class-Specific Functions

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

478 7.2 General Terminal Interface Control Functions 8

479 The functions that are used to control the general terminal function are described in this c
480 section. If the implementation supports the Job Control Option, unless otherwise noted c

481 for a specific command, these functions are restricted from use by background processes, b
482 Attempts to perform these operations shall cause the process group to be sent a SIGTTOU b

483 signal. If the calling process is blocking or ignoring SIGTTOU signals, the process is c
484 allowed to perform the operation and the SIGTTOU signal is not sent. c

485 In all the functions, fildes is an open file descriptor. 8

- 486 7.2.1 Get and Set State 8
487 Functions: tcgetattrQ, tcsetattrQ 8

488 7.2.1.1 Synopsis 8

489 #include <termios.h> a

490 int tcgetattr [fildes, termios_p) a

491 int fildes; a

492 struct termios *termios_p; a

493 int tcsetattr [fildes, optional_actions, termios_p) a

494 int fildes; a

495 int optional_actions; a

496 struct termios *termios_p; a

497 7.2.1.2 Description 8

498 The tcgetattr() function shall get the parameters associated with the object referred to by 8
499 fildes and store them in the termios structure referenced by termios_p. This command is 8

500 allowed from a background process; however, the information may be subsequently 8
501 changed by a foreground process. 8

502 The tcsetattrQ function shall set the parameters associated with the terminal from the 8

503 termios structure referenced by termios_p as follows: 8

504 If optional jjctions is TCSANOW, the change shall occur immediately. a

505 If optional_actions is TCSADRAIN, the change shall ocGur after all output written a
506 to fildes has been transmitted. This function should be used when changing 8

507 parameters that affect output 8

508 If optionaljactions is TCSADFLUSH, the change shall occur after all output a

509 written to the object referred to by fildes has been transmitted, and all input that 8

510 ‘has been received but not read shall be discarded before the change is made. a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7.2 General Terminal Interface Control Functions 149

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

511 7.2.1.3 Returns a

512 Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is a

513 returned and errno is set to indicate the error. a

514 7.2.1.4 Errors a

515 If any of the following conditions occur, the tcgetattr() function shall return -1 and set b
516 errno to the corresponding value: b

517 [EBADF] The fildes argument is not a valid file descriptor. a

518 [EINVAL] The device does not support the tcgetattrQ function. a

519 [ENOTTY] The file associated with fildes is not a terminal c

520 b

521 If any of the following conditions occur, the tcsetattrQ function shall return -1 and ,»et b
522 errno to the corresponding value: b

523 [EBADF] The fildes argument is not a valid file descriptor. a

524 [EINVAL] The device does not support the tcsetattrQ function, or the a

525 optional_actions argument is not a proper value. a

526 [ENOTTY] The file associated with fildes is not a terminal c

527 b

528 7.2.1.5 References a

529 <termios.h> §7.1.2. a

t

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

150 Device- and Class-Specific Functions

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

530 7.2.2 Line Control Functions g
531 Functions: tcsendbreak(), tcdrain(), tcfiush()y tcflow() g

532 7.2.2.1 Synopsis g

533 #include <termios.h> a

534 int tcsendbreak {fildes, duration) a

535 int fildes; a

536 int duration; a

537 int tcdrain (fildes) a

538 int fildes; a

539 int tcfiush (fildes, queue_selector) a

540 int fildes; a

541 int queue_selector; a

542 int tcflow (fildes, action) a

543 int fildes; a
544 int action; a

545 1.2.22 Description 8
546 The tcsendbreak() function shall send a “break”; that is, a continuous stream of zero- c
547 valued bits for a specific duration. If duration is zero, it shall send zero-valued bits for c
548 0.25 seconds. If duration is not zero, it shall send zero-valued bits for an implementation c

549 defined period of time. c

550 The tcdrain() function shall wait until all output written to the object referred to by fildes 8

551 has been transmitted. 8

552 The tcflush() function shall discard data written to the object referred to by fildes but not 8
553 transmitted, or data received but not read, depending on the value of queue_selector: 8

554 If queue ^selector is TCIFLUSH, it shall flush data received but not read. 8

555 If queue_selector is TCOFLUSH, it shall flush data written but not transmitted. 8

556 If queue_selector is TCIOFLUSH, it shall flush both data received but not read, s

557 and data written but not transmitted. 8

558 The tcfiow() function shall suspend transmission or reception of data on the object 8

559 referred to by fildes, depending on the value of action: 8

560 If action is TCOOFF, it shall suspend output. 8

561 If action is TCOON, it shall restart suspended output 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7.2 General Terminal Interface Control Functions 151

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

562 If action is TCIOFF, it shall suspend input 8

563 If action is TCION, it shall restart suspended input 8

564 The default on open of a terminal file is that neither its input nor its output are suspended. 8

565 7.2.2.3 Returns a

566 Upon successful completion, a value of zero is returned. Otherwise, a value of -1 is a
567 returned and errno is set to indicate the error. a

568 7.2.2.4 Errors a
569 If any of the following conditions occur, the tcsendbreakQ) function shall return -1 and b
570 set errno to the corresponding value: . b

571 [EBADF] The fildes argument is not a valid file descriptor. a

572 [EINVAL] The device does not support the tcsendbreakQ) function. a

573 [ENOTTY] The file associated with fildes is not a terminal c

574 If any of the following conditions occur, the tcdrainQ) function shall return -1 and set b
575 errno to the corresponding value: b

576 [EBADF] The fildes argument is not a valid file descriptor. a

577 [EINTR] A signal interrupted the tcdrainQ) function. c

578 [EINVAL] The device does not support the tcdrain() function. a

579 [ENOTTY] The file associated with fildes is not a terminal c

580 If any of the following conditions occur, the tcflush() function shall return -1 and set b
581 errno to the corresponding value: b

582 [EBADF] The fildes argument is not a valid file descriptor. a

583 [EINVAL] The device does not support the tcflushQ) function, or the a

584 queue^selector argument is not a proper value. a

585 [ENOTTY] The file associated with fildes is not a terminal c

586 If any of the following conditions occur, the tcflowQ) function shall return -1 and set b
587 errno to the corresponding value: b

588 [EBADF] The fildes argument is not a valid file descriptor. a

589 [EINVAL] The device does not support the tcfiowQ) function, or the action a
590 argument is not a proper value. a

591 [ENOTTY] The file associated with fildes is not a terminal c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

152 Device- and Class-Specific Functions

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

592 7.2.2.5 References b
593 <termios.h> §7.1.2. b

594 b

595 7.2.3 Get Distinguished Process Group ID b
596 Function: tcgetpgrp () b

597 7.2.3.1 Synopsis b

598 #include <termios.h> a

599 int tcgetpgrp {fildes) a

600 int fildes; a

601 7.2.3.2 Description b

602 The tcgetpgrp() function shall be provided if the implementation supports the Job b
603 Control Option. b

604 The tcgetpgrp () function shall return the value of the process group ID of the b
605 distinguished process group associated with the terminal. b

606 The tcgetpgrp() function is allowed from a background process; however, the b

607 information may be subsequently changed by a foreground process. b

608 7.2.3.3 Returns b

609 Upon successful completion, tcgetpgrp() returns the process group ID of the b

610 distinguished process group associated with the terminal. Otherwise, a value of -1 is b
611 returned and errno is set to indicate the error. b

612 7.2.3.4 Errors b

613 If any of the following conditions occur, the tcgetpgrp () function shall return -1 and set b

614 errno to the corresponding value: b

615 [EBADF] The fildes argument is not a valid file descriptor. b

616 [EINVAL] This function is not allowed for the device associated with the b

617 fildes argument b

618 [ENOTTY] The calling process does not have a controlling terminal or the file c

619 is not the controlling terminal. c

620 7.2.3.5 References b
621 setpgrp() §4.3.2, jcsetpgrp() §4.3.3, tcsetpgrp() §7.2.4. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

7.2 General Terminal Interface Control Functions 153

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

622 7.2.4 Set Distinguished Process Group ID b
623 Function: tcsetpgrp () B

624 7.2.4.1 Synopsis b

625 #include <termios.h> b

626 -int tcsetpgrp (fildes, pgrpjd) b
627 int fildes; b
628 int pgrp_id; B

629 7.2.4.2 Description b

630 The tcsetpgrp () function shall be provided if the implementation supports the Job b
631 Control Option. b

632 If the process has a controlling terminal, the tcsetpgrp() function shall set the b
633 distinguished process group ID associated with the terminal to pgrpjd. The file b
634 associated with fildes must be the controlling terminal of the calling process. There must b

635 be at least one process in pgrpjd that has the same controlling terminal as the calling b

636 process. b

637 7.2.4.3 Returns b
638 Upon successful completion, tcsetpgrp () returns a value of zero. Otherwise, a value of b
639 -1 is returned and err no is set to indicate the error. b

640 7.2.4.4 Errors b
641 If any of the following conditions occur, the tcsetpgrpQ function shall return -1 and set b
642 errno to the corresponding value: b

643 [EBADF] The fildes argument is not a valid file descriptor. b

644 [EINVAL] This function is not allowed for the device associated with the c

645 fildes argument or the value of the pgrpjd argument is less than or c

646 equal to zero, or exceeds {PID_MAX}. c

647 [ENOTTY] The calling process does not have a controlling terminal or the file b

648 is not the controlling terminal. b

649 [EPERM] The value of the pgrpjd argument is greater than zero and less b

650 than or equal to {P1D_MAX}, and there is no process in the process b
651 group indicated by pgrpjd that has the same controlling terminal b
652 as the calling process. b

653 b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

154 Device- and Class-Specific Functions

8. C Language Library

1 8.1 Referenced C Language Routines

2 When the ANSI/X3.159-198x Programming Language C Standard is adopted, it will be c

3 the basis for a C language binding to IEEE Std 1003.1. In the interim, the following b

4 routines are left unstandardized, but are defined by common usage and traditional b
5 implementations. Although the lack of an adopted C language standard negatively b
6 affects the ability of applications developers to write portable applications, they can use b

7 draft versions of the ANSI/X3.159-198x Programming Language C Standard and b

8 common usage as guidance to maximize the future portability of their applications. b

9 • 4.2 Diagnostics
10 Functions: assert.

11 • 4.3 Character Handling
12 Functions: isalnum, isalpha, iscntrl, isdigit, isgraph, islcwer, isprint, ispunct, isspace,
13 isupper, isxdigit, tolower, toupper.

14 • 4.5 Mathematics

15 Functions: acos, asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh, exp, frexp, ldexp, c
16 log, loglO, modf, pow, sqrt, ceil, fabs, floor, fmod.

17 • 4.6 Non-Local Jumps
18 Functions: setjmp, longjmp.

19 • 4.7 Signal Handling
20 Functions: signal*. 8

21 • 4.9 Input/Output

22 Functions: clearerr, fclose, feof, ferror, fflush, fgetc, fgets, fopen, fputc, fputs, fread,
23 freopen, fseek, ftell, fwrite, getc, getchar, gets, perror, printf, fprintf, sprintf, putc, 8
24 putchar, puts, remove, rename+, rewind, scanf, fscanf, sscanf, setbuf^ tmpfile,

25 tmpnam, ungetc.

26 • 4.10 General Utilities
27 Functions: abs, atof, atoi, atol, rand, srand, calloc, free, malloc, realloc, abort, exit, c
28 getenv+, bsearch, qsort, setlocale*. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

8.1 Referenced C Language Routines 155

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

29 *4.11 String Handling

30 Functions: strcpy, stmcpy, strcat, stmcat, strcmp, strchr, strcspn, strpbrk, strrchr,
31 strspn, strstr, strtok, strlen.

32 • 4.12 Date and Time

33 Functions: time+, asctime+, ctime+, gmtime+, localtime+, strftime+. c

34 Functions indicated above with a + are included in both documents. Descriptions of

35 these routines have been retained in this standard because they represent further c

36 specifications or amplifications of the versions defined by the ANSI/X3.159-198x 8
37 Programming Language C Standard. 8

38 Systems conforming to the IEEE Std 1003.1 shall make no distinction between the “text 8

39 streams” and the “binaiy streams” described in the ANSI1X3.159-198x Programming s

40 Language C Standard. 8

41 For the fseek() function, if the specified position is beyond end-of-file, the consequences 8
42 described in lseek() (see lseek() §6.5.3) shall occur.

43 8

44 8.1.1 Extensions to asctimeQ Function

45 If the environment variable named TZ is present, (see Environment Variables §2.7) the c
46 functions asctime(), strftime(), localtime(), ctimeQ, and gmtime() use its contents to c

47 override the default time zone. The value of TZ has the form (spaces inserted for c

48 clarity): c

49 std offset dst offset,rule c

50 or in an expanded format: c

51 stdoffset[dst[offset][,start[/time],end[/time]]] c

52 l characters c

53 Where: c

54 If the first character of the environment variable TZ is a slash (/), it is assumed the c

55 characters following the slash are handled in an implementation defined manner. c

56 std and dst c
57 Three or more bytes that are the designation for the standard (std) c
58 or summer (dst) time zone. Only std is required; if dst is missing, c

59 then summer time does not apply in this locale. Upper- and c
60 lowercase letters are explicitly allowed. Any characters except c
61 digits, comma (,), minus (-), plus (+), and ASCII NUL are allowed, c

62 offset c
63 Indicates how far west (or, if preceded by east) of Greenwich c

64 that time zone lies. The offset has the form: c

156

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

C Language Library

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

65

66
67
68
69
70

71
72
73
74
75

76

77

78

79

80
81
82
83

84

85
86
87
88
89

90

91

92

93
94

95

96
97
98
99

100
101

102
103

hh [:mm [:&?]] c

The minutes {mm) and seconds (ss) are optional. The hour {hh) c
shall be required and may be a single digit. The offset following c

std shall be required. If no offset follows dst, summer time is c
assumed to be one hour ahead of standard time. One or more c
digits may be used; the value is always interpreted as a decimal c
number. The hour shall be between 0 and 12, and the minutes (and c
seconds) — if present — between 0 and 59. Out of range values c
may cause unpredictable behavior. If preceded by a the time c
zone shall be east of Greenwich, otherwise it shall be west (which c
may be indicated by an optional preceding “+”). c

rule c
Indicates when to change to and back from summer time. The rule c

has the form: c

date / time ,date l time c

where the first date describes when the change from standard to c
summer time occurs and the second date describes when the c

change back happens. Each time field describes when, in current c
local time, the change to the other time is made. c

The format of date shall be one of the following: c

J n c
The Julian day n (1 < n < 365). Leap days c

shall not be counted. That is, in all years — c
including leap years — February 28 is day c
59 and March 1 is day 60. It is impossible c

to explicitly refer to the occasional February c

29. c

n c

The zero-based Julian day (0 < n < 365). c
Leap days shall be counted, and it is c
possible to refer to February 29. c

M m.n.d . c
The d^ day (0 < d < 6) of week n of month c
m of the year (1 < n < 5, 1 < m < 12, where c
week 5 means “the last d day in month m ” c
which may occur in either the fourth or the c

fifth week). c

The time has the same format as offset except that no leading sign (“-” or c

“+”) shall be allowed. The default, if time is not given, shall be c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

8.1 Referenced C Language Routines 157

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

104 02:00:00. c

105 If no rule is specified and summer time applies, United States federal law c
106 shall be assumed. c

107 If the first character of the rule is a slash (/), the bytes following the slash c
108 shall be handled in an implementation defined manner. c

109 The effects of setting TZ are, thus, to change the values of the external variable timezone c
110 and daylight. In addition, the time zone names contained in the external variable c

111 char *tzname[2] = {"std", "dst"}; c

112 are set from the environment variable TZ. c

113 It is explicitly allowed for programs to change TZ and have the changed TZ apply to c

114 themselves. c

115 8.1.2 Extensions to setlocale 0 Function
116 Function: setlocale () c

117 8.1.2.1 Synopsis c

118 char *setIocaIe (category, locale) c
119 int category; c
120 char * locale', c

121 8.1.2.2 Description c
122 The ANSI/X3.159-198x Programming Language C Standard allows the specification of c
123 an implementation defined native environment for the setlocale () function, which will c

124 set a specific category to an implementation defined default. For IEEE Std 1003.1 c

125 systems, this corresponds to the value of the environment variables. c

126 Setting a specific category to an implementation defined default is invoked by setting the c
127 locale argument to point to a null string, and by setting the category argument to one of c

128 the integer values: c

129 LC_CTYPE c
130 LC_COLLATE c
131 LC_TIME c
132 LC_NUMERIC c

133 In all cases, setlocale () will first check the value of the corresponding environment c
134 variable (e.g., LC_CTYPE for the LC_CTYPE category) and if valid (i.e., points to the c
135 name of a valid locale), setlocale() will set the specified category of the international c

136 environment to that value and return the string corresponding to the locale set (i.e., the c
137 value of the environment variable, not ""). If the value is invalid, setlocale() will c

138 return a null pointer and the international environment is not changed. c

158

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

C Language Library

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

139 If the environment variable corresponding to the specified category is not set or is set to c

140 the empty string, the behavior of setlocale () is implementation defined, unless the LANG c
141 environment variable is set and valid in which case setlocale () will set the category to c

142 the corresponding value of LANG. In some implementations, this may default to a c

143 system-wide value, others may default to the "C" locale. Setting all categories to the c
144 implementation defined default is similar to the previous usage, but it interrogates all the c
145 environment variables to determine the specific value to set. To set all categories in the c

146 international environment, setlocale() is invoked in the following manner: c

147 setlocale(LC_ALL, c

148 To satisfy this request, setlocale () first checks all the environment variables. If any c
149 environment variable is invalid, setlocale() returns a null pointer and the international c

150 environment is not changed. c

151 If they are valid, setlocale () sets the international environment to reflect the values of the c
152 environment variables. The categories are set in the following order c

153 LC_ALL c
154 LC_CTYPE c
155 LC_COLLATE c

156 LCJTIME c

157 LC_NUMERIC C

158 new categories c

159 Using this scheme, the categories corresponding to the environment variables will c
160 override the value of the LANG environment variable for a particular category. c

161 If one or all of the category-specific environment variables (i.e., LC_CTYPE, c
162 LC_COLLATE, LCJTIME, or LC_NUMERIC) are not set, the particular category is not c
163 overridden. If one or all of the category-specific environment variables are set to the c
164 empty string, the behavior is implementation defined. c

165 If the LANG environment variable is not set or is set to the empty string, the behavior of c
166 setlocale{) is implementation defined. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

8.1 Referenced C Language Routines 159

‘ Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

167 8.2 FILE-Type C Language Functions

168 This section describes functions which make reference to the FILE type, as described in b
169 the ANSI/X3.159-198x Programming Language C Standard. b

170 8.2.1 Map a Stream Pointer to a File Descriptor
171 Function: fileno {)

172 8.2.1.1 Synopsis

173 #include <stdio.h>

174 int fileno (stream)
175 FILE * stream]

176 8.2.1.2 Description
177 The fileno () function returns the integer file descriptor associated with the stream (see

178 open() §5.3.1).

179 There is a fixed relationship between the C language stdin, stdout, and stderr and the c

180 initial corresponding file descriptor values. The following symbolic values in c
181 <unistd.h> §2.10 define this relationship: c

182 STDIN_FILENO Standard input value, stdin. c

183 STDOUT_FILENO Standard output value, stdout. c

184 STDERR_FILENO Standard error value, stderr. c

185 8.2.1.3 References

186 open() §5.3.1.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

160 C Language Library

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

187 8.2.2 Open a Stream on a File Descriptor
188 Function: fdopen{)

189 8.2.2.1 Synopsis

190 #include <stdio.h>

191 FILE *fdopen {fildes, type)

192 int fildes;
193 char *type;

194 8.2.2.2 Description

195 Thtfdopenf) routine associates a stream with a file descriptor.

196 The type argument is a character string having one of the following values:

197 TV f f open for reading

198 "w" open for writing

199 "a" open for writing at end of file

200 "r+" open for update (reading and writing)

201 "w+" open for update (reading and writing)

202 "a+" open for update (reading and writing) at end of file

203 The types r+, w+, and a+ are equivalent, except that a+ implicitly seeks to the end of
204 the file.

205 Additional values for the type argument may be defined by an implementation.

206 The type of the stream must be allowed by the mode of the open file.

207 8.2.2.3 Returns
208 If successful, the fdopenf) function returns a pointer to a stream. Otherwise, a NULL

209 pointer is returned.

210 8.2.2.4 References
211 open{) §5.3.1 ,fopen() (ANSI/X3.159-198x Programming Language C Standard).

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

8.2 FILE-Type C Language Functions 161

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

212 8.3 Other C Language Functions b

213 8.3.1 Non-Local Jumps 8
214 Functions: sigsetjmp (), siglongjmp (j) b

215 8.3.1.1 Synopsis b

216 #include <setjmp.h> b

217 int sigsetjmp {env, savemask) b
218 sigjmp_buf env; b
219 int savemask; b

220 void siglongjmp (env, va/) b
221 sigjmp_buf env; b
222 int val; b

223 8.3.1.2 Description b
224 The sigsetjmp() macro shall comply with the definition of the setjmp{) macro in the c
225 ANSI/X3.159-198x Programming Language C Standard. If the value of the savemask b
226 argument is not zero, the sigsetjmp() function shall also save the process’s current signal b

227 mask (see <signal.h> §3.3.1) as part of the calling environment. b

228 The siglongjmp() function shall comply with the definition of the longjmp{) function in b

229 the ANSI/X3.159-198x Programming Language C Standard. If and only if the env b

230 argument was initialized by a call to the sigsetjmp() function with a non-zero savemask b

231 argument, the siglongjmp () function shall restore the saved signal mask. b

232 8.3.1.3 References g
233 sigaction{) §3.3.4, <signal.h> §3.3.1, sigprocmask{) §3.3.5, sigsuspend() §3.3.7. 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

162 C Language Library

FOR COMPUTER ENVIRONMENTS Std 1003.1— Draft 12

234 8.3.2 Specify Signal Handling c

235 Function: signal() c

236 8.3.2.1 Synopsis c

237 #include <signal.h> c

238 void (^signal (sig,func)) () c

239 int sig; c
240 void (*func) (); c

241 S.3.2.2 Description c

242 The ANSI1X3.159-198x Programming Language C Standard defines the signal() function c

243 as a means of specifying the action to be taken upon receipt of a signal. c

244 In general, the use of the signal() function shall not conflict with the behavior of signals c

245 as characterized in this standard. However, there may be implementation defined side c
246 effects associated with the use of the signal() function. For instance, if the signal{) c
247 function is invoked to establish a signal-catching function or to set the action to SIG_DFL c
248 while the signal is pending, the pending signal may be discarded (unless the signal is c

249 SIGKILL or SIGSTOP). c

250 The sigaction() §3.3.4 function provides an alternative interface that assures the delivery c
251 of signals and the integrity of signal-catching functions. c

252 The sigaction() function shall properly return, in the structure pointed to by oact, the c

253 previous signal action, even if that action had been established by the signal() function, c
254 In such a case, the values of the fields of the structure pointed to by oact are undefined, c
255 and in particular oact->svJiandler is not necessarily the same value passed to the c

256 signal^) function. However, if a pointer to the structure is passed to a subsequent call to c
257 the sigaction{) function via the act parameter, handling of the signal shall be reinstated c

258 as if the original call to the. signal() function were repeated. c

259 It is implementation defined whether the return value of the signal() function will c
260 accurately reflect the previous signal action if that action had been established by the c

261 sigaction() function. It is also implementation defined whether a signal mask established c
262 by the sigaction() function is preserved when the signal action for that signal is altered c
263 by the signal() function. Because of this unpredictability, the sigaction() and signal() c
264 functions should not be used in the same process to control the same signal. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

8.3 Other C Language Functions 163

9. System Databases c

1 9.1 System Databases

2 The routines described in this section allow an application to access the two system
3 databases that are described below.

4 The group database contains the following information for each group:

5 group name

6 b

7 numerical group ID
8 list of the names or numbers of all users allowed in the group

9 The passwd database contains the following information for each user:

10 login name

11 B

12 numerical user ID
13 numerical group ED

14 initial working directory

15 initial user program

16 If the initial program field is null, the system default is used.

17 If the initial working directory field is null, the interpretation of that field is
18 implementation defined.

19 B

20 These databases may contain other fields that are implementation defined.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

9.1 System Databases 165

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

21 9.2 Database Access

22 9.2.1 Group Database Access
23 Functions: getgrentQ, getgrgid{), getgrnam{), setgrent {), endgrentQ

24 9.2.1.1 Synopsis

25 #include <grp.h>

26 struct group *getgrent ()

27 struct group *getgrgid {gid)

28 uid_t gid; 8

29 struct group *getgrnam {name)

30 char *name;

31 void setgrent ()

32 void endgrent ()

33 9.2.1.2 Description
34 The getgrentQ, getgrgid{) and getgrnam{) routines each return pointers to an object of

35 type struct group containing an entry from the group database. The members of this

36 structure, which is defined in <grp.h>, include:

Member

Type

Member

Name
Description

char * gr_name The name of the group

uid_t gr_gid The numerical group ED

char ** gr_mem A null-terminated vector of pointers

to the individual member names

44 The getgrent() function reads the next entry of the database, so successive calls shall
45 search the entire database. The getgrgid() and getgrnam{) functions search from the

46 beginning of the database until a matching gid or name is found, or the end of the
47 database is encountered.

48 A call to setgrent() has the effect of rewinding the group database to allow repeated
49 searches. A call to the endgrent{) function should be used to close the group database

50 when processing is complete.

166

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

System Databases

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

51 9.2.1.3 Returns
52 A NULL pointer is returned on error or when the end of the database is encountered.

53 The return values may point to static data that is overwritten by each call. 9

54 9.2.1.4 References
55 getlogin{) §4.2.4, getpwent{) §9.2.2.

56 9.2.2 User Database Access c
57 Functions: getpwent{), getpwuid{), getpwnam{), setpwent{), endpwent{)

58 9.2.2.1 Synopsis

59 #include <pwd.h>

60 struct passwd *getpwent ()

61 struct passwd *getpwuid (uid)
62 uid_t uid; 8

63 struct passwd *getpwnam {name)
64 char *name;

65 void setpwent ()

66 void endpwent ()

67 9.2.2.2 Description
68 The getpwent(), getpwuid{) and getpwnamQ functions each return a pointer to an object
69 of type struct passwd containing an entry from the user database. The members of this c
70 structure, which is defined in <pwd.h>, include:

Member

Type

Member

Name
Description

char * pw_name User’s login name

uid t pw uid User ID number

uid_t pw_gid Group ID number
char * pw_dir Home Directory
char * pw_shell Default shell

79 The struct passwd structure used by these routines may include additional members. The 9
80 additional member names shall be declared in <pwd.h> and shall begin with the prefix 9
81 “pw_”. 9

82 The getpwent{) function reads the next entry in the database, so successive calls can be
83 used to search the entire database. The getpwuid{) and getpwnam{) functions search

84 from the beginning of the database until a matching uid or name is found, or the end of

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

9.2 Database Access 167

Std 1003.11—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

85 the database is encountered.

86 A call to setpwent() has the effect of rewinding the user database to allow repeated c
87 searches. A call to endpwent() closes the password database when processing is
88 complete.

89 The implementation of the cuserid() §4.2.4 function may use the getpwnam() function; 9

90 thus the results of a user’s call to either routine may be overwritten by a subsequent call 9

91 to the other routine. 9

92 9.2.2.3 Returns
93 A NULL pointer is returned on error or the end of the database is encountered.

94 The return values may point to static data that is overwritten on each call. 9

95 9.2.2A References
96 cuserid() §4.2.4, getlogin() §4.2.4, getgrent{) §9.2.1.

97 c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

168 System Databases

10. Data Interchange Format

1 10.1 Archive/Interchange File Format b

2 A conforming system shall provide a mechanism to copy files from a medium to the local b
3 file system and copy files from the local file system to a medium using the interchange . b
4 format described here. This standard does not define this mechanism.* c

5 When this mechanism is used to copy files from the medium by a nonprivileged process, b

6 the protection information (ownership and access permissions) shall be set in the same b

7 fashion that creat{) §5.3.2 would when given the mode argument matching the file b

8 permissions supplied by the mode field of this format b

9 The format-creating utility is used to translate from the file system to the formats defined c
10 in this section, in an implementation defined way, and the format-reading utility is used c

11 to translate from the formats defined in this section to a file system. c

12 10.1.1 cpio Archive Format b

13 The byte-oriented cpio archive format is a series of entries, each comprised of a header b

14 that describes the file, the name of the file, and then the contents of the file. b

15 An archive may be recorded as a series of fixed size blocks of bytes. This blocking shall b

16 be used only to make physical I/O more efficient. The last group of blocks is always at b

17 the full size. b

18 For the byte-oriented cpio archive format, the individual entry information must be in b

19 the order indicated and is described by: b

* The P1003.2 Working Group is working on this mechanism. See Shell and Utilities §A.2.2.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

10.1 Archive/Interchange File Format 169

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

Byte-Oriented cpio Archive Entry b

Header B
Field Name Length Interpreted as B

cjnagic 6 bytes octal number B
c_dev 6 bytes octal number B
cjno 6 bytes octal number B
cjnode 6 bytes octal number B
cjtid 6 bytes octal number B
cjsid 6 bytes octal number B
cjilink 6 bytes octal number B
cjdev 6 bytes octal number B
Cjntime 11 bytes octal number B
c namesize 6 bytes octal number B
cjilesize 11 bytes octal number B

File Name B
Field Name Length Interpreted as B

c name c_namesize pathname string B

File Data B
Field Name Length Interpreted as B

cJiledata c_filesize data B

42

43
44

45

46

47

48

49

50

51

52

53

54

55

56

57

10.1.1.1 Header b

For each file in the archive, a header as defined above shall be written. The information b

in the header fields shall be written as streams of bytes interpreted as octal numbers and b
shall be right-justified and zero filled. The fields shall be interpreted as follows: b

• cjnagic shall identify the archive as being a transportable archive by b

containing the magic bytes as defined by MAGIC ("070707"). b

• c_dev and cjno shall contain values which uniquely identify the file within b

the archive (i.e., no files shall contain the same pair of c_dev and cjno values b

unless they are links to the same file). The values shall be determined in an b

implementation defined manner. b

• cjnode shall contain the file type and access permissions as defined in the b

tables below. b

• cjiid shall contain the user id of the owner. b

• cjgid shall contain the group id of the group. b

• cjilink shall contain the number of links referencing the file at the time the b

archive was created. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

170 Data Interchange Format

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

58 • c_rdev shall contain implementation defined information for character or b

59 block special files. b

60 • cjntime shall contain the latest time of modification of the file. b

61 • cjiamesize shall contain the length of the path name, including the b
62 terminating null byte. b

63 • cjlesize shall contain the length of the file. This is the length of the data b
64 section following the header structure. b

65 10.1.1.2 File Name b
66 cjiame shall contain the path name of the file. The length of the name is determined by b
67 cjiamesize \ the maximum length of this string is 256 bytes. b

68 10.1.1.3 File Data b
69 Following c_name, there shall be cJlesize bytes of data. Interpretation of such data b
70 shall occur in a manner dependent on the file. If c Jilesize is zero, no data shall be b
71 contained in c Jledata. b

72 10.1.1.4 Special Entries b

73 Special files, directories, and the trailer are recorded with cJlesize equal to zero. The b

74 header for the next file entry in the archive shall be written directly after the last byte of b
75 the file entry preceding it. A header denoting the file name “TRAILER! ! !” shall b

76 indicate the end of the archive; the contents of bytes in the last block of the archive b

77 following such a header are undefined. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

10.1 Archive/Interchange File Format 171

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

78 10.1.1.5 cpio Values b
79 Values needed by the cpio archive format are described as follows: b

Values for c mode field b

File permissions B

Name Value Indicates B

C_IRUSR 000400 read by owner B
CJWUSR 000200 write by owner B
C_IXUSR 000100 execute by owner B
C_IRGRP 000040 read by group B
C_IWGRP 000020 write by group B
CJXGRP 000010 execute by group B
C_IROTH 000004 read by others B
CJWOTH 000002 write by others B
C_IXOTH 000001 execute by others B
C_ISUID 004000 set uid B
CJSGID 002000 set gid B
C ISVTX 001000 reserved B

Values for c mode field b

File type b

Name Value Indicates B

CJSDIR 040000 directory B
CJSFIFO 010000 FIFO B

CJSREG 100000 regular file B

C_ISBLK 060000 block special B
C_ISCHR 020000 character special B

110000 reserved B
120000 reserved B

140000 reserved B

109 C_ISDIR, C_ISFIFO, and C_ISREG shall be supported on a IEEE Std 1003.1 conforming b

110 system; additional values defined above are reserved for compatibility with existing b

111 systems.* Additional file types may be supported; however, such files should not be b

112 written on archives intended for transport to portable systems. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

172 Data Interchange Format

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

113 10.1.1.6 References b
114 <grp.h> §9.2.1, <p\vd.h> §9.2.2, <sys/stat.h> §5.6.1, chmod{) §5.6.4, link() §5.3.4, b
115 mkdir() §5.4.1, read() §6.4.1, stat() §5.6.2.

116 10.1.2 Multiple Volumes
117 It shall be possible for data represented by the Archive/Interface File Format to reside in c
118 more than one file. c

119 The format is considered a stream of bytes. Any two bytes may be separated by the end c
120 of a file. c

121 The end-of-file is used as an indicator that a new file is to be read, and the format-reading c
122 utility will, in an implementation defined manner, determine the next file. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

10.1 Archive/Interchange File Format 173

Appendices

1 (These appendices are not a part of IEEE Std 1003.1, IEEE Standard Portable Operating c
2 System Interface for Computer Environments.) c

3 A. Related Standards

4 This appendix describes other standards efforts, related to IEEE Std 1003.1, that are
5 available or under development.

6 A.l Related Standards — Open System Architecture

7 This IEEE Std 1003.1 is intended to complement others that together would provide a
8 comprehensive Open System Architecture. The standards in these areas fall into three

9 areas: ones directly related to the IEEE Std 1003.1, ones already available and of use to
10 those interested in Open Systems Architectures, and finally, those in development.

11 IEEE and ANSI/IEEE standards can be ordered from:

12 IEEE Service Center IEEE Computer Society

13 445 Hoes Lane- Box 80452, Worldway Postal Center
14 Piscataway, NJ 08854 Los Angeles, CA 90080

15 (201)981-0060 (800) 272-6657

16 (714) 821-8380 in California

17 The document X3/SD-4 provides a list of all active X3 and related ISO projects,
18 including approved standards. X3/SD-4 is available from:

19 CBEMA

20 X3 Secretariat
21 311 First Street, NW Suite 500
22 Washington, DC 20001-2178

23 (202) 737-8888

24 ANSI and ISO standards can be ordered from: c

25 ANSI c
26 1430 Broadway c
27 New York, NY 10018 c
28 (212)642-4900 c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

A.l Related Standards — Open System Architecture 175

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

29 A.2 Standards Closely Related to the 1003.1 Document

30 A.2.1 C Language Standard

31 This document refers to the C Language Standard effort presently under development by

32 Technical Committee X3J11 of the Accredited Standards Committee X3 — Information
33 Processing Systems. The X3J11 and 1003.1 groups have been cooperating to insure that

34 the standards are complementary and not overlapping. At the time of publication, the c

35 most recent X3J11 material was the version for public comment of the ANSI/X3.159-198x c
36 Programming Language C Standard, available from: c

37 Global Engineering Documents, Inc.

38 2625 Hickory Street

39 Santa Ana, CA 92707

40 (800) 854-7179
41 (714) 540-9870

42 Once the X3J11 document is approved, it will be available from the ANSI address given c

43 above. c

44 A.2.2 Shell and Utilities

45 This area is currently in development by IEEE Computer Society Working Group
46 P1003.2. The proposed 1003.2 standard defines a source code level interface to shell c

47 services and common utility programs for application programs conforming to IEEE Std c

48 1003.1.* The proposed standard is being designed to be used by both application c
49 programmers and system implementors. c

50 The following goals have been established for the Working Group:

Specify a standard interface that may be accessed in common by both

applications programs and user terminal-controlling programs to provide services

of a more complex nature than the primitives provided by IEEE Std 1003.1. This c

interface shall be implementable on conforming IEEE Std 1003.1 systems. It shall c

include the following components: c

1. Application program primitives to specify instructions to an
implementation defined “shell” facility.

2. A standard command language for a shell that includes program execution,
I/O redirection and pipelining, argument handling, variable substitution and

* An IEEE Std 1003.1 conforming implementation is not necessarily required to support these application
programs. Implementations could be produced that are conformant only to those 1003.1 features
required by the proposed 1003.2 standard, and that cannot claim full conformance to all of IEEE Std
1003.1.

51
52

53
54

55

56
57

58
59

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

176 Appendix A

FOR COMPUTER ENVIRONMENTS Std 1003.1— Draft 12

60

61

62

63

64

65

66
67

68

69

70

71
72

73

74

75
76

77
78

79

80
81

82

83

84

85

86

expansion, and a series of control constructs similar to other high-level

structured programming languages.

3. A recommended command syntax for command naming and argument

specification.

4. Primitives to assist applications programs and the shell language in parsing
and interpreting command arguments.

5. Recommended environment variables for use by shell scripts and
application programs.

6. A minimum directory hierarchy required for the shell and applications.

7. A group of utilities that may be called from application programs for
complex data manipulation and other tasks common to many applications.

8. An optional group of utilities to be used for the software development of
applications.

9. Utilities and standards for the installation of applications.

The following areas are outside the scope of this standard:

1. Operating system administrative commands (privileged processes, system
processes, daemons, etc.).

2. Commands required for the installation, configuration, or maintenance of
operating systems or file systems.*

3. Networking commands.

4. Terminal control or user-interface programs (visual shells, window
managers, command history mechanisms, etc.).

5. Graphics programs or interfaces.

6. Text formatting programs or languages.

7. Database programs or interfaces (e.g. SQL, etc.).

At the time of this printing, no published document existed. Working drafts were being

circulated, with a target schedule of early 1989 for balloting.

* This is contrasted against paragraph i, above, by its orientation to installing the operating system itself,
versus application programs. The exclusion of operating system installation facilities should not be
interpreted to mean that the non-privileged application installation procedures cannot be used for
installing operating system components.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

A.2 Standards Closely Related to the 1003.1 Document 177

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

87 If you are interested in participating in this effort contact the IEEE Standards Office; the

88 address is listed in the Foreword.

89 A.2.3 Verification Testing

90 This area is currently in development by IEEE Computer Society Working Group c

91 P1003.3. c

92 If you are interested in obtaining 1003.3-related documents, or in participating in this

93 effort, contact the IEEE Standards Office.

94 A.2.4 Real Time Extensions c
95 A project has been approved for IEEE Computer Society Working Group P1003.4 to c

96 develop and ballot extensions to IEEE Std 1003.1 to address service interfaces needed for c

97 portable real time applications. This working group is an outgrowth of the /usr/group c

98 Technical Committee Real Time Subcommittee. At the time of publication, no draft c

99 document existed. c

100 Contact the IEEE Standards Office to participate in this effort c

101 A.2.5 Language Standards
102 The following language standards are available from ANSI:

103 Ada Mil Std 1815-A-1983 c
104 Basic X3.113-1987 c

105 Cobol X3.23-1985 c
106 Fortran X3.9-1978 c

107 Mumps MDCX11.1- •1984 c

108 Pascal X3.97-1983 c

109 A.2.6 Networking Standards

110 The ISO/OSI (Open System Interconnect) networking specifications are available from c

111 CBEMA or ANSI (and 802.n from the IEEE Standards Office): c

112 OSI Model ISO 7498 (ANSI) c

113 Layer 1 CSMA/CD IEEE 802.3 (IEEE) c

114 Token Bus IEEE 802.4 (IEEE) c

115 Token Ring IEEE 802.5 (IEEE) c

116 Layer 2 Link Layer Control IEEE 802.2 (IEEE) c

117 CCITT DR X.212 (CBEMA) c

118 Layer 3 Network Layer ISO 8348, 8473, 7777 (CBEMA) c

119 Layer 4 Transport Layer ISO 8072, 8073 (CBEMA) c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

178 Appendix A

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

120 Layer 5 Session Layer ISO 8326, 8327 (CBEMA)

121 Layer 6 Presentation Layer ISO DP 8822, DP 8823 (CBEMA)

122 Layer 7

123
124

125

126

Applications Layer c
CASE (Common Services) ISO DP 8649, DP 8650 (CBEMA) c
FTAM (File Transfer) ISO DP 8571 (CBEMA) c

Mail/Message CCITT X.400 series (CBEMA) c

Job Transfer ISO DP 8831, DP 8832 (CBEMA) c

127 Wide Area Net Layers 1-3 CCITT X.25 (CBEMA) c

128
129

130
131

132
133

134

135

136

137

A.2.7 Graphics Standards c
The following graphics-related standards are available from CBEMA or ANSI: c

GKS X3.124-1985 Graphical Kernel System; C language bindings are c
in progress (0533-D). (ANSI) c

PHIGS X3.144-198jc Programmers' Hierarchical Interactive Graphics c

System; C language bindings are in progress (0534-D). (CBEMA) c

CGM X3.122-1986 Computer Graphics Metafile, formerly known as c

VDM, Virtual Device Metafile. (CBEMA) c

X3H3.6 This working group is addressing windowing standards and c

display management for graphical devices. (CBEMA) c

138 A.2.8 Data Base Standards
139 The following data base standards are available from ANSI: c

140 NDL X3.133-1986 Database Language NDL. (Network Databases.) c

141 SQL X3.135-1986 Database Language SQL. (Relational Databases.) c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

A.2 Standards Closely Related to the 1003.1 Document 179

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

142 A.3 Industry Open Systems Publications

143 The following publications describe recommendations formed by industry groups (as
144 opposed to a single company) about related standards efforts.

145 The XtOPEN Portability Guide is available from: c

146 Elsevier Science Publishers Co. Inc,
147 P.O.Box 211
148 Grand Central Station,
149 New York, NY 10163

150 c

151 A.4 US Government Standards c

152 A.4.1 Federal Information Processing Standards (FIPS) c
153 The following standards are designated by the US Government as Federal Information c
154 Processing Standards. These frequently refer, back to standards listed above, c
155 Information on these can be obtained from: c

156 National Technical Information Service c
157 US Department of Commerce c
158 5285 Port Royal Road c
159 Springfield, VA 22161 c
160 (703) 487-4650 c

161 An index for FIPS standards is NBS Publications List 58, available as document number c
162 301-975-2816. c

163 A.4.2 Trusted Systems c
164 A standard for secure, or trusted, systems, the Department of Defense Trusted Computer c

165 System Evaluation Criteria, Department of Defense Standard DoD 5200.28-STD, c

166 December 1985, is available from: c

167 Office of Standards and Products c
168 National Computer Security Center c
169 Fort Meade, MD 20755-6000 c
170 Attn: Chief, Computer Security Standards c

180

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix A

B. Rationale and Notes

1 This appendix summarizes the deliberations of the IEEE P1003.1 Working Group, the
2 committee charged by IEEE with devising an interface standard for a portable operating
3 system interface for computer environments, IEEE Std 1003.1. b

4 This appendix is derived in part from copyrighted draft documents developed under the c

5 sponsorship of /usr/group*, as part of an ongoing program of that association to support a
6 the IEEE 1003 standards program efforts. a

7 The appendix is being published along with the standard to assist in the process of
8 review. It contains historical information concerning the contents of the standard and

9 why features were included or discarded by the Working Group. It also contains notes of
10 interest to application programmers on recommended programming practices,

11 emphasizing the consequences of some aspects of the standard that may not be
12 immediately apparent

* Copyright © 1987 by /usr/group. Reprint rights granted to the IEEE for this appendix.

/usr/group is a registered trademark of /usr/group, the International Network of UNIX System Users.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B Rationale and Notes 181

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

13 B.l Introduction

14 The IEEE Std 1003.1 is based on the UNIX operating system developed by AT&T Bell

15 Laboratories, and derives from efforts of the Standards Committee of /usr/group, an

16 association of individuals, corporations, and institutions with an interest in the UNIX a
17 system that has long worked toward the development of independent industry-driven

18 standards. The IEEE PI003 Working Group represents a cross-section of the UNIX b

19 system community: it consists of over 250 members representing hardware c

20 manufacturers, vendors of operating systems and other software development tools,

21 software designers, consultants, academics, authors, applications programmers, and

22 others. In the course of its deliberations, it has reviewed related American and

23 international standards, both published and in progress. This revision includes responses

24 and rationale material related to the comments received in the trial use period.

25 Although originally coined by the IEEE to refer to IEEE Std 1003.1, the term POSIX more c
26 correctly refers to a family of related standards or working groups, P1003.n. These other c

27 activities are described in Appendix A. There are some cases where this rationale uses c

28 the term POSIX as a synonym for IEEE Std 1003.1. This incorrect usage is maintained c
29 for purposes of readability only. The body of the standard does not use the term POSIX c

30 in this way. c

31 As explained in the Foreword, the term POSIX is expected to be pronounced pahz-icks, as c
32 in positive, not poh-six, or other variations. The P1003 Working Group has published c

33 the pronunciation of its term in an attempt to promulgate a standardized way of referring c

34 to a standard operating system interface. c

35 The intended audience for this standard is all persons concerned with an industry-wide a

36 standard operating system based on the UNIX system. This includes at least four groups

37 of people:

38 1. persons buying hardware and software systems;

39 2. persons managing companies that are deciding on future corporate

40 computing directions;

41 3. persons implementing operating systems, and especially;

42 4. persons developing applications where portability is an objective. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

182 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1— Draft 12

43 B.1.1 Scope
44 This Rationale focuses primarily on additions, clarifications, and changes made to the
45 UNIX system as described in the Base Documents §B.1.3 from which the standard was
46 derived. It is not a rationale for the UNIX system as a whole, since the Working Group b
47 was charged with codifying existing practice, not designing a new operating system. No

48 attempt is made in this Rationale to defend the pre-existing structure of UNIX systems. It b
49 is primarily deviations from existing practice, as codified in the Base Documents, that are

50 explained or justified here.

51 The Rationale discusses some UNIX system features that were not adopted into the b

52 standard. Many of these are features that are popular in some UNIX system
53 implementations, so that a user of those implementations might question why they do not
54 appear in the standard.

55 There are choices allowed by the standard for some details of the interface specification; a

56 some of these are specifiable option subsets of the standard. See Portability a

57 Specifications §B.2.10. See also Specific Derivations §B.1.3.3. a

58 The standard is not a tutorial on the use of the specified interface, nor is this Rationale.
59 However, the Rationale includes some references to well-regarded historical books on
60 the UNIX System in Historical Implementations §B.l 1.2.

61 B.1.2 Purpose
62 Several principles guided the Working Group’s decisions.

63 B.1.2.1 Application Oriented
64 The basic goal of the Working Group was to promote portability of application programs

65 across UNIX system environments by developing a clear, consistent, and unambiguous
66 standard for the interface specification of a portable operating system based on the UNIX
67 system documentation. This standard codifies the common, existing definition of the

68 UNIX system. There was na attempt to define a new system interface.

69 B.l.2.2 Interface, Not Implementation

70 The standard defines an interface, not an implementation. No distinction is made
71 between library functions and system calls: both are referred to as functions. No details
72 of the implementation of any function are given (although historical practice is

73 sometimes indicated in the Rationale). Symbolic names are given for constants (such as
74 signals and error numbers) rather than numbers.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.l Introduction 183

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

75 B.l.2.3 Source, Not Object, Portability
76 The standard has been written so that a program written and translated for execution on
77 one conforming implementation may also be translated for execution on another
78 conforming implementation. The standard does not guarantee that executable (object)
79 code will execute under a different conforming implementation than that for which it was
80 translated, even if the underlying hardware is identical. The Working Group has,
81 however, attempted to put few impediments in the way of binary compatibility, and some
82 remarks are found in this Rationale. See Requirements §B.2.2.1.1 and Configurable c
83 System Variables §B.4.8. c

84 B.1.2.4 The C Language and X3J11
85 The standard is written in terms of the standard C language as specified in the a
86 ANSI/X3.159~198x Programming Language C Standard that the X3J11 Working Group a

87 produced. See Conformance §2.2. Guidelines used in negotiations between the two
88 Working Groups are discussed below in C Language, X3J11, and P1003.1 §B.1.4.

89 B.l.2.5 No Super-User, No System Administration
90 There was no intention to specify all aspects of an operating system. System
91 administration facilities and functions are excluded from the standard, and functions
92 usable only by the super-user have not been included. This Rationale notes several such
93 instances. Still, an implementation of the standard interface may also implement features
94 not in the standard: see Requirements §2.2.1.1. The standard is also not concerned with a
95 hardware constraints or system maintenance. a

96 B. 1.2.6 Minimal Interface, Minimally Defined
97 In keeping with the historical design principles of the UNIX system, the standard is as

98 minimal as possible. For example, it usually specifies only one set of functions to
99 implement a capability. Exceptions were made in some cases where long tradition and

100 many existing applications included certain functions, such as creat() §5.3.2. In such
101 cases, as.throughout the standard, redundant definitions were avoided: creat() §5.3.2 is

102 defined as a special case of openQ §5.3.1. Redundant functions or implementations with
103 less tradition were excluded. For example, seekdir() §B.5.1.2 and telldirQ §B.5.1.2
104 were not included in Directory Operations §5.1.2.

105 B.1.2.7 Broadly Implementable
106 The Working Group has endeavored to-make all specified functions implementable
107 across a wide range of existing and potential systems, including:

108 • All of the current major systems that are ultimately derived from AT&T code

109 (Version 7 or later).

110 • Compatible systems that are not derived from AT&T code.

111 ‘ • Emulations hosted on entirely different operating systems.

112 • Networked systems.

184

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

113

114

• Distributed systems.

• Systems running on a broad range of hardware.

115 No direct references to this goal appear in the standard, but some results of it are

116 mentioned in this Rationale.

117 B. 1.2.8 Minimal Changes to Historical Implementations
118 There is no known historical implementation §B.2.3 that will not have to change in

119 some area to conform to the standard, and in a few areas the standard does not exactly
120 match any existing system interface (for example, see 0_N0NBL0CK §B.6).
121 Nonetheless, there is a set of functions, types, definitions, and concepts that form an
122 interface that is common to most historical implementations. The standard specifies that
123 common interface and extends it in areas where there has historically been no consensus,

124 preferably

125 1. by standardizing an interface like one in an historical implementation, e.g.,
126 Directories §5.1, or

127 2. by specifying an interface that is readily implementable in terms of, and backwards a

128 compatible with, existing implementations, such as TAR §10.1, or

129 3. by specifying an interface that, when added to a historical implementation, will not
130 conflict with it, like 0_NONBLOCK §B.6.

131 Required changes to historical implementations have been kept as few as possible, but
132 they do exist, and this Rationale points out some of them.

133 The standard is specifically not a codification of a particular vendor’s product. It is like
134 the UNIX system, but it is not identical to it. The word UNIX is not used in the standard
135 proper both for that reason, and because it is a trademark of a particular vendor.

136 B.l.2.9 Minimal Changes to Existing Application Code

137 The Working Group wished to make less work for application developers, not more.
138 However, because every known historical implementation will have to change at least

139 slightly to conform, some applications will have to change. This Rationale points out the
140 major places where the standard implies such changes.

