
IEEE Standard
Portable Operating System Interface
for Computer Environments

ADOPTED FOR USE BY
THE FEDERAL GOVERNMENT

LtL?£
PUB 151-1

SEE NOTICE ON INSIDE

POSIX

03.1 Published by

The Institute of Electrical and
Electronics Engineers, Inc.

SH1221

'

NATIONAL INSTITUTE OF STANDA3RD5 &
TECHNOLOGY

Research Information Center
Gaithersburg, MD 20899

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in
Federal Information Processing Standards Publication 151-1, POSIX:
Portable Operating System Interface for Computer Environments. For a
complete list of publications available in the Federal Information Processing
Standards Series, write to the Standards Processing Coordinator (ADP),
National Computer Systems Laboratory, National Institute of Standards and
Technology, Gaithersburg, MD 20899.

IEEE Standard

Portable Operating System Interface
for Computer Environments

Published by
The Institute of Electrical and Electronics Engineers, Inc

IEEE Standards documents are developed within the Technical Com¬

mittees of the IEEE Societies and the Standards Coordinating Committees

of the IEEE Standards Board. Members of the committees serve volun¬

tarily and without compensation. They are not necessarily members of the

Institute. The standards developed within IEEE represent a consensus of

the broad expertise on the subject within the Institute as well as those

activities outside of IEEE which have expressed an interest in participating

in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE

Standard does not imply that there are no other ways to produce, test,

measure, purchase, market, or provide other goods and services related to

the scope of the IEEE Standard. Furthermore, the viewpoint expressed at

the time a standard is approved and issued is subject to change brought

about through developments in the state of the art and comments received

from users of the standard. Every IEEE Standard is subjected to review at

least once every five years for revision or reaffirmation. When a document

is more than five years old, and has not been reaffirmed, it is reasonable to

conclude that its contents, although still of some value, do not wholly

reflect the present state of the art. Users are cautioned to check to deter¬

mine that they have the latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any inter¬

ested party, regardless of membership affiliation with IEEE. Suggestions

for changes in documents should be in the form of a proposed change of

text, together with appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning

of portions of standards as they relate to specific applications. When the

need for interpretations is brought to the attention of IEEE, the Institute

will initiate action to prepare appropriate responses. Since IEEE Standards

represent a consensus of all concerned interests, it is important to ensure

that any interpretation has also received the concurrence of a balance of

interests. For this reason IEEE and the members of its technical commit¬

tees are not able to provide an instant response to interpretation requests

except in those cases where the matter has previously received formal

consideration.

Comments on standards and requests for interpretations should be

addressed to:

Secretary, IEEE Standards Board

345 East 47th Street

New York, NY 10017

USA

IEEE Standards documents are adopted by the Institute of Elec¬

trical and Electronics Engineers without regard to whether their

adoption may involve patents on articles, materials, or processes.

Such adoption does not assume any liability to any patent owner, nor

does it assume any obligation whatever to parties adopting the

standards documents.

IEEE Std 1003.1-1988
(Revision of IEEE Std 1003.1

issued for Trial-Use in April 1986)

IEEE Standard
Portable Operating System Interface

for Computer Environments

Sponsor

Technical Committee on Operating Systems
of the

IEEE Computer Society

Approved August 22,1988

IEEE Standards Board

Approved November 10, 1989

American National Standards Institute

Abstract: ANSI/IEEE Std 1003.1, IEEE Standard Portable Operating
System Interface for Computer Environments, is part of the POSIX
series of standards for applications and user interfaces to open sys¬
tems. It defines the applications interface to basic system services
for input-output, file system access, and process management. It
also defines a format for data interchange. This standard is stated
in terms of its C binding.

Keywords: applications interface to basic system services, applica¬
tions for open systems, data interchange format, open
systems, portable operating system interface for com-

_puter environments, user interfaces to open systems

Third Printing
June 1990

ISBN 1-55937-003-3

Library of Congress Catalog Number 88-082605

©Copyright 1988 by

The Institute of Electrical and Electronics Engineers, Inc
345 East 47th Street, New York, NY 10017, USA

No part of this publication may be reproduced in any form,

in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

September 30, 1988 SH12211

Foreword

(This Foreword is not a part of IEEE Std 1003.1-1988, IEEE Standard Portable Operating System
Interface for Computer Environments.)

The purpose of this standard is to define a standard operating system inter¬
face and environment based on the UNIX* Operating System documentation to
support application portability at the source level. This is intended for systems
implementors and applications software developers.

In its present form, the standard focuses primarily on the C Language inter¬
face to the operating system.

IEEE Std 1003.1-1988 is the first of a group of proposed standards known col¬
loquially, and collectively, as POSIXt. The other POSIX standards are described
in Appendix A.

Organization of the Standard. The standard is divided into four parts:
(1) Statement of scope (Chapter 1)
(2) Definitions and global concepts (Chapter 2)
(3) The various interface facilities (Chapters 3 through 9)
(4) Data interchange format (Chapter 10)

This foreword and the appendices are not considered part of the standard.
Most of the sections describe a single service interface. The C Language bind¬

ing for the service interface is given in the subsection labeled Synopsis. The
Description subsection provides a specification of the operation performed by
the service interface. Some examples may be provided to illustrate the inter¬
faces described. In most cases there are also Returns and Errors subsections
specifying return values and possible error conditions. References are used to
direct the reader to other related sections. Additional material to complement
sections in the standard may be found in Rationale and Notes, Appendix B.
This appendix provides historical perspectives into the technical choices made
by the 1003.1 Working Group. It also provides information to emphasize conse¬
quences of the interfaces described in the corresponding section of the standard.

In publishing this standard, both the IEEE and the 1003.1 Working Group
simply intend to provide a yardstick against which various operating system
implementations can be measured for conformance. It is not the intent of either
the IEEE or the 1003.1 Working Group to measure or rate any products, to
reward or sanction any vendors of products for conformance or lack of confor¬
mance to this standard, or to attempt to enforce this standard by these or any
other means. The responsibility for determining the degree of conformance or
lack thereof with this standard rests solely with the individual who is evaluat¬
ing the product claiming to be in conformance with the standard. (See Verifi¬
cation Testing §A.2.4 for additional information on this subject.)

* UNIX is a registered trademark of AT&T,

t POSIX is pronounced pahz-icks, similar to positive.

Base Documents. The various interface facilities described herein are based
on the 1984 /usr/group Standard derived and published by the /usr/group
Standards Committee, Santa Clara, California. The 1984 /usr/group Standard

and subsequent work of the 1003.1 Working Group is largely based on UNIX
Seventh Edition, UNIX System III, UNIX System V, 4.2BSD, and 4.3BSD docu¬
mentation, but wherever possible, compatibility with other systems derived
from the UNIX operating system, or systems compatible with that system, has
been maintained.

The IEEE is grateful to both AT&T and /usr/group for permission to use their
materials.

Typographic Conventions. This standard uses the following typographic
conventions:

(1) The italic font is used for the initial appearances of defined terms; cross
references to defined terms within the sections Terminology §2.1, Confor¬
mance §2.2, and General Terms §2.3; symbolic parameters that are gen¬
erally substituted with real values by the application; C language data types
and function names (except in function Synopsis sections); and global exter¬
nal variable names.
(2) The bold font is used for C language data types and function names
within function Synopsis sections; references to other sections or chapters
within the standard. A bold word in all capital letters, such as

PATH

represents an environment variable, as described in Environment
Description §2.7.
(3) The constant-width font is used to illustrate examples of system input
or output where exact usage is depicted. It is also used for references to util¬
ity names defined in IEEE Std 1003.2 or found in historical implementations.
(4) Error number values returned by many functions are represented as:

[ERRNO]

See Error Numbers §2.5.
(5) Symbolic constants or limits defined in certain headers are represented
as:

{LIMIT}

See Numerical Limits §2.9 and Symbolic Constants §2.10.
In some cases tabular information is presented “inline;” in others it is

presented in a separately-labeled Table. This arrangement was employed
purely for ease of typesetting and there is no normative difference between
these two cases.

The conventions listed here are for ease of reading only. Editorial incon¬
sistencies in the use of typography are unintentional and have no normative
meaning in this standard.

Extensions and Supplements to this Standard. Activities to extend this
standard to address additional requirements are in progress and similar efforts
can be anticipated in the future. This is an outline of how these extensions will
be incorporated, and also how users of this document can keep track of that
status.

Extensions are approved as Supplements to this document, following the IEEE
Standards Procedures.

Approved Supplements are published separately and distributed with orders
from the IEEE for this document until the full document is reprinted and such
supplements are incorporated in their proper positions.

If you have any question about the completeness of your version, you may con¬
tact the IEEE Computer Society [(202) 371-0101] or the IEEE Standards Office
[(212) 705-7960] to determine what supplements have been published.

Supplements are numbered in the same format as the main document, and
with unique positions as either subsections or main sections. A supplement may
include new subsections in various sections of the main document as well as
new main sections. Supplements may include new sections in already approved
supplements. However, the overall numbering shall be unique so that two sup¬
plements do not use the same numbers unless one replaces the other.

Supplements may contain either required functions or optional facilities.
Supplements may add additional conformance requirements (see Confor¬
mance §2.2) defining new classes of conforming systems or applications.

It is undesirable, but perhaps unavoidable, for supplements to change the
functionality of the already defined facilities.

Supplements are not used to provide a general update of the standard. This is
done through the review procedure as specified by the IEEE.

The following areas are under active consideration at this time, or are
expected to become active in the near future:

(1) Shell and Utility facilities — P1003.2 (see Shell and Utilities §A.2.3);
(2) Verification Testing — P1003.3 (see Verification Testing §A.2.4);
(3) Realtime facilities — P1003.4 (see Realtime Extensions §A.2.5);
(4) Ada* Language bindings — P1003.5 (see Ada Language Bindings
§A.2.6);
(5) Secure/Trusted System considerations — P1003.6 (see Trusted System
Extensions §A.2.7);
(6) Language-independent service descriptions (this will be the subject of a
future supplement to this standard);
(7) FORTRAN Language bindings;
(8) Network interface facilities (see Networking Standards §A.2.10);
(9) System Administration (see System Administration Extensions
§A.2.9);
(10) An overall guide to POSIX-based or related Open Systems standards —
P1003.0 (see Open System Guidelines §A.2.8).

If you have interest in participating in the working groups addressing these
issues, please send your name, address, and phone number to the:

* Ada is a registered trademark of the U.S. Government — Ada Joint Program Office.

Secretary, IEEE Standards Board
Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street
New York, NY 10017
USA

and ask to have this forwarded to the chairperson of the appropriate 1003 Work¬
ing Group.

