
INTERNATIONAL
STANDARD j

NATL INST. OF STAND & TECH R.I.C.

A1110L| 31H532

ISO/IEC
9945-1

IEEE
Std 1003.1

First edition

1990-12-07

Technology —

Portable Operating System Interface (POSIX) —

Part 1: System Application Prograt
Interface (API) [C Language]

adopted for use by
THE FEDERAL GOVERNMENT

ir-'
v - f

L*Lr£
151-2

SEE NOTICE ON INSIDE

-Apr

1 * "■ ^r*

A comprehensive applications environment
Applications portability at the source-code level

An applications interface to I/O, file system access,
and process management facilities

Software Applications Developers
• System Designers/Engineers

• Hardware and Software Purchasers
• End users operating a UNIX

•- ’--v-v ’ i.
■»_ a ■) .

•v
*1 t« W—1 W/l

► H J

“JK——

486
. A8A3

in 51 -2
1990

Published by the Institute of
Electrical and Electronics Engineers, Inc.
SHI3680

Reference number

ISO/IEC 9945-1 : 1990 (E)

IEEE Std 1003.1-1990

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are

contained in Federal Information Processing Standards
Publication 151-2, Portable Operating System Interface (POS

— system Application Program Interface [C La™^j^eJ,ed x
complete list of the publications available in the Federa

Tnfnrinafion Processing Standards Series, write to the
Standards Processing Coordinator (ADP), National Institute

Standards and Technology, Gaithersburg, MD 20899

Second Printing
January 1992

ISBN 1-55937-061-0

Library of Congress Catalog Number 90-084554

Quote in 8.1.2.3 on Returns is taken from X3.159-1989,
developed under the auspices of the American National Standards

Accredited Committee X3 Technical Committee X3J11, Computer and
Business Equipment Manufacturers Association (CBEMA),

311 First St, N.W., Suite 500, Washington, DC 20001.

©Copyright 1990 by

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017, USA

No part of this publication may be reproduced in any form,

in an electronic retrieval system or otherwise,

without the prior written permission of the publisher.

December 7, 1990 SH13680

International Standard ISO/IEC 9945-1:1990

IEEE Std 1003.1-1990
(Revision of IEEE Std 1003.1-1988)

Information technology—Portable
Operating System Interface (POSIX)

Part 1:
System Application Program Interface

(API) [C Language]

Sponsor

Technical Committee on Operating Systems
and Application Environments

of the
IEEE Computer Society

Approved September 28, 1990

IEEE Standards Board

Approved 1990 by the

International Organization for Standardization

and by the

International Electrotechnical Commission

Abstract: ISO/IEC 9945-1: 1990 (IEEE Std 1003.1-1990), Information tech¬
nology—Portable Operating System Interface (POSIX)—Part 1: System Applica¬
tion Program Interface (API) [C Language] is part of the POSIX series of stan¬
dards for applications and user interfaces to open systems. It defines the appli¬
cations interface to basic system services for input/output, file system access,
and process management. It also defines a format for data interchange. This
standard is stated in terms of its C binding.

Keywords: API, application portability, C (programming language), data pro¬
cessing, information interchange, open systems, operating system, portable
application, POSIX, programming language, system configuration computer
interface

Adopted as an International Standard by the
International Organization for Standardization
and by the
International Electrotechnical Commission

Published by
The Institute of Electrical and Electronics Engineers, Inc.

IEEE Standards documents are developed within the Technical Committees of
the IEEE Societies and the Standards Coordinating Committees of the IEEE Stan¬
dards Board. Members of the committees serve voluntarily and without compen¬
sation. They are not necessarily members of the Institute. The standards
developed within IEEE represent a consensus of the broad expertise on the subject
within the Institute as well as those activities outside of IEEE that have expressed
an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard
does not imply that there are no other ways to produce, test, measure, purchase,
market, or provide other goods and services related to the scope of the IEEE Stan¬
dard. Furthermore, the viewpoint expressed at the time a standard is approved
and issued is subject to change brought about through developments in the state
of the art and comments received from users of the standard. Every IEEE Stan¬
dard is subjected to review at least every five years for revision or reaffirmation.
When a document is more than five years old and has not been reaffirmed, it is
reasonable to conclude that its contents, although still of some value, do not
wholly reflect the present state of the art. Users are cautioned to check to deter¬
mine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party,
regardless of membership affiliation with IEEE. Suggestions for changes in docu¬
ments should be in the form of a proposed change of text, together with appropri¬
ate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of por¬
tions of standards as they relate to specific applications. When the need for
interpretations is brought to the attention of the IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a con¬
sensus of all concerned interests, it is important to ensure that any interpretation
has also received the concurrence of a balance of interests. For this reason, the
IEEE and the members of its technical committees are not able to provide an
instant response to interpretation requests except in those cases where the matter
has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331

IEEE Standards documents are adopted by the Institute of Electrical and Elec¬
tronics Engineers without regard to whether their adoption may involve
patents on articles, materials, or processes. Such adoption does not assume
any liability to any patent owner, nor does it assume any obligation whatever to
parties adopting the standards documents.

Contents

PAGE

Foreword. viii

Introduction. ix

Section 1: General. 1
1.1 Scope. 1
1.2 Normative References. 2
1.3 Conformance. 2

Section 2: Terminology and General Requirements. 9
2.1 Conventions. 9
2.2 Definitions . 10
2.3 General Concepts. 21
2.4 Error Numbers. 23
2.5 Primitive System Data Types. 27
2.6 Environment Description . 27
2.7 C Language Definitions. 29
2.8 Numerical Limits. 34
2.9 Symbolic Constants. 37

Section 3: Process Primitives. 41
3.1 Process Creation and Execution. 41

3.1.1 Process Creation. 41
3.1.2 Execute a File. 42

3.2 Process Termination. 46
3.2.1 Wait for Process Termination . 47
3.2.2 Terminate a Process. 49

3.3 Signals. 51
3.3.1 Signal Concepts. 51
3.3.2 Send a Signal to a Process. 56
3.3.3 Manipulate Signal Sets. 57
3.3.4 Examine and Change Signal Action. 58
3.3.5 Examine and Change Blocked Signals . 60
3.3.6 Examine Pending Signals. 62
3.3.7 Wait for a Signal. 62

3.4 Timer Operations. 63
3.4.1 Schedule Alarm. 63
3.4.2 Suspend Process Execution. 64
3.4.3 Delay Process Execution. 65

Section 4: Process Environment. 67
4.1 Process Identification. 67

4.1.1 Get Process and Parent Process IDs. 67

n

PAGE

4.2 User Identification. 68
4.2.1 Get Real User, Effective User, Real Group, and Effective

Group IDs. 68
4.2.2 Set User and Group IDs . 68
4.2.3 Get Supplementary Group IDs. 70
4.2.4 Get User Name. 71

4.3 Process Groups. 72
4.3.1 Get Process Group ID. 72
4.3.2 Create Session and Set Process Group ID . 72
4.3.3 Set Process Group ID for Job Control. 73

4.4 System Identification. 74
4.4.1 Get System Name . 74

4.5 Time . 75
4.5.1 Get System Time. 75
4.5.2 Get Process Times. 76

4.6 Environment Variables. 77
4.6.1 Environment Access. 77

4.7 Terminal Identification. 78
4.7.1 Generate Terminal Pathname. 78
4.7.2 Determine Terminal Device Name. 79

4.8 Configurable System Variables . 80
4.8.1 Get Configurable System Variables . 80

Section 5: Files and Directories. 83
5.1 Directories . 83

5.1.1 Format of Directory Entries. 83
5.1.2 Directory Operations. 83

5.2 Working Directory. 86
5.2.1 Change Current Working Directory. 86
5.2.2 Get Working Directory Pathname. 87

5.3 General File Creation. 88
5.3.1 Open a File. 88
5.3.2 Create a New File or Rewrite an Existing One. 91
5.3.3 Set File Creation Mask. 91
5.3.4 Link to a File. 92

5.4 Special File Creation. 94
5.4.1 Make a Directory. 94
5.4.2 Make a FIFO Special File. 95

5.5 File Removal. 96
5.5.1 Remove Directory Entries. 96
5.5.2 Remove a Directory. 98
5.5.3 Rename a File. 99

5.6 File Characteristics.101
5.6.1 File Characteristics: Header and Data

Structure.101
5.6.2 Get File Status.103
5.6.3 Check File Accessibility .104
5.6.4 Change File Modes.106
5.6.5 Change Owner and Group of a File .107

iii

PAGE

5.6.6 Set File Access and Modification Times.108
5.7 Configurable Pathname Variables .110

5.7.1 Get Configurable Pathname Variables.110

Section 6: Input and Output Primitives.113
6.1 Pipes.113

6.1.1 Create an Inter-Process Channel.113
6.2 File Descriptor Manipulation.114

6.2.1 Duplicate an Open File Descriptor.114
6.3 File Descriptor Deassignment.115

6.3.1 Close a File.115
6.4 Input and Output.116

6.4.1 Read from a File. 116
6.4.2 Write to a File.118

6.5 Control Operations on Files.121
6.5.1 Data Definitions for File Control Operations.121
6.5.2 File Control.121
6.5.3 Reposition Read/Write File Offset.127

Section 7: Device- and Class-Specific Functions.129
7.1 General Terminal Interface.129

7.1.1 Interface Characteristics.129
7.1.1.1 Opening a Terminal Device File.129
7.1.1.2 Process Groups.129
7.1.1.3 The Controlling Terminal.130
7.1.1.4 Terminal Access Control.130
7.1.1.5 Input Processing and Reading Data.131
7.1.1.6 Canonical Mode Input Processing.132
7.1.1.7 Noncanonical Mode Input Processing.132
7.1.1.8 Writing Data and Output Processing.133
7.1.1.9 Special Characters.133
7.1.1.10 Modem Disconnect.135
7.1.1.11 Closing a Terminal Device File.135

7.1.2 Parameters That Can Be Set.135
7.1.2.1 termios Structure.135
7.1.2.2 Input Modes.136
7.1.2.3 Output Modes.137
7.1.2.4 Control Modes .138
7.1.2.5 Local Modes.139
7.1.2.6 Special Control Characters.140
7.1.2.7 Baud Rate Values.141

7.1.3 Baud Rate Functions.141
7.1.3.1 Synopsis .141
7.1.3.2 Description.142
7.1.3.3 Returns.142
7.1.3.4 Errors.142
7.1.3.5 Cross-References.142

7.2 General Terminal Interface Control Functions.143
7.2.1 Get and Set State.143

IV

PAGE

7.2.2 Line Control Functions.145
7.2.3 Get Foreground Process Group ID.147
7.2.4 Set Foreground Process Group ID.148

Section 8: Language-Specific Services for the C Programming
Language.151
8.1 Referenced C Language Routines.151

8.1.1 Extensions to Time Functions.152
8.1.2 Extensions to setlocalei) Function .154

8.2 C Language Input/Output Functions .155
8.2.1 Map a Stream Pointer to a File Descriptor.156
8.2.2 Open a Stream on a File Descriptor.157
8.2.3 Interactions of Other FILE-Type C Functions.158
8.2.4 Operations on Files — the remove() Function.162

8.3 Other C Language Functions.162
8.3.1 Nonlocal Jumps.162
8.3.2 Set Time Zone.162

Section 9: System Databases.165
9.1 System Databases.165
9.2 Database Access .166

9.2.1 Group Database Access.166
9.2.2 User Database Access.167

Section 10: Data Interchange Format.169
10.1 Archive/Interchange File Format.169

10.1.1 Extended tar Format.169
10.1.2 Extended cpio Format.173
10.1.3 Multiple Volumes .177

Annex A (informative) Bibliography.179
A.l Related Open Systems Standards.179
A.2 Other Standards.181
A. 3 Historical Documentation and Introductory Texts.182

Annex B (informative) Rationale and Notes.185
B. l Scope and Normative References.185
B.2 Definitions and General Requirements.196
B.3 Process Primitives.226
B.4 Process Environment.246
B.5 Files and Directories.253
B.6 Input and Output Primitives.264
B.7 Device- and Class-Specific Functions .273
B.8 Language-Specific Services for the C Programming

Language .
B.9 System Databases.293
B.10 Data Interchange Format.294

Annex C (informative) Header Contents Samples.301

v

PAGE

Annex D (informative) Profiles. 313
D.l Definitions .313
D.2 Options in This Part of ISO/IEC 9945 314
D.3 Related Standards.315
D.4 Related Activities.315
D. 5 Relationship to IEEE Draft Project 1003.0 . 315

Annex E (informative) Sample National Profile .317
E. l (Example) Profile for Denmark .318

Identifier Index.321

Alphabetic Topical Index.327

TABLES

Table 2-1 - Primitive System Data Types. 27

Table 2-2 - Reserved Header Symbols. 31

Table 2-3 - Minimum Values. 35

Table 2-4 - Run-Time Increasable Values. 35

Table 2-5 - Run-Time Invariant Values (Possibly
Indeterminate). 36

Table 2-6 - Pathname Variable Values. 36

Table 2-7 - Invariant Value. 37

Table 2-8 - Symbolic Constants for the accessO Function. 38

Table 2-9 - Symbolic Constants for the lseek() Function. 38

Table 2-10 - Compile-Time Symbolic Constants. 38

Table 2-11 - Execution-Time Symbolic Constants. 39

Table 3-1 - Required Signals. 52

Table 3-2 - Job Control Signals. 52

Table 4-1 - uname() Structure Members. 75

Table 4-2 - Configurable System Variables. 80

vi

Table 5-1

Table 5-2

Table 6-1

Table 6-2

Table 6-3

Table 6-4

Table 6-5

Table 6-6

Table 6-7

Table 6-8

Table 6-9

Table 7-1

Table 7-2

Table 7-3

Table 7-4

Table 7-5

Table 7-6

Table 9-1

Table 9-2

Table 10-1

Table 10-2

Table 10-3

Table B-l

- stat Structure.

- Configurable Pathname Variables

- cmd Values for fcntli).

- File Descriptor Flags Used for fcntli) . . .

- Ijtype Values for Record Locking With fcntli)

- oflag Values for openi).

- File Status Flags Used for openi) and fcntli)

- File Access Modes Used for open() and fcntli)

- Mask for Use With File Access Modes . . .

- flock Structure.

- fcntli) Return Values .

- termios Structure.

- termios c_iflag Field .

- termios cjcflag Field.

- termios cjlflag Field .

- termios c_cc Special Control Characters . .

- termios Baud Rate Values.

- group Structure.

- passwd Structure.

- tar Header Block.

- Byte-Oriented cpio Archive Entry

- Values for cpio cjmode Field.

- Suggested Feature Test Macros.

101

111

122

122

122

122

122

123

123

125

126

136

136

138

139

140

141

166

167

170

174

175

222

vii

Foreword

1 ISO (the International Organization for Standardization) and IEC (the Interna-
2 tional Electrotechnical Commission) together form a system for worldwide stan-
3 dardization as a whole. National bodies that are members of ISO or IEC partici-
4 pate in the development of International Standards through technical committees
5 established by the respective organization to deal with particular fields of techni-
6 cal activity. ISO and IEC technical committees collaborate in fields of mutual
7 interest. Other international organizations, governmental and nongovernmental,
8 in liaison with ISO and IEC, also take part in the work.

9 In the field of information technology, ISO and IEC have established a joint techni-
10 cal committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint
n technical committee are circulated to national bodies for approval before their
12 acceptance as International Standards. They are approved in accordance with
13 procedures requiring at least 75% approval by the national bodies voting.

14 International Standard ISO/IEC 9945-1: 1990 was prepared by Joint Technical
15 Committee ISO/IEC JTC 1, Information technology.

16 ISO/IEC 9945 consists of the following parts, under the general title Information
17 technology—Portable operating system interface (POSIX):

is — Part 1: System application program interface (API) [C language]

19 — Part 2: Shell and utilities (under development)

20 — Part 3: System administration (under development)

21 Annexes A to E of ISO/IEC 9945-1 are provided for information only.

International Organization for Standardization/International Electrotechnical Commission
Case postale 56 . CH-1211 Geneve 20 • Switzerland

viii Foreword

Introduction

(This Introduction is not a normative part of ISO/IEC 9945-1 Information technology—Portable
operating system interface (POSIX)—Part 1: System application programming interface (API)
[C Language], but is included for information only.)

1 The purpose of this part of ISO/IEC 9945 is to define a standard operating system
2 interface and environment based on the UNIX1) Operating System documentation
3 to support application portability at the source level. This is intended for systems
4 implementors and applications software developers.

5 Initially,2) the focus of this part of ISO/IEC 9945 is to provide standardized ser-
6 vices via a C language interface. Future revisions are expected to contain bind-
7 ings for other programming languages as well as for the C language. This will be
8 accomplished by breaking this part of ISO/IEC 9945 into multiple portions—one
9 defining core requirements independent of any programming language, and oth-
10 ers composed of programming language bindings.

n The core requirements portion will define a set of required services common to
12 any programming language that can be reasonably expected to form a language
13 binding to this part of ISO/IEC 9945. These services will be described in terms of
14 functional requirements and will not define programming language-dependent
15 interfaces. Language bindings will consist of two major parts. One will contain
16 the programming language’s standardized interface for accessing the core services
17 defined in the programming language-independent core requirements section of
18 this part of ISO/IEC 9945. The other will contain a standardized interface for
19 language-specific services. Any implementation claiming conformance to this part
20 of ISO/IEC 9945 with any language binding will be required to comply with both
21 sections of the language binding.

22 Within this document, the term “POSIX.!” refers to this part of ISO/IEC 9945
23 itself.

24

25

26

27

28

29

Organization of This Part of ISO/EEC 9945

This part of ISO/IEC 9945 is divided into four elements:

(1) Statement of scope and list of normative references (Section 1)

(2) Definitions and global concepts (Section 2)

(3) The various interface facilities (Sections 3 through 9)

(4) Data interchange format (Section 10)

30 1) UNIX is a registered trademark of UNIX System Laboratories in the U.S. and other countries.

31 2) The vertical rules in the right margin depict technical or significant non-editorial changes from
32 IEEE Std 1003.1-1988 to IEEE Std 1003.1-1990. A vertical rule beside an empty line indicates
33 deleted text.

Introduction IX

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

Most of the sections describe a single service interface. The C Language binding
for the service interface is given in the subclause labeled Synopsis. The Descrip¬
tion subclause provides a specification of the operation performed by the service
interface. Some examples may be provided to illustrate the interfaces described.
In most cases there are also Returns and Errors subclauses specifying return
values and possible error conditions. References are used to direct the reader to
other related sections. Additional material to complement sections in this part of
ISO/IEC 9945 may be found in the Rationale and Notes, Annex B. This annex pro¬
vides historical perspectives into the technical choices made by the developers of
this part of ISO/IEC 9945. It also provides information to emphasize consequences
of the interfaces described in the corresponding section of this part of
ISO/IEC 9945.

Informative annexes are not part of the standard and are provided for information
only. (There is a type of annex called “normative” that is part of a standard and
imposes requirements, but there are currently no such normative annexes in this
part of ISO/IEC 9945.) They are provided for guidance and to help understanding.

In publishing this part of ISO/IEC 9945, its developers simply intend to provide a
yardstick against which various operating system implementations can be meas¬
ured for conformance. It is not the intent of the developers to measure or rate any
products, to reward or sanction any vendors of products for conformance or lack of
conformance to this part of ISO/IEC 9945, or to attempt to enforce this part of
ISO/IEC 9945 by these or any other means. The responsibility for determining the
degree of conformance or lack thereof with this part of ISO/IEC 9945 rests solely
with the individual who is evaluating the product claiming to be in conformance
with this part of ISO/IEC 9945.

Base Documents

The various interface facilities described herein are based on the 1984 / usr/group
Standard derived and published by the UniForum (formerly /usr/group) Stan- |
dards Committee. The 1984 /usr/group Standard and this part of ISO/IEC 9945
are largely based on UNIX Seventh Edition, UNIX System III, UNIX System V,
4.2BSD, and 4.3BSD documentation,3) but wherever possible, compatibility with
other systems derived from the UNIX operating system, or systems compatible
with that system, has been maintained.

Background I

The developers of POSIX.1 represent a cross-section of hardware manufacturers, |
vendors of operating systems and other software development tools, software
designers, consultants, academics, authors, applications programmers, and oth¬
ers. In the course of their deliberations, the developers reviewed related Ameri- |
can and international standards, both published and in progress. I

Conceptually, POSIX.1 describes a set of fundamental services needed for the |
efficient construction of application programs. Access to these services has been |

3) The IEEE is grateful to both AT&T and UniForum for permission to use their materials.

x Introduction

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

provided by defining an interface, using the C programming language, that estab¬
lishes standard semantics and syntax. Since this interface enables application
writers to write portable applications—it was developed with that goal in mind—
it has been designated POSIX,4) an acronym for Portable Operating System
Interface.

Although originated to refer to IEEE Std 1003.1-1988, the name POSIX more |
correctly refers to a family of related standards: IEEE 1003.rc and the parts of |
International Standard ISO/IEC 9945. In earlier editions of the IEEE standard, |
the term POSIX was used as a synonym for IEEE Std 1003.1-1988. A preferred
term, POSIX.1, emerged. This maintained the advantages of readability of the |
symbol “POSIX” without being ambiguous with the POSIX family of standards. |

Audience

The intended audience for ISO/IEC 9945 is all persons concerned with an
industry-wide standard operating system based on the UNIX system. This
includes at least four groups of people:

(1) Persons buying hardware and software systems;

(2) Persons managing companies that are deciding on future corporate com¬
puting directions;

(3) Persons implementing operating systems, and especially

(4) Persons developing applications where portability is an objective.

Purpose

Several principles guided the development of this part of ISO/IEC 9945: |

Application Oriented

The basic goal was to promote portability of application programs across |
UNIX system environments by developing a clear, consistent, and unam¬
biguous standard for the interface specification of a portable operating
system based on the UNIX system documentation. This part of
ISO/IEC 9945 codifies the common, existing definition of the UNIX sys¬
tem. There was no attempt to define a new system interface.

Interface, Not Implementation

This part of ISO/IEC 9945 defines an interface, not an implementation.
No distinction is made between library functions and system calls: both
are referred to as functions. No details of the implementation of any
function are given (although historical practice is sometimes indicated
in Annex B). Symbolic names are given for constants (such as signals
and error numbers) rather than numbers.

4) The name POSIX was suggested by Richard Stallman. It is expected to be pronounced pahz-icks,

as in positive, not poh-six, or other variations. The pronunciation has been published in an
attempt to promulgate a standardized way of referring to a standard operating system interface.

Introduction xi

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

Source, Not Object, Portability

This part of ISO/IEC 9945 has been written so that a program written
and translated for execution on one conforming implementation may
also be translated for execution on another conforming implementation.
This part of ISO/IEC 9945 does not guarantee that executable (object or
binary) code will execute under a different conforming implementation
than that for which it was translated, even if the underlying hardware
is identical. However, few impediments were placed in the way of
binary compatibility, and some remarks on this are found in Annex B.
See B. 1.3.1.1 and B.4.8.

The C Language

This part of ISO/IEC 9945 is written in terms of the standard C language
as specified in the C Standard {2}.5 6) See B.1.3 and B.1.1.1.

No Super-User, No System Administration

There was no intention to specify all aspects of an operating system.
System administration facilities and functions are excluded from
POSIX.1, and functions usable only by the super-user have not been
included. Annex B notes several such instances. Still, an implementa¬
tion of the standard interface may also implement features not in this
part of ISO/IEC 9945; see 1.3.1.1. This part of ISO/IEC 9945 is also not
concerned with hardware constraints or system maintenance.

Minimal Interface, Minimally Defined

In keeping with the historical design principles of the UNIX system,
POSIX.1 is as minimal as possible. For example, it usually specifies only
one set of functions to implement a capability. Exceptions were made in
some cases where long tradition and many existing applications
included certain functions, such as creati). In such cases, as throughout
POSIX1, redundant definitions were avoided: creati) is defined as a spe¬
cial case of open{). Redundant functions or implementations with less
tradition were excluded.

Broadly Implementable

The developers of POSIX.1 endeavored to make all specified functions
implementable across a wide range of existing and potential systems,
including:

(1) All of the current major systems that are ultimately derived from
the original UNIX system code (Version 7 or later)

(2) Compatible systems that are not derived from the original UNIX
system code

153

154
5) The number in braces corresponds to those of the references in 1.2 (or the bibliographic entry in

Annex A if the number is preceded by the letter B).

xii Introduction

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

(3) Emulations hosted on entirely different operating systems

(4) Networked systems

(5) Distributed systems

(6) Systems running on a broad range of hardware

No direct references to this goal appear in this part of ISO/IEC 9945, but
some results of it are mentioned in Annex B.

Minimal Changes to Historical Implementations

There are no known historical implementations that will not have to
change in some area to conform to this part of ISO/IEC 9945, and in a
few areas POSIX.l does not exactly match any existing system interface
(for example, see the discussion of 0_N0NBL0CK in B.6). Nonetheless,
there is a set of functions, types, definitions, and concepts that form an
interface that is common to most historical implementations. POSIX.1
specifies that common interface and extends it in areas where there has
historically been no consensus, preferably

(1) By standardizing an interface like one in an historical implemen¬
tation; e.g., directories, or;

(2) By specifying an interface that is readily implementable in terms
of, and backwards compatible with, historical implementations,
such as the extended tar format in 10.1.1, or;

(3) By specifying an interface that, when added to an historical imple¬
mentation, will not conflict with it, like B.6.

Required changes to historical implementations have been kept to a
minimum, but they do exist, and Annex B points out some of them.

POSIX.1 is specifically not a codification of a particular vendor’s product.
It is similar to the UNIX system, but it is not identical to it.

It should be noted that implementations will have different kinds of
extensions. Some will reflect “historical usage” and will be preserved for
execution of pre-existing applications. These functions should be con¬
sidered “obsolescent” and the standard functions used for new applica¬
tions. Some extensions will represent functions beyond the scope of
POSIX.1. These need to be used with careful management to be able to
adapt to future POSIX.1 extensions and/or port to implementations that
provide these services in a different manner.

Minimal Changes to Existing Application Code

A goal of POSIX.1 was to minimize additional work for the developers of |
applications. However, because every known historical implementation |
will have to change at least slightly to conform, some applications will
have to change. Annex B points out the major places where POSIX.1
implies such changes.

Introduction xiii

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

Related Standards Activities

Activities to extend this part of ISO/IEC 9945 to address additional requirements
are in progress, and similar efforts can be anticipated in the future.

The following areas are under active consideration at this time, or are expected to
become active in the near future :6)

(1) Language-independent service descriptions of this part of ISO/IEC 9945

(2) C, Ada, and FORTRAN Language bindings to (1)

(3) Shell and Utility facilities

(4) Verification testing methods

(5) Realtime facilities

(6) Secure/Trusted System considerations

(7) Network interface facilities

(8) System Administration

(9) Graphical User Interfaces

(10) Profiles describing application- or user-specific combinations of Open Sys¬
tems standards for: supercomputing, multiprocessor, and batch exten¬
sions; transaction processing; realtime systems; and multiuser systems
based on historical models

(11) An overall guide to POSIX-based or related Open Systems standards and
profiles

Extensions are approved as “amendments” or “revisions” to this document, follow¬
ing the IEEE and ISO/IEC Procedures.

Approved amendments are published separately until the full document is
reprinted and such amendments are incorporated in their proper positions.

If you have interest in participating in the TCOS working groups addressing these
issues, please send your name, address, and phone number to the Secretary, IEEE
Standards Board, Institute of Electrical and Electronics Engineers, Inc., P.O. Box
1331, 445 Hoes Lane, Piscataway, NJ 08855-1331, and ask to have this forwarded
to the chairperson of the appropriate TCOS working group. If you have interest in
participating in this work at the international level, contact your ISO/IEC national
body.

6) A Standards Status Report that lists all current IEEE Computer Society standards projects is
available from the IEEE Computer Society, 1730 Massachusetts Avenue NW, Washington, DC
20036-1903; Telephone: +1 202 371-0101; FAX: +1 202 728-9614. Working drafts of POSK
standards under development are also available from this office.

xiv Introduction

IEEE Std 1003.1-1990 was prepared by the 1003.1 Working Group, sponsored by
the Technical Committee on Operating Systems and Application Environments of
the IEEE Computer Society. At the time this standard was approved, the
membership of the 1003.1 Working Group was as follows:

Technical Committee on Operating Systems

and Application Environments (TCOS)

Chair: Luis-Felipe Cabrera

Standards Subcommittee for TCOS

Chair: Jim Isaak
Treasurer: Quin Hahn
Secretary: Shane McCarron

1003.1 Working Group Officials

Chair:
Vice Chair:
Editor:
Secretary:

Donn Terry
Keith Stuck
Hal Jespersen
Keith Stuck

Steve Bartels
Robert Bismuth
James Bohem
Kathy Bohrer
Keith Bostic
Jonathan Brown
Tim Carter
Myles Connors
Landon Curt Noll
Dave Decot
Mark Doran
Glenn Fowler

Working Group

Greg Goddard
Andrew Griffith
Rand Hoven
Randall Howard
Mike Karels
Jeff Kimmel
David Korn
Bob Lenk
Shane McCarron
John Meyer
Martha Nalebuff

Neguine Navab
Paul Rabin
Seth Rosenthal
Lome Schachter
Steve Schwarm
Paul Shaughnessy
Steve Sommars

Ravi Tavakley
Jeff Tofano
David Willcox
John Wu

Introduction XV

The following persons were members of the 1003.1 Balloting Group that approved
the standard for submission to the IEEE Standards Board:

David Chinn
Michael Lambert
Heinz Lycklama
Shane McCarron

Helene Armitage
David Athersych
Timothy Baker
Geoff Baldwin
Steven E. Barber
Robert Barned
John Barr
James Bohem
Kathryn Bohrer
Robert Borochoff
Keith Bostic
James P. Bound
Joseph Boykin

Kevin Brady
Phyllis Eve Bregman
Fred Lee Brown, Jr.
A. Winsor Brown
Luis-Felipe Cabrera
Nicholas A. Camillone
Clyde Camp
John Carson
Steven Carter
Jerry Cashin
Kilnam Chon
Anthony Cincotta
Mark Colburn
Donald W. Cragun
Ana Maria DeAlvare
Dave Decot
Steven Deller
Terence Dowling
Stephen A. Dum
John D. Earls

Ron Elliott
David Emery
Philip H. Enslow
Ken Faubel
Kester Fong
Kenneth R. Gibb
Michel Gien

Gregory W. Goddard
Dave Grin del and
Judy Guist
James Hall
Charles Hammons
Allen Hankinson
Steve Head
Barry Hedquist

Open Software Foundation Institutional Representative

X/ Open Institutional Representative

UniForum Institutional Representative

UNIX International Institutional Representative

William Henderson Martha Nalebuff
Lee A. Hollaar Barry Needham
Terrence Holm Alan F. Nugent
Randall Howard Jim Oldroyd
Irene Hu Craig Partridge
Andrew Huber John Peace
Richard Hughes-Rowlands John C. Penney
Judith Hurwitz P. Plauger
Jim Isaak Gerald Powell
Dan luster Scott E. Preece
Richard James Joseph Ramus
Hal Jespersen Wendy Rauch
Michael J. Karels Carol Raye
Sol Kavy Wayne B. Reed
Lorraine C. Kevra Christopher J. Riddick
Jeffrey S. Kimmel Andrew K. Roach
M. J. Kirk Robert Sarr
Dale Kirkland Lome H. Schachter
John T. Kline Norman Schneidewind
Kenneth Klingman Stephen Schwann
Joshua Knight Richard Scott
Andrew R. Knipp Leonard Seagren
David Korn Glen Seeds

Don Kretsch Karen Sheaffer
Takahiko Kuki Charles Smith
Thomas Kwan Steven Sommars
Robin B. Lake Douglas H. Steves
Mark Lamonds James Tanner
Doris Lebovits Ravi Tavakley

Maggie Lee Marc Teitelbaum

Greger Leijonhufvud Donn S. Terry
Robert Lenk Gary F. Tom
David Lennert Andrew Twigger

Donald Lewine Mark-Rene Uchida

Kevin Lewis L. David Umbaugh

F. C. Lim Michael W. Vannier

James Lonjers David John Wallace

Warren E. Loper Stephen Walli

Roger Martin Larry Wehr

Martin J. McGowan Bruce Weiner

Marshall McKusick Robert Weissensee

Robert McWhirter P. J. Weyman

Paul Merry Andrew Wheeler, Jr.

Doug Michels David Willcox

Gary W. Miller Randall F. Wright

James Moe Oren Yuen

James W. Moore Jason Zions

XVI Introduction

When the IEEE Standards Board approved this standard on September 28, 1990,
it had the following membership:

Marco W. Migliaro, Chairman James M.
Andrew G. Salem, Secretary

Dennis Bodson
Paul L. Borrill
Fletcher J. Buckley
Allen L. Clapp
Stephen R. Dillon
Donald C. Fleckenstein
Jay Forster*
Thomas L. Hannan

Kenneth D. Hendrix
John W. Horch

Joseph L. Koepfinger*
Irving Kolodny
Michael A. Lawler
Donald J. Loughry
John E. May, Jr.

*Member Emeritus

Introduction

Daly, Vice Chairman

Lawrence V. McCall
L. Bruce McClung
Donald T. Michael*
Stig Nilsson
Roy T. Oishi
Gary S. Robinson
Terrance R. Whittemore
Donald W. Zipse

xvii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

INTERNATIONAL STANDARD ISO/IEC 9945-1: 1990

Information technology—Portable operating
system interface (POSIX)—Part 1: System
application programming interface (API)
[C Language]

Section 1: General

1.1 Scope

This part of ISO/IEC 9945 defines a standard operating system interface and
environment to support application portability at the source-code level. It is
intended to be used by both application developers and system implementors.

This part of ISO/IEC 9945 comprises four major components:

(1) Terminology, concepts, and definitions and specifications that govern
structures, headers, environment variables, and related requirements

(2) Definitions for system service interfaces and subroutines

(3) Language-specific system services for the C programming language

(4) Interface issues, including portability, error handling, and error recovery

The following areas are outside of the scope of this part of ISO/IEC 9945:

(1) User interface (shell) and associated commands

(2) Networking protocols and system call interfaces to those protocols

(3) Graphics interfaces

(4) Database management system interfaces

(5) Record I/O considerations

1.1 Scope 1

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

(6) Object or binary code portability

(7) System configuration and resource availability

(8) The behavior of system services on systems supporting concurrency
within a single process

This part of ISO/IEC 9945 describes the external characteristics and facilities that
are of importance to applications developers, rather than the internal construc¬
tion techniques employed to achieve these capabilities. Special emphasis is
placed on those functions and facilities that are needed in a wide variety of com¬
mercial applications.

This part of ISO/IEC 9945 has been defined exclusively at the source-code level.
The objective is that a Strictly Conforming POSIX.l Application source program
can be translated to execute on a conforming implementation.

1.2 Normative References

The following standards contain provisions which, through references in this text,
constitute provisions of this part of ISO/IEC 9945. At the time of publication, the
editions indicated were valid. All standards are subject to revision, and parties to
agreements based on this part of this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the standards
listed below. Members of IEC and ISO maintain registers of currently valid Inter¬
national Standards.

{1} ISO/IEC 646: 1983,Information processing—ISO 7-bit coded character set
for information interchange.

{2} ISO/IEC 9899: ... ,1 2) Information technology—Programming languages—C.

1.3 Conformance

1.3.1 Implementation Conformance

1.3.1.1 Requirements

A conforming implementation shall meet all of the following criteria:

1) Under revision. (This notation is meant to explicitly reference the 1990 Draft International
Standard version of ISO/IEC 646.)

ISO/IEC documents can be obtained from the ISO office, 1, rue de Varembe, Case Postale 56, CH-
1211, Geneve 20, Switzerland/Suisse.

2) To be approved and published.

2 1 General

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Part 1: SYSTEM API [C LANGUAGE]

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

(1) The system shall support all required interfaces defined within this part
of ISO/IEC 9945. These interfaces shall support the functional behavior
described herein.

(2) The system may provide additional functions or facilities not required by
this part of ISO/IEC 9945. Nonstandard extensions should be identified
as such in the system documentation. Nonstandard extensions, when
used, may change the behavior of functions or facilities defined by this
part of ISO/IEC 9945. The conformance document shall define an |
environment in which an application can be run with the behavior |
specified by the standard. In no case shall such an environment require
modification of a Strictly Conforming POSIX.l Application.

1.3.1.2 Documentation

A conformance document with the following information shall be available for an
implementation claiming conformance to this part of ISO/IEC 9945. The confor¬
mance document shall have the same structure as this part of ISO/IEC 9945, with
the information presented in the appropriately numbered sections, clauses, and
subclauses. The conformance document shall not contain information about
extended facilities or capabilities outside the scope of this part of ISO/IEC 9945.

The conformance document shall contain a statement that indicates the full
name, number, and date of the standard that applies. The conformance document
may also list international software standards that are available for use by a Con¬
forming POSIX.1 Application. Applicable characteristics where documentation is
required by one of these standards, or by standards of government bodies, may
also be included.

The conformance document shall describe the limit values found in the |
<limits.h> and <unistd.h> headers, stating values, the conditions under
which those values may change, and the limits of such variations, if any.

The conformance document shall describe the behavior of the implementation for
all implementation-defined features defined in this part of ISO/IEC 9945. This
requirement shall be met by listing these features and providing either a specific |
reference to the system documentation or providing full syntax and semantics of |
these features. The conformance document may specify the behavior of the imple- |
mentation for those features where this part of ISO/IEC 9945 states that imple- |
mentations may vary or where features are identified as undefined or unspecified. |

No specifications other than those described in this part of ISO/IEC 9945 shall be |
present in the conformance document.

The phrases “shall document” or “shall be documented” in this part of |
ISO/IEC 9945 mean that documentation of the feature shall appear in the confor- |
mance document, as described previously, unless the system documentation is |
explicitly mentioned. |

The system documentation should also contain the information found in the con- |
formance document.

1.3 Conformance 3

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

91 1.3.1.3 Conforming Implementation Options

92 The following symbolic constants, described in the subclauses indicated, reflect |
93 implementation options for this part of ISO/IEC 9945 that could warrant require-
94 ment by Conforming POSIX.1 Applications, or in specifications of conforming sys-
95 terns, or both:

96 {NGROUPS_MAX} Multiple groups option (in 2.8.3)

97 {_POSIX_JOB_CONTROL} Job control option (in 2.9.3)

98 {_POSIX_CHOWN_RESTRICTED} Administrative/security option (in 2.9.4)

99 The remaining symbolic constants in 2.9.3 and 2.9.4 are useful for testing pur-
100 poses and as a guide to applications on the types of behaviors they need to be able
101 to accommodate. They do not reflect sufficient functional difference to warrant
102 requirement by Conforming POSIX.1 Applications or to distinguish between con-
103 forming implementations.

104 In the cases where omission of an option would cause functions described by this
105 part of ISO/IEC 9945 to not be defined, an implementation shall provide a function
106 that is callable with the syntax defined in this part of ISO/IEC 9945, even though
107 in an instance of the implementation the function may always do nothing but
108 return an error.

109 1.3.2 Application Conformance

no All applications claiming conformance to this part of ISO/IEC 9945 shall use only
111 language-dependent services for the C programming language described in 1.3.3
112 and shall fall within one of the following categories:

113 1.3.2.1 Strictly Conforming POSIX.1 Application

114 A Strictly Conforming POSIX.1 Application is an application that requires only the
115 facilities described in this part of ISO/IEC 9945 and the applicable language stan-
116 dards. Such an application shall accept any behavior described in this part of
117 ISO/IEC 9945 as unspecified or implementation-defined, and for symbolic con- |
ns stants, shall accept any value in the range permitted by this part of ISO/IEC 9945.
119 Such applications are permitted to adapt to the availability of facilities whose
120 availability is indicated by the constants in 2.8 and 2.9.

121 1.3.2.2 Conforming POSIX.1 Application

122 1.3.2.2.1 ISO/IEC Conforming POSIX.1 Application |

123 An ISO/IEC Conforming POSIX.1 Application is an application that uses only the |
124 facilities described in this part of ISO/IEC 9945 and approved Conforming |
125 Language bindings for any ISO or IEC standard. Such an application shall |
126 include a statement of conformance that documents all options and limit depen- |
127 dencies, and all other ISO or IEC standards used.

4 1 General

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

1.3.2.2.2 <National Body> Conforming POSEX.1 Application

A <National Body> Conforming POSIX.1 Application differs from an ISO/IEC Con¬
forming POSIX.l Application in that it also may use specific standards of a single
ISO/IEC member body referred to here as “<National Body>.” Such an application
shall include a statement of conformance that documents all options and limit
dependencies, and all other <National Body> standards used.

1.3.2.3 Conforming POSIX.1 Application Using Extensions

A Conforming POSIX.1 Application Using Extensions is an application that differs
from a Conforming POSIX.1 Application only in that it uses nonstandard facilities
that are consistent with this part of ISO/IEC 9945. Such an application shall fully
document its requirements for these extended facilities, in addition to the docu¬
mentation required of a Conforming POSIX.1 Application. A Conforming POSIX.1
Application Using Extensions shall be either an ISO/IEC Conforming POSIX.1
Application Using Extensions or a <National Body> Conforming POSIX.1 Applica¬
tion Using Extensions (see 1.3.2.2.1 and 1.3.2.2.2).

1.3.3 Language-Dependent Services for the C Programming Language

Parts of ISO/IEC 9899 {2} (hereinafter referred to as the “C Standard {2}”) will be |
referenced to describe requirements also mandated by this part of ISO/IEC 9945.
The sections of the C Standard {2} referenced to describe requirements for this
part of ISO/IEC 9945 are specified in Section 8. Section 8 also sets forth additions
and amplifications to the referenced sections of the C Standard {2}. Any imple¬
mentation claiming conformance to this part of ISO/IEC 9945 with the C Language
Binding shall provide the facilities referenced in Section 8, along with any addi¬
tions and amplifications Section 8 requires.

Although this part of ISO/IEC 9945 references parts of the C Standard {2} to
describe some of its own requirements, conformance to the C Standard {2} is
unnecessary for conformance to this part of ISO/IEC 9945. Any C language imple¬
mentation providing the facilities stipulated in Section 8 may claim conformance; |
however, it shall clearly state that its C language does not conform to the |
C Standard {2}.

1.3.3.1 Types of Conformance

Implementations claiming conformance to this part of ISO/IEC 9945 with the C
Language Binding shall claim one of two types of conformance—conformance to |
POSIX.1, C Language Binding (C Standard Language-Dependent System Sup- |
port), or to POSIX.l, C Language Binding (Common-Usage C Language-Dependent |
System Support).

1.3.3.2 C Standard Language-Dependent System Support

Implementors shall meet the requirements of Section 8 using for reference the
C Standard {2}. Implementors shall clearly document the version of the
C Standard {2} referenced in fulfilling the requirements of Section 8.

1.3 Conformance 5

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Implementors seeking to claim conformance using the C Standard {2} shall claim |
conformance to POSIX.1, C Language Binding (C Standard Language-Dependent |
System Support). |

1.3.3.3 Common-Usage C Language-Dependent System Support

Implementors, instead of referencing the C Standard {2}, shall provide the rou¬
tines and support required in Section 8 using common usage as guidance. Imple¬
mentors shall meet all the requirements of Section 8 except where references are
made to the C Standard {2}. In places where the C Standard {2} is referenced,
implementors shall provide equivalent support in a manner consistent with com¬
mon usage of the C programming language. Implementors shall document, in |
Section 8 of the conformance document, all differences between the interface pro- |
vided and the interface that would have been provided had the C Standard {2} |
been implemented instead of common usage. Implementors shall clearly docu- |
ment the version of the C Standard {2} referenced in documenting interface differ¬
ences and should issue updates on differences for all new versions of the
C Standard {2}.

Where a function has been introduced by the C Standard {2}, and thus there is no
common-usage referent for it, if the function is implemented, it shall be imple¬
mented as described in the C Standard {2}. If the function is not implemented, it
shall be documented as a difference from the C Standard {2} as required above.

1.3.4 Other C Language-Related Specifications

The following rules apply to the usage of C language library functions; each of the
statements in this subclause applies to the detailed function descriptions in Sec¬
tions 3 through 9, unless explicitly stated otherwise:

(1) If an argument to a function has an invalid value (such as a value outside
the domain of the function, or a pointer outside the address space of the
program, or a NULL pointer when that is not explicitly permitted), the
behavior is undefined.

(2) Any function may also be implemented as a macro in a header. Applica¬
tions should use #undef to remove any macro definition and ensure that
an actual function is referenced. Applications should also use tundef
prior to declaring any function in this part of ISO/IEC 9945.

(3) Any invocation of a library function that is implemented as a macro shall
expand to code that evaluates each of its arguments only once, fully pro¬
tected by parentheses where necessary, so it is generally safe to use arbi¬
trary expressions as arguments.

(4) Provided that a library function can be declared without reference to any
type defined in a header, it is also permissible to declare the function,
either explicitly or implicitly, and use it without including its associated
header.

6 1 General

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

EEEE Std 1003.1-1990

(5) If a function that accepts a variable number of arguments is not declared
(explicitly or by including its associated header), the behavior is
undefined.

1.3.5 Other Language-Related Specifications

This part of ISO/IEC 9945 is currently specified in terms of the language defined
by the C Standard {2}. Bindings to other programming languages are being
developed.

If conformance to this part of ISO/IEC 9945 is claimed for implementation of any
programming language, the implementation of that language shall support the
use of external symbols distinct to at least 31 bytes in length in the source pro¬
gram text. (That is, identifiers that differ at or before the thirty-first byte shall be
distinct.) If a national or international standard governing a language defines a
maximum length that is less than this value, the language-defined maximum
shall be supported. External symbols that differ only by case shall be distinct
when the character set in use distinguishes upper- and lowercase characters and
the language permits (or requires) upper- and lowercase characters to be distinct
in external symbols.

Subsequent sections of this part of ISO/IEC 9945 refer only to the C Language.

1.3 Conformance 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Section 2: Terminology and General Requirements

2.1 Conventions

This part of ISO/IEC 9945 uses the following typographic conventions:

(1) The italic font is used for:

— Cross references to defined terms within 1.3, 2.2.1, and 2.2.2; symbolic
parameters that are generally substituted with real values by the
application

— C language data types and function names (except in function
Synopsis subclauses)

— Global external variable names

(2) The bold font is used with a word in all capital letters, such as

PATH

to represent an environment variable, as described in 2.6. It is also used
for the term “NULL pointer.”

(3) The constant-width (Courier) font is used:

— For C language data types and function names within function
Synopsis subclauses

— To illustrate examples of system input or output where exact usage is
depicted

— For references to utility names and C language headers

(4) Symbolic constants returned by many functions as error numbers are
represented as:

[ERRNO]

See 2.4.

(5) Symbolic constants or limits defined in certain headers are represented
as:

{LIMIT}

See 2.8 and 2.9.

In some cases tabular information is presented “inline”; in others it is presented
in a separately labeled table. This arrangement was employed purely for ease of
typesetting and there is no normative difference between these two cases.

2.1 Conventions 9

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

31 The conventions listed previously are for ease of reading only. Editorial incon- |
32 sistencies in the use of typography are unintentional and have no normative
33 meaning in this part of ISO/IEC 9945.

34 NOTEs provided as parts of labeled tables and figures are integral parts of this |
35 part of ISO/IEC 9945 (normative). Footnotes and notes within the body of the text |
36 are for information only (informative). |

37 Numerical quantities are presented in international style: comma is used as a |
38 decimal sign and units are from the International System (SI).

39 2.2 Definitions

40 2.2.1 Terminology

41 For the purposes of this part of ISO/IEC 9945, the following definitions apply:

42 2.2.1.1 conformance document: A document provided by an implementor that |
43 contains implementation details as described in 1.3.1.2.

44 2.2.1.2 implementation defined: An indication that the implementation shall |
45 define and document the requirements for correct program constructs and correct |
46 data of a value or behavior.

47 2.2.1.3 may: An indication of an optional feature.

48 With respect to implementations, the word may is to be interpreted as an optional
49 feature that is not required in this part of ISO/IEC 9945, but can be provided,
so With respect to Strictly Conforming POSIX. 1 Applications, the word may means
5i that the optional feature shall not be used.

52 2.2.1.4 obsolescent: An indication that a certain feature may be considered for
53 withdrawal in future revisions of this part of ISO/IEC 9945.

54 Obsolescent features are retained in this version because of their widespread use.
55 Their use in new applications is discouraged.

56 2.2.1.5 shall: An indication of a requirement on the implementation or on
57 Strictly Conforming POSIX.l Applications, where appropriate.

58 2.2.1.6 should:

59 (1) With respect to implementations, an indication of an implementation
60 recommendation, but not a requirement.

61

62

63

(2) With respect to applications, an indication of a recommended program- |
ming practice for applications and a requirement for Strictly Conforming
POSIX.l Applications.

10 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

64 2.2.1.7 supported: A condition regarding optional functionality.

65 Certain functionality in this part of ISO/IEC 9945 is optional, but the interfaces to
66 that functionality are always required. If the functionality is supported, the
67 interfaces work as specified by this part of ISO/IEC 9945 (except that they do not
68 return the error condition indicated for the unsupported case). If the functional-
69 ity is not supported, the interface shall always return the indication specified for
70 this situation.

71 2.2.1.8 system documentation: All documentation provided with an imple- |
72 mentation, except the conformance document.

73 Electronically distributed documents for an implementation are considered part of |
74 the system documentation.

75 2.2.1.9 undefined: An indication that this part of ISO/IEC 9945 imposes no por- |
76 tability requirements on an application’s use of an indeterminate value or its |
77 behavior with erroneous program constructs or erroneous data.

78 Implementations (or other standards) may specify the result of using that value or
79 causing that behavior. An application using such behaviors is using extensions,
so as defined in 1.3.2.3.

81 2.2.1.10 unspecified: An indication that this part of ISO/IEC 9945 imposes no |
82 portability requirements on applications for correct program constructs or correct |
83 data regarding a value or behavior. |

84 Implementations (or other standards) may specify the result of using that value or
85 causing that behavior. An application requiring a specific behavior, rather than
86 tolerating any behavior when using that functionality, is using extensions, as
87 defined in 1.3.2.3.

88 2.2.2 General Terms

89 For the purposes of this part of ISO/IEC 9945, the following definitions apply:

90 2.2.2.1 absolute pathname: See pathname resolution in 2.3.6.

91 2.2.2.2 access mode: A form of access permitted to a file.

92 2.2.2.3 address space: The memory locations that can be referenced by a
93 process.

94 2.2.2.4 appropriate privileges: An implementation-defined means of associat-
95 ing privileges with a process with regard to the function calls and function call
96 options defined in this part of ISO/IEC 9945 that need special privileges.

97 There may be zero or more such means.

2.2 Definitions 11

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

98 2.2.2.5 background process: A process that is a member of a background pro- |
99 cess group. |

100 2.2.2.6 background process group: Any process group, other than a fore- |
101 ground process group, that is a member of a session that has established a con- j
102 nection with a controlling terminal. |

103 2.2.2.7 block special file: A file that refers to a device.

104 A block special file is normally distinguished from a character special file by pro-
105 viding access to the device in a manner such that the hardware characteristics of
106 the device are not visible.

107 2.2.2.8 character: A sequence of one or more bytes representing a single
108 graphic symbol.

109 NOTE: This term corresponds in the C Standard {2} to the term multibyte character, noting that a
110 single-byte character is a special case of multi byte character. Unlike the usage in the C Standard
111 {2}, character here has no necessary relationship with storage space, and byte is used when storage
112 space is discussed.

113 2.2.2.9 character special file: A file that refers to a device.

114 One specific type of character special file is a terminal device file, whose access is
ns defined in 7.1. Other character special files have no structure defined by this part
116 of ISO/IEC 9945, and their use is unspecified by this part of ISO/IEC 9945. |

117 2.2.2.10 child process: See process in 2.2.2.62.

ns 2.2.2.11 clock tick: An interval of time. |

119 A number of these occur each second. Clock ticks are one of the units that may be |
120 used to express a value found in type clock _t. |

121 2.2.2.12 controlling process: The session leader that established the connec-
122 tion to the controlling terminal.

123 Should the terminal subsequently cease to be a controlling terminal for this ses-
124 sion, the session leader shall cease to be the controlling process.

125 2.2.2.13 controlling terminal: A terminal that is associated with a session.

126 Each session may have at most one controlling terminal associated with it, and a
127 controlling terminal is associated with exactly one session. Certain input
128 sequences from the controlling terminal (see 7.1) cause signals to be sent to all
129 processes in the process group associated with the controlling terminal.

130 2.2.2.14 current working directory: See working directory in 2.2.2.89.

12 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]

ISO/EEC 9945-1: 1990
IEEE Std 1003.1-1990

131 2.2.2.15 device: A computer peripheral or an object that appears to the applica-
132 tion as such.

133 2.2.2.16 directory: A file that contains directory entries.

134 No two directory entries in the same directory shall have the same name.

135 2.2.2.17 directory entry [link]: An object that associates a filename with a file.

136 Several directory entries can associate names with the same file.

137 2.2.2.18 dot: The filename consisting of a single dot character (.).

138 See pathname resolution in 2.3.6.

139 2.2.2.19 dot-dot: The filename consisting solely of two dot characters (. .).

140 See pathname resolution in 2.3.6.

141 2.2.2.20 effective group ID: An attribute of a process that is used in determin-
142 ing various permissions, including file access permissions, described in 2.3.2.

143 See group ID. This value is subject to change during the process lifetime, as
144 described in 3.1.2 and 4.2.2.

145 2.2.2.21 effective user ID: An attribute of a process that is used in determining
146 various permissions, including file access permissions.

147 See user ID. This value is subject to change during the process lifetime, as
148 described in 3.1.2 and 4.2.2.

149 2.2.2.22 empty directory: A directory that contains, at most, directory entries
150 for dot and dot-dot.

151 2.2.2.23 empty string [null string]: A character array whose first element is a
152 null character.

153 2.2.2.24 Epoch: The time 0 hours, 0 minutes, 0 seconds, January 1, 1970, Coor-
154 dinated Universal Time.

155 See seconds since the Epoch.

156 2.2.2.25 feature test macro: A #def ined symbol used to determine whether a
157 particular set of features will be included from a header.

158 See 2.7.1.

159 2.2.2.26 FIFO special file [FIFO]: A type of file with the property that data |
160 written to such a file is read on a first-in-first-out basis.

2.2 Definitions 13

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

161 Other characteristics of FIFOs are described in 5.3.1, 6.4.1, 6.4.2, and 6.5.3.

162 2.2.2.27 file: An object that can be written to, or read from, or both.

163 A file has certain attributes, including access permissions and type. File types
164 include regular file, character special file, block special file, FIFO special file, and
165 directory. Other types of files may be defined by the implementation.

166 2.2.2.28 file description: See open file description in 2.2.2.51.

167 2.2.2.29 file descriptor: A per-process unique, nonnegative integer used to
168 identify an open file for the purpose of file access.

169 2.2.2.30 file group class: The property of a file indicating access permissions |
170 for a process related to the process’s group identification. |

ni A process is in the file group class of a file if the process is not in the file owner
172 class and if the effective group ID or one of the supplementary group IDs of the
173 process matches the group ID associated with the file. Other members of the class
174 may be implementation defined.

175 2.2.2.31 file mode: An object containing the file permission bits and other
176 characteristics of a file, as described in 5.6.1.

177 2.2.2.32 filename: A name consisting of 1 to {NAME_MAX} bytes used to name a
178 file.

179 The characters composing the name may be selected from the set of all character
180 values excluding the slash character and the null character. The filenames dot
181 and dot-dot have special meaning; see pathname resolution in 2.3.6. A filename is
182 sometimes referred to as a pathname component.

183 2.2.2.33 file offset: The byte position in the file where the next I/O operation
184 begins.

185 Each open file description associated with a regular file, block special file, or
186 directory has a file offset. A character special file that does not refer to a terminal
187 device may have a file offset. There is no file offset specified for a pipe or FIFO.

188 2.2.2.34 file other class: The property of a file indicating access permissions for |
189 a process related to the process’s user and group identification.

190 A process is in the file other class of a file if the process is not in the file owner
191 class or file group class.

192 2.2.2.35 file owner class: The property of a file indicating access permissions |
193 for a process related to the process’s user identification. |

194 A process is in the file owner class of a file if the effective user ID of the process
195 matches the user ID of the file.

14 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

196 2.2.2.36 file permission bits: Information about a file that is used, along with
197 other information, to determine if a process has read, write, or execute/search per-
198 mission to a file.

199 The bits are divided into three parts: owner, group, and other. Each part is used
200 with the corresponding file class of processes. These bits are contained in the file
201 mode, as described in 5.6.1. The detailed usage of the file permission bits in
202 access decisions is described in file access permissions in 2.3.2.

203 2.2.2.37 file serial number: A per-file system unique identifier for a file.

204 File serial numbers are unique throughout a file system.

205 2.2.2.38 file system: A collection of files and certain of their attributes.

206 It provides a name space for file serial numbers referring to those files.

207 2.2.2.39 foreground process: A process that is a member of a foreground pro- |
208 cess group. |

209 2.2.2.40 foreground process group: A process group whose member processes |
210 have certain privileges, denied to processes in background process groups, when |
211 accessing their controlling terminal. |

212 Each session that has established a connection with a controlling terminal has
213 exactly one process group of the session as the foreground process group of that
214 controlling terminal. See 7.1.1.4.

215 2.2.2.41 foreground process group ID: The process group ID of the foreground
216 process group.

217 2.2.2.42 group ID: A nonnegative integer, which can be contained in an object of |
218 type gidjt, that is used to identify a group of system users.

219 Each system user is a member of at least one group. When the identity of a group |
220 is associated with a process, a group ID value is referred to as a real group ID, an
221 effective group ID, one of the (optional) supplementary group IDs, or an (optional)
222 saved set-group-ID.

223 2.2.2.43 job control: A facility that allows users to selectively stop (suspend)
224 the execution of processes and continue (resume) their execution at a later point.

225 The user typically employs this facility via the interactive interface jointly sup-
226 plied by the terminal I/O driver and a command interpreter. Conforming imple-
227 mentations may optionally support job control facilities; the presence of this
228 option is indicated to the application at compile time or run time by the definition
229 of the {_POSIX_JOB_CONTROL} symbol; see 2.9.

230 2.2.2.44 link: See directory entry in 2.2.2.17.

2.2 Definitions 15

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

231 2.2.2.45 link count: The number of directory entries that refer to a particular
232 file.

233 2.2.2.46 login: The unspecified activity by which a user gains access to the |
234 system. |

235 Each login shall be associated with exactly one login name. |

236 2.2.2.47 login name: A user name that is associated with a login. |

237 2.2.2.48 mode: A collection of attributes that specifies a file’s type and its access
238 permissions.

239 See file access permissions in 2.3.2.

240 2.2.2.49 null string: See empty string in 2.2.2.23.

241 2.2.2.50 open file: A file that is currently associated with a file descriptor.

242 2.2.2.51 open file description: A record of how a process or group of processes
243 are accessing a file.

244 Each file descriptor shall refer to exactly one open file description, but an open file
245 description may be referred to by more than one file descriptor. A file offset, file
246 status (see Table 6-5), and file access modes (see Table 6-6) are attributes of an
247 open file description.

248 2.2.2.52 orphaned process group: A process group in which the parent of
249 every member is either itself a member of the group or is not a member of the
250 group’s session.

251

252

253

254

2.2.2.53 parent directory: |

(1) When discussing a given directory, the directory that both contains a |
directory entry for the given directory and is represented by the path- |
name dot-dot in the given directory.

255 (2) When discussing other types of files, a directory containing a directory
256 entry for the file under discussion.

257 This concept does not apply to dot and dot-dot.

258 2.2.2.54 parent process: See process in 2.2.2.62.

259 2.2.2.55 parent process ID: An attribute of a new process after it is created by |
260 a currently active process. |

261 The parent process ID of a process is the process ID of its creator, for the lifetime
262 of the creator. After the creator’s lifetime has ended, the parent process ID is the
263 process ID of an implementation-defined system process.

16 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

264 2.2.2.56 path prefix: A pathname, with an optional ending slash, that refers to
265 a directory.

266 2.2.2.57 pathname: A string that is used to identify a file.

267 A pathname consists of, at most, {PATH_MAX} bytes, including the terminating
268 null character. It has an optional beginning slash, followed by zero or more
269 filenames separated by slashes. If the pathname refers to a directory, it may also
270 have one or more trailing slashes. Multiple successive slashes are considered to
271 be the same as one slash. A pathname that begins with two successive slashes
272 may be interpreted in an implementation-defined manner, although more than
273 two leading slashes shall be treated as a single slash. The interpretation of the
274 pathname is described in 2.3.6.

275 2.2.2.58 pathname component: See filename in 2.2.2.32.

276 2.2.2.59 pipe: An object accessed by one of the pair of file descriptors created by
277 the pipe () function.

278 Once created, the file descriptors can be used to manipulate it, and it behaves
279 identically to a FIFO special file when accessed in this way. It has no name in the
280 file hierarchy.

281 2.2.2.60 portable filename character set: The set of characters from which |
282 portable filenames are constructed. I

283 For a filename to be portable across conforming implementations of this part of
284 ISO/IEC 9945, it shall consist only of the following characters:

285 ABCDEFGHIJKLMNOPQRSTUVWXYZ

286 abcdefghijklmnopqrstuvwxyz

287 0 1 2 3 4 5 6 7 8 9.

288 The last three characters are the period, underscore, and hyphen characters,
289 respectively. The hyphen shall not be used as the first character of a portable
290 filename. Upper- and lowercase letters shall retain their unique identities
291 between conforming implementations. In the case of a portable pathname, the
292 slash character may also be used.

293 2.2.2.61 privilege: See appropriate privileges in 2.2.2.4.

294 2.2.2.62 process: An address space and single thread of control that executes
295 within that address space, and its required system resources.

296 A process is created by another process issuing the fork() function. The process
297 that issues fork() is known as the parent process, and the new process created by
298 the forkO is known as the child process.

299 2.2.2.63 process group: A collection of processes that permits the signaling of |
300 related processes.

2.2 Definitions 17

INFORMATION TECHNOLOGY—POSIX
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

301 Each process in the system is a member of a process group that is identified by a
302 process group ID. A newly created process joins the process group of its creator.

303 2.2.2.64 process group ID: The unique identifier representing a process group |
304 during its lifetime. |

305 A process group ID is a positive integer that can be contained in a pidjt. It shall |
306 not be reused by the system until the process group lifetime ends.

307 2.2.2.65 process group leader: A process whose process ID is the same as its
308 process group ID.

309 2.2.2.66 process group lifetime: A period of time that begins when a process
310 group is created and ends when the last remaining process in the group leaves the
311 group, due either to the end of the last process’s process lifetime or to the last |
312 remaining process calling the setsidi) or setpgidO functions. |

313 2.2.2.67 process ID: The unique identifier representing a process. |

314 A process ID is a positive integer that can be contained in a pidj. A process ID |
315 shall not be reused by the system until the process lifetime ends. In addition, if |
316 there exists a process group whose process group ID is equal to that process ID,
317 the process ID shall not be reused by the system until the process group lifetime
318 ends. A process that is not a system process shall not have a process ID of 1.

319 2.2.2.68 process lifetime: The period of time that begins when a process is |
320 created and ends when its process ID is returned to the system.

321 After a process is created with a fork{) function, it is considered active. Its thread
322 of control and address space exist until it terminates. It then enters an inactive
323 state where certain resources may be returned to the system, although some
324 resources, such as the process ID, are still in use. When another process executes
325 a wait() or waitpid() function for an inactive process, the remaining resources are
326 returned to the system. The last resource to be returned to the system is the pro-
327 cess ID. At this time, the lifetime of the process ends.

328 2.2.2.69 read-only file system: A file system that has implementation-defined
329 characteristics restricting modifications.

330 2.2.2.70 real group ID: The attribute of a process that, at the time of process
331 creation, identifies the group of the user who created the process.

332 See group ID in 2.2.2.42. This value is subject to change during the process life-
333 time, as described in 4.2.2.

334 2.2.2.71 real user ID: The attribute of a process that, at the time of process
335 creation, identifies the user who created the process.

336 See user ID in 2.2.2.87. This value is subject to change during the process life-
337 time, as described in 4.2.2.

18 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

338 2.2.2.72 regular file: A file that is a randomly accessible sequence of bytes, with
339 no further structure imposed by the system.

340 2.2.2.73 relative pathname: See pathname resolution in 2.3.6.

341 2.2.2.74 root directory: A directory, associated with a process, that is used in
342 pathname resolution for pathnames that begin with a slash.

343 2.2.2.75 saved set-group-ID: An attribute of a process that allows some flexibil-
344 ity in the assignment of the effective group ID attribute, when the saved set-user-
345 ID option is implemented, as described in 3.1.2 and 4.2.2.

346 2.2.2.76 saved set-user-ID: An attribute of a process that allows some flexibil-
347 ity in the assignment of the effective user ID attribute, when the saved set-user-ID
348 option is implemented, as described in 3.1.2 and 4.2.2.

349 2.2.2.77 seconds since the Epoch: A value to be interpreted as the number of
350 seconds between a specified time and the Epoch.

351 A Coordinated Universal Time name (specified in terms of seconds (tm_sec),
352 minutes (tmjnin), hours (tmjiour), days since January 1 of the year (tmjyday),
353 and calendar year minus 1900 (tmjyear) is related to a time represented as
354 seconds since the Epoch, according to the expression below.

355 If the year < 1970 or the value is negative, the relationship is undefined. If the
356 year > 1970 and the value is nonnegative, the value is related to a Coordinated
357 Universal Time name according to the expression:

358 tm_sec + tm_min*6 0 + tmjiour*3 600 + tm_yday*86400 +
359 (tmjyear-70)*31536 000 + ((tmjyear-69)/4:)*86 400

360 2.2.2.78 session: A collection of process groups established for job control |
361 purposes. |

362 Each process group is a member of a session. A process is considered to be a
363 member of the session of which its process group is a member. A newly created
364 process joins the session of its creator. A process can alter its session membership
365 (see 4.3.2). Implementations that support the setpgidi) function (see 4.3.3) can
366 have multiple process groups in the same session.

367 2.2.2.79 session leader: A process that has created a session (see 4.3.2).

368 2.2.2.80 session lifetime: The period between when a session is created and the
369 end of the lifetime of all the process groups that remain as members of the
370 session.

371 2.2.2.81 signal: A mechanism by which a process may be notified of, or affected
372 by, an event occurring in the system.

2.2 Definitions 19

ISO/IEC 9946-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

373 Examples of such events include hardware exceptions and specific actions by
374 processes. The term signal is also used to refer to the event itself.

375 2.2.2.82 slash: The literal character

376 This character is also known as solidus in ISO 8859-1 {B34}.

377 2.2.2.83 supplementary group ID: An attribute of a process used in determin- |
378 ing file access permissions. |

379 A process has up to {NGROUPS_MAX} supplementary group IDs in addition to the
380 effective group ID. The supplementary group IDs of a process are set to the sup-
381 plementary group IDs of the parent process when the process is created. Whether
382 a process’s effective group ID is included in or omitted from its list of supplemen-
383 tary group IDs is unspecified.

384 2.2.2.84 system: An implementation of this part of ISO/IEC 9945.

385 2.2.2.85 system process: An object, other than a process executing an applica-
386 tion, that is defined by the system and has a process ID.

387 2.2.2.86 terminal [terminal device]: A character special file that obeys the
388 specifications of 7.1.

389 2.2.2.87 user ID: A nonnegative integer, which can be contained in an object of |
390 type uidjt, that is used to identify a system user.

391 When the identity of a user is associated with a process, a user ID value is
392 referred to as a real user ID, an effective user ID, or an (optional) saved
393 set-user-ID.

394 2.2.2.88 user name: A string that is used to identify a user, as described in 9.1.

395 2.2.2.89 working directory [current working directory]: A directory, asso-
396 dated with a process, that is used in pathname resolution for pathnames that do
397 not begin with a slash.

398 2.2.3 Abbreviations |

399 For the purposes of this part of ISO/IEC 9945, the following abbreviations apply: |

400 2.2.3.1 C Standard: ISO/IEC 9899, Information technology—Programming \
401 languages—C {2}. |

402 2.2.3.2 IRV: The International Reference Version coded character set described |
403 in ISO/IEC 646 {1}. |

20 2 Terminology and General Requirements

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

Part 1: SYSTEM API [C LANGUAGE]

2.2.3.3 POSIX.1: This part of ISO/IEC 9945.

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

2.3 General Concepts

2.3.1 extended security controls: The access control (see file access permis¬
sions) and privilege (see appropriate privileges in 2.2.2.4) mechanisms have been
defined to allow implementation-defined extended security controls. These permit
an implementation to provide security mechanisms to implement different secu¬
rity policies than described in this part of ISO/IEC 9945. These mechanisms shall
not alter or override the defined semantics of any of the functions in this part of
ISO/IEC 9945.

2.3.2 file access permissions: The standard file access control mechanism uses
the file permission bits, as described below. These bits are set at file creation by
open(), creat(), mkdir(), and mkfifoO and are changed by chmod(). These bits are
read by stat() or fstat().

Implementations may provide additional or alternate file access control mechan¬
isms, or both. An additional access control mechanism shall only further restrict
the access permissions defined by the file permission bits. An alternate access
control mechanism shall:

(1) Specify file permission bits for the file owner class, file group class, and
file other class of the file, corresponding to the access permissions, to be
returned by stat() or fstati).

(2) Be enabled only by explicit user action, on a per-file basis by the file
owner or a user with the appropriate privilege.

(3) Be disabled for a file after the file permission bits are changed for that
file with chmod(). The disabling of the alternate mechanism need not
disable any additional mechanisms defined by an implementation.

Whenever a process requests file access permission for read, write, or
execute/search, if no additional mechanism denies access, access is determined as
follows:

(1) If a process has the appropriate privilege:

(a) If read, write, or directory search permission is requested, access is
granted.

(b) If execute permission is requested, access is granted if execute per¬
mission is granted to at least one user by the file permission bits or
by an alternate access control mechanism; otherwise, access is
denied.

(2) Otherwise:

(a) The file permission bits of a file contain read, write, and
execute/search permissions for the file owner class, file group class,
and file other class.

(b) Access is granted if an alternate access control mechanism is not |
enabled and the requested access permission bit is set for the class |

2.3 General Concepts 21

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

(file owner class, file group class, or file other class) to which the
process belongs, or if an alternate access control mechanism is |
enabled and it allows the requested access; otherwise, access is
denied.

2.3.3 file hierarchy: Files in the system are organized in a hierarchical struc¬
ture in which all of the nonterminal nodes are directories and all of the terminal
nodes are any other type of file. Because multiple directory entries may refer to
the same file, the hierarchy is properly described as a “directed graph.”

2.3.4 filename portability: Filenames should be constructed from the portable
filename character set because the use of other characters can be confusing or
ambiguous in certain contexts.

2.3.5 file times update: Each file has three distinct associated time values: |
stjatime, stjntime, and st_ctime. The st_atime field is associated with the times |
that the file data is accessed; stjntime is associated with the times that the file |
data is modified; and stjctime is associated with the times that file status is |
changed. These values are returned in the file characteristics structure, as |
described in 5.6.1.

Any function in this part of ISO/IEC 9945 that is required to read or write file data |
or change the file status indicates which of the appropriate time-related fields are |
to be “marked for update.” If an implementation of such a function marks for |
update a time-related field not specified by this part of ISO/IEC 9945, this shall be |
documented, except that any changes caused by pathname resolution need not be |
documented. For the other functions in this part of ISO/IEC 9945 (those that are
not explicitly required to read or write file data or change file status, but that in |
some implementations happen to do so), the effect is unspecified. |

An implementation may update fields that are marked for update immediately, or
it may update such fields periodically. When the fields are updated, they are set
to the current time and the update marks are cleared. All fields that are marked
for update shall be updated when the file is no longer open by any process, or
when a stat{) or fstat() is performed on the file. Other times at which updates are
done are unspecified. Updates are not done for files on read-only file systems.

2.3.6 pathname resolution: Pathname resolution is performed for a process to
resolve a pathname to a particular file in a file hierarchy. There may be multiple
pathnames that resolve to the same file.

Each filename in the pathname is located in the directory specified by its prede¬
cessor (for example, in the pathname fragment “a/b”, file “b” is located in direc¬
tory “a”). Pathname resolution fails if this cannot be accomplished. If the path¬
name begins with a slash, the predecessor of the first filename in the pathname is
taken to be the root directory of the process (such pathnames are referred to as
absolute pathnames). If the pathname does not begin with a slash, the predeces¬
sor of the first filename of the pathname is taken to be the current working direc¬
tory of the process (such pathnames are referred to as “relative pathnames”).

The interpretation of a pathname component is dependent on the values of
{NAME_MAX} and {_POSIX_NO_TRUNC} associated with the path prefix of that
component. If any pathname component is longer than {NAME_MAX}, and

22 2 Terminology and General Requirements

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

{_POSIX_NO_TRUNC} is in effect for the path prefix of that component (see 5.7.1),
the implementation shall consider this an error condition. Otherwise, the imple¬
mentation shall use the first {NAME_MAX} bytes of the pathname component.

The special filename, dot, refers to the directory specified by its predecessor. The
special filename, dot-dot, refers to the parent directory of its predecessor direc¬
tory. As a special case, in the root directory, dot-dot may refer to the root direc¬
tory itself.

A pathname consisting of a single slash resolves to the root directory of the pro¬
cess. A null pathname is invalid.

2.4 Error Numbers

Most functions provide an error number in the external variable errno, which is
defined as:

extern int errno;

The value of this variable shall be defined only after a call to a function for which
it is explicitly stated to be set and until it is changed by the next function call.
The variable errno should only be examined when it is indicated to be valid by a
function’s return value. No function defined in this part of ISO/IEC 9945 sets
errno to zero to indicate an error.

If more than one error occurs in processing a function call, this part of
ISO/IEC 9945 does not define in what order the errors are detected; therefore, any
one of the possible errors may be returned.

Implementations may support additional errors not included in this clause, may |
generate errors included in this clause under circumstances other than those |
described in this clause, or may contain extensions or limitations that prevent
some errors from occurring. The Errors subclause in each function description
specifies which error conditions shall be detected by all implementations and |
which may be optionally detected by an implementation. Each implementation |
shall document, in the conformance document, situations in which each of the |
optional conditions are detected. If no error condition is detected, the action
requested shall be successful. Implementations may contain extensions or limita- |
tions that prevent some specified errors from occurring.

Implementations may generate error numbers listed in this clause under cir- |
cumstances other than those described, if and only if all those error conditions can |
always be treated identically to the error conditions as described in this part of |
ISO/IEC 9945. Implementations may support additional errors not listed in this |
clause, but shall not generate a different error number from one required by this |
part of ISO/IEC 9945 for an error condition described in this part of ISO/IEC 9945.

The following symbolic names identify the possible error numbers, in the context
of functions specifically defined in this part of ISO/IEC 9945; these general descrip¬
tions are more precisely defined in the Errors subclauses of functions that return
them. Only these symbolic names should be used in programs, since the actual
value of an error number is unspecified. All values listed in this clause shall be |
unique. The values for these names shall be found in the header <errno.h>.

2.4 Error Numbers 23

533

534
535
536
537

538
539
540

541
542
543

544
545
546
547

548
549
550
551
552

553
554
555

556
557
558

559
560
561

562
563
564

565
566
567
568
569

570
571
572

573
574
575
576

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

The actual values are unspecified by this part of ISO/IEC 9945.

[E2BIG] Arg list too long

[EACCES]

The sum of the number of bytes used by the new process image’s
argument list and environment list was greater than the system-
imposed limit of {ARG_MAX} bytes.

Permission denied
An attempt was made to access a file in a way forbidden by its file
access permissions.

[EAGAIN] Resource temporarily unavailable
This is a temporary condition, and later calls to the same routine
may complete normally.

[EBADF] Bad file descriptor
A file descriptor argument was out of range, referred to no open
file, or a read (write) request was made to a file that was only
open for writing (reading).

[EBUSY] Resource busy
An attempt was made to use a system resource that was not
available at the time because it was being used by a process in a
manner that would have conflicted with the request being made
by this process.

[ECHILD] No child processes
A wait() or waitpidi) function was executed by a process that had
no existing or unwaited-for child processes.

[EDEADLK] Resource deadlock avoided
An attempt was made to lock a system resource that would have

[EDOM]

resulted in a deadlock situation.

Domain error
Defined in the C Standard {2}; an input argument was outside the
defined domain of the mathematical function.

[EEXIST] File exists
An existing file was specified in an inappropriate context; for
instance, as the new link name in a link() function.

[EFAULT] Bad address
The system detected an invalid address in attempting to use an
argument of a call. The reliable detection of this error is imple¬
mentation defined; however, implementations that do detect this
condition shall use this value.

[EFBIG] File too large
The size of a file would exceed an implementation-defined max¬
imum file size.

[EINTR] Interrupted function call
An asynchronous signal (such as SIGINT or SIGQUIT; see the
description of header <signal.h> in 3.3.1) was caught by the
process during the execution of an interruptible function. If the

24 2 Terminology and General Requirements

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

[EINVAL]

signal handler performs a normal return, the interrupted func¬
tion call may return this error condition.

Invalid argument
Some invalid argument was supplied. [For example, specifying
an undefined signal to a signali) or kill{) function].

[EIOl Input/output error
Some physical input or output error occurred. This error may be
reported on a subsequent operation on the same file descriptor.
Any other error-causing operation on the same file descriptor may
cause the [EIO] error indication to be lost.

[EISDIR] Is a directory
An attempt was made to open a directory with write mode
specified.

[EMFILE] Too many open files
An attempt was made to open more than the maximum number of
{OPEN_MAX} file descriptors allowed in this process.

[EMLINK] Too many links
An attempt was made to have the link count of a single file exceed
{LINK_MAX}.

[ENAMETOOLONG] Filename too long

[ENFILE]

The size of a pathname string exceeded [PATH_MAX], or a path¬
name component was longer than {NAME_MAX} and
[_POSIX_NO_TRUNC] was in effect for that file.

Too many open files in system
Too many files are currently open in the system. The system
reached its predefined limit for simultaneously open files and
temporarily could not accept requests to open another one.

[ENODEV] No such device
An attempt was made to apply an inappropriate function to a dev¬
ice; for example, trying to read a write-only device such as a
printer.

[ENOENT] No such file or directory
A component of a specified pathname did not exist, or the path-
name was an empty string.

[ENOEXEC] Exec format error
A request was made to execute a file that, although it had the

[ENOLCK]

appropriate permissions, was not in the format required by the
implementation for executable files.

No locks available
A system-imposed limit on the number of simultaneous file and
record locks was reached, and no more were available at that
time.

[ENOMEM] Not enough space
The new process image required more memory than was allowed

2.4 Error Numbers 25

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

[ENOSPC]

by the hardware or by system-imposed memory management
constraints.

No space left on device
During a write() function on a regular file, or when extending a
directory, there was no free space left on the device.

[ENOSYS] Function not implemented
An attempt was made to use a function that is not available in
this implementation.

[ENOTDIR] Not a directory
A component of the specified pathname existed, but it was not a
directory, when a directory was expected.

[ENOTEMPTY] Directory not empty

[ENOTTY1

A directory with entries other than dot and dot-dot was supplied
when an empty directory was expected.

Inappropriate I/O control operation
A control function was attempted for a file or a special file for
which the operation was inappropriate.

[ENXIOl No such device or address
Input or output on a special file referred to a device that did not
exist, or made a request beyond the limits of the device. This
error may also occur when, for example, a tape drive is not online
or a disk pack is not loaded on a drive.

[EPERM] Operation not permitted
An attempt was made to perform an operation limited to
processes with appropriate privileges or to the owner of a file or
other resource.

[EPIPE] Broken pipe
A write was attempted on a pipe or FIFO for which there was no
process to read the data.

[ERANGE] Result too large
Defined in the C Standard {2}; the result of the function was too
large to fit in the available space.

[EROFS] Read-only file system
An attempt was made to modify a file or directory on a file system
that was read-only at that time.

[ESPIPE] Invalid seek
An lseek{) function was issued on a pipe or FIFO.

[ESRCH1 No such process
No process could be found corresponding to that specified by the
given process ID.

[EXDEV] Improper link
A link to a file on another file system was attempted.

26 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

663 2.5 Primitive System Data Types

664 Some data types used by the various system functions are not defined as part of
665 this part of ISO/IEC 9945, but are defined by the implementation. These types are
666 then defined in the header <sys/types. h>, which contains definitions for at
667 least the types shown in Table 2-1.

668 Table 2-1 - Primitive System Data Types
669 _

670
671

Defined
Type

Description

672 devjt Used for device numbers.
673 gid_t Used for group IDs.
674 inojt Used for file serial numbers.
675 modejt Used for some file attributes, for example file type, file access permissions.

676 nlink t Used for link counts.
677 offj Used for file sizes.
678 pid_t Used for process IDs and process group IDs.

679 sizejt As defined in the C Standard {2}.

680 ssizejt Used by functions that return a count of bytes (memory space) or an error indication.

681

682

uid_t Used for user IDs.

683 All of the types listed in Table 2-1 shall be arithmetic types; pid_t, ssize_t, and
684 offjt shall be signed arithmetic types. The type ssizejt shall be capable of storing
685 values in the range from -1 to {SSIZE_MAX}, inclusive. The types sizejt and
686 ssizejt shall also be defined in the header <unistd. h>.

687 Additional unspecified type symbols ending in J may be defined in any header
688 specified by POSIX.l. The visibility of such symbols need not be controlled by any
689 feature test macro other than _POSIX_SOURCE.

690 2.6 Environment Description

691 An array of strings called the environment is made available when a process
692 begins. This array is pointed to by the external variable environ, which is defined
693 as:

694 extern char **environ;

695 These strings have the form “name=value”\ names shall not contain the character
696 ' ='. There is no meaning associated with the order of the strings in the environ -
697 ment. If more than one string in a process’s environment has the same name, the
698 consequences are undefined. The following names may be defined and have the
699 indicated meaning if they are defined:

700 HOME The name of the user’s initial working directory from the
701 user database (see the description of the header <pwd. h>
702 in 9.2.2).

2.6 Environment Description 27

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990

LANG

LC_ALL

LC_C OLLATE

LC_CTYPE

LC_MONETARY

LC_NUMERIC

LC_TIME

LOGNAME

PATH

TERM

INFORMATION TECHNOLOGY—POSDC

The name of the locale to use for locale categories when |
both LC_ALL and the corresponding environment variable |
(beginning with “LC_”) do not specify a locale.

The name of the locale to be used to override any values |
for locale categories specified by the setting of LANG or j

any environment variables beginning with “LC_”. |

The name of the locale for collation information.

The name of the locale for character classification.

The name of the locale containing monetary-related
numeric editing information.

The name of the locale containing numeric editing (i.e.,
radix character) information.

The name of the locale for date/time formatting
information.

The login name associated with the current process. The |
value shall be composed of characters from the portable |
filename character set. |

NOTE: An application that requires, or an installation that actually
uses, characters outside the portable filename character set would not
strictly conform to this part of ISO/IEC 9945. However, it is reasonable
to expect that such characters would be used in many countries (recog¬
nizing the reduced level of interchange implied by this), and applica¬
tions or installations should permit such usage where possible. No
error is defined by this part of ISO/IEC 9945 for violation of this
condition.

The sequence of path prefixes that certain functions apply
in searching for an executable file known only by a
filename (a pathname that does not contain a slash). The
prefixes are separated by a colon (:). When a nonzero-
length prefix is applied to this filename, a slash is
inserted between the prefix and the filename. A zero-
length prefix is a special prefix that indicates the current
working directory. It appears as two adjacent colons (: :),
as an initial colon preceding the rest of the list, or as a
trailing colon following the rest of the list. The list is
searched from beginning to end until an executable pro¬
gram by the specified name is found. If the pathname
being sought contains a slash, the search through the
path prefixes is not performed.

The terminal type for which output is to be prepared.
This information is used by commands and application
programs wishing to exploit special capabilities specific to
a terminal.

28 2 Terminology and General Requirements

746

747

748

749

760

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

TZ Time zone information. The format of this string is
defined in 8.1.1.

Environment variable name s used or created by an application should consist
solely of characters from the portable filename character set. Other characters
may be permitted by an implementation; applications shall tolerate the presence
of such names. Upper- and lowercase letters retain their unique identities and
are not folded together. System-defined environment variable names should
begin with a capital letter or underscore and be composed of only capital letters,
underscores, and numbers.

The values that the environment variables may be assigned are not restricted
except that they are considered to end with a null byte, and the total space used
to store the environment and the arguments to the process is limited to
{ARG_MAX} bytes.

Other name = value pairs may be placed in the environment by manipulating the
environ variable or by using envp arguments when creating a process (see 3.1.2).

2.7 C Language Definitions

2.7.1 Symbols From the C Standard

The following terms and symbols used in this part of ISO/IEC 9945 are defined in |
the C Standard {2}: NULL, byte, array of char, clockjt, header, null character, \
string, timej. The type clock_t shall be capable of representing all integer values |
from zero to the number of clock ticks in 24 h.

The term NULL pointer in this part of ISO/IEC 9945 is equivalent to the term null
pointer used in the C Standard {2}. The symbol NULL shall be declared in
<unistd.h> with the same value as required by the C Standard {2}, in addition
to several headers already required by the C Standard {2}. |

Additionally, the reservation of symbols that begin with an underscore applies:

(1) All external identifiers that begin with an underscore are reserved.

(2) All other identifiers that begin with an underscore and either an upper¬
case letter or another underscore are reserved.

(3) If the program defines an external identifier with the same name as a
reserved external identifier, even in a semantically equivalent form, the
behavior is undefined.

Certain other namespaces are reserved by the C Standard {2}. These reservations
apply to this part of ISO/IEC 9945 as well. Additionally, the C Standard {2}
requires that it be possible to include a header more than once and that a symbol
may be defined in more than one header. This requirement is also made of
headers for this part of ISO/IEC 9945.

2.7 C Language Definitions 29

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

2.7.2 POSIX. 1 Symbols

Certain symbols in this part of ISO/IEC 9945 are defined in headers. Some of |
those headers could also define other symbols than those defined by this part of |
ISO/IEC 9945, potentially conflicting with symbols used by the application. Also, |
this part of ISO/IEC 9945 defines symbols that are not permitted by other stan- |
dards to appear in those headers without some control on the visibility of those
symbols.

Symbols called feature test macros are used to control the visibility of symbols
that might be included in a header. Implementations, future versions of this part
of ISO/IEC 9945, and other standards may define additional feature test macros.
Feature test macros shall be defined in the compilation of an application before an
#include of any header where a symbol should be visible to some, but not all,
applications. If the definition of the macro does not precede the fin elude, the
result is undefined.

Feature test macros shall begin with the underscore character (_).

Implementations may add symbols to the headers shown in Table 2-2, provided
the identifiers for those symbols begin with the corresponding reserved prefixes in
Table 2-2. Similarly, implementations may add symbols to the headers in
Table 2-2 that end in the string indicated as a reserved suffix as long as the
reserved suffix is in that part of the name considered significant by the implemen¬
tation. This shall be in addition to any reservations made in the C Standard {2}.

If any header defined by this part of ISO/IEC 9945 is included, all symbols with
the suffix _t are reserved for use by the implementation, both before and after the
finclude directive.

After the last inclusion of a given header, an application may use any of the sym¬
bol classes reserved in Table 2-2 for its own purposes, as long as the requirements
in the note to Table 2-2 are satisfied, noting that the symbol declared in the
header may become inaccessible.

Future revisions of this part of ISO/IEC 9945, and other POSIX standards, are
likely to use symbols in these same reserved spaces.

In addition, implementations may add members to a structure or union without
controlling the visibility of those members with a feature test macro, as long as a
user-defined macro with the same name cannot interfere with the correct
interpretation of the program.

The header <fcntl.h> may contain the following symbols in addition to those
specifically required elsewhere in POSIX.1:

SEEK_CUR
SEEK.END
SEEKJ3ET
S_IRGRP
SJROTH

S_IRUSR
S_IRWXG
SJRWXO
SJRWXU
S_ISBLK

S_ISCHR
S.ISDIR
S_ISFIFO
S_ISGID

S_ISREG
S_ISUID
S_IWGRP
S.IWOTH

S_IWUSR
S_IXGRP
S_IXOTH
S_IXUSR

In addition, an implementation may define the symbols “cuserid” in <unistd.h>
and “L_cuserid” in <stdio . h>.

30 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

826

827

828

829

Table 2-2 - Reserved Header Symbols

Header Key
Reserved

Prefix
Reserved

Suffix

830 <dirent.h> l d
831 <fcntl.h> l 1
832 2 F

833 2 O
834 2 S

835 <grp.h> 1 9r_
836 Climits.h> 1 MAX

837 <locale.h> 2 LC [A-Z]

838 <pwd.h> 1 pw
839 <signal.h> 1 sa_
840 2 SIG

841 2 SA

842 <sys/stat.h> 1 St
843 2 S

844 <sys/times.h> 1 tms
845 Ctermios.h> 1 c
846 2 V

847 2 i
848 2 0
849 2 TC

850 2 B [0-9]
851 any POSIX. 1 header included 1 t

852

853

854

855

856

857

NOTE: The notation “[0-9]” indicates any digit and “[A-Z]” any uppercase character in the portable
filename character set. The Key values are:

(1) Prefixes and suffixes of symbols that shall not be declared or #def ined by the application.

(2) Prefixes and suffixes of symbols that shall be preceded in the application with a #undef of
that symbol before any other use.

858 The following feature test macro is defined:

859

860

861

862

863

864

865

866

867

868

869

870

871

Name

POSIX SOURCE

Description

When an application includes a header described by
POSIX. 1, and when this feature test macro is defined
according to the preceding rules:

(1) All symbols required by POSIX. 1 to appear when
the header is included shall be made visible.

(2) Symbols that are explicitly permitted, but not
required, by POSIX. 1 to appear in that header
(including those in reserved namespaces) may be
made visible.

(3) Additional symbols not required or explicitly per¬
mitted by POSIX. 1 to be in that header shall not
be made visible.

2.7 C Language Definitions 31

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

The exact meaning of feature test macros depends on the type of C language sup¬
port chosen: C Standard Language-Dependent Support and Common-Usage- |
Dependent Support, described in the following two subclauses. J

2.7.2.1 C Standard Language-Dependent Support

If there are no feature test macros present in a program, the implementation |
shall make visible only those identifiers specified as reserved identifiers in the |
C Standard {2}, permitting the reservation of symbols and namespace defined in |
2.7.1. For each feature test macro present, only the symbols specified by that
feature test macro plus those of the C Standard {2} shall be defined when a header
is included.

2.7.2.2 Common-Usage-Dependent Support

If the feature test macro _POSIX_SOURCE is not defined in a program, the set of
symbols defined in each header that are beyond the requirements of this part of |
ISO/IEC 9945 is unspecified. j

If _POSIX_SOURCE is defined before any header is included, no symbols other
than those from the C Standard {2} and those made visible by feature test macros
defined for the program (including _POSIX_SOURCE) will be visible. Symbols from |
the namespace reserved for the implementation, as defined by the C Standard {2}, |
are also permitted. The symbols beginning with two underscores are examples of |
this. j

If _POSIX_SOURCE is not defined before any header is included, the behavior is
undefined.

2.7.3 Headers and Function Prototypes

Implementations claiming C Standard {2} Language-Dependent Support shall
declare function prototypes for all functions.

Implementations claiming Common-Usage C Language-Dependent Support shall
declare the result type for all functions not returning a “plain” int.

For functions described in the C Standard {2} and included by reference in Section
8 (whether or not they are further described in this part of ISO/IEC 9945), these
prototypes or declarations (if required) shall appear in the headers defined for
them in the C Standard {2}. For other functions in this part of ISO/IEC 9945, the
prototypes or declarations shall appear in the headers listed below. If a function
is defined by this part of ISO/IEC 9945, is not described in the C Standard {2}, and
is not listed below, it shall have its prototype or declaration (if required) appear in
<unistd.h>, which shall be #include-ed by the application before using any
function declared in it, whether or not it is mentioned in the Synopsis subclause
for that function. The requirements about the visibility of symbols in 2.7.2 shall
be honored.

32 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

910 <dirent.h> opendir(), readdiri), rewinddir(), closedir()

911 <fcnt1.h> open (), create), fcntli)

912 <grp.h> getgrgidi), getgrnami)

913 <pwd.h> getpwuidi), getpwnamO

914 <setjmp.h> sigsetjmpi), siglongjmpi)

916

916

917

<signal.h> kill{), sigemptysetO, sigfillsetO, sigaddsetO, sigdelsetO,
sigismemberi), sigaction(), sigprocmaski), sigpendingO,
sigsuspendO

918 <stdio.h> ctermidi), filenoO, fdopeni)

919 <sys/stat.h> umaskO, mkdirO, mkfifoO, stat(), fstat(), chmodO

920 <sys/times.h> times()

921 <sys/utsname.h> uname{)

922 <sys/wait.h> wait{), waitpidi)

923

924

925

ctermios.h> cfgetospeedi), cfsetospeedi), cfgetispeedi), cfsetispeedi),
tcgetattrO, tcsetattr(), tcsendbreak(), tcdrain(),
tcflushi), tcflowi)

926 <time.h> time (), tzset ()

927 <utime.h> utimeO

928 The declarations in the headers shall follow the proper form for the C language
929 option chosen by the implementation. Additionally, pointer arguments that refer
930 to objects not modified by the function being described are declared with const

931 qualifying the type to which it points. Implementations claiming Common-Usage
932 C conformance to this part of ISO/IEC 9945 may ignore the presence of this key-
933 word and need not include it in any function declarations. Implementations
934 claiming conformance using the C Standard {2} shall use the const modifier as
935 indicated in the prototypes they provide.

936 Implementations claiming conformance using Common-Usage C may use
937 equivalent implementation-defined constructs when void is used as a result type
938 for a function prototype. They may also use int when a function result is declared
939 ssizejt.

940 Neither the names of the formal parameters nor their types, as they appear in an
941 implementation, are specified by this part of ISO/IEC 9945. The names are used
942 within this part of ISO/IEC 9945 as a notational mechanism. However, any
943 declaration provided by an implementation shall accept all actual parameter
944 types that a declaration lexically identical to one in this part of ISO/IEC 9945 shall
945 accept, including the effects of both type conversion and checking for the number
946 of arguments implied by the presence of a filled-out prototype. The
947 implementation’s declaration shall not cause a syntax error if an application pro-
948 vides a prototype lexically identical to one in this part of ISO/IEC 9945. It is not a
949 requirement that nonconforming parameters to functions that may be used by an
950 application be diagnosed by an implementation, except as specifically required by
951 this part of ISO/IEC 9945 or the C Standard {2}, as applicable. Where the

2.7 C Language Definitions 33

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

952 C Standard {2} has a more restrictive requirement for a function defined by that |
953 standard, that requirement shall be honored, and this exception does not apply.