141 B. 1.2.10 IEEE Consensus Process

142 The IEEE consensus process was used in deliberations. There are several levels of a
143 participation: a

144 • Correspondents. a

145 Those interested in following the development of the standard could subscribe a

146 to a mailing list to which copies of drafts, working documents, and related a

147 material were sent. Also, anyone (including individuals, companies, a

148 government agencies, or other organizations) could send comments (or RFCs, a

149 Proposals, or Notes) to the Working Group. a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.l Introduction 185

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

150 • Working Group. a

151 This was the group responsible for producing the standard document It met a

152 four times a year and produced many drafts. It also produced the Trial Use a

153 and Full Use Standards, and was responsible for resolving balloting objections a

154 to them. The Working Group was composed of individuals, even though a

155 many of them worked for companies with interests in the field. a

156 • Balloting Group. a
157 This group voted on the proposed standards in the manner detailed in the next a

158 subsection. The Balloting Group, like the Working Group, was composed of a

159 individuals. Most of the people on the Working Group also were in the a

160 Balloting Group, although the latter included many others, as well. a

161 • Institutional Representatives. a

162 Exceptions to the individual composition of the Balloting Group were the a

163 Institutional Representatives, who represented related standards bodies or a

164 professional organizations (in this case, USENIX, /usr/group, and X/OPEN). a

165 These Institutional Representatives also served on the Working Group, but a

166 participated there as individuals. a

167 Decisions of the Working Group were not made by vote, not even of a large majority, a

168 Decisions were made by consensus, which required that each individual believe that a

169 • their point of view had been heard a

170 • their point of view had been understood a

171 • other individuals’ points of view were adequately understood . a

172 • there was general consensus. a

173 A common way of moving discussion along was to ask if anyone would ballot “no” on a a

174 particular issue. a

175 B. 1.2.11 IEEE Balloting Process

176 The IEEE balloting process is used to attain the ANSI requirement for a consensus c

177 acceptance of a document as a standard. c

178 Balloting in IEEE is done by individuals who are members of IEEE or affiliated with the c

179 IEEE Computer Society. They are given thirty days in which to return the ballots, and c

180 75% of those in the balloting group must return ballots. c

181 Ballots from non-IEEE members are also included in the process, with comments and c
182 objections treated the same as those from members. However, non-IEEE members are c

183 not included in the percentages of returns required or the affirmative percentage required c

184 for approval. Possible ballot responses [excluding abstentions] are: c

185 • yes without comments c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

186 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1— Draft 12

186 • yes with comments c
187 The comments indicate areas that should be evaluated, but are not significant c
188 enough to warrant a negative ballot. c

189 • no with objections c
190 A negative ballot must include specific objections and recommendations on c
191 how to resolve the objections. These objections indicate areas that must be c

192 fixed to resolve the negative ballot. c

193 At least 75% of those balloting [not abstaining] must provide an affirmative response, c
194 Each objection, and many of the comments, are translated into proposed changes; and c

195 any outstanding objections, along with the rationale for not making the changes to c
196 accommodate these objections, are fed back to the balloting group. c

197 Members of the balloting group are given ten days to change their ballots, with similar c
198 options as above; however, objections are limited to the proposed changes and/or failure c
199 to resolve key objections. It is possible for the number of negative responses to increase c
200 if a proposed change is objectionable, or if a significant objection has not been addressed, c

201 In general, the balloting process moves fairly quickly towards a high degree of c
202 consensus.. The final results are submitted to the IEEE Standards Board for approval, and c
203 include the balloting percentages as well as documentation of any unresolved negative c

204 objections. c

205 The Trial Use period was from April 1986 to the November 1987, when the balloting of c
206 the revised document [Draft 12] began, and provided an additional level of industry c

207 consensus. The high visibility of the document, as well as its widespread distribution, c
208 provided additional feedback and information for the formulation of the current standard, c

209 See also Specific Derivations §B.1.3.3. c

210 The Institutional Representatives were exceptions in several ways. c

211 • They are not required to be IEEE members. c

212 • They ballot for their Institutions, not as individuals. c

213 • Ballots of Institutional Representatives are reported separately to the IEEE c
214 Standards Board. c

215 As with other ballots, any unresolved negative objections are reported with the rationale c

216 for not incorporating the associated changes. However, the separate reporting of the c

217 Institutional ballots tends to make any objections more visible, particularly in that c

218 Institution’s areas of expertise; consequently, any unresolved objection could be enough c
219 to cause the document to be sent back to the balloting process for further resolution, c
220 USENIX,balloted affirmative for the Trial Use Standard; /usr/group balloted negative, and c

221 their unresolved issue was mandatory locking; X/OPEN did not ballot c

B.l Introduction

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

187

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

222 B.1.3 Base Documents
223 The Working Group consulted a number of documents as representing features
224 appropriate for consideration for inclusion in the standard. Full bibliographic

225 information may be found in Bibliographic Notes §B. 11.

226 B.l.3.1 Related Standards and Documents c

227 • 1984 lusrlgroup Standard

228 • ANSI/X3.159-198x Programming Language C Standard

229 • XIOPEN Portability Guide

230 The most direct ancestor is the 1984 /usr/group Standard, which is considered to be

231 Draft 1 of the present standard. It, in turn, was largely derived from the programming

232 interface of System IIL The 1984 lusrlgroup Standard is also the principal ancestor of
233 the Library section of the C Standard.

234 The X3J11 and P1003.1 Working Groups have cooperated closely. Details of the a

235 relations of the two standards they produced are listed in this Rationale in C Language, a

236 X3J11, and P1003.1 §B.1.4 because the C Standard is the standard most closely related a

237 to POSIX. POSIX is written in terms of the C Standard, although it is possible to have a

238 POSIX without Standard C: see Conformance §B.2.2. a

239 The XIOPEN Portability Guide proved useful because X/OPEN had in many cases already

240 addressed the same issues as P1003.1, though often in a slightly different context

241 The Working Group is aware of the Japanese SIGMA project, which includes as a goal a

242 common operating system interface specification, and there has been a representative of

243 SIGMA at most recent P1003.1 Working Group meetings.

244 B. 1.3.2 Historical Implementations
245 These include (with colloquial names in parentheses):

246 • UNIX Time-Sharing System: UNIX Programmer s Manual, Seventh Edition

247 (Version 7)

248 • UNIX System III Programmer’s Manual

249 • AT&T System V Interface Definition (SVID), Issue 2, Volumes 1 -3

250 • 4.3 Berkeley Software Distribution, Virtual VAX-11 Version (4.3BSD)

251 Manuals

252 The UNIX system has changed more since the 1984 lusrl group Standard was written than

253 has the C language, and there are more variants of the former. Because of this, the

254 present standard has been radically reorganized and reformatted since the first draft and

255 has had many changes in content. Thus there is no single Base Document to provide

256 context for all discussions in this Rationale, which instead discusses aspects of Version 7,
257 System IE, System V, and 4.3BSD that were included in this standard or that were

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

188 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

258

259
260
261
262

263
264

265
266

267

268

269
270

271
272

273

274
275
276

277
278

279
280

281
282

283
284

285
286

287
288
289

290
291
292

293

294

295

considered in choosing what was included.

Occasional mentions are made of Version 8 and Version 9, which are successors of
Version 7, the Bell Laboratories research system. The context is usually related to the
streams inter-process communication mechanism, which is not in this standard but which
has influenced discussions about inter-process communication mechanisms.

Although 4.2BSD was the current Berkeley Software Distribution when most of the work
on the. standard was done, this Rationale refers to 4.3BSD instead (in most places)
because the differences between the two versions are almost entirely in performance, the
few programming interface differences are mostly outside the scope of this standard, and

the 4.3BSD manuals actually describe 4.2BSD better than the 4.2BSD manuals do.

The System V manuals are never referenced because the SVID is more definitive.

Much of the standard is closer to the SVID than to any other document, and there is an

appendix that compares the two directly.

Parts of documentation of many other related systems were considered in deliberations
on various aspects of the standard. As those were too numerous to list all of them, none

of them will be mentioned by name.

B.1.3.3 Specific Derivations
Some areas of the standard are clearly derived from facilities of specific systems. Most
of the major areas are listed here, together with references to the sections of the standard

where they occur. For most of them, there is also more detail in the corresponding

sections of the Rationale.

FIFOs
The FIFO special file §2.3 facility exists in System III, the 1984
lusrlgroup Standard, and System V, but not in Version 7, 4.2BSD,

or 4.3BSD.

reliable signals
Signals §3.3 includes reliable signals related to the 4.3BSD model.
These were introduced between the Trial Use and Full Use

Standards.

job control
The job control §B.3.3 facility is derived from 4.3BSD and was
introduced between the Trial Use and Full Use Standards.

saved set-user-ID (saved set-group-ID)
This optional capability, mostly in exec §3.1.2 and Set User and
Group IDs §4.2.2, is derived from System V, and was introduced

in the Trial Use Standard.

supplementary groups
A single group per process as in System V is the default, but User

A

A

A

A

B.l Introduction

UNAPPROVED DRAFT. All Rights Reserved by IEEE.
Do not specify or claim conformance to this document

189

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

296

297
298

Identification §4.2 (particularly getgroupsQ §4.2.3) allows

multiple groups per process as in 4.3BSD as an option. This was
introduced shortly before the Trial Use Standard.

299
300
301

302

uname()

The uname() §4.4.1 function is derived from the 1984 lusrlgroup
Standard, which took it from System HI, and it is still in System V.
It does not exist in Version 7 or 4.3BSD.

303
304

305
306

opendirQ, readdirQ, rewinddirQ, closedirQ

Directory Operations §5.1 is derived from 4.2BSD and was

introduced in an early draft of the standard. It was later adopted in
System V Release 3.

307

308

309

310

mkdir{), rmdirQ, rename()

The three functions mkdir() §5.4.1, rmdir() §5.5.2, and rename()

§5.5.3 are derived from 4.2BSD. Except for rename(), these c

functions now also appear in System V Release 3. c

311
312

313
314

315

316

317

termios

Device- and Class-Specific Functions §7, while closer to

System V than to 4.3BSD, does not correspond to any existing

system because none was found adequate when considerations

such as international character sets, fast interfaces, and networks

were taken into account. The final interface specification was

introduced shortly before the Full Use Standard.

318

319

320

321

322

archive format

The Extended tar Format §D.l is derived from the tar programs c

used in Version 7 and 4.3BSD, and provided with System V. The c

precise format in the Full Use Standard has evolved incrementally c

from that in earlier drafts of POSIX. c

323 B.1.3.4 Working Documents

324 The model for the present Rationale was the Rationale prepared by the X3J11 Working a

325 Group to accompany the ANSI/X3.159-198x Programming Language C Standard: a

326 • X3J11/86-152, October 1, 1986 “Rationale for Draft Proposed American a

327 National Standard for Information Systems—Programming Language C” a

328 Its influence may be seen most clearly in C Language, X3J11, and P1003.1 §B.1.4, but a

329 it also is present in more subtle ways throughout a

330 References to programs, functions, or facilities of systems described by the Base

331 Documents (such as the System V cj>io utility program) have been freely included in

332 this Rationale where relevant, even though they would be inappropriate in the standard
333 itself. References to programs, functions, or facilities not described by the base

334 documents or to companies not directly associated with them have been excluded where

190

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

335 possible. Exceptions have been made where facilities were derived from systems not a

336 described by the base documents, and where the word “may” is used to describe an a

337 option that permits behavior of such a system. a

338 b

339
340
341
342

343

344

345
346

347

348
349
350

351
352
353
354

355
356

357
358
359

360

361
362

363
364

365
366

367
368
369
370
371
372

373
374

B.1.4 C Language, X3J11, and P1003.1
Some C language functions and definitions were handled by P1003.1, but most by X3J11.
The most general guideline was that P1003.1. retained responsibility for operating-system
specific functions, while X3J11 defined C library functions. See also C Language
Definitions §B.2.8 and C Language Library §B.8..

There are several areas in which the two standards differ philosophically:

• Function parameter type lists.

These appear in the C Standard and specify the types of the arguments and
return values of functions in external references to them. POSIX does not

include them, except in a few places to indicate variable number of
arguments, e.g., File Control §B.6.5.2. Function parameter type lists were a

not used because the Working Group was aware that some vendors would a
wish to implement POSIX in terms of a binding to an historical variant of the a

C language instead of to the ANSI/X3.159-198x Programming Language C a

Standard, since compilers for the latter would initially not be widespread, a

Since the C Standard does not require the use of function parameter type lists, a

the function definitions used in POSIX are nonetheless specified in terms of a

Standard C. POSIX implementors whose C implementations support ANSI- c
style function prototypes should consider using them for declarations in c

POSIX. (Note that some code with improper declarations may have problems c
if this is done.) See also signalQ §B.3.3.3. c

• Single vs. multiple processes.

The C Standard specifies a language that can be used on single-process
operating systems and as a freestanding base for the implementation of

operating systems or other stand-alone programs. But the POSIX interface is
that of a multi-process timesharing system. Thus POSIX has to take multiple
processes into account in places where the C Standard does not mention
processes at all, such as kill() §3.3.2. See also Requirements §B.2.2.1.1.

• Single vs. multiple operating system environments.
The C Standard specifies a language that may be useful on more than one
operating system, and thus has means of tailoring itself to the particular
current environment. POSIX is an operating system interface specification,

and thus by definition is only concerned with one operating system
environment, even though it has been carefully written to be broadly
implementable §B. 1.2.7 in terms of various underlying operating systems.

See also Requirements §B.2.2.1.1.

B.l Introduction

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

191

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

375

376

377

378

379

380

381

382

383
384

385

386

387

388

389

390

391

392

393
394

395
396
397

398

399

• Translation vs. execution environment.

POSIX is primarily concerned with the Standard C execution environment,

leaving the translation environment to the C Standard. See also
Requirements §B.2.2.1.1.

Hosted vs. freestanding implementations.

All POSIX implementations are hosted in the sense of the C Standard,

also the remarks on conformance in the Foreword.
See

• Text vs. binary file modes.

X3J11 defines “text” and “binary” modes for a file. But the POSIX interface
and historical implementations related to it make no such distinction, and all

functions defined by P1003.1 treat files as if these modes are identical. (It is

important not to say that POSIX files are either “text” or “binary.”) X3J11

wrote their definitions so that this interpretation is possible. In particular,

“text” mode files are not required to end with a line separator, which also

means that they are not required to include a line separator at all.

And there is a basic difference in approach between the X3J11 Rationale and the P1003.1

Rationale. The X3J11 Rationale addresses almost all changes as differences from the

Base Documents of the C Standard, usually either Kemighan and Ritchie or the 1984
lusrlgroup Standard. The present Rationale cannot do that, since there are many more

variants of (and Base Documents for) the operating system interface than for the C

language. The most noticeable aspect of this difference is that X3J11 marks QUIET
CHANGES from the Base Documents in its Rationale. The POSIX Rationale cannot
include such markings, since a quiet change from one historical implementation may

correspond exactly to another historical implementation, and may be very noticeable to
an application written for yet another.

400 B.1.4.1 Solely by P1003.1.

401 These return parameters from the operating system environment: cuserid() §4.2.4,
402 ctermid() §4.7.1, ttyname() §4.7.2, and isartyQ §4.7.2.

403 The functions filenoQ §8.2.1 and fdopen() §8.2.2, map between C Language stream

404 pointers and POSIX file descriptors.

405 B.1.4.2 Solely by X3J1I.

406

407 There are many functions that are useful with the operating system interface and are

408 required for conformance with the present standard, but that are -properly part of the

409 C Language. These are listed in Referenced C Language Routines §8.1, which also
410 notes which functions are defined by both P1003.1 and X3J11. Certain terms defined by

411 X3J11 are incorporated by P1003.1 in C Language Definitions §2.8.

412 Some routines were considered too specialized by the PI003.1 Working Group to be

413 included in the standard. These include bsearch() and qsortQ.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

A

A

A

A

C

C

C

A

A

A

A

A

A

A

A

A

A

A

A

A

A

C

c

192 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

414 B.1.4.3 By Neither P1003.1 nor X3J11.
415 Some functions were considered of marginal utility and problematical when international
416 character sets were considered: _toupper(), _tolower(), toascii(), and isasciif).

All Though malloc{) §8.1 and free() §8.1 are in the C Standard and are required by
418 Referenced C Language Routines §8.1 of the present standard, neither brk{) §B.1.4.3 a

419 nor sbrk{) §B.1.4.3 occur in either standard (although they were in the 1984 lusr/group a

420 Standard), because this standard is designed to provide the basic set of functions required
421 to write a Conforming Application; the underlying implementation of mallocf) or free f)
422 is not an appropriate concern for the standard.

423 B.1.4.4 Base by P1003.1, Additions by X3J11.
424 Since the C Standard does not depend on POSIX in any way, there are no items in this a

425 category. a

426 B.1.4.5 Base by X3J11, Additions by P1003.1.
427 X3J11 has to define errno if only because examining that variable is the only way to tell

428 when some mathematics routines fail. But P1003.1 uses it more extensively, and adds c
429 some semantics to it in Error Numbers §2.5, which also defines some values for it c

430 Many numerical limits used by X3J11 were incorporated by P1003.1 in Numerical

431 Limits §2.9, and some new ones are.added, all to be found in the header <limits.h>.

432 The semantics of arguments to mainf) §3.1.2 are only defined in POSIX.

433 The POSIX definition of signal() §8.3.2 further specifies the C definition, and the entire c
434 mechanism of signals §3.3 is much more elaborate. c

435 The function time{) §4.5.1 is used by X3J11, but POSIX further specifies the time value. c

436 The function getenvf)4.6.1 is referenced in Environment Description §2.7 and exec
437 §3.1.2 and is also defined by X3J11.

438 The function rename() §5.5.3 is extended to further specify its behavior when the new
439 filename already exists or either argument refers to a directory.

440 B.l.4.6 Related Functions by Both.
441 The X3J11 definition of compliance and the P1003.1 definition of Conformance §2.2 are
442 similar, although the latter notes certain potential hardware limitations.

443 P1003.1 defined a portable filename character set in General Terms §2.3, that is like the
444 X3Jil identifier character set. However, P1003.1 did not allow upper- and lowercase

445 characters to be considered equivalent. See filename portability §2.4.

446 The type clock j §2.6 appears in both standards. See Time §B.4.5.

447 The exi?() function is defined only by X3J11, because it refers to closing streams, and
448 that subject, as well as fclose() itself, is defined almost entirely by X3J11. But P1003.1
449 defined _exit() §3.2.2, which also adds semantics to exit{). This also allows POSIX to c

450 ignore the X3J11 atexitf) function. c

B.l Introduction

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

193

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

451 P1003.1 defined kill() §3.3.2, while X3J11 defined raise(), which is similar except that it

452 does not have a process ID argument, since the language defined by X3J11 does not
453 incorporate the idea of multiple processes.

454 The new functions sigsetjmpQ §8.3.1 and siglongjmp() §8.3.1 were added to provide c

455 similar functions to X3J11 setjmp() and longjmp() that additionally save and restore c

456 signal state. Requiring setjmp() and longjmp{) to do this would have conflicted with the c

457 X3J11 definitions. c

458 B.1.5 Organization

459 B.1.5.1 Organization of the Standard

460 See the Foreword.

461 It was decided very early that the traditional organization by manual section, as used in
462 the 1984 lusrlgroup Standard, would be confusing in an IEEE standard. That

463 organization assumed some background that was not relevant to the purpose of the

464 standard. It also made an implementation-oriented distinction between system calls and

465 library routines, which were in separate sections.

466 Two sections, Scope §1 and Definitions §2, have been prepended because they are

467 traditional in IEEE standards. A Foreword was prepended for the same reason, even

468 though it is not part of the standard proper. The name POSIX, suggested by Richard
469 Stallman, was adopted during the printing of the Trial Use Standard. b

470 Although appendices were used in the Trial Use Standard to contain proposals for

471 examination by the Balloting Group and the general public, the Full Use Standard has no
472 proposal appendices, because the text of the standard proper must be complete. The

473 Appendices of the Full Use Standard discuss either related standards or the Full Use
474 Standard itself. Editor’s Note: Appendices D and E are an exception to the preceding c

475 two sentences. They will not appear in the Full Use Standard after it is approved, being c

476 included only to expedite the balloting process. The Full Use Standard contains some a

All new material that was not in the Trial Use Standard, mostly that which was added to

478 meet balloting objections. The most obvious examples are the addition of reliable signal
479 considerations to Signals §3.3 (including the addition of Non-Local Jumps §8.3.1) and

480 the resolution of Device- and Class-Specific Functions §7. See also Specific a

481 Derivations §B.1.3.3. a

482 Because there were too many notes interpolated in the text of the Trial Use Standard a

483 (which were nonetheless not part of the standard), and because there were still not

484 enough to explain why the Working Group had made many difficult decisions, the
485 Working Group decided to add a Rationale and Notes Appendix, modeled after the one
486 the X3J11 Working Group was producing for the C Standard. Most of the notes formerly

487 in the main body of the draft were moved to the Rationale appendix, although some were

488 deleted and others were incorporated into the text of the standard proper.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

194 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

489 B.1.5.2 Organization of this Appendix
490 Just as the standard proper excludes all examples, footnotes, references, and appendices,
491 this Rationale is also not part of the standard. The POSIX interface is defined by the a

492 standard alone. If any part of this Rationale is not in accord with that definition, the IEEE c

493 Standards Office should be so informed. In the meantime, conflicts between this c
494 Rationale and the standard are always resolved in favor of the body of the standard. c

495 All sections of this appendix after this first major section, Introduction §B.l, follow the

496 exact structure of the standard, and aspects of a given section of the standard are
497 considered in the corresponding section of the Rationale. Where a given discussion

498 touches on several areas, attempts have been made to include cross-references within the

499 text

500 References to the standard are in the same format as references within the standard to

501 parts of itself, for example: Definitions §2.0. References to this Rationale are given as
502 references to Appendix B of the standard, that is, the section numbers always begin with
503 “B.” as in Definitions §B.2.0. Where a reference both to part of the standard and to a
504 related note in the Rationale would be appropriate only the latter is given, because all
505 parts of the Rationale implicitly refer to the corresponding parts of the standard.

506 B.1.5.3 Typographical Conventions
507 Words in all capital letters (including error numbers, environment variables, and limits)
508 are one point size smaller than regular text, e.g.: POSIX.

Reference_ Example_ b

Command Name cpio b
Data Types long b
Defined Terms file b
Environment Variables PATH b
Error Numbers [EINTR] b
Function Arguments argO b

Functions openQ b
Global Externals errno b
Header Files <sys/stat.h> b

Limits {OPEN_MAX} b

Section References Process Termination §3.2 b
Symbolic Constants {_POSIX_V_DISABLE} b

523 Defined names that are normally in lowercase, particularly function names, are never
524 used at the beginning of a sentence or anywhere else that normal English usage would
525 require them to be capitalized.

i

526 The above typographical conventions appiy to both the standard and to this Rationale, a
527 There are also some conventions peculiar to the Rationale, regarding standards for the a

528 operating system interface and for . the C language. These are used frequently in C a

B.l Introduction

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

195

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

529 Language, X3J1X, and P1003.1 §B.1.4:

Topic Operating System Interface C Programming Language A

Working Group
standard

short name

Rationale

P1003.1
IEEE Std 1003.1

POSIX
Appendix B

short name this Rationale

X3J11

ANSI/X3.159-198x Programming

Language C Standard

C Standard

Rationale for American National
Standard for Information Systems—

Programming Language C

X3J11 Rationale

A

A

A

A

c
c

c

A

539 The name POSIX is usually used for the IEEE Std 1003.1 instead of the name 1003.1, a

540 because the latter is too easily confused with the name of the Working Group, P1003.1. a

541 “Standard C” will eventually come to mean “ISO C,” but currently refers to the a

542 ANSI/X3.159-198x Programming Language C Standard produced by the X3J11 Working a

543 Group. a

544 b

545 B.2 Definitions and General Requirements

546 B.2.1 Terminology

547 The meanings specified in the standard for the words “shall,” “should,” and “may” are a

548 mandated by IEEE. a

549 In this Rationale, the words “shall,” “should,” and “may” are sometimes used to a

550 illustrate similar usages in the standard. However, the Rationale itself does not specify a

551 anything regarding implementations or applications; see Organization of this Appendix a

552 §B.1.5.2. a

553 implementation defined a

554 This definition is analogous to that of the C Standard, and, together with undefined a

555 and unspecified, provides a range of specification of freedom allowed to the a

556 interface implementor. a

557 may a

558 The use of “may” has been limited as much as possible, due both to confusion a

559 stemming from its ordinary English meaning, and to objections regarding the c

560 desirability of having as few options as possible and those as clearly specified as

561 possible.

562 shall
563 Declarative sentences are sometimes used in the standard as if they included the

564 word “shall,” and facilities thus specified are no less required.

196

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

565 should
566 In this standard, the word “should” does not usually apply to the implementation,
567 but rather to the application. Thus the important words regarding implementations
568 are “shall,” which indicates requirements, and “may,” which indicates options.

569 undefined
570 See implementation defined.

571 unspecified
572 See implementation defined.

573 B.2.2 Conformance
574 The definition of conforming implementations §2.2.1 allows application developers to
575 know what they can depend on in an implementation.

576 There is no definition of a strictly conforming implementation; that would be an c
577 implementation that provides only those facilities specified by the standard with no c

578 extensions whatsoever. This is because no actual operating system implementation can
579 exist without system administration and initialization facilities that are beyond the scope

580 of the present standard.

581 The definitions of a Conforming Application Using Extensions §B.2.2.2 and of a a

582 Strictly Conforming Application §B.2.2.3 guide users or adaptors of applications in a

583 determining on which implementations an application will run and how much adaptation a

584 would be required to make it run on others. These two definitions are modeled after a

585 related ones in the C Standard. a

586 These three conformance definitions are descended from those of conforming a

587 implementation, conforming application, and conforming portable application, a

588 respectively, of the Trial Use Standard, but were changed to clarify a

589 1. extensions, options, and limits, A

590 2. relations among the three terms, and A

591 3. relations between POSIX and the C Standard. A

592 B.2.2.1 Implementation Conformance

593 B.2.2.1.1 Requirements
594 The word “support” is used rather than “provide” in order to allow an implementation
595 that has no resident software development facilities but which supports the execution of a
596 Strictly Conforming Application to be a conforming implementation. See also a

597 Translation vs. Execution Environment §B.1.4. a

598 B.2.2.1.2 Documentation
599 The conforming documentation should use the same numbering scheme as this standard c
600 for purposes of cross referencing. (This also eliminates the need for a definitive “laundry c

601 list.”) c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.2 Definitions and General Requirements 197

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

602 This proposal is consistent with and supplements the verification test suite developed by c

603 the P1003.3 working group. All options that an implementation chooses should be listed c
604 in <limits.h> and <unistd.h>. c

605 Hardware Failures: Many systems incorporate buffering facilities, maintaining updated c
606 data in volatile storage and transferring such updates to nonvolatile storage c

607 asynchronously. Various exception conditions, such as a power failure or a system crash, c

608 can cause this data to be lost. The data may be associated with a file that is still open, c

609 with one that has been closed, with a directory, or with any other internal system data c

610 structures associated with permanent storage. This data can be lost, in whole or part, so c

611 that only careful inspection of file contents could determine that an update did not occur. c

612 Also, interrelated file activities, where multiple files and/or directories are updated, or c

613 where space is allocated or released in the file system structures, can leave c

614 inconsistencies in the relationship between data in the various files and directories, or in c

615 the file system itself. Such inconsistencies can break applications that expect updates to c

616 occur in a specific sequence, so that updates in one place correspond with related updates c

617 in another place. c

618 For example, if a user creates a file, places information in the file, and then records this c
619 action in another file, a system or power failure at this point followed by restart may c

620 result in a state in which the record of the action is permanently recorded, but the file c

621 created (or some of its information) has been lost. The consequences of this to the user c

622 may be arbitrarily bad. For such a user on a system, the only safe action may be to c

623 require the system administrator to have a policy that requires, after any system or power c

624 failure, that the entire file system must be restored from the most recent backup copy c

625 (causing all intervening work to be lost). c

626 The characteristics of each implementation will vary in this respect, and may or may not c

627 meet the requirements of a given application or user. Enforcement of such requirements c

628 is beyond the scope of this standard. It is up to the purchaser to determine what facilities c
629 are provided in an implementation that affect the exposure to possible data or sequence c

630 loss, and also what underlying implementation techniques and/or facilities are provided c

631 that reduce or limit such loss, or its consequences. c

632 B.2.2.2 Application Conformance

633 B.2.2.2.1 Strictly Conforming Application

634 This definition is analogous to that of a Standard C conforming program.

635 The major difference between a Strictly Conforming Application and a Standard C
636 strictly conforming program is that the latter is not allowed to use features of POSIX

637 that are not in the C Standard.
•

638 Due to possible requirement for configuration or implementation characteristics in excess

639 of the specifications in <limits.h> §2.9 or related to the hardware (such as array size or a

640 file space), not every Conforming Application Using Extensions will run on every

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

198 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1— Draft 12

641 conforming implementation, b

642 B.2.2.2.2 Conforming Application b

643 B.2.2.2.3 Conforming Application Using Extensions b

644 B.2.2.3 Language Conformance b

645 B.2.2.3.1 C Language Binding b
646 The information concerning the use of library functions was adapted from a description b
647 in the C Standard. Here is an example of how an application program can protect itself b
648 from library functions that may or may not be macros, rather than true functions: b

649 The atoi() function may be used in any of several ways: b

650 1. by use of its associated header (possibly generating a macro expansion) b

651 #include <stdlib.h> b

652 /*...*/ b
653 i = atoi(str); b

654 2. by use of its associated header (assuredly generating a true function call) b

655 #include <stdlib.h> b
656 #undef atoi b

657 /*...*/ b
658 i = atoi(str); b

659 or b

660 #include <stdlib.h> b

661 /*...*/ b
662 i = (atoi) (str); b

663 c

664 3. by explicit declaration

665 extern int atoi (const char *);

666 /* ... */
667 i = atoi(str);

668 4. by implicit declaration

669 /* ... */
670 i = atoi(str);

671 (Assuming no function prototype is in scope. This is not allowed by X3J11 c

672 for functions with variable arguments; furthermore, parameter type c
673 conversion “widening” is subject to different rules in this case.) c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

B.2 Definitions and General Requirements 199

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

674

675

676

677

678

679

680

681
682

683

Note that the C Standard reserves names starting with ' for the c

compiler. Therefore, the compiler could, for example, implement an

intrinsic, built-in function _asm_builtin_atoi(), which it recognized and

expanded into inline assembly code. Then, in <stdlib.h>, there would be

the following:

#def ine atoi (X) _asm__builtin__atoi (X)

The user’s “normal” call to atoi{) would then be expanded inline, but the
implementor would also is required to provide a callable function named c

atoi() for use when the application requires it; for example, if its address is c

to be stored in a function pointer variable. c

684 B.2.3 General Terms

685 Many of these definitions are necessarily circular, and some of the terms (such as
686 process) are variants of basic computing science terms that are notoriously hard to
687 define. Some are defined by context in the prose topic descriptions of General Concepts

688 §2.4, but most appear in the alphabetical glossary format of General Terms §2.3. All

689 technical terms not explicitly defined have definitions in the IEEE Dictionary. See b

690 Bibliographic Notes §B.11.1. b

691 Some definitions must allow extension to cover terms or facilities that are not explicitly

692 mentioned in the standard. For example, the definition of file must permit interpretation

693 to include streams, as found in Version 8. The use of abstract intermediate terms (such c

694 as object in place or in addition to file) has mostly been avoided in favor of careful

695 definition of more traditional terms.

696 Some terms in the following list of notes do not appear in the standard; these are marked
697 with a prepended asterisk (*). Many of them have been specifically excluded from the
698 standard because they concern system administration, implementation, or other issues

699 that are not specific to the programming interface. Those are marked with a reason, such

700 as “implementation defined.”

701 appropriate privileges b

702 One of the fundamental security problems with UNIX systems has been that the b

703 privilege mechanism is monolithic—a user has either no privileges or all b

704 privileges. Thus, a successful “trojan horse” attack on a privileged process b

705 defeats all security provisions. Therefore, the standard allows more granular b

706 privilege mechanisms to be defined. For many existing implementations of the b

707 UNIX system, the presence of the term appropriate privileges in this standard b
708 may be understood as a synonym for super-user (UID0). However, future c

709 systems will undoubtedly emerge where this is not the case and each discrete c

710 controllable action will have appropriate privileges associated with it c

711 controlling terminal a
712 The question of which of possibly several special files referring to the terminal is a

200

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

713

714

715

716
717
718

719
720
721
722
723
724

725
726

727
728
729

730

731
732

733
734

735

736
737

738

739
740
741

742

743
744

745

746
747
748

749
750
751
752

meant is not addressed in the standard. a

♦cooperating implementation c
This refers to a POSIX implementation that is done in combination with some other c

set of system specifications. This might be as simple as supporting a POSIX c
environment concurrently with some specific version of AT&Ts UNIX Operating c
System, or as complex as providing the POSIX environment with some different c
vendor’s products, such as MS/DOS from Microsoft, VMS from Digital Equipment c
Company, etc. A cooperating environment would fall somewhere on the gray c
scale from hosted implementations to native, depending on the degree of POSIX c
components that are serviced directly versus those that are converted to correspond c
with one of the other system’s implementations. (Note that the POSIX facilities c
might be native, and the other system hosted; or both might be native.) c

♦device number
The concept is handled in stat() §5.6.2 as ID of device,

directory
The format of the directory file is implementation defined, and differs radically
between System V and 4.3BSD. However, routines (derived from 4.3BSD) for

accessing directories are provided in Directory Operations §5.1.2 and certain

constraints on the format of the information returned by those routines are made in

Format of Directory Entries §5.1.1. j

directory entry
Throughout the document, the term link is used (about link() §5.3.4, for example)
in describing the things that point to files from directories.

dot A

The symbolic name dot is carefully used in the standard to distinguish the working a

directory filename from period or decimal point. a

dot-dot
Historical implementations permit the use of these filenames without their special

meanings. Such use precludes any meaningful use of these filenames by a
Conforming Application. Therefore such use is considered an extension, the use of
which makes an implementation non-conforming. See also pathname resolution

§B.2.4.

Epoch c

Normally, the origin of UNIX system time is referred to as “00:00:00 GMT, c
January 1, 1970.” Greenwich Mean Time is actually not a term acknowledged by c
the international standards community therefore, this term. Epoch, is used to c
abbreviate the reference to the actual standard, Coordinated Universal Time. The c
concept of leap seconds is added for precision; at the time this standard was c
published, 18 leap seconds had been added since January 1, 1970. These 18 c
seconds are ignored to provide an easy and compatible method of computing time c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.2 Definitions and General Requirements 201

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

753 differences. c

754 FIFO special file

755 See pipe §B.2.3.

756 file

757 It is permissible for an implementation defined file type to be non-readable or
758 non-writable.

759 file classes c

760 These classes correspond to the historical sets of permission bits. The classes are c

761 general to allow implementations flexibility in expanding the access mechanism c
762 for more stringent security environments. Note that a process is in one and only c
763 one class, so there is no ambiguity. c

764 file system

765 Historically the meaning of this term has been overloaded with two meanings: that
766 of the complete file hierarchy §B.2.4, and that of a mountable subset of that

767 hierarchy, i.e., a mounted file system §B.2.3. The standard uses the term file

768 system in the second sense, except that it is limited to the scope of a process (and a

769 process’s root directory). This usage also clarifies the domain in which a file serial

770 number is unique.

771 *group file

772 Implementation defined; see Passwords §B.9.

773 *historical implementations

774 This term is used only in this appendix, not in the standard. It refers to

775 previously-existing implementations of programming interfaces and operating

776 systems that are related to the interface specified by the standard, especially to

777 those implementations described by the Base Documents §B.1.3. See also

778 Minimal Changes to Historical Implementations §B. 1.2.8.

779 *hosted implementation c

780 This refers to a POSIX implementation that is accomplished through interfaces c

781 from the POSIX services to some alternate form of operating system kernel c
782 services. Note that the line between a hosted implementation and a native c

783 implementation is blurred, since most implementations will provide some services c

784 directly from the kernel, and others through some indirect path. (For example, c

785 fopcn() might use open{)\ or mkfifo{) might use mknode().) There is no necessary c

786 relationship between the type of implementation and its correctness, performance, c

787 and/or reliability. c

788 *impIementation , c
789 The term is generally used instead of its synonym, system, to emphasize, the c

790 consequences of decisions to be made by system implementors. Perhaps if no c
791 options or extensions to POSIX were allowed, this usage would not have occurred. c

202

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

792 *incompIete path name
793 Absolute pathname §2.4 has been adequately defined.

794 *kernel
795 See system call.

796 *library routine
797 See system call.

798 *logicaI device
799 Implementation defined.

800 *mount point
801 The directory on which a mounted file system is mounted. This term, like
802 mount() and umountQ was not included because it was implementation defined.

803 *mounted file system
804 See file system.

805 *native implementation c
306 This refers to an implementation of POSIX that interfaces directly to an operating c
807 system kernel addressed in the standard. See also hosted implementation §B.2.3 c
808 and cooperating implementation §B.2.3. A similar concept from the UNIX world c

809 is a native UNIX system, which would a be kernel derived from one of AT&T’s c

810 UNIX products. c

811 *passwdfile
812 Implementation defined; see Passwords §B.9.

813 open file description c
814 An open file description, as it is currently named, “describes” how a file is being c
815 accessed. What is currently called a file descriptor is actually just an identifier or c
816 “handle;” it does not actually describe anything. c

817 The following alternate names were discussed: c

818 open file description c
819 open instance, file access description, open file information, and file access c
820 information. c

821 file descriptor

822 file handle, file number [c.f.,fileno].

823 pipe
824 It proved convenient to define a pipe as a special case of a FIFO even though
825 historically the latter were only introduced in System III and do not exist at all in c
826 4.3BSD. c

827 portable filename character set
828 The encoding of this character set is not specified: specifically, ASCII is not

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.2 Definitions and General Requirements 203

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

829 required. But the implementation must provide a unique character code for each of

830 the printable graphics specified by the standard. See also filename portability
831 §B.2.4.

832 regular file

833 The standard does not intend to preclude the addition of structuring data (e.g.,

834 record lengths) in the file, as long as such data is not visible to an application that

835 uses the features described in the standard.

836 root directory

837 This definition permits the operation of chroot(), even though that function is not

838 in the standard. See also file hierarchy §B.2.4.

839 *root file system

840 Implementation defined. a

841 *root of a file system a

842 Implementation defined. See mount point. a

843 signal
844 The definition implies a double meaning for the term. Although a signal is an

845 event, common usage implies that a signal is an identifier of the event

846 *system call
847 The distinction between a system call and a library routine is an implementation

848 detail that may differ between implementations and has thus been excluded from
849 the standard. See Interface, Not Implementation §B.1.2.2.

850 *super-user b
851 This concept, with great historical significance to UNIX system users, has been b
852 replaced with the notion of appropriate privileges. b

853 B.2.4 General Concepts

854 file access permissions

855 A process should not try to anticipate the result of an attempt to access data by a

856 priori use of these rules. Rather, it should make the attempt to access data and
857 examine the return value (and possibly errno, as well), or use access() §5.6.3. An

858 implementation may include other security mechanisms in addition to those

859 specified in the standard, and an access attempt may fail because of those
860 additional mechanisms even though it would succeed according to the rules given

861 in this section. (For example, the user’s security level might be lower than that of a

862 the object of the access attempt.) The optional supplementary group IDs provide

863 another reason for a process to not attempt to anticipate the result of an access

864 attempt

865 file hierarchy
866 Though the file hierarchy is commonly regarded to be a tree, the standard does not

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

204 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

867 define it as such for three reasons:

868 • As noted in the standard, links may join branches.

869 • In some network implementations, there may be no single absolute root
870 directory. See pathname resolution.

871 • With symbolic links (found in 4.3BSD), the file system need not be a c
872 tree or even a Directed Acyclic Graph. c

873 file permissions c
874 Examples of implementation defined constraints that may deny access are .c

875 mandatory labels and access control lists. c

876 filename portability
877 Most historical implementations, including all of those described by the Base a

878 Documents §B.1.3, prohibit case folding in filenames, i.e., treating upper- and a

879 lowercase alphabetic characters as identical. However, some consider case folding a

880 desirable a

881 1. For user convenience. a

882 2. For ease of implementation of the standard interface as a hosted system on a

883 some popular operating systems, which is compatible with the goal of a

884 making the standard interface broadly implementable §B. 1.2.7. a

885 Variants such as maintaining case distinctions in file names but ignoring them in a

886 comparisons have been suggested. Methods of allowing escaped characters of the a

887 case opposite the default have been proposed. a

888 Many reasons have been expressed for not allowing case folding, including: a

889 1. No solid evidence has been produced as to whether case sensitivity or case a

890 insensitivity is more convenient for users. a

891 2. Making case insensitivity a POSIX implementation option would be worse ' a .
892 than either having it or not having it, because a

893 • More confusion would be caused among users. a

894 • Application developers would have to account for both cases in their a

895 code. a

896 • POSIX implementors would still have other problems with native file a

897 systems, such as short or otherwise constrained filenames, not to mention a
898 the lack of hierarchical directory structure. a

899 5. Case folding is not easily defined in many European languages, both because a

900 many of them use characters outside the USASCII alphabetic set, and a

901 because: a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.2 Definitions and General Requirements 205

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

902

903

904

905

906
907

908

909

910

911
912

913

914

915

916
917

918
919

920
921

922

923
924

925

926

927

928

929

930
nor
yj I

932

933

934

935

936

937

938

939

• In Spanish the digraph 11 ‘is considered to be a single letter, the a

capitalized form of which may be either LI or LL depending on context a

• In French the capitalized form of a letter with an accent may or not retain a

the accent depending on the country in which it is written. a

• In German the sharp ess may be represented as a single character a
resembling a Greek beta ((3) in lowercase but as the digraph SS in a

uppercase. a

• In Greek there are several lowercase forms of some letters; the one to use a

depends on its position in the word. Arabic has similar rules. a

4. Many East Asian languages, including Japanese, Chinese, and Korean, do a

not distinguish case, and are sometimes encoded in character sets that use a

more than one byte per character. a

5. Multiple character codes may be used on the same machine simultaneously, a

There are several ISO character sets for European alphabets. In Japan, a
several Japanese character codes are commonly used together, sometimes a

even in filenames; this is evidently also the case in China. To handle case a

insensitivity, the kernel would have to at least be able to distinguish for a
which character sets the concept made sense. a

6. The file system implementation historically deals only with bytes, not with a

characters, except for slash and the null byte. a

7. The purpose of the Working Group is to standardize the common, existing a
definition §B. 1.2.1 of the UNIX system programming interface, not to a

change it Mandating case insensitivity would make all historical a

implementations non-standard. a

8. Not only the interface, but also application programs would need to change, a

counter to the purpose of having minimal changes to existing application a

code §B.1.2.9. a

9. At least one of the original developers of the UNIX system has expressed a
objection in the strongest terms to either requiring case insensitivity or a

making it an option, mostly on the basis that the standard should not hinder a

portability of application programs across related implementations in order a

to allow compatibility with unrelated operating systems. a

Two proposals were entertained regarding case folding in file names:

1. Remove all wording that previously permitted case folding.

»Rationale: Case folding is inconsistent with portable filename character set

definition and filename definition (all characters except slash and null). No

known implementations allowing all characters except slash and null also do

case folding.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

206 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

940 2. Change “though this practice is not recommended:” to “although this

941 practice is strongly discouraged”
942 Rationale: If case folding must be included in the standard, the wording
943 should be stronger to discourage the practice.

944 The consensus of the Working Group was in favor of proposal 1. Otherwise, a portable c
945 application would have to assume that case folding would occur when it wasn’t wanted, c

946 but that it wouldn’t occur when it was wanted. c

947 file times update c
948 General Concepts §2.4 has been changed to follow historical implementations, c
949 The times are not updated immediately, but are only marked for update by the c

950 functions. c

951 pathname resolution
952 What the filename dot-dot refers to relative to the root directory is
953 implementation defined. In Version 7 it refers to the root directory itself; this is

954 the behavior mentioned in the standard. In some networked systems the
955 construction /../hostname/ is used to refer to the root directory of another host,

956 and the standard permits this behavior.

957 Other networked systems use the construct / /hostname/ for the same purpose, i.e., a

958 a double initial slash is used. The Working Group decided to prohibit this practice, a

959 because if such a construction is not equivalent to a single leading slash, it is more a

960 difficult to write shell scripts that depend on concatenating a directory name with a a

961 filename part. The utility (and ubiquitousness) of such shell scripts was considered a

962 more important than a particular file system implementation. This consideration c

963 did not apply to /.. /hostname, because that construct would not be used unless the c
964 application was deliberately accessing the network facility. c

965 The term root directory is only defined in the standard relative to the process. In

966 some implementations, there may be no absolute root directory. The initialization

967 of the root directory of a process is implementation defined.

968 B.2.5 Error Numbers
969 Checking the value of errno alone is not sufficient to determine the existence or type of

970 an error, since it is not required that a successful function call clear errno. The variable
971 errno should only be examined when the return value of a function indicates that the
972 value of errno is meaningful. In that case, the function is required to set the variable to

973 something other than zero.

974 A successful function call may set the value of errno to zero, or to any other value
975 (except where specifically prohibited: see mkdir() §B.5.4.1). But it is meaningless to do

976 so, since the value of errno is undefined except when the description of a function

977 explicitly states that it is set, and no function description states that it should be set on a
978 successful call. Most functions in most implementations do not change errno on

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

B.2 Definitions and General Requirements 207

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

979 successful completion. Exceptions are isattyi) §4.7.2 and ptraceQ. The latter is not in

980 the standard, but is widely implemented and clears err no when called.

981 The standard requires (in the Errors subsections of function descriptions) certain eiror

982 values to be set in certain conditions because many existing applications depend on them.

983 Some error numbers, such as [EFAULT], are entirely implementation defined and are
984 noted as such in their description in Error Numbers §2.5. This section otherwise allows

985 wide latitude to the implementation in handling error reporting. All references to the

986 term system call have been excised from the descriptions of errors in this section.

987 Following each one-word symbolic name for an error, there is a one-line tag, which is

988 followed by a description of the error. The one-line tag is merely a mnemonic or
989 historical referent and is not part of the specification of the error. Many programs print
990 these tags on the standard error stream (often by using the Standard C perror{) function)

991 when the corresponding errors are detected, but the standard does not require this action.

992

993

994

995

996

997

[EFAULT] Most historical implementations do not catch an error and set

errno when a bad address is given to the functions wait() §3.2.1,

time() §4.5.1, or times{) §4.5.2. Some implementations cannot

reliably detect a bad address. And most systems that detect bad

addresses will do so only for a system call §B.2.3, not for a

library routine §B.2.3.

998

999
1000
1001

[EINTR] The standard does not prohibit implementations from restarting

interrupted system calls, nor does it require that [EINTR] be
returned when another legitimate value may be subsituted, e.g., a
partial transfer count when readQ or write () are interrupted.

1002 [ENAMETOOLONG]

1003
1004

[ENOMEM] The term main memory §B.2.3 has been eliminated from this

description as being implementation defined.

1005

1006

1007

[ENOTTY] The symbolic name for this error is derived from a time when

device control was done by ioctl() §B.2.5 and that operation was

only permitted on a terminal interface.

c

c

c
c

A

A

A

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

208 . Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1008 B.2.6 Primitive System Data Types
1009 In early drafts, the standard specified that additional types that the implementation could c
1010 place into <sys/types.h> had to be named with a “_t” suffix. This restriction was c
1011 removed as it did not aid application portability and many implementations already were c

1012 in violation. c

1013
1014

1015

clockj Traditionally, the type timej was used for this. The Trial Use
Standard used ttimej. The present type was adopted to match the

C Standard. See Time §B.4.5.

1016 dev_t This type may be made large enough to accomodate host-locality

1017 considerations of networked systems.

1018

1019

This type must be integral. Earlier drafts allowed this to be non- b

integral and provided a samefile() function for comparison. b

102Q
1021
1022
1023
1024

modej This type was chosen so that implementations could choose the
appropriate integral type, and for compatibility with the
C Standard. 4.3BSD uses unsigned short and the SVID uses
ushort, which is the same thing. Historically, only the low-order c
sixteen bits are significant. c

1025 nlinkj This type was introduced in place of short for st_nlink §5.6.1 in
1026 response to an objection that short was too small.

1027 offj
1028
1029
1030
1031
1032

1033

This type is used only in Iseek() §6.5.3 and <sys/stat.h> §5.6.1. b

Many implementations would have difficulties if it were defined as
anything other than long. The Working Group realizes that

requiring an integral type limits the capabilities of Iseek () to four
gigabytes. See lread{) §B.6.4. Also, the C Standard supplies
routines that use larger types: seefgetpos() §B.6.5.3 and fsetpos() a

§B.6.5.3. a

1034 pidj
1035
1036
1037

1038
1039
1040

This type has been proposed, but was not approved by the a

Working Group, because int is in common use on known systems, a

and sufficient need for pidj to justify cost of changes has not been a

demonstrated. Also, many applications assume the digital a

representation of a process ID has a maximum of five digits; thus a a

larger type would not be of much use without requiring change of a

all such applications. a

1041
1042
1043
1044

1045
1046

uidj Before the addition of this type, the data types used to represent
these values varied throughout the standard. The <sys/stat.h> b

§5.6.1 header defined these values as type short, the <passwd.h>

file (now <pvvd.h> §9.2.2 and <grp.h> §9.2.1) used an int and
getuid() §4.2.1 returned an int. In response to a strong objection
to the inconsistent definitions, the Working Group decided to

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

B.2 Definitions and General Requirements 209

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1047 switch all the types to uid_t.

1048
1049

1050

In practice, those historical implementations that use varying types a
of this sort can typedef uidj to short with no serious a

consequences. a

1051
1052

1053
1054

1055

1056

1057

1058

The main problem associated with this change is a concern about

object compatibility after structure size changes. Since most

implementations will define uidj as a short, the only substantive

change will be a reduction in the size of the passwd §9.2 structure.
Consequently, implementations with an overriding concern for

object compatibility can pad the structure back to its current size.

For that reason, this problem wasn’t considered critical enough to

warrant the addition of a separate type to the standard.

1059

1060

1061
1062

1063
1064

1065

1066
1067

1068
1069

1070

B.2.7 Environment Description

LC_* LC_* acknowledges the fact that the interfaces presented in the c
draft are not complete and may be extended as new c
international functionality is required. In the ANSI X3J11 draft c
proposal, names preceded by "LC_" are reserved in the name c

space for future categories. c

To avoid name clashes, new categories and environments c

variables will be divided into two classifications: c
implementation-independent and implementation-dependent c

Implementation-independent names will have the following c

format: c

LC NAME c

1071

1072

1073

where NAME is the name of the new category and environment c

variable. Capital letters must be used for implementation- c

independent names. c

1074 Implementation-dependent names must be in lower-case letter, c

1075 as below: c

1076 LC name c

1077 PATH

1078

1079
1080

1081

1082

Many historical implementations of the Bourne shell do not

interpret a trailing colon to represent the current working

directory, and are thus non-conforming. The C shell and the
Korn shell conform to the standard on this point. The usual

name of dot §2.3 may also be used to refer to the current

working directory.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

210 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1083 TZ See setlocaleQ §8.1.2 for an explanation of the format. c

1084

1085

1086
1087

LOGNAME 4.3BSD uses the environment variable USER for this purpose, c
In most implementations, the value of such a variable is easily c

forged, so security-critical applications should rely on other c
means of determining user identity. c

1088 B.2.8 C Language Definitions
1089 The construct <name.h> for headers is also taken from the C Standard.

1090 B.2.9 Numerical Limits
1091 This section has been completely rewritten since the Trial Use Standard, in order to a

1092 clarify the scope and mutability of several classes of limits. a

1093 The standard does not require an application to include <limits.h> everywhere a limit in a

1094 it is used because many of them are system or application compile time constants that are a

1095 not useful at runtime. a

1096 If the translation and execution environments §B.1.4 are actually distinct, it may be a

1097 difficult to obtain information about runtime limits in the execution environment, a

1098 especially considering that the C Standard does not even require the limits of <limits.h> a

1099 to be kept in a file (they could instead be built into the translator). A useful technique is a

1100 to write a small application that does nothing when run but report back on relevant limits, a

1101 The language in the first paragraph about #if preprocessing directives is taken from the a

1102 C Standard. a

1103 B.2.9.1 C Language Limits
1104 See also C Language Definitions §2.8 and C Language, X3J11, and P1003.1 §B.1.4. a

1105 c

1106 {CHAR_MIN}

1107 It is possible to tell if the implementation supports native character

1108 comparison as signed or unsigned by comparing this limit to zero.

1109 {WORD_BIT}
1110 This limit has been omitted, as it is not referenced elsewhere in

1111 POSIX.

1112 No limits are given in <Iimits.h> for floating point values because none of the functions
1113 in the standard proper use floating point values and all the functions that do that are
1114 imported from the C Standard by Referenced C Language Routines §8.1 defined in die
1115 C Standard, as are the limits that apply to the floating point values associated with them.