IEEE Std 1003.1-1988 was prepared by the 1003.1 Working Group, sponsored
by the Technical Committee on Operating Systems of the IEEE Computer
Society. At the time this standard was approved, the membership of the 1003.1
Working Group was as follows:

Technical Committee on Operating Systems (TCOS)

Chair: Joseph Boykin

Standards Subcommittee for TCOS

Chair: Jim Isaak

Treasurer: Quin Hahn
Secretary: Shane McCarron

1003.1 Working Group Officials

Chair: Jim Isaak
Co-Chair: Donn Terry

Heinz Lycklama (1985-1986)

Editor: Hal Jespersen
Jim McGinness (1985-1986)

Secretary: Shane McCarron

Stephen Head (1985-1986)

Linda Abelu
Robert Adams

Noboru Akima
Bill Allen

Pat Amaranth

Dennis K. Anderson
Wolf Arfvidson
Aran K. Arya

Karl Auerbach
Jeanne Baccash
Brian Baird

Jayne Baker
Karen Baker

Geoff Baldwin

Mike Banahan
Jerome Banasik
John Barr

A. L. Barrese
Stephen R. Bartels

John-Olof Bauner

Working Group

M. T. Carrasco Benitez
David Bernstein

Cynthia Berthold

Craig Bevins

David Bird
Andy Bishop
John A. Black

Ed Blackmond
Betsy Blankenhom

Jim Blondeau
Kathy Bohrer

Cornelia Boldyreff
William D. Bone

Michael Bordelon
William Borkowski

David Borman
Robert Borochoff
Paul L. Borrill

Keith Bostic
James P. Bound

Claude Bourstin

Stowe Boyd
Joseph Boykin
Brian Boyle

Kevin Brady

Joe B. Brame

Phyllis Eve Bregman
Sven Brehmer

Stephen J. Brodeur

James J. Brodie
Peter Brouwer

Robert A. Brown
Warren Brown
J. David Bullis

Steve Bunch
Clarice M. Burch
Steven J. Buroff

Raymond Burret
Bruce Calkins

George Cameron

N. A. (Nick) Camillone
John R. Campbell
Paul Cantrell
James A. Capps
John Carmichael
Lisa Carnahan
Bill Carpenter
Stephen E. Carpenter
John H. Carson

Donald J. Carter
Steven. L. Carter
T. J. Cashin
John Caywood
Chin Chao

K. Herman Chen
Kilnam Chon
Chan Fung Chong

Lino Chung
Anthony V. Cincotta

Robert Claeson
Richard Clark

Paul Clarke
David A. Cobb
Mark Colburn

Clement T. Cole
N. C. Comsudi
Peter Cook

Bill Corwin

Mike Cossey
William T. Cox

Roy A. Crabtree

Gloria Cracovia
Donald W. Cragun

Allen Crawley

Steve Crise
George C. Dalmas III
Ajit Dandadani

James A. Davis

James R. Davis
Steven Davis

Dave Decot
William DeKeyser

Steven R. Deller

Craig W. DeNoce
Robert J. Devine

Heinz Diehl

Steve Diller

G. C. Dimitriou
David L. Dodge
John Douglas

Terence S. Dowling
Tony Downes

Pat Dukes
Stephen Dum

Dominic Dunlop
Larry Dwyer
William J. Eagan

Michael A. Edmonds

Ron Elliott
Dave Emery
D. H. G. Epema
Fran Fadden

Allen Farris
Maurice Fathi
Kenneth T. Faubel

A. Michael Ferris

Don E. Folland
Peter Fonash

Kester Fong
Martin C. Fong

Terence Fong
Belinda Frazier
Art Fritzson
Alan Fryer

Mitchell Fuchs
Mark Funkenhauser

Thomas S. Gary
Louise Germani

Michael Gersten
John Gertwagen
A1 Gettier
Usman A. Ghani

Kenneth R. Gibb

Michel Gien
Alton L. Gilbert

Lloyd E. Gilbert
Timothy D. Gill

Steve Glaser
Stuart Glickman

Jeff Goldberg
Mitch Gort

Loretta Goudie
Randall W. Graves

John Gregg
William F. Griffeth Jr.

Robert C. Groman

Judy Guist
Mesut Gunduc

Douglas A. Gwyn
Quin Hahn

Bob Hairfield

Richard F. Hamm

Richard Hammons
Allen L. Hankinson

John Hanley
Tony Hansen
Dale Harris

Mike Haskell
Paul Haskell

Elaine Hauser
Terry Hayes

Stephen M. Head

Barry E. Hedquist
Henry G. Hefffcfnan

Terry Heidelberg

Hans H. Heilbom
Amy Helmers
Johan Helsingius
Michael Herman
John Hesterberg
Wolfgang B. Hofs
Leon M. Holmes
D. Ian Hopper

Thomas F. Houghton
Jim Houston
Rand A. Hoven

John Howard
Randall Howard
Michael J. Hsu
Cheng Hu
Andrew R. Huber

Jan Huffman

Chris Hughes
Glenn C. Hughes

Gerald L. Ingalls
James D. Isaak
Keld Jom iSimonsen

Doug Jacobson
Steven A. James

Steve Jennings
Hal Jespersen

Greg Jones
Christopher Juillet

Derek C. Kaufman

Sol Kavy
Gregg Kellogg

Gregory Kenley

Francis X. Kenney
Jerry Keselman

Lorraine C. Kevra

Karl Kimball

Jeffrey S. Kimmel
Dale L. Kirkland
Yvon Klein

Robert Kleinschmidt

Brad Kline

David Kline
John T. Kline
Kenneth C. Klingman

Joshua W. Knight
David Korn

John Krause
Donald Kretsch
Peter Krupp

Geoff Kuenning

D. Richard Kuhn

Takahiko Kuki
Anne M. Kumor
Dan Ladermann

John R. LaLonde
Lak Ming Lam

J. Eli Lamb
Mike G. Lambert
A. T. Landberg

Larry D. Landis
William Laplant

Steve Law
Benjamin Laws
Clifford D. Layton

Sue Le Grand
Doris Lebovits

Jeff Lee
Maggie Lee
Perry Lee
Sue Legrand
Greger K. Leijonhufvud

Peter Lemkin

Robert Lenk
David Lennert

Bob Lent
Thomas J. Leonard
Kin L. Leung
Kevin Lewis

Ben Liao
Y. K. Liu
Ben Livson
C. Douglass Locke
John Lomas

Julian Lomberg

James P. Lonjers
Warren E. Loper

Brian G. Lucas
Robert D. Luken

Craig Lund
Heinz Lycklama
Rod MacDonald

Robert J. Makuwski
Michael A. Marciniszyn

Benson I. Margulies
Anthony J. Mark

Bruce A. Martin
Roger Martin
Shane P. McCarron

Brian S. McCarthy

James McGinness
Marty McGowan

Marshall Kirk McKusick
M. R. Meaden

James C. Mechtel
Sunil Mehta
Paul Merry

Paul Metz
Bill Meyers
Bill Middlecamp

Gary Miller
Hugh Th. Miller

Conrad Minshall
Eugene Miya

Jim Moe
William Moloney
James Mooney

Cliff Moore
Jim Moore
Kathy Morgan
Rockie Morgan
Chalmers J. Morris
Gerry Morrone
Brian M. Morton
James Moseman

Paul Moskowitz
James Muehlen

Diane Mularz
Lance Murray
Joseph C. Musacchia

Narendran Nachiappan

Martha Nalebuff
Hirokazu Narita
Matt Narotam

Bret Needle
Sonya D. Neufer

Landon Curt Noll

Peter Norwood
Fred Noz
Alan F. Nugent

Greg Nuss

Karl Nyberg

Michael D. O’Dell
Robin T. O’Neill

Timothy Lynn Oglesby

Hagai Ohel
Gary M. Oing

Jim R. Oldroyd

Daniel Owens
Mark Parenti

Thomas J. Parenty
Bob Parlock

Gordon R. Parry

Marilyn F. Partel

Bhupendra Patel
Curt A. Paulson

Robert R. Peglar
Jon J. Penner

John C. Penney
Frank Perron

Patrick W. Peters

Donald A. Peterson
Jeffrey Picciotto

Gilbert W. Pilz
Gerald Powell

John J. Puttress
John S. Quarterman
Wendy Rauch-Hindin
Carol L. Raye

Rob Redford
Lizabeth Reilly

Michael P. Ressler
Phil Reston
Roberto Ricciarelli
Christian K. Riechmann
Grover Righter
Jean Risley
Noel F. Rivera-Silva
Andrew Roach
Clyde G. Roby Jr.
Ron Roehrig

Marco P. Roodzant
David Rorke

Alan Rosencrans
Seth Rosenthal

Vicki H. Rosenthal
David Rosenzweig
John C. Rowe

Craig Rubin
T. W. Rudolph

Edward M. Ruiz
Philip Rushton

William H. Rutter

Doris R. Ryan
Art Sabsevitz
Li San-Li

Steve Sarapata

Robert T. Sarr

Maude Sawyer
Ashok Saxena
Lome H. Schachter

Ing. Helmut Schaefer

Stuart G. Schaefer
Mark A. Schaffer
Norman K. Scherer

Lee Schermerhorn

Curt F. Schimmel

Gerhard Schmitt

Eric R. Schott
David W. Schuler
Fritz Schulz

Stephen Schwarn

Glen Seeds
Warren T. Sekino

James W. Selkaitio
Karen Sheaffer

Dan Shia
Roy Shiderly

Del Shoemaker
Thomas E. Shonk

W. Olin
Mark Silverman
Peter P. Silvester

Leo Sintonen

Jacob Slonim
Donald F. Smith
Randy D. Smith

Thomas Smith

Jeff Smits William J. Thomass Perry C. Weller

Richard Sniderman Hendrik-Jan Thomassen Alice Wellschlager

James S. Soddy Paul U. Thompson Andrew E. Wheeler

Glenn R. Sogge Daniel F. Tieman Gary L. Whisenhunt
Steven E. Sommars Michael D. Tilson Vicky White

Richard M. Stallman Claus Tondering Dietrich Wiegandt

Bert Stanleigh Teoman Topcubasi John R. Wiliams

Lucy V. Stasiak Woody Trant David Willcox
Dennis D. Steinauer Walter E. Tuvell Judy Williams
Daniel Steinberg Andrew Twigger Paul A. Willis

Harlan Stenn David R. Uhrluab David Wilner
Eric W. Stephenson Andrej Valencic Ken Witte

Armando P. Stettner Peter van der Linden Andrew Wolfe

Douglas Steves J. van Katwijk David J. Woodend

Robert G. Stewart Joel Wagner John Wu
Kevin George Edward Sto William Waite Shinichi Yamada

Steve Sutton R. Neil Walker Ifen Yang

Tatsuo Suzuki Raymond Walker Margaret Yang
Robert Swartz Michael Wallace Shuitsu Yoshida
Dick Swee Richard Ward Nian Zu You

Robert Switzer Elizabeth Watson Peter M. Young

Katalin Szenes John Waycott Peggy Younger

Theodore Tabloski Alan G. Weaver Hilary Zaloom
Darryl Taft Waldo M. Wedel Steve Zanoni
Ravi Tavakley H. J. Weegenaar John Carl Zeigler
Colin B. Taylor Richard A. Weeks Marvin Zelkowitz

David R. Taylor Larry A. Wehr Hubert Zimmerman

Marc J. Teller Bruce Weiner Harry Zint
Donn S. Terry Brian Weis Tatsuo Zuzuki
Jack Test Bob Weisbeck

During the process of developing this standard, the Working Group sought to
find problems with the standard in a manner that was both fun and which
would publicize the standard. The contest is described in the Rationale (see
WeirdNIX §B.1.2.12). Part of the prize was publication of the names of the
winners.