954 2.8 Numerical Limits

955 The following subclauses list magnitude limitations imposed by a specific imple- |
956 mentation. The braces notation, {LIMIT}, is used in this part of ISO/IEC 9945 to
957 indicate these values, but the braces are not part of the name.

958 2.8.1 C Language Limits

959 The following limits used in this part of ISO/IEC 9945 are defined in the |
960 C Standard {2}: {CHAR_BIT}, {CHAR_MAX}, {CHAR_MIN}, {INT_MAX}, (INT_MIN), |
961 {LONG_MAX}, {LQNG_MIN}, {MB_LEN_MAX}, {SCHAR_MAX}, {SCHAR_MIN},
962 {SHRT_MAX}, {SHRT_MIN}, {UCHAR_MAX}, {UINT_MAX}, {ULONG.MAX},
963 {USHRT_MAX}.

964 2.8.2 Minimum Values

965 The symbols in Table 2-3 shall be defined in <limits .h> with the values shown.
966 These are symbolic names for the most restrictive value for certain features on a
967 system conforming to this part of ISO/IEC 9945. Related symbols are defined else-
968 where in this part of ISO/IEC 9945, which reflect the actual implementation and
969 which need not be as restrictive. A conforming implementation shall provide
970 values at least this large. A portable application shall not require a larger value
971 for correct operation.

972 2.8.3 Run-Time Increasable Values

973 The magnitude limitations in Table 2-4 shall be fixed by specific implementations.

974 A Strictly Conforming POSIX. 1 Application shall assume that the value supplied
975 by <limits .h> in a specific implementation is the minimum value that pertains
976 whenever the Strictly Conforming POSIX. 1 Application is run under that imple-
977 mentation.3) A specific instance of a specific implementation may increase the
978 value relative to that supplied by <limits.h> for that implementation. The
979 actual value supported by a specific instance shall be provided by the sysconfi)
980 function.

981 3) In a future revision of this part of ISO/IEC 9945, omitting a symbol defined in this subclause from

982 climits .h> is expected to indicate that the value is variable.

34 2 Terminology and General Requirements

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Table 2-3 - Minimum Values

Name Description Value

Lposix_arg_max} The length of the arguments for one of the exec func¬
tions, in bytes, including environment data.

4096

LPOSIX_CfflLD_MAX) The number of simultaneous processes per real user
ID

6

LPOSIX_LINK_MAX} The value of a file’s link count. 8

{_POSIX_MAX_CANON} The number of bytes in a terminal canonical input
queue.

255

LPOSIX_MAX_INPUT} The number of bytes for which space will be available
in a terminal input queue.

255

{_POSEX_NAME_MAX} The number of bytes in a filename. 14

LPOSIX_NGROUPS_MAX) The number of simultaneous supplementary group IDs
per process.

0

l_POSIX_OPEN_MAX} The number of files that one process can have open at
one time.

16

LPOSIX_PATH_MAX} The number of bytes in a pathname. 255

LPOSIX_PIPE_BUF} The number of bytes that can be written atomically
when writing to a pipe.

512

LPOSIX_SSIZE_MAX} The value that can be stored in an object of type
ssizejt.

32 767

LPOSIX_STREAM_MAX) The number of streams that one process can have
open at one time.

8

LPOSIX_TZNAME_MAX} The maximum number of bytes supported for the
name of a time zone (not of the TZ variable).

3

Table 2-4 - Run-Time Increasable Values

Name Description Minimum Value

(NGROUPS_MAX) Maximum number of simultaneous supple¬

mentary group IDs per process.

LPOSIX_NGROUPS_MAX}

2.8.4 Run-Time Invariant Values (Possibly Indeterminate)

A definition of one of the values in Table 2-5 shall be omitted from the
climits .h> on specific implementations where the corresponding value is equal
to or greater than the stated minimum, but is indeterminate.

This might depend on the amount of available memory space on a specific
instance of a specific implementation. The actual value supported by a specific
instance shall be provided by the sysconfi) function.

2.8 Numerical Limits 35

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Table 2-5 - Run-Time Invariant Values (Possibly Indeterminate)

Name Description Minimum Value

(ARG_MAX) Maximum length of arguments for the exec

functions, in bytes, including environment
data.

{_POSIX_ARG_MAX}

(CHILD_MAX) Maximum number of simultaneous
processes per real user ID.

LPOSIX_CHILD_MAX}

{OPEN_MAX} Maximum number of files that one process
can have open at any given time.

{_POSIX_OPEN_MAX}

{STREAM.MAX} The number of streams that one process
can have open at one time. If defined, it
shall have the same value as
{FOPEN_MAX} from the C Standard {2}.

LPOSIX_STREAM_MAX}

{TZNAME_MAX} The maximum number of bytes supported
for the name of a time zone (not of the TZ
variable).

LPOSK_TZNAME_MAX)

2.8.5 Pathname Variable Values

The values in Table 2-6 may be constants within an implementation or may vary
from one pathname to another.

Table 2-6 - Pathname Variable Values

Name Description Minimum Value

{LINK_MAX} Maximum value of a file’s link count. LPOSIX_LINK_MAX}

{MAX_C AN ON} Maximum number of bytes in a terminal
canonical input line. (See 7.1.1.6.)

(_POSIX_MAX_CAN ON)

(MAXJNPUT) Minimum number of bytes for which space
will be available in a terminal input

queue; therefore, the maximum number of
bytes a portable application may require to
be typed as input before reading them.

LPOSIX_MAX_INPUT}

{NAME_MAX} Maximum number of bytes in a file name
(not a string length; count excludes a ter¬
minating null).

LPOSIX_NAME_MAX}

{PATH_MAX} Maximum number of bytes in a pathname
(not a string length; count excludes a ter¬
minating null).

l_POSIX_PATH_MAX}

{PIPE_BUF} Maximum number of bytes that can be
written atomically when writing to a pipe.

LPOSIX_PIPE_BUF}

For example, file systems or directories may have different characteristics.

A definition of one of the values from Table 2-6 shall be omitted from
<limits . h> on specific implementations where the corresponding value is equal
to or greater than the stated minimum, but where the value can vary depending

36 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

1068 on the file to which it is applied. The actual value supported for a specific path-
1069 name shall be provided by the pathconfi) function.

1070 2.8.6 Invariant Values

1071 The value in Table 2-7 shall not vary in a given implementation. The value in
1072 that table shall appear in <limits . h>.

1073

1074

Table 2-7 - Invariant Value

1075 Name Description Value

1076 {SSIZE_MAX}

1077

1078

The maximum value that can be stored in an
object of type ssize_t.

LPOSIX_SSIZE_MAX}

1079 2.9 Symbolic Constants

1080 A conforming implementation shall have the header <unistd.h>. This header
1081 defines the symbolic constants and structures referenced elsewhere in this part of
1082 ISO/IEC 9945. The constants defined by this header are shown in the following
1083 subclauses. The actual values of the constants are implementation defined.

1084 2.9.1 Symbolic Constants for the access () Function

1085 The constants used by the accessi) function are shown in Table 2-8. The con-
1086 stants F_OK, R_OK, W_OK, and X_OK, and the expressions

1087 R_OK | W_OK

1088 (where the | represents the bitwise inclusive OR operator),

1089 R_OK | X_OK

1090 and

1091 R_OK | W_OK | X_OK

1092 shall all have distinct values.

1093 2.9.2 Symbolic Constant for the Iseek () Function

1094 The constants used by the IseekO function are shown in Table 2-9.

2.9 Symbolic Constants 37

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

1095

1096

Table 2-8 - Symbolic Constants for the access () Function

1097 Constant Description

1098 R_OK Test for read permission.

1099 W_OK Test for write permission.

1100 X_OK Test for execute or search permission.

1101 F_OK Test for existence of file.

1102

1103 Table 2-9 - Symbolic Constants for the Iseek () Function

1104 _
1105 Constant Description

1106 SEEK_SET Set file offset to offset.

1107 SEEK_CUR Set file offset to current plus offset.

1108 SEEK_END Set file offset to EOF plus offset.

1109 _

mo 2.9.3 Compile-Time Symbolic Constants for Portability Specifications

mi The constants in Table 2-10 may be used by the application, at compile time, to
1112 determine which optional facilities are present and what actions shall be taken by
1113 the implementation.

ni4 Table 2-10 - Compile-Time Symbolic Constants
1115 _

1116 Name Description

1117

1118

LPOSIX_JOB_CONTROL} If this symbol is defined, it indicates that the implementation sup¬
ports job control.

1119 {_POSIX_SAVED_IDS} If defined, each process has a saved set-user-ID and a saved set-
1120 group-ID.

1121
1122

LPOSKVERSION) The integer value 199009L. This value shall be used for systems
that conform to this part of ISO/IEC 9945.

1123

1124 Although a Strictly Conforming POSIX.1 Application can rely on the values com-
1125 piled from the <unistd.h> header to afford it portability on all instances of an
1126 implementation, it may choose to interrogate a value at run-time to take advan-
U27 tage of the current configuration. See 4.8.1.

H28 2.9.4 Execution-Time Symbolic Constants for Portability Specifications

1129 The constants in Table 2-11 may be used by the application, at execution time, to
U30 determine which optional facilities are present and what actions shall be taken by
U3i the implementation in some circumstances described by this part of ISO/IEC 9945
1132 as implementation defined.

38 2 Terminology and General Requirements

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

1133

1134

Table 2-11 - Execution-Time Symbolic Constants

1135 Name Description

1136

1137

1138

1139

(_POSIX_CHOWN_RESTRICTED) The use of the chown{) function is restricted to a process

with appropriate privileges, and to changing the group ID of

a file only to the effective group ID of the process or to one of

its supplementary group IDs.

1140

1141

LPOSIX_NO_TRUNC} Pathname components longer than {NAME_MAX} generate

an error.

1142

1143

1144

1145

LPOSIXVDISABLE} Terminal special characters defined in 7.1.1.9 can be dis¬

abled using this character value, if it is defined. See

tcgetattrO and tcsetattr().

1146 If any of the constants in Table 2-11 are not defined in the header <unistd.h>,
1147 the value varies depending on the file to which it is applied. See 5.7.1.

U48 If any of the constants in Table 2-11 are defined to have value -1 in the header
1149 <unistd.h>, the implementation shall not provide the option on any file; if any
1150 are defined to have a value other than -1 in the header <unistd.h>, the imple-
U5i mentation shall provide the option on all applicable files.

U52 All of the constants in Table 2-11, whether defined in <unistd. h> or not, may be
1153 queried with respect to a specific file using the pathconfi) or fpathconfi) functions.

2.9 Symbolic Constants 39

i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Section 3: Process Primitives

The functions described in this section perform the most primitive operating sys¬
tem services dealing with processes, interprocess signals, and timers. All attri¬
butes of a process that are specified in this part of ISO/IEC 9945 shall remain
unchanged by a process primitive unless the description of that process primitive
states explicitly that the attribute is changed.

3.1 Process Creation and Execution

3.1.1 Process Creation

Function: fork()

3.1.1.1 Synopsis

♦include <sys/types.h>

pid_t fork(void);

3.1.1.2 Description

The fork() function creates a new process. The new process (child process) shall
be an exact copy of the calling process (parent process) except for the following:

(1) The child process has a unique process ID. The child process ID also does
not match any active process group ID.

(2) The child process has a different parent process ID (which is the process
ID of the parent process).

(3) The child process has its own copy of the parent’s file descriptors. Each
of the child’s file descriptors refers to the same open file description with
the corresponding file descriptor of the parent.

(4) The child process has its own copy of the parent’s open directory streams
(see 5.1.2). Each open directory stream in the child process may share
directory stream positioning with the corresponding directory stream of
the parent.

(5) The child process’s values of tmsjutime, tms_stime, tmsjcutime, and
tmsjcstime are set to zero (see 4.5.2).

3.1 Process Creation and Execution 41

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

28 (6) File locks previously set by the parent are not inherited by the child.
29 (See 6.5.2.)

30

31

32

(7) Pending alarms are cleared for the child process. (See 3.4.1.)

(8) The set of signals pending for the child process is initialized to the empty
set. (See 3.3.1.)

33 All other process characteristics defined by this part of ISO/IEC 9945 shall be the
34 same in the parent and the child processes. The inheritance of process charac-
35 teristics not defined by this part of ISO/IEC 9945 is unspecified by this part of
36 ISO/IEC 9945, but should be documented in the system documentation.

37 After fork(), both the parent and the child processes shall be capable of executing
38 independently before either terminates.

39 3.1.1.3 Returns

40 Upon successful completion, fork() shall return a value of zero to the child process
41 and shall return the process ID of the child process to the parent process. Both
42 processes shall continue to execute from the forki) function. Otherwise, a value of
43 -1 shall be returned to the parent process, no child process shall be created, and
44 errno shall be set to indicate the error.

45 3.1.1.4 Errors

46 If any of the following conditions occur, the forkf) function shall return -1 and set
47 errno to the corresponding value:

48 [EAGAIN] The system lacked the necessary resources to create another
49 process, or the system-imposed limit on the total number of
50 processes under execution by a single user would be exceeded.

51 For each of the following conditions, if the condition is detected, the fork{) func-
52 tion shall return -1 and set errno to the corresponding value:

53 [ENOMEM] The process requires more space than the system is able to
54 supply.

55 3.1.1.5 Cross-References

56 alarmO, 3.4.1; exec, 3.1.2; fcntl{), 6.5.2; kill(), 3.3.2; timesO, 4.5.2; wait, 3.2.1.

57 3.1.2 Execute a File

58 Functions: execl{), execv(), execleO, execvei), execlpi), execvpi).

59 3.1.2.1 Synopsis

60 int execl (const char *path, const char *arg, . . .);

61 int execv(const char *path, char *const argv []) ;

42 3 Process Primitives

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

62

63

64

65

int execle(const

int execve(const

int execlp(const

int execvp(const

char *path, const char *arg, . . .) ;

char *path, char *const argu [] , char *const envp []) ;

char *file, const char *arg, . . .) ;

char *file, char *const argv []) ;

66 3.1.2.2 Description

67 The exec family of functions shall replace the current process image with a new
68 process image. The new image is constructed from a regular, executable file
69 called the new process image file. There shall be no return from a successful exec
70 because the calling process image is overlaid by the new process image.

71 When a C program is executed as a result of this call, it shall be entered as a C
72 language function call as follows:

73 int main (int argc, char *argv []) ;

74 where argc is the argument count and argv is an array of character pointers to
75 the arguments themselves. In addition, the following variable:

76 extern char **environ;

77 is initialized as a pointer to an array of character pointers to the environment
78 strings. The argv and environ arrays are each terminated by a NULL pointer.
79 The NULL pointer terminating the argv array is not counted in argc.

so The arguments specified by a program with one of the exec functions shall be
81 passed on to the new process image in the corresponding main{) arguments.

82 The argument path points to a pathname that identifies the new process image
83 file.

84 The argument file is used to construct a pathname that identifies the new process
85 image file. If the file argument contains a slash character, the file argument shall |
86 be used as the pathname for this file. Otherwise, the path prefix for this file is |
87 obtained by a search of the directories passed as the environment variable PATH |
88 (see 2.6). If this environment variable is not present, the results of the search are
89 implementation defined.

90 |

91 The argument argv is an array of character pointers to null-terminated strings.
92 The last member of this array shall be a NULL pointer. These strings constitute
93 the argument list available to the new process image. The value in argv [0] should
94 point to a filename that is associated with the process being started by one of the
95 exec functions.

96 The const char *arg and subsequent ellipses in the execlO, execlpO, and exe- \
97 cle () functions can be thought of as argO, argl, ..., argn. Together they describe |
98 a list of one or more pointers to null-terminated character strings that represent |
99 the argument list available to the new program. The first argument should point |
100 to a filename that is associated with the process being started by one of the exec |
101 functions, and the last argument shall be a NULL pointer. For the execlei) func- |
102 tion, the environment is provided by following the NULL pointer that shall ter- |
103 minate the list of arguments in the parameter list to execle () with an additional |

3.1 Process Creation and Execution 43

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

104 parameter, as if it were declared as

105 char *const envp []

106 The argument envp to execve() and the final argument to execle() name an array |
107 of character pointers to null-terminated strings. These strings constitute the |
108 environment for the new process image. The environment array is terminated by |
109 a NULL pointer. I

no For those forms not containing an envp pointer [execli), execv(), execlpO, and
in execvp()1, the environment for the new process image is taken from the external
112 variable environ in the calling process.

113 The number of bytes available for the new process’s combined argument and
114 environment fists is {ARG_MAX}. The implementation shall specify in the system
115 documentation (see 1.3.1.2) whether any combination of null terminators,
116 pointers, or alignment bytes are included in this total.

117 File descriptors open in the calling process image remain open in the new process
H8 image, except for those whose close-on-exec flag FD_CLOEXEC is set (see 6.5.2 and
119 6.5.1). For those file descriptors that remain open, all attributes of the open file
120 description, including file locks (see 6.5.2), remain unchanged by this function
121 call.

122 Directory streams open in the calling process image shall be closed in the new |
123 process image. |

124 Signals set to the default action (SIG_DFL) in the calling process image shall be
125 set to the default action in the new process image. Signals set to be ignored
126 (SIG_IGN) by the calling process image shall be set to be ignored by the new pro-
127 cess image. Signals set to be caught by the calling process image shall be set to
128 the default action in the new process image (see 3.3.1).

129 If the set-user-ID mode bit of the new process image file is set (see 5.6.4), the effec-
130 tive user ID of the new process image is set to the owner ID of the new process
131 image file. Similarly, if the set-group-ID mode bit of the new process image file is
132 set, the effective group ID of the new process image is set to the group ID of the
133 new process image file. The real user ID, real group ID, and supplementary group
134 IDs of the new process image remain the same as those of the calling process
135 image. If {_POSIX_SAVED_IDS} is defined, the effective user ID and effective
136 group ID of the new process image shall be saved (as the saved set-user-ID and the
137 saved set-group-ID) for use by the setuid() function.

138 The new process image also inherits the following attributes from the calling pro-
139 cess image:

140 (1) Process ID

141 (2) Parent process ID

142 (3) Process group ID

143 (4) Session membership

144 (5) Real user ID

145 (6) Real group ID

44 3 Process Primitives

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

146 (7) Supplementary group IDs

147 (8) Time left until an alarm clock signal (see 3.4.1)

148 (9) Current working directory

149 (10) Root directory

150 (ID File mode creation mask (see 5.3.3)

151 (12) Process signal mask (see 3.3.5)

152 (13) Pending signals (see 3.3.6)

153 (14) tms_utime, tmsjstime, tmsjcutime, and tms_cstime (see 4.5.2)

154 All process attributes defined by this part of ISO/IEC 9945 and not specified in this
155 subclause (3.1.2) shall be the same in the new and old process images. The inher-
156 itance of process characteristics not defined by this part of ISO/IEC 9945 is |
157 unspecified by this part of ISO/IEC 9945, but should be documented in the system |
158 documentation. |

159 Upon successful completion, the exec functions shall mark for update the st_atime
160 field of the file. If the exec function failed, but was able to locate the process image
161 file, whether the st_atime field is marked for update is unspecified. Should the
162 exec function succeed, the process image file shall be considered to have been
163 open()-ed. The corresponding close() shall be considered to occur at a time after
164 this open, but before process termination or successful completion of a subsequent
165 call to one of the exec functions.

166 The argv[] and envp[] arrays of pointers and the strings to which those arrays |
167 point shall not be modified by a call to one of the exec functions, except as a conse- |
168 quence of replacing the process image. |

169 3.1.2.3 Returns

170 If one of the exec functions returns to the calling process image, an error has
171 occurred; the return value shall be -1, and errno shall be set to indicate the error.

172 3.1.2.4 Errors

173 If any of the following conditions occur, the exec functions shall return -1 and set
174 errno to the corresponding value:

175 [E2BIG]
176

177

The number of bytes used by the argument list and the environ¬
ment list of the new process image is greater than the system-
imposed limit of {ARG_MAX} bytes.

178

179

180

181

182

[EACCES] Search permission is denied for a directory listed in the path
prefix of the new process image file, or the new process image
file denies execution permission, or the new process image file
is not a regular file and the implementation does not support
execution of files of its type.

183 [ENAMETOOLONG]

184 The length of the path or file arguments, or an element of the

3.1 Process Creation and Execution 45

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

environment variable PATH prefixed to a file, exceeds
{PATH_MAX}, or a pathname component is longer than
{NAME_MAX} and {_POSIX_NO_TRUNC} is in effect for that file.

[ENOENT] One or more components of the pathname of the new process
image file do not exist, or the path or file argument points to an
empty string.

[ENOTDIR] A component of the path prefix of the new process image file is
not a directory.

If any of the following conditions occur, the execli), execv(), execlei), and execve()
functions shall return -1 and set errno to the corresponding value:

[ENOEXEC] The new process image file has the appropriate access permis¬
sion, but is not in the proper format.

For each of the following conditions, if the condition is detected, the exec functions
shall return -1 and return the corresponding value in errno:

[ENOMEM] The new process image requires more memory than is allowed
by the hardware or system-imposed memory management con¬
straints.

3.1.2.5 Cross-References

alarmi), 3.4.1; chmodi), 5.6.4; jexiti), 3.2.2; fcntli), 6.5.2; fork(), 3.1.1; setuidi),
4.2.2; <signal .h>, 3.3.1; sigprocmask(), 3.3.5; sigpending(), 3.3.6; stat(), 5.6.2;
<sys/stat. h>, 5.6.1; timesi), 4.5.2; umask(), 5.3.3; 2.6.

3.2 Process Termination

There are two kinds of process termination:

(1) Normal termination occurs by a return from maini) or when requested
with the exit() or _exit() functions.

(2) Abnormal termination occurs when requested by the aborti) function or
when some signals are received (see 3.3.1).

The exiti) and aborti) functions shall be as described in the C Standard {2}. Both |
exit() and aborti) shall terminate a process with the consequences specified in
3.2.2, except that the status made available to waiti) or waitpidi) by aborti) shall
be that of a process terminated by the SIGABRT signal.

A parent process can suspend its execution to wait for termination of a child pro¬
cess with the waiti) or waitpidi) functions.

46 3 Process Primitives

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

ISO/IEC 9945-1: 1990

Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

3.2.1 Wait for Process Termination

Functions: waiti), waitpidi)

3.2.1.1 Synopsis

♦include <sys/types.h>

♦include <sys/wait.h>

pid_t wait(int *stat_loc) ;

pid_t waitpid (pid_t pid, int *stat_loc, int options);

3.2.1.2 Description

The waiti) and waitpid() functions allow the calling process to obtain status infor¬
mation pertaining to one of its child processes. Various options permit status
information to be obtained for child processes that have terminated or stopped. If
status information is available for two or more child processes, the order in which
their status is reported is unspecified.

The wait() function shall suspend execution of the calling process until status
information for one of its terminated child processes is available, or until a signal
whose action is either to execute a signal-catching function or to terminate the
process is delivered. If status information is available prior to the call to waiti),
return shall be immediate.

The waitpidi) function shall behave identically to the waiti) function if the pid
argument has a value of -1 and the options argument has a value of zero. Other¬
wise, its behavior shall be modified by the values of the pid and options
arguments.

The pid argument specifies a set of child processes for which status is requested.
The waitpidi) function shall only return the status of a child process from this
set.

(1) If pid is equal to -1, status is requested for any child process. In this
respect, waitpidi) is then equivalent to waiti).

(2) If pid is greater than zero, it specifies the process ID of a single child pro¬
cess for which status is requested.

(3) If pid is equal to zero, status is requested for any child process whose
process group ID is equal to that of the calling process.

(4) If pid is less than -1, status is requested for any child process whose pro¬
cess group ID is equal to the absolute value of pid.

The options argument is constructed from the bitwise inclusive OR of zero or more
of the following flags, defined in the header <sys/wait. h>:

WNOHANG The waitpid () function shall not suspend execution of the cal¬
ling process if status is not immediately available for one of the
child processes specified by pid.

WUNTRACED If the implementation supports job control, the status of any
child processes specified by pid that are stopped, and whose

3.2 Process Termination 47

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

status has not yet been reported since they stopped, shall also
be reported to the requesting process.

If waitO or waitpidO return because the status of a child process is available,
these functions shall return a value equal to the process ID of the child process.
In this case, if the value of the argument statJLoc is not NULL, information shall
be stored in the location pointed to by stat_loc. If and only if the status returned
is from a terminated child process that returned a value of zero from mainO or
passed a value of zero as the status argument to _exit{) or exit(), the value stored
at the location pointed to by stat_loc shall be zero. Regardless of its value, this
information may be interpreted using the following macros, which are defined in
<sys/wait. h> and evaluate to integral expressions; the stat_val argument is the
integer value pointed to by stat_loc.

WlFEXITED(stat_val)
This macro evaluates to a nonzero value if status was returned
for a child process that terminated normally.

WEXLTSTATUS(stat_val)
If the value of WIFEXITED(s£a£_i;aZ) is nonzero, this macro
evaluates to the low-order 8 bits of the status argument that
the child process passed to jexitO or exit(), or the value the
child process returned from main{).

WIFSIGNALED(staM;a/)
This macro evaluates to a nonzero value if status was returned
for a child process that terminated due to the receipt of a signal
that was not caught (see 3.3.1).

WTERMSICXstaOaO
If the value of WIFSIGNALED(sto£_i’a/) is nonzero, this macro
evaluates to the number of the signal that caused the termina¬
tion of the child process.

WIFSTOPPED (statjoal)
This macro evaluates to a nonzero value if status was returned
for a child process that is currently stopped.

WSTOPSI G(stat_val)
If the value of WIFSTOPPED(statjual) is nonzero, this macro
evaluates to the number of the signal that caused the child pro¬
cess to stop.

If the information stored at the location pointed to by stat_loc was stored there by
a call to the waitpidO function that specified the WUNTRACED flag, exactly
one of the macros WIFEXITED(*stat_loc), WIFSIGNALEEK *stat_loc), or
WIFSTOPPED(*sta£joc) shall evaluate to a nonzero value. If the information
stored at the location pointed to by statjoc was stored there by a call to the wait¬
pidO function that did not specify the WUNTRACED flag or by a call to the
waitO function, exactly one of the macros WIFEXITED(*sta£_/oc) or
WIFSIGNALEIX *stat_loc) shall evaluate to a nonzero value.

48 3 Process Primitives

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

An implementation may define additional circumstances under which waitO or
waitpid () reports status. This shall not occur unless the calling process or one of
its child processes explicitly makes use of a nonstandard extension. In these
cases, the interpretation of the reported status is implementation defined.

3.2.1.3 Returns

If the waitO or waitpidO functions return because the status of a child process is
available, these functions shall return a value equal to the process ID of the child
process for which status is reported. If the waitO or waitpidO functions return
due to the delivery of a signal to the calling process, a value of -1 shall be
returned and errno shall be set to [EINTR]. If the waitpidO function was invoked
with WNOHANG set in options, has at least one child process specified by pid for
which status is not available, and status is not available for any process specified
by pid, a value of zero shall be returned. Otherwise, a value of -1 shall be
returned, and errno shall be set to indicate the error.

3.2.1.4 Errors

If any of the following conditions occur, the wait{) function shall return -1 and set
errno to the corresponding value:

[ECHILD] The calling process has no existing unwaited-for child
processes.

[EINTR] The function was interrupted by a signal. The value of the
location pointed to by stat_loc is undefined.

If any of the following conditions occur, the waitpidO function shall return -1 and
set errno to the corresponding value:

[ECHILD] The process or process group specified by pid does not exist or
is not a child of the calling process.

[EINTR] The function was interrupted by a signal. The value of the
location pointed to by statjoc is undefined.

[EINVAL] The value of the options argument is not valid.

3.2.1.5 Cross-References

jexitO, 3.2.2; forkO, 3.1.1;pauseO, 3.4.2; timesO, 4.5.2; <signal. h>, 3.3.1.

3.2.2 Terminate a Process

Function: jexitO

3.2 Process Termination 49

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

3.2.2.1 Synopsis

void exit(int status);

3.2.2.2 Description

The _exit() function shall terminate the calling process with the following
consequences:

(1) All open file descriptors and directory streams in the calling process are
closed.

(2) If the parent process of the calling process is executing a wait() or wait-
pid(), it is notified of the termination of the calling process and the low
order 8 bits of status are made available to it; see 3.2.1.

(3) If the parent process of the calling process is not executing a wait() or
waitpid() function, the exit status code is saved for return to the parent
process whenever the parent process executes an appropriate subsequent
wait{) or waitpidi).

(4) Termination of a process does not directly terminate its children. The
sending of a SIGHUP signal as described below indirectly terminates chil¬
dren in some circumstances. Children of a terminated process shall be
assigned a new parent process ID, corresponding to an implementation-
defined system process.

(5) If the implementation supports the SIGCHLD signal, a SIGCHLD signal
shall be sent to the parent process.

(6) If the process is a controlling process, the SIGHUP signal shall be sent to
each process in the foreground process group of the controlling terminal
belonging to the calling process.

(7) If the process is a controlling process, the controlling terminal associated
with the session is disassociated from the session, allowing it to be
acquired by a new controlling process.

(8) If the implementation supports job control, and if the exit of the process
causes a process group to become orphaned, and if any member of the
newly orphaned process group is stopped, then a SIGHUP signal followed
by a SIGCONT signal shall be sent to each process in the newly orphaned
process group.

These consequences shall occur on process termination for any reason.

3.2.2.3 Returns

The _exit() function cannot return to its caller.

3.2.2.4 Cross-References

close(), 6.3.1; sigactionO, 3.3.4; wait, 3.2.1.

50 3 Process Primitives

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

Part 1: SYSTEM API [C LANGUAGE]

3.3 Signals

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

3.3.1 Signal Concepts

3.3.1.1 Signal Names

The <signal. h> header declares the sigsetjt type and the sigaction structure. It
also defines the following symbolic constants, each of which expands to a distinct
constant expression of the type void(*)(), whose value matches no declarable
function.

Symbolic
Constant

SIG_DFL
SIGJGN

Description

Request for default signal handling
Request that signal be ignored

The type sigsetjt is used to represent sets of signals. It is always an integral or
structure type. Several functions used to manipulate objects of type sigsetjt are
defined in 3.3.3.

The <signal .h> header also declares the constants that are used to refer to the
signals that occur in the system. Each of the signals defined by this part of
ISO/IEC 9945 and supported by the implementation shall have distinct, positive
integral values. The value zero is reserved for use as the null signal (see 3.3.2).
An implementation may define additional signals that may occur in the system.

The constants shown in Table 3-1 shall be supported by all implementations.

The constants shown in Table 3-2 shall be defined by all implementations. How¬
ever, implementations that do not support job control are not required to support
these signals. If these signals are supported by the implementation, they shall
behave in accordance with this part of ISO/IEC 9945. Otherwise, the implementa¬
tion shall not generate these signals, and attempts to send these signals or to
examine or specify their actions shall return an error condition. See 3.3.2 and
3.3.4.

3.3.1.2 Signal Generation and Delivery

A signal is said to be generated for (or sent to) a process when the event that
causes the signal first occurs. Examples of such events include detection of
hardware faults, timer expiration, and terminal activity, as well as the invocation
of the killi,) function. In some circumstances, the same event generates signals
for multiple processes.

Each process has an action to be taken in response to each signal defined by the
system (see 3.3.1.3). A signal is said to be delivered to a process when the
appropriate action for the process and signal is taken.

During the time between the generation of a signal and its delivery, the signal is
said to bspending. Ordinarily, this interval cannot be detected by an application.
However, a signal can be blocked from delivery to a process. If the action associ¬
ated with a blocked signal is anything other than to ignore the signal, and if that

3.3 Signals 51

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

411 Table 3-1 - Required Signals
412

413
414

Symbolic Default n ...
„ , ... Description
Constant Action

415 SIGABRT l Abnormal termination signal, such as is initiated by the abortO function
416 (as defined in the C Standard {2}).

417 SIGALRM l Timeout signal, such as initiated by the alarm() function (see 3.4.1).

418 SIGFPE l Erroneous arithmetic operation, such as division by zero or an operation
419 resulting in overflow.

420 SIGHUP l Hangup detected on controlling terminal (see 7.1.1.10) or death of control-
421 ling process (see 3.2.2).

422 SIGILL l Detection of an invalid hardware instruction.

423 SIGINT l Interactive attention signal (see 7.1.1.9).

424 SIGKILL l Termination signal (cannot be caught or ignored).

425 SIGPIPE l Write on a pipe with no readers (see 6.4.2).

426 SIGQUIT l Interactive termination signal (see 7.1.1.9).

427 SIGSEGV l Detection of an invalid memory reference.

428 SIGTERM l Termination signal.
429 SIGUSR1 l Reserved as application-defined signal 1.
430 SIGUSR2 l Reserved as application-defined signal 2.
431

432 NOTE: The default actions are

433 l Abnormal termination of the process.

434
435

Table 3-2 - Job Control Signals

436
437

Symbolic
Constant

Default
Action

Description

438 SIGCHLD 2 Child process terminated or stopped.

439 SIGCONT 4 Continue if stopped.
440 SIGSTOP 3 Stop signal (cannot be caught or ignored).
441 SIGTSTP 3 Interactive stop signal (see 7.1.1.9).

442
443

SIGTTIN 3 Read from control terminal attempted by a member of a background pro¬
cess group (see 7.1.1.4).

444
445

446

SIGTTOU 3 Write to control terminal attempted by a member of a background process
group (see 7.1.1.4).

447 NOTE: The default actions are

448 2 Ignore the signal.

449 3 Stop the process.

450 4 Continue the process if it is currently stopped; otherwise, ignore the signal.

52 3 Process Primitives

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

signal is generated for the process, the signal shall remain pending until either it
is unblocked or the action associated with it is set to ignore the the signal. If the
action associated with a blocked signal is to ignore the signal, and if that signal is
generated for the process, it is unspecified whether the signal is discarded
immediately upon generation or remains pending.

Each process has a signal mask that defines the set of signals currently blocked
from delivery to it. The signal mask for a process is initialized from that of its
parent. The sigaction (), sigprocmask(), and sigsuspendO functions control the
manipulation of the signal mask.

The determination of which action is taken in response to a signal is made at the
time the signal is delivered, allowing for any changes since the time of generation.
This determination is independent of the means by which the signal was origi¬
nally generated. If a subsequent occurrence of a pending signal is generated, it is
implementation defined as to whether the signal is delivered more than once. The
order in which multiple, simultaneously pending signals are delivered to a pro¬
cess is unspecified.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated for a
process, any pending SIGCONT signals for that process shall be discarded. Con¬
versely, when SIGCONT is generated for a process, all pending stop signals for
that process shall be discarded. When SIGCONT is generated for a process that is
stopped, the process shall be continued, even if the SIGCONT signal is blocked or
ignored. If SIGCONT is blocked and not ignored, it shall remain pending until it is
either unblocked or a stop signal is generated for the process.

An implementation shall document any conditions not specified by this part of
ISO/IEC 9945 under which the implementation generates signals. (See 1.3.1.2.)

3.3.1.3 Signal Actions

There are three types of actions that can be associated with a signal: SIG_DFL,
SIG_IGN, or a pointer to a function. Initially, all signals shall be set to SIG_DFL or
SIG_IGN prior to entry of the main{) routine (see 3.1.2). The actions prescribed by
these values are as follows:

(1) SIG_DFL — signal-specific default action

(a) The default actions for the signals defined in this part of
ISO/IEC 9945 are specified in Table 3-1 and Table 3-2.

(b) If the default action is to stop the process, the execution of that pro¬
cess is temporarily suspended. When a process stops, a SIGCHLD
signal shall be generated for its parent process, unless the parent
process has set the SA_NOCLDSTOP flag (see 3.3.4). While a process
is stopped, any additional signals that are sent to the process shall
not be delivered until the process is continued except SIGKILL,
which always terminates the receiving process. A process that is a
member of an orphaned process group shall not be allowed to stop
in response to the SIGTSTP, SIGTTIN, or SIGTTOU signals. In cases
where delivery of one of these signals would stop such a process, the
signal shall be discarded.

3.3 Signals 53

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

(c) Setting a signal action to SIG_DFL for a signal that is pending, and
whose default action is to ignore the signal (for example, SIGCHLD),
shall cause the pending signal to be discarded, whether or not it is
blocked.

(2) SIG_IGN — ignore signal

(a) Delivery of the signal shall have no effect on the process. The
behavior of a process is undefined after it ignores a SIGFPE, SIGILL,
or SIGSEGV signal that was not generated by the kill() function or
the raise() function defined by the C Standard {2}.

(b) The system shall not allow the action for the signals SIGKILL or
SIGSTOP to be set to SIG.IGN.

(c) Setting a signal action to SIG_IGN for a signal that is pending shall
cause the pending signal to be discarded, whether or not it is
blocked.

(d) If a process sets the action for the SIGCHLD signal to SIG_IGN, the
behavior is unspecified.

(3) pointer to a function — catch signal

(a) On delivery of the signal, the receiving process is to execute the
signal-catching function at the specified address. After returning
from the signal-catching function, the receiving process shall
resume execution at the point at which it was interrupted.

(b) The signal-catching function shall be entered as a C language func¬
tion call as follows:

void func (int signo) ;

where func is the specified signal-catching function and signo is the
signal number of the signal being delivered.

(c) The behavior of a process is undefined after it returns normally
from a signal-catching function for a SIGFPE, SIGILL, or SIGSEGV
signal that was not generated by the kill() function or the raise()
function defined by the C Standard {2}.

(d) The system shall not allow a process to catch the signals SIGKILL
and SIGSTOP.

(e) If a process establishes a signal-catching function for the SIGCHLD
signal while it has a terminated child process for which it has not
waited, it is unspecified whether a SIGCHLD signal is generated to
indicate that child process.

(f) When signal-catching functions are invoked asynchronously with
process execution, the behavior of some of the functions defined by
this part of ISO/IEC 9945 is unspecified if they are called from a
signal-catching function. The following table defines a set of func¬
tions that shall be reentrant with respect to signals (that is, appli¬
cations may invoke them, without restriction, from signal-catching
functions).

54 3 Process Primitives

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

ISO/IEC 9945-1: 1990

Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

_exit() fstat() read () sysconfi)
access() getegidO rename () tcdrain ()
alarm () geteuidO rmdir{) tcflow ()
cfgetispeed{) getgidi) setgid{) tcflushO
cfgetospeed{) getgroups () setpgidi) tcgetattr{)
cfsetispeedi) getpgrp () setsidO tcgetpgrpi)
cfsetospeedi) getpidi) setuidO tcsendbreaki)
chdir{) getppidO sigactionO tcsetattr()
chmodi) getuid() sigaddseti) tcsetpgrpi)
chowni) kill{) sigdelsetO time ()
close() link () sigemptysetO times ()
creati) Iseek() sigfillseti) umaskO
dup2{) mkdir() sigismember{) uname()
dup () mkfifoO sigpendingi) unlinkO
execle () open () sigprocmask () utimeO
execveO pathconfi) sigsuspend{) wait()
fcntlO pause () sleep () waitpidO
fork() pipe () stat() write ()

All POSIX.1 functions not in the preceding table and all functions
defined in the C Standard {2} not stated to be callable from a
signal-catching function are considered to be unsafe with respect to
signals. In the presence of signals, all functions defined by this part
of ISO/IEC 9945 or by the C Standard {2} shall behave as defined (by
the defining standard) when called from or interrupted by a signal-
catching function, with a single exception: when a signal interrupts
an unsafe function and the signal-catching function calls an unsafe
function, the behavior is undefined.

3.3.1.4 Signal Effects on Other Functions

Signals affect the behavior of certain functions defined by this part of
ISO/IEC 9945 if delivered to a process while it is executing such a function. If the
action of the signal is to terminate the process, the process shall be terminated
and the function shall not return. If the action of the signal is to stop the process,
the process shall stop until continued or terminated. Generation of a SIGCONT
signal for the process causes the process to be continued, and the original function
shall continue at the point where the process was stopped. If the action of the sig¬
nal is to invoke a signal-catching function, the signal-catching function shall be
invoked; in this case, the original function is said to be interrupted by the signal.
If the signal-catching function executes a return, the behavior of the interrupted
function shall be as described individually for that function. Signals that are
ignored shall not affect the behavior of any function; signals that are blocked shall
not affect the behavior of any function until they are delivered.

3.3 Signals 55

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

579 3.3.2 Send a Signal to a Process

580 Function: kill()

581 3.3.2.1 Synopsis

582 #include <sys/types .h>

583 #include <signal.h>

584 int kill(pid_t pid, int sig) ;

585 3.3.2.2 Description

586 The kill() function shall send a signal to a process or a group of processes
587 specified by pid. The signal to be sent is specified by sig and is either one from
588 the list given in 3.3.1.1 or zero. If sig is zero (the null signal), error checking is |
589 performed, but no signal is actually sent. The null signal can be used to check the
590 validity of pid.

591 For a process to have permission to send a signal to a process designated by pid,
592 the real or effective user ID of the sending process must match the real or effective
593 user ID of the receiving process, unless the sending process has appropriate
594 privileges. If {_POSIX_SAVED_IDS} is defined, the saved set-user-ID of the receiv-
595 ing process shall be checked in place of its effective user ID. |

596 If pid is greater than zero, sig shall be sent to the process whose process ID is
597 equal to pid.

598 If pid is zero, sig shall be sent to all processes (excluding an unspecified set of sys- |
599 tern processes) whose process group ID is equal to the process group ID of the
600 sender and for which the process has permission to send a signal.

601 If pid is -1, the behavior of the kill() function is unspecified.

602 If pid is negative, but not -1, sig shall be sent to all processes (excluding an |
603 unspecified set of system processes) whose process group ID is equal to the abso- |
604 lute value of pid and for which the process has permission to send a signal.

605 If the value of pid causes sig to be generated for the sending process, and if sig is
606 not blocked, either sig or at least one pending unblocked signal shall be delivered
607 to the sending process before the kill() function returns.

608 If the implementation supports the SIGCONT signal, the user ID tests described
609 above shall not be applied when sending SIGCONT to a process that is a member
610 of the same session as the sending process.

611 An implementation that provides extended security controls may impose further
612 implementation-defined restrictions on the sending of signals, including the null
613 signal. In particular, the system may deny the existence of some or all of the
614 processes specified by pid.

615 The kill() function is successful if the process has permission to send sig to any of
616 the processes specified by pid. If the kill() function fails, no signal shall be sent.

56 3 Process Primitives

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

617 3.3.2.3 Returns

618
619

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of -1 shall be returned and errno shall be set to indicate the error.

620 3.3.2.4 Errors

621
622

If any of the following conditions occur, the killO function shall return -1 and set
errno to the corresponding value:

623
624

[EINVAL1 The value of the sig argument is an invalid or unsupported sig¬
nal number.

625
626

[EPERM] The process does not have permission to send the signal to any
receiving process.

627
628

[ESRCH] No process or process group can be found corresponding to that
specified by pid.

629 3.3.2.5 Cross-References

630 getpidO, 4.1.1; setsidO, 4.3.2; sigactionO, 3.3.4; <signal .h>, 3.3.1.

631 3.3.3 Manipulate Signal Sets

632 Functions: sigemptyseti), sigfillseti), sigaddset{), sigdelseti), sigismember()

633

634

635

636

637

638

639

3.3.3.1 Synopsis

♦include <signal.h>

int sigemptyset (sigset_t *set) ;

int sigf illset (sigset_t *set) ;

int sigaddset (sigset__t *set, int signo) ;

int sigdelset (sigset_t *set, int signo);

int sigismember (const sigset_t *set, int signo);

640 3.3.3.2 Description

641 The sigsetops primitives manipulate sets of signals. They operate on data objects
642 addressable by the application, not on any set of signals known to the system,
643 such as the set blocked from delivery to a process or the set pending for a process
644 (see 3.3.1).

645 The sigemptysetO function initializes the signal set pointed to by the argument
646 set, such that all signals defined in this part of ISO/IEC 9945 are excluded.

647 The sigfillsetO function initializes the signal set pointed to by the argument set,
648 such that all signals defined in this part of ISO/IEC 9945 are included.

649 Applications shall call either sigemptysetO or sigfillsetO at least once for each
650 object of type sigsetjt prior to any other use of that object. If such an object is not

3.3 Signals 57

ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

651 initialized in this way, but is nonetheless supplied as an argument to any of the
652 sigaddseti), sigdelseti), sigismemberi), sigactioni), sigprocmaski), sigpendingi), or
653 sigsuspendO functions, the results are undefined.

654 The sigaddset() and sigdelset() functions respectively add or delete the individual
655 signal specified by the value of the argument signo to or from the signal set

656 pointed to by the argument set.

657 The sigismemberi) function tests whether the signal specified by the value of the
658 argument signo is a member of the set pointed to by the argument set.

659 3.3.3.3 Returns

660 Upon successful completion, the sigismemberi) function returns a value of one if
661 the specified signal is a member of the specified set, or a value of zero if it is not.
662 Upon successful completion, the other functions return a value of zero. For all of
663 the above functions, if an error is detected, a value of-1 is returned, and errno is
664 set to indicate the error.

665 3.3.3.4 Errors

666 For each of the following conditions, if the condition is detected, the sigaddseti),
667 sigdelseti), and sigismemberi) functions shall return -1 and set errno to the
668 corresponding value:

669 [EINVAL] The value of the signo argument is an invalid or unsupported
670 signal number.

671 3.3.3.5 Cross-References

672 sigaction{), 3.3.4; <signal.h>, 3.3.1; sigpendingi), 3.3.6; sigprocmaski), 3.3.5;
673 sigsuspendi), 3.3.7.

674 3.3.4 Examine and Change Signal Action

675 Function: sigactioni)

676 3.3.4.1 Synopsis

677 #include <signal.h>

678 int sigaction (int sig, const struct sigaction *act,
679 struct sigaction *OClCt) ;

680 3.3.4.2 Description

681 The sigactioni) function allows the calling process to examine or specify (or both)
682 the action to be associated with a specific signal. The argument sig specifies the
683 signal; acceptable values are defined in 3.3.1.1.

684 The structure sigaction, used to describe an action to be taken, is defined in the

58 3 Process Primitives

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

header <signal. h> to include at least the following members:

Member
Type

void (*X)
sigsetj

Member
Name

sajiandler
sajnask

int sa Jlags

Description

SIG_DFL, SIG_IGN, or pointer to a function.
Additional set of signals to be blocked during
execution of signal-catching function.

Special flags to affect behavior of signal.

Implementations may add extensions as permitted in 1.3.1.1, point (2). Adding |
extensions to this structure, which might change the behavior of the application |
with respect to this standard when those fields in the structure are uninitialized, |
also requires that the extensions be enabled as required by 1.3.1.1. |

If the argument act is not NULL, it points to a structure specifying the action to
be associated with the specified signal. If the argument oact is not NULL, the
action previously associated with the signal is stored in the location pointed to by
the argument oact. If the argument act is NULL, signal handling is unchanged by
this function call; thus, the call can be used to enquire about the current handling
of a given signal. The sajiandler field of the sigaction structure identifies the
action to be associated with the specified signal. If the sajiandler field specifies a
signal-catching function, the sajnask field identifies a set of signals that shall be
added to the signal mask of the process before the signal-catching function is
invoked. The SIGKILL and SIGSTOP signals shall not be added to the signal mask
using this mechanism; this restriction shall be enforced by the system without
causing an error to be indicated.

The sa Jlags field can be used to modify the behavior of the specified signal.

The following flag bit, defined in the header < signal. h>, can be set in sa Jlags:

Symbolic
Constant

SA_NOCLDSTOP

Description

Do not generate SIGCHLD when children stop.

If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa Jlags, and the
implementation supports the SIGCHLD signal, a SIGCHLD signal shall be gen¬
erated for the calling process whenever any of its child processes stop. If sig is
SIGCHLD and the SA_NOCLDSTOP flag is set in sa Jlags, the implementation
shall not generate a SIGCHLD signal in this way.

When a signal is caught by a signal-catching function installed by the sigactionO
function, a new signal mask is calculated and installed for the duration of the
signal-catching function [or until a call to either the sigprocmask () or sig-
suspendi) function is made]. This mask is formed by taking the union of the
current signal mask and the value of the sajnask for the signal being delivered,
and then including the signal being delivered. If and when the user’s signal
handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains instated until another
action is explicitly requested [by another call to the sigactionO function] or until
one of the exec functions is called.

3.3 Signals 59

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

728 If the previous action for sig had been established by the signalO function,
729 defined in the C Standard {2}, the values of the fields returned in the structure
730 pointed to by oact are unspecified and, in particular, oact->svJiandler is not
731 necessarily the same value passed to the signalO function. However, if a pointer
732 to the same structure or a copy thereof is passed to a subsequent call to the sigac-
733 tionO function via the act argument, handling of the signal shall be as if the origi-
734 nal call to the signali) function were repeated.

735 If the sigaction () function fails, no new signal handler is installed.

736 It is unspecified whether an attempt to set the action for a signal that cannot be |
737 caught or ignored to SIG_DFL is ignored or causes an error to be returned with |
738 errno set to [EINVAL]. j

739 3.3.4.3 Returns

740 Upon successful completion, a value of zero is returned. Otherwise, a value of -1
741 is returned and errno is set to indicate the error.

742 3.3.4.4 Errors

743 If any of the following conditions occur, the sigactionO function shall return -1
744 and set errno to the corresponding value:

745 [EINVAL] The value of the sig argument is an invalid or unsupported sig-
746 nal number, or an attempt was made to catch a signal that can-
747 not be caught or to ignore a signal that cannot be ignored. See |
748 3.3.1.1. I

749 For each of the following conditions, when the condition is detected and the imple- |
750 mentation treats it as an error, the sigactionO function shall return a value of-1 |
751 and set errno to the corresponding value. I

752 [EINVAL] An attempt was made to set the action to SIG_DFL for a signal |
753 that cannot be caught or ignored (or both). |

754 3.3.4.5 Cross-References

755 killO, 3.3.2; <signal. h>, 3.3.1; sigprocmask(), 3.3.5; sigsetops, 3.3.3; sig-
756 suspendO, 3.3.7.

757 3.3.5 Examine and Change Blocked Signals

758 Function: sigprocmaskO

759 3.3.5.1 Synopsis

760 #include <signal.h>

761 int sigprocmask (int how, const sigset_t *set, sigset_t *oset) ;

60 3 Process Primitives

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

762 3.3.5.2 Description

763 The sigprocmaski) function is used to examine or change (or both) the signal
764 mask of the calling process. If the value of the argument set is not NULL, it
765 points to a set of signals to be used to change the currently blocked set.

766 The value of the argument how indicates the manner in which the set is changed
767 and shall consist of one of the following values, as defined in the header
768 <signal.h>:

769

770

771

772

773

774

775

776

Name

SIG_BLOCK

SIG_UNBLOCK

SIG_SETMASK

_Description__ _

The resulting set shall be the union of the current set and
the signal set pointed to by the argument set.

The resulting set shall be the intersection of the current set
and the complement of the signal set pointed to by the argu¬
ment set.

The resulting set shall be the signal set pointed to by the
argument set.

in If the argument oset is not NULL, the previous mask is stored in the space
778 pointed to by oset. If the value of the argument set is NULL, the value of the
779 argument how is not significant and the signal mask of the process is unchanged
780 by this function call; thus, the call can be used to enquire about currently blocked
781 signals.

782 If there are any pending unblocked signals after the call to the sigprocmaski)
783 function, at least one of those signals shall be delivered before the sigprocmaski)
784 function returns.

785 It is not possible to block the SIGKILL and SIGSTOP signals; this shall be enforced
786 by the system without causing an error to be indicated.

787 If any of the SIGFPE, SIGILL, or SIGSEGV signals are generated while they are
788 blocked, the result is undefined, unless the signal was generated by a call to the
789 killi) function or the raisei) function defined by the C Standard {2}.

790 If the sigprocmaski) function fails, the signal mask of the process is not changed
791 by this function call.

792 3.3.5.3 Returns

793 Upon successful completion a value of zero is returned. Otherwise, a value of -1
794 is returned and errno is set to indicate the error.

795 3.3.5.4 Errors

796 If any of the following conditions occur, the sigprocmaski) function shall return -1
797 and set errno to the corresponding value:

798 [EINVALl The value of the how argument is not equal to one of the
799 defined values.

3.3 Signals 61

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

r.
T.

7;

7

7

7

7

800

801

802

803

804

805

806

807

3.3.5.5 Cross-References

sigactioni), 3.3.4; <signal .h>, 3.3.1; sigpending(), 3.3.6; sigsetops, 3.3.3; sig-
suspendO, 3.3.7.

3.3.6 Examine Pending Signals

Function: sigpending ()

3.3.6.1 Synopsis

♦include <signal.h>

int sigpending (sigset_t *set) ;

808 3.3.6.2 Description

809 The sigpending() function shall store the set of signals that are blocked from
810 delivery and pending for the calling process in the space pointed to by the argu-
811 mentse/.

812 3.3.6.3 Returns

813 Upon successful completion, a value of zero is returned. Otherwise, a value of -1

814 is returned and errno is set to indicate the error.

815 3.3.6.4 Errors

816 This part of ISO/IEC 9945 does not specify any error conditions that are required
817 to be detected for the sigpending() function. Some errors may be detected under |
818 conditions that are unspecified by this part of ISO/IEC 9945. |

819 3.3.6.5 Cross-References

820 <signal .h>, 3.3.1; sigprocmaskO, 3.3.5; sigsetops, 3.3.3.

821 3.3.7 Wait for a Signal

822 Function: sigsuspendi)

823 3.3.7.1 Synopsis

824 #include <signal.h>

825 int sigsuspend (const sigset_t *sigmask) ;

62 3 Process Primitives

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

826 3.S.7.2 Description

827 The sigsuspendi) function replaces the signal mask of the process with the set of
828 signals pointed to by the argument sigmask and then suspends the process until
829 delivery of a signal whose action is either to execute a signal-catching function or
830 to terminate the process.

831 If the action is to terminate the process, the sigsuspendi) function shall not
832 return. If the action is to execute a signal-catching function, the sigsuspendi)
833 shall return after the signal-catching function returns, with the signal mask
834 restored to the set that existed prior to the sigsuspendi) call.

835 It is not possible to block those signals that cannot be ignored, as documented in
836 3.3.1; this shall be enforced by the system without causing an error to be
837 indicated.

838 3.3.7.3 Returns

839 Since the sigsuspendi) function suspends process execution indefinitely, there is
840 no successful completion return value. A value of -1 is returned and errno is set
841 to indicate the error.

842 3.3.7.4 Errors

843 If any of the following conditions occur, the sigsuspendi) function shall return -1
844 and set errno to the corresponding value:

845 [EINTR] A signal is caught by the calling process, and control is
846 returned from the signal-catching function.

847 3.3.7.5 Cross-References

848 pause(), 3.4.2; sigactioni), 3.3.4; <signal .h>, 3.3.1; sigpendingi), 3.3.6; sigproc-
849 maski), 3.3.5; sigsetops, 3.3.3.

850 3.4 Timer Operations

851 A process can suspend itself for a specific period of time with the sleepi) function
852 or suspend itself indefinitely with the pause () function until a signal arrives. The
853 alarmi) function schedules a signal to arrive at a specific time, so a pause()
854 suspension need not be indefinite.

855 3.4.1 Schedule Alarm

856 Function: alarmi)

3.4 Timer Operations 63

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

857 3.4.1.1 Synopsis

858 unsigned int alarm (unsigned int seconds);

859 3.4.1.2 Description

860 The alarm () function shall cause the system to send the calling process a
861 SIGALRM signal after the number of real-time seconds specified by seconds have
862 elapsed.

863 Processor scheduling delays may cause the process actually not to begin handling
864 the signal until after the desired time.

865 Alarm requests are not stacked; only one SIGALRM generation can be scheduled
866 in this manner. If the SIGALRM has not yet been generated, the call will result in
867 rescheduling the time at which the SIGALRM will be generated.

868 If seconds is zero, any previously made alarm () request is canceled.

869 3.4.1.3 Returns

870 If there is a previous alarm() request with time remaining, the alarmO function |
871 shall return a nonzero value that is the number of seconds until the previous |
872 request would have generated a SIGALRM signal. Otherwise, the alarm () func- |
873 tion shall return zero.

874 3.4.1.4 Errors

875 The alarm{) function is always successful, and no return value is reserved to indi-
876 cate an error.

877 3.4.1.5 Cross-References

878 exec, 3.1.2; fork(), 3.1.1;pause(), 3.4.2; sigactioni), 3.3.4; <signal. h>, 3.3.1.

879 3.4.2 Suspend Process Execution

880 Function: pause ()

881 3.4.2.1 Synopsis

882 int pause (void) ;

883 3.4.2.2 Description

884 The pause() function suspends the calling process until delivery of a signal whose
885 action is either to execute a signal-catching function or to terminate the process.

886 If the action is to terminate the process, the pause () function shall not return.

887 If the action is to execute a signal-catching function, the pause () function shall
888 return after the signal-catching function returns.

64 3 Process Primitives

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

889 3.4.2.3 Returns

890 Since the pause{) function suspends process execution indefinitely, there is no
891 successful completion return value. A value of —1 is returned and errno is set to
892 indicate the error.

893 3.4.2.4 Errors

894 If any of the following conditions occur, the paused) function shall return -1 and
895 set errno to the corresponding value:

896 [EINTR] A signal is caught by the calling process, and control is
897 returned from the signal-catching function.

898 3.4.2.5 Cross-References

899 alarmi), 3.4.1; kill(), 3.3.2; wait, 3.2.1; 3.3.1.4.

900 3.4.3 Delay Process Execution

901 Function: sleep ()

902 3.4.3.1 Synopsis

903 unsigned int sleep (unsigned int seconds);

904 3.4.3.2 Description

905 The sleep() function shall cause the current process to be suspended from execu-
906 tion until either the number of real-time seconds specified by the argument
907 seconds have elapsed or a signal is delivered to the calling process and its action
908 is to invoke a signal-catching function or to terminate the process. The suspen-
909 sion time may be longer than requested due to the scheduling of other activity by
910 the system.

911 If a SIGALRM signal is generated for the calling process during execution of the
912 sleep() function and the SIGALRM signal is being ignored or blocked from delivery,
913 it is unspecified whether sleep () returns when the SIGALRM signal is scheduled.
914 If the signal is being blocked, it is also unspecified whether it remains pending
915 after the sleep () function returns or is discarded.

916 If a SIGALRM signal is generated for the calling process during execution of the
917 sleep () function, except as a result of a prior call to the alarm () function, and if
918 the SIGALRM signal is not being ignored or blocked from delivery, it is unspecified
919 whether that signal has any effect other than causing the sleep () function to
920 return.

921 If a signal-catching function interrupts the sleep () function and either examines
922 or changes the time a SIGALRM is scheduled to be generated, the action associ-
923 ated with the SIGALRM signal, or whether the SIGALRM signal is blocked from
924 delivery, the results are unspecified.

3.4 Timer Operations 65

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

925 If a signal-catching function interrupts the sleep 0 function and calls the
926 siglongjmp() or longjmp () function to restore an environment saved prior to the
927 sleepO call, the action associated with the SIGALRM signal and the time at which
928 a SIGALRM signal is scheduled to be generated are unspecified. It is also
929 unspecified whether the SIGALRM signal is blocked, unless the process’s signal
930 mask is restored as part of the environment (see 8.3.1).

931 3.4.3.3 Returns

932 If the sleep() function returns because the requested time has elapsed, the value
933 returned shall be zero. If the sleep() function returns due to delivery of a signal,
934 the value returned shall be the unslept amount (the requested time minus the
935 time actually slept) in seconds.

936 3.4.3.4 Errors

937 The sleep() function is always successful, and no return value is reserved to indi-
938 cate an error.

939 3.4.3.5 Cross-References

940 alarmO, 3.4.1;pause(), 3.4.2; sigactioni), 3.3.4.

66 3 Process Primitives

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Section 4: Process Environment

1 4.1 Process Identification

2 4.1.1 Get Process and Parent Process IDs

3 Functions: getpidi), getppidi)

8 4.1.1.2 Description

9 The getpidi) function returns the process ID of the calling process.

10 The getppidi) function returns the parent process ID of the calling process.

n 4.1.1.3 Returns

12 See 4.1.1.2.

13 4.1.1.4 Errors

14 The getpidi) axv&getppidi) functions are always successful, and no return value is
15 reserved to indicate an error.

16 4.1.1.5 Cross-References

17 exec, 3.1.2; forki), 3.1.1; killi), 3.3.2.

4 4.1.1.1 Synopsis

5 #include <sys/types.h>

6 pid_t getpid(void);

7 pid_t getppid(void);

4.1 Process Identification 67

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

4.2 User Identification

4.2.1 Get Real User, Effective User, Real Group, and Effective Group IDs

Functions: getuidi), geteuid(), getgid{), getegidi)

4.2.1.1 Synopsis

#include <sys/types.h>

uid_t getuid(void);

uid_t geteuid(void);

gid_t getgid(void);

gid_t getegid(void) ;

4.2.1.2 Description

The getuidO function returns the real user ID of the calling process.

The geteuidO function returns the effective user ID of the calling process.

The getgidi) function returns the real group ID of the calling process.

The getegidO function returns the effective group ID of the calling process.

4.2.1.3 Returns

See 4.2.1.2.

4.2.1.4 Errors

The getuidO, geteuidO, getgidO, and getegidO functions are always successful,
and no return value is reserved to indicate an error.

4.2.1.5 Cross-References

setuidO, 4.2.2.

4.2.2 Set User and Group IDs

Functions: setuidO, setgidO

4.2.2.1 Synopsis

♦include <sys/types.h>

int setuid(uid_t uid) ;

int setgid (gid_t gid) ;

68 4 Process Environment

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

4.2.2.2 Description

If {_POSIX_SAVED_IDS} is defined:

(1) If the process has appropriate privileges, the setuidO function sets the
real user ID, effective user ID, and the saved set-user-ID to uid.

(2) If the process does not have appropriate privileges, but uid is equal to the
real user ID or the saved set-user-ID, the setuidO function sets the effec¬
tive user ID to uid; the real user ID and saved set-user-ID remain
unchanged by this function call.

(3) If the process has appropriate privileges, the setgidO function sets the
real group ID, effective group ID, and the saved set-group-ID to gid.

(4) If the process does not have appropriate privileges, but gid is equal to the
real group ID or the saved set-group-ID, the setgidO function sets the
effective group ID to gid; the real group ID and saved set-group-ID remain
unchanged by this function call.

Otherwise:

(1) If the process has appropriate privileges, the setuidO function sets the
real user ID and effective user ID to uid.

(2) If the process does not have appropriate privileges, but uid is equal to the
real user ID, the setuidO function sets the effective user ID to uid; the
real user ID remains unchanged by this function call.

(3) If the process has appropriate privileges, the setgidO function sets the
real group ID and effective group ID to gid.

(4) If the process does not have appropriate privileges, but gid is equal to the
real group ID, the setgidO function sets the effective group ID to gid; the
real group ID remains unchanged by this function call.

Any supplementary group IDs of the calling process remain unchanged by these
function calls.

4.2.2.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of —1
is returned and errno is set to indicate the error.

4.2.2.4 Errors

If any of the following conditions occur, the setuidO function shall return -1 and
set errno to the corresponding value:

[EINVAL] The value of the uid argument is invalid and not supported by
the implementation.

[EPERM] The process does not have appropriate privileges and uid does
not match the real user ID or, if {_POSIX_SAVED_IDS} is
defined, the saved set-user-ID.

4.2 User Identification 69

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

83 If any of the following conditions occur, the setgidO function shall return -1 and
84 set errno to the corresponding value:

85 [EINVAL] The value of the gid argument is invalid and not supported by
86 the implementation.

87

88

89

[EPERM] The process does not have appropriate privileges and gid does
not match the real group ID or, if {_POSIX_SAVED_IDS} is
defined, the saved set-group-ID.

90 4.2.2.5 Cross-References

91 exec, 3.1.2; getuidO, 4.2.1.

92 4.2.3 Get Supplementary Group IDs

93 Function: getgroups()

94 4.2.3.1 Synopsis

95 #include <sys/types.h>

96 int getgroups (int gidsetsize, gid_t grouplist []) ;

97 4.2.3.2 Description

98 The getgroups() function fills in the array grouplist with the supplementary group |
99 IDs of the calling process. The gidsetsize argument specifies the number of ele- |
100 ments in the supplied array grouplist. The actual number of supplementary |
101 group IDs stored in the array is returned. The values of array entries with indices |
102 larger than or equal to the returned value are undefined. |

103 As a special case, if the gidsetsize argument is zero, getgroups() returns the
104 number of supplemental group IDs associated with the calling process without
105 modifying the array pointed to by the grouplist argument.

106 4.2.3.3 Returns

107 Upon successful completion, the number of supplementary group IDs is returned.
108 This value is zero if {NGROUPS_MAX} is zero. A return value of -1 indicates
109 failure, and errno is set to indicate the error.

no 4.2.3.4 Errors

in If any of the following conditions occur, the getgroups() function shall return -1
112 and set errno to the corresponding value:

113 [EINVAL] The gidsetsize argument is not equal to zero and is less than
114 the number of supplementary group IDs.

70 4 Process Environment

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

115 4.2.3.5 Cross-References

lie setgidO, 4.2.2.

ii7 4.2.4 Get User Name

us Functions: getloginO |

U9 4.2.4.1 Synopsis

120 char *getlogin (void) ;

121 4.2.4.2 Description

122 The getloginO function returns a pointer to a string giving a user name associated |
123 with the calling process, which is the login name associated with the calling |
124 process. |

125 It getloginO returns a non-NULL pointer, that pointer points to the name under
126 which the user logged in, even if there are several login names with the same
127 user ID.

128 |

129 4.2.4.3 Returns

130 The getloginO function returns a pointer to a string containing the user’s login
131 name, or a NULL pointer if the user’s login name cannot be found.

132 The return value from getloginO may point to static data and, therefore, may be
133 overwritten by each call.

134 |

135 4.2.4.4 Errors

136 This part of ISO/IEC 9945 does not specify any error conditions that are required
137 to be detected for the getloginO function. Some errors may be detected under con- |
138 ditions that are unspecified by this part of ISO/IEC 9945. |

139 4.2.4.5 Cross-References

140 getpwnamO, 9.2.2;getpwuidO, 9.2.2.

4.2 User Identification 71

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

141 4.3 Process Groups

142 4.3.1 Get Process Group ED

143 Function: getpgrp ()

144 4.3.1.1 Synopsis

145 #include <sys/types .h>

146 pid_t getpgrp(void);

147 4.3.1.2 Description

148 The getpgrp () function returns the process group ID of the calling process.

149 4.3.1.3 Returns

150 See 4.3.1.2.

151 4.3.1.4 Errors

152 The getpgrp () function is always successful, and no return value is reserved to
153 indicate an error.

154 4.3.1.5 Cross-References

155 setpgidi), 4.3.3; setsidi), 4.3.2; sigactioni), 3.3.4.

156 4.3.2 Create Session and Set Process Group ID

157 Function: setsidi)

158 4.3.2.1 Synopsis

159 #include <sys/types .h>

160 pid_t setsid(void) ;

161 4.3.2.2 Description

162 If the calling process is not a process group leader, the setsidi) function shall
163 create a new session. The calling process shall be the session leader of this new
164 session, shall be the process group leader of a new process group, and shall have
165 no controlling terminal. The process group ID of the calling process shall be set
166 equal to the process ID of the calling process. The calling process shall be the only
167 process in the new process group and the only process in the new session.

72 4 Process Environment

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

168 4.S.2.S Returns

169 Upon successful completion, the setsidO function returns the value of the process
170 group ID of the calling process. Otherwise, a value of -1 is returned and errno is
171 set to indicate the error.

172 4.3.2.4 Errors

173 If any of the following conditions occur, the setsidO function shall return -1 and
174 set errno to the corresponding value:

175 [EPERM] The calling process is already a process group leader, or the
176 process group ID of a process other than the calling process
177 matches the process ID of the calling process.

178 4.3.2.5 Cross-References

179 exec, 3.1.2; _exitO, 3.2.2; forkO, 3.1.1; getpidO, 4.1.1; killO, 3.3.2; setpgidO, 4.3.3;
180 sigactionO, 3.3.4.

181 4.3.3 Set Process Group ID for Job Control

182 Function: setpgidO

183 4.3.3.1 Synopsis

184 #include <sys/types . h>

185 int setpgid (pid_t pid, pid_t pgid) ;

186 4.3.3.2 Description

187 If {_POSIX_JOB_CONTROL} is defined:

188 The setpgidO function is used to either join an existing process group or
189 create a new process group within the session of the calling process. The
190 process group ID of a session leader shall not change. Upon successful com-
191 pletion, the process group ID of the process with a process ID that matches
192 pid shall be set to pgid. As a special case, if pid is zero, the process ID of
193 the calling process shall be used. Also, if pgid is zero, the process ID of the
194 indicated process shall be used.

195 Otherwise:

196 Either the implementation shall support the setpgidO function as described
197 above or the setpgidO function shall fail.

198 4.3.3.3 Returns

199 Upon successful completion, the setpgidO function returns a value of zero. Other-
200 wise, a value of-1 is returned and errno is set to indicate the error.

4.3 Process Groups 73

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

201 4.3.3.4 Errors

202 If any of the following conditions occur, the setpgidO function shall return -1 and
203 set errno to the corresponding value:

204

205

206

[EACCES] The value of the pid argument matches the process ID of a child
process of the calling process, and the child process has success¬
fully executed one of the exec functions.

207

208

209

210

[EINVAL] The value of the pgid argument is less than zero or is not a
value supported by the implementation.

[ENOSYS] The setpgidi) function is not supported by this implementation.

[EPERM] The process indicated by the pid argument is a session leader.

211

212

213

The value of the pid argument is valid, but matches the process
ID of a child process of the calling process, and the child process
is not in the same session as the calling process.

214

215

216

217

The value of the pgid argument does not match the process ID
of the process indicated by the pid argument, and there is no
process with a process group ID that matches the value of the
pgid argument in the same session as the calling process.

218 [ESRCH] The value of the pid argument does not match the process ID of
219 the calling process or of a child process of the calling process.

220 4.3.3.5 Cross-References

221 getpgrp(), 4.3.1; setsidO, 4.3.2; tcsetpgrp(), 7.2.4; exec, 3.1.2.

222 4.4 System Identification

223 4.4.1 Get System Name

224 Function: uname()

225 4.4.1.1 Synopsis

226 #include <sys/utsname .h>

227 int uname (struct utsname *name) ;

228 4.4.1.2 Description

229 The uname() function stores information identifying the current operating system
230 in the structure pointed to by the argument name.

231 The structure utsname is defined in the header <sys/utsname . h> and contains
232 at least the members shown in Table 4-1.

74 4 Process Environment

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

233 Table 4-1 - uname () Structure Members
234 __

235

236

Member
Name

Description

237 sysname Name of this implementation of the operating system.

238 nodename Name of this node within an implementation-specified communications network.

239 release Current release level of this implementation.

240 version Current version level of this release.

241 machine Name of the hardware type on which the system is running.

242

243 Each of these data items is a null-terminated array of char.

244 The format of each member is implementation defined. The system documenta-
245 tion (see 1.3.1.2) shall specify the source and format of each member and may
246 specify the range of values for each member.

247 The inclusion of the nodename member in this structure does not imply that it is
248 sufficient information for interfacing to communications networks.

249 4.4.1.3 Returns

250 Upon successful completion, a nonnegative value is returned. Otherwise, a value
251 of -1 is returned and errno is set to indicate the error.

252 4.4.1.4 Errors

253 This part of ISO/IEC 9945 does not specify any error conditions that are required
254 to be detected for the uname () function. Some errors may be detected under con-
255 ditions that are unspecified by this part of ISO/IEC 9945.

256 4.5 Time

257 4.5.1 Get System Time

258 Function: timei)

259 4.5.1.1 Synopsis

260 #include <time.h>

261 time_t time (time t *tloc) ;

4.5 Time 75

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

262 4.5.1.2 Description

263 The time{) function returns the value of time in seconds since the Epoch.

264 The argument tloc points to an area where the return value is also stored. If tloc
265 is a NULL pointer, no value is stored.

266 4.5.1.3 Returns

267 Upon successful completion, time() returns the value of time. Otherwise, a value
268 of ((timejt) -1) is returned and errno is set to indicate the error.

269 4.5.1.4 Errors

270 This part of ISO/IEC 9945 does not specify any error conditions that are required
271 to be detected for the time() function. Some errors may be detected under condi- |
272 tions that are unspecified by this part of ISO/IEC 9945. |

273 4.5.2 Get Process Times

274 Function: times()

275 4.5.2.1 Synopsis

276 #include <sys/times . h>

277 clock_t times(struct tms *buffer) ;

278 4.5.2.2 Description

279 The times() function shall fill the structure pointed to by buffer with time-
280 accounting information. The type clockjt and the tms structure are defined in
281 <sys/times . h>; the tms structure shall contain at least the following members:

282 Member Member
Description

283 Type Name

284 clockjt tmsjutime User CPU time.
285 clockJ tmsjstime System CPU time.
286 clock J tms_cutime User CPU time of terminated child processes.
287 clock_t tmsjcstime System CPU time of terminated child processes.

288 All times are measured in terms of the number of clock ticks used.

289 The times of a terminated child process are included in the tms_cutime and
290 tms_cstime elements of the parent when a wait() or waitpid() function returns the
291 process ID of this terminated child. See 3.2.1. If a child process has not waited
292 for its terminated children, their times shall not be included in its times.

293 The value tmsjutime is the CPU time charged for the execution of user
294 instructions.

76 4 Process Environment

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

295 The value tms_stime is the CPU time charged for execution by the system on
296 behalf of the process.

297 The value tmsjcutime is the sum of the tmsjitimes and tms_cutimes of the child
298 processes.

299 The value tmsjcstime is the sum of the tms_stime s and tmsjcstime s of the child
300 processes.

301 4.5.2.3 Returns

302 Upon successful completion, times() shall return the elapsed real time, in clock |
303 ticks, since an arbitrary point in the past (for example, system start-up time).
304 This point does not change from one invocation of times() within the process to
305 another. The return value may overflow the possible range of type clock_t. If the
306 times() function fails, a value of ((clock Jt) -1) is returned and errno is set to indi-
307 cate the error.

308 4.5.2.4 Errors

309 This part of ISO/IEC 9945 does not specify any error conditions that are required
310 to be detected for the times() function. Some errors may be detected under condi- |
311 tions that are unspecified by this part of ISO/IEC 9945. |

312 4.5.2.5 Cross-References

313 exec, 3.1.2; fork{), 3.1.1; sysconfO, 4.8.1; time{), 4.5.1; wait(), 3.2.1. |

314 4.6 Environment Variables

315 4.6.1 Environment Access

316 Function: getenvO

317 4.6.1.1 Synopsis

318 #include <stdlib.h>

319 char *getenv (const char *name) ;

320 4.6.1.2 Description

321 The getenv{) function searches the environment list (see 2.6) for a string of the
322 form name=value and returns a pointer to value if such a string is present. If the
323 specified name cannot be found, a NULL pointer is returned.

4.6 Environment Variables 77

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

324 4'6.1.3 Returns

325 Upon successful completion, the getenv () function returns a pointer to a string
326 containing the value for the specified name, or a NULL pointer if the specified
327 name cannot be found. The return value from getenv () may point to static data
328 and, therefore, may be overwritten by each call. Unsuccessful completion shall
329 result in the return of a NULL pointer.

330 4.6.1.4 Errors

331 This part of ISO/IEC 9945 does not specify any error conditions that are required
332 to be detected for the getenv () function. Some errors may be detected under condi- |
333 tions that are unspecified by this part of ISO/IEC 9945. |

334 4.6.1.5 Cross-References

335 3.1.2; 2.6.

336 4.7 Terminal Identification

337 4.7.1 Generate Terminal Pathname

338 Function: ctermidO

339 4.7.1.1 Synopsis

340 #include <stdio.h>

341 char *ctermid (char *s) ;

342 4.7.1.2 Description

343 The ctermidO function generates a string that, when used as a pathname, refers
344 to the current controlling terminal for the current process.

345 If the ctermidO function returns a pathname, access to the file is not guaranteed.

346 4.7.1.3 Returns

347 If s is a NULL pointer, the string is generated in an area that may be static (and,
348 therefore, may be overwritten by each call), the address of which is returned.
349 Otherwise, s is assumed to point to an array of char of at least L_ctermid bytes; |
350 the string is placed in this array and the value of s is returned. The symbolic con-
351 stant L_ctermid is defined in <stdio.h> and shall have a value greater than
352 zero.

353 The ctermidO function shall return an empty string if the pathname that would
354 refer to the controlling terminal cannot be determined or if the function is
355 unsuccessful.

78 4 Process Environment

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

356 4.7.1.4 Errors

357 This part of ISO/IEC 9945 does not specify any error conditions that are required
358 to be detected for the ctermid() function. Some errors may be detected under con- |
359 ditions that are unspecified by this part of ISO/IEC 9945. |

360 4.7.1.5 Cross-References

361 tty name (), 4.7.2.

362 4.7.2 Determine Terminal Device Name

363 Functions: tty name (),isatty()

364 4.7.2.1 Synopsis

365 char *ttyname(int fildes) ;

366 int isatty(int fildes);

367 4.7.2.2 Description

368 The ttyname () function returns a pointer to a string containing a null-terminated
369 pathname of the terminal associated with file descriptor fildes.

370 The return value of ttyname() may point to static data that is overwritten by each
371 call.

372 The isattyi) function returns 1 if fildes is a valid file descriptor associated with a
373 terminal, zero otherwise.

374 4.7.2.S Returns

375 The ttyname () function returns a NULL pointer if fildes is not a valid file descrip-
376 tor associated with a terminal or if the pathname cannot be determined.

377 4.7.2.4 Errors

378 This part of ISO/IEC 9945 does not specify any error conditions that are required
379 to be detected for the ttyname() or isattyi) functions. Some errors may be |
380 detected under conditions that are unspecified by this part of ISO/IEC 9945.

4.7 Terminal Identification 79

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

381 4.8 Configurable System Variables

382 4.8.1 Get Configurable System Variables

383 Function: sysconfi)

384 4.8.1.1 Synopsis

385 #include <unistd.h>

386 long sysconf(int name);

387 4.8.1.2 Description

388 The sysconfi) function provides a method for the application to determine the
389 current value of a configurable system limit or option {variable).

390 The name argument represents the system variable to be queried. The implemen-
391 tation shall support all of the variables listed in Table 4-2 and may support oth-
392 ers. The variables in Table 4-2 come from <limits . h> or <unistd.h> and the |
393 symbolic constants, defined in <unistd.h>, that are the corresponding values |
394 used for name.

395 Table 4-2 - Configurable System Variables
396 _

397 Variable name Value

398 (ARG_MAX) LSC_ARG_MAX)
399 {CHILD_MAX} LSC_CHILD_MAX}
400 clock ticks/second LSC_CLK_TCK)
401 {N GROUPS_MAX) LSC_NGROUPS_MAX)
402 (OPEN.MAX) (_SC_OPEN_MAX}
403 {STREAM_MAX} {_SC_STREAM_MAX}
404 {TZNAME_MAX} LSC_TZNAME_MAX)
405 {_POSIX_J OB_CONTROL) {_SC_J OB_CONTRO L}
406 LPOSIX_SAVED_IDS) (_SC_SAVED_IDS}
407 LPOSIXVERSION} {_SC_VERSION}

408

409 4.8.1.3 Returns

410 If name is an invalid value, sysconfi) shall return -1. If the variable correspond- |
411 ing to name is associated with functionality that is not supported by the system, |
412 sysconfi) shall return -1 without changing the value of errno. \

413 Otherwise, the sysconfi) function returns the current variable value on the sys-
414 tern. The value returned shall not be more restrictive than the corresponding
415 value described to the application when it was compiled with the
416 implementation’s <limits .h> or <unistd.h>. The value shall not change dur-
417 ing the lifetime of the calling process.

80 4 Process Environment

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

418 4.8.1.4 Errors

419 If any of the following conditions occur, the sysconfi) function shall return -1 and
420 set errno to the corresponding value:

421 [EINVAL] The value of the name argument is invalid.

422 4.8.1.5 Special Symbol {CLK_TCK} |

423 The special symbol {CLK_TCK} shall yield the same result as |
424 sysconf (_sc_clk_tck) . It shall be defined in <time.h>. The symbol |
425 {CLK_TCK} may be evaluated by the implementation at run time or may be a con- |
426 stant. This special symbol is obsolescent.

4.8 Configurable System Variables 81

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Section 5: Files and Directories

1 The functions in this section perform the operating system services dealing with
2 the creation and removal of files and directories and the detection and
3 modification of their characteristics. They also provide the primary methods a
4 process will use to gain access to files and directories for subsequent I/O opera-
5 tions (see Section 6).

6 5.1 Directories

7 5.1.1 Format of Directory Entries

8 The header <dirent. h> defines a structure and a defined type used by the direc-
9 tory routines.

10

n
12

13

14

15

The internal format of directories is unspecified.

The readdir() function returns a pointer to an object of type struct dirent that
includes the member:

Member Member
Type Name

char [] djname

Description

Null-terminated filename

16 The array of char djiame is of unspecified size, but the number of bytes preceding |
17 the terminating null character shall not exceed {NAME_MAX}.

is 5.1.2 Directory Operations

19 Functions: opendir(), readdiri), rewinddir(), closedir()

20 5.1.2.1 Synopsis

21 #include <sys/types.h>

22 #include <dirent.h>

23 dir *opendir (const char *dirname);

24 struct dirent *readdir(DIR *dirp) ;

25 void rewinddir (DIR *dirp) ;

26 int closedir(DIR *dirp) ;

5.1 Directories 83

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

5.1.2.2 Description

The type DIR, which is defined in the header <dirent.h>, represents a directory
stream, which is an ordered sequence of all the directory entries in a particular
directory. Directory entries represent files; files may be removed from a directory
or added to a directory asynchronously to the operations described in this sub- |
clause (5.1.2). The type DIR may be implemented using a file descriptor. In that
case, applications will only be able to open up to a total of {OPEN_MAX} files and
directories; see 5.3.1. A successful call to any of the exec functions shall close any |
directory streams that are open in the calling process.

The opendir() function opens a directory stream corresponding to the directory
named by the dirname argument. The directory stream is positioned at the first
entry.

The readdir() function returns a pointer to a structure representing the directory
entry at the current position in the directory stream to which dirp refers, and
positions the directory stream at the next entry. It returns a NULL pointer upon
reaching the end of the directory stream.

The readdir() function shall not return directory entries containing empty names.
It is unspecified whether entries are returned for dot or dot-dot. |

The pointer returned by readdir() points to data that may be overwritten by
another call to readdir() on the same directory stream. This data shall not be
overwritten by another call to readdir() on a different directory stream.

The readdirO function may buffer several directory entries per actual read opera¬
tion; the readdir() function shall mark for update the st_atime field of the direc¬
tory each time the directory is actually read.

The rewinddir() function resets the position of the directory stream to which dirp
refers to the beginning of the directory. It also causes the directory stream to
refer to the current state of the corresponding directory, as a call to opendir{)
would have done. It does not return a value.

If a file is removed from or added to the directory after the most recent call to
opendir() or rewinddir(), whether a subsequent call to readdirO returns an entry
for that file is unspecified.

The closedir() function closes the directory stream referred to by dirp and returns
a value of zero if successful. Otherwise, it returns -1 indicating an error. Upon
return, the value of dirp may no longer point to an accessible object of type DIR.
If a file descriptor is used to implement type DIR, that file descriptor shall be
closed.

If the dirp argument passed to any of these functions does not refer to a currently
open directory stream, the effect is undefined.

The result of using a directory stream after one of the exec family of functions is
undefined. After a call to the fork() function, either the parent or the child (but
not both) may continue processing the directory stream using readdir() or rewind-
dir() or both. If both the parent and child processes use these functions, the
result is undefined. Either or both processes may use closedir().

84 5 Files and Directories

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

70 5.1.2.3 Returns

71 Upon successful completion, opendir() returns a pointer to an object of type DIR.
72 Otherwise, a value of NULL is returned and errno is set to indicate the error.

73 Upon successful completion, readdiri) returns a pointer to an object of type struct
74 dirent. When an error is encountered, a value of NULL is returned and errno is
75 set to indicate the error. When the end of the directory is encountered, a value of
76 NULL is returned and errno is unchanged by this function call.

77 Upon successful completion, closedir() returns a value of zero. Otherwise, a value
78 of -1 is returned and errno is set to indicate the error.

79 5.1.2.4 Errors

so If any of the following conditions occur, the opendir () function shall return a value
81 of NULL and set errno to the corresponding value:

82 [EACCES] Search permission is denied for a component of the path prefix |
83 of dirname, or read permission is denied for the directory itself. |

84

85

86

87

[ENAMETOOLONG]
The length of the dirname argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_N0_TRUNC} is in effect.

88 [ENOENT] The named directory does not exist, or dirname points to an |
89 empty string.

90 [ENOTDIR] A component of dirname is not a directory.

91 For each of the following conditions, when the condition is detected, the opendir{)
92 function shall return a value of NULL and set errno to the corresponding value:

93 [EMFILE] Too many file descriptors are currently open for the process.

94 [ENFILE] Too many file descriptors are currently open in the system.

95 For each of the following conditions, when the condition is detected, the readdir{)
96 function shall return a value of NULL and set errno to the corresponding value:

97 [EBADF] The dirp argument does not refer to an open directory stream.

98 For each of the following conditions, when the condition is detected, the closedir{)
99 function shall return -1 and set errno to the corresponding value:

100 [EBADF] The dirp argument does not refer to an open directory stream.

101 5.1.2.5 Cross-References

102 <dirent .h>, 5.1.1.

5.1 Directories 85

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

103 5.2 Working Directory

104 5.2.1 Change Current Working Directory

105 Function: chdir{)

106 5.2.1.1 Synopsis

107 int chdir (const char *path) ;

108 5.2.1.2 Description

109 The path argument points to the pathname of a directory. The chdir() function
no causes the named directory to become the current working directory, that is, the
111 starting point for path searches of pathnames not beginning with slash.

112 If the chdiri) function fails, the current working directory shall remain
113 unchanged by this function call.

114 5.2.1.3 Returns

115 Upon successful completion, a value of zero is returned. Otherwise, a value of -1
116 is returned and errno is set to indicate the error.

U7 5.2.1.4 Errors

us If any of the following conditions occur, the chdir() function shall return -1 and
119 set errno to the corresponding value:

120 [EACCES1 Search permission is denied for any component of the path-
121 name.

122
123

124

125

[ENAMETOOLONG]
The path argument exceeds {PATH_MAX} in length, or a path¬
name component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect.

126 [ENOTDIR] A component of the pathname is not a directory.

127 [ENOENT] The named directory does not exist or path is an empty string.

128 5.2.1.5 Cross-References

129 getcwdi), 5.2.2.

86 5 Files and Directories

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

130 5.2.2 Get Working Directory Pathname |

131 Function: getcwdO

132 5.2.2.1 Synopsis

133 char *getcwd(char *buf, size_t size);

134 5.2.2.2 Description

135 The getcwdO function copies an absolute pathname of the current working direc-
136 tory to the array of char pointed to by the argument buf and returns a pointer to |
137 the result. The size argument is the size in bytes of the array of char pointed to |
138 by the buf argument. If buf is a NULL pointer, the behavior of getcwdO is
139 undefined.

140 5.2.2.3 Returns

141 If successful, the buf argument is returned. A NULL pointer is returned if an
142 error occurs and the variable errno is set to indicate the error. The contents of buf
143 after an error are undefined.

144 5.2.2.4 Errors

145 If any of the following conditions occur, the getcwdO function shall return a value
146 of NULL and set errno to the corresponding value:

147 [EINVAL] The size argument is zero.

148 [ERANGE] The size argument is greater than zero but smaller than the
149 length of the pathname plus 1.

150 For each of the following conditions, if the condition is detected, the getcwdO func-
151 tion shall return a value of NULL and set errno to the corresponding value:

152 [EACCES] Read or search permission was denied for a component of the
153 pathname.

154 5.2.2.5 Cross-References

155 chdirO, 5.2.1.

5.2 Working Directory 87

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

156 5.3 General File Creation

157 5.3.1 Open a File

158 Function: open ()

159 5.3.1.1 Synopsis

160 #include <sys/types . h>

161 #include <sys/stat.h>

162 #include <fcntl.h>

163 int open (const char *path, int oflag, . . .);

164 5.3.1.2 Description

165 The open () function establishes the connection between a file and a file descriptor.
166 It creates an open file description that refers to a file and a file descriptor that
167 refers to that open file description. The file descriptor is used by other I/O func-
168 tions to refer to that file. The path argument points to a pathname naming a file.

169 The open () function shall return a file descriptor for the named file that is the
170 lowest file descriptor not currently open for that process. The open file description
171 is new, and therefore the file descriptor does not share it with any other process
172 in the system. The file offset shall be set to the beginning of the file. The |
173 FD_CLOEXEC file descriptor flag associated with the new file descriptor shall be |
174 cleared. The file status flags and file access modes of the open file description
175 shall be set according to the value of oflag. The value of oflag is the bitwise
176 inclusive OR of values from the following list. See 6.5.1 for the definitions of the
177 symbolic constants. Applications shall specify exactly one of the first three values
178 (file access modes) below in the value of oflag:

179

180

181

182

183

0_RDONLY Open for reading only.

0_WRONLY Open for writing only.

0_RDWR Open for reading and writing. The result is undefined if this
flag is applied to a FIFO.

Any combination of the remaining flags may be specified in the value of oflag:

184

185

0_APPEND If set, the file offset shall be set to the end of the file prior to
each write.

186

187

188

189

190

191

192

193

194

195

0_CREAT This option requires a third argument, mode, which is of type
modej. If the file exists, this flag has no effect, except as noted
under 0_EXCL, below. Otherwise, the file is created; the file’s
user ID shall be set to the effective user ID of the process; the
file’s group ID shall be set to the group ID of the directory in
which the file is being created or to the effective group ID of the
process. The file permission bits (see 5.6.1) shall be set to the
value of mode except those set in the file mode creation mask of
the process (see 5.3.3). When bits in mode other than the file
permission bits are set, the effect is unspecified. The mode

88 5 Files and Directories

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

argument does not affect whether the file is opened for reading, |
for writing, or for both.

0_EXCL If 0_EXCL and 0_CREAT are set, open() shall fail if the file
exists. The check for the existence of the file and the creation of
the file if it does not exist shall be atomic with respect to other
processes executing open{) naming the same filename in the
same directory with 0_EXCL and 0_CREAT set. If 0_EXCL is
set and 0_CREAT is not set, the result is undefined.

0_NOCTTY If set, and path identifies a terminal device, the open{) function
shall not cause the terminal device to become the controlling
terminal for the process (see 7.1.1.3).

CLNONBLOCK

(1) When opening a FIFO with 0_RDONLY or 0_WRONLY set:

(a) If CLNONBLOCK is set:
An open () for reading-only shall return without
delay. An open () for writing-only shall return an
error if no process currently has the file open for
reading.

(b) If CLNONBLOCK is clear:
An open() for reading-only shall block until a process
opens the file for writing. An open () for writing-only
shall block until a process opens the file for reading.

(2) When opening a block special or character special file that
supports nonblocking opens:

(a) If CLNONBLOCK is set:
The open () shall return without waiting for the dev¬
ice to be ready or available. Subsequent behavior of
the device is device-specific.

(b) If CLNONBLOCK is clear:
The open () shall wait until the device is ready or
available before returning.

(3) Otherwise, the behavior of 0_NONBLOCK is unspecified.

0_TRUNC If the file exists and is a regular file, and the file is successfully
opened 0_RDWR or 0_WRONLY, it shall be truncated to zero
length and the mode and owner shall be unchanged by this
function call. 0_TRUNC shall have no effect on FIFO special
files or terminal device files. Its effect on other file types is |
implementation defined. The result of using 0_TRUNC with
0_RDONLY is undefined.

If 0_CREAT is set and the file did not previously exist, upon successful completion
the open() function shall mark for update the st_atime, stjctime, and stjntime
fields of the file and the stjctime and stjntime fields of the parent directory.

5.3 General File Creation 89

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

238 If 0_TRUNC is set and the file did previously exist, upon successful completion
239 the open() function shall mark for update the st_ctime and stjntime fields of the
240 file.

241 5.3.1.3 Returns

242 Upon successful completion, the function shall open the file and return a nonne-
243 gative integer representing the lowest numbered unused file descriptor. Other-
244 wise, it shall return -1 and shall set errno to indicate the error. No files shall be
245 created or modified if the function returns -1.

246 5.3.1.4 Errors

247 If any of the following conditions occur, the open() function shall return -1 and set
248 errno to the corresponding value:

249
250
251
252
253

[EACCES] Search permission is denied on a component of the path prefix,
or the file exists and the permissions specified by oflag are
denied, or the file does not exist and write permission is denied
for the parent directory of the file to be created, or 0_TRUNC is
specified and write permission is denied.

254 [EEXIST] 0_CREAT and 0_EXCL are set and the named file exists.

255

256
257

[EINTR] The open{) operation was interrupted by a signal.

[EISDIR] The named file is a directory, and the oflag argument specifies
write or read/write access.

258 [EMFILE] Too many file descriptors are currently in use by this process.

259
260
261
262

[ENAMETOOLONG]
The length of the path string exceeds {PATH_MAX}, or a path¬
name component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

263 [ENFILE] Too many files are currently open in the system.

264
265
266

[ENOENT] 0_CREAT is not set and the named file does not exist, or
0_CREAT is set and either the path prefix does not exist or the
path argument points to an empty string.

267 [ENOSPC] The directory or file system that would contain the new file can-
268 not be extended.

269 [ENOTDIR] A component of the path prefix is not a directory.

270 [ENXIO] CLNONBLOCK is set, the named file is a FIFO, 0_WR0NLY is
271 set, and no process has the file open for reading.

272
273
274

[EROFS] The named file resides on a read-only file system and either
CLWRONLY, 0_RDWR, 0_CREAT (if the file does not exist), or
0_TRUNC is set in the oflag argument.

90 5 Files and Directories

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

275 5.3.1.5 Cross-References

276 close(), 6.3.1; creat(), 5.3.2;dup{), 6.2.1; exec, 3.1.2; fcntl(), 6.5.2; <fcntl.h>,
277 6.5.1; Iseek(), 6.5.3; read(), 6.4.1; <signal .h>, 3.3.1; stat(), 5.6.2;
278 <sys/stat .h>, 5.6.1; write{), 6.4.2; umask(), 5.3.3; 3.3.1.4.

279 5.3.2 Create a New File or Rewrite an Existing One

280 Function: creat()

281 5.3.2.1 Synopsis

282 #include <sys/types . h>

283 #include <sys/stat.h>

284 #include <fcntl.h>

285 int creat (const char *path, mode_t mode) ;

286 5.3.2.2 Description

287 The function call:

288 creat (path, mode) ;

289 is equivalent to:

290 open (path, 0_wronly | 0_creat I O_trunc , mode);

291 5.3.2.3 Cross-References

292 open(), 5.3.1; <sys/stat .h>, 5.6.1.