1116 Though limits to the addresses to system calls were proposed, it is not clear how to
1117 implement them for the range of systems being considered and, lacking a complete
1118 proposal, the Working Group determined not to attempt this at this time. Limits

1119 regarding hardware register characteristics were similarly proposed and not attempted.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.2 Definitions and General Requirements 211

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1120 B.2.9.2 Run-time Invariant Values

1121 The criterion for inclusion of an item in this section is that a Conforming Application a

1122 Using Extensions could break if the corresponding restriction is relaxed between the time a

1123 the Conforming Application Using Extensions is translated and the time it is executed. a

1124 If, in a specific implementation, any of the parameters specified in this subsection can be a

1125 varied at run time, the implementation will only be a conforming implementation when a
1126 the values set at run time match those in the <limits.h> file. a

1127 The heading of the rightmost column of the table is given as “Minimum Value” rather a

1128 than “Value” in order to emphasize that the numbers given in that column are minimal a

1129 for the actual values a specific implementation is permitted to define in its <limits.h>. c

1130 The values in the actual <Iimits.h> define, in turn, the maximum amount of a given c
1131 resource that a Conforming Application can depend on finding when translated to a

1132 execute on that implementation. A Conforming Application Using Extensions must a

1133 function correctly even if the value given in <limits.h> is the minimum that is specified a

1134 in the standard. (The application may still be written so that it performs more efficiently a

1135 when a larger value is found in <limits.h>.) A conforming implementation must provide a

1136 at least as much of a particular resource as that given by the value in the standard. An a

1137 implementation that cannot meet this requirement (a “toy implementation”) cannot be a a

1138 conforming implementation. a

1139

1140
1141

1142

1143
1144

{FCHR_MAX} a
is specifically a measure of the addressability of bytes in a file. It c

was dropped from the standard in Draft 12. The value given c

implies that offj must be at least 24 bits wide. In terms of

testability, it should be possible to do the following on a

conforming implementation:

1145 Create a file with:

1146
1147
1148
1149
1150
1151
1152

int file;

file = open (path, 0_RDWR|o_CRE at 10_TRUNC, 0600);

lseek (file, (of f__t) 16777215, SEEK_SET); B

write (file, '1', 1); a
lseek (file, (off_t)0, seEk_SET) ; a
/* read 16777215 bytes with value 0 */ B

/* read 1 byte with value 1 */ a

1153

1154

1155
1156
1157

1158

1159

1160

There is no requirement that a conforming implementation

provides the ability to create a non-sparse file containing 16777216 b
bytes (or any other number of bytes). It is expected, however, that a
it will be possible to configure specific instances of most specific a
implementations such that files of any required length less than or a
equal to (FCHR_MAX) + 1 can be created. A Conforming a
Application Using Extensions will generally depend on the ability a

to create non-sparse files of some specific length. It is the a

212

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1161
1162
1163
1164

1165
1166
1167

1168
1169

responsibility of the administrator who configures a specific a

instance of a specific implementation to provide adequate file a

storage space to allow applications to run. To put this another a

way, even a Conforming Application Using Extensions will not a

run on a specific instance of a specific implementation if less file a

storage space is provided than is required by the Conforming a

Application Using Extensions. The standard says nothing about a

available file space, just as it says nothing about available memory a

space. a

1170
1171
1172

1173
1174

1175

1176
1177

1178

1179
1180
1181

{M AXINPUT} . a

Since the only use of this limit is in relation to terminal input a

queues, it mentions them specifically. This limit was originally c
named (MAX_CHAR) in early drafts. Application writers should
use {MAXJNPUT} primarily as an indication of the number of
characters that can be written as a single unit by one Conforming

Application Using Extensions communicating with another via a

terminal device. It is not implied that input lines received from
terminal devices always contain {MAX_INPUT} characters or
fewer: an application that attempts to read more than

{MAX INPUT} characters from a terminal may receive more than

{MAXJNPUT} characters.

1182
1183
1184

1185

{PATHJMAX}
A Conforming Application or Conforming Application Using

Extensions that, for example, compiles to use different algorithms

depending on the value of {PATH_MAX} should use code such as

1186 #if defined (PATHJMAX) && PATHJMAX < 512 a

1187 ... a

1188 #els@ a

1189 #if defined (PATHJMAX)' /* PATHJdAX >= 512 */ a

1190 ... a

1191 #else /* PATHJMAX indeterminate */ a

1192 ... a
1193 #endif a

1194 fendif a

1195
1196
1197
1198

1199

This is because the value tends to be very large or indeterminate
on most historical implementations (it is arbitrarily large on
System V). On such systems there is no way to quantify the limit,
and it seems counter-productive to include an artificially small

fixed value in <Iimits.h> in such cases.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.2 Definitions and General Requirements 213

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1200 B.2.9.3 Run-time Invariant Values (Possibly Indeterminate)

1201 B.2.9.4 Pathname Variable Values

1202
1203
1204

1205

1206

1207

1208

1209

1210

1211

1212
1213
1214

1215
1216
1217

1218

1219

1220
1221

1222
1223
1224

1225

1226
1227

1228

1229

1230

1231
1232

1233
1234

1235

B.2.9.5 Run-time Increasable Values

Values appear in this section if there is no possibility that arbitrarily increasing them a

between the translation and the execution of a Conforming Application Using Extensions a

could break the Conforming Application Using Extensions. Specific instances of specific a

implementations may choose to increase the values in order to support non-portable a

applications. a

Use of the word ‘‘may” in “...may increase the value” is correct. P1003.3 need not test a

whether the value is less restrictive than that given in <limits.h> or by how much. a

A {DIR_LEVEL_MAX} limit was removed from the draft because it had no perceived c

value to an application. c

B.2.9.6 Bounded Ranges of Values

A Conforming Application can assume that it can have at least the most restrictive value a

of the resource. It has a “fighting chance” (a phrase used by P.J. Plauger of X3J11) of a

getting as much as that given by the least restrictive value. It can never get more than a

that given by the least restrictive value. The utility of the bounded range concept is that a

it allows the following: a

a) If a Conforming Application wants (for example) to close all open files, the a

least restrictive value tells it how many close operations are needed in order a

to ensure that all files have been closed. Without knowledge of the value, a

this number is indeterminate. a

b) The intention is that a supplier of a range of compatible computers should a

be able to ship a single <limits.h> which adequately describes the entire a

range. Thus if, for example, <limits.h> for a superminicomputer contains a

the pair a

#define OPEN_MAX 20

#define OPEN MAX CEIL 80

an application running on the same vendor’s workstation is entitled to a

expect that it can have 20 open files (and may legitimately malfunction if it a

is not able to do so). The same binary application code, when running on a a

much larger member of the same machine family may find that it can have a

as many as 80 open files. An intelligently-written application may be able a

to optimize its algorithms according to the amount of a particular resource a

that it can obtain, but should not attempt to obtain more of any resource a

than that indicated by the corresponding upper limit defined by <limits.h>. a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

214 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1236 Looking at. the same issue from another angle, the vendor need only ship a

1237 one C compiler package for the entire machine family; an application a

1238 developer need only compile once to produce a program that runs optimally a

1239 across the entire range of machines in the family. a

1240 Use of the word “may” in “may relax the corresponding restriction” is correct, but a

1241 raises a testability issue. If, for example, <limits.h> suggests that it may be possible for a a

1242 process to open as many as 80 files, but never to be able to open the eighty-first, PI003.3 a

1243 must insist that this condition can be attained. a

1244 {CHILDMAX} a

1245 In a typical implementation, one process per user ID is used for the a

1246 login shell, and one for the current process, leaving four potential a

1247 children. a

1248 {LOCKJMAX} a

1249 {PROCMAX} a

1250
1251
1252
1253
1254

1255

1256
1257
1258
1259
1260

{SYS_OPEN} These three limits were removed from <Iimits.h>. The b

information in <limits.h> should be useful to a Conforming b

Application; these three values were not useful; it is of no use, for a

example, for a Conforming Application to know the size of the a

system open file table, as there is no way that a process group, for a

instance, can ever be sure how many of those files it can open, a

The only thing that is certain is that each process in the group may a

be able to open no more than {OPEN_MAX} files, and may be able a

to open as many as {OPEN_MAX_CEIL}. <Iimits.h> implies this, a

{SYSJDPEN} does not add to the useful information available to a

the Conforming Application. a

1261 B.2.10 Symbolic Constants

1262 B.2.I0.1 Symbolic constants for the access() function

1263 B.2.10.2 Symbolic constants for the IseekQ function

1264 B.2.10.3 Symbolic constants for portability specifications

1265 B.2.10.4 Compiler time symbolic constants for portability specifications
1266 Related material appeared in an appendix of the Trial Use Standard. The purpose there a

1267 was to allow an application developer to have a chance to determine whether a given a

1268 application would run (or run well) on a given implementation. To this purpose has been a

1269 added that of simplifying development of verification suites (see Verification Testing a

1270 §A.2.3) for the standard. The constants given here were originally proposed for a a

1271 separate file, <posix.h>, but the Working Group decided that they should appear in a

1272 <unistd.h> along with other symbolic constants. a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.2 Definitions and General Requirements 215

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1273 B.2.10.5 Execution time symbolic constants for portability specifications a

1274 Without the addition of {_POSIX_NO_TRUNC} and _PC_NO_TRUNC to the Configurable c

1275 Open Variables list, the Standard says nothing about the effect of a pathname component c

1276 longer than {NAME_MAX}. There are only two effects in common use in c

1277 implementations: truncation, or an error. It is desirable to limit allowable behavior to c

1278 these two cases. It is also desirable to permit applications to determine what an c
1279 implementation’s behavior is, because services that are available with one behavior may c

1280 be impractical to provide with the other. However, since the behavior may vary from c
1281 one file system to another, it may be necessary to use pathconf() to resolve it.

1282 B.3 Process Primitives

1283 B.3.1 Process Creation

1284 A common way to produce (“spawn”) a descendant process that does not need to be c

1285 waited on is to forkO to produce a child and wa/r() on the child. The child fork()s again c

1286 to produce a grandchild. The child then exits and the parent’s waitQ returns. The c
1287 grandchild is thus disinherited by its grandparent c

1288 A simpler method (from the programmer’s point of view) of spawning is to do c

1289 system("something &") ; a

1290 However, this depends on features of a process (the shell) that are outside the scope of c

1291 the present standard, although they may be addressed by P 1003.2. c

1292 B.3.1.1 Process Creation
1293 During the/or&() function call, signals directed to a group of processes, of which the c

1294 child process is a member, may fail to be delivered to the child process. See killQ 9

1295 §B.3.3.2. 9

1296 Many existing implementations have timing windows where a signal sent to a process a

1297 group (e.g. an interactive SIGINT) just prior to or during execution of fork{) is delivered a

1298 to the parent following the fork() but not the child, because the/br£() code clears the a

1299 child’s set of pending signals. It is not the intention of this standard to require, or even a
1300 permit, this behavior. This behavior is only a consequence of the implementation failing a

1301 to make the interval between signal generation and delivery totaily invisible. From the a

1302 application’s perspective, a fork() call should appear atomic. A signal that is generated a

1303 prior to the/or£() should be delivered prior to thq fork(). A signal sent to the process a

1304 group after thtforkQ should be delivered to both parent and child. The implementation a

1305 might actually initialize internal data structures corresponding to the child’s set of a

1306 pending signals to include signals sent to the process group during thtfork(). Since the a

1307 fork() call can be considered as atomic from the application’s perspective, from that a

1308 view the set would be initialized as empty and such signals would have arrived after the a

1309 fork{). See also pending signals §B.3.3.6. a

216

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1310 The [EINTR] error was considered too implementation-specific to include.

1311 B.3.1.2 Execute a File
1312 The value of argc, and the corresponding number of non-null argv pointers, should be 9
1313 adjusted by the implementation so that main() receives at least one argument even when 9

1314 the exec() call that invoked it supplied none. This is both because existing programs
1315 expect it and also in order to conform with the C Standard.

1316 A Strictly Conforming Application §2.2.3 is required to supply an argO that points to a

1317 filename associated with the new process image file, and a Conforming Implementation
1318 §2.2.1 is required to supply such an argument to mainQ in argv[0] (even if the calling

1319 application did not). But no such requirement is placed on Application Conformance
1320 §2.2.2, due to the use of the word “should” rather than “shall.”

1321 Some implementations provide a third argument to main() called envp. This is defined b

1322 as a pointer to the environment The C Standard provides environ, which replaces all b

1323 need for the envp argument. Implementations are required to support the two-argument b

1324 calling sequence, but this does not prohibit an implementation from supporting envp as b

1325 an optional, third argument. b

1326 If the saved set-user-ID/saved set-group-ID option is implemented, execQ always saves b

1327 the aid and gid of the process prior to the execQ. b

1328 [E2BIG] The limit {ARGJMAX} applies not just to the size of the argument
1329 list, but to the sum of that and the size of the environment list

1330
1331
1332
1333

[EFAULT]
Some existing systems return [EFAULT] rather than [ENOEXEC] c

when the new process image file is corrupted. They are non-
conforming.

1334

1335
1336
1337

[ETXTBSY] The error [ETXTBSY] was considered too implementation- c

dependent to include. System V returns this error when the
, executable file is currently open for writing by some process. The c

standard neither requires nor prohibits this behavior. c

1338 B.3.2 Process Termination

1339 “Abnormal termination with actions” includes, in most historical implementations, the c
1340 creation of a file named core in the current working directory of the process. This file c
1341 contains an image of the memory of the process, together with descriptive information c

1342 about the process, perhaps sufficient to reconstruct the state of the process at the receipt c
"1343 of the signal. c

1344 There is a potential security problem in creating a core file if the process was set-user- c

1345 ID and the current user is not the owner of the program, if the process was set-group-ID c

1346 and none of the user’s groups match the group of the program, or if the user does not c
1347 have permission to write in the current directory. In this situation, an implementation c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.3 Process Primitives 217

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1348 either should not create a core file or should make it unreadable by the user. c

1349 The name of the file is not mentioned in the standard because some historical c
1350 implementations use a different name, such as by appending the process ID to the c

1351 filename. However, applications are advised not to create files named core because of c
1352 potential conflicts in many implementations. c

1353 B.3.2.1 Wait for Process Termination
1354 See _exit() §B.3.2.2. c

1355 The status values are given as specific bit encodings because they are that way in most

1356 historical implementations and many existing programs expect it

1357 A call on the wait () function only returns status on an immediate child process of the

1358 calling process, i.e., a child that was produced by a single fork{) §3.1.1 call (perhaps

1359 followed by an exec §3.1.2 or other function calls) from the parent. If a child produces
1360 grandchildren by further use of fork{), none of those grandchildren nor any of their

1361 descendants will affect the behavior of a waitQ from the original parent process.

1362 The wait2() function is provided for job control §B.3.3. It is identical to the wait3{) a

1363 function provided by 4.3BSD except that the third argument, the returned resource usage
1364 summary, is not provided since it is not directly relevant to job control. The wait2()

1365 function can be implemented as a library function on top of wait3 ().

1366 Appendix E provides an alternative proposal for the wait family. Currently, there is no c

1367 way to write a library routine, such as system() or pcloseQ, without interfering with c

1368 other zombies. For example, consider the problem that which the P1003.2 group c
1369 addressed: c

1370 stream = popen("/bin/true"); a

1371 (void) system("sleep 100"); a

1372 (void) pclose(stream); a

1373 On all systems since Version 6, the final pclose{) will fail to reap the wait status of the c

1374 popenQ. c

1375 This proposal changes section 3.2.1 by augmenting the wait2() call in several ways: c

1376 wait2 () has been given a more descriptive name of waitpidQ. c

1377 waitpidQ can wait for a specific child, a child in the current process group, or a c

1378 child in a specific process group. The use of pid corresponds to the use of pid in c

1379 IdllQ. - c

1380 waitpid() is required, and the WUNTRACED related actions are defined only for systems c

1381 that have the Job Control Option. c

1382 It should be noted that: c

218

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1383 waitpid(stat_loc, -1, options) a

1384 provides the same functionality as the function in the body of the standard: c

1385 wait2(stat_loc, options) a

1386 The waitpid() function solves some major problems related to the functions system(), c
1387 popenQ, and pclose() for Version 6, Version 7, Version 8, Version 9, System HI, c
1388 System V, and 4BSD-based systems. c

1389 The waitpid0 function would also greatly help in the writing of portable command c

1390 interpreters. c

1391 B.3.2.2 Terminate a Process
1392 The function _exit{) is defined here instead of exit() because the C Standard defines the

1393 latter to have certain characteristics that are beyond the scope of the present standard,
1394 specifically the flushing of buffers on open files and the use of atexit{). See C Language

1395 and X3J11 §B.1.5. There are several public domain implementations of atexiti) which

1396 may be of use to interface implementors who wish to incorporate it.

1397 It is important that the consequences of process termination as described in this section
1398 occur regardless of whether the process called _exit() (perhaps indirectly through exit())

1399 or instead was terminated due to a signal or for some other reason. See also Process c
1400 Termination §B.3.2. c

1401 A language other than C may have other termination primitives than the C language

1402 exit() function, and programs written in such a language should use its native termination
1403 primitives, but those should have as part of their function the behavior of _exit() as

1404 described in this section. Implementations in languages other than C are outside the
1405 scope of the present standard, however.

1406 As required by X3J11, using return() from main{) §3.1.2 is equivalent to calling exit{) c

1407 with the same argument value. Also, reaching the end of the main() function is c
1408 equivalent to using exit() with an unspecified value. c

1409 Historically, the implementation-dependent process that inherits children whose parents c
1410 have terminated without waiting on them is called init, and has process ID 1. c

1411 The distinction between session process group leaders and job control process group
1412 leaders was created to allow the 4.2BSD semantics necessary to support job control
1413 without precluding the semantics of System V. System V sends the SIGHUP signal to the
1414 process group of a terminating process group leader. Such a process group leader is

1415 typically a login shell. 4.2BSD does not send SIGHUP under these conditions for two
1416 reasons:

1417 • First, job control semantics preclude killing background jobs at logout. While
1418 System V provides the nohup command to prevent killing background processes at
1419 logout, the user must make the decision when launching the command. The point of

1420 job control is that such decisions can be changed after launching the command.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.3 Process Primitives 219

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1421 • Second, every command pipeline launched by a job control shell (such as csh)
1422 resides in its own unique process group with one command in the pipeline being the
1423 process group leader. If SIGHUP were sent to the process group when that process

1424 terminated, the remaining pipeline would be prematurely terminated.

1425 If the terminating process has any children which are currently stopped, those children
1426 will be sent SIGHUP immediately followed by SIGCONT. This continues the stopped
1427 children and, unless they are catching or ignoring SIGHUP, also causes them to terminate.

1428 The goal is to prevent stopped processes from languishing forever. When a process exits
1429 with stopped children, those children are no longer under the control of a job control

1430 shell and hence would not normally ever be continued. See also the discussion of
1431 sending SIGKILL to stopped orphaned processes in Signal Names §B.3.3.1.

1432 B.3.3 Signals

1433 c

1434 Signals, as defined in the Trial Use Standard, and in Version 7, System HI, the 1984 c

1435 lusrlgroup Standard, and System V (except very recent releases), have shortcomings c

1436 which make them unreliable for many application uses. Several objections have been c

1437 voiced to the Trial Use Standard because of this. Therefore a new signal mechanism, c

1438 based very closely on the one of 4.2BSD and 4.3BSD, was added to the standard. With c

1439 the exception of two features (see item 4 below and also Examine Pending Signals a

1440 §B.3.3.6), it is possible to implement the POSIX interface as a simple library veneer on

1441 top of 4.3BSD.

1442 The major differences from the BSD mechanism are:

1443
1444

1445

1446

1447

1448

1. Signal mask type.

BSD uses the type int to represent a signal mask, thus limiting the number of

signals to the number of bits in an int (typically thirty-two). The new standard

instead uses a defined type for signal masks. Because of this change, the interface

is significantly different than in BSD implementations, although the functionality

and potentially the implementation are very similar.

1449

1450

1451
1452

1453
1454

1455
1456
1457

1458

2. Restarting system calls.

Unlike all previous historical implementations, 4.2BSD restarts some interrupted

system calls rather than returning an error with errno set to [EINTR] after the

signal-catching function returns. This change caused problems for some existing

application code. 4.3BSD and other systems derived from 4.2BSD allow the

application to choose whether system calls are to be restarted. The standard (in
sigaction () §3.3.4) does not require restart of functions, because it was not clear
that the semantics of system call restart in any existing implementation were useful

enough to be of value in a standard. Implementors are free to add such

mechanisms as extensions.

220

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1459

1460
1461
1462

1463

3. Signal stacks.
The 4.2BSD mechanism includes a function sigstack(). The 4.3BSD mechanism
includes this and a function sigreturn(). No equivalent is included in the standard
because these functions are not clearly portable or necessary. See also Non-local
Jumps §8.4.

1464

1465
1466
1467

4. Pending signals.

The sigpending() §3.3.6 function is the sole new signal operation introduced in the c

standard. It was requested by some members of the Working Group and was seen
as a simple and useful feature.

1468 The Working Group considered making reliable signals optional. However, the a

1469 consensus was that this would hurt application portability, as a large percentage of a

1470 applications using signals can be hurt by the unreliable aspects of the signal() §B.8.3.2 a

1471 mechanism. This unreliability stems from the specification that the signal action is reset c
1472 to SIG_DFL before the user’s signal-catching routine is entered. c

1473 Most traditional implementations do not queue signals, i.e., a process’s signal handler is c
1474 invoked once, even if the signal has been generated multiple times before it is delivered, c
1475 A notable exception to this is SIGCLD which, in System V, is queued. The Working c
1476 Group decided to neither require nor prohibit the queueing of signals. It is expected that c
1477 a future Real Time Extension to this standard (see Real Time Extensions §A.2.4) will c
1478 address the issue of reliable queueing of event notification. c

1479 Note that an application which simply catches the interactive SIGINT signal with signal() a

1480 can be terminated with no chance to recover when two such signals arrive sufficiently a

1481 close in time (e.g., when a user gets impatient on a busy system). a

1482 Job Control. a

1483 The intent in adding 4.2BSD-style job control functionality was to adopt the necessary a
1484 4.2BSD programmatic interface with only minimal changes to resolve syntactic or a

1485 semantic conflicts with System V or to close recognized security holes. The goal was to a
1486 maximize the ease of providing both conforming implementations and Conforming a

1487 Applications. a

1488 Discussions of the changes can be found in the sections which discuss the specific a

1489 interfaces. See sections: Wait for Process Termination §B.3.2.1, Terminate a a
1490 Process §B.3.2.2, Signal Names §B.3.3.1, Send a Signal to a Process §B.3.3.2, a

1491 Examine and Change Signal Action §B.3.3.4, Set Process Group §B.4.3.2, Job a

1492 Access Control §B.7.1.1.5, and Set Distinguished Process Group ID §B.7.2.4. a

1493 It is only useful for a process to be affected by job control signals if it is the descendant a
1494 of a job control shell. Otherwise, there will be nothing which continues the stopped a

1495 process. Because a job control shell is allowed, but not required, by the standard, an a
1496 implementation must provide a mechanism which shields processes from job control a

1497 signals when there is no job control shell. The usual method is for the system a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.3 Process Primitives 221

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1498 initialization process (typically called init), which is the ancestor of all processes, to a

1499 launch its children with the signal handling action set to SIG_IGN for the signals a

1500 SIGTSTP, SIGTTIN, and SIGTTOU. Thus all login shells start with these signals ignored, a

1501 If the shell is not job control cognizant, then it should not alter this setting and all its a

1502 descendants should inherit the same ignored settings. At the point where a job control a

1503 shell is launched, it resets the signal handling action for these signals to be SIG_DFL for a

1504 its children and (by inheritance) their descendants. Also, shells which are not job control a

1505 cognizant will not alter the process group of their descendants or of their controlling a

1506 terminal; this has the effect of making all processes be in the foreground (assuming the a

1507 shell is in the foreground). a

1508 POSIX does not specify how controlling terminal access is affected by a user logging out a

1509 (that is, by a login shell terminating). 4.2BSD uses the vhangup() function to prevent any a

1510 access to the controlling terminal through file descriptors opened prior to logout, a

1511 System V does nothing to prevent controlling terminal access through file descriptors a

1512 opened prior to logout (except for the case of the special file, /dev/tty). Some a

1513 implementations choose to make processes immune from job control after logout (that is, a

1514 such processes are always treated as if in the foreground);, other implementations a

1515 continue to enforce foreground/background checks after logout Therefore, a a

1516 Conforming Application should not attempt to access the controlling terminal after a

1517 logout since such access is unreliable. a

1518 B.3J.1 Signal Names

1519 B.3.3.1.1 Synopsis c

1520 B.3.3.1.2 Description c

1521 The restriction on the actual type used for sigsetj is intended to guarantee that these a.

1522 objects can always be assigned, have their address taken, and be passed as parameters by a

1523 value. It is not intended that this type be a structure including pointers to other data a

1524 structures, as that could impact the portability of applications performing such a

1525 operations. A reasonable implementation could be a structure containing an array of a

1526 some integer type. a

1527 The signals described in the document must have unique values so that they may be c
1528 named as parameters of case statements in the body of a C language switch clause, c

1529 However, implementation denned signals may have values that overlap with each other c

1530 or with signals specified in this document. An example of this is SIGABRT, which c

1531 traditionally overlaps some other signal, such as SIGIOT. c

1532 SIGKILL, SIGTRAP, SIGUSR1, and SIGUSR2 are ordinarily generated only through the c

1533 explicit use of the killQ function, although some implementations generate SIGKILL c
1534 under extraordinary circumstances. SIGTERM is traditionally the default signal sent by a

1535 the kill command. ' a

1536 The signals SIGBUS, SIGEMT, SIGIOT, SIGTRAP, and SIGSYS were omitted from the c

1537 standard because their behavior is implementation dependent and could not be c

222

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1538 adequately categorized. Conforming implementations may deliver these signals, but c
1539 must document the circumstances under which they are delivered and note any c
1540 restrictions concerning their delivery. c

1541 The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT are provided for job c
1542 control and are unchanged from 4.2BSD. The signal SI GOLD is also typically used by c
1543 job control shells to detect children which have terminated or, as in 4.2BSD, stopped, c
1544 However, the 4.2BSD name, SIGCHLD, was dropped in favor of the System V SIGCLD. c

1545 See also SACLDSTOP §B.3.3.4. b

1546 The signals SIGUSR1 and SIGUSR2 are commonly used by applications for notification of a

1547 exceptional behavior and are described as “reserved as application defined” so that such a

1548 use is not prohibited. Implementations should not generate SIGUSR1 or SIGUSR2, except c

1549 when explicitly requested by kill{) §3.3.2. It is recommended that libraries not use these a

1550 two signals, as such use in libraries could interfere with their use by applications calling a

1551 the libraries. If such use is unavoidable it should be documented. It is prudent for non- a

1552 portable libraries to use non-standard signals to avoid conflicts with use of standard a

1553 signals by portable libraries. a

1554 In actual existing implementations, there are a few cases where the interval between c
1555 generation and delivery of unmasked signals is visible to applications. For example, a c
1556 pending signal (masked or unmasked) is discarded when its signal action is set to c
1557 SIGIGN. Implementations should make this interval invisible to the extent possible, c
1558 When this is totally true, references to pending signals apply only to pending, masked c

1559 signals. c

1560 There is one case where a blocked signal does not remain pending until it is unblocked, c

1561 In the System V implementation of signal(), there are some cases in which pending c

1562 signals are also discarded when the action is set to SIGJDFL or a signal-catching routine, c

1563 In 4.2BSD and 4.3BSD, there is one other case where a blocked signal is not kept c
1564 pending. When the signal is being ignored and is also blocked, it is discarded c
1565 immediately on generation. The Working Group did not wish to standardize this c

1566 behavior. Implementations which do this do not conform completely to this standard. c

1567 There is very little if anything that a Conforming Application can do by catching, a

1568 ignoring, or masking any of the signals SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGBUS, a

1569 SIGSEGV, SIGSYS, or SIGFPE. They will generally be generated by the system only in b
1570 cases of programming errors. While it may be desirable for some robust code (e.g., a b
1571 library routine) to be able to detect and recover from programming errors in other code, b

1572 these signals are not nearly sufficient for that purpose. One portable use that does exist b
1573 for these signals is that a command interpreter can recognize them as the cause of a b
1574 process’s termination (with wait()) and print an appropriate message. The mnemonic b

1575 tags for these signals are derived from their PDP-11 origin. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

B.3 Process Primitives 223

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

B.3.3.1J Signal Actions B

There is no portable way for an application to catch or ignore non-standard signals, a

Some implementations define the range of signal numbers, so applications can install a

signal catching functions for all of them. Unfortunately implementation defined signals a

often cause problems when caught or ignored by applications that do not understand the a

reason for the signal. While the desire exists for an application to be more robust by a

handling all possible signals (even those only generated by &://()), no existing a

mechanism was found to be sufficiently portable to include in the standard. The value of a

such a mechanism, if included, would be diminished given that SIGKILL would still not a

be catchable. a

1586 c

1587 The specification of the effects of SIG_IGN on SIGCLD as implementation defined c

1588 permits but does not require the System V effect of causing terminating children to be c

1589 ignored by wait() §3.2.1. Yet it permits SIGCLD to be effectively ignored in an c
1590 implementation-independent manner by use of SIG_DFL. c

1591 Some implementations (System V, for example) assign different semantics for SIGCLD c

1592 depending on whether the action is set to SIG_IGN or SIG_DFL. Since the standard c

1593 requires that the default action for SIGCLD be to ignore the signal, applications should c

1594 always set the action to SIG_DFL in order to avoid SIGCLD. c

1595 Some implementations (System V, for example) will deliver a SIGCLD signal b

1596 immediately when a process establishes a signal-catching function for SIGCLD when that b

1597 process has a child that has already terminated. Other implementations, such as 4.3BSD, b

1598 do not generate a new SIGCLD signal in this way. In general, a process should not c

1599 attempt to alter the signal action for the SIGCLD signal while it has any outstanding c

1600 children. c

1601 SIGCONT has no effect on a running process if the action is set to SIG_DFL, even though

1602 the signal will still cause a stopped process to continue.

If a process is orphaned (because its parent has terminated) and then subsequently stops,

it is no longer under the control of a job control shell and hence would not normally ever

be continued. Because of this, orphaned processes which stop are sent the SIGKILL signal

which causes them to terminate. The goal is to prevent stopped processes from -

languishing forever. See also.SIGCONT §B.3.3.1. a

1608 In order to prevent errors arising from interrupting non-reentrant function calls, b

1609 applications should protect calls to these functions either by blocking the appropriate jb
1610 signals or through the use of some programmatic semaphore. The standard does not c
1611 address the more general problem of synchronizing access to shared data structures, c

1612 Naturally, the same principles apply to the reentrancy of application routines and c

1613 asynchronous data access. Note that longjmp() is not in the list of reentrant functions; b
1614 applications that longjmp () out of signal handlers require rigorous protection in order to b

1615 be portable. b

1603

1604

1605

1606

1607

1576

1577
1578
1579

1580
1581
1582

1583
1584

1585

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

224 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1616 B.3.3.2 Send a Signal to a Process

1617 The semantics for permission checking for killQ differ between System V and most other a

1618 implementations, such as Version 7 or 4.3BSD. The semantics chosen for the standard a

1619 agree with System V. Specifically, a setuid process cannot protect itself against signals
1620 (or at least not against SIGKILL) unless it changes its real user ID. This choice allows the a

1621 user who starts an application to send it signals even if it changes its effective user ID. a

1622 The other semantics give more power to an application that wants to protect itself from a

1623 the user who ran it a

1624 The implementation defined processes to which a signal cannot be sent may include the

1625 scheduler or init.

1626 As in 4.2BSD, the SIGCONT signal can be sent to any descendant process regardless of
1627 user ID security checks. This allows a job control shell to continue a job even if

1628 processes in the job have altered their user IDs (as in the su command). Note that this
1629 applies to all descendant processes, not just immediate children. A similar relaxation of

1630 security is not necessary for the other job control signals since those signals are typically

1631 sent by the terminal driver in recognition of special characters being typed; the terminal
1632 driver bypasses all security checks.

1633 In secure implementations, a process may be restricted from sending a signal to a process c

1634 having a different security label. In order to prevent the existence or non-existence of a c
1635 process from being used as a covert channel, such processes should appear non-existent c
1636 to the sender; i.e., [ESRCH] should be returned, rather than [EPERM], if pid refers only to c

1637 such processes. c

1638 B.3.3.3 Manipulate Signal Sets

1639 The implementation of the siginitsetQ function may reasonably be a no-op. It is also a

1640 reasonable for it to initialize part of the structure, such as a version field, to permit binary a

1641 compatibility between releases where the size of the set varies, This function is not a

1642 intended for dynamic allocation. a

1643 B.3.3.4 Examine and Change Signal Action

1644 There was a proposal to change the declared type of the signal handler to: c

1645 void func (int sig,...); a

1646 The ellipsis (“, ...”) is Standard C syntax to indicate a variable number of arguments, c
1647 Its use was intended to allow the implementation to pass additional information to the c
1648 signal handler in a standard manner. c

1649 Unfortunately, this construct would require all signal handlers to be defined with this c
1650 syntax, because the C Standard allows implementations to use a different parameter c
1651 passing mechanism for variable parameter lists than for non-variable parameter lists, c
1652 Thus all existing signal handlers in all existing applications would have to be changed to c
1653 use the variable syntax in order to be standard and to be portable. This is in conflict with c
1654 the goal of minimal changes to existing application code §B.1.2.9. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.3 Process Primitives 225

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1655 This problem with variable parameter lists does not apply to open(), execl(), printf(), c

1656 and other functions written by implementor of Standard C or POSIX. The application c
1657 developer does not have to provide a function parameter type definition of these c

1658 functions, and the declaration used by the implementor of the standard will determine the c
1659 mechanism used for passing variable argument lists. c

1660 The problem would also not occur for new facilities, since application writers could use c
1661 the appropriate function parameter definition in their new code. c

1662 The Working Group has nonetheless chosen to avoid the use of variable argument syntax c
1663 and of function parameter types in general in order to ease bindings of POSIX to c

1664 languages other than Standard C. See Conformance §B.2.2 and Function parameter c

1665 type lists §B. 1.4. c

1666 The SA_CLDSTOn flag, when supplied in the saJiags parameter, allows overloading c
1667 SIGCLD with the 4.2BSD SIGCHLD semantics necessary for job control. c

1668 B.3.3.5 Examine and Change Blocked Signals

1669 c

1670 B.3.3.6 Examine Pending Signals

1671 c

1672 B.3.3.7 Wait for a Signal

1673 Normally, at the beginning of a critical code section, a specified set of signals is blocked b

1674 using the sigprocmaskQ function. When the process has completed the critical section b

1675 and needs to wait for the previously blocked signal(s), it pauses by calling sigsuspend() b

1676 with the mask that was returned by the sigprocmaskQ call. b

1677 B.3.4 Timer Operations

1678 B.3.4.1 Process Alarm Clock

1679 Because many traditional'implementations (including Version 7 and System V) do allow a

1680 an alarm to occur up to a second early, the Working Group did not feel it could disallow a

1681 this behavior, and thus a Conforming Application needs to be prepared for it. However, a

1682 the Working Group does not want to encourage this behavior. Other implementations a

1683 allow alarms up to half a second early, up to 1/{CLK_TCK} seconds early, or do not a

1684 allow them to occur early at all. The latter is considered most appropriate. Future real- c

1685 time standards related to this one (see Real Time Extensions §A.2.4) may specify such c

1686 facilities. c

o

226

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1687 B.3.4.2 Suspend Process Execution

1688 Many common uses of pause() have timing windows. The scenario involves checking a a

1689 condition related to a signal and, if the signal has not occurred, calling pause(). When a

1690 the signal occurs between the check and the call to pause(), the process often blocks a

1691 indefinitely. The sigprocmask{) and sigsuspend() functions can be used to avoid this a

1692 type of problem. a

1693 B.3.4.3 Delay Process Execution
1694 Traditional implementations often implement sleep () using alarm () and pause(). One a

1695 such implementation is prone to infinite hangs as described inpause() §B.3.4.2. Another a

1696 such implementation uses the C language setjmp() and longjmp{) functions to avoid that a

1697 window. That implementation introduces a different problem; when the alarm signal a

1698 interrupts a signal catching function installed by the user to catch a different signal the a

1699 longjmpO aborts that signal-catching function. An implementation based on a

1700 sigprocmask{), alarm(), and sigsuspend{) can avoid these problems. a

1701 Scheduling delays may cause the process to return from the sleep() function significantly b

1702 after the requested time. In such cases, the return value should be set to zero, since the b

1703 formula (requested time minus the time actually spent) yields a negative number and b

1704 sleep{) returns an unsigned int. b

1705 B.4 Process Environment

1706 B.4.1 Process Identification

1707 B.4.I.I Get Process and Parent Process IDs

1708 B.4.2 User Identification

1709 B.4.2.1 Get Real User, Effective User, Real Group, and Effective Group IDs

1710 B.4.2.2 Set User and Group IDs
1711 Another way of looking at the behavior of these two functions: 9

1712 The call setuid(uid) shall result in both the real user ID and the effective user ID 9
1713 being equal to uid if: 9

1714 the effective user ID is super-user 9

1715 or 9
1716 the real user ID is uid 9
1717 or 9
1718 the effective user ID is uid (implementation permitting). 9

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.4 Process Environment 227

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

17-19 The call setgid(gid) shall result in both the real group ID and the effective user ID 9

1720 being equal to gid if: 9

1721 the effective user ID is super-user 9

1722 or 9
1723 the real group ID is gid 9

1724 or 9

1725 the effective group ID is gid (implementation permitting). 9

1726 The call setuid(uid) sets the effective user ID of the calling process to uid if any of the b

1727 following conditions are met: b

1728 The real user ID of the calling process is uid. b

1729 The implementation provides the saved set-user-ID option and the saved set- b
1730 user-ID for the calling process is uid. b

1731 The process has appropriate privileges. In this case, the real user ID and optional b

1732 saved set-user-ID are also set to uid. b

1733 The saved set-user-ID capability allows a program to regain the effective user ID b
1734 established at the last exec §3.1.2 call. Similarly, the saved set-group-ID capability b

1735 allows a program to regain the effective group ID established at the last exec call. b

1736 These last two capabilities are derived from System V. Without them, a program may

1737 have to run as super-user in order to perform the same functions, because super-user can

1738 write on the user’s files. This is a problem because such a program can write on any

1739 user’s files, and so must be carefully written to emulate the permissions of the calling

1740 process properly.

1741 The ability to set the real user ID to the value of its effective user ID corresponds to the b
1742 behavior of 4.2BSD and 4.3BSD. This is not a security risk over systems that do not b

1743 implement it; it actually reduces the access capabilities of a process. b

1744 B.4.2.3 Get Supplementary Group IDs

1745 The related function setgroups() §B.4.2.3 is a privileged operation and therefore is not 9

1746 covered by this standard. 9

1747 The wording regarding the group of a newly created regular file, directory, or FIFO, in

1748 openi) §5.3.1, mkdirQ §5.4.1, mkfifoQ §5.4.2, respectively, uses “may” rather than

1749 “shall” in order to permit both the System V (and Version 7) behavior (in which the

1750 group of the new object is set to the effective group ID of the creating process) and the

1751 4.3BSD behavior (in which the new object has the group of its parent directory). An a

1752 application that needs a file to be created in the group of the effective group ID should a

1753 use chawn() §5.6.5 to ensure the new group regardless of the style of groups the interface a

1754 implements. a

228

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1755 B.4.2.4 Get User Name
1756 L_cuserid must be defined appropriately for a given implementation and must be greater c
1757 than zero so that array declarations using it are accepted by the compiler. The value c
1758 includes the terminating null byte. c

1759 B.4.3 Process Groups

1760 B.4.3.1 Get Process Group ID
1761 4.3BSD provides a getpgrp{) function that returns the process group ID for a specified c
1762 process. Although this function is used to support job control, all known job control c
1763 shells always specify the calling process with this function. Thus the simpler System V c
1764 getpgrp() suffices and the added complexity of the 4.3BSD getpgrp() has been omitted c
1765 from the standard. c

1766 B.4.3.2 Set Process Group ID
1767 .br c

1768 B.4.3.3 Set Process Group ID for Job Control
1769 The jcsetpgrp() function is similar to the setpgrp() function of 4.2BSD. The differences b

1770 are:

1771 4.2BSD setpgrp() allows the caller to specify the process ID of the process to affect.
1772 Since all known job control shells always affect the calling process, this parameter was
1773 deleted; the affected process is now always the calling process.

1774 4.2BSD allowed the specified new process group to assume any value. This presents c
1775 certain security problems and is more flexible than necessary to support job control. In c
1776 keeping with the new security model (see Job Control §B.3.3), jcsetpgrp{) only allows c

1777 the calling process to join a process group that is already associated with the calling c
1778 process’ controlling terminal. One special case is where the calling process is creating a c

1779 new process group, that is where there are no other processes currently in the process c
1780 group. In this case, the calling process is allowed to join the new group. c

1781 These restrictions maintain the assertion that the calling process is not introducing a new c
1782 (different) controlling terminal into an already existing process group. Violating this c
1783 assertion would result in one process group (or job) which could be controlled by more c
1784 than one controlling terminal (or login session). The typical scenario that is being c

1785 prevented is for a process to first use jcsetpgrp() to join the process group of another c
1786 login session and then to use tcsetpgrp() §7.2.4 to allow keyboard signals from its c
1787 controlling terminal to affect processes in a different session. c

1788 One non-obvious use of jcsetpgrp() is to allow a job control shell to return itself to its c

1789 original process group (the one in effect when the job control shell was executed). A job c

1790 control'shell does this before returning control back to its parent when it is terminating or c
1791 suspending itself as a way of restoring its job control “state” back to what its parent c
1792 would expect. (Note that the original process group of the job control shell typically c
1793 matches the process group of its parent, but this is not necessarily always the case.) See c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.4 Process Environment 229

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1794 also tcsetpgrpQ §B.7.1.7. c

1795 B.4.4 System Identification

1796 B.4.4.1 System Name

1797 The values qf the structure members are not constrained to have any relation to the
1798 version of this interface standard implemented in the operating system. An application

1799 implementor should instead depend on {_POSIX_VERSION} and related constants c
1800 defined in Symbolic Constants §2.10. c

1801 The standard does not define the sizes of the members of the structure and permits them

1802 to be of different sizes, although most implementations define them all to be the same
1803 size: eight bytes plus one byte for the string terminator. That size for nodename is not
1804 enough for use with many networks.

1805 The uname{) function is specific to System HI, System V, and related implementations,
1806 and it does not exist in Version 7 or 4.3BSD. The values it returns are set at system a

1807 compile time in those existing implementations.

1808 4.3BSD has gethostnamef) and gethostidf), which return a symbolic name and a numeric

1809 value, respectively. There are related sethostname() and sethosrid() functions that are

1810 used to set the values the other two functions return. The length of the host name is

1811 limited to 31 characters in most implementations and the host ID is a thirty-two bit

1812 integer.

1813 B.4.5 Time

1814 The time{) §4.5.1 function returns a value in seconds (type timej) while timesQ §4.5.2

1815 returns a set of values in {CLK_TCK}ths of a second (type clock j).

1816 Some historical implementations, such as 4.3BSD, have mechanisms capable of returning a

1817 more precise times (see gettimeofday () §B.4.5.1). A generalized timing scheme to unify a

1818 these various timing mechanisms has been proposed but not adopted in this standard; see c
1819 Real Time Extensions §A.2.4. c

1820 B.4.5.1 Get System Time
1821 Implementations in which timej is a thirty two bit signed integer (most historical
1822 implementations) will fail in the year 2038. Tne Working Group chose not to try to fix

1823 this. But they did require the use of timej in order to ease the eventual fix. a

1824 Many historical implementations (including Version 7) and the 1984 /usr/group Standard

1825 use long instead of timej. The present standard uses the latter type in order to agree

1826 with the C Standard.

1827 4.3BSD includes time{) only as an interface to the more flexible gettimeofday() §B.4.5.1

1828 function.

230

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

ADoendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1829 B.4.5.2 Process Times
1830 The inclusion of times of child processes is recursive, so that a parent process may
1831 collect the total times of all of its descendants. But the times of a child are only added to
1832 those of its parent when its parent successfully waits on the child. Thus it is not
1833 guaranteed that a parent process will always be able to see the total times of all its

1834 descendants.

1835 c

1836 If the type clockj is defined to be a signed thirty-two bit integer, it will overflow in
1837 somewhat more than a year if {CLK_TCK} is 60, or less than a year if it is 100. There

1838 are individual systems that run continuously for longer than that The standard permits
1839 an implementation to make the reference point for the returned value be the startup time
1840 of the process, rather than system startup time.

1841 B.4.6 Environment Variables

1842 B.4.6.1 Environment Access
1843 Additional functions putenv() and clearenvQ were considered but rejected because they a

1844 were more oriented towards system administration than ordinary application programs. a

1845 B.4.7 Terminal Identification
1846 The difference between ctermid() and tty name () is that ttyname{) must be passed a file 9
1847 descriptor and returns the pathname of the terminal associated with that file descriptor, 9

1848 while ctermid() returns a string (such as /dev/tty) that will refer to the controlling 9
1849 terminal if used as a pathname. Thus tty name () is useful only if the process already has 9

1850 at least one file open to a terminal. 9

1851 B.4.7.1 Generate Terminal Pathname
1852 L_ctermid must be defined appropriately for a given implementation and must be greater c

1853 than zero so that array declarations using it are accepted by the compiler. The value c
1854 includes the terminating null byte. c

1855 B.4.7.2 Determine Terminal Device Name
1856 The term “terminal” is used instead of the historical term “terminal device” in order to
1857 avoid a reference to an undefined term.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.4 Process Environment 231

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1858 B.4.8 Configurable System Variables B

1859 This section was added in response to requirements of application developers, and b

1860 particularly the X/OPEN system vendors. It is closely related to Configurable Pathname b

1861 Variables §B.5.7 as well. b

1862 Although a portable application can run on all systems by never demanding more b
1863 resources than the minimum values published in the standard, it is useful for that b

1864 application to be able to use the actual value for the quantity of a resource available on b

1865 any given system. To do this, the application will make use of the value of a symbolic b
1866 constant in <limits.h> or <unistd.h>. B

1867 However, once compiled, the application must still be able to cope if the amount of b

1868 resource available is increased. To that end, an application may need a means of b

1869 determining the quantity of a resource, or the presence of an option, at execution time. b

1870 Two examples are offered: B

1871 Applications may wish to act differently on systems with or without the Job b

1872 Control Option. Applications vendors who wish to distribute only a single binary b
1873 package to all instances of a computer architecture would be forced to assume job b

1874 control is never available if it were to rely solely on the <unistd.h> value b

1875 published in the standard. b

1876 International applications vendors occasionally require knowledge of the b
1877 {CLK_TCK} value. Without the facilities of this section, they would be required b

1878 to either distribute their applications partially in source form or to have 50 Hertz b
1879 and 60 Hertz versions for the various countries they do business in. b

1880 It is the understanding that many applications are actually distributed widely in b
1881 executable form that lead to this facility. If limited to the most restrictive values in the b
1882 headers, such applications would have to be prepared to accept the most limited b

1883 environments offered by the smallest microcomputers. Although this is entirely portable, b

1884 it was felt by the Working Group that they should be able to take advantage of the b

1885 facilities offered by large systems, without the restrictions associated with source and b

1886 object distributions. b

1887 During the very heated arguments that accompanied the discussions of this feature, it was b

1888 pointed out that it is almost always possible for an application to discern what a value b

1889 might be at runtime by suitably testing the waters. And, in any event, it could always be b
1890 written to adequately deal with error returns from the various functions. In the end, it b

1891 was felt that this imposed an unreasonable level of complication and sophistication on b

1892 the application writer. b

1893 This runtime facility is not meant to provide ever-changing values that applications will b

1894 have to check multiple times. The values are seen as changing no more frequently than b

1895 once per system initialization, such as by a system administrator or operator with an b

1896 automatic configuration program. The standard specifies that they shall not change b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

232 AoDendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1897 within the lifetime of the process. b

1898 Some values apply to the system overall and others vary at the file system or directory b

1899 level. These latter are described in Configurable Pathname Variables §B.5.7. b

1900 B.4.8.1 Get Configurable System Variables b
1901 Note that all- values returned must be expressable as integers. The Working Group b
1902 considered using string values, but the additional flexibility of this approach was rejected b
1903 due to its added complexity of implementation and use. b

1904 Some values, such as {PATH_MAX}, are sometimes so large that they must not be used b
1905 to, say, allocate arrays. The sysconf{) function will return a negative value to show that b
1906 this symbolic isn’t even defined, in this case. b

1907 B.5 Files and Directories

1908 See pathname resolution §2.4.

1909 B.5.1 Directories
1910 Historical implementations prior to 4.2BSD had no special functions, types, or headers
1911 for directory access. Instead, directories were read with read() §6.4.1 and each program
1912 that did so had code to understand the internal format of directory files. Many such
1913 programs did not correctly handle the case of a maximum-length (historically fourteen
1914 character) filename and would neglect to add a null character string terminator when
1915 doing comparisons. The access methods in the standard eliminate that bug, as well as
1916 hiding differences in implementations of directories or file systems.

1917 The directory access functions as described in an Appendix of the POSIX Trial Use
1918 Standard were derived from 4.2BSD, were adopted in System V Release 3 and are in
1919 SVID Volume 3, with the exception of a type difference for the djno field. That field

1920 represents implementation-dependent or even file system-dependent information (the i-
1921 node number in most implementations). Since the directory access mechanism is
1922 intended to be implementation independent, and since only system programs, not

1923 ordinary applications, need to know about the i-node number (or file serial number §2.3)
1924 in this context, the djno field does not appear in the present standard. Also, programs
1925 that want this information can get it with stat() §5.6.2.

1926 B.5.1.1 Format of Directory Entries
1927 Information similar to that in the header <dirent.h> is contained in a file <sys/dir.h> in

1928 4.2BSD and 4.3BSD. The equivalent in these implementations of struct dirent from the
1929 standard is struct direct. The filename was changed because the name <sys/dir.h> was c
1930 also used in earlier implementations to refer to definitions related to the older access c

1931 method; this produced name conflicts. The name of the structure was changed because c
1932 the standard does not completely define what is in the structure, so it could be different c
1933 on some implementations from struct direct. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.5 Files and Directories 233

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1934 The name of a character array of an unspecified size should not be used as an lvalue, b

1935 Use of B

1936 sizeof (d^name) A

1937 is incorrect; use B

1938 strlen (d_name) A

1939 instead. B

1940 This description of the djiame element was changed because the previous version gave b

1941 the impression that the character array djiame was of a fixed size. Implementations may b
1942 need to declare struct dirent with an array size for djiame of 1, but the actual number of b
1943 characters provided matches (or only slightly exceeds) the length of the file name. b

1944 Currently, implementations are excluded if they have djiame with type char *. Lacking b

1945 experience of such implementations, the Working Group declined to try to describe in b
1946 standards language what to do if either type were permitted. b

1947 B.5.1.2 Directory Operations

1948 The returned value of readdirQ merely represents a directory entry. No equivalence

1949 should be inferred.

1950 Since readdir() returns NULL both

1951 1. when it detects an error and

1952 2. when the end of the directory is encountered,

1953 an application that needs to tell the difference must set errno to zero before the call and

1954 check it if NULL is returned. Because the function must not change errno in case 2 and

1955 must set it to a non-zero value in case 1, zero errno after a call returning NULL indicates

1956 end of directory, otherwise an error:

1957 Routines to deal with this problem more directly were proposed.

1958 int derror (dirp)

1959 DIR *dirp;
A

A

1960 void clearderr (dirp) a

1961 DIR *dirp; a

1962 The first would indicate whether an error had occurred, and the second would clear the

1963 error indication. The simpler method involving errno was adopted instead by requiring
1964 that readdir() not change errno when end of directory is encountered.

1965 Historical implementations include two more functions.

234

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

1966 long telldir (dirp) A
1967 DIR *dirp; A

1968 void seekdir (dirp, loc) A

1969 DIR *dirp; A
1970 long /oc; A

1971 The telldir() function returns the current location associated with the named directory

1972 stream.

1973 The seekdir() function sets the position of the next readdirQ operation on the directory
1974 stream. The new position reverts to the one associated with the directory stream when
1975 the telldir() operation was performed. b

1976 These functions have restrictions on their use related to implementation details. Their
1977 capability can also be accomplished by saving a filename found by readdir() and later
1978 using rewinddir() and a loop on readdir() to relocate, the position from which the

1979 filename was saved. Though this method is probably slower than using seekdir() and
1980 telldir(), there are few applications in which the capability is needed. For these reasons,
1981 the Working Group decided not to include seekdir () and telldir () in the standard.

1982 An error or signal indicating that a directory has changed while open was considered but a

1983 rejected. a

1984 B.5.2 Working Directory

1985 B.5.2.1 Change Current Working Directory

1986 B.5.2.2 Working Directory Pathname

1987 Since the maximum pathname length is arbitrary unless {PATHJVIAX} is defined, an b
1988 application cannot supply a buf with size {{PATH_MAX} + 1} in general. b

1989 Having the routine take no arguments and instead use the C function malloc() to produce
1990 space for the returned argument was considered. The advantage is that getcwd() knows

1991 how big the working directory pathname is and can allocate an appropriate amount of
1992 space. But the programmer would have to use the C function free() to free the resulting
1993 object, or each use of getcwd() would further reduce the available address space. Also,

1994 mallocQ and free () are used nowhere else in the present standard. Finally, getcwd() is

1995 taken from the SVID, where it has the two arguments used in the standard.

1996 The older function getwd() was rejected for use in this context because it had only a

1997 buffer argument and no size argument, and thus had no way to prevent overwriting the
1998 buffer, except to depend on the programmer to provide a large enough buffer.