Our special thanks to:
• Paul Gootherts (winner in Most Serious category).
• Michael Gersten (winner in Most Demented category).

The following persons were members of the 1003.1 Balloting Group that
approved the standard for submission to the IEEE Standards Board:

Heinz Lycklama

Michael Lambert
John S. Quarterman

lusrlgroup Institutional Representative

X/Open Institutional Representative

USENIX Institutional Representative

Belton Allen

David F. Athersych
Karl Auerbach

A. L. Barrese

David Bernstein
Kabekode Bhat

Kathy Bohrer*

Robert Borochoff

Paul L. Borrill

James P. Bound
Phyllis Eve Bregman*
A. Winsor Brown

Luis-Felipe Cabrera

N. A. Camillone

James A. Capps
John Carmichael
Steven L. Carter

John Caywood
Chan Fung Chong

Anthony V. Cincotta*

Robert Claeson

Richard Clark Sol Kavy James Purtilo

Clement T. Cole Lorraine C. Kevra* John S. Quarterman

Kenneth N. Cole Jeffrey S. Kimmel Jane Radatz

N. C. Comsudi Dale L. Kirkland Jeffrey A. Ramsey

Peter Cook Joshua W. Knight Wendy Rauch-Hindin

Richard Cornelius David Korn Carol L. Raye

Bill Corwin Donald Kretsch Christopher J. Riddick

William T. Cox D. Richard Kuhn Grover Righter

Donald W. Cragun* Takahiko Kuki Clyde G. Roby Jr.

Dave Decot Tom M. Kurihara Vicki H. Rosenthal

William DeKeyser Robin B. Lake Doris R. Ryan

G. C. Dimitriou J. Eli Lamb Art Sabsevitz

David L. Dodge Mike G. Lambert Robert T. Sarr

Terence S. Dowling Doris Lebovits Ashok Saxena

Stephen Dum* Maggie Lee* Lome H. Schachter

Larry Dwyer* Robert Lenk* N. F. Schneidewind

John Earls David Lennert Leonard W. Seagren

Michael A. Edmonds* Marjorie Levitz Glen Seeds

Ron Elliott Kin Li Mukesh Singhal

Philip H. Enslow Jr. Gottfried W. R. Luderer Leo Sintonen

Fran Fadden Joseph F. P. Luhukay Randy D. Smith

Kenneth T. Faubel* Craig Lund Jeff Smits*

Glenn S. Fields Heinz Lycklama Richard Sniderman

Terence Fong Roger Martin Steven E. Sommars

John Gertwagen Joberto S. B. Martins Richard M. Stallman

Kenneth R. Gibb Yoshihiro Matsumoto Daniel Steinberg*

Randall W. Graves Shane P. McCarron* Douglas Steves*

John Gregg James McGinness Dick Swee

William F. Griffeth Jr. Marshall Kirk McKusick Robert Switzer

Robert C. Groman Doug L. Michels Ravi Tavakley
Judy Guist Gary Miller* Meng-Hee Teng
Gregory Guthrie Jim Moe Donn S. Terry*

Douglas A. Gwyn James Mooney Graham Tigg

Charles E. Hammons Cliff Moore Gary F. Tom

Carol Harkness Martha Nalebuff Walter E. Tuvell

Katherine Harper Landon Curt Noll Andrew Twigger

Dale Harris Fred Noz Mark-Rene Uchida
Stephen M. Head Alan F. Nugent L. David Umbaugh
Myron Hect Perry Nuhn Michael W. Vannier
Hans H. Heilborn Robin T. O’Neill M. B. Wagner

Thomas S. Heines Charles Oestereicher John Walz
Jim Hightower Jim R. Oldroyd Larry A. Wehr*
Lee A. Hollaar Mark Parenti Bruce Weiner
Leon M. Holmes James A. Parker Brian Weis
Thomas F. Houghton S. Parthasarathy Peter J. Weyman
Randall Howard Craig Partridge Gary Whisenhuut
Andrew R. Huber John C. Penney David Willcox
James D. Isaak* Sugar Peter John David Wu*
Richard James Jeffrey Picciotto Oren Yuen
Hal Jespersen P. J. Plauger Janusz Zalewsk
Cyndi Schmidt Johansen Tom Plum Hilary Zaloom
Greg Jones Gerald Powell* Marvin Zelkowitz
Michael Karels Scott Preece

In the preceding list, those individuals identified with asterisks (*) served
during the balloting period as Technical Reviewers for resolving comments and
objections to designated portions of the standard.

When the IEEE Standards Board approved this standard on August 22,
1988, it had the following membership:

Donald C. Fleckenstein, Chairman Marco Migliaro,V/ce Chairman
Andrew G. Salem, Secretary

Arthur A. Blaisdell
Fletcher J. Buckley
James M. Daly
Stephen R. Dillon
Eugene P. Fogarty
Thomas L. Hannan
Kenneth D. Hendrix
Theodore W. Hissey, Jr

Jack M. Kinn
Frank D. Kirschner
Frank C. Kitzantides
Joseph L. Koepfinger*
Irving Kolodny
Edward Lohse
John E. May, Jr
Lawrence V. McCall

L. Bruce McClung
Richard E. Mosher
L. John Rankine
Gary S. Robinson
Frank L. Rose
Helen M. Wood
Karl H. Zaininger
Donald W. Zipse

*Member Emeritus

Contents

SECTION PAGE

1. Scope. 21

2. Definitions and General Requirements. 23
2.1 Terminology. 23
2.2 Conformance. 24
2.3 General Terms. 28
2.4 General Concepts. 35
2.5 Error Numbers. 37
2.6 Primitive System Data Types. 40
2.7 Environment Description. 40
2.8 C Language Definitions. 42
2.9 Numerical Limits. 44
2.10 Symbolic Constants. 47

3. Process Primitives. 49
3.1 Process Creation and Execution. 49

3.1.1 Process Creation. 49
3.1.2 Execute a File. 50

3.2 Process Termination. 53
3.2.1 Wait for Process Termination. 54
3.2.2 Terminate a Process. 56

3.3 Signals. 57
3.3.1 Signal Concepts. 57
3.3.2 Send a Signal to a Process. 62
3.3.3 Manipulate Signal Sets. 63
3.3.4 Examine and Change Signal Action. 64
3.3.5 Examine and Change Blocked Signals. 66
3.3.6 Examine Pending Signals. 67
3.3.7 Wait for a Signal. 67