293 5.3.3 Set File Creation Mask

294 Function: umask ()

295 5.3.3.1 Synopsis

296 #include <sys/types . h>

297 #include <sys/stat.h>

298 mode_t umask (mode_t cmask) ;

299 5.3.3.2 Description

300 The umask () routine sets the file mode creation mask of the process to cmask and
301 returns the previous value of the mask. Only the file permission bits (see 5.6.1) of
302 cmask are used; the meaning of the other bits is implementation defined.

303 The file mode creation mask of the process is used during open(), creat(), mkdir(),
304 and mkfifoO calls to turn off permission bits in the mode argument supplied. Bit
305 positions that are set in cmask are cleared in the mode of the created file.

5.3 General File Creation 91

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

306 5.3.3.3 Returns

307 The file permission bits in the value returned by umask () shall be the previous |
308 value of the file mode creation mask. The state of any other bits in that value is |
309 unspecified, except that a subsequent call to umask () with that returned value as |
310 cmask shall leave the state of the mask the same as its state before the first call, |
311 including any unspecified (by this part of ISO/IEC 9945) use of those bits.

312 5.S.3.4 Errors

313 The umask() function is always successful, and no return value is reserved to
314 indicate an error.

315 5.3.3.5 Cross-References

316 chmodO, 5.6.4; creatO, 5.3.2; mkdir(), 5.4.1; mkfifoO, 5.4.2; open(), 5.3.1;
317 <sys/stat.h>, 5.6.1.

318 5.3.4 Link to a File

319 Function: link()

320 5.3.4.1 Synopsis

321 int link (const char *existing, const char *new) ;

322 5.3.4.2 Description

323 The argument existing points to a pathname naming an existing file. The argu- |
324 ment new points to a pathname naming the new directory entry to be created. |
325 Implementations may support linking of files across file systems. The link () func-
326 tion shall atomically create a new link for the existing file and increment the link
327 count of the file by one.

328 If the link () function fails, no link shall be created, and the link count of the file
329 shall remain unchanged by this function call.

330 The existing argument shall not name a directory unless the user has appropriate |
331 privileges and the implementation supports using link{) on directories.

332 The implementation may require that the calling process has permission to access
333 the existing file.

334 Upon successful completion, the link () function shall mark for update the stjctime
335 field of the file. Also, the stjctime and stjntime fields of the directory that con-
336 tains the new entry are marked for update.

92 5 Files and Directories

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

337 5.3.4.3 Returns

338 Upon successful completion, link() shall return a value of zero. Otherwise, a
339 value of —1 is returned and errno is set to indicate the error.

340 5.3.4.4 Errors

341 If any of the following conditions occur, the link () function shall return -1 and set
342 errno to the corresponding value:

343
344
345
346
347

[EACCES] A component of either path prefix denies search permission; or
the requested link requires writing in a directory with a mode
that denies write permission; or the calling process does not
have permission to access the existing file, and this is required
by the implementation.

348

349
350

[EEXIST] The link named by new exists.

[EMLINK] The number of links to the file named by existing would exceed
{LINK_MAX}.

351
352
353
354

[ENAMETOOLONG]
The length of the existing or new string exceeds {PATH_MAX}, |
or a pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

355
356
357

[ENOENT] A component of either path prefix does not exist, the file named
by existing does not exist, or either existing or new points to an |
empty string.

358 [ENOSPC1 The directory that would contain the link cannot be extended.

359 [ENOTDIR] A component of either path prefix is not a directory.

360
361
362

[EPERM] The file named by existing is a directory, and either the calling |
process does not have appropriate privileges or the implemen¬
tation prohibits using link{) on directories.

363 [EROFS] The requested link requires writing in a directory on a read-
364 only file system.

365
366
367

[EXDEV] The link named by new and the file named by existing are on |
different file systems, and the implementation does not support
links between file systems.

368 5.3.4.5 Cross-References

369 rename(), 5.5.3; unlink(), 5.5.1.

5.3 General File Creation 93

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

370 5.4 Special File Creation

371 5.4.1 Make a Directory

372 Function: mkdir()

373 5.4.1.1 Synopsis

374 #include <sys/types .h>

375 #include <sys/stat.h>

376 int mkdir (const char *path, mode_t mode);

377 5.4.1.2 Description

378 The mkdir() routine creates a new directory with name path. The file permission
379 bits of the new directory are initialized from mode. The file permission bits of the
380 mode argument are modified by the file creation mask of the process (see 5.3.3).
381 When bits in mode other than the file permission bits are set, the meaning of
382 these additional bits is implementation defined.

383 The owner ID of the directory is set to the effective user ID of the process. The
384 directory’s group ID shall be set to the group ID of the directory in which the direc-
385 tory is being created or to the effective group ID of the process.

386 The newly created directory shall be an empty directory.

387 Upon successful completion, the mkdir() function shall mark for update the
388 st_atime, stjctime, and stjntime fields of the directory. Also, the stjctime and
389 stjntime fields of the directory that contains the new entry are marked for
390 update.

391 5.4.1.3 Returns

392 A return value of zero indicates success. A return value of -1 indicates that an
393 error has occurred, and an error code is stored in errno. No directory shall be
394 created if the return value is -1.

395 5.4.1.4 Errors

396 If any of the following conditions occur, the mkdir() function shall return -1 and
397 set errno to the corresponding value:

398

399

400

[EACCES] Search permission is denied on a component of the path prefix,
or write permission is denied on the parent directory of the
directory to be created.

401 [EEXIST] The named file exists.

402 [EMLINK] The link count of the parent directory would exceed
403 {LINK_MAX}.

94 5 Files and Directories

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

404 [ENAMETOOLONG]
405

406

407

The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

408

409

[ENOENT] A component of the path prefix does not exist, or the path argu¬
ment points to an empty string.

410

411

412

[ENOSPC] The file system does not contain enough space to hold the con¬
tents of the new directory or to extend the parent directory of
the new directory.

413 [ENOTDIR1 A component of the path prefix is not a directory.

414

415

[EROFS1 The parent directory of the directory being created resides on a
read-only file system.

416 5.4.1.5 Cross-References

417 chmod(), 5.6.4; stat(), 5.6.2; <sys/stat. h>, 5.6.1; umask(), 5.3.3.

418 5.4.2 Make a FIFO Special File

419 Function: mkfifo()

420 5.4.2.1 Synopsis

421 #include <sys/types .h>

422 #include <sys/stat.h>

423 int mkfifo (const char *path, mode_t mode);

424 5.4.2.2 Description

425 The mkfifoO routine creates a new FIFO special file named by the pathname
426 pointed to by path. The file permission bits of the new FIFO are initialized from
427 mode. The file permission bits of the mode argument are modified by the file crea-
428 tion mask of the process (see 5.3.3). When bits in mode other than the file permis-
429 sion bits are set, the effect is implementation defined.

430 The owner ID of the FIFO shall be set to the effective user ID of the process. The
431 group ID of the FIFO shall be set to the group ID of the directory in which the FIFO
432 is being created or to the effective group ID of the process.

433 Upon successful completion, the mkfifoO function shall mark for update the
434 stjatime, stjctime, and stjntime fields of the file. Also, the stjctime and stjntime
435 fields of the directory that contains the new entry are marked for update.

436 5.4.2.3 Returns

437 Upon successful completion, a value of zero is returned. Otherwise, a value of-1
438 is returned, no FIFO is created, and errno is set to indicate the error.

5.4 Special File Creation 95

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

439 5.4.2.4 Errors

440 If any of the following conditions occur, the mkfifoO function shall return -1 and
441 set errno to the corresponding value:

442

443

444

[EACCES] Search permission is denied on a component of the path prefix, |
or write permission is denied on the parent directory of the file |
to be created.

445 [EEXIST] The named file already exists.

446

447

448

449

[ENAMETOOLONG]
The length of the path string exceeds {PATH_MAX}, or a path¬
name component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

450 [ENOENT] A component of the path prefix does not exist, or the path argu-
451 ment points to an empty string.

452 [ENOSPC] The directory that would contain the new file cannot be
453 extended, or the file system is out of file allocation resources.

454 [ENOTDIR] A component of the path prefix is not a directory.

455 [EROFS] The named file resides on a read-only file system.

456 5.4.2.5 Cross-References

457 chmod(), 5.6.4; exec, 3.1.2;pipe(), 6.1.1; stat(), 5.6.2; <sys/stat ,h>, 5.6.1;

458 umaskO, 5.3.3.

459 5.5 File Removal

460 5.5.1 Remove Directory Entries

461 Function: unlinkO

462 5.5.1.1 Synopsis

463 int unlink (const char *path) ;

464 5.5.1.2 Description

465 The unlinkO function shall remove the link named by the pathname pointed to by
466 path and decrement the link count of the file referenced by the link.

467 When the link count of the file becomes zero and no process has the file open, the
468 space occupied by the file shall be freed and the file shall no longer be accessible.
469 If one or more processes have the file open when the last link is removed, the link
470 shall be removed before unlinkO returns, but the removal of the file contents shall
471 be postponed until all references to the file have been closed.

96 5 Files and Directories

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

ISO/IEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

The path argument shall not name a directory unless the process has appropriate
privileges and the implementation supports using unlink() on directories. Appli¬
cations should use rmdir() to remove a directory.

Upon successful completion, the unlink () function shall mark for update the
stjctime and st_mtime fields of the parent directory. Also, if the link count of the
file is not zero, the stjctime field of the file shall be marked for update.

5.5.1.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value
of -1 shall be returned and errno shall be set to indicate the error. If -1 is
returned, the named file shall not be changed by this function call.

5.5.1.4 Errors

If any of the following conditions occur, the unlink () function shall return -1 and
set errno to the corresponding value:

[EACCES1 Search permission is denied for a component of the path prefix,
or write permission is denied on the directory containing the
link to be removed.

[EBUSY] The directory named by the path argument cannot be unlinked
because it is being used by the system or another process and
the implementation considers this to be an error.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_N0_TRUNC} is in effect.

The named file does not exist, or the path argument points to
an empty string.

A component of the path prefix is not a directory.

The file named by path is a directory, and either the calling
process does not have appropriate privileges or the implemen¬
tation prohibits using unlinki.) on directories.

The directory entry to be unlinked resides on a read-only file
system.

5.5.1.5 Cross-References

close(), 6.3.1; link(), 5.3.4; open(), 5.3.1; renamed), 5.5.3; rmdir(), 5.5.2.

[ENOENT]

[ENOTDIR]

[EPERM]

[EROFS1

5.5 File Removal 97

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

5.5.2 Remove a Directory

Function: rmdir()

5.5.2.1 Synopsis

int rmdir (const char *path) ;

5.5.2.2 Description

The rmdir() function removes a directory whose name is given by path. The
directory shall be removed only if it is an empty directory.

If the named directory is the root directory or the current working directory of any |
process, it is unspecified whether the function succeeds or whether it fails and |
sets errno to [EBUSY].

If the link count of the directory becomes zero and no process has the directory
open, the space occupied by the directory shall be freed and the directory shall no
longer be accessible. If one or more processes have the directory open when the
last link is removed, the dot and dot-dot entries, if present, are removed before
rmdir() returns and no new entries may be created in the directory, but the direc¬
tory is not removed until all references to the directory have been closed.

Upon successful completion, the rmdir{) function shall mark for update the
stjctime and stjntime fields of the parent directory.

5.5.2.3 Returns

Upon successful completion, a value of zero shall be returned. Otherwise, a value |
of -1 shall be returned and errno shall be set to indicate the error. If -1 is |
returned, the named directory shall not be changed by this function call. |

5.5.2.4 Errors

If any of the following conditions occur, the rmdir() function shall return -1 and
set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix, |
or write permission is denied on the parent directory of the |
directory to be removed. |

[EBUSY] The directory named by the path argument cannot be removed
because it is being used by another process and the implemen¬
tation considers this to be an error.

[EEXIST] or [ENOTEMPTY]
The path argument names a directory that is not an empty
directory.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while

98 5 Files and Directories

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

542 {_POSIX_N0_TRUNC} is in effect.

543 [ENOENT] The path argument names a nonexistent directory or points to
544 an empty string.

545 [ENOTDIR] A component of the path is not a directory.

546 [EROFS] The directory entry to be removed resides on a read-only file
547 system.

548 5.5.2.5 Cross-References

549 mkdir(), 5.4.1; unlink(), 5.5.1.

550 5.5.3 Rename a File

551 Function: rename()

552 5.5.3.1 Synopsis

553 int rename (const char *old, const char *new) ;

554 5.5.3.2 Description

555 The rename () function changes the name of a file. The old argument points to the
556 pathname of the file to be renamed. The new argument points to the new path-
557 name of the file.

558 If the old argument and the new argument both refer to links to the same existing
559 file, the rename() function shall return successfully and perform no other action.

560 If the old argument points to the pathname of a file that is not a directory, the
561 new argument shall not point to the pathname of a directory. If the link named
562 by the new argument exists, it shall be removed and old renamed to new. In this
563 case, a link named new shall exist throughout the renaming operation and shall
564 refer either to the file referred to by new or old before the operation began. Write
565 access permission is required for both the directory containing old and the direc-
566 tory containing new.

567 If the old argument points to the pathname of a directory, the new argument shall
568 not point to the pathname of a file that is not a directory. If the directory named
569 by the new argument exists, it shall be removed and old renamed to new. In this
570 case, a link named new shall exist throughout the renaming operation and shall
571 refer either to the file referred to by new or old before the operation began. Thus,
572 if new names an existing directory, it shall be required to be an empty directory.

573 The new pathname shall not contain a path prefix that names old. Write access
574 permission is required for the directory containing old and the directory contain-
575 ing new. If the old argument points to the pathname of a directory, write access
576 permission may be required for the directory named by old, and, if it exists, the
577 directory named by new.

5.5 File Removal 99

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

578 If the link named by the new argument exists and the link count of the file
579 becomes zero when it is removed and no process has the file open, the space occu-
580 pied by the file shall be freed and the file shall no longer be accessible. If one or
581 more processes have the file open when the last link is removed, the link shall be
582 removed before renamed) returns, but the removal of the file contents shall be
583 postponed until all references to the file have been closed.

584 Upon successful completion, the rename() function shall mark for update the
585 stjctime and stjntime fields of the parent directory of each file.

586 5.5.3.3 Returns

587 Upon successful completion, a value of zero shall be returned. Otherwise, a value |
588 of -1 shall be returned and errno shall be set to indicate the error. If -1 is |
589 returned, neither the file named by old nor the file named by new, if either exists, |
590 shall be changed by this function call.

591 5.5.3.4 Errors

592 If any of the following conditions occur, the rename () function shall return -1 and
593 set errno to the corresponding value:

594 [EACCES] A component of either path prefix denies search permission, or
595 one of the directories containing old or new denies write per-
596 missions, or write permission is required and is denied for a
597 directory pointed to by the old or new arguments.

598 [EBUSYl The directory named by old or new cannot be renamed because
599 it is being used by the system or another process and the imple-
600 mentation considers this to be an error.

601 [EEXIST] or [ENOTEMPTY]

602 The link named by new is a directory containing entries other
603 than dot and dot-dot.

604 [EINVAL] The new directory pathname contains a path prefix that names
605 the old directory.

606 [EISDIR] The new argument points to a directory, and the old argument
607 points to a file that is not a directory.

608

609

610

611

[ENAMETOOLONG]
The length of the old or new argument exceeds {PATH_MAX}, or
a pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

612

613

614

615

[EMLINK] The file named by old is a directory, and the link count of the |
parent directory of new would exceed {LINK_MAX}.

[ENOENT] The link named by the old argument does not exist, or either
old or new points to an empty string.

616 [ENOSPC] The directory that would contain new cannot be extended.

100 5 Files and Directories

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 Part 1: SYSTEM API [C LANGUAGE]

617
618
619

[ENOTDIR] A component of either path prefix is not a directory, or the old
argument names a directory and the new argument names a
nondirectory file.

620 [EROFS] The requested operation requires writing in a directory on a
621 read-only file system.

622
623
624

[EXDEV] The links named by new and old are on different file systems,
and the implementation does not support links between file
systems.

625 5.5.3.5 Cross-References

626 link(), 5.3.4; rmdir(), 5.5.2; unlinkO, 5.5.1.

627 5.6 File Characteristics

628 5.6.1 File Characteristics: Header and Data Structure

629 The header <sys/stat.h> defines the structure stat, which includes the
630 members shown in Table 5-1, returned by the functions stat() and fstat{).

631
632

Table 5-1 - stat Structure

633 Member Member
Description 634 Type Name

635 modejt stjnode File mode (see 5.6.1.2).

636 inojt st_i.no File serial number.
637 deujt stjdev ID of device containing this file.

638 nlinkjt stjilink Number of links.
639 uid_t stjuid User ID of the owner of the file.
640 gidjt st_gid Group ID of the group of the file.
641
642

offj stjsize For regular files, the file size in bytes. For other file types, the use of
this field is unspecified.

643 timejt stjatime Time of last access.
644 timejt stjntime Time of last data modification.
645
646

timejt stjctime Time of last file status change.

647 NOTE: File serial number and device ID taken together uniquely identify the file within the system.

648 All of the described members shall appear in the stat structure. The structure
649 members stjnode, st_ino, stjdev, stjuid, st_gid, stjatime, stjctime, and stjntime
650 shall have meaningful values for all file types defined in this part of ISO/IEC 9945.
651 The value of the member stjilink shall be set to the number of links to the file.

5.6 File Characteristics 101

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

5.6.1.1 <sys/stat. h> File Types

The following macros shall test whether a file is of the specified type.
m supplied to the macros is the value of stjnode from a stat structure,
evaluates to a nonzero value if the test is true, zero if the test is false.

S_ISDIR(m) Test macro for a directory file.

S_ISCHR(ra) Test macro for a character special file.

S_ISBLK(m) Test macro for a block special file.

S_ISREG(m) Test macro for a regular file.

S_ISFIFO(m) Test macro for a pipe or a FIFO special file.

The value
The macro

5.6.1.2 <sys/stat,h> File Modes

The file modes portion of values of type modejt, such as the stjnode value, are
bit-encoded with the following masks and bits:

S_IRWXU Read, write, search (if a directory), or execute (otherwise) permis¬
sions mask for the file owner class.

S_IRUSR Read permission bit for the file owner class.

S_IWUSR Write permission bit for the file owner class.

S_IXUSR Search (if a directory) or execute (otherwise) per¬
missions bit for the file owner class.

S_IRWXG Read, write, search (if a directory), or execute (otherwise) permis¬
sions mask for the file group class.

S_IRGRP Read permission bit for the file group class.

SJTWGRP Write permission bit for the file group class.

S_IXGRP Search (if a directory) or execute (otherwise) per¬
missions bit for the file group class.

S_IRWXO Read, write, search (if a directory), or execute (otherwise) permis¬
sions mask for the file other class.

S_IROTH Read permission bit for the file other class.

S_IWOTH Write permission bit for the file other class.

S_IXOTH Search (if a directory) or execute (otherwise) per¬
missions bit for the file other class.

S_ISUID Set user ID on execution. The effective user ID of the process
shall be set to that of the owner of the file when the file is run as
a program (see exec). On a regular file, this bit should be cleared
on any write.

S_ISGID Set group ID on execution. Set effective group ID on the process to
the group of the file when the file is run as a program (see exec).
On a regular file, this bit should be cleared on any write.

102 5 Files and Directories

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

689 The bits defined by SJRUSR, S.IWUSR, S_IXUSR, S JRGRP, S_IWGRP, SJXGRP,
690 SJROTH, SJWOTH, S_IXOTH, SJSUID, and SJSGID shall be unique. SJRWXU
691 shall be the bitwise inclusive OR of SJRUSR, SJWUSR, and S_IXUSR. SJRWXG
692 shall be the bitwise inclusive OR of S_IRGRP, S_IWGRP, and SJXGRP. SJRWXO
693 shall be the bitwise inclusive OR of SJROTH, SJWOTH, and SJXOTH. Imple-
694 mentations may OR other implementation-defined bits into SJRWXU, SJRWXG,
695 and SJRWXO, but they shall not overlap any of the other bits defined in this part
696 of ISO/IEC 9945. The file permission bits are defined to be those corresponding to
697 the bitwise inclusive OR of SJRWXU, SJRWXG, and SJRWXO.

698 5.6.1.3 <sys/stat.h> Time Entries

699 The time-related fields of struct stat are as follows:

700 st_atime Accessed file data, for example, readi).

701 stjntime Modified file data, for example, writei).

702 st_ctime Changed file status, for example, chmodi).

703 These times are updated as described in 2.3.5.

704

705 Times are given in seconds since the Epoch.

706 5.6.1.4 Cross-References

707 chmod{), 5.6.4; chowni), 5.6.5; creati), 5.3.2; exec, 3.1.2; linki), 5.3.4; mkdiri),
708 5.4.1; mkfifoi), 5.4.2;pipe(), 6.1.1; readi), 6.4.1; unlinki), 5.5.1; utimei), 5.6.6;
709 writei), 6.4.2; removei) [C Standard {2}].

710 5.6.2 Get File Status

711 Functions: stat(), f'stat()

712 5.6.2.1 Synopsis

713 #include <sys/types . h>

714 #include <sys/stat.h>

715 int stat (const char *path, struct stat *buf) ;

716 int fstat(int fildes, struct stat *buf) ;

717 5.6.2.2 Description

718 The path argument points to a pathname naming a file. Read, write, or execute
719 permission for the named file is not required, but all directories listed in the path-
720 name leading to the file must be searchable. The stati) function obtains informa-
721 tion about the named file and writes it to the area pointed to by the buf argument.

722 Similarly, the fstati) function obtains information about an open file known by the
723 file descriptor fildes.

5.6 File Characteristics 103

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

724 An implementation that provides additional or alternate file access control
725 mechanisms may, under implementation-defined conditions, cause the stat{) and
726 fstat() functions to fail. In particular, the system may deny the existence of the
727 file specified by path.

728 Both functions update any time-related fields, as described in 2.3.5, before writing
729 into the stat structure.

730 The buf is taken to be a pointer to a stat structure, as defined in the header
731 <sys/stat. h>, into which information is placed concerning the file.

732 5.6.2.3 Returns

733 Upon successful completion, a value of zero shall be returned. Otherwise, a value
734 of -1 shall be returned and errno shall be set to indicate the error.

735 5.6.2.4 Errors

736 If any of the following conditions occur, the stat{) function shall return -1 and set
737 errno to the corresponding value:

738 [EACCES] Search permission is denied for a component of the path prefix.

739 [ENAMETOOLONG]
740 The length of the path argument exceeds {PATH_MAX}, or a
741 pathname component is longer than {NAME_MAX} while
742 {_POSIX_NO_TRUNC} is in effect.

743 [ENOENT] The named file does not exist, or the path argument points to
744 an empty string.

745 [ENOTDIR] A component of the path prefix is not a directory.

746 If any of the following conditions occur, the fstat () function shall return -1 and set
747 errno to the corresponding value:

748 [EBADF] The fddes argument is not a valid file descriptor.

749 5.6.2.5 Cross-References

750 creat{), 5.3.2; dup{), 6.2.1; fcntli), 6.5.2; open(), 5.3.1;pipe(), 6.1.1;
751 <sys/stat.h>, 5.6.1.

752 5.6.3 Check File Accessibility

753 Function: access()

754 5.6.3.1 Synopsis

755 #include <unistd.h>

756 int access (const char *path, int amode) ;

104 5 Files and Directories

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

757 5.6.3.2 Description

758 The accessO function checks the accessibility of the file named by the pathname
759 pointed to by the path argument for the file access permissions indicated by
760 amode, using the real user ID in place of the effective user ID and the real group
761 ID in place of the effective group ID.

762 The value of amode is either the bitwise inclusive OR of the access permissions to
763 be checked (R_OK, W_OK, and X_OK) or the existence test (F_OK). See 2.9.1 for
764 the description of these symbolic constants.

765 If any access permission is to be checked, each shall be checked individually, as
766 described in 2.3.2. If the process has appropriate privileges, an implementation
767 may indicate success for X_OK even if none of the execute file permission bits are
768 set.

769 5.6.3.3 Returns

770 If the requested access is permitted, a value of zero shall be returned. Otherwise,
771 a value of -1 shall be returned and errno shall be set to indicate the error.

772 5.6.3.4 Errors

773 If any of the following conditions occur, the access() function shall return -1 and
774 set errno to the corresponding value:

775 [EACCES] The permissions specified by amode are denied, or search per-
776 mission is denied on a component of the path prefix.

777

778

779

780

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

781 [ENOENT] The path argument points to an empty string or to the name of
782 a file that does not exist.

783 [ENOTDIR] A component of the path prefix is not a directory.

784 [EROFS] Write access was requested for a file residing on a read-only file
785 system.

786 For each of the following conditions, if the condition is detected, the access () func-
787 tion shall return -1 and set errno to the corresponding value:

788 [EINVAL] An invalid value was specified for amode.

789 5.6.3.5 Cross-References

790 chmod(), 5.6.4; stat(), 5.6.2; <unistd.h>, 2.9.

5.6 File Characteristics 105

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

791 5.6.4 Change File Modes

792 Function: chmodi)

793 5.6.4.1 Synopsis

794 #include <sys/types .h>

795 #include <sys/stat.h>

796 int chmod (const char *path, mode_t mode);

797 5.6.4.2 Description

798 The path argument shall point to a pathname naming a file. If the effective user
799 ID of the calling process matches the file owner or the calling process has
800 appropriate privileges, the chmodi) function shall set the S_ISUID, S_ISGID, and
801 the file permission bits, as described in 5.6.1, of the named file from the
802 corresponding bits in the mode argument. These bits define access permissions
803 for the user associated with the file, the group associated with the file, and all oth-
804 ers, as described in 2.3.2. Additional implementation-defined restrictions may
805 cause the S_ISUID and S_ISGID bits in mode to be ignored.

806 If the calling process does not have appropriate privileges, if the group ID of the
807 file does not match the effective group ID or one of the supplementary group IDs,
808 and if the file is a regular file, bit S_ISGID (set group ID on execution) in the mode
809 of the file shall be cleared upon successful return from chmodi).

810 The effect on file descriptors for files open at the time of the chmodi) function is
811 implementation defined.

812 Upon successful completion, the chmodi) function shall mark for update the
813 stjctime field of the file.

814 5.6.4.3 Returns

815 Upon successful completion, the function shall return a value of zero. Otherwise,
816 a value of -1 shall be returned and errno shall be set to indicate the error. If -1 is
817 returned, no change to the file mode shall have occurred.

818 5.6.4.4 Errors

819 If any of the following conditions occur, the chmodi) function shall return -1 and
820 set errno to the corresponding value:

821 [EACCES] Search permission is denied on a component of the path prefix.

822 [ENAMETOOLONG]
823 The length of the path argument exceeds {PATH_MAX}, or a
824 pathname component is longer than {NAME_MAX} while
825 {_POSIX_NO_TRUNC} is in effect.

826 [ENOTDIR] A component of the path prefix is not a directory.

106 5 Files and Directories

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

ISO/TEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

[ENOENT] The named file does not exist or the path argument points to an
empty string.

[EPERM] The effective user ID does not match the owner of the file, and
the calling process does not have the appropriate privileges.

[EROFS] The named file resides on a read-only file system.

5.6.4.5 Cross-References

chown(), 5.6.5; mkdir{), 5.4.1; mkfifoi), 5.4.2; stat{), 5.6.2; <sys/stat. h>, 5.6.1.

5.6.5 Change Owner and Group of a File

Function: chown ()

5.6.5.1 Synopsis

♦include <sys/types.h>

int chown (const char *path, uid_t owner, gid_t group);

5.6.5.2 Description

The path argument points to a pathname naming a file. The user ID and group ID
of the named file are set to the numeric values contained in owner and group
respectively.

Only processes with an effective user ID equal to the user ID of the file or
with appropriate privileges may change the ownership of a file. If
{_POSIX_CHOWN_RESTRICTED} is in effect for path:

(1) Changing the owner is restricted to processes with appropriate
privileges.

(2) Changing the group is permitted to a process without appropriate
privileges, but with an effective user ID equal to the user ID of the file, if
and only if owner is equal to the user ID of the file and group is equal
either to the effective group ID of the calling process or to one of its sup¬
plementary group IDs.

If the path argument refers to a regular file, the set-user-ID (S_ISUID) and set-
group-ID (S_ISGID) bits of the file mode shall be cleared upon successful return
from chown{), unless the call is made by a process with appropriate privileges, in
which case it is implementation defined whether those bits are altered. If the
chown () function is successfully invoked on a file that is not a regular file, these
bits may be cleared. These bits are defined in 5.6.1.

Upon successful completion, the chown() function shall mark for update the
stjctime field of the file.

5.6 File Characteristics 107

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

861 5.6.5.3 Returns

862 Upon successful completion, a value of zero shall be returned. Otherwise, a value
863 of -1 shall be returned and errno shall be set to indicate the error. If -1 is
864 returned, no change shall be made in the owner and group of the file.

865 5.6.5.4 Errors

866 If any of the following conditions occur, the chown{) function shall return -1 and
867 set errno to the corresponding value:

868

869

870

871

872

[EACCES] Search permission is denied on a component of the path prefix.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

873 [ENOTDIRl A component of the path prefix is not a directory.

874 [ENOENT] The named file does not exist, or the path argument points to
875 an empty string.

876

877

878

879

[EPERM] The effective user ID does not match the owner of the file, or the
calling process does not have appropriate privileges and
{_POSIX_CHOWN_RESTRICTED} indicates that such privilege is
required.

880 [EROFS] The named file resides on a read-only file system.

881 For each of the following conditions, if the condition is detected, the chown() func-
882 tion shall return -1 and set errno to the corresponding value:

883 [EINVAL] The owner or group ID supplied is invalid and not supported by
884 the implementation.

885 5.6.5.5 Cross-References

886 chmodi), 5.6.4; <sys/stat. h>, 5.6.1.

887 5.6.6 Set File Access and Modification Times

888 Function: utime{)

889 5.6.6.1 Synopsis

890 #include <sys/types .h>

891 #include <utime.h>

892 int utime (const char *path, const struct utimbuf Himes);

108 5 Files and Directories

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

5.6.6.2 Description

The argument path points to a pathname naming a file. The utime() function sets
the access and modification times of the named file.

If the times argument is NULL, the access and modification times of the file are
set to the current time. The effective user ID of the process must match the owner
of the file, or the process must have write permission to the file or appropriate
privileges, to use the utime() function in this manner.

If the times argument is not NULL, it is interpreted as a pointer to a utimbuf
structure, and the access and modification times are set to the values contained in
the designated structure. Only the owner of the file and processes with appropri¬
ate privileges shall be permitted to use the utimeO function in this way.

The utimbuf structure is defined by the header <utime.h> and includes the fol¬
lowing members:

Member
Type

timejt
time_t

Member
Name

actime
modtime

Description

Access time
Modification time

The times in the utimbuf structure are measured in seconds since the Epoch.

Implementations may add extensions as permitted in 1.3.1.1, point (2). Adding |
extensions to this structure, which might change the behavior of the application |
with respect to this standard when those fields in the structure are uninitialized, |
also requires that the extensions be enabled as required by 1.3.1.1. |

Upon successful completion, the utimeO function shall mark for update the
stjctime field of the file.

5.6.6.3 Returns

Upon successful completion, the function shall return a value of zero. Otherwise,
a value of -1 shall be returned, errno is set to indicate the error, and the file times
shall not be affected.

5.6.6.4 Errors

If any of the following conditions occur, the utimeO function shall return -1 and
set errno to the corresponding value:

[EACCES] Search permission is denied by a component of the path prefix,
or the times argument is NULL and the effective user ID of the
process does not match the owner of the file and write access is
denied.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

5.6 File Characteristics 109

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

932 [ENOENT] The named file does not exist or the path argument points to an
933 empty string.

934 [ENOTDIR] A component of the path prefix is not a directory.

935

936

937

938

[EPERM] The times argument is not NULL, the effective user ID of the
calling process has write access to the file, but does not match
the owner of the file, and the calling process does not have the
appropriate privileges.

939 [EROFS1 The named file resides on a read-only file system.

940 5.6.6.5 Cross-References

941 <sys/stat.h>, 5.6.1.

942 5.7 Configurable Pathname Variables

943 5.7.1 Get Configurable Pathname Variables

944 Functions: pathconfO, fpathconfO

945 5.7.1.1 Synopsis

946 #include <unistd.h>

947 long pathconf (const char *path, int name) ;

948 long f pathconf (int fildes, int name);

949 5.7.1.2 Description

950 The pathconf'() and fpathconfi) functions provide a method for the application to
951 determine the current value of a configurable limit or option (variable) that is
952 associated with a file or directory.

953 For pathconfO, the path argument points to the pathname of a file or directory.
954 For fpathconfi), the fildes argument is an open file descriptor.

955 The name argument represents the variable to be queried relative to that file or
956 directory. The implementation shall support all of the variables listed in
957 Table 5-2 and may support others. The variables in Table 5-2 come from
958 <limits.h> or <unistd.h> and the symbolic constants, defined in
959 <unistd.h>, that are the corresponding values used for name.

960 5.7.1.3 Returns

961 If name is an invalid value, the pathconfO and fpathconfO functions shall
962 return -1.

963 If the variable corresponding to name has no limit for the path or file descriptor,
964 the pathconfi) and fpathconfi) functions shall return -1 without changing errno.

110 5 Files and Directories

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

965 Table 5-2 - Configurable Pathname Variables
966 __
967 Variable name Value Notes

968 {LENK_MAX} {_PC_LINK_MAX} (1)
969 {MAX_CANON} (_PC_MAX_CANON) (2)
970 {MAXJNPUT} (_PC_MAX_INPUT) (2)
971 {NAME_MAX} (_PC_NAME_MAX| (3), (4)
972 {PATH_MAX} {_PC_PATH_MAX} (4), (5)
973 {PIPE_BUF} {_PC_PIPE_BUF} (6)
974 {_POSIX_CHOWN_RESTRICTED} {_PC_CH O WN_RE STRICTED] (7)
975 (_POSDC_NO_TRUNC] LPC_NO_TRUNC] (3, 4)
976
977

{_POSIX_VDISABLE} l_PC_VDISABLE} (2)

978 NOTES:

979

980
981

(1) If path or fildes refers to a directory, the value returned applies to the directory itself.

(2) If path or fildes does not refer to a terminal file, it is unspecified whether an implementation
supports an association of the variable name with the specified file.

982 (3) If path or fildes refers to a directory, the value returned applies to the filenames within the
983 directory.

984 (4) If path or fildes does not refer to a directory, it is unspecified whether an implementation
985 supports an association of the variable name with the specified file.

986 (5) If path or fildes refers to a directory, the value returned is the maximum length of a relative
987 pathname when the specified directory is the working directory.

988
989
990
991
992

(6) If path refers to a FIFO, or fildes refers to a pipe or a FIFO, the value returned applies to the
referenced object itself. If path or fildes refers to a directory, the value returned applies to
any FIFOs that exist or can be created within the directory. If path or fildes refers to any
other type of file, it is unspecified whether an implementation supports an association of the
variable name with the specified file.

993
994
995

(7) If path or fildes refers to a directory, the value returned applies to any files defined in this
part of ISO/IEC 9945, other than directories, that exist or can be created within the
directory.

996 If the implementation needs to use path to determine the value of name and the
997 implementation does not support the association of name with the file specified by
998 path, or if the process did not have the appropriate privileges to query the file
999 specified by path, or path does not exist, the pathconfi) function shall return -1.

1000 If the implementation needs to use fildes to determine the value of name and the
1001 implementation does not support the association of name with the file specified by
1002 fildes, or if fildes is an invalid file descriptor, the fpathconfi) function shall
1003 return -1.

1004 Otherwise, the pathconfO and fpathconfO functions return the current variable
1005 value for the file or directory without changing errno. The value returned shall
1006 not be more restrictive than the corresponding value described to the application
1007 when it was compiled with the implementation’s climits .h> or <unistd.h>.

5.7 Configurable Pathname Variables 111

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

5.7.1.4 Errors

If any of the following conditions occur, the pathconfi) and fpathconfi) functions
shall return -1 and set errno to the corresponding value:

[EINVAL] The value of name is invalid.

For each of the following conditions, if the condition is detected, the pathconfi)
function shall return -1 and set errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path prefix.

[EINVAL] The implementation does not support an association of the vari¬
able name with the specified file.

[ENAMETOOLONG]
The length of the path argument exceeds [PATH_MAX], or a
pathname component is longer than [NAME_MAX] while
{_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named file does not exist, or the path argument points to
an empty string.

[ENOTDIR] A component of the path prefix is not a directory.

For each of the following conditions, if the condition is detected, the fpathconfi)
function shall return -1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The implementation does not support an association of the vari¬
able name with the specified file.

112 5 Files and Directories

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Section 6: Input and Output Primitives

1 The functions in this section deal with input and output from files and pipes. |
2 Functions are also specified that deal with the coordination and management of
3 file descriptors and I/O activity.

4 6.1 Pipes

5 6.1.1 Create an Inter-Process Channel

6 Function: pipe()

7 6.1.1.1 Synopsis

8 int pipe(int fildes [2]);

9 6.1.1.2 Description

10 The pipe() function shall create a pipe and place two file descriptors, one each into
n the arguments fildes[0] and fildesi 1], that refer to the open file descriptions for
12 the read and write ends of the pipe. Their integer values shall be the two lowest
13 available at the time of the pipe() function call. The 0_NONBLOCK and |
14 FD_CLOEXEC flags shall be clear on both file descriptors. [The fcntl() function |
15 can be used to set these flags.] |

16 Data can be written to file descriptor fildes[1] and read from file descriptor
17 fildes[0]. A read on file descriptor fildes[0] shall access the data written to file
is descriptor fildes[1] on a first-in-first-out basis.

19 A process has the pipe open for reading if it has a file descriptor open that refers
20 to the read end, fildes[0]. A process has the pipe open for writing if it has a file
21 descriptor open that refers to the write end, fildesi 1].

22 Upon successful completion, the pipe () function shall mark for update the
23 st_atime, stjctime, and stjntime fields of the pipe.

24 6.1.1.3 Returns

25 Upon successful completion, the function shall return a value of zero. Otherwise,
26 a value of -1 shall be returned and errno shall be set to indicate the error.

6.1 Pipes 113

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

27 6.1.1.4 Errors

28 If any of the following conditions occur, the pipe() function shall return -1 and set
29 errno to the corresponding value:

30 [EMFILE] More than {OPEN_MAX}-2 file descriptors are already in use by
31 this process.

32

33

[ENFILE] The number of simultaneously open files in the system would
exceed a system-imposed limit.

34 6.1.1.5 Cross-References

35 fcntl(), 6.5.2; open(), 5.3.1; read{), 6.4.1; write(), 6.4.2.

36 6.2 File Descriptor Manipulation

37 6.2.1 Duplicate an Open File Descriptor

38 Functions: dup(), dup2()

39 6.2.1.1 Synopsis

40 int dup(int fildes) ;

41 int dup2 (int fildes, int fildes2) ;

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

6.2.1.2 Description

The dup () and dup2{) functions provide an alternate interface to the service pro¬
vided by the fcntl() function using the F_DUPFD command. The call:

fid = dup (fildes);

shall be equivalent to:

fid = fcntl (fildes, F_DUPFD, 0);

The call:

fid = dup2 (fildes, fildes2);

shall be equivalent to:

close (fildes2);

fid = fcntl (fildes, F_DUPFD, fildes2);

except for the following:

(1) If fildes2 is negative or greater than or equal to {OPEN_MAX}, the dup2() |
function shall return -1 and errno shall be set to [EBADF].

(2) If fildes is a valid file descriptor and is equal to fildes2, the dup2{) func¬
tion shall return fildes2 without closing it.

114 6 Input and Output Primitives

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

58 (3) If fildes is not a valid file descriptor, dup2{) shall fail and not close
59 fildes2.

60 (4) The value returned shall be equal to the value of fldes2 upon successful |
61 completion or shall be -1 upon failure. |

62 6.2.1.3 Returns

63 Upon successful completion, the function shall return a file descriptor. Other-
64 wise, a value of-1 shall be returned and errno shall be set to indicate the error.

65 6.2.1.4 Errors

66 If any of the following conditions occur, the dup () function shall return -1 and set
67 errno to the corresponding value:

68 [EBADFl The argument fildes is not a valid open file descriptor.

69 [EMFILE] The number of file descriptors would exceed {OPEN_MAX}.

70 If any of the following conditions occur, the dup2() function shall return -1 and
71 set errno to the corresponding value:

72 [EBADFl The argument fildes is not a valid open file descriptor, or the
73 argument fildes2 is negative or greater than or equal to
74 {OPEN_MAX}.

75 [EINTR] The dup2() function was interrupted by a signal.

76 6.2.1.5 Cross-References

77 close(), 6.3.1; creatO, 5.3.2; exec, 3.1.2; fcntlO, 6.5.2; open{), 5.3.1;pipei), 6.1.1.

78 6.3 File Descriptor Deassignment

79 6.3.1 Close a File

so Function: close()

81 6.3.1.1 Synopsis

82 int close (int fildes);

83 6.3.1.2 Description

84 The close() function shall deallocate (i.e., make available for return by subsequent
85 open()s, etc., executed by the process) the file descriptor indicated by fildes. All
86 outstanding record locks owned by the process on the file associated with the file
87 descriptor shall be removed (that is, unlocked).

6.3 File Descriptor Deassignment 115

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

88 If the close() function is interrupted by a signal that is to be caught, it shall
89 return -1 with errno set to [EINTR], and the state of fildes is unspecified.

90 When all file descriptors associated with a pipe or FIFO special file have been
91 closed, any data remaining in the pipe or FIFO shall be discarded.

92 When all file descriptors associated with an open file description have been closed,
93 the open file description shall be freed.

94 If the link count of the file is zero, when all file descriptors associated with the file
95 have been closed, the space occupied by the file shall be freed and the file shall no
96 longer be accessible.

97 6.3.1.3 Returns

98 Upon successful completion, a value of zero shall be returned. Otherwise, a value
99 of -1 shall be returned and errno shall be set to indicate the error.

100 6.3.1.4 Errors

101 If any of the following conditions occur, the close{) function shall return -1 and
102 set errno to the corresponding value:

103 [EBADF] The fildes argument is not a valid file descriptor.

104 [EINTR] The close function was interrupted by a signal.

105 6.3.1.5 Cross-References

106 creatO, 5.3.2; dup{), 6.2.1 ;exec, 3.1.2;fcntl(), 6.5.2\fork{), 3.1.1; open(), 5.3.1;
107 pipe(), 6.1.1; unlink(), 5.5.1; 3.3.1.4.

108 6.4 Input and Output

109 6.4.1 Read from a File

no Function: read()

in 6.4.1.1 Synopsis

112 ssize_t read(int fildes, void *buf, size t nbyte) ;

113 6.4.1.2 Description

114 The read() function shall attempt to read nbyte bytes from the file associated with
115 the open file descriptor, fildes, into the buffer pointed to by buf.

116 If nbyte is zero, the read() function shall return zero and have no other results.

117 On a regular file or other file capable of seeking, read{) shall start at a position in
ns the file given by the file offset associated with fildes. Before successful return

116 6 Input and Output Primitives

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

ISO/IEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

from readi), the file offset shall be incremented by the number of bytes actually
read.

On a file not capable of seeking, the read() shall start from the current position.
The value of a file offset associated with such a file is undefined.

Upon successful completion, the readi) function shall return the number of bytes
actually read and placed in the buffer. This number shall never be greater than
nbyte. The value returned may be less than nbyte if the number of bytes left in
the file is less than nbyte, if the readi) request was interrupted by a signal, or if
the file is a pipe (or FIFO) or special file and has fewer than nbyte bytes immedi¬
ately available for reading. For example, a read() from a file associated with a
terminal may return one typed line of data.

If a readi) is interrupted by a signal before it reads any data, it shall return -1
with errno set to [EINTR].

If a readi) is interrupted by a signal after it has successfully read some data,
either it shall return -1 with errno set to [EINTR], or it shall return the number of
bytes read. A read() from a pipe or FIFO shall never return with errno set to
[EINTR] if it has transferred any data.

No data transfer shall occur past the current end-of-file. If the starting position is
at or after the end-of-file, zero shall be returned. If the file refers to a device spe¬
cial file, the result of subsequent readi) requests is implementation defined.

If the value of nbyte is greater than [SSIZE_MAX], the result is implementation |
defined. |

When attempting to read from an empty pipe (or FIFO):

(1) If no process has the pipe open for writing, read() shall return zero to
indicate end-of-file.

(2) If some process has the pipe open for writing and 0_NONBLOCK is set,
readi) shall return -1 and set errno to [EAGAIN].

(3) If some process has the pipe open for writing and 0_NONBLOCK is clear, |
readi) shall block until some data is written or the pipe is closed by all |
processes that had the pipe open for writing. |

When attempting to read a file (other than a pipe or FIFO) that supports non-
blocking reads and has no data currently available:

(1) If 0_NONBLOCK is set, readi) shall return -1 and set errno to [EAGAIN].

(2) If 0_NONBLOCK is clear, readi) shall block until some data becomes
available.

The use of the 0_NONBLOCK flag has no effect if there is some data available.

For any portion of a regular file, prior to the end-of-file, that has not been written,
readi) shall return bytes with value zero.

Upon successful completion where nbyte is greater than zero, the readi) function |
shall mark for update the st_atime field of the file.

6.4 Input and Output 117

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

159 6.4.1.3 Returns

160 Upon successful completion, read() shall return an integer indicating the number
161 of bytes actually read. Otherwise, read() shall return a value of-1 and set errno
162 to indicate the error, and the content of the buffer pointed to by buf is
163 indeterminate.

164 6.4.1.4 Errors

165 If any of the following conditions occur, the read{) function shall return -1 and set
166 errno to the corresponding value:

167 [EAGAIN] The 0_NONBLOCK flag is set for the file descriptor and the pro-
168 cess would be delayed in the read operation.

169 [EBADF] The fildes argument is not a valid file descriptor open for
170 reading.

171

172

173

[EINTR] The read operation was interrupted by a signal, and either no
data was transferred or the implementation does not report
partial transfer for this file.

174 [EIO]
175

176

177

178

179

The implementation supports job control, the process is in a
background process group and is attempting to read from its
controlling terminal, and either the process is ignoring or block¬
ing the SIGTTIN signal or the process group of the process is
orphaned. This error may also be generated when conditions |
unspecified by this part of ISO/IEC 9945 occur.

iso 6.4.1.5 Cross-References

181 creatO, 5.3.2; dup(), 6.2.1; fcntlO, 6.5.2; IseekO, 6.5.3; open{), 5.3.1 ;pipe(), 6.1.1;
182 3.3.1.4; 7.1.1.

183 6.4.2 Write to a File

184 Function: writei)

185 6.4.2.1 Synopsis

186 ssize_t write (int fildes, const void *buf, size_t nbyte) ;

187 6.4.2.2 Description

188 The write() function shall attempt to write nbyte bytes from the buffer pointed to
189 by buf to the file associated with the open file descriptor, fildes.

190 If nbyte is zero and the file is a regular file, the writeO function shall return zero |
191 and have no other results. If nbyte is zero and the file is not a regular file, the |
192 results are unspecified.

193 On a regular file or other file capable of seeking, the actual writing of data shall
194 proceed from the position in the file indicated by the file offset associated with

118 6 Input and Output Primitives

195
196
197
198

199
200

201

202

203

204
205
206
207
208

209
210

211

212

213

214
215
216
217

218
219

220

221

222

223

224
225
226
227

228
229

230
231

232
233
234
235
236

ISO/TEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

fildes. Before successful return from write (), the file offset shall be incremented
by the number of bytes actually written. On a regular file, if this incremented file
offset is greater than the length of the file, the length of the file shall be set to this
file offset.

On a file not capable of seeking, the write () shall start from the current position.
The value of a file offset associated with such a file is undefined.

If the 0_APPEND flag of the file status flags is set, the file offset shall be set to the
end of the file prior to each write, and no intervening file modification operation |
shall be allowed between changing the file offset and the write operation.

If a write() requests that more bytes be written than there is room for (for exam¬
ple, the physical end of a medium), only as many bytes as there is room for shall
be written. For example, suppose there is space for 20 bytes more in a file before
reaching a limit. A write of 512 bytes would return 20. The next write of a
nonzero number of bytes would give a failure return (except as noted below).

Upon successful completion, the write{) function shall return the number of bytes
actually written to the file associated with fildes. This number shall never be
greater than nbyte.

If a write() is interrupted by a signal before it writes any data, it shall return -1
with errno set to [EINTR].

If writei) is interrupted by a signal after it successfully writes some data, either it
shall return -1 with errno set to [EINTR), or it shall return the number of bytes
written. A writei) to a pipe or FIFO shall never return with errno set to [EINTR] if
it has transferred any data and nbyte is less than or equal to {PIPE_BUF}.

If the value of nbyte is greater than [SSIZE_MAX], the result is implementation |
defined. I

After a write() to a regular file has successfully returned: |

(1) Any successful read() from each byte position in the file that was |
modified by that write () shall return the data specified by the write () for |
that position, until such byte positions are again modified. |

(2) Any subsequent successful write{) to the same byte position in the file |
shall overwrite that file data. The phrase “subsequent successful writeiT \
in the previous sentence is intended to be viewed from a system perspec- |
tive [i.e., read{) followed by a systemwide subsequent write()].

Write requests to a pipe (or FIFO) shall be handled in the same manner as write |
requests to a regular file, with the following exceptions: |

(1) There is no file offset associated with a pipe, hence each write request
shall append to the end of the pipe.

(2) Write requests of {PIPE_BUF} bytes or less shall not be interleaved with
data from other processes doing writes on the same pipe. Writes of
greater than {PIPE_BUF} bytes may have data interleaved, on arbitrary
boundaries, with writes by other processes, whether or not the
0_NONBLOCK flag of the file status flags is set.

6.4 Input and Output 119

237

238

239

240

241

242

243

244

245

246

247

248

249

250

261

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

(3) If the 0_N0NBL0CK flag is clear, a write request may cause the process
to block, but on normal completion it shall return nbyte.

(4) If the 0_N0NBL0CK flag is set, write () requests shall be handled dif- |
ferently, in the following ways:

(a) The writei) function shall not block the process. |

(b) A write request for {PIPE_BUF} or fewer bytes shall either: |

[1] If there is sufficient space available in the pipe, transfer all |
the data and return the number of bytes requested.

[2] If there is not sufficient space available in the pipe, transfer no |
data and return -1 with errno set to [EAGAIN]. J

(c) A write request for more than {PIPE_BUF} bytes shall either: j

[1] When at least one byte can be written, transfer what it can |
and return the number of bytes written. When all data previ- |
ously written to the pipe has been read, it shall transfer at |
least {PIPE_BUF} bytes. |

[2] When no data can be written, transfer no data and return -1 |
with errno set to [EAGAIN]. |

When attempting to write to a file descriptor (other than a pipe or FIFO) that sup¬
ports nonblocking writes and cannot accept the data immediately:

(1) If the 0_N0NBL0CK flag is clear, writei) shall block until the data can be
accepted.

(2) If the 0_N0NBL0CK flag is set, writei) shall not block the process. If
some data can be written without blocking the process, writei) shall
write what it can and return the number of bytes written. Otherwise, it
shall return -1 and errno shall be set to [EAGAIN].

Upon successful completion where nbyte is greater than zero, the writei) function |
shall mark for update the stjctime and stjntime fields of the file. |

G.4.2.3 Returns

Upon successful completion, writei) shall return an integer indicating the number
of bytes actually written. Otherwise, it shall return a value of -1 and set errno to
indicate the error.

6.4.2.4 Errors

If any of the following conditions occur, the writei) function shall return -1 and
set errno to the corresponding value:

[EAGAIN] The 0_N0NBL0CK flag is set for the file descriptor and the pro¬
cess would be delayed in the write operation.

[EBADF] The fildes argument is not a valid file descriptor open for
writing.

120 6 Input and Output Primitives

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

275 [EFBIG] An attempt was made to write a file that exceeds an
276 implementation-defined maximum file size.

277 [EINTR]
278
279

The write operation was interrupted by a signal, and either no
data was transferred or the implementation does not report
partial transfers for this file.

280 [EIO]
281
282
283
284
285

The implementation supports job control, the process is in a
background process group and is attempting to write to its con¬
trolling terminal, TOSTOP is set, the process is neither ignoring
nor blocking SIGTTOU signals, and the process group of the pro¬
cess is orphaned. This error may also be generated when condi- |
tions unspecified by this part of ISO/IEC 9945 occur.

286 [ENOSPC] There is no free space remaining on the device containing the
287 file.

288 [EPIPE]
289
290

An attempt is made to write to a pipe (or FIFO) that is not open
for reading by any process. A SIGPIPE signal shall also be sent
to the process.

291 6.4.2.5 Cross-References

292 creatO, 5.3.2; dupO, 6.2.1; fcntlO, 6.5.2; Iseek(), 6.5.3; openO, 5.3.1;pipe(), 6.1.1;
293 3.3.1.4.

294 6.5 Control Operations on Files

295 6.5.1 Data Definitions for File Control Operations

296 The header <fcntl.h> defines the following requests and arguments for the
297 fcntlO and openO functions. The values within each of the tables within this
298 clause (Table 6-1 through Table 6-7) shall be unique numbers. In addition, the
299 values of the entries for oflag values, file status flags, and file access modes shall
300 be unique.

301 6.5.2 File Control

302 Function: fcntlO

303 6.5.2.1 Synopsis

304 #include <sys/types .h>

305 #include <unistd.h>

306 #include <fcntl.h>

307 int fcntl(int fildes, int cmd, . . .) ;

6.5 Control Operations on Files 121

308

309

310

311
312
313
314
315

316
317
318

319

320

321

322

323

324

325

326

327

328

329
330

331

332

333

334

335

336
337
338
339

340

341

342

343

344

345

346

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Table 6-1 - cmd Values for fcntl ()

Constant Description

F_DUPFD
F_GETFD
F_GETLK
F_SETFD
F_GETFL

F_SETFL
F_SETLK
F_SETLKW

Duplicate file descriptor.
Get file descriptor flags.
Get record locking information.

Set file descriptor flags.
Get file status flags.
Set file status flags.
Set record locking information.
Set record locking information; wait if blocked.

Table 6-2 - File Descriptor Flags Used for fcntl ()

Constant Description

FD_CLOEXEC Close the file descriptor upon execution of an exec-family
function.

Table 6-3 - l_type Values for Record Locking With fcntl ()

Constant Description

F_RDLCK
F_UNLCK
F_WRLCK

Shared or read lock.
Unlock.
Exclusive or write lock.

Table 6-4 - oflag Values for open ()

Constant Description

0_CREAT
0_EXCL
0_N0CTTY
0_TRUNC

Create file if it does not exist.
Exclusive use flag.
Do not assign a controlling terminal.
Truncate flag.

Table 6-5 - File Status Flags Used for open () and fcntH)

Constant Description

0_APPEND

0_NONBLOCK
Set append mode.

No delay.

122 6 Input and Output Primitives

347

348

349

350
351
352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Table 6-6 - File Access Modes Used for open() and fcntlO

Constant Description

OJRDONLY Open for reading only.
0_RDWR Open for reading and writing.
0_WRONLY Open for writing only.

Table 6-7 - Mask for Use With File Access Modes

Constant Description

0_ACCM0DE Mask for file access modes.

6.5.2.2 Description

The function fcntl{) provides for control over open files. The argument fildes is a
file descriptor.

The available values for cmd are defined in the header <fcntl.h> (see 6.5.1),
which shall include:

F.DUPFD

F_GETFD

F_SETFD

F_GETFL

Return a new file descriptor that is the lowest numbered avail¬
able (i.e., not already open) file descriptor greater than or equal
to the third argument, arg, taken as an integer of type int. The
new file descriptor refers to the same open file description as
the original file descriptor and shares any locks.

The FD_CLOEXEC flag associated with the new file descriptor is
cleared to keep the file open across calls to the exec family of
functions.

Get the file descriptor flags, as defined in Table 6-2, that are
associated with the file descriptor fildes. File descriptor flags
are associated with a single file descriptor and do not affect
other file descriptors that refer to the same file.

Set the file descriptor flags, as defined in Table 6-2, that are
associated with fildes to the third argument, arg, taken as type
int. If the FD_CLOEXEC flag is zero, the file shall remain open
across exec functions; otherwise, the file shall be closed upon
successful execution of an exec function.

Get the file status flags, as defined in Table 6-5, and file access
modes for the open file description associated with fildes. The
file access modes defined in Table 6-6 can be extracted from the
return value using the mask O.ACCMODE, which is defined in
<f cntl .h>. File status flags and file access modes are associ¬
ated with the open file description and do not affect other file
descriptors that refer to the same file with different open file
descriptions.

6.5 Control Operations on Files 123

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

426

426

427

428

429

430

431

432

433

434

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

F_SETFL Set the file status flags, as defined in Table 6-5, for the open file
description associated with fildes from the corresponding bits in
the third argument, arg, taken as type int. Bits corresponding
to the file access modes (as defined in Table 6-6) and the oflag
values (as defined in Table 6-4) that are set in arg are ignored.
If any bits in arg other than those mentioned here are changed
by the application, the result is unspecified.

The following commands are available for advisory record locking. Advisory
record locking shall be supported for regular files, and may be supported for other
files.

F_GETLK Get the first lock that blocks the lock description pointed to by
the third argument, arg, taken as a pointer to type struct flock
(see below). The information retrieved overwrites the informa¬
tion passed to fcntl() in the flock structure. If no lock is found
that would prevent this lock from being created, the structure
shall be left unchanged by this function call except for the lock
type, which shall be set to FJLJNLCK.

F_SETLK Set or clear a file segment lock according to the lock description
pointed to by the third argument, arg, taken as a pointer to
type struct flock (see below). F_SETLK is used to establish
shared (or read) locks (F_RDLCK) or exclusive (or write) locks,
(F_WRLCK), as well as to remove either type of lock (F_UNLCK).
F.RDLCK, F_WRLCK, and F_UNLCK are defined by the
<f cntl. h> header. If a shared or exclusive lock cannot be set,
fcntl() shall return immediately.

F_SETLKW This command is the same as F_SETLK except that if a shared
or exclusive lock is blocked by other locks, the process shall
wait until the request can be satisfied. If a signal that is to be
caught is received while fcntl() is waiting for a region, the
fcntl() shall be interrupted. Upon return from the signal
handler of the process, fcntli) shall return -1 with errno set to
[EINTR], and the lock operation shall not be done.

The flock structure, defined by the <f cntl .h> header, describes an advisory lock.
It includes the members shown in Table 6-8.

When a shared lock has been set on a segment of a file, other processes shall be
able to set shared locks on that segment or a portion of it. A shared lock prevents
any other process from setting an exclusive lock on any portion of the protected
area. A request for a shared lock shall fail if the file descriptor was not opened
with read access.

An exclusive lock shall prevent any other process from setting a shared lock or an
exclusive lock on any portion of the protected area. A request for an exclusive
lock shall fail if the file descriptor was not opened with write access.

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END to indicate that
the relative offset, l_start bytes, will be measured from the start of the file,
current position, or end of the file, respectively. The value of l_len is the number
of consecutive bytes to be locked. If l_len is negative, the result is undefined. The |

124 6 Input and Output Primitives

435

436

437
438

439
440
441
442
443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

469

460

461

462

463

464

465

466

467

468

469

470

471

472

473

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Table 6-8 - flock Structure

Member
Type

Member
Name

Description

short Ijype F_RDLCK, F_WRLCK, or FJJNLCK.
short Ijuuhence Flag for starting offset.

offj Ijstart Relative offset in bytes.

offj l_len Size; if 0, then until EOF.
pid_t l _pid Process ID of the process holding the lock, returned with F_GETLK.

l_pid field is only used with F_GETLK to return the process ID of the process hold¬
ing a blocking lock. After a successful F_GETLK request, the value of Ijuuhence
shall be SEEKJ3ET.

Locks may start and extend beyond the current end of a file, but shall not start or
extend before the beginning of the file. A lock shall be set to extend to the largest
possible value of the file offset for that file if l_len is set to zero. If the flock struct
has Ijuuhence and l_start that point to the beginning of the file, and l_len of zero,
the entire file shall be locked.

There shall be at most one type of lock set for each byte in the file. Before a suc¬
cessful return from an F_SETLK or an F_SETLKW request when the calling pro¬
cess has previously existing locks on bytes in the region specified by the request,
the previous lock type for each byte in the specified region shall be replaced by the
new lock type. As specified above under the descriptions of shared locks and
exclusive locks, an F_SETLK or an F_SETLKW request shall (respectively) fail or
block when another process has existing locks on bytes in the specified region and
the type of any of those locks conflicts with the type specified in the request.

All locks associated with a file for a given process shall be removed when a file
descriptor for that file is closed by that process or the process holding that file
descriptor terminates. Locks are not inherited by a child process created using
the fork() function.

A potential for deadlock occurs if a process controlling a locked region is put to
sleep by attempting to lock the locked region of another process. If the system
detects that sleeping until a locked region is unlocked would cause a deadlock, the
fcntli) function shall fail with an [EDEADLK] error.

6.5.2.3 Returns

Upon successful completion, the value returned shall depend on cmd. The vari¬
ous return values are shown in Table 6-9.

Otherwise, a value of -1 shall be returned and errno shall be set to indicate the
error.

6.5 Control Operations on Files 125

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

474

475

Table 6-9 - fcntl () Return Values

476 Request Return Value

477 F_DUPFD A new file descriptor.

478 F_GETFD Value of the flags defined in Table 6-2, but the return value shall not be negative.

479 F_SETFD Value other than -1.

480 F_GETFL Value of file status flags and access modes, but the return value shall not be negative.

481 F_SETFL Value other than -1.
482 F_GETLK Value other than -1.
483 F_SETLK Value other than -1.
484 F_SETLKW Value other than -1.

485

486 6.5.2.4 Errors

487 If any of the following conditions occur, the fcntl{) function shall return -1 and set
488 errno to the corresponding value:

489

490

491

492

493

494

495

[EACCES] or [EAGAIN]
The argument cmd is F_SETLK, the type of lock (l_type) is a
shared lock (F_RDLCK) or exclusive lock (F_WRLCK), and the
segment of a file to be locked is already exclusive-locked by
another process; or the type is an exclusive lock and some por¬
tion of the segment of a file to be locked is already shared-
locked or exclusive-locked by another process.

496 [EBADF] The fildes argument is not a valid file descriptor.

497

498

499

The argument cmd is F_SETLK or F_SETLKW, the type of lock
(Ijype) is a shared lock (F_RDLCK), and fildes is not a valid file
descriptor open for reading.

500
501
502

The argument cmd is F_SETLK or F_SETLKW, the type of lock
(I Jype) is an exclusive lock (F_WRLCK), and fildes is not a valid
file descriptor open for writing.

503 [EINTRl The argument cmd is F_SETLKW, and the function was inter-
504 rupted by a signal.

505 [EINVAL] The argument cmd is F_DUPFD, and the third argument is
506 negative or greater than or equal to {OPEN_MAX}.

507
508
509

The argument cmd is F_GETLK, F_SETLK, or FJ3ETLKW and
the data to which arg points is not valid, or fildes refers to a file
that does not support locking.

510
511
512

[EMFILE] The argument cmd is F_DUPFD and {OPEN_MAX} file descrip¬
tors are currently in use by this process, or no file descriptors
greater than or equal to arg are available.

513
514
515

[ENOLCK] The argument cmd is F_SETLK or F_SETLKW, and satisfying
the lock or unlock request would result in the number of locked
regions in the system exceeding a system-imposed limit.

126 6 Input and Output Primitives

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

516 For each of the following conditions, if the condition is detected, the fcntl() func-
517 tion shall return -1 and set errno to the corresponding value:

518 [EDEADLK] The argument cmd is F_SETLKW, and a deadlock condition was
519 detected.

520 6.5.2.5 Cross-References

521 close(), 6.3.1; exec, 3.1.2; openi), 5.3.1; <f cntl. h>, 6.5.1; 3.3.I.4.

522 6.5.3 Reposition Read/Write File Offset

523 Function: Iseeki)

524 6.5.3.1 Synopsis

525 #include <sys/types . h>

526 #include <unistd.h>

527 off_t lseek(int fildes, off_t offset, int whence);

528 6.5.3.2 Description

529 The fildes argument is an open file descriptor. The Iseek () function shall set the
530 file offset for the open file description associated with fildes as follows:

531

532
533

(1) If whence is SEEK_SET, the offset is set to offset bytes.

(2) If whence is SEEK_CUR, the offset is set to its current value plus offset
bytes.

534 (3) If whence is SEEK_END, the offset is set to the size of the file plus offset
535 bytes.

536 The symbolic constants SEEK_SET, SEEK_CUR, and SEEK_END are defined in the
537 header cunistd. h>.

538 Some devices are incapable of seeking. The value of the file offset associated with
539 such a device is undefined. The behavior of the Iseeki.) function on such devices is
540 implementation defined.

541 The Iseeki) function shall allow the file offset to be set beyond the end of existing
542 data in the file. If data is later written at this point, subsequent reads of data in
543 the gap shall return bytes with the value zero until data is actually written into
544 the gap.

545 The Iseeki) function shall not, by itself, extend the size of a file.

546 6.5.3.3 Returns

547 Upon successful completion, the function shall return the resulting offset location
548 as measured in bytes from the beginning of the file. Otherwise, it shall return a
549 value of iioffj) -1), shall set errno to indicate the error, and the file offset shall
550 remain unchanged by this function call.

6.5 Control Operations on Files 127

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

551 6.5.3.4 Errors

552 If any of the following conditions occur, the Iseek () function shall return -1 and
553 set errno to the corresponding value:

554 [EBADF] The fildes argument is not a valid file descriptor.

555 [EINVAL] The whence argument is not a proper value, or the resulting file
556 offset would be invalid.

557 [ESPIPE] The fildes argument is associated with a pipe or FIFO.

558 6.5.3.5 Cross-References

559 creat{), 5.3.2; dup(), 6.2.1; fcntlO, 6.5.2; open(), 5.3.1; read(), 6.4.1; sigactioni),
560 3.3.4; write(), 6.4.2; <unistd.h>, 2.9.

128 6 Input and Output Primitives

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Section 7: Device- and Class-Specific Functions

1 7.1 General Terminal Interface

2 This section describes a general terminal interface that shall be provided. It shall |
3 be supported on any asynchronous communication ports if the implementation |
4 provides them. It is implementation defined whether this interface supports net- |
5 work connections or synchronous ports or both. The conformance document shall |
6 describe which device types are supported by these interfaces. Certain functions |
7 in this section apply only to the controlling terminal of a process; where this is the |
8 case, it is so noted.

9 7.1.1 Interface Characteristics

10 7.1.1.1 Opening a Terminal Device File

n When a terminal file is opened, it normally causes the process to wait until a con-
12 nection is established. In practice, application programs seldom open these files;
13 they are opened by special programs and become the standard input, output, and
14 error files of an application.

15 As described in 5.3.1, opening a terminal device file with the 0_NONBLOCK flag
16 clear shall cause the process to block until the terminal device is ready and avail-
17 able. The CLOCAL flag can also affect open(). See 7.I.2.4.

is 7.1.1.2 Process Groups

19 A terminal may have a foreground process group associated with it. This fore-
20 ground process group plays a special role in handling signal-generating input
21 characters, as discussed below in 7.1.1.9.

22 If the implementation supports job control (if LPOSIX_JOB_CONTROL} is defined;
23 see 2.9), command interpreter processes supporting job control can allocate the
24 terminal to different jobs, or process groups, by placing related processes in a sin-
25 gle process group and associating this process group with the terminal. The fore-
26 ground process group of a terminal may be set or examined by a process, assum-
27 ing the permission requirements in this section are met; see 7.2.3 and 7.2.4. The
28 terminal interface aids in this allocation by restricting access to the terminal by
29 processes that are not in the foreground process group; see 7.1.1.4.

30 When there is no longer any process whose process ID or process group ID |
31 matches the process group ID of the foreground process group, the terminal shall |
32 have no foreground process group. It is unspecified whether the terminal has a |
33 foreground process group when there is no longer any process whose process |

7.1 General Terminal Interface 129

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

group ID matches the process group ID of the foreground process group, but there
is a process whose process ID matches. No actions defined by this part of
ISO/IEC 9945, other than allocation of a controlling terminal as described in
7.1.1.3 or a successful call to tcsetpgrpi), shall cause a process group to become
the foreground process group of a terminal.

7.1.1.3 The Controlling Terminal

A terminal may belong to a process as its controlling terminal. Each process of a
session that has a controlling terminal has the same controlling terminal. A ter¬
minal may be the controlling terminal for at most one session. The controlling
terminal for a session is allocated by the session leader in an implementation-
defined manner. If a session leader has no controlling terminal and opens a ter¬
minal device file that is not already associated with a session without using the
0_NOCTTY option (see 5.3.1), it is implementation defined whether the terminal
becomes the controlling terminal of the session leader. If a process that is not a
session leader opens a terminal file, or the 0_NOCTTY option is used on open (),
that terminal shall not become the controlling terminal of the calling process.
When a controlling terminal becomes associated with a session, its foreground
process group shall be set to the process group of the session leader.

The controlling terminal is inherited by a child process during a fork{) function
call. A process relinquishes its controlling terminal when it creates a new session
with the setsidO function; other processes remaining in the old session that had
this terminal as their controlling terminal continue to have it. Upon the close of
the last file descriptor in the system (whether or not it is in the current session)
associated with the controlling terminal, it is unspecified whether all processes
that had that terminal as their controlling terminal cease to have any controlling
terminal. Whether and how a session leader can reacquire a controlling terminal
after the controlling terminal has been relinquished in this fashion is unspecified.
A process does not relinquish its controlling terminal simply by closing all of its
file descriptors associated with the controlling terminal if other processes con¬
tinue to have it open.

When a controlling process terminates, the controlling terminal is disassociated
from the current session, allowing it to be acquired by a new session leader. Sub¬
sequent access to the terminal by other processes in the earlier session may be
denied, with attempts to access the terminal treated as if modem disconnect had
been sensed.

7.1.1.4 Terminal Access Control

If a process is in the foreground process group of its controlling terminal, read
operations shall be allowed as described in 7.1.1.5. For those implementations
that support job control, any attempts by a process in a background process group
to read from its controlling terminal shall cause its process group to be sent a
SIGTTIN signal unless one of the following special cases apply: If the reading pro¬
cess is ignoring or blocking the SIGTTIN signal, or if the process group of the read¬
ing process is orphaned, the read{) returns -1 with errno set to [EIO], and no sig¬
nal is sent. The default action of the SIGTTIN signal is to stop the process to
which it is sent. See 3.3.1.1.

130 7 Device- and Class-Specific Functions

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

If a process is in the foreground process group of its controlling terminal, write
operations shall be allowed as described in 7.1.1.8. Attempts by a process in a
background process group to write to its controlling terminal shall cause the pro¬
cess group to be sent a SIGTTOU signal unless one of the following special cases
apply: If TOSTOP is not set, or if TOSTOP is set and the process is ignoring or
blocking the SIGTTOU signal, the process is allowed to write to the terminal and
the SIGTTOU signal is not sent. If TOSTOP is set, and the process group of the
writing process is orphaned, and the writing process is not ignoring or blocking
SIGTTOU, the write() returns -1 with errno set to [EIO], and no signal is sent.

Certain calls that set terminal parameters are treated in the same fashion as
write, except that TOSTOP is ignored; that is, the effect is identical to that of ter¬
minal writes when TOSTOP is set. See 7.2.

7.1.1.5 Input Processing and Reading Data

A terminal device associated with a terminal device file may operate in full-
duplex mode, so that data may arrive even while output is occurring. Each termi¬
nal device file has associated with it an input queue, into which incoming data is
stored by the system before being read by a process. The system may impose a
limit, {MAX_INPUT}, on the number of bytes that may be stored in the input
queue. The behavior of the system when this limit is exceeded is implementation
defined.

Two general kinds of input processing are available, determined by whether the
terminal device file is in canonical mode or noncanonical mode. These modes are
described in 7.1.1.6 and 7.1.1.7. Additionally, input characters are processed
according to the cjiflag (see 7.1.2.2) and c_lflag (see 7.1.2.5) fields. Such process¬
ing can include echoing, which in general means transmitting input characters
immediately back to the terminal when they are received from the terminal. This
is useful for terminals that can operate in full-duplex mode.

The manner in which data is provided to a process reading from a terminal device
file is dependent on whether the terminal device file is in canonical or noncanoni¬
cal mode.

Another dependency is whether the 0_NONBLOCK flag is set by open{) or fcntl{).
If the 0_NONBLOCK flag is clear, then the read request shall be blocked until
data is available or a signal has been received. If the 0_NONBLOCK flag is set,
then the read request shall be completed, without blocking, in one of three ways:

(1) If there is enough data available to satisfy the entire request, the read()
shall complete successfully and return the number of bytes read.

(2) If there is not enough data available to satisfy the entire request, the
read() shall complete successfully, having read as much data as possible,
and return the number of bytes it was able to read.

(3) If there is no data available, the read{) shall return -1 with errno set to

[EAGAIN].

When data is available depends on whether the input processing mode is canoni¬
cal or noncanonical. The following subclauses, 7.1.1.6 and 7.1.1.7, describe each

of these input processing modes.

7.1 General Terminal Interface 131

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

7.1.1.6 Canonical Mode Input Processing

In canonical mode input processing, terminal input is processed in units of lines.
A line is delimited by a newline ('\n') character, an end-of-file (EOF) character, or |
an end-of-line (EOL) character. See 7.1.1.9 for more information on EOF and EOL.
This means that a read request shall not return until an entire line has been
typed or a signal has been received. Also, no matter how many bytes are
requested in the read call, at most one line shall be returned. It is not, however,
necessary to read a whole line at once; any number of bytes, even one, may be
requested in a read without losing information.

If {MAX_CANON} is defined for this terminal device, it is a limit on the number of
bytes in a fine. The behavior of the system when this limit is exceeded is imple¬
mentation defined. If {MAX_CANON} is not defined, there is no such limit;
see 2.8.5.

Erase and kill processing occur when either of two special characters, the ERASE
and KILL characters (see 7.1.1.9), is received. This processing affects data in the
input queue that has not yet been delimited by a newline (NL), EOF, or EOL char¬
acter. This undelimited data makes up the current line. The ERASE character
deletes the last character in the current line, if there is any. The KILL character
deletes all data in the current line, if there is any. The ERASE and KILL charac¬
ters have no effect if there is no data in the current line. The ERASE and KILL
characters themselves are not placed in the input queue.

7.1.1.7 Noncanonical Mode Input Processing

In noncanonical mode input processing, input bytes are not assembled into lines,
and erase and kill processing does not occur. The values of the MIN and TIME
members of the c_cc array are used to determine how to process the bytes
received.

MIN represents the minimum number of bytes that should be received when the
read() function successfully returns. TIME is a timer of 0,1 second granularity
that is used to time out short-term or bursty data transmissions. If MIN is
greater than {MAX_INPUT}, the response to the request is undefined. The four |
possible values for MIN and TIME and their interactions are described below.

7.1.1.7.1 Case A: MIN > 0, TIME > 0

In this case TIME serves as an interbyte timer and is activated after the first byte
is received. Since it is an interbyte timer, it is reset after a byte is received. The
interaction between MIN and TIME is as follows: as soon as one byte is received,
the interbyte timer is started. If MIN bytes are received before the interbyte timer
expires (remember that the timer is reset upon receipt of each byte), the read is
satisfied. If the timer expires before MIN bytes are received, the characters
received to that point are returned to the user. Note that if TIME expires, at least
one byte shall be returned because the timer would not have been enabled unless
a byte was received. In this case (MIN > 0, TIME > 0), the read shall block until
the MIN and TIME mechanisms are activated by the receipt of the first byte or
until a signal is received. If data is in the buffer at the time of the read(), the |
result shall be as if data had been received immediately after the read().

132 7 Device- and Class-Specific Functions

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

7.1.1.7.2 Case B: MIN > 0, TIME = 0

In this case, since the value of TIME is zero, the timer plays no role and only MIN
is significant. A pending read is not satisfied until MIN bytes are received (i.e.,
the pending read shall block until MIN bytes are received) or a signal is received.
A program that uses this case to read record-based terminal I/O may block
indefinitely in the read operation.

7.1.1.7.3 Case C: MIN = 0, TIME > 0

In this case, since MIN = 0, TIME no longer represents an interbyte timer. It now
serves as a read timer that is activated as soon as the read() function is pro¬
cessed. A read is satisfied as soon as a single byte is received or the read timer
expires. Note that in this case if the timer expires, no bytes shall be returned. If
the timer does not expire, the only way the read can be satisfied is if a byte is
received. In this case, the read shall not block indefinitely waiting for a byte; if no
byte is received within TIME*0,1 seconds after the read is initiated, the read()
shall return a value of zero, having read no data. If data is in the buffer at the |
time of the read(), the timer shall be started as if data had been received immedi- |
ately after the read{). \

7.1.1.7.4 Case D: MIN = 0, TIME = 0

The minimum of either the number of bytes requested or the number of bytes
currently available shall be returned without waiting for more bytes to be input.
If no characters are available, readO shall return a value of zero, having read no
data.

7.1.1.8 Writing Data and Output Processing

When a process writes one or more bytes to a terminal device file, they are pro¬
cessed according to the c_oflag field (see 7.1.2.3). The implementation may pro¬
vide a buffering mechanism; as such, when a call to writeO completes, all of the
bytes written have been scheduled for transmission to the device, but the
transmission will not necessarily have completed. See also 6.4.2 for the effects of
O.NONBLOCKon write().

7.1.1.9 Special Characters

Certain characters have special functions on input or output or both. These func¬
tions are summarized as follows:

INTR Special character on input and recognized if the ISIG flag (see
7.1.2.5) is enabled. It generates a SIGINT signal that is sent to
all processes in the foreground process group for which the ter¬
minal is the controlling terminal. If ISIG is set, the INTR char¬
acter is discarded when processed.

QUIT Special character on input and recognized if the ISIG flag is
enabled. It generates a SIGQUIT signal that is sent to all
processes in the foreground process group for which the termi¬
nal is the controlling terminal. If ISIG is set, the QUIT charac¬
ter is discarded when processed.

7.1 General Terminal Interface 133

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

ERASE

KILL

EOF

NL

EOL

SUSP

STOP

START

CR

Special character on input and recognized if the ICANON flag is
set. It erases the last character in the current line; see 7.1.1.6.
The ERASE character shall not erase beyond the start of a line,
as delimited by an NL, EOF, or EOL character. If ICANON is
set, the ERASE character is discarded when processed.

Special character on input and recognized if the ICANON flag is
set. It deletes the entire line, as delimited by a NL, EOF, or
EOL character. If ICANON is set, the KILL character is dis¬
carded when processed.

Special character on input and recognized if the ICANON flag is
set. When received, all the bytes waiting to be read are
immediately passed to the process, without waiting for a new-
line, and the EOF is discarded. Thus, if there are no bytes wait¬
ing (that is, the EOF occurred at the beginning of a line), a byte
count of zero shall be returned from the read(), representing an
end-of-file indication. If ICANON is set, the EOF character is
discarded when processed.

Special character on input and recognized if the ICANON flag is
set. It is the line delimiter ('\n').

Special character on input and recognized if the ICANON flag is
set. It is an additional line delimiter, like NL.

Recognized on input if job control is supported (see 7.1.2.6). If
the ISIG flag is enabled, receipt of the SUSP character causes a
SIGTSTP signal to be sent to all processes in the foreground pro¬
cess group for which the terminal is the controlling terminal,
and the SUSP character is discarded when processed.

Special character on both input and output and recognized if
the IXON (output control) or IXOFF (input control) flag is set. It
can be used to temporarily suspend output. It is useful with
CRT terminals to prevent output from disappearing before it
can be read. If IXON is set, the STOP character is discarded
when processed.

Special character on both input and output and recognized if
the IXON (output control) or IXOFF (input control) flag is set.
Can be used to resume output that has been suspended by a
STOP character. If IXON is set, the START character is dis¬
carded when processed.

Special character on input and recognized if the ICANON flag is
set; it is the '\r', as denoted in the C Standard {2}. When |
ICANON and ICRNL are set and IGNCR is not set, this character
is translated into a NL and has the same effect as a NL
character.

The NL and CR characters cannot be changed. It is implementation defined
whether the START and STOP characters can be changed. The values for INTR,
QUIT, ERASE, KILL, EOF, EOL, and SUSP (job control only), shall be changeable to
suit individual tastes.

134 7 Device- and Class-Specific Functions

Part 1: SYSTEM API [C LANGUAGE]

ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990

255 If LPOSIX_VDISABLE} is in effect for the terminal file, special character functions
256 associated with changeable special control characters can be disabled individu-
257 ally; see 7.1.2.6.

258 If two or more special characters have the same value, the function performed
259 when that character is received is undefined.

260 A special character is recognized not only by its value, but also by its context; for
261 example, an implementation may define multibyte sequences that have a mean-
262 ing different from the meaning of the bytes when considered individually. Imple-
263 mentations may also define additional single-byte functions. These
264 implementation-defined multibyte or single-byte functions are recognized only if
265 the IEXTEN flag is set; otherwise, data is received without interpretation, except |
266 as required to recognize the special characters defined in this subclause (7.1.1.9).

267 7.1.1.10 Modem Disconnect

268 If a modem disconnect is detected by the terminal interface for a controlling ter-
269 minal, and if CLOCAL is not set in the cjcflag field for the terminal (see 7.1.2.4),
270 the SIGHUP signal is sent to the controlling process associated with the terminal.
271 Unless other arrangements have been made, this causes the controlling process to
272 terminate; see 3.2.2. Any subsequent call to the read() function shall return the |
273 value zero, indicating end of file. See 6.4.1. Thus, processes that read a terminal |
274 file and test for end-of-file can terminate appropriately after a disconnect. If the |
275 [EIO] condition specified in 6.4.1.4 that applies when the implementation supports |
276 job control also exists, it is unspecified whether the EOF condition or the [EIO] is |
277 returned. Any subsequent write() to the terminal device returns -1, with errno |
278 set to [EIO], until the device is closed.

279 7.1.1.11 Closing a Terminal Device File

280 The last process to close a terminal device file shall cause any output to be sent to
281 the device and any input to be discarded. Then, if HUPCL is set in the control
282 modes and the communications port supports a disconnect function, the terminal

283 device shall perform a disconnect.

284 7.1.2 Parameters That Can Be Set I

285 7.1.2.1 termios Structure

286 Routines that need to control certain terminal I/O characteristics shall do so by
287 using the termios structure as defined in the header <termios.h>. The
288 members of this structure include (but are not limited to) those shown in Table 7-
289 1.

290 The types tcflagj and cc_t shall be defined in the header <termios .h>. They
291 shall be unsigned integral types.

292

7.1 General Terminal Interface 135

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

293 Table 7-1 - termios Structure |
294 __ __

295

296

Member

Type

Array Member „ . .. c,. XT Description
Size Name

297 tcflagj cjflag Input modes.
298 tcflagjt c_oflag Output modes.
299 tcflagj c_cflag Control modes.
300 tcflagj cjflag Local modes.
301 ccj NCCS c_cc Control characters.

302

303 7.1.2.2 Input Modes

304 Values of the cjflag field, shown in Table 7-2, describe the basic terminal input
305 control and are composed of the bitwise inclusive OR of the masks shown, which
306 shall be bitwise distinct. The mask name symbols in this table are defined in
307 <termios.h>.

308 Table 7-2 - termios cjflag Field
309

310 Mask Name Description

311 BRKINT Signal interrupt on break.
312 ICRNL Map CR to NL on input.
313 IGNBRK Ignore break condition.
314 IGNCR Ignore CR.
315 IGNPAR Ignore characters with parity errors.
316 ENLCR Map NL to CR on input.
317 ENPCK Enable input parity check.
318 ISTRIP Strip character.
319 IXOFF Enable start/stop input control.
320 IXON Enable start/stop output control.
321 PARMRK Mark parity errors.

322

323 In the context of asynchronous serial data transmission, a break condition is
324 defined as a sequence of zero-valued bits that continues for more than the time to
325 send one byte. The entire sequence of zero-valued bits is interpreted as a single
326 break condition, even if it continues for a time equivalent to more than one byte.
327 In contexts other than asynchronous serial data transmission, the definition of a
328 break condition is implementation defined.

329 If IGNBRK is set, a break condition detected on input is ignored, that is, not put
330 on the input queue and therefore not read by any process. If IGNBRK is not set
331 and BRKINT is set, the break condition shall flush the input and output queues.
332 If the terminal is the controlling terminal of a foreground process group, the
333 break condition shall generate a single SIGINT signal to that foreground process
334 group. If neither IGNBRK nor BRKINT is set, a break condition is read as a single
335 'NO', or if PARMRK is set, as '\377', '\0', '\0'.

336 If IGNPAR is set, a byte with a framing or parity error (other than break) is
337 ignored.

136 7 Device- and Class-Specific Functions

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

If PARMRK is set and IGNPAR is not set, a byte with a framing or parity error
(other than break) is given to the application as the three-character sequence
'\37 7', '\0', X, where '\37 7', '\0' is a two-character flag preceding each sequence
and X is the data of the character received in error. To avoid ambiguity in this
case, if ISTRIP is not set, a valid character of '\37 7' is given to the application as
'\37 7', '\377'. If neither PARMRK nor IGNPAR is set, a framing or parity error
(other than break) is given to the application as a single character '\ O'.

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity
checking is disabled, allowing output parity generation without input parity
errors. Note that whether input parity checking is enabled or disabled is
independent of whether parity detection is enabled or disabled (see 7.1.2.4). If
parity detection is enabled, but input parity checking is disabled, the hardware to
which the terminal is connected shall recognize the parity bit, but the terminal
special file shall not check whether this bit is set correctly or not.

If ISTRIP is set, valid input bytes are first stripped to seven bits; otherwise, all
eight bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If
IGNCR is set, a received CR character is ignored (not read). If IGNCR is not set
and ICRNL is set, a received CR character is translated into a NL character.

If IXON is set, start/stop output control is enabled. A received STOP character
shall suspend output, and a received START character shall restart output. When
IXON is set, START and STOP characters are not read, but merely perform flow
control functions. When IXON is not set, the START and STOP characters are
read.

If IXOFF is set, start/stop input control is enabled. The system shall transmit one
or more STOP characters, which are intended to cause the terminal device to stop
transmitting data, as needed to prevent the input queue from overflowing and |
causing the undefined behavior described in 7.1.1.5 and shall transmit one or |
more START characters, which are intended to cause the terminal device to
resume transmitting data, as soon as the device can continue transmitting data
without risk of overflowing the input queue. The precise conditions under which
STOP and START characters are transmitted are implementation defined.

The initial input control value after open () is implementation defined.

7.1.2.3 Output Modes

Values of the c_oflag field describe the basic terminal output control and are com¬
posed of the bitwise inclusive OR of the following masks, which shall be bitwise
distinct:

Mask Name _Description_

OPOST Perform output processing.

The mask name symbols for the cjoflag field are defined in <termios . h>.

If OPOST is set, output data is processed in an implementation-defined fashion so
that lines of text are modified to appear appropriately on the terminal device;

7.1 General Terminal Interface 137

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

380 otherwise, characters are transmitted without change.

381 The initial output control value after open () is implementation defined.

382 7.1.2.4 Control Modes

383 Values of the c_cflag field, shown in Table 7-3, describe the basic terminal
384 hardware control and are composed of the bitwise inclusive OR of the masks
385 shown, which shall be bitwise distinct; not all values specified are required to be
386 supported by the underlying hardware. The mask name symbols in this table are
387 defined in <termios . h>.

388 Table 7-3 - termios c_cflag Field
389 _

390 Mask Name Description

391 CLOCAL Ignore modem status lines.
392 CREAD Enable receiver.
393 CSIZE Number of bits per byte:
394 CS5 5 bits
395 CS6 6 bits
396 CS7 7 bits
397 CS8 8 bits

398 CSTOPB Send two stop bits, else one.
399 HUPCL Hang up on last close.
400 PARENB Parity enable.
401 PARODD Odd parity, else even.

402

403 The CSIZE bits specify the byte size in bits for both transmission and reception.
404 This size does not include the parity bit, if any. If CSTOPB is set, two stop bits are
405 used; otherwise, one stop bit is used. For example, at 110 baud, two stop bits are
406 normally used.

407 If CREAD is set, the receiver is enabled; otherwise, no characters shall be
408 received.

409 If PARENB is set, parity generation and detection is enabled and a parity bit is
410 added to each character. If parity is enabled, PARODD specifies odd parity if set;
411 otherwise, even parity is used.

412 If HUPCL is set, the modem control lines for the port shall be lowered when the
413 last process with the port open closes the port or the process terminates. The
414 modem connection shall be broken.

415 If CLOCAL is set, a connection does not depend on the state of the modem status
416 lines. If CLOCAL is clear, the modem status lines shall be monitored.

417 Under normal circumstances, a call to the open() function shall wait for the
418 modem connection to complete. However, if the 0_NONBLOCK flag is set (see
419 5.3.1) or if CLOCAL has been set, the open() function shall return immediately
420 without waiting for the connection.

421 If the object for which the control modes are set is not an asynchronous serial con-
422 nection, some of the modes may be ignored; for example, if an attempt is made to

138 7 Device- and Class-Specific Functions

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

423 set the baud rate on a network connection to a terminal on another host, the baud
424 rate may or may not be set on the connection between that terminal and the
425 machine to which it is directly connected.

426 The initial hardware control value after open() is implementation defined.

427 7.1.2.5 Local Modes

428 Values of the c_lflag field, shown in Table 7-4, describe the control of various func-
429 tions and are composed of the bitwise inclusive OR of the masks shown, which
430 shall be bitwise distinct. The mask name symbols in this table are defined in
431 <termios.h>.

432 Table 7-4 - termios cjiflag Field |
433 ____
434 Mask Name Description

435 ECHO Enable echo.

436 ECHOE Echo ERASE as an error-correcting backspace.

437 ECHOK Echo KILL.

438 ECHONL Echo '\n\

439 ICANON Canonical input (erase and kill processing).

440 IEXTEN Enable extended (implementation-defined) functions.

441 ISIG Enable signals.

442 NOFLSH Disable flush after interrupt, quit, or suspend.

443 TOSTOP Send SIGTTOU for background output.

444

445 If ECHO is set, input characters are echoed back to the terminal. If ECHO is not
446 set, input characters are not echoed.

447 If ECHOE and ICANON are set, the ERASE character shall cause the terminal to
448 erase the last character in the current line from the display, if possible. If there is
449 no character to erase, an implementation may echo an indication that this was
450 the case or do nothing.

451 If ECHOK and ICANON are set, the KILL character shall either cause the terminal
452 to erase the line from the display or shall echo the '\n' character after the KILL
453 character.

454 If ECHONL and ICANON are set, the '\n' character shall be echoed even if ECHO
455 is not set.

456 If ICANON is set, canonical processing is enabled. This enables the erase and kill
457 edit functions and the assembly of input characters into lines delimited by NL,
458 EOF, and EOL, as described in 7.1.1.6.

459 If ICANON is not set, read requests are satisfied directly from the input queue. A
460 read shall not be satisfied until at least MIN bytes have been received or the
461 timeout value TIME has expired between bytes. The time value represents tenths
462 of seconds. See 7.1.1.7 for more details.

463 If ISIG is set, each input character is checked against the special control charac-
464 ters INTR, QUIT, and SUSP (job control only). If an input character matches one of
465 these control characters, the function associated with that character is performed.

7.1 General Terminal Interface 139

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

466 If ISIG is not set, no checking is done. Thus, these special input functions are pos-
467 sible only if ISIG is set.

468 If IEXTEN is set, implementation-defined functions shall be recognized from the
469 input data. It is implementation defined how IEXTEN being set interacts with
470 ICANON, ISIG, IXON, or IXOFF. If IEXTEN is not set, then implementation-defined
471 functions shall not be recognized, and the corresponding input characters shall be
472 processed as described for ICANON, ISIG, IXON, and IXOFF.

473 If NOFLSH is set, the normal flush of the input and output queues associated with
474 the INTR, QUIT, and SUSP (job control only) characters shall not be done.

475 If TOSTOP is set and the implementation supports job control, the signal SIGTTOU
476 is sent to the process group of a process that tries to write to its controlling termi-
477 nal if it is not in the foreground process group for that terminal. This signal, by
478 default, stops the members of the process group. Otherwise, the output generated
479 by that process is output to the current output stream. Processes that are block-
480 ing or ignoring SIGTTOU signals are excepted and allowed to produce output, and
481 the SIGTTOU signal is not sent.

482 The initial local control value after open () is implementation defined.

483 7.1.2.6 Special Control Characters

484 The special control characters values are defined by the array c_cc. The subscript
485 name and description for each element in both canonical and noncanonical modes
486 are shown in Table 7-5. The subscript name symbols in this table are defined in
487 <termios.h>.

488 Table 7-5 - termios c_cc Special Control Characters |
489 _
490 Subscript Usage
491 Canonical Noncanonical

Description
492 Mode Mode

493 VEOF EOF character

494 VEOL EOL character

495 VERASE ERASE character

496 VINTR VINTR INTR character

497 VK3LL KILL character

498 VMIN MIN value

499 VQUIT VQUIT QUIT character

500 VSUSP VSUSP SUSP character

501 VTIME TIME value

502 VSTART VSTART START character

503

504

VSTOP VSTOP STOP character

505 The subscript values shall be unique, except that the VMIN and VTIME subscripts
506 may have the same values as the VEOF and VEOL subscripts, respectively.

507 Implementations that do not support job control may ignore the SUSP character
508 value in the c_cc array indexed by the VSUSP subscript.

140 7 Device- and Class-Specific Functions

Part 1: SYSTEM API [C LANGUAGE]
ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990

509 The value of NCCS (the number of elements in the c_cc array) is unspecified by |
510 this part of ISO/IEC 9945. |

511 Implementations that do not support changing the START and STOP characters
512 may ignore the character values in the c_cc array indexed by the VSTART and
513 VSTOP subscripts when tcsetattr() is called, but shall return the value in use
514 when tcgetattr{) is called.

515 If LPOSIX_VDISABLE} is defined for the terminal device file, and the value of one
516 of the changeable special control characters (see 7.1.1.9) is {_POSIX_VDISABLE},
517 that function shall be disabled, that is, no input data shall be recognized as the
518 disabled special character. If ICANON is not set, the value of {_POSIX_VDISABLE}
519 has no special meaning for the VMIN and VTIME entries of the cjcc array.

520 The initial values of all control characters are implementation defined.

521 7.1.2.7 Baud Rate Values |

522 The baud rate values specified in Table 7-6 can be set into the termios structure |
523 by the baud rate functions in 7.1.3.