1999 The result if a NULL argument is passed to getcwd() is left implementation defined a

2000 because some implementations dynamically allocate space in that case. a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.5 Files and Directories 235-

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

2001 If a program is operating in a directory where some (grand)parent directory does not c
2002 permit reading, getcwd() may fail, as in most implementations it must read the directory c
2003 to determine the name of the file. This can occur if search but not read permission is c
2004 granted in an intermediate directory, or if the program is placed in that directory by some c

2005 more priveleged process (e.g. login). Including this error makes the reporting of the c

2006 error consistent, and warns the application writer that getcwd() can fail for reasons c

2007 beyond his control. (The other two failures should not be beyond his control.) Some c

2008 implementations can avoid this occurrence (e.g. by implementing getcwd() using pwd(), c
2009 and making pwd() a set-user-root process), thus the error was made optional. c

2010 Because the standard permits the addition of other errors, this would be a common c

2011 addition and yet one that applications could not be expected to deal with without this c
2012 addition. c

2013 B.5.3 General File Creation

2014 B.5.3.1 Open a File

2015 Except as specified in the standard, the flags allowed in oflag are not mutually exclusive
2016 and any number of them may be used simultaneously.

2017 See getgroups §B.4.2.3 about the group of a newly-created file.

2018 The use of open() §5.3.1 to create a regular file is preferable to the use of creat() §5.3.2 a

2019 because the latter is redundant and included only for historical reasons.

2020 Implementations may deny access and return [EACCES] for reasons other than just those a

2021 listed in the [EACCES] definition. a

2022 B.5.3.2 Create a New File or Rewrite an Existing One

2023 This interface is redundant. Its services are also provided by the openQ function. It has 9

2024 been included primarily for historical purposes since many existing applications depend 9

2025 on iL 9

2026 B.5.3.3 Set File Creation Mask

2027 Unsigned argument and return types for umask() were proposed. The return type was a
2028 left unchanged, but the argument was changed to modej §B.2.6. a

2029 B.5.3.4 Link to a File

2030 See directory entry §B.2.3.

2031 Linking to a directory is restricted to the super-user in most historical implementations

2032 because'this capability may produce loops in the file hierarchy or otherwise corrupt the

2033 file system. However, file system implementations may be envisioned where multiple
2034 parents of a directory are handled without adverse side effects. Therefore, the standard

2035 does not require the restriction to the super-user. But see rename() §B.5.5.3. See also

2036 unlinkQ §5.5.1.

236

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2037 B.5.4 Special File Creation

2038 B.5.4.1 Make a Directory
2039 See mode_t §B.2.6.

2040 This function originated in 4.2BSD and was added to System V in Release 3.0, following

2041 the Trial Use Standard.

2042 4.3BSD detects [ENAMETOOLONG].

2043 See getgroups §B.4.2.3 about the group of a newly-created directory.

2044 B.5.4.2 Make a FIFO Special File
2045 The syntax of this routine is intended to maintain compatibility with existing 9
2046 implementations of mknod(). The latter function was included in the 1984 lusr/group a

2047 Standard, but only for use in creating FIFO special files. The mknod() function was a

2048 excluded from POSIX as implementation defined and replaced by mkdirQ §5.4.1 and a

2049 mkfifoQ §5.4.2. a

2050 See getgroups §B.4.2.3 about the group of a newly-created FIFO.

2051 B.5.5 File Removal
2052 Although rmdir() and rename § originated in 4.2BSD, the behavior specified for when
2053 the directory to be removed does not exist or new already exists (returning [EEXIST] in
2054 errno) is not compatible with 4.2BSD or 4.3BSD, which return [ENOTEMPTY]. b

2055 Therefore, either value is allowed by the standard. The function was added to System V

2056 in Release 3.0 but uses [ENOENT] where the standard uses [ENAMETOOLONG]. b
2057 Volume 3 of the SVID, page 129, states: “FUTURE DIRECTION: To conform with the b

2058 IEEE POSIX standard, when it is adopted as a full-use standard, the value of errno b

2059 indicating that...” b

2060 The Berkeley implementations of rmdirQ and rename () used [ENOTEMPTY] for this b
2061 error condition. When the /usr/group Standard was published, it contained [EEXIST] b
2062 instead. When AT&T adopted these functions into System V, they used the /usr/group b

2063 Standard as their reference. Therefore, several existing applications and implementations b
2064 support/use both forms and the Working Group could not agree on either value. All b
2065 implementations are required to supply both [EEXIST] and [ENOTEMPTY] in <errno.h> b
2066 with distinct values so that applications can use both values in C language case b

2067 statements. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.5 Files and Directories 237

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

2068 B.5.5.1 Remove Directory Entries
2069 Unlinking a directory is restricted to the super-user in many historical implementations
2070 for reasons given in linkQ §B.5.3.4. But see rename() §B.5.5.3.

2071 B.5.5.2 Remove a Directory
2072 See also [ENOTEMPTY] and [ENAMETOOLONG] §B.5.5. B

2073 B.5.5.3 Rename a File
2074 This rename() call is equivalent for regular files to that defined by the C Standard. Its

2075 inclusion here expands that definition to include actions on directories and specifies

2076 behavior when the new parameter names a file that already exists.. That specification

2077 requires that the action of the function be atomic.

2078 One of the reasons for introducing this function was to have a means of renaming

2079 directories while permitting implementations to prohibit the use of linkQ §5.3.4 and

2080 unlink() §5.5.1 with directories, thus constraining links to directories to those made by c
2081 mkdirQ §5.4.1. c

2082 The specification that if old and new refer to the same file describes existing, although c
2083 undocumented, 4.3BSD behavior. It is intended to guarantee that: c

2084 rename("x", "x"); a

2085 does not remove the file. c

2086 Renaming dot or dot-dot is prohibited in order to prevent cyclical file system paths.

2087 See also [[ENOTEMPTY] and [ENAMETOOLONG] §B.5.5. b

2088 B.5.6 File Characteristics

2089 The function ustatQ, which appeared in the 1984 /usr/group Standard and is still in the

2090 SVID, was removed from the present standard before Trial Use because it was:

2091 • Not reliable. The amount of space available can change between the time the call is
2092 made and the time the calling process attempts to use it

2093 • Not required. The only known program that uses it is the text editor ed.

2094 It was also not readily extensible to networked systems.

2095 B.5.6.1 File Characteristics: Header File and Data Structure
2096 See devj §B.2.6, linkj §B.2.6, modej §B.2.6, offj §B.2.6, and uidj §B.2.6.

2097 The S_ISUID and S_ISGID bits may be cleared on any write, not just on openQ §5.3.1, as b

2098 some historical implementations do it

2099 System, calls that update the time entry fields in the stat structure must be documented by c

2100 the implementors. It is not expected that routines that call one of these system calls need c

2101 to document this as a side effect. (Note that this includes most of the stdio routines in the c

2102 ANSUX3.159-198x Programming Language C Standard.) POSIX conforming systems c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

238 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2103 should not update the time entry fields for functions listed in the standard unless the c
2104 standard requires that they do, except in the case of documented extensions to the c

2105 standard. c

2106 B.5.6.2 Get File Status
2107 The intent of the paragraph describing “additional implementation defined access c
2108 constraints” is to allow a secure implementation where a process with a label that does c

2109 not dominate the file’s label cannot perform a stat() function. This is not related to read c
2110 permission; a process with a label that dominates the file’s label will not need read c
2111 permission. An implementation that supports write-up operations could fail fstat{) c

2112 function calls even though it has a valid file descriptor open for writing. c

2113 B.5.6.3 File Accessibility
2114 Some Working Group discussions centered around inadequacies in the access() function b

2115 led to the creation of an eaccess () function because: b

2116 1. Historical implementations of access^) don’t test file access correctly when the b
2117 process’s real user ID is super-user. In particular, they always return zero when b
2118 testing execute permissions without regard to whether the file is executable. b

2119 2. The super-user has complete access to all files on a system. As a consequence, b
2120 programs started by the super-user and switched to the effective user ID with lesser b
2121 privileges cannot use access() to test their file access permissions. b

2122 After eaccess() was reviewed, the Working Group found that it still didn’t resolve b
2123 problem 1, so the standard now allows access () to behave in the desired way because b
2124 several implementations have corrected the problem. It was also argued that problem 2 b
2125 is more easily solved by using open(), chdirQ, or exec() functions as appropriate and b

2126 responding to the error there, rather than creating a new function that wouldn’t be as b
2127 reliable. Therefore, eaccess () was taken back out of the standard. b

2128 Secure implementations will probably need an extended access ()-like function, but the b
2129 Working Group did not have enough of the requirements to define it yet. This could be b
2130 proposed as an extension to the Full Use standard. b

2131 The phrase “an implementation may subsitute search permissions for execute c
2132 permission” reflects the two possibilities implemented by historical implementations c
2133 when checking super-user access for X_OK. c

2134 B.5.6.4 Change File Modes

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.5 Files and Directories . 239

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

2135 B.5.6.5 Change Owner and Group of File
2136 System ID and System V allow a user to give away files, that is, the owner of a file may

2137 change its user ID to anything. This is a serious problem for implementations which are
2138 intended to meet government security regulations. Version 7 and 4.3BSD permit only the

2139 super-user to change the user ID of a file. Some government agencies (usually not ones a

2140 concerned directly with security) find this limitation too confining. The standard uses a

2141 “may” to permit secure implementations while not disallowing System V.

2142 System in and System V allow the owner of a file to change the group ID to anything.
2143 Version 7 permits only the super-user to change the group ID of a file. 4.3BSD permits

2144 the owner to change the group ID of a file to its effective group ID or to any of the groups b
2145 in the list of supplementary group IDs, but to no others.

2146 The decision to require that, for non-privileged processes, the S_ISUID and S_ISGID bits c

2147 be cleared on regular files but only may be cleared on non-regular files was to allow plans c

2148 for using these bits in implementation specified manners on directories. Similar cases c
2149 could be made for other file types, so the standard does not require that these bits be c

2150 cleared except on regular files. Note that as these cases arise, the system implementors c

2151 will have to determine whether these features enable any security loopholes and specify c

2152 appropriate restrictions. c

2153 B.5.6.6 Set File Access and Modification Times
2154 The actime structure member must be present, so that an application may set it, even
2155 though an interface implementation may ignore it and not change the access time on the

2156 file. If an application intends to leave one of the times of a file unchanged while
2157 changing the other, it should use stat() §5.6.2 to retrieve the file’s st_atime §5.6.1.2.2
2158 and st_mtime §5.6.1.2.2 parameters, set actime and modtime in the buffer, and change

2159 one of them before making the utime() call.

2160 B.5.7 Configurable Pathname Variables b

2161 When the runtime facility described in Configurable Pathname Variables §B.4.8 was b

2162 designed, it was realized that some variables change depending on the file system. For b

2163 example, it is quite feasible for a system to have two varieties of file systems mounted: a b

2164 System V, and; a Berkeley “Fast File System.” b

2165 If limited to strictly compile-time features, no application that was widely distributed in b

2166 executable binary form could rely on more than 14 bytes in a pathname component, as b

2167 that is the minimum published for {NAMEJMAX} in this standard. The pathconfQ B

2168 function allows the application to take advantage of the most liberal file system available b

2169 at runtime. In many Berkeley-based systems, 255 bytes are allowed for pathname b

2170 components. b

2171 These values are potentially changeable at the directory level, not just at the file system, b
2172 And, unlike the overall system variables, there is no guarantee that these might not b

2173 change during program execution. However, if the program is dealing with an open file b

2174 descriptor, using the fpathconf{) function, they won’t change while the file is still open, b

240

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Annendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2175 B.5.7.1 Get Configurable Pathname Variables b

2176 The pathconf{) function was proposed immediately after the sysconfO function when it c

2177 was realized that some configurable values may differ across file system, directory, or c

2178 device boundaries. c

2179 For example, {NAME_MAX} frequently changes between System V and BSD-based file c
2180 systems; System V uses a maximum of 14, Berkeley 255. On an implementation that c
2181 provided both types of file systems, an application would be forced to limit all pathname c
2182 components to 14 bytes, as this would be the value specified in <limits.h> on such a c
2183 system. c

2184 Therefore, various useful values can be queried on any pathname or file descriptor, c
2185 assuming that the appropriate permissions are in place. c

2186 Note that, unlike the values returned by sysconf{), the pathname-oriented variables are c
2187 potentially more volatile and are not guaranteed to remain constant throughout the c
2188 process’s lifetime. For example, in between two calls to pathconf() the file system in c
2189 question may have been unmounted and remounted with different characteristics. c

2190 B.6 Input and Output Primitives

2191 Rationale for the Change from 0_NDELAY to 0_N0NBLOCK.

2192 System III and System V have included a flag, 0_NDELAY, to mark file descriptors so
2193 that user processes would not block when doing I/O to them. If the flag is set, a read()
2194 §6.4.1 or write() §6.4.2 call which would otherwise need to block for data returns a value
2195 of zero instead. But a readQ call also returns a value of zero on end of file, and
2196 applications have no way to distinguish between these two conditions.

2197 BSD systems support a similar feature through a flag with the same name, but somewhat

2198 different semantics. The flag applies to all users of a file (or socket) rather than only to

2199 those sharing a file descriptor. The BSD interface provides a solution to the problem of
2200 distinguishing between a blocking condition and an end of file condition by returning an
2201 error, [EWOULDBLOCK], on a blocking condition.

2202 The 1984 lusrlgroup Standard includes an interface with some features from both AT&T
2203 and BSD. The overall semantics are that it applies only to a file descriptor. However, the

2204 return indication for a blocking condition is an error, [EAGAIN]. This was the starting

2205 point for POSIX.

2206 The problem with the 1984 lusrl group Standard that it does not allow compatibility with
2207 existing applications. An implementation cannot both conform to this standard and
2208 support applications written for existing AT&T or BSD systems. This was the cause of at
2209 least one objection during the trial-use balloting. Several changes have been considered,
2210 either at that time or more recently, to address this issue. These include:

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.6 Input and Output Primitives 241

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

2211 0) no change (from 1984 lusrlgroup Standard)

2212 1) changing to System ni/V semantics

2213 2) changing to BSD semantics

2214

2215

2216

3) broadening the standard to allow conforming implementation a choice
among these semantics

4) changing the name of the flag from 0_NDELAY

2217 5) changing to System IH/V semantics and providing a new call to distinguish

2218 between blocking and end of file conditions

2219 The consensus of the Working Group at the January, 1986, meeting in Denver, was that c
2220 (4) is the best alternative. The new name is 0_N0NBL0CK. This alternative allows a

2221 conforming implementation to provide backward compatibility at the source and/or

2222 object level with either AT&T or BSD systems (but the standard does not require or even
2223 suggest that this be done). It also allows Conforming Application Using Extensions the

2224 functionality to distinguish between blocking and end of file conditions, and to do so in

2225 as simple a manner as any of the alternatives. The greatest shortcoming was that it forces

2226 all existing AT&T and BSD applications that use this facility to be modified in order to c

2227 strictly conform to the standard. This same shortcoming applies to (0) and (3) as well,

2228 and it applies to one group of applications for (1), (2), and (5).

2229 Systems may choose to implement both 0_NDELAY and 0_NONBLOCK, and there is no

2230 conflict as long as an application does not turn both flags on at the. same time.

2231 See also scope §B.6.5.1.

2232 B.6.1 Pipes
2233 The requirement that attempts to write on fildes[Qi] or to read on fildes[1] shall fail does

2234 not make the 4.3BSD implementation of pipes as sockets nonconforming, since the pipe

2235 code carefully sets up a pair of unidirectional sockets. System V Release 3 as distributed

2236 does not use streams for pipes. The historical (Version 7) error for such an attempt is

2237 [EBADF]

2238 B.6.1.1 Create an Inter-Process Channel

2239 The wording carefully avoids using the verb “to open” in order to avoid any implication

2240 of use of openQ §5.3.1.

2241 See also Write to a Pipe §B.6.4.2. a

242

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2242 B.6.2 File Descriptor Manipulation

2243 B.6.2.1 Duplicate an Open File Descriptor
2244 These interfaces are redundant. Their services are also provided by the fcntlf) function. 9

2245 They have been included in this standard primarily for historical reasons, since many 9

2246 existing applications use them. 9

2247 In the description of [EBADF] the case of fildes being out of range is covered by the

2248 given case of fildes not being valid. The descriptions for fildes and fildes2 are different
2249 because the only kind of invalidity that is relevant for fildes2 is whether it is out of range,
2250 that is, it does not matter whether fildes2 refers to an open file when the dup2{) call is

2251 made.

2252 If fildes2 is a valid file descriptor, it shall be closed, regardless of whether the function c
2253 returns an indication of success or failure, unless fildes2 is equal to fildes. c

2254 B.6.3 File Descriptor Deassignment

2255 B.6.3.1 Close a File
2256 Once a file is closed, the file descriptor no longer exists, since the integer corresponding

2257 to it no longer refers to a file.

2258 B.6.4 Input and Output >
2259 The standard permits return of the number of bytes read or written after an interrupted
2260 operation in order to promote compatibility with System V, even though it makes writing
2261 a Conforming Application more difficult.

2262 Whether the return values of, and nbyte arguments to, readf) §6.4.1 and writef) §6.4.2
2263 should be signed or unsigned was a chronic source of controversy. On machines where
2264 type int is of sixteen bits, only 32767 bytes may be transferred on one function call. If

2265 nbyte were unsigned, it would be convenient for the return value to be of the same type.
2266 But if the returned value were unsigned, it would be necessary to compare it to
2267 (unsigned)-1 in order to detect an error. Although a definition such as IO_ERR could be
2268 provided to simplify code, still many existing applications would not conform.

2269 The Working Group decided to make nbyte unsigned, with the results of use of values
2270 greater than {INT_MAX} (often 32767) being made implementation defined. However,

2271 the return value was left signed to avoid the error-detection problem. It is still possible to
2272 compare the return value directly with nbyte, since the C Standard specifies that the

2273 comparison will be done unsigned.

2274 Use of the type long was considered in order to avoid the sixteen bit problem, but not

2275 adopted.
«

2276 New functions like readf) and write() called Ireadf) and lwrite() and differing only in
2277 that their nbyte argument and return values would be of type offj §2.8 were proposed but
2278 rejected. The Working Group is not necessarily against the creation of Ireadf) and

UNAPPROVED DR Apr. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.6 Input and Output Primitives 243

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

2279 Iwrite() calls, but was unable to clearly identify the need given the above. It was also

2280 noted that C has similar constraints parallel to those mentioned above, and that the type
2281 of sizeof is not necessarily long (where the largest object cannot exceed
2282 sizeof (char [MAXINT]).

2283 There were recommendations to add format parameters to read() and write () in order to a

2284 handle networked transfers among heterogenous file system and base hardware types, c

2285 Such a facility may be required for support by the OSI presentation of layer services, c

2286 However, the Working Group determined that this should correspond with similar C c

2287 Language facilities, and that is beyond the scope of the 1003 effort. The concept was c

2288 suggested to X3J11 for their consideration as a possible area for future work. c

2289 In 4.3BSD, a signal does not interrupt a read() §6.4.1 or a write() §6.4.2; thus the notes

2290 below regarding setjmpf) §8.3.1 and longjmp() §8.3.1. In 4.2BSD, 4.3BSD, and

2291 Version 8 there is an additional function, selectf) §B.6.4, whose purpose is to pause until

2292 specified activity (data to read, space to write, etc.) is detected on specified file
2293 descriptors. It is common in applications written for those systems for select() to be used

2294 before read{) in situations (such as keyboard input) where interruption of I/O due to a
2295 signal is desired. But this approach does not conform, because select() is not in the
2296 standard. The Working Group included setjmp{) and longjmpQ so that there would be a

2297 method usable by Conforming Application Using Extensions. 4.3BSD semantics are
2298 permitted by not requiring the implementation to return [EINTR] on a read() or write {).

2299 The standard permits read() and write() to return the number of bytes successfully

2300 transferred when interrupted by an error. This is not required because it is incompatible
2301 with Version 7, System III, and System V.

2302 B.6.4.1 Read from a File

2303 The file offset is not incremented if an error is returned. c

2304 b

2305 References to actions taken on an “unrecoverable error” have been removed. It is. b

2306 considered beyond the scope of this standard to describe what happens in the case of b

2307 hardware errors. b

2308 B.6.4.2 Write to a File

2309 An attempt to write to a pipe or FIFO has several major characteristics: c

2310 Atomic/non-atomic c
2311 A write is atomic if the whole amount written in one operation is not interleaved c

2312 with data from any other process. This is useful when there are multiple writers c

2313 sending data to a single reader. Applications need to know how large a write c

2314 request can be expected to be performed atomically. We call this maximum c

2315 {PIPE_BUF}. The standard does not say whether write requests for more than c

2316 {PIPEJBUF} bytes will be atomic, but requires that writes of {PIPE_BUF} or less c

2317 bytes shall be atomic. c

244

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2318 Blocking/immediate c
2319 Blocking is only possible with 0_NONBLOCK clear. If there is enough space for c
2320 all the data requested to be written immediately, the implementation should do so. c
2321 Otherwise, the process may block, that is, pause until enough space is available for c
2322 writing. The effective size of a pipe or FIFO (the maximum amount that can be c
2323 written-in one operation without blocking) may vary dynamically, depending on c
2324 the implementation, so it is not possible to specify a fixed value for it. c

2325 Complete/partial/deferred c
2326 A write request, c

2327 int fildes, nbyte, ret; a

2328 char *buf; a

2329 ret = writeijUdes, buf, nbyte); a

2330 may return c

2331 complete: ret = nbyte c

2332
2333
2334

23.35
2336

2337

partial: ret < nbyte c
This shall never happen if nbyte < {PIPE_BUF}. If it does c
happen (with nbyte > {PIPE_BUF}), the standard does not c
guarantee atomicity, even if ret < {PIPE_BUF}, because c
atomicity is guaranteed according to the amount requested, c

not the amount written. c

2338

2339
2340
2341

2342

2343
2344

2345
2346

deferred: ret = -1, errno = [EAGAIN] c
This error indicates that a later request may succeed. It does c

not indicate that it shall succeed, even if nbyte < c

{PIPE BUF}, because if no process reads from the pipe or c

FIFO, the write will never succeed. An application could c
usefully count the number of times [EAGAIN] is caused by a c
particular value of nbyte > {PIPE_BUF} and perhaps do later c
writes with a smaller value, on the assumption that the c
effective size of the pipe may have decreased. c

2347 Partial and deferred writes are only possible with 0_NONBLOCK set c

2348 The relations of these properties are best shown in tables. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.6 Input and Output Primitives 245

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

A

A

A

A

A

A

A

A

2359 If the 0_N0NBL0CK flag is clear, a write request shall block if the amount writable c
2360 immediately is less than that requested. If the flag is set (by fcntlQ), a write request shall c

2361 never block. c

A

A

A

A

A

A

A

A

2372 There is no way provided for an application to determine whether the implementation c

2373 will ever perform partial writes to a pipe or FIFO. Every application should be prepared c

2374 to handle partial writes when 0_N0NBL0CK is set and the requested amount is greater c
2375 than {PIPE_BUF}, just as every application should be prepared to handle partial writes on c

2376 other kinds of file descriptors. c

2377 Where the standard requires -1 returned and errno set to [EAGAIN], most historical c

2378 implementations return 0 (with the 0_NDELAY flag set: that flag is the historical c

2379 predecessor of 0_N0NBL0CK, but is not itself in the standard). The error indications in c
2380 the standard were chosen so that an application can distinguish these cases from end Of c

2381 file. While write() cannot receive an indication of end of file, read() can, and the c
2382 Working Group chose to make the two functions have similar return values. Also, some c
2383 existing .systems (e.g., Version 8) permit a write of zero bytes to mean that the reader c

2384 should get an end of file indication: for those systems, a return value of zero from write c

2385 indicates a successful write of an end of file indication. c

2386 The concept of a {PIPE_MAX} limit (indicating the maximum number of bytes that can c

2387 be written to a pipe in a single operation) was discussed by the Working Group. The c
2388 Group decided this concept would unnecessarily limit application writing. c

2389 See also O NONBLOCK §B.6.

Write to a Pipe or FIFO with ONONBLOCK set.

immediately
writable: none some nbyte

nbyte <

(PEPEBUF)
-1, -1, atomic

[EAGAIN] [EAGAIN] nbyte

nbyte >

(PIPEBUF)

< nbyte < nbyte

-1, or-1, or-1,

[EAGAIN] [EAGAIN] [EAGAIN]

Write to a Pipe or FIFO with O NONBLOCK clear.

immediately

writable: none some nbyte

nbyte <1

(PIPE BUF}

atomic atomic atomic

blocking blocking immediate
nbyte nbyte nbyte

nbyte >

(PIPE BUF)
blocking blocking blocking

nbyte nbyte nbyte

246

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2390 The file offset is not incremented if an error is returned.

2391
2392

2393

2394

2395
2396

The standard does not specify behavior of concurrent writes to a file from multiple a

processes. Applications should use some form of concurrency control. a

References to actions taken on an “unrecoverable error” have been removed. It is b

considered beyond the scope of this standard to describe what happens in the case of b

hardware errors. b

2397 B.6.5 Control Operations on Files

2398 B.6.5.1 Data Definitions for File Control Operations
2399 The main distinction between the file descriptor flags and the file status flags is scope.

2400 The former apply to a single file descriptor only, while the latter apply to all file
2401 descriptors that share a common open file description (by inheritance through fork{)
2402 §3.1.1 or an F_FDUPFD operation with fcntl() §6.5.2). Neither apply to file descriptors

2403 that have different file pointers even if they refer to the same file (by separate openf)
2404 §5.3.1 calls). For 0_NONBLOCK, this scoping is like that of 0_NDELAY in System V
2405 rather than in 4.3BSD, where the scoping for 0_NDELAY is different from all the other

2406 flags accessed via the same commands.

2407 For example:

2408
2409
2410

fdl = open (pathname, oflags);
fd2 = dup (fdl);
fd3 = open (pathname, oflags);

2411 Does an fcntl{) call on fdl also apply to fd2 or fd3 or to both? According to the standard,

2412 FJSETFD applies only to fdl, while F_SETFL applies to fdl and fd2 but not to fd3. This

2413 is in agreement with all common historical implementations except for BSD with the
2414 F_SETFL command and the 0_NDELAY flag (which would apply to fd3 as well). Note

2415 that this does not force any incompatibilities in BSD implementations, because

2416 0_NDELAY is not in the standard. See also 0_NONBLOCK §B.6.

2417 B.6.5.2 File Control
2418 The ellipsis in the Synopsis is the syntax specified by the C Standard for a variable
2419 number of arguments. It is used because System V uses pointers for the implementation
2420 of file locking functions. a

2421 b

2422 POSIX permits concurrent read and write access to file data using thefcntlQ function; b

2423 this is a change from the /usr/group Standard and previous drafts, which included a b

2424 lockfQ function. Without concurrency controls, this feature may not be fully utilized a

2425 without occasional loss of data. Since other mechanisms for creating critical regions, a

2426 such as semaphores, are not included, a file record locking mechanism was thought a

2427 appropriate. The fcntl() mechanism may be used to implement semaphores, although a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

B.6 Input and Output Primitives 247

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

2428 access is not first-in-first-out without extra application implementation effort a

2429 Data losses occur in several ways. One is that read and write operations are not atomic, a

2430 and as such a reader may get segments of new and old data if concurrently written by a

2431 another process. Another occurs when several processes try to update the same record, a

2432 without sequencing controls; several updates may occur in parallel and the last writer a

2433 will “win.” Another case is a b-tree or other internal list-based database that is a

2434 undergoing reorganization. Without exclusive use to the tree segment by the updating a

2435 process, other reading processes chance getting lost in the database when the index a

2436 blocks are split, condensed, inserted, or deleted. While fcntl{) is useful for many a

2437 applications, it is not intended to be overly general, and will not handle the b-tree a

2438 example well. a

2439 This facility is only required for regular files, because it is not appropriate for many

2440 devices such as terminals and network connections. However, if it is not supported on a

2441 given device, the/cnf/Q function must return an error of [ENODEV] b

2442 Since fcntlQ works with “any file descriptor associated with that file, however it is b

2443 obtained,” the file descriptor may have been inherited through a fork() §3.1.1 or exec

2444 §3.1.2 operation and thus may affect a file that another process also has open.

2445 The use of the open file description to identify what to lock requires extra calls and c

2446 presents problems if several processes are sharing a open file description but there are too a

2447 many implementations of the existing mechanism for the standard to use different a

2448 specifications. a

2449 But note that while a open file description may be shared through fork{), locks are not a
2450 inherited through/or&Q. Yet locks may be inherited through exec(). a

2451 Shared read locks are not part of the design because no easy implementation was seen a

2452 that would eliminate the race conditions and lockout that would occur in normal usage. a

2453 Since locking is performed with fcntl(), rather than lockf(), this specification prohibits b
2454 use of locking on a file that is not open for writing. b

2455 Before successful return from a F_SETLK or F_SETLKW request, the previous lock type b
2456 for each byte in the specified region shall be replaced by the new lock type. This can b

2457 result in a previously locked region being split into smaller regions. If this would cause b

2458 the number of regions being held by all processes in the system to exceed a system- b

2459 imposed limit, the fcntl() function returns -1 with errno set to [ENOLCK]. b

2460 Mandatory locking was a major feature of the 1984 /usr/group Standard. For advisory a
2461 file record locking to be effective, all processes that have access to a file must cooperate a

2462 and use the advisory mechanism before doing I/O on the file. Enforcement-mode record a

2463 locking* is important when it cannot be assumed that all processes are cooperating. For a

2464 example, if one user uses an editor to update a file at the same time that a second user a

2465 executes another process that updates the same file, if only one of the two processes is a

2466 using advisory locking, the processes are not cooperating. Enforcement mode record a

248

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2467 locking would protect against accidental collisions. A

2468 Secondly, advisory record locking requires a process using locking to bracket each I/O a

2469 operation with lock (or test) and unlock operations. With enforcement mode file and a

2470 record locking, a process can lock the file once and unlock when all I/O operations have a

2471 been completed. Eforcement mode record locking provides a base that can be enhanced, a

2472 for example, with shareable locks. That is, the mechanism could be enhanced to allow a a

2473 process to lock a file so other processes could read it but none of them could write it. a

2474 Mandatory locks were omitted for several reasons. - a

2475 1. Mandatory lock setting was done by multiplexing the setgid bit in most a

2476 implementations; this was confusing, at best. a

2477 2. Relationship to file truncation as supported in 4.2BSD was not well specified. a

2478 3. Any publicly readable file could be locked by anyone. Many historical a

2479 implementations keep the password database in a publicly-readable file. A a

2480 malicious user could thus prohibit logins. Another possibility would be to hold a

2481 open a long-distance telephone line. a

2482 4. Some demand-paged historical implementations offer memory mapped files, and a

2483 enforcement cannot be done on that type of file. a

2484 Since sleeping on a region is interrupted with any signal, alarm() §3.4.1 may be used to 9
2485 provide a timeout facility in applications requiring it. This is useful in deadlock a

2486 detection. Although the fcntl{) implementation must provide deadlock detection a

2487 between processes that are related by locked resources, it does not have to account for a

2488 deadlocks caused by activities unrelated to fcntl{) that have suspended a lock owner. a

2489 The l_start element of the flock structure and the offset argument of lseek{) are, in some b

2490 cases, taken as signed offsets from some position in a file, but the type of these objects is b

2491 allowed to be unsigned. This apparent conflict is avoided by the C Standard’s definitions b

2492 of conversions from signed to unsigned and of arithmetic operations on unsigned types, b
2493 If U is of type off j, the expressions b

2494 U + ((off t) (-i)) A

2495 and b

2496 U - i A

2497 will produce the same result, and, for example, B

2498 lseek (fd, (off t) - 4, SEEK END); A

2499 is well defined. B

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.6 Input and Output Primitives 249

Std 1003.1—Draft 12 "PORTABLE OPERATING SYSTEM INTERFACE

2500 B.6.5.3 Reposition Read/Write File Offset

2501 The C Standard includes the functions fgetposQ §B.6.5.3 and fsetpos{) §B.6.5.3 which
2502 work on very large files by use of a special positioning type.

2503 Although lseek{) may position the file offset beyond the end of the file, this function does c

2504 not itself extend the size of the file. While the only function in POSIX that may extend

2505 the size of the file is write{) §6.4.2, several Standard C functions, such as fwriteQ,
2506 fprintfO, etc., may do so (by causing calls on write ()).

2507 An illegal file offset that would cause [EINVAL] to be returned may be both c

2508 implementation defined and device dependent (for example, memory may have few

2509 illegal values). A negative file offset may be legal for some devices in some c
2510 implementations.

2511 See fcntlQ §B.6.5.2 for a explanation of the use of signed and unsigned offsets with b
2512 lseek(). B

2513 B.7 Device-and Class-Specific Functions

2514 This section has probably undergone more debate and revision than any other in the a
2515 standard. Numerous historical implementations were investigated, and at least four a
2516 major proposals were made. a

2517 There are several sources of the difficulties of this section: a

2518 • The basic Version 7 ioctl{) mechanism is difficult to specify adequately, due to its a
2519 use of a third argument that varies in both size and type according to the second, a
2520 command, argument a

2521 • System III introduced and System V continued ioctl() commands that are completely a

2522 different from those of Version 7. a

2523 • 4.2BSD and other Berkeley systems added to the basic Version 7 ioctl() command a

2524 set; some of these were for features such as job control that POSIX eventually a

2525 adopted. a

2526 • None of the basic historical implementations are adequate in an international a

2527 environment. This concern is not technically within the scope of POSIX, but the a
2528 Working Group did not want to supply unnecessary impediments to a

2529 internationalization. a

2530 The 1984 lusrlgroup Standard attempted to specify a portable mechanism that a
2531 application writers could use to get and set the modes of an asynchronous terminal. The a
2532 intention of that committee was to provide an interface that was neither implementation a

2533 . specific nor hardware dependent. Initial proposals dealt with high level routines similar a
2534 to the curses library (available on most historical implementations). In such an a

2535 implementation, the user interface would consist of calls similar to: a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

250 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2536

2537

2538

2539
2540
2541

2542

2543
2544

2545
2546
2547
2548

2549
2550

2551
2552

2553
2554

2555
2556
2557
2558

2559
2560
2561
2562

2563
2564

2565
2566

2567
2568

2569

2570
2571

2572

2573
2574

2575

setraw(); a

setcookedO; a

It was quickly pointed out that if such routines were standardized, the definition of a

“raw” and “cooked” would have to be provided. If these modes were not well defined a

in the standard, application code could not be written in a portable way. However, the a

definition of the terms would force low level concepts to be included in a supposedly a

high level interface definition. a

Recognizing the pitfalls of the high level approach, the Working Group focused on the a

necessary low level attributes that were needed to support the necessary terminal a

characteristics (e.g., line speeds, raw mode, cooked mode, etc.). After considerable a

debate, a structure similar to, but more flexible than, the AT&T System III termio was a

agreed upon. The format of that structure, referred to as the termios structure, has a

formed the basis for the current section. a

A method is needed to communicate with the system about the termios information, a

Proposals have included: a

The ioctl{) function a

as in System V. This has the same problems as mentioned above for the Version 7 a

ioctl{) function, and is basically identical to it. Another problem is that the a
direction of the command (whether information is written from or read into the a

third argument) is not specified: in historical implementations only the device a

driver knows for sure. This is a problem for networked implementations. It is also a

a problem that there is no size parameter to specify the variable size of the third a

argument, and similarly for its type. a

An iocntl() function a

with additional arguments specifying direction, type, and size. But these new a

arguments would not help application writers, who would have no control over a

their values, which would have to match each command exactly. The new a

arguments do, however, solve the problems of networked implementations. And a

iocntl() is implementable in terms of ioctl() on historical implementations a

(without need for modifying existing code), although it is easy to update existing
code to use the arguments directly.

A termcntl{) function

with the same arguments as proposed for the iocntl() function. The difference
would be that termcntl() would be limited to terminal interface functions: there

would be other interface functions, such as a tapecntl() function for tape
interfaces, rather than a single general device interface routine.

_ i

Unspecified functions
The issue of what the interface function(s) should be called was sidestepped for
some time after the Trial Use Standard while the Working Group concentrated on
the details of the information to be handled. The resulting specification resembles

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.7 Device- and Class-Specific Functions 251

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

2576 the information in System V, but attempts to avoid problems of case, speed, a

2577 networks, and internationalization. a

2578 Specific rc_*() functions a

2579 to replace each ioctlQ function were finally incorporated into the standard, instead a

2580 of any of the above-mentioned proposals. a

2581

2582

2583

2584

2585

2586
2587

The issue of modem control [Unknown Reference Type] § was excluded from POSIX on a

the grounds that: a

1. it was concerned with setting and control of hardware timers, and a

2. the appropriate timers and settings vary widely internationally. a

3. Feedback from X/OPEN indicated that this facility was not consistent with c

Europeon needs, and that specification of such a facility was not a requirement for c
portability from their “international perspective.” c

2588 B.7.1 General Terminal Interface

2589 Although the Working Group attempted to take into account needs of both interface a

2590 implementors and application developers throughout the standard, more attention was a

2591 paid to the needs of the latter in this section. This is because, while many aspects of the a

2592 programming interface can be hidden from the user by the application developer, the a

2593 terminal interface is usually a large part of the user interface. Although to some extent a

2594 the application developer can build missing features or work around inappropriate ones, a

2595 the difficulties of doing that are greater in the terminal interface than elsewhere. For a

2596 example, efficiency prohibits the average program from interpreting every character a

2597 passing through it in order to simulate character erase, line kill, etc. These functions a

2598 should usually be done by the operating system, possibly at interrupt level. a

2599 The rc*() functions were introduced as a way of avoiding the problems inherent in the

2600 traditional ioctl() §B.7.1 function and in variants of it that were proposed. For example,

2601 tcgets() is specified in place of the use of the TCGETS ioctl() command function. TTiis
2602 allows specification of all the arguments in a manner consistent with the C Standard,

2603 unlike the varying third argument of ioctl(), which is sometimes a pointer (to any of

2604 many different types) and sometimes an int

2605 The advantages of this new method include:

2606 • It allows strict type checking.

2607 • The direction of transfer of control data is explicit

2608 • Portable capabilities are clearly identified.

2609 • The need for a general interface routine is avoided.

2610 The disadvantages include

252

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2611 • No historical implementation uses the new method.

2612 • There are many small routines instead of one general-purpose one.

2613 • The historical parallel with fcntl() §6.5.2 is broken.

2614 B.7.1.1 Interface Characteristics

2615 B.7.1.1.1 Description

2616 B.7.1.1.2 Opening a Terminal Device File

2617 B.7.1.1.3 Process Groups

2618 B.7.1.1.4 The Controlling Terminal

2619 B.7.1.1.5 Job Access Control
2620 The foregrouncFbackground check performed by the terminal driver must be repeatedly
2621 performed until the calling process moves into the foreground. That is, when the
2622 terminal driver determines that the calling process is in the background and should
2623 receive a job control signal, it sends the appropriate signal (SIGTTIN or SIGTTOU) to
2624 every process in the process group of the calling process and then it allows the calling
2625 process to immediately receive the signal. The latter is typically performed by blocking
2626 the process so that the signal is immediately noticed. Note, however, that after the
2627 process finishes receiving the signal and control is returned to the driver, the terminal
2628 driver must reexecute the foreground/background check. The process may still be in the

2629 background, either because it was continued in the background by a job control shell, or
2630 because it caught the signal and did nothing.

2631 The terminal driver repeatedly performs the foreground/background checks whenever a

2632 process is about to access the terminal. In the case of write() or the Control Functions
2633 §7.2, the check is performed at the entry of the function. In the case of read(), the check

2634 is performed not only at the entry of the function but also after blocking the process to
2635 wait for input characters (if necessary). That is, once the driver has determined that the
2636 process calling the read() function is i'n the foreground, it attempts to retrieve characters

2637 from the input queue. If the queue is empty, it blocks the process waiting for characters.
2638 When characters are available and control is returned to the driver, the terminal driver
2639 must return to the repeated foreground/background check again. The process may have

2640 moved from the foreground to the background while it was blocked waiting for input
2641 characters.

2642 See also job control §B.3.3. a

2643 B.7.1.1.6 Input Processing and Reading Characters
2644 c

2645 B.7.1.1.7 Canonical Mode Input Processing
2646 4.3BSD has a WERASE character that erases the last “word” typed (but not any a

2647 preceding blanks or tabs). A word is defined as a sequence of non-blank characters, with a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

B.7 Device- and Class-Specific Functions 253

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

2648
2649
2650
2651
2652
2653
2654
2655

2656
2657

2658

2659
2660
2661

2662

2663

2664

2665

2666
2667

2668

2669

2670

2671
2672
2673

2674

tabs counted as blanks. Like ERASE, WERASE does not erase beyond the beginning of a

the line. This WERASE feature has not been specified in the standard because it is a
difficult to define in the international environment It is only useful for languages where a
words are delimited by blanks. In some ideographic languages, such as Japanese and a

Chinese, words are not delimited at all. The WERASE character should presumably take a
one back to the beginning of a sentence in those cases: practically, this means it would a

not get much use for those languages. Thus WERASE would be needless overhead, and a

has been omitted as superfluous. a

B.7.1.1.8 Non-Canonical Mode Input Processing
See c_min and c_time §B.7.1.2.2. a

B.7.1.1.9 Writing Characters and Output Processing

B.7.1.1.10 Special Characters
Discussion: The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL, may be c

changed to suit individual tastes. c

B.7.1.1.11 Modem Disconnect

B.7.1.1.12 Closing a Terminal Device File

B.7.1.2 Settable Parameters

B.7.1.2.1 Synopsis

B.7.1.2.2 termios Structure
c

B.7.1.2.3 Input Modes

B.7.1.2.4 Output Modes

B.7.I.2.5 Control Modes

B.7.1.2.6 Local Modes
Non-canonical mode is provided to allow fast bursts of input to be read efficiently while b
still allowing single character input b

B.7.1.2.7 Special Control Characters

254

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

2675 B.7.2 General Terminal Interface Control Functions

2676 B.7.2.1 Get and Set State

2677 B.7.2.2 Line Control Functions

2678 B.7.2.3 Get Distinguished Process Group ID
2679 The tcgetpgrp{) and tcsetpgrp() functions have identical functionality to the 4.2BSD
2680 ioctl{) functions TIOCGPGRP and TIOCSPGRP except for additional security restrictions
2681 imposed on tcsetpgrp(). The 4.2BSD TIOCSPGRP function allows the caller to associate
2682 the terminal with any process group. This allows a user to generate signals from the

2683 keyboard that can be sent to any desired process while bypassing the security restrictions
2684 imposed by kill{). To address this, tcsetpgrp() imposes security restrictions similar to
2685 kill(); the difference is the addition of the saved process group ID. This was added to
2686 allow a job control shell to return its controlling terminal to its original process group
2687 (the one in effect when the job control shell was executed) regardless of whether the user
2688 ID security checks permit it. (Typically the saved process group of a process matches the
2689 process group of its parent; but this is not necessarily so.) A job control shell does this
2690 before returning control back to its parent when it is terminating or suspending itself.
2691 See also jcsetpgrp() §B.4.3.2. Note that 4.3BSD closed the 4.2BSD security problem
2692 somewhat; it looks for a process whose process ID and process group ID are both equal to
2693 the process group supplied to TIOCSPGRP and requires that this process be a descendant
2694 of the calling process or that user IDs match. However this still has problems since there
2695 may be processes which belong to the specified process group, but which are not the
2696 process group leader. This is actually a frequent occurance since csh makes the first
2697 process in a pipeline be the process group leader and this process is usually the first to
2698 terminate. See also job control §B.3.3.

2699 B.7.2.4 Set Distinguished Process Group ID

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.7 Device- and Class-Specific Functions 255

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

1 B.8 G Language Library

2 When the ANSI/X3.159-198x Programming Language C Standard is adopted, it will be b

3 the basis for a C language binding to POSIX. In the interim, the routines in this chapter b

4 are left unstandardized, but are defined by common usage and traditional b
5 implementations. Common usage may also be derived by such historical publications as b

6 The C Programming Language, by Kemighan and Ritchie, listed in Bibliographic Notes b

7 §B. 11. B

8 The null set of supported languages is allowed. a

9 B.8.1 Referenced C Language Routines

10 B.8.1.1 Extensions to asctime () Function c

11 System V uses the TZ environment variable to set some information about time. It has c
12 the form (spaces inserted for clarity): c

13 std offset dst a

14 where the first three characters (std) are the name of the standard time zone, the digits c

15 which follow (offset) are the hours West of Greenwich (or, if preceded by East), c

16 and the next three characters (dst) are the name of the summer time zone. Both std and c

17 offset are required; if dst is missing, summer time does not apply. c

18 Currently, the UNIX system localtime function translates a number of seconds since The c

19 Epoch §2.3 into a detailed breakdown of that time. This breakdown includes: c

20 • Time of day: Hours, minutes, and seconds. c

21 • Day of the month, month of the year, and the year. c

22 • Day of the week and day of the year (Julian day). c

23 • Whether or not summer (daylight saving) time is in effect c

24 It is first and last items that present a nasty problem: The time of the day depends on c

25 whether or not summer time is in effect. Whether or not summer time is in effect c

26 depends on the locale and date. c

27 Currently the UNIX system has built into it only the United States federal law for the c

28 years 1970 to 1986. The U.S. law was changed for 1987 and subsequent years, so much c
29 UNIX system software is now “broken.” Actually, 4.2BSD includes time zone rules in a c
30 file that does take Europe and Australia into account. There are some errors and c

31 limitations with this method. And if the system is outside the United States, that same c

32 UNIX system software has always been broken. c

33 The challenge is to fix the existing built-in rules for the new U.S. law and, in the process, c

34 extend localtime so that non-U.S. locales won’t suffer from Yankee daylight saving time, c
35 Fixing the built-in rule is straightforward. Extending Iocaltime is less so. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

256 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

36 This proposal extends the existing TZ environment variable (which names the locale’s c
37 time zone) to also include a rule for when to use standard time and when to use summer c
38 time. Southern hemisphere time zones are supported by allowing the first rule date c

39 (change to summer time) to be later in the year than the second rule date (change to c

40 standard time). c

41 The proposal accommodates the “floating day” rules (for example “last Sunday in c
42 October”) used in the U.S. and Canada (and the European Economic Community for the c
43 last several years). In theory, TZ only has to be set once and then never touched again c
44 unless the law is changed. c

45 Julian dates are proposed with two syntaxes, one zero based, the other one based. They c
46 are here for historical reasons. The one based counting (7) is used more commonly in c
47 Europe (and on calendars people may use for reference). The zero based counting (n) is c

48 used currently in some implementations and should be kept for historical reasons as well c
49 as being tne only way to specify Leap day. c

50 It is expected the leading slash followed by some bytes as either the entire TZ string or as c
51 the rule will enable systems to have time zone information included in a file (as 4.2BSD c

52 systems currently do) or use the bytes as an index, into a database. The implementors c
53 have the option as to how these bytes are interpreted. Allowing the implementors to c

54 specify either the entire time zone or the rule makes the proposal capable of describing c
55 the complete history for a multitude of locales. This proposal speculates that very few c
56 programs actually need to be historically accurate as long as the relative timing of two c
57 events is preserved. But, for the probably few programs that do desire such accuracy, the c
58 I bytes method is provided. c

59 Summer time is governed by both locale and date. This proposal only handles the locale c
60 dependency. Using an implementation defined file format for either the entire TZ c
61 variable or to specify the rules for a particular time zone is allowed as a means by which c
62 both the locale and date dependency can be handled. c

63 Since current implementations do not examine TZ beyond the assumed end of dst, it is c

64 possible to literally extend TZ and break very little existing software. Since much of the c
65 software doesn’t work anyway outside the U.S. time zones, minor changes to TZ (such as c
66 extending offset to be hh'.mrn — as long as the colon and minutes,■;mm, are optional) c

67 will have little impact. c

68 B.8.1.2 Extensions to setlocaleQ Function c
69 Recently, the ANSI X3J11 subcommittee issued a draft proposal for the C Programming c

70 Language. In addition to many changes to the language, the proposal defines a collection c
71 of interfaces to support internationalization. One of the most significant aspects of these c
72 interfaces is a facility to set and query the international environment. The international c

73 environment is a repository of information that affects the behavior of certain c

74 functionality, namely: c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.8 C Language Library 257

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

75 • Character Handling

76 • String Handling (i.e., collating)

77 • Date/Time Formatting

78 • Numeric Editing

79 The setlocale 0 function provides the application developer with the ability to set all or c

80 portions, called categories, of the international environment. These categories correspond c

81 to the areas of functionality, mentioned above. The syntax for setlocale is the following: c

82 char *setlocale (category, locale) A

83 int category; A

84 char *locale A

85 Where category is the name of one of four categories, namely: c

86 LC__CTYPE A

87 LC_COLLATE A

88 LCJTIME A

89 LC__NUMERI C A

90 In addition, a special value, called LC_ALL, directs setlocale () to set all categories. C

91 The locale argument is a character string that points to a specific setting for the C

92 international environment, or locale. There are three preset values for the locale C

93 argument, namely: C

94 C Specifies the minimal environment for C translation. If setlocale is C

95 not invoked, the "C" locale is the default. C

96
99 99 Specifies an implementation-defined native environment C

97 NULL Used to direct setlocale () to query the current international C

98 environment and return the name of the locale. C

99 This section describes the behavior of an implementation of setlocale () and its use of C

100 environment variables in controlling this behavior on POSIX-based systems. There are c

101 two primary uses of setlocale{): c

102 • Querying the international environment to find out what it is set to, c

103 • Setting the international environment, or locale, to a specific value. c

104 The following sub-sections will describe the behavior of setlocale() in these two ares, c

105 Since it is difficult to describe the behavior in words, examples will be used to illustrate c

106 the behavior of specific uses. c

107 To query the international environment, setlocale{) is invoked with a specific category c

108 and the null pointer as the locale. The null pointer is a special directive to setlocale () c

109 that tells it to query rather than set the international environment Below is the syntax for c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

258 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

110 using setlocale {) to query the name of the international environment: c

111 setlocale() returns the string corresponding to the current international environment, c
112 This value may be used by a subsequent call to setlocale () to reset the international c
113 environment to this value. However, it should be noted that the return value from c
114 setlocale () is a pointer to a static area within the function and is not guaranteed to remain c
115 unchanged (i.e., it may be modified by a subsequent call to setlocale{)). Therefore, if the c
116 purpose of calling setlocale() is to save the value of the current international c

117 environment so it can be changed and reset back later, the return value should be copied c
118 to a character array in the calling program. c

119 There are three ways to set the international environment with setlocale (): c

120 setlocale {category, string) c
121 This usage will set a specific category in the international c
122 environment to a specific value corresponding to the value of the c
123 string. A specific example is provided below: c

124 setlocale (LC__ALL, "Fr_FR. 8859") ; a

125 In this example, all categories of the international environment c
126 ' will be set to the locale corresponding to the string c

127 "Fr_FR. 8859", or the french language as spoken in France c
128 using the ISO 8859/1 code set. c

129 If the string does not correspond to a valid locale, setlocale () will c
130 return a null pointer and the international environment is not c
131 changed. Otherwise, setlocale will return the name of the locale c
132 just set c

133 setlocale (category, "C") c

134 The ANSI X3J11 draft proposal states that one locale must exist c
135 on all conforming implementations. The name of the locale is c
136 "C", and corresponds to a minimal international environment c
137 needed to support the C programming language. c

138 setlocale {category, "") c

139 This will set a specific category to an implementation-defined c

140 default. For POSIX-based systems, this corresponds to the value of c
141 the environment variables. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.8 C Language Library 259

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

142

143
144

145
146
147

148

149
150

151
152

153
154

155

156

157
158

B.8.2 FILE-TypeC Language Functions

B.8.2.1 Map a Stream Pointer to a File Descriptor
Without some specification of which file descriptors are associated with these streams, it c

is impossible for an application to set up the streams for another application it starts with c

fork() §3.1.1 and exec §3.1.2. In particular, it would not be possible to write a portable c
version of the sh command processor (although there may be other constraints that c

would prevent that portability). c

Note that this standard permits an implementation to associate file descriptors other than c
0, 1, and 2 with stdin, stdout, and stderr. c

B.8.2.2 Open a Stream on a File Descriptor
The file descriptor may have been obtained from openQ §5.3.1, creat() §5.3.2, pipe()

§6.1.1, dup() §6.2.1 ,fcntl() §6.5.2, or inherited through forkij) §3.1.1 or exec §3.1.2, or
perhaps obtained by implementation-dependent means, such as the 4.3BSD socket() call.