3.4 Timer Operations. 68
3.4.1 Schedule Alarm. 68
3.4.2 Suspend Process Execution. 68
3.4.3 Delay Process Execution. 69

4. Process Environment. 71
4.1 Process Identification. 71

4.1.1 Get Process and Parent Process IDs. 71
4.2 User Identification. 71

4.2.1 Get Real User, Effective User, Real Group, and Effec¬
tive Group IDs. 71

4.2.2 Set User and Group IDs. 72
4.2.3 Get Supplementary Group IDs. 73
4.2.4 Get User Name. 74

4.3 Process Groups. 75
4.3.1 Get Process Group ID. 75
4.3.2 Create Session and Set Process Group ID. 75

SECTION PAGE

4.3.3 Set Process Group ID for Job Control. 75

4.4 System Identification. 76

4.4.1 System Name. 76

4.5 Time. 77

4.5.1 Get System Time. 77

4.5.2 Process Times. 78

4.6 Environment Variables. 79

4.6.1 Environment Access. 79

4.7 Terminal Identification. 79

4.7.1 Generate Terminal Pathname. 79

4.7.2 Determine Terminal Device Name. 80

4.8 Configurable System Variables. 80

4.8.1 Get Configurable System Variables. 80

5. Files and Directories. 83

5.1 Directories. 83

5.1.1 Format of Directory Entries. 83

5.1.2 Directory Operations. 83

5.2 Working Directory. 85

5.2.1 Change Current Working Directory. 85

5.2.2 Working Directory Pathname. 86

5.3 General File Creation. 87

5.3.1 Open a File. 87

5.3.2 Create a New File or Rewrite an Existing

One. 90

5.3.3 Set File Creation Mask. 90

5.3.4 Link to a File. 90

5.4 Special File Creation. 92

5.4.1 Make a Directory. 92

5.4.2 Make a FIFO Special File. 93

5.5 File Removal. 94

5.5.1 Remove Directory Entries. 94

5.5.2 Remove a Directory. 95

5.5.3 Rename a File. 96

5.6 File Characteristics. 97

5.6.1 File Characteristics: Header and Data

Structure. 97

5.6.2 Get File Status. 99

5.6.3 File Accessibility.100

5.6.4 Change File Modes.101

5.6.5 Change Owner and Group of a File.102

5.6.6 Set File Access and Modification Times.103

5.7 Configurable Pathname Variables.105

5.7.1 Get Configurable Pathname Variables.105

6. Input and Output Primitives.109

6.1 Pipes.109

6.1.1 Create an Inter-Process Channel.109

6.2 File Descriptor Manipulation.110

6.2.1 Duplicate an Open File Descriptor.110

SECTION PAGE

6.3 File Descriptor Deassignment.Ill

6.3.1 Close a File.Ill

6.4 Input and Output.Ill

6.4.1 Read from a File.Ill

6.4.2 Write to a File.113

6.5 Control Operations on Files.115

6.5.1 Data Definitions for File Control

Operations.116

6.5.2 File Control.117

6.5.3 Reposition Read/Write File Offset.120

7. Device- and Class-Specific Functions.123

7.1 General Terminal Interface.123

7.1.1 Interface Characteristics.123

7.1.1.1 Opening a Terminal Device File.123

7.1.1.2 Process Groups.123

7.1.1.3 The Controlling Terminal.124

7.1.1.4 Terminal Access Control.124

7.1.1.5 Input Processing and Reading

Data.125

7.1.1.6 Canonical Mode Input

Processing.125

7.1.1.7 Non-Canonical Mode Input

Processing.126

7.1.1.8 Writing Data and Output

Processing.127

7.1.1.9 Special Characters.127

7.1.1.10 Modem Disconnect.128

7.1.1.11 Closing a Terminal Device File.129

7.1.2 Settable Parameters.129

7.1.2.1 termios Structure.129

7.1.2.2 Input Modes.129

7.1.2.3 Output Modes.131

7.1.2.4 Control Modes.131

7.1.2.5 Local Modes.132

7.1.2.6 Special Control Characters.133

7.1.2.7 Baud Rate Functions.134

7.2 General Terminal Interface Control Functions.136

7.2.1 Get and Set State.136

7.2.2 Line Control Functions.137

7.2.3 Get Foreground Process Group ID.139

7.2.4 Set Foreground Process Group ID.139

8. Language-Specific Services for the C Programming

Language.141

8.1 Referenced C Language Routines.141

8.1.1 Extensions to Time Functions.142

8.1.2 Extensions to setlocalei) Function.144

8.2 FILE-Type C Language Functions.145

8.2.1 Map a Stream Pointer to a File Descriptor.145

SECTION PAGE

8.2.2 Open a Stream on a File Descriptor.146

8.2.3 Interactions of Other FILE-Type C

Functions.146

8.2.4 Operations on Files — the removeO

Function.149

8.3 Other C Language Functions.150

8.3.1 Non-Local Jumps.150

8.3.2 Set Time Zone.150

9. System Databases.151

9.1 System Databases.151

9.2 Database Access.151

9.2.1 Group Database Access.151

9.2.2 User Database Access.152

10. Data Interchange Format.155

10.1 Archive/Interchange File Format.155

10.1.1 Extended tar Format.155

10.1.2 Extended cpio Format.159

10.1.3 Multiple Volumes.162

APPENDICES

A. Related Standards.163

A.l Related Standards—Open System Environment.163

A.2 Standards Closely Related to the 1003.1

Document.164

A.2.1 System Interface.164

A.2.2 C Language Standard.164

A.2.3 Shell and Utilities.164

A.2.4 Verification Testing.166

A.2.5 Realtime Extensions.166

A.2.6 Ada Language Bindings.166

A.2.7 Trusted System Extensions.166

A.2.8 Open System Guidelines.166

A.2.9 System Administration Extensions.166

A.2.10 Networking Standards.167

A.2.11 Language Standards. 167

A.2.12 Graphics Standards.167

A.2.13 Database Standards.168

A. 3 Industry Open Systems Publications.168

A. 4 US Government Standards.168

A.4.1 Federal Information Processing Standards

(FIPS).168

A. 4.2 Trusted Systems.168

B. Rationale and Notes.171

B. l Introduction.171

B. 1.1 Scope.172

B.1.2 Purpose.173

B.1.3 Base Documents.178

B.1.4 POSIX and the C Standard.180

SECTION PAGE

B.1.5 Organization.183

B.2 Definitions and General Requirements.186

B.2.1 Terminology.186

B.2.2 Conformance.188

B.2.3 General Terms.193

B.2.4 General Concepts.203

B.2.5 Error Numbers.206

B.2.6 Primitive System Data Types.208

B.2.7 Environment Description.210

B.2.8 C Language Definitions.211

B.2.9 Numerical Limits.213

B.2.10 Symbolic Constants.216

B.3 Process Primitives.216

B.3.1 Process Creation and Execution.216

B.3.2 Process Termination.219

B.3.3 Signals.223

B.3.4 Timer Operations.234

B.4 Process Environment.235

B.4.1 Process Identification.235

B.4.2 User Identification.235

B.4.3 Process Groups.236

B.4.4 System Identification.237

B.4.5 Time.238

B.4.6 Environment Variables.239

B.4.7 Terminal Identification.239

B.4.8 Configurable System Variables.239

B.5 Files and Directories.241

B.5.1 Directories.241

B.5.2 Working Directory.243

B.5.3 General File Creation.244

B.5.4 Special File Creation.245

B.5.5 File Removal.245

B.5.6 File Characteristics.246

B.5.7 Configurable Pathname Variables.249

B.6 Input and Output Primitives.250

B.6.1 Pipes.251

B.6.2 File Descriptor Manipulation.251

B.6.3 File Descriptor Deassignment.252

B.6.4 Input and Output.252

B.6.5 Control Operations on Files.255

B.7 Device- and Class-Specific Functions.258

B.7.1 General Terminal Interface.260

B.7.2 General Terminal Interface Control

Functions.264

B.8 Language-Specific Services for the C Programming

Language.265

B.8.1 Referenced C Language Routines.265

B.8.2 FILE-Type C Language Functions.269

B.8.3 Other C Language Functions.272

SECTION PAGE

B.9 System Databases.272

B.9.1 System Databases.272

B.9.2 Database Access.273

B.10 Data Interchange Format.273

B.10.1 Archive/Interchange File Format.273

B.ll Bibliographic Notes.279

B.ll.l Related Standards.279

B.11.2 Historical Implementations.279

B. 11.3 Historical Application Programming

Tutorials.281

Identifier Index.283

Topical Index.287

LIST OF TABLES

Table 2-1. Primitive System Data Types. 40

Table 2-2. Minimum Values. 45

Table 2-3. Run-Time Increasable Values. 45

Table 2-4. Run-Time Invariant Values (Possibly

Indeterminate). 46

Table 2-5. Pathname Variable Values. 46

Table 2-6. Symbolic Constants for the access () Function. 47

Table 2-7. Symbolic Constants for the Iseek () Function. 47

Table 2-8. Compile-Time Symbolic Constants.. . 48

Table 2-9. Execution-Time Symbolic Constants. 48

Table 3-1. Required Signals. 58

Table 3-2. Job Control Signals . 58

Table 4-1. uname() Structure Members. 77

Table 4-2. Configurable System Variables . 81

Table 5-1. stat Structure . 98

Table 5-2. Configurable Pathname Variables .105

Table 6-1. cmd Values for fcntli).115

Table 6-2. File Descriptor Flags Used For fcntli).116

Table 6-3. Ijtype Values For Record Locking With fcntli).116

Table 6-4. oflag Values For openi).116

Table 6-5. File Status Flags Used For openi) and fcntli).116

Table 6-6. File Access Modes Used For openi) and fcntli).116

SECTION PAGE

Table 6-7. Mask For Use With File Access Modes.117

Table 6-8. flock Structure.118

Table 6-9. fcntl() Return Values.119

Table 7-1. termios Structure.129

Table 7-2. termios c_iflag Field.129

Table 7-3. termios c_cflag Field.131

Table 7-4. termios cjiflag Field.132

Table 7-5. termios c_cc Special Control Characters .134

Table 7-6. termios Baud Rate Values.135

Table 9-1. group Structure.152

Table 9-2. passwd Structure.152

Table 10-1. tar Header Block.156

Table 10-2. Byte-Oriented cpio Archive Entry.160

Table 10-3. Values for cpio c_mode Field.162

Table B-l. Typographical Conventions.184

Table B-2. Short Name Usages.185

Portable Operating System Interface

for Computer Environments

1. Scope

This standard defines a standard operating system interface and environment

to support application portability at the source code level. It is intended to be

used by both application developers and system implementors.

Initially, the focus of this standard will be to provide standardized services via

a C language interface. Future revisions are expected to contain bindings for

other programming languages as well as for the C language. This will be accom¬

plished by breaking the standard into two parts—a section defining core

requirements independent of any programming language, and a section com¬

posed of programming language bindings.

The core requirements section will define a set of required services common to

any programming language that can be reasonably expected to form a language

binding to this standard. These services will be described in terms of functional

requirements and will not define programming language-dependent interfaces.

Language bindings will consist of two major parts. One will contain the pro¬

gramming language’s standardized interface for accessing the core services

defined in the programming language-independent core requirements section of

the standard. The other will contain a standardized interface for language-

specific services. Any implementation claiming conformance to IEEE Std

1003.1-1988 with any language binding shall comply with both sections of the

language binding.

This standard is comprised of four major components:

(1) Terminology, concepts, and definitions and specifications that govern

structures, headers, environment variables, and related requirements.

(2) Definitions for system service interfaces and subroutines.

(3) Language-specific system services for the C programming language.

(4) Interface issues, including portability, error handling, and error recovery.

1 Scope 21

The following areas are outside of the scope of this standard:
(1) User interface (shell) and associated commands.
(2) Networking protocols and system call interfaces to those protocols.
(3) Graphics interfaces.
(4) Database management system interfaces.
(5) Record I/O considerations.
(6) Object or binary code portability.
(7) System configuration and resource availability.
(8) The behavior of system services on systems supporting concurrency
within a single process.

(See Appendix A for information about ongoing efforts in some of these areas.)
This standard describes the external characteristics and facilities that are of

importance to applications developers, rather than the internal construction
techniques employed to achieve these capabilities. Special emphasis is placed
on those functions and facilities that are needed in a wide variety of commercial
applications.

This standard has been defined exclusively at the source code level. The
objective is that a Strictly Conforming POSIX Application source program can be
translated to execute on a conforming implementation.

22 Scope

2. Definitions and General Requirements

2.1 Terminology. The following terms are used in this standard:

implementation-defined. A value or behavior is implementation-defined if
the implementation defines and documents the requirements for correct pro¬
gram construct and correct data.

may. With respect to implementations, the word may is to be interpreted as an
optional feature that is not required in this standard but can be provided. With
respect to Strictly Conforming POSIX Applications, the word may means that
the optional feature shall not be used.

shall. In this standard, the word shall is to be interpreted as a requirement on
the implementation or on Strictly Conforming POSIX Applications, where
appropriate.

should. With respect to implementations, the word should is to be interpreted
as an implementation recommendation, but not a requirement. With respect to
applications, the word should is to be interpreted as recommended program¬
ming practice for applications and a requirement for Strictly Conforming POSIX

Applications.

supported. Certain functionality in this standard is optional, but the inter¬
faces to that functionality are always required. If the functionality is supported,
the interfaces work as specified by this standard (except that they do not return
the error condition indicated for the not-supported case). If the functionality is
not supported, the interface shall always return the indication specified for this
situation.

undefined. A value or behavior is undefined if the standard imposes no porta¬
bility requirements on applications for erroneous program construct, erroneous
data, or use of an indeterminate value. Implementations (or other standards)
may specify the result of using that value or causing that behavior. An applica¬
tion using such behaviors is using extensions, as defined in Conforming POSIX
Application Using Extensions §2.2.2.3.