524 Table 7-6 - termios Baud Rate Values
525 _

526 Name Description Name Description

527 B0 Hang up B600 600 baud
528 B50 50 baud B1200 1200 baud
529 B75 75 baud B1800 1800 baud
530 B110 110 baud B2400 2400 baud

531 B134 134.5 baud B4800 4800 baud
532 B150 150 baud B9600 9600 baud
533 B200 200 baud B19200 19 200 baud

534 B300 300 baud B38400 38 400 baud

535

536 7.1.3 Baud Rate Functions

537 Functions: cfgetispeedO, cfgetospeedO, cfsetispeedO, cfsetospeedO

538

539

540

541

542

543

7.1.3.1 Synopsis

♦include <termios.h>

speed_t cfgetospeed(const struct termios

int cfsetospeed (struct termios *termios_p,

speed_t cfgetispeed(const struct termios

int cfsetispeed (struct termios *termios_p,

Hermiosjo) ;

speed_t speed) ;

Hermios_p) ;

speed_t speed) ;

7.1 General Terminal Interface 141

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

544 7.1.3.2 Description

545 The following interfaces are provided for getting and setting the values of the |
546 input and output baud rates in the termios structure. The effects on the terminal |
547 device described below do not become effective until the tcsetattri) function is sue- |
548 cessfully called, and not all errors are detected until tcsetattri) is called as well.

549 The input and output baud rates are represented in the termios structure. The |
550 values shown in Table 7-6 are defined. The name symbols in this table are |
551 defined in <termios . h>.

552 The type speedj shall be defined in <termios.h> and shall be an unsigned |
553 integral type. |

554 The termios_p argument is a pointer to a termios structure.

555 The cfgetospeedi) function shall return the output baud rate stored in the termios \
556 structure to which termios_p points. |

557 The cfgetispeedO function shall return the input baud rate stored in the termios
558 structure to which termios_p points. |

559 The cfsetospeedi) function shall set the output baud rate stored in the termios \

560 structure to which termios_p points.

561 The cfsetispeedO function shall set the input baud rate stored in the termios |
562 structure to which termios_p points. |

563 Certain values for speeds that are set in the termios structure and passed to |
564 tcsetattri) have special meanings. These are discussed under tcsetattri). |

565 The cfgetispeedi) and cfgetospeedi) functions return exactly the value found in the |
566 termios data structure, without interpretation.

567 Both cfsetispeedO and cfsetospeedi) return a value of zero if successful and -1 to |
568 indicate an error. It is unspecified whether these return an error if an unsup- |
569 ported baud rate is set. |

570 7.1.3.3 Returns

571 See 7.1.3.2.

572 7.1.3.4 Errors

573 This part of ISO/IEC 9945 does not specify any error conditions that are required
574 to be detected for the cfgetispeedO, cfgetospeedi), cfsetispeedO, or cfsetospeedi)
575 functions. Some errors may be detected under conditions that are unspecified by |
576 this part of ISO/IEC 9945. j

577 7.1.3.5 Cross-References

578 tesetattri), 7.2.1.

142 7 Device- and Class-Specific Functions

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

579 7.2 General Terminal Interface Control Functions

580 The functions that are used to control the general terminal function are described
581 in this clause. If the implementation supports job control, unless otherwise noted |
582 for a specific command, these functions are restricted from use by background
583 processes. Attempts to perform these operations shall cause the process group to
584 be sent a SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU
585 signals, the process is allowed to perform the operation and the SIGTTOU signal is
586 not sent.

587 In all the functions, fildes is an open file descriptor. However, the functions affect
588 the underlying terminal file, not just the open file description associated with the
589 file descriptor.

590 7.2.1 Get and Set State

591 Functions: tcgetattr {), tcsetattr()

592 7.2.1.1 Synopsis

593 #include <termios.h>

594 int tcgetattr (int fildes, struct termios *termios_p) ;

595 int tcsetattr (int fildes, int optionaljactions,
596 const struct termios * termios_p) ;

597 7.2.1.2 Description

598 The tcgetattr() function shall get the parameters associated with the object
599 referred to by fildes and store them in the termios structure referenced by
600 termios_p. This function is allowed from a background process; however, the ter-
601 minal attributes may be subsequently changed by a foreground process. If the |
602 terminal device supports different input and output baud rates, the baud rates |
603 stored in the termios structure returned by tcgetattr() shall reflect the actual baud |
604 rates, even if they are equal. If differing baud rates are not supported, the rate |
605 returned as the output baud rate shall be the actual baud rate. The rate returned |
606 as the input baud rate shall be either the number zero or the output rate (as one |
607 of the symbolic values). Permitting either behavior is obsolescent.4) |

608 The tcsetattr() function shall set the parameters associated with the terminal
609 (unless support is required from the underlying hardware that is not available)
610 from the termios structure referenced by termios_p as follows:

611 (1) If optional jactions is TCSANOW, the change shall occur immediately.

612 4) In a future revision of this part of ISO/EEC 9945, a returned value of zero as the input baud rate

613 when differing baud rates are not supported may no longer be permitted.

7.2 General Terminal Interface Control Functions 143

614

616

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

(2) If optional_actions is TCSADRAIN, the change shall occur after all output
written to fildes has been transmitted. This function should be used
when changing parameters that affect output.

(3) If optional jactions is TCSAFLUSH, the change shall occur after all output
written to the object referred to by fildes has been transmitted, and all
input that has been received, but not read, shall be discarded before the
change is made.

The symbolic constants for the values of optional jactions are defined in
<termios.h>.

The zero baud rate, BO, is used to terminate the connection. If BO is specified as
the output baud rate when tcsetattr() is called, the modem control lines shall no
longer be asserted. Normally, this will disconnect the line.

If the input baud rate is equal to the numeral zero in the termios structure when
tcsetattri) is called, the input baud rate will be changed by tcsetattri) to the same
value as that specified by the value of the output baud rate, exactly as if the input
rate had been set to the output rate by cfsetispeedi). This usage of zero is
obsolescent.

The tcsetattri) function shall return success if it was able to perform any of the
requested actions, even if some of the requested actions could not be performed.
It shall set all the attributes that the implementation does support as requested
and leave all the attributes not supported by the hardware unchanged. If no part
of the request can be honored, it shall return -1 and set errno to [EINVAL]. If the
input and output baud rates differ and are a combination that is not supported,
neither baud rate is changed. A subsequent call to tcgetattri) shall return the
actual state of the terminal device [reflecting both the changes made and not
made in the previous tcsetattri) calll. The tcsetattri) function shall not change the
values in the termios structure whether or not it actually accepts them.

The termios structure may have additional fields not defined by this part of
ISO/IEC 9945. The effect of the tcsetattri) function is undefined if the value of the
termios structure pointed to by termios_p was not derived from the result of a call
to tcgetattri) on fildes’, a Strictly Conforming POSIX.1 Application shall modify
only fields and flags defined by this part of ISO/IEC 9945 between the call to
tcgetattri) and tcsetattri), leaving all other fields and flags unmodified.

No actions defined by this part of ISO/IEC 9945, other than a call to tcsetattri) or a
close of the last file descriptor in the system associated with this terminal device,
shall cause any of the terminal attributes defined by this part of ISO/IEC 9945 to
change.

7.2.1.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of-1
is returned and errno is set to indicate the error.

144 7 Device- and Class-Specific Functions

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

654 7.2.1.4 Errors

655 If any of the following conditions occur, the tcgetattri) function shall return -1
656 and set errno to the corresponding value:

657 [EBADF] The fildes argument is not a valid file descriptor.

658 [ENOTTYl The file associated with fildes is not a terminal.

659 If any of the following conditions occur, the tcsetattri) function shall return -1 and
660 set errno to the corresponding value:

661

662

663
664
665

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] A signal interrupted the tcsetattri) function.

[EINVAL] The optionaljactions argument is not a proper value, or an
attempt was made to change an attribute represented in the
termios structure to an unsupported value.

666 [ENOTTY] The file associated with fildes is not a terminal.

667 7.2.1.5 Cross-References

668 <termios . h>, 7.1.2.

669 7.2.2 Line Control Functions

670 Functions: tcsendbreaki), tcdraini), tcflushi), tcflowi)

677 7.2.2.2 Description

678 If the terminal is using asynchronous serial data transmission, the tcsendbreaki)
679 function shall cause transmission of a continuous stream of zero-valued bits for a
680 specific duration. If duration is zero, it shall cause transmission of zero-valued
681 bits for at least 0,25 seconds and not more that 0,5 seconds. If duration is not
682 zero, it shall send zero-valued bits for an implementation-defined period of time.

683 If the terminal is not using asynchronous serial data transmission, it is imple-
684 mentation defined whether the tcsendbreaki) function sends data to generate a
685 break condition (as defined by the implementation) or returns without taking any
686 action.

687 The tcdraini) function shall wait until all output written to the object referred to
688 by fildes has been transmitted.

671 7.2.2.1 Synopsis

672 ♦include <termios.h>

673 int tcsendbreak (int fildes, int duration) ;

674 int tcdrain(int fildes);

675 int tcf lush (int fildes, int queue ^selector) ;

676 int tcflow(int fildes, int action) ;

7.2 General Terminal Interface Control Functions 145

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Upon successful completion, the tcflushi) function shall have discarded any data |
written to the object referred to by fildes but not transmitted, or data received, but |
not read, depending on the value of queue_selector:

(1) If queue jselector is TCIFLUSH, it shall flush data received, but not read.

(2) If queue jselector is TCOFLUSH, it shall flush data written, but not
transmitted.

(3) If queue _selector is TCIOFLUSH, it shall flush both data received but not
read and data written but not transmitted.

The tcflowi) function shall suspend transmission or reception of data on the object
referred to by fildes, depending on the value of action:

(1) If action is TCOOFF, it shall suspend output.

(2) If action is TCOON, it shall restart suspended output.

(3) If action is TCIOFF, the system shall transmit a STOP character, which is
intended to cause the terminal device to stop transmitting data to the
system. (See the description of IXOFF in 7.1.2.2.)

(4) If action is TCION, the system shall transmit a START character, which is
intended to cause the terminal device to start transmitting data to the
system. (See the description of IXOFF in 7.1.2.2.)

The symbolic constants for the values of queue jselector and action are defined in
ctermios.h>.

The default on the opening of a terminal file is that neither its input nor its out¬
put is suspended.

7.2.2.3 Returns

Upon successful completion, a value of zero is returned. Otherwise, a value of -1
is returned and errno is set to indicate the error.

714 T.2.2.4 Errors

715 If any of the following conditions occur, the tcsendbreaki) function shall return -1
716 and set errno to the corresponding value:

717 [EBADF] The fildes argument is not a valid file descriptor.

718 [ENOTTY] The file associated with fildes is not a terminal.

719 If any of the following conditions occur, the tcdrain () function shall return -1 and
720 set errno to the corresponding value:

721 [EBADF] The fildes argument is not a valid file descriptor.

722 [EINTR] A signal interrupted the tcdrain () function.

723 [ENOTTY] The file associated with fildes is not a terminal.

724 If any of the following conditions occur, the tcflushi) function shall return -1 and
725 set errno to the corresponding value:

146 7 Device- and Class-Specific Functions

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

726 [EBADF] The fildes argument is not a valid file descriptor.

727 [EINVAL] The queuejselector argument is not a proper value.

728 [ENOTTY] The file associated with fildes is not a terminal.

729 If any of the following conditions occur, the tcflowO function shall return -1 and
730 set errno to the corresponding value:

731 [EBADF1 The fildes argument is not a valid file descriptor.

732 [EINVAL] The action argument is not a proper value.

733 [ENOTTY] The file associated with fildes is not a terminal.

734 7.2.2.5 Cross-References

735 <termios . h>, 7.1.2.

736 7.2.3 Get Foreground Process Group ID

737 Function: tcgetpgrp ()

738 7.2.3.1 Synopsis

739 #include <sys/types .h>

740 pid_t tcgetpgrp (int fildes);

741 7.2.3.2 Description

742 If {_POSIX_JOB_CONTROL} is defined:

743 (1) The tcgetpgrp () function shall return the value of the process group ID of
744 the foreground process group associated with the terminal.

745
746
747
748

(2) The tcgetpgrp () function is allowed from a process that is a member of a
background process group; however, the information may be subse¬
quently changed by a process that is a member of a foreground process
group.

749 Otherwise:

750 The implementation shall either support the tcgetpgrp () function as
751 described above or the tcgetpgrp () call shall fail.

752 7.2.3.3 Returns

753 Upon successful completion, tcgetpgrp () returns the process group ID of the fore-
754 ground process group associated with the terminal. If there is no foreground pro- |
755 cess group, tcgetpgrp () shall return a value greater than 1 that does not match |
756 the process group ID of any existing process group. Otherwise, a value of -1 is |
757 returned and errno is set to indicate the error.

7.2 General Terminal Interface Control Functions 147

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

758 7.2.3.4 Errors

759 If any of the following conditions occur, the tcgetpgrp () function shall return -1
760 and set errno to the corresponding value:

761 [EBADF] The fildes argument is not a valid file descriptor.

762 [ENOSYS] The tcgetpgrp () function is not supported in this implementa-
763 tion.

764 [ENOTTY] The calling process does not have a controlling terminal, or the
765 file is not the controlling terminal.

766 7.2.3.5 Cross-References

767 setsidO, 4.3.2; setpgidi), 4.3.3; tcsetpgrp(), 7.2.4.

768 7.2.4 Set Foreground Process Group ED

769 Function: tcsetpgrp ()

770 7.2.4.1 Synopsis

771 #include <sys/types.h>

772 int tcsetpgrp (int fildes, pid_t pgrp_id) ;

773 7.2.4.2 Description

774 If LPOSIX_JOB_CONTROL} is defined:

775 If the process has a controlling terminal, the tcsetpgrp() function shall set
776 the foreground process group ID associated with the terminal to pgrp_id.
in The file associated with fildes must be the controlling terminal of the cal-
778 ling process, and the controlling terminal must be currently associated with
779 the session of the calling process. The value of pgrp_id must match a pro-
780 cess group ID of a process in the same session as the calling process.

781 Otherwise:

782 The implementation shall either support the tcsetpgrp () function as
783 described above, or the tcsetpgrp () call shall fail.

784 7.2.4.3 Returns

785 Upon successful completion, tcsetpgrp () returns a value of zero. Otherwise, a
786 value of -1 is returned and errno is set to indicate the error.

787 7.2.4.4 Errors

788 If any of the following conditions occur, the tcsetpgrp () function shall return -1
789 and set errno to the corresponding value:

148 7 Device- and Class-Specific Functions

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

790 [EBADF] The fildes argument is not a valid file descriptor.

791
792

[EINVAL] The value of the pgrp_id argument is not supported by the
implementation.

793
794

[ENOSYS] The tcsetpgrp () function is not supported in this
implementation.

795
796
797

[ENOTTY] The calling process does not have a controlling terminal, or the
file is not the controlling terminal, or the controlling terminal is
no longer associated with the session of the calling process.

798
799
800

[EPERM] The value of pgrp_id is a value supported by the implementa¬
tion, but does not match the process group ID of a process in the
same session as the calling process.

7.2 General Terminal Interface Control Functions 149

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990

Section 8: Language-Specific Services for the C Programming
Language

8.1 Referenced C Language Routines

The functions listed below are described in the indicated sections of the
C Standard {2}. POSIX.l with the C Language Binding comprises these functions, |
the extensions to them described in this clause, and the rest of the requirements |
stipulated in this part of ISO/IEC 9945. The functions appended with plus signs
(+) have requirements beyond those set forth in the C Standard {2}. Any imple¬
mentation claiming conformance to POSIX.1 with the C Language Binding shall |
comply with the requirements outlined in this clause, the requirements stipulated |
in the rest of this part of ISO/IEC 9945, and the requirements in the indicated sec- |
tions of the C Standard {2}. |

For requirements concerning conformance to this clause, see 1.3.3 and its |
subclauses.

4.2 Diagnostics
Functions: assert.

4.3 Character Handling
Functions: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit, tolower, toupper.

4.4 Localization
Functions: setlocale+.

4.5 Mathematics
Functions: acos, asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh, exp,
frexp, ldexp, log, loglO, modf, pow, sqrt, ceil, fabs, floor, fmod.

4.6 Non-Local Jumps
Functions: setjmp, longjmp.

4.9 Input/Output
Functions: clearerr, fclose, feof, ferror, fflush, fgetc, fgets, fopen, fputc,
fputs, fread, freopen, fseek, ftell, fwrite, getc, getchar, gets, perror,
printf, fprintf, sprintf, putc, putchar, puts, remove, rename+, rewind,
scanf, fscanf, sscanf, setbuf, tmpfile, tmpnam, ungetc.

4.10 General Utilities
Functions: abs, atof, atoi, atol, rand, srand, calloc, free, malloc, realloc,
abort+, exit, getenv+, bsearch, qsort.

4.11 String Handling
Functions: strcpy, stmcpy, strcat, stmcat, strcmp, stmcmp, strchr,
strcspn, strpbrk, strrchr, strspn, strstr, strtok, strlen.

8.1 Referenced C Language Routines 151

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

36 4.12 Date and Time
37 Functions: time, asctime, ctime+, gmtime+, localtime+, mktime+,
38 strftime+.

39 Systems conforming to this part of ISO/IEC 9945 shall make no distinction
40 between the “text streams” and the “binary streams” described in the
41 C Standard {2}.

42 For the fseek () function, if the specified position is beyond end-of-file, the conse-
43 quences described in Iseek() (see 6.5.3) shall occur.

44 The EXIT_SUCCESS macro, as used by the exit() function, shall evaluate to a
45 value of zero. Similarly, the EXIT_FAILURE macro shall evaluate to a nonzero |
46 value. |

47 The relationship between a time in seconds since the Epoch used as an argument
48 to gmtimei) and the tm structure (defined in <t ime. h>) is that the result shall be
49 as specified in the expression given in the definition of seconds since the Epoch in
so 2.2.2.77, where the names in the structure and in the expression correspond. If
51 the time zone uctO is in effect, this shall also be true for localtime+) and

52 mktimei).

53 8.1.1 Extensions to Time Functions

54 The contents of the environment variable named TZ (see 2.6) shall be used by the
55 functions ctime(), localtime{), strftimeO, and mktimei) to override the default
56 time zone. The value of TZ has one of the two forms (spaces inserted for clarity):

57 : characters

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

152 8 Language-Specific Services for the C Programming Language

or:

std offset dst offset, rule

If TZ is of the first format (i.e., if the first character is a colon), the characters fol¬
lowing the colon are handled in an implementation-defined manner.

The expanded format (for all TZs whose value does not have a colon as the first
character) is as follows:

stdoffset[dst[offset][, start[/ time], end[/time]]]

Where:

std and dst Indicates no less than three, nor more than {TZNAME_MAX}, |
bytes that are the designation for the standard (std) or summer |
(dst) time zone. Only std is required; if dst is missing, then sum¬
mer time does not apply in this locale. Upper- and lowercase
letters are explicitly allowed. Any characters except a leading
colon (:) or digits, the comma (,), the minus (-), the plus (+), and |
the null character are permitted to appear in these fields, but |
their meaning is unspecified.

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Indicates the value one must add to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh[: mm[: ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh)
shall be required and may be a single digit. The offset following
std shall be required. If no offset follows dst, summer time is
assumed to be one hour ahead of standard time. One or more
digits may be used; the value is always interpreted as a decimal
number. The hour shall be between zero and 24, and the
minutes (and seconds)—if present—between zero and 59. Use of
values outside these ranges causes undefined behavior. If pre¬
ceded by a the time zone shall be east of the Prime Meri¬
dian; otherwise it shall be west (which may be indicated by an
optional preceding

Indicates when to change to and back from summer time. The
rule has the form:

date / time, date / time

where the first date describes when the change from standard to
summer time occurs and the second date describes when the
change back happens. Each time field describes when, in
current local time, the change to the other time is made.

The format of date shall be one of the following:

Jn The Julian day n (1 < n < 365). Leap days shall not be
counted. That is, in all years—including leap years—
February 28 is day 59 and March 1 is day 60. It is
impossible to explicitly refer to the occasional
February 29.

n The zero-based Julian day (0 < n < 365). Leap days
shall be counted, and it is possible to refer to
February 29.

Mm . n . d
The cr day (0 < d < 6) of week n of month m of the
year (1 < rc < 5, 1 < m < 12, where week 5 means “the
last d day in month m” which may occur in either the
fourth or the fifth week). Week 1 is the first week in
which the cTth day occurs. Day zero is Sunday.

The time has the same format as offset except that no leading
sign (“-” or “+”) shall be allowed. The default, if time is not
given, shall be 02:00: 00.

Whenever dime(), strftime (), mktime(), or localtime() is called, the time zone
names contained in the external variable tzname shall be set as if the tzset() func¬
tion had been called.

Applications are explicitly allowed to change TZ and have the changed TZ apply
to themselves.

offset

rule

8.1 Referenced C Language Routines 153

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

8.1.2 Extensions to setlocalei) Function

Function: setlocale()

8.1.2.1 Synopsis

♦include <locale.h>

char *setlocale (int category, const char * locale) ;

8.1.2.2 Description

The setlocale() function sets, changes, or queries the locale of the process accord- |
ing to the values of the category and the locale arguments. The possible values for |
category include: |

LC_CTYPE |
LC_COLLATE |
LC_TIME
LC_NUMERIC |
LC_MONETARY
Implementation-defined additional categories |

For POSIX.l systems, environment variables are defined that correspond to the |
named categories above and that have the same spelling. |

The value LC_ALL for category names all of the categories of the locale of the pro- |
cess; LC_ALL is a special constant, not a category. There is an environment vari- |
able LC_ALL with the semantics noted below. |

The locale argument is a pointer to a character string that can be an explicit |
string, a NULL pointer, or a null string.

When locale is an explicit string, the contents of the string are implementation |
defined except for the value "C". The value "C" for locale specifies the minimal |
environment for C-language translation. If setlocale() is not invoked, the "C" |
locale shall be the locale of the process. The locale name "posix" shall be recog- |

nized. It shall provide the same semantics as the C locale for those functions |
defined within this part of ISO/IEC 9945 or by the C Standard {2}. Extensions or |
refinements to the POSIX locale beyond those provided by the C locale may be |
included in future revisions, and other parts of ISO/IEC 9945 are expected to add |
to the requirements of the POSIX locale.

When locale is a NULL pointer the locale of the process is queried according to the |
value of category. The content of the string returned is unspecified. |

When locale is a null string, the setlocaleO function takes the name of the new |
locale for the specified category from the environment as determined by the first |
condition met below: I

(1) If LC_ALL is defined in the environment and is not null, the value of |
LC_ALL is used. |

(2) If there is a variable defined in the environment with the same name as |
the category and that is not null, the value specified by that environment |
variable is used.

154 8 Language-Specific Services for the C Programming Language

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

(3) If LANG is defined in the environment and is not null, the value of LANG
is used.

If the resulting value is a supported locale, setlocale() sets the specified category
of the locale of the process to that value and returns the value specified below. If
the value does not name a supported locale (and is not null), setlocalei) returns a
NULL pointer, and the locale of the process is not changed by this function call. If
no nonnull environment variable is present to supply a value, it is implementa¬
tion defined whether setlocalei) sets the specified category of the locale of the pro¬
cess to a systemwide default value or to "C" or to "posix". The possible actual
values of the environment variables are implementation defined and should
appear in the system documentation.

Setting all of the categories of the locale of the process is similar to successively
setting each individual category of the locale of the process, except that all error
checking is done before any actions are performed. To set all the categories of the
locale of the process, setlocalei) is invoked as:

setlocale (LC_ALL,

In this case, setlocalei) first verifies that the values of all the environment vari¬
ables it needs according to the precedence above indicate supported locales. If the
value of any of these environment-variable searches yields a locale that is not sup¬
ported (and nonnull), the setlocale() function returns a NULL pointer and the
locale of the process is not changed. If all environment variables name supported
locales, setlocalei) then proceeds as if it had been called for each category, using
the appropriate value from the associated environment variable or from the
implementation-defined default if there is no such value.

8.1.2.3 Returns

A successful call to setlocale() returns a string that corresponds to the locale set.
The string returned is such that “a subsequent call with that string and its associ¬
ated category will restore that part of the process’s locale” (C Standard {2}). The
string returned shall not be modified by the process, but may be overwritten by a
subsequent call to the setlocale() function. This string is not required to be the
value of the environment variable used, if one was used.

8.2 C Language Input/Output Functions

This clause describes input/output functions of the C Standard {2} and their
interactions with other functions defined by this part of ISO/IEC 9945.

All functions specified in the C Standard {2} as operating on a file name shall
operate on a pathname. All functions specified in the C Standard {2} as creating a
file shall do so as if they called the creati) function with a value appropriate to the
C language function for the path argument and a value of

S_I RLISR | S_IWUSR| S_IRGRP | S_I WGRP | S_I ROTH | S_I WOTH

for the mode argument.

8.2 C Language Input/Output Functions 155

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

199 The type FILE and the terms file position indicator and stream are those defined |
200 by the C Standard {2}. |

201 A stream is considered local to a single process. After a fork{) call, each of the
202 parent and child have distinct streams that share an open file description.

203 8.2.1 Map a Stream Pointer to a File Descriptor

204 Function: fileno{)

205 8.2.1.1 Synopsis

206 #include <stdio.h>

207 int fileno(FiLE * stream) ;

208 8.2.1.2 Description

209 The filenoO function returns the integer file descriptor associated with the stream
210 (see 5.3.1).

211 The following symbolic values in the <unistd.h> header (see 2.9) define the file
212 descriptors that shall be associated with the C language stdin, stdout, and stderr
213 when the application is started:

214 Name _Description_ Value

215 STDIN_FILENO Standard input value, stdin. 0

216 STDOUT_FILENO Standard output value, stdout. 1

217 STDERR_FILENO Standard error value, stderr. 2

218 At entry to main{), these streams shall be in the same state as if they had just |
219 been opened with fdopen () called with a mode consistent with that required by |
220 the C Standard {2} and the file descriptor described above. j

221 8.2.1.3 Returns

222 See 8.2.1.2. If an error occurs, a value of -1 is returned and errno is set to indi-
223 cate the error.

224 8.2.1.4 Errors

225 This part of ISO/IEC 9945 does not specify any error conditions that are required
226 to be detected for the filenoi) function. Some errors may be detected under condi- |
227 tions that are unspecified by this part of ISO/IEC 9945. |

228 8.2.1.5 Cross-References

229 open (), 5.3.1.

156 8 Language-Specific Services for the C Programming Language

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

230 8.2.2 Open a Stream on a File Descriptor

231 Function: fdopen ()

232 8.2.2.1 Synopsis

233 #include <stdio.h>

234 FILE *fdopen(int fildes, const char Hype);

235 8.2.2.2 Description

236 The fdopen f) routine associates a stream with a file descriptor.

237 The type argument is a character string having one of the following values:

238
239
240
241
242
243

" r " Open for reading.
"w" Open for writing.
" a " Open for writing at end-of-file.
"r+" Open for update (reading and writing).
Mw+" Open for update (reading and writing).
"a+" Open for update (reading and writing) at end-of-file.

244 The meaning of these flags is exactly as specified by the C Standard {2} for
245 fopen (), except that "w" and "w+" do not cause truncation of the file. Additional
246 values for the type argument may be defined by an implementation.

247 The application shall ensure that the mode of the stream is allowed by the mode |
248 of the open file. j

249 The file position indicator associated with the new stream is set to the position
250 indicated by the file offset associated with the file descriptor. The error indicator |
251 and end-of-file indicator for the stream shall be cleared. |

252 |

253 8.2.2.3 Returns

254 If successful, the fdopeni) function returns a pointer to a stream. Otherwise, a
255 NULL pointer is returned and errno is set to indicate the error.

256 8.2.2.4 Errors

257 This part of ISO/IEC 9945 does not specify any error conditions that are required
258 to be detected for the fdopen () function. Some errors may be detected under con- |
259 ditions that are unspecified by this part of ISO/IEC 9945. I

260 8.2.2.5 Cross-References

261 open(), 5.3.1; fopen() [C Standard {2}].

8.2 C Language Input/Output Functions 157

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

ISQ/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

8.2.3 Interactions of Other FILE-Type C Functions

A single open file description can be accessed both through streams and through
file descriptors. Either a file descriptor or a stream will be called a handle on the
open file description to which it refers; an open file description may have several
handles.

Handles can be created or destroyed by user action without affecting the underly¬
ing open file description. Some of the ways to create them include fcntlO, dupO,
fdopenO, filenoO, and forkO (which duplicates existing ones into new processes).
They can be destroyed by at least fclose(), close(), and the exec functions (which
close some file descriptors and destroy streams).

A file descriptor that is never used in an operation that could affect the file offset
[for example readO, write{), or Iseek()] is not considered a handle in this discus¬
sion, but could give rise to one [as a consequence of fdopenO, dup (), or fork 0, for
example]. This exception does include the file descriptor underlying a stream,
whether created with fopenO or fdopenO, as long as it is not used directly by the
application to affect the file offset. [The readO and writeO functions implicitly
affect the file offset; Iseek() explicitly affects it.]

The result of function calls involving any one handle (the active handle) are
defined elsewhere in this part of ISO/IEC 9945, but if two or more handles are
used, and any one of them is a stream, their actions shall be coordinated as
described below. If this is not done, the result is undefined.

A handle that is a stream is considered to be closed when either an fclose() or freo-
penO is executed on it [the result of freopen() is a new stream for this discussion,
which cannot be a handle on the same open file description as its previous value]
or when the process owning that stream terminates with exitO or abortO. A file
descriptor is closed by closeO, jexitO, or by one of the exec functions when
FD_CLOEXEC is set on that file descriptor.

For a handle to become the active handle, the actions below must be performed
between the last other use of the first handle (the current active handle) and the
first other use of the second handle (the future active handle). The second handle
then becomes the active handle. All activity by the application affecting the file
offset on the first handle shall be suspended until it again becomes the active han¬
dle. (If a stream function has as an underlying function that affects the file offset,
the stream function will be considered to affect the file offset. The underlying
functions are described below.)

The handles need not be in the same process for these rules to apply. Note that
after a forkO, two handles exist where one existed before. The application shall
assure that, if both handles will ever be accessed, that they will both be in a state
where the other could become the active handle first. The application shall
prepare for a forkO exactly as if it were a change of active handle. [If the only
action performed by one of the processes is one of the exec functions or _exitO (not
exit()}, the handle is never accessed in that process.]

(1) For the first handle, the first applicable condition below shall apply.
After the actions required below are taken, the handle may be closed if it
is still open.

158 8 Language-Specific Services for the C Programming Language

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

(a) If it is a file descriptor, no action is required.

(b) If the only further action to be performed on any handle to this open
file description is to close it, no action need be taken.

(c) If it is a stream that is unbuffered, no action need be taken.

(d) If it is a stream that is line-buffered and the last character written |
to the stream was a newline [that is, as if a putc(' \ n') was the |
most recent operation on that stream], no action need be taken. |

(e) If it is a stream that is open for writing or append (but not also open
for reading), either an fflushi) shall occur or the stream shall be
closed.

(f) If the stream is open for reading and it is at the end of the file
[feof{) is true], no action need be taken.

(g) If the stream is open with a mode that allows reading and the
underlying open file description refers to a device that is capable of
seeking, either an fflushi) shall occur or the stream shall be closed.

(h) Otherwise, the result is undefined.

(2) For the second handle: if any previous active handle has called a func¬
tion that explicitly changed the file offset, except as required above for
the first handle, the application shall perform an Iseek() or an fseek() (as
appropriate to the type of the handle) to an appropriate location.

(3) If the active handle ceases to be accessible before the requirements on the
first handle above have been met, the state of the open file description
becomes undefined. This might occur, for example, during a forki) or an
_exit().

(4) The exec functions shall be considered to make inaccessible all streams
that are open at the time they are called, independent of what streams or
file descriptors may be available to the new process image.

(5) Implementations shall assure that an application, even one consisting of
several processes, shall yield correct results (no data is lost or duplicated
when writing, all data is written in order, except as requested by seeks)
when the rules above are followed, regardless of the sequence of handles
used. If the rules above are not followed, the result is unspecified. When |
these rules are followed, it is implementation defined whether, and under |
what conditions, all input is seen exactly once.

(6) Each function that operates on a stream is said to have zero or more
underlying functions. This means that the stream function shares cer¬
tain traits with the underlying functions, but does not require that there
be any relation between the implementations of the stream function and
its underlying functions.

(7) Also, in the subclauses below, additional requirements on the standard |
I/O routines, beyond those in the C Standard [2], are given.

8.2 C Language InputADutput Functions 159

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

8.2.3.1 fopen ()

The fopen() function shall allocate a file descriptor as open() does. |

The underlying function is openi).

5.2.3.2 fclose ()

The fclose() function shall perform a close () on the file descriptor that is associ- |
ated with the FILE stream. It shall also mark for update the stjctime and
stjntime fields of the underlying file, if the stream was writable, and if buffered
data had not been written to the file yet.

The underlying functions are write () and close ().

5.2.3.3 freopen ()

The freopen () function has the properties of both fclosei) and fopen (). |

5.2.3.4 /flush i)

The fflushi) function shall mark for update the stjctime and stjntime fields of the |
underlying file if the stream was writable and if buffered data had not been writ¬
ten to the file yet.

The underlying functions are write () and Iseek ().

8.2.3.5 fgetc (), fgets (), fread(), getc (), getchari), gets (), scanfi), fscanfi)

These functions may mark the stjitime field for update. The stjatime field shall
be marked for update by the first successful execution of one of these functions
that returns data not supplied by a prior call to ungetc().

The underlying functions are readi) and Iseek().

8.2.5.6 fputci), fputsOy fwritei), putci), putchari), putsi), printfi),
fprintfi) j

The stjctime and stjntime fields of the file shall be marked for update between
the successful execution of one of these functions and the next successful comple¬
tion of a call to either fflushi) or fclose () on the same stream or a call to exit() or
abort ().

The underlying functions are write () and Iseek ().

If fwritei.) writes greater than zero bytes, but fewer than requested, the error indi- |
cator for the stream shall be set. If the underlying writei) reports an error, errno |
shall not be modified by fwritei), and the error indicator for the stream shall be |
set.

160 8 Language-Specific Services for the C Programming Language

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

382 If the implementation provides the vprintfi) and ufprintfi) functions from the C |
383 Standard {2}, they also shall meet the constraints specified in this part of |
384 ISO/IEC 9945 for (respectively) printfi) and fprintfi). |

385 8.2.3.7 fseekOy rewind O

386 These functions shall mark the stjctime and stjntime fields of the file for update
387 if the stream was writable and if buffered data had not yet been written to the
388 file.

389 The underlying functions are IseekO and write().

390 If the most recent operation, other than ftellO, on a given stream is fflushO, the
391 file offset in the underlying open file description shall be adjusted to reflect the
392 location specified by the fseek ().

393 8.2.3.8 perror()

394 The perror() function shall mark the file associated with the standard error |
395 stream as having been written (stjctime, stjntime marked for update) at some
396 time between its successful completion and exitO, abortO, or the completion of
397 fflush () or fclose () on stderr.

398 8.2.3.9 tmpfile ()

399 The tmpfile() function shall allocate a file descriptor as fopenO does.

400 8.2.3.10 ftellO

401 The underlying function is IseekO. The result of ftellO after an fflushO shall be |
402 the same as the result before the fflushO. If the stream is opened in append mode |
403 or if the 0_APPEND flag is set as a consequence of dealing with other handles on |
404 the file, the result of ftelli) on that stream is unspecified. |

405 8.2.3.11 Error Reporting

406 If any of the functions above return an error indication, the value of errno shall be |
407 set to indicate the error condition. If that error condition is one that this part of |
408 ISO/IEC 9945 specifies to be detected by one of the corresponding underlying func- |
409 tions, the value of errno shall be the same as the value specified for the underly- |
410 ing function. I

411 8.2.3.12 exitOy abortO

412 The exitO function shall have the effect of fclose0 on every open stream, with the
413 properties of fcloseO as described above. The abortO function shall also have
414 these effects if the call to abortO causes process termination, but shall have no |
415 effect on streams otherwise. The C Standard {2} specifies the conditions where |
416 abortO does or does not cause process termination. For the purposes of that |
417 specification, a signal that is blocked shall not be considered caught.

8.2 C Language Input/Output Functions 161

INFORMATION TECHNOLOGY—POSIX
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

418 8.2.4 Operations on Files — the remove^) Function

419 The remove() function shall have the same effect on file times as unlink{).

420 8.3 Other C Language Functions

421 8.3.1 Nonlocal Jumps

422 Functions: sigsetjmp (), siglongjmp ()

423 8.3.1.1 Synopsis

424 #include <setjmp.h>

425 int sigsetjmp (sigjmp_buf env, int savemask) ;

426 void siglongjmp (sigjmp_buf env, int val) ;

427 8.3.1.2 Description

428 The sigsetjmp () macro shall comply with the definition of the setjmp () macro in
429 the C Standard {2}. If the value of the savemask argument is not zero, the sig-
430 setjmp () function shall also save the current signal mask of the process (see 3.3.1)
431 as part of the calling environment.

432 The siglongjmp () function shall comply with the definition of the longjmp () func-
433 tion in the C Standard {2}. If and only if the env argument was initialized by a
434 call to the sigsetjmp () function with a nonzero savemask argument, the
435 siglongjmp() function shall restore the saved signal mask.

436 8.3.1.3 Cross-References

437 sigactionO, 3.3.4; <signal.h>, 3.3.1; sigprocmaskO, 3.3.5; sigsuspendO, 3.3.7.

438 8.3.2 Set Time Zone

439 Function: tzset()

440 8.3.2.1 Synopsis

441 tinclude <time.h>

442 void tzset (void) ;

443 8.3.2.2 Description

444 The tzset() function uses the value of the environment variable TZ to set time
445 conversion information used by localtime(), dime(), strftimei), and mktime(). If
446 TZ is absent from the environment, implementation-defined default time-zone
447 information shall be used.

162 8 Language-Specific Services for the C Programming Language

Part 1: SYSTEM API [C LANGUAGE]

ISO/TEC 9945-1: 1990
EEEE Std 1003.1-1990

448 The tzset() function shall set the external variable tzname:

449 extern char *tzname[2] = {"std", "dst" } ;

450 where std and dst are as described in 8.1.1.

8.3 Other C Language Functions 163

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Section 9: System Databases

9.1 System Databases

The routines described in this section allow an application to access the two sys¬

tem databases that are described below.

The group database contains the following information for each group:

(1) Group name

(2) Numerical group ID

(3) List of all users allowed in the group |

The user database contains the following information for each user:

(1) Username |

(2) Numerical user ID

(3) Numerical group ID

(4) Initial working directory

(5) Initial user program

If the initial user program field is null, the system default is used.

If the initial working directory field is null, the interpretation of that field is

implementation defined.

These databases may contain other fields that are unspecified by this part of |

ISO/IEC 9945. |

9.1 System Databases 165

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

19 9.2 Database Access

20 9.2.1 Group Database Access

21 Functions: getgrgidO, getgrnamO

22 9.2.1.1 Synopsis

23 tinclude <sys/types.h>

24 #include <grp.h>

25 struct group *getgrgid (gid_t gid) ;

26 struct group *getgrnam(const char *name) ;

27 9.2.1.2 Description

28 The getgrgidO and getgrnamO routines both return pointers to an object of type
29 struct group containing an entry from the group database with a matching gid or
30 name. This structure, which is defined in <grp . h>, includes the members shown
31 in Table 9-1.

32 Table 9=1 - group Structure
33 _

34
35

Member
Type

Member
Name

Description

36 char * grjiame The name of the group.
37 gid_t gr_gid The numerical group ID.
38 char ** gr_mem A null-terminated vector of pointers to the individual member names.

39

40 9.2.1.3 Returns

41 A NULL pointer is returned on error or if the requested entry is not found.

42 The return values may point to static data that is overwritten by each call.

43 9.2.1.4 Errors

44 This part of ISO/IEC 9945 does not specify any error conditions that are required

45 to be detected for the getgrgidO or getgrnamO functions. Some errors may be |

46 detected under conditions that are unspecified by this part of ISO/IEC 9945. |

47 9.2.1.5 Cross-References

48 getloginO, 4.2.4.

166 9 System Databases

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

49 9.2.2 User Database Access

50 Functions: getpwuidO, getpwnami.)

51 9.2.2.1 Synopsis

52 tinclude <sys/types.h>

53 tinclude <pwd.h>

54 struct passwd *getpwuid (uid_t uid) ;

55 struct passwd *getpwnam(const char *name) ;

56 9.2.2.2 Description

57 The getpwuid() and getpwnam() functions both return a pointer to an object of
58 type struct passwd containing an entry from the user database with a matching
59 uid or name. This structure, which is defined in <pwd. h>, includes the members
60 shown in Table 9-2.

61 Table 9-2 - passwd Structure
62 _

63 Member Member
Description

64 Type Name

65 char * pw_name User name.
66 uidjt pw_uid User ED number.
67 gidjt pw_gid Group ID number.
68 char * pw_dir Initial Working Directory.
69 char * pwjshell Initial User Program.

70

72 9.2.2.3 Returns

73 A NULL pointer is returned on error or if the requested entry is not found.

74 The return values may point to static data that is overwritten on each call.

75 9.2.2.4 Errors

76 This part of ISO/IEC 9945 does not specify any error conditions that are required

77 to be detected for the getpwuidO or getpwnam() functions. Some errors may be |

78 detected under conditions that are unspecified by this part of ISO/IEC 9945.

79 9.2.2.5 Cross-References

so getlogin (), 4.2.4. I

9.2 Database Access 167

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Section 10: Data Interchange Format

10.1 Archive/Interchange File Format

A conforming system shall provide a mechanism to copy files from a medium to

the file hierarchy and copy files from the file hierarchy to a medium using the

interchange formats described here. This part of ISO/IEC 9945 does not define
this mechanism.

When this mechanism is used to copy files from the medium by a process without

appropriate privileges, the protection information (ownership and access permis¬

sions) shall be set in the same fashion that creat() would when given the mode
argument matching the file permissions supplied by the mode field of the

extended tar format or the cjnode field of the extended cpio format. A process

with appropriate privileges shall restore the ownership and the permissions

exactly as recorded on the medium, except that the symbolic user and group IDs

are used for the tar format, as described in 10.1.1.

The format-creating utility is used to translate from the file system to the formats |

defined in this clause. The format-reading utility is used to translate from the for- |

mats defined in this clause to a file system. The interface to these utilities, |

including their name or names, is implementation defined. |

The headers of these formats are defined to use characters represented in |

ISO/IEC 646 {1}; however, no restrictions are placed on the contents of the files |

themselves. The data in a file may be binary data or text represented in any for¬

mat available to the user. When these formats are used to transfer text at the

source level, all characters shall be represented in ISO/IEC 646 {1} International |

Reference Version (IRV). I

The media format and the frames on the media in which the data appear are |

unspecified by this part of ISO/IEC 9945. I

NOTE: Guidelines are given in Annex B.

10.1.1 Extended tar Format

An extended tar archive tape or file contains a series of blocks. Each block is a

fixed-size block of 512 bytes (see below). Although this format may be thought of

as being stored on 9-track industry-standard 12,7 mm (0,5 in) magnetic tape, |

other types of transportable media are not excluded. Each file archived is

represented by a header block that describes the file, followed by zero or more

blocks that give the contents of the file. At the end of the archive file are two

blocks filled with binary zeroes, interpreted as an end-of-archive indicator.

10.1 Archive/Interchange File Format 169

35

36

37

38

39

40

41

42

43

44

45
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

The blocks may be grouped for physical I/O operations. Each group of n blocks

(where n is set by the application utility creating the archive file) may be written

with a single write() operation. On magnetic tape, the result of this write is a sin¬

gle tape record. The last group of blocks is always at the full size, so blocks after

the two zero blocks contain undefined data.

The header block is structured as shown in Table 10-1. All lengths and offsets are

in decimal.

Table 10-1 - tar Header Block

Field Name Byte Offset Length (in bytes)

name 0 100
mode 100 8

uid 108 8

gid 116 8

size 124 12
mtime 136 12
chksum 148 8
typeflag 156 1
linkname 157 100
magic 257 6

version 263 2
uname 265 32

gname 297 32
devmajor 329 8
devminor 337 8
prefix 345 155

Symbolic constants used in the header block are defined in the header <tar. h>

as follows:

#define TMAGIC "ustar" /* ustar and a null */
#define TMAGLEN 6
#define TVERSION

o

o
 /* 00 and no null */

#define TVERSLEN 2

/* Values used in typeflag field */
#define REGTYPE '0' /* Regular file */
#define AREGTYPE ' \0' /* Regular file */

#define LNKTYPE ' 1' /* Link */

♦define SYMTYPE '2' /* Reserved */
♦define CHRTYPE '3' /* Character special */
♦define BLKTYPE '4' /* Block special */
♦define DIRTYPE ' 5' /* Directory */
♦define FIFOTYPE ' 6' /* FIFO special */

♦define CONTTYPE ' 7' /* Reserved */

/* Bits used in the mode field - values in octa'

♦define TSUID 04 000 /* Set UID on execution

♦define TSGID 02 000 /* Set GID on execution

♦define TSVTX 01000 /* Reserved */

/* File permissions */

170 10 Data Interchange Format

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Part 1: SYSTEM API [C LANGUAGE]
ISO/EEC 9945-1: 1990
IEEE Std 1003.1-1990

#define TUREAD 00 400 /* Read by owner * /
#define TUWRITE 00 200 /* Write by owner */
#define TUEXEC 00 100 /* Execute/Search by owner */
#define TGREAD 00 040 /* Read by group * /
#define TGWRITE 00 020 /* Write by group */
#define TGEXEC 00 010 /* Execute/Search by group */
#define TOREAD 00 004 /* Read by other */

#define TOWRITE 00 002 /* Write by other */

#define TOEXEC 00 001 /* Execute/Search by other */

All characters are represented in the coded character set of ISO/IEC 646 {1}. For |

maximum portability between implementations, names should be selected from

characters represented by the portable filename character set as 8-bit characters

with most significant bit zero. If an implementation supports the use of charac- |

ters outside the portable filename character set in names for files, users, and |

groups, one or more implementation-defined encodings of these characters shall |

be provided for interchange purposes. However, the format-reading utility shall |

never create file names on the local system that cannot be accessed via the func¬

tions described previously in this part of ISO/IEC 9945; see 5.3.1, 5.6.2, 5.2.1,

6.5.2, and 5.1.2. If a file name is found on the medium that would create an

invalid file name, the implementation shall define if the data from the file is

stored on the file hierarchy and under what name it is stored. A format-reading

utility may choose to ignore these files as long as it produces an error indicating

that the file is being ignored.

Each field within the header block is contiguous; that is, there is no padding used.

Each character on the archive medium is stored contiguously.

The fields magic, uname, and gname are null-terminated character strings. The

fields name, linkname, and prefix are null-terminated character strings except

when all characters in the array contain nonnull characters including the last

character. The version field is two bytes containing the characters "00" (zero-

zero). The typeflag contains a single character. All other fields are leading zero-

filled octal numbers using digits from ISO/IEC 646 {1} IRV. Each numeric field is |

terminated by one or more space or null characters.

The name and the prefix fields produce the pathname of the file. The hierarchical

relationship of the file is retained by specifying the pathname as a path prefix,

and a slash character and filename as the suffix. A new pathname is formed, if |

prefix is not an empty string (its first character is not null), by concatenating |

prefix (up to the first null character), a slash character, and name', otherwise, |

name is used alone. In either case, name is terminated at the first null character. |

If prefix is an empty string, it is simply ignored. In this manner, pathnames of at |

most 256 characters can be supported. If a pathname does not fit in the space

provided, the format-creating utility shall notify the user of the error, and no

attempt shall be made by the format-creating utility to store any part of the file—

header or data—on the medium.

The linkname field, described below, does not use the prefix to produce a path¬

name. As such, a linkname is limited to 100 characters. If the name does not fit |

in the space provided, the format-creating utility shall notify the user of the error,

and the utility shall not attempt to store the link on the medium.

10.1 Archive/Interchange File Format 171

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

The mode field provides 9 bits specifying file permissions and 3 bits to specify the
set UID, set GID, and TSVTX modes. Values for these bits were defined previously.
When appropriate privilege is required to set one of these mode bits, and the user
restoring the files from the archive does not have the appropriate privilege, the
mode bits for which the user does not have appropriate privilege shall be ignored.
Some of the mode bits in the archive format are not mentioned elsewhere in this
part of ISO/IEC 9945. If the implementation does not support those bits, they may
be ignored.

The uid and gid fields are the user and group ID of the owner and group of the
file, respectively.

The size field is the size of the file in bytes. If the typeflag field is set to specify a
file to be of type LNKTYPE or SYMTYPE, the size field shall be specified as zero. If
the typeflag field is set to specify a file of type DIRTYPE, the size field is inter¬
preted as described under the definition of that record type. No data blocks are |
stored for LNKTYPE, SYMTYPE, or DIRTYPE. If the typeflag field is set to |
CHRTYPE, BLKTYPE, or FIFOTYPE, the meaning of the size field is unspecified by |
this part of ISO/IEC 9945, and no data blocks are stored on the medium. Addition- |
ally, for FIFOTYPE, the size field shall be ignored when reading. If the typeflag \
field is set to any other value, the number of blocks written following the header
is (size+511)/512, ignoring any fraction in the result of the division.

The mtime field is the modification time of the file at the time it was archived. It
is the ISO/IEC 646 {1} representation of the octal value of the modification time |
obtained from the stat() function.

The chksum field is the ISO/IEC 646 {1} IRV representation of the octal value of |
the simple sum of all bytes in the header block. Each 8-bit byte in the header is
treated as an unsigned value. These values are added to an unsigned integer, ini¬
tialized to zero, the precision of which shall be no less than 17 bits. When calcu¬
lating the checksum, the chksum field is treated as if it were all blanks.

The typeflag field specifies the type of file archived. If a particular implementa¬
tion does not recognize the type, or the user does not have appropriate privilege to
create that type, the file shall be extracted as if it were a regular file if the file
type is defined to have a meaning for the size field that could cause data blocks to
be written on the medium (see the previous description for size). If conversion to
an ordinary file occurs, the format-reading utility shall produce an error indicat¬
ing that the conversion took place. All of the typeflag fields are coded in \
ISO/IEC 646 {1} IRV: I

' 0' Represents a regular file. For backward compatibility, a typeflag |
value of binary zero (' \ 0') should be recognized as meaning a regu¬
lar file when extracting files from the archive. Archives written
with this version of the archive file format shall create regular files
with a typeflag value of ISO/IEC 646 {1} IRV 'O'. \

' 1' Represents a file linked to another file, of any type, previously |
archived. Such files are identified by each file having the same dev¬
ice and file serial number. The linked-to name is specified in the |
linkname field with a null terminator if it is less than 100 bytes in |
length.

172 10 Data Interchange Format

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

' 2' Reserved to represent a link to another file, of any type, whose dev- |
ice or file serial number differs. This is provided for systems that
support linked files whose device or file serial numbers differ, and
should be treated as a type ' 1' file if this extension does not exist.

' 3' , ' 4' Represent character special files and block special files respectively. |
In this case the devmajor and devminor fields shall contain informa- |
tion defining the device, the format of which is unspecified by this |
part of ISO/IEC 9945. Implementations may map the device |
specifications to their own local specification or may ignore the
entry.

' 5' Specifies a directory or subdirectory. On systems where disk alloca- |
tion is performed on a directory basis, the size field shall contain the
maximum number of bytes (which may be rounded to the nearest
disk block allocation unit) that the directory may hold. A size field
of zero indicates no such limiting. Systems that do not support lim¬
iting in this manner should ignore the size field.

' 6' Specifies a FIFO special file. Note that the archiving of a FIFO file |
archives the existence of this file and not its contents.

' 7' Reserved to represent a file to which an implementation has associ- |
ated some high performance attribute. Implementations without
such extensions should treat this file as a regular file (type ' 0').

'A' Z' The letters A through Z are reserved for custom implementations. |

All other values are reserved for specification in future revisions of
this part of ISO/IEC 9945.

The magic field is the specification that this archive was output in this archive
format. If this field contains TMAGIC, the uname and gname fields shall contain
the ISO/IEC 646 {1} IRV representation of the owner and group of the file respec- |
tively (truncated to fit, if necessary). When the file is restored by a privileged,
protection-preserving version of the utility, the password and group files shall be
scanned for these names. If found, the user and group IDs contained within these
files shall be used rather than the values contained within the uid and gid fields.

The encoding of the header is designed to be portable across machines.

10.1.1.1 Cross-References

<grp. h>, 9.2.1; <pwd.h>, 9.2.2; <sys/stat. h>, 5.6.1; stat(), 5.6.2;
<unistd.h>, 2.9.

10.1.2 Extended cpio Format

The byte-oriented cpio archive format is a series of entries, each comprised of a

header that describes the file, the name of the file, and then the contents of the

file.

An archive may be recorded as a series of fixed-size blocks of bytes. This blocking

shall be used only to make physical I/O more efficient. The last group of blocks is

always at the full size.

10.1 Archive/Interchange File Format 173

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

218 For the byte-oriented cpio archive format, the individual entry information must
219 be in the order indicated and described by Table 10-2.

220 Table 10-2 - Byte-Oriented cpio Archive Entry
221 _
222 Header

223 Field Name Length (in bytes) Interpreted as

224 cjnagic 6 Octal number
225 cjdev 6 Octal number
226 cjno 6 Octal number
227 cjnode 6 Octal number
228 cjiid 6 Octal number
229 c_gid 6 Octal number
230 cjilink 6 Octal number
231 cj-dev 6 Octal number
232 cjntime 11 Octal number
233 cnamesize 6 Octal number
234 c _filesize 11 Octal number

235 File Name
236 Field Name Length Interpreted as

237 cjiame cjiamesize Pathname string

238 File Data
239 Field Name Length Interpreted as

240 c Jiledata c Jilesize Data

241

242 10.1.2.1 cpio Header

243 For each file in the archive, a header as defined previously shall be written. The
244 information in the header fields shall be written as streams of ISO/IEC 646 {1} |
245 characters interpreted as octal numbers. The octal numbers are extended to the |
246 necessary length by appending ISO/IEC 646 {1} IRV zeros at the most-significant- |
247 digit end of the number; the result is written to the stream of bytes most-
248 significant-digit first. The fields shall be interpreted as follows:

249 (1) cjnagic shall identify the archive as being a transportable archive by
250 containing the magic bytes as defined by MAGIC (070707).

251

252

253

254

(2) c_dev and c_ino shall contain values that uniquely identify the file within
the archive (i.e., no files shall contain the same pair of cjdeu and c_ino
values unless they are links to the same file). The values shall be deter¬
mined in an unspecified manner.

255 (3) cjnode shall contain the file type and access permissions as defined in
256 Table 10-3.

257 (4) c_uid shall contain the user ID of the owner.

258 (5) c_gid shall contain the group ID of the group.

174 10 Data Interchange Format

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

259

260

Table 10-3 - Values for cpio cjnode Field

261 File Permissions

262 Name Value Indicates

263 c_irusr 000400 Read by owner.
264 C_IWUSR 000 200 Write by owner.
265 CJXUSR 000100 Execute by owner.
266 C_DRGRP 000 040 Read by group.
267 C_IWGRP 000 020 Write by group.
268 C_IXGRP 000 010 Execute by group.
269 CJROTH 000 004 Read by others.
270 C_IWOTH 000 002 Write by others.
271 CJKOTH 000 001 Execute by others.
272 cjsum 004 000 Set uid.

273 CJSGID 002 000 Set gid.

274 C_ISVTX 001000 Reserved.

275 File Type

276 Name Value Indicates

277 CJSDIR 040 000 Directory.
278 C_ISFIFO 010 000 FIFO.
279 C_ISREG 0100 000 Regular file.

280 C_ISBLK 060 000 Block special file.
281 C_ISCHR 020 000 Character special file.

282 C_ISCTG 0110 000 Reserved.
283 C_ISLNK 0120 000 Reserved.
284 C_ISSOCK 0140 000 Reserved.

285

286

287

(6) cjilink shall contain the number of links referencing the file at the time
the archive was created.

288

289

(7) c_rdeu shall contain implementation-defined information for character or
block special files.

290

291

(8) cjntim.e shall contain the latest time of modification of the file at the
time the archive was created.

292

293

(9) cjiamesize shall contain the length of the pathname, including the ter¬
minating null byte.

294

295

(10) c Jilesize shall contain the length of the file in bytes. This is the length of
the data section following the header structure.

296 10.1.2.2 cpio File Name

297 cjiame shall contain the pathname of the file. The length of this field in bytes is
298 the value of cjiamesize. If a file name is found on the medium that would create
299 an invalid pathname, the implementation shall define if the data from the file is
300 stored on the file hierarchy and under what name it is stored.

10.1 Archive/Interchange File Format 175

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

All characters are represented in ISO/IEC 646 {1} IRV. For maximum portability |
between implementations, names should be selected from characters represented |
by the portable filename character set as 8-bit characters most significant bit zero. |
If an implementation supports the use of characters outside the portable filename j
character set in names for files, users, and groups, one or more implementation- |
defined encodings of these characters shall be provided for interchange purposes. |
However, the format-reading utility shall never create file names on the local sys- |
tern that cannot be accessed via the functions described previously in this part of
ISO/IEC 9945; see open(), stat(), chdir(), fcntl(), and opendir(). If a file name is
found on the medium that would create an invalid file name, the implementation
shall define if the data from the file is stored on the local file system and under
what name it is stored. A format-reading utility may choose to ignore these files
as long as it produces an error indicating that the file is being ignored.

10.1.2.3 cpio File Data

Following cjiame, there shall be c Jilesize bytes of data. Interpretation of such
data shall occur in a manner dependent on the file. If c Jilesize is zero, no data
shall be contained in c Jiledata.

10.1.2.4 cpio Special Entries

FIFO special files, directories, and the trailer are recorded with c Jilesize equal to
zero. For other special files, c Jilesize is unspecified by this part of ISO/IEC 9945. |
The header for the next file entry in the archive shall be written directly after the
last byte of the file entry preceding it. A header denoting the file name
“trailer! ! !” shall indicate the end of the archive; the contents of bytes in the
last block of the archive following such a header are undefined.

10.1.2.5 cpio Values

Values needed by the cpio archive format are described in Table 10-3.

C_ISDIR, C_ISFIFO, and C_ISREG shall be supported on a system conforming to
this part of ISO/IEC 9945; additional values defined previously are reserved for
compatibility with existing systems. Additional file types may be supported; how¬
ever, such files should not be written on archives intended for transport to port¬
able systems.

C_ISVTX, C.ISCTG, C_ISLNK, and C_ISSOCK have been reserved by this part of
ISO/IEC 9945 to retain compatibility with some existing implementations.

When restoring from an archive:

(1) If the user does not have the appropriate privilege to create a file of the
specified type, the format-interpreting utility shall ignore the entry and
issue an error to the standard error output.

(2) Only regular files have data to be restored. Presuming a regular file
meets any selection criteria that might be imposed on the format-reading
utility by the user, such data shall be restored.

176 10 Data Interchange Format

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

341 (3) If a user does not have appropriate privilege to set a particular mode flag,
342 the flag shall be ignored. Some of the mode flags in the archive format
343 are not mentioned elsewhere in this part of ISO/IEC 9945. If the imple-
344 mentation does not support those flags, they may be ignored.

345 10.1.2.6 Cross-References

346 <grp.h>, 9.2.1; <pwd.h>, 9.2.2; <sys/stat.h>, 5.6.1; chmod(), 5.6.4; link(),
347 5.3.4; mkdirO, 5.4.1; read{), 6.4.1; stat(), 5.6.2.

348 10.1.3 Multiple Volumes

349 It shall be possible for data represented by the Archive/Interchange File Format
350 to reside in more than one file.

351 The format is considered a stream of bytes. An end-of-file (or equivalently an
352 end-of-media) condition may occur between any two bytes of the logical byte
353 stream. If this condition occurs, the byte following the end-of-file will be the first
354 byte on the next file. The format-reading utility shall, in an implementation-
355 defined manner, determine what file to read as the next file.

10.1 Archive/Interchange File Format 177

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Annex A

(informative)

Bibliography

1 This Annex contains lists of related open systems standards and suggested read-
2 ing on historical implementations and application programming.

3 A1 Related Open Systems Standards

4 A.1.1 Networking Standards

5

6

{Bl} ISO 7498: 1984, Information processing systems—Open Systems
connection—Basic Reference Model.1}

Inter-

7

8

{B2} ISO 8072: 1986, Information processing systems—Open Systems
connection—Transport service definition.

Inter-

9

10

{B3} ISO/IEC 8073: 1988, Information processing systems—Open Systems
connection—Connection oriented transport protocol specification.2)

Inter-

11

12

{B4} ISO 8326: 1987, Information processing systems—Open Systems
connection—Basic connection oriented session service definition.

Inter-

13

14

{B5} ISO 8327: 1987, Information processing systems—Open Systems
connection—Basic connection oriented session protocol definition.

Inter-

15

16

{B6} ISO 8348: 1987, Information processing systems—Data communications—
Network service definition.

17

18

{B7} ISO 8473: 1988, Information processing systems—Data communications—
Protocol for providing the connectionless-mode network service.

19

20

(B8) ISO 8571: 1988, Information processing systems—Open Systems
connection—File Transfer, Access and Management.

Inter-

21 1) ISO documents can be obtained from the ISO office, 1, rue de Varembe, Case Postale 56, CH-1211,
22 Geneve 20, Switzerland/Suisse.

23 2) IEC documents can be obtained from the IEC office, 3, rue de Varembe, Case Postale 131, CH-
24 1211, Genfeve 20, Switzerland/Suisse.

A.l Related Open Systems Standards 179

ISO/EEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

25 [B9]
26

27 [B10]
28

29

30 [Bll]
31

32 [B12]
33

34

35

36 [B13]
37

38

39 [B14]
40

41

42 [B15]
43

44 (B16)
45

46 [B17]
47

48 [B18]
49

50

51 [B19]
52

53

54

55 [B20]
56

57

ISO 8649: 1988, Information processing systems—Open Systems Inter¬
connection—Service definition for the Association Control Service Element.

ISO 8650: 1988, Information processing systems—Open Systems Inter¬
connection—Protocol specification for the Association Control Service Ele¬
ment.

ISO 8802-2: 1989 [IEEE Std 802.2-1989 (ANSI)], Information processing
systems—Local area networks—Part 2: Logical link control.

ISO 8802-3: 1989 [IEEE Std 802.3-1988 (ANSI)], Information processing
systems—Local area networks—Part 3: Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer
specifications.

ISO/IEC 8802-4: 1990 [IEEE Std 802.4-1990 (ANSI)], Information
technology-—Local area networks—Part 4: Token-passing bus access method
and physical layer specifications.

ISO 8802-5: ... (IEEE 802.5-1989), Information technology—Local area
networks—Part 5: Token ring access method and physical layer
specifications.

ISO 8822: 1988, Information processing systems—Open Systems Inter¬
connection—Connection oriented presentation service definition.

ISO 8823: 1988, Information processing systems—Open Systems Inter¬
connection—Connection oriented presentation protocol specification.

ISO 8831: 1989, Information processing systems—Open Systems Inter¬
connection—Job transfer and manipulation concepts and services.

ISO 8832: 1989, Information processing systems—Open Systems Inter¬
connection-—Specification of the basic class protocol for job transfer and
manipulation.

CCITT Recommendation X.25, Interface between data terminal equipment
(DTE) and data circuit-terminating equipment (DCT) for terminals operating
in the packet mode and connected to public data networks by dedicated cir¬
cuit.3)

CCITT Recommendation X.212, Information processing systems—Data
communication—Data link service definition for Open Systems Interconnec¬
tion.

58 3) CCITT documents can be obtained from the CCITT General Secretariat, International
59 Telecommunications Union, Sales Section, Place des Nations, CH-1211, Geneve 20,
60 Switzerland/Suisse.

180 A Bibliography

ISO/IEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

61 A.1.2 Language Standards

62 {B21} ISO 1539: 1980, Programming languages—FORTRAN.

63 {B22} ISO 1989: 1985, Programming Languages—COBOL.

64 {B23} ISO 8652: 1987, Programming Languages—Ada.

65 {B24} ANSI X3.113-19874), Information systems—Programming language—FULL
66 BASIC.

67 {B25} ANSI/IEEE 770X3.97-1983, Standard Pascal Computer Programming
68 Language.

69 {B26} ANSI/MDC XI 1.1-1984, Programming Language MUMPS.

70 A. 1.3 Graphics Standards

71 {B27} ISO 7942: 1985, Information processing systems—Computer graphics—
72 Graphical Kernel System (GKS) functional description.

73 {B28} ISO 8632: 1987, Information processing systems—Computer graphics—
74 Metafile for the storage and transfer of picture description information.

75 {B29} ISO/IEC 9592: 1989 (ANSI X3.144-1988), Information processing systems—
76 Computer graphics—Programmer’s hierarchical interactive graphics system
77 (PHIGS).

78 A. 1.4 Database Standards

79 {B30} ISO 8907: 1987, Database Language—NDL.

so {B31} ISO 9075: 1987, Database Language—SQL.

si A.2 Other Standards

82 {B32} ISO 639: 1988, Code for the representation of names of languages.

83 {B33} ISO 3166: 1988, Code for the representation of names of countries.

84 {B34} ISO 8859-1: 1987, Information Processing—8-bit single-byte coded graphic
85 character sets—-Part 1: Latin alphabet No. 1.

86 {B35} ISO 9127: 1988, Information processing systems—User documentation and
87 cover information for consumer software packages.

88 {B36} ISO/IEC 9945-2: ... ,5) Information technology—Portable operating system
89 interface (POSIX)—Part 2: Shell and utilities.

90 4) ANSI documents can be obtained from the Sales Department, American National Standards
91 Institute, 1430 Broadway, New York, NY 10018.

92 5) To be approved and published.

A.2 Other Standards 181

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

{B37} ISO/IEC 10646: ... ,6) Information processing—Multiple octet coded charac¬
ter set.

{B38} IEEE Std 100-1988, IEEE Standard Dictionary of Electrical and Electronics
Terms.

A.3 Historical Documentation and Introductory Texts

{B39} American Telephone and Telegraph Company. System V Interface
Definition (SVID), Issues 2 and 3. Morristown, NJ: UNIX Press, 1986,
1989.7)

{B40} American Telephone and Telegraph Company. UNIX System III
Programmer’s Manual. Greensboro, NC: Western Electric Company,
October 1981.

{B41} American Telephone and Telegraph Company. UNIX Time Sharing System:
UNIX Programmer’s Manual. 7th ed. Murray Hill, NJ: Bell Telephone
Laboratories, January 1979.

{B42} “The UNIX System.”8) AT&T Bell Laboratories Technical Journal, vol. 63 (8
Part 2), October 1984.

{B43} “UNIX Time-Sharing System.”9) Bell System Technical Journal, vol. 57 (6
Part 2), July-August 1978.

{B44} Bach, Maurice J. The Design of the UNIX Operating System. Englewood
Cliffs, NJ: Prentice-Hall, 1987.

{B45} Harbison, Samuel P. and Steele, Guy L. C: A Reference Manual. Engle¬
wood Cliffs, NJ: Prentice-Hall, 1987.

{B46} Kernighan, Brian W. and Ritchie, Dennis M. The C Programming
Language. Englewood Cliffs, NJ: Prentice-Hall, 1978.

{B47} Kernighan, Brian W. and Pike, Rob. The UNIX Programming Environment.
Englewood Cliffs, NJ: Prentice-Hall, 1984.

{B48} Leffler, Samuel J., McKusick, Marshall Kirk, Karels, Michael J., Quarter-
man, John S., and Stettner, Armando. The Design and Implementation of
the 4.3BSD UNIX Operating System. Reading, MA: Addison-Wesley, 1988.

{B49} McGilton, Henry and Morgan, Rachel. Introducing the UNIX System. New
York: McGraw-Hill (BYTE Books), 1983.

124

125
126
127

128

129

6) To be approved and published.

7) This is one of several documents that represent an industry specification in an area related to
POSIX.1. The creators of such documents may be able to identify newer versions that may be
interesting.

8) This entire edition is devoted to the UNIX system.

9) This entire edition is devoted to the UNIX time-sharing system.

182 A Bibliography

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

ISO/IEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

{B50} Organick, Elliot I. The Multics System: An Examination of Its Structure.
Cambridge, MA: The MIT Press, 1972.

{B51} Quarterman, John S., Silberschatz, Abraham, and Peterson, James L.
“4.2BSD and 4.3BSD as Examples of the UNIX System.” ACM Computing
Surveys, vol. 17 (4), December 1985, pp. 379-418.

{B52} Ritchie, Dennis M. “Reflections on Software Research.” Communications
of the ACM. vol. 27 (8), August 1984, pp. 758-760. ACM Turing Award Lec¬
ture.

{B53} Ritchie, Dennis. “The Evolution of the UNIX Time-Sharing System.” AT&T
Bell Laboratories Technical Journal, vol. 63 (8), October 1984, pp.
1577-1593.

{B54} Ritchie, D. M. and Thompson, K. “The UNIX Time-Sharing System.” Com¬
munications of the ACM. vol. 7 (7), July 1974, pp. 365-375. This is the ori¬
ginal paper, which describes Version 6.

{B55} Ritchie, D. M. and Thompson, K. “The UNIX Time-Sharing System.” Bell
System Technical Journal, vol. 57 (6 Part 2), July-August 1978, pp.
1905-1929. This is a revised version and describes Version 7.

{B56} Ritchie, Dennis M. “Unix: A Dialectic.” Winter 1987 USENIX Association
Conference Proceedings, Washington, D.C., pp. 29-34. Berkeley, CA:
USENIX Association, January 1987.

{B57} Rochkind, Marc J. Advanced UNIX Programming. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

{B58} University of California at Berkeley—Computer Science Research Group.
4.3 Berkeley Software Distribution, Virtual VAX-11 Version. Berkeley, CA:
The Regents of the University of California, April 1986.

{B59} /usr/group Standards Committee. 1984 /usr/group Standard. Santa
Clara, CA: UniForum, 1984.

{B60} X/Open Company, Ltd. X/Open Portability Guide, Issue 2. Amsterdam:
Elsevier Science Publishers, 1987.

{B61} X/Open Company, Ltd. X/Open Portability Guide, Issue 3. Englewood
Cliffs, NJ: Prentice-Hall, 1989.

A.3 Historical Documentation and Introductory Texts 183

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26
27

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

Annex B
(informative)

Rationale and Notes

The Annex is being published as an informative part of POSIX.l to assist in the |
process of review. It contains historical information concerning the contents of
POSIX.1 and why features were included or discarded. It also contains notes of |
interest to application programmers on recommended programming practices,
emphasizing the consequences of some aspects of POSIX.l that may not be
immediately apparent.1)

B.l Scope and Normative References

B.1.1 Scope

This Rationale focuses primarily on additions, clarifications, and changes made to
the UNIX system, from which POSIX.l was derived. It is not a rationale for the |
UNIX system as a whole, since the goal of POSIX.l’s developers was to codify exist- |
ing practice, not design a new operating system. No attempt is made in this |
Rationale to defend the pre-existing structure of UNIX systems. It is primarily
deviations from existing practice, as codified in the base documents, that are
explained or justified here.

Material that is “outside the scope” or otherwise not addressed by this part of
ISO/IEC 9945 is implicitly “unspecified.” It may be included in an implementa- |
tion, and thus the implementation does provide a specification for it. The term |
“implementation-defined” has a specific meaning in POSIX.1 and is not a synonym |
for “defined (or specified) by the implementation.”

The Rationale discusses some UNIX system features that were not adopted into
POSIX.1. Many of these are features that are popular in some UNIX system imple¬
mentations, so that a user of those implementations might question why they do
not appear in POSIX.l. This Rationale should provide the appropriate answers.

1) The material in this annex is derived in part from copyrighted draft documents developed under
the sponsorship of UniForum, as part of an ongoing program of that association to support the
POSIX standards program efforts.

B.l Scope and Normative References 185

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

There are choices allowed by POSIX. 1 for some details of the interface
specification; some of these are specifiable optional subsets of POSIX.1. See B.2.9. |

Although the services POSEX.l provides have been defined in the C language, the
concept of providing fundamental, standardized services should not be restricted
only to programs of a particular programming language. The possibility of imple¬
menting interfaces in alternate programming languages inspired the term |
POSIX.1 with the C Language Binding. The word Binding refers to the binding of |
a conceptual set of services and a standardized C interface that establishes rules
and syntax for accessing them. Future international standards are expected to |
separate the C language binding from the language-independent services of |
POSIX.1 and to include bindings for other programming languages. |

The C Standard {2} will be the basis for functional definitions of core services that |
are independent of programming languages. POSIX.1 as it stands now can be
thought of as a C Language Binding. Sections 1 through 7, and 9, correspond |
roughly to the C language implementation of what will be defined in the program¬
ming language-independent core services portion of POSIX.1; Section 8 |
corresponds to the C language-specific portion. |

The criteria used to choose the programming language-independent core services
may be different from those expected. The core services represent services that
are common to those programming languages likely to form language bindings to
POSIX.1—the greatest common denominator. They are not chosen to reflect the
most important system services of an ideal operating system. For this reason,
some fundamental system services are not included in the language-independent |
core. As an example, memory management routines would at first seem to be a |
core service—they are an absolutely fundamental system service. They must,
however, be included in language-specific portions of POSIX.1 because program¬
ming languages such as FORTRAN have traditionally not provided memory
management. Categorizing memory management as a core service would impose
unreasonable requirements for FORTRAN implementations.

Any programming language traditionally supporting memory management should
include those routines in the language-dependent portions of their bindings.
Work will be done at a later time to standardize the classes of functions that must
be included in the language-dependent portions of language bindings if those
functions have been traditionally implemented for that language. This will
ensure that certain classes of critical functions, such as memory management,
will not be excluded from any applicable language binding; see B.l.3.3.

POSIX.1 is not a tutorial on the use of the specified interface, nor is this Rationale.
However, the Rationale includes some references to well-regarded historical docu¬
mentation on the UNIX System in A.3.

B.l.1.1 POSIX.1 and the C Standard

Some C language functions and definitions were handled by POSIX.1, but most
were handled by the C Standard {2}. The general guideline is that POSIX.1 |
retained responsibility for operating-system specific functions, while the |
C Standard {2} defined C library functions. See also B.2.7 and B.8.

186 B Rationale and Notes

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

There are several areas in which the two standards differ philosophically:

(1) Function parameter type lists. These appear in the syntax of the
C Standard {2}. In this version of POSIX.l, the parameter lists were res¬
tated in terms of these function prototypes. There were two major rea¬
sons for making this change from IEEE Std 1003.1-1988: the use of the
C Standard {2} was rapidly becoming more widespread, and implemen¬
tors were experiencing difficulties with some of the function prototypes
where guidance was not provided in POSIX.l. (The modifier const pro¬
vided the most difficulty.) Specific guidance and permission remains in
POSIX.l for translation to common-usage C.

(2) Single vs. multiple processes. The C Standard {2} specifies a language
that can be used on single-process operating systems and as a freestand¬
ing base for the implementation of operating systems or other stand¬
alone programs. However, the POSIX.l interface is that of a multiprocess
timesharing system. Thus, POSIX.l has to take multiple processes into
account in places where the C Standard {2} does not mention processes at
all, such as kill(). See also B.l.3.1.1.

(3) Single vs. multiple operating system environments. The C Standard {2}
specifies a language that may be useful on more than one operating sys¬
tem and thus has means of tailoring itself to the particular current
environment. POSIX.l is an operating system interface specification and
thus by definition is only concerned with one operating system environ¬
ment, even though it has been carefully written to be broadly implement-
able (see Broadly Implementable in the Introduction) in terms of various
underlying operating systems. See also B.l.3.1.1.

(4) Translation vs. execution environment. POSIX.l is primarily concerned
with the C Standard {2) execution environment, leaving the translation
environment to the C Standard {2}. See also B.l.3.1.1.

(5) Hosted vs. freestanding implementations. All POSIX.l implementations
are hosted in the sense of the C Standard {2}. See also the remarks on
conformance in the Introduction.

(6) Text vs. binary file modes. The C Standard {2} defines text and binary
modes for a file. But the POSIX.1 interface and historical implementa¬
tions related to it make no such distinction, and all functions defined by
POSIX.l treat files as if these modes were identical. (It should not be
stated that POSIX.1 files are either text or binary.) The definitions in the
C Standard {2} were written so that this interpretation is possible. In
particular, text mode files are not required to end with a line separator,
which also means that they are not required to include a line separator
at all.

Furthermore, there is a basic difference in approach between the Rationale
accompanying the C Standard {2} and this Rationale Annex. The C Standard {2}
Rationale, a separate document, addresses almost all changes as differences from
the Base Documents of the C Standard {2}, usually either Kernighan and Ritchie
{B46} or the 1984 /usr/group Standard {B59}. This Rationale cannot do that,
since there are many more variants of (and Base Documents for) the operating
system interface than for the C language. The most noticeable aspect of this

B.l Scope and Normative References 187

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

119 difference is that the C Standard {2} Rationale identifies “QUIET CHANGES” from |
120 the Base Documents. This Annex cannot include such markings, since a quiet |
121 change from one historical implementation may correspond exactly to another his-
122 torical implementation, and may be very noticeable to an application written for
123 yet another.

124 The following subclauses justify the inclusion or omission of various C language |
125 functions in POSIX. 1 or the C Standard {2}. |

126 B.l.1.1.1 Solely by POSIX.1

127 These return parameters from the operating system environment: ctermidO, \
128 tty name {), and isattyi).

129 The fileno() and fdopen () functions map between C language stream pointers and
130 POSIX.1 file descriptors.

131 B.l.1.1.2 Solely by the C Standard |

132 There are many functions that are useful with the operating system interface and
133 are required for conformance with POSIX.1, but that are properly part of the
134 C Language. These are listed in 8.1, which also notes which functions are defined
135 by both POSIX.1 and the C Standard {2}. Certain terms defined by the C Standard |
136 {2} are incorporated by POSIX.1 in 2.7. j

137 Some routines were considered too specialized to be included in POSIX.1. These |
138 include bsearch () and qsorti). |

139 B.l.1.1.3 By Neither POSIX.1 Nor the C Standard j

140 Some functions were considered of marginal utility and problematical when inter-
141 national character sets were considered: _toupper{), _tolower(), toasciiO, and
142 isascii ().

143 Although malloci) and free() are in the C Standard {2} and are required by 8.1 of
144 POSIX.1, neither brk{) nor sbrk() occur in either standard (although they were in
145 the 1984 /usr/group Standard {B59}), because POSIX.1 is designed to provide the
146 basic set of functions required to write a Conforming POSIX.1 Application; the
147 underlying implementation of malloci) or free() is not an appropriate concern for
148 POSIX.1.

149 B.l.1.1.4 Base by POSIX.1, Additions by the C Standard |

150 Since the C Standard {2} does not depend on POSIX.1 in any way, there are no
151 items in this category.

152 B.l.1.1.5 Base by the C Standard, Additions by POSIX.1 |

153 The C Standard {2} has to define errno if only because examining that variable |
154 offers the only way to determine when some mathematics routines fail. But
155 POSIX.1 uses it more extensively and adds some semantics to it in 2.4, which also
156 defines some values for it.

157 Many numerical limits used by the C Standard {2} were incorporated by POSIX.1 |
158 in 2.8, and some new ones were added, all to be found in the header <limit s . h>.

188 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

159 The C Standard {2} provides signal^), a minimal functionality for interrupts. The |
160 POSIX.l definition replaces this with an elaborate mechanism that deals with |
161 multiple processes and is reliable when signals come from outside sources.

162 The time() function is used by the C Standard {2}, but POSIX.l further specifies |
163 the time value.

164 The getenui) function is referenced in 2.6 and 3.1.2 and is also defined by the |
165 C Standard {2}. |

166 The rename () function is extended to further specify its behavior when the new
167 filename already exists or either argument refers to a directory.

168 The setlocale() function and the handling of time zones were further specified to |
169 take advantage of the POSIX environment. |

170 The standard-I/O functions were specified in terms of their relationship to file |
171 descriptors and the relationship between multiple processes. |

172 B.l. 1.1.6 Related Functions by Both

173 The C Standard {2} definition of compliance and the POSIX.l definition of confor- \
174 mance are similar, although the latter notes certain potential hardware
175 limitations.

176 POSIX.1 defined a portable filename character set in 2.2.2 that is like the |
177 C Standard {2} identifier character set. However, POSIX.l did not allow upper- |
178 and lowercase characters to be considered equivalent. See filename portability in
179 2.3.4.

iso The exit() function is defined only by the C Standard {2} because it refers to clos- |
181 ing streams, and that subject, as well as fclose() itself, is defined almost entirely |
182 by the C Standard {2}. But POSIX.l defined _exit(), which also adds semantics to |
183 exit(). This allows POSIX.1 to omit references to the C Standard {2} atexit() |
184 function.

185 POSIX.1 defined kill(), while the C Standard {2} defined raise(), which is similar |
186 except that it does not have a process ID argument, since the language defined by |
187 the C Standard {2} does not incorporate the idea of multiple processes.

188 The new functions sigsetjmp() and siglongjmpi) were added to provide similar
189 functions to the C Standard {2} setjmpi) and longjmpO that additionally save and |
190 restore signal state.

191 B.1.2 Normative References I

192 There is no additional rationale provided for this subclause.

B.l Scope and Normative References 189

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

193 B.1.3 Conformance

194 These conformance definitions are descended from those of conforming implemen- \
195 tation, conforming application, and conforming portable application of early |
196 drafts, but were changed to clarify |

197 (1) Extensions, options, and limits;

198 (2) Relations among the three terms, and;

199 (3) Relations between POSIX.l and the C Standard {2}.

200 B.1.3.1 Implementation Conformance

201 These definitions allow application developers to know what to depend on in an
202 implementation.

203 There is no definition of a strictly conforming implementation; that would be an
204 implementation that provides only those facilities specified by POSIX.1 with no
205 extensions whatsoever. This is because no actual operating system implementa-
206 tion can exist without system administration and initialization facilities that are
207 beyond the scope of POSIX.l.

208 B.1.3.1.1 Requirements

209 The word “support” is used, rather than “provide,” in order to allow an implemen-
210 tation that has no resident software development facilities, but that supports the
211 execution of a Strictly Conforming POSIX.l Application, to be a conforming imple-
212 mentation. See also B.1.1.1.

213 B.1.3.1.2 Documentation

214 The conforming documentation is required to use the same numbering scheme as
215 POSIX.l for purposes of cross referencing. This requirement is consistent with
216 and supplements the verification test assertions being developed by other POSIX |
217 groups. All options that an implementation chooses shall be reflected in
218 climits . h> and <unistd. h>.

219 Note that the use of “may” in terms of where conformance documents record |
220 where implementations may vary implies that it is not required to describe those |
221 features identified as undefined or unspecified.

222 Other aspects of systems must be evaluated by purchasers for suitability. Many
223 systems incorporate buffering facilities, maintaining updated data in volatile
224 storage and transferring such updates to nonvolatile storage asynchronously.
225 Various exception conditions, such as a power failure or a system crash, can cause
226 this data to be lost. The data may be associated with a file that is still open, with
227 one that has been closed, with a directory, or with any other internal system data
228 structures associated with permanent storage. This data can be lost, in whole or
229 part, so that only careful inspection of file contents could determine that an
230 update did not occur.

231 Also, interrelated file activities, where multiple files and/or directories are
232 updated, or where space is allocated or released in the file system structures, can
233 leave inconsistencies in the relationship between data in the various files and

190 B Rationale and Notes

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

directories, or in the file system itself. Such inconsistencies can break applica¬
tions that expect updates to occur in a specific sequence, so that updates in one
place correspond with related updates in another place.

For example, if a user creates a file, places information in the file, and then
records this action in another file, a system or power failure at this point followed
by restart may result in a state in which the record of the action is permanently
recorded, but the file created (or some of its information) has been lost. The
consequences of this to the user may be undesirable. For a user on such a system,
the only safe action may be to require the system administrator to have a policy
that requires, after any system or power failure, that the entire file system must
be restored from the most recent backup copy (causing all intervening work to be
lost).

The characteristics of each implementation will vary in this respect and may or
may not meet the requirements of a given application or user. Enforcement of
such requirements is beyond the scope of POSIX.l. It is up to the purchaser to
determine what facilities are provided in an implementation that affect the expo¬
sure to possible data or sequence loss and also what underlying implementation
techniques and/or facilities are provided that reduce or limit such loss or its
consequences.

B.l.3.1.3 Conforming Implementation Options

Within POSIX.1 there are some symbolic constants that, if defined, indicate that a
certain option is enabled. Other symbolic constants exist in POSIX.l for other rea¬
sons. This clause helps clarify which constants are related to true “options” and |
which are related more to the behavior of differing systems.

To accommodate historical implementations where there were distinct semantics
in certain situations, but where one was not clearly better or worse than another,
early drafts of POSIX.1 permitted either of (typically) two options using “may.” At
the request of the working group developing test assertions, this was changed to |
be specified by formal options with flags. It quickly became obvious that these
would be treated as options that could be selected by a purchaser, when the intent
of the developers of POSIX.1 was to allow either behavior (or both, in some cases) |
to conform to the standard, and to constrain the application to accommodate
either. Thus, these options were removed and the phrase “An implementation
may either” introduced to replace the option. Where this phrase is used, it indi¬
cates that an application shall tolerate either behavior.

It is intended that all conforming applications shall tolerate either behavior and |
that only in the most exceptional of circumstances (driven by technical need)
should a purchaser specify only one behavior. Backwards compatibility is not con¬
sidered exceptional, as this is not consistent with the intent of POSIX.1: to pro¬
mote the portability of applications (and the development of portable
applications).

An application can tolerate these behaviors either by ignoring the differences (if
they are irrelevant to the application) or by taking an action to assure a known
state. It might be that that action would be redundant on some implementations.

Validation programs, which are applications in this sense, could either report the
actual result found or simply ignore the difference. In no case should either

B.l Scope and Normative References 191

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

280 acceptable behavior be treated as an error. This may complicate the validation
281 slightly, but is more consistent with the intent of this permissible variation in
282 behavior.

283 In certain circumstances, the behavior may vary for a given process. For exam-
284 pie, in the presence of networked file systems, whether or not dot and dot-dot are
285 present in the directory may vary with the directory being searched, and the pro-
286 gram would only be portable if it tolerated, but did not require, the presence of
287 these entries in a directory.

288 In situations like this, it is typically easier to simply ignore dot and dot-dot if they
289 are found than to try to determine if they should be expected or not.

290 B. 1.3.2 Application Conformance

291 These definitions guide users or adaptors of applications in determining on which
292 implementations an application will run and how much adaptation would be
293 required to make it run on others. These three definitions are modeled after
294 related ones in the C Standard {2}.

295 POSIX. 1 occasionally uses the expressions portable application or conforming
296 application. As they are used, these are synonyms for any of these three terms.
297 The differences between the three classes of application conformance relate to the
298 requirements for other standards, or, in the case of the Conforming POSIX. 1 Appli-
299 cation Using Extensions, to implementation extensions. When one of the less
300 explicit expressions is used, it should be apparent from the context of the discus-
301 sion which of the more explicit names is appropriate.

302 B.l.3.2.1 Strictly Conforming POSIX.1 Application

303 This definition is analogous to that of a C Standard {2} conforming program.

304 The major difference between a Strictly Conforming POSIX.1 Application and a
305 C Standard {2} strictly conforming program is that the latter is not allowed to use
306 features of POSIX.1 that are not in the C Standard {2}.

307 B.l.3.2.2 Conforming POSIX.1 Application

308 Examples of <National Bodies> include ANSI, BSI, and AFNOR.

309 B.l.3.2.3 Conforming POSIX.1 Application Using Extensions

310 Due to possible requirements for configuration or implementation characteristics
311 in excess of the specifications in 2.8 or related to the hardware (such as array size
312 or file space), not every Conforming POSIX.1 Application Using Extensions will
313 run on every conforming implementation.

314 B.1.3.3 Language-Dependent Services for the C Programming Language

315 POSIX.1 is, for historical reasons, both a specification of an operating system
316 interface and a C binding for that specification. It is clear that these need to be
317 separated into unique entities, but the urgency of getting the initial standard out,
318 and the fact that C is the de facto primary language on systems similar to the

192 B Rationale and Notes

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

UNIX system, makes this a necessary and workable situation.

Nevertheless, work will be done on language bindings, beyond that for C before
the specification and the current binding are separated. Language bindings for
languages other than C should not model themselves too closely on the C binding
and in the process pick up various idiosyncrasies of C.

Where functionality is duplicated in POSIX.1 [e.g., open() and creat()] there is no
reason for that duplication to be carried forward into another language. On the
other hand, some languages have functionality already in them that is essentially
the same as that provided in POSIX.1. In this case, a mapping between the func¬
tionality in that language and the underlying functionality in POSIX.1 is a better
choice than mimicking the C binding.

Since C has no syntax for I/O, and I/O is a large fraction of POSIX.1, the paradigm
of functions has been used. This may not be appropriate to another language.
For example, FORTRAN’S REWIND statement is a candidate to map onto a special
case of Iseek (), and its SEEK statement may completely cover for Iseek (). If this is
the case, there is no reason to provide SUBROUTINES with the same functionality.
In the more general case, file descriptors and FORTRAN’S logical unit numbers
may have a useful mapping. FORTRAN’S ERR= option in I/O operations might
replace returning -1; the whole concept of errors might be handled differently.

As was done with C, it is not unreasonable for other language bindings to specify
some areas that are undefined or unspecified by the underlying language stan¬
dard or that are permissible as extensions. This may, in fact, solve some difficult
problems.

Using as much as possible of the target language in the binding enhances porta¬
bility. If a program wishes to use some POSIX.1 capabilities, and these are bound
to the language statements rather than appearing as additional procedure or
function calls, and the program does in fact conform to the language standard
while using those functions, it will port to a larger range of systems than one that
is obligated to use procedure or function calls introduced specifically for the bind¬
ing to POSIX.1 to do the same thing.

A program that requires the POSIX.1 capabilities that are not bound to the stan¬
dard language directly (as above) has no chance to be portable outside the POSIX.1
environment. It does not matter whether the extension is syntactic or a new func¬
tion; it still will not port without effort. Given this, it seems unreasonable not to
consider language extensions when determining how best to map the functionality
of POSIX.1 into a particular language binding. For example, a new statement
similar to READ, which loads the values from a call like stat(), might be the best
solution for reading the data lists returned as structures in C into a list of FOR¬

TRAN variables.

No attempt to mimic printfO or scanfO (or the rest of the C Standard {2} func- |
tions) should be made; the equivalent functions in the language should be used.
(Formatted READ and WRITE in FORTRAN, read/readln and write/writeln

in Pascal, for example.)

There is an inherent special relationship between an operating system standard
and a language standard. It is unlikely that standards for other kinds of features
(such as graphics) will bind directly to statements in a general purpose language.

B.l Scope and Normative References 193

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

365 However, an operating system standard should provide the services required by a
366 language. This is an unusual situation, and the tendency to use only new func-
367 tions and procedures when creating a binding should be examined carefully. (A
368 one-to-one binding in all cases is probably not possible, but bindings such as those
369 for standard I/O in Section 8 may be possible.)

370 Binding directly to the language, where possible, should be encouraged both by
371 making maximal use of the mapping between the operating system and the
372 language that naturally exists and, where appropriate, by having the languages
373 request changes to the operating system to facilitate such a mapping. (A future
374 inclusion of a truncate function, specifically for the FORTRAN ENDFILE state-
375 ment, but that is also generally useful, is a good example.)

376 Part of the job of creating a binding is choosing names for functions that are intro-
377 duced, and these will need to be appropriate for that language. It is possible to
378 use other than the most restrictive form of a name, since, as discussed previously,
379 using these functions inherently makes the application not portable to systems
380 that are not POSIX.1, and if POSIX.1 conformant systems typically accept names
381 that the lowest-common-denominator system will not, there is no reason to a
382 priori exclude such names. (The specific example is C, where it is typically “non-
383 UNIX” systems that limit external identifiers to six characters.)

384 See B.1.1 for additional information about C bindings.

385 B.l.3.3.1 Types of Conformance

386 There is no additional rationale provided for this subclause.

387 B.l.3.3.2 C Standard Language-Dependent System Support

388 The issue of “namespace pollution” needs to be understood in this context. See
389 B.2.7.2.

390 B.l.3.3.3 Common-Usage C Language-Dependent System Support

391 The issue of “namespace pollution” needs to be understood in this context. See
392 B.2.7.2.

393 B.l.3.4 Other C Language-Related Specifications

394 The information concerning the use of library functions was adapted from a
395 description in the C Standard {2}. Here is an example of how an application pro-
396 gram can protect itself from library functions that may or may not be macros,
397 rather than true functions:

398 The atoi() function may be used in any of several ways:

399 (1) By use of its associated header (possibly generating a macro expansion)

400 finclude <stdlib.h>

401 /*...*/
402 i = atoi(str);

403 (2) By use of its associated header (assuredly generating a true function call)

194 B Rationale and Notes

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

ISO/TEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

tinclude <stdlib.h>
tundef atoi
/* ... */
i = atoi (str);

or

tinclude <stdlib.h>
/* ... */
i = (atoi) (str);

(3) By explicit declaration

extern int atoi (const char *);
/* ... */
i = atoi (str);

(4) By implicit declaration

/* ... */
i = atoi(str);

(Assuming no function prototype is in scope. This is not allowed by the |
C Standard {2} for functions with variable arguments; furthermore, |
parameter type conversion “widening” is subject to different rules in this
case.)

Note that the C Standard {2} reserves names starting with 'for the compiler.
Therefore, the compiler could, for example, implement an intrinsic, built-in func¬
tion _asm_builtin_atoi(), which it recognized and expanded into inline assembly
code. Then, in <stdlib . h>, there could be the following:

tdefine atoi(X) _asm_builtin_atoi(X)

The user’s “normal” call to atoi() would then be expanded inline, but the imple¬
mentor would also be required to provide a callable function named atoi () for use
when the application requires it; for example, if its address is to be stored in a
function pointer variable.

B.l.3.5 Other Language-Related Specifications I

It is intended that “long” identifiers and multicase linkage would be supported on |
POSIX.1 systems for all languages, including C. This is where that condition is |
stated. The portion of the sentence about “if such extensions are” is included to |
permit languages that have an absolute maximum, or an absolute requirement of |
case folding, to be conformant.

The requirement for longer names is included for several reasons:

(1) Most systems similar to POSIX.1 are already conformant. I

(2) Many existing language standards restrict the length of names to accom¬
modate existing systems that cannot be modified to allow longer names. |
However, those systems are not expected to be POSIX.1 conformant, for |

other reasons.

B.l Scope and Normative References 195

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

(3) Many historical applications rely on such long names.

(4) Future languages (such as FORTRAN 88) are likely to require it.