The meanings of the type arguments of fdopen and fopen differ. With fdopen, open for

write (“w” or “w+”) does not truncate and append (“a” or “a+”) cannot create for

writing. There is no need for “b” in the format due to the equivalence of binary and text a
files in POSIX. See Text vs. binary file modes §B.1.4. b

159 B.8.3 Other C Language Functions b

160 B.8.3.1 Non-Local Jumps
161 X3J11 specifies various restrictions on the usage of the setjwnp() macro in order to c

162 permit implementors to recognize the name in the compiler and not implement an actual c

163 function. These same restrictions apply to the sigsetjmp (j) macro. c

164 The names of these functions were changed to sigsetjmp() and siglongjmp(). This b

165 avoided conflict with the C Standard setjmp() and longjmp(), which do not have the b

166 same behavior in regards to signal masks. b

167 There are processors that cannot easily support these calls, but the Working Group did

168 not consider that a sufficient reason not to include them.

169 The distinction between setjmp()/longjmp() and sigsetjmp()/siglongjmp() is only b

170 significant for programs which use the sigaction(), sigprocmask(), or sigsuspendQ b

171 functions. b

172 BSD systems provide functions named _setjmp(j) and Jongjmp() which, together with b

173 setjmpQ/longjmp(), save and restore signal masks. While many other systems provide b

174 versions of these functions that do not, the Working Group decided not to specify the b

175 relation of these functions to signal masks and to define a new set of functions instead. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

260 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

176 B.8.3.2 Specify Signal Handling c
177 The sigaction() §3.3.4 was introduced in order to provide an interface for reliable signal c
178 handling (see Singals §B.3.3). The signal() function is included in this document c
179 because signal() is defined in the ANSI/X3.159-198x Programming Language C c
180 Standard. However, it is recommended that POSIX applications use only the sigaction{) c
181 interface, due to the potential unreliability and lack of consistency among existing c
182 signal{) implementations. Portable library routines often need to install a signal catching c
183 function and then restore the signal to its original state. The function sigaction() should c

184 always work correctly for this purpose, regardless of what the rest of the program does, c

185 The signal() function may not work correctly if other parts of the program use c

186 sigactionQ. c

187 It is the intention of the Working Group that signal() be implementable as a library c

188 routine using sigaction(). c

189 B.9 System Databases c

190 At one time, this chapter was entitled Passwords, but this title was changed as all c
191 references to a “password file” were changed to refer to a “user database.” c

192 B.9.1 System Databases
193 There are no references in the standard to a passwd file §B.2.3 or a group file §B.2.3 and
194 there is no requirement that the group or passwd databases be kept in ASCII files. Many
195 large timesharing systems use passwd databases that are hashed for speed. Certain
196 security classifications prohibit certain information in the passwd database from being

197 publicly readable.

198 The encoded password fields were deleted from both the passwd and group databases in b

199 order to meet the requirements of the US Government NBS Password FIPS (and FIPS c

200 concerns in general). c

201 The term “encoded” is used instead of “encrypted” in order to avoid the a

202 implementation connotations (such as reversability, or use of a particular algorithm) of a

203 the latter term.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.9 System Databases 261

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

204 B.9.2 Database Access

205 B.9.2.1 Group Database Access

206 B.9.2.2 User Database Access c

207 B.10 Data Interchange Format

208 B.10.1 Archive/Interchange File Format
209 There are three areas of interest associated with file interchange: b

210 Media There are other existing standards that define the media used for b
211 data interchange. b

212 User Interface b
213 This rightfully should be in the IEEE Std 1003.2 standard. b

214 Format of the Data b

215 None of the PI003 Working Groups address topics that match this b
216 area. The Working Group feels that this area is closest to the types b

217 of things that should be in the IEEE Std 1003.1 document, as the b

218 level of that document most closely matches the level of data b
219 required. b

220 There appear to be two programs in wide use today, tar and cpio. There are large b

221 camps of supporters for each program. Four options were considered for the standard: b

222 1. Make both formats optional. This was considered unacceptable because it b

223 does not allow any portable method for data interchange. b

224 2. Require one format b

225 3. Require one format with the other optional. b

226 4. Require both formats. ‘ b

227 This issue is not yet resolved. In the September 1987 meeting, the cpio format was c
228 approved for inclusion in the standard as the data interchange format. The Extended tar c

229 Format was placed into Appendix D to solicit Balloting Group opinions on this issue. c

230 There are a number of concerns about defining extensions that are known to be required b
231 by existing implementations. Failure to specify a consistent method to implement these b
232 extensions will severely limit portability of the program and, more importantly, will b

233 create severe confusion if these extensions are later standardized. b

234 Two of these extensions that the Working Group felt should be documented are symbolic b
235 links, that were defined by 4.2BSD and 4.3BSD systems, and high performance (or b
236 contiguous) files, that exist in a number of implementations and are now being b

237 considered for the 1003.4 standard. b

262

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

238

239
240
241

242

243
244

245

246

247

248

249

250

251

252

253
254

255
256

257
258
259
260
261
262

263
264

265
266

267

268
269
270

By defining these extensions, implementors are able to recognize these features and take b

appropriate implementation defined actions for these files. For example, a high b

performance file could be converted to a regular file if the system didn’t support high b

performance files; symbolic links might be replaced by normal hard links. b

The Working Group has held to the policy of not defining user interfaces to utilities by b
avoiding any description of a tar or cpio command. The behavior of the former b
command was described in some detail in previous drafts. b

The possibilities for transportable media include, but are not limited to,

1. 1/2 inch magnetic tape, 9 track, 1600 BPI

2. 1/2 inch magnetic tape, 9 track, 6250 BPI

3. Qic-11, 1/4 inch streamer tape

4. Qic-24, 1/4 inch streamer tape

5. 5.25 inch floppies, 8 512-byte sectors/track, 96 TPI

6. 5.25 inch floppies, 8 512-byte sectors/track, 48 TPI

7. IBM 3480 cartridges.

Specification of such media was considered part of the scope of the Trial Use Standard,
but has been excluded from the Full Use Standard.

The utilities are not restricted to work only with transportable media: existing related
utilities are often used to transport data from one place to another in the file hierarchy.

The format is included to provide an implementation independent way to move files from 9
one system to another and also to provide a way for a user to save data on a transportable 9
medium to be restored at a later date. Unfortunately, these two goals can contradict each 9

other as system security problems are easy to find in tape systems if they are not 9

protected. Thus the strict requirements about how the mechanism to copy files shall react c
when operated by both privileged and nonprivileged users. The general concept is that a

privileged (using the ISUID bit in the file’s mode with the owner UID of the file set to
super-user) version of the utility can be used as a save/restore scheme, but a
nonprivileged version is used to interpret media from a different system without
compromising system security.

Regardless of the archive format used, guidelines should be observed when writing tapes c

to be read on other systems. Assuming the target system is POSIX compliant, archives c
created should use only use definitions found in POSIX (e.g., file types, minimum values c
as found in Chapter 2) and should only use relative pathnames (i.e., no leading /). c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.10 Data Interchange Format 263

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

271 B.10.1.1 cpio Archive Format c

272 The model for this format is the existing System V cpio -c data interchange format c

273 This models documents the portable version of cpio format and not the binary version, c
274 It has the flexibility to transfer data of any type described within the POSIX standard, yet c

275 is extensible to transfer data types specific to extensions beyond POSIX (e.g., symbolic c

276 links or contiguous files). Because it describes existing practice, there is no question of c
277 maintaining upward compatibility. c

278 This section does not standardize behavior for the utility when the file type is not c

279 understood or supported. It is useful for the utility to report to the user whatever action is c

280 taken in this case, though the standard neither requires nor recommends this. c

281 B.10.1.1.1 Header c

282 There has been some concern that the size of the c_ino field of the header is too small to c

283 handle those systems which have very large i-node numbers. However, the cjno field in c
284 the header is used strictly as a hard link resolution mechanism for archives. It is not c

285 necessarily the same value as the i-node number of the file in the location that file is c

286 extracted from. c

287 B.10.1.1.2 File Name c

288 For most current implementations of the cpio utility, {PATH_MAX} bytes can be used c

289 to describe the pathname without the addition of any other header fields (the null byte c
290 would be included in this count). {PATH_MAX} is the minimum value for pathname c
291 size, documented as 256 bytes in Chapter 2 of the standard. However, an c

292 implementation may use cjiamesize to determine the exact length of the pathname, c

293 With the current description of the cpio header, this pathname size can be as large as a c

294 number which is described in six octal bytes. c

295 B.10.1.1.3 File Data c

296 B.10.1.1.4 Special Entries c
297 These are provided to maintain backward compatibility. c

298 B.10.1.1.5 cpio Values c
299 Three values are documented under the cjnode field values to provide for extensibility c

300 for known file types: c

*201
jvJi

302

303

304

305

306

307

308

309

110000 Suggested symbolic name—ISCTG; reserved for contiguous files, c
The implementation may treat the rest of the information for this c

archive like a regular file. If this file type is undefined, the c

implementation may create the file as a regular file. c

120000 Suggested symbolic name—ISLNK; reserved for files with c

symbolic links. The implementation may store the link name c

within the data portion of the file. If this type is undefined, the c

implementation may not know how to link this file or be able to c

understand the data section. The implementation may decide to c

264

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

ADDendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

310 ignore this file type and output a warning message. c

311 140000 Suggested symbolic name—ISSOCK; reserved for sockets. If this c
312 type is undefined on the target system, the implementation may c

313 decide to ignore this file type and output a warning message. c

314 This provides for extensibility of the cpio format while allowing for the ability to read c
315 old archives. Files of an unknown type may be read as “regular files” on some c

316 implementations. c

317 B.10.1.2 Multiple Volumes
318 Multi-volume archives have been introduced in a manner that has become a de facto 9
319 standard in many implementations. Though it is not required by POSIX classical 9
320 implementations of the format-reading and -creating utility, upon reading logical end-of- 9

321 file, check to see if an error channel is open to a controlling terminal. The utility then 9
322 produces a message requesting a new medium to be made available. The utility waits for 9
323 new medium to be made available by attempting to read a message to restart from the 9
324 controlling terminal. In all cases, the communication with the controlling terminal is in 9
325 an implementation defined manner. 9

326 The section Multiple Volumes §10.1.2 is intended to handle the issue of multiple c
327 volume archives. Since the end-of-medium and transition between media are not c
328 properly part of this standard, the transition is described in terms of files. c

329 The intent is that files will be read serially until the end-of-archive indication is c
330 encountered, and that file or media change will be handled by the utilities in an c
331 implementation defined manner. c

332 Note that there was an issue with the representation of this on magnetic tape, and the c
333 standard is intended to be interpreted such that each byte of the format is represented on c
334 the media exactly once. In some current implementations, it is not deterministic whether c

335 encountering the end-of-medium reflector foil on magnetic tape during a write will yield c
336 an error during a subsequent readQ of that record, or if that record is actually recorded, c
337 on the tape. It is also possible that read{) will encounter the end-of-medium when end- c
338 of-medium was not encountered when the data was written. This has to do with c
339 conditions where the end of [magnetic] record is in such a position that the reflector foil c
340 is on the verge of being detected by the sensor and is detected during one operation and c

341 not on a later one, or vice-versa. c

342 An implementation of the format-creating utility must assure when it writes a record that c

343 the data appears on the tape exactly once. This implies that the program and the tape c
344 driver work in concert. An implementation of the format-reading utility must assure that c
345 an error jn a boundary condition described above will not cause loss of data. c

346 The general consensus was that the following would be considered as correct operation c
347 of a tape driver when end-of-medium is detected: c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.10 Data Interchange Format 265

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

348

349
350

351

352
353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370
371

372

373

374

375
376

377

378

379

380

381

382

383

During writing, either: c

1. The record where the relector spot was deleted is backspaced over c
by the driver so that the trailing tape mark that will be written on c
close() will overwrite. c

Writing the tape mark should not yield an end-of-medium c
condition. c

2. Or, the condition is reported as an error on the write {) following the c

one where the end-of-medium is detected (the one where the end- c

of-medium is actually detected completing successfully). No data c
will be actually transferred on the write {) reporting the error. The c

subsequent close Q would write () a tape mark following the last c

record actually written. c

Writing the tape mark, and writing any subsequent records, should c
not yield any end-of-medium conditions. c

(The latter behavior permits the implementation of ANSI standard labels c

because several records (the trailer records) can be written after the end- c

of-medium indications. It also permits dealing with, for example, COBOL c

“ON” statements.) c

During reading: c

The end-of-medium indicator is simply ignored, presuming that a tape c

mark (end-of-file) will be recorded on the magnetic medium, and the c
reflector foil was advisory only to the write (). c

Systems where these conditions are not met by the tape driver should assure that the c

format-creating and -reading utilities assure proper representation and interpretations of c

the files on the media, in a way consistent with the above recommendations. c

The typical failures on systems that do not meet the above conditions are either c

1. To leave the record written when the end-of-medium is encountered on the c

tape, but to report that it was not written. The format-creating utility would . c
then rewrite it, and then the format-reading utility could see the record c

twice if the end-of-medium is not sensed during the read operations. c

2.. Or, the write{) occurs uneventfully, but the read() senses the error and c

does not actually see the data, causing a record to be omitted. c

Nothing in this standard requires that end-of-medium be determined by anything on the c
medium* itself (for example, a predetermined maximum size would be an acceptable c

solution for the format creating utility). The format-reading utility must be able to c

read{) tapes written by machines that do use the whole medium, however. c

266

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

384 On media where end-of-medium and end-of-file are reliably coincident, such as disks, c

385 end-of-medium and end-of-file can be treated as synonyms. c

386 Note that partial physical records (corresponding to a single write ()) can be written on c

387 some media, but that only full physical records will actually be written to magnetic tape, c
388 given the way the tape operates. c

389 B.10.1.3 Extended tar Format c
390 This section was originally in the body of the Trial Use Standard but was moved to c
391 Appendix D for the Full Use Ballot c

392 The original model for this facility is the 4.3BSD or Version 7 tar program and format,

393 but the format given here is an extension of the traditional tar format. The name
394 USTAR was adopted to reflect this.

395 This description reflects numerous enhancements over previous versions. The goal of 9
396 these changes was not only to provide the functional enhancements desired, but to retain 9
397 compatibility between new and old versions. This compatibility has been retained. 9

398 Archives written using the old archive format are compatible with the new format 9
399 Archives written using this new format may be read by applications designed to use the 9

400 old format as long as the functional enhancements provided here are not used. This 9
401 means the user is limited to archiving only regular type files and nonsymbolic links to 9

402 such files. 9

403 If a utility reads an archive that contains file types that the utility either does not
404 understand or does not support (such as symbolic links or contiguous files), it is useful
405 for the utility to report whatever action it takes to the user, though the standard neither
406 requires nor recommends this.

407 Implementors should be aware that the previous file format did not include a mechanism 9
408 to archive directory type files. For this reason, the convention of using a file name b

409 ending with slash was adopted to specify a directory on the archive. 9

410 Note that, NAMSIZ plus PFXSIZ have been set to meet the minimum requirements for 9
411 {PATH_MAX}. If a pathname is less than NAMSIZ-1 characters and therefore fits within 9
412 the name field, it is recommended that the pathname be stored there without the use of 9
413 the prefix field. Although the value of NAMSIZ is known to be less than {PATH_MAX}, 9
414 the value was not changed in this version of the archive file format to retain backward 9
415 compatibility and instead the prefix was introduced. Also because of the earlier version 9
416 of the format, there is no way to remove the limitation on the linkname field being set to 9

417 NAMSIZ. 9

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.10 Data Interchange Format 267

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

418 B.ll Bibliographic Notes

419 There are far more related papers and books than are mentioned here, and some of them
420 may be as good or better.

421 B.11.1 Related Standards
422 The standard assumes that any terms not defined in Chapter 2 are defined in the IEEE
423 Standard Dictionary of Electrical and Electronics Terms, IEEE Std 100-1977.

424 The 1984 lusrlgroup Standard may be ordered from

425 /usr/group Standards Committee
426 4655 Old Ironsides Drive, Suite 200

427 Santa Clara, California 95054

428 (408)986-8840

429 The basic historical reference on the C language is

430 • Kemighan, Brian W. and Ritchie, Dennis M., The C Programming Language,

431 Prentice-Hall, Englewood Cliffs, New Jersey (1978).

432 The ANSI/X3.159-198x Programming Language C Standard may be obtained from

433 Global Press
434

435
436
437

2625 Hickoiy St

P.O. Box 2504

Santa Anna, CA 92707-3783
U.S.A.

438
439

440

800-854-7179
+ 1-714-540-9870 (from outside the U.S., ask for extension 245.)

TELEX 692 373

441 The XIOPEN Portability Guide is published by

442

443
444

445

446

Elsevier Science Publishers B.V.

Book Order Department

P.O. Box 1991

1000 BZ Amsterdam

The Netherlands

447 and is distributed in the United States and Canada by

448
449

450

451

Elsevier Science Publishing Company, Inc.

52 Vanderbilt Avenue

New York, NY 10017

U.S.A.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

268 Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

452 There are five volumes, of which Volume 2 is the most relevant to the present standard.

453 B.11.2 Historical Implementations
454 A principal ancestor of all the historical implementations is the Multics System

455 • Organick, Elliot I., The Multics System: An Examination of Its Structure, The MIT

456 Press, Cambridge, MA (1975).

457 The most basic and influential paper on historical implementations is

458 • Ritchie, D. M. and Thompson, K., “The UNIX Time-Sharing System,” Bell
459 System Technical Journal 57(6 Part 2) pp. 1905-1929 American Telephone and
460 Telegraph Company, (July-August 1978). This is a revised version and describes
461 Version 7.

462 • Ritchie, D. M. and Thompson, K., “The UNIX Time-Sharing System,” Commun.
463 ACM 7(7) pp. 365-375 Association for Computing Machinery, (July 1974). This is
464 the original paper, which describes Version 6.

465 The Version 7 manual is

466 • AT&T, UNIX Time Sharing System: UNIX Programmer’s Manual, Seventh Edition,

467 Bell Telephone Laboratories, Inc., Murray Hill, New Jersey (January, 1979).

468 Dennis Ritchie has also done several papers on the history and evolution of the system

469 • Ritchie, Dennis, “The Evolution of the UNIX Time-sharing System,” AT&T Bell
470 Laboratories Technical Journal 63(8) pp. 1577-1593 American Telephone and
471 Telegraph Company, (October 1984).

472 • Ritchie, Dennis M., “Reflections on Software Research,” Commun. ACM ?(?) p. ?
473 Association for Computing Machinery, (1984). ACM Turing Award Lecture

474 • Ritchie, Dennis M., “Unix: A Dialectic,” USENIX Association Conference
475 Proceedings, pp. 29-34 USENIX Association, P.O. Box 2299, Berkeley, CA
476 94710, (21-23 January 1987).

477 Important collections of papers on the system may be found in

478 • BSTJ, “UNIX Time-Sharing System,” Bell System Technical Journal 57(6 Part

479 2)American Telephone and Telegraph Company, (July-August 1978).

480 • BLTJ, “The UNIX System,” AT&T Bell Laboratories Technical Journal

481 63(8)American Telephone and Telegraph Company, (October 1984).

482 The System HI manual is

483 • AT&T, UNIX System III Programmer’s Manual, Western Electric Company, Inc.,

484 Greensboro, N.C. (October, 1981).

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.ll Bibliographic Notes 269

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

485 The SVID

486 • AT&T, System V Interface Definition, Issue 2, AT&T (1986).

487 may be ordered from

488
489

490
491
492

493
494

495

496

497

498

499

500

501 The implementation of System V is described in

502 • Bach, Maurice J., The Design of the UNIX Operating System, Prentice-Hall,
503 Englewood Cliffs, New Jersey (1986).

504 The 4.3BSD manual

505 • UCB-CSRG,, 4.3 Berkeley Software Distribution, Virtual VAX-11 Version, The

506 Regents of the University of California, Berkeley, California (April 1986).

507 is printed by the USENIX Association, and their members may order from them: a

508 USENIX Association A

509 P.O. Box 2299 A

510 Berkeley, CA 94710 A

511 415-528-8649 A

512 The implementation of the kernel of 4.3BSD is described in

513 • Quarterman, John S., Silberschatz, Abraham, and Peterson, James L., “4.2BSD and

514 4.3BSD as Examples of the UNIX System,” ACM Computing Surveys 17(4) pp.
515 379-418 Association for Computing Machinery, (December 1985).

«

516 • Leffler, Samuel J., McKusick, Marshall Kirk, Karels, Michael J., Quarterman, John

517 S., and Stettner, Armando, The Design and Implementation of the 4.3BSD UNIX

518 Operating System, Addison-Wesley, Reading, Massachusetts (1988).

AT&T Customer Information Center
Attn: Customer Service Representative

P.O. Box 19901
Indianapolis, IN 46219

U.S.A.

800-432-6600 (Inside U.S.A.)
800-255-1242 (Inside Canada)

317-352-8557 (Outside U.S.A. and Canada)

using the following Select Codes:

320-011

320-012

320-013

307-131

Volume I

Volume n
Volume IQ

all three volumes

270

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix B

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

519 B.11.3 Historical Application Programming Tutorials
520 A useful tutorial on programming in the C language is

521 • Harbison, Samuel P. and Steele, Guy L., C: A Reference Manual, Prentice-Hall,

522 Englewood Cliffs, New Jersey (1987).

523 A highly regarded book, though not one for beginners, is

524 • Kemighan, Brian W. and Pike, Rob, The UNIX Programming Environment,
525 Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1984).

526 One more oriented towards Berkeley systems is

527 • McGilton, Henry and Morgan, Rachel, Introducing the UNIX System, McGraw-Hill
528 (BYTE Books), New York (1983).

529 and a more recent one is

530 • Rochkind, Marc J., Advanced UNIX Programming, Prentice-Hall, Englewood

531 Cliffs, New Jersey (1985).

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

B.ll Bibliographic Notes 271

C. Comparison to System V Interface Definition

1 The System V Inteface Definition (SVID) defines the external characteristics (externally c

2 visible interfaces and behavior) common to all System V environments. When it was c
3 first published in 1984, it differed in small ways with the 1984 lusrlgroup Standard, and

4 those differences were listed in Issue 1 of the SVID. This appendix lists the differences
5 between Issue 2 of the SVID (Volumes 1-3) and the IEEE Std 1003.1. Unless otherwise c
6 noted, all differences are compared to the BASE definition of the SVID. Overall
7 differences are described first and then differences in specific functions are described.
8 All known differences in defined functionality are listed although some may be of minor

9 importance.

10 In most cases, on a specific point of difference, both IEEE Std 1003.1 and SVID

11 definitions are presented. In other cases, particularly when one document includes a
12 point that the other does not, only the statement from that document is characterized.

13 c

14 Numbers in parentheses below, such as (2.3) or (3.2.2.2), refer to sections in IEEE Std

15 1003.1.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

C Comparison to System V Interface Definition 273

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

16 C.l Overall Contents

17 C.1.1 Operating System Primitives
18 Functions included only in

19 1003.1: mkfifoQ, getgroupsQ, rename(), pathconf(), fpathconfi), sysconf(). c

20 c

21 mkfifo (), pathconfO, and sysconfO are new functions. c

22

23

24

25 SVID:

26

27

28

29

In System V, FIFO files are made with the mknod{) function. c

The optional getgroups () function is not included in the SVID, c

The rename() function is not included in the SVID. c

ioctlQ, mknod{), mountQ, umount(), pcloseQ, popen(), stime(), sync(),
ulimitQ, ustat().

The SVID defines these ten additional functions and requires them to be
supported by any System V environment

g

30

31

32

33
34

35

36

37

38

39

C.1.2 Library Routines

Functions described only in:

1003.1: Eleven routines are included in 1003.1 that are not found in the Base System c

definition in the SVID, but are found in the Software Development Extension.

These include five routines that access the group database (/etc/group in

SVID): endgrentQ, getgrent{), setgrent(), getgrid(), getgrnam(); five

routines that access the passwd database (/etc/passwd in SVID): endpwent(),

getpwent(), setpwentQ, getpwnam(), getpwuid(); one routines to return user

login names, getlogin{). One routine is included in 1003.1 that is not in the c

Software Development Extension in the SVID: cuserid(). c

40 SVID:

41

42

43
44

45
46

47

The SVID defines approximately 150 additional routines many of which are

covered in the ANSIiX3.159-19Sx Programming Language C Standard, and 8

are included in 1003.1 by reference (8.1). Any differences between the SVID

definitions and the ANSI/X3.159-198x Programming Language C Standard 8

definitions are not covered in this appendix. These include math routines,
memory allocation, non-local jumps, data conversion and encoding, stdio
routines, string and character handling, sorting, regular expression matching,

search routines and some others.

274

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix C

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

48 C.1.3 Special Files

49 SVID: Three special device files are required by the SVID,

50 /dev/console system console interface a

51 /dev/null the null file a

52 /dev/tty controlling terminal interface. a

53 C.1.4 Minimal Directory Tree Structure

54 SVID: Specifies a minimal directory tree structure comprising /bin, /dev, /etc,

55 /tmp, /usr/bin, and /usr/tmp.

56 C.1.5 Multiple Groups

57 1003.1: Defines supplemental groups as an optional feature ({NGROUPS_MAX} may
58 be zero). This feature affects several components of the standard. c

59 8

60

61
62
63
64

65
66

67

C.1.6 Job Control 8

1003.1: Defines job control as an optional feature. None of the functions detailed 8

here are included unless the Job Control Option is present. This feature a

affects several components of the standard: four functions (jcsetpgrp (), b

tcgetpgrp(), tcsetpgrp(), and wait2{)) and a header file (<wait.h>) have 8

been added to the standard. In addition, the signal() definition was affected a

and other signals were added. a

SVID: Does not include the Job Control option.

68

69

70
71

72

73

74

75

C.1.7 Enhanced Signals

1003.1: (3.3.3) Extends the signal handling functions to include a set of functions
that manage sets of signals. The functions siginitset(), sigfillset{),
sigaddset(), sigdelset{), sigismemberQ, sigaction(), sigprocmask(),

sigpending(), sigsuspendQ were added to the standard. The structure

definition sigaction was added to the header file <signal.h>.

1003.1: Specifies that the signal mask is conditionally saved and restored by the
sigsetjmpQ and siglongjmp{) functions.

B

B

8

8

B

B

76 SVID:

77
78

Volume 3 added functions to support an extended form of signal handling. 8
The functions sigset, sighold, sigrelse, and sigignore were added. All 8
functions takes a single signal number of type int. The sigset function takes 8

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

C. 1 Overall Contents 275

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

79 an additional parameter which is one of four values: SIG_DFL, SIG_IGN, 8
80 SIG_HOLD, or an address of a signal-catching function. c

81 C.1.8 Configurable System Variables c

82 1003.1: Three new functions, fpathconfO, pathconfQ, and sysconfQ, were added to c
83 the system configuration variables. c

84 C.1.9 Terminal I/O
85 The comparison described here is between termios from 1003.1 and termio from SVID.

86 1003.1: (7.1) Specifies a set of functions to manipulate a terminal.

87 SVID: Specifies a set of ioctl commands to manipulate a terminal.

88 C.2 Specific Differences

89

90

91

92

93

94

95

C.2.1 Error Numbers

1003.1: (2.5) Includes the additional errors

ENAMETOOLONG filename too long

ENOTEMPTY directory not empty

SVID: Includes the additional error

ENOTBLK block device required

ETXTBSY program text file busy

A

C

C

C

8

96 SVID:

97

98

99

Volume 3 of the SVID specifies as a future direction, that in the case of a 8
path-name argument exceeding {PATH_MAX}, the error returned would c
change to follow the direction of the 1003.1 standard. Volume 3 currendy

specifies ENOENT as the error returned.

276

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix C

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

100 C.2.2 General Terms

101 8

102 1003.1: (2.4) pathname searches—As a special case, in the root directory, “dot- 8

103 dot’ ’ may refer back to root directory itself. 8

104 SVID: directory—The root directory, which is the top-most node of the hierarchy, 8
105 has itself as its parent directory. 8

106

107
108

109
110
111

112
113
114

115
116

117

C.2.3 Data Types c

1003.1: The defined type time_t is time measured in seconds and clock_t is time 8
measured in {CLK_TCK}ths of a second. (2.6)

SVID: The defined type time_t is time measured in either {CLK_TCK}ths of a
second (times()) or in seconds (snzr()). The type c!ock_t is not defined in 8
SVID. a

1003.1: The defined type uid_t is used to represent user and group IDs. As a result, c
differences in synopses exist in the following functions: getuid{), geteuidQ,
getgid(), getegid(), setuidQ, setgid(), <sys/stat.h>, and chown().

1003.1: The defined type mode_t is used to represent file modes. As a result, . c
differences in synopses exist in the following functions: creatQ, umask(),
mkdir{), open(), <sys/stat.h>, and chmod. b

118 C.2.4 Environment Variables

119 1003.1: (2.7) Defines additional variables that may be defined: PS1, PS2, IFS, MAIL, c
120 SHELL, LOGNAME, LC_CTYPE, LC_COLLATE, LC_TIME, LC_TIME, and c

121 LC NUMERIC.

122

123
124

125

126

127

C.2.5 fork()

1003.1: (3.1.1.2) Lists attributes not inherited by the child process and specifies that 8
all other attributes defined by the standard shall be inherited. 8
Implementations may add characteristics that are or are not inherited. 8

SVID: Lists attributes that must be inherited as well as those not inherited by the

child process. a

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

C.2 Specific Differences 277

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

128

129

130

131
132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

C.2.6 exec()

SVID: When a C program is executed, it is called as follows

main (argcy argv, envp)

int argc;
char **argv, **envp;

In 1003.1, (3.1.2.2) the third argument, is not specified.

SVID: The effective user ID and group ID of the new process are saved for use by
setuid(). In 1003.1, (3.1.2.2) this is optional.

SVID: Specifies that the new process additionally inherits the terminal group id and
file-size limit of the calling process.

C.2.7 wait()

1003.1: (3.2.1.2) If the child process terminated due to a signal that was not caught,

the low order 6 bits of status will contain the signal number.

SVID: If the child process terminated due to a signal that was not caught, the low

order 7 bits of status will contain the signal number.

1003.1: Additionally allows waitf) to return due to an implementation-defined

change in the status of a child process.

147

148

149

150

151
152

153
154

C.2.8 _exit()

1003.1: (3.2.2.2) If the calling process is the process group leader, SIGHUP may be

sent to each process with a process group ID equal to the calling process.

SVID: If the calling process is a process group leader and is associated with a

controlling terminal, SIGHUP is sent to each process with a process group ID

equal to that of the calling process.

1003.1: If a child process is stopped under job control, it will be sent both SIGHUP

and SIGCONT.

278

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix C

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

155 C.2.9 <signal.h>

156 1003.1: (3.3.1.2) The additional signal SIGSEGV is defined. b

157 SVID: The signal SIGSEGV is not on the list of signals that applications should b
158 know about and the SVID warns that its meaning is implementation- b

159 dependent b

160 SVID: The additional signal SIGSYS, bad argument to system call, is defined. This b

161 signal is not in 1003.1. b

162 SVID: The signal SIGABRT defined in 1003.1 is indicated in SVID Volume 3. 8

163 1003.1 The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT are 8
164 optional based on the presence of the Job Control Option. 8

165 C.2.10 kill()
166 8

167 SVID: Specifies that an error is returned if the arguments sig is SIGKILL and pid is

168 a special system process. 8

169 1003.1 (3.3.2.2) Specifies that if the signal is being sent to all processes, the sender 8

170 may be excluded. 1003.1 also specifies that if both {_POSIX_KILL_SAVED} c
171 and {_POSIX_SAVED_IDS} are defined, the saved set-user-ID of the c
172 receiving process shall be checked in place of its effective user ID. c

173 C.2.11 signalQ

174 1003.1:

175
176

177 SVID:

178
179

(3.3.8.2) A call to signal() shall cancel a pending signal if the June c
parameter is SIG_IGN, and may cancel pending signals, except for a pending

SIGKILL signal.

A call to signalQ cancels a pending signal of type sig except for a pending

SIGKILL signal. (Note that only a pending signal of the same type for which
signal was just called is affected.)

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

C.2 Specific Differences 279

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

180 C.2.12 times()

181 1003.1: (4.5.2.2) Specifies the members of the tms structure as type clock_t.

182 SVID: Specifies the members of the tms structure as type time_t.

183 C.2.13 open()

184

185
186

187

188

189

190

191

192

193

194

195

1003.1:

SVID:

1003.1:

SVID:

SVID:

(5.3.1.2) When a file is created with the 0_CREAT flag, 1003.1 specifies that c

the file’s group ID shall be set to either the process’s effective group ID or to
the group ID of the directory in which the file is being created.

Specifies that when a file is created with the 0_CREAT flag, the file’s group

ID is set to the process’s effective group ID.

Specifies the flag 0_NONBLOCK.

Specifies the flag O^NDELAY.

Specifies two additional error conditions.

ENXIO The named file is a character special or block special file and
the device associated with the special file does not exist

ETXTBSY The file is a pure procedure (shared text) file that is being
executed and ofiag is write or read/write.

196

197

198

199

200

201
202

203
204

C.2.14 unlink()

SVID: Specifies the additional error condition

ETXTBSY The entry to be unlinked is the last link to a pure procedure

file that is being executed.

C.2.15 rmdir() b

1003.1: (5.5.2.1) Specifies that an implementation can return either EEXIST or b

ENOTEMPTY if the directory being removed contains files. b

SVID: Specifies that an implementation shall return EEXIST if the directory being b

removed contains files. b

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

280 Appendix C

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

205 C.2.16 <sys/stat.h>

206 1003.1: Recommends the S_ISUID and the S_ISGID bits be cleared on every write.

207

208

209

210

211

212
213

214

215

216

217

218
219

C.2.17 access()

1003.1: Specifies the optional error condition

EINVAL Invalid value for amode.

SVID: Specifies the additional error condition

ETXTBSY Write access requested for a pure procedure file that is being
executed.

C.2.18 chown()

1003.1: (5.6.5.4) Specifies the optional error condition

EINVAL The owner or group ID supplied is outside the range of 0 to
{UID_MAX}, inclusive.

220 C.2.19 utimeO

221 1003.1: (5.6.6.2) Specifies the inclusion of <utime.h> which defines the utimbuf

222 structure.

223 SVID: The utimbuf structure must be defined by the user.

224 C.2.20 close()

225 1003.1: (6.3.1.1) Specifies the additional error condition

226 EINTR The close function was terminated prematurely by a signal.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

C.2 Specific Differences 281

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

227 C.2.21 read()

228

229

230

231

1003.1: (6.4.1.4) Specifies that an error will be returned and errno set to EAGAIN if

no-delay (0_NONBLOCK) mode is in effect and the process would be

delayed in reading.

232

233

SVID: SVID Volume 3 specifies read will return 0 in the no-delay (0_NDELAY)

case. The change to return EAGAIN is listed as a future direction.

234 -

235 SVID: Specifies the additional error's

236 EIO A physical I/O error has occurred

237

238
239

ENXIO The device associated with the file descriptor is a block-

special or character-special file and the value of the file
pointer is out of range.

9

C

C

9

240 C.2.22 write()

241 c

242 1003.1: (6.4.2.4) Specifies the additional error condition:

243 EAGAIN 0_NONBLOCK is set and the process would be delayed in the

244 write() operation c

245 SVID:

246

247

248

249

250 SVID:

251

Specifies the additional errors

EIO A physical I/O error has occurred

ENXIO The device associated with the file descriptor is a block-
special or character-special file and the value of the file

pointer is out of range.

Specifies that in the 0_NDELAY case, if the write request doesn’t transfer 8

data, 0 is returned. 8

UNAPPROVED DRAFT. All Rights Resented by IEEE.

Do not specify or claim conformance to this document

282 Appendix C

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

252 C.2.23 <fcntl.h>

253 1003.1: (6.5.1.2) Specifies the symbolic name of the no-delay flag to be

254 ONONBLOCK.

255 SVID: Specifies the symbolic name of the no-delay flag to be O NDELAY.

256 C.2.24 fcntl()

257 1003.1: (6.5.2). Specifies the additional error condition c

258 EINTR Thcfcntl function was terminated prematurely by a signal.

259 C.2.25 Iseek()

260 1003.1: (6.5.3.1) Specifies the function and its argument offset to be of type off_t.

261 SVID: Specifies the function and its argument offset to be of type long. c

262 1003.1: Specifies the additional error condition

263 EINVAL The resulting file pointer would be illegal.

264 b

265 C.2.26 Terminal I/O c

266 1003.1: Specifies the terminal control structure termios. c

267 SVID: Specifies the terminal control structure termio. c

268 1003.1: The Job Control Option is described. This includes changing the process c
269 group associated with the terminal, generating signals, SIGlT'iN and c

270 SIGTTOU, for reads and writes from processes outside of the distinguished c
271 process group, generating a signal, SIGTSTP, upon receipt of a special c

272 character, SUSP, and a control flag, TOSTOP. c

273 SVID: Volume 3 does not include the Job Control Option. c

274 a

275 c

276 1003.1: (7.1.2.2) Specifies the types of the mode elements as unsigned long.

277 SVID: Specifies the types as unsigned short. Specifies a line discipline element

278 c_line.

279 9

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

C.2 Specific Differences 283

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

280 SVID:

281

282 SVID:

283
284

285

286 1003.1:

287

288

289

290 SVID:

Specifies input mode flag IUCLC. g

9

Specifies output mode flags OLCUC, ONLCR, OCRNL, ONOCR, 8

ONLRET, OFILL, NLDLY, CRDLY, TABDLY, BSDLY, VTDLY, and g

FFDLY. Specifies delay values: NL0, NL1, CRO, CR1, CR2, CR3, TABO, g

TAB1, TAB2, TAB3, BSO, BS1, VTO, VT1, FFO, andFFl. g

(7.1.2.5) Specifies the macros cf_getospeed(), cf_setospeed{), 9

cfjgetispeedQ, and cf_setispeed() that get and set the input and output 9

terminal speeds in a termios structure. c

9

Specifies the local mode flag XCASE. c

291 1003.1:

292 SVID:

293 1003.1:
294

295

296 SVID:

297

(7.1.4) Specifies functions tcgetattr() and tcsetattr().

Specifies commands and structures for use with ioctlQ.

(7.1.5) Specifies functions tcsendbreak(), tcdrain{), tcflush(), and tcflow(). c

The send-break function has the option of sending zero-valued bits for a

specified value. The flow function has control over input

Specifies commands and structures for use with ioctl{).

B

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

284 Appendix C

D. Alternative Archive/Data Interchange Format c

1 It has been proposed that the following section on the “Extended tar Format” be added c

2 to Chapter 10 as either an alternative to, or a replacement of, the “cpio Archive c
3 Format” Consult the cover letter for the ballot associated with this draft for an c
4 explanation of how to make your preferences known. Unless an explicit action is taken c
5 by the Balloting Group, this section will not appear in the approved Full Use Standard. c

6 D.l Extended tar Format

7 An extended tar archive tape or file contains a series of blocks. Each block is a fixed c
8 size block of TBLOCK bytes (see below). Although this format may be thought of as
9 being stored on 9-track industry standard 1/2-inch magnetic tape, other types of

10 transportable medium are not excluded. Each file archived is represented by a header
11 block that describes the file, followed by zero or more blocks that give the contents of the
12 file. At the end of the archive file are two blocks filled with binary zeros, interpreted as c
13 an end-of-archive indicator. c

14 The blocks may be grouped for physical I/O operations. Each group of n blocks (where n

15 is set by the application utility creating the archive file) may be written with a single
16 write() operation. On magnetic tape, the result of this write is a single tape record. The
17 last group of blocks is always at the full size, so blocks after the two zero blocks contain

18 undefined data.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

D.l Extended tar Format 285

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

19 The header block is structured as follows. All lengths and offsets are in decimal.

Field Byte Length c
Name Offset (in bytes) 0

name 0 100 c
mode 100 8 c
uid 108 8 c
gid 116 8 c
size 124 12 c
mtime 136 12 c
chksum 148 8 c
typeflag 156 1 c
linkname 157 100 c
magic 257 6 c
version 263 2 c
uname 265 32 c
gnome 297 32 c
devmajor 329 8 c
devminor 337 8 c
prefix 345 155 c

39 Symbolic constants used in the header block are defined in the header <tar.h> as C

40 follows: c

41 #define TMAGIC " ustar" /* ustar and a null */ c
42 #define TMAGLEN 6 c
43 #define TVERSION "00" /* 00 and no null */ c
44 #define TVERSLEN 2 c

45 /* Values used in typeflag field */ c
46 #define REGTYPE 'O' /* Regular file */ c
47 #define AREGTYPE '\0' /* Regular file */ c
48 #define LNKTYPE '1' /* Link */ c
49 #define SYMTYPE '2' /* Reserved */ c
50 #define CHRTYPE 'S' /* Char, special */ c
51 #de£ine BLKTYPE '4' /* Block special */ c
52 #define DIRTYPE '5' /* Directory */ c
53 #define FIFOTYPE '6' /*

0 FIFO special -/' c
54 #define CONTTYPE '7' /* Reserved */ c

55 /* Bits used in the mode field - values in octal */ c
56 #define TSUID 04000 /* Set UID on execution */ c
57 #define TSGID 02000 /* Set GID on execution */ c
58 #define TSVTX 01000 /* Reserved */ c
59 • /* File permissions */ c
60 #define THREAD 00400 /* read by owner */ c

61 #define TUWRITE 00200 /* write by owner */ c
62 #define TUEXEC 00100 /* execute/search by owner */ c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

286 Appendix D

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

63 #define TGREAD 00040 /* read by group */ C

64 #define TGWRITE 00020 /* write by group */ C

65 #define TGEXEC 00010 /* execute/search by group */ C

66 #define TOREAD 00004 /* read by other */ C

67 #define TOWRITE 00002 /* write by other */ C

68 #define TOEXEC 00001 /* execute/search by other */ C

69 All characters are represented in the American Standard Code for Information

70 Interchange, ASCII. For maximum portability between implementations, names should
71 be picked from characters represented by the portable filename character set §2.3 as

72 8-bit characters with zero parity. If an extended character set beyond the portable
73 character set is used, and the format-reading and format-creating utilities on the two c
74 distinct systems use the same extended character set, the file name shall be preserved, c
75 However, the format-reading utility shall never create file names on the local system that
76 cannot be accessed via the functions calls described previously in this standard; see c
77 open{) §5.3.1, statQ §5.6.2, chdir() §5.2.1, fcntl() §6.5.2, and opendir() §5.1.2. If a file c
78 name is found on the medium that would create an invalid file name, the implementation b
79 shall define if the data from the file in stored on the local file system and under what

80 name it is stored. A format-reading utility may choose to ignore these files as long as it c
81 produces an error stating that the file is being ignored. c

82 Each field within the header block is contiguous; that is, there is no padding used. Each c
83 character on the archive medium is stored contiguously.

84 The fields magic, uname, and gname are null-terminated character strings. The fields
85 name, linkname, and prefix are null-terminated character strings except when all
86 characters in the array contain non-null characters including the last character. All other

87 fields are leading zero-filled octal numbers in ASCII. Each numeric field (of width w)
88 contains w-2 digits, a space, and a null, except size, mtime, and version, that do not
89 contain the trailing null.

90 The name and the prefix fields produce the pathname of the file. The hierarchical
91 relationship of the file is retained by specifying the pathname as a path prefix, a slash b

92 character and filename as the suffix. If the prefix contains non-null characters, it is
93 concatenated in front of the name without modification or addition of new characters to
94 produce a new pathname. In this manner, pathnames of NAMSIZ plus PFXSIZ characters

95 can be supported. If a pathname does not fit in the space provided, the format-creating c
96 utility shall notify the user of the error, and no attempt shall be made by the format- c

97 creating utility to store any part of the file, header or data, on the medium. c

98 The linkname field, described below, does not use the prefix to produce a pathname. As

99 such, a linkname is limited to NAMSIZ minus one characters. If the name does not fit in c
100 the space provided, the format-creating utility shall notify the user of the error, and the c

101 utility shall not attempt to store the link on the medium. c

102 The mode field provides 9 bits specifying file permissions and 3 bits to specify the Set

103 UID, Set GID, and TSVTX modes. Values for these bits are defined above. When special c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

D.l Extended tar Format 287

PORTABLE OPERATING SYSTEM INTERFACE Std 1003.1—Draft 12

104

105
106
107

108

109

110
111

112
113
114

115
i 16
117

118
119

120
121
122

123

124

125

126

127

128

129

130

131
132

133

134

135

136

137

138

139

140

141

permissions are required to create a file with a given mode, and the user restoring files

from the archive does not hold such permissions, the mode bit(s) requiring those special

permissions are ignored. Modes not supported by the implementation restoring the files
from the archive are ignored.

The uid and gid fields are the user and group ID of the file’s owner and group, c

respectively. c

The size field is the size of the file in bytes. If the type flag field is set to specify a file to
be of type LNKTYPE, the size field shall be specified as a zero (0).

The mtime field is the modification time of the file at the time it was archived. It is the
ASCII representation of the octal value of the modification time obtained from the stat()

function.

The chksum field is the ASCII representation of the octal value of the simple sum of all
bytes in the header block. Each 8-bit byte in the header is treated as an unsigned value.
These values are added to an unsigned integer, initialized to zero, the precision of which

shall be no less than 17 bits. When calculating the checksum, the chksum field is treated

as if it were all blanks.

The typeflag field specifies the type of file archived. If a particular implementation does

not recognize or permit the specified type, the file shall be extracted as if it were a regular

file. As this action occurs, the format-reading utility shall issue a warning to the standard c

error output c

ASCII digit '0' represents a regular file.

For backward compatibility, a typeflag value of binary zero (YOO

should be recognized as meaning a regular file when extracting

files from the archive. Archives written with this version of the

archive file format shall create regular files with a typeflag value

of ASCII'O'.

ASCII digit '1' represents a file linked to another file, of any type, previously

archived. Such files are identified by each file having the same

device and file serial number. The linked-to name is specified in
the linkname field with a trailing null.

ASCII digit '2' is reserved.

ASCII digits '3' and '4' represent character special files and block special files

respectively.

In this case the devmajor and devminor fields shall contain an c

encoding of the information found in the st_rdev field of the stat c

structure for the device file. Operating systems may map the
device specifications to their own local specification, or may

ignore the entry.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

288 Appendix D

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

142

143
144
145
146
147

148
149

150

151
152

153

154

155
156
157
158

159

160

ASCII digit '5' specifies a directory or sub-directory. On systems where disk
allocation is performed on a directory basis the size field shall
contain the maximum number of bytes (which may be rounded to
the nearest disk block allocation unit) that the directory may hold.

A size field of zero indicates no such limiting. Systems that do
not support limiting in this manner should ignore the size field.

ASCII digit '6' specifies a FIFO special file. Note that the archiving of a FIFO file
archives the existence of this file and not its contents.

ASCII digit '7' is reserved.

ASCII letters 'a' through 'z' are reserved for custom implementations. All other
values are reserved for specification in future revisions of the

standard.

The magic field is the specification that this archive was output in this archive format. If
this field contains TMAGIC, then the uname and gname fields shall contain the ASCII
representation of the owner and group of the file respectively. When the file is restored
by a privileged, protection-preserving version of the utility, the password and group files
shall be scanned for these names. If found, the user and group IDs contained within these

files shall be used rather than the values contained within the uid and gid fields.

The encoding of the header is designed to be portable across machines.

161 D.1.1 References
162 <grp.h> §9.2.1, <pwd.h> §9.2.2, <sys/stat.h> §5.6.1, stat() §5.6.2, <unistd.h> §2.10.

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

D.l Extended tar Format 289

.

■

E. Alternative wait0 Functions c

1 It has been proposed that the following section replace Wait for Process Termination c
2 §3.2.1. Consult the cover letter for the ballot associated with this draft for an explanation c
3 of how to make your preferences known. Unless an explicit action is taken by the c
4 Balloting Group, this section will not appear in the approved Full Use Standard. c

5 E.l Process Termination c

6 ... c

7 E.1.1 Wait for Process Termination
8 Functions: wait(), waitpid() g

9 E.l.1.1 Synopsis

10 int wait(stat_loc)
11 int * statjoc;

12 c
13 int waitpid {statjoc, pid, options) c

14 int *stat_loc; c
15 int pid; c
16 int options; c

17 E.l.1.2 Description
18 The header <sys/\vait.h> defines the following arguments for the waitpid{) function: c

Constant _Description (waitpidQ only)_ g

WNOHANG return immediately if no children to wait for c
WUNTRACED also return status for stopped children c

if the implementation supports the c

Job Control Option c

22 c

23 If statjoc is not (int *) 0, information called status shall be stored in the location pointed

24 to by statjoc as follows:

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

E.l Process Termination 291

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

25

26

27

28

29

30

31
32

33
34

35
36

37
38

39

40
41

42

43
44

45
46

47
48

49

50

51

52

53
54

55

If the child process terminated due to an _exit{) function, the low order 8 bits of

status (corresponding to the octal value 0377) shall be zero, and the 8 bits

corresponding to the octal value 0177400 shall contain the low order 8 bits of the
argument that the child process passed to _exit{) (see _exit() §3.2.2).

If the child process terminated due to a signal that was not caught, the low order 6

bits of status (corresponding to the octal value 077) shall contain the number of

the signal that caused the termination, and the 8 bits corresponding to the octal

value 0177400 shall be zero. In addition, if the bit that would be masked by the

octal value 0200 is set, an abnormal termination with actions occurred (see
sigaction() §3.3.4).

If the wait() function returned due to an implementation defined condition, the bit
of status corresponding to the octal value 0100 shall be set The value of the

other bits of status are implementation defined and the child may not have
terminated. If the child has terminated, a subsequent wait() function shall return

its status.

If a parent process terminates without waiting for its child processes to terminate, its

children shall be assigned a new parent process ID corresponding to an implementation

defined system process. The waitQ function shall only return successfully on the

termination of a child process or due to an implementation defined change in status of a

child process.

If the waitpid() variant is used, then the arguments pid and options are used to modify

the behavior of the function.

If the pid argument specifies the child process for which status information is to be

obtained, the process determined by pid is determined as follows:

> 0 The pid specifies the process ID of a child process.

0 The pid specifies any single child process whose process group ID is equal

to that of the calling process.

-1 The pid specifies any single child process.

< -1 The pid specifies any single child process whose process group ID is equal

to the absolute value of pid. The absolute value of pid shall not exceed

{PID_MAX}.

56 The options argument contains two options that may be combined by forming their

57 bitwise inclusive OR.

58 If the options bit indicated by WNOHANG is set, then waitpidQ will not suspend the

59 calling process if the process specified by pid has not terminated. If the implementation

60 supports the Job Control Option, then the calling process specified by pid has not been

61 stopped. In either case, a value of zero is returned by waitpidQ.

292

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix E

FOR COMPUTER ENVIRONMENTS Std 1003.1— Draft 12

62 If the options bit indicated by WUNTRACED is set and if the implementation supports the c
63 Job Control Option, then waitpidi) shall also return in statjoc the wait status c
64 information when the process specified by pid is stopped due to a SIGTIN, SIGTOU, c
65 SIGTSTP, or SIGSTOP signal. In this case, the wait status information can also be c

66 interpreted in the following way: c

67 If the child process stopped, the 8 bits of status (corresponding to the octal value 8
68 0177400) shall contain the number of the signal that caused the process to stop 8

69 and the low order 8 bits corresponding to the octal value 0377 shall be set equal 8

70 to the octal value 0177. 8

71 If the implementation does not support the Job Control Option, then the WUNTRACED c

72 flag is ignored. c

73 E.l.1.3 Returns
74 If the wait{) function returns due to the receipt of a signal by the calling process, a value
75 of -1 shall be returned to the calling process and err no shall be set to [EINTR]. If the

76 wait() function returns due to a terminated child process, the process ID of the child shall
77 be returned to the calling process. Otherwise, a value of -1 shall be returned, and errno

78 shall be set to indicate the error.

79 If the waitpid() function returns due to the termination of a process specified by pid, the c
80 process ID of the terminated child shall be returned to the calling process. c

81 If the implementation supports the Job Control Option and the waitpid{) function is c
82 called with the WUNTRACED option, and the waitpid() function returns due to a process c

83 specified by pid having been stopped, the process ID of the stopped child shall be c

84 returned to the calling process. c

85 If waitpid() is called and the WNOHANG option is used, then a value of zero shall be c

86 returned for one of two reasons: c

87 1. The implemention supports the Job Control Option and the WUNTRACED option c
88 was used and the process specified by pid has not been stopped. c

89 2. The process specified by pid has not been terminated. c

90 Otherwise, the waitpid() function shall return a value of -1 and errno shall be set to c

91 indicate the error. c

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document.

E.l Process Termination 293

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

92 E.l.1.4 Errors
93 If any of the following conditions occur, the wait() and waitpid() functions shall return c
94 -1 and set errno to the corresponding value: c

95 [ECHILD] The calling process has no existing unwaited-for child processes.