2.1 Terminology. 23

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

unspecified. A value or behavior is unspecified if the standard imposes no por¬

tability requirements on applications for a correct program construct or correct

data. Implementations (or other standards) may specify the result of using that

value or causing that behavior. An application requiring a specific behavior,

rather than tolerating any behavior when using that functionality, is using

extensions, as defined in Conforming POSIX Application Using Extensions
§2.2.2.3.

2.2 Conformance.

2.2.1 Implementation Conformance.
2.2.1.1 Requirements. A conforming implementation shall meet all of

the following criteria:

(1) The system shall support all required interfaces defined within this stan¬

dard. These interfaces shall support the functional behavior described

herein.

(2) The system may provide additional functions or facilities not required by

this standard. Nonstandard extensions should be identified as such in the

system documentation. Nonstandard extensions, when used, may change

the behavior of functions or facilities defined by this standard. In such cases,

the system documentation shall define an environment in which an applica¬

tion can be run with the behavior specified by the standard. In no case shall

such an environment require modification of a Strictly Conforming POSIX

Application.

2.2.1.2 Documentation. A document with the following information

shall be available for an implementation claiming conformance to IEEE Std

1003.1-1988. This document shall have the same structure as this standard,

with the information presented in the appropriately numbered sections. The

document shall not contain information about extended facilities or capabilities

outside the scope of this standard.

The document shall contain a conformance statement that indicates the full

name, number, and date of the standard that applies. The conformance section

may also list software standards approved by ISO or any ISO member body that

are available for use by a Conforming POSIX Application. Applicable charac¬

teristics where documentation is required by one of these standards, or by stan¬

dards of government bodies, may also be included.

The document shall describe the contents of the <limits.h> and <unistd.h>
headers, stating values, the conditions under which those values may change,

and the limits of such variations, if any.

The document shall describe the behavior of the implementation for all

implementation-defined features identified in this standard. The document is

not required to describe those features identified as undefined or unspecified.

The document should specify the behavior of the implementation in those sec¬

tions of this standard where it is stated that implementations may vary.

24 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

2.2.1.3 Conforming Implementation Options. The following symbolic
constants, described in the sections indicated, reflect implementation options for
this standard that could warrant requirement by Conforming POSIX Applica¬

tions, or in specifications of conforming systems, or both:
{NGROUPS.MAX}

Multiple groups option (in Run-Time Increasable Values §2.9.3)
{_POSIX_JOB_CONTROL}

Job control option (in Compile-Time Symbolic Constants
§2.10.3)

{_POSIX_CHOWN_RESTRICTED}
Administrative/security option (in Execution-Time Symbolic
Constants §2.10.4)

The remaining symbolic constants in Compile-Time Symbolic Constants
§2.10.3 and Execution-Time Symbolic Constants §2.10.4 are useful for test¬
ing purposes, and as a guide to applications on the types of behaviors they need
to be able to accommodate. They do not reflect sufficient functional difference to
warrant requirement by Conforming POSIX Applications or in distinguishing
between conforming implementations.

In the cases where omission of an option would cause functions described by
this standard to not be defined, an implementation shall provide a function that
is callable with the syntax defined in the standard, even though in an instance
of the implementation the function may always do nothing but return an error.

2.2.2 Application Conformance. All applications claiming conformance
to this standard shall use only Language-Dependent Services for the C
Programming Language §2.2.3, and shall fall within one of the following
categories:

2.2.2.1 Strictly Conforming POSIX Application. A Strictly Conform¬

ing POSIX Application is an application that requires only the facilities
described in this standard and the applicable language standards. Such an
application shall accept any behavior described in this standard as
implementation-defined, and for symbolic constants, shall accept any value in
the range permitted by this standard. Such applications are permitted to adapt
to the availability of facilities whose availability is indicated by the constants in
<limits.h> §2.9 and <unistd.h> §2.10.

2.2.2.2 Conforming POSIX Application.
2.2.2.2.1 ISO Conforming POSIX Application. An ISO Conforming

POSIX Application is an application that uses only the facilities described in this
standard and approved Conforming Language bindings for any ISO standard.
Such an application shall include a statement of conformance that documents
all options and limit dependencies, and all other ISO standards used.

2.2.2.2.2 <National Body> Conforming POSIX Application. A
<National Body> Conforming POSIX Application differs from an ISO Conform¬

ing POSIX Application in that it also may use specific standards of a single ISO
member body referred to here as 6(<National Body>.” Such an application shall
include a statement of conformance that documents all options and limit depen¬
dencies, and all other <National Body> standards used.

2.2 Conformance. 25

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

2.2.2.3 Conforming POSIX Application Using Extensions. A Con¬

forming POSIX Application Using Extensions is an application that differs from
a Conforming POSIX Application only in that it uses non-standard facilities
which are consistent with this standard. Such an application shall fully docu¬
ment its requirements for these extended facilities, in addition to the documen¬
tation required of a Conforming POSIX Application. A Conforming POSIX Appli¬

cation Using Extensions shall be either an ISO Conforming POSIX Application

Using Extensions or a <National Body> Conforming POSIX Application Using

Extensions (see sections §2.2.2.2.1 and §2.2.2.2.2).

2.2.3 Language-Dependent Services for the C Programming
Language. When the C Standard {ANSI1X3.159-198x Programming Language

C Standard) is ratified, parts of it will be referenced to describe requirements
also mandated by IEEE Std 1003.1-1988. The sections of the C Standard refer¬
enced to describe requirements for this standard are specified in Chapter 8.
Chapter 8 also sets forth additions and amplifications to the referenced sections
of the C Standard. Any implementation claiming conformance to IEEE Std
1003.1-1988 with the C Language Binding shall provide the facilities referenced
in Chapter 8, along with any additions and amplifications Chapter 8 requires.

Although IEEE Std 1003.1-1988 references parts of the C Standard to describe
some of its own requirements, conformance to the C Standard is unnecessary for
conformance to IEEE Std 1003.1-1988. Any C Language implementation provid¬
ing the facilities stipulated in Chapter 8 may claim conformance—however, it
shall clearly state that its C language does not conform to the C Standard.

2.2.3.1 Types of Conformance. Implementations claiming conformance
to IEEE Std 1003.1-1988 with the C Language Binding shall claim one of two
types of conformance—conformance to IEEE Std 1003.1-1988, C Language Bind¬
ing (C Standard Language-Dependent System Support), or to IEEE Std 1003.1-
1988, C Language Binding (Common Usage C Language-Dependent System
Support).

2.2.3.2 C Standard Language-Dependent System Support. Imple¬
mentors shall meet the requirements of Chapter 8 using for reference the
C Standard. Implementors shall clearly document the version of the
C Standard referenced in fulfilling the requirements of Chapter 8.

Until the C Standard is ratified, implementors shall reference the draft of
that document dated 13 May 1988 (X3J11/88-002). Implementors seeking to
claim conformance using the draft C Standard shall claim conformance to IEEE
Std 1003.1-1988, C Language Binding (C Standard Language-Dependent Sys¬
tem Support). Those implementors shall clearly document that the draft ver¬
sion of the C Standard referred to in implementing Chapter 8 was the draft
dated 13 May 1988. Implementations using the draft C Standard prior to the
formal ratification of that standard should change their implementations to
reflect changes to the C Standard once it is ratified.

26 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

2.2.3.3 Common Usage C Language-Dependent System Support.
Implementors, instead of referencing the C Standard, shall provide the routines
and support required in Chapter 8 using common usage as guidance. Imple¬
mentors shall meet all the requirements of Chapter 8 except where references
are made to the C Standard. In places where the C Standard is referenced,
implementors shall provide equivalent support in a manner consistent with
common usage of the C programming language. Implementors shall document
any differences between the interface provided and the interface that would
have been provided had the C Standard been referenced instead of common
usage. Implementors shall clearly document the version of the C Standard
referenced in documenting interface differences and should issue updates on
differences for all new versions of the C Standard.

Until the C Standard is ratified, implementors claiming conformance to IEEE
Std 1003.1-1988, C Language Binding (Common Usage Language-Dependent
System Support) shall reference the draft C Standard dated 13 May 1988 when
documenting interface differences between their implementation of Chapter 8
and implementations of Chapter 8 based on the C Standard.

Where a function has been introduced by the C Standard, and thus there is no
common usage referent for it, if the function is implemented, it shall be imple¬
mented as described in the C Standard. If the function is not implemented, it
shall be documented as a difference from the C Standard as required above.

2.2.4 Other C Language Related Specifications. The following rules
apply to the usage of C language library functions; each of the statements in
this section applies to the detailed function descriptions in Chapters 3 through
9, unless explicitly stated otherwise:

(1) If an argument to a function has an invalid value (such as a value outside
the domain of the function, or a pointer outside the address space of the pro¬
gram, or a NULL pointer when that is not explicitly permitted), the behavior
is undefined.
(2) Any function may also be implemented as a macro in a header. Applica¬
tions should use #undef to remove any macro definition and ensure that an
actual function is referenced. Applications should also use #undef prior to
declaring any function in this standard.
(3) Any invocation of a library function that is implemented as a macro shall
expand to code that evaluates each of its arguments only once, fully pro¬
tected by parentheses where necessary, so it is generally safe to use arbi¬
trary expressions as arguments.
(4) Provided that a library function can be declared without reference to any
type defined in a header, it is also permissible to declare the function, either
explicitly or implicitly, and use it without including its associated header.
(5) If a function that accepts a variable number of arguments is not declared
(explicitly, or by including its associated header), the behavior is undefined.

2.2 Conformance. 27

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

2.3 General Terms. The following are definitions of terms peculiar to this
standard:

absolute pathname. See pathname resolution §2.4.

access mode. A form of access permitted to a file.

address space. The memory locations that can be referenced by a process.

appropriate privileges. An implementation-defined means of associating
privileges with a process with regard to the function calls and function call
options defined in this standard that need special privileges. There may be zero
or more such means.

background process group. Any process group that is a member of a session

which has established a connection with a controlling terminal that is not in the
foreground process group.

block special file. A file that refers to a device. A block special file is nor¬
mally distinguished from a character special file by providing access to the dev¬

ice in a manner such that the hardware characteristics of the device are not visi¬
ble.