Specific to FORTRAN 77 {B21}, that standard permits long names, and this part of
ISO/IEC 9945 requires that FORTRAN implementations running on POSIX.1 sup¬
port long names. The requirements of case distinction and length are considered
orthogonal, but both are required if both are permitted by the language. Note
that a language can be conformant to POSIX.1 even though a binding does not
exist, because an application need not step outside the language standard to write
a useful program.

This requirement permits the use of reasonable-length names in a POSIX.1 bind¬
ing to a language such as FORTRAN. Clearly nothing prohibits a program that
does conform to the FORTRAN minima to compile and run on POSIX.1.

It is within the constraints of POSIX.1 to specify the behavior of the language pro¬
cessors and linker, consistent with the language, as it is a specification for an exe¬
cution environment. This is different than a package such as GKS {B27}, which
can reasonably be expected to be ported to a system that enforces the language
minima.

It might be argued that this specification is appropriate to the language binding
committees for POSIX generally, rather than specifically to POSIX.1. That argu¬
ment misses the intent. The intent is to require that the linker and other code
that handles “object code” (a concept not formally defined in POSIX.1) are able to
support long names. This requirement, being one that spans all languages,
belongs in the specification standard, rather than tied to any one language. Note
that it is also somewhat permissive, in that if the language is unable to deal with
long names it is permitted not to require them, but it does remove the argument
that “the loader might not permit long names, so [a specific] language binding
should not force the issue.”

A strictly conforming application for a given language could not use any exten¬
sions outside of POSIX.1 for that language (regardless of the underlying operating
system). An application will strictly conform to POSIX.1 if it conforms to the
language using additional interfaces from that language’s binding to POSIX.1.

B.2 Definitions and General Requirements

B.2.1 Conventions

There is no additional rationale provided for this subclause.

196 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

478 B.2.2 Definitions

479 B.2.2.1 Terminology

480 The meanings specified in POSIX.1 for the words shall, should, and may are man-
481 dated by ISO/IEC directives. |

482 In this Rationale, the words shall, should, and may are sometimes used to illus-
483 trate similar usages in the standard. However, the Rationale itself does not
484 specify anything regarding implementations or applications. |

485 conformance document: As a practical matter, the conformance document is |
486 effectively part of the system documentation. They are distinguished by POSIX.1 |
487 so that they can be referred to distinctly. |

488 implementation defined: This definition is analogous to that of the
489 C Standard {2} and, together with undefined and unspecified, provides a range of
490 specification of freedom allowed to the interface implementor.

491 may: The use of may has been limited as much as possible, due both to confu-
492 sion stemming from its ordinary English meaning and to objections regarding the
493 desirability of having as few options as possible and those as clearly specified as
494 possible.

495 shall: Declarative sentences are sometimes used in POSIX.1 as if they included
496 the word shall, and facilities thus specified are no less required. For example, the
497 two statements:

498 (1) The foo{) function shall return zero

499 (2) The foo{) function returns zero

500 are meant to be exactly equivalent. It is expected that a future version of POSIX.1 |
501 will be rewritten to use the “shall” form more consistently. |

502 should: In POSIX.1, the word should does not usually apply to the implementa-
503 tion, but rather to the application. Thus, the important words regarding imple-
504 mentations are shall, which indicates requirements, and may, which indicates
505 options.

506 obsolescent: The term obsolescent was preferred over deprecated to represent |
507 functionality that should not be used in new work. The term obsolescent is more |
508 intuitive and reduced the possibility of misunderstanding in the intended context. |

509 supported: An example of this concept is the setpgidi) function. If the imple-
510 mentation does not support the optional job control feature, it nevertheless has to
511 provide a function named setpgidi), even though its only ability is that of return-
512 ing [ENOSYS].

513 system documentation: The system documentation should normally describe |
514 the whole of the implementation, including any extensions provided by the imple- |
515 mentation. Such documents normally contain information at least as detailed as |
516 the POSIX.1 specifications. Few requirements are made on the system documen- |
517 tation, but the term is needed to avoid a dangling pointer where the conformance |
518 document is permitted to point to the system documentation.

B.2 Definitions and General Requirements 197

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

undefined: See implementation defined.

unspecified: See implementation defined.

The definitions for unspecified and undefined appear nearly identical at first
examination, but are not. Unspecified means that a conforming program may
deal with the unspecified behavior, and it should not care what the outcome is.
Undefined says that a conforming program should not do it because no definition
is provided for what it does (and implicitly it would care what the outcome was if
it tried it). It is important to remember, however, that if the syntax permits the
statement at all, it must have some outcome in a real implementation.

Thus, the terms undefined and unspecified apply to the way the application
should think about the feature. In terms of the implementation it is always
“defined”—there is always some result, even if it is an error. The implementation
is free to choose the behavior it prefers.

This also implies that an implementation, or another standard, could specify or
define the result in a useful fashion. The terms apply to POSIX. 1 specifically.

The term implementation defined implies requirements for documentation that
are not required for undefined (or unspecified). Where there is no need for a con¬
forming program to know the definition, the term undefined is used, even though
implementation defined could also have been used in this context. There could be
a fourth term, specifying “POSIX. 1 does not say what this does; it is acceptable to
define it in an implementation, but it does not need to be documented,” and
undefined would then be used very rarely for the few things for which any
definition is not useful.

In many places POSIX. 1 is silent about the behavior of some possible construct. |
For example, a variable may be defined for a specified range of values and |
behaviors are described for those values; nothing is said about what happens if |
the variable has any other value. That kind of silence can imply an error in the |
standard, but it may also imply that the standard was intentionally silent and |
that any behavior is permitted. There is a natural tendency to infer that if the |
standard is silent, a behavior is prohibited. That is not the intent. Silence is j
intended to be equivalent to the term unspecified. \

B.2.2.2 General Terms

Many of these definitions are necessarily circular, and some of the terms (such as
process) are variants of basic computing science terms that are inherently hard to
define. Some are defined by context in the prose topic descriptions of the general
concepts in 2.3, but most appear in the alphabetical glossary format of the terms |
in 2.2.2. j

Some definitions must allow extension to cover terms or facilities that are not
explicitly mentioned in POSIX.l. For example, the definition of file must permit
interpretation to include streams, as found in the Eighth Edition (a research ver¬
sion of the UNIX system). The use of abstract intermediate terms (such as object
in place of, or in addition to, file) has mostly been avoided in favor of careful
definition of more traditional terms.

198 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

562 Some terms in the following list of notes do not appear in POSIX.l; these are
563 marked prefixed with a asterisk (*). Many of them have been specifically
564 excluded from POSIX.1 because they concern system administration, implementa-
565 tion, or other issues that are not specific to the programming interface. Those are
566 marked with a reason, such as “implementation defined.”

567 appropriate privileges: One of the fundamental security problems with many
568 historical UNIX systems has been that the privilege mechanism is monolithic—a
569 user has either no privileges or all privileges. Thus, a successful “trojan horse”
570 attack on a privileged process defeats all security provisions. Therefore, POSIX.l
571 allows more granular privilege mechanisms to be defined. For many historical |
572 implementations of the UNIX system, the presence of the term appropriate \
573 privileges in POSIX.l may be understood as a synonym for super-user (UID 0).
574 However, future systems will undoubtedly emerge where this is not the case and
575 each discrete controllable action will have appropriate privileges associated with
576 it. Because this mechanism is implementation defined, it must be described in |
577 the conformance document. Although that description affects several parts of |
578 POSIX.l where the term appropriate privilege is used, because the term implemen- |
579 tation defined only appears here, the description of the entire mechanism and its |
580 effects on these other sections belongs in clause 2.3 of the conformance document. |
581 This is especially convenient for implementations with a single mechanism that |
582 applies in all areas, since it only needs to be described once.

583 clock tick: The C Standard {2} defines a similar interval for use by the clock () |
584 function. There is no requirement that these intervals be the same. In historical |
585 implementations these intervals are different. Currently only the timesi) function |
586 uses values stated in terms of clock ticks, although other functions might use |
587 them in the future. I

588 controlling terminal: The question of which of possibly several special files
589 referring to the terminal is meant is not addressed in POSIX.l.

590 |

591 * device number: The concept is handled in stat{) as ID of device.

592 directory: The format of the directory file is implementation defined and differs
593 radically between System V and 4.3BSD. However, routines (derived from
594 4.3BSD) for accessing directories are provided in 5.1.2 and certain constraints on
595 the format of the information returned by those routines are made in 5.1.1.

596 directory entry: Throughout the document, the term link is used [about the |
597 link() function, for example] in describing the objects that point to files from |
598 directories.

599 dot: The symbolic name dot is carefully used in POSIX.l to distinguish the work-
600 ing directory filename from a period or a decimal point.

601 dot-dot: Historical implementations permit the use of these filenames without
602 their special meanings. Such use precludes any meaningful use of these
603 filenames by a Conforming POSIX.1 Application. Therefore, such use is considered
604 an extension, the use of which makes an implementation nonconforming. See also
605 B.2.3.7.

B.2 Definitions and General Requirements 199

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Epoch: Historically, the origin of UNIX system time was referred to as “00:00:00
GMT, January 1, 1970.” Greenwich Mean Time is actually not a term ack¬
nowledged by the international standards community; therefore, this term,
Epoch, is used to abbreviate the reference to the actual standard, Coordinated
Universal Time. The concept of leap seconds is added for precision; at the time
POSIX.1 was published, 14 leap seconds had been added since January 1, 1970.
These 14 seconds are ignored to provide an easy and compatible method of com¬
puting time differences.

Most systems’ notion of “time” is that of a continuously increasing value, so this
value should increase even during leap seconds. However, not only do most sys¬
tems not keep track of leap seconds, but most systems are probably not synchron¬
ized to any standard time reference. Therefore, it is inappropriate to require that
a time represented as seconds since the Epoch precisely represent the number of
seconds between the referenced time and the Epoch.

It is sufficient to require that applications be allowed to treat this time as if it
represented the number of seconds between the referenced time and the Epoch. It
is the responsibility of the vendor of the system, and the administrator of the sys¬
tem, to ensure that this value represents the number of seconds between the
referenced time and the Epoch as closely as necessary for the application being
run on that system.

It is important that the interpretation of time names and seconds since the Epoch
values be consistent across conforming systems. That is, it is important that all
conforming systems interpret “536457599 seconds since the Epoch” as 59
seconds, 59 minutes, 23 hours 31 December 1986, regardless of the accuracy of
the system’s idea of the current time. The expression is given to assure a con¬
sistent interpretation, not to attempt to specify the calendar. The relationship
between tmjyday and the day of week, day of month, and month is presumed to
be specified elsewhere and is not given in POSIX.1.

Consistent interpretation of seconds since the Epoch can be critical to certain
types of distributed applications that rely on such timestamps to synchronize
events. The accrual of leap seconds in a time standard is not predictable. The
number of leap seconds since the Epoch will likely increase. POSIX.1 is more con¬
cerned about the synchronization of time between applications of astronomically
short duration. These concerns are expected to become more critical in the future. |

Note that tmjyday is zero-based, not one-based, so the day number in the exam¬
ple above is 364. Note also that the division is an integer division (discarding
remainder) as in the C language.

Note also that in Section 8, the meaning of gmtimeO, localtime(), and mktime() is |
specified in terms of this expression. However, the C Standard {2} computes
tmjyday from tmjnday, tmjnon, and tmjyear in mktime (). Because it is stated
as a (bidirectional) relationship, not a function, and because the conversion
between month-day-year and day-of-year dates is presumed well known and is
also a relationship, this is not a problem.

Note that the expression given will fail after the year 2099. Since the issue of
timejt overflowing a 32-bit integer occurs well before that time, both of these will
have to be addressed in revisions to POSIX.1.

200 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

652 FIFO special file: See pipe in B.2.2.2.

653 file: It is permissible for an implementation-defined file type to be nonreadable
654 or non writable.

655 file classes: These classes correspond to the historical sets of permission bits.

656 The classes are general to allow implementations flexibility in expanding the

657 access mechanism for more stringent security environments. Note that a process

658 is in one and only one class, so there is no ambiguity.

659 filename: At the present time, the primary responsibility for truncating

660 filenames containing multibyte characters must reside with the application. |

661 Some industry groups involved in internationalization believe that in the future |

662 the responsibility must reside with the kernel. For the moment, a clearer under-
663 standing of the implications of making the kernel responsible for truncation of

664 multibyte file names is needed.

665 Character level truncation was not adopted because there is no support in |

666 POSIX.l that advises how the kernel distinguishes between single and multibyte |

667 characters. Until that time, it must be incumbent upon application writers to

668 determine where multibyte characters must be truncated.

669 file system: Historically the meaning of this term has been overloaded with two

670 meanings: that of the complete file hierarchy and that of a mountable subset of

671 that hierarchy; i.e., a mounted file system. POSIX.l uses the term file system in

672 the second sense, except that it is limited to the scope of a process (and a process’s

673 root directory). This usage also clarifies the domain in which a file serial number

674 is unique.

675 *group file: Implementation defined; see B.9.

676 *historical implementations: This refers to previously existing implementa-

677 tions of programming interfaces and operating systems that are related to the

678 interface specified by POSIX.1. See also “Minimal Changes to Historical Imple- |

679 mentations” in the Introduction. |

680 * hosted implementation: This refers to a POSIX.1 implementation that is

681 accomplished through interfaces from the POSIX.l services to some alternate form

682 of operating system kernel services. Note that the line between a hosted imple-

683 mentation and a native implementation is blurred, since most implementations

684 will provide some services directly from the kernel and others through some

685 indirect path. [For example, fopen () might use open(); or mkfifoO might use

686 mknod().] There is no necessary relationship between the type of implementation

687 and its correctness, performance, and/or reliability.

688 * implementation: The term is generally used instead of its synonym, system,
689 to emphasize the consequences of decisions to be made by system implementors.

690 Perhaps if no options or extensions to POSIX.l were allowed, this usage would not

691 have occurred.

692 The term specific implementation is sometimes used as a synonym for implemen¬
ts tation. This should not be interpreted too narrowly; both terms can represent a

694 relatively broad group of systems. For example, a hardware vendor could market

695 a very wide selection of systems that all used the same instruction set, with some

696 systems desktop models and others large multiuser minicomputers. This wide

B.2 Definitions and General Requirements 201

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

range would probably share a common POSIX. 1 operating system, allowing an
application compiled for one to be used on any of the others; this is a [specific]
implementation.

However, that wide range of machines probably has some differences between the
models. Some may have different clock rates, different file systems, different
resource limits, different network connections, etc., depending on their sizes or
intended usages. Even on two identical machines, the system administrators may
configure them differently. Each of these different systems is known by the term
a specific instance of a specific implementation. This term is only used in the por¬
tions of POSIX. 1 dealing with run-time queries: sysconfO and pathconfi).

♦incomplete pathname: Absolute pathname has been adequately defined.

job control: In order to understand the job-control facilities in POSIX. 1 it is use¬
ful to understand how they are used by a job-control-cognizant shell to create the
user interface effect of job control.

While the job-control facilities supplied by POSIX. 1 can, in theory, support dif¬
ferent types of interactive job-control interfaces supplied by different types of
shells, there is historically one particular interface that is most common (provided
by BSD C Shell). This discussion describes that interface as a means of illustrat¬
ing how the POSIX. 1 job-control facilities can be used.

Job control allows users to selectively stop (suspend) the execution of processes
and continue (resume) their execution at a later point. The user typically employs
this facility via the interactive interface jointly supplied by the terminal I/O driver
and a command interpreter (shell).

The user can launch jobs (command pipelines) in either the foreground or back¬
ground. When launched in the foreground, the shell waits for the job to complete
before prompting for additional commands. When launched in the background,
the shell does not wait, but immediately prompts for new commands.

If the user launches a job in the foreground and subsequently regrets this, the
user can type the suspend character (typically set to control-Z), which causes the
foreground job to stop and the shell to begin prompting for new commands. The
stopped job can be continued by the user (via special shell commands) either as a
foreground job or as a background job. Background jobs can also be moved into
the foreground via shell commands.

If a background job attempts to access the login terminal (controlling terminal), it
is stopped by the terminal driver and the shell is notified, which, in turn, notifies
the user. [Terminal access includes read{) and certain terminal control functions
and conditionally includes write().] The user can continue the stopped job in the
foreground, thus allowing the terminal access to succeed in an orderly fashion.
After the terminal access succeeds, the user can optionally move the job into the
background via the suspend character and shell commands.

Implementing Job Control Shells

The interactive interface described previously can be accomplished using the
POSIX. 1 job-control facilities in the following way.

The key feature necessary to provide job control is a way to group processes into
jobs. This grouping is necessary in order to direct signals to a single job and also

202 B Rationale and Notes

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

to identify which job is in the foreground. (There is at most one job that is in the

foreground on any controlling terminal at a time.)

The concept of process groups is used to provide this grouping. The shell places

each job in a separate process group via the setpgidi) function. To do this, the

setpgidi) function is invoked by the shell for each process in the job. It is actually

useful to invoke setpgidi) twice for each process: once in the child process, after

calling forki) to create the process, but before calling one of the exec functions to

begin execution of the program, and once in the parent shell process, after calling

fork () to create the child. The redundant invocation avoids a race condition by

ensuring that the child process is placed into the new process group before either

the parent or the child relies on this being the case. The process group ID for the

job is selected by the shell to be equal to the process ID of one of the processes in

the job. Some shells choose to make one process in the job be the parent of the

other processes in the job (if any). Other shells (e.g., the C Shell) choose to make

themselves the parent of all processes in the pipeline (job). In order to support

this latter case, the setpgidi) function accepts a process group ID parameter since

the correct process group ID cannot be inherited from the shell. The shell itself is

considered to be a job and is the sole process in its own process group.

The shell also controls which job is currently in the foreground. A foreground and

background job differ in two ways: the shell waits for a foreground command to

complete (or stop) before continuing to read new commands, and the terminal I/O

driver inhibits terminal access by background jobs (causing the processes to stop).

Thus, the shell must work cooperatively with the terminal I/O driver and have a

common understanding of which job is currently in the foreground. It is the user

who decides which command should be currently in the foreground, and the user

informs the shell via shell commands. The shell, in turn, informs the terminal I/O

driver via the tcsetpgrpi) function. This indicates to the terminal I/O driver the

process group ID of the foreground process group (job). When the current fore¬

ground job either stops or terminates, the shell places itself in the foreground via

tcsetpgrpi) before prompting for additional commands. Note that when a job is

created the new process group begins as a background process group. It requires

an explicit act of the shell via tcsetpgrpi) to move a process group (job) into the

foreground.

When a process in a job stops or terminates, its parent (e.g., the shell) receives

synchronous notification by calling the waitpidi) function with the WUNTRACED

flag set. Asynchronous notification is also provided when the parent establishes a

signal handler for SIGCHLD and does not specify the SA_NOCLDSTOP flag. Usu¬

ally all processes in a job stop as a unit since the terminal I/O driver always sends

job-control stop signals to all processes in the process group.

To continue a stopped job, the shell sends the SIGCONT signal to the process

group of the job. In addition, if the job is being continued in the foreground, the

shell invokes tcsetpgrpi) to place the job in the foreground before sending

SIGCONT. Otherwise, the shell leaves itself in the foreground and reads addi¬

tional commands.

There is additional flexibility in the POSIX.l job-control facilities that allows devi¬

ations from the typical interface. Clearing the TOSTOP terminal flag (see 7.1.2.5)

allows background jobs to perform writei) functions without stopping. The same

effect can be achieved on a per-process basis by having a process set the signal

action for SIGTTOU to SIGJGN.

B.2 Definitions and General Requirements 203

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Note that the terms job and process group can be used interchangeably. A login
session that is not using the job control facilities can be thought of as a large col¬
lection of processes that are all in the same job (process group). Such a login ses¬
sion may have a partial distinction between foreground and background
processes; that is, the shell may choose to wait for some processes before continu¬
ing to read new commands and may not wait for other processes. However, the
terminal I/O driver will consider all these processes to be in the foreground since
they are all members of the same process group.

In addition to the basic job-control operations already mentioned, a job-control-
cognizant shell needs to perform the following actions:

When a foreground (not background) job stops, the shell must sample and
remember the current terminal settings so that it can restore them later when it
continues the stopped job in the foreground [via the tcgetattr() and tcsetattr()
functions].

Because a shell itself can be spawned from a shell, it must take special action to
ensure that subshells interact well with their parent shells.

A subshell can be spawned to perform an interactive function (prompting the ter¬
minal for commands) or a noninteractive function (reading commands from a file).
When operating noninteractively, the job-control shell will refrain from perform¬
ing the job-control specific actions described above. It will behave as a shell that
does not support job control. For example, all jobs will be left in the same process
group as the shell, which itself remains in the process group established for it by
its parent. This allows the shell and its children to be treated as a single job by a
parent shell, and they can be affected as a unit by terminal keyboard signals.

An interactive subshell can be spawned from another job-control-cognizant shell
in either the foreground or background. (For example, from the C Shell, the user
can execute the command, csh &.) Before the subshell activates job control by
calling setpgid () to place itself in its own process group and tcsetpgrpi) to place its
new process group in the foreground, it needs to ensure that it has already been
placed in the foreground by its parent. (Otherwise, there could be multiple job-
control shells that simultaneously attempt to control mediation of the terminal.)
To determine this, the shell retrieves its own process group via getpgrpO and the
process group of the current foreground job via tcgetpgrpi). If these are not equal,
the shell sends SIGTTIN to its own process group, causing itself to stop. When
continued later by its parent, the shell repeats the process-group check. When
the process groups finally match, the shell is in the foreground and it can proceed
to take control. After this point, the shell ignores all the job-control stop signals
so that it does not inadvertently stop itself.

Implementing Job Control Applications

Most applications do not need to be aware of job-control signals and operations;
the intuitively correct behavior happens by default. However, sometimes an
application can inadvertently interfere with normal job-control processing, or an
application may choose to overtly effect job control in cooperation with normal
shell procedures.

An application can inadvertently subvert job-control processing by “blindly” alter¬
ing the handling of signals. A common application error is to learn how many

204 B Rationale and Notes

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

signals the system supports and to ignore or catch them all. Such an application
makes the assumption that it does not know what this signal is, but knows the
right handling action for it. The system may initialize the handling of job-control
stop signals so that they are being ignored. This allows shells that do not support
job control to inherit and propagate these settings and hence to be immune to stop
signals. A job-control shell will set the handling to the default action and pro¬
pagate this, allowing processes to stop. In doing so, the job-control shell is taking
responsibility for restarting the stopped applications. If an application wishes to
catch the stop signals itself, it should first determine their inherited handling
states. If a stop signal is being ignored, the application should continue to ignore
it. This is directly analogous to the recommended handling of SIGINT described in
the UNIX Programmer’s Manual {B41}.

If an application is reading the terminal and has disabled the interpretation of
special characters (by clearing the ISIG flag), the terminal I/O driver will not send
SIGTSTP when the suspend character is typed. Such an application can simulate
the effect of the suspend character by recognizing it and sending SIGTSTP to its
process group as the terminal driver would have done. Note that the signal is
sent to the process group, not just to the application itself; this ensures that other
processes in the job also stop. (Note also that other processes in the job could be
children, siblings, or even ancestors.) Applications should not assume that the
suspend character is control-Z (or any particular value); they should retrieve the
current setting at startup.

Implementing Job Control Systems

The intent in adding 4.2BSD-style job control functionality was to adopt the neces¬
sary 4.2BSD programmatic interface with only minimal changes to resolve syntac¬
tic or semantic conflicts with System V or to close recognized security holes. The
goal was to maximize the ease of providing both conforming implementations and
Conforming POSIX.l Applications.

Discussions of the changes can be found in the clauses that discuss the specific |
interfaces. See B.3.2.1, B.3.2.2, B.3.3.1.1, B.3.3.2, B.3.3.4, B.4.3.1, B.4.3.3,
B.7.1.1.4, and B.7.2.4.

It is only useful for a process to be affected by job-control signals if it is the des¬
cendant of a job-control shell. Otherwise, there will be nothing that continues the
stopped process. Because a job-control shell is allowed, but not required, by
POSIX.1, an implementation must provide a mechanism that shields processes
from job-control signals when there is no job-control shell. The usual method is
for the system initialization process (typically called init), which is the ancestor
of all processes, to launch its children with the signal handling action set to
SIG_IGN for the signals SIGTSTP, SIGTTIN, and SIGTTOU. Thus, all login shells
start with these signals ignored. If the shell is not job-control cognizant, then it
should not alter this setting and all its descendants should inherit the same
ignored settings. At the point where a job-control shell is launched, it resets the
signal handling action for these signals to be SIG_DFL for its children and (by
inheritance) their descendants. Also, shells that are not job-control cognizant will
not alter the process group of their descendants or of their controlling terminal;
this has the effect of making all processes be in the foreground (assuming the
shell is in the foreground). While this approach is valid, POSIX.l added the con¬
cept of orphaned process groups to provide a more robust solution to this problem.

B.2 Definitions and General Requirements 205

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

All processes in a session managed by a shell that is not job-control cognizant are
in an orphaned process group and are protected from stopping.

POSIX.1 does not specify how controlling terminal access is affected by a user log¬
ging out (that is, by a controlling process terminating). 4.2BSD uses the
vhangup () function to prevent any access to the controlling terminal through file
descriptors opened prior to logout. System V does not prevent controlling termi¬
nal access through file descriptors opened prior to logout (except for the case of
the special file, /dev/tty). Some implementations choose to make processes
immune from job control after logout (that is, such processes are always treated
as if in the foreground); other implementations continue to enforce
foreground/background checks after logout. Therefore, a Conforming POSIX.1
Application should not attempt to access the controlling terminal after logout
since such access is unreliable. If an implementation chooses to deny access to a
controlling terminal after its controlling process exits, POSIX.1 requires a certain
type of behavior (see 7.1.1.3).

♦kernel: See system call.

♦library routine: See system call.

♦logical device: Implementation defined.

♦mount point: The directory on which a mounted file system is mounted. This
term, like mount() and umount(), was not included because it was implementa¬
tion defined.

♦mounted file system: See file system.

♦native implementation: This refers to an implementation of POSIX.1 that
interfaces directly to an operating-system kernel. See also hosted implementation
and cooperating implementation. A similar concept is a native UNIX system,
which would be a kernel derived from one of the original UNIX system products.

open file description: An open file description, as it is currently named,
describes how a file is being accessed. What is currently called a file descriptor is
actually just an identifier or “handle”; it does not actually describe anything.

The following alternate names were discussed:

For open file description:
open instance, file access description, open file information, and file
access information.

For file descriptor:
file handle, file number [c.fi, filenoi)]. Some historical implementations
use the term file table entry.

orphaned process group: Historical implementations have a concept of an
orphaned process, which is a process whose parent process has exited. When job
control is in use, it is necessary to prevent processes from being stopped in
response to interactions with the terminal after they no longer are controlled by a
job-control-cognizant program. Because signals generated by the terminal are
sent to a process group and not to individual processes, and because a signal may
be provoked by a process that is not orphaned, but sent to another process that is
orphaned, it is necessary to define an orphaned process group. The definition

206 B Rationale and Notes

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

assumes that a process group will be manipulated as a group and that the job-
control-cognizant process controlling the group is outside of the group and is the
parent of at least one process in the group [so that state changes may be reported
via waitpid{)]. Therefore, a group is considered to be controlled as long as at least
one process in the group has a parent that is outside of the process group, but
within the session.

This definition of orphaned process groups ensures that a session leader’s process
group is always considered to be orphaned, and thus it is prevented from stopping
in response to terminal signals.

*passwd file: Implementation defined; see B.9.

parent directory: There may be more than one directory entry pointing to a
given directory in some implementations. The wording here identifies that
exactly one of those is the parent directory. In 2.3.6, dot-dot is identified as the
way that the unique directory is identified. (That is, the parent directory is the
one to which dot-dot points.) In the case of a remote file system, if the same file
system is mounted several times, it would appear as if they were distinct file sys¬
tems (with interesting synchronization properties).

pipe: It proved convenient to define a pipe as a special case of a FIFO even
though historically the latter was not introduced until System III and does not
exist at all in 4.3BSD.

portable filename character set: The encoding of this character set is not
specified—specifically, ASCII is not required. But the implementation must pro¬
vide a unique character code for each of the printable graphics specified by
POSIX.1. See also B.2.3.5.

Situations where characters beyond the portable filename character set (or histor¬
ically ASCII or ISO/IEC 646 {!}) would be used (in a context where the portable
filename character set or ISO/IEC 646 {1} is required by POSIX.1) are expected to
be common. Although such a situation renders the use technically noncompliant,
mutual agreement among the users of an extended character set will make such
use portable between those users. Such a mutual agreement could be formalized
as an optional extension to POSIX.1. (Making it required would eliminate too
many possible systems, as even those systems using ISO/IEC 646 {1} as a base
character set extend their character sets for Western Europe and the rest of the
world in different ways.)

Nothing in POSIX.1 is intended to preclude the use of extended characters where
interchange is not required or where mutual agreement is obtained. It has been
suggested that in several places “should” be used instead of “shall.” Because (in
the worst case) use of any character beyond the portable filename character set
would render the program or data not portable to all possible systems, no exten¬
sions are permitted in this context.

regular file: POSIX.1 does not intend to preclude the addition of structuring
data (e.g., record lengths) in the file, as long as such data is not visible to an
application that uses the features described in POSIX.1.

root directory: This definition permits the operation of chrooti), even though
that function is not in POSIX.1. See also file hierarchy.

B.2 Definitions and General Requirements 207

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

974 *root file system: Implementation defined.

975 *root of a file system: Implementation defined. See mount point.
976 seconds since the Epoch: The formula here is not precisely correct for leap |
977 centuries. See the discussion for Epoch for further details. |

978 signal: The definition implies a double meaning for the term. Although a signal
979 is an event, common usage implies that a signal is an identifier of the class of
980 event.

981 * system call: The distinction between a system call and a library routine is an
982 implementation detail that may differ between implementations and has thus
983 been excluded from POSIX.l. See “Interface, Not Implementation” in the Intro-
984 duction.

985 * super-user: This concept, with great historical significance to UNIX system
986 users, has been replaced with the notion of appropriate privileges.

987 B.2.2.3 Abbreviations |

988 There is no additional rationale provided for this subclause. |

989 B.2.3 General Concepts

990 B.2.3.1 extended security controls: Allowing an implementation to define
991 extended security controls enables the use of POSIX.1 in environments that
992 require different or more rigorous security than that provided in POSIX.l. Exten-
993 sions are allowed in two areas: privilege and file access permissions. The seman-
994 tics of these areas have been defined to permit extensions with reasonable, but
995 not exact, compatibility with all existing practices. For example, the elimination
996 of the super-user definition precludes identifying a process as privileged or not by
997 virtue of its effective user ID.

998 B.2.3.2 file access permissions: A process should not try to anticipate the
999 result of an attempt to access data by a priori use of these rules. Rather, it should
1000 make the attempt to access data and examine the return value (and possibly
1001 errno as well), or use access(). An implementation may include other security
1002 mechanisms in addition to those specified in POSIX.l, and an access attempt may
1003 fail because of those additional mechanisms, even though it would succeed accord-
1004 ing to the rules given in this subclause. (For example, the user’s security level |
1005 might be lower than that of the object of the access attempt.) The optional supple-
1006 mentary group IDs provide another reason for a process to not attempt to antici-
1007 pate the result of an access attempt.

loos B.2.3.3 file hierarchy: Though the file hierarchy is commonly regarded to be a
1009 tree, POSIX.1 does not define it as such for three reasons:

1010 (1) Links may join branches.

ion (2) In some network implementations, there may be no single absolute root
1012 directory. See pathname resolution.

208 B Rationale and Notes

1013
1014

1015
1016

1017
1018
1019

1020

1021

1022

1023

1024
1025
1026
1027

1028
1029
1030

1031

1032
1033

1034
1035

1036

1037
1038

1039
1040
1041

1042
1043
1044

1045
1046
1047

1048
1049
1050

1051
1052
1053

ISO/IEC 9945-1: 1990

Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

(3) With symbolic links (found in 4.3BSD), the file system need not be a tree
or even a directed acyclic graph.

B.2.3.4 file permissions: Examples of implementation-defined constraints that
may deny access are mandatory labels and access control lists.

B.2.3.5 filename portability: Historically, certain filenames have been
reserved. This list includes core, /etc/passwd, etc. Portable applications
should avoid these.

Most historical implementations prohibit case folding in filenames; i.e., treating |
upper- and lowercase alphabetic characters as identical. However, some consider
case folding desirable:

— For user convenience

— For ease of implementation of the POSIX.l interface as a hosted system on
some popular operating systems, which is compatible with the goal of mak¬
ing the POSIX.l interface broadly implementable (see “Broadly Implement-
able” in the Introduction)

Variants such as maintaining case distinctions in filenames, but ignoring them in
comparisons, have been suggested. Methods of allowing escaped characters of the
case opposite the default have been proposed

Many reasons have been expressed for not allowing case folding, including:

(1) No solid evidence has been produced as to whether case sensitivity or
case insensitivity is more convenient for users.

(2) Making case insensitivity a POSIX.1 implementation option would be
worse than either having it or not having it, because

(a) More confusion would be caused among users.

(b) Application developers would have to account for both cases in their
code.

(c) POSIX.l implementors would still have other problems with native
file systems, such as short or otherwise constrained filenames or
pathnames, and the lack of hierarchical directory structure.

(3) Case folding is not easily defined in many European languages, both
because many of them use characters outside the USASCII alphabetic set,
and because

(a) In Spanish, the digraph 11 is considered to be a single letter, the
capitalized form of which may be either LI or ll, depending on con¬
text.

(b) In French, the capitalized form of a letter with an accent may or
may not retain the accent depending on the country in which it is
written.

(c) In German, the sharp ess may be represented as a single character
resembling a Greek beta (p) in lowercase, but as the digraph ss in

uppercase.

B.2 Definitions and General Requirements 209

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

(d) In Greek, there are several lowercase forms of some letters; the one
to use depends on its position in the word. Arabic has similar rules.

(4) Many East Asian languages, including Japanese, Chinese, and Korean,
do not distinguish case and are sometimes encoded in character sets that
use more than one byte per character.

(5) Multiple character codes may be used on the same machine simultane¬
ously. There are several ISO character sets for European alphabets. In
Japan, several Japanese character codes are commonly used together,
sometimes even in filenames; this is evidently also the case in China. To
handle case insensitivity, the kernel would have to at least be able to dis¬
tinguish for which character sets the concept made sense.

(6) The file system implementation historically deals only with bytes, not
with characters, except for slash and the null byte.

(7) The purpose of POSIX.l is to standardize the common, existing definition
(see “Application Oriented” in the Introduction) of the UNIX system pro¬
gramming interface, not to change it. Mandating case insensitivity
would make all historical implementations nonstandard.

(8) Not only the interface, but also application programs would need to
change, counter to the purpose of having minimal changes to existing
application code.

(9) At least one of the original developers of the UNIX system has expressed
objection in the strongest terms to either requiring case insensitivity or
making it an option, mostly on the basis that POSIX. 1 should not hinder
portability of application programs across related implementations in
order to allow compatibility with unrelated operating systems.

Two proposals were entertained regarding case folding in filenames:

— Remove all wording that previously permitted case folding.
Rationale: Case folding is inconsistent with portable filename character set
definition and filename definition (all characters except slash and null). No
known implementations allowing all characters except slash and null also
do case folding.

— Change “though this practice is not recommended:” to “although this prac¬
tice is strongly discouraged.”
Rationale: If case folding must be included in POSIX.l, the wording should
be stronger to discourage the practice.

The consensus selected the first proposal. Otherwise, a portable application |
would have to assume that case folding would occur when it was not wanted, but
that it would not occur when it was wanted.

B.2.3.6 file times update: This subclause reflects the actions of historical |
implementations. The times are not updated immediately, but are only marked
for update by the functions. An implementation may update these times
immediately.

210 B Rationale and Notes

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

The accuracy of the time update values is intentionally left unspecified so that
systems can control the bandwidth of a possible covert channel.

The wording was carefully chosen to make it clear that there is no requirement
that the conformance document contain information that might incidentally affect
file update times. Any function that performs pathname resolution might update
several st_atime fields. Functions such as getpwnam () and getgrnam () might
update the stjatime field of some specific file or files. It is intended that these are
not required to be documented in the conformance document, but they should
appear in the system documentation.

B.2.3.7 pathname resolution: What the filename dot-dot refers to relative to
the root directory is implementation defined. In Version 7 it refers to the root
directory itself; this is the behavior mentioned in the standard. In some
networked systems the construction /. . /hostname/ is used to refer to the root
directory of another host, and POSIX.l permits this behavior.

Other networked systems use the construct //hostname for the same purpose;
i.e., a double initial slash is used. There is a potential problem with existing
applications that create full pathnames by taking a trunk and a relative path¬
name and making them into a single string separated by /, because they can
accidentally create networked pathnames when the trunk is /. This practice is
not prohibited because such applications can be made to conform by simply
changing to use / / as a separator instead of /:

(1) If the trunk is /, the full path name will begin with III (the initial / and
the separator //). This is the same as /, which is what is desired. (This
is the general case of making a relative pathname into an absolute one by
prefixing with / // instead of /.)

(2) If the trunk is /A, the result is /All. . .; since nonleading sequences of
two or more slashes are treated as a single slash, this is equivalent to the
desired / A/

(3) If the trunk is //A, the implementation-defined semantics will apply.
(The multiple slash rule would apply.)

Application developers should avoid generating pathnames that start with “//”.
Implementations are strongly encouraged to avoid using this special interpreta¬
tion since a number of applications currently do not follow this practice and may

inadvertently generate “//...”.

The term root directory is only defined in POSIX.1 relative to the process. In some
implementations, there may be no absolute root directory. The initialization of
the root directory of a process is implementation defined.

B.2.4 Error Numbers

The definition of errno in POSIX.l is stricter than that in the C Standard {2}. The |
C Standard {2} merely requires that it be an assignable lvalue. The POSIX.l
extern int errno meets that requirement and supports historical usage as well.

B.2 Definitions and General Requirements 211

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Checking the value of errno alone is not sufficient to determine the existence or
type of an error, since it is not required that a successful function call clear errno.
The variable errno should only be examined when the return value of a function
indicates that the value of errno is meaningful. In that case, the function is
required to set the variable to something other than zero.

A successful function call may set the value of errno to zero, or to any other value
(except where specifically prohibited; see B.5.4.1). But it is meaningless to do so,
since the value of errno is undefined except when the description of a function
explicitly states that it is set, and no function description states that it should be
set on a successful call. Most functions in most implementations do not change
errno on successful completion. Exceptions are isatty() and ptrace(). The latter is
not in POSIX. 1, but is widely implemented and clears errno when called. The
value of errno is not defined unless all signal handlers that use functions that
could change errno save and restore it.

POSIX. 1 requires (in the Errors subclauses of function descriptions) certain error |
values to be set in certain conditions because many existing applications depend |
on them. Some error numbers, such as [EFAULT], are entirely implementation
defined and are noted as such in their description in 2.4. This subclause other- |
wise allows wide latitude to the implementation in handling error reporting. |

Some of the Errors clauses in POSIX. 1 have two subclauses. The first: |

“If any of the following conditions occur, the foo{) function shall
return -1 and set errno to the corresponding value:”

could be called the “mandatory” subclause. The second: |

“For each of the following conditions, when the condition is detected,
the foo{) function shall return -1 and set errno to the corresponding
value:”

could be informally known as the “optional” subclause. This latter subclause has 1
evolved in meaning over time. In early drafts, it was only used for error condi- |
tions that could not be detected by certain hardware configurations, such as the
[EFAULT] error, as described below. The subclause recently has also added condi- |
tions associated with optional system behavior, such as job control errors. |
Attempting to infer the quality of an implementation based on whether it detects |
such conditions is not useful. |

Following each one-word symbolic name for an error, there is a one-line tag,
which is followed by a description of the error. The one-line tag is merely a
mnemonic or historical referent and is not part of the specification of the error.
Many programs print these tags on the standard error stream [often by using the
C Standard {2} perror() function] when the corresponding errors are detected, but
POSIX. 1 does not require this action.

[EFAULT] Most historical implementations do not catch an error and set
errno when an invalid address is given to the functions wait{),
time(), or times(). Some implementations cannot reliably detect
an invalid address. And most systems that detect invalid
addresses will do so only for a system call, not for a library
routine.

212 B Rationale and Notes

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

Part 1: SYSTEM API [C LANGUAGE]

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

[EINTR]

[ENOMEM]

[ENOTTY]

[EPIPE]

[EROFS]

POSIX.l prohibits conforming implementations from restarting
interrupted system calls. However, it does not require that
[EINTR] be returned when another legitimate value may be
substituted; e.g., a partial transfer count when read() or write()
are interrupted. This is only given when the signal catching
function returns normally as opposed to returns by mechanisms
like longjmpO or siglongjmpi).

The term main memory is not used in POSIX.l because it is
implementation defined.

The symbolic name for this error is derived from a time when
device control was done by ioctl{) and that operation was only
permitted on a terminal interface. The term “TTY” is derived
from teletypewriter, the devices to which this error originally
applied.

This condition normally generates the signal SIGPIPE; the error
is returned if the signal does not terminate the process.

In historical implementations, attempting to unlinki) or
rmdir() a mount point would generate an [EBUSY] error. An
implementation could be envisioned where such an operation
could be performed without error. In this case, if either the
directory entry or the actual data structures reside on a read¬
only file system, [EROFS] is the appropriate error to generate.
(For example, changing the link count of a file on a read-only
file system could not be done, as is required by unlinki), and
thus an error should be reported.)

Two error numbers, [EDOM] and [ERANGE], were added to this subclause pri¬
marily for consistency with the C Standard {2}.

B.2.5 Primitive System Data Types

The requirement that additional types defined in this subclause end in “_t” was
prompted by the problem of namespace pollution (see B.2.7.2). It is difficult to
define a type (where that type is not one defined by POSIX.1) in one header file
and use it in another without adding symbols to the namespace of the program.
To allow implementors to provide their own types, all POSIX.1 conforming applica¬
tions are required to avoid symbols ending in “_t”, which permits the implementor
to provide additional types. Because a major use of types is in the definition of
structure members, which can (and in many cases must) be added to the struc¬
tures defined in POSIX.1, the need for additional types is compelling.

The types such as ushort and ulong, which are in common usage, are not defined
in POSIX.1 (although ushort_t would be permitted as an extension). They can be
added to <sys/types .h> using a feature test macro (see 2.7.2). A suggested
symbol for these is _SYSIII. Similarly, the types like u_short would probably be
best controlled by _BSD.

Some of these symbols may appear in other headers; see 2.7.

B.2 Definitions and General Requirements 213

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

devjt This type may be made large enough to accommodate host-
locality considerations of networked systems.

This type must be arithmetic. Earlier drafts allowed this to be
nonarithmetic (such as a structure) and provided a samefde()
function for comparison.

gid_t Some implementations had separated gidj from uidjt before
POSIX.l was completed. It would be difficult for them to
coalesce them when it was unnecessary. Additionally, it is
quite possible that user IDs might be different than group IDs
because the user ID might wish to span a heterogeneous net¬
work, where the group ID might not.

For current implementations, the cost of having a separate
gid_t will be only lexical.

modejt This type was chosen so that implementations could choose the
appropriate integral type, and for compatibility with the
C Standard {2}. 4.3BSD uses unsigned short and the SVID uses
ushort, which is the same. Historically, only the low-order six¬
teen bits are significant.

nlinkjt This type was introduced in place of short for stjilink (see
5.6.1) in response to an objection that short was too small.

offj This type is used only in Iseek(), fcntl(), and <sys/stat. h>.
Many implementations would have difficulties if it were defined
as anything other than long. Requiring an integral type limits |
the capabilities of Iseek () to four gigabytes. See the description |
of lread() in B.6.4. Also, the C Standard {2} supplies routines |
that use larger types: see fgetposO and fsetposi.) in B.6.5.3. |

pidj The inclusion of this symbol was controversial because it is tied
to the issue of the representation of a process ID as a number.
From the point of view of a portable application, process IDs
should be “magic cookies”2) that are produced by calls such as
fork(), used by calls such as waitpidi) or kill(), and not other¬
wise analyzed (except that the sign is used as a flag for certain
operations).

The concept of a {PID_MAX} value interacted with this in early
drafts. Treating process IDs as an opaque type both removes
the requirement for {PID_MAX} and allows systems to be more
flexible in providing process IDs that span a large range of
values, or a small one.

2) An historical term meaning: “An opaque object, or token, of determinate size, whose significance
is known only to the entity which created it. An entity receiving such a token from the
generating entity may only make such use of the ‘cookie’ as is defined and permitted by the
supplying entity.”

214 B Rationale and Notes

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

ssizej

uid_t

Since the values in uid_t,gid_t, andpidj will be numbers gen¬
erally, and potentially both large in magnitude and sparse,
applications that are based on arrays of objects of this type are
unlikely to be fully portable in any case. Solutions that treat
them as magic cookies will be portable.

{CHILD_MAX} precludes the possibility of a “toy implementa¬
tion,” where there would only be one process.

This is intended to be a signed analog of sizejt. The wording is |
such that an implementation may either choose to use a longer |
type or simply to use the signed version of the type that under- |
lies sizejt. All functions that return ssizejt [read{) and write()] |
describe as “implementation defined” the result of an input |
exceeding {SSIZE_MAX}. It is recognized that some implemen- |
tations might have ints that are smaller than size_t. A port- |
able application would be constrained not to perform I/O in |
pieces larger than {SSIZE_MAX}, but a portable application |
using extensions would be able to use the full range if the |
implementation provided an extended range, while still having |
a single type-compatible interface. |

The symbols sizejt and ssizejt are also required in |
<unistd. h> to minimize the changes needed for calls to read{) |
and write(). Implementors are reminded that it must be possi- |
ble to include both <sys/types.h> and <unistd.h> in the |
same program (in either order) without error. |

Before the addition of this type, the data types used to
represent these values varied throughout early drafts. The
<sys/stat.h> header defined these values as type short, the
<passwd.h> file (now <pwd.h> and <grp.h>) used an int,
and getuidi) returned an int. In response to a strong objection
to the inconsistent definitions, all the types to were switched to |
uid_t. |

In practice, those historical implementations that use varying
types of this sort can typedef uidj to short with no serious
consequences.

The problem associated with this change concerns object com¬
patibility after structure size changes. Since most implementa¬
tions will define uidjt as a short, the only substantive change
will be a reduction in the size of the passwd structure. Conse¬
quently, implementations with an overriding concern for object
compatibility can pad the structure back to its current size. For
that reason, this problem was not considered critical enough to
warrant the addition of a separate type to POSIX.l.

The types uidjt and gid_t are magic cookies. There is no
{UID_MAX} defined by POSIX.l, and no structure imposed on
uid_t and gidj other than that they be positive arithmetic
types. (In fact, they could be unsigned char.) There is no max¬
imum or minimum specified for the number of distinct user or
group IDs.

B.2 Definitions and General Requirements 215

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

B.2.6 Environment Description

The variable environ is not intended to be declared in any header, but rather to be |
declared by the user for accessing the array of strings that is the environment. |
This is the traditional usage of the symbol. Putting it into a header could break |
some programs that use the symbol for their own purposes.

LC_* The description of the environment variable names starting
with the characters “LC_” acknowledges the fact that the inter¬
faces presented in the current version of POSIX. 1 are not com¬
plete and may be extended as new international functionality is
required. In the C Standard {2}, names preceded by “LC_” are |
reserved in the name space for future categories.

To avoid name clashes, new categories and environment vari¬
ables are divided into two classifications: implementation
independent and implementation dependent.

Implementation-independent names will have the following
format:

LC _NAME

where NAME is the name of the new category and environment
variable. Capital letters must be used for implementation-
independent names.

Implementation-dependent names must be in lowercase letters,
as below:

LC jiame

PATH Many historical implementations of the Bourne shell do not
interpret a trailing colon to represent the current working
directory and are thus nonconforming. The C Shell and the
KornShell conform to POSIX.1 on this point. The usual name of
dot may also be used to refer to the current working directory.

TZ See 8.1.1 for an explanation of the format.

LOGNAME 4.3BSD uses the environment variable USER for this purpose.
In most implementations, the value of such a variable is easily
forged, so security-critical applications should rely on other
means of determining user identity. LOGNAME is required to
be constructed from the portable filename character set for rea¬
sons of interchange. No diagnostic condition is specified for
violating this rule, and no requirement for enforcement exists.
The intent of the requirement is that if extended characters are
used, the “guarantee” of portability implied by a standard is
voided. (See also B.2.2.2.)

The following environment variables have been used historically as indicated.
However, such use was either so variant as to not be amenable to standardization
or to be relevant only to other facilities not specified in POSIX.1, and they have
therefore been excluded. They may or may not be included in future POSIX stan¬
dards. Until then, writers of conforming applications should be aware that

216 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

1364

1363

1360

1361

1362

1359 details of the use of these variables are likely to vary in different contexts.

IFS Characters used as field separators.

MAIL System mailer information.

PS1 Prompting string for interactive programs.

PS2 Prompting string for interactive programs.

SHELL The shell command interpreter name.

1365 B.2.7 C Language Definitions

1366 The construct <name . h> for headers is also taken from the C Standard {2}.

1367 B.2.7.1 Symbols From the C Standard

1368 The reservation of identifiers is paraphrased from the C Standard {2}. The text is |
1369 included because it needs to be part of POSIX.1, regardless of possible changes in |
1370 future versions of the C Standard {2}. The reservation of other namespaces is par- |
1371 ticularly for <errno . h>.

1372 These identifiers may be used by implementations, particularly for feature test
1373 macros. Implementations should not use feature test macro names that might be
1374 reasonably used by a standard.

1375 The requirement for representing the number of clock ticks in 24 h refers to the |
1376 interval defined by POSIX.1, not to the interval defined by the C Standard {2}. |

1377 Including headers more than once is a reasonably common practice, and it should
1378 be carried forward from the C Standard {2}. More significantly, having definitions
1379 in more than one header is explicitly permitted. Where the potential declaration
1380 is “benign” (the same definition twice) the declaration can be repeated, if that is
1381 permitted by the compiler. (This is usually true of macros, for example.) In those
1382 situations where a repetition is not benign (e.g., typedefs), conditional compilation
1383 must be used. The situation actually occurs both within the C Standard {2} and
1384 within POSIX1: timejt should be in <sys/types. h>, and the C Standard {2}
1385 mandates that it be in <time .h>. POSIX.1 requires using <sys/types .h> with
1386 <time . h> because of the common-usage environment.

1387 B.2.7.2 POSIX.1 Symbols

1388 This subclause addresses the issue of “namespace pollution.” The C Standard {2} |
1389 requires that the namespace beyond what it reserves not be altered except by

1390 explicit action of the application writer. This subclause defines the actions to add |
1391 the POSIX.1 symbols for those headers where both the C Standard {2} and POSIX.1 |
1392 need to define symbols. Where there are nonoverlapping uses of headers, there is
1393 no problem.

1394 The list of symbols defined in the C Standard {2} is summarized in the rationale |
1395 associated with Annex C. I

1396 Implementors should note that the requirement on type conversion disallows |

B.2 Definitions and General Requirements 217

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

using an older declaration as a prototype and in effect requires that the number of |
arguments in the prototype match that given in POSIX.1. |

When headers are used to provide symbols, there is a potential for introducing
symbols that the application writer cannot predict. Ideally, each header should
only contain one set of symbols, but this is not practical for historical reasons.
Thus, the concept of feature test macros is included. This is done in a general
manner because it is expected that future additions to POSIX.1 and other related
standards will have this same problem. (Future standards not constrained by
historical practice should avoid the problem by using new header files rather than
using ones already extant.)

This idea is split into two subclauses: 2.7.2.1 covers the case of the C Standard |
{2} conformant systems, where the requirements of the C Standard {2} are that
unless specifically requested the application will not see any other symbols, and
“Common Usage,” where the default set of symbols is not well controlled and
backwards compatibility is an issue.

The common usage case is the more difficult to define. In the C Standard {2} case,
each feature test macro simply adds to the possible symbols. In common usage,
_POSIX_SOURCE is a special case in that it reduces the set to the sum of the
C Standard {2} and POSIX.1. (The developers of the C Standard {2} will determine |
if they want a similar macro to limit the features to just the C Standard {2}; the
wording permits this because under those circumstances _POSIX_SOURCE would
be just another ordinary feature test macro. The only order requirement is
“before headers.”)

If _POSIX_SOURCE is not defined in a common-usage environment, the user
presumably gets the same results as in previous releases. Some applications may
today be conformant without change, so they would continue to compile as long as
common usage is provided. When the C Standard {2} is the default they will have
to change (unless they are already C Standard {2} conformant), but this can be
done gradually.

Note that the net result of defining _POSIX_SOURCE at the beginning of a pro¬
gram is in either case the same: the implementation-defined symbols are only
visible if they are requested. (But if _POSIX_SOURCE is not used, the implemen¬
tation default, which is probably backwards compatible, determines their
visibility.)

The area of namespace pollution versus additions to structures is difficult because |
of the macro structure of C. The following discussion summarizes all the various |
problems with and objections to the issue. j

Note the phrase “user defined macro.” Users are not permitted to define macro |
names (or any other name) beginning with _[A-Z_]. Thus, the conflict cannot |
occur for symbols reserved to the vendor’s namespace, and the permission to add |
fields automatically applies, without qualification, to those symbols.

(1) Data structures (and unions) need to be defined in headers by implemen- |
tations to meet certain requirements of POSIX.1 and the C Standard {2}.

(2) The structures defined by POSIX.1 are typically minimal, and any practi- |
cal implementation would wish to add fields to these structures either to |
hold additional related information or for backwards compatibility (or |

218 B Rationale and Notes

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

both). Future standards (and de facto standards) would also wish to add
to these structures. Issues of field alignment make it impractical (at
least in the general case) to simply omit fields when they are not defined
by the particular standard involved.

Struct dirent is an example of such a minimal structure (although one
could argue about whether the other fields need visible names). The
st_rdev field of most implementations’ stat structure is a common exam¬
ple where extension is needed and where a conflict could occur.

(3) Fields in structures are in an independent namespace, so the addition of
such fields presents no problem to the C language itself in that such
names cannot interact with identically named user symbols because
access is qualified by the specific structure name.

(4) There is an exception to this: macro processing is done at a lexical level.
Thus, symbols added to a structure might be recognized as user-provided
macro names at the location where the structure is declared. This only
can occur if the user-provided name is declared as a macro before the
header declaring the structure is included. The user’s use of the name
after the declaration cannot interfere with the structure because the sym¬
bol is hidden and only accessible through access to the structure.
Presumably, the user would not declare such a macro if there was an
intention to use that field name.

(5) Macros from the same or a related header might use the additional fields
in the structure, and those field names might also collide with user mac¬
ros. Although this is a less frequent occurrence, since macros are
expanded at the point of use, no constraint on the order of use of names
can apply.

(6) An “obvious” solution of using names in the reserved namespace and
then redefining them as macros when they should be visible does not
work because this has the effect of exporting the symbol into the general
namespace. For example, given a (hypothetical) system-provided header
<h. h>, and two parts of a C program in a. c and b. c:

In header <h. h>:

struct foo {

int_i;

}

#ifdef _FEATURE_TEST

♦define i_i;

#endif

In file a. c:

♦include h.h

extern int i;

In file b. c:

B.2 Definitions and General Requirements 219

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

extern int i;

The symbol that the user thinks of as i in both files has an external
name of "_i" in a. c; the same symbol i in b. c has an external name
"i" (ignoring any hidden manipulations the compiler might perform on
the names). This would cause a mysterious name resolution problem
when a. o and b. o are linked.

Simply avoiding definition then causes alignment problems in the
structure.

A structure of the form

struct foo {

union {

int_i ;

#ifdef _FEATURE_TEST

int i;

#endif

}_ii;

}

does not work because the name of the logical field i is "_ii. i", and
introduction of a macro to restore the logical name immediately reintro¬
duces the problem discussed previously (although its manifestation
might be more immediate because a syntax error would result if a recur¬
sive macro did not cause it to fail first).

(7) A more workable solution would be to declare the structure:

struct foo {

#ifdef _FEATURE_TEST

int i ;

#else

int_i;

#endif

}

However, if a macro (particularly one required by a standard) is to be
defined that uses this field, two must be defined: one that uses i, the
other that uses_i. If more than one additional field is used in a macro
and they are conditional on distinct combinations of features, the com¬
plexity goes up as 2n.

All this leaves a difficult situation: vendors must provide very complex headers to
deal with what is conceptually simple and safe: adding a field to a structure. It is
the possibility of user-provided macros with the same name that makes this
difficult.

Several alternatives were proposed that involved constraining the user’s access to
part of the namespace available to the user (as specified by the C Standard {2}).
In some cases, this was only until all the headers had been included. There were
two proposals discussed that failed to achieve consensus:

220 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

— Limiting it for the whole program.

— Restricting the use of identifiers containing only uppercase letters until
after all system headers had been included. It was also pointed out that
because macros might wish to access fields of a structure (and macro
expansion occurs totally at point of use) restricting names in this way
would not protect the macro expansion, and thus the solution was
inadequate.

It was finally decided that reservation of symbols would occur, but as constrained.

The current wording also allows the addition of fields to a structure, but requires
that user macros of the same name not interfere. This allows vendors to either:

— Not create the situation [do not extend the structures with user-accessible
names or use the solution in (7) above] or

— Extend their compilers to allow some way of adding names to structures
and macros safely.

There are at least two ways that the compiler might be extended: add new
preprocessor directives that turn off and on macro expansion for certain symbols
(without changing the value of the macro) and a function or lexical operation that
suppresses expansion of a word. The latter seems more flexible, particularly
because it addresses the problem in macros as well as in declarations.

The following seems to be a possible implementation extension to the C language
that will do this: any token that during macro expansion is found to be preceded
by three # symbols shall not be further expanded in exactly the same way as
described for macros that expand to their own name as in section 3.8.3.4 of the
C Standard {2}. A vendor may also wish to implement this as an operation that is
lexically a function, which might be implemented as

#define_safe_name (x) ###x

Using a function notation would insulate vendors from changes in standards until
such a functionality is standardized (if ever). Standardization of such a function
would be valuable because it would then permit third parties to take advantage of
it portably in software they may supply.

The symbols that are “explicitly permitted, but not required by this part of
ISO/IEC 9945” include those classified below. (That is, the symbols classified
below might, but are not required to, be present when _POSIX_SOURCE is
defined.)

— Symbols in 2.8 and 2.9 that are defined to indicate support for options or
limits that are constant at compile-time.

— Symbols in the namespace reserved for the implementation by the
C Standard {2}.

— Symbols in a namespace reserved for a particular type of extension (e.g.,
type names ending with _t in <sys/types . h>).

— Additional members of structures or unions whose names do not reduce the
namespace reserved for applications (see B.2.7.2).

B.2 Definitions and General Requirements 221

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

1572 The phrase “when that header is included” was chosen to allow any fine structure |
1573 of auxiliary headers the implementor may choose to use, as long as the net result |
1574 is as required. |

1575 There are several common environments available today where a feature test
1576 macro would be useful to applications programmers during the transition to
1577 standard-conforming environments from certain common historical environments.
1578 The symbols in Table B-l, derived from common porting bases and industry
1579 specifications are suggested.

1580 Table B-l - Suggested Feature Test Macros
1581

1582 Symbol Description

1583 _V7 Version 7
1584 _BSD General BSD systems
1585 _BSD4_2 4.2BSD
1586 _BSD4_3 4.3BSD
1587 _SYSIII System III
1588 _SYSV System V.l, V.2
1589 _SYSV3 System V.3
1590 _XP Gn X/Open Portability Guide, Issue n

1591 _USR_GROUP The 1984 /usr/group standard

1592

1593 Only symbols that are actually in the porting base or industry specification should
1594 be enabled by these symbols.

1595 Feature test macros for implementation extensions will also probably be required.
1596 Quite a few of these are traditionally available, but are in violation of the intent of
1597 namespace pollution control. These can be made conforming simply by prefixing
1598 them with an underscore. Symbols beginning with “_POSIX” are strongly
1599 discouraged, as they will probably be used by later revisions of POSIX. 1.

1600 The environment for compilation has traditionally been fairly portable in histori-
1601 cal systems, but during the transition to the C Standard {2} there will be confu-
1602 sion about how to specify that a C Standard {2} compiler is expected, as considera-
1603 tions of backwards compatibility will constrain many implementors from provid-
1604 ing a conformant environment replacing the traditional one. This concern has
1605 more to do with the issues of namespace than with the syntax of the language
1606 accepted, which is highly compatible.

1607 For systems that are sufficiently similar to traditional UNIX systems for this to |
1608 make sense, it is suggested that if a compilation line of the form |

1609 CC -D_STDC_. . .

1610 is provided, that the system provide an environment that is conformant with the
1611 C Standard {2}, at least with respect to namespace. |

1612 It was decided to use feature test macros, rather than the inclusion of a header,
1613 both because cunistd. h> was already in use and would itself have this problem,
1614 and because the underlying mechanism would probably have been this anyway,
1615 but in a less flexible fashion.

222 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

1616 POSIX.1 requires that headers be included in all cases, although it is not directly
1617 clear from the text at this point in the standard. If a function does not need any
1618 special types, then it must be declared in <unistd.h>, as stated here. If it does
1619 require something special, then it has an associated header, and the program will
1620 not compile without that header.

1621 B.2.7.3 Headers and Function Prototypes

1622 The statement that names need not be carried forward literally exists for several
1623 reasons. These include the fact that some vendors may historically use other
1624 names and that the names are irrelevant to application portability. More impor-
1625 tantly, because of the pervasive nature of C macros, a declaration of the form:

1626 kill (pid_t pid, int sig) ;

1627 could be seriously undermined by a (perfectly valid) user declaration of the form:

1628 #define pid statusstruct .pidinfo

1629 B.2.8 Numerical Limits

1630 This subclause clarifies the scope and mutability of several classes of limits.

1631 B.2.8.1 C Language Limits

1632 See also 2.7 and B.1.1.1.

1633

1634

1635

{CHARJMIN} It is possible to tell if the implementation supports native char¬
acter comparison as signed or unsigned by comparing this limit
to zero.

1636 {WORD_BIT} This limit has been omitted, as it is not referenced elsewhere in

1637 POSIX.1.

1638 No limits are given in climits .h> for floating point values because none of the
1639 functions in POSIX.1 use floating point values, and all the functions that do that
1640 are imported from the C Standard {2} by 8.1, as are the limits that apply to the
1641 floating point values associated with them.

1642 Though limits to the addresses to system calls were proposed, they were not
1643 included in POSIX.1 because it is not clear how to implement them for the range of
1644 systems being considered, and no complete proposal was ever received. Limits |
1645 regarding hardware register characteristics were similarly proposed and not
1646 attempted.

1647 B.2.8.2 Minimum Values

1648 There has been confusion about the minimum maxima, and when that is under-
1649 stood there is still a concern about providing ways to allocate storage based on the
1650 symbols. This is particularly true for those in 2.8.4 where an indeterminate value
1651 will leave the programmer with no symbol upon which to fall back.

1652 Providing explicit symbols for the minima (from the implementor’s point of view,
1653 or maxima from the the application’s point of view) helps to resolve possible

B.2 Definitions and General Requirements 223

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

confusion. Symbols are still provided for the actual value, and it is expected that
many applications will take advantage of these larger values, but they need not
do so unless it is to their advantage. Where the values in this subclause are ade- |
quate for the application, it should use them. These are given symbolically both |
because it is easier to understand and because the values of these symbols could
change between revisions of POSIX.1. Arguments to “good programming practice”
also apply.

B.2.8.3 Run-Time Increasable Values

The heading of the far-right column of the table is given as “Minimum Value”
rather than “Value” in order to emphasize that the numbers given in that column
are minimal for the actual values a specific implementation is permitted to define
in its <limits.h>. The values in the actual <limits.h> define, in turn, the
maximum amount of a given resource that a Conforming POSIX.1 Application can
depend on finding when translated to execute on that implementation. A Con¬
forming POSIX.1 Application Using Extensions must function correctly even if the
value given in <limits.h> is the minimum that is specified in POSIX.1. (The
application may still be written so that it performs more efficiently when a larger
value is found in <limits.h>.) A conforming implementation must provide at
least as much of a particular resource as that given by the value in POSIX.1. An
implementation that cannot meet this requirement (a “toy implementation”) can¬
not be a conforming implementation.

B.2.8.4 Run-Time Invariant Values (Possibly Indeterminate)

{CHILD_MAX} This name can be misleading. This limit applies to all
processes in the system with the same user ID, regardless of
ancestry.

B.2.8.5 Pathname Variable Values

{MAX_INPUT} Since the only use of this limit is in relation to terminal input
queues, it mentions them specifically. This limit was originally
named {MAX_CHAR}. Application writers should use
{MAX_INPUT} primarily as an indication of the number of bytes
that can be written as a single unit by one Conforming POSIX.1
Application Using Extensions communicating with another via
a terminal device. It is not implied that input lines received
from terminal devices always contain {MAX_INPUT} bytes or
fewer: an application that attempts to read more than
{MAX_INPUT} bytes from a terminal may receive more than
{MAXJNPUT} bytes.

It is not obvious that {MAX_INPUT} is of direct value to the
application writer. The existence of such a value (whatever it
may be) is directly of use in understanding how the tty driver
works (particularly with respect to flow control and dropped
characters). The value can be determined by finding out when
flow control takes effect (see the description of IXOFF in
7.1.2.2).

224 B Rationale and Notes

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Understanding that the limit exists and knowing its magnitude
is important to making certain classes of applications work
correctly. It is unlikely to be used in an application, but its
presence makes POSIX1 clearer.

{PATH_MAX} A Conforming POSIX.1 Application or Conforming POSIX.1
Application Using Extensions that, for example, compiles to use
different algorithms depending on the value of {PATH_MAX}
should use code such as:

#if defined(path_max) && path_max < 512

#else

#i£ defined(path_max) /* path_max >= 512 */

#else /* path_max indeterminate */

#endif

#endif

This is because the value tends to be very large or indeter¬
minate on most historical implementations (it is arbitrarily
large on System V). On such systems there is no way to quan¬
tify the limit, and it seems counterproductive to include an
artificially small fixed value in <limits . h> in such cases.

B.2.9 Symbolic Constants

B.2.9.1 Symbolic Constants for the access () Function

There is no additional rationale provided for this subclause.

B.2.9.2 Symbolic Constants for the IseekO Function

There is no additional rationale provided for this subclause.

B.2.9.3 Compile-Time Symbolic Constants for Portability Specifications

The purpose of this material is to allow an application developer to have a chance |
to determine whether a given application would run (or run well) on a given
implementation. To this purpose has been added that of simplifying development
of verification suites for POSIX.1. The constants given here were originally pro- |
posed for a separate file, <posix. h>, but it was decided that they should appear |
in<unistd.h> along with other symbolic constants. |

B.2.9.4 Execution-Time Symbolic Constants for Portability Specifications

Without the addition of LPOSIX_NO_TRUNC} and {_PC_NO_TRUNC} to this list,
POSIX.1 says nothing about the effect of a pathname component longer than
{NAME_MAX}. There are only two effects in common use in implementations:
truncation or an error. It is desirable to limit allowable behavior to these two

B.2 Definitions and General Requirements 225

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

1737 cases. It is also desirable to permit applications to determine what an
1738 implementation’s behavior is because services that are available with one
1739 behavior may be impractical to provide with the other. However, since the
1740 behavior may vary from one file system to another, it may be necessary to use
1741 pathconfi) to resolve it.

1742 B.3 Process Primitives

1743 Consideration was given to enumerating all characteristics of a process defined by |
1744 POSIX. 1 and describing each function in terms of its effects on those characteris-
1745 tics, rather than English text. This is quite different from any known descriptions
1746 of historical implementations, and it was not certain that this could be done ade- |
1747 quately and completely enough to produce a usable standard. Providing such
1748 descriptions in addition to the text was also considered. This was not done
1749 because it would provide at best two redundant descriptions, and more likely two
1750 descriptions with subtle inconsistencies.

1751 B.3.1 Process Creation and Execution

1752 Running a new program takes two steps. First the existing process (the parent)
1753 calls the fork() function, producing a new process (the child), which is a copy of
1754 itself. One of these processes (normally, but not necessarily, the child) then calls
1755 one of the exec functions to overlay itself with a copy of the new process image.

1756 If the new program is to be run synchronously (the parent suspends execution
1757 until the child completes), the parent process then uses either the wait{) or wait-
1758 pid() function. If the new program is to be run asynchronously, it does not suffice
1759 to simply omit the wait() or waitpidi) call, because after the child terminates it
1760 continues to hold some resources until it is waited for. A common way to produce
1761 (“spawn”) a descendant process that does not need to be waited on is to fork () to
1762 produce a child and wait() on the child. The child fork()s again to produce a
1763 grandchild. The child then exits and the parent’s wait() returns. The grandchild
1764 is thus disinherited by its grandparent.

1765 A simpler method (from the programmer’s point of view) of spawning is to do

1766 system("something &");

1767 However, this depends on features of a process (the shell) that are outside the
1768 scope of POSIX. 1, although they are currently being addressed by the working |
1769 group preparing ISO/IEC 9945-2 {B36}. I

1770 B.3.1.1 Process Creation

1771 Many historical implementations have timing windows where a signal sent to a |
1772 process group (e.g., an interactive SIGINT) just prior to or during execution of
1773 fork() is delivered to the parent following the fork() but not to the child because
1774 the forki) code clears the child’s set of pending signals. POSIX.1 does not require,
1775 or even permit, this behavior. However, it is pragmatic to expect that problems of
1776 this nature may continue to exist in implementations that appear to conform to

226 B Rationale and Notes

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Part 1: SYSTEM API [C LANGUAGE]

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

POSIX.1 and pass available verification suites. This behavior is only a conse- |
quence of the implementation failing to make the interval between signal genera¬
tion and delivery totally invisible. From the application’s perspective, a fork () call
should appear atomic. A signal that is generated prior to the fork () should be
delivered prior to the fork{). A signal sent to the process group after the fork{)

should be delivered to both parent and child. The implementation might actually
initialize internal data structures corresponding to the child’s set of pending sig¬
nals to include signals sent to the process group during the fork(). Since the
fork{) call can be considered as atomic from the application’s perspective, the set
would be initialized as empty and such signals would have arrived after the
fork(). See also B.3.3.1.2.

One approach that has been suggested to address the problem of signal inheri¬
tance across fork() is to add an [EINTR] error, which would be returned when a
signal is detected during the call. While this is preferable to losing signals, it was
not considered an optimal solution. Although it is not recommended for this pur¬
pose, such an error would be an allowable extension for an implementation.

The [ENOMEM] error value is reserved for those implementations that detect and
distinguish such a condition. This condition occurs when an implementation
detects that there is not enough memory to create the process. This is intended to
be returned when [EAGAIN] is inappropriate because there can never be enough
memory (either primary or secondary storage) to perform the operation. Because
fork() duplicates an existing process, this must be a condition where there is
sufficient memory for one such process, but not for two. Many historical imple- |
mentations actually return [ENOMEM] due to temporary lack of memory, a case |
that is not generally distinct from [EAGAIN] from the perspective of a portable
application.

Part of the reason for including the optional error [ENOMEM] is because the SVID

[B39] specifies it and it should be reserved for the error condition specified there.
The condition is not applicable on many implementations.

IEEE Std 1003.1-1988 neglected to require concurrent execution of the parent and |
child of fork(). A system that single-threads processes was clearly not intended |
and is considered an unacceptable, “toy implementation” of POSIX.1. The only |
objection anticipated to the phrase “executing independently” is testability, but |
this assertion should be testable. Such tests require that both the parent and |
child can block on a detectable action of the other, such as a write to a pipe or a |
signal. An interactive exchange of such actions should be possible for the system
to conform to the intent of POSIX.1.

The [EAGAIN] error exists to warn applications that such a condition might occur.]
Whether it will occur or not is not in any practical sense under the control of the
application because the condition is usually a consequence of the user’s use of the
system, not of the application’s code. Thus, no application can or should rely upon |
its occurrence under any circumstances, nor should the exact semantics of what
concept of “user” is used be of concern to the application writer. Validation writ- |
ers should be cognizant of this limitation.

B.3 Process Primitives 227

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

B.3.1.2 Execute a File

Early drafts of POSIX.1 required that the value ofargc passed to main{) be “one or |
greater.” This was driven by the same requirement in drafts of the C Standard
{2}. In fact, historical implementations have passed a value of zero when no argu¬
ments are supplied to the caller of the exec functions. This requirement was
removed from the C Standard {2} and subsequently removed from POSIX.1 as well.
The POSIX.1 wording, in particular the use of the word “should,” requires a
Strictly Conforming POSIX.1 Application (see 1.3.3) to pass at least one argument
to the exec function, thus guaranteeing that argc be one or greater when invoked
by such an application. In fact, this is good practice, since many existing applica¬
tions reference argv [0] without first checking the value of argc.

The requirement on a Strictly Conforming POSIX.1 Application also states that
the value passed as the first argument be a filename associated with the process
being started. Although some existing applications pass a pathname rather than
a filename in some circumstances, a filename is more generally useful, since the
common usage of argu[0] is in printing diagnostics. In some cases the filename
passed is not the actual filename of the file; for example, many implementations
of the login utility use a convention of prefixing a hyphen (-) to the actual
filename, which indicates to the command interpreter being invoked that it is a
“login shell.”

Some systems can exec shell scripts. This functionality is outside the scope of
POSIX.1, since it requires standardization of the command interpreter language of
the script and/or where to find a command interpreter. These fall in the domain
of the shell and utilities standard, currently under development as ISO/IEC 9945-2 |
{B36}. However, it is important that POSIX.1 neither require nor preclude any |
reasonable implementation of this behavior. In particular, the description of the
[ENOEXEC] error is intended to permit discretion to implementations on whether
to give this error for shell scripts.

One common historical implementation is that the execl(), execvi), execle(), and |
execveO functions return an [ENOEXEC] error for any file not recognizable as exe¬
cutable, including a shell script. When the execlp () and execvp () functions
encounter such a file, they assume the file to be a shell script and invoke a known
command interpreter to interpret such files. These implementations of execvp ()
and execlp () only give the [ENOEXEC] error in the rare case of a problem with the
command interpreter’s executable file. Because of these implementations the
[ENOEXEC] error is not mentioned for execlp() or execvp (), although implementa¬
tions can still give it.

Another way that some historical implementations handle shell scripts is by |
recognizing the first two bytes of the file as the character string # ! and using the |
remainder of the first line of the file as the name of the command interpreter to
execute.

Some implementations provide a third argument to main() called envp. This is
defined as a pointer to the environment. The C Standard {2} specifies invoking
main() with two arguments, so implementations must support applications writ¬
ten this way. Since POSIX.1 defines the global variable environ, which is also pro¬
vided by historical implementations and can be used anywhere envp could be |
used, there is no functional need for the envp argument. Applications should use

228 B Rationale and Notes

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

the getenvi) function rather than accessing the environment directly via either
envp or environ. Implementations are required to support the two-argument cal¬
ling sequence, but this does not prohibit an implementation from supporting envp
as an optional, third argument.

POSIX.1 specifies that signals set to SIG_IGN remain set to SIG_IGN and that the
process signal mask be unchanged across an exec. This is consistent with histori¬
cal implementations, and it permits some useful functionality, such as the nohup

command. However, it should be noted that many existing applications wrongly
assume that they start with certain signals set to the default action and/or
unblocked. In particular, applications written with a simpler signal model that
does not include blocking of signals, such as the one in the C Standard {2}, may
not behave properly if invoked with some signals blocked. Therefore, it is best not
to block or ignore signals across execs without explicit reason to do so, and espe¬
cially not to block signals across execs of arbitrary (not closely co-operating)
programs.

If {_POSIX_SAVED_IDS} is defined, the exec functions always save the value of the
effective user ID and effective group ID of the process at the completion of the
exec, whether or not the set-user-ID or the set-group-ID bit of the process image
file is set.

The statement about argv[\ and envpi] being constants is included to make expli¬
cit to future writers of language bindings that these objects are completely con¬
stant. Due to a limitation of the C Standard {2}, it is not possible to state that
idea in Standard C. Specifying two levels of const-qualification for the argv[]
and envp [] parameters for the exec functions may seem to be the natural choice,
given that these functions do not modify either the array of pointers or the charac¬
ters to which the function points, but this would disallow existing correct code.
Instead, only the array of pointers is noted as constant. The table of assignment
compatibility for dst = src, derived from the C Standard {2}, summarizes the

compatibility:

dst:
const char const

char *[] char*[] *const[] char*const[]

src:
char * [] VALID

const char *[] VALID

char * const []

const char *const []

Since all existing code has a source type matching the first row, the column that
gives the most valid combinations is the third column. The only other possibility
is the fourth column, but using it would require a cast on the argv or envp argu¬
ments. It is unfortunate that the fourth column cannot be used, because the
declaration a nonexpert would naturally use would be that in the second row.

The C Standard {2} and POSIX.1 do not conflict on the use of environ, but some
historical implementations of environ may cause a conflict. As long as environ is
treated in the same way as an entry point [e.g., fork()], it conforms to both stan¬
dards. A library can contain fork(), but if there is a user-provided fork0, that

VALID

VALID

VALID

VALID

B.3 Process Primitives
229

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

1914 fork() is given precedence and no problem ensues. The situation is similar for |
1915 environ—the POSIX.l definition is to be used if there is no user-provided environ |
1916 to take precedence. At least three implementations are known to exist that solve |
1917 this problem.

1918 [E2BIG] The limit {ARG_MAX} applies not just to the size of the argu-
1919 ment fist, but to the sum of that and the size of the environ-

1920 ment list.

1921

1922

1923

[EFAULT] Some historical systems return [EFAULTj rather than |
[ENOEXEC1 when the new process image file is corrupted. They
are nonconforming.

1924 [ENAMETOOLONG]
1925 Since the file pathname may be constructed by taking elements
1926 in the PATH variable and putting them together with the
1927 filename, the [ENAMETOOLONG] condition could also be
1928 reached this way.

1929 [ETXTBSY] The error [ETXTBSY] was considered too implementation
1930 dependent to include. System V returns this error when the
1931 executable file is currently open for writing by some process.
1932 POSIX.l neither requires nor prohibits this behavior.

1933 Other systems (such as System V) may return [EINTR] from exec. This is not
1934 addressed by POSIX.l, but implementations may have a window between the call
1935 to exec and the time that a signal could cause one of the exec calls to return with
1936 [EINTR].

1937 B.3.2 Process Termination

1938 Early drafts drew a different distinction between normal and abnormal process |
1939 termination. Abnormal termination was caused only by certain signals and
1940 resulted in implementation-defined “actions,” as discussed below. Subsequent
1941 drafts of POSIX.l distinguished three types of termination: normal termination
1942 (as in the current POSIX.1), “simple abnormal termination,” and “abnormal termi-
1943 nation with actions.” Again the distinction between the two types of abnormal
1944 termination was that they were caused by different signals and that
1945 implementation-defined actions would result in the latter case. Given that these
1946 actions were completely implementation defined, the early drafts were only saying
1947 when the actions could occur and how their occurrence could be detected, but not
1948 what they were. This was of little or no use to portable applications, and thus the
1949 distinction was dropped from POSIX.l.

1950 The implementation-defined actions usually include, in most historical implemen-
1951 tations, the creation of a file named core in the current working directory of the
1952 process. This file contains an image of the memory of the process, together with
1953 descriptive information about the process, perhaps sufficient to reconstruct the
1954 state of the process at the receipt of the signal.

1955 There is a potential security problem in creating a core file if the process was
1956 set-user-ID and the current user is not the owner of the program, if the process
1957 was set-group-ID and none of the user’s groups match the group of the program,

230 B Rationale and Notes

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

or if the user does not have permission to write in the current directory. In this
situation, an implementation either should not create a core file or should make
it unreadable by the user.

Despite the silence of POSIX.l on this feature, applications are advised not to
create files named core because of potential conflicts in many implementations.
Some historical implementations use a different name than core for the file, such
as by appending the process ID to the filename.

B.3.2.1 Wait for Process Termination

A call to the waitO or waitpid() function only returns status on an immediate
child process of the calling process; i.e., a child that was produced by a single
forkO call (perhaps followed by an exec or other function calls) from the parent. If
a child produces grandchildren by further use of forkO, none of those grandchil¬
dren nor any of their descendants will affect the behavior of a wait() from the ori¬
ginal parent process. Nothing in POSIX.1 prevents an implementation from pro¬
viding extensions that permit a process to get status from a grandchild or any
other process, but a process that does not use such extensions must be guaranteed
to see status from only its direct children.

The waitpidO function is provided for three reasons:

— To support job control (see B.3.3).

— To permit a nonblocking version of the wait() function.

— To permit a library routine, such as systemO or pclose(), to wait for its chil¬
dren without interfering with other terminated children for which the pro¬
cess has not waited.

The first two of these facilities are based on the wait3{) function provided by
4.3BSD. The interface uses the options argument, which is identical to an argu¬
ment to wait3(). The WUNTRACED flag is used only in conjunction with job con¬
trol on systems supporting that option. Its name comes from 4.3BSD and refers to
the fact that there are two types of stopped processes in that implementation:
processes being traced via the ptrace () debugging facility and (untraced) processes
stopped by job-control signals. Since ptrace() is not part of POSIX.l, only the
second type is relevant. The name WUNTRACED was retained because its usage |
is the same, even though the name is not intuitively meaningful in this context.

The third reason for the waitpidO function is to permit independent sections of a
process to spawn and wait for children without interfering with each other. For
example, the following problem occurs in developing a portable shell, or command |
interpreter:

stream = popen("/bin/true");

(void) system("sleep 100");

(void) pclose(stream);

On all historical implementations, the final pclose() will fail to reap the wait
status of the popenO-

The status values are retrieved by macros, rather than given as specific bit encod¬
ings as they are in most historical implementations (and thus expected by

B.3 Process Primitives 231

INFORMATION TECHNOLOGY—POSIX
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

2001 existing programs). This was necessary to eliminate a limitation on the number
2002 of signals an implementation can support that was inherent in the traditional
2003 encodings. POSIX.1 does require that a status value of zero corresponds to a pro-
2004 cess calling jexitiO), as this is the most common encoding expected by existing
2005 programs. Some of the macro names were adopted from 4.3BSD.

2006 These macros syntactically operate on an arbitrary integer value. The behavior is
2007 undefined unless that value is one stored by a successful call to waiti) or wait-
2008 pid() in the location pointed to by the stat_loc argument. An earlier draft
2009 attempted to make this clearer by specifying each argument as *stat_loc rather
2010 than statjual. However, that did not follow the conventions of other specifications
2011 in POSIX.1 or traditional usage. It also could have implied that the argument to
2012 the macro must literally be *stat_loc; in fact, that value can be stored or passed as
2013 an argument to other functions before being interpreted by these macros.

2014 The extension that affects waiti) and waitpidO and is common in historical imple-
2015 mentations is the ptrace () function. It is called by a child process and causes that
2016 child to stop and return a status that appears identical to the status indicated by
2017 WIFSTOPPED. The status of ptraced children is traditionally returned regardless
2018 of the WUNTRACED flag [or by the wait{) function]. Most applications do not need
2019 to concern themselves with such extensions because they have control over what
2020 extensions they or their children use. However, applications, such as command
2021 interpreters, that invoke arbitrary processes may see this behavior when those
2022 arbitrary processes misuse such extensions.

2023 Implementations that support core file creation or other implementation-defined
2024 actions on termination of some processes traditionally provide a bit in the status
2025 returned by waiti) to indicate that such actions have occurred.

2026 B.3.2.2 Terminate a Process

2027 Most C language programs should use the exit() function rather than jexiti). The
2028 jexiti) function is defined here instead of exiti) because the C Standard {2} defines
2029 the latter to have certain characteristics that are beyond the scope of POSIX.1,
2030 specifically the flushing of buffers on open files and the use of atexiti). See “The C |

2031 Language” in the Introduction. There are several public-domain implementations |
2032 of atexiti) that may be of use to interface implementors who wish to incorporate it.

2033 It is important that the consequences of process termination as described in this
2034 subclause occur regardless of whether the process called _exit() [perhaps |
2035 indirectly through exiti)] or instead was terminated due to a signal or for some
2036 other reason. Note that in the specific case of exiti) this means that the status
2037 argument to exiti) is treated the same as the status argument to jexiti). See also
2038 B.3.2.

2039 A language other than C may have other termination primitives than the C
2040 language exiti) function, and programs written in such a language should use its
2041 native termination primitives, but those should have as part of their function the
2042 behavior of jexiti) as described in this subclause. Implementations in languages |
2043 other than C are outside the scope of the present version of POSIX.1, however.

2044 As required by the C Standard {2}, using return from maini) is equivalent to cal- |
2045 ling exiti) with the same argument value. Also, reaching the end of the maini)

232 B Rationale and Notes

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

function is equivalent to using exit{) with an unspecified value.

A value of zero (or EXIT_SUCCESS, which is required by 8.1 to be zero) for the |
argument status conventionally indicates successful termination. This
corresponds to the specification for exit() in the C Standard {2}. The convention is
followed by utilities such as make and various shells, which interpret a zero
status from a child process as success. For this reason, applications should not
call exit(0) or jexit(O) when they terminate unsuccessfully, for example in signal-
catching functions.

Historically, the implementation-dependent process that inherits children whose
parents have terminated without waiting on them is called in it and has a pro¬
cess ID of 1.

The sending of a SIGHUP to the foreground process group when a controlling pro¬
cess terminates corresponds to somewhat different historical implementations. In |
System V, the kernel sends a SIGHUP on termination of (essentially) a controlling
process. In 4.2BSD, the kernel does not send SIGHUP in a case like this, but the
termination of a controlling process is usually noticed by a system daemon, which
arranges to send a SIGHUP to the foreground process group with the vhangup ()
function. However, in 4.2BSD, due to the behavior of the shells that support job
control, the controlling process is usually a shell with no other processes in its
process group. Thus, a change to make _exit{) behave this way in such systems
should not cause problems with existing applications.

The termination of a process may cause a process group to become orphaned in
either of two ways. The connection of a process group to its parent(s) outside of
the group depends on both the parents and their children. Thus, a process group
may be orphaned by the termination of the last connecting parent process outside
of the group or by the termination of the last direct descendant of the parent
process(es). In either case, if the termination of a process causes a process group
to become orphaned, processes within the group are disconnected from their job
control shell, which no longer has any information on the existence of the process
group. Stopped processes within the group would languish forever. In order to
avoid this problem, newly orphaned process groups that contain stopped processes
are sent a SIGHUP signal and a SIGCONT signal to indicate that they have been
disconnected from their session. The SIGHUP signal causes the process group
members to terminate unless they are catching or ignoring SIGHUP. Under most
circumstances, all of the members of the process group are stopped if any of them
are stopped.

The action of sending a SIGHUP and a SIGCONT signal to members of a newly
orphaned process group is similar to the action of 4.2BSD, which sends SIGHUP
and SIGCONT to each stopped child of an exiting process. If such children exit in
response to the SIGHUP, any additional descendants will receive similar treat¬
ment at that time. In POSIX.l, the signals will be sent to the entire process group
at the same time. Also, in POSIX.1, but not in 4.2BSD, stopped processes may be
orphaned, but may be members of a process group that is not orphaned; therefore,
the action taken at _exit() must consider processes other than child processes.

It is possible for a process group to be orphaned by a call to setpgidi) or setsidO, \
as well as by process termination. POSIX.1 does not require sending SIGHUP and |
SIGCONT in those cases, because, unlike process termination, those cases will not |

B.3 Process Primitives 233

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

be caused accidentally by applications that are unaware of job control. An imple- |
mentation can choose to send SIGHUP and SIGCONT in those cases as an exten- |
sion; such an extension must be documented as required in 3.3.1.2.

B.3.3 Signals

Signals, as defined in Version 7, System III, the 1984 /usr/group Standard {B59}, |
and System V (except very recent releases), have shortcomings that make them |
unreliable for many application uses. Several objections were raised against early |
drafts of POSIX. 1 because of this. Therefore, a new signal mechanism, based very |
closely on the one of 4.2BSD and 4.3BSD, was added to POSIX.1. With the excep¬
tion of one feature [see item (4) below and also sigpending()], it is possible to
implement the POSIX.1 interface as a simple library veneer on top of 4.3BSD.
There are also a few minor aspects of the underlying 4.3BSD implementation (as
opposed to the interface) that would also need to change to conform to POSIX.1.

The major differences from the BSD mechanism are:

(1) Signal mask type. BSD uses the type int to represent a signal mask, thus
limiting the number of signals to the number of bits in an int (typically
32). The new standard instead uses a defined type for signal masks.
Because of this change, the interface is significantly different than it is in
BSD implementations, although the functionality, and potentially the
implementation, are very similar.

(2) Restarting system calls. Unlike all previous historical implementations,
4.2BSD restarts some interrupted system calls rather than returning an
error with errno set to [EINTR] after the signal-catching function returns.
This change caused problems for some existing application code. 4.3BSD
and other systems derived from 4.2BSD allow the application to choose
whether system calls are to be restarted. POSIX.1 (in 3.3.4) does not
require restart of functions because it was not clear that the semantics of
system-call restart in any historical implementation were useful enough |
to be of value in a standard. Implementors are free to add such mechan¬
isms as extensions.

(3) Signal stacks. The 4.2BSD mechanism includes a function sigstack().
The 4.3BSD mechanism includes this and a function sigreturn(). No
equivalent is included in POSIX.1 because these functions are not port¬
able, and no sufficiently portable and useful equivalent has been
identified. See also 8.3.1.

(4) Pending signals. The sigpendingi) function is the sole new signal opera- |
tion introduced in POSIX.1. I

A proposal was considered for making reliable signals optional. However, the |
consensus was that this would hurt application portability, as a large percentage
of applications using signals can be hurt by the unreliable aspects of historical
implementations of the signali) mechanism defined by the C Standard {2}. This
unreliability stems from the fact that the signal action is reset to SIG_DFL before
the user’s signal-catching routine is entered. The C Standard {2} does not require
this behavior, but does explicitly permit it, and most historical implementations |
behave this way. I

234 B Rationale and Notes

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

For example, an application that catches the SIGINT signal using signalO could
be terminated with no chance to recover when two such signals arrive sufficiently
close in time (e.g., when an impatient user types the INTR character twice in a
row on a busy system). Although the C Standard {2} no longer requires this
unreliable behavior, many historical implementations, including System V, will |
reset the signal action to SIG_DFL. For this reason, it is strongly recommended
that the signalO function not be used by POSIX.1 conforming applications. Imple¬
mentations should also consider blocking signals during the execution of the
signal-catching function instead of resetting the action to SIG_DFL, but backward
compatibility considerations will most likely prevent this from becoming
universal.

Most historical implementations do not queue signals; i.e., a process’s signal
handler is invoked once, even if the signal has been generated multiple times
before it is delivered. A notable exception to this is SIGCLD, which, in System V,
is queued. The queueing of signals is neither required nor prohibited by POSIX.1. |
See 3.3.1.2. It is expected that a future realtime extension to POSIX.1 will address j
the issue of reliable queueing of event notification.

B.3.3.1 Signal Concepts

B.3.3.1.1 Signal Names

The restriction on the actual type used for sigsetjt is intended to guarantee that
these objects can always be assigned, have their address taken, and be passed as
parameters by value. It is not intended that this type be a structure including
pointers to other data structures, as that could impact the portability of applica¬
tions performing such operations. A reasonable implementation could be a struc¬
ture containing an array of some integer type.

The signals described in POSIX.1 must have unique values so that they may be
named as parameters of case statements in the body of a C language switch
clause. However, implementation-defined signals may have values that overlap
with each other or with signals specified in this document. An example of this is
SIGABRT, which traditionally overlaps some other signal, such as SIGIOT.

SIGKILL, SIGTERM, SIGUSR1, and SIGUSR2 are ordinarily generated only through
the explicit use of the killO function, although some implementations generate
SIGKILL under extraordinary circumstances. SIGTERM is traditionally the
default signal sent by the kill command.

The signals SIGBUS, SIGEMT, SIGIOT, SIGTRAP, and SIGSYS were omitted from
POSIX.1 because their behavior is implementation dependent and could not be
adequately categorized. Conforming implementations may deliver these signals,
but must document the circumstances under which they are delivered and note
any restrictions concerning their delivery. The signals SIGFPE, SIGILL, and SIG-
SEGV are similar in that they also generally result only from programming errors.
They were included in POSIX.1 because they do indicate three relatively well-
categorized conditions. They are all defined by the C Standard {2} and thus would
have to be defined by any system with a C Standard {2} binding, even if not expli¬
citly included in POSIX.1.

B.3 Process Primitives 235

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

There is very little that a Conforming POSIX. 1 Application can do by catching,
ignoring, or masking any of the signals SIGILL, SIGTRAP, SIGIOT, SIGEMT,
SIGBUS, SIGSEGV, SIGSYS, or SIGFPE. They will generally be generated by the
system only in cases of programming errors. While it may be desirable for some
robust code (e.g., a library routine) to be able to detect and recover from program¬
ming errors in other code, these signals are not nearly sufficient for that purpose.
One portable use that does exist for these signals is that a command interpreter
can recognize them as the cause of a process’s termination [with wait()] and print
an appropriate message. The mnemonic tags for these signals are derived from
their PDP-11 origin.

The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT are provided for
job control and are unchanged from 4.2BSD. The signal SIGCHLD is also typically
used by job control shells to detect children that have terminated or, as in 4.2BSD,
stopped. See also B.3.3.4.

Some implementations, including System V, have a signal named SIGCLD, which
is similar to SIGCHLD in 4.2BSD. POSIX. 1 permits implementations to have a sin¬
gle signal with both names. POSIX. 1 carefully specifies ways in which portable
applications can avoid the semantic differences between the two different imple¬
mentations. The name SIGCHLD was chosen for POSIX. 1 because most current
application usages of it can remain unchanged in conforming applications.
SIGCLD in System V has more cases of semantics that POSIX.l does not specify,
and thus applications using it are more likely to require changes in addition to
the name change.

Some implementations that do not support job control may nonetheless imple¬
ment SIGCHLD. Similarly, such an implementation may choose to implement SIG¬
STOP. Since POSIX.l requires that symbolic names always be defined (with the
exception of certain names in <limits .h> and <unistd.h>), a portable method
of determining, at run-time, whether an optional signal is supported is to call the
sigactionO function with NULL act and oact arguments. A successful return indi¬
cates that the signal is supported. Note that if syscon/X) shows that job control is
present, then all of the optional signals shall also be supported.

The signals SIGUSR1 and SIGUSR2 are commonly used by applications for
notification of exceptional behavior and are described as “reserved as application
defined” so that such use is not prohibited. Implementations should not generate
SIGUSR1 or SIGUSR2, except when explicitly requested by kill(). It is recom¬
mended that libraries not use these two signals, as such use in libraries could
interfere with their use by applications calling the libraries. If such use is una¬
voidable, it should be documented. It is prudent for nonportable libraries to use
nonstandard signals to avoid conflicts with use of standard signals by portable
libraries.