96 [EINTR] The wait{) function was terminated by a signal. The value pointed
97 to by statjoc may be undefined.

98 If any of the following conditions occur, the waitpid() function shall return -1 and set c

99 errno to the corresponding value: c

100 [ECHILD] The process specified by pid is not a child process or does not c

101 exist c

102 [EINTR] The waitpidQ function was terminated by a signal. The value c
103 pointed to by the statjoc may be undefined. c

104 [EINVAL] The waitpid() was called with an invalid options value. c

105 b

106 E.l.1.5 References
107 exec §3.1.2, _exit{) §3.2.2, fork{) §3.1.1,pause() §3.4.2, times() §4.5.2, sigaction() g

108 §3.3.4.

294

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

Appendix E

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

Identifier Index

access() File Accessibility {5.6.3}. 110
alarm 0 Process Alarm Clock {3.4.1}. 70
asctimeQ Extensions to asctimeQ Function {8.1.1}.,. 156
chdirQ Change Current Working Directory {5.2.1}. 90

chmodQ Change File Modes {5.6.4}... 111

chownQ Change Owner and Group of a File {5.6.5} . 112

closeQ Close a File {6.3.1}. 121
closedirQ Directory Operations {5.1.2} .. 88

cpio cpio Archive Format {10.1.1}. 169

creatQ Create a New File or Rewrite an Existing One {5.3.2}. 95
ctermidQ Generate Terminal Pathname {4.7.1}. 84
cuseridQ Get User Name {4.2.4}...:... 76
directory Directory Operations {5.1.2} . 88
<dirent.h> Format of Directory Entries {5.1.1} . 87
dupQ Duplicate an Open File Descriptor {6.2.1}. 120
dup2Q Duplicate an Open File Descriptor {6.2.1}. 120
endgrentQ Group Database Access {9.2.1}. 166
endpwent() User Database Access {9.2.2} . 167
environ Execute a File {3.1.2}. 49

errno Error Numbers {2.5}. 32
<errno.h> Error Numbers {2.5}. 32
exec Execute a File {3.1.2}. 49

execlQ Execute a File {3.1.2}. 49
execleQ Execute a File {3.1.2}. 49
execlpQ Execute a File {3.1.2} . 49
execvQ Execute a File {3.1.2}. 49
execve() Execute a File {3.1.2}. 49
execvpQ Execute a File {3.1.2}. 49
_exitQ Terminate a Process {3.2.2} . 55
fcntlQ File Control {6.5.2} . 128
<fcntl,h> Data Definitions for File Control Operations {6.5.1} .. 127
fdopenQ Open a Stream on a File Descriptor {8.2.2} . 161
filenoQ Map a Stream Pointer to a File Descriptor {8.2.1}. 160

forkQ Process Creation {3.1.1} .. 47
fpathconfQ Get Configurable Pathname Variables {5.7.1}. 116

fstat0 Get File Status {5.6.2} . 108

getcwdQ Working Directory Pathname {5.2.2} . 91
getegidQ Get Real User, Effective User, Real Group, and Effective Group

IDs {4.2.1}..... 73

getenvQ Environment Access {4.6.1}. 83
geteuidQ Get Real User, Effective User, Real Group, and Effective Group

IDs {4.2.1}. 73

Index 295

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

getgid 0

getgrent ()
getgrgidQ

getgrnamO
getgroupsQ

getlogin 0

getpgrpQ

getpidO
getppidQ

getpwentQ

getpwnam ()

getpwuidQ

getuid ()

<grp.h>

isattyO

jcsetpgrpO
kill 0
<limits.h>

linkO
longjmp ()

IseekQ
main Q

mkdirQ

mkfifoQ

openQ
opendirQ

pathconfQ

paused)

pipe 0
<pwd.h>

readQ
readdirQ

renamed)
rewinddirQ

rmdirQ

setgidQ
setgrent 0
setjmpQ

setlocaleQ

setpgrp ()

setpwentQ

setuidQ
sigacrionQ

Get Real User, Effective User, Real Group, and Effective Group

IDs {4.2.1}...

Group Database Access {9.2.1}...
Group Database Access {9.2.1}.

Group Database Access {9.2.1}.

Get Supplementary Group IDs {4.2.3} .

Get User Name {4.2.4}.

Get Process Group ID {4.3.1}...

Get Process and Parent Process IDs {4.1.1} .

Get Process and Parent Process IDs {4.1.1} .

User Database Access {9.2.2} .

User Database Access {9.2.2} .

User Database Access {9.2.2} .

Get Real User, Effective User, Real Group, and Effective Group
IDs {4.2.1}.

Group Database Access {9.2.1}.....

Determine Terminal Device Name {4.7.2} .

Set Process Group ID for Job Control {4.3.3} ...
Send a Signal to a Process {3.3.2}....

Numerical Limits {2.9} .
Link to a File {5.3.4} ...
Non-Local Jumps {8.3.1}

Reposition Read/Write File Offset {6.5.3}.
Execute a File {3.1.2} ..
Make a Directory {5.4.1}

Make a FIFO Special File {5.4.2} ...

Open a File {5.3.1}
Directory Operations {5.1.2} ..

Get Configurable Pathname Variables {5.7.1} ..

Suspend Process Execution {3.4.2}...........

Create an Inter-Process Channel {6.1.1} ..

User Database Access {9.2.2} ..
Read from a File {6.4.1}..

Directory Operations {5.1.2}

Rename a File {5.5.3}.

Directory Operations {5.1.2} ..
Remove a Directory {5.5.2} ...

Set User and Group IDs {4.2.2} ..

Group Database Access {9.2.1}..

Non-Local Jumps {8.3.1} .

Extensions to setlocaleQ Function {8.1.2}...

Set Process Group ID {4.3.2}.

User Database Access {9.2.2} .

Set User and Group IDs {4.2.2}.:.
Examine and Change Signal Action {3.3.4} .

73
166

166

166

75

76

78

73

73

167

167

167

73
166

85

79
62

39
96

162

133
49
97

99
92

88
116
71

119

167
122

88
103

88
102
74

166
162

158

78
167
74

65

296 Index

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

sigaddsetQ Manipulate Signal Sets {3.3.3}. 64
sigdelsetQ Manipulate Signal Sets {3.3.3}. 64
sigfillsetQ Manipulate Signal Sets {3.3.3}. 64
siginitset() Manipulate Signal Sets {3.3.3}. 64
sigismember() Manipulate Signal Sets {3.3.3}. 64
siglongjmp () Non-Local Jumps {8.3.1} . 162
signalQ Specify Signal Handling {8.3.2} . 163

<signal.h> Signal Names {3.3.1}. 57
sigpending () Examine Pending Signals {3.3.6}. 68
sigprocmaskQ Examine and Change Blocked Signals {3.3.5} . 67

sigsetjmp() Non-Local Jumps {8.3.1} . 162
sigsetops Manipulate Signal Sets {3.3.3}. 64
sigsuspendQ Wait for a Signal {3.3.7} . 69

sleep() Delay Process Execution {3.4.3}. 72
statQ Get File Status {5.6.2} . 108
<stat.h> File Characteristics: Header File and Data Structure {5.6.1}. 106
sysconfQ Get Configurable System Variables {4.8.1} . 85
<sys/stat.h> File Characteristics: Header File and Data Structure {5.6.1}. 106
<sys/types.h> Primitive System Data Types {2.6}. 37
<sys/wait.h> Wait for Process Termination {3.2.1} . 53
tar Extended tar Format {D.l}. 285
tcdrainQ Line Control Functions {7.2.2} . 151
tcflowQ Line Control Functions {7.2.2} . 151
tcflushQ Line Control Functions {7.2.2} . 151
tcgetattrQ Get and Set State {7.2.1} .. 149

tcgetpgrp() Get Distinguished Process Group ID {7.2.3}. 153
tcsendbreakQ Line Control Functions {7.2.2} . 151
tcsetattrQ Get and Set State {7.2.1} . 149
tcsetpgrpQ Set Distinguished Process Group ID {7.2.4} . 154

termios General Terminal Interface {7.1} . 135
<termios.h> Settable Parameters {7.1.2} . 142

timeQ Get System Time {4.5.1}. 81
times() Process Times {4.5.2}. 82
ttynameQ Determine Terminal Device Name {4.7.2} . 85

<types.h> Primitive System Data Types {2.6}. 37
umaskQ Set File Creation Mask {5.3.3}. 95
uname() System Name {4.4.1}. 80

<unistd.h> Symbolic Constants {2.10}. 43
unlinkQ Remove Directory Entries {5.5.1}. 100
utime0 Set File Access and Modification Times {5.6.6}. 114

<utsname.h> System Name {4.4.1}. 80
wait Wait for Process Termination {3.2.1} . 53

wait2 0 Wait for Process Termination {3.2.1} . 53

<wait.h> Wait for Process Termination {3.2.1} . 53

write() Write to a File {6.4.2}. 124

Index 297

Topical Index

/dev/console... 275

/dev/null... 275

/dev/tty ... 222, 231,275

/usr/group ...4, 7-8, 178, 181-182, 186-190,

192-194,220,230,237-238,241-

242, 247-248, 250, 268, 273

1003 ... 181,244

1003.1 ... 3-4, 7, 20-21, 27, 62, 155-156,

158, 172, 175-176, 178, 181-182,

196, 262, 273-284

10032... 176, 262

1003.4 ... 262

4.2 ... 4,155, 189-190, 219-223,225-226,

228-229, 233, 237, 244, 249-250,

255-257, 262

4.3 ... 4, 155, 188-190, 201, 203, 205, 209,

211, 218, 220-221, 223-225, 228-

230, 233, 237-238, 240, 242, 244,

247, 253, 255, 260, 262, 267, 270

8-bit characters ... 287

ability ... 155, 212-213, 228, 258,265

abnormal termination ... 52-53, 58-59, 292

abnormal termination with actions ... 52-53,

59,292

abort... 52, 58, 155,227

absolute pathname ... 31-32, 91,203,205

absolute value ... 63,292

abstract... 200

access... 22-26, 29-31, 33, 37,43, 52, 59,

61,83-84, 87, 92, 94, 103, 106,

108-111, 114-115,119,128-131,

136, 165-167, 169-170, 176,201-

205, 207, 215, 221-222, 224, 228,

231, 233, 236, 239-240, 247-249,

253, 262, 274, 281, 287

access pontrol... 22, 25, 30, 59, 136, 205,

‘221-222, 253

access mechanism... 30-31, 169, 202, 204,

233, 248-249

access modes ... 22, 26,92,111,128-129,

131,249

access permissions ... 23-26, 29-31, 37,52,

103, 110-111, 169-170,202, 204,

239

access time ... 31,106,114-115, 240, 249

acknowledge... 202, 210

acos... 155

actime... 114, 240

action ... 29, 31,44-45, 50, 52-53, 58-61,

65-67, 69, 71,103,136, 151-152,

163, 198, 200, 208, 218, 221-225,

238, 244, 247, 263-264, 267, 285,

288,291-292

activity ... 59, 72, 77, 119, 139,244

Ada... 5,178

address ... 4-5, 21-22, 27-28, 34-35, 61,77,

84, 176, 178-179, 188, 192, 200-

201,203,208,211, 216, 218,221-

222, 224, 235, 241, 255, 262, 276

address space ... 21-22, 27-28, 235

advantage ... 44, 232, 235, 240, 252

advisory locks ... 248-249

affected process... 29, 50,218,222,229,

248

alarm ... 48, 51-52, 58, 61, 70-72, 226-227,

249

alarm clock... 51, 70-71, 226

alarm requests... 70-72

allowed extensions... 200, 202, 213, 242

American National Standard ... 190

amode ...110-111,281

ANSI ... 21, 34, 36, 39^0, 52, 56, 58, 62,

108, 155-156,158, 160-163, 175-

176,178-179, 184, 186, 188,190-

191, 196, 210, 239, 256-257,259,

261,266,268,274

append ...125,128,218,260

appendices ... 3, 175, 194-195

appendix ... 3, 175, 181, 189, 194-196, 202,

215, 218, 233, 262, 267, 273-274

application ... 3, 17-23, 25, 38, 41,43-45,

56, 58, 60-61, 64, 86, 92, 101, 116-

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

299

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

117,139,143,155,165,176-177,
179,181-185, 192-193,196-201,
204-209, 211-218,220-226, 228,
230-237, 240-252,258,260-261,
267, 271,279,285

Application Conformance ... 21,198, 217

application developer... 17-18,155,185,
197,205-206,215,226,232,252,

258
application implementor... 3, 226, 230, 252
application portability ... 3,17, 38,44, 155,

■ 182-183,206,209,221-222
application programs ... 18-19, 38,56, 155,

176-177,181,183,198-199,206,
215, 233, 236, 252, 261,271

application requirements ... 19, 21, 197-198,
232

application writer... 155,193,211, 213,226,
232, 236, 241, 243-247,250-251,

285
applications requiring ... 19-21,176, 193,

197, 200, 206, 208-209, 211-213,
216-217, 224-225,232,237,242,

244, 246, 249
appropriate ... 5,19, 22,27, 30-31, 35-36,

45,52, 59, 62, 74-75,97,101,110-
115,117,188, 193, 195,200,204,
209, 223-224, 226, 228, 235,239-
241,247-248,252-253,263

appropriate privileges ... 22, 27,30,36,74-
75,97,101,110-114,117,200,204

appropriate signals ... 59,223-224,253
appropriate value ... 117, 241
arbitrary amount due ... 72
arbitrary point... 83
archive ... 169-172, 190, 263-265, 267,285,

287-289
archive format... 169,172,190,263-264,

267, 285, 288
archive tape ... 263, 285
archivc/intcrchange format... 169, 262 ‘

archiving files ... 169-172,263-264, 267,
285, 288-289

AREGTYPE... 286

arg list... 33
argO ...49-50,195,217
arge ...49,217,278

argn... 49-50
argument... 21, 33-34, 49-51,53-54,61,

64-69, 75-76, 79-81, 86, 89-96, 98-
104, 108-116, 121-122,124,126,
129-130, 132-134, 145,147, 150.
152-154,158, 161-162, 169,177,

193-194, 217-219,226,235-236,
239, 243, 249-252, 258, 276, 278-

279,283,292
argument count... 49

argument list... 33,50-51, 86,108,116,217,
226

argv ...49-50,217,278

ARG_MAX ... 33, 39, 42,50-51, 86, 217
array ... 37,39,49-50, 76-77, 80, 84, 87,91,

138, 142, 148, 198, 222, 229,231,
234, 259, 287

amay size ... 87,198,234,287
ASCII... 141, 156,204,261, 287-289
asetime ... 38, 156,256
as in... 155
assert .„ 155

associated process group ... 23-26,76,135-
136, 140-141,153-154,229,255,
278.283.291

associates ... 17,22-26, 28, 30-32, 37,50,

60, 66, 76-77,85,111,116, 121-
122,124-125,129,131,133-137,
140-141,147,149-150, 152-154,

160-161,163,187,191,198-200,
210-211,217,229,231-232,235,

248, 255, 260,262, 278,280,282-
283.285.291

associating process group ... 23-26,76,135-
136, 140-141,153-154, 229,255,
278, 283,291

assumptions .„ 245
asynchronous serial connection ... 146
asynchronous terminal... 146,250
AT&T ...4, 182, 184, 188,201,203, 237,

241-242,251,270
atan2... 155
atexit... 193,219
atof... 155
atoi... 155,199-200
atol... 155
atomic ... 43,216, 238, 244-246,248
atomicity... 245

attempt... 4, 33-36,59, 61, 67,119, 122-
126, 131,136,146,149, 182-184,
195, 204, 211, 213-214, 222,224,

238, 242, 244, 250, 252-253,265,
2S7

automatic ~ 233
availability... 21
available values ...42, 50,119,122,129,

232,245
avoid ... 143, 184, 200, 210, 223-224,226-

227, 231, 236, 242-243,249,252,
260-261,263

avoided conflict... 223, 249, 260
background ... 22, 59, 136, 147, 149, 153,

194,219,253

300

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

background process ... 22, 136, 149, 153,
219.253

backward compatibility ... 242, 264, 267,
288

Balloting Group ... 7-8, 186, 194, 262, 285,
291

base document ...4, 183, 188-189, 191-192,
202, 205

Basic... 178
basic terminal input control... 142
baud ... 145-146
beginners... 271
beginning ... 27-28, 30, 32,70, 89-90,92,

131, 133, 138, 140, 166-168, 195,
226.254

behavior ... 19-22, 54, 61-62, 91, 93, 137-
138, 157, 159, 163, 191, 193, 207,
216-219, 223, 226-228, 237-238,
247, 257-258, 260, 263-264, 266,

273, 292
believe... 186
Berkeley ... 188-189, 237, 240-241,250,

270-271

Bibliographic Notes ... 188, 200, 256,268
binary... 18, 156, 184, 192, 214, 225, 232,

240, 260, 264, 285, 288
binary compatibility ... 184, 225, 264, 288
binary zero ... 285, 288
binding ... 3, 17, 21, 155, 191,199, 256
bits ... 24-25, 30-31,50, 53-55, 62,66,93,

95,98-99, 107-108, 111-113, 129,
143-144, 146, 151, 209, 212, 218,
220, 230-231, 238, 240, 243, 249,
263, 278,281,284,287-288,
292-293

BLKTYPE ...286
block ... 22, 24, 60, 63-64, 66-69, 93, 106-

107, 123, 125, 127, 130-131, 135-
139, 148-149, 169, 171-172, 223-
224, 226-227, 241-242, 245-246,
248, 253, 276, 280, 285-289

block special... 22, 24, 93, 106-107, 171-
172, 280, 286, 288

block special file ... 22, 24, 93, 107, 171,
280, 286, 288

blocked ... 22, 24, 60, 63-64,66-69,93,
106-107, 123, 125, 127, 130-131,
135-139, 148-149,169, 171-172,
223-224, 226-227, 241-242, 245-
246, 248, 253, 276, 280, 285-289

blocked'signal... 60, 63-64, 66-69, 136,
148-149, 223-224, 226-227, 253

blocking ... 22, 24, 60, 63-64, 66-69, 93,
106-107, 123, 125, 127, 130-131,
135-139, 148-149,169,171-172,

223-224, 226-227, 241-242, 245-
246, 248, 253, 276, 280, 285-289

blocks ... 22,24, 60, 63-64, 66-69, 93, 106-
107, 123, 125, 127, 130-131, 135-
139, 148-149, 169, 171-172, 223-
224, 226-227, 241-242, 245-246,
248, 253, 276, 280, 285-289

Bourne... 210
break ... 142-143,151,198, 212,214, 257
brk... 193
BRKINT... 142
broadly implementable ... 184, 191, 205
BSD ... 4, 188-190, 201, 203, 205, 209,211,

218-226, 228-230, 233, 237-238,
240- 242, 244, 247, 249-250, 253,
255-257, 260,262, 267, 270

bsearch... 155, 192
buf. .. 91,108-109, 122-124, 235, 245
buffer... 82, 122-124, 140, 198, 219, 235,

240
bug. .. 233
bus... 178
business... 232
byte ... 24, 27-28, 32-33, 39, 41-43, 50-51,

91, 122-126,130-131,133,137-
139, 141, 143, 156, 158, 170-171,
173, 206, 212, 229-231, 240-241,
243-244, 246, 248, 257, 264-265,
285-286, 288-289

byte-oriented ... 169-170
call... 22, 25, 27-29, 32^34, 37, 44-45, 47-

51, 53-56, 61-64, 66-74, 76-79, 82,
84, 86, 88-89,95,97, 101, 111-113,
115, 120, 129, 131, 136, 138, 140,
146, 149, 153-154, 162-163, 166,
168, 177, 183, 194, 199-200, 203-
204, 207-208, 211, 216-220, 222-
224, 226-229, 234, 238-239, 241-
244, 247-248, 250, 252-253, 255,
258-260, 278-279, 287, 291-294

callable function ... 62, 200
caller ... 56, 72, 229, 255
calling ... 22, 25, 27-29, 32-34,37,44^5,

47-51, 53-56, 61-64,66-74, 76-79,
82, 84, 86, 88-89, 95, 97, 101,111-
113, 115, 120, 129, 131, 136, 138,
140, 146, 149, 153-154, 162-163,
166, 168, 177, 183, 194, 199-200,
203-204, 207-208, 211, 216-220,
222-224, 226-229, 234, 238-239,
241- 244, 247-248, 250, 252-253,
255, 258-260, 278-279, 287,
291-294

calling application ... 61, 64, 177, 216-217,
220, 223-224, 234, 241,244,250,

UNAPPROVED DRAFT. All Rights Reserved by IEEE,

Do not specify or claim conformance to this document

301

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

258
calling process ... 22,25,27-29,32, 34, 37,

. 44-45,47-51,53-56, 61,63, 66-74,
76,78-79, 82, 86,97,101,111-113,
115,131, 136, 149, 153-154, 166,
168, 216,218-219, 222, 226-229,
238-239, 241,244,248, 253, 255,
278,292-294

calloc... 155
canonical mode... 42,137-138,147-148,

253
canonical mode input processing... 42,137-

138,147,253
capabilities ... 20, 38,209,228,252
capability... 184, 189, 228, 235-236
case ... 3, 17, 20, 32,54, 60, 63, 72,76,103,

113,138-139, 143, 158-159, 163,
179, 182, 184,186, 188, 199-200,
203, 205-207, 222-223,227-230,
233-235, 237, 239-240,243-244,
246-249, 252-254, 264-265,273,
276-277, 282, 288, 292-293

CASE Services... 179
catch... 61, 72,208,220-221,223-224,227,

261
category ... 158-159,193, 210,258-259
caught signal... 34, 50, 53,58-59,66-67,

70-72, 121,130,141,224,253,278,

292
cause ... 23, 28,34, 45,47, 53-54,59-60, 63,

67-70, 72, 89-90, 109, 111, 125,

131,135-136, 141, 143,147-149,
157, 187,198, 205,220, 223-224,
227, 241,245, 248-250, 265-266,

292-293
CBEMA... 175,178-179
CCITT... 178-179
certain ... 23-25, 28, 31,38^0, i36,140,

142, 184, 192-193, 201, 208, 215,
219, 229, 257, 261

certain calls... 136
certain characters ... 24,31,140
cfgetispeed... 146
cfgetospced ... 145
cfsetispeed... 146
cfsetospeed... 145
cf_getispeed... 284
cf_gctospeed... 284

cf_scti speed... 284
cf_sciospeed... 284
change... 5-6, 20, 23, 28,30-31,45.54, 65,

* 67,83,86,90, 103, 106, 108,111-
113, 136, 144, 146, 149, 153, 157-
158, 183, 185, 187, 189, 192, 197,

202, 206-210, 218-221,225-226,

233-236,238-242, 247, 254,256-
257, 259-261,265,267,276,278,
282-283,292

Change Current Working Directory... 90,
235

Change File Modes... 111,239
Change Owner and Group of File ... 112,

240
char... 49, 76, 83-85, 87-88,90-92, 96-97,

99-100,102-103,108,110-112,
114, 116,122, 124,142, 158,161,
166-167,199,234,244-245, 258-

259,278, 286
character... 22-24, 27, 29,31,37-39,46,

49-50, 58-59, 77, 80, 84, 87, 91,93,
106-107,135-144, 146-148, 155-
156, 158,161,171-172, 190,193,
203-206,211,213,225, 230,233-
234, 252-254, 256, 258-259, 267,
274, 280, 283, 287-288

character array ... 39,49-50, 77, 80, 84, 87,
91,234, 259, 287

character framing error... 142-143
character pointers ... 49-50, 77,84, 91, 259
character representation... 77
character size ... 87,144,146,234, 287
character special... 22, 24, 29,46,58-59, 93,

106-107,135,138,140-141,147-

148, 171-172,225,254, 280,283,
288

character special file „. 22,24, 29, 93,107,
141, 148,280,288

character string ... 37, 50, 84,161,233,
258-259,274,287

CHAR BIT ...40
CHAR~MAX... 40
CHAR_MIN... 40,211
chdir ... 61,90-91, 239, 287
check ... 62, 110, 142-143, 147, 158-159,

207, 222, 225,227, 233-234,239,

253, 255, 265, 279
child ... 23,27, 33, 47-48, 52-56,59, 61, 82,

131, 136, 216, 218, 224, 231, 277-
278, 292-294

child process ... 23, 27, 33,47-48, 52-56,59,
61,82, 131, 136,216,218, 224,
231,277-278,292-294

child processes ... 23, 27, 33,47-48,52-56,
59,61,82,131,136,216,218,224,

231,277-278,292-294
child times ... 82, 231
children ... 53-55,66, 82, 215, 219-220,

222- 225, 291-292
children terminates ... 54-55, 82,219-220,

223- 224,292

302

UNAPPROVED DRAFT. All Rights Reserved by IEEE,

Do not specify or claim conformance to this document

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

CHILD_MAX ... 42, 86, 215
chksum ... 286,288
chmod ... 30-31, 50, 52, 61, 96, 99-100, 108,

111, 113, 173, 277
chown ... 45, 61, 108, 112-113, 228, 277,

281
chroot... 204
CHRTYPE... 286
circumstances ... 32,45, 146, 223
class-specific functions ... 190, 194, 250
classical... 265
clear... 30,48, 56,78, 93,95,107, 111, 113,

119,123, 125,129-130, 135,137,
146, 183, 207-208, 211, 216, 220,
234, 238, 240, 245-246,281

clear errno ... 207-208, 234
clearenv... 231
clearerr... 155
CLKJTCK ... 23, 37, 40, 82-83, 86, 226,

230-232, 277
CLOCAL... 144, 146
clock tick... 23
dock_t... 37, 82-83, 193, 209, 230-231,

277,280
close ... 56, 61, 89, 95, 102, 120-123,127,

129, 131, 133, 141, 144, 146, 166,
168, 193,198, 214, 221,243,254-
255, 266, 281

close file ... 121,127,129, 131,141, 198,
214, 243, 254

closedir... 88-89,190
closing ... 56, 61, 89, 95, 102,120-123, 127,

129, 131, 133, 141, 146, 166, 168,
193, 198, 214, 221, 243, 254-255,
266, 281

closing terminal device file ... 141, 254
cmask... 95
cmd ... 127-129, 131-132
COBOL... 266
Cobol... 178
code ... 17-18, 22, 55, 98,102, 104,176,

184-185, 191, 200, 204-206, 213-
214, 216, 220, 223, 225-226, 233,
242-243, 251,259, 270, 287

collation._ 37
column ... 212
combined argument... 50, 292
command ... 17, 25, 29, 38, 120, 129-130,

135, 149, 177, 195, 219-220, 222-
223, 225, 247, 250-252, 260,263,

'* 276, 284
command interpreter ... 25, 29, 38, 135, 223
Command Name ... 195
commercial applications ... 18
committee ... 4, 7, 176, 178, 181-182, 250,

268
common ... 155,176-177,179, 183, 185-

186, 188, 204, 206, 209, 216, 227,
236, 244, 247, 256, 273

common usage ... 155, 204,256
common uses ... 155, 209,216,227
comparisons ... 139, 205, 209, 211, 243, 273,

276
compatibility ... 4, 172,184, 206, 209-210,

225.237.241- 243,264,267,288
compile time ... 25,44, 211, 215, 230, 232
compiler... 25,44, 191, 200, 211, 213,215,

229-231,260
complete ... 4, 33,137, 140, 146, 166, 168,

194, 202, 210-211, 226, 239,245,
257,266

complication ... 232
computer architecture ... 232
concepts ... 3, 30, 185, 200-204, 206-207,

214,244,246,251,263
concern ... 6, 109, 181-182, 184, 191-193,

199-200, 210, 223, 240,250, 252,
261-262,264

concurrent writes ...-247
condition ... 20, 32-34,36, 53-54, 60, 69,78,

81, 83-85, 132, 142-143, 146, 198,
208, 215, 219,227-228, 237,241-
242, 248, 265-266,280-283,292

configurable pathname variables ... 116,216,
232-233,240-241

configurable system variables ... 85,184,
216, 232-233,240, 276

configuration ... 44,177,198,233,276
conflict... 33, 163, 185,194-195, 218,221,

223, 225, 242, 249, 260
conform ... 4-5, 18-21, 25, 27, 39, 41,43-44,

156, 169, 172, 176, 184-185, 188,
192-193,197-199, 201, 210, 212-
215, 217, 221-223, 226, 237, 239,
241-244, 259

conformance ... 4-5, 18-21, 25,27, 39,41,
43-44, 156, 169, 172, 176, 184-185,
188, 192-193, 197-199, 201, 210,
212-215, 217, 221-223, 226, 237,
239.241- 244,259

conformance documentation ... 20-21, 197
conforming application ... 18-21,41, 43-44,

176, 185, 193, 197-199, 201,212-
215, 217, 222-223, 226, 241-244

Conforming Application Using Extensions
...21,197,199,212-214, 242

Conforming Implementation... 2f7
Conforming Languages ... 21
conforming program... 18-19, 21, 156, 176,

184, 198,217, 239, 259

UNAPPROVED DRAFT. All Rights Reserved by IEEE,

Do not specify or claim conformance to this document

303

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

conforming system ... 4-5,20,156,169,172,
185,192, 215,221-222, 226,239,
242-244

connection ... 23,92,135,146
consensus ... 185-187,207,221,242,265
consequences ... 3,37,52, 55-56,156, 181,

198,202,216,219,239
consider... 3,27-28,32,39-40,44, 62,141,

173, 188-189,191-193,195,201,
205-207,210-211,216-218, 221,
226, 231,233,235,241, 243-244,
247, 260, 262-263, 265

constants ... 21,25, 39, 42^45,53,57-59,66,
77, 84, 86,110,116,127-128,133,
135,183,195,211,215-216, 230,
232,241,286,291

constraining links... 238
construct... 19,31,49,177,207,211,225
construct name... 207
contain ... 4, 6, 20,23-25, 32,37-38,45,49-

50,53-54,77, 80, 82, 85, 88, 94,
96-104, 106, 112, 114, 126, 158,
165-167, 170-171,181, 194,212-
214, 217, 222, 233,237, 267,278,
280, 285, 287-289,292-293

contents ... 20, 84, 91,98,123,156,169,
171, 181, 189, 198, 274,285

context... 33-34,108,141,188-189, 200,

206, 233,235
contiguous files ... 262, 264,267
continue signal... 59, 222, 224-225,253
continues ... 6, 25,48,59-60,143, 220,222,

224-225,250,253
continuous stream... 151
control... 22-23, 25-30, 35,44,47, 54,56,

58-60, 63, 66, 70-71,77-79, 84,

127-129,131, 135-136,138,140-
144, 14&-149, 151, 153-154, 163,

177-178,189, 191,200,205, 208,
218-226,229-232,236,247-248,

250-255, 258, 265,275, 278-279,
283-284, 291-293

control character... 136, 143,147-148, 225,
253-254,283 -

control chars... 142
control functions ... 25, 27-29,35,54,60,

63,70-71,78-79, 84, 136, 141,
147-149, 151, 153-154,163,218,
222,229, 253, 255,275,284, 293

Control Modes ... 144, 254
Control Operations on Files ... 127,247
controlling process ... 22-23,25-30, 47, 56,

60,63, 70-71, 78-79, 84,131,135-
136, 140-141, 146, 148,153-154,

163, 219-220, 222, 224-225, 229-

231,248,253, 255,278,283,
292-293

controlling terminal... 22-23,25-26, 30,56,
58-59, 63, 77-79, 84, 136, 140-144,
146, 148-149,153-154, 177, 200,
222, 225,229, 231,253,255,265,
275,278,283

controversy... 243
CONTTYPE... 286
cooked mode... 251
Coordinated Universal Time ... 24,202
copies ... 91,185,259

copyright... 181
core... 217-218
core file... 217-218
correspond ... 3,25, 30, 36, 38,42,47,49,

53-55,64, 86,88-89, 108, VI,
116-117,129,158-160, 189-190,
192, 195,198,201-202, 208,212,
214-218,228,243-244,258-259k
267, 292-293

corresponding permissions ... 25, 30, 108,
111,202

corrupt... 236
cover... 8, 200, 225, 228, 243, 274,285,291
covert channel... 225
cpio .„ 169,172, 191, 262-265, 285
CRDLY... 284
CREAD... 144,146
creat... 26-30,39, 46,48, 61,92, 94-96, 98-

99, 108-109, 119, 121-122,124,
126, 128, 130-131,134,169,184,
198, 212-213,218-219, 228-229,-
236-237,239,242, 247,260,262-
266, 277, 280, 285, 287-288

create ... 26-30, 39,46, 48, 61, 92,94-96,
98-99, 108-109, 119, 121-122,124,

126, 128, 130-131, 134, 169,184,
198.212- 213,218-219, 228-229,
236-237, 239,242, 247,260,262-
266, 277, 280, 285, 287-288

create inter-process channel... 119, 242
create new file ... 95-96, 99,236
created directory ... 46, 92, 96, 98-99, 218,

228, 280
creating ... 26-30,39, 46, 48, 61,92, 94-96,

98-99, 108-109, 119, 121-122,124,
126, 128,130-131,134, 169,184,
198.212- 213,218-219,228-229,
236-237,239, 242, 247, 260, 262-
266, 277, 280, 285, 287-288

creation ... 26,28, 30, 47, 51, 87, 92-93, 95-
99, 216-217, 236-237,239,244

criterion... 212
CS1ZE... 144,146

304

UNAPPROVED DRAFT. All Rights Reserved by IEEE,

Do not specify or claim conformance to tin's document

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

CSMA/CD ... 178
CSTOPB ... 144, 146
ctermid ... 84, 192, 231
clime ... 156
current directory ... 23, 30, 32, 38, 44, 51,

88-91, 102, 117,210,217-218,235
current file ...31,44,49. 114, 117, 122, 124,

131,217-218
current operating system ... 80, 191
current position ... 88-89, 122, 124,131,265
current process... 31-32, 49, 72, 77, 84, 136,

148, 162,215,217-218
current process image ... 49, 217
current state ... 89,217
current time ... 31, 44, 72, 114, 157, 257
current user ... 66, 77,215, 218
current value ... 44, 86, 89, 116-117, 131,

133, 162, 259, 264
current working directory ... 23, 30, 32, 38,

44,51,90-91, 102,210, 217, 235
cuserid ... 76-78, 168, 192,1
c cc ... 138, 142, 148
c_cflag ... 142, 144-146
c dev... 170
c filedata ... 170-171
c filesize. .. 170-171
c gid... 170
c'iflag ... 137, 142
c ino ... 170, 264
C IRGRP ...172
C 1ROTH ... 172
C 1RUSR ... 172
C 1SBLK ... 172
C 1SCHR ... 172
C ISDIR . ..172
C ISFIFO ... 172
C ISG1D . ..172
C 1SREG ... 172
C ISU1D . .. 172
C ISVTX ... 172
C IWGRP ... 172
C P.VOTH [...172
C IWUSR ... 172
C LXGRP ... 172
C LXOTH ... 172
C IXUSR ... 172
cjflag ... 137, 142, 147
c magic ... 170
c min ... 254
c_mode ... 170, 172, 264
c_mtime170-171
c name... 170-171
c namesize ... 170-171, 264
c_nlink ... 170
c_ofiag ... 140, 142, 144

c_rdev... 170-171
c_time... 254
c_uid ... 170
Data Base Standards ... 179
Data Definitions for File Control Operations

... 127, 247
Data Interchange Format... 262
data items... 80
data losses ... 198, 247-248, 265
data structure ... 31, 80, 82, 106, 171, 198,

204,216, 222,238
Data Types... 37,195,209,277
database ... 37-38, 77, 165-168, 177, 179,

248-249,257,261-262,274
database access ... 165-167,262,274
Date and Time ... 156
date/time ... 38, 258
daylight... 158, 256
de facto standard ... 265
deadlock ... 33, 131-132, 249
decimal... 157, 201,286
decision ... 25, 186, 194, 202, 219, 240
declared type ... 22,57, 225
decrement... 100
default... 50, 57-60, 136, 148, 152, 156,

158-159,165,167,189,205,222,
224, 258-259

default action ... 50, 59-60, 136, 224
default shell... 167
default value ... 156, 158-159, 259
define tversion ... 286
Defined Terms ... 195
defined type ... 22, 24, 37, 57, 64, 87-88,

106, 130, 161, 166, 170, 172, 202,
209,220,231,277

defines ... 5, 17-24, 26, 28-30, 32-34, 36^0,
43-46, 48, 50, 53-69, 74-78, 80-88,
106, 108-109, 111, 113-114, 116-
117, 126-127, 129-131, 133, 135,
138, 142, 144, 148, 151, 155-156,
158-159, 161, 163, 166-167, 169-
173, 176, 183-184, 191-197, 200-
203, 205, 207-209, 211, 213-214,
2P-220, 222, 224-225, 229-231,
233, 235, 237-239, 250-251, 254,
256-257, 261-263, 265, 268, 273-
275,277, 279,281,286,288,
291-292

definition ... 3, 17, 21-22, 25, 37, 39, 42, 92,
96, 100, 127, 135, 162, 183-185,
188, 191-198, 200, 204, 206, 210-
211, 226, 233, 236, 238, 243, 247,
249,251,263,273-275

delay ... 70, 72, 93, 124, 126, 128, 227, 282,
284

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

305

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

delay process execution ... 72,227

deliberations... 181-182,189
deliver... 48,54,59-61, 63-64, 66, 68-69,

71,163,216,223-224

delivery... 48,54,59-61,63-64,66,68-69,
71,163,216,223-224

Department of Defense ... 180
depend ... 42,45,131,137,146,151,193,

197, 201,206-208,212-213,216,
224,230,235-236, 240,245,256

dependent... 32, 96,100,137,171,223,250
descendant... 29, 82, 103-104, 216,218,

222,225,255
describe ... *4,17-18, 20-21,23-25,27-29,

31-33,45,47,52, 66, 86, 88,106,
108-111, 117, 129-130,135-138,
142, 144, 147, 149, 156-157,160,
165, 169, 172, 175, 180,182-183,
189,191,201-205, 214, 219,222-
223, 227,233-234, 238-240,244,
247,257-258,263-265,270,273-
274,276, 285,287

described members ... 66,106
description ... 3,5,21, 24, 26, 33-34,37-38,

41-44, 47,49-50,52-53,55,57-59,
62,64, 66-67, 69-74, 76-88,90-92,
95-96, 98-100, 102-103, 106,108,
110-112,114,116,119-122, 124,

127-130, 133, 135, 142, 144-145,
147-149,151, 153-154,156,158,
160-163,166-167,193,199-200,
203, 208, 210, 222, 234, 243,247-
248, 253, 263-264, 267,291

design ... 176,183-184,193,240,248,267,

289

designated structure... 114
desired time ... 70,257
desired way ... 224, 239
detection ... 34, 58-59, 87,143, 146, 249
Determine Terminal Device Name... 85,

231
determining ... 4,23, 29, 59,137,170-171,

. 197, 211, 232, 244, 253, 266, 292
deterministic... 265

development... 176-178, 181-183,185,
197-198,215,274

device ... 22-23, 29, 35,37, 85,93, 106, 126,
133, 135, 137, 140-141, 143-144,
150, 152-154, 179, 190, 194, 201,
203, 208, 213, 231, 241, 248, 250-

,,251,253-254, 275-276,280, 282,
288

device dependent... 137, 250
device number... 37, 106, 143, 201, 213,

288

Device- and Class-Specific Functions ... 190,
194,250

devmajor... 286,288
devminor... 286, 288
devj... 37,106,209, 238
Diagnostics... 155

differ ... 21,191,201,204, 225,241,243,
260,273

difference ... 24,189, 192, 198, 220, 229,
231,233-234,251,255,273-274,
276-277

differing implementations ... 201,204,225
difficulties ... 194, 207,209,211, 250, 252,

254,258
digits ... 156-157,209,256,287-289
direct... 3, 31,48, 185, 188, 205, 216, 233,

258
directories ... 31,42,49,87, 97,101,104,

108, 171, 185, 198,201,233,238
directory ... 23-24, 26, 28,30-32, 34-38,44-

46,51-52, 87-94,96-104,106-107,
109-110,112-113, 115-117, 165,
167,172, 177,184, 190,193,198,

201-205, 207,210,217-218,228,
233-238,240-241,267,275-277,
280,286, 289

directory access ... 24,30,103,201,233
directory entry ... 23,26, 88, 96, 98-99,101,

103, 106,201,234, 236
directory level... 233,240
directory operations ... 88, 104, 184,190,

201, 234-235
directory routines... 201
directory search permission ... 51, 96,98,

101-102,107,236
directory stream ... 88-90,235
dirent... 87, 89, 233-234
dirent.h ... 87-88, 90, 233
dimame... 88-89
D1RTYPE... 286
DIR_LEVEL_MAX... 214
disable ...31,46, 141, 143, 147
disconnect... 58, 141, 146, 254

discussions ... 186, 189, 195,220-221, 232,
239,254

distinction ... 156, 183, 192, 194, 204-205,
219,247, 260

distinguished process group ... 22, 25,29,
135-136, 140-141, 148, 153-154,

- 221, 255, 283
document... 4, 6, 19-21,48, 60, 68-69, 175-

178, 1S0-181, 183, 185-192, 201-
202, 205, 222-223, 239, 261-262,
264, 273

documentation ... 3-4, 20-21,48, 50, 60, 80,

306

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

183, 187, 189, 197
domain ... 21, 33-34, 202, 219
dominate... 239
donating ... 8
dot... 23-24, 26-27, 32,35,45, 88, 98,102-

104, 201,210,238
dot-dot... 23-24, 26, 32, 35, 45, 88,98,

102-104,201,207,238,277
double initial slash ... 207
draft... 6, 45, 155, 177-178, 181, 185, 187-

190, 194, 209-210, 212, 214,247,
257, 259, 285, 291

drops... 212, 223
dup ... 27, 61,95,109, 120, 122,124, 126,

134,247,260
dup2... 61, 120-121,243
Duplicate an Open File Descriptor ... 120,

243
Duplicate file descriptor ... 127
duplicate open file descriptor... 120, 243
duration ... 66, 151
d_name... 87, 234
eig.... 37, 108, 139, 141, 146, 158, 177, 185,

191,195, 204, 20S, 216,221, 223,
236, 246,251,263-264

E2BIG ...33,51,217
EACCES ... 33, 51, 89-91, 94, 96, 98, 100-

102, 104, 109-110, 112-113, 115,
132, 236

eaccess... 239
EAGAIN ... 33, 48, 123-126, 137, 241, 245-

246, 282
east... 5, 156-157, 206, 256
EBADF ... 33, 89-90, 109, 121-122, 124,

126, 132, 134, 150, 152-154,
242-243

EBUSY ... 33, 101, 103, 105
ECHILD ... 33,55, 294
ECHO... 147
ECHOE... 147
ECHOK... 147
ECHONL... 147
EDEADLK ... 33, 131-132
editor ... 6-8,45, 194, 238, 249
EDOM ... 33
EEXIST ... 34, 94,96. 98, 100, 102, 104,

237, 280
EFAULT... 34, 208, 217
EFBIG ... 34, 126
effect... 17,26, 32, 35, 51, 60, 88-90, 92-94,

•96-104, 109-115, 123, 136, 139,
* 141, 148, 158, 163, 166, 168,216,

222,'224, 230, 239, 255-256, 282
effective group ... 23-25, 28-29, 45-46, 50,

73-75, 92, 98-99, 107, 110-112,

227-228, 240,278,280
effective group ID ... 23-25, 28-29,45-46,

50, 73-75, 92, 98-99, 107, 110-112,
227-228, 240,278, 280

effective user ... 23, 25, 29-30, 44-45, 50, 62,
73-74,77, 92. 98-99, 107, 110-115,
225, 227-228, 239,249, 278-279

effective user ID ... 23, 25,29-30, 44-45,50,
62, 73-74, 77, 92, 98-99, 107, 110-
115, 225, 227-228, 239, 278-279

effort... 4, 8, 17-18,175-176, 178, 182,244,
248

E1NTR ... 34, 54-55, 70-71,94, 121-126,
130, 132, 152, 195, 208, 217, 220,
244, 281,283,293-294

E1NVAL... 34,55,64-65, 67-68, 75-76,79,
91, 104, 111, 113, 132, 134, 150,
152-154, 250,281,283,294

EIO ... 34, 136, 282
E1SDIR ... 34,94,104
either routine ... 77, 168
cither type ... 22, 130, 234, 267, 277
either value ... 30, 63, 110, 232, 237, 292
elapsed real time ... 83
element... 82, 84, 87,106, 148, 234, 249,

283
ellipsis... 225,247
EM FILE ... 34, 89, 94,120-121,132
EM LINK ... 34, 96, 98
empty directory entries ...,35.45, 88, 98, 103
empty pipe ... 123
empty string ... 35, 39, 84, 90, 94, 97-98,

100-102,104,109-110,112-113,
115, 159

ENAMETOOLONG ... 34, 51, 90, 94, 97-
98, 100-102, 104, 109-110, 112-
113, 115, 208,237-238,276

encode ... 204, 206, 261,274, 288-289
encoded ... 204, 206, 261, 274, 288-289
encoded password ... 261
encoded string ... 274
end-of-archive ... 265, 285
end-of-file ... 123, 138, 140-141, 146, 156,

173, 265-267
end-of-medium... 265-267
endgrent... 166, 274
endpwent... 167-168, 274
ENFILE ...35,94, 120
Enhanced Signals... 275
enhancements... 267
ENODEV... 35, 248
ENOENT ... 35, 52, 90, 94, 97-98, 100-102,

104, 109-110,112-113, 115, 237,
276

ENOEXEC ... 35.52, 217

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

307

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

ENOLCK ... 35,132,248
ENOMEM ... 35,48. 52, 208
ENOSPC ... 35, 94, 97-98, 100, 104,126
ENOTBLK... 276
ENOTDIR ... 35,52, 89-90, 94, 97,99-102,

104, 109-110, 112-113,115
ENOTEMPTY... 35,102,104,237-238,

276, 280
ENOTTY... 35,79,150,152-154,208
entire database ... 166, 168,257
entries ... 23, 26, 31,35, 45,76, 87-88,98.

100, 102-104, 108, 169, 171,201.

233,238, 264
entry... 23, 26, 60,77, 88, 96, 98-99,101,

103, 106,166-171,201, 234, 236,
239, 253,280, 288

environ ... 37,39,42,49-50, 83,217
environment... 3,17, 20, 33,37-39,49-52,

83,156,158-159, 162, 177, 181,
183, 191-193,195, 197,201,210-
211, 217, 227, 231-232, 250,254,
256-259,274,277

environment access ... 83, 231
Environment Description ... 37,50,52, 83,

193,210
environment list... 33,50-51, 83, 217
environment strings -. 37, 50, 83,158-159,

258-259
environment variable names ... 38-39,158,

210,257
environment variables ... 37-39, 49-50, 83,

156, 158-159, 177,195,210-211,
231,256-258,277

envp ... 39, 49-50, 217, 278
ENXIO ... 35, 94, 280, 282

EOF ...44, 130, 138, 140-141,147-148,254

EOL... 138, 140-141, 147-148, 254
EPERM ... 36, 64, 75,79, 97,101,112-113,

115,154,225
EPIPE... 36,126
Epoch ... 24, 81, 108, 114, 201-202, 256
equal... 27,42,44-15, 56, 63, 68,74-76, 79,

91,112,121,125,129,132, 154,
171, 213, 227-228, 243, 255, 278,

292-293
equivalent... 39, 95,120, 146,161,193,

207, 219, 221, 233, 238

ERANGE... 36, 91
ERASE ... 138,140-141, 147-148, 254
ERASE character... 147-148,254
EROF9-... 36, 94, 97, 99-101, 103-104,110,

112-113, 115
errno ... 32,48,51, 54, 63, 65,67-71, 75-76,

79,81,83, 89-91,94, 96,98-99,
101-102, 104, 109-111, 113, 115,

120-123,125-126,130-131, 133,
137, 150, 152-154,193,195,204,
207-208,220,234,237,245-246,
248, 282,293

errno.h... 32-33,237
error... 3, 6,17,32-36, 46,48, 51,54-55,

62-63, 65,67-71,75-76, 78-79, 81,
83-85, 89-91,93-94,96, 98-102,
104, 109-113,115,120-124, L26,
131-136,142-143,150, 152-154,
160,167-168,183,193,195,207-

. 208,216-217,220,223-224,232,
234-237,239,241-248, 256,265-
266,276, 279-283,287-288,
293-294

error number... 32-33,76,183,193,195,
207-208,244-245,276

Error Numbers ... 32, 193, 195, 207-208,
276

Errors sections ... 6, 33
ESPIPE... 36,134
ESRCH ... 36,64, 225
establishes ... 23, 29, 61,92,130, 146,163,

176, 224,228
ETXTBSY... 217, 276, 280-281
event... 29, 54,59,77,137-138, 146-147,

163, 184, 186, 191, 194, 203-206,
211-213,216-217, 221, 224-225,
232-233,239-240, 242-243,245,
247, 257

event notification... 221
ever-changing values... 233
evolution... 269
exactly ... 26, 92, 185, 192, 251, 265
examine ... 65-68, 204, 220-221,225-226,

257

Examine and Change Blocked Signals ^ 67,
226

Examine and Change Signal Action ... 65,
221,225

Examine Pending Signals ... 68, 220, 226
example ... 3, 29, 31,34-35, 42, 59, 83,122,

125, 139, 146, 184-185,194-195,
198-202, 204-205, 213-215, 218,
222-224,232,240-241, 247-250,
252, 257-259,263,266

exceed ... 34, 51, 63, 72,75, 79, 87, 90,94,
96-98, 100-102, 104, 109-110,
112-113, 115,120-121, 126, 132,
137-138,143,154,234,244,248,
276, 292

exception ... 26,29, 60, 125, 184, 186-187,
191,194,198,208,220-221,233

exceptional behavior... 223
excess... 198

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

308

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

excluding ... 24, 63, 184, 186, 191, 195, 200,
204, 234, 237, 252, 263

EXDEV ... 36, 97, 105
exec ... 23, 28-29, 35, 39,42, 45, 47-51, 55,

60-61,66,71,73,75, 78,83, 95,
100, 107, 121-122, 127, 129, 133,
189, 193, 217-218, 226, 228, 239,
248, 260, 278, 294

exec family ... 49,129
exec functions ... 47,49, 51,66,127,129,

218.226.239
execl... 23, 28-29, 35, 39, 42,45,47-51,55,

60-61,66,71,73,75, 78,83,95,
100, 107, 121-122, 127, 129, 133,
189, 193, 217-218, 226, 228, 239,
248, 260, 278, 294

execle... 49, 226
execlp... 49-50,226
executable binary form ... 240
executable form... 232,240
execute access bits... 30
execute by group ... 172
execute by others ... 172
execute by owner... 172
execute file ... 30, 35, 49, 107-108, 110, 217,

239,249, 280
execute mode ... 249
execute permission ... 30, 35, 43, 107-108,

110.239
executing instructions ... 82
execution ... 25, 34, 44-45, 48, 51-53, 60-61,

66, 70-72, 107, 111, 127,129, 177,
184, 192, 197,211,214,216, 227,
232,-240, 287

execution environment... 192,197,211
execution time ... 44^45, 72, 216, 232
execv ... 23, 28-29, 35, 39. 42, 45, 47-51, 55,

60-61,66, 71,73, 75,78, 83,95,
100, 107, 121-122, 127, 129, 133,
189, 193, 217-218, 228, 239, 248,
260, 278,294

execve... 49-50
execvp ... 49-50
existence ... 25,28, 33-35,43, 52,55, 69, 90,

92-98, 100-101, 103-104, 109-110,
112-113, 115, 117, 128, 133,139,
172, 183-185, 189-190, 193, 197,
200, 203, 206-208, 216-218, 220,
223-225, 229-230, 236-238, 241-
243, 246, 248, 251, 256-257, 259,

•261-264, 277, 2S0, 289, 294
existing applications ... 139, 183-185, 206,

208, 216, 220, 224-225, 236-237,
241-243,246,251,261

existing data ... 133, 216,262-264

existing file ... 34, 43, 52, 92-97,101,103,
109-110, 112-113, 115, 117, 128,
133, 139, 172, 189,217, 236, 238,
242-243, 246, 262-264, 280, 289

existing implementations ... 25, 28, 117,185,
197, 200, 206, 208, 216, 218, 220,
223-225,230,237, 241 -242, 246,
248,251,257, 262

existing mechanism ... 200, 220, 224-225,
248

existing programs ... 139, 183, 206, 217-218,
223, 259, 261-262

exists ... 25, 28, 33-35,43, 52, 55, 69, 90,
92-98, 100-101, 103-104, 109-110,
112-113, 115, 117, 128,133,139,
172, 183-385,189-190, 193,197,
200, 203, 206-208, 216-218, 220,
223-225, 229-230, 236-238, 241-
243, 246, 248, 251, 256-257,259,
261-264, 277,280, 289, 294

exit... 52, 55-56, 155, 193, 216, 219-220
exit status code ... 55
extend ... 4, 20-21, 35, 98,100, 131,133,

185, 190, 193, 210, 239, 250, 256-
257, 262, 267, 275, 285, 287

extended function ... 35, 133, 185, 239,250,
275

extended tar... 190, 262, 285
extension ... 4-5, 20-21, 32, 156, 158,178,

197, 199-202, 212-214, 221, 226,
230, 239, 242, 256-257, 262-264,
267-268,274

external characteristics ... 18, 273
external variable ... 32, 37, 50, 158, 191
fabs... 155
facilities ... 3-5, 18, 20-21, 25, 44^5, 177,

184, 189, 191, 196-198,200-201,
226, 232, 244

facility ... 25, 176, 189, 207, 232-233,240,
242, 244, 248-249, 252, 257, 267

family ... 49,129, 182, 214-215, 218
fast bursts... 254
fast File System ... 240
favor... 195, 200, 207, 223
FCHR_MAX... 116,212-213
fclose... 155, 193
fcntl... 27,48, 50, 52, 61, 95, 109,119-122,

124, 126-131, 134, 137, 243,246-
250, 253, 260, 283, 287

fcntl.h ... 50, 92, 95, 127-130, 133, 283
fdopen ...161,192, 260
FD_CLOEXEC ... 50, 127, 129
feature ... 19-20, 139, 176, 181, 183-184,

188, 198, 204, 216, 220-221,232,
240-241,247-248, 250, 252, 254,

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

309

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

263,275
Federal Information Processing Standards ...