C Standard. The abbreviated name for the ANSI /X3.159-198x Programming

Language C Standard.

character. A sequence of one or more bytes representing a single graphic sym¬
bol.

character special file. A file that refers to a device. One specific type of char¬

acter special file is a terminal device file, whose access is defined in General
Terminal Interface §7.1. Other character special files have no structure
defined by this standard and their use is implementation-defined.

child process. See process.

clock tick. The number of intervals per second, defined by {CLK_TCK}, used to
express the value in type clock J.

controlling process. The session leader that established the connection to the
controlling terminal. Should the terminal subsequently cease to be a control¬

ling terminal for this session, the session leader shall cease to be the controlling
process.

controlling terminal. A terminal that is associated with a session. Each ses¬

sion may have at most one controlling terminal associated with it and a control¬

ling terminal is associated with exactly one session. Certain input sequences
from the controlling terminal (see General Terminal Interface §7.1) cause
signals to be sent to all processes in the process group associated with the con¬
trolling terminal.

28 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

current working directory. See working directory.

device. A computer peripheral or an object that appears to the application as
such.

directory. A file that contains directory entries. No two directory entries in the
same directory shall have the same name.

directory entry (or link). An object that associates a filename with a file.

Several directory entries can associate names with the same file.

dot. The filename consisting of a single dot character (.). See pathname reso¬
lution §2.4.

dot-dot. The filename consisting solely of two dot characters (. .See path¬
name resolution §2.4.

effective group ID. An attribute of a process that is used in determining vari¬
ous permissions, including file access permissions §2.4. See group ID. This
value is subject to change during the process lifetime, as described in setgidf)

§4.2.2 and exec §3.1.2.

effective user ED. An attribute of a process that is used in determining various
permissions, including file access permissions §2.4. See user ID. This value
is subject to change during the process lifetime, as described in setuidi) §4.2.2
and exec §3.1.2.

empty directory. A directory that contains, at most, directory entries for dot

and dot-dot.

empty string (or null string). A character array whose first element is a null
character.

Epoch. The time 0 hours, 0 minutes, 0 seconds, January 1, 1970 Coordinated
Universal Time. See seconds since the Epoch.

feature test macro. A #defined symbol used to determine whether a partic¬
ular set of features will be included from a header. See Symbols From The C
Standard §2.8.1.

FIFO special file (or FIFO). A type of file. Data written to such a file is read
on a first-in-first-out basis. Other characteristics of FIFOs are described under
open() §5.3.1, readi) §6.4.1, writei) §6.4.2, and Iseek() §6.5.3.

file. An object that can be written to, or read from, or both. A file has certain
attributes, including access permissions and type. File types include regular

file, character special file, block special file, FIFO special file, and directory.

Other types of files may be defined by the implementation.

file description. See open file description.

2.3 General Terms. 29

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

file descriptor. A per -process unique, non-negative integer used to identify an
open file for the purpose of file access.

file group class. A process is in the file group class of a file if the process is not
in the file owner class and if the effective group ID or one of the supplementary

group IDs of the process matches the group ID associated with the file. Other
members of the class may be implementation-defined.

file mode. An object containing the file permission bits and other characteris¬
tics of a file, as described in <sys/stat.h> §5.6.1.

filename. A name consisting of 1 to {NAME_MAX} bytes used to name a file.

The characters composing the name may be selected from the set of all charac¬
ter values excluding the slash character and the null character. The filenames

dot and dot-dot have special meaning; see pathname resolution §2.4. A
filename is sometimes referred to as a pathname component.

file offset. The byte position in the file where the next I/O operation begins.
Each open file description associated with a regular file, block special file, or
directory has a file offset. A character special file that does not refer to a termi¬

nal device may have a file offset. There is no file offset specified for a pipe or
FIFO.

file other class. A process is in the file other class of a file if the process is not
in the file owner class or file group class.

file owner class. A process is in the file owner class of a file if the effective user

ID of the process matches the user ID of the file.

file permission bits. Information about a file that is used, along with other
information, to determine if a process has read, write, or execute/search permis¬
sion to a file. The bits are divided into three parts: owner, group, and other.
Each part is used with the corresponding file class of processes. These bits are
contained in the file mode, as described in <sys/stat.h> §5.6.1. The detailed
usage of the file permission bits in access decisions is described in file access
permissions §2.4.

file serial number. A per-file system unique identifier for a file. File serial

numbers are unique throughout a file system.

file system. A collection of files and certain of their attributes. It provides a
name space for file serial numbers referring to those files.

foreground process group. Each session that has established a connection
with a controlling terminal has exactly one process group of the session as the
foreground process group of that controlling terminal. The foreground process

group has certain privileges when accessing its controlling terminal that are
denied to background process groups. See Terminal Access Control §7.1.1.4.

30 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

foreground process group ID. The process group ID of the foreground pro¬

cess group.

group ID. Each system user is a member of at least one group. A group is
identified by a group ID, a non-negative integer that can be contained in an
object of type gidjt. When the identity of a group is associated with a process, a
group ID value is referred to as a real group ID, an effective group ID, one of the
(optional) supplementary group IDs, or an (optional) saved set-group-ID.

job control. A facility that allows users to selectively stop (suspend) the execu¬
tion of processes and continue (resume) their execution at a later point. The
user typically employs this facility via the interactive interface jointly supplied
by the terminal I/O driver and a command interpreter. Conforming implemen¬

tations may optionally support job control facilities; the presence of this option
is indicated to the application at compile time or run time by the definition of
the {_POSEX_JOB_CONTROL} symbol; see Symbolic Constants §2.10).

link. See directory entry.

link count. The number of directory entries that refer to a particular file.

mode. A collection of attributes that specifies a file's type and its access per¬
missions. (See file access permissions §2.4).

null string. See empty string.

open file. A file that is currently associated with a file descriptor.

open file description. A record of how a process or group of processes are
accessing a file. Each file descriptor shall refer to exactly one open file descrip¬

tion, but an open file description may be referred to by more than one file

descriptor. A file offset, file status (see Table 6-5 in Data Definitions for File
Control Operations §6.5.1), and file access modes (Table 6-6) are attributes of
an open file description.

orphaned process group. A process group in which the parent of every
member is either itself a member of the group or is not a member of the group’s
session.

parent directory. When discussing a directory, the directory containing the
directory entry for the directory under discussion. When discussing other types
of files, a directory containing a directory entry for the file under discussion.
This concept does not apply to dot and dot-dot.

parent process. See process.

parent process ID. A new process is created by a currently active process.

The parent process ID of a process is the process ID of its creator, for the lifetime
of the creator. After the creator’s lifetime has ended, the parent process ID is
the process ID of an implementation-defined system process.

2.3 General Terms. 31

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

path prefix. A pathname, with an optional ending slash, that refers to a direc¬

tory.

pathname. A string that is used to identify a file. It consists of, at most,
{PATHJVLAX} bytes, including the terminating null character. It has an optional
beginning slash, followed by zero or more filenames separated by slashes. If the
pathname refers to a directory, it may also have one or more trailing slashes.

Multiple successive slashes are considered the same as one slash. A pathname

that begins with two successive slashes may be interpreted in an
implementation-defined manner, although more than two leading slashes shall
be treated as a single slash. The interpretation of the pathname is described
under pathname resolution §2.4.

pathname component. See filename.

pipe. An object accessed by one of the pair of file descriptors created by the
pipe () function. Once created, the file descriptors can be used to manipulate it
and it behaves identically to a FIFO special file when accessed in this way. It
has no name in the file hierarchy §2.4.

portable filename character set. For a filename to be portable across con¬
forming implementations of IEEE Std 1003.1-1988, it shall consist only of the
following characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghi jklmnopqrstuvwxyz

0123456789.

The last three characters are the period, underscore, and hyphen characters,
respectively. The hyphen shall not be used as the first character of a portable
filename. Upper- and lowercase letters shall retain their unique identities
between conforming implementations. In the case of a portable pathname, the
slash character may also be used.

privilege. See appropriate privileges.

process. An address space and single thread of control that executes within
that address space, and its required system resources. A process is created by
another process issuing the fork{) function. The process that issues fork{) is
known as the parent process, and the new process created by the fork() as the
child process.

process group. Each process in the system is a member of a process group that
is identified by a process group ID. This grouping permits the signaling of
related processes. A newly-created process joins the process group of its creator.

process group ID. Each process group in the system is uniquely identified dur¬
ing its lifetime by a positive integer that can be contained in a pidjt called a pro¬

cess group ID. A process group ID may not be reused by the system until the pro¬
cess group lifetime ends.

32 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

process group leader. A process whose process ID is the same as its process

group ID.

process group lifetime. A period of time that begins when a process group is
created and ends when the last remaining process in the group leaves the group,
either due to process termination or calling the setsid() or setpgid() functions.

process ID. Each process in the system is uniquely identified during its lifetime
by a positive integer that can be contained in a pid_t called a process ID. A pro¬

cess ID may not be reused by the system until the process lifetime ends. In addi¬
tion, if there exists a process group whose process group ID is equal to that pro¬

cess ID, the process ID may not be reused by the system until the process group

lifetime ends. A process that is not a system process shall not have a process ID

of 1.

process lifetime. After a process is created with a fork() function, it is con¬
sidered active. Its thread of control and address space exist until it terminates.
It then enters an inactive state where certain resources may be returned to the
system, although some resources, such as the process ID, are still in use. When
another process executes a wait{) or waitpid() function for an inactive process,

the remaining resources are returned to the system. The last resource to be
returned to the system is the process ID. At this time, the lifetime of the process

ends.

read-only file system. A file system that has implementation-defined charac¬
teristics restricting modifications.

real group ID. The attribute of a process that, at the time of process creation,
identifies the group of the user who created the process. See group ID. This
value is subject to change during the process lifetime, as described in setgid()
§4.2.2.

real user ID. The attribute of a process that, at the time of process creation,
identifies the user who created the process. See user ID. This value is subject
to change during the process lifetime, as described in setuid () §4.2.2.

regular file. A file that is a randomly accessible sequence of bytes, with no
further structure imposed by the system.

relative pathname. See pathname resolution §2.4.

root directory. A directory, associated with a process, that is used in path¬
name resolution §2.4 for pathnames that begin with a slash.

saved set-group-ID. When the saved set-user-ID option is implemented, an
attribute of a process that allows some flexibility in the assignment of the effec¬

tive group ID attribute, as described in setgidO §4.2.2, and exec §3.1.2.

saved set-user-ID. When the saved set-user-ID option is implemented, an
attribute of a process that allows some flexibility in the assignment of the effec¬

tive user ID attribute, as described in setuid() §4.2.2, and exec §3.1.2.