There is no portable way for an application to catch or ignore nonstandard sig- |
nals. Some implementations define the range of signal numbers, so applications
can install signal-catching functions for all of them. Unfortunately,
implementation-defined signals often cause problems when caught or ignored by
applications that do not understand the reason for the signal. While the desire
exists for an application to be more robust by handling all possible signals [even
those only generated by kill()], no existing mechanism was found to be sufficiently
portable to include in POSIX.l. The value of such a mechanism, if included, would

236 B Rationale and Notes

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

be diminished given that SIGKILL would still not be catchable.

B.3.3.1.2 Signal Generation and Delivery

The terms defined in this subclause are not used consistently in documentation of |
historical systems. Each signal can be considered to have a lifetime beginning |
with generation and ending with delivery. The POSIX.1 definition of delivery does |
not exclude ignored signals; this is considered a more consistent definition.

Implementations should deliver unblocked signals as soon after they are gen¬
erated as possible. However, it is difficult for POSIX.1 to make specific require¬
ments about this, beyond those in kill{) and sigprocmask{). Even on systems with
prompt delivery, scheduling of higher priority processes is always likely to cause
delays.

In general, the interval between the generation and delivery of unblocked signals
cannot be detected by an application. Thus, references to pending signals gen¬
erally apply to blocked, pending signals.

In the 4.3BSD system, signals that are blocked and set to SIG_IGN are discarded
immediately upon generation. For a signal that is ignored as its default action, if
the action is SIG_DFL and the signal is blocked, a generated signal remains pend¬
ing. In the 4.1BSD system and in System V Release 3, two other implementations
that support a somewhat similar signal mechanism, all ignored, blocked signals
remain pending if generated. Because it is not normally useful for an application
to simultaneously ignore and block the same signal, it was unnecessary for
POSIX.1 to specify behavior that would invalidate any of the historical |
implementations. |

There is one case in some historical implementations where an unblocked, pend- |
ing signal does not remain pending until it is delivered. In the System V imple¬
mentation of signal(), pending signals are discarded when the action is set to
SIG_DFL or a signal-catching routine (as well as to SIG_IGN). Except in the case
of setting SIGCHLD to SIG_DFL, implementations that do this do not conform com¬
pletely to POSIX.1. Some earlier drafts of POSIX.1 explicitly stated this, but these
statements were redundant due to the requirement that functions defined by
POSIX.1 not change attributes of processes defined by POSIX.1 except as explicitly
stated (see Section 3).

POSIX.1 specifically states that the order in which multiple, simultaneously pend¬
ing signals are delivered is unspecified. This order has not been explicitly
specified in historical implementations, but has remained quite consistent and
been known to those familiar with the implementations. Thus, there have been
cases where applications (usually system utilities) have been written with explicit
or implicit dependencies on this order. Implementors and others porting existing
applications may need to be aware of such dependencies.

When there are multiple pending signals that are not blocked, implementations
should arrange for the delivery of all signals at once, if possible. Some implemen¬
tations stack calls to all pending signal-catching routines, making it appear that
each signal-catcher was interrupted by the next signal. In this case, the imple¬
mentation should ensure that this stacking of signals does not violate the seman¬
tics of the signal masks established by sigactioni). Other implementations pro¬
cess at most one signal when the operating system is entered, with remaining

B.3 Process Primitives 237

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

signals saved for later delivery. Although this practice is widespread, this |
behavior is neither standardized nor endorsed. In either case, implementations |
should attempt to deliver signals associated with the current state of the process
(e.g., SIGFPE) before other signals, if possible.

In 4.2BSD and 4.3BSD, it is not permissible to ignore or explicitly block SIGCONT
because if blocking or ignoring this signal prevented it from continuing a stopped
process, such a process could never be continued (only killed by SIGKILL). How¬
ever, 4.2BSD and 4.3BSD do block SIGCONT during execution of its signal-catching
function when it is caught, creating exactly this problem. A proposal was con- |
sidered to disallow catching SIGCONT in addition to ignoring and blocking it, but |
this limitation led to objections. The consensus was to require that SIGCONT
always continue a stopped process when generated. This removed the need to
disallow ignoring or explicit blocking of the signal; note that SIG_IGN and
SIG_DFL are equivalent for SIGCONT.

B.3.3.1.3 Signal Actions

Earlier drafts of POSIX.1 mentioned SIGCONT as a second exception to the rule
that signals are not delivered to stopped processes until continued. Because
POSIX.1 now specifies that SIGCONT causes the stopped process to continue when
it is generated, delivery of SIGCONT is not prevented because a process is stopped,
even without an explicit exception to this rule.

Ignoring a signal by setting the action to SIG_IGN (or SIG_DFL for signals whose
default action is to ignore) is not the same as installing a signal-catching function
that simply returns. Invoking such a function will interrupt certain system func¬
tions that block processes [e.g., wait(), sigsuspend(), pause(), read(), write()]
while ignoring a signal has no such effect on the process.

Historical implementations discard pending signals when the action is set to
SIG_IGN. However, they do not always do the same when the action is set to
SIG_DFL and the default action is to ignore the signal. POSIX.1 requires this for
the sake of consistency and also for completeness, since the only signal this
applies to is SIGCHLD, and POSIX.1 disallows setting its action to SIG_IGN.

The specification of the effects of SIG_IGN on SIGCHLD as implementation defined
permits, but does not require, the System V effect of causing terminating children
to be ignored by wait(). Yet it permits SIGCHLD to be effectively ignored in an
implementation-independent manner by use of SIG_DFL.

Some implementations (System V, for example) assign different semantics for
SIGCLD depending on whether the action is set to SIG_IGN or SIG_DFL. Since
POSIX.1 requires that the default action for SIGCHLD be to ignore the signal,
applications should always set the action to SIG_DFL in order to avoid SIGCHLD.

Some implementations (System V, for example) will deliver a SIGCLD signal
immediately when a process establishes a signal-catching function for SIGCLD
when that process has a child that has already terminated. Other implementa¬
tions, such as 4.3BSD, do not generate a new SIGCHLD signal in this way. In gen¬
eral, a process should not attempt to alter the signal action for the SIGCHLD sig¬
nal while it has any outstanding children. However, it is not always possible for a
process to avoid this; for example, shells sometimes start up processes in pipe¬
lines with other processes from the pipeline as children. Processes that cannot

238 B Rationale and Notes

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

Part 1: SYSTEM API [C LANGUAGE]
ISO/JEC 9945-1: 1990

IEEE Std 1003.1-1990

ensure that they have no children when altering the signal action for SIGCHLD
thus need to be prepared for, but not depend on, generation of an immediate
SIGCHLD signal.

The default action of the stop signals (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is
to stop a process that is executing. If a stop signal is delivered to a process that is
already stopped, it has no effect. In fact, if a stop signal is generated for a
stopped process whose signal mask blocks the signal, the signal will never be
delivered to the process since the process must receive a SIGCONT, which discards
all pending stop signals, in order to continue executing.

The SIGCONT signal shall continue a stopped process even if SIGCONT is blocked
(or ignored). However, if a signal-catching routine has been established for
SIGCONT, it will not be entered until SIGCONT is unblocked.

If a process in an orphaned process group stops, it is no longer under the control
of a job-control shell and hence would not normally ever be continued. Because of
this, orphaned processes that receive terminal-related stop signals (SIGTSTP,
SIGTTIN, SIGTTOU, but not SIGSTOP) must not be allowed to stop. The goal is to
prevent stopped processes from languishing forever. [As SIGSTOP is sent only via
kill(), it is assumed that the process or user sending a SIGSTOP can send a
SIGCONT when desired.] Instead, the system must discard the stop signal. As an
extension, it may also deliver another signal in its place. 4.3BSD sends a SIG-
KILL, which is overly effective because SIGKILL is not catchable. Another possible
choice is SIGHUP. 4.3BSD also does this for orphaned processes (processes whose
parent has terminated) rather than for members of orphaned process groups; this
is less desirable because job-control shells manage process groups. POSIX.l also
prevents SIGTTIN and SIGTTOU signals from being generated for processes in
orphaned process groups as a direct result of activity on a terminal, preventing
infinite loops when read{) and write() calls generate signals that are discarded.
(See B.7.1.1.4.) A similar restriction on the generation of SIGTSTP was con- |
sidered, but that would be unnecessary and more difficult to implement due to its
asynchronous nature.

Although POSIX.1 requires that signal-catching functions be called with only one
argument, there is nothing to prevent conforming implementations from extend¬
ing POSIX.1 to pass additional arguments, as long as Strictly Conforming POSIX.l
Applications continue to compile and execute correctly. Most historical implemen¬
tations do, in fact, pass additional, signal-specific arguments to certain signal-
catching routines.

There was a proposal to change the declared type of the signal handler to:

void func (int sig, ...) ;

The usage of ellipses (“, ... ”) is C Standard {2} syntax to indicate a variable
number of arguments. Its use was intended to allow the implementation to pass
additional information to the signal handler in a standard manner.

Unfortunately, this construct would require all signal handlers to be defined with
this syntax because the C Standard {2} allows implementations to use a different
parameter passing mechanism for variable parameter lists than for nonvariable
parameter lists. Thus, all existing signal handlers in all existing applications
would have to be changed to use the variable syntax in order to be standard and

B.3 Process Primitives 239

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

portable. This is in conflict with the goal of Minimal Changes to Existing Applica¬
tion Code.

When terminating a process from a signal-catching function, processes should be
aware of any interpretation that their parent may make of the status returned by
waitO or waitpid(). In particular, a signal-catching function should not call
exit(0) or _exit(0) unless it wants to indicate successful termination. A nonzero
argument to exitO or jexitO can be used to indicate unsuccessful termination.
Alternatively, the process can use killO to send itself a fatal signal (first ensuring
that the signal is set to the default action and not blocked). (See also B.3.2.2).

The behavior of unsafe functions, as defined by this subclause, is undefined when |
they are invoked from signal-catching functions in certain circumstances. The |
behavior of reentrant functions, as defined by this subclause, is as specified by |
POSIX. 1, regardless of invocation from a signal-catching function. This is the only
intended meaning of the statement that reentrant functions may be used in
signal-catching functions without restriction. Applications must still consider all
effects of such functions on such things as data structures, files, and process state.
In particular, application writers need to consider the restrictions on interactions
when interrupting sleep() [see sleep() and B.3.4.3] and interactions among multi¬
ple handles for a file description (see 8.2.3 and B.8.2.3). The fact that any specific
function is listed as reentrant does not necessarily mean that invocation of that
function from a signal-catching function is recommended.

In order to prevent errors arising from interrupting nonreentrant function calls,
applications should protect calls to these functions either by blocking the
appropriate signals or through the use of some programmatic semaphore.
POSIX. 1 does not address the more general problem of synchronizing access to
shared data structures. Note in particular that even the “safe” functions may
modify the global variable errno; the signal-catching function may want to save
and restore its value. The same principles apply to the reentrancy of application
routines and asynchronous data access.

Note that longjmpO and siglongjmp () are not in the list of reentrant functions.
This is because the code executing after longjmpO or siglongjmp0 can call any
unsafe functions with the same danger as calling those unsafe functions directly
from the signal handler. Applications that use longjmpO or siglongjmpO out of
signal handlers require rigorous protection in order to be portable. Many of the
other functions that are excluded from the list are traditionally implemented
using either the C language malloc() or freeO functions or the C language stan¬
dard I/O library, both of which traditionally use data structures in a nonreentrant
manner. Because any combination of different functions using a common data
structure can cause reentrancy problems, POSIX. 1 does not define the behavior
when any unsafe function is called in a signal handler that interrupts any unsafe
function.

B.3.3.1.4 Signal Effects on Other Functions

The most common behavior of an interrupted function after a signal-catching |
function returns is for the interrupted function to give an [EINTR] error. How¬
ever, there are a number of specific exceptions, including sleep0 and certain
situations with readO and write 0-

240 B Rationale and Notes

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

The historical implementations of many functions defined by POSIX.l are not
interruptible, but delay delivery of signals generated during their execution until
after they complete. This is never a problem for functions that are guaranteed to
complete in a short (imperceptible to a human) period of time. It is normally
those functions that can suspend a process indefinitely or for long periods of time
[e.g., wait(),pause(), sigsuspendO, sleepi), or read{)/write{) on a slow device like a
terminal] that are interruptible. This permits applications to respond to interac¬
tive signals or to set timeouts on calls to most such functions with alarm ().
Therefore, implementations should generally make such functions (including ones
defined as extensions) interruptible.

Functions not mentioned explicitly as interruptible may be so on some implemen¬
tations, possibly as an extension where the function gives an [EINTR] error.
There are several functions [e.g., getpid(), getuidi)] that are specified as never
returning an error, which can thus never be extended in this way.

B.3.3.2 Send a Signal to a Process

The semantics for permission checking for kill() differ between System V and
most other implementations, such as Version 7 or 4.3BSD. The semantics chosen
for POSIX.l agree with System V. Specifically, a set-user-ID process cannot pro¬
tect itself against signals (or at least not against SIGKILL) unless it changes its
real user ID. This choice allows the user who starts an application to send it sig¬
nals even if it changes its effective user ID. The other semantics give more power
to an application that wants to protect itself from the user who ran it.

Some implementations provide semantic extensions to the kill{) function when
the absolute value of pid is greater than some maximum, or otherwise special,
value. Negative values are a flag to kill{). Since most implementations return
[ESRCH] in this case, this behavior is not included in POSIX.1, although a con- |
forming implementation could provide such an extension.

The implementation-defined processes to which a signal cannot be sent may
include the scheduler or init.

Most historical implementations use kill (-1, sig) from a super-user process to |
send a signal to all processes (excluding system processes like init). This use of
the kill() function is for administrative purposes only; portable applications
should not send signals to processes about which they have no knowledge. In
addition, there are semantic variations among different implementations that,
because of the limited use of this feature, were not necessary to resolve by stan¬
dardization. System V implementations also use kill (-1, sig) from a
nonsuper-user process to send a signal to all processes with matching user IDs.
This use was considered neither sufficiently widespread nor necessary for applica¬
tion portability to warrant inclusion in POSIX.1.

There was initially strong sentiment to specify that, if pid specifies that a signal |
be sent to the calling process and that signal is not blocked, that signal would be
delivered before kill() returns. This would permit a process to call kill{) and be
guaranteed that the call never return. However, historical implementations that
provide only the signalO interface make only the weaker guarantee in POSIX.1,
because they only deliver one signal each time a process enters the kernel.
Modifications to such implementations to support the sigaction () interface

B.3 Process Primitives 241

2460

2461

2462

2463

2464

2466

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

generally require entry to the kernel following return from a signal-catching func¬
tion, in order to restore the signal mask. Such modifications have the effect of
satisfying the stronger requirement, at least when sigaction () is used, but not
necessarily when signalO is used. The developers of POSIX.1 considered making |
the stronger requirement except when signalO is used, but felt this would be |
unnecessarily complex. Implementors are encouraged to meet the stronger
requirement whenever possible. In practice, the weaker requirement is the same,
except in the rare case when two signals arrive during a very short window. This
reasoning also applies to a similar requirement for sigprocmaskO.

In 4.2BSD, the SIGCONT signal can be sent to any descendant process regardless
of user-ID security checks. This allows a job-control shell to continue a job even if
processes in the job have altered their user IDs (as in the su command). In keep¬
ing with the addition of the concept of sessions, similar functionality is provided
by allowing the SIGCONT signal to be sent to any process in the same session,
regardless of user-ID security checks. This is less restrictive than BSD in the
sense that ancestor processes (in the same session) can now be the recipient. It is
more restrictive than BSD in the sense that descendant processes that form new
sessions are now subject to the user-ID checks. A similar relaxation of security is
not necessary for the other job-control signals since those signals are typically
sent by the terminal driver in recognition of special characters being typed; the
terminal driver bypasses all security checks.

In secure implementations, a process may be restricted from sending a signal to a
process having a different security label. In order to prevent the existence or
nonexistence of a process from being used as a covert channel, such processes
should appear nonexistent to the sender; i.e., [ESRCH] should be returned, rather
than [EPERM], if pid refers only to such processes.

Existing implementations vary on the result of a killO with pid indicating an
inactive process (a terminated process that has not been waited for by its parent).
Some indicate success on such a call (subject to permission checking), while others
give an error of [ESRCH]. Since POSIX.l’s definition of process lifetime covers inac¬
tive processes, the [ESRCH] error as described is inappropriate in this case. In
particular, this means that an application cannot have a parent process check for
termination of a particular child with killO [usually this is done with the null sig¬
nal; this can be done reliably with waitpidO]-

There is some belief that the name killO is misleading, since the function is not
always intended to cause process termination. However, the name is common to
all historical implementations, and any change would be in conflict with the goal
of Minimal Changes to Existing Application Code.

B.3.3.3 Manipulate Signal Sets

The implementation of the sigemptysetO [or sigfillsetO] functions could quite trivi¬
ally clear (or set) all the bits in the signal set. Alternatively, it would be reason¬
able to initialize part of the structure, such as a version field, to permit binary
compatibility between releases where the size of the set varies. For such reasons,
either sigemptysetO or sigfillsetO must be called prior to any other use of the sig¬
nal set, even if such use is read-only [e.g., as an argument to sigpending()]. This
function is not intended for dynamic allocation.

242 B Rationale and Notes

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

Part 1: SYSTEM API [C LANGUAGE]

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

The sigfillset() and sigemptyset() functions require that the resulting signal set
include (or exclude) all the signals defined in POSIX.l. Although it is outside the
scope of POSIX.1 to place this requirement on signals that are implemented as
extensions, it is recommended that implementation-defined signals also be
affected by these functions. However, there may be a good reason for a particular
signal not to be affected. For example, blocking or ignoring an implementation-
defined signal may have undesirable side effects, whereas the default action for
that signal is harmless. In such a case, it would be preferable for such a signal to
be excluded from the signal set returned by sigfillsetl).

In earlier drafts of POSIX.1 there was no distinction between invalid and unsup¬
ported signals (the names of optional signals that were not supported by an
implementation were not defined by that implementation). The [EINVAL] error
was thus specified as a required error for invalid signals. With that distinction, it
is not necessary to require implementations of these functions to determine
whether an optional signal is actually supported, as that could have a significant
performance impact for little value. The error could have been required for
invalid signals and optional for unsupported signals, but this seemed unneces¬
sarily complex. Thus, the error is optional in both cases.

B.3.3.4 Examine and Change Signal Action

Although POSIX.1 requires that signals that cannot be ignored shall not be added
to the signal mask when a signal-catching function is entered, there is no explicit
requirement that subsequent calls to sigaction () reflect this in the information
returned in the oact argument. In other words, if SIGKILL is included in the
sajnask field of act, it is unspecified whether or not a subsequent call to sigac¬
tionO will return with SIGKILL included in the sajnask field of oact.

The SA_NOCLDSTOP flag, when supplied in the act->sa Jlags parameter, allows
overloading SIGCHLD with the System V semantics that each SIGCLD signal indi¬
cates a single terminated child. Most portable applications that catch SIGCHLD
are expected to install signal-catching functions that repeatedly call the waitpid()
function with the WNOHANG flag set, acting on each child for which status is
returned, until waitpidO returns zero. If stopped children are not of interest, the
use of the SA_NOCLDSTOP flag can prevent the overhead from invoking the
signal-catching routine when they stop.

Some historical implementations also define other mechanisms for stopping |
processes, such as the ptrace() function. These implementations usually do not
generate a SIGCHLD signal when processes stop due to this mechanism; however,
that is beyond the scope of POSIX.1.

POSIX.1 requires that calls to sigactionO that supply a NULL act argument
succeed, even in the case of signals that cannot be caught or ignored (i.e., SIGKILL
or SIGSTOP). The System V signalO and BSD sigvecO functions return [EINVAL]
in these cases and, in this respect, their behavior varies from sigaction ().

POSIX.1 requires that sigactionO properly save and restore a signal action set up
by the C Standard {2} signalO function. However, there is no guarantee that the
reverse is true, nor could there be given the greater amount of information con¬
veyed by the sigaction structure. Because of this, applications should avoid using
both functions for the same signal in the same process. Since this cannot always

B.3 Process Primitives 243

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

2552 be avoided in case of general-purpose library routines, they should always be
2553 implemented with sigactioni).

2554 It was intended that the signal() function should be implementable as a library |

2555 routine usingsigactioni).

2556 B.3.3.5 Examine and Change Blocked Signals

2557 When a process’s signal mask is changed in a signal-catching function that is
2558 installed by sigactioni), the restoration of the signal mask on return from the
2559 signal-catching function overrides that change [see sigactioni)]. If the signal-
2560 catching function was installed with signali), it is unspecified whether this

2561 occurs.

2562 See B.3.3.2 for a discussion of the requirement on delivery of signals.

2563 B.3.3.6 Examine Pending Signals

2564 There is no additional rationale provided for this subclause.

2565 B.3.3.7 Wait for a Signal

2566 Normally, at the beginning of a critical code section, a specified set of signals is
2567 blocked using the sigprocmaski) function. When the process has completed the
2568 critical section and needs to wait for the previously blocked signal(s), it pauses by
2569 calling sigsuspendi) with the mask that was returned by the sigprocmaski) call.

2570 B.3.4 Timer Operations

2571 B.3.4.1 Schedule Alarm

2572 Many historical implementations (including Version 7 and System V) allow an
2573 alarm to occur up to a second early. Other implementations allow alarms up to
2574 half a second or one clock tick early or do not allow them to occur early at all. The |
2575 latter is considered most appropriate, since it gives the most predictable behavior,
2576 especially since the signal can always be delayed for an indefinite amount of time
2577 due to scheduling. Applications can thus choose the seconds argument as the
2578 minimum amount of time they wish to have elapse before the signal.

2579 The term “real time” here and elsewhere [sleep(), timesi)] is intended to mean
2580 “wall clock” time as common English usage, and has nothing to do with “realtime
2581 operating systems.” It is in contrast to “virtual time,” which could be misinter-
2582 preted if just “time” were used.

2583 In some implementations, including 4.3BSD, very large values of the seconds
2584 argument are silently rounded down to an implementation-defined maximum
2585 value. This maximum is large enough (on the order of several months) that the
2586 effect is not noticeable.

2587 Application writers should note that the type of the argument seconds and the
2588 return value of alarmi) is unsigned int. That means that a Strictly Conforming
2589 POSIX.1 Application cannot pass a value greater than the minimum guaranteed

244 B Rationale and Notes

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

value for {UINT_MAX}, which the C Standard {2} sets as 65535, and any applica¬
tion passing a larger value is restricting its portability. A different type was con- |
sidered, but historical implementations, including those with a 16-bit int type, |
consistently use either unsigned int or int.

Application writers should be aware of possible interactions when the same pro¬
cess uses both the alarm() and sleep() functions [see sleepO and B.3.4.3].

B.3.4.2 Suspend Process Execution

Many common uses ofpauseO have timing windows. The scenario involves check¬
ing a condition related to a signal and, if the signal has not occurred, calling
pause (). When the signal occurs between the check and the call to pause (), the
process often blocks indefinitely. The sigprocmask() and sigsuspendi) functions
can be used to avoid this type of problem.

B.3.4.3 Delay Process Execution

There are two general approaches to the implementation of the sleep () function.
One is to use the alarm{) function to schedule a SIGALRM signal and then
suspend the process waiting for that signal. The other is to implement an
independent facility. POSIX.1 permits either approach.

In order to comply with the wording of the introduction to Section 3, that no prim- |
itive shall change a process attribute unless explicitly described by POSIX.1, an
implementation using SIGALRM must carefully take into account any SIGALRM
signal scheduled by previous alarm () calls, the action previously established for
SIGALRM, and whether SIGALRM was blocked. If a SIGALRM has been scheduled
before the sleep () would ordinarily complete, the sleep() must be shortened to that
time and a SIGALRM generated (possibly simulated by direct invocation of the
signal-catching function) before sleep() returns. If a SIGALRM has been scheduled
after the sleep() would ordinarily complete, it must be rescheduled for the same
time before sleep() returns. The action and blocking for SIGALRM must be saved
and restored.

Historical implementations often implement the SIGALRM-based version using
alarm() and pause(). One such implementation is prone to infinite hangups, as
described in B.3.4.2. Another such implementation uses the C language setjmpO
and longjmp () functions to avoid that window. That implementation introduces a
different problem: when the SIGALRM signal interrupts a signal-catching function
installed by the user to catch a different signal, the longjmp () aborts that signal-
catching function. An implementation based on sigprocmask (), alarm (), and sig-
suspendi) can avoid these problems.

Despite all reasonable care, there are several very subtle, but detectable and una¬
voidable, differences between the two types of implementations. These are the
cases mentioned in POSIX.1 where some other activity relating to SIGALRM takes
place, and the results are stated to be unspecified. All of these cases are
sufficiently unusual as not to be of concern to most applications.

(See also the discussion of the term “real time” in B.3.4.1.)

B.3 Process Primitives 245

ISO/EEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

2632 Because sleep () can be implemented using alarm (), the discussion about alarms
2633 occurring early under B.3.4.1 applies to sleep() as well.

2634 Application writers should note that the type of the argument seconds and the
2635 return value of sleep () is unsigned int. That means that a Strictly Conforming
2636 POSIX. 1 Application cannot pass a value greater than the minimum guaranteed
2637 value for {UINT_MAX}, which the C Standard {2} sets as 65 535, and any applica-
2638 tion passing a larger value is restricting its portability. A different type was con- |
2639 sidered, but historical implementations, including those with a 16-bit int type, |
2640 consistently use either unsigned int or int.

2641 Scheduling delays may cause the process to return from the sleep () function
2642 significantly after the requested time. In such cases, the return value should be
2643 set to zero, since the formula (requested time minus the time actually spent)
2644 yields a negative number and sleep() returns an unsigned int.

2645 B.4 Process Environment

2646 B.4.1 Process Identification

2647 B.4.1.1 Get Process and Parent Process IDs

2648 There is no additional rationale provided for this subclause.

2649 B.4.2 User Identification

2650 B.4.2.1 Get Real User, Effective User, Real Group, and Effective Group
2651 IDS

2652 There is no additional rationale provided for this subclause.

2653 B.4.2.2 Set User and Group IDs

2654 The saved set-user-ID capability allows a program to regain the effective user ID
2655 established at the last exec call. Similarly, the saved set-group-ID capability
2656 allows a program to regain the effective group ID established at the last exec call.

2657 These two capabilities are derived from System V. Without them, a program may
2658 have to run as super-user in order to perform the same functions, because super-
2659 user can write on the user’s files. This is a problem because such a program can
2660 write on any user’s files, and so must be carefully written to emulate the permis-
2661 sions of the calling process properly.

2662 A process with appropriate privilege on a system with this saved ID capability
2663 establishes all relevant IDs to the new value, since this function is used to estab-
2664 lish the identity of the user during login or su. Any change to this behavior
2665 would be dangerous since it involves programs that need to be trusted.

246 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

2666 The behavior of 4.2BSD and 4.3BSD that allows setting the real ID to the effective
2667 ID is viewed as a value-dependent special case of appropriate privilege.

2668 B.4.2.3 Get Supplementary Group IDs

2669 The related function setgroups () is a privileged operation and therefore is not
2670 covered by POSIX.1.

2671 As implied by the definition of supplementary groups, the effective group ID may |
2672 appear in the array returned by getgroups() or it may be returned only by
2673 getegidi). Duplication may exist, but the application needs to call getegidi) to be
2674 sure of getting all of the information. Various implementation variations and |
2675 administrative sequences will cause the set of groups appearing in the result of |
2676 getgroups() to vary in order and as to whether the effective group ID is included, |
2677 even when the set of groups is the same (in the mathematical sense of “set”). (The |
2678 history of a process and its parents could affect the details of result.)

2679 Applications writers should note that {NGROUPS_MAX} is not necessarily a con- |
2680 stant on all implementations. I

2681 B.4.2.4 Get User Name

2682 The getlogini) function returns a pointer to the user’s login name. The same user
2683 ID may be shared by several login names. If it is desired to get the user database
2684 entry that is used during login, the result of getloginO should be used to provide
2685 the argument to the getpwnami) function. (This might be used to determine the
2686 user’s login shell, particularly where a single user has multiple login shells with
2687 distinct login names, but the same user ID.)

2688 The information provided by the cuseridi) function, which was originally defined
2689 in IEEE Std 1003.1-1990 and subsequently removed, can be obtained by the
2690 following:

2691 getpwuid (geteuid ())

2692 while the information provided by historical implementations of cuseridi) can be
2693 obtained by:

2694 getpwuid (getuid ()) I

2695 B.4.3 Process Groups

2696 B.4.3.1 Get Process Group ID

2697 4.3BSD provides a getpgrp () function that returns the process group ID for a
2698 specified process. Although this function is used to support job control, all known
2699 job-control shells always specify the calling process with this function. Thus, the
2700 simpler System V getpgrpi) suffices, and the added complexity of the 4.3BSD
2701 getpgrpi) has been omitted from POSIX.1.

B.4 Process Environment 247

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

B.4.3.2 Create Session and Set Process Group ED

The setsidO function is similar to the setpgrp () function of System V. System V,
without job control, groups processes into process groups and creates new process
groups via setpgrp (); only one process group may be part of a login session.

Job control allows multiple process groups within a login session. In order to
limit job-control actions so that they can only affect processes in the same login
session, POSIX.l adds the concept of a session that is created via setsidO. The set¬
sidO function also creates the initial process group contained in the session.
Additional process groups can be created via the setpgidO function. A System V
process group would correspond to a POSIX. 1 session containing a single POSIX.1
process group. Note that this function requires that the calling process not be a
process group leader. The usual way to ensure this is true is to create a new pro¬
cess with fork0 and have it call setsidO. The fork0 function guarantees that the
process ID of the new process does not match any existing process group ID.

B.4.3.3 Set Process Group ED for Job Control

The setpgid() function is used to group processes together for the purpose of sig¬
naling, placement in foreground or background, and other job-control actions. See
B.2.2.2.

The setpgidO function is similar to the setpgrpO function of 4.2BSD, except that
4.2BSD allowed the specified new process group to assume any value. This
presents certain security problems and is more flexible than necessary to support
job control.

To provide tighter security, setpgidO only allows the calling process to join a pro¬
cess group already in use inside its session or create a new process group whose
process group ID was equal to its process ID.

When a job-control shell spawns a new job, the processes in the job must be
placed into a new process group via setpgidO. There are two timing constraints
involved in this action:

(1) The new process must be placed in the new process group before the
appropriate program is launched via one of the exec functions.

(2) The new process must be placed in the new process group before the shell
can correctly send signals to the new process group.

To address these constraints, the following actions are performed: The new
processes call setpgidO to alter their own process groups after forkO but before
exec. This satisfies the first constraint. Under 4.3BSD, the second constraint is
satisfied by the synchronization property of vfork(); that is, the shell is suspended
until the child has completed the exec, thus ensuring that the child has completed
the setpgidO- A new version of forkO with this same synchronization property |
was considered, but it was decided instead to merely allow the parent shell pro- |
cess to adjust the process group of its child processes via setpgidO• Both timing
constraints are now satisfied by having both the parent shell and the child
attempt to adjust the process group of the child process; it does not matter which
succeeds first.

248 B Rationale and Notes

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 Part 1: SYSTEM API [C LANGUAGE]

2745 Because it would be confusing to an application to have its process group change
2746 after it began executing (i.e., after exec) and because the child process would
2747 already have adjusted its process group before this, the [EACCES] error was added
2748 to disallow this.

2749 One nonobvious use of setpgidi) is to allow a job-control shell to return itself to its
2750 original process group (the one in effect when the job-control shell was executed).
2751 A job-control shell does this before returning control back to its parent when it is
2752 terminating or suspending itself as a way of restoring its job control “state” back
2753 to what its parent would expect. (Note that the original process group of the job-
2754 control shell typically matches the process group of its parent, but this is not
2755 necessarily always the case.) See also B.7.2.4.

2756 B.4.4 System Identification

2757 B.4.4.1 System Name

2758 The values of the structure members are not constrained to have any relation to
2759 the version of POSIX.l implemented in the operating system. An application
2760 should instead depend on {_POSIX_VERSION} and related constants defined in 2.9.

2761 POSIX.1 does not define the sizes of the members of the structure and permits
2762 them to be of different sizes, although most implementations define them all to be
2763 the same size: eight bytes plus one byte for the string terminator. That size for
2764 nodename is not enough for use with many networks.

2765 The uname () function is specific to System III, System V, and related implementa-
2766 tions, and it does not exist in Version 7 or 4.3BSD. The values it returns are set
2767 at system compile time in those historical implementations. I

2768 4.3BSD has gethostnameO and gethostidi), which return a symbolic name and a
2769 numeric value, respectively. There are related sethostnameO and sethostidO
2770 functions that are used to set the values the other two functions return. The
2771 length of the host name is limited to 31 characters in most implementations and
2772 the host ID is a 32-bit integer.

2773 B.4.5 Time

2774 The time() function returns a value in seconds (type timejt) while times () returns
2775 a set of values in clock ticks (type clock J). Some historical implementations, such |
2776 as 4.3BSD, have mechanisms capable of returning more precise times [see the
2777 description of gettimeofday() in B.4.5.1]. A generalized timing scheme to unify
2778 these various timing mechanisms has been proposed but not adopted in POSIX.1. |

2779 B.4.5.1 Get System Time

2780 Implementations in which timejt is a 32-bit signed integer (most historical imple-
2781 mentations) will fail in the year 2038. This version of POSIX.1 does not address
2782 this problem. However, the use of the new timej type is mandated in order to
2783 ease the eventual fix.

B.4 Process Environment 249

ISO/EEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

2784 The use of the header <t ime. h>, instead of <sys/types . h>, allows compatibil-
2785 ity with the C Standard {2}.

2786 Many historical implementations (including Version 7) and the 1984 /usr/group
2787 Standard {B59} use long instead of timej. POSIX.l uses the latter type in order
2788 to agree with the C Standard {2}.

2789 4.3BSD includes time{) only as an interface to the more flexible gettimeofday()
2790 function.

2791 B.4.5.2 Get Process Times

2792 The accuracy of the times reported is intentionally left unspecified to allow imple-
2793 mentations flexibility in design, from uniprocessor to multiprocessor networks.

2794 The inclusion of times of child processes is recursive, so that a parent process may
2795 collect the total times of all of its descendants. But the times of a child are only
2796 added to those of its parent when its parent successfully waits on the child. Thus,
2797 it is not guaranteed that a parent process will always be able to see the total
2798 times of all its descendants.

2799 (See also the discussion of the term “real time” in B.3.4.1.)

2800 If the type clock Jt is defined to be a signed 32-bit integer, it will overflow in some-
2801 what more than a year if there are 60 clock ticks per second, or less than a year if |
2802 there are 100. There are individual systems that run continuously for longer than
2803 that. POSIX.l permits an implementation to make the reference point for the
2804 returned value be the startup time of the process, rather than system startup
2805 time.

2806 The term “charge” in this context has nothing to do with billing for services. The
2807 operating system accounts for time used in this way. That information must be
2808 correct, regardless of how that information is used.

2809 B.4.6 Environment Variables

2810 B.4.6.1 Environment Access

2811 Additional functions putenv() and clearenvO were considered but rejected because
2812 they were considered to be more oriented towards system administration than
2813 ordinary application programs. This is being reconsidered for an amendment to |
2814 POSIX.1 because uses from within an application have been identified since the |
2815 decision was made.

2816 It was proposed that this function is properly part of Section 8. It is an extension |
2817 to a function in the C Standard {2}. Because this function should be available |
2818 from any language, not just C, it appears here, to separate it from the material in |
2819 Section 8, which is specific to the C binding. (The localization extensions to C are
2820 not, at this time, appropriate for other languages.)

250 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

2821 B.4.7 Terminal Identification

2822 The difference between ctermidO and ttynameO is that ttynameO must be passed
2823 a file descriptor and returns the pathname of the terminal associated with that
2824 file descriptor, while ctermid{) returns a string (such as /dev/tty) that will refer
2825 to the controlling terminal if used as a pathname. Thus ttynameO is useful only if
2826 the process already has at least one file open to a terminal.

2827 The historical value of ctermidO is /dev/tty; this is acceptable. The ctermidO
2828 function should not be used to determine if a process actually has a controlling
2829 terminal, but merely the name that would be used.

2830 B.4.7.1 Generate Terminal Pathname

2831 L_ctermid must be defined appropriately for a given implementation and must be
2832 greater than zero so that array declarations using it are accepted by the compiler.
2833 The value includes the terminating null byte.

2834 B.4.7.2 Determine Terminal Device Name

2835 The term “terminal” is used instead of the historical term “terminal device” in
2836 order to avoid a reference to an undefined term.

2837 B.4.8 Configurable System Variables

2838 This subclause was added in response to requirements of application developers |
2839 and of system vendors who deal with many international system configurations. |
2840 It is closely related to B.5.7 as well.

2841 Although a portable application can run on all systems by never demanding more
2842 resources than the minimum values published in POSIX.l, it is useful for that
2843 application to be able to use the actual value for the quantity of a resource avail-
2844 able on any given system. To do this, the application will make use of the value of
2845 a symbolic constant in <limits . h> or <unistd. h>.

2846 However, once compiled, the application must still be able to cope if the amount of
2847 resource available is increased. To that end, an application may need a means of
2848 determining the quantity of a resource, or the presence of an option, at execution
2849 time.

2850 Two examples are offered:

2851
2852
2853
2854
2855

(1) Applications may wish to act differently on systems with or without job
control. Applications vendors who wish to distribute only a single binary
package to all instances of a computer architecture would be forced to
assume job control is never available if it were to rely solely on the
<unistd.h> value published in POSIX.1.

2856
2857
2858
2859
2860

(2) International applications vendors occasionally require knowledge of the |
number of clock ticks per second. Without the facilities of this subclause, |
they would be required to either distribute their applications partially in |
source form or to have 50 Hz and 60 Hz versions for the various countries |
in which they operate.

B.4 Process Environment 251

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

2861 It is the knowledge that many applications are actually distributed widely in exe-
2862 cutable form that lead to this facility. If limited to the most restrictive values in
2863 the headers, such applications would have to be prepared to accept the most lim-
2864 ited environments offered by the smallest microcomputers. Although this is
2865 entirely portable, there was a consensus that they should be able to take advan- |
2866 tage of the facilities offered by large systems, without the restrictions associated
2867 with source and object distributions.

2868 During the discussions of this feature, it was pointed out that it is almost always
2869 possible for an application to discern what a value might be at run-time by suit-
2870 ably testing the various interfaces themselves. And, in any event, it could always
2871 be written to adequately deal with error returns from the various functions. In
2872 the end, it was felt that this imposed an unreasonable level of complication and
2873 sophistication on the application writer.

2874 This run-time facility is not meant to provide ever-changing values that applica-
2875 tions will have to check multiple times. The values are seen as changing no more
2876 frequently than once per system initialization, such as by a system administrator
2877 or operator with an automatic configuration program. POSIX. 1 specifies that they
2878 shall not change within the lifetime of the process.

2879 Some values apply to the system overall and others vary at the file system or
2880 directory level. These latter are described in B.5.7.

2881 B.4.8.1 Get Configurable System Variables

2882 Note that all values returned must be expressible as integers. String values were |
2883 considered, but the additional flexibility of this approach was rejected due to its
2884 added complexity of implementation and use.

2885 Some values, such as {PATH_MAX}, are sometimes so large that they must not be
2886 used to, say, allocate arrays. The sysconfX) function will return a negative value
2887 to show that this symbolic constant is not even defined in this case.

2888 B.4.8.1.1 Special Symbol {CLK_TCK} |

2889 {CLK_TCK} appears in POSIX. 1 for backwards compatibility with IEEE Std |
2890 1003.1-1988. Its use is obsolescent. |

2891 B.4.8.2 Get Password From User |

2892 The getpass () function was explicitly excluded from POSIX. 1 because it was found |
2893 that the name was misleading, and it provided no functionality that the user |
2894 could not easily implement within POSIX. 1. The implication of some form of secu- |
2895 rity, which was not actually provided, exceeded the small gain in convenience.

252 B Rationale and Notes

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

B.5 Files and Directories

See pathname resolution.

The wording regarding the group of a newly created regular file, directory, or
FIFO in open(), mkdir(), mkfifoO, respectively, defines the two acceptable
behaviors in order to permit both the System V (and Version 7) behavior (in which
the group of the new object is set to the effective group ID of the creating process)
and the 4.3BSD behavior (in which the new object has the group of its parent
directory). An application that needs a file to be created specifically in one or the
other of the possible groups should use chown() to ensure the new group regard¬
less of the style of groups the interface implements. Most applications will not
and should not be concerned with the group ID of the file.

B.5.1 Directories

Historical implementations prior to 4.2BSD had no special functions, types, or
headers for directory access. Instead, directories were read with read() and each
program that did so had code to understand the internal format of directory files.
Many such programs did not correctly handle the case of a maximum-length (his¬
torically fourteen character) filename and would neglect to add a null character
string terminator when doing comparisons. The access methods in POSIX.1 elim¬
inate that bug, as well as hiding differences in implementations of directories or
file systems.

The directory access functions originally selected for POSIX.1 were derived from |
4.2BSD, were adopted in System V Release 3, and are in SVID {B39} Volume 3,
with the exception of a type difference for the d_ino field. That field represents
implementation-dependent or even file system-dependent information (the i-node
number in most implementations). Since the directory access mechanism is
intended to be implementation-independent, and since only system programs, not
ordinary applications, need to know about the i-node number (or file serial
number) in this context, the d_ino field does not appear in POSIX.1. Also, pro¬
grams that want this information can get it with stat().

B.5.1.1 Format of Directory Entries

Information similar to that in the header <dirent.h> is contained in a file
<sys/dir.h> in 4.2BSD and 4.3BSD. The equivalent in these implementations
of struct dirent from POSIX.1 is struct direct. The filename was changed because
the name <sys/dir.h> was also used in earlier implementations to refer to
definitions related to the older access method; this produced name conflicts. The
name of the structure was changed because POSIX.1 does not completely define
what is in the structure, so it could be different on some implementations from
struct direct.

The name of an array of char of an unspecified size should not be used as an |
lvalue. Use of I

sizeof (d_name)

is incorrect; use

B.5 Files and Directories 253

ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

2938 strlen (d_name)

2939 instead.

2940 The array of char djiame is not a fixed size. Implementations may need to |
2941 declare struct dirent with an array size for djiame of 1, but the actual number of
2942 characters provided matches (or only slightly exceeds) the length of the file name.

2943 Currently, implementations are excluded if they have djiame with type char *.
2944 Lacking experience of such implementations, the developers of POSIX.1 declined |
2945 to try to describe in standards language what to do if either type were permitted.

2946 B.5.1.2 Directory Operations

2947 Based on historical implementations, the rules about file descriptors apply to
2948 directory streams as well. However, POSIX.1 does not mandate that the directory
2949 stream be implemented using file descriptors. The description of opendir()
2950 clarifies that if a file descriptor is used for the directory stream it is mandatory
2951 that closedir() deallocate the file descriptor. When a file descriptor is used to |
2952 implement the directory stream, it behaves as if the FD_CLOEXEC had been set |
2953 for the file descriptor. |

2954 The returned value of readdir{) merely represents a directory entry. No
2955 equivalence should be inferred.

2956 The directory entries for dot and dot-dot are optional. POSIX.1 does not provide a |
2957 way to test a priori for their existence because an application that is portable |
2958 must be written to look for (and usually ignore) those entries. Writing code that |
2959 presumes that they are the first two entries does not always work, as many imple- |
2960 mentations permit them to be other than the first two entries, with a “normal” |
2961 entry preceding them. There is negligible value in providing a way to determine |
2962 what the implementation does because the code to deal with dot and dot-dot must |
2963 be written in any case and because such a flag would add to the list of those flags |
2964 (which has proven in itself to be objectionable) and might be abused. |

2965 Since the structure and buffer allocation, if any, for directory operations are
2966 defined by the implementation, POSIX.1 imposes no portability requirements for
2967 erroneous program constructs, erroneous data, or the use of indeterminate values
2968 such as the use or referencing of a dirp value or a dirent structure value after a
2969 directory stream has been closed or after a fork{) or one of the exec function calls.

2970 Historical implementations of readdir() obtain multiple directory entries on a sin-
2971 gle read operation, which permits subsequent readdir() operations to operate
2972 from the buffered information. Any wording that required each successful read-
2913 dir{) operation to mark the directory stjatime field for update would militate
2974 against the historical performance-oriented implementations.

2975 Since readdir{) returns NULL both:

2976 (1) When it detects an error, and

2977 (2) When the end of the directory is encountered

2978 an application that needs to tell the difference must set errno to zero before the
2979 call and check it if NULL is returned. Because the function must not change
2980 errno in case (2) and must set it to a nonzero value in case (1), a zero errno after a

254 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

2981 call returning NULL indicates end of directory, otherwise an error.

2985
2986

2983
2984

2982 Routines to deal with this problem more directly were proposed:

int derror (dirp)
dir *dirp;

void clearderr (dirp)
dir *dirp;

2987 The first would indicate whether an error had occurred, and the second would
2988 clear the error indication. The simpler method involving errno was adopted
2989 instead by requiring that readdiri) not change errno when end-of-directory is
2990 encountered.

2991 Historical implementations include two more functions:

2992 long telldir (dirp)
2993 DIR *dirp;

2994 void seekdir (dirp, loc)
2995 DIR *dirp;
2996 long loc;

2997 The telldiri) function returns the current location associated with the named
2998 directory stream.

2999 The seekdir() function sets the position of the next readdiri) operation on the
3000 directory stream. The new position reverts to the one associated with the direc-
3001 tory stream when the telldiri) operation was performed.

3002 These functions have restrictions on their use related to implementation details.
3003 Their capability can usually be accomplished by saving a filename found by read-
3004 diri) and later using rewinddiri) and a loop on readdiri) to relocate the position
3005 from which the filename was saved. Though this method is probably slower than
3006 using seekdiri) and telldiri), there are few applications in which the capability is
3007 needed. Furthermore, directory systems that are implemented using technology
3008 such as balanced trees, where the order of presentation may vary from access to
3009 access, do not lend themselves well to any concept along these lines. For these
3010 reasons, seekdir() and telldiri) are not included in POSIX.l.

3011 An error or signal indicating that a directory has changed while open was con-
3012 sidered but rejected.

3013 B.5.1.3 Set Position of Directory Stream

3014 The seekdiri) and telldiri) functions were proposed for inclusion in POSIX.l, but
3015 were excluded because they are inherently unreliable when all the possible con-
3016 forming implementations of the rest of POSIX.l were considered. The problem is
3017 that returning to a given point in a directory is quite difficult to describe formally,
3018 in spite of its intuitive appeal, when systems that used B-trees, hashing functions,
3019 or other similar mechanisms for directory search are considered.

3020 Even the simple goal of attempting to visit each directory entry that is unmodified
3021 between the opendiri) and closediri) calls exactly once is difficult to implement
3022 reliably in the face of directory compaction and reorganization.

B.5 Files and Directories 255

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Since the primary need for seekdir() and telldirO is to implement file tree walks,
and since such a function is likely to be included in a future revision of POSIX. 1,
and since in that more constrained context it appears that at least the goal of
visiting unmodified nodes exactly once can be achieved, it was felt that waiting for
the development of that function best served all the constituencies.

B.5.2 Working Directory

B.5.2.1 Change Current Working Directory

The chdirO function only affects the working directory of the current process.

The result if a NULL argument is passed to chdir() is left implementation defined
because some implementations dynamically allocate space in that case.

B.5.2.2 Working Directory Pathname

Since the maximum pathname length is arbitrary unless {PATH_MAX} is defined,
an application generally cannot supply a buf with size {{PATH_MAX} + 1}.

Having getcwdO take no arguments and instead use the C function mallocO to
produce space for the returned argument was considered. The advantage is that
getcwdO knows how big the working directory pathname is and can allocate an
appropriate amount of space. But the programmer would have to use the C func¬
tion free() to free the resulting object, or each use of getcwdO would further
reduce the available memory. Also, mallocO and freeO are used nowhere else in
POSIX.1. Finally, getcwdO is taken from the SVID {B39}, where it has the two
arguments used in POSIX.1.

The older function getwdO was rejected for use in this context because it had only
a buffer argument and no size argument, and thus had no way to prevent
overwriting the buffer, except to depend on the programmer to provide a large
enough buffer.

The result if a NULL argument is passed to getcwdO is left implementation
defined because some implementations dynamically allocate space in that case.

If a program is operating in a directory where some (grand)parent directory does
not permit reading, getcwdO may fail, as in most implementations it must read
the directory to determine the name of the file. This can occur if search, but not
read, permission is granted in an intermediate directory, or if the program is
placed in that directory by some more privileged process (e.g., login). Including
this error, [EACCES], makes the reporting of the error consistent and warns the
application writer that getcwdO can fail for reasons beyond the control of the
application writer or user. Some implementations can avoid this occurrence [e.g.,
by implementing getcwdi) using pwd, where pwd is a set-user-root process!, thus
the error was made optional.

Because POSIX.1 permits the addition of other errors, this would be a common
addition and yet one that applications could not be expected to deal with without
this addition.

256 B Rationale and Notes

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 Part 1: SYSTEM API [C LANGUAGE]

3063 Some current implementations use {PATH_MAX}+2 bytes. These will have to be
3064 changed. Many of those same implementations also may not diagnose the
3065 [ERANGEl error properly or deal with a common bug having to do with newline in
3066 a directory name (the fix to which is essentially the same as the fix for using +1
3067 bytes), so this is not a severe hardship.

3068 B.5.2.3 Change Process’s Root Directory |

3069 The chroot() function was excluded from POSIX.l on the basis that it was not use- |
3070 ful to portable applications. In particular, creating an environment in which an |
3071 application could run after executing a chrootO call is well beyond the current |
3072 scope of POSIX.l.

3073 B.5.3 General File Creation

3074 Because there is no portable way to specify a value for the argument indicating
3075 the file mode bits (except zero), <sys/stat.h> is included with the functions
3076 that reference mode bits.

3077 B.5.3.1 Open a File

3078 Except as specified in POSIX.l, the flags allowed in oflag are not mutually
3079 exclusive and any number of them may be used simultaneously.

3080 Some implementations permit opening FIFOs with 0_RDWR. Since FIFOs could
3081 be implemented in other ways, and since two file descriptors can be used to the
3082 same effect, this possibility is left as undefined.

3083 See B.4.2.3 about the group of a newly created file.

3084 The use of open() to create a regular file is preferable to the use of creat() because
3085 the latter is redundant and included only for historical reasons.

3086 The use of the 0_TRUNC flag on FIFOs and directories [pipes cannot be open()-e d]
3087 must be permissible without unexpected side effects [e.g., creati) on a FIFO must
3088 not remove data]. Because terminal special files might have type-ahead data |
3089 stored in the buffer, 0_TRUNC should not affect their content, particularly if a |
3090 program that normally opens a regular file should open the current controlling |
3091 terminal instead. Other file types, particularly implementation-defined ones, are
3092 left implementation defined.

3093 Implementations may deny access and return [EACCES] for reasons other than
3094 just those listed in the [EACCES] definition.

3095 The 0_NOCTTY flag was added to allow applications to avoid unintentionally
3096 acquiring a controlling terminal as a side effect of opening a terminal file.
3097 POSIX.1 does not specify how a controlling terminal is acquired, but it allows an
3098 implementation to provide this on open () if the 0_NOCTTY flag is not set and
3099 other conditions specified in 7.1.1.3 are met. The 0_NOCTTY flag is an effective
3100 no-op if the file being opened is not a terminal device.

3101 In historical implementations the value of 0_RDONLY is zero. Because of that, it
3102 is not possible to detect the presence of 0_RDONLY and another option. Future

B.5 Files and Directories 257

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

3103 implementations should encode 0_RD0NLY and 0_WR0NLY as bit flags so that:

3104 0_RD0NLY | 0_WR0NLY == O.RDWR

3105 See the rationale for the change from 0_NDELAY to 0_N0NBL0CK in B.6.

3106 B.5.3.2 Create a New File or Rewrite an Existing One

3107 The creati) function is redundant. Its services are also provided by the open()
3108 function. It has been included primarily for historical purposes since many exist-
3109 ing applications depend on it. It is best considered a part of the C binding rather
3110 than a function that should be provided in other languages.

3111 B.5.3.3 Set File Creation Mask

3112 Unsigned argument and return types for umask () were proposed. The return
3113 type and the argument were both changed to modejt.

3114 Historical implementations have made use of additional bits in cmask for their
3H5 implementation-specific purposes. The addition of the text that the meaning of
3H6 other bits of the field are implementation defined permits these implementations
3117 to conform to POSIX. 1.

3118 B.5.3.4 Link to a File

3119 See B.2.2.2.

3120 Linking to a directory is restricted to the super-user in most historical implemen-
3121 tations because this capability may produce loops in the file hierarchy or other-
3122 wise corrupt the file system. POSIX.l continues that philosophy by prohibiting
3123 link() and unlink () from doing this. Other functions could do it if the implemen-
3124 tor designed such an extension.

3125 Some historical implementations allow linking of files on different file systems.
3126 Wording was added to explicitly allow this optional behavior. Symbolic links are |
3127 not discussed by POSIX. 1. The exception for cross-file system links is intended to |
3128 apply only to links that are programmatically indistinguishable from “hard” links. |

3129 B.5.4 Special File Creation

3130 B.5.4.1 Make a Directory

3131 See B.2.5.

3132 The mkdir() function originated in 4.2BSD and was added to System V in
3133 Release 3.0.

3134 4.3BSD detects [ENAMETQOLONG].

3135 See B.4.2.3 about the group of a newly created directory.

258 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

3136 B.5.4.2 Make a FIFO Special File

3137 The syntax of this routine is intended to maintain compatibility with historical |
3138 implementations of mknod{). The latter function was included in the 1984 \

3139 /usr/group Standard {B59}, but only for use in creating FIFO special files. The
3140 mknod() function was excluded from POSIX.1 as implementation defined and
3141 replaced by mkdir() and mkfifo().

3142 See B.4.2.3 about the group of a newly created FIFO.

3143 B.5.5 File Removal

3144 The rmdir() and rename() functions originated in 4.2BSD, and they used
3145 [ENOTEMPTY] for the condition when the directory to be removed does not exist
3146 or new already exists. When the 1984 /usr/group Standard {B59} was published,
3147 it contained [EEXIST] instead. When these functions were adopted into System V, |
3148 the 1984 /usr/group Standard {B59} was used as a reference. Therefore, several |
3149 existing applications and implementations support/use both forms, and no agree- |
3150 ment could be reached on either value. All implementations are required to sup- |
3151 ply both [EEXIST] and [ENOTEMPTY] in <errno.h> with distinct values so that
3152 applications can use both values in C language case statements.

3153 B.5.5.1 Remove Directory Entries

3154 Unlinking a directory is restricted to the super-user in many historical implemen-
3155 tations for reasons given in B.5.3.4. But see B.5.5.3.

3156 The meaning of [EBUSY] in historical implementations is “mount point busy.”
3157 Since POSIX.1 does not cover the system administration concepts of mounting and
3158 unmounting, the description of the error was changed to “resource busy.” (This
3159 meaning is used by some device drivers when a second process tries to open an
3160 exclusive use device.) The wording is also intended to allow implementations to
3161 refuse to remove a directory if it is the root or current working directory of any
3162 process.

3163 B.5.5.2 Remove a Directory

3164 See also B.5.5 and B.5.5.1.

3165 B.5.5.3 Rename a File

3166 This rename () function is equivalent for regular files to that defined by the
3167 C Standard {2}. Its inclusion here expands that definition to include actions on
3168 directories and specifies behavior when the new parameter names a file that
3169 already exists. That specification requires that the action of the function be
3170 atomic.

3171 One of the reasons for introducing this function was to have a means of renaming
3172 directories while permitting implementations to prohibit the use of link () and
3173 unlink() with directories, thus constraining links to directories to those made by
3174 mkdir{).

B.5 Files and Directories 259

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

3175 The specification that if old and new refer to the same file describes existing,
3176 although undocumented, 4.3BSD behavior. It is intended to guarantee that:

3177 rename ("x", "x");

3178 does not remove the file.

3179 Renaming dot or dot-dot is prohibited in order to prevent cyclical file system
3180 paths.

3181 See also the descriptions of [ENOTEMPTY] and [ENAMETOOLONG] in B.5.5 and
3182 [EBUSYl in B.5.5.1. For a discussion of [EXDEV], see B.5.3.4.

3183 B.5.6 File Characteristics

3184 The ustat() function, which appeared in the 1984 /usr/group Standard {B59} and
3185 is still in the SVID {B39}, was excluded from POSIX.1 because it is:

3186 — Not reliable. The amount of space available can change between the time
3187 the call is made and the time the calling process attempts to use it.

3188 — Not required. The only known program that uses it is the text editor ed.

3189 — Not readily extensible to networked systems.

3190 B.5.6.1 File Characteristics: Header and Data Structure

3191 See B.2.5.

3192 A conforming C language application must include <sys/stat. h> for functions
3193 that have arguments or return values of type modejt, so that symbolic values for
3194 that type can be used. An alternative would be to require that these constants
3195 are also defined by including <sys/types . h>.

3196 The S_ISUID and S_ISGID bits may be cleared on any write, not just on open(), as
3197 some historical implementations do it.

3198 System calls that update the time entry fields in the stat structure must be docu-
3199 mented by the implementors. POSIX.1 conforming systems should not update the
3200 time entry fields for functions listed in POSIX.1 unless the standard requires that
3201 they do, except in the case of documented extensions to the standard.

3202 Note that stjdev must be unique within a Local Area Network (LAN) in a “system”
3203 made up of multiple computers’ file systems connected by a LAN.

3204 Networked implementations of a POSIX.1 system must guarantee that all files
3205 visible within the file tree (including parts of the tree that may be remotely
3206 mounted from other machines on the network) on each individual processor are
3207 uniquely identified by the combination of the stj.no and stjdev fields.

3208 B.5.6.2 Get File Status

3209 The intent of the paragraph describing “additional or alternate file access control
3210 mechanisms” is to allow a secure implementation where a process with a label
3211 that does not dominate the file’s label cannot perform a stat() function. This is
3212 not related to read permission; a process with a label that dominates the file’s

260 B Rationale and Notes

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

label will not need read permission. An implementation that supports write-up
operations could fail fstat() function calls even though it has a valid file descriptor
open for writing.

B.5.6.3 File Accessibility

In early drafts of POSIX.l, some inadequacies in the access() function led to the |
creation of an eaccess() function because: |

(1) Historical implementations of access () do not test file access correctly
when the process’s real user ID is super-user. In particular, they always
return zero when testing execute permissions without regard to whether
the file is executable.

(2) The super-user has complete access to all files on a system. As a conse¬
quence, programs started by the super-user and switched to the effective
user ID with lesser privileges cannot use access () to test their file access
permissions.

However, the historical model of eaccess() does not resolve problem (1), so POSIX.l |
now allows access () to behave in the desired way because several implementa¬
tions have corrected the problem. It was also argued that problem (2) is more
easily solved by using open{), chdir(), or one of the exec functions as appropriate
and responding to the error, rather than creating a new function that would not
be as reliable. Therefore, eaccessO was taken back out of POSIX.l.

Secure implementations will probably need an extended accessi)-like function, but
there were not enough of the requirements to define it yet. This could be pro¬
posed as an extension for a future amendment to POSIX.l.

The sentence concerning appropriate privileges and execute permission bits
reflects the two possibilities implemented by historical implementations when
checking super-user access for X_OK.

B.5.6.4 Change File Modes

POSIX.1 specifies that the S_ISGID bit is cleared by chmodi) on a regular file
under certain conditions. This is specified on the assumption that regular files
may be executed, and the system should prevent users from making executable
setgid files perform with privileges that the caller does not have. On implementa¬
tions that support execution of other file types, the S_ISGID bit should be cleared
for those file types under the same circumstances.

Implementations that use the S_ISUID bit to indicate some other function (for
example, mandatory record locking) on nonexecutable files need not clear this bit
on writing. They should clear the bit for executable files and any other cases
where the bit grants special powers to processes that change the file contents.
Similar comments apply to the S_ISGID bit.

B.5 Files and Directories 261

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

B.5.6.5 Change Owner and Group of File

System III and System V allow a user to give away files; that is, the owner of a file
may change its user ID to anything. This is a serious problem for implementa¬
tions that are intended to meet government security regulations. Version 7 and
4.3BSD permit only the super-user to change the user ID of a file. Some govern¬
ment agencies (usually not ones concerned directly with security) find this limita¬
tion too confining. POSIX. 1 uses “may” to permit secure implementations while
not disallowing System V.

System III and System V allow the owner of a file to change the group ID to any¬
thing. Version 7 permits only the super-user to change the group ID of a file.
4.3BSD permits the owner to change the group ID of a file to its effective group ID
or to any of the groups in the list of supplementary group IDs, but to no others.

Although chownO can be used on some systems by the file owner to change the
owner and group to any desired values, the only portable use of this function is to
change the group of a file to the effective GID of the calling process or to a member
of its group set.

The decision to require that, for nonprivileged processes, the S_ISUID and
S_ISGID bits be cleared on regular files, but only may be cleared on nonregular
files, was to allow plans for using these bits in implementation-specified manners
on directories. Similar cases could be made for other file types, so POSIX.l does
not require that these bits be cleared except on regular files. As these cases arise,
the system implementors will have to determine whether these features enable
any security loopholes and specify appropriate restrictions. If the implementation
supports executing any file types other than regular files, the S_ISUID and
S_ISGID bits should be cleared for those file types in the same way as they are on
regular files.

B.5.6.6 Set File Access and Modification Times

The actime structure member must be present so that an application may set it,
even though an implementation may ignore it and not change the access time on
the file. If an application intends to leave one of the times of a file unchanged
while changing the other, it should use stat{) to retrieve the file’s st_atime and
stjntime parameters, set actime and modtime in the buffer, and change one of
them before making the utime () call.

B.5.7 Configurable Pathname Variables

When the run-time facility described in B.4.8 was designed, it was realized that
some variables change depending on the file system. For example, it is quite
feasible for a system to have two varieties of file systems mounted: a System V |
file system and a BSD “Fast File System.” |

If limited to strictly compile-time features, no application that was widely distri¬
buted in executable binary form could rely on more than 14 bytes in a pathname
component, as that is the minimum published for {NAME_MAX} in POSIX. 1. The
pathconfi) function allows the application to take advantage of the most liberal
file system available at run-time. In many BSD-based systems, 255 bytes are |
allowed for pathname components.

262 B Rationale and Notes

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

These values are potentially changeable at the directory level, not just at the file
system. And, unlike the overall system variables, there is no guarantee that
these might not change during program execution.

B.5.7.1 Get Configurable Pathname Variables

The pathconfO function was proposed immediately after the sysconfO function
when it was realized that some configurable values may differ across file system,
directory, or device boundaries.

For example, {NAME_MAX} frequently changes between System V and BSD-based
file systems; System V uses a maximum of 14, BSD 255. On an implementation |
that provided both types of file systems, an application would be forced to limit all
pathname components to 14 bytes, as this would be the value specified in
<limits .h> on such a system.

Therefore, various useful values can be queried on any pathname or file descrip¬
tor, assuming that the appropriate permissions are in place.

The value returned for the variable {PATH_MAX} indicates the longest relative
pathname that could be given if the specified directory is the process’s current
working directory. A process may not always be able to generate a name that
long and use it if a subdirectory in the pathname crosses into a more restrictive
file system.

The value returned for the variable {_POSIX_CHOWN_RESTRICTED} also applies
to directories that do not have file systems mounted on them. The value may
change when crossing a mount point, so applications that need to know should
check for each directory. [An even easier check is to try the chownO function and
look for an error in case it happens.!

Unlike the values returned by sysconfO, the pathname-oriented variables are
potentially more volatile and are not guaranteed to remain constant throughout
the process’s lifetime. For example, in between two calls to pathconfO, the file
system in question may have been unmounted and remounted with different
characteristics.

Also note that most of the errors are optional. If one of the variables always has
the same value on an implementation, the implementation need not look at path
or fddes to return that value and is, therefore, not required to detect any of the
errors except the meaning of [EINVAL] that indicates that the value of name is not
valid for that variable.

If the value of any of the limits described in 2.8.4 or 2.8.5 are indeterminate (logi¬
cally infinite), they will not be defined in <limits.h> and the pathconfO and
fpathconfO functions will return -1 without changing errno. This can be dis¬
tinguished from the case of giving an unrecognized name argument because errno
will be set to [EINVAL] in this case.

Since —1 is a valid return value for the pathconfO and fpathconfO functions,
applications should set errno to zero before calling them and check errno only if
the return value is -1.

B.5 Files and Directories 263

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

B.6 Input and Output Primitives

System III and System V have included a flag, 0_NDELAY, to mark file descrip¬
tors so that user processes would not block when doing I/O to them. If the flag is
set, a read() or writeO call that would otherwise need to block for data returns a
value of zero instead. But a read() call also returns a value of zero on end-of-file,
and applications have no way to distinguish between these two conditions.

BSD systems support a similar feature through a flag with the same name, but
somewhat different semantics. The flag applies to all users of a file (or socket)
rather than only to those sharing a file descriptor. The BSD interface provides a
solution to the problem of distinguishing between a blocking condition and an
end-of-file condition by returning an error, [EWOULDBLOCK], on a blocking
condition.

The 1984 /usr/group Standard {B59} includes an interface with some features
from both System III/V and BSD. The overall semantics are that it applies only to |
a file descriptor. However, the return indication for a blocking condition is an
error, [E AG AIN]. This was the starting point for POSIX.l.

The problem with the 1984 /usr/group Standard {B59} is that it does not allow
compatibility with existing applications. An implementation cannot both conform
to that standard and support applications written for existing System V or BSD |
systems. Several changes have been considered address this issue. These
include:

(1) No change (from 1984 /usr/group Standard {B59})

(2) Changing to System III/V semantics

(3) Changing to BSD semantics

(4) Broadening POSIX.l to allow conforming implementation a choice among
these semantics

(5) Changing the name of the flag from 0_NDELAY

(6) Changing to System III/V semantics and providing a new call to distin¬
guish between blocking and end-of-file conditions

Alternative (5) was the consensus choice. The new name is 0_NONBLOCK. This |
alternative allows a conforming implementation to provide backward compatibil¬
ity at the source and/or object level with either System III/V or BSD systems (but |
POSIX.l does not require or even suggest that this be done). It also allows a Con¬
forming POSIX. 1 Application Using Extensions the functionality to distinguish
between blocking and end-of-file conditions, and to do so in as simple a manner as
any of the alternatives. The greatest shortcoming was that it forces all existing |
System III/V and BSD applications that use this facility to be modified in order to |
strictly conform to POSIX.1. This same shortcoming applies to (1) and (4) as well,
and it applies to one group of applications for (2), (3), and (6).

Systems may choose to implement both 0_NDELAY and 0_NONBLOCK, and there
is no conflict as long as an application does not turn both flags on at the same
time.

264 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

3379 See also the discussion of scope in B.6.5.1.

3380 B.6.1 Pipes

3381 An implementation that fails write() operations on fildesi0] or read()s on fildesY 1]
3382 is not required. Historical implementations (Version 7 and System V) return the
3383 error [EBADF] in such cases. This allows implementations to set up a second pipe
3384 for full duplex operation at the same time. A conforming application that uses the
3385 pipe() function as described in POSIX.1 will succeed whether this second pipe is
3386 present or not.

3387 B.6.1.1 Create an Inter-Process Channel

3388 The wording carefully avoids using the verb “to open” in order to avoid any impli-
3389 cation of use of open ().

3390 See also B.6.4.2.

3391 B.6.2 File Descriptor Manipulation

3392 B.6.2.1 Duplicate an Open File Descriptor

3393 The dup () and dup2() functions are redundant. Their services are also provided
3394 by the fcntl{) function. They have been included in POSIX.1 primarily for histori-
3395 cal reasons, since many existing applications use them.

3396 While the brief code segment shown is very similar in behavior to dup2(), a con-
3397 forming implementation based on other functions defined by POSIX.1 is
3398 significantly more complex. Least obvious is the possible effect of a signal-
3399 catching function that could be invoked between steps and allocate or deallocate
3400 file descriptors. This could be avoided by blocking signals.

3401 The dup2() function is not marked obsolescent because it presents a type-safe ver-
3402 sion of functionality provided in a type-unsafe version by fcntl(). It is used in the
3403 current draft of the Ada binding to POSIX.1.

3404 The dup2() function is not intended for use in critical regions as a synchroniza-
3405 tion mechanism.

3406 In the description of [EBADF], the case of fildes being out of range is covered by
3407 the given case of fildes not being valid. The descriptions for fildes and fldes2 are
3408 different because the only kind of invalidity that is relevant for fildes2 is whether
3409 it is out of range; that is, it does not matter whether fildes2 refers to an open file
3410 when the dup2{) call is made.

3411 If fildes2 is a valid file descriptor, it shall be closed, regardless of whether the
3412 function returns an indication of success or failure, unless fildes2 is equal to
3413 fildes.

B.6 Input and Output Primitives 265

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

B.6.3 File Descriptor Deassignment

B.6.3.1 Close a File

Once a file is closed, the file descriptor no longer exists, since the integer
corresponding to it no longer refers to a file.

The use of interruptible device close routines should be discouraged to avoid prob¬
lems with the implicit closes of file descriptors by exec and exit{). POSIX.1 only
intends to permit such behavior by specifying the [EINTR] error case.

B.6.4 Input and Output

The use of I/O with large byte counts has always presented problems. Ideas such |
as Iread() and Iwrite() (using and returning longs) were considered at one time. |
The current solution is to use abstract types on the C Standard {2} interface to |
read() and write() (and not to discuss common usage). The abstract types can be |
declared so that existing interfaces work, but can also be declared so that larger |
types can be represented in future implementations. It is presumed that what- |
ever constraints limit the maximum range of sizejt also limit portable I/O requests |
to the same range. POSIX.1 also limits the range further by requiring that the |
byte count be limited so that a signed return value remains meaningful. Since |
the return type is also a (signed) abstract type, the byte count can be defined by |
the implementation to be larger than an int can hold. |

POSIX.1 requires that no action be taken when nbyte is zero. This is not intended
to take precedence over detection of errors (such as invalid buffer pointers or file
descriptors). This is consistent with the rest of POSIX.1, but the phrasing here
could be misread to require detection of the zero case before any other errors. A
value of zero is to be considered a correct value, for which the semantics are a
no-op.

There were recommendations to add format parameters to read{) and write() in
order to handle networked transfers among heterogeneous file system and base
hardware types. Such a facility may be required for support by the OSI presenta¬
tion of layer services. However, it was determined that this should correspond |
with similar C Language facilities, and that is beyond the scope of POSIX.1. The |
concept was suggested to the developers of the C Standard {2} for their considera- |
tion as a possible area for future work. |

In 4.3BSD, a readO or write() that is interrupted by a signal before transferring
any data does not by default return an [EINTR] error, but is restarted. In 4.2BSD,
4.3BSD, and the Eighth Edition there is an additional function, select(), whose
purpose is to pause until specified activity (data to read, space to write, etc.) is
detected on specified file descriptors. It is common in applications written for
those systems for selectO to be used before read() in situations (such as keyboard
input) where interruption of I/O due to a signal is desired. But this approach does
not conform, because selectO is not in POSIX.1. 4.3BSD semantics can be provided
by extensions to POSIX.1.

POSIX.1 permits readO and writeO to return the number of bytes successfully
transferred when interrupted by an error. This is not simply required because it

266 B Rationale and Notes

3457
3458
3459
3460

3461
3462
3463
3464
3465

3466
3467
3468

3469
3470
3471

3472

3473
3474
3475
3476
3477
3478

3479
3480

3481

3482

3483
3484
3485
3486
3487
3488
3489
3490

3491
3492
3493
3494
3495
3496
3497
3498

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

was not done by Version 7, System III, or System V, and because some hardware
may not be capable of returning information about partial transfers if a device
operation is interrupted. Unfortunately, this does make writing a Conforming
POSIX.1 Application more difficult in circumstances where this could occur.

Requiring this behavior does not address the situation of pipelined buffers, such
as might be found in streaming tape drives or other devices that read ahead of the
actual requests. The signal interruption will often indicate an exceptional condi¬
tion and flush all buffers. Thus, the amount read from the device may be dif¬
ferent from the amount transferred to the application.

The issue of which files or file types are interruptible is considered an implemen¬
tation design issue. This is often affected primarily by hardware and reliability
issues.

There are no references to actions taken following an “unrecoverable error.” It is
considered beyond the scope of POSIX.1 to describe what happens in the case of
hardware errors.

B.6.4.1 Read from a File

POSIX.1 does not specify the value of the file offset after an error is returned;
there are too many cases. For programming errors, such as [EBADF], the concept
is meaningless since no file is involved. For errors that are detected immediately,
such as [EAGAINl, clearly the pointer should not change. After an interrupt or
hardware error, however, an updated value would be very useful and is the
behavior of many implementations.

Note that a read() of zero bytes does not modify stjatime. A read() that requests |
more than zero bytes, but returns zero, does modify st_atime. \

B.6.4.2 Write to a File

An attempt to write to a pipe or FIFO has several major characteristics:

Atomic/nonatomic
A write is atomic if the whole amount written in one operation is not
interleaved with data from any other process. This is useful when there
are multiple writers sending data to a single reader. Applications need
to know how large a write request can be expected to be performed atomi¬
cally. This maximum is called {PIPE_BUF}. POSIX.1 does not say
whether write requests for more than {PIPE_BUF} bytes will be atomic,
but requires that writes of {PIPE_BUF} or fewer bytes shall be atomic.

Blocking/immediate
Blocking is only possible with 0_NONBLOCK clear. If there is enough
space for all the data requested to be written immediately, the implemen¬
tation should do so. Otherwise, the process may block; that is, pause
until enough space is available for writing. The effective size of a pipe or
FIFO (the maximum amount that can be written in one operation without
blocking) may vary dynamically, depending on the implementation, so it
is not possible to specify a fixed value for it.

B.6 Input and Output Primitives 267

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Complete/partial/deferred
A write request,

int fildes;

size_t nbyte;

ssize_t ret;

char *buf;

ret = write (fildes, buf, nbyte);

may return

complete: ret = nbyte

partial: ret < nbyte
This shall never happen if nbyte < {PIPE_BUF}. If it does
happen (with nbyte > {PIPE_BUF}), POSIX. 1 does not
guarantee atomicity, even if ret < {PIPE_BUF}, because
atomicity is guaranteed according to the amount requested,
not the amount written.

deferred: ret = -1, errno = [EAGAIN]
This error indicates that a later request may succeed. It
does not indicate that it shall succeed, even if nbyte <
{PIPE_BUF}, because if no process reads from the pipe or
FIFO, the write will never succeed. An application could
usefully count the number of times [EAGAIN] is caused by a
particular value of nbyte > {PIPE_BUF} and perhaps do
later writes with a smaller value, on the assumption that
the effective size of the pipe may have decreased.

Partial and deferred writes are only possible with 0_NONBLOCK set.

The relations of these properties are shown in the following tables.

Write to a Pipe or FIFO with 0 NONBLOCK clear

Immediately
Writable:

None Some nbyte

nbyte <
{PIPE.BUF}

Atomic
blocking

nbyte

Atomic
blocking

nbyte

Atomic
immediate

nbyte

nbyte >
{PIPE_BUF}

Blocking
nbyte

Blocking
nbyte

Blocking
nbyte

If the 0_NONBLOCK flag is clear, a write request shall block if the amount writ¬
able immediately is less than that requested. If the flag is set [by fcntli)}, a write
request shall never block.

268 B Rationale and Notes

3537

3538
3539

3540
3541

3542
3543
3544

3545
3546
3547
3548
3549
3550
3551

3552
3553
3554
3555

3556
3557
3558
3559
3560
3561
3562
3563
3564

3565
3566
3567

3568

3569
3570
3571
3572
3573
3574
3575

3576
3577
3578
3579
3580

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Write to a Pipe or FIFO with 0 NONBLOCK set

Immediately
Writable:

None Some nbyte

nbyte <
{PIPE BUF}

-1,
[EAGAIN]

-1,
[EAGAIN]

Atomic
nbyte

nbyte >
{PIPE_BUF}

-1,
[EAGAIN]

< nbyte
or -1,

[EAGAIN]

< nbyte
or -1,

[EAGAIN]

There is no exception regarding partial writes when 0_N0NBL0CK is set. With |
the exception of writing to an empty pipe, POSIX.l does not specify exactly when a
partial write will be performed since that would require specifying internal
details of the implementation. Every application should be prepared to handle
partial writes when 0_NONBLOCK is set and the requested amount is greater
than {PIPE_BUF}, just as every application should be prepared to handle partial
writes on other kinds of file descriptors.

The intent of forcing writing at least one byte if any can be written is to assure |
that each write will make progress if there is any room in the pipe. If the pipe is |
empty, {PIPE_BUF} bytes must be written; if not, at least some progress must |
have been made.

Where POSIX.l requires -1 to be returned and errno set to [EAGAIN], most histori¬
cal implementations return zero (with the 0_NDELAY flag set—that flag is the
historical predecessor of 0_NONBLOCK, but is not itself in POSIX.l). The error
indications in POSIX.1 were chosen so that an application can distinguish these
cases from end-of-file. While write() cannot receive an indication of end-of-file,
read() can, and the two functions have similar return values. Also, some existing |
systems (e.g., Eighth Edition) permit a write of zero bytes to mean that the reader
should get an end-of-file indication; for those systems, a return value of zero from
write () indicates a successful write of an end-of-file indication.

The concept of a {PIPE_MAX} limit (indicating the maximum number of bytes that
can be written to a pipe in a single operation) was considered, but rejected, |
because this concept would unnecessarily limit application writing. |

See also the discussion of 0_NONBLOCKin B.6.

Writes can be serialized with respect to other reads and writes. If a read() of file 1
data can be proven (by any means) to occur after a write() of the data, it must |
reflect that writei), even if the calls are made by different processes. A similar |
requirement applies to multiple write operations to the same file position. This is
needed to guarantee the propagation of data from write () calls to subsequent
readi) calls. This requirement is particularly significant for networked file sys¬
tems, where some caching schemes violate these semantics. I

Note that this is specified in terms of readi) and writei). Additional calls such as |
the common readvi) and writevi) would want to obey these semantics. A new
“high-performance” write analog that did not follow these serialization require¬
ments would also be permitted by this wording. POSIX.l is also silent about any
effects of application-level caching (such as that done by stdio). I

B.6 Input and Output Primitives 269

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

POSIX. 1 does not specify the value of the file offset after an error is returned;
there are too many cases. For programming errors, such as [EBADF], the concept
is meaningless since no file is involved. For errors that are detected immediately,
such as [EAGAIN], clearly the pointer should not change. After an interrupt or
hardware error, however, an updated value would be very useful and is the
behavior of many implementations.

POSIX. 1 does not specify behavior of concurrent writes to a file from multiple
processes. Applications should use some form of concurrency control.

B.6.5 Control Operations on Files

B.6.5.1 Data Definitions for File Control Operations

The main distinction between the file descriptor flags and the file status flags is
scope. The former apply to a single file descriptor only, while the latter apply to
all file descriptors that share a common open file description [by inheritance
through fork() or an F_DUPFD operation with fcntl()]. For 0_NONBLOCK, this
scoping is like that of 0_NDELAY in System V rather than in 4.3BSD, where the
scoping for 0_NDELAY is different from all the other flags accessed via the same
commands.

For example:

fdl = open (pathname, oflags);

fd2 = dup (fdl);

fd3 = open (pathname, oflags);

Does an fcntl{) call on fdl also apply to fd2 or fd3 or to both? According to
POSIX.l, F_SETFD applies only to fdl, while F_SETFL applies to fdl and fd2 but
not to fd3. This is in agreement with all common historical implementations
except for BSD with the F_SETFL command and the 0_NDELAY flag (which would
apply to fd3 as well). Note that this does not force any incompatibilities in BSD
implementations, because 0_NDELAY is not in POSIX.l. See also B.6.

Historically, the file descriptor flags have had only the literal values 0 and 1.
POSIX. 1 defines the symbolic name FD_CLOEXEC to permit a more graceful exten¬
sion of this functionality. Owners of existing applications should be aware of the
need to change applications using the literal values, and implementors should be
aware of the existence of this practice in existing applications.

B.6.5.2 File Control

The ellipsis in the Synopsis is the syntax specified by the C Standard {2} for a
variable number of arguments. It is used because System V uses pointers for the
implementation of file locking functions.

The arg values to F_GETFD, F_SETFD, F_GETFL, and F_SETFL all represent flag
values to allow for future growth. Applications using these functions should do a
read-modify-write operation on them, rather than assuming that only the values
defined by POSIX.l are valid. It is a common error to forget this, particularly in
the case of F_SETFD, because there is only one flag in POSIX.l.

270 B Rationale and Notes

3622
3623
3624
3625
3626
3627
3628
3629

3630
3631
3632
3633
3634
3635
3636
3637
3638
3639

3640
3641

3642
3643
3644

3645
3646
3647
3648

3649
3650
3651
3652
3653
3654
3655

3656
3657
3658

3659
3660

3661
3662
3663
3664
3665
3666

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

POSIX.1 permits concurrent read and write access to file data using the fcntl()
function; this is a change from the 1984 /usr/group Standard {B59} and early
POSIX.1 drafts, which included a lockfO function. Without concurrency controls,
this feature may not be fully utilized without occasional loss of data. Since other
mechanisms for creating critical regions, such as semaphores, are not included, a
file record locking mechanism was thought to be appropriate. The fcntlO mechan¬
ism may be used to implement semaphores, although access is not first-in-first-
out without extra application development effort.

Data losses occur in several ways. One is that read and write operations are not
atomic, and as such a reader may get segments of new and old data if con¬
currently written by another process. Another occurs when several processes try
to update the same record, without sequencing controls; several updates may
occur in parallel and the last writer will “win.” Another case is a b-tree or other
internal list-based database that is undergoing reorganization. Without exclusive
use to the tree segment by the updating process, other reading processes chance
getting lost in the database when the index blocks are split, condensed, inserted,
or deleted. While fcntl{) is useful for many applications, it is not intended to be
overly general and will not handle the b-tree example well.

This facility is only required for regular files because it is not appropriate for
many devices such as terminals and network connections.

Since fcntlO works with “any file descriptor associated with that file, however it is
obtained,” the file descriptor may have been inherited through a forkO or exec
operation and thus may affect a file that another process also has open.

The use of the open file description to identify what to lock requires extra calls
and presents problems if several processes are sharing an open file description,
but there are too many implementations of the existing mechanism for POSIX.1 to
use different specifications.

Another consequence of this model is that closing any file descriptor for a given |
file (whether or not it is the same open file description that created the lock) |
causes the locks on that file to be relinquished for that process. Equivalently, any |
close for any file/process pair relinquishes the locks owned on that file for that |
process. But note that while an open file description may be shared through
fork(), locks are not inherited through fork(). Yet locks may be inherited through
one of the exec functions.

The identification of a machine in a network environment is outside of the scope
of POSIX.1. Thus, an l_sysid member, such as found in System V, is not included
in the locking structure.

Since locking is performed with fcntl(), rather than lockfO, this specification
prohibits use of advisory exclusive locking on a file that is not open for writing.

Before successful return from a F_SETLK or F_SETLKW request, the previous lock
type for each byte in the specified region shall be replaced by the new lock type.
This can result in a previously locked region being split into smaller regions. If
this would cause the number of regions being held by all processes in the system
to exceed a system-imposed limit, the fcntl() function returns -1 with errno set to
[ENOLCK].

B.6 Input and Output Primitives 271

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSEX

3667

3668

3669

3670

3671

3672

3673

3674

3675

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

Mandatory locking was a major feature of the 1984 /usr/group Standard {B59}.
For advisory file record locking to be effective, all processes that have access to a
file must cooperate and use the advisory mechanism before doing I/O on the file.
Enforcement-mode record locking is important when it cannot be assumed that all
processes are cooperating. For example, if one user uses an editor to update a file
at the same time that a second user executes another process that updates the
same file and if only one of the two processes is using advisory locking, the
processes are not cooperating. Enforcement-mode record locking would protect
against accidental collisions.

Secondly, advisory record locking requires a process using locking to bracket each
I/O operation with lock (or test) and unlock operations. With enforcement-mode
file and record locking, a process can lock the file once and unlock when all I/O
operations have been completed. Enforcement-mode record locking provides a
base that can be enhanced, for example, with sharable locks. That is, the
mechanism could be enhanced to allow a process to lock a file so other processes
could read it, but none of them could write it.

Mandatory locks were omitted for several reasons:

(1) Mandatory lock setting was done by multiplexing the set-group-ID bit in
most implementations; this was confusing, at best.

(2) The relationship to file truncation as supported in 4.2BSD was not well
specified.

(3) Any publicly readable file could be locked by anyone. Many historical
implementations keep the password database in a publicly readable file.
A malicious user could thus prohibit logins. Another possibility would be
to hold open a long-distance telephone line.

(4) Some demand-paged historical implementations offer memory mapped
files, and enforcement cannot be done on that type of file.

Since sleeping on a region is interrupted with any signal, alarm{) may be used to
provide a timeout facility in applications requiring it. This is useful in deadlock
detection. Because implementation of full deadlock detection is not always feasi¬
ble, the [EDEADLK] error was made optional.

3699 B.6.5.3 Reposition Read/Write File Offset

3700 The C Standard {2} includes the functions fgetposi) and fsetposO, which work on
3701 very large files by use of a special positioning type.

3702 Although Iseek () may position the file offset beyond the end of the file, this func-
3703 tion does not itself extend the size of the file. While the only function in POSIX.1
3704 that may extend the size of the file is write{), several C Standard {2} functions,
3705 such as fwriteO, fprintfi), etc., may do so [by causing calls on write()]•

3706 An invalid file offset that would cause [EINVAL] to be returned may be both
3707 implementation defined and device dependent (for example, memory may have
3708 few invalid values). A negative file offset may be valid for some devices in some
3709 implementations.

272 B Rationale and Notes

3710
3711

3712

3713
3714

3715
3716
3717

3718
3719

3720
3721
3722

3723
3724
3725
3726

3727
3728
3729
3730
3731
3732
3733

3734
3735

3736
3737
3738
3739
3740

3741
3742
3743
3744
3745

3746
3747

3748
3749
3750
3751

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

See B.6.5.2 for a explanation of the use of signed and unsigned offsets with
Iseek ().

B.7 Device- and Class-Specific Functions

There were several sources of difficulties involved with using historical interfaces
as the basis of this section:

(1) The basic Version 7 ioctl() mechanism is difficult to specify adequately,
due to its use of a third argument that varies in both size and type
according to the second, command, argument.

(2) System III introduced and System V continued ioctli) commands that are
completely different from those of Version 7.

(3) 4.2BSD and other BSD systems added to the basic Version 7 ioctli) com- |
mand set; some of these were for features such as job control that
POSIX.1 eventually adopted.

(4) None of the basic historical implementations are adequate in an interna¬
tional environment. This concern is not technically within the scope of
POSIX.1, but the goal of POSIX.1 was to mandate no unnecessary impedi- |
ments to internationalization.

The 1984 /usr/group Standard {B59} attempted to specify a portable mechanism
that application writers could use to get and set the modes of an asynchronous
terminal. The intention of that committee was to provide an interface that was
neither implementation specific nor hardware dependent. Initial proposals dealt
with high-level routines similar to the curses library (available on most historical
implementations). In such an implementation, the user interface would consist of
calls similar to:

setraw();

setcooked();

It was quickly pointed out that if such routines were standardized, the definition
of “raw” and “cooked” would have to be provided. If these modes were not well
defined in POSIX.1, application code could not be written in a portable way. How¬
ever, the definition of the terms would force low-level concepts to be included in a
supposedly high-level interface definition.

Focus was given to the necessary low-level attributes that were needed to support |
the necessary terminal characteristics (e.g., line speeds, raw mode, cooked mode,
etc.). After considerable debate, a structure similar to, but more flexible than, the |
System III termio was accepted. The format of that structure, referred to as the |
termios structure, has formed the basis for the current section.

A method was needed to communicate with the system about the termios informa¬
tion. Proposals included:

(1) The ioctli) function as in System V. This had the same problems as men¬
tioned previously for the Version 7 ioctli) function and was basically
identical to it. Another problem was that the direction of the command
(whether information is written from or read into the third argument)

B.7 Device- and Class-Specific Functions 273

3752

3753

3754

3755

3756

3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790
3791

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

was not specified—in historical implementations, only the device driver
knows this information. This was a problem for networked implementa¬
tions. It was also a problem that there was no size parameter to specify
the variable size of the third argument, and there was a similar problem
with its type.

(2) An iocntl() function with additional arguments specifying direction, type,
and size. But these new arguments did not help application writers, who
would have no control over their values, which would have to match each
command exactly. The new arguments did, however, solve the problems
of networked implementations. And iocntl() would have been implement-
able in terms of ioctl() on historical implementations (without need for
modifying existing code), although it would have been easy to update
existing code to use the arguments directly.

(3) A termcntli) function with the same arguments as proposed for the
iocntl() function. The difference was that termcntli) would be limited to
terminal interface functions; there would be other interface functions,
such as a tapecntlO function for tape interfaces, rather than a single gen¬
eral device interface routine.

(4) Unspecified functions. The issue of what the interface function(s) should
be called was avoided for many of the early drafts while details of the 1
information to be handled was of prime concern. The resulting |
specification resembled the information in System V, but attempted to
avoid problems of case, speed, networks, and internationalization.

Specific tc*() functions3) to replace each ioctl() function were finally incorporated
into POSIX.1, instead of any of the previously mentioned proposals.

The issue of modem control was excluded from POSIX.1 on the grounds that

— It was concerned with setting and control of hardware timers.

— The appropriate timers and settings vary widely internationally.

— Feedback from European computer manufacturers indicated that this |
facility was not consistent with European needs and that specification of |
such a facility was not a requirement for portability.

B.7.1 General Terminal Interface

If the implementation does not support this interface on any device types, it
should behave as if it were being used on a device that is not a terminal device (in
most cases errno will be set to [ENOTTY]) on return from functions defined by this
interface. This is based on the fact that many applications are written to run
both interactively and in some noninteractive mode, and they adapt themselves at
run time. Requiring that they all be modified to test an environment variable to

3) The notation tc*() is reminiscent of shell pattern matching notation and is an abbreviated way of
referring to all functions beginning with the letters “tc.”

274 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

3792 determine if they should try to adapt is unnecessary. On a system that provides
3793 no Section 7 interface, providing all the entry points as stubs that return
3794 [ENOTTY] (or an equivalent, as appropriate) has the same effect and requires no
3795 changes to the application.

3796 Although the needs of both interface implementors and application developers
3797 were addressed throughout POSIX.l, this section pays more attention to the needs
3798 of the latter. This is because, while many aspects of the programming interface
3799 can be hidden from the user by the application developer, the terminal interface is
3800 usually a large part of the user interface. Although to some extent the application
3801 developer can build missing features or work around inappropriate ones, the
3802 difficulties of doing that are greater in the terminal interface than elsewhere. For
3803 example, efficiency prohibits the average program from interpreting every charac-
3804 ter passing through it in order to simulate character erase, line kill, etc. These
3805 functions should usually be done by the operating system, possibly at the inter-
3806 rupt level.

3807 The tc*() functions were introduced as a way of avoiding the problems inherent in
3808 the traditional ioctl() function and in variants of it that were proposed. For exam-
3809 pie, tcsetattr() is specified in place of the use of the TCSETA ioctl() command func-
3810 tion. This allows specification of all the arguments in a manner consistent with
38U the C Standard {2}, unlike the varying third argument of ioctl(), which is some-
3812 times a pointer (to any of many different types) and sometimes an int.

3813 The advantages of this new method include:

3814 — It allows strict type checking.

3815 — The direction of transfer of control data is explicit.

3816 — Portable capabilities are clearly identified.

3817 — The need for a general interface routine is avoided.

3818 — Size of the argument is well-defined (there is only one type).

3819 The disadvantages include:

3820 — No historical implementation uses the new method.

3821 — There are many small routines instead of one general-purpose one.

3822 — The historical parallel with fcntl{) is broken.

3823 B.7.1.1 Interface Characteristics

3824 B.7.1.1.1 Opening a Terminal Device File

3825 Further implications of the effects of CLOCAL are discussed in 7.1.2.4.

3826 B.7.1.1.2 Process Groups

3827 There is a potential race when the members of the foreground process group on a
3828 terminal leave that process group, either by exit or by changing process groups.

3829 After the last process exits the process group, but before the foreground process
3830 group ID of the terminal is changed (usually by a job-control shell), it would be
3831 possible for a new process to be created with its process ID equal to the terminal’s

B.7 Device- and Class-Specific Functions 275

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

foreground process group ID. That process might then become the process group
leader and accidentally be placed into the foreground on a terminal that was not
necessarily its controlling terminal. As a result of this problem, the controlling
terminal is defined to not have a foreground process group during this time.

The cases where a controlling terminal has no foreground process group occur
when all processes in the foreground process group either terminate and are
waited for or join other process groups via setpgidi) or setsidi). If the process
group leader terminates, this is the first case described; if it leaves the process
group via setpgidi), this is the second case described [a process group leader can¬
not successfully call setsidi)]. When one of those cases causes a controlling termi¬
nal to have no foreground process group, it has two visible effects on applications.
The first is the value returned by tcgetpgrpi), as discussed in 7.2.3 and B.7.2.3.
The second (which occurs only in the case where the process group leader ter¬
minates) is the sending of signals in response to special input characters. The
intent of POSIX.1 is that no process group be wrongly identified as the foreground
process group by tcgetpgrpi) or unintentionally receive signals because of place¬
ment into the foreground.

In 4.3BSD, the old process group ID continues to be used to identify the fore¬
ground process group and is returned by the function equivalent to tcgetpgrpi).
In that implementation it is possible for a newly created process to be assigned
the same value as a process ID and then form a new process group with the same
value as a process group ID. The result is that the new process group would
receive signals from this terminal for no apparent reason, and POSIX.1 precludes
this by forbidding a process group from entering the foreground in this way. It
would be more direct to place part of the requirement made by the last sentence
under 3.1.1, but there is no convenient way for that subclause to refer to the value
that tcgetpgrpi) returns, since in this case there is no process group and thus no
process group ID.

One possibility for a conforming implementation is to behave similarly to 4.3BSD,
but to prevent this reuse of the ID, probably in the implementation of forki), as
long as it is in use by the terminal.

Another possibility is to recognize when the last process stops using the
terminal’s foreground process group ID, which is when the process group lifetime
ends, and to change the terminal’s foreground process group ID to a reserved
value that is never used as a process ID or process group ID. (See the definition of
process group lifetime in 2.2.2.) The process ID can then be reserved until the ter¬
minal has another foreground process group.