180
federal law ... 158,256
feof... 155

fcrror... 155
few... 184-185,189,191,196, 223, 235,

250,257

fflush ... 155
fgetc... 155
fgets... 155
field ... 31, 37, 51, 66-67, 89,93-94, 96, 98-

99,101-102,104,106,108-109,

111, 113-114,119,123,126,131,
142, 144-145, 147, 157, 163,165,
169-170, 172, 186, 225, 233,239,
261,264, 267, 286-289

FIFO ... 24, 27,36,46, 93-94,99,107,121-
123, 125-126, 134, 172, 189, 202-
203, 228, 237, 244-246, 274, 286,
289

FIFO special file ... 24, 27, 99,107,121-122,
189,202,286

FIFOTYPE... 286
Sides ... 85, 108-109, 116, 119-126, 128-

129, 132-134, 149-154,161, 242-

243,245
fildes2... 120-121,243
file ... 22-31, 33-38, 42-52,55, 84-85, 87-89,

92-117, 119-137, 139-141,143,

146,148-150, 152-154,160-161,
169-173, 177, 179,189,191-192,
195, 198, 200-207, 209, 211-219,
222, 228, 231, 233-234, 236-244,
246-250, 253-254,256-257,260-
267, 274-277, 280-283, 285-289

file access permissions ... 23-26, 29-31,37,
52,110-111, 169-170,204, 239

file accessibility ... 110,239
File Characteristics ... 106, 238
file control... 30, 35, 127-128,136,141,

148, 153-154, 191,222, 231, 236,

247
file control operations ... 35, 127, 247
file creation mask ... 51, 93, 95-96, 98-99,

236
file descriptor... 24, 26,33-34,47, 50,55,

85, 89,92, 94, 108-109, 111, 116,

119-122, 124-127, 129-135, 149-
150, 152-154, 160-161,203,222,

• •231, 239-241, 243, 247-248, 260,

282
file descriptor deassignment... 121,243
File Descriptor Manipulation ... 120, 243
file hierarchy ... 31, 202, 204-205, 236,263

file mode ... 22, 24-26, 50-51% 92-93, 95-96,
98-99, 106-107, 111-112,128-129,
131, 137, 139, 141, 146, 161, 169,
192, 239, 249, 260, 263-264,
287-288

file mode creation mask ... 51, 93,95-96,
98-99

file name ... 23-25, 34,42, 102-104,110,

.116-117,169-171, 205-207,218,
234, 236, 238, 241, 264-265,267,

287-288
file name length ... 42, 171, 234
file named core ... 217-218
file names ... 23-25, 34,42, 102-104, 110,

116-117,169-171, 205-207, 218,
234, 236, 238, 241, 264-265,267,
287-288

file offset... 24, 26,44, 92, 122, 124-125,
131, 133-134,244,247,249-250

file open ... 24, 26, 31, 33-35,42,47,50, 55,
89, 92-95, 100, 108, 111, 116, 119-
120, 122,124,126,128-133,135-
136, 146,149, 152,161,198, 203,
212,214-217,219,222,231,236,
239-240,243,247-249, 253, 260

file owners ... 24-25,31,36, 46,50, 106-107,
111- 115,218,240,263,287-289

file permission ... 23-26,29-31, 35,37,51-
52,92-95,98-99,107-108,110-111,
114, 169-170,172,204-205, 218,
228,236,239,241,287-288

file permission bits ... 24-25, 30-31,92-93,
95,98-99,107-108,111,287-288

file pointer... 85, 160,192, 247, 260,
282-283

file prior... 123-124, 222
file record locking ... 35,129,247-249
File Removal... 100,237
file serial number... 25, 37,106, 202, 233,

288
file size ... 34, 106, 126, 133, 198, 215,234,

250, 264, 285,288
file space ... 25, 35,98,100.125-126.198,

213,244

File Status ... 108, 239
file status flags... 92, 124-125, 127-129,

131,247
file store requirements... 267
file system ... 25, 28, 31, 35-36,42, 87, 92,

94, 97-101, 103-104, 106, 110,
112- 113, 115, 117, 120, 137,169,
172, 177, 189, 198, 201-207,215-
217, 222, 228, 233, 236, 238-242,
244, 246, 256-257,261-266, 274,
287

310

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to tin's document.

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

file types ... 24, 26, 31, 37, 106, 129, 131-
132, 160-161, 170, 172, 202, 233,
240- 241, 249-250, 260, 263-265,
267, 277, 285, 288

filename ... 23-24, 27, 31-32, 38, 50, 87,
193, 201, 203-207, 217-218, 233,
235, 276, 287

filename portability ... 31, 38, 193, 204-205
fileno ... 160, 192, 203
Files and Directories ... 233
find ...212,214, 240,258,263

FIPS ... 180,261
first-in-first-out... 24, 119, 248
fixed size ... 169,234,245,285
flag... 50, 54,60,66, 92, 119, 123-131,135,

137, 140-141, 143, 146, 226, 236,
241- 242, 246-247, 280,283-284,

288, 293
floating point values ... 211
flock... 130-131,249
flush ... 142, 147, 151,219
fmod ... 155
fold ... 38,205-207
fopen ... 155, 161, 202, 260
for example ... 31, 34-35,42, 59, 83, 122,

125, 139, 146, 184-185, 195, 198,
200-202, 204, 213-215,218,223-
224, 240-241, 247-250, 252, 257,
263, 266

foreground ... 25, 136, 149, 153, 222,253
foreground process... 25,136,149,153,

222, 253
foreground/background checks ... 222,253
Foreword ... 3, 182, 192, 194
fork ... 27-28,47-^48, 52, 55, 61, 71, 73, 78,

83,122,131,136,216,218,247-
248, 260, 277, 294

form ... 3, 22,37, 50, 66, 83,156-157, 180,
185, 202, 206, 232, 237, 240, 247,
251,256, 275, 292

format... 3-4, 6, 35, 37-38, 80, 87, 156-158,
169, 172-173, 190, 195, 200-201,
210, 233, 244, 251, 257, 260, 262-
267,285,288

Format of Directory Entries ... 87, 201, 233
format parameters ... 244
format-creating utility ... 169, 265-266, 287
format-reading utility ... 169, 173, 265-266,

287-288
former ... 189, 247, 263
fpathcodf ...45, 116-117,240,274, 276
fprintf... 155,250
fputc... 155
fputs... 155
framing... 142-143

frcad... 155
free ... 35, 126, 155, 193, 220, 235
freopen... 155
frexp... 155
fscanf... 155
fseek... 155-156
fstat... 30-31, 61,106, 108-109, 239
FT AM ... 179
ftell... 155
Full Use ... 6, 45, 186, 189-190, 194, 239,

263,267,285,291
full-duplex mode... 137
function ... 4, 18, 20-22, 25, 27-29, 31-38,

42-104,106,108-117,119-129,
131-133,135 136, 139-141,146-
156, 158,160-163, 166-168, 183-
185, 190-195, 199-200, 204, 207-

209,211-212,215-216,218-222,
224-231, 233-241, 243-244, 246-
248, 250-253, 255-261, 273-277,
281, 283-284, 287-288, 291-294

function address ... 21, 27-28, 61, 200, 208,
235, 255, 275-276

function argument... 21, 34, 53-54, 61,64-
67, 69, 80, 90, 96, 103, 108, 110,
114, 121, 132, 147, 150, 152, 154,
162,218-219,226,235,239,243,
251-252,283,292

function call... 22, 29, 32, 34, 44-45, 47-49,
51, 54-55, 61-62, 64, 66-71, 73-74,
77-79, 89, 95, 111, 120, 146, 154,
162-163,166, 168, 183, 199,207,
216, 218-220,224,226-229, 234,
238-239, 243,250,252-253, 258-
259, 287, 293

function descriptions ... 21, 33,133,156,
199, 208

function fails ... 51, 63, 67-68, 77, 83, 90,
96, 100-101, 109, 131,216, 239

function reads ... 31, 35, 108, 122-123, 139,
146, 148, 151, 166, 168,233, 239,
243,246-247, 251,253

function returns ... 28, 32-34,48, 51, 53-56,
61, 63, 65-66, 69-74, 77-79, 81-86,
88-89,92, 94, 103, 106, 111, 115,
117, 120-122, 125, 133, 135, 146,
153, 160-161, 163, 167, 191,207,
218, 220, 226-227, 229-230, 233-
235, 243, 246, 248, 253, 259,
292-293

function sets ... 31-32, 45,48, 51, 54, 61,
63-67, 69, 71-72, 74-75, 78-79, 93-
94, 111, 114, 119-121, 125, 133,
135, 141, 146-147, 149, 154, 158,
163, 184-185, 190, 193,207-208,

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

311

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

220, 225-221, 230,234-235,246,
248, 258, 260, 275-276, 293

functions return ... 28,32-34,48, 51,53-56,
61,63, 65-66, 69-74, 77-79, 81-86,

88-89,92,94,103,106,111, 115,
117,120-122,125,133,135,146,
153,160-161,163, 167,191,207,
218, 220, 226-227, 229-230,233-
235, 243,246, 248, 253,259,
292-293

future direction ... 182, 237, 276, 282
fwrite... 155,250
F DUPFD ... 120, 127, 129,131-132
F~GETFD 127,129, 131
F GETFL... 127,129,131
F_GETLK... 127,130-132
F~OK... 43,110
F~RDLCK ... 127,130,132
F SETFD... 127,129,131,247
F~SETFL... 127, 129,131, 247
F SETLK ... 127, 130-132, 248
F~SETLKW ... 127,130-132,248

F UNLCK ... 127,130
F WRLCK ... 127,130,132
general... 5, 22-23,29-30, 33,92,135,137,

149, 155, 163,186-187, 191,193-
194, 196, 200, 202, 204, 207,224,

226, 235-236, 248,251-252, 255,
261,263,265,277

general concepts ... 30, 200, 204,207,263
General File Creation ... 92, 236
general terminal function ... 149,251,255
general terminal interface ... 23,29,135,

149,251-252,255
General Terms ... 22, 193, 200,277
General Utilities... 155
Generate Terminal Pathname ... 84,231

generates ... 32-33, 36, 46, 59-60,63, 66,77,

84,140,142,148,199,216,221-
224,231,255,283

generation ... 60,143,146, 216, 223
get... 73, 75-76, 78, 81, 85,108,116,127,

129-130, 149, 153, 155, 214, 221,
227-230, 233, 239, 241, 246, 248,

250, 254-255, 284
gctcwd... 91,235-236
gctcgid ... 61,73-74, 277
gctcnv ... 83,155, 193
gctcuid... 61,73-74,277
gctgid ...61,73-74,277
gctgTcn&... 166, 168, 274
gctgrgid... 166
gctgrid... 274

gctgmam... 166,274
gctgroups ... 61, 75-76, 190, 236-237, 274

gethostid... 230
gethostname... 230

getlogin ... 76-77,167-168, 274
getpgrp ... 61, 78,229

getpgrp2 ...61,78,229
getpid ... 61,64,73,78
getppid... 61,73
getpwent... 78,167-168,274
getpwnam... 77,167-168,274
getpwuid ... 77-78, 167-168,274
getuid ... 61, 73-75,77, 209, 277
getwd... 235
gid ... 74-75,166,172,217,228,286-289
GKS... 179

global... 3,176,195,268
Global Externals... 195
GMT ...202
gmtime... 156

gname... 286-287,289
granularity .„ 138

graphics ... 17,177,179,204
Graphics Standards ... 179
greater... 33,42,49,51,63, 77, 79, 84,91,

122-123,125,129,132,138,154,
229,231,243,246,252

Greenwich ... 156-157, 202,256
group ... 3-5,7-8, 22-31,37,41,4448, 50-

51,56, 58,62-63, 73-76,78-79,92,
98-99,106-107,110-113,135-136,
140-141,148-149,153-154, 165-
167, 169-170,172,176-192, 194,
196, 198, 202, 204, 206-207,209-
211, 215-216,218-223, 226-230,
232-237,239-240,242-244, 246,
250-253,255,260-263, 274-275,
277-278,280-281, 283, 285,287-

289,291-292
group database ... 165-166, 261-262,274
group database access ... 166,262,274
group databases ... 165-166, 261-262,274
group file ... 23-26, 29, 31, 4546,50,92,

106-107,110-113,136,154,202,
207, 215, 218, 228, 236, 240,244,

246, 261-262,280,285.287-289
group ID... 23-25, 27-30, 37,41, 4447,50-

51, 56, 63,73-76, 78-79, 92, 98-99,
106-107,110-113, 153-154,165-
167,189, 204, 209, 218, 221,227-
229, 240, 255, 278, 280-281,288-
289, 292

Group ID number... 167
group name ... 5, 165-166,196, 207
grouplist... 75-76
groups match ... 24,47, 56, 75,79, 111, 218,

230, 255, 262

312

UNAPPROVED DRAFT. All Rights Reserved by IEEE,

Do not specify or claim conformance to this document

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

grp.h ... 166, 173,209, 289
gr_gid ... 166
gr_mem... 166
gr name ... 166
guidance ... 5, 155, 180, 183, 188, 197, 268
guide ... 5,155,180, 183, 188, 191,197,268
handling ... 17, 57, 66, 70, 125, 135, 139,

155-156, 158, 163,177,191,201,
203, 206, 208, 222, 224, 233, 236,
244, 246, 248, 257-258, 261, 264-

265,274-275
Hang up... 144-145
hard link ... 263-264
hardware ... 29, 35, 52, 58-59, 80, 143-144,

146, 182, 184-185, 193, 198,211,
244, 247,250, 252

hardware control... 144, 146, 252
header ... 6, 20, 22, 33-34, 37-39, 4345, 53,

57, 66-67, 80, 87-88, 106, 109, 114,
127, 129-130, 133, 142, 169-171,
193, 195, 199, 209,211,232-233,
238, 264, 275, 285-289,291

header block ... 171,285-288
header file ... 43, 45, 106, 169-171, 195,233,

238, 264, 275, 285, 287
Header File and Data Structure ... 106,238
Header Files... 195
hertz... 232
heterogenous file system ... 244
hierarchy ... 31, 177, 202,204-205,236,

263, 277
high level approach ... 251
highlight... 139
historical implementation ... 183, 185, 188,

192, 201-202, 205-206, 208, 210,
213, 217-218, 220, 230, 233-234,
236, 238-239, 242, 246-247, 249-
251,253,257,269

historical reasons ... 238, 243,257
historical term ... 191, 231, 251
historically ... 185, 202-203, 206, 209, 219,

233, 257
history... 177, 257,269
holding ... 98,130-131,249, 228-289
HOME... 37
home directory ... 37,167
however ... 4, 34, 45, 60, 136, 138-139, 146,

149, 153, 163, 172, 183-187, 193,
196, 200-201, 205, 213, 216, 218-
219, 221-223, 226, 232, 236, 240-

.*241, 243-244, 248, 251, 253, 255,
259, 261,264, 266,287

HUPCL ... 141, 144, 146
i-node... 233,264
i-node number size ... 264

i.e.... 38, 121,129, 138-139, 158-159, 170,
202, 205, 207, 218, 221, 225, 258-
259,263

I/O ... 17,24-25,35, 87, 92, 119, 139, 142,
169,177,241,244, 249, 276, 282-
283,285

I/O operation ... 24, 35,249
1CANON ... 140, 147
1CRNL... 142-143
ID ... 23-30, 36-37,4 M2, 44M8, 50-51,

54-56, 62-63, 73-79, 82, 92, 98-99,
106-107,110-115, 130-131,153-
154, 165-167, 189, 194,201,204,

209,215,217-219, 221,225, 227-
230, 239-240, 255,278-281, 288-
289, 292-293

IDs... 225,255
IEEE ... 3-5, 7, 20-21, 27,45, 62, 155-156,

158, 172, 175-176,178, 181-182,
185-187,194-196, 200, 237, 262,
268,273

IEEE 802.2... 178
IEEE 802.3 ... 178
IEEE 802.4... 178
IFS ...37,277
IGNBRK... 142
IGNCR... 142-143
ignoring ... 50, 57-60, 67-69, 136, 141-144,

146,148-149, 193,202,205, 220,
222-224, 240, 265-266, 287-289

IGNPAR... 142-143
illegal file ... 250,283
image ... 33, 35,49-52,217
implementation ... 4, 19-22, 24-34, 38-39,

41-45,47-48,50,52-61,63,66,69,
76-81, 83-87, 92-93, 97-99, 101-
103, 106, 108-113, 117, 121, 123-
126, 129, 131, 135-138, 140-144,
146, 148-149, 151, 153-154, 156,
158-159, 163, 165, 168-171, 173,
176,183-185, 188, 191-193, 196-
198, 200-231, 233-251, 253, 257-
258, 260-266, 269-270, 277, 280,

287-288,291-293
implementation characteristics ... 28, 48,

198, 277
implementation conformance ... 4, 19-21, 25,

27, 39, 41,43-44, 176, 184-185,
192-193,197, 201,210,212-214,
217, 221-223, 226, 241-242, 244

implementation conforming ... 4, 19-21, 25,
27,39,41,43-44,176,184-185,
192-193, 197, 201,210,212-214,
217, 221-223, 226, 241-242, 244

implementation connotations ... 261

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

313

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

implementation defined ... 19-22,26,28-30,
33-34,43-45,48,53-55,58-60, 63,
66, 69, 76, 78, 80-81, 83-85, 87,
109, 111, 113,117, 126, 135, 144,
151,156,158-159,163,169-171,
173, 176, 183, 192,196-197,201-
203, 205, 207-209,217,220,222,
224-225, 229, 231,235,237,239,
250, 257, 262-263, 265,277,292

implementation dependent... 223, 250

implementation details ... 183,204

implementation independent... 233,263
implementation permitting ... 21-22,38,201,

207,212,216,224,227-228,230-
231, 236, 238,240,244,246, 260,
266, 288

implementation recommendation... 19
implementation-dependent... 210, 217,219,

233, 260, 279
implementation-specific... 217
implementor... 3,191, 1%, 200,205, 219-

220, 226, 230, 240, 252, 257, 260,

263, 267
importance... 18, 273
important... 139, 192,197,207,219,249,

269
inadequacies... 239
include file ... 24, 42,106, 192,200,203,

217,236,238,241, 244, 247,256-
- 257,267

includes ... 4, 7-8, 17,21-22,24, 27, 29, 32,
41-43,50, 53, 56-57,59,62-69,
73-76, 80-82, 84-85, 87-88, 92,95,
97,99, 106, 108,110-112, 114,

127-129,133, 137,142, 146,149,
151,153-154,156-157,160-163,
166-167,171,175-177,.181-189,
191-192,194-196,199-200,203-
207, 211, 213, 216-217, 221-222,
224-226, 229-231,234-239,241.
243-244, 247, 250-252,256-257,
260-261,263-264,267,273-276,

283, 287
inclusion ... 188, 211 231. 238, 261 281

incomplete pathname... 38
increasing ... 43, 187,214

individual timers ... 186, 231
Industry Open Systems Publications ... 180
infinite hangs... 227
influential paper... 269
information ... 3-5,18, 20, 25, 30, 37-38,53,

' 80, 82, 108-109, 127, 130, 138, 149,
153, 165, 169-171, 176, 180-181,
187-188, 190, 196,198-199, 201,
203, 211, 215, 217, 225, 233,251-

252, 256-257,261,264,270,287-
288,291-293

inheritance by init... 222
inherits ...48, 51,131,136,219, 222,247-

248, 260, 277-278
init... 219, 222,225
initial user program_165

initial values ... 143-144, 146, 148,160
initial working directory ... 37, 165,207
initial working directory field ... 165

initialization ... 48, 60,64-65, 98-99,162,
197, 207,216, 222, 225,233,288

INLCR... 142-143
inline... 200
ino t... 37,106
INPCK... 142-143
Input and Output... 87,119, 122, 241,243
Input and Output Primitives ... 87,119,241
input and/or output... 140
input character... 135-141,143,147, 213,

253-254
input control value ... 143,284
input modes ... 42,137-138, 141-142,147,

253-254,284
input parity checking ... 142-143
input processing ... 23,42, 135-138,141-

142,147,253-254
Input Processing and Reading Characters ...

136-137,253
input queue ...41, 137,139, 142-143,147,

213,253
Input/Output... 155
instance ... 34,41-44,163, 203, 213-215,

232
Institutional Representatives... 186-187
int... 47,49,53, 55, 62, 64-69,71, 73-75,

78-80, 85, 88, 90-92, 96-97, 99-100,
102-103,108,110-112, 114,116,
119-120,122,124,128-130,133,
145, 149,151,153-154,158,160-
163,199, 209, 212, 220, 225,227,
234, 243, 245, 258, 275,278, 291

integer... 24-25, 27, 30,45,94,119, 123,

126,129,158, 160, 222, 230-231,
243,288

integer values ... 25,30,45,119,123,158,
222,230-231,288

integral... 37,57,209
integral types ... 37, 57, 209

intent... 4, 221, 239, 265
intention ... 184, 214, 216, 250, 261
inter-process communication... 189
interactive attention signal... 58
interactive stop signal... 59
interactive termination signal... 58

314

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

intercharacter... 138-139
interface ... 3-4, 17, 20, 22-23,25. 29, 54,

120, 135-136, 141, 144-145, 149,
163, 175-178, 181-185, 188-192,
195-196, 200, 202-206, 208, 210,
219-221, 228, 230, 236, 240-241,
243, 250-253, 255, 257, 261-263,
273, 275

interface characteristics ... 135, 253,273
interim... 21, 155,256
internal construction techniques ... 18
internal static area ... 84
international applications .,. 182, 232, 258
interpretation ... 27, 32, 165, 171, 192, 200,

266
interpreter... 25, 29,38, 135, 223
interrupted call... 34, 62, 208, 220
interrupted operation ... 243
interval... 23, 60, 216, 223
interval invisible ... 216, 223
INTR ... 140-141, 147-148,254
introducing function ... 190, 221, 227, 238,

252
introduction... 182, 195
1NT_MAX ... 40, 123, 125, 243
INT_MIN... 40
iocntl... 251
ioctl... 208, 250-252, 255, 274, 276, 284
isalnum... 155
isalpha... 155
isascii... 193
isatty ... 85, 192, 208
iscntrl... 155
1SCTG... 264
isdigit... 155

isgraph ... 155
ISIG ... 140,147
ISLNK... 265
islower... 155
ISO ... 20, 29, 175, 178-179,196,206,259
ISO member body... 20
isprint... 155
ispunct... 155
ISSOCK... 265
isspace... 155
ISTRIP... 142-143
ISUID... 263
isupper... 155
isxdigit... 155
1XOFF... 141-143
1XON..1 141-143
jcgctpgrp... 61
jesetpgrp ... 25, 28-29, 61, 79, 153, 229-230,

255, 275
job ... 22, 25-26, 28-29,44, 47, 54, 56,59-

60, 63, 66, 79, 135-136,140-141,
147-149, 153-154, 179, 189,218-
226, 229-230, 232, 250, 253, 255,
275,278-279,283.291-293

job access control... 22, 25, 59, 136, 221-
222, 253

Job Control Option ... 25-26, 28-29,47, 54,
56, 59-60, 63, 66, 135-136,140-
141, 147-149, 275, 283,291-293

job control process group leaders ... 25-26,
28-29, 79, 219-220

job control shell... 219-220, 222-225,229-
230, 253, 255

job control signals ... 26, 59-60, 66, 140,
148, 219, 222-225, 253,279,283,
293

job process group leader... 25-26, 28-29,79,
219-220

Julian ... 157, 256-257

kernel... 179, 202-203, 206, 270
Kemighan ... 192, 256
KILL ... 138, 140-141, 147-148, 254
kill... 34,44, 48, 57, 59, 62-63, 67, 71, 73,

78, 138, 140-141, 147-148, 191,
194, 216, 218-219,222-225, 252,
254-255,279

Korn... 210
LANG ... 37,159
Language Binding ... 21, 199
Language Conformance ... 21, 199
Language Standards ... 176,178
languages ... 3, 5, 17, 21, 34, 36, 39-40,49,

52, 56, 58, 62, 108, 155-156,158,
160-163, 176-179, 184, 188-196,
199, 205-206, 211,219, 222,226-
227, 234, 237, 239, 244, 254, 256-
257, 259-261,268,271,274

large ... 34,36, 76, 186, 209, 212-214, 221,
232-233,235,244, 250,252, 261-
262,264

last call... 228
latitude... 208
latter... 186, 191, 193, 195-196, 198, 203,

208, 219, 226, 23C, 233, 236-237,
247, 252-253,261,266

latter function ... 191, 219, 237, 252
latter term ... 191,261
latter type ... 191, 230
LCALL... 159,258-259
LC_COLLATE ... 37, 158-159, 258-259,

277
LC_CTYPE ... 37, 158-159, 258-259, 277
LC~NUMERIC ... 38, 158-159, 258-259,

277
LCJTIME ... 38, 158-159, 258-259,277

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

315

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

ldexp ... 155
leap secoads ... 24,202
legal... 250
lengths ... 41-42, 51,76, 90-91,93-94, 97-

98,100-102, 104, 109-110, 112-
113,115,139,170-171,204,213,
230,234-235,264, 286

library functions ... 21-22, 183,191,199,
218,261

library routine ... 203-204, 208,218,223,
261

Library Routines... 274
limit... 20-21, 33, 35-36, 38^0,48,51, 86,

112,116,120,125,132, 137-138,
142, 187, 193,195-198, 202,209,
211,213-217, 220, 230, 232,240-
241,246, 248,251,262-263,267,
278, 287,289

limitations ... 32,39,41,43, 240, 256,267
limits.h ... 20-21,39,41-43, 86,116-117,

193,198,211-215,232,241
line ... 6,42, 122,138, 140, 144, 146-147,

151, 192,202,213,249,251-252,

254-255,283
line control functions ... 151,255
line numbers ... 42, 122,138,213
line speeds -..251
link ... 23,26,34, 36-37,43,46,62,96-98,

100-106,108,170,173,178, 201,
205,236, 238, 262-265,267,280,

286-288
link count... 26, 34,37,43, 96, 98,100-101
Link Layer Control... 178
linkname... 267, 286-288

LINK_MAX ...34,43, 96, 98,116

link t~.238
list .7.7-8,20-21,32-33,37-39, 50-51,62,

83,86,92, 96,101,106,108,116,
165,175, 178,180,185,188-189,
191-192, 198, 200, 216-217, 224-

226, 236, 239-240, 256,273,277,
279, 282

LNKTYPE... 286,288
local control value .„ 14S
local file system ... 169,287
local modes ... 136-137, 142, 147,254,284
locale ... 37-38,136-137, 142,147-148,

156-159, 169,254, 256-259,284,
287-288

local lime ... 156, 256
lock... ?3,35,48, 50, 121,127,129-132,

187,247-249
locked region ... 130-132, 247-248
lockf... 33, 35, 48,50, 121, 127, 129-132,

187,247-249

locking process ... 33,50,121,130-132,187,
248-249

locking requests ~ 130-132,248
lockout... 248
LOCK MAX ...215
loglO .7.155
logical device... 203
login name ... 38, 77,165,167,236,274
login shell ...215,219,222
LOGNAME... 38,211,277
longjmp... 155,162, 194,224,227,244,260
LONG_MAX... 40

LONG MIN ...40
look'...~215,227,255
loops... 235-236
lower... 146,204

lowercase ... 38,156,193,195,205-206
Ire ad ... 209, 243-244
lscek... 24, 36,44, 62, 95, 124, 126, 133,

156,209,212, 215, 249-250,283
lvalue... 234
1 write... 243-244
L_ctennid... 84,231
L_cuserid... 77,229
ljen... 130-131
l_pid... 130-131
1 starts 130-131,249
ftype... 127,130,132
l_whence... 130-131
machine ... 80, 146, 206, 214-215
macro ... 22, 106-107, 162, 199,260,284
magic... 170, 286-287, 289

magic bytes... 170
magic field ... 287,289

magnitude ... 39,41,43
mail... 6,38,185,277

main ... 4, 29,49, 52,56, 60, 193-194, 208,
210,217,219,247, 278

main body... 194
main memory... 208

major... 17,184-185, 189, 195,198,219-
220, 244,248, 250

major difference ... 198, 220
major feature ... 198,248
make directory ... 97, 218, 236-237
malloc ...155,193,235
mandatory ... 187, 205, 248-249
mandatory locking ... 187, 248-249
mandatory locks ... 187, 248-249
manipulate signal sets ... 64, 225
manipulating ... 39,57, 64, 225, 276
manipulation ... 60,120,177,243
manner... 33, 67, 114, 137, 156, 158-159,

170-171, 173,186,224-225, 240,

242, 252, 265, 287, 289

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

316
I

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

manual... 188-189, 194, 269-270
many ... 26, 34-35, 89. 94, 125, 138, 177,

183-184, 186-189, 192-194, 198,
200, 205-206, 208-211,214-216,
218, 220, 226-227, 230, 232-233,
236, 238, 240, 243, 248-249, 252-
253,257, 260-261,265,274

margin ... 6
mask ... 51, 53, 60, 66-69, 93, 95-96, 98-99,

107, 128-129, 142, 144, 147, 162-
163, 220, 223, 226, 236, 260, 275,
292

materials ... 3, 176, 182, 185, 194, 215
maximum... 34, 41-43, 126, 171, 209, 212,

235, 241, 244-246, 266, 287, 289
maximum pathname length ... 42, 235
maximum portability... 287

MAXCANON ... 42,116,138
MAX_CHAR ...213
MAXJNPUT ...41, 116, 137-138, 143,213
may ... 3-4, 19-20, 22, 24-25, 27-29, 31-35,

37-39, 42-45, 53-55, 57, 59, 61, 63,
66, 69-70, 72, 77-78, 80-85, 87-89,
92,103, 106, 109-113, 122, 125,
129, 131, 135-141, 146, 148-149,
153, 157, 159, 161, 163, 165, 167-
169, 172-173, 176-177, 181, 184,
188, 190-192, 196-200, 204-216,
219; 222-223, 225-228, 231-232,
234, 236, 238-245, 247-250, 253-
257, 259-261, 264-265, 267-270,
273, 275, 277-279, 285, 287-289,
292, 294

meaning ... 19, 22, 24, 37, 59, 137-138,141,
157, 163, 177, 191-192, 196, 201-
202, 204, 211, 232-233, 238, 246,
254, 257, 260, 267, 279, 288

mechanism ... 29-31, 138, 140, 169, 177,
189, 193, 200, 202, 204, 220-222,
224-226, 230, 233, 247-250, 263-
264, 267

medium ... 125, 169, 263, 265-266, 285, 287
meeting ... 20, 194, 198, 212, 240, 242,

261-262, 266-267
members ... 7-8, 20, 24-25, 27, 29, 48, 50,

65-66, 80, 82, 87,106,114,130,
136, 142, 148, 166-167, 182, 186-
187, 214, 216, 221, 230, 240, 270,
280

memory ... 22, 35, 42, 52, 58, 208, 213, 217,
•249-250, 274

memory management... 35,52
metafile... 179
method ... 86-87, 116, 202, 205,216, 222,

233-235, 244, 251-253, 256-257,

262
might... 183, 201-202,204,216,232,240,

263
MIN ... 138-139, 147-148
minimal changes to existing application code

...185,206,225
Minima] Changes to Historical

Implementations ... 185, 202
Minimal Directory Tree Structure ... 275
minimum ... 41-43,138-139, 177,212, 232,

240,263-264,267
minimum number ... 138-139, 212, 264
minimum requirements ... 267
minimum value ... 41-43, 212, 232, 263-264,

267
mkdir... 62, 95-98,103,108,112,173,190,

208, 228, 237-238,277
mkfifo ... 62, 95-96, 99, 108, 112, 202, 228,

237,274
mknod ... 202, 237,274
mode ... 22, 24-26, 34, 42, 50-51, 58, 62,

92-93,95-99, 106-107, 111-112,
128-129,131, 136-142, 144, 146-
148, 161, 169, 178, 190, 192, 194,
197, 229, 239, 249-254,260, 263-
264, 267, 282-284, 286-288

mode field ... 169, 287
modem ... 22, 24-26, 34,42, 50-51, 58, 62,

92-93,95-99, 106-107, 111-112,
128-129, 131,136-142, 144, 146-
148, 161, 169, 192, 239, 249-254,
260, 263, 282-284, 286-288

modem access ... 22, 26,92, 111, 128-129,
131,249

modem connection ... 146
modem control lines ... 146
modem disconnect... 58, 141, 146, 254
modem line control... 146
modem lines ... 138, 146, 192, 251
modem status lines ... 146
mode t... 37, 92, 95, 97, 99, 106, 111,209,

236-238,277
modf... 155
modification time ... 106, 114, 171, 240, 288
modifying ... 17, 36, 66, 76, 251,292
modtime ... 114, 240
most characters ... 138, 230
most functions ... 32,47, 185, 191, 208, 230,

233, 239-240,246
mount... 202-204, 240, 274
mount point... 203-204
mounted file system... 202-203, 240
mtime... 286-288
mtime field ... 287-288
mtimer... 286-288

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

317

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

much data .- 137
multi-byte... 141

Multi-volume archives — 265
Multics... 269
Multiple Groups... 275
Multiple Volumes ... 173,265

Mumps... 178
must... 25,30,45,62, 106,108,114,154,

161, 169,186-187, 194, 198, 200,
204, 207, 209-210, 212,215,219,
222-223,228-229,231-234,236,
239- 240, 248-249,253,259,265-
266,277,281

mutability ...211
name ... 5,7,20, 23-25,33-34,37-39,41-43,

57,66, 76-77, 80, 82-83, 85-87,92,
96, 98, 100, 102-104,106,110, 114,
116-117, 130, 136, 142,144-145,
147-148, 158, 165-172,183,188-
189, 194-196, 200-201,203, 205-
208,210, 218, 220-223,229-231,
233-234, 236, 238, 241-242, 256-
260, 264-265, 267,274,283,

286-288
name field ... 170, 267,287-288
name path ... 96, 98,100,102,104,110,

116-117,171,203, 210
name.h ... 23,38-39,77,189, 211,234

named directory stream... 88,235
names starting... 200
NAME_MAX ... 24, 32, 35,42,46, 51, 87,

90,94,97-98, 100-102,104, 109-
110, 112-113,115-116,216,
240- 241

NAMSIZ ...267,287

NBS... 180, 261
nbyte ... 122-125, 243,245-246
NCCS... 142,148

NDL... 179
need ... 18, 22, 70, 139, 142-143,172, 178,

197, 205-206, 209, 214-217, 226,

228, 232-234, 239, 241,244, 251-

252, 257, 259-261

negative value ... 63. 131, 227, 233
network ... 17, 80, 135, 146, 177-179,181,

184, 190, 205,207,209, 238,244,

248, 251-252
network connection ... 135,146
networked systems ... 178,181, 190, 207,

244, 251-252
networked transfers... 244
networking ... 17, 80, 135, 146, 177-179,

181, 184, 190, 205, 207, 209, 238,
244,248, 251-252

networking standards ... 178,190,207,252

NGROUPS MAX ... 29,41, 76, 86,275
NL... 140, F42-143,147
nlink_t... 37,106,209
no-op 225

nodename... 80,230
NOFLSH... 147
Non-canonical mode... 254

non-canonical mode input processing ...
137-138,147,254

non-local jumps ... 155,162,194, 221,260,
274

non-negative integer... 24, 94
non-negative value — 81
non-null „. 217,287
non-null characters... 287
non-reentrant function calls ._ 224
non-standard signals... 223-224
non-varia’ole... 225
non-zero ... 22, 25, 72,107,125,136,162,

234
normal... 34,52, 61, 125,146-147,195,

200, 248, 263
normal circumstances... 146
normal completion -..125
normal flush.- 147

normal return ... 34, 52,61,125
normal termination... 52
normal usage ... 195,248
normally... 22, 33, 36,66, 135, 146,195,

202, 220, 224, 226
note .. 3,6-8, 45,138-139, 143, 181,184-

185, 188, 191-195,200-202, 221,
223-225,230,233,239-241, 244,
247-248,253,255-256, 260, 265,
267-268,279,289

notes sections... 3
notification ... 221, 223
notion ... 204
NUL... 156
NULL... 21,39,46, 49-50, 66-68, 77, 81,

83-85, 88-89,91, 114-115,161,

167-168,234-235,258-259
null byte ... 24, 27, 39,4142, 50, 171, 206,

229, 231, 264
null character... 24, 27, 50, 77, 84, 87,91,

206, 233, 287
null define... 286
null password -.41
null pathname ... 32, 42,44, 264
null pointer... 21,39,49-50, 77, 81, 83-85,

88-89,91, 114, 158-159, 161, 167-
168, 259

null signal... 57, 62-63, 66-68
null siring ... 32, 41-42, 50, 77, 83-84, 158,

233,259, 287

318

UNAPPROVED DRAFT. All Rights Reserved by IEEE,

Do not specify or claim conformance to this document.

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

mill-terminated ... 50, 80, 85, 87, 166, 287
null-terminated character array ... 50, 80,

287
null-terminated character string ... 50,287
Null-terminated filename ... 87
null-terminated pathname ... 85
null-terminated string ... 50, 287
number ... 4-6. 20. 22-23,25-26, 32-35, 37-

38,41-43,48, 50-51,53-54,61,
64-65, 67, 70, 72, 76, 87, 94, 96,
106, 120-126, 129, 131-132,137-
139, 143, 148, 157, 165, 167, 170,
180, 183, 187-188, 191, 193, 195,
197, 201-203, 207-208, 212-214,
217, 220, 224-225, 227, 233-234,
236, 243-248, 256, 262, 264, 273,
275-276, 278, 287-289, 292-293

numeric editing ... 38,258
numeric value ... 112, 230
numerical group ID ... 165-166
numerical limits ... 39, 193, 211
numerical user ID ... 165
numerous ... 189, 250, 267
numerous enhancements ... 267
object... 17-18, 23-24, 27, 57,64, 87, 89,

146, 149, 151, 166-167, 184, 200,
204, 210, 222, 228, 232, 235,242,
244, 249

object compatibility ... 184, 210, 242
object file ... 23-24, 242, 249
occur... 29, 32-33, 35, 51-53, 56-57, 60, 70,

72, 91, 98, 102, 104, 131, 138, 140,
146, 149, 156-157, 171, 189, 193,
198, 207, 219, 226-227, 234, 236,
248, 255, 266, 282, 288, 292

OCRNL... 284
octal... 24, 53-54, 170, 264, 287-288,

292-293
octal value ... 24, 53-54, 264, 287-288,

292-293
odd parity ... 144, 146
offsets ... 24, 26, 44, 92, 122, 124-125, 130-

131, 133-134, 156-158,244, 247,
249-250, 256-257, 283, 286

off_t... 37, 106, 130, 133, 209, 212, 238,
244,249, 283

OFILL... 284
ofiag ... 92, 94, 128, 236, 247, 280
OLCUC... 284
older function ... 235
one-linp'tag ... 208
ones ... 4, 20-21, 24-27, 29-33, 37, 42, 45,

47, 49-53, 62-63, 65-68, 70, 83, 92,
95.100,104,111-112, 119, 122,
131, 137-140, 146-148, 154, 157-

159, 161, 173, 175, 184-185, 191-
195, 197-198, 200-203, 206, 213,
215-217, 220, 223, 226-227, 229-
231, 235-236, 238-245, 248-249,
252-255, 257-259, 261-263, 265-
266, 271, 273-274, 276, 287, 293

ongoing efforts... 18
ONLCR ... 284
ONLRET... 284
ONOCR... 284
open ... 5, 24, 26, 30-31,33-35,42,47, 50,

55, 62, 88-90,92-96, 100, 102,
108-109, 111, 116,119-12% 126-
137, 143-144, 146, 148-149, 152,
160-161,175,178, 180,184, 195,
198, 202-203, 212, 214-217, 219,
222, 226, 228, 231, 235-236, 238-
240, 242-243, 247-249, 253, 260,
265, 277, 280, 287

open file ... 24, 26, 31, 33-35,42, 47, 50, 55,
89,92-95, 100, 108, 111, 116, 119-
120, 122, 124, 126, 128-133,135-
136, 146, 149, 152, 161, 198,203,
212. 214-217, 219, 222, 231,236,
239-240, 243, 247-249, 253, 260

open file description ... 24, 26,47, 50,92,
119, 129, 133, 203, 243, 247-248

open file descriptor... 26, 33-34,47, 50, 55,
89,92,108, 111,116,119-120,122,
124,126, 129-133, 135, 149,161,
203, 222, 231, 239-240, 243, 260

open instance ... 203, 215
opendir ... 88-89, 190, 287
opening ... 5, 24, 26, 30-31, 33-35, 42, 47,

50, 55, 62, 88-90, 92-96, 100, 102,
108-109, 111, 116, 119-124, 126-
137, 143-144, 146, 148-149, 152,
160-161,175,178, 180,184, 195,
198, 202-203, 212, 214-217, 219,
222, 226, 228, 231, 235-236, 238-
240, 242-243, 247-249, 253, 260,
265, 277, 280, 287

opening special files prior... 222
opening terminal device file ... 135, 253
OPEN_MAX ... 34, 42, 86, 120-121, 132,

195,214-215
OPEN_MAX_CElL... 214-215
operating ... 3 A 7, 17,25, 47, 64, 80, 87,

137-138, 175, 177, 181-184, 188,
191-192, 195-197, 201-203, 205-
206, 230, 236, 252, 263, 274, 288

operating environment... 3, 17, 183, 191-
192,201

operating system ... 3-4, 7, 17, 25, 47, 64,
80, 87, 137, 175, 177, 181-184, 188,

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

319

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

191-192,195-197,201-203, 205-
206, 230, 252, 263,274, 288

Operating System documentation ... 3
Operating System Primitives... 274
operation ... 3, 17,24,34-36, 58, 70, 87-88,

94,103-104,112, 124,126-127,

130, 136, 139, 149,184,190,201,
204, 208, 214, 221,226, 228,234-
235, 239, 243-249, 265,282, 285

OPOST... 144
option ... 21-22, 25-26, 28-29,44-45,47,

53-56, 59-60,63, 66, 79, 86, 92,
116, 135-136,140-141,147-149,
153-154, 183,187,190-191,196-
198, 202, 205-206, 217-219,228,
232, 257,262,275, 279,283-284,
291- 294

optional actions... 44-45
optional facilities... 44-45
optional features ... 19, 275
optional actions... 149-150
order ...4,32, 37, 53-55, 88, 159,169,175,

197, 206, 211-212, 214,217,224-
226,228,230-231,238,242-244,
252, 260-261,268,270,278,
292- 293

ordinary application ... 231, 233
organization ... 3,31,194-196
original state ... 230,261
OSI Model... 178
other function calls ... 64,77, 168, 207,218,

220
other reason ... 200, 219, 236, 257
output... 27,34-35, 38, 87,119,122,135,

137-138, 140-149,151-152, 160,

241, 243, 254, 265, 284, 288-289

output baud rates ... 145-146

output characters ... 137-138, 140-141,143-
144, 147, 254

output control value ... 144
output modes ... 137, 140-142, 144,254-, 284
output primitives ... 87, 119, 241
output processing ... 135,137, 140-141, 144,

148. 254
output queue ... 137,147
overflowing ... 58, 83,143,231
overwriting... 130, 235
overwritten ... 77, 84-85, 88,167-168
owner... 24-25, 31, 36, 46,50, 77, 93. 98-

99, 106-107, 111-115, 170,172,
t ,218, 240, 249, 263, 281, 287-289

owner ID ... 24-25, 50, 98-99, 106-107,

111-M5, 218, 240, 281,289
ownership... 112, 169

O ACCMODE... 128-129

O APPEND ... 92, 124, 128
cfCREAT... 92-95,128, 212, 280
0_EXCL... 93-94, 128
O NDELAY... 241-242, 246-247, 280,

282-283
O NONBLOCK ...93-94,119,123-126,

128,135,137,146, 185, 241-242,
245-247,280,282-283

O RDONLY ... 92-93,128
0_RDWR ... 92, 94, 128,212

0_TRUNC „. 93-95,128,212
0_WRONLY... 92-95,128
PI 003 - 5,182,262
P1003.1 ... 7,181,184,188, 190-194,196,

211
PI 003.2... 5,135,169,218
P1003.3... 5,198,214-215
P1003.4 ...5,178
page... 8-15, 237

pair... 39, 170,214,242
papers „. 268-269
parameter... 136, 142, 149, 163, 191-192,

199,212, 222, 225-226,229, 238,
240, 244, 251, 254, 276, 279

PARENB ... 144,146
parent .„ 26-27,.29,32,46-48,51-52,54-55,

60, 63, 73, 82, 93-94, 98,101-102,
104,216,218-219,224,227-228,
230-231,236,255,277,292

parent directory ... 26, 32,46, 93-94, 98,
101-102, 104,228,236,277

parent following ... 47,216
parent process ... 26-27, 29,46-48,51-52,

54-55,60, 63,73, 82, 216, 218-219,
224, 227-228,230-231, 236, 255,

292
parent process ID ... 26, 29,46-48, 51,54-

55, 63, 73, 82, 219, 227-228,255,

292
parity ... 142-144,146,287
parity error... 143
PARMRK... 142-143
PARODD... 144,146
part... 3, 17, 25, 30, 37-39, 101, 162, 175,

181, 189, 192, 194-195, 198,207-
208, 219, 225, 248, 252, 261, 263,
265, 287

participating ... 5, 8, 178,186
particular... 31, 63, 8S, 146,159, 163,185-

186, 191-192, 207,212,214,239,
245, 257, 260-261,288

Pascal... 178
passwd ... 165, 167, 203, 210, 261, 274
passwd database ... 261, 274

passwd file ... 203, 261

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

320

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

passwd.h... 209
Password ... 261
password ... 37-38, 41, 77, 165, 168, 202-

203, 249, 261,289
password database ... 37-38, 77,165,168,

249,261
PASS_MAX ...41,86
PATH-... 38,49, 195,210
path name ... 96, 98, 100,102,104,110,

116-117,171,203,210
path prefix ... 26, 32, 38, 49, 51-52,94, 96-

101,104,109-110,112-113,115,
287

pathl ... 26, 32, 38, 49, 51-52, 90, 92, 94-
102, 104, 108-117, 171,195, 203,
210, 212, 287

pathconf... 32,42,45,116-117,216,240-
241,274,276

pathname ... 23-24, 26-28, 30-32, 34-35, 38,
42,44, 46, 49, 51-52, 84-85, 90-92,
94, 96-104, 108-116, 170, 201, 203,
205, 207, 214, 216, 231-233, 235,
240-241, 247, 263-264,267, 277,

287
pathname component... 24, 27,32, 35,46,

51-52, 90-91, 94, 97-98, 100-102,
104, 109-110, 112-113,115,216,
240-241

pathname resolution ... 23-24, 27-28,30-32,
201, 205, 207, 233

PATH_MAX ... 27, 34,42, 51, 90, 94, 97-
98, 100-102, 104, 109-110, 112-
113, 115-116,213, 233,235, 264,
267, 276

pause ... 55,62, 70-72, 226-227, 244-245,
294

pausing ... 55, 62, 70-72, 226-227, 244-245,
294

pclose ...218-219, 274
pending ... 48, 51, 6061, 63-64, 68-69, 139,

163, 216, 22 0 221, 223, 226, 279
pending signals ... 48,51, 60-61, 63-64, 68-

69, 163, 216, 220, 223, 226, 279
performs ... 3, 26, 31, 34, 36, 47, 62, 87,

103, 141, 143-144, 149, 189, 202,
212, 222, 228, 239, 244, 246, 248,
253, 262-263, 289

perhaps ... 5, 202, 217-219, 245, 260
permission ... 4, 23-26, 29-31, 33, 35, 37, 43,

51-52,62-64,89-91,93-96,98-104,
,*107-115, 136, 169-170,172,202,

204-205, 218, 225, 228, 236, 239,
241, 287-288

permission bits ... 24-25, 3031, 93,95, 98-
99,107-108,111,287-288

permission checking ... 110, 225, 239
permits ... 21-22, 36, 38,110,114,191,

200-201, 204, 206-208, 212, 216,
224-225, 227-228, 230231, 236,
238, 240, 243-244,246-247, 255,
260, 266, 288

perror... 155, 208
pfxsiz... 267, 287

pgrp... 79
pgrp id ... 154
PHIGS ... 179
physical end... 125
physical I/O operations ... 285
pid ... 44, 62-64, 218, 225, 279, 291-294
PID_MAX ... 27,41, 63, 79, 86, 154, 292
pid_t... 209
pipe ... 24, 27, 36, 43, 58, 62,100,108-109,

119, 121-126, 134,202-203, 220,
242, 244-246, 255, 260

pipeline ... 24, 27, 36, 43, 58, 62, 100, 108-
109, 119,121-126, 134,202-203,
220, 242, 244-246, 255,260

PIPE_BUF... 43, 116, 125, 244-246
P1PE_MAX... 246
pitfalls... 251
point... 25, 31, 37,49-50,53,55, 61, 64-69,

76-77, 8085, 88-92,94, 96-104,
108-116, 122-124, 130133, 138-
139, 145, 158, 163, 167-168,185-
186, 195, 198, 201, 203-204, 210
211, 216-217, 219, 222, 231-232,
241,251,258,273,291,294

pointer ... 21, 39, 49-50, 60-61, 66, 77, 81,
83-85,87-89,91,109,114,130,
145, 158-161, 163, 166-168, 192,
200, 217, 222, 247, 252, 259-260,
282-283

popen ... 218-219, 274
port... 141, 146,180
portability specifications ... 44-45, 183,

215-216,252
portable ... 3, 17, 27, 31,38, 155,172,175,

178, 181, 183, 193, 197, 203,206-
207, 219, 221, 223 225, 232,250
252, 260-262, 264,287,289

portable application ... 38, 155, 183,197,
207,223-225,232,250-251,261

portable filename character set... 27, 31,
193,203, 206, 287

portable library ... 223, 250, 261
portable mechanism ... 221, 224-225, 250
Portable Operating System Interface ... 3, 17,

175
portable way ... 224
portion ... 25, 123, 130, 132, 258, 265

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

321

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

position ... 4. 24. 88-89,95, 122, 124,131.
156, 206, 235, 249-250,265

POSIX ... 3,5, 182, 188, 190-198, 201-203,
205,211,220, 222,226, 233,237,
239,241,247,250,252, 256, 258-
261, 263-265

posixJi... 215
possibility... 214,249
possible error numbers ... 33
possible errors ... 3, 32-33, 232, 265
possible requirement... 185-186,192, 198,

213, 244
possibly ... 42, 199, 201,204, 214,252
potential... 131,184, 193, 215,218,261
potential security problem... 218
potentially 220, 240-241
practice ... 19, 135, 181,183, 207,210,264
precise ... 143,190, 230
precision... 202, 288
precluding ... 201, 204,219
predecessor... 31-32,246
prefix ... 26,32, 38,49, 51-52,94, 96-101,

104,109-110,112-113,115,167,
267,286-287

prefix field ... 267,287
prepended asterisk ... 200
preprocessing directives... 211
presence ... 25, 200, 232, 279
present... 3,20, 44-15, 50, 83,139,156-157,