2.3 General Terms. 33

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

seconds since the Epoch. A value to be interpreted as the number of seconds
between a specified time and the Epoch. A Coordinated Universal Time name
(specified in terms of seconds (tm_sec), minutes (tmjnin), hours (tmjiour),
days since January 1 of the year (tmjyday), and calendar year minus 1900
(tm_year)) is related to a time represented as seconds since the Epoch according
to the expression below.

If year < 1970 or the value is negative, the relationship is undefined. If year >
1970 and the value is non-negative, the value is related to a Coordinated
Universal Time name according to the expression:

tm_sec + tmjnin*Q 0 + tmjiour*3 600 + tm_yday*86 400 +
(tm _year-70)*31536 000 + ((tm_year-69)/4)*86400

session. Each process group is a member of a session. A process is considered
to be a member of the session of which its process group is a member. A newly-
created process joins the session of its creator. A process can alter its session

membership (see setsidi) §4.3.2). Implementations which support setpgid()
§4.3.3 can have multiple process groups in the same session.

session leader. A process that has created a session (see setsidi) §4.3.2).

session lifetime. The period between when a session is created and the end of
the lifetime of all the process groups which remain as members of the session.

signal. A mechanism by which a process may be notified of, or affected by, an
event occurring in the system. Examples of such events include hardware
exceptions and specific actions by processes. The term signal is also used to
refer to the event itself.

slash. The literal character This character is also known as solidus in ISO
8859/1.

supplementary group ID. A process has up to {NGROUPS_MAX} supplemen¬

tary group IDs used in determining file access permissions, in addition to the
effective group ID. The supplementary group IDs of a process are set to the sup¬

plementary group IDs of the parent process when the process is created.
Whether a process’s effective group ID is included in or omitted from its list of
supplementary group IDs is unspecified.

system. An implementation of this standard.

system process. An object, other than a process executing an application, that
is defined by the system and has a process ID.

terminal (or terminal device). A character special file that obeys the specifi¬
cations of the General Terminal Interface §7.1.

user ID. Each system user is identified by a non-negative integer known as a
user ID that can be contained in an object of type uidjt. When the identity of a
user is associated with a process, a user ID value is referred to as a real user ID,

an effective user ID, or an (optional) saved set-user-ID.

34 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

working directory (or current working directory). A directory, associated
with a process, that is used in pathname resolution §2.4 for pathnames that
do not begin with a slash.

2.4 General Concepts.

extended security controls. The access control (see file access permissions)
and privilege (see appropriate privileges §2.3) mechanisms have been
defined to allow implementation-defined extended security controls. These per¬
mit an implementation to provide security mechanisms to implement different
security policies than are described in this standard. These mechanisms shall
not alter or override the defined semantics of any of the functions in this stan¬
dard.

file access permissions. The standard file access control mechanism uses the
file permission bits, as described below. These bits are set at file creation by
openO §5.3.1, creatO §5.3.2, mkdirf) §5.4.1, and mkfifoO §5.4.2, and are
changed by chmod{) §5.6.4. These bits are read by stat() or fstatO §5.6.2.

Implementations may provide additional or alternate file access control
mechanisms, or both. An additional access control mechanism shall only
further restrict the access permissions defined by the file permission bits. An
alternate access control mechanism shall:

(1) Specify file permission bits for the file owner class, file group class, and
file other class of the file, corresponding to the access permissions, to be
returned by statO or fstatO.

(2) Be enabled only by explicit user action, on a per-file basis by the file
owner or a user with the appropriate privilege.
(3) Be disabled for a file after the file permission bits are changed for that
file with chmodO. The disabling of the alternate mechanism need not dis¬
able any additional mechanisms defined by an implementation.

Whenever a process requests file access permission for read, write, or
execute/search, if no additional mechanism denies access, access is determined
as follows:

(1) If a process has the appropriate privilege:
(a) If read, write, or directory search permission is requested, access is
granted.
(b) If execute permission is requested, access is granted if execute permis¬
sion is granted to at least one user by the file permission bits or by an
alternate access control mechanism; otherwise access is denied.

(2) Otherwise:
(a) The file permission bits of a file contain read, wTite, and
execute/search permissions for the file owner class, file group class, and
file other class.
(b) Access is granted if an alternate access control mechanism is not
enabled and the requested access permission bit is set for the class to
which the process belongs, or if an alternate access control mechanism is
enabled and it allows the requested access; otherwise access is denied.

2.4 General Concepts. 35

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

file hierarchy. Files in the system are organized in a hierarchical structure in
which all of the non-terminal nodes are directories and all of the terminal nodes
are any other type of file. Because multiple directory entries may refer to the
same file, the hierarchy is properly described as a directed graph.

filename portability. Filenames should be constructed from the portable
filename character set because the use of other characters can be confusing or
ambiguous in certain contexts.

file times update. Each file has three associated time values that are updated
when file data has been accessed, file data has been modified, or file status has
been changed, respectively. These values are returned in the file characteristics
structure, as described in <sys/stat.h> §5.6.1.

For each function in this standard that reads or writes file data or changes
the file status, the appropriate time-related fields are noted as marked for

update. An implementation may update fields that are marked for update
immediately, or may update such fields periodically. When the fields are
updated they are set to the current time and the update marks are cleared. All
fields that are marked for update shall be updated when the file is no longer
open by any process, or when a stat{) §5.6.2 or fstat{) is performed on the file.
Other times at which updates are done are unspecified. Updates are not done
for files on read-only file systems.

pathname resolution. Pathname resolution is performed for a process to
resolve a pathname to a particular file in a file hierarchy. There may be multi¬
ple pathnames that resolve to the same file.

Each filename in the pathname is located in the directory specified by its
predecessor (for example, in the pathname fragment “a/b”, file “b” is located in
directory “a”). Pathname resolution fails if this cannot be accomplished. If the
pathname begins with a slash, the predecessor of the first filename in the path¬
name is taken to be the root directory of the process (such pathnames are
referred to as absolute pathnames). If the pathname does not begin with a
slash, the predecessor of the first filename of the pathname is taken to be the
current working directory of the process (such pathnames are referred to as
relative pathnames).

The interpretation of a pathname component is dependent on the values of
{NAME_MAX} and {_POSIX_NO_TRUNC} associated with the path prefix of that
component. If any pathname component is longer than {NAME_MAX}, and
{_POSIX_NO_TRUNC} is in effect for the path prefix of that component (see path-

conf{) §5.7.1), the implementation shall consider this an error condition. Other¬
wise, the implementation shall use the first {NAME_MAX} bytes of the pathname
component.

The special filename, dot, refers to the directory specified by its predecessor.
The special filename, dot-dot, refers to the parent directory of its predecessor
directory. As a special case, in the root directory, dot-dot may refer to the root
directory itself.

A pathname consisting of a single slash resolves to the root directory of the
process. A null pathname is invalid.

36 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

2.5 Error Numbers. Most functions provide an error number in the external
variable errno, which is defined as:

extern int errno;

The value of this variable shall be defined only after a call to a function for
which it is explicitly stated to be set, and until it is changed by the next function
call. The variable errno should only be examined when it is indicated to be valid
by a function’s return value. No function defined in this standard sets errno to
zero to indicate an error.

If more than one error occurs in processing a function call, this standard does
not define in what order the errors are detected; therefore, any one of the possi¬
ble errors may be returned.

Implementations may support additional errors not included in this list, may
generate errors included in this list under circumstances other than those
described here, or may contain extensions or limitations that prevent some
errors from occurring. The Errors subsection in each function description
specifies which error conditions shall be required and which may be
implementation-defined. Implementations shall not generate an error number
different from the ones described here for error conditions described in this
standard.

The following symbolic names identify the possible error numbers, in the con¬
text of functions specifically defined in this standard; these general descriptions
are more precisely defined in the Errors sections of functions that return them.
Only these symbolic names should be used in programs, since the actual value
of the error number is implementation-defined. All values listed in this section
shall be unique. The implementation-defined values for these names shall be
found in the header <errno.h>.

[E2BIG] Arg list too long
The sum of the number of bytes used by the new process
image’s argument list and environment list was greater than
the system-imposed limit of {ARG_MAX} bytes.

[EACCES] Permission denied
An attempt was made to access a file in a way forbidden by its
file access permissions.

[EAGAIN] Resource temporarily unavailable
This is a temporary condition and later calls to the same routine
may complete normally.

[EBADF] Bad file descriptor
A file descriptor argument was out of range, referred to no open
file, or a read (write) request was made to a file that was only
open for writing (reading).

[EBUSY] Resource busy
An attempt was made to use a system resource that was not
available at the time because it was being used by a process in a
manner that would have conflicted with the request being made

2.5 Error Numbers. 37

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

[ECHILD]
by this process.
No child processes
A wait() or waitpidO function was executed by a process that
had no existing or unwaited-for child processes.

[EDEADLK] Resource deadlock avoided
An attempt was made to lock a system resource that would

[EDOM]
have resulted in a deadlock situation.
Domain error
Defined in the C Standard; an input argument was outside the
defined domain of the mathematical function.

[EEXIST] File exists
An existing file was specified in an inappropriate context, for
instance, as the new link name in a link () function.

[EFAULT] Bad address
The system detected an invalid address in attempting to use an
argument of a call. The reliable detection of this error is
implementation-defined; however, implementations that do
detect this condition shall use this value.

[EFBIG] File too large
The size of a file would exceed an implementation-defined max¬
imum file size.

[EINTR] Interrupted function call
An asynchronous signal (such as SIGINT or SIGQUIT; see the
description of header <signal.h> §3.3.1) was caught by the pro¬
cess during the execution of an interruptible function. If the
signal handler performs a normal return, the interrupted func¬
tion call may return this error condition.

[EINVAL] Invalid argument
Some invalid argument was supplied. (For example, specifying
an undefined signal to a signal() or kill{) function).

[EIO] Input/output error
Some physical input or output error occurred. This error may
be reported on a subsequent operation on the same file descrip¬
tor. Any other error-causing operation on the same file descrip¬
tor may cause the [EIO] error indication to be lost.

[EISDIR] Is a directory
An attempt was made to open a directory with write mode
specified.

[EMFILE] Too many open files

[EMLINK]

An attempt was made to open more than the maximum number
of {OPEN_MAX} file descriptors allowed in this process.
Too many links
An attempt was made to have the link count of a single file
exceed {LINK_MAX}.