The 4.3BSD implementation permits the leader (and only member) of the fore¬
ground process group to leave the process group by calling the equivalent of
setpgidi) and to later return, expecting to return to the foreground. There are no
known application needs for this behavior, and POSIX.1 neither requires nor for¬
bids it (except that it is forbidden for session leaders) by leaving it unspecified.

B.7.1.1.3 The Controlling Terminal

POSIX.1 does not specify a mechanism by which to allocate a controlling terminal.
This is normally done by a system utility (such as getty) and is considered an
administrative feature outside the scope of POSIX.1.

276 B Rationale and Notes

3878

3879

3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910

3911

3912

3913

3914

3915

3916

3917

3918

3919

3920

3921

3922

3923

3924

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Historical implementations allocate controlling terminals on certain open() calls.
Since open () is part of POSIX.l, its behavior had to be dealt with. The traditional |
behavior is not required because it is not very straightforward or flexible for
either implementations or applications. However, because of its prevalence, it
was not practical to disallow this behavior either. Thus, a mechanism was stand¬
ardized to ensure portable, predictable behavior in open().

Some historical implementations deallocate a controlling terminal on its last sys- |
temwide close. This behavior in neither required nor prohibited. Even on imple¬
mentations that do provide this behavior, applications generally cannot depend on j
it due to its systemwide nature.

B.7.1.1.4 Terminal Access Control

The access controls described in this subclause apply only to a process that is |
accessing its controlling terminal. A process accessing a terminal that is not its
controlling terminal is effectively treated the same as a member of the foreground
process group. While this may seem unintuitive, note that these controls are for
the purpose of job control, not security, and job control relates only to a process’s
controlling terminal. Normal file access permissions handle security.

If the process calling read() or write() is in a background process group that is
orphaned, it is not desirable to stop the process group, as it is no longer under the
control of a job-control shell that could put it into foreground again. Accordingly,
calls to read() or write() functions by such processes receive an immediate error
return. This is different than in 4.2BSD, which kills orphaned processes that
receive terminal stop signals.

The foreground/background/orphaned process group check performed by the ter¬
minal driver must be repeatedly performed until the calling process moves into
the foreground or until the process group of the calling process becomes orphaned.
That is, when the terminal driver determines that the calling process is in the
background and should receive a job-control signal, it sends the appropriate sig¬
nal (SIGTTIN or SIGTTOU) to every process in the process group of the calling pro¬
cess and then it allows the calling process to immediately receive the signal. The
latter is typically performed by blocking the process so that the signal is immedi¬
ately noticed. Note, however, that after the process finishes receiving the signal
and control is returned to the driver, the terminal driver must reexecute the fore¬
ground/background/orphaned process group check. The process may still be in
the background, either because it was continued in the background by a job-
control shell, or because it caught the signal and did nothing.

The terminal driver repeatedly performs the foreground/background/orphaned
process group checks whenever a process is about to access the terminal. In the
case of write() or the control functions in 7.2, the check is performed at the entry
of the function. In the case of read(), the check is performed not only at the entry
of the function, but also after blocking the process to wait for input characters (if
necessary). That is, once the driver has determined that the process calling the
read() function is in the foreground, it attempts to retrieve characters from the
input queue. If the queue is empty, it blocks the process waiting for characters.
When characters are available and control is returned to the driver, the terminal
driver must return to the repeated foreground/background/orphaned process
group check again. The process may have moved from the foreground to the

B.7 Device- and Class-Specific Functions 277

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937

3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952

3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

background while it was blocked waiting for input characters.

B.7.1.1.5 Input Processing and Reading Data

There is no additional rationale provided for this subclause.

B.7.1.1.6 Canonical Mode Input Processing

The term “character” is intended here. ERASE should erase the last character,
not the last byte. In the case of multibyte characters, these two may be different.

4.3BSD has a WERASE character that erases the last “word” typed (but not any
preceding blanks or tabs). A word is defined as a sequence of nonblank charac¬
ters, with tabs counted as blanks. Like ERASE, WERASE does not erase beyond
the beginning of the line. This WERASE feature has not been specified in POSIX. 1
because it is difficult to define in the international environment. It is only useful
for languages where words are delimited by blanks. In some ideographic
languages, such as Japanese and Chinese, words are not delimited at all. The
WERASE character should presumably take one back to the beginning of a sen¬
tence in those cases; practically, this means it would not get much use for those
languages.

It should be noted that there is a possible inherent deadlock if the application and |
implementation conflict on the value of MAX_CANON. With ICANON set (if IXOFF
is enabled) and more than MAX_CANON characters transmitted without a |
linefeed, transmission will be stopped, the linefeed (or carriage return when |
ICRLF is set) will never arrive, and the read{) will never be satisfied. |

An application should not set IXOFF if it is using canonical mode unless it knows |
that (even in the face of a transmission error) the conditions described previously
cannot be met or unless it is prepared to deal with the possible deadlock in some |
other way, such as timeouts.

It should also be noted that this can be made to happen in noncanonical mode if |
the trigger value for sending IXOFF is less than VMIN and VTIME is zero.

B.7.1.1.7 Noncanonical Mode Input Processing

Some points to note about MIN and TIME:

(1) The interactions of MIN and TIME are not symmetric. For example, when |
MIN > 0 and TIME = 0, TIME has no effect. However, in the opposite case
where MIN = 0 and TIME > 0, both MIN and TIME play a role in that MIN
is satisfied with the receipt of a single character.

(2) Also note that in case A (MIN > 0, TIME > 0), TIME represents an inter¬
character timer while in case C (MIN = 0, TIME > 0) TIME represents a
read timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases A
and B, where MIN > 0, exist to handle burst-mode activity (e.g., file transfer pro¬
grams) where a program would like to process at least MIN characters at a time.
In case A, the intercharacter timer is activated by a user as a safety measure; in
case B, it is turned off.

278 B Rationale and Notes

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 Part 1: SYSTEM API [C LANGUAGE]

3966 Cases C and D exist to handle single-character timed transfers. These cases are
3967 readily adaptable to screen-based applications that need to know if a character is

3968 present in the input queue before refreshing the screen. In case C the read is

3969 timed; in case D, it is not.

3970 Another important note is that MIN is always just a minimum. It does not denote
3971 a record length. That is, if a program does a read of 20 bytes, MIN is 10, and 25

3972 characters are present, 20 characters shall be returned to the user. In the special |
3973 case of MIN=0, this still applies: if more than one character is available, they all |

3974 will be returned immediately. |

3975 B.7.1.1.8 Writing Data and Output Processing

3976 There is no additional rationale provided for this subclause.

3977 B.7.1.1.9 Special Characters

3978 There is no additional rationale provided for this subclause.

3979 B.7.1.1.10 Modem Disconnect

3980 There is no additional rationale provided for this subclause.

3981 B.7.1.1.11 Closing a Terminal Device File

3982 POSIX.1 is silent on whether a closei) will block on waiting for transmission to |

3983 drain, or even if a closei) might cause a flush of pending output. If the application |
3984 is concerned about this, it should call the appropriate function, such as tcdraini), \

3985 to ensure the desired behavior. |

3986 B.7.1.2 Parameters That Can Be Set |

3987 B.7.1.2.1 termios Structure

3988 This structure is part of an interface that, in general, retains the historic group-
3989 ing of flags. Although a more optimal structure for implementations may be pos-
3990 sible, the degree of change to applications would be significantly larger.

3991 B.7.1.2.2 Input Modes

3992 Some historical implementations treated a long break as multiple events, as
3993 many as one per character time. The wording in POSIX.1 explicitly prohibits this.

3994 Although the ISTRIP flag is normally superfluous with today’s terminal hardware
3995 and software, it is historically supported. Therefore, applications may be using
3996 ISTRIP, and there is no technical problem with supporting this flag. Also, applica-
3997 tions may wish to receive only 7-bit input bytes and may not be connected directly
3998 to the hardware terminal device (for example, when a connection traverses a
3999 network).

4000 Also, there is no requirement in general that the terminal device ensures that
4001 high-order bits beyond the specified character size are cleared. ISTRIP provides

4002 this function for 7-bit characters, which are common.

B.7 Device- and Class-Specific Functions 279

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

4003 In dealing with multibyte characters, the consequences of a parity error in such a
4004 character, or in an escape sequence affecting the current character set, are beyond
4005 the scope of POSIX.1 and are best dealt with by the application processing the
4006 multibyte characters.

4007 B.7.1.2.3 Output Modes

4008 POSIX.1 does not describe postprocessing of output to a terminal or detailed con-
4009 trol of that from a portable application. (That is, translation of newline to car-
4010 riage return followed by linefeed or tab processing.) There is nothing that a port-
4011 able application should do to its output for a terminal because that would require
4012 knowledge of the operation of the terminal. It is the responsibility of the operat-
4013 ing system to provide postprocessing appropriate to the output device, whether it
4014 is a terminal or some other type of device.

4015 Extensions to POSIX.1 to control the type of postprocessing already exist and are
4016 expected to continue into the future. The control of these features is primarily to
4017 adjust the interface between the system and the terminal device so the output
4018 appears on the display correctly. This should be set up before use by any
4019 application.

4020 In general, both the input and output modes should not be set absolutely, but
4021 rather modified from the inherited state.

4022 B.7.1.2.4 Control Modes

4023 This subclause could be misread that the symbol “CSIZE” is a title in Table 7-3. |
4024 Although it does serve that function, it is also a required symbol, as a literal read- |
4025 ing of POSIX.1 (and the caveats about typography) would indicate. |

4026 B.7.1.2.5 Local Modes

4027 Noncanonical mode is provided to allow fast bursts of input to be read efficiently
4028 while still allowing single-character input.

4029 The ECHONL function historically has been in many implementations. Since
4030 there seems to be no technical problem with supporting ECHONL, it is included in
4031 POSIX.1 to increase consensus.

4032 The alternate behavior possible when ECHOK or ECHOE are specified with
4033 ICANON is permitted as a compromise depending on what the actual terminal
4034 hardware can do. Erasing characters and lines is preferred, but is not always
4035 possible.

4036 B.7.1.2.6 Special Control Characters

4037 Permitting VMIN and VTIME to overlap with VEOF and VEOL was a compromise
4038 for historical implementations. Only when backwards compatibility of object code |
4039 is a serious concern to an implementor should an implementation continue this
4040 practice. Correct applications that work with the overlap (at the source level)
4041 should also work if it is not present, but not the reverse.

280 B Rationale and Notes

4042

4043

4044

4045
4046
4047

4048
4049

4050
4051
4052

4053
4054

4055
4056
4057

4058
4059
4060
4061
4062
4063
4064
4065
4066
4067

4068
4069
4070
4071
4072
4073
4074

4075

4076
4077
4078

4079
4080
4081
4082

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

B.7.1.2.7 Baud Rate Values

There is no additional rationale provided for this subclause.

B.7.1.3 Baud Rate Functions

The term baud is used historically here, but is not technically correct. This is
properly “bits per second,” which may not be the same as “baud.” However, the
term is used because of the historical usage and understanding.

These functions do not take numbers as arguments, but rather symbolic names.
There are two reasons for this:

— Historically, numbers were not used because of the way the rate was stored
in the data structure. This is retained even though an interface function is
now used.

— More importantly, only a limited set of possible rates is at all portable, and
this constrains the application to that set.

There is nothing to prevent an implementation to accept, as an extension, a
number (such as 126) if it wished, and because the encoding of the Bxxx symbols
is not specified, this can be done so no ambiguity is introduced.

Setting the input baud rate to zero was a mechanism to allow for split baud rates.
Clarifications to this version of POSIX.1 have made it possible to determine if split
rates are supported and to support them without having to treat zero as a special
case. Since this functionality is also confusing, it has been declared obsolescent.
The 0 argument referred to is the literal constant 0, not the symbolic constant B0.
POSIX.1 does not preclude B0 from being defined as the value 0; in fact, imple¬
mentations will likely benefit from the two being equivalent. POSIX.1 does not
fully specify whether the previous cfsetispeedi) value is retained after a tcgetattr()
as the actual value or as zero. Therefore, portable applications should always set
both the input speed and output speed when setting either.

In historical implementations, the baud rate information is traditionally kept in
cjcflag. Applications should be written to presume that this might be the case
(and thus not blindly copy cjcflag) but not to rely on it, in case it is in some other
field of the structure. Setting the cjcflag field absolutely after setting a baud rate
is a nonportable action because of this. In general, the unused parts of the flag
fields might be used by the implementation and should not be blindly copied from
the descriptions of one terminal device to another.

B.7.2 General Terminal Interface Control Functions

The restrictions described in this subclause on access from processes in back- |
ground process groups controls apply only to a process that is accessing its con¬
trolling terminal. (See B.7.1.1.4).

Care must be taken when changing the terminal attributes. Applications should
always do a tcgetattr(), save the termios structure values returned, and then do a
tcsetattr() changing only the necessary fields. The application should use the
values saved from the tcgetattr() to reset the terminal state whenever it is done

B.7 Device- and Class-Specific Functions 281

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

4083 with the terminal. This is necessary because terminal attributes apply to the
4084 underlying port and not to each individual open instance; that is, all processes
4085 that have used the terminal see the latest attribute changes.

4086 A program that uses these functions should be written to catch all signals and
4087 take other appropriate actions to assure that when the program terminates,

4088 whether planned or not, the terminal device’s state is restored to its original
4089 state. See also B.7.1.

4090 Existing practice dealing with error returns when only part of a request can be |
4091 honored is based on calls to the ioctli) function. In historical BSD and System V |
4092 implementations, the corresponding ioctli) returns zero if the requested actions |
4093 were semantically correct, even if some of the requested changes could not be |
4094 made. Many existing applications assume this behavior and would no longer |
4095 work correctly if the return value were changed from zero to -1 in this case. |

4096 Note that either specification has a problem. When zero is returned, it implies |
4097 everything succeeded even if some of the changes were not made. When -1 is |
4098 returned, it implies everything failed even though some of the changes were |
4099 made. |

4100 Applications that need all of the requested changes made to work properly should j
4101 follow tcsetattr() with a call to tcgetattri) and compare the appropriate field |
4102 values. |

4103 B.7.2.1 Get and Set State

4104 The tcsetattri) function can be interrupted in the following situations: |

4105 — It is interrupted while waiting for output to drain. |

4106 — It is called from a process in a background process group and SIGTTOU is |
4107 caught. |

4108 B.7.2.2 Line Control Functions

4109 There is no additional rationale provided for this subclause.

4110 B.7.2.3 Get Foreground Process Group ID

4iu The tcgetpgrp() function has identical functionality to the 4.2BSD ioctli) function
4112 TIOCGPGRP except for the additional security restriction that the referenced ter-
4113 minal must be the controlling terminal for the calling process.

4114 In the case where there is no foreground process group, returning an error rather |
4H5 than a positive value was considered. This was rejected because existing applica- |
4116 tions based on either IEEE Std 1003.1-1988 or 4.3BSD are likely to consider errors |
4117 from this call or the BSD equivalent to be catastrophic and respond inappropri- |
4118 ately. Such applications implicitly assume that this case does not exist, and the |
4119 positive return value is the only solution that permits them to behave properly |
4120 even when they do encounter it. No application has been identified that can |
4121 benefit from distinguishing between this case and the case of a valid foreground |
4122 process group other than its own. Therefore, requiring or permitting any other |

282 B Rationale and Notes

ISO/IEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

4123 solution would cause more application portability problems with no corresponding

4124 benefit to applications. The value must be positive, not zero, because applications

4125 may use the negation as the pid argument to kill(). In addition, the value 1 must

4126 not be used so that an attempt to send a signal to this (nonexistent) process group

4127 does not result in broadcasting a signal unintentionally. See also B.7.1.1.2.

4128 B.7.2.4 Set Foreground Process Group ID

4129 The tcsetpgrpO function has identical functionality to the 4.2BSD ioctl() function

4130 TIOCSPGRP except for the additional security restrictions that the referenced ter-

4131 minal must be the controlling terminal for the calling process and the specified

4132 new process group must be currently in use in the caller’s session.

4133 B.8 Language-Specific Services for the C Programming Language

4134 See the discussion of C functions in B.1.1.1. |

4135 Common usage may be defined by historical publications such as The C Program- |
4136 ming Language {B46}.

4137 The null set of supported languages is allowed.

4138 The list of functions comprises the list of “common-usage” functions and also
4139 includes those that are not in common usage that are addressed by POSIX.l. The
4140 rules for common-usage conformance to POSIX.1 address whether the functions
4141 that are not generally considered in common usage are implemented. There are a
4142 large number of functions found in various systems that, although frequently
4143 found, are not broadly enough available to be considered in common usage. The
4144 signal() function (although in common usage) is omitted because applications con- |
4145 forming to POSIX.l should use the more reliable sigaction() interface instead.

4146 B.8.1 Referenced C Language Routines

4147 B.8.1.1 Extensions to Time Functions

4148 System V uses the TZ environment variable to set some information about time.
4149 It has the form (spaces inserted for clarity):

4150 std offset dst

4151 where the first three characters (std) are the name of the standard time zone, the
4152 digits that follow (offset) represent the time added to the local time zone to arrive
4153 at Coordinated Universal Time, and the next three characters (dst) are the name
4154 of the summer time zone. The meaning of offset implies that most sites west of
4155 the Prime Meridian will have a positive offset (preceded by an optional plus sign,
4156 “+”), while most sites east of the Prime Meridian will have a negative offset (pre-
4157 ceded by a minus sign, “-”). Both std and offset are required; if dst is missing,
4158 summer time does not apply.

B.8 Language-Specific Services for the C Programming Language 283

4159

4160

4161

4162

4163

4164

4165

4166

4167

4168

4169

4170

4171

4172

4173

4174

4175

4176

4177

4178

4179

4180

4181

4182

4183

4184

4185

4186

4187

4188

4189

4190

4191

4192

4193

4194

4195

4196

4197

4198

4199

4200

4201

4202

4203

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

Currently, the UNIX system localtime() function translates a number of seconds
since the Epoch into a detailed breakdown of that time. This breakdown includes

(1) Time of day: Hours, minutes, and seconds.

(2) Day of the month, month of the year, and the year.

(3) Day of the week and day of the year (Julian day).

(4) Whether or not summer (daylight saving) time is in effect.

It is the first and last items that present a problem: the time of the day depends
on whether or not summer time is in effect. Whether or not summer time is in
effect depends on the locale and date.

Most historical systems had time-zone rules compiled into the C library. These
rules usually represented United States rules for 1970 to 1986. This did not
accommodate the changes of 1987, nor other world variations (V2-hour time, dou¬
ble daylight time, and solar time being common, but not complete, examples).
Some recent systems addressed these problems in various ways.

Having the rules compiled into the program made binary distributions that
accommodated all the variations (including sudden changes to the law), and per-
process rule changes, difficult at best.

POSIX. 1 includes a way of specifying the time zone in the TZ string, but only per¬
mits one time-zone pattern at a time, thus not dealing with different patterns in
previous years and with such issues as solar time. Methods exist to deal with all
the problems above. The method in POSIX. 1 appears to be simpler to implement
and may be faster in execution when it is adequate. POSIX. 1 also permits an
implementation-defined rule set that begins with a colon. (The previous format
cannot begin with a colon.)

Rules of the form AAAn or AAAnBBB (the style used in many historical implemen¬
tations) do not carry with them any statement about the start and end of daylight
time (neither the date nor the time of day; the default to 02:00 not applying if no
rule is present at all), thus implying that the implementation must provide the
appropriate rules. An implementation may provide those rules in any way it sees
fit, as long as the constraints implied by the TZ string as provided by the user are
met. Specifically, the implementation may use the string as an index into a table,
which may reside either on disk or in memory. Such tables could contain rules
that are sensitive to the year to which they are applied, again since the user did
not specify the exact rule. (Although impractical, every possible TZ string could
be represented in a table, as a detail of implementation; the less specific the user
is about the TZ string, the more freedom the implementation has to interpret it.)

There is at least one public-domain time-zone implementation (the Olson/Harris
method) that uses nonspecific TZ strings and a table, as described previously, and
handles all the general time-zone problems mentioned above. This implementa¬
tion also appears in a late release of 4.3BSD. If this implementation honors all
the specifications provided in the TZ string, it would conform to POSIX. 1. Nothing
precludes the implementation from adding information beyond that given by the
user in the TZ string.

The fully specified TZ environment variable extends the historical meaning to also
include a rule for when to use standard time and when to use summer time.

284 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

4204 Southern hemisphere time zones are supported by allowing the first rule date
4205 (change to summer time) to be later in the year than the second rule date (change
4206 to standard time).

4207 This mechanism accommodates the “floating day” rules (for example “last Sunday
4208 in October”) used in the United States and Canada (and the European Economic
4209 Community for the last several years). In theory, TZ only has to be set once and
4210 then never touched again unless the law is changed.

42U Julian dates are proposed with two syntaxes, one zero-based, the other one-based.

4212 They are here for historical reasons. The one-based counting (J) is used more
4213 commonly in Europe (and on calendars people may use for reference). The zero-
4214 based counting (n) is used currently in some implementations and should be kept
4215 for historical reasons as well as being the only way to specify Leap Day.

4216 It is expected that the leading colon format will allow systems to implement an
4217 even broader range of specifications for the time zone without having to resort to a
4218 file or permit naming an explicit file containing the appropriate rules.

4219 The specification in POSIX.l for TZ assumes that very few programs need to be
4220 historically accurate as long as the relative timing of two events is preserved.

4221 Summer time is governed by both locale and date. This proposal only handles the
4222 locale dependency. Using an implementation-defined file format for either the
4223 entire TZ variable or to specify the rules for a particular time zone is allowed as a
4224 means by which both the locale and date dependency can be handled.

4225 Since historical implementations do not examine TZ beyond the assumed end of
4226 dst, it is possible literally to extend TZ and break very little existing software.
4227 Since much historical software does not function outside the US time zones, minor
4228 changes to TZ (such as extending offset to be hh :mm—as long as the colon and
4229 minutes, :mm, are optional) should have little effect.

4230 POSIX.1 is intentionally silent about values of TZ that do not fit either of the |
4231 specified forms. It simply requires that TZ values that follow those forms be |
4232 interpreted as specified.

4233 B.8.1.2 Extensions to setlocaleO Function

4234 The C Standard {2} defines a collection of interfaces to support intemationaliza-
4235 tion. One of the most significant aspects of these interfaces is a facility to set and
4236 query the international environment. The international environment is a reposi-
4237 tory of information that affects the behavior of certain functionality, namely

4238 (1) Character Handling

4239 (2) String Handling (i.e., collating)

4240 (3) Date/Time Formatting

4241 (4) Numeric Editing

4242 The setlocaleO function provides the application developer with the ability to set
4243 all or portions, called categories, of the international environment. These
4244 categories correspond to the areas of functionality, mentioned above. The syntax
4245 for set locale () is the following:

B.8 Language-Specific Services for the C Programming Language 285

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

4246

4247

4248

4249

4250

4251

4252

4253

4254

4255

4256

4257

4258

4259

4260

4261

4262

4263

4264

4265

4266

4267

4268

4269

4270

4271

4272

4273

4274

4275

4276

4277

4278

4279

4280

4281

char *setlocale (int category, const char *locale) ;

where category is the name of one of five categories, namely

LC_CTYPE

LC_COLLATE

LC_TIME

LC_MONETARY

LC_NUMERIC

In addition, a special value, called LC_ALL, directs setlocale() to set all categories.

The locale argument is a character string that points to a specific setting for the
international environment, or locale. There are three preset values for the locale
argument, namely

"C" Specifies the minimal environment for C translation. If setlocalei)
is not invoked, the “C” locale is the default.

"posix" Specifies a locale that is the same as "C" for the attributes defined |
by the C Standard {2} and POSIX. 1, but may contain extensions. |
The wording permits extensions by standards, specifically that of j
ISO/IEC 9945-2 {B36}, which is expected to use the same symbol, j
and by future versions of POSIX. 1. |

" " Specifies an implementation-defined native environment.

NULL Used to direct setlocale() to query the current international
environment and return the name of the locale.

This subclause describes the behavior of an implementation of setlocale () and its |
use of environment variables in controlling this behavior on POSIX. 1-based sys- |
terns. There are two primary uses of setlocalei):

(1) Querying the international environment to find out what it is set to;

(2) Setting the international environment, or locale, to a specific value.

The following subclauses describe the behavior of setlocalei) in these two areas. |
Since it is difficult to describe the behavior in words, examples will be used to
illustrate the behavior of specific uses.

To query the international environment, setlocalei) is invoked with a specific
category and the NULL pointer as the locale. The NULL pointer is a special direc¬
tive to setlocalei) that tells it to query rather than set the international environ¬
ment. The following syntax is used to query the name of the international
environment:

setlocale (-

LC_ALL

LCjCTYPE

LCjCOLLATE

LCTIME

LC NUMERIC

LC MONETARY

ichar *) NULL);

The setlocalei) function returns the string corresponding to the current interna¬
tional environment. This value may be used by a subsequent call to setlocalei) to

286 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

4282
4283
4284
4285
4286
4287
4288

4289

4290
4291
4292
4293

4294

4295
4296
4297
4298

4299
4300
4301
4302

4303
4304
4305
4306
4307

4308
4309
4310
4311

4312

4313

4314
4315
4316
4317
4318

4319

4320
4321
4322

reset the international environment to this value. However, it should be noted
that the return value from setlocale() is a pointer to a static area within the func¬
tion and is not guaranteed to remain unchanged [i.e., it may be modified by a sub¬
sequent call to setlocale()]. Therefore, if the purpose of calling setlocale() is to
save the value of the current international environment so it can be changed and
reset later, the return value should be copied to an array of char in the calling |
program. |

There are three ways to set the international environment with setlocale():

setlocale {category, string)
This usage will set a specific category in the international
environment to a specific value corresponding to the value of
the string. A specific example is provided below:

setlocale (LC_ALL, "Fr_FR.8859") ;

In this example, all categories of the international environment
will be set to the locale corresponding to the string
"Fr__FR. 8 8 59", or to the French language as spoken in France
using the ISO 8859-1 code set.

If the string does not correspond to a valid locale, setlocale()
will return a NULL pointer and the international environment
is not changed. Otherwise, setlocale() will return the name of
the locale just set.

setlocale (category, "C")
The C Standard {2} states that one locale must exist on all con¬
forming implementations. The name of the locale is "C" and
corresponds to a minimal international environment needed to
support the C programming language.

setlocale (category, "")
This will set a specific category to an implementation-defined
default. For POSIX.l-based systems, this corresponds to the
value of the environment variables.

B.8.2 C Language Input/Output Functions

B.8.2.1 Map a Stream Pointer to a File Descriptor

Without some specification of which file descriptors are associated with these
streams, it is impossible for an application to set up the streams for another appli¬
cation it starts with fork() and exec. In particular, it would not be possible to
write a portable version of the sh command interpreter (although there may be
other constraints that would prevent that portability).

B.8.2.2 Open a Stream on a File Descriptor

The file descriptor may have been obtained from open(), creat(), pipe(), dup(), or
fcntl(); inherited through fork{) or exec; or perhaps obtained by implementation-
dependent means, such as the 4.3BSD socket() call.

B.8 Language-Specific Services for the C Programming Language 287

4323

4324

4325

4326

4327

4328

4329

4330

4331

4332

4333

4334

4335

4336

4337

4338

4339

4340

4341

4342

4343

4344

4345

4346

4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

4360

4361

4362

4363

4364

4365

4366

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

The meanings of the type arguments of fdopenO and fopen() differ. With fdo-
pen(), open for write ("w" or "w+") does not truncate, and append ("a" or "a+")
cannot create for writing. There is no need for "b" in the format due to the
equivalence of binary and text files in POSIX. 1. See B. 1.1.1. Although not expli- |
citly required by POSIX. 1, a good implementation of append ("a") mode would |
cause the 0_APPEND flag to be set. |

B.8.2.3 Interactions of Other FILE-Type C Functions

Note that the existence of open streams on a file implies open file descriptors and
thus affects the timestamps of the file. The intent is that using stdio routines to
read a file must eventually update the access time, and using them to write a file
must eventually update the modify and change times. However, the exact timing
of marking the st_atime, stjctime, and stjntime fields cannot be specified, as that
would imply a particular buffering strategy.

The purpose of the rules about handles is to allow the writing of a program that
uses stdio and does some shell-like things; in particular, creating an open file for
a child process to use, where both the parent and child wish to use stdio, with the
consequences of buffering. In most cases, this cannot happen in the C Standard |
{2} (because there is no way to create a second handle), but the systemO function
can cause this to occur, at least in most historical implementations.

Presently, POSIX. 1 deals mostly with output streams; input is implementation |
defined. It should be possible to make input on seekable devices work for seek- |
able files without affecting buffering strategies significantly. However, the details |
have not been worked out fully and will be addressed in a future revision of |
POSIX.l. The requirements on applications are unlikely to change [basically, |
serving notice to the implementation that the use of a particular handle is (tern- |
porarily) completed] and are symmetric to those for output. |

There are some implied rules about interprocess synchronization, but no mechan¬
ism is given, intentionally. In the simplest case, if the parent meets the require¬
ments on all its files and then performs a forkO and a wait() before further
activity on them [and a fflushO on input files after that], the desired synchroniza¬
tion will be achieved. Synchronization could in theory be done with signals, but
the only likely case is the one just described. The terms handle and active handle
were required to make the text readable and are not intended for use outside this
discussion.

Note that since exit{) implies _exit(), a file descriptor is also closed by exit{).

Because a handle is either freshly opened, or if not must have handed off control
of the open file description as specified, the new handle is always ready to be used
(except for seeks) with no initialization. [A freshly opened stream has not yet
done any reads, as required by the C Standard [2], at least implicitly by the rules |
associated with setvbufi).]

In requiring the seek to an appropriate location for the new handle, the applica¬
tion is required to know what it is doing if it is passing streams with seeks
involved. If the required seek is not done, the results are undefined (and in fact
the program probably will not work on many common implementations).

288 B Rationale and Notes

4367
4368
4369

4370
4371
4372
4373
4374
4375

4376
4377
4378
4379
4380
4381
4382
4383
4384
4385

4386
4387
4388
4389

4390
4391

4392
4393
4394
4395
4396
4397

4398

4399

4400

4401

4402
4403
4404

4405

4406
4407
4408
4409
4410

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

A naive program used as a utility can be reasonably expected to work properly
when the constraints are met by the calling program because it will not hand off
file descriptors except with closes.

The exec functions are treated specially because the application should always
fflushi) everything before performing one of the exec functions. If stdout is avail¬
able on the same open file description after the exec, it is a different stream, at
least because any unflushed data will be discarded during the exec (similarly for
stdin). Process termination is also special because a process terminating due to a
signal or _exit{) will not have the buffers flushed.

The fork() function also must be specially treated because it clones a number of
file descriptors simultaneously. Thus, all of them should be prepared for handoff
before the fork(). In effect, fork() creates a pair of handles that are improperly
dealt with unless, before the fork(), the first part of a handoff occurred. Note that
fflushCNULL) in the C Standard {2} is an appropriate way to do this for output. A
subsequent exec call [that does not succeed in calling exit() in some way] will
reduce the number of handles back to the original value (allowing for files that
are not close-on-exec), and, thus, preparations for exec need not necessarily do the
flush. However, because exit{) closes all streams, if the exec fails, the application
must be careful to terminate with _exit().

POSIX.1 does not specify asynchronous I/O, and when dealing with asynchronous
I/O the problem of coordinating access to streams will be more difficult. If asyn¬
chronous I/O is provided as an extension, the problems it introduces in this area
should be addressed as part of that extension.

It may be that functions such as systemO andpopen{), currently being considered
for ISO/IEC 9945-2 [B36], will have to perform some of these operations.

The introduction of underlying functions allows generic reference to errno values
returned by those functions and also to other side effects (as required in the han¬
dles discussion above). It is not intended to specify implementation, although
many implementations may in fact use those functions. The C Standard {2} says
very little about errno in the context of stdio. In the more restricted POSIX.1
environment, providing a reasonable set of errno values become possible.

B.8.2.3.1 fopen ()

There is no additional rationale provided for this subclause.

B.8.2.3.2 fclose ()

The fclose() function is required to synchronize the buffer pointer with the file
pointer (unless it already is, which would be the case at EOF). Functionality
equivalent to

f seek (stream, ftell (stream), seek_set)

does this nicely. The exception for devices incapable of seeking is an obvious
requirement, but the implication is that there is no way to reliably read a buffered
pipe and hand off handles. This is the situation in historical implementations
and is inherent in any “read-ahead” buffering scheme. This limitation is also
reflected in the handle hand-off rules.

B.8 Language-Specific Services for the C Programming Language 289

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

4411 Note that the last byte read from a stream and the last byte read from an open
4412 file description are not necessarily the same; in most cases the open file
4413 description’s pointer will be past that of the stream because of the stream’s read-
4414 ahead.

4415 B.8.2.3.3 freopeni)

4416 There is no additional rationale provided for this subclause.

4417 B.8.2.3.4 fflushi)

4418 There is no additional rationale provided for this subclause. |

4419 B.8.2.3.5 fgetc (), fgets (), fread (), getc (), getchari), gets (), scanfi), fscanfi)

4420 There is no additional rationale provided for this subclause.

4421 B.8.2.3.6 fputci), fputsi), /write(),putc(),putchar(),puts(),printf(),
4422 vprintfi), vfprintfi)

4423 There is no additional rationale provided for this subclause.

4424 B.8.2.3.7 fseek (), rewind()

4425 The fseek() function must operate as specified to make the case where seeking is
4426 being done work. The key requirement is to avoid an optimization such that an
4427 fseek() would not result in an Iseek() if the fseeki) pointed within the current
4428 buffer. This optimization is valuable in general, so it is only required after an
4429 fflushi).

4430 B.8.2.3.8 perror()

4431 There is no additional rationale provided for this subclause.

4432 B.8.2.3.9 tmpfilei)

4433 There is no additional rationale provided for this subclause.

4434 B.8.2.3.10 ftelli)

4435 In append mode, a fflushi) will change the seek pointer because of possible writes |
4436 by other processes on the same file. An fseeki,) reflects the underlying file’s file |
4437 offset, which is not necessarily the end of the file. Implementors should be aware |
4438 that the operating system itself (not some in-memory approximation) of the file |
4439 offset should be queried when in append mode. |

4440 B.8.2.3.11 Error Reporting

4441 POSIX. 1 intentionally does not require that all errors detected by the underlying |
4442 functions be detected by the functions listed here. There are many reasonable |
4443 cases where this might not occur; for example, many of the functions with writei) |
4444 as an underlying function might not detect a number of error conditions in cases |
4445 where they simply buffer output for a subsequent flush. |

290 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

4446 [ENOMEM] was considered for addition as an explicit possible error because most
4447 implementations use malloc(). This was not done because the scope does not
4448 include “out of resource” errors. Nevertheless this is the most likely error to be
4449 added to the possible error conditions. Other implementation-defined errors, par-
4450 ticularly in the f*open{) family, are to be expected, and the generic rules about
4451 adding (or deleting) possible errors apply, except that it is expected that
4452 implementation-defined changes in the error set returned by open () would also
4453 apply to fopen() [unless the condition cannot possibly happen in fopenO, which
4454 may be possible, but appears unlikely].

4455 B.8.2.3.12 exit(), abort()

4456 POSIX.l intends that processing related to the abortO function will occur unless |
4457 “the signal SIGABRT is being caught, and the signal handler does not return,” as |
4458 defined by the C Standard {2}. This processing includes at least the effect of |
4459 fclose() on all open streams, and the default actions defined for SIGABRT. |

4460 The abortO function will override blocking or ignoring the SIGABRT signal. |
4461 Catching the signal is intended to provide the application writer with a portable |
4462 means to abort processing, free from possible interference from any |
4463 implementation-provided library functions. |

4464 Note that the term “program termination” in the C Standard {2} is equivalent to |
4465 “process termination” in POSIX.l. |

4466 B.8.2.4 Operations on Files — the remove () Function

4467 There is no additional rationale provided for this subclause.

4468 B.8.3 Other C Language Functions

4469 B.8.3.1 Nonlocal Jumps

4470 The C Standard {2} specifies various restrictions on the usage of the setjmpO
4471 macro in order to permit implementors to recognize the name in the compiler and
4472 not implement an actual function. These same restrictions apply to the sig-
4473 setjmp () macro.

4474 There are processors that cannot easily support these calls, but this was not con- |
4475 sidered a sufficient reason to exclude them.

4476 The distinction between setjmpO/longjmpO and sigsetjmpO/siglongjmpO is only
4477 significant for programs that use the sigactionO, sigprocmaskO, or sigsuspendO
4478 functions. Since earlier implementations did not have signal masks, only a single
4479 pair was provided.

4480 4.2BSD and 4.3BSD systems provide functions named jsetjmpO and _longjmpO
4481 that, together with setjmp() and longjmpO, provide the same functionality as sig-
4482 setjmpO and siglongjmpO- On those systems, setjmpO and longjmpO save and
4483 restore signal masks, while _setjmpO and JongjmpO do not. On System V
4484 Release 3 and in corresponding issues of the SVID (B39}, setjmpO and longjmpO
4485 are explicitly defined not to save and restore signal masks. In order to permit

B.8 Language-Specific Services for the C Programming Language 291

4486

4487

4488

4489

4490

4491

4492

4493

4494

4495

4496

4497

4498

4499

4500

4501

4502

4503

4504

4505

4506

4507

4508

4509

4510

4511

4512

4513

4514

4515

4516

4517

4518

4519

4520

4521

4522

4523

4524

4525

4526

4527

4528

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

existing practice in both cases, the relation of setjmpi) and longjmp() to signal |
masks is not specified, and a new set of functions is defined instead. |

B.8.3.2 Set Time Zone

There is no additional rationale provided for this subclause.

B.8.3.3 Omitted Memory Management |

The brki) and sbrki) functions frequently were proposed for inclusion in POSIX.1, |
but they were excluded deliberately. See also B.1.1. The rationale for including |
them is usually addressed to the argument that it is the sbrki) primitive that |
makes it possible to implement some more general heap management system, |
such as that provided for C by malloci). The need for such functionality is fully |
understood, but specifying it as a part of a standard would have the effect of limit- |
ing the number of architectures that could support POSIX.1. It might also con- |
strain languages whose memory-management model was not served by the sbrki) \
model.

Memory management is not excluded from POSIX.1: POSIX.1 relies on the |
language to provide it, and in the C binding (as reflected in Section 8) it is pro- |
vided by malloci). It would be provided by newi) in Pascal. In a language like |
FORTRAN, which does not supply memory management to the user, it would be |
undesirable to force the language binding to attempt to include such a function. |
It is reasonable to imagine a language that required a more powerful primitive |
than sbrki) to be implemented, and standardizing sbrki) would only constrain |
such future languages. |

POSIX.1 is silent about mixed languages. Mixing languages that provide incompa- |
tible memory-management mechanisms can yield unpredictable results. Future |
standards that address mixing of languages should consider this issue. |

Architectures that could not support sbrki) are also a limiting factor. In particu- |
lar, architectures that do not present a model of a single linear address space |
would be severely constrained by sbrki), but are not so constrained by malloci) or |
newi). I

Each language should specify the memory-management primitives best suited to |
that language. Whether the implementor chooses to use a more primitive |
mechanism to implement that, or the implementor chooses to directly implement |
the language function in the kernel, is not a proper concern of the developers of |
POSIX.1, nor should it be for any portable application. An application that |
presumes the sbrki) model of memory management will not port to all architec- |
tures in any case, for the same reasons that sbrki) itself does not work on those |
architectures. No true gain in application portability would be achieved by man- |
dating such an interface. This implies that an implementor of software that |
wishes to port to multiple platforms and that attempts to implement its own |
memory management rather than relying on language-supplied functions must be |
prepared to deal with multiple platform-supplied primitives and, because it is |
doing its own memory management inherently, cannot be considered, or be made |
to be, portable in that regard.

292 B Rationale and Notes

Part 1: SYSTEM API [C LANGUAGE]
ISO/EEC 9945-1: 1990
IEEE Std 1003.1-1990

4529 B.9 System Databases

4530 At one time, this section was entitled Passwords, but this title was changed as all |
4531 references to a “password file” were changed to refer to a “user database.”

4532 B.9.1 System Databases

4533 There are no references in POSIX.l to a passwd file or a group file, and there is no
4534 requirement that the group or passwd databases be kept in files containing edit- |
4535 able text. Many large timesharing systems use passwd databases that are |
4536 hashed for speed. Certain security classifications prohibit certain information in
4537 the passwd database from being publicly readable.

4538 The term “encoded” is used instead of “encrypted” in order to avoid the implemen-
4539 tation connotations (such as reversibility or use of a particular algorithm) of the
4540 latter term.

4541 The getgrentO, setgrentO, endgrentO, getpwentO, setpwenti), and endpwenti)
4542 functions are not included in POSIX.l because they provide a linear database
4543 search capability that is not generally useful [the getpwuidO, getpwnamO, get-
4544 grgidi), and getgrnamO functions are provided for keyed lookup] and because in
4545 certain distributed systems, especially those with different authentication
4546 domains, it may not be possible or desirable to provide an application with the
4547 ability to browse the system databases indiscriminately.

4548 A change from historical implementations is that the structures used by these |
4549 functions have fields of the types gid_t and uidj, which are required to be defined |
4550 in the header <sys/types . h>. POSIX.1 has not changed the synopses of these |
4551 functions to require the inclusion of this header, since that would invalidate a |
4552 large number of existing applications. Implementations must ensure that these |
4553 types are defined by the inclusion of <grp. h> and <pwd. h>, respectively, without |
4554 imposing any namespace pollution or errors from redefinition of types.

4555 POSIX.1 is silent about the content of the strings containing user or group names. |
4556 These could be digit strings. POSIX.1 is also silent as to whether such digit |
4557 strings bear any relationship to the corresponding (numeric) user or group ID.

4558 B.9.2 Database Access

4559 B.9.2.1 Group Database Access

4560 There is no additional rationale provided for this subclause.

4561 B.9.2.2 User Database Access

4562 There is no additional rationale provided for this subclause.

B.9 System Databases 293

4563

4564

4565

4566

4567

4568

4569

4570

4571

4572

4573

4574

4575

4576

4577

4578

4579

4580

4581

4582

4583

4584

4585

4586

4587

4588

4589

4590

4591

4592

4593

4594

4595

4596

4597

4598

4599

4600

4601

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

B.10 Data Interchange Format

B.10.1 Archive/Interchange File Format

There are three areas of interest associated with file interchange:

(1) Media. There are other existing standards that define the media used for
data interchange.

(2) User Interface. This rightfully should be in the shell and utilities stan- |
dard, under development as ISO/IEC 9945-2 {B36}. j

(3) Format of the Data. None of the groups currently developing POSIX stan- |
dards address topics that match this area. The groups felt that this area |
is closest to the types of things that should be in the POSIX. 1 document, |
as the level of that document most closely matches the level of data |
required.

There are two programs in wide use today: tar and cpio. There are many sup¬
porters for each program. Four options were considered for POSIX.1:

(1) Make both formats optional. This was considered unacceptable because
it does not allow any portable method for data interchange.

(2) Require one format.

(3) Require one format with the other optional.

(4) Require both formats.

Both the Extended cpio and the Extended tar Formats are required by POSIX.1.

There are a number of concerns about defining extensions that are known to be
required by historical implementations. Failure to specify a consistent method to |
implement these extensions will limit portability of the data and, more impor¬
tantly, will create confusion if these extensions are later standardized.

Two of these extensions that should be documented are symbolic links, which |
were defined by 4.2BSD and 4.3BSD systems, and high-performance (or contigu¬
ous) files, which exist in a number of implementations and are now being con¬
sidered for future amendments to POSIX.1. |

By defining these extensions, implementors are able to recognize these features
and take appropriate implementation-defined actions for these files. For example,
a high-performance file could be converted to a regular file if the system did not
support high-performance files; symbolic links might be replaced by normal hard
links.

The policy of not defining user interfaces to utilities preempted any description of |
a tar or cpio command. The behavior of the former command was described in
some detail in previous drafts.

The possibilities for transportable media include, but are not limited to

(1) 12,7 mm (0,5 in) magnetic tape, 9 track, 63 bpmm (1600 bpi) |

(2) 12,7 mm (0,5 in) magnetic tape, 9 track, 246 cpmm (6 250 cpi)

294 B Rationale and Notes

4602

4603

4604

4605

4606
4607
4608

4609
4610
4611

4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622

4623
4624
4625
4626
4627

4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643

4644
4645
4646
4647

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

(3) QIC-11, 6,30 mm (0,25 in) streamer tape |

(4) QIC-24, 6,30 mm (0,25 in) streamer tape |

(5) 130 mm (5,25 in) diskettes, 9 512-byte sectors/track, 3,8 tpmm (96 tpi) |

(6) 130 mm (5,25 in) diskettes, 9 512-byte sectors/track, 1,9 tpmm (48 tpi) |

When selecting media, issues such as character frame size also need to be |
addressed. The easiest environment for interchange occurs when 8-bit frames are
used.

The utilities are not restricted to work only with transportable media: existing |
related utilities are often used to transport data from one place to another in the
file hierarchy.

The formats are included to provide implementation-independent ways to move
files from one system to another and also to provide ways for a user to save data
on a transportable medium to be restored at a later date. Unfortunately, these
two goals can contradict each other, as system security problems are easy to find
in tape systems if they are not protected. Thus, there are strict requirements
about how the mechanism to copy files shall react when operated by both
privileged and nonprivileged users. The general concept is that a privileged (his¬
torically using the ISUID bit in the file’s mode with the owner UID of the file set to
super-user) version of the utility (or one operated by a privileged user) can be
used as a save/restore scheme, but a nonprivileged version is used to interpret
media from a different system without compromising system security.

Regardless of the archive format used, guidelines should be observed when writ¬
ing tapes to be read on other systems. Assuming the target system conforms to
POSIX.1, archives created should only use definitions found in POSIX.l (e.g., file
types, minimum values as found in Section 2) and should only use relative path- |
names (i.e., no leading slash).

Both tar and cpio formats have traditionally been used for both exchange of
information and archiving. These formats have a number of features that facili¬
tate archiving, for example, the ability to store information about a file that is a
device. POSIX.1 does not assume this kind of data is portable. It is intended that
these formats provide for the portable exchange of source information between
dissimilar systems. This requires specification of the character set to be used |
(ISO/IEC 646 {1}) when these formats are used to write source information. The |
1990 version of ISO/IEC 646 {1} IRV was selected as the international character set |
that corresponds most directly to the ASCII set used in many historical implemen- |
tations. The 1990 version was chosen over the 1983 version because it defines
' $' as the currency symbol in the IRV, as opposed to the starburst-like generic
currency symbol. Note that ISO/IEC 646 {1} is a safe lowest-common-denominator |
character set and that interchange of larger character sets is permitted by mutual
agreement. Using any other character set (such as ISO 8859-1 {B34} or some mul¬
tibyte character set) reduces the number of machines to which interchange is
guaranteed.

All data written by format-creating utilities and read by format-reading utilities
is an ordered stream of bytes. The first byte of the stream should be first on the
medium, the second byte second, etc. On systems where the hardware swaps
bytes or otherwise rearranges the byte stream on output or input, the

B.10 Data Interchange Format 295

4648
4649

4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660

4661
4662
4663
4664
4665
4666

4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679

4680
4681
4682

4683
4684
4685
4686

4687

4688
4689
4690

4691
4692

ISO/EEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

implementor of these utilities must compensate for this so that the data on the
storage device retains its ordered nature.

POSIX. 1 describes two different formats for data archiving and interchange. |
Strong support for both formats was evident through the balloting process. This |
is a clear indication of the need for both formats due to existing practice. The bal¬
loting process also defined a number of deficiencies of each format. The strong
support indicates that these deficiencies are not sufficient to remove either format
from POSIX.l, but will need to be addressed in future amendments to POSIX.l. It
was not practical to remedy these deficiencies during the balloting process. Con¬
siderable thought and review must occur before making any changes to these for¬
mats. It was felt that the best solution is to advise implementors and application
writers of these deficiencies by documenting them in the rationale and to include
both formats in POSIX. 1.

The developers of POSIX 1 recognize the desirability for migration toward one |
common format and have been made aware of some strong inputs to consider both |
formats in light of existing practice, current technology trends, and the POSIX |
standards activities such as security and high-performance systems, and to |
develop one format that is technically superior. This format will be incorporated |
into a future amendment to POSIX.l when it is developed. |

The deficiencies that have been identified in the existing formats are as follows.
The size of a file link is limited to 100 characters in tar. A number of fields in
the cpio header (cJilesize, cjdev, c_ino, cjnode, and c_rdev) are too short to
support values that POSIX.l allows these fields to contain. Some existing imple¬
mentations and current trends in development will require the ability to
represent even larger values in these fields. The cpio format does not provide a
mechanism to represent the user and group IDs symbolically, and a range of
implementation-defined file types have not been reserved for the user. The cpio
format specification does not reserve any formats for implementation-defined
usage. The extensions that have been made to cpio for POSIX. 1 are compatible
with existing versions of cpio. Correction of some of these deficiencies would
make existing versions of cpio behave unpredictably. When these changes are
made the cpio magic number will have to be changed.

This clause uses the term file name; note that filename and file name are not |
synonyms; the latter is a synonym for pathname, in that it includes the slashes
between filenames.

In earlier drafts, the word “local” was used in the context of “file system” and was
taken (incorrectly) to be related to “remotely mounted file system.” This was not
intended. The term “(local) file system” refers to the file hierarchy as seen by the
utilities, and “local” was removed because of this confusion.

B.10.1.1 Extended tar Format

The original model for this facility is the 4.3BSD or Version 7 tar program and
format, but the format given here is an extension of the traditional tar format.
The name USTAR was adopted to reflect this.

This description reflects numerous enhancements over previous versions. The
goal of these changes was not only to provide the functional enhancements

296 B Rationale and Notes

4693

4694

4695

4696

4697

4698

4699

4700

4701

4702

4703

4704

4705

4706

4707

4708

4709

4710

4711

4712

4713

4714

4715

4716

4717

4718

4719

4720

4721

4722

4723

4724

4725

4726

4727

4728

4729

4730

4731

4732

4733

4734

4735

4736

4737

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

desired, but also to retain compatibility between new and old versions. This com¬
patibility has been retained. Archives written using the old archive format are
compatible with the new format. Archives written using this new format may be
read by applications designed to use the old format as long as the functional
enhancements provided here are not used. This means the user is limited to
archiving only regular type files and nonsymbolic links to such files.

Implementors should be aware that the previous file format did not include a
mechanism to archive directory type files. For this reason, the convention of
using a file name ending with slash was adopted to specify a directory on the
archive.

The total size of the name and prefix fields have been set to meet the minimum
requirements for {PATH_MAX}. If a pathname will fit within the name field, it is
recommended that the pathname be stored there without the use of the prefix
field. Although the name field is known to be too small to contain {PATH_MAX}
characters, the value was not changed in this version of the archive file format to
retain backward compatibility, and instead the prefix was introduced. Also,
because of the earlier version of the format, there is no way to remove the restric¬
tion on the linkname field being limited in size to just that of the name field.

The size field is required to be meaningful in all implementation extensions,
although it could be zero. This is required so that the data blocks can always be
properly counted.

It is suggested that if device special files need to be represented that cannot be
represented in the standard format that one of the extension types ('A'-'z') be
used, and that the additional information for the special file be represented as
data and be reflected in the size field.

Attempting to restore a special file type, where it is converted to ordinary data
and conflicts with an existing file name, need not be specially detected by the util¬
ity. If run as an ordinary user, a format-reading utility should not be able to
overwrite the entries in, for example, /dev in any case (whether the file is con¬
verted to another type or not). If run as a privileged user, it should be able to do
so, and it would be considered a bug if it did not. The same is true of ordinary
data files and similarly named special files; it is impossible to anticipate the
user’s needs (who could really intend to overwrite the file), so the behavior should
be predictable (and thus regular) and rely on the protection system as required.

The values '2' and '7' in the typeflag field are intended to define how symbolic
links and contiguous files can be stored in a tar archive. POSIX.1 does not
require the symbolic link or contiguous file extensions, but does define a standard
way of archiving these files so that all conforming systems can interpret these file
types in a meaningful and consistent manner. On a system that does not support
extended file types, the format-interpreting utility should do the best it can with
the file and go on to the next.

B.10.1.2 Extended cpio Format

The model for this format is the existing System V cpio -c data interchange for¬
mat. This model documents the portable version of cpio format and not the
binary version. It has the flexibility to transfer data of any type described within

B.10 Data Interchange Format 297

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

4738 the POSIX. 1 standard, yet is extensible to transfer data types specific to exten-
4739 sions beyond POSIX.1 (e.g., symbolic links or contiguous files). Because it
4740 describes existing practice, there is no question of maintaining upward
4741 compatibility.

4742 This subclause does not standardize behavior for the utility when the file type is |
4743 not understood or supported. It is useful for the utility to report to the user what-
4744 ever action is taken in this case, though POSIX.1 neither requires nor recommends
4745 this.

4746 B.10.1.2.1 cpio Header

4747 There has been some concern that the size of the cjno field of the header is too
4748 small to handle those systems that have very large i-node numbers. However, the
4749 cjno field in the header is used strictly as a hard link resolution mechanism for
4750 archives. It is not necessarily the same value as the i-node number of the file in
4751 the location from which that file is extracted.

4752 B.10.1.2.2 cpio File Name

4753 For most historical implementations of the cpio utility, {PATH_MAX} bytes can be
4754 used to describe the pathname without the addition of any other header fields (the
4755 null byte would be included in this count). {PATH_MAX} is the minimum value for
4756 pathname size, documented as 256 bytes in Section 2. However, an implementa- |
4757 tion may use cjiamesize to determine the exact length of the pathname. With the
4758 current description of the cpio header, this pathname size can be as large as a
4759 number that is described in six octal digits.

4760 B.10.1.2.3 cpio File Data

4761 There is no additional rationale provided for this subclause.

4762 B.10.1.2.4 cpio Special Entries

4763 These are provided to maintain backward compatibility.

4764 B.10.1.2.5 cpio Values

4765 Three values are documented under the cjnode field values to provide for extensi-
4766 bility for known file types:

4767 0110000
4768

4769

4770

Reserved for contiguous files. The implementation may treat
the rest of the information for this archive like a regular file. If
this file type is undefined, the implementation may create the
file as a regular file.

4771

4772

4773

4774

4775

4776

0120000 Reserved for files with symbolic links. The implementation
may store the link name within the data portion of the file. If
this type is undefined, the implementation may not know how
to link this file or be able to understand the data section. The
implementation may decide to ignore this file type and output a
warning message.

298 B Rationale and Notes

4777

4778

4779

4780

4781

4782

4783

4784

4785

4786

4787

4788

4789

4790

4791

4792

4793

4794

4795

4796

4797

4798

4799

4800

4801

4802

4803

4804

4805

4806

4807

4808

4809

4810

4811

4812

4813

4814

4815

4816

4817

4818

4819

4820

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

0140000 Reserved for sockets. If this type is undefined on the target
system, the implementation may decide to ignore this file type
and output a warning message.

This provides for extensibility of the cpio format while allowing for the ability to
read old archives. Files of an unknown type may be read as “regular files” on
some implementations. On a system that does not support extended file types,
the format-interpreting utility should do the best it can with the file and go on to
the next.

B.10.1.3 Multiple Volumes

Multivolume archives have been introduced in a manner that has become a de
facto standard in many implementations. Though it is not required by POSIX.1,
classical implementations of the format-reading and -creating utility, upon read¬
ing logical end-of-file, check to see if an error channel is open to a controlling ter¬
minal. The utility then produces a message requesting a new medium to be made
available. The utility waits for a new medium to be made available by attempting
to read a message to restart from the controlling terminal. In all cases, the com¬
munication with the controlling terminal is in an implementation-defined
manner.

This subclause (10.1.3) is intended to handle the issue of multiple volume |
archives. Since the end-of-medium and transition between media are not properly
part of POSIX.1, the transition is described in terms of files; the word “file” is used
in a very broad, but correct, sense—a tape drive is a file. The intent is that files
will be read serially until the end-of-archive indication is encountered and that
file or media change will be handled by the utilities in an implementation-defined
manner.

Note that there was an issue with the representation of this on magnetic tape,
and POSIX.1 is intended to be interpreted such that each byte of the format is
represented on the media exactly once. In some current implementations, it is
not deterministic whether encountering the end-of-medium reflector foil on mag¬
netic tape during a write will yield an error during a subsequent read () of that
record, or if that record is actually recorded on the tape. It is also possible that
read() will encounter the end-of-medium when end-of-medium was not encoun¬
tered when the data was written. This has to do with conditions where the end of
[magnetic) record is in such a position that the reflector foil is on the verge of
being detected by the sensor and is detected during one operation and not on a
later one, or vice versa.

An implementation of the format-creating utility must assure when it writes a
record that the data appears on the tape exactly once. This implies that the pro¬
gram and the tape driver work in concert. An implementation of the format¬
reading utility must assure that an error in a boundary condition described above
will not cause loss of data.

The general consensus was that the following would be considered as correct
operation of a tape driver when end-of-medium is detected:

(1) During writing, either

B.10 Data Interchange Format 299

4821

4822

4823

4824

4825

4826

4827

4828

4829

4830

4831

4832

4833

4834

4835

4836

4837

4838

4839

4840

4841

4842

4843

4844

4845

4846

4847

4848

4849

4850

4851

4852

4853

4854

4855

4856

4857

4858

4859

4860

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

(a) The record where the reflector spot was detected is backspaced over
by the driver so that the trailing tape mark that will be written on
close() will overwrite. Writing the tape mark should not yield an
end-of-medium condition, or

(b) The condition is reported as an error on the write () following the
one where the end-of-medium is detected (the one where the end-
of-medium is actually detected completing successfully). No data
will be actually transferred on the write () reporting the error. The
subsequent close () would write a tape mark following the last
record actually written. Writing the tape mark, and writing any
subsequent records, should not yield any end-of-medium conditions.

[The latter behavior permits the implementation of ANSI standard labels
because several records (the trailer records) can be written after the end-
of-medium indications. It also permits dealing with, for example, COBOL
“ON” statements.]

(2) During reading, the end-of-medium indicator is simply ignored, presum¬
ing that a tape mark (end-of-file) will be recorded on the magnetic
medium and that the reflector foil was advisory only to the write ().

Systems where these conditions are not met by the tape driver should assure that
the format-creating and -reading utilities assure proper representation and
interpretations of the files on the media in a way consistent with the above recom¬
mendations.

The typical failures on systems that do not meet the above conditions are either

(1) To leave the record written when the end-of-medium is encountered on
the tape, but to report that it was not written. The format-creating util¬
ity would then rewrite it, and then the format-reading utility could see
the record twice if the end-of-medium is not sensed during the read
operations, or

(2) The write() occurs uneventfully, but the readi) senses the error and does
not actually see the data, causing a record to be omitted.

Nothing in POSIX.1 requires that end-of-medium be determined by anything on
the medium itself (for example, a predetermined maximum size would be an
acceptable solution for the format-creating utility). The format-reading utility
must be able to read{) tapes written by machines that do use the whole medium,
however.

On media where end-of-medium and end-of-file are reliably coincident, such as
disks, end-of-medium and end-of-file can be treated as synonyms.

Note that partial physical records [corresponding to a single write ()] can be writ¬
ten on some media, but that only full physical records will actually be written to
magnetic tape, given the manner in which the tape operates.

300 B Rationale and Notes

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Annex C
(informative)

Header Contents Samples

1 The material in this informative annex serves as an index to which symbols
2 should appear in which headers in a system that conforms to POSIX.1 with C
3 Standard Language-Dependent System support.

4 This is only an index, and any conflicts with the actual body of any relevant stan-
5 dard shall be resolved in favor of that standard. The actual body of the declara-
6 tion was omitted in part because this is an index and in part to avoid any possible
7 conflict with the standards.

8 Where it is known that a symbol or header is not required for Common Usage C
9 Language-Dependent System support, the name is followed by an asterisk (*).
10 Omission of an asterisk does not imply that the symbol is required for Common-
n Usage C. For Common-Usage C, although the location of symbols is typical, it is
12 not to be taken as a requirement: POSIX.1 is quite explicit that there is no
13 requirement except that differences from the C Standard {2} be documented.

14 Generally, where it is stated that functions are defined in a header, macros are
15 permitted as acceptable alternatives by both standards. See the bodies of the
16 standards for details.

17 <assert.h>

is The header defines the macro

19 assertO

20 and makes reference to the macro

21 NDEBUG

22 <ctype.h>

23 The header declares the functions

24 isalnum () isdigitO islower() ispunctO isupper()
25 isalpha() isgraphO isprinti) isspace () isxdigitO
26 iscntrli)

toloweri)
toupper()

Annex C Header Contents Samples 301

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

<dirent.h>

The header defines the typedef

DIR

and declares the structure

dirent

with structure element member

djname

and declares functions

closedirO opendir{) readdirO rewinddirO

<errno.h>

The header defines the macros

E2BIG EEXIST EMLINK ENOMEM EPERM
EACCES EFAULT ENAMETOOLONG ENOSPC EPIPE
EAGAIN EFBIG ENFILE ENOSYS ERANGE
EBADF EINTR ENODEV ENOTDIR EROFS
EBUSY EINVAL ENOENT ENOTEMPTY ESPIPE
ECHILD EIO ENOEXEC ENOTTY ESRCH
EDEADLK
EDOM

EISDIR
EMFILE

ENOLCK ENXIO EXDEV

and declares the external variable

errno

<fcntl.h>

The header defines the macros

FD_CLOEXEC
F_DUPFD
F_GETFD
f_getfl
F_GETLK
F_RDLCK

F_SETFD
F_SETFL
F_SETLK
F_SETLKW
F_UNLCK
FJWRLCK

0_ACCM0DE
0_APPEND
0_CREAT
0_EXCL
0_N0CTTY

0_N0NBL0CK
o.rdonly
0_RDWR
O.TRUNC
O.WRONLY

and declares the structure

flock

with structure elements

302 C Header Contents Samples

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

59 lJen l _pid l_start Ijype Ijwhence

60 and the functions

6i creat () fcntli) open{)

62 and may contain the macros

63 SEEK_CUR S_IROTH S_IRWXU S_ISFIFO S_IWGRP S.IXGRP
64 SEEK_END SJRUSR SJSBLK S.ISGID SJWOTH S_IXOTH
65 SEEK_SET S_IRWXG S_ISCHR S_ISREG SJWUSR S.IXUSR
66 SJRGRP S.IRWXO S_ISDIR SJSUID

67 <float.h>*

68 The header defines the macros

69 DBL_DIG* FLT_EPSILON* LDBL_DIG*
70 DBL_EPSILON* FLT_MANT_D IG* LDBL_EPSILON*
71 DBL_MANT_DIG* FLT_MAX* LDBL_MANT_DIG*
72 DBL_MAX* FLT_MAX_ 10_EXP * LDBL_MAX*
73 DBL_MAX_10_EXP* FLT_MAX_EXP* LDBL_MAX_10_EXP*
74 DBL_MAX_EXP* FLT_MIN* LDBL_MAX_EXP*
75 DBL_MIN* FLT_MIN_10_EXP* LDBL_MIN*
76 DBL_MIN_10_EXP* FLT_MIN_EXP* LDBL_MIN_10_EXP*
77 DBL_MIN_EXP* FLT_RADIX* LDBL_MIN_EXP*
78 FLT_DIG* FLT_ROUNDS*

79 <grp. h>

so The header declares the structure

81 group

82 with structure elements

83 gr_gid grjnem grjname

84 and the functions

85 getgrgidO getgrnamO

Annex C Header Contents Samples 303

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

86 <limits.h>

87 The header defines the macros

88 ARG_MAX» NGROUPS_MAX USHRT_MAX
89 CHAR_BIT OPEN_MAX* _POSIX_ARG_MAX
90 CHAR_MAX PATH_MAX« _POSIX_CHILD_MAX
91 CHAR_MIN PIPE_BUF* _POSIX_LINK_MAX
92 CHILD_MAX« SCHAR_MAX _PO S IX_M AX_C AN O N
93 INT_MAX SCHAR_MIN _POSIX_MAX_INPUT
94 INT_MIN SHRT_MAX _POSIX_NAME_MAX
95 LINK_MAX» SHRT_MIN _POSIX_NGROUPS_MAX
96 LONG_MAX SSIZE_MAX _POSIX_OPEN_MAX
97 LONG_MIN STREAMJVIAXD _POSIX_PATH_MAX
98 MAX_CANON* TZNAME_MAX _POSIX_PIPE_BUF
99 MAXJNPUT# UCHAR_MAX _POSIX_SSIZE_MAX
100 MB_LEN_MAX UINT_MAX _POSIX_STREAM_MAX
101 NAME_MAX* ULONG_MAX _POSIX_TZNAME_MAX

102 The macros marked with □ shall be omitted from climits . h> on specific imple-
103 mentations where the corresponding value is greater than or equal to the stated
104 minimum, but is indeterminate. The macros marked with • shall be omitted from
105 <limits.h> on specific implementations where the corresponding value is
106 greater than or equal to the stated minimum, but where the value can vary
107 depending on the file to which it is applied.

108 <locala.h>

109 The header defines the macros

no LC_ALL* LC_CTYPE* LC.NUMERIC* NULL*
111 LC.COLLATE* LC MONETARY* LC TIME*

112 and declares the structure

113 Iconv*

114 with structure elements

ns currency jsymbol*
116 decimal _point*
117 fracjdigits*
118 grouping*
119 int_curr_symbol*
120 int Jracjdigits*

121 and the functions

122 localeconv ()* setlc

304

monjdecimal jooint*
mon_grouping*
mon_thousands_sep *
n_cs precedes*
n_sep_by_space *
n_sign _posn*

negative _sign*
p_cs _precedes*
p _sep _by _space *
psign _posn*
positive_sign*
thousands _sep*

->cale ()*

C Header Contents Samples

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

<math.h>

The header defines the macro

HUGE.VAL

and declares the functions

acos() ceil() exp () fmod{) log 10 () powO sqrt ()
asin () cos () fabsO frexpi) log() sinO tanO
atan2() cosh() floor () Idexp () modfO sinhO tanhO
atari ()

<pwd.h>

The header defines the structure

passwd

with structure elements

pw_dir pw_gid pwjiame pw_shell pwjiid

and declares the functions

getpwnamO getpwuidi)

<setjmp.h>

The header defines the types

jmpjbuf sigjmpjbuf

and declares the functions

longjmp () setjmp () siglongjmp () sigsetjmp ()

Note that the C Standard {2} and this part of ISO/IEC 9945 both permit these
functions to be defined solely as macros.

<signal.h>

The header defines the macros

SA_NOCLDSTOP SIGHUP SIGQUIT SIGTTIN SIG_DFL
SIGABRT SIGILL SIGSEGV SIGTTOU SIG_ERR*
SIGALRM SIGINT SIGSTOP SIGUSR1 SIG_IGN
SIGCHLD SIGKILL SIGTERM SIGUSR2 SIG_SETMASK
SIGCONT
SIGFPE

SIGPIPE SIGTSTP SIG.BLOCK SIGJJNBLOCK

and the types

Annex C Header Contents Samples 305

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

sig_atomic_t* sigsetjt

and declares the structure

sigaction

with structure elements

sa Jlags sajiandler sajnask

and the functions

sigpendingi)
sigprocmaskO
sigsuspendO

<stddef.h>*

The header defines the macros

NULL* offsetof*

and the types

ptrdiffjt* sizejt* wcharjt*

<stdio.h>

The header defines the macros

raise()*
sigaction ()

sigaddsetO
sigdelseti)
sigemptyseti)

sigfillseti)
sigismemberi)
signalO*

<stdarg.h>*

The header defines the macros

va_arg* va end* ua list* va start*

BUFSIZ
EOF
FILENAMEJV1AX*
L_ctermid
L_cuserid

L_tmpnam*
NULL
SEEK_CUR
SEEK_END
SEEK_SET

STREAMJvlAX*
TMP_MAX
stderr
stdin

stdout
_IOFBF*
_IOLBF*
_IONBF*

NOTE: The L_cuserid symbol is permitted in this header, but need not be supplied. See 2.7.2.

and the types

fposjt* sizejt

and declares the type

306 C Header Contents Samples

ISO/IEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

182 FILE

183 and the functions

184 clearerri) filenoi) fsetpos ()* putchar{) sprintfi)
185 fclose () fopen() ftelli) puts() sscanfi)
186 fdopeni) fprintfi) fwriteO remove () tmpfile{)
187 feo/X) fputci) getc() rename () tmpnamO
188 ferrori) fputsi) getchar() rewind () ungetc{)
189 fflushO freadi) gets() scanfi) v fprintfi)*
190 fgetci) freopen () perror{) setbufO vprintfi)*
191 fgetposO* fscanfi) printfi) setvbuf{)* vsprintfi)*
192 fgetsi) fseek () putc ()

193 <stdlib.h>

194 The header defines the macros

195 EXIT_FAILURE MB_CUR_MAX* RAND_MAX
196 EXIT_SUCCESS NULL

197 and the types

198 div_t* Idivjt* sizejt wcharj*

199 and declares the functions

200 abort () bsearchi) labsO* qsort() strtolO*
201 abs() calloc () IdivO* rand() strtoulO*
202 atexitO* div()* mallocO realloc C 1 system ()*
203 atof{) ex it{) mblen ()* srandO westombsi)*
204 atoi() free () mb stowcs ()* strtod ()* * wetombi)*
205 atoli) getenui) mbtowc () *

206 <string.h>

207 The header defines the macro

208 NULL

209 and the type

210 sizejt

Annex C Header Contents Samples 307

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

and declares the functions

memchr{)*
memcmp ()*
memcpyO*
memmoue ()*
memsetO*

strcati)
strchr()
strcmp ()
strcollO*
strcpyi)

strcspni)
strerror{)*
strleni)
strncati)

strncmp ()
strncpyi)
strpbrk ()
strrchr()

<sys/stat.h>

The header defines the macros

S_IRGRP S_IRWXO SJSCHR S_ISGID S_IWGRP
SJROTH SJRWXU S.ISDIR S_ISREG S_IWOTH
SJRUSR
S_IRWXG

S_ISBLK SJSFIFO S_ISUID S.IWUSR

and declares the structure

stat

with structure elements

stjatime stjdev st_ino stjntime st_size
stjctime st_gid stjnode stjnlink st_uid

and the functions

chmod () mkdir() stat ()
fstati) mkfifoi) umask ()

<sys/times.h>

The header defines the type

clock _t

and declares the structure

tms

with structure elements

tmsjcstime tms_cutime tms_stime tms_utime

and the function

times ()

strspn ()
strstr()
strtok()
strxfrmO*

S_IXGRP
SJXOTH
S_IXUSR

308 C Header Contents Samples

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

240 <sys/types .h>

241 The header defines the types

242 dev_t inojt nlinkjt pidj ssize_t
243 gid_t modejt off_t sizejt uid_t

244 <sys/utsname .h>

245 The header declares the structure

246 utsname

247 with structure elements

248 machine nodename release sysname version

249 and the function

250 uname ()

251 <sys/wait.h>

252 The header defines the macros

253 WEXITSTATUS WIFSIGNALED WNOHANG
254 WIFEXITED WIFSTOPPED WSTOPSIG

WTERMSIG
WUNTRACED

255 and declares the functions

256 wait() waitpidi)

257 <termios.h>

258 The header defines the macros

259 B0 B75 ECHONL NCCS TCSAFLUSH
260 B110 B9600 HUPCL NOFLSH TCSANOW
261 B1200 BRKINT ICANON OPOST TOSTOP
262 B134 CLOCAL ICRNL PARENB VEOF
263 B150 CREAD IEXTEN PARMRK VEOL
264 B1800 CS5 IGNBRK PARODD VERASE
265 B19200 CS6 IGNCR TCIFLUSH VINTR
266 B200 CS7 IGNPAR TCIOFF VKILL
267 B2400 CS8 INLCR TCIOFLUSH VMIN
268 B300 CSIZE INPCK TCION VQUIT
269 B38400 CSTOPB ISIG TCOFLUSH VST ART
270 B4800 ECHO ISTRIP TCOOFF VSTOP
271 B50 ECHOE IXOFF TCOON VSUSP
272 B600 ECHOK IXON TCSADRAIN VTIME

Annex C Header Contents Samples 309

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

and the types

cc_t speed _t tcflagjt

and declares the structure

termios

with structure elements

c_cc c_cflag cjflag c_lflag c_oflag

and the functions

cfgetispeedi) cfsetospeedO tcflushO tcsendbreakO
cfgetospeedO tcdrain() tcgetattr{) tcsetattr ()
cfsetispeed () tcflow ()

<time.h>

The header defines the macros

CLKTCK CLOCKS_PER_SEC NULL

the types

clock_t sizej timej

and declares the structure

tm

with structure elements

tmjiour tmjnday tmjnon tmjuuday tmjyear
tm_isdst tmjnin tm_sec tmjyday

and the functions

asctime () ctime () gmtime () mktime () time()
clock ()* difftime ()* localtimeO strftimei) tzset()

and declares the external variable

tzname

310 C Header Contents Samples

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

<unistd.h>

The header defines the macros

F_OK
NULL
R_OK
SEEK_CUR
SEEK_END
SEEKJ3ET
STDERR_FILENO
STDIN.FILENO
STDOUT_FILENO
W_OK
X_OK
_pc_chown_restricted
_PC_LINK_MAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_N 0_TRUN C
_PC_PATH_MAX

and defines the types

sizej* ssize_t*

and declares the functions

PC_PIPE_BUF
PC_VDISABLE
POSIX_CHOWN_RESTRICTED
POSIX_JOB_CONTROL
POSIX_NO_TRUNC
POSIX_SAVED_IDS
POSIX_VDISABLE
POSIX_VERSION
SC_ARG_MAX
SC_CHILD_MAX
SC_CLK_TCK
SC_J OB_CONTROL
SC_NGROUPS_MAX
SC_OPEN_MAX
SC_SAVED_IDS
SC_STREAM_MAX
SC_TZNAME_MAX
SC_VERSION

_exit() execl() geteuidi) link() setsidO
access() execle () getgidi) Iseek () setuid{)
alarm () execlp () getgroupsO pathconfi) sleep ()
chdir() execvO getlogini) pause () sysconfi)
chown() execve() getpgrpO pipe () tcgetpgrp ()
close() execvp () getpidi) read() tcsetpgrp ()
ctermidO fork () getppidO rmdir() tty name ()
cuseridi) fpathconf{) getuidi) setgidi) unlinkO
dup2() getcwdO isattyO setpgidi) write ()
dup () getegidi)

NOTE: The cuserid{) symbol is permitted in this header, but need not be supplied. See 2.7.2.

<utime.h>

The header declares the structure

utimbuf

with structure elements

Annex C Header Contents Samples 311

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

336 actime

337 and the function

338 utime ()

modtime

312 C Header Contents Samples

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Annex D
(informative)

Profiles

This standard contains a number of options and variables that reflect the range of
systems and environments that might be encountered. In general, it will be use¬
ful for applications to take the full range of these possibilities into account and
either accommodate them or exclude them. However, there are significant com¬
munities of interest that may have common needs that warrant focusing on a
specific suite of these options and parameters. This annex discusses the concept
of profiles (also known as functional standards) and how they address this
problem.

This annex reflects current thinking. It is clear that a concept such as this will
help significantly in clarifying the intended use of these standards. It is to be
expected that some of the details of this material will be changed before it is fully
stabilized.

As background: the OSI model has over 170 standards (and consequent combina¬
tions thereof) that fit within it. Only a fraction of those are actually useful for any
given application environment. The concept of profiles was developed to address
this issue and appears also to apply to the area of application portability. The
ISO/IEC term for such profiles is ISP, or “International Standardized Profile.”

D.l Definitions

The following definitions are proposed for use in the area covered by this part of
ISO/IEC 9945.

D.1.1 Applications Environment Profile (AEP) [profile]: The specification of
a complete and coherent subset of an Open System Environment, together with
the options and parameters necessary to support a class of applications for intero¬
perability or applications portability, including consistency of data access and
human interfaces. Where there are several AEPs for the same OSE, they are har¬
monized.

AEPs are the basis for procurement and conformance testing and are the target
environment for software development.

D.1.2 Application Specific Environment (ASE): A complete and coherent
subset of an Applications Environment Profile, together with interfaces, services,
or supporting formats outside of the profile, that are required by a particular

D.l Definitions 313

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

32 application for its installation and execution.

33 D.1.3 Application Specific Environment Description (ASED): The
34 specification of an Application Specific Environment, together with the specific
35 options or parameters required; interfaces, services, or supporting formats outside
36 of the profile; and resource requirements necessary for the satisfactory operation
37 of the application. (For example, storage and performance requirements.)

38 (This term is intended for use in Applications Conformance clauses found in
39 profiles.)

40 D.1.4 coherent: The parts are logically connected. (For example, if both FOR-
41 TRAN and COBOL are specified, whether they can share files is specified.)

42 D.1.5 complete: Having all the necessary parts. (For example, if COBOL and
43 SQL are both specified, then there is a COBOL binding to SQL, or at least an expla-
44 nation of why not.)

45 D.1.6 comprehensive: A sufficiently broad range of functionality is covered
46 that the needs of most Applications Environment Profiles are met.

47 D.1.7 consistent: The parts of the Open System Environment do not inherently
48 conflict with each other. This does not preclude options that conflict, as long as
49 an Applications Environment Profile can select a set that does not conflict.

so D.1.8 harmonized: Where same functionality is needed in several profiles, it
51 appears identically in all of them.

52 D.1.9 Open System Environment (OSE): A comprehensive and consistent set
53 of international information technology standards and functional standards
54 (profiles) that specify interfaces, services, and supporting formats to accomplish
55 interoperability and portability of applications, data, and people. These are based
56 on International Standards (ISO, IEC, CCITT,...)

57 D.1.10 POSIX Open System Environment: A comprehensive and consistent
58 set of ISO/IEC, regional, and national information technology standards and func-
59 tional standards (profiles) that specify interfaces, services, and supporting for-
60 mats for interoperability and portability of applications, data, and people that are
61 in accord with ISO/IEC 9945 (POSIX).

62 No single component of the OSE, including ISO/IEC 9945, is expected to be
63 required in all such profiles.

64 D.2 Options in This Part of ISO/IEC 9945

65 In terms of this part of ISO/IEC 9945, there are a number of features that could be
66 specified in a profile. This list includes:

67 — The options listed in 1.3.1.3.

68 — The limits in 2.8. Regarding the the C Language Limits for the type char,
69 care should be taken that those limits are not for the POSIX. 1 definition of
70 character, but for the one in the C language. For the POSIX. 1 definition of

314 D Profiles

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

71

72

character, the following limits from the C Standard {2} could be specified as |
well: {MB_LEN_MAX} and {MB_CUR_MAX}.

73 — The flags in 2.9.4.

75

76

77

74 — Instances of the word “may” throughout the document. (Note that not all |
instances of “may” constitute behavior that could or should be considered |
appropriate for specification in a profile. Some reflect implementation vari- |
ants that should not matter to applications.)

81

82

80

78

79

— Features that are specified in a generic way for broad portability of the |
standard, that might reasonably be constrained in the more limited context |
of a profile. For such features, the constraint shall be documented in a |
profile so that the effects of the constraint on the standard would be |
clarified.

83 D.3 Related Standards |

84 The other POSIX standards (ISO/IEC 9945-2 {B36}, in particular) are expected to |
85 form a major part of the POSIX OSE. Other formal standards, such as those listed |
86 in Annex A, are also expected to be part of such a document (in particular, the |
87 C Standard {2}.) j

88 Standards such as other languages, SQL, graphics standards such as GKS, and |
89 networking standards are also probable candidates for inclusion in the POSIX |
90 OSE.

91 D.4 Related Activities |

92 In many ways, the work of NIST (in terms of FIPS), OSF, UNIX International, and |
93 X/Open often act like early (but sophisticated) profiles or metaprofiles, specifying |
94 a range of standards from which true profiles could select. They collect together |
95 many standards, specify options, and specify the relationship between the parts. |
96 These activities go well beyond profiles, as they add specifications that are not for- |
97 mal standards to the suite as well. Often these additional specifications point to |
98 areas where formal standards are required.

99 D.5 Relationship to IEEE Draft Project 1003.0 I

100 The IEEE P1003.0 working group is writing a Guide to Open Systems. In many |
101 ways, this is the specification of the POSIX Open Systems Environment. It could |
102 be the specification of the collection of standards that might be used to specify |
103 many Open Systems Environments, depending on how exactly that work |
104 proceeds. I

D.5 Relationship to IEEE Draft Project 1003.0 315

1

2

3
4
5

6

7
8

9
10

11

12

13
14
15
16
17

18
19

20

21

22
23

24
25

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Annex E
(informative)

Sample National Profile

One class of “community of interest” for which profiles (as discussed in Annex D)
are useful is specific countries, where the general characteristics warrant specific
focus to serve the needs of users in those countries. Such needs lead to a number
of implications concerning the options available within this part of ISO/IEC 9945
and may warrant specification of complementary standards as well.

The following is an example of a country’s needs with respect to this part of
ISO/IEC 9945 and how those needs relate to other international standards as well
as national standards. The example provided is included here for informative
purposes and is not a formal standard in the country in question. It is provided
by the Danish Standards Association and is as accurate as possible with regards
to Danish needs.1) This example national profile is worded as if it were a national
standard.

A subclass of conforming implementations can be identified that meet the require¬
ments of a specific profile. By documenting these either in national standards, in
a document similar to an ISO/IEC ISP (an International Standardized Profile), or
in an informative annex (such as this), these can be referenced in a consistent
manner.

1) Further information may be obtained from the Danish Standards Association, Attn: Sl42u22All
POSIX WG, Box 77, DK-2900 Hellerup, Denmark; FAX: +45 31 62 30 77; Email: posix@itc. dk

The data is also available electronically by anonymous FTAM or FTP at the site dkuug. dk in the
directory isp, where some other example national profiles, locales, and charmaps may also be
found. They are also available by an archive server reached at archive@dkuug.dk; use
“Subject: help” for further information.

More complete examples of profiles are expected to be available in future revisions of this part of
ISO/IEC 9945 and in other POSIX standards.

Annex E Sample National Profile 317

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

26 E.l (Example) Profile for Denmark

27 NOTE: This profile is chosen both for its instructive value by being a European profile and the gen-
28 erality in the provisions it makes, addressing most of the relevant points. It does claim to be correct
29 for Denmark, and the style is what would be expected in a real ISP. A collection of real ISPs would
30 be as useful, and work is underway collecting these.

31 This is the definition of the Danish Standards Association POSIX. 1 profile. Infor-
32 mation on the actual data for the locale and coded character set mapping
33 definitions are under development as part of an informative annex in
34 ISO/IEC 9945-2 {B36}.2)

35 The subset of conforming implementations that provide the required characteris-
36 tics below is referred to as conforming to the “Danish Standards Association (DS)
37 Environment Profile” for this part of ISO/IEC 9945.

38 The profile specifies no options according to POSIX.l section 2.9.3. For section
39 2.8.4 in the <limits.h> specification, the LPOSIX_TZNAME_MAX} value shall
40 be 7.

41 E.1.1 Character Encoding

42 Any character encoding with the required repertoire of the POSIX profile plus the
43 following repertoire shall be allowed.

44 A “character set description file,” as described in ISO/IEC 9945-2, {B36} shall use
45 the symbolic character names of the iso_10 64 6 charmap file described in the
46 ISO/IEC 9945-2 {B36} sample profile annex for the characters encoded in the char-
47 acter set.

48 For the Danish and Greenlandic languages, the following characters shall be
49 present in addition to the repertoire required by the POSIX profile: <ae>, <o/>,

50 <aa>, <ae>, <0/>, and <aa>. For the Faroese language, the following characters
51 shall be present in addition to the required POSIX locale characters and Danish
52 repertoire: <a'>, <i'>, <o'>, <u'>, <y'>, <d->, <A'>, <!'>, <0'>, <U'>,
53 <Y' >, and <D—>.

54 Recommended character sets are ISO 8859-1 {B34} or ISO 10646 {B37}. The
55 CHARSET environment variable shall be used to specify the processing character
56 set; for instance, iso_88 59-l or iso_1064 6. This shall be used to select the
57 encoded character-set-specific versions of the locale definitions. If no CHARSET
58 variable is present, iso_88 5 9-l shall be assumed.

59 2) The 9945-2 document, “POSIX.2,” is currently in the state of a Committee Document (CD), to be
60 approved as a Draft International Standard.

318 E Sample National Profile

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

E.1.2 Character Encoding and Display

For terminal equipment not capable of generating or showing the processing char¬
acter set, the character names defined in the current charmap file shall be used:
characters in the charmap file having two-character names shall be specified by
the two-character name preceded by the <intro> character, and characters hav¬
ing charmap names longer than two characters shall be specified by the character
name preceded by the <intro> character and an <underline> and followed by
an <underline>. In names longer than two characters, an <intro> character
and an <underline> character in sequence shall signify a literal <underline>
character part of the character name. Two <intro> characters in sequence shall
signify one <intro character, both in names and in the general stream.

For input, if the character name is undefined in the current charmap file, the data
shall be left untouched (including the <intro> character) and the behavior is
implementation defined.

E.1.3 Locale Definitions

The following guideline is used for specifying the locale identification string:3)

"%2.2s_%2.2s . %s, %s", <language>, <territory>, <character-set>,
<version>

where <language> shall be taken from ISO 639 {B32} and <territory> shall be the
two-letter country code of ISO 3166 {B33}, if possible. The <language> shall be
specified with lowercase letters only, and the <territory> shall be specified in
uppercase letters only. An optional <character-set> specification may follow after
a <period> for the name of the character set; if just a numeric specification is
present, this shall represent the number of the international standard describing
the character set. If the <character-set> specification is not present, the encoded
character set specific locale shall be determined by the CHARSET environment
variable, and if this is unset or null, the encoding of ISO 8859-1 {B34} shall be
assumed. A parameter specifying a <version> of the profile may be placed after
the optional <character-set> specification, delimited by <comma>. This may be
used to discriminate between different cultural needs; for instance, dictionary
order versus a more systems-oriented collating order.

Following the above guidelines for locale names, the national Danish locale string
shall be

daJDK

In the following, the TZ variable shall be specified according to the current official
daylight-saving-time rules in Denmark. Since Daylight Saving Time is politically
decided and thus changeable, this is only a recommendation.

3) The guideline was inspired by the XIOpen Portability Guide {B61}. It is presented in the file
format notation used by ISO/IEC 9945-2 {B36}.

E.l (Example) Profile for Denmark 319

100

101

102

103

104

105

106

107

108

109

110

111

112

113

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

The locale definition for Denmark shall be as follows:

LANG da_DK

TZ CET-1CET DST,M3.5.0/M9.5.0

The locale definition for the Faroe Islands shall be as follows:

LANG fo_DK

TZ UTCOUTC dst,M3.5.0/M9.5.0

The locale definition for Western Greenland shall be as follows:

LANG kl_DK

TZ utz+3vtz,M3.5.0/M9.5.0

The locale definition for Eastern Greenland shall be as follows:

LANG kl_DK

TZ vtz + 2wtz, M3.5.0/M9.5.0

For the Faroe Islands and Greenland, only the LC_TIME and LC_MESSAGES
data are different from the Danish language specifications.