188-190, 192-193,197,209-210,
216, 219, 229-230, 233, 235,238,
240, 248, 256, 269,275

present form ... 3
present standard ... 3, 20, 45,157,188-190,

192-193, 197, 209, 216, 219, 230,
233, 235,238, 269

presents problems ... 229,248,256
prevent errors ... 32,224
previous draft... 247
previous lock type ... 131, 248
previous version... 234
primitive system data types ... 37,209
primitives ... 37,47, 64, 87, 119, 176-177,

209,216,219, 241,274
principal ancestor... 188,269
printf... 7-8, 155,177, 194, 208, 223,226,

27Q
prior... 53, 60, 64,69, 72, 92, 123-124, 204,

216-217, 222, 233
privileged operation... 228
privileges ... 22, 27, 30,36, 74-75, 97, 101,

110-114, 117, 177, 200, 204,228,
239, 263, 289

probably ... 235, 239, 250, 257
problem... 191, 200, 205, 210, 218-220,

224, 226-229,234,239-241,243,
. 248,251-252,255-256,263

problems inherent... 252
procedure call... 49, 77
process ... 22-37, 39,41-42,44-56, 58-64,

66-79, 82-84, 86-87, 89, 92-95,97-
101,103,105,107,110-115,117,
120-121,123-126,130-132,135-
142, 144,146-149,153-154,162-
163,166,168-169,176-177,180-
181, 185-187,189-191,194-195,
200,202, 204, 207, 209,215-231,
233, 236, 238-241, 244-245, 248-
249,253-256,277-280,282-283,
291- 294

process alarm clock .„ 70-71,226
process controlling ... 22-23,25-30,47,56,

60, 63, 70-71,78-79, 84, 131,135-
136,140-141,146,148,153-154,
163, 219-220,222,224-225, 229-
231,248,253,255,278,283,
292- 293

process creation ... 26, 28,47, 87,93,95,
98-99, 216-217

Process Environment .„ 227
process group ... 22-30,41,44^48,50-51,56,

58, 62-63,74-76,78-79, 92, 98-99,
107, 112,135-136, 140-141,148-
149, 153-154,166,176,181,189-
190, 204, 209, 215-216,218-222,
228-230,253,255,278,280,283,
291-292

process group equal... 27,44-45, 56, 63,
74-75, 79, 112, 154,255,278, 292

process group ID ... 23-25, 27-30, 41,44-47,
50-51,56,63,74-76,78-79,92,
98-99, 107, 112, 153-154, 204, 209,
218, 221, 228-229,255,278,280,
292

process group leader... 23,25-29,44,56,
58, 78-79,136, 219-220, 255, 278

process groups... 22-30,41,44-48, 50-51,
56, 58, 62-63,74-76, 78-79, 92,
98-99, 107, 112, 135-136,140-141,
148-149,153-154, 166, 176, 181,
189-190, 204, 209,215-216,218-
222, 228-230,253,255,278,280,
283,291-292

process ID... 23-30, 36,4142,44-48,50-
51,54-56, 62-63,73-79, 82, 92,
98-99, 107, 111-112, 114-115,
130-131,153-154, 194, 204, 209,
215, 217-219, 221,225,227-229,
239, 255, 278-280, 292-293

process identification ... 73,227

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

322

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

process image ... 33,35, 49-52, 217
process image file ... 49-52, 217
process lifelime ... 23, 26-28, 86, 233, 241
process opens ... 26,31,34, 42, 50, 55, 89,

92-95, 100, 121,123, 126, 135-136,
146, 215, 217, 222, 231, 239, 248

process primitives ... 47, 64, 216
process prior ... 53, 72, 204, 216-217, 222
process reading ... 25, 30-31,36, 123-124,

126, 136-137,141-142,236,239,
245, 248-249, 253, 283

process termination ... 52-56, 59, 195, 217-
219,221,223,291-293

Process Times ... 82,231
process using locking ... 131,248-249
processes ... 22-37, 39,41-42,44-56,58-64,

66-79, 82-84, 86-87, 89, 92-95,97-
101, 103, 105, 107, 110-115,117,
120-121,123-126,130-132, 135-
142, 144, 146-149, 153-154, 162-
163, 166, 168-169, 176-177, 180-
181, 185-187,189-191,194-195,
200, 202, 204, 207, 209, 215-231,
233, 236, 238-241, 244-245,248-
249, 253-256, 277-280, 282-283,
291-294

processing ... 22-37,39,41-42, 44-56, 58-
64, 66-79, 82-84, 86-87, 89, 92-95,
97-101,103,105,107,110-115,
117,120-121, 123-126,130-132,
135-142, 144,146-149,153-154,
162-163, 166, 168-169, 176-177,
180-181,185-187,189-191,194-
195, 200, 202, 204, 207, 209, 215-
231, 233, 236, 238-241,244-245,
248-249, 253-256,277-280, 282-
283, 291-294

processor scheduling delays ... 70
processors... 70, 260
PROC MAX ...215
program ... 17-19, 21, 33-34, 36, 38-40, 47,

49, 52, 56, 58, 62, 107-108,135,
139-141, 155-156, 158, 160-163,
165, 176-177, 181, 183-184, 188-
191, 196, 198-200, 202, 206, 208,
215, 217-219,223, 228,233,236,
238-240, 252, 256-257,259-262,
265, 267-268, 271, 274, 276, 278

program execution ... 107, 177, 184,240
program field ... 165, 233, 239
prograqimatic semaphore... 224
programmer... 176, 179, 181-182, 188,216,

235
programming ... 17-19, 21,33-34, 36, 38-40,

47,49, 52, 56, 58, 62, 107-108, 135,

139-141, 155-156, 158, 160-163,
165, 176-177, 181, 183-184, 188-
191, 196, 198-200, 202, 206, 208,
215, 217-219, 223,228, 233,236,
238-240, 252, 256-257, 259-262,
265, 267-268, 271.274, 276,278

programming errors ... 33, 135, 208, 223,
236, 265

prompt... 38
proposal... 185,194,198,206-207,210-

211,218, 225, 250-251,257,259
Proposals... 185, 251
proposed changes ... 187,209
protection information ... 169
provide ... 3-5, 17, 20-22, 25,27, 30-32,42,

45, 54, 79, 86-87, 116, 120, 129,
135, 137, 140, 145, 153-154, 163,
169, 175-176, 187, 189-190, 193-
194, 196-198, 200-202, 204, 209,
212-213,216-219, 221-223, 226,
228-229, 233-236, 241-243, 246,
249-250, 254,258-261, 263-265,
267,287

PS1 ... 38,277
PS2 ... 38, 277
ptrace... 208
purpose ... 3,24, 139, 182-183,194,197,

206-207,211,215,223,236,244,
259,261

putenv... 231
pwd.h ... 37-38, 167, 173, 209, 289
pw_dir... 167
pw_gid.;. 167
pw_name... 167
pw_shell... 167
pw_uid... 167
qsort... 155, 192
quantity... 232
queue ... 41, 137, 139, 142-143, 147, 213,

221,253
queue_selector... 151-152
QUIT character ... 147-148,254
race conditions ... 248
radix ... 38
raise... 194, 215
rand... 155
range ... 21-22, 33, 80, 83, 113, 121, 157,

184-185, 196,211,214-215, 224,
243,281-282

Rationale ...3,181, 183-185, 188-192, 194-
196, 206-207,241

raw mode... 251
read .„ 22, 24-25,30-31, 33, 35-36, 43,59,

62, 89,91-93,95, 107-108, 119-
120, 122-124, 126-128, 130, 133-

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

323

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

134, 136-143, 146-149,151,161,
166, 168,172-173,208, 212-213,
233, 236, 239, 241-249,251,253-
254,263, 265-267,282-283,287

read by group ... 141,172, 244,287
read by others ... 24,141,172,236,248,287
read by owner... 172,287
read operations ... 124, 136, 139,239,243,

248-249,265
read request... 30,33,122-123,130,137-

138,147, 245, 265
read-only file system... 28,31,94, 97,99-

101,103-104,110,112-113,115
readdir... 87-89, 190, 234-235
reading-only... 93
real group ID ... 25,28,50,73-75,110,

227-228
real time ... 5,70, 83, 178, 221,226,230
Real Time Extensions ... 5,178,221,226,

230
real user... 25, 28,30,50, 62-63, 73-75, 110,

225, 227-228,239
real user ID ... 25, 28, 30, 50, 62-63, 73-75,

110,225, 227-228, 239
real-time... 226
receipt... 54,124, 126, 138-139,163,217,

283,293
received character... 137-141,143,147-148,

213
received signal... 52, 61-64, 130,253
receiver „.46, 63, 144, 146, 213,217,246,

253
receives ... 46, 52, 60-64, 130,137-141,143,

146-149, 151, 182,213,217, 246,

253,279
receiving process ... 46, 60-64, 130,137,

253,279

reception... 146,151
recommendations ... 19, 180, 187, 244
recommended ... 19, 38, 77, 177,181,207,

223,261,264,267,281
reference ... 3, 22, 24, 26,43,48,52, 55-56,

58, 64-65, 67-76, 78-79, 83-84, 88.
90-91, 95-97.99-100. 102-103, 105,
108-109^111-113,115,120-122,
124, 126, 128, 133-134, 149-150,
153, 155, 160-162, 167-168,170,
173, 183, 185, 189, 191-193,195,
202, 208, 211, 223, 231, 237,244,
247, 256-257, 261, 268, 274,289,

t.294
referenced documents... 191

region ...130-132,247-249
REGTYPE... 286 •
regular file ... 24,28, 35,49, 51,93, 106-

107, 113, 122-125,129,172,204,
228, 236, 238, 240, 248, 263-265,
267, 286,288

related standards ...5,18,175-176, 180, 182,
185-186,188-189, 194-195, 197,

202,206,215,226,233,235,268
relative offset in bytes ... 130
release ... 78, 80,190,198,220, 225, 233,

237,242
reliable ... 34,189,194, 221.238-239, 261
reliable queueing... 221
relinquish 136
remove ... 22, 88,100-103,108,121,130-

131,155, 206,209, 214-215,237-
238, 267,280

Remove Directory Entries... 100,238
rename ... 62, 97,102-104,155,190,193,

236-238,274
rename file ... 103-104,238
renaming directories... 238
renaming dot... 238
repeated ... 166,168,253
replaces... 4, 6, 39,49, 69, 131, 204,217,

237,248, 252,263, 285, 291
reposition... 133,250
request... 30, 33, 35,52,57,66, 70-72,96-

97,104,110,122-123,125,127,
130-132,137-139, 147, 159,221,
223, 227, 244-246,248,265,
281-282

requested access ... 30,110,130-131, 281
requested time ... 72,227,245
require ... 4, 8,19-21, 25,27, 33,35,48, 52,

58, 69, 78, 81, 83-85, 92, 96-97,
103-104,108,144,156-157, 176-
177,185-187,191-195,197-198,

200,206-209,211-213,216-222,
224-225,230,232,234,236-240,
242, 244, 246, 248-249, 252,255-
256, 261-262,264-267, 274-276,
288

requirement... 4, 8,19-21,25, 27, 33,35,
48, 52, 58,69, 78, 81, 83-85,92,
96-97, 103-104, 108, 144, 156-157,
176-177,185-187, 191-195, 197-
198, 200, 206-209,211-213, 216-
222, 224-225,230,232,234,236-
240, 242, 244, 246, 248-249,252,
255-256, 261-262, 264-267,274-
276,288

Requirements ... 20, 184, 191-192, 196-197
reserved ... 57-58,172, 200, 210, 223,264-

265,286-287,289
reset... 70, 89, 138, 221-222,259
resource ... 8, 28, 33,36,48, 212, 214, 218,

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

324
id

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

232,249
respond ... 239
response ... 59, 138, 182, 186-187, 209-210,

232
rest... 4,38,261,264
restore signal masks ... 69, 162, 260, 275
restriction ... 61, 96, 101,111, 209, 212,215,

222-223, 229, 232, 235-236,255,
260

result... 36,49-50,58, 67-68,77, 91,93,
123,125,129, 131-134,168,185,
187, 198, 204, 227-229, 235, 243,
248-249, 252, 277, 283, 285

resulting ... 36, 49-50, 58, 67-68, 77, 91,93,
123,125, 129, 131-134,168,185,
187, 198, 204, 227-229, 235, 243,
248-249, 252, 277, 283, 285

return types... 83, 87, 89,131,166-167,191,
207, 209, 230-231, 236, 243, 248

return value ... 3,31-32, 48, 51,54,56, 63,
65,67-72, 75-79, 81, 83-86, 89-90,
95-96, 98-99,101-102, 104, 109-
111, 113, 115, 117,120-123,126,
129, 131, 133, 150, 152-154,158,
163, 167-168, 191, 204, 207-208,
227,230-234, 241, 243, 246,250,
259, 292-293

returned argument... 61,76, 91,103,218,
235-236, 243

returned value ... 3, 31-32,48, 51,54, 56, 63,
65,67-72, 75-79, 81, 83-86, 89-90,
95-96, 98-99, 101-102, 104, 109-
111,113, 115, 117, 120-123,126,
129, 131, 133, 150, 152-154,158,
163, 167-168, 191, 204, 207-208,
227, 230-234, 241, 243, 246, 250,
259, 292-293

returning zero ... 48,54, 63, 65, 67-69,75-
76, 79, 89-90, 96, 98-99, 101-102,
104, 109-111, 113,115, 120, 122-
123, 133, 139, 146, 150, 152, 154,
207, 227,234, 239, 241, 246,

292-293
reversability ... 261
rewinddir... 88-89, 190, 235
rewinding ... 155, 166,168
RFCs... 185
right margin ... 6
right-justified ... 170
rightmost column ... 212
risk ...,143, 228
Ritchie ... 192, 256, 269
rmdir... 62, 101-102, 105, 190, 237, 280
root... 28, 32, 51, 102, 202, 204-205, 207,

277

root directory... 28, 31-32, 51,102, 202,
204-205, 207,277

root file system ... 202,204
routine ... 33, 60, 72, 77, 87, 91, 95, 98-99,

161, 168, 203-204, 208, 218, 221,
223,235,237,252,261,274

run time ... 25,44, 212,231
run time match ... 212
run-time increasable values ... 43,214
run-time invariant values ... 41-42, 212, 214
running process ... 47, 224
runtime ...211,232-233, 240
runtime facility ... 233,240
runtime limits ... 211, 240
R_OK... 43,110
samefile... 209
save ... 45, 162, 194, 217, 259-260, 263
saved process group ... 28, 50, 74, 255, 278
saved process group ID ... 28, 50, 74, 255,

278
saved set-group-ID... 28
saved set-user-ID... 29
SA_CLDSTOP... 60, 66, 223,226
sa_flags... 66,226
sa_handler... 66
sa mask... 66-67
sbrk... 193
scanf... 155
SCHAR_MAX ...40
SCHAR_MIN ...40
scheduler... 70, 177,225
scheduling ... 23, 70, 72,140,177,227
scheduling delays ... 70, 227
scope ... 3, 17, 20, 177, 183, 189, 194, 197-

199, 202, 211, 216, 219, 242, 244,
247, 250, 263

second ... 17, 23-24, 37, 70, 72, 81-83, 108,
114, 138-139, 157, 202, 220, 226,
230, 234, 249-250, 256-257, 277

sections... 3-4, 6, 20-21, 33, 87-88, 135-137,
147, 149, 160, 165, 169, 171, 188-
189, 194-195, 204,208,211-212,
214, 218-219,221,226, 232, 250-
252, 258, 264-265,267,273,285,
291

secure implementation ... 225, 239-240
secure implementations ... 225, 239-240
security ... 180, 200, 202, 204, 218, 221,

225, 228-229, 240, 255,261, 263
security label... 225
security risk... 228
seckdir... 184, 234-235
seeking ... 36, 122, 124, 133, 161
seeks ... 36, 122, 124, 133, 161
SEEK CUR ...44, 131, 133

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

325

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

SEEK END ... 44,131,133,249
SEEK~SET... 44,131,133,212
select... 24,244,270
semantic conflicts... 221
semantics ... 193,219-221,224-226,241-

242,244
semaphores... 224,247-248
series ... 169,177,179,285
session process group leader... 26,28-29,

44,56,78.136,219
Set Distinguished Process Group ID... 154,

221,255
set file access ... 30, 92,114,129,169,240
Set File Access and Modification Times._

114,240
Set File Creation Mask... 95,236
set gid ... 74-75,172,287
set group ID ... 29,45, 50, 56, 74-76,78-79,

92,98-99,107,111-112, 153-154,
189, 221,227-229, 255, 280

set process group ... 26,29,45, 50,56,74-
75,78-79, 92, 98-99, 107,135-136,
153-154,216, 221-222,228-229,

255,280
set uid ... 74,172, 228, 263, 287
set user... 50,66, 74, 92, 98-99,107,111-

112,189,227-228,241,250
set-group-ID... 28

set-user-ID... 29
setbuf... 155
setgid ... 23,28, 62, 74-76, 228,249,277
setgrent... 166,274
sethostid... 230
sethostname... 230
setjmp ... 155, 162,194,227,244, 260

setjmp.h... 162
sctlocaie ... 155,158-159, 211, 257-259
setpgrp ... 28-29,62, 64, 78, 136,153-154,

229
setpgrp2... 28-29, 62,64, 78,136,153-154,

229
setpwent... 167-168,274
settable parameters ... 142, 254
setting ... 37, 72, 130,145-146, 158-159,

222, 249, 252, 258
setuid ... 23,28-29,50, 62,74,225,227-228,

277-278

Seventh Edition ...4,188
several login names ... 77
shall... 4, 6,19-23,27,31-34, 37,39,4M5,

,.47-64, 67-72,77-80, 82-84, 86-90,
92-94, 96,98-104,106-111,113-

115,117,119-126, 129-131,133,
135-143, 146-149,151-154, 156-

158, 162-163, 166-167,169-173,

176, 196-197,227-228, 233,242-
246,248,263, 277,279-280,287-
289,291-293

shell... 5,17, 38,135,167,169,176-177,
207,210, 215-216,219-220, 222-
225,229-230,253,255,277

short... 130,138,196,205,209-210,283
short name... 196
shortcomings... 220
should ... 6,19-20,22,27,31-33,45,50,56,

77,101,107,138,149,163,166,
172, 177,187,191,195-198,204,

206-208,211-219, 222-225,227-
228, 230, 232, 234, 236, 239-240,
243-247,252-254,257,259,261-
263,266-267,279,287-289

SHRT MAX ...40
SHRT_MIN ...40
side effects ... 26,163
SIGABRT... 52, 58, 222,279
sigaction ... 50,55-57, 60,62, 64-68,70-72,

78, 95,124, 126, 133-134, 162-163,
220,260-261,275,292,294

sigaddset... 62, 64-65,275
SIGALRM ...58,70
SIGBUS ...223
SIGCHLD... 223, 226
SIGCLD... 55,59-61, 66,221,223-224, 226

SIGCONT... 56, 59-61, 63,220,223-225,
279

sigdelset... 62, 64-65,275
SIGEMT... 223
sigfillset... 62, 64-65,275

SIGFPE ...58,61,223
sighold._ 275
SIGHUP ... 44,56,58,141,219-220, 278
sigignore... 275

SIGILL... 58,61,223
siginitset... 62, 64, 225,275
SIGINT ... 34,58,140, 142, 216, 221
SIGIOT... 222-223
sigismember... 62, 64-65,275
SIGKJLL... 58,60-61,163, 220, 222,224-

225,279
siglongjmp ... 162, 194, 260, 275
signal... 23, 26,29, 34, 36, 44,47-48, 50-72,

94, 121-126,130,132, 136-138,
140-142,148-149, 152, 155, 162-
163, 183, 189,191,193-194, 204,

216-217,219-227, 229, 235, 244,

249, 253, 255, 260-261, 275,278-
279, 281,283,292-294

signal catching function ... 61, 72, 224, 227,
261

signal handler... 34, 66-67, 130, 221,

UNAPPROVED DRAFT. AH Rights Reserved by IEEE.

Do not specify or claim conformance to this document

326

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

224-225
signal handling ... 57, 66,70, 155, 163, 222,

224, 261, 275
signal interfaces ...23, 141, 163, 183, 220,

261
signal mask ... 51, 53,60, 66-69, 162-163,

220,223, 226, 260,275, 292
signal names ... 57, 136, 183, 220-223,260
signal-catching ... 61-62, 66, 69-71,163,

220-221, 223-224,227,276
signal-catching function ... 61-62, 66, 69-71,

163,220,224,227,275-276
signal-catching routine ... 221
signal.h ... 34,48, 52-53, 55,57, 59,62,64-

70.72.94, 96, 122,132,136, 149,
162-163, 217, 224, 253, 275,279,
281.283, 293-294

signals ... 23, 26.29, 34, 36,44,47-48, 50-
72.94, 121-126, 130, 132, 136-138,
140-142,148-149,152,155, 162-
163, 183, 189, 191, 193-194,204,
216-217, 219-227,229,235, 244,
249, 253, 255, 260-261, 275,278-
279.281.283, 292-294

signals pending ... 48, 51, 60-61, 63-64, 68-
69, 163,216, 220,223, 226,279

sigpending ... 51-52, 62, 65, 68-70, 221,275
S1GPIPE ... 36,58, 126
sigprocmask ... 51-52,60,62, 65-70,162,

226-227, 260, 275
SIGQUIT... 34, 58,140
sigrelse... 275
sigreturn... 221
S1GSEGV... 58, 61,223,279
sigset... 275-276
sigsetjmp... 162,194,260,275
sigselops... 57,64, 67-70
sigset_t... 57, 64, 66-69, 222
sigstack... 221
S1GSTOP... 54, 59-61, 163, 223, 279,293
sigsuspend ... 60,62, 65-70, 162, 226-227,

260, 275
S1GSYS ... 223, 279
SIGTERM ... 58, 222
SIGTRAP... 222-223
SIGTSTP ... 54, 59-60, 140, 222-223, 279,

283,293
S1GTT1N ... 54,59-60, 136, 222-223,253,

279, 283
SIGTTOU ... 54, 59-60, 136, 147-149, 222-

, *223, 253, 279, 283
SIGUSR1 ... 58, 222-223
S1GUSR2... 58, 222-223
SIG_BLOCK... 67
SIGJDFL... 50, 57, 60, 66, 163, 221-224,

276
SIG_HOLD... 276
S1GJGN ... 50,57, 60-61, 66, 222-224, 276,

279
S1G SETMASK... 68
S1GJJNBLOCK... 67
similar feature ... 240-241
similar usages ... 159, 196
simple abnormal termination ... 52, 59
simple sum... 288
sixteen bit problem ... 243
size ... 34, 87, 91, 106, 126, 130,133,142,

144,146,169,195.198,210,215,
• 217,225,230,234-235,245,250-

251,264, 266, 285-289
size field ... 106, 225, 264, 287-289
slash ... 24,26-30, 32, 38, 49,90,156,158,

206-207,257,263,267,287

sleep ... 33, 62,70, 72,131,218,227,249
socket... 241-242,260
sophistication... 232
sort ...210,274
source code level... 17-18, 176
source form... 232
source level... 3, 17-18, 176, 242
space ... 21-22, 25, 27-28, 35-36, 39,42, 48,

68-69,98, 100, 125-126, 156, 198,
210, 213, 235, 238, 244-245,256,
287

spawn... 216
special... 18. 22, 24, 27,29, 32, 35, 38,46,

58-59,63, 66, 76, 93,97, 99,106-
107, 121-122, 135,138, 140-141,
143, 147-148, 171-172, 184, 189,
201-203, 222, 225,229, 233,237,
250, 254, 258-259,264,275,277,
279-280, 283, 286,288-289

special characters ... 22, 24, 29, 46, 58-59,
93, 106-107, 135, 138,-140-141,
147-148, 171-172 225, 254, 280,
283, 288

special control character functions ._
147-148

special control characters ... 147-148, 225,
254, 283

special emphasis... 18
special file creation ... 97, 237
special files ... 22, 24, 27, 29, 35, 93, 97, 99,

107, 121-122, 135, 141,143, 148,
171, 189, 201-202, 222, 237, 250,
275, 280, 286, 288-289

special functions ... 18, 22, 27, 35,122,
140-141,147-148,222,233,237

special positioning type ... 250
specific bit encodings ... 218

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

327

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

specific implementation ... 33, 39,41-43,
59-61,66,80,117,149,151,158-
159, 191,197, 200-202,204, 209,
212-214, 218, 222, 230, 240-241,
243-244, 247,250-251.277, 280,
288, 292-293

specific interfaces ... 17,144,183,185,191,
200, 202,250

specification ... 3, 29,44-45,156,158,177-
178,183,188,190-191, 196, 198,
208, 215-216,221,224,238,248,
252, 260, 263,288-289

specified file descriptors... 119
sprintf... 155
SQL... 177,179
srand... 155
sscanf... 155
Standard ... 3-4, 6, 21,34, 36, 39-40,45,52,

56, 58,62,108,155-156,158,160-
163,175-176,180,184,187-194,
196-198, 200, 208-209,211,216-
217, 219-220, 225-226,230,233,

237-239,241-243,247-248, 250,
252, 256, 260-261,263,-267-268,
273-274,287

standard allows... 158,183, 190,196,198,
200, 206,213, 215,220, 222, 225,
236-237, 239-242,249,252, 257

standard error ... 32-33, 69,78, 81, 83-85,
135, 160, 183, 208, 216, 220,236-
237, 239,241,244, 246-247,265,
276,288

standard input... 34,135, 160,244
standard operating system interface ... 3,17,

25,175,181-184,191-192,195,
202-203,205, 230, 252

standard output... 135, 160, 288
standard permits ... 21, 200, 204, 207,216,

230-23 L 236, 240, 243-244, 246-

247, 260,266

Standard Portable Operating System... 3,

175
standard requires ... 19-21, 25,69, 78, 81,

83-85, 157, 176,186,191-193, 197,
206, 208, 211-213, 216-217, 220-
222, 224-225, 236-240,242, 244,
246, 264-267

Standards Closely Related to the 1003.1
Document... 176

standards language ... 3, l"7,21, 34,36,39-
, *40,52, 56,58, 62, 108,155-156,

158, 160-163,176-178,184,188-

193,195-196, 211, 219, 226, 234,
237, 239, 254, 256, 261, 268, 274

START... 141,143

start-up time... 83
start/stop input control... 142-143
start/stop output control... 142-143
stat... 20-21, 30-32,42,52,62, 95, 99-100,

106, 108-109,111-112, 173, 201,
233.239- 240,277,287-289

stat structure... 106,109,239,288
staLh... 106
state... 3,20-21,28, 30-32,42,47,52,62,

72, 89,95,99-100,106,108-109,

111-112,121,146,149,158,173,
194,198, 201, 208, 217,230, 233,
237.239- 240, 255-256, 259,261,
268, 273, 277, 287-289

static data ... 77, 85,167-168
status ... 4, 26,31, 52-55, 92, 106, 108, 124-

125, 127-129,131,144,146,218,
239,247,278,291-293

status corresponding ... 53-54, 292-293

status values ... 31, 53-54,131,218,292-293
stat Joe .„ 53-55, 218-219, 291, 293-294
stderr... 160, 260
STDERR_FILENO 160
stdin... 160,260
STDIN FILENO... 160
stdio ...239,274
stdio.h... 76-77, 84, 160-161
stdlibJi... 199-200
stdout... 160, 260
STDOUT_FILENO... 160
stime — 274
stopped children ... 53-54, 66, 220,222, 291
stopped process ... 25, 54,56,59-60, 136,

148, 220, 222, 224, 278, 293
stops ... 25, 53-54, 56, 59-60, 66, 136,141,

143-144,146,148,220,222,224,

278,291,293
store ... 39,53, 66, 68-69, 80-81, 84, 98,

102, 104, 137, 145-146,149,200,
265, 267, 285, 287,291

strehr... 156
stremp... 156
strepy... 156
strespn... 156
stream... 88-90,148,151,160-161,170,

173, 189, 192-193,200, 208,218,

235, 242, 260
streams ... 88-90, 148, 151, 160-161,170,

173, 189, 192-193, 200,208,218,
235, 242,260

strftime... 156
Strictly Conforming Application ... 18, 20-

21,41, 43-44, 197-198,217
string ... 26, 32, 34-35, 37-39, 41-42, 50, 77,

83-85, 90, 94,97-98, 100-102,104,

328

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

109-110, 112-113,115,156, 158-
159, 161, 170-171, 230231, 233,
257-259,274, 287

String Handling ... 156,258
string terminator... 230, 233
strlen... 156, 234
strncat... 156
straepy ... 156
strpbrk... 156
stnehr... 156
strspn... 156
strstr... 156
strtok... 156
struct... 65, 80, 82, 87-89, 106, 108, 114,

130131, 145, 149, 166-167,
233-234

structure ... 17, 20,22, 28. 31, 43,57, 66, 80,
82, 87-88, 106, 109,114,130,142,
145, 147, 149, 163, 166-167, 171,
177, 183, 195, 198, 201-205,210,
216, 222, 225, 230,233, 238-240,
249, 251, 254, 275, 280281,283-
284, 286, 288

structure elements ... 82, 87, 106,249
structure members ... 66, 82,106,114,142,

166-167, 230, 240, 280
st atime ... 51, 89, 93,98-99, 106,108,119,

123, 240
st_ctime ... 93-94, 96, 98-99,101-102, 104,

106,108,111,113-114,119,126
st_dev... 106
st_gid... 106
st_ino... 106
st mode... 106-107
st_ratime ... 93-94,96, 98-99, 101-102, 104,

106, 108, 119, 126,240
st_nlink... 106, 209
st_rdev... 106, 288
st_size... 106
st_uid... 106
subject... 4, 23, 28, 96, 101, 193, 199
subroutines ... 17
subscript... 148
subscript names ... 148
subsection ... 3-4, 33, 39, 186, 208, 212
substantive change... 210
success ... 98, 102,104,243
successful call... 113, 131,207
successful completion ... 48, 51,63, 65,67-

71,75, 79, 81, 83, 89-90,93-94, 96,
•98-99, 101-102. 104, 109, 111,

113-115, 119-123, 125-126, 131,
133, 150, 152-154, 208

successful function ... 48,51,63, 65, 70-71,
79, 89, 93-94, 96, 98-99, 101-102,

104, 111,113-115,119-123, 125-
126, 161,207-208,246,248

successful return ...48-49, 63, 65, 67-71,
75-76, 79, 81, 83, 89-91, 94. 96, 99,
101, 109, 111, 113, 115, 120-126,
131, 150, 152-154,161,207,246,
248

sufficient... 207,209,217,223,260
suffix... 209,287
sum... 33, 82,217,288
summer time ... 156-158, 256-257
super-user... 184, 200,204,227-228, 236,

238-240,263
supplementary group ID ... 24-25, 29,41,

45.50.75- 76,111-112,204,228,
240

supplementary groups ... 24-25, 29, 41,45,
50.75- 76,111-112,189,204,228.
240

support... 3,17,20, 25,28, 32,42,44,47,
54-56,59-60, 63,66, 79,93,97,
117,123, 125, 129, 132, 135-136,
141, 144-146,149-150, 152-154,
172, .176,181, 191, 197,201,211,
214, 217, 219, 229, 239, 241,244,
248-249,251,256-257,259-260,
263, 267,274-275,288-289,
291-293

supported languages ... 244, 256-257,259
SUSP... 140-141, 147-148,283
suspend ... 25, 52-53, 69-72, 141, 143,147,

151-152,227,230, 249, 255,292
suspend process execution ... 25,52-53, 70-

72,227
suspended input... 152
suspended output... 141,143, 151
suspension... 70, 72
suspension time ... 70, 72
SVID... 188-189,209,233,235,237-238,

270, 273-284
symbolic constant... 21,25, 39, 43-45, 57,

77,84,86,110,116,133,135,183,
195,215-216,230,232, 286

Symbolic Constants ... 25, 43,110,135,195,
215,230

symbolic link ... 205,262-265, 267
symbolic name ... 33, 77, 86,116,183, 201,

208, 230, 264-265,283
SYMTYPE ... 286
sync... 274
synopsis ... 3,47,49,53, 55, 57, 62,64-65,

67-76, 78-85, 87-88, 90-92, 95-97,
99-100, 102-103,106, 108,110-
112, 114,116,119-122, 124, 127-
128, 133,142, 149,151, 153-154,

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

329

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

158, 160-163, 166-167,222,247,
254,291

syntax ... 177,225-226,237,247,257-259
sys/dir-h... 233
sys/staLh ... 24-25,31,52, 63, 93,95-96,

99-100,106-109,111-113,115,
173,195, 209, 277,281,289

sys/limes.h... 82
sys/types.h ... 37,73-75, 82, 87-88,92,95.

97,99,106,108,111-112, 114,128,

133,209
sys/utsname.h... 80
sys/wait.h... 53,291
sysconf... 44, 85-86,233,241,274,276

sysname... 80
system... 3-5, 7,17,20, 23, 25,27-31,33-

38,42,47-48,50, 54-55,57,59-61,
63-64,67-69,72, 76, 80-83, 85-87,
92, 94, 97-101,103-106,110,112-
113,115, 117,120, 131-132, 137-
138,143,156,158,165,169,172,
175-185, 188-192,194-198, 200-
209,211, 213, 215-226, 228-233,
236-244, 246-248,250-252,256-
257,259-266, 269-271,273-276,
279, 287-289, 292

system administration ... 184,197, 200, 231
system call... 27, 82,183,194,203-204,

208, 211, 220, 222, 228-229,239,
• 241-242,247,252,279,287

system compile time ... 211,230
system CPU time ... 82
system databases ... 165, 257,261
system default... 158,165,189,224,259
system documentation ... 3-4, 20,48,50, 80,

183,189
system identification ... 80,230
System III... 4,188-190,203,219-220,230,

240-241,244,250-251,269
System UI/V ...242
system processes ... 25, 27-31,33,47-48,50,

54-55,59,61,63-64,82-83,87,92,
101, 103, 105, 117,137, 177, 189,
191, 200, 202,209, 215, 217,219,
221-224, 228-229, 231,233,240-
241, 248, 279, 292

system programs ... 156,158,165, 183,188,
191,196,200,202,206,223,228,

233,239-240, 252, 257
system services ... 17,47, 87, 201-202, 216
system start-up time ... 83
System Time ...81, 221,230
system-imposed ... 33, 35, 48, 51-52,120,

132,248
systems conforming ... 4-5,20, 156, 169,

172,185,192,215, 221-222,226,
239,242-244

SYS OPEN... 215
S_IRGRP _ 107
S-IROTH... 107
SJRUSR... 107
S jRWXG... 107-108
S IRWXO... 107-108
SJRWXU... 107-108
S ISBLK _ 107
S JSCHR .„ 107
S ISD1R... 107

S_lSFIFO... 107
SJSGID... 107,111-112,238, 240,281
S 1SREG... 107
S~JSUID... 62,107,111-112, 238,240, 281
S IWGRP... 107
S~IWOTH ... 107
S JWUSR... 107
S IXGRP... 107
s"lXOTH... 107
S~IXUSR „. 107
TABDLY... 284
tabs .„ 253-254
tape ... 35, 251, 263,265-267,285

tape mark... 266
tapecntl... 251
tar... 185,190, 262-263, 267,285
tar Ji... 286
tblock... 285
tc... 252
tedrain... 62,151-152,284
tefiow... 62, 151-152, 284
teflush... 62,151-152, 284
tegetattr... 46, 62, 149-150, 284
tegetpgrp ... 62, 136, 153, 255, 275
tegets... 252

TC1FLUSH... 151
TCIOFF... 152
TCIOFLUSH... 151
TCION... 152
TCOFLUSH... 151

TCOOFF... 151
TCOON... 151
icscndbreak ... 62, 151-152,284
tcsetatlr... 46, 62, 149-150, 284
tcsclpgrp ... 62, 79, 136, 153-154,229-230,

255,275
tclldir... 184,235
term... 19,21-22, 29,38-39, 138, 182,184-

185, 1S8, 191-193, 195, 197,200-
204, 206-208,212, 231, 251,261,
265, 268, 277

tcrmcntl... 251
terminal... 22-23, 25-26, 29-31, 38, 41-42,

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

330

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

46,51, 56, 58-59, 63, 77-79, 84-85,
122, 135-144, 146-150,152-154,
177, 200-201, 208, 213, 222, 225,
229, 231, 248, 250-255, 265,275-
276, 278, 283-284

terminal device ... 29, 85, 135, 137,140-141,
143-144,213,231,248,251,
253-254

terminal device file ... 85,135,137,140-141,
248,253-254

terminal device name ... 85, 231
terminal driver... 25, 225,253
terminal file ... 31, 85,122,135-137,140-

141, 143, 148, 150, 152-154, 201,
222, 231,248, 253-254

Terminal I/O ... 276, 283
Terminal Identification ... 84, 231
terminal input... 23,41-42, 135-138, MI¬

MS, 147, 152,213, 253, 284
terminal instead of terminal device ... 231
terminal interface ... 23,25, 29, 135-136,

141, 144, 149, 208, 250-252, 255,
275

terminal parameters ... 136,149
Terminate Process ... 55, 219,221
terminated child ... 53-54, 59, 82; 278,

292-293
terminated children ... 54-55, 82, 219-220,

223-224, 292
terminating process... 50, 52-55, 59-60,69,

71, 82, 136, 219-221, 224, 230,255,
278, 292-293

termination ... 52-56, 58-59, 195, 217-219,
221, 223, 291-293

termination consequences ... 56,219
terminology ... 17,19,196
termio ... 135, 142, 145, 149, 190, 251, 254,

276, 283-284
termios... 135, 142, 145, 149, 190, 251, 254,

276, 283-284
termios information ... 149, 251
termios structure ... 142,145,149, 251,254,

283-284
termios.h ...46, 142, 149-151, 153
tcrmios_p... 145,149
test... 4-5,43, 65, 106-107, 110, 141,178,

198,214-215, 232, 239, 249
testability... 212, 215
testing ... 4-5,43,65, 106-107, 110, 141,

178, 198, 214-215, 232, 239, 249
text... 144, 156, 177, 192, 194-195, 238,

260, 276, 280
Text vs. binary file modes ... 260
TGEXEC... 287
TGREAD... 287

TGWRITE... 287
this standard ... 3-8, 17-22, 29, 31-33, 37M0,

43.45, 48,57, 59-61, 64-65, 69,78,
81, 83-85, 106, 108, 158, 160, 163,
169, 175-179, 181-186, 188-193,
195-198,200,202-204,207-213,
215-217, 219-223, 225-226, 228-
230, 232-233,235-245, 247,249-
250, 252, 254, 256-257,260-262,
264-267,273,275,285, 288,291

TIME... 138-139, 147-148
Time of last access ... 106
Time of last data modification ... 106
Time of last file status change ... 106
time remaining ... 28, 60
time standard ... 7, 31, 45, 81, 157, 176, 186,

202,211,221,231,239,241,248,
252, 256-257

time zone ... 38, 156-158, 256-257
time-accounting information... 82
time-related fields ... 31, 108-109
timeout facility... 249
timer... 5, 7-8, 24-25, 28, 31,37-38,42,44-

45,47-48,51-52,55, 59-60, 62,
70-72,81-83, 106, 108-109, 111,
114-115,119,138-139, 147-148,
156-158,170-171, 176-178, 186,
193, 202, 207-209, 211-212, 215-
216, 221, 226-227,230-231,238-
241,245, 249, 252, 256-257,261,
277, 280, 288, 294

timer operations ... 70, 226
timer value ... 24. 31, 44. 72, 81-83,114-

115, 119, 147-148, 156-158, 193,
212,227, 230-231,245, 288

times ... 5, 7-8, 24-25, 28, 31, 37-38, 42, 44-
45, 47-48, 51-52, 55, 59-60, 62,
70-72,81-83, 106, 108-109, 111,
114-115, 119, 138-139, 147-148,
156-158, 170-171, 176-178, 186,
193, 202, 207-209, 211-212, 215-
216, 221, 226-227,230-231,238-
241, 245, 249, 252, 256-257,261,
277, 280, 288, 294

times.h ... 82, 233
timej... 37,81,106, 114, 209, 230, 277,

280
timing windows... 216
title ... 261
tloc ... 81
TMAGIC ... 286, 289
TMAGLEN... 286
tmpfile... 155
tmpnam... 155
tms_cstime ... 47,51, 82

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

331

Sid 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

tms_cutime ... 47,51, 82
tms_stime... 47,51, 82
tms_utime ... 47,51,82
toascii... 193
TOEXEC... 287
Token Bus... 178
Token Ring... 178
tolower... 155
TOREAD... 287
TOSTOP... 136,147-148
total ...39,48,50,142,231
total times... 231
toupper... 155
TOWRITE... 287
trademark... 3, 5,181,185
traditional function... 252
traditional implementations ... 221,226-227
trailer... 171,266
trailing null... 287-288
translate ... 143,169,184, 187, 212,256
translation ... 192, 197,211,214,258
translation and execution environments _.

211
Translation vs. Execution Environment —

197
translator... 211
transmission ... 140,146,151
transmitting data... 143,151
transportable archive ... 170, 285
transportable medium... 263,285
Trial Use ... 6,186-187,189-190,194,197,

209, 211, 215, 220, 233, 237-238,

252, 263,267
troff „. 6
Truncate flag... 128

trust... 180

TSGID... 287
TSUID... 287
TSVTX... 287
ttime_t... 209
tlyname ... 84-85, 192,231

TUEXEC... 287
TUREAD... 287
TUWRfTE... 287
TVERSION ... 286
TVERSLEN... 286
type ... 22,24, 26, 31, 37-38,57, 60, 64, 66,

80, 82-83, 87-89,92, 106, 114,
129-132, 142, 160-161,166-167,
170, 172, 185, 19!, 193, 195, 199,

•202, 207, 209-210, 220, 222, 225-
227, 230-231, 233-234,236,240-
241, 243-244, 248-252,260, 262-

265, 267,275, 277, 279-280, 283,
285, 288

type arguments ... 191,199,250-252,260
type difference... 233
typeflag „. 286,288
types.h... 37,244,249
TZ _ 38,211
tzname... 158
UCHAR MAX ...40
UID... 200, 263,287
UID_MAX ... 25,30,41,75, 86,113,281
uid L.37, 73-75, 106,112,166-167,209-

210, 238,277
UINT_MAX... 40
ulimit._ 274
ULONG_MAX ...40

umask... 51-52,62, 93,95, 98-100, 236,277
umount... 203,274
uname ... 62,80-81,190, 230, 286-287,289
undefined ... 19,34, 163, 196-197,208,231,

264-265,285
undefined results... 285
undefined term... 231
underscores... 27, 38

understanding ... 224, 232-233,265,267
unidirectional sockets... 242
unique ... 4,24-25, 33, 38,47, 148, 202, 204,

220,222
unistd.h ... 20-21,43-45, 86, 111, 116-117,

133-134,160,198,215,232,289
United States ... 158,256,268
units ... 26,138,158,213,256,268,289

UNIX ... 3-4, 181-185,188-189, 200-204,
206, 256

unlike ... 220, 240-241, 252

unlink ... 46, 62, 97, 100-101,103,105,108,
236,238,280

Unlock... 127
unmasked signals... 223
unpredictable behavior... 157
unrecoverable error... 244, 247
unsigned argument... 236,249
unsigned char... 142
unsigned long .„ 142, 283
unsigned offsets... 249-250
unsigned snort... 209, 283
unslcpt amount... 72
unspecified ... 19, 61, 87, 196-197, 219, 234,

251
unstandardized... 155, 256
upper... 38, 156, 193, 205,214
upper case... 205
usage ... 21, 25, 155, 159, 182, 195-196,

202, 204, 218, 248, 256, 259-260

useful applications ... 211, 215, 232, 244,
248

user... 4, 17, 23, 25, 28-31, 37-38,4142,

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

332

FOR COMPUTER ENVIRONMENTS Std 1003.1—Draft 12

44-46, 48, 50, 62-63, 66, 73-77, 82,
92, 98-99, 106-107, 110-115,135,
138-139, 165, 167-168, 170, 176,
183, 189-190, 197-198, 200, 204-
205,211, 215, 218-219, 221-222,
225, 227-229, 239-241,249-250,
252, 25-5, 261-264, 267,274,277-
279,281,287-289

User CPU time... 82
User CPU lime of descendants ... 82
user ID ... 23, 25, 28-30, 37,41-42,44-45,

50, 62-63, 73-75, 77, 92, 98-99,
106-107, 110-115, 165, 167, 189,
215, 218, 225, 227-228, 239-240,
255, 278-279, 288-289

User ID number ... 167
User Identification ... 73,190, 227
User Name ... 76, 229
user processes ... 23, 25, 28-30, 42, 48, 50,

62-63, 74-75, 77, 92, 98-99, 107,
111-112,114-115,135,200, 215,
218-219, 225, 228, 239, 241, 249,
255, 278-279

user security checks ... 255
user utility ... 264, 267, 287,289
ushort... 209
USHRT_MAX... 40
USTAR... 267
ustat... 62, 238, 274
utilities ... 5, 135, 155,169,176-177,263,

265-266,287
utility ... 5, 169, 173, 176, 191, 193, 207,

214, 263-267, 285, 287-289
utimbuf... 114,281
utimbuf structure ... 114,281
utime ... 46, 62, 108, 114, 240, 281
utime.h... 114, 281
utsname.h... 80
valid file descriptor... 85,109,121-122,

124, 126, 132, 134, 150, 152-154,
239, 243

valid input characters ... 143
value ... 3,19-21, 23-25, 28, 30-34,39,41-

48,50-51, 53-57, 60, 63-72, 75-86,
89-90, 92-93, 95-96, 98-99, 101-
102, 104, 106-107, 109-117, 119-
129, 131, 133-134, 138-139, 141,
143-148, 150-154,156-163, 167-
168, 170, 172, 191, 193,204,207-
209, 211-215, 217-220, 222, 224,

*227-234, 237, 240-241,243, 245-
246, 250-251, 254, 258-259, 263-
264, 267, 276, 281-282, 284, 286-
289, 292-294

variable ... 22, 32, 37-39, 42,49-50, 83, 85-

86,91, 116-117, 156, 158-159, 177,
184, 191, 193, 195, 199-200, 207,
210-211, 214, 216, 225-226, 231-
233, 240-241, 247, 251,256-258,
276-277

variable argument syntax ... 226
variable ermo ... 32,91,193, 207

variable number... 22, 32,191, 195, 225,
247

variable parameter fists ... 225-226
variant... 189,191-192, 200, 205, 252, 292
VDM ... 179
vector... 166
VEOF... 148
VEOL „. 148
VERASE... 148
verb ... 242
verification suites ... 198, 215
Verification Testing ... 4-5, 178, 215
version ... 4, 21,45, 80, 155-156, 176, 184,

188-190, 200-201, 207, 218-220,
225-226, 228, 230, 232, 234, 240,
242, 244, 246, 250-251, 260, 263-
264, 267, 269, 286-289

vhangup... 222
view ... 186, 216
VINTR 148
VKILL... 148
VMIN... 148
void ... 55,57,66, 88, 162-163, 166-167,

218,225,234
VQUIT... 148
VSUSP... 148
VTDLY... 284
VT1ME... 148
wait... 28, 33,48, 52-56, 62, 69, 71, 82-83,

93, 127, 130, 135, 139-140, 146,
151, 208, 216, 218-219,221,223-
224,226,231,253, 265,278,
291-294

Wait for Process Termination ... 53, 218,
221,291

waiLh... 53,275
wait2 ... 28, 33, 48, 52-56, 62, 69, 71, 82-83,

93, 127, 130, 135, 139-140, 146,
151.208.216.218- 219, 221,223-
224, 226, 231, 253, 265, 275, 278,
291-294

waiting ... 28, 33, 48, 52-56, 62, 69, 71, 82-
83, 93, 127, 130, 135, 139-140, 146,
151.208.216.218- 219, 221,223-
224, 226, 231,253,265, 278,
291-294

waitpid ...218-219, 291-294
WERASE... 253-254

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

333

Std 1003.1—Draft 12 PORTABLE OPERATING SYSTEM INTERFACE

west... 156-157,256
Wide area Net... 179
will... 4,6-8, 17,21,44-45, 87,131, 136,

140,146, 155, 158-159,163,173,
176, 184-185, 189, 194, 196-200,
202, 208, 210, 212-213, 218, 220-
224, 226, 230-233,239-240, 243-
246, 248-249, 256-259,262,265-
267,278, 282, 285, 291-292

window ... 177,179,216,227
WNOHANG... 53-54, 291-293
word ... 19, 185, 191,195-197, 206-207,

214- 215, 217,228, 242, 253-254,

258
WORD BIT „. 211
work ...1-5,7-8, 23,30, 32, 37-38,44,51,

90-91,102,135,165, 169,176-179,
181-186, 188-192,194,196, 198,

201, 206-207, 209-211,215,217,
221, 223, 226, 230, 232-235, 237,
239, 242-244, 246, 248, 250-252,
257, 260-263, 265

working directory ... 23, 30, 32, 37-38,44,
51,90-91,102,165,201,207,210,

217,235
Working Directory Pathname ... 91,235
working documents ... 177-178, 185-186,

188, 190,261-262
Working Group ... 4, 7-8,135,169,176,

178, 181-186, 188, 190-192, 194,
196, 206-207, 209-211,215,221,
223, 226, 230, 232-235, 237,239,
242-244, 246, 250-252, 260-263

would ... 33-34,48, 53, 72, 89, 94, 96-98,
100, 104, 120-121, 124-126,130-
132, 134, 138-139, 169,175,186,
191, 194-195, 197, 20Q-207, 209,

215- 216, 219-221,224-226, 229-
230, 232-236, 241, 243-244, 246-
251, 254, 260, 264-266, 276,282-

283, 287, 292

write ... 22, 24-25, 30-31,33-36, 43, 58-59,
62,92-98, 101-104, 107-110, 114-
115, 119-120, 123-128, 130-i31,
134, 136, 140, 146, 148, 155, 161,
172, 193, 207-208, 211-213, 217-
219, 226, 228, 236, 238, 241-251,
253-254, 260, 263, 265-267, 280-
283, 285, 287

write by group ... 136,148, 172,218,244,
.‘285,287

write by others ... 125, 172, 236, 248, 287
write by owner... 172, 218, 287
Write requests... 125
Writing Characters and Output Processing ...

140,254

WUNTRACED ... 53-54,218, 291,293
W OK ...43,110
X.212... 178
X.25... 179
X.400... 179
X/OPEN ... 7, 180, 186-188, 232, 252,268
X3.159-198x ... 21,34, 36, 39-40, 52,56,

58, 62, 108, 155-156, 158, 160-163,
176,184, 188, 190-191, 196,239,
256,261,268,274

X3H3.6... 179
X3J11 ... 176,184, 188, 190-194, 196, 199,

210-211,214,219,244,257,
259-260

X3J11 Rationale ... 188,190,192,194,196
XCASE... 784
X_OK... 43,110,239

yardstick... 4
zero ... 24-25, 27,30, 32,45, 47-48,53-54,

56-58, 62-63, 65,67-71,75-77,79,
84-85, 89-91, 93, 96, 98-102, 104,
107,109-111, 113,115,120,122-
123, 129, 131, 133, 136, 139-140,
142, 146, 150-152,154,162,170-
171, 207, 211,227,229, 231,234,
239, 241,246, 257,275, 285,287-
289, 292-293

zero filled... 285
zero-valued bits ... 151,284

asm_builtin_atoi 200

_exit~. 44-45,52-53, 55-56,58-59, 61,78,
193,218-219,278,292,294

longjmp... 260
~PC DIR DOTS ... 116

~PC~FCHR MAX... 116
“PC_GROUP PARENT... 116
_PC_LINK_DIR... 116

PC_LINK MAX... 116
"PC MAX~CANON... 116

~PC~NAME MAX... 116
~PC~PIPE BUF... 116
~POSlX CHOWN RESTRICTED ... 112,

116
_POSIX_CHOWN_SUP_GRP... 112, 116

POSIX DIR_DOTS ... 88, 98, 102-103,
ll6

POSIX_EXlT S1GHUP... 56, 86
"POSIX GROUP PARENT... 92, 98-99,

"116
_POS!X JOB CONTROL... 25, 86, 135
_POSIX~KILL SAVED ... 62, 86, 279
_POSIX~LlNK_DIR ... 96, 100, 116

POSIX~NO TRUNC ... 32, 35, 51, 90, 94,
97-98,100-102,104,109-110,

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim, conformance to this document

334

Acknowledgements

We wish to thank the following organizations for donating significant computer, printing,
and editing resources to the production of this standard: /usr/group, Amdahl
Corporation, Digital Equipment Corporation, and UniSoft Corporation.

Also we wish to thank the organizations employing the members of the Working Group
and the Balloting Group for both covering the expenses related to attending and
participating in meetings, and donating the time required both in and out of meetings for
this effort.

Editor’s Note: This list will be included in the final printed standard.

Company...
Company...
Company...
Company...

UNAPPROVED DRAFT. All Rights Reserved by IEEE.

Do not specify or claim conformance to this document