320 E Sample National Profile

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

Identifier Index

abort() Referenced C Language Routines {8.1} . 151
abs() Referenced C Language Routines {8.1}. 151
access() Check File Accessibility {5.6.3} . 104
acos() Referenced C Language Routines {8.1}. 151
alarm() Schedule Alarm {3.4.1} . 63
asctime() Extensions to Time Functions {8.1.1} . 152
asin{) Referenced C Language Routines {8.1}. 151
assertO Referenced C Language Routines {8.1}. 151
atari () Referenced C Language Routines {8.1}. 151
atan2{) Referenced C Language Routines {8.1}. 151
atofi) Referenced C Language Routines {8.1}. 151
atoi() Referenced C Language Routines {8.1}. 151
atol{) Referenced C Language Routines {8.1}. 151
bsearchi) Referenced C Language Routines {8.1}. 151
calloc () Referenced C Language Routines {8.1}. 151
ceil() Referenced C Language Routines {8.1}. 151
cfgetispeedO Baud Rate Functions {7.1.3} . 141
cfgetospeedi) Baud Rate Functions {7.1.3} . 141
cfsetispeedO Baud Rate Functions {7.1.3} . 141
cfsetospeed() Baud Rate Functions {7.1.3} . 141
chdir() Change Current Working Directory {5.2.1} . 86
chmodO Change File Modes {5.6.4} . 106
chown() Change Owner and Group of a File {5.6.5} . 107
clearerr() Referenced C Language Routines {8.1}. 151
close() Close a File {6.3.1} . 115
closedir() Directory Operations {5.1.2} . 83
cos() Referenced C Language Routines {8.1}. 151
cosh() Referenced C Language Routines {8.1}. 151
cpio Extended cpio Format {10.1.2}. 173
creat() Create a New File or Rewrite an Existing One {5.3.2}. 91
ctermidO Generate Terminal Pathname {4.7.1} . 78
dime() Referenced C Language Routines {8.1}. 152
devjt Primitive System Data Types {2.5}. 27
directory Directory Operations {5.1.2} . 83
<dirent.h> Format of Directory Entries {5.1.1} . 83
dup() Duplicate an Open File Descriptor {6.2.1}. 114
dup2{) Duplicate an Open File Descriptor {6.2.1}. 114
environ Execute a File {3.1.2} . 42
errno Error Numbers {2.4}. 23
<errno.h> Error Numbers {2.4}. 23
exec Execute a File {3.1.2} . 42
execl() Execute a File {3.1.2} . 42
execle() Execute a File {3.1.2} . 42
execlpO Execute a File {3.1.2} . 42
execv() Execute a File {3.1.2} . 42
execve() Execute a File {3.1.2} . 42

Identifier Index 321

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

execvpO Execute a File {3.1.2} . 42
exit() Referenced C Language Routines {8.1}. 151
_exit() Terminate a Process {3.2.2} . 49
exp () Referenced C Language Routines {8.1}. 151
fabs() Referenced C Language Routines {8.1}. 151
fcloseO Referenced C Language Routines {8.1}. 151
fcnttt) File Control {6.5.2} . 121
<f cnt l. h> Data Definitions for File Control Operations {6.5.1}. 121
fdopenO Open a Stream on a File Descriptor {8.2.2} . 157
feofi) Referenced C Language Routines {8.1}. 151
ferrorO Referenced C Language Routines {8.1}. 151
fflushO Referenced C Language Routines {8.1}. 151
fgetc() Referenced C Language Routines {8.1}. 151
fgets() Referenced C Language Routines {8.1}. 151
filenoi) Map a Stream Pointer to a File Descriptor {8.2.1} . 156
floor() Referenced C Language Routines {8.1}. 151
fmod() Referenced C Language Routines {8.1}. 151
fopen () Referenced C Language Routines {8.1}. 151
fork() Process Creation {3.1.1} . 41
fpathconfO Get Configurable Pathname Variables {5.7.1} . 110
fprintfi) Referenced C Language Routines {8.1}. 151
fputc () Referenced C Language Routines {8.1}. 151
fputs() Referenced C Language Routines {8.1}. 151
fread() Referenced C Language Routines {8.1}. 151
free() Referenced C Language Routines {8.1}. 151
freopen() Referenced C Language Routines {8.1}. 151
frexp() Referenced C Language Routines {8.1}. 151
fscanfi) Referenced C Language Routines {8.1}. 151
fseek () Referenced C Language Routines {8.1}. 151
fstati) Get File Status {5.6.2} . 103
ftellO Referenced C Language Routines {8.1}. 151
fwrite () Referenced C Language Routines {8.1}. 151
getc() Referenced C Language Routines {8.1}. 151
getchar() Referenced C Language Routines {8.1}. 151
getcwdO Get Working Directory Pathname {5.2.2} . 87
getegidi) Get Real User, Effective User, Real Group, and Effective

Group IDs {4.2.1} . 68
getenv() Environment Access {4.6.1}. 77
geteuidO Get Real User, Effective User, Real Group, and Effective

Group IDs {4.2.1} . 68
getgidO Get Real User, Effective User, Real Group, and Effective

Group IDs {4.2.1} . 68
getgrgidO Group Database Access {9.2.1} . 166
getgrnamO Group Database Access {9.2.1} . 166
getgroups() Get Supplementary Group IDs {4.2.3} . 70
getloginO Get User Name {4.2.4} . 71
getpgrp () Get Process Group ID {4.3.1} . 72
getpidO Get Process and Parent Process IDs {4.1.1} . 67
getppid() Get Process and Parent Process IDs {4.1.1} . 67
getpwnamO User Database Access {9.2.2} . 167
getpwuidi) User Database Access {9.2.2} . 167

322 Identifier Index

ISO/IEC 9945-1: 1990
Part 1: SYSTEM API [C LANGUAGE] IEEE Std 1003.1-1990

gets() Referenced C Language Routines {8.1}. 151
getuidi) Get Real User, Effective User, Real Group, and Effective

Group IDs {4.2.1} . 68
gidjt Primitive System Data Types {2.5}. 27
gmtime() Referenced C Language Routines {8.1}. 152
<grp.h> Group Database Access {9.2.1} . 166
ino_t Primitive System Data Types {2.5}. 27
isalnumO Referenced C Language Routines {8.1}. 151
isalphai) Referenced C Language Routines {8.1}. 151
isatty() Determine Terminal Device Name {4.7.2}. 79
iscntrlO Referenced C Language Routines {8.1}. 151
isdigiti) Referenced C Language Routines {8.1}. 151
isgraphi) Referenced C Language Routines {8.1}. 151
islower() Referenced C Language Routines {8.1}. 151
isprint() Referenced C Language Routines {8.1}. 151
ispunct() Referenced C Language Routines {8.1}. 151
isspace () Referenced C Language Routines {8.1}. 151
isupperO Referenced C Language Routines {8.1}. 151
isxdigiti) Referenced C Language Routines {8.1}. 151
kill() Send a Signal to a Process {3.3.2} . 56
IdexpO Referenced C Language Routines {8.1}. 151
<limits.h> Numerical Limits {2.8} . 34
link() Link to a File {5.3.4}. 92
localtime() Referenced C Language Routines {8.1}. 152
log() Referenced C Language Routines {8.1}. 151
log 10() Referenced C Language Routines {8.1}. 151
longjmp () Referenced C Language Routines {8.1}. 151
Iseek() Reposition Read/Write File Offset {6.5.3} . 127
main() Description {3.1.2.2} . 43
malloc() Referenced C Language Routines {8.1}. 151
mkdir() Make a Directory {5.4.1} . 94
mkfifoO Make a FIFO Special File {5.4.2}. 95
mktime() Referenced C Language Routines {8.1}. 152
modej Primitive System Data Types {2.5}. 27
modf() Referenced C Language Routines {8.1}. 151
nlinkjt Primitive System Data Types {2.5}. 27
off_t Primitive System Data Types {2.5}. 27
open{) Open a File {5.3.1} . 88
opendir() Directory Operations {5.1.2} . 83
pathconfO Get Configurable Pathname Variables {5.7.1} . 110
pause() Suspend Process Execution {3.4.2} . 64
perror() Referenced C Language Routines {8.1}. 151
pidj Primitive System Data Types {2.5}. 27
pipe() Create an Inter-Process Channel {6.1.1} . 113
pow() Referenced C Language Routines {8.1}. 151
printf() Referenced C Language Routines {8.1}. 151
putc() Referenced C Language Routines {8.1}. 151
putchar() Referenced C Language Routines {8.1}. 151
puts{) Referenced C Language Routines {8.1}. 151
<pwd.h> User Database Access {9.2.2} . 167
qsortO Referenced C Language Routines {8.1}. 151

Identifier Index 323

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

rand() Referenced C Language Routines {8.1}. 151
read() Read from a File {6.4.1}. 116
readdirO Directory Operations {5.1.2} . 83
realloc () Referenced C Language Routines {8.1}. 151
remove() Referenced C Language Routines {8.1}. 151
rename() Rename a File {5.5.3} . 99
rewindO Referenced C Language Routines {8.1}. 151
rewinddir() Directory Operations {5.1.2} . 83
rmdir() Remove a Directory {5.5.2}. 98
scanfi) Referenced C Language Routines {8.1}. 151
setbufO Referenced C Language Routines {8.1}. 151
setgidO Set User and Group IDs {4.2.2} . 68
setjmpi) Referenced C Language Routines {8.1}. 151
setlocale() Extensions to setlocale{) Function {8.1.2} . 154
setpgidO Set Process Group ID for Job Control {4.3.3} . 73
setsidO Create Session and Set Process Group ID {4.3.2} . 72
setuidi) Set User and Group IDs {4.2.2} . 68
sigactioni) Examine and Change Signal Action {3.3.4} . 58
sigaddseti) Manipulate Signal Sets {3.3.3} . 57
sigdelsetO Manipulate Signal Sets {3.3.3} . 57
sigemptysetO Manipulate Signal Sets {3.3.3} . 57
sigfillsetO Manipulate Signal Sets {3.3.3} . 57
sigismember() Manipulate Signal Sets {3.3.3} . 57
siglongjmp() Nonlocal Jumps {8.3.1}. 162
<signal.h> Signal Concepts {3.3.1}. 51
sigpending() Examine Pending Signals {3.3.6} . 62
sigprocmask() Examine and Change Blocked Signals {3.3.5} . 60
sigsetjmpi) Nonlocal Jumps {8.3.1}. 162
sigsetops Manipulate Signal Sets {3.3.3} . 57
sigsuspendO Wait for a Signal {3.3.7} . 62
sin () Referenced C Language Routines {8.1}. 151
sinh() Referenced C Language Routines {8.1}. 151
sizej Primitive System Data Types {2.5}. 27
sleepi) Delay Process Execution {3.4.3}. 65
sprintfi) Referenced C Language Routines {8.1}. 151
sqrt() Referenced C Language Routines {8.1}. 151
srand() Referenced C Language Routines {8.1}. 151
sscanfO Referenced C Language Routines {8.1}. 151
ssize_t Primitive System Data Types {2.5} . 27
stat() Get File Status {5.6.2} . 103
strcati) Referenced C Language Routines {8.1}. 151
strchr() Referenced C Language Routines {8.1}. 151
strcmp () Referenced C Language Routines {8.1}. 151
strcpy() Referenced C Language Routines {8.1}. 151
strcspn () Referenced C Language Routines {8.1}. 151
strftime() Referenced C Language Routines {8.1}. 152
strlen () Referenced C Language Routines {8.1}. 151
strncat() Referenced C Language Routines {8.1}. 151
strncmp () Referenced C Language Routines {8.1}. 151
strncpy() Referenced C Language Routines {8.1}. 151
strpbrki) Referenced C Language Routines {8.1}. 151

324 Identifier Index

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

strrchr() Referenced C Language Routines {8.1}. 151
strspn () Referenced C Language Routines {8.1}. 151
strstrO Referenced C Language Routines {8.1}. 151
strtok () Referenced C Language Routines {8.1}. 151
sysconfO Get Configurable System Variables {4.8.1} . 80
<sys/stat.h> File Characteristics: Header and Data Structure {5.6.1} ... 101
<sys/times .h> Get Process Times {4.5.2}. 76
<sys/types .h> Primitive System Data Types {2.5}. 27
<sys/utsname. h> Get System Name {4.4.1} . 74
<sys/wait .h> Wait for Process Termination {3.2.1} . 47
tanO Referenced C Language Routines {8.1}. 151
tanh{) Referenced C Language Routines {8.1}. 151
tar Extended tar Format {10.1.1} . 169
tcdrain() Line Control Functions {7.2.2} . 145
tcflowO Line Control Functions {7.2.2} . 145
tcflushO Line Control Functions {7.2.2} . 145
tcgetattr() Get and Set State {7.2.1} . 143
tcgetpgrp() Get Foreground Process Group ID {7.2.3} . 147
tcsendbreak() Line Control Functions {7.2.2} . 145
tcsetattr() Get and Set State {7.2.1}. 143
tcsetpgrp() Set Foreground Process Group ID {7.2.4}. 148
termios General Terminal Interface {7.1} . 129
Ctermios.h> Parameters That Can Be Set {7.1.2}. 135
time() Get System Time {4.5.1}. 75
timesi) Get Process Times {4.5.2}. 76
timejt Primitive System Data Types {2.5}. 27
tmpfileO Referenced C Language Routines {8.1}. 151
tmpnam () Referenced C Language Routines {8.1}. 151
tolower() Referenced C Language Routines {8.1}. 151
toupper() Referenced C Language Routines {8.1}. 151
ttyname() Determine Terminal Device Name {4.7.2}. 79
tzseti) Set Time Zone {8.3.2} . 162
uidjt Primitive System Data Types {2.5}. 27
umask () Set File Creation Mask {5.3.3} . 91
uname() Get System Name {4.4.1} . 74
ungetc() Referenced C Language Routines {8.1}. 151
<unistd.h> Symbolic Constants {2.9} . 37
unlink() Remove Directory Entries {5.5.1}. 96
utime() Set File Access and Modification Times {5.6.6} . 108
wait Wait for Process Termination {3.2.1} . 47
waitpidO Wait for Process Termination {3.2.1} . 47
writei) Write to a File {6.4.2} . 118

Identifier Index 325

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Alphabetic Topical Index

A

Abbreviations ... 20, 208

abort() ...46,158,160-161,291,307
definition of ... 151
rationale ... 291

afes() ... 307
definition of ... 151

absolute pathname
definition of ... 11

access control lists ... 209

access mode
definition of ... 11

accessO ... 37,104-105,208,261,311
definition of ... 104
rationale ... 261
symbolic constants ... 37

acos() ... 305
definition of ... 151

actime ... 109,312

address space
definition of ... 11

AEP (see Applications Environment Profile)

alarm
schedule ... 63

alarmO ... 42,46,63-66,241,244-246,272,
311
definition of ... 63
rationale ... 244

ANSI ... 300

Application Conformance ... 4, 192

Application Specific Environment (ASE)
definition of ... 313

Application Specific Environment Description
(ASED)
definition of ... 314

Applications Environment Profile (AEP)
[profile]
definition of ... 313

appropriate privileges ... 17, 21, 26, 39, 56,
69-70, 92-93, 97, 105-111, 169, 172,176-
177, 199, 208, 246-247, 261
definition of ... 11
rationale ... 199

Archive/Interchange File Format ... 169, 294

{ARG_MAX} ... 24,29,44-45,80,230,304
definition of ... 36

array of char
definition of ... 29

ASCH ... 207

asctime() ... 310
definition of ... 152

ASED (see Application Specific Environment
Description)

asin() ... 305
definition of ... 151

_asm_builtin_atoi() ... 195

assert() ... 301
definition of ... 151

<assert.h> ... 301

asynchronous I/O ... 289

atan2() ... 305
definition of ... 151

atan() ... 305
definition of ... 151

atexit() ... 189,232,307

atofi) ... 307
definition of ... 151

atoi() ... 194-195,307
definition of ... 151

atol() ... 307
definition of ... 151

B

background process group
definition of ... 12

background process
definition of ... 12

background ... 12, 15, 51, 118, 121, 130-131,
139, 143,147, 202-204, 206, 248, 277-278,
281-282

Base by POSDLl, Additions by the C Standard
... 188

Base by the C Standard
Additions by POSIX.1 ... 188

Baud Rate Functions ... 141, 281

Baud Rate Values ... 141, 281

Bibliography ... 179

binary stream ... 152

block special file
definition of ... 12

Alphabetic Topical Index 327

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

blocked signals ... 60

brk() ... 188,292
rationale for omission ... 292

BRKINT ... 136

BSD ... 199,202,205-207,209,213-214,216,
222, 231-234, 236-239, 241-244, 247-250,
253, 258-260, 262-264, 266, 270, 272-273,
276-278, 282-284, 287, 291, 294, 296
signals ... 234

bsearchO ... 188,307
definition of ... 151

By Neither POSIX.l Nor the C Standard
... 188

byte
definition of ... 29

Byte-Oriented cpio Archive Entry ... 174

c
C Language Definitions ... 29, 217

C Language Input/Output Functions ... 155,
287

C Language Limits ... 34, 223

Clanguage
FILE functions ... 158
input/output functions ... 155
language-dependent services ... 5

related specifications ... 6

C locale ... 154-155,286

C Shell ... 202-204,216

C Standard Language-Dependent Support
... 32

C Standard Language-Dependent System Sup¬
port ... 5, 194

C Standard ... 2, 5-7, 12, 20, 24, 26-27, 29-30,
32-35, 46, 51, 54-55, 60-61, 103, 134, 151-

152, 154-157, 159, 161-162, 186-190, 192-
195, 197, 199-200, 212-214, 216-218, 220-

223, 228-229, 232-235, 239, 243, 245-246,
250, 259, 266, 270, 272, 275, 285-289, 291,
301, 305, 315

abbreviation ... 20
definition of ... 20
symbols ... 29

calloc() ... 307
definition of ... 151

Canonical Mode Input Processing ... 132, 278

case folding ... 209-210

c_cc ... 132,140-141,310

c_cflag ... 135,138,310

ccj ... 310
definition of ... 135

INFORMATION TECHNOLOGY—POSIX

ceil{) ... 305
definition of ... 151

cfgetispeedi) ... 33,141-142,310

definition of ... 141
rationale ... 281

cfgetospeed() ... 33,141-142,310
definition of ... 141
rationale ... 281

cfsetispeed() ... 33, 141-142, 144, 281, 310
definition of ... 141
rationale ... 281

cfsetospeedi) ... 33,141-142,310
definition of ... 141
rationale ... 281

Change Current Working Directory ... 86,
256

Change File Modes ... 106, 261

Change Owner and Group of a File ... 107

Change Owner and Group of File ... 262

Change Process’s Root Directory ... 257

Character Encoding and Display ... 319

Character Encoding ... 318

character set
portable filename ... 207

character special file
definition of ... 12

character
definition of ... 12

(CHAR.BIT) ... 34,304

(CHAR_MAX) ... 34,304

{CHAR_MIN} ... 34,223,304

CHARSET
variable ... 318-319

chdirO ... 86-87,176,256,261,311
definition of ... 86
rationale ... 256

Check File Accessibility ... 104

child process

definition of ... 12

(CHILD_MAX) ... 80,215,224,304
definition of ... 36

chmod() ... 21,33,46,92,95-96,103,105-

106, 108,177, 261, 308

definition of ... 106
rationale ... 261

chownO ... 39, 103, 107-108, 253, 262-263,
311

definition of ... 107
rationale ... 262

chroot() ... 207,257
rationale for omission ... 257

328 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]

cjflag ... 131,136,310

clearenv() ... 250

clearerri) ... 307
definition of ... 151

cjflag ... 131,139,310

(CLK.TCK) ... 81,252
definition of ... 81

CLOCAL ... 129, 135, 138

clock tick ... 12,29,76-77,80,199,217,244,

249-251
definition of ... 12
rationale ... 199

clock() ... 199,310

CLOCKS_PER_SEC ... 310

clockJ ... 12,29,76-77,249-250,308,310

definition of ... 29

Close a File ... 115,266

close() ... 45,50,91,97,115-116,127,158,

160, 279, 300, 311
definition of ... 115
rationale ... 266

closedirO ... 33, 83-85, 254-255, 302

definition of ... 83
rationale ... 254

Closing a Terminal Device File ... 135, 279

cmd

Values for fcntl() ... 122

c_oflag ... 133, 137, 310

coherent
definition of ... 314

command interpreter
portable ... 231

Common-Usage C Language-Dependent Sys¬

tem Support ... 6, 194

Common-Usage-Dependent Support ... 32

Compile-Time Symbolic Constants for Portabil¬
ity Specifications ... 38, 225

Compile-Time Symbolic Constants ... 38

complete
definition of ... 314

compliance ... 189

comprehensive
definition of ... 314

Configurable Pathname Variables ... 110-
111, 262

Configurable System Variables ... 80, 251

configurable variables ... 80

conformance document
definition of ... 10
rationale ... 197

conformance ... 2-7, 9-11, 23, 33, 59, 109,
129, 151, 187-190, 192, 194-197, 199, 211,
213, 218, 222, 283, 313-314
application ... 4

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

implementation ... 2

conforming application ... 3-5,11,188,190-
192, 216, 235-236, 246, 264-265, 267
strictly ... 2-4, 10, 28, 34, 38, 144, 190,

192, 196, 228, 239, 244, 264

Conforming Implementation Options ... 4,
191

Conforming POSIX.l Application Using Exten¬
sions ... 5, 192

ConformingPOSIX.1 Application ... 4,192

consistent
definition of ... 314

constants
compile-time ... 38
execution-time ... 38
symbolic ... 37

contiguous file ... 294,297-298

Control Modes ... 138, 280

Control Operations on Files ... 121, 270

controlling process
definition of ... 12

Controlling Terminal ... 130, 276

controlling terminal
definition of ... 12
rationale ... 199

Conventions ... 9, 196

cooked mode ... 273

core ... 209, 230-232

cos() ... 305
definition of ... 151

cosh() ... 305
definition of ... 151

covert channel ... 211,242

cpio ...173-174,176,294-299

Archive Entry ... 174
File Data ... 176, 298
File Name ... 175,298
format ... 173
Header ... 174, 298
Special Entries ... 176,298
Values ... 176,298

CREAD ... 138

creatO ... 21,33,91-92,103-104,115-116,
118, 121,128, 155, 169, 193, 257-258, 287,

303
definition of ... 91
rationale ... 258

Create a New File or Rewrite an Existing One

... 91, 258

Create an Inter-Process Channel ... 113, 265

Create Session and Set Process Group ID
... 72,248

Alphabetic Topical Index 329

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Cross-References ... 42, 46, 49-50, 57-58, 60,
62-68, 70-74, 77-79, 85-87, 91-93, 95-97, 99,
101, 103-105,107-108, 110, 114-116, 118,

121, 127-128, 142, 145, 147-148, 156-157,
162, 166-167,173, 177

CR ... 134,137

CRT ... 134

CSIZE ... 138

CSTOPB ... 138

ctermid() ... 33,78-79,188,251,311

definition of ... 78
rationale ... 251

dime() ... 152-153,162,310
definition of ... 152

<ctype.h> ... 301

currency symbols ... 295

current working directory
change ... 86
definition of ... 12, 20

cuserid() ... 247,311
rationale ... 247

D

Data Definitions for File Control Operations
... 121,270

Data Interchange Format ... 169, 294

Database Access ... 166, 293

Database Standards ... 181

database
group ... 165

user ... 165

Definitions and General Requirements
... 196

Definitions ... 10,197,313

Delay Process Execution ... 65, 245

Denmark example profile ... 318

Determine Terminal Device Name ... 79, 251

/dev ... 297

Device- and Class-Specific Functions ... 129,
273

device number ... 199

device
definition of ... 13
logical ... 206

devj ... 101,214,309
definition of ... 27

/dev/tty ... 206,251

difftime() ... 310

d_ino ... 253

INFORMATION TECHNOLOGY—POSIX

dired ... 253

Directories ... 83, 253

directory entry
definition of ... 13
format ... 83
rationale ... 199

remove ... 96

Directory Operations ... 83, 254

directory ... 199
change current working ... 86

current working ... 12
definition of ... 13
empty ... 13
make ... 94
parent ... 16
remove ... 98
root ... 19, 207

working ... 20
working pathname ... 87

dirent ... 83, 85, 253-254, 302

<dirent.h> ... 83-85,253,302
definition of ... 83

DIR ... 83-85,255,302
definition of ... 84

div() ... 307

div_t ... 307

djname ... 83, 254, 302

document

conformance ... 10

Documentation ... 3, 190

documentation
system ... 11

dot ... 13-14, 23, 26, 84, 98, 100, 192, 199,
216, 254, 260

definition of ... 13

dot-dot ... 13-14,16,23,26,84,98,100,192,

199, 207,211,254, 260

definition of ... 13

dup2{) ... 114-115,265,311
definition of ... 114
rationale ... 265

dup() ... 91, 104, 114-116, 118, 121,128, 158,
265, 287,311

definition of ... 114
rationale ... 265

Duplicate an Open File Descriptor ... 114,

265

E

[E2BIG] ... 24,45,230,302

definition of ... 24

330 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

[EACCES] ... 24, 45, 74, 85-87, 90, 93-94, 96-
98, 100,104-106, 108-109, 112, 249, 256-
257, 302
definition of ... 24

eaccessQ ... 261

[EAGAIN] ... 24, 42, 117-118, 120, 131, 227,
264, 267-270, 302
definition of ... 24

[EBADF] ... 24,85,104,112,114-116,118,
120, 126, 128, 145-149, 265, 267, 270, 302
definition of ... 24

[EBUSY] ... 24, 97-98, 100, 213, 259-260, 302
definition of ... 24

[ECHILD] ... 24,49,302
definition of ... 24

ECHOE ... 139

ECHOK ... 139

ECHONL ... 139

ECHO ... 139

ed ... 260

[EDEADLK] ... 24, 125,127, 272, 302
definition of ... 24

[EDOM] ... 24,213,302
definition of ... 24

[EEXIST] ... 24, 90, 93-94, 96, 98, 100, 259,
302
definition of ... 24

[EFAULT] ... 24,212,230,302
definition of ... 24

[EFBIG] ... 24, 121, 302
definition of ... 24

effective group ID ... 14-15, 19-20, 39, 44,
68-69, 88, 94-95,102, 105-107, 229, 246-
247, 253, 262
definition of ... 13

effective user ID ... 14,19-20, 44, 56, 68-69,

88, 94-95, 102, 105-110, 208, 229, 241, 246,
261

definition of ... 13

Eighth Edition UNIX ... 198,266,269

[EINTR] ... 24, 49, 63, 65, 90, 115-119, 121,
124,126, 145-146, 213, 227, 230, 234, 240-
241, 266, 302
definition of ... 24

[EINVAL] ... 25, 49, 57-58, 60-61, 69-70, 74,
81, 87, 100, 105, 108, 112, 126, 128, 144-
145, 147,149, 243, 263, 272, 302
definition of ... 25

[EIO] ... 25, 118, 121, 130-131, 135, 302
definition of ... 25

[EISDIR] ... 25, 90, 100, 302

definition of ... 25

[EMFILE] ... 25, 85, 90, 114-115, 126, 302
definition of ... 25

[EMLINK] ... 25, 93-94, 100, 302
definition of ... 25

empty directory
definition of ... 13

empty string
definition of ... 13

[ENAMETOOLONG] ... 25,45,85-86,90,93,
95-98,100, 104-106, 108-109,112, 230, 258,
260,302
definition of ... 25

endgrent() ... 293
rationale for omission ... 293

endpwent() ... 293

[ENFILE] ... 25, 85, 90, 114, 302
definition of ... 25

[ENODEV] ... 25,302

definition of ... 25

[ENOENT] ... 25,46,85-86,90,93,95-97,99-
100, 104-105, 107-108, 110, 112, 302
definition of ... 25

[ENOEXEC] ... 25,46,228,230,302
definition of ... 25

[ENOLCK] ... 25, 126, 271, 302
definition of ... 25

[ENOMEM] ... 25,42,46,213,227,291,302
definition of ... 25

[ENOSPC] ... 26, 90, 93, 95-96, 100, 121, 302
definition of ... 26

[ENOSYS] ... 26, 74, 148-149, 197, 302
definition of ... 26

[ENOTDIR] ... 26,46,85-86,90,93,95-97,99,
101, 104-106, 108, 110, 112, 302
definition of ... 26

[ENOTEMPTY] ... 26, 98, 100, 259-260, 302

definition of ... 26

[ENOTTY] ... 26, 145-149, 213, 274-275, 302
definition of ... 26

environ

definition of ... 42

Environment Access ... 77, 250

Environment Description ... 27,216

[ENXIO] ... 26,90,302
definition of ... 26

EOF ... 132,134,139

EOL ... 132,134,139

[EPERM] ... 26, 57, 69-70, 73-74, 93, 97, 107-

108, 110, 149, 242, 302
definition of ... 26

[EPIPE] ... 26, 121, 213, 302

definition of ... 26

Alphabetic Topical Index 331

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

Epoch ... 19, 76, 103, 109, 152, 200, 208, 284
definition of ... 13

[ERANGE] ... 26, 87, 213, 257, 302
definition of ... 26

ERASE ... 132, 134, 139

[EROFS] ... 26, 90, 93, 95-97, 99, 101,105,
107-108, 110, 213, 302
definition of ... 26

errno ... 211,302
definition of ... 23

<errno.h> ... 23,217,259,302
definition of ... 23

[ERRNO] ... 9

Error Numbers ... 23,211

Error Reporting ... 161, 290

[ESPIPE] ... 26, 128, 302
definition of ... 26

[ESRCH] ... 26,57,74,241-242,302
definition of ... 26

/etc/passwd ... 209

[ETXTBSY] ... 230

[EWOULDBLOCK] ... 264

Examine and Change Blocked Signals ... 60,
244

Examine and Change Signal Action ... 58,
243

Examine Pending Signals ... 62, 244

example profile ... 318

[EXDEV] ... 26, 93, 101, 260, 302

definition of ... 26

exec ... 34-35, 42-43, 45-46, 59, 64, 67, 70,
73-74, 77, 84, 91, 96, 102-103, 115-116, 123,
127, 158-159, 226, 228-231, 246, 248-249,
254, 261, 266, 271, 287, 289
definition of ... 42

of shell scripts ... 228

rationale ... 228

execlO ... 42-44,46,228,311
definition of ... 42

execle() ...42-44,46,228,311
definition of ... 42

execlpO ... 42-44,228,311
definition of ... 42

Execute a File ... 42, 228

Execution-Time Symbolic Constants for Porta¬
bility Specifications ... 38, 225

Execution-Time Symbolic Constants ... 39

execv() ... 42,44,46,228,311
definition of ... 42

execve() ... 42,44,46,228,311

definition of ... 42

INFORMATION TECHNOLOGY—POSIX

execvpi) ... 42, 44, 228, 311

definition of ... 42

exit() ... 46, 48,152, 158, 160-161,189, 232-
233, 240, 266, 288-289, 291, 307
definition of ... 151
rationale ... 291

EXIT_FAILURE ... 152

EXIT.SUCCESS ... 152,233

_exit() ... 46, 48-50, 73, 158-159, 189, 232-
233, 240, 288-289, 311

definition of ... 49
rationale ... 232

exp() ... 305
definition of ... 151

Extended cpio Format ... 173,297

extended security controls
definition of ... 21, 208

Extended tar Format ... 169, 296

Extensions to setlocale() Function ... 154,

285

Extensions to Time Functions ... 152, 283

F

fabs() ... 305
definition of ... 151

Fast File System ... 262

fclose{) ... 158, 160-161, 189, 289, 291, 307

definition of ... 151
rationale ... 289

fcntl() ... 33,42,46,91,104,113-116,118,
121, 123-128,131, 158, 176, 214, 265, 268,

270-271, 275, 287, 303
definition of ... 121
rationale ... 270

Return Values ... 126

<fcntl.h> ... 30,88,91,121,123-124,127,

302
definition of ... 121

fdopenO ... 33,156-158,188,288,307
definition of ... 157
rationale ... 287

FD_CLOEXEC ... 44, 88, 113, 122-123, 158,
254, 270, 302

F_DUPFD ... 114, 122-123, 126, 270, 302

feature test macro
definition of ... 13

feature test macros
suggested ... 222

feofO ... 159,307

definition of ... 151

332 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]
ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

ferror() ... 307
definition of ... 151

fflushi) ... 159-161,288-290,307
definition of ... 151
rationale ... 290

fgetcO ... 160,290,307
definition of ... 151
rationale ... 290

F_GETFD ... 122-123, 125, 270, 302

F_GETFL ... 122-123,125,270,302

F_GETLK ... 122, 124-126, 302

fgetpos{) ... 214,272,307

fgets() ... 160,290,307
definition of ... 151
rationale ... 290

FIFO special file ... 201
definition of ... 13

FIFO ... 13-14,17,26,88-90,95,102,111,
116-117, 119-121,128, 170, 172-173, 175-
176, 201, 207, 253, 257, 259, 267-269
make ... 95

File Access Modes Used for open() and fcntl()

... 123

file access permissions
definition of ... 21, 208

File Accessibility ... 261

File Characteristics: Header and Data Struc¬
ture ... 101, 260

File Characteristics ... 101,260

file classes ... 201

File Control ... 121, 270

file description
definition of ... 14

File Descriptor Deassignment ... 115,266

File Descriptor Flags Used for fcntl() ... 122

File Descriptor Manipulation ... 114,265

file descriptor

definition of ... 14
duplicate ... 114,122
map a stream pointer ... 156
open stream . .. 157

file group class

definition of . .. 14

file hierarchy
definition of . .. 22,208

file mode

definition of . .. 14

file offset
definition of . .. 14

file other class
definition of . .. 14

file owner class
definition of ... 14

file permission bits ... 14,21,88,91,94-95,
103, 105-106, 261
definition of ... 15

file permissions ... 13-16, 20-21, 24, 27, 88,
90-92,94-95, 103, 105-106, 169, 171-172,
174-175, 208, 246, 261, 263, 277
definition of ... 209

File Removal ... 96, 259

file serial number ... 101
definition of ... 15

File Status Flags Used for open() and fcntl()

... 122

filesystem ... 201
definition of ... 15
mounted ... 206
read-only ... 18
root ... 208
root of ... 208

file times update
definition of ... 22, 210

file type (see file)

file ... 201
access ... 104
access permissions ... 21

binary ... 152, 187
block special ... 12
change modes ... 106
change owner and group ... 107
character special ... 12
characteristics header ... 101
close ... 115
contiguous ... 294,297-298
control ... 121
create or rewrite ... 91
definition of ... 14
execute ... 42
FIFO special ... 13

get status ... 103
hierarchy ... 22
high performance ... 294, 297-298
link to ... 92
locking ... 124,270
make FIFO special ... 95
mode ... 14
offset ... 14
open ... 88
passwd ... 207
permission bits ... 15
read ... 116
regular ... 19
remove ... 162
rename ... 99
reposition read/write offset ... 127
serial number ... 15
set access and modification times ... 108

Alphabetic Topical Index 333

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

set creation mask ... 91
text ... 152,187
times ... 108
times update ... 22
write ... 118

filename portability
definition of ... 22, 209

filename ... 201
definition of ... 14

filenoO ... 33,156,158,188,206,307
definition of ... 156
rationale ... 287

Files and Directories ... 83, 253

FILE ... 156-158, 160, 287-288, 307

<float.h> ... 303

flock ... 124,302
Structure ... 125

floor() ... 305
definition of ... 151

fmod() ... 305
definition of ... 151

F_OK ... 37-38, 105, 311

fopenO ... 157-158,160-161,201,288-289,
291, 307
definition of ... 151
rationale ... 289

(FOPEN_MAX) ... 35

foreground process group ID
definition of ... 15

foreground process group
definition of ... 15

foreground process

definition of ... 15

foreground ... 12,15,129-131,133-134,136,
140, 143, 147-148, 202-206, 248, 275-278,
282-283

fork() ... 17-18,41-42,46,49,64,67,73,77,

84, 116, 125, 130, 156, 158-159, 203, 214,
226-227, 229-231, 248, 254, 270-271, 276,
287-289, 311

definition of ... 41
rationale ... 226

Format of Directory Entries ... 83, 253

fpathconfO ... 39, 110-112, 263, 311
definition of ... 110
rationale ... 263

fposjt ... 306

fprintfl) ... 161,272,307

definition of ... 151

fputci) ... 160,290,307

definition of ... 151
rationale ... 290

INFORMATION TECHNOLOGY—POSIX

fputs() ... 160,290,307
definition of ... 151
rationale ... 290

F_RDLCK ... 122,124-126,302

fread() ... 160,290,307
definition of ... 151
rationale ... 290

free() ... 188,240,256,307
definition of ... 151

freopenO ... 158,160,290,307

definition of ... 151
rationale ... 290

frexpO ... 305
definition of ... 151

fscanfO ... 160, 290, 307
definition of ... 151
rationale ... 290

fseek() ...152,159,161,290,307
definition of ... 151
rationale ... 290

F_SETFD ... 122-123, 126, 270, 302

F_SETFL ... 122, 124, 126, 270, 302

F_SETLK ... 122,124-126,271,302

F_SETLKW ... 122, 124-127, 271, 302

fsetposi) ... 214,272,307

fstat() ... 21-22, 33, 101, 103-104, 261, 308
definition of ... 103
rationale ... 260

ftellO ... 161,290,307
definition of ... 151
rationale ... 290

function prototypes ... 32

FJJNLCK ... 122,124-125,302

fwrite() ... 160,272,290,307
definition of ... 151
rationale ... 290

F_WRLCK ... 122,124-126,302

G

General Concepts ... 21, 208

General File Creation ... 88,257

Genera] Terminal Interface Control Functions
... 143,281

Genera] Terminal Interface ... 129, 274

General Terms ... 11,198

General ... 1

Generate Terminal Pathname ... 78, 251

Get and Set State ... 143, 282

Get Configurable Pathname Variables
... 110,263

334 Alphabetic Topical Index

Part 1: SYSTEM API [G LANGUAGE]
ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990

Get Configurable System Variables ... 80,

252

Get Effective Group ID ... 68, 246

Get Effective User ED ... 68, 246

Get File Status ... 103, 260

Get Foreground Process Group ID ... 147,

282

Get Password From User ... 252

Get Process and Parent Process IDs ... 67,
246

Get Process Group ID ... 72, 247

Get Process Times ... 76, 250

Get Real Group ED ... 68, 246

Get Real User ID ... 68, 246

Get Supplementary Group IDs ... 70, 247

Get System Name ... 74

Get System Time ... 75, 249

Get User Name ... 71,247

Get Working Directory Pathname ... 87

getc() ... 160,290,307
definition of ... 151
rationale ... 290

getchar() ... 160,290,307
definition of ... 151
rationale ... 290

getcwdO ... 86-87,256,311
definition of ... 87
rationale ... 256

getegidO ... 68,247,311
definition of ... 68
rationale ... 246

getenv() ...77-78,189,229,307
definition of ... 77
rationale ... 250

geteuid{) ... 68, 311
definition of ... 68
rationale ... 246

getgid() ... 68,311

definition of ... 68
rationale ... 246

getgrent() ... 293

rationale for omission ... 293

getgrgid{) ... 33,166,293,303
definition of ... 166
rationale ... 293

getgrnamO ... 33,166,211,293,303
definition of ... 166
rationale ... 293

getgroups() ... 70,247,311
definition of ... 70
rationale ... 247

gethostid() ... 249

gethostname() ... 249

get login {) ... 71, 166-167, 247, 311
definition of ... 71
rationale ... 247

getpassO ... 252
rationale for omission ... 252

getpgrpO ... 72,74,204,247,311
definition of ... 72
rationale ... 247

getpid() ... 57,67,73,241,311
definition of ... 67
rationale ... 246

getppid() ... 67,311
definition of ... 67
rationale ... 246

getpwentO ... 293
rationale for omission ... 293

getpwnamO ... 33,71,167,211,247,293,

305
definition of ... 167
rationale ... 293

getpwuid{) ... 33, 71, 167, 293, 305
definition of ... 167
rationale ... 293

gets() ... 160,290,307
definition of ... 151
rationale ... 290

gettimeofdayi) ... 249-250

getty ... 276

getuid() ... 68,70,215,241,311
definition of ... 68
rationale ... 246

getwd() ... 256

gidj ... 15, 20, 68, 70, 101, 107, 166-167,
214-215, 293, 309

definition of ... 27

GKS ... 196

gmtime() ... 152,200,310
definition of ... 152

Graphics Standards ... 181

gr_gid ... 166,303

grjnem ... 166,303

grjxame ... 166,303

Group Database Access ... 166, 293

group file ... 201

group ED

definition of ... 15
effective ... 13,68
get effective ... 68
get real ... 68
real ... 18,68
saved set- ... 19
set ... 68
supplementary ... 20,70

Alphabetic Topical Index 335

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

group
change file ... 107

group

Structure ... 166

groups
multiple (see supplementary group ID)

<grp.h> ... 166,173,177,215,293,303
definition of ... 166

H

handle
definition of ... 158

harmonized
definition of ... 314

Header Contents Samples ... 301

header
definition of ... 29

Headers and Function Prototypes ... 32, 223

hierarchy
file ... 22

Historical Documentation and Introductory
Texts ... 182

historical implementations ... 201

HOME
definition of ... 27
variable ... 27

hosted implementation ... 201

HUPCL ... 135,138

I

ICANON ... 134, 139-141

ICRNL ... 134,136-137

IEXTEN ... 135, 139-140

IFS
variable ... 217

IGNBRK ... 136

IGNCR ... 134,136-137

IGNPAR ... 136-137

Implementation Conformance ... 2, 190

implementation defined ... 3-4,11,14,16-18,
21, 24, 37-38, 42-43, 49-50, 53, 62, 75, 89,
91, 94-95, 103-104, 106-107, 117, 119, 121,
127, 129-132, 134-141, 145, 152, 159, 162,
165, 169, 171, 175-177, 185, 198-199, 201,
206-209, 211-213, 218, 230, 232, 235-236,
238, 241, 243-244, 256-259, 272, 284-288,
291, 294, 296, 299
definition of ... 10
rationale ... 197

INFORMATION TECHNOLOGY—POSIX

implementation ... 201
historical ... 182, 201
hosted ... 187,201
native ... 206
specific ... 201

incomplete pathname ... 202

init ...205,233,241

INLCR ... 136-137

ino_t ... 101, 309
definition of ... 27

INPCK ... 136-137

Input and Output Primitives ... 113, 264

Input and Output ... 116,266

Input Modes ... 136, 279

Input Processing and Reading Data ... 131,
278

Interactions of Other FILE-Type C Functions
... 158,288

interchange
cpio ... 173
multiple volumes ... 177

tar ... 169

Interface Characteristics ... 129, 275

International Standardized Profile (ISP)
definition of ... 313

inter-process channel ... 113

INTR ... 133-134,139-140

{INT_MAX} ... 34,304

{INT.MIN} ... 34,304

Invariant Value ... 37

Invariant Values ... 37

iocntl() ... 274

ioctl() ... 213,273-275,282-283

IPC (see inter-process channel)

IRV
abbreviation ... 20

definition of ... 20

isalnum() ... 301
definition of ... 151

isalphaO ... 301
definition of ... 151

isascii() ... 188

isattyO ... 79,188,212,311

definition of ... 79
rationale ... 251

iscntrl() ... 301
definition of ... 151

isdigit() ... 301
definition of ... 151

isgraph() ... 301
definition of ... 151

336 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]
ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

ISIG ... 133-134,139-140

islowerO ... 301
definition of ... 151

ISO/IEC 10646 ... 182

ISO/IEC 646 ... 2, 20, 169, 171-174, 176, 207,
295
rationale for selection ... 295

ISO/IEC 9899 ... 2,20

ISO/IEC 9945-2 ... 181,226,228,286,289,
294, 315, 318-319

ISO/IEC Conforming POSIX.l Application ... 4

isprint() ... 301
definition of ... 151

ISP
definition of ... 313

ispunctO ... 301
definition of ... 151

isspace() ... 301

definition of ... 151

ISTRIP ... 136-137

isupper() ... 301
definition of ... 151

isxdigitO ... 301
definition of ... 151

IXOFF ... 134, 136, 140, 146, 224

EXON ... 134,136-137,140

J

jmpjbuf ... 305

Job Control Signals ... 52

job control ... 4, 15, 38, 47, 50-52, 73, 118,
121, 129-130,134-135, 139-140, 143, 197,
202-207, 212, 231, 233-234, 236, 239, 242,
247-249, 251, 273, 275, 277
definition of ... 15
implementing applications ... 204
implementing shells ... 202
implementing systems ... 205
set process group ED ... 73

K

kernel ... 206

kill ... 235

kill() ... 25, 33, 42, 51, 54, 56-57, 60-61, 65,
67, 73, 187, 189, 214, 235-237, 239-242, 283,
306

definition of ... 56
rationale ... 241

KILL ... 132,134,139

KomShell ... 216

L

labels
ANSI ... 300

labs() ... 307

LANG
definition of ... 28
variable ... 28, 155

Language Standards ... 181

Language-Dependent Services for the C Pro¬
gramming Language ... 5, 192

Language-Specific Services for the C Program¬
ming Language ... 151,283

Iconv ... 304

LC_ALL
definition of ... 28

variable ... 28,154-155,286-287,304

LC_*
variable ... 216

LC_COLLATE
definition of ... 28
variable ... 28,154,286,304

LC_CTYPE
definition of ... 28
variable ... 28,154,286,304

LC_MESSAGES
variable ... 320

LC_MONETARY
definition of ... 28
variable ... 28, 154, 286, 304

LC_NUMERIC
definition of ... 28

variable ... 28,154,286,304

LC.TIME

definition of ... 28
variable ... 28, 154, 286, 304, 320

L_ctermid ... 78,251

L_cuserid ... 30, 306

ldexp() ... 305
definition of ... 151

Idiv() ... 307

Idivjt ... 307

library routine ... 206

{LIMIT} ... 9, 34

limits ... 34
Clanguage ... 34
invariant values ... 37
minimum values ... 34
pathname values ... 36
run-time increasable values ... 34
run-time invariant values ... 35

Alphabetic Topical Index 337

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

<limits.h> ... 3,34-37,80,110-111,188,
190, 223-225, 236, 251, 263, 304, 318
definition of ... 34

Line Control Functions ... 145, 282

link (see directory entry)

link count
definition of ... 16

Link to a File ... 92, 258

link
definition of ... 15
symbolic ... 294,297-298

link() ... 24,92-93,97,101,103,177,199,
258-259, 311
definition of ... 92
rationale ... 258

{LINK.MAX} ... 25, 93-94, 100, 111, 304

definition of ... 36

lJen ... 124-125,303

Local Modes ... 139, 280

Locale Definitions ... 319

locale
C ... 154-155,286
POSIX ... 154-155,286

localeconv() ... 304

<locale.h> ... 154,304

localtime() ... 152-153, 162, 200, 284, 310
definition of ... 152

lockfO ... 271

locking ... 270
advisory ... 124, 272

exclusive ... 271
mandatory ... 272

log 10() ... 305
definition of ... 151

logO ... 305
definition of ... 151

logical device ... 206

login name
definition of ... 16

login shell ... 228

login ... 228,246

login
definition of ... 16

LOGNAME

definition of ... 28
variable ... 28,216

longjmpO ... 66,162,189,213,240,245,
291-292, 305
definition of ... 151
rationale ... 291

JongjmpO ... 291

INFORMATION TECHNOLOGY—POSIX

(LONG_MAX) ... 34,304

{LONG_MIN} ... 34,304

l_pid ... 125, 303

IreadO ••• 214,266
rationale for omission ... 266

Iseek0 ... 26, 37, 91, 118, 121, 127-128, 152,
158-161, 193, 214, 272-273, 290, 311
definition of ... 127
rationale ... 272
symbolic constants ... 37

l_start ... 124-125, 303

l_sysid ... 271

Ijype ... 126,303
Values for Record Locking With fcntlO

... 122

ljuuhence ... 124-125,303

Iwrite() ... 266
rationale for omission ... 266

M

machine ... 74, 309

macro
feature test ... 13

MAIL
variable ... 217

mainO ... 43, 46, 48, 53, 156, 228, 232
definition of ... 43

Make a Directory ... 94, 258

Make a FIFO Special File ... 95, 259

make _233

mallocO ... 188,240,256,291-292,307
definition of ... 151

Manipulate Signal Sets ... 57, 242

Map a Stream Pointer to a File Descriptor
... 156,287

Mask for Use With File Access Modes ... 123

mask
file creation ... 91

<math.h> ... 305

{MAX_CANON} ...111,132,304
definition of ... 36

{MAX_CHAR} ... 224

(MAXJNPUT) ...111,131-132,224,304

definition of ... 36

may

definition of ... 10
rationale ... 197

mhlenO ••• 307

(MB_CUR_MAX) ... 315

338 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]

(MB_LEN_MAX) ... 34,304,315

mbstowcsO ... 307

mbtowcO ... 307

memchrO ... 308

memcmpO ... 308

memcpy() ... 308

memmove() ... 308

memory management
omitted functions ... 292

memsetO ... 308

Minimum Values ... 34-35, 223

MIN ... 132-133,139

mkdir() ... 21,33,91-92,94,99,103,107,
177, 253, 258-259, 308
definition of ... 94
rationale ... 258

mkfifoO ... 21, 33, 91-92, 95-96, 103, 107,
201, 253, 259, 308
definition of ... 95
rationale ... 259

mknod() ... 201,259

mktime() ... 152-153,162,200,310
definition of ... 152

mode bit ... 44,172,257

mode
definition of ... 16

Modem Disconnect ... 135, 279

modej ... 88, 91, 94-95, 101-102, 106, 214,
258, 260, 309
definition of ... 27

modf() ... 305
definition of ... 151

modtime ... 109,312

mount point ... 206

mounts) ... 206

mounted file system ... 206

multibyte character ... 12, 135, 201, 278,
280,295

multiple groups (see supplementary group ID)

Multiple Volumes ... 177, 299

N

name

login ... 16
system ... 74
user ... 20

{NAME_MAX} ... 14,22-23,25,39,46,83,85-
86, 90, 93, 95-98, 100, 104-106, 108-109,
111-112, 225, 262-263, 304
definition of ... 36

ISO/EEC 9945-1: 1990
IEEE Std 1003.1-1990

namespace pollution ... 218

<National Body> Conforming POSIX.l Applica¬
tion ... 5

native implementation ... 206

NDEBUG ... 301

Networking Standards ... 179

new() ... 292

{NGROUPS_MAX} ... 4, 20, 70, 80, 247, 304

nlinkjt ... 101, 214, 309
definition of ... 27

NL ... 134, 137, 139

nodename ... 74,309

NOFLSH ... 139-140

nohup _ 229

Noncanonical Mode Input Processing ... 132,

278

Nonlocal Jumps ... 162,291

Normative References ... 2, 189

null character
definition of ... 29

null string
definition of ... 13,16

NULL ...304,306-307,310-311
definition of ... 29

Numerical Limits ... 34,223

o
0_ACCM0DE ... 123,302

0_APPEND ... 88, 119, 122, 161, 288, 302

obsolescent ... 81,143-144,197,252,265,

281
definition of ... 10

rationale ... 197

0_CREAT ...88-90,122,302

0_EXCL ... 88-90, 122, 302

offj ... 101, 125, 127, 214, 309
definition of ... 27

oflag

Values for open() ... 122

Omitted Memory Management ... 292

0_NDELAY ... 258,264,269-270

0_N0CTTY ... 89, 122, 130, 257, 302

0_N0NBL0CK ... 89-90,113,117-120,122,
129, 131, 133, 138, 258, 264, 267-270, 302

Open a File ... 88, 257

Open a Stream on a File Descriptor ... 157,

287

open file description ... 206
definition of ... 16

Alphabetic Topical Index 339

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

open file
definition of ... 16

Open System Environment (OSE)
definition of ... 314

open() ... 21,33,45,88-92,97,104,114-116,
118,121, 127-131, 137-140,156-157,160,
176, 193, 201, 253, 257-258, 260-261, 265,
277, 287, 291, 303
definition of ... 88
rationale ... 257

opendirO ... 33, 83-85, 176, 254-255, 302
definition of ... 83
rationale ... 254

Opening a Terminal Device File ... 129, 275

{OPEN_MAX} ... 25, 80, 84, 114-115, 126, 304

definition of ... 36

OPOST ... 137

0_RDONLY ... 88-89, 123, 257-258, 302

0_RDWR ... 88-90, 123, 257-258, 302

orphaned process group ... 206, 233, 239
definition of ... 16

OSE (see Open System Environment)

Other C Language Functions ... 162, 291

Other C Language-Related Specifications
... 6, 194

Other Language-Related Specifications ... 7,
195

Other Standards ... 181

0_TRUNC ... 39, 89-91, 111, 122, 257, 302

Output Modes ... 137, 280

owner
change file ... 107

0_WRONLY ... 88-90, 123, 258, 302

P

Parameters That Can Be Set ... 135, 279

PARENB ... 138

parent directory ... 207
definition of ... 16

parent process ID
definition of ... 16

parent process

definition of ... 16

PARMRK ... 136-137

PARODD ... 138

passwd file ... 207

passwd ... 167
Structure ... 167

<passwd.h> ... 215

path prefix
definition of ... 17

pathconfO ... 37, 39, 110-112, 202, 226, 262-
263, 311
definition of ... 110
rationale ... 263

pathname component
definition of ... 17

pathname resolution
definition of ... 22,211

Pathname Variable Values ... 36, 224

pathname
absolute ... 11
definition of ... 17
get configurable values ... 110
get working directory ... 87
incomplete ... 202
relative ... 19

PATH
definition of ... 28
variable ... 28, 43, 46, 216, 230

(PATH_MAX) ... 17, 25, 46, 85-86, 90, 93, OS-
OS, 100, 104-106, 108-109, 111-112, 225,
252, 256-257, 263, 297-298, 304
definition of ... 36

pauseO ... 49, 63-66, 238, 241, 245, 311
definition of ... 64
rationale ... 245

pclose() ... 231

permission
file ... 15

permissions
file access ... 21

perror() ... 161,212,290,307

definition of ... 151
rationale ... 290

{PID_MAX} ... 214

pidj ... 18, 41, 47, 56, 67, 72-73, 124, 147-

148, 214-215, 223, 309
definition of ... 27

pipe ... 14,26,34,36,51,55,102,111,113,
116-117, 119-121, 128, 202-203, 207, 227,
238, 257, 265, 267-269, 289, 311

definition of ... 17

pipe() ... 17,96,103-104,113-116,118,121,

265, 287, 311
definition of ... 113
rationale ... 265

{PIPEJBUF} ... Ill, 119-120, 267-269, 304
definition of ... 36

{PIPE_MAX} ... 269

Pipes ... 113,265

340 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]

popen() ... 231,289

portability constants
compile-time ... 38
execution-time ... 38

portable filename character set ... 207
definition of ... 17

portable filenames ... 22

<posix.h> ... 225

POSIXlocale ... 154-155,286

POSIX Open System Environment

definition of ... 314

POSDC.l and the C Standard ... 186

POSIX. 1 Symbols ... 30, 217

POSDC.l
abbreviation ... 21
definition of ... 21

{_POSDC_ARG_MAX} ... 304
definition of ... 34

LPOSIX_CfflLD_MAX} ... 304
definition of ... 34

LPOSDC_CHOWN_RESTRICTED) ...4,107-
108, 111, 263, 311
definition of ... 39

LPOSIX_JOB_CONTROL} ... 4, 15, 73, 80,
129, 147-148,311
definition of ... 38

{_POSDC_LINK_MAX} ... 304
definition of ... 34

LPOSDC_MAX_CANON] ... 304
definition of ... 34

LPOSIX_MAX_INPUT) ... 304
definition of ... 34

LPOSDC_NAME_MAX) ... 304
definition of ... 34

{_POSDC_NGROUPS_MAX} ... 304
definition of ... 34

LPOSDC_NO_TRUNC) ... 22-23, 25, 46, 85-86,
90, 93, 95-98, 100, 104-106, 108-109, 111-
112, 225, 311
definition of ... 39

LPOSIX_OPEN_MAX) ... 304
definition of ... 34

(_POSDC_PATH_MAX) ... 304
definition of ... 34

(_POSDC_PIPE_BUF} ... 304

definition of ... 34

{_POSIX_SAVED_IDS} ... 44, 56, 69-70, 80,
229, 311
definition of ... 38

_POSIX_SOURCE ... 32,218,221
definition of ... 31

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

LPOSIX_SSIZE_MAX) ... 304
definition of ... 34

LPOSDC_STREAM_MAX] ... 304
definition of ... 34

LPOSDC_TZNAME_MAX) ... 304,318
definition of ... 34

LPOSDC_VDISABLE) ...111,135,141,311
definition of ... 39

LPOSIX_VERSION} ... 80,249,311
definition of ... 38

pow{) ... 305
definition of ... 151

Primitive System Data Types ... 27, 213

printfi) ... 160-161,193,290,307
definition of ... 151
rationale ... 290

privileges (see appropriate privileges)

Process Creation and Execution ... 41, 226

Process Creation ... 41,226

Process Environment ... 67, 246

process group ID ... 15,18,27,41,44,47,56,
72-74, 129, 147-149, 203, 247-248, 275-276
definition of ... 18
foreground ... 15
get ... 72
get foreground ... 147
set ... 72
set for job control ... 73
set foreground ... 148

process group leader
definition of ... 18

process group lifetime
definition of ... 18

process group
background ... 12
definition of ... 17

foreground ... 15
leader ... 18
lifetime ... 18
orphaned ... 16, 206, 233, 239
terminal ... 129

Process Groups ... 72, 129, 247, 275

process groups

concepts in job control ... 203

Process Identification ... 67, 246

process ID
1 ... 233
definition of ... 18
get ... 67
get parent ... 67
parent ... 16
rationale ... 214

Alphabetic Topical Index 341

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990 INFORMATION TECHNOLOGY—POSIX

process lifetime ... 242
definition of ... 18

Process Primitives ... 41, 226

Process Termination ... 46, 230

process
background ... 12
child ... 12
concurrent execution ... 227

controlling ... 12
create inter-process channel ... 113

creation ... 41
definition of ... 17
delay execution ... 65
foreground ... 15
parent ... 16
send signal to ... 56
single-threaded ... 227

suspend execution ... 64
system ... 20
terminate ... 49
times ... 76
wait for termination ... 47

profile
example ... 318

Profiles ... 313

prototypes
function ... 32

PS1
variable ... 217

PS2
variable ... 217

ptraceO ... 212,231-232,243

ptrdiffjt ... 306

putc() ... 160,290,307
definition of ... 151
rationale ... 290

putchar() ... 160,290,307
definition of ... 151

rationale ... 290

putenv() ... 250

puts() ... 160,290,307
definition of ... 151
rationale ... 290

pwd ... 256

<pwd.h> ... 27,167,173,177,215,293,305
definition of ... 167

pwjdir ... 167,305

pw_gid ... 167,305

pwjiame ... 167, 305

pw_shell ... 167,305

pwjuid ... 167, 305

Q
qsort() ... 188,307

definition of ... 151

QUIT ... 133-134,139-140

R

raise() ... 54,61,189,306

rand() ... 307
definition of ... 151

raw mode ... 273

Read from a File ... 116,267

read() ... 91, 103, 114, 116-119, 128, 130-135,
158, 160,177, 202, 213, 215, 238-240, 253,
264-267, 269, 277-278, 299-300, 311
definition of ... 116
rationale ... 267

readdirO ... 33, 83-85, 254-255, 302
definition of ... 83
rationale ... 254

read-only file system
definition of ... 18

readv() ... 269

real group ID ... 15,44,68-70,105
definition of ... 18

real user ID ... 20, 34-35, 44, 68-69, 105, 241,
261
definition of ... 18

realloc() ... 307
definition of ... 151

Referenced C Language Routines ... 151, 283

regular file ... 207
definition of ... 19

Related Activities ... 315

Related Functions by Both ... 189

Related Open Systems Standards ... 179

Related Standards ... 315

Relationship to IEEE Draft Project 1003.0
... 315

relative pathname
definition of ... 19

release ... 74, 309

Remove a Directory ... 98, 259

Remove Directory Entries ... 96, 259

remove() ... 103,162,307
definition of ... 151

Rename a File ... 99, 259

rename() ... 93, 97, 99-100, 151, 189, 259,
307
definition of ... 99
rationale ... 259

342 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]

Reposition Read/Write File Offset ... 127,
272

Required Signals ... 52

Requirements ... 2, 190

Reserved Header Symbols ... 31

rewind() ... 161,290,307
definition of ... 151
rationale ... 290

rewinddir() ... 33,83-84,255,302
definition of ... 83
rationale ... 254

rmdiri) ... 97-98, 101, 213, 259, 311
definition of ... 98
rationale ... 259

R_OK ... 37-38,105,311

root directory ... 207
definition of ... 19

root file system ... 208

root of a file system ... 208

Run-Time Increasable Values ... 34-35, 224

Run-Time Invariant Values (Possibly Indeter¬
minate) ... 35-36, 224

s
sa Jlags ... 59, 306

sajiandler ... 59, 306

sa_ma.sk ... 59, 243, 306

samefileO ... 214

Sample National Profile ... 317

SA_NOCLDSTOP ... 53,59,203,243,305

saved set-group-ID ... 15, 38, 44, 69-70, 246
definition of ... 19

saved set-user-ID ... 19-20, 38, 44, 56, 69,
246
definition of ... 19

sbrk() ... 188,292

rationale for omission ... 292

scanfO ... 160,193,290,307
definition of ... 151
rationale ... 290

{SCHAR_MAX} ... 34,304

{SCHAR_MIN} ... 34,304

Schedule Alarm ... 63, 244

Scope and Normative References ... 185

Scope ... 1,185

seconds since the Epoch ... 76, 103, 109, 152,
200, 208, 284
definition of ... 19

security considerations ... 4, 21, 56, 199, 201,
205, 208-209, 216, 230, 242, 248, 252, 260,
262, 277, 282-283, 293, 295-296

ISO/TEC 9945-1: 1990

IEEE Std 1003.1-1990

security controls
additional ... 21
alternate ... 21
extended ... 21

security
access control lists ... 209
mandatory ... 209
monolithic privileges ... 199

seek [see Iseek ()]

seekdir() ... 255-256

rationale for omission ... 255

SEEK_CUR ... 30, 38, 124, 127, 303, 311

SEEKJEND ... 30, 38, 124, 127, 303, 311

SEEK.SET ... 30, 38, 124-125,127, 289, 303,
311

select() ... 266

Send a Signal to a Process ... 56,241

session leader
definition of ... 19

session lifetime
definition of ... 19

session ... 12, 15-16, 19, 44, 50, 56, 72-74,
130, 148-149,179, 204, 206-207, 233, 242,
248, 276, 283
create ... 72

definition of ... 19
leader ... 19
lifetime ... 19

Set File Access and Modification Times
... 108,262

Set File Creation Mask ... 91, 258

Set Foreground Process Group ID ... 148, 283

Set Position of Directory Stream ... 255

Set Process Group ID for Job Control ... 73,
248

Set Time Zone ... 162, 292

Set User and Group IDs ... 68, 246

setbufO ... 307
definition of ... 151

setcookedO ... 273

setgid{) ... 68-71,311
definition of ... 68
rationale ... 246

setgrent() ... 293
rationale for omission ... 293

set-group-ID ...44,107,229-230,272

setgroups () ... 247

sethostid() ... 249

sethostnamei) ... 249

setjmpO ... 162, 189, 245, 291-292, 305

definition of ... 151

rationale ... 291

Alphabetic Topical Index 343

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

<setjmp.h> ... 162,305

_setjmp() ... 291

set locale () ... 154-155,189,285-287,304

definition of ... 154
rationale ... 285

setpgid() ... 18-19,72-74,148,197,203-204,
233, 248-249, 276, 311
definition of ... 73
rationale ... 248

set pgrpO ... 248

setpwent() ... 293
rationale for omission ... 293

setraw() ... 273

setsidO ... 18, 57, 72-74, 130, 148, 233, 248,
276, 311
definition of ... 72
rationale ... 248

setuidi) ... 44, 46, 68-69, 311
definition of ... 68
rationale ... 246

set-user-ID ... 44, 107, 229-230, 241, 256

setvbu/X) ... 288,307

sh ... 287

shall

definition of ... 10
rationale ... 197

shell scripts
execing ... 228

shell ... 1,202-205,216-217,226,228,231,
233, 236, 238-239, 242, 247-249, 275, 277,
288

job control ... 202, 236, 239, 242
login ...205,228,247

SHELL
variable ... 217

should
definition of ... 10
rationale ... 197

(SHRT_MAX) ... 34,304

{SHRT_MIN} ... 34,304

SIGABRT ... 46, 51, 235, 291, 305

sigaction ... 58, 306

sigaction() ... 33,50,53,57-60,62-64,66,
72-73, 128, 162, 236-237, 241-244, 283, 291,
306
definition of ... 58
rationale ... 243

sigaddset() ... 33,57-58,306
definition of ... 57

rationale ... 242

SIGALRM ... 51,64-66,245,305

sig_atomic_t ... 306

INFORMATION TECHNOLOGY—POSIX

SIGBUS ... 235-236

SIGCHLD ... 50-51,53-54,59,203,236-239,

243, 305

SIGCLD ... 235-236, 238, 243

SIGCONT ... 50, 52-53, 55-56, 203, 233-234,
236, 238-239, 242, 305

sigdelset() ... 33,57-58,306
definition of ... 57
rationale ... 242

sigemptyset() ... 33,57,242-243,306

definition of ... 57
rationale ... 242

SIGEMT ... 235-236

sigfillsetO ... 33,57,242-243,306

definition of ... 57
rationale ... 242

SIGFPE ... 51,54,61,235-236,238,305

SIGHUP ... 50-51,135,233-234,239,305

SIGILL ... 51,54,61,235-236

SIG1NT ... 24, 51, 133, 136, 205, 226, 235, 305

SIGIOT ... 235-236

sigismember() ... 33,57-58,306
definition of ... 57
rationale ... 242

sigjmpjbuf ... 305

SIGKILL ... 51,53-54,59,61,235,237-239,

241, 243, 305

siglongjmpO ... 33,66,162,189,213,240,

291, 305
definition of ... 162
rationale ... 291

Signal Actions ... 53, 238

Signal Concepts ... 51,235

Signal Effects on Other Functions ... 55, 240

Signal Generation and Delivery ... 51, 237

Signal Names ... 51, 235

signal ... 208
BSD differences ... 234

concepts ... 51
definition of ... 19
examine and change action ... 58
examine and change blocked ... 60

examine pending ... 62
manipulate sets ... 57
mask ... 60

queueing ... 235
send to process ... 56
stacks ... 234
wait ... 62

signal0 ... 25, 60, 189, 234-235, 237, 241-

244, 283, 306

<signal.h> ... 24,46,49,51,56-64,91,

162, 305
definition of ... 51

344 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]

Signals ... 51, 234

sigpendingO ... 33,46,58,62-63,234,242,

306
definition of ... 62
rationale ... 244

SIGPIPE ... 51,121,213,305

sigprocmask() ... 33, 46, 53, 58-63, 162, 237,
242, 244-245, 291, 306
definition of ... 60
rationale ... 244

SIGQUTT ...24,51,133,305

sigreturn() ... 234

SIG_BLOCK ... 61,305

SIG_DFL ... 44, 51, 53-54, 59-60, 205, 234-
235, 237-238, 305

SIG_ERR ... 305

SIG_IGN ... 44, 51, 53-54, 59, 203, 205, 229,
237-238, 305

SIG_SETMASK ... 61,305

SIGJJNBLOCK ... 61,305

SIGSEGV ... 51,54,61,235-236,305

sigsetjmpO ... 33,162, 189, 291, 305

definition of ... 162
rationale ... 291

sigsetjt ... 51, 57, 59-60, 62, 235, 306

sigstack() ... 234

SIGSTOP ... 52-54, 59, 61, 236, 239, 243, 305

sigsuspendO ... 33, 53, 58-60, 62-63, 162,
238, 241, 244-245, 291, 306
definition of ... 62
rationale ... 244

SIGSYS ... 235-236

SIGTERM ... 52,235,305

SIGTRAP ... 235-236

SIGTSTP ... 51, 53, 134, 205, 236, 239, 305

SIGTTIN ... 51, 53, 118,130, 204-205, 236,
239,305

SIGTTOU ... 51, 53, 121, 131, 140, 143, 203,
205, 236, 239, 277, 282, 305

SIGUSR1 ... 52,235-236,305

SIGUSR2 ... 52,235-236,305

sigvecO ... 243

sm() ... 305
definition of ... 151

sinh() ... 305

definition of ... 151

S_IRGRP ... 30, 103, 303, 308

S_IROTH ... 30,103,303,308

SjtRUSR ... 30,103,303,308

S.IRWXG ... 30, 103, 303, 308

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

SJRWXO ... 30, 103, 303, 308

S_IRWXU ... 30, 103, 303, 308

S.ISBLK ... 30, 102, 303, 308

S_ISCHR ... 30, 102, 303, 308

S_ISDIR ... 30, 102, 303, 308

SJSFIFO ... 30, 102, 303, 308

S_ISGID ... 30, 103, 106-107, 260-262, 303,
308

S_ISREG ... 30, 102, 303, 308

S.ISUID ... 30, 103, 106-107, 260-262, 303,
308

SJWGRP ... 30, 103, 303, 308

SJWOTH ... 30, 103, 155, 303, 308

SJWUSR ... 30, 103, 303, 308

S_IXGRP ... 30, 103, 303, 308

SJXOTH ... 30, 103, 303, 308

S_IXUSR ... 30, 103, 303, 308

sizej ... 87, 116, 215, 266, 306-307, 309-311

definition of ... 27

slash
definition of ... 20

sleepO ... 63,65-66,240-241,244-246,311

definition of ... 65
rationale ... 245

socket() ... 287

sockets ... 299

Solely by POS1X.1 ... 188

Solely by the C Standard ... 188

Special Characters ... 133, 279

Special Control Characters ... 140, 280

Special File Creation ... 94, 258

Special Symbol {CLK_TCK} ... 81, 252

specific implementation ... 201

speed_t ... 141, 310
definition of ... 142

sprintfX) ... 307
definition of ... 151

sqrt() ... 305
definition of ... 151

srand() ... 307
definition of ... 151

sscanfX) ... 307
definition of ... 151

(SSIZE_MAX) ... 27, 117, 119, 215, 304
definition of ... 37

ssizej ... 33-34,37,116,118,215,309,311

definition of ... 27

standards
database ... 181
graphics ... 181
language ... 181
networking ... 179
open systems ... 179

Alphabetic Topical Index 345

ISO/IEC 9945-1: 1990
IEEE Std 1003.1-1990

START ... 134,137,141,146

stat ... 103,308
Structure ... 101

statO ... 21-22,33,46,91,95-96,101,103-
105, 107, 172-173, 176-177, 193, 199, 253,

260, 262, 308
definition of ... 103

rationale ... 260

<stat.h>
(see <sys/stat. h>)

stjatime ... 22, 45, 84, 89, 94-95, 101, 103,
113, 117, 160, 211, 254, 262, 267, 288, 308
definition of ... 101

stjctime ... 22, 89-90, 92, 94-95, 97-98, 100-
101, 103, 106-107, 109, 113, 120, 160-161,

288, 308
definition of ... 101

<stdarg.h> ... 306

<stddef.h> ... 306

STDERR_FILENO ... 156,311

st_dev ... 101,260,308
definition of ... 101

STDIN_FILENO ... 156,311

<stdio.h> ... 30,78,156-157,306

<stdlib.h> ... 77,194-195,307

STDOUTJTLENO ... 156,311

st_gid ... 101,308
definition of ... 101

stj.no ... 101, 260, 308
definition of ... 101

st_mode ... 101-102
definition of ... 101

st_mtime ... 22, 89-90, 92, 94-95, 97-98, 100-
101, 103, 113, 120, 160-161, 262, 288, 308
definition of ... 101

st_nlink ... 101,214,308

definition of ... 101

STOP ... 134, 137, 141, 146

strcat() ... 308

definition of ... 151

strchr() ... 308
definition of ... 151

strcmpi) ... 308
definition of ... 151

strcollO ... 308

strcpyO ... 308
definition of ... 151

strcspnO ... 308

definition of ... 151

st_rdev ... 219

stream
binary ... 152
open ... 157
pointer ... 156

INFORMATION TECHNOLOGY—POSIX

text ... 152

{STREAM.MAX} ... 80,304
definition of ... 35

streams
Eighth Edition ... 198

strerror{) ... 308

strftimeO ... 152-153,162,310

definition of ... 152

Strictly Conforming POSIX.l Application

... 4, 192

string
definition of ... 29

<string.h> ... 307

strlen() ... 308
definition of ... 151

strncat() ... 308
definition of ... 151

strncmpO ... 308
definition of ... 151

strncpyO ... 308
definition of ... 151

strpbrk() ... 308
definition of ... 151

strrchrO ... 308
definition of ... 151

strspn() ... 308
definition of ... 151

strstri) ... 308
definition of ... 151

strtod() ... 307

strtok() ... 308
definition of ... 151

strtol() ... 307

strtouli) ... 307

struct

direct ... 253
dirent ... 83, 85, 253-254, 302

flock ... 124,302
group ... 166, 303

Iconv ... 304
passwd ... 167,305
sigaction ... 58, 306
stat ... 103, 308

termios ... 141,143,310
tm ... 310
tms ... 76,308
utimbuf ... 108,311
utsname ... 74, 309

structures
additions to ... 218

strxfrm{) ... 308

st_size ... 308
definition of ... 101

346 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]
ISO/EEC 9945-1: 1990

IEEE Std 1003.1-1990

stjuid ... 101,308
definition of ... 101

su _ 242, 246

subshells ... 204

Suggested Feature Test Macros ... 222

super-user ... 199, 208, 241, 246, 258-259,
261-262, 295

supplementary group ID
definition of ... 20

supplementary groups ... 14-15, 20, 34, 39,
44-45, 69-70, 106-107, 208, 247, 262

supported
definition of ... 11
rationale ... 197

Suspend Process Execution ... 64, 245

SUSP ... 134,139-140

Symbolic Constant for the lseek() Function

... 37

Symbolic Constants for the access() Function
... 37-38,225

Symbolic Constants for the Iseek () Function

... 38,225

Symbolic Constants ... 37, 225

symbolic link ... 294, 297-298

Symbols From the C Standard ... 29, 217

symbols
C Standard ... 29
POSIX.l ... 30

sysconfl) ... 34-35, 77, 80-81, 202, 236, 252,

263, 311
definition of ... 80
rationale ... 252

<sys/dir.h> ... 253

sysname ... 74, 309

<sys/stat.h> ... 46,88,91-92,94-96,101,

103-104, 106-108,110, 173, 177, 214-215,
257, 260, 308
definition of ... 101

File Modes ... 102
File Types ... 102
Time Entries ... 103

system call ... 208
restarting ... 234

System Databases ... 165, 293

system documentation
definition of ... 11

System Identification ... 74, 249

System IE ... 207, 213, 222, 234, 249, 262,
264, 267, 273

System Name ... 249

system process
definition of ... 20

System V ... 199,205-206,222,225,230,
233-238, 241, 243-244, 246-249, 253, 258-
259, 262-265, 267, 270-271, 273-274, 282-
283, 291, 297

system
definition of ... 20
get configurable variables ... 80
name ... 74

systemi) ... 231,288-289,307

<sys/times .h> ... 76,308
definition of ... 76

<sys/types .h> ... 27,41,47,56,67-68,70,
72-73, 83, 88, 91, 94-95, 103, 106-108, 121,
127, 147-148, 166-167, 213, 215, 217, 221,
250, 260, 293, 309
definition of ... 27

<sys/utsname.h> ... 74,309
definition of ... 74

<sys/wait.h> ... 47-48,309
definition of ... 47

T

tan() ... 305
definition of ... 151

tanh{) ... 305
definition of ... 151

tapecntl() ... 274

tar ... 169,294-297
format ... 169
Header Block ... 170

<tar.h> ... 170

tc*0 ... 275

tcdrainO ... 33,145-146,279,310

definition of ... 145
rationale ... 282

tcflagjt ... 310
definition of ... 136

tcflowO ... 33,145-147,310
definition of ... 145
rationale ... 282

tcflushO ... 33,145-146,310

definition of ... 145
rationale ... 282

tcgetattr() ... 33, 39, 141, 143-145, 204, 281-

282, 310
definition of ... 143
rationale ... 282

tcgetpgrpO ... 147-148, 204, 276, 282, 311
definition of ... 147
rationale ... 282

tcsendbreak() ... 33,145-146,310

definition of ... 145
rationale ... 282

Alphabetic Topical Index 347

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

tcsetattrO ... 33, 39, 141-145, 204, 275, 281-

282, 310
definition of ... 143
rationale ... 282

tcsetpgrpO ... 74, 130, 148-149, 203-204, 283,
311
definition of ... 148
rationale ... 283

telldiH) ... 255-256
rationale for omission ... 255

termcntli) ... 274

Terminal Access Control ... 130, 277

terminal device (see terminal)

Terminal Identification ... 78,251

terminal
access control ... 130
baud rates ... 141
canonical mode input ... 132
closing ... 135
control functions ... 143
control modes ... 138
controlling ... 12,130
definition of ... 20
determine device name ... 79
general interface ... 129
generate pathname ... 78
get and set state ... 143
input ... 131

input modes ... 136
line control functions ... 145

local modes ... 139
modem disconnect ... 135
noncanonical mode input ... 132
opening ... 129
output ... 133
output modes ... 137
process group ... 129
setting parameters ... 135
special characters ... 133
special control characters ... 140

Terminate a Process ... 49, 232

Terminology and General Requirements ... 9

Terminology ... 10, 197

termios c_cc Special Control Characters
... 140

termios c_cflag Field ... 138

termios c_iflag Field ... 136

termios c_lflag Field ... 139

termios ... 141, 143, 310
Baud Rate Values ... 141
definition of ... 129
get and set state ... 143
line control functions ... 145

setting parameters ... 135
Structure ... 135-136, 279

INFORMATION TECHNOLOGY—POSIX

<termios.h> ... 135-147,309
definition of ... 135

TERM
definition of ... 28
variable ... 28

terms ... 11

text stream ... 152

time zone ... 29, 152-153, 162, 189, 283-285

Time ... 75,249

time
extensions to C Standard functions ... 152

get process ... 76

time() ... 33, 75-77, 189, 212, 249-250, 310

definition of ... 75
rationale ... 249

<time.h> ... 75,81,152,162,217,250,310

Timer Operations ... 63, 244

TIME ... 132-133,139

timesO ... 33, 42, 46, 49, 76-77, 199, 212,
244,249, 308
definition of ... 76
rationale ... 250

<times.h>
(see <sys/times.h>)

timej ... 29, 75-76, 101, 109, 200, 217, 249-
250, 310

definition of ... 27

tm ... 310

tmjiour ... 19, 310

tm_isdst ... 310

tmjnday ... 200,310

tmjnin ... 19, 310

tmjnon ... 200, 310

tmpfilei) ... 161,290,307
definition of ... 151

rationale ... 290

tmpnami) ... 307
definition of ... 151

tms ... 76,308

tms_cstime ... 41, 45, 76-77, 308

tms_cutime ... 41,45,76-77,308

tm_sec ... 19,310

tmsjstime ... 45,76-77,308

tmsjutime ... 45,76,308

tmjuuday ... 310

tm_yday ... 19,200,310

tm_year ... 19, 200, 310

toasciii) ... 188

tolower() ... 301
definition of ... 151

348 Alphabetic Topical Index

Part 1: SYSTEM API [C LANGUAGE]

_tolower() ... 188

TOSTOP ...131,139-140,203

toupper() ... 301
definition of ... 151

_toupper() ... 188

TRAILER! ! ! ... 176

trojan horse ... 199

ttyname() ... 79,188,251,311
definition of ... 79
rationale ... 251

Types of Conformance ... 5, 194

<types.h>
(see <sys/types. h>)

tzname ... 153

{TZNAME_MAX} ... 80, 152, 304
definition of ... 35

TZ
definition of ... 29
rationale ... 283
variable ... 29, 34-35, 152-153, 162, 216,

283-285, 319

tzset() ...33,153,162-163,310
definition of ... 162

u
(UCHAR.MAX) ... 34,304

{UID.MAX} ... 215

uidjt ... 68, 101, 107,167, 214-215, 293, 309
definition of ... 27

{UINT.MAX} ... 34,245-246,304

{ULONG.MAX} ... 34,304

umask() ... 33, 46, 91-92, 95-96, 258, 308

definition of ... 91
rationale ... 258

umount() ... 206

uname() ... 33,74-75,249,309
definition of ... 74
rationale ... 249
Structure Members ... 75

undefined ... 3, 6-7, 11, 19, 25, 27, 29-30, 32,
49, 54-55, 58, 61, 70, 84, 87-89,117, 119,

124, 127, 132, 135, 137, 144, 153, 158-159,
170, 176, 190, 193, 197-198, 212, 232, 240,

251, 257, 288, 298-299, 319
definition of ... 11
rationale ... 198

ungetc() ... 160,307
definition of ... 151

<unistd.h> ... 3,27,29-30,32,37-39,80,
104-105, 110-111, 121, 127-128, 156, 173,
190, 215, 222-223, 225, 236, 251, 311

definition of ... 37

ISO/TEC 9945-1: 1990
IEEE Std 1003.1-1990

unlink() ... 93, yc-»7, 99, 101, 103, 116, 162,
213, 258-259, 311
definition of ... 96
rationale ... 259

unsafe functions ... 240

unspecified ... 3-4, 11-12, 16, 20, 22-24, 27,
32, 42, 45, 47, 53-54, 56, 60, 62, 65-66, 71,
75-79, 83-84, 88-89, 92, 98, 101, 111, 116,
118, 121, 124, 129-130, 135, 141-142, 152,
154, 156-157, 159, 161, 165-167, 169, 172-
174, 176, 185, 190, 193, 197-198, 211, 233,
237, 243-245, 250, 253, 276
definition of ... 11
rationale ... 198

User Database Access ... 167,293

User Identification ... 68,246

user ID
definition of ... 20
effective ... 13, 68
get effective ... 68

get real ... 68
real ... 18,68
saved set- ... 19
set ... 68

user name
definition of ... 20

get ... 71

USER
variable ... 216

ushortjt ... 213

{USHRTMAX} ... 34,304

ustat() ... 260

utimbuf ... 108,311

utime() ... 33, 103, 108-109, 262, 312

definition of ... 108
rationale ... 262

<utime.h> ... 108-109,311

utsname ... 74,309

<utsname.h>
(see <sys/utsname.h>)

V

Values for cpiocjnode Field ... 175

VEOF ... 140

VEOL ... 140

VERASE ... 140

Version 7 ... 211,222,234,241,244,249-

250, 253, 262, 265, 267, 273, 296

version ... 74, 309

vfork() ... 248

Alphabetic Topical Index 349

ISO/IEC 9945-1: 1990

IEEE Std 1003.1-1990

vfprintfX) ... 160-161,290,307

rationale ... 290

vhangupi) ... 206,233

VINTR ... 140

VKILL ... 140

VMIN ... 140-141

uprintfi) ... 160-161,290,307
rationale ... 290

VQUIT ... 140

vsprintfX) ... 307

VST ART ... 140-141

VSTOP ... 140-141

VSUSP ... 140

VTIME ... 140-141

w
Wait for a Signal ... 62, 244

Wait for Process Termination ... 47, 231

wait3() ... 231

wait() ... 18,24,33,46-50,76-77,212,226,
231-232, 236, 238, 240-241, 288, 309
rationale ... 230

<wait.h>

(see <sys/wait. h>)

waitpidi) ... 18,24,33,46-50,76,203,207,
214, 226, 231-232, 240, 242-243, 309
definition of ... 47
rationale ... 230

wchar_t ... 307

wcstombsO ... 307

wctombO ... 307

WERASE ... 278

WEXITSTATUS ... 48,309

WIFEXITED ... 48, 309

WIFSIGNALED ... 48, 309

WIFSTOPPED ... 48,232,309

WNOHANG ... 47, 243, 309

W_OK ... 37-38, 105, 311

{WORD_BIT} ... 223

Working Directory Pathname ... 256

Working Directory ... 86, 256

working directory
change ... 86

definition of ... 20

Write to a File ... 118,267

write() ... 26, 91, 103, 114, 118-120, 128, 131,

133, 135, 158, 160-161, 170, 202-203, 213,
215, 238-240, 264-266, 269, 272, 277, 290,
300, 311
definition of ... 118
rationale ... 267

writev() ... 269

Writing Data and Output Processing ... 133,
279

WSTOPSIG ... 48, 309

WTERMSIG ... 48,309

WUNTRACED ... 47, 203, 231-232, 309

X

X_OK ... 37-38,105,261,311

350 Alphabetic Topical Index

Acknowledgments

We wish to thank the following organizations for donating significant computer,
printing, and editing resources to the production of the 1988 version of this stan¬
dard, upon which this revision is primarily based: UniForum (formerly
/usr/group), Amdahl Corporation, Digital Equipment Corporation, MASSCOMP,

UniSoft Corporation, and X/Open.

We wish to thank the following organizations for donating significant computer,
printing, and editing resources to the production of this revision: Hewlett-
Packard Company and X/Open.

This document was also approved by ISO/IEC JTC-1 SC22/WG15 as ISO/IEC 9945-
1:1990. The IEEE wishes to thank the advisory groups of the National Bodies par¬
ticipating in WG15 for their contributions: Austria, Belgium, Canada, Denmark,
France, Germany, Japan, Netherlands, United Kingdom, USA, and USSR.

The IEEE also wishes to thank the delegates to WG15 for their contributions:

AUSTRIA Yves Delarue UK
Gerhard Schmitt Eric Dumas Nigel Bevan
Wolfgang Schwabl Maurice Fathi Cornelia Boldyreff

Gerald Krummeck Dave Cannon
CANADA Herve Schauer Don Chacon
Joe Cote Hubert Zimmerman Dominic Dunlop
Patrick Dempster David Flint
George Kriger GERMANY Don E. Follond
Bernard Martineau Ron Elliot Martin Kirk
Major Douglas J. Moore Helmut Stiegler Neil Martin
Arnie Powell Claus Unger Brian Meek
Paul Renaud Rainer Zimmer Kevin Murphy
Richard Sniderman Ian Newman

IRELAND Philip Rushton
CEC Hans-Jurgen Kugler
Phil Bertrand USA
Manuel Carbajo JAPAN Robert Bismuth
Michel Colin Hiromichi Kogure Steven L. Carter

Shigekatsu Makao Terence S. Dowling
DENMARK Yasushi Nakahara Ron Elliott
Peter E. Cordsen Nobuo Saito Dale Harris
Isak Korn John Hill
Keld Simonsen NETHERLANDS James D. Isaak
Claus Tondering J. Van Katwijk Hal Jespersen

Willem Wakker Roger J. Martin
FINLAND H.J. Weegenaar Shane McCarron
Jikka Haikala Barry Needham

SWEDEN Donn S. Terry
FRANCE
Pascal Beyles

Mat Linder Alan Weaver

Christophe Binot USSR
Claude Bourstin V. Koukhar
Jean-Michel Cornu Ostapenko Georgy Pavlovich

351

Also we wish to thank the organizations employing the members of the Working
Group and the Balloting Group for both covering the expenses related to attend¬
ing and participating in meetings, and donating the time required both in and out
of meetings for this effort.

Absolut Software
ACM
ADDAMAX
Adobe Systems, Inc.
Aeon Technologies, Inc.
AFNOR*
AFUU

AGS Information Services
Air Force Institute of Technology
Aktiengesellschaft

Alcyon Corporation
Alliant Computer Systems
Alsup
Amdahl Corporation*
Analysts International

ANFOR
Anistics, Inc.
ANSI
Applicon

Applied Network Technology
APT Data Services
Archives Ltd.
ARIX
Associated Computer Experts
AT Computing/Toernooiveld
Atlanta UNIX Users Group
AT&T*
AT&T Bell Laboratories
AT&T Information Systems
AT&T UNIX Europe Ltd.
ATTAGE
Australian Government Dept, of Science

Australian UNIX Systems User Group
Automation Resource Group
Automation Technologies

Axon Data
Baldwin Information Processing
Barrister Information Systems Corporation
Batelle Columbus Labs

BRN Communications Corporation
BBN Laboratories
Bell Communications Research
Bell-Northern Research Ltd.
Billy Shakespeare & Company
Boeing Aerospace Company
Boeing Computer Services
BP America Research & Development
Brake Systems, Inc.
British Airways

British Olivetti Ltd.
British Standards Institute*

British Telecom
Brown & Sharpe
Bull, Inc.

Bull Sems
Burroughs Corporation
Burtek, Inc.

C. S. Draper Lab, Inc.
California State University

California University
Cal span Corporation
Carnegie-Mellon University
CCTA, Riverwalk House
Celerity Computing
Central Computer & Telecommunications
Central Intelligence Agency
Centre National DTltudes des Telecomm.
CFI
Charles River Data Systems*

Chemical Abstracts Service
Chorus Systems
Citicorp Transaction Tech., Inc.
Classic Conferences
Cleveland State University
CMC Ltd.
Commission of the European Communities**
CommUNIXations

COMPASS
Compugraphic Corporation
Computer Design
Computer Systems Engineering
Computer Systems News
Computer Systems Resources, Inc.
Computer Task Group
Computer Works
Computer X, Inc.
Computerworld

Comtek
Concord Data Systems
Concurrent Computer Corporation*
Control Data Corporation*
Convergent Technologies

Convex Computer Corporation
COSMIC

Cray Research, Inc.*
Cullinet Software, Inc.
Custom Development Environments
Dana Computers
Dansk Data Elektronik A/S DDE
Dansk Standardiseringsradd
Dartmouth College
Data Connection
Data General Corporation
Data Logic Ltd.
Data Systems Engineering

DataBoard, Inc.
Datamation
Datamension Corporation

352

Datapoint Corporation
DEC International
Defense Communication Agency
Deutsches Institut fur Normung
DGM&S, Inc.
Digital Equipment Corporation**
Digital Equipment GmbH
Digital Sound Corporation
Directorate Land Armament
Douglas Aircraft Corporation
Dravo Automation Sciences (DAS)
Eastman-Stuart Ltd.
Eclipse Systems Corporation

EDS Corporation
EDS of Canada, Ltd.
EDV Zentrum der TU Wien
EER Systems Corporation
Electronic Data Systems Corporation
Electronic Engineering Times
Electrospace Systems, Inc.
Emerald City
Emerging Technologies Group, Inc.
Encore Computer
ENEA DATA Svenska AB
Epicom
Epilogue Technology Corporation
Ericsson Information Systems AB
ETA Systems, Inc.
European Laboratory for Particle Physics
European UNIX
Eurotherm International
EUUG*
Exxon Chemical Pakistan Ltd.
Federal Judicial Center
Fern Universitat
FGAN/FFM
Fidcom System Ltd.

Flexible Automation
Flexible Computer Corporation
Floating Point Systems
Ford Aerospace Corporation
Ford Motor Company
Fortune Systems Corporation
Fourth Shift Corporation

Free Software Foundation, Inc.
Fujitsu America, Inc.
Future Tech, Inc.
FUUG (Finland)
Gartner Group
Geac Computer International
GEC Telecomms Ltd.
General Dynamics
General Electric Corporation
General Motors Corporation
General Motors Technical Center

George Mason University
Georgia Institute of Technology
Gilbert International
Gould CSD

Gould Electronics
Gould SEL*

Government Computer News
Grebyn Corporation
Grumman Aircraft
Grumman Data
Grupo de Redes de Computadores
GUUG (West Germany)
Harrie Corporation
Harris Corporation*
Hayden Publishing
HCR Corporation
Hewlett-Packard Company**
Hewlett-Packard/Apollo*
High Tech Publishing Company, Inc.
Hi-Tech Editorial, Inc.
Honeywell Bull, Inc.
Honeywell ISI
Honeywell Ltd.
Hughes Aircraft Company
Human Computing Resources
IAIMBT
IBM Corporation**
IBM Deutschland
IBM Federal Sector Division
IBM Research Center
IBM Thomas J. Watson Research Center
ICL
IDC
IEEE Computer Magazine
IEEE Computer Society
IEEE Micro
IEEE Reflector
EEEE Standards Office
Imperial College
Industrial Technology Institute
InfoPro Systems
Information Concepts Pty Ltd.
Ing. C. Olivetti & C., SPA
Inside Information
Institute for Defense Analysis

Institute of Software Academia Sinica
Integrated Systems Design, Inc.
Intel Corporation
Interactive Systems Corporation
Intergraph Corporation
Internationa] Bureau of Software Test

International Computers Ltd.
Internet Systems
Iowa State University
Irish UNIX Systems Users Group
Iskra Automatika
ISO-OSCRAC
Israel Aircraft Industries
Italian UNIX Systems User Group i2u
Itom International

ITSCJ*
ITT
ITUS A

353

Japanese Industrial Standards Committee
Johnson Controls, Inc.

KAIST
Kendall Square Research Corporation

K.E.T.R.I.
Key Tech
King Abdulziz University
Korean UNIX User Group
Lachman Associates, Inc.
Lawrence Livermore National Laboratory
Liberty Mutual Research Center

Lisp Machine, Inc.
LM Ericsson

Lockheed
Lockheed S.O.C
Logicon, Inc.
Lowell University
LSI Appl. Info. & Learning Center
LTV Aerospace & Defense

Maharishi International University
Mallinckrodt Institute of Radiology
Mark Williams Company
Markor
Martin Marietta Aerospace
Martin Marietta Data Systems
Martin Marietta Energy Systems
MASSCOMP
Maxim Technologies, Inc.
M.B.F. Systems, Inc.
McDonnell Douglas
McDonnell Douglas Computer Company

McGill University
Mercury Computer Systems, Inc.
Meridian Software Systems
Microfocus
Micrology, Inc.

Microsoft Corporation
Microtel Pacific Research
Microtex
Mindcraft, Inc.
Mini-Micro Systems
MIPS Computer Systems
MIT-LCS

Mitsubishi Electric Corporation
Modcomp*
Modular Systems
Molecular Genetics, Inc.
Monarch Data Systems
Mortice Kern Systems, Inc.
Motorola, Inc.
Motorola Israel, Inc.
Motorola MCD
MTXINU
NAPS, Inc.
NASA

NASA Ames Research Center
NASA Johnson Space Center
NASA Kennedy Space Center
National Cancer Institute

National Computer Security Center
National Electrical Manufacturers Assoc.
National Institute of Standards & Technology
National Research Council
National UNIX Systems User Group
Naval Ocean Systems Center

Naval Postgraduate School
Naval Surface Weapons Center
Naval Underwater Systems Center
NBI, Inc.
NCR*
NCR Cambridge
NEC Info Systems
Nederlands Normalisatie-instituut

New Media Development Center
New Zealand UNIX Systems User Group, Inc.
Nicolet Instrument Corporation
Nikkei Byte, Nikkei McGraw-Hill, Inc.

Nippon Tel & Tel Corporation
NIUIS 77
Nixdorf Computer AG
Norsk Data Ltd.
North Holland P&C

Northern N. E. UNIX User Group
Northwestern Bell
Northwestern University

Novell
Novon Research Group
NRAO
OCLC

Ohio State University
Open Software Foundation*
Open Systems Architects, Inc.
Oren Yuen Associates
Osterreichesches Normungsinstitut
Oxford Systems, Inc.
Pacific Marine Technology

Palladium Data Systems
Perennial
Philadelphia Area Computer Society
Philips and Picker Medical Systems

Philips Data Systems
Phillips Publishing, Inc.

Planning Research Corporation
Plum Hall, Inc.
Plus Five Computer Services
Polish Computer Society
Politecnic Di Torino-DIP Automatic

Politecnico Di Mikeno
Portland Community College
POSIX Software Group
Prime Computer, Inc.
Princeton University
Programming Concepts, Inc.
Purdue University
Pyramid Technology
Rabbit Software Corporation
RAMIEC, Inc.

RCA Automated Systems

354

RDA Logicon
Relcom, Inc.
Release 1.0
Richmond Computerware

Ricoh Systems, Inc.
RJO Enterprises
Rogers State University
Rolm Corporation

Rolm Mil-Spec Computers
S. J. Lipton, Inc.
SAH Consulting
Sandia National Laboratories*
SAS Institute, Inc.
Schlumberger Well Services
SCI Systems, Inc.
Scientific Computer Systems
SCS
SDRC
Seattle/UNIX Group
Seay Systems, Inc.
SEI Information Technology
SELENIA SP. A
Sequent Computer Systems, Inc.
Seybold Office Computing Group
Shell Int. Pet. Mij.
Shreerang Society
Siemens AG
Sigma, IPA
Silicon Valley Net
Simpact Associates, Inc.
Singapore UNIX Association
Softech, Inc.
Softtech
Software Engineering Company
Software Laboratories Ltd.
Software Magazine
Software News

Software Productivity Consortium
Software Research Associates, Inc.
Software-PEI
SoHar

Southwest Research Institute
Spectra-Tek U.K. Ltd.
Sperry Corporation
Sperry Ltd. Education Centre
Sphinx Ltd.
SSC
St. Lawrence College

Standards Council of Canada
Statskontoret
Stellar Computer, Inc.
Stewart Research Enterprises
Stratus Computer
Strong Consulting
Structural Dynamics Research Corporation
Structured Methods
Summit Computer Systems, Inc.
Sun Microsystems, Inc.*
Syntactics

Syntek Systems
System House, Inc.*
Systems & Software Magazine
Systems Development Corporation
Tampere University of Technology
Tandem Computers, Inc.
Technical Solutions, Inc.
Technical University of Delft
Technische Universitat Berlin
Teknekron Infos witch
Tektronix, Inc.*
Telephone Organization of Thailand
Teli Foretagssystem
Tenis Software Consulting, Inc.
Texas Instruments, Inc.
Texas Instruments-DSG
Texas Internet Consulting
The Algoma Steel Corporation Ltd.
The C Journal, InfoPro Systems
The Charles Stark Draper Laboratory, Inc.
The Foxboro Company
The Instruction Set
The MITRE Corporation
The Santa Cruz Operation
The Wollongong Group
Thinking Machines Corporation
TIS
Torch Computers Ltd.
Toshiba Corporation
Treasury Board of Canada*
TRW

Tsinghua University
U.K. UNIX Systems User Group
UNI Karlsruhe, Informatik II
Uni’C’ Computer Systems
Uni Forum*
Uni Forum Canada

Uni gram :X
Unigroup of New York, Inc.
Uni-Ops
UNIQ Digital Technologies
Uni Soft Corporation
Uni Soft Ltd.
Unisys Corporation**
UNIT-C
Universitat Dortmund
Universitat Zurich-Irchel
University of California, Berkeley
University of California, Irvine
University of California, Los Angeles

University of Colorado
University of Copenhagen
University of Evansville
University of Hong Kong
University of Indonesia
University of Lowell
University of Maryland
University of Minnesota
University of Nevada, Las Vegas*

355

University of New Mexico
University of Portland
University of Santa Cruz
University of South Florida
University of Surrey
University of Technology
University of Tennessee

University of Texas at Arlington
University of Texas at Austin
University of Toronto

University of Utah
University of Victoria
University of Vienna
University of Wisconsin-Milwaukee

University of Zagreb
UNIX Houston
UNIX International
UNIX Review
UNIX Systems
UNIX Technologies
UNIX User Group Austria
UNIX Users of Minnesota
UNIX World
UNIX-C Club
UNIX/WORLD
US Air Force

US Army
US Army Ballistic Research Lab.
US Army ISEC

US Department of Defense
US Department of H.U.D.
US Dept, of Commerce NOAA/NOS
US D.O.T. Systems Center
US Federal Judicial Center
US West Advanced Technologies

USEN1X Association*
USSR State Committee for Standards
Varian

Venturcom
Verdix Corporation
Veritas Technology, Inc.

Videoton
Virginia Polytech & State University
Wang Laboratories, Inc.
West Virginia University
Western Digital
Whitesmiths, Ltd.
Wind River Systems, Inc.

Woods Hole Oceanographic Institution
World UNIX & C
XIOS Systems Corporation
X/Open Company Ltd.
Yates Ventures

In the preceding list, the organizations marked with an asterisk (*) have hosted
1003 Working Group meetings since the group’s inception in 1985, providing use¬
ful logistical support for the ongoing work of the committees.

356

The Source for UNIX® Standardization Information

mance, system purchasers can produc¬

tively manage their software environments

to achieve the benefits of applications

portability. Likewise, hardware and soft¬

ware suppliers and developers will have a

clear specification to follow in designing

their systems and applications for the

open software environment.

POSIX.1 constitutes a major step in the

industry toward providing a comprehen¬

sive standardized applications environ¬

ment. The IEEE’s POSIX Committee is

continuing POSIX-related standards work

in areas such as POSIX-based Open Sys¬

tem Environment (IEEE Project 1003.0),

Shell and Utilities (IEEE Project 1003.2),

Test Methods (IEEE Project 1003.3), Real-

Time Systems Interfaces (IEEE Project

1003.4), An Ada Language Binding for

POSIX (IEEE Project 1003.5), and a FOR¬

TRAN Language Binding to POSIX (IEEE

Project 1003.9).

UNIX is a registered trademark of UNIX System
Laboratories in the U S. and other countries

IEEE Seminars ... Keeping You Competitive Through Standards

If you define architectures for large distribution systems, set standards policy for your orga¬

nization, or evaluate functional, performance, and integrity requirements, be sure to regis¬

ter for the new IEEE POSIX Seminar.

In Spring 1991, IEEE is launching a 2-day seminar based on the IEEE Project 1003.0,

Guide to POSIX Open Systems Environments, and other IEEE projects concerning open

systems. You will learn about frameworks and profiles for Information Technology stan¬

dards, and how they directly apply to your organization.

For more information, call toll free in the USA at 1 (800) 678-IEEE and ask for

Seminars on Standards. Or write to IEEE Standards Seminars, 445 Hoes Lane, P0

Box 1331, Piscataway, NJ 08855-1331 USA.
ISBN 1-55937-061-0

ISO/IEC 9945-1 :1990 (POSIX .1) defines

a standard operating system interface and

environment based on the UNIX Operating

System. It supports applications portability

at the source-code level between multi¬

vendor computer systems.

POSIX.1 establishes a set of basic ser¬

vices fundamental to the efficient con¬

struction of applications programs. Access

to these services is provided through an

operating system using the C program¬

ming language. The OS interface estab¬

lishes standard semantics and syntax, and

allows for application developers to design

portable applications.

Complementing existing standards relat¬

ed to computer languages, database

management, and computer graphics,

POSIX.1 is designed for and used by both

application developers and system imple¬

mentors. It provides a solid base for the

systems procurement and evaluation pro¬

cesses. By specifying POSIX.1 confor-