[ENAMETOOLONG] Filename too long
The size of a pathname string exceeded {PATHJVLAX}, or a path¬
name component was longer than {NAME_MAX} and

38 Definitions and General Requirements

IEEE

INTERFACE FOR COMPUTER ENVIRONMENTS Std 1003.1-1988

[ENTILE]
{_POSDC_NO_TRUNC} was in effect for that file.
Too many open files in system
Too many files are currently open in the system. The system
reached its predefined limit for simultaneously open files and
temporarily could not accept requests to open another one.

[ENODEV] No such device
An attempt was made to apply an inappropriate function to a
device; for example, trying to read a write-only device such as a
printer.

[ENOENT] No such file or directory
A component of a specified pathname did not exist, or the path¬
name was an empty string.

[ENOEXEC] Exec format error
A request was made to execute a file that, although it had the

[ENOLCK]

appropriate permissions, was not in the format required by the
implementation for executable files.
No locks available
A system-imposed limit on the number of simultaneous file and
record locks was reached and no more were available at that
time.

[ENOMEM] Not enough space
The new process image required more memory than was
allowed by the hardware or by system-imposed memory

[ENOSPC]
management constraints.
No space left on device
During a write () function on a regular file, or when extending a
directory, there was no free space left on the device.

[ENOSYS] Function not implemented
An attempt was made to use a function that is not available in
this implementation.

[ENOTDIR] Not a directory
A component of the specified pathname existed, but it was not a
directory, when a directory was expected.

[ENOTEMPTY] Directory not empty

[ENOTTY]

A directory with entries other than dot and dot-dot was sup¬
plied when an empty directory was expected.
Inappropriate I/O control operation
A control function was attempted for a file or special file for
which the operation was inappropriate.

[ENXIO] No such device or address

[EPERM]

Input or output on a special file referred to a device that did not
exist, or made a request beyond the limits of the device. This
error may also occur when, for example, a tape drive is not on¬
line or no disk pack is loaded on a drive.
Operation not permitted
An attempt was made to perform an operation limited to
processes with appropriate privileges or to the owner of a file or

2.5 Error Numbers. 39

IEEE

IEEE STANDARD PORTABLE OPERATING SYSTEM

other resource.
Broken pipe
A write was attempted on a pipe or FIFO for which there was no
process to read the data.
Result too large
Defined in the C Standard; the result of the function was too
large to fit in the available space.
Read-only file system
An attempt was made to modify a file or directory on a file sys¬
tem that was read-only at that time.
Invalid seek
An Iseek () function was issued on a pipe or FIFO.
No such process
No process could be found corresponding to that specified by the
given process ID.
Improper link
A link to a file on another file system was attempted.

2.6 Primitive System Data Types. Some data types used by the various
system functions are not defined as part of this standard, but are defined by the
implementation. These types are then defined in the header <sys/types.h>,
which contains definitions for at least the types shown in Table 2-1.

Table 2-1. Primitive System Data Types

Defined Type _Description_

dev_t Used for device numbers.
gid_t Used for group IDs.
ino_t Used for file serial numbers.
modejt Used for some file attributes, for example file

type, file access permissions.

nlink_t Used for link counts.
off_t Used for file sizes.
pidj Used for process IDs and process group IDs.

uidj Used for user IDs.

All of the types listed in Table 2-1 shall be arithmetic types; pidjt shall be a
signed arithmetic type.

Additional implementation-defined type definitions may be given in this
header. These definitions shall have names ending with _t. Such symbols do
not require feature test macros to be visible when <sys/types.h> is included.

2.7 Environment Description. An array of strings called the environment is
made available when a process begins. This array is pointed to by the external
variable environ, which is defined as:

extern char ** environ;

Std 1003.1-1988

[EPIPE]

[ERANGE]

[EROFS]

[ESPIPE]

[ESRCH]

[EXDEV]

40 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

These strings have the form “name = value”; names shall not contain the charac¬
ter =. There is no meaning associated with the order of the strings in the
environment. If more than one string in a process’s environment has the same
name, the consequences are undefined. The following names may be defined
and have the indicated meaning if they are defined:

HOME The name of the user’s initial working directory, from the
user database (see the description of the header <pwd.h>
§9.2.2).

LANG The name of the predefined setting for locale.
LC_COLLATE The name of the locale for collation information.
LC_CTYPE The name of the locale for character classification.
LC_MONETARY The name of the locale containing monetary-related

numeric editing information.
LC_NUMERIC The name of the locale containing numeric editing (i.e.,

radix character) information.
LC_TIME The name of the locale for date/time formatting informa¬

tion.
LOGNAME The name of the user’s login account, corresponding to the

login name in the user database (see the description of the
header <pwd.h>). The value shall be composed of charac¬
ters from the portable filename character set §2.3.

PATH The sequence of path prefixes that certain functions apply
in searching for an executable file known only by a
filename (a pathname that does not contain a slash). The
prefixes are separated by a colon (:). When a non-zero-
length prefix is applied to this filename, a slash is inserted
between the prefix and the filename. A zero-length prefix
is a special prefix that indicates the current working direc¬
tory. It appears as two adjacent colons (“::”), as an initial
colon preceding the rest of the list, or as a trailing colon
following the rest of the list. The list is searched from
beginning to end until an executable program by the speci¬
fied name is found. If the pathname being sought contains
a slash, the search through the path prefixes is not per¬
formed.

TERM The terminal type for which output is to be prepared. This
information is used by commands and application pro¬
grams wishing to exploit special capabilities specific to a
terminal.

TZ Time zone information. The format of this string is
defined in Extensions to Time Functions §8.1.1.

Environment variable name s used or created by an application should consist
solely of characters from the portable filename character set. Other characters
may be permitted by an implementation; applications shall tolerate the presence
of such names. Upper- and lowercase letters retain their unique identities and
are not folded together. System-defined environment variable names should
begin with a capital letter or underscore, and be composed of only capital letters,

2.7 Environment Description. 41

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

underscores, and numbers.
The value s that the environment variables may be assigned are not restricted

except that they are considered to end with a null byte and the total space used
to store the environment and the arguments to the process is limited to
{ARG_MAX} bytes.

Other name=value pairs may be placed in the environment by manipulating
the environ variable or by using envp arguments when creating a process (see
exec §3.1.2).

2.8 C Language Definitions.

2.8.1 Symbols From The C Standard. Certain terms and symbols used in
this standard are considered to be defined by the C programming language. The
following terms are defined in the C Standard: CLK_TCK, NULL, byte, character

array, clock jt, header, null character, string, timejt.
The term NULL pointer in this standard is equivalent to the term null pointer

used in the C Standard. The symbol NULL shall be declared in <unistd.h>,
with the same value as required by the C Standard, in addition to the several
locations already required by the C Standard.

Additionally, the reservation of symbols that begin with an underscore
applies:

(1) All external identifiers that begin with an underscore are reserved.
(2) All other identifiers that begin with an underscore and either an upper¬
case letter or another underscore are reserved.
(3) If the program defines an external identifier with the same name as a
reserved external identifier, even in a semantically equivalent form, the
behavior is undefined.

Certain other namespaces are reserved by the C Standard. These reserva¬
tions apply to this standard as well. Additionally, the C Standard requires that
it be possible to include a header more than once, and that a symbol may be
defined in more than one header. This requirement is also made of headers for
this standard.

2.8.2 POSK Symbols. Certain symbols in this standard are defined in
headers. Some of those headers could also define other symbols than those
defined by this standard, potentially conflicting with symbols used by the appli¬
cation. Also, this standard defines symbols which are not permitted by other
standards to appear in those headers without some control on the visibility of
those symbols.

Symbols called feature test macros are used to control the visibility of symbols
that might be included in a header. Implementations, future versions of this
standard, and other standards may define additional feature test macros.
Feature test macros shall be defined in the compilation of an application before
a # include of any header where a symbol should be visible to some, but not all,
applications. If the definition of the macro does not precede the #include, the
result is undefined.

Feature test macros shall begin with the underscore character (_).

42 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Implementations may add members to a structure or union without control¬
ling the visibility of those members with a feature test macro.

The following feature test macro is defined:

Name _Description_

_POSIX_SOURCE The program expects that the symbols
defined by this standard will be provided
by the environment. Where extensions are
permitted in a header, but no explicit con¬
straint on the form of the name is provided
by this standard, the extensions shall not
be made visible by this feature test macro.

The exact meaning of feature test macros depends on the type of C language
support chosen:

2.8.2.1 C Standard Language-Dependent Support. If there are no
feature test macros present in a program, only the set of symbols defined by the
C Standard shall be present. For each feature test macro present, only the sym¬
bols specified by that feature test macro plus those of the C Standard shall be
defined when a header is included.

2.8.2.2 Common Usage-Dependent Support. If the feature test macro
_POSIX_SOURCE is not defined in a program, the set of symbols defined in each
header that are beyond the requirements of this standard is implementation-
defined.

If _POSIX_SOURCE is defined before any header is included, no symbols other
than those from the C Standard and those made visible by feature test macros
defined for the program (including _POSIX_SOURCE) will be visible.

If _POSIX_SOURCE is not defined before any header is included, the behavior
is undefined.

2.8.3 Headers and Function Prototypes. Implementations claiming
C Standard Language-Dependent Support shall declare function prototypes for
all functions.

Implementations claiming Common Usage C Language-Dependent Support
shall declare the result type for all functions not returning a “plain” int.

These function prototypes (if required) shall appear in the headers listed
below. If a function is not listed below, it shall have its prototype appear in
<unistd.h>, which is presumed to be #include-ed whenever any function
declared in it is used, whether or not it is mentioned in the Synopsis section for
that function. Functions also described in the C Standard (see Language-
Specific Services for the C Programming Language §8) shall have their
prototypes appear in the headers defined for them in the C Standard. The
requirements about visibility of symbols in POSIX Symbols §2.8.2 shall be
honored.

<dirent.h> opendirO §5.1.2, readdirO §5.1.2, rewinddirO §5.1.2,
closedirO §5.1.2.

2.8 C Language Definitions. 43

IEEE STANDARD PORTABLE OPERATING SYSTEM

IEEE

Std 1003.1-1988

<fcntl.h>
<grp.h>
<pwd.h>
<setjmp.h>
<signal.h>

<stdio.h>
<sys/stat.h>

<sys/times.h>
<sys/utsname.h>
<sys/wait.h>
<termios.h>

<time.h>
<utime.h>

open() §5.3.1, creat() §5.3.2, fcntlO §6.5.2.
getgrgidO §9.2.1 ,getgrnam() §9.2.1.
getpwuidO §9.2.2,getpwnam{) §9.2.2.
sigsetjmp() §8.3.1, siglongjmpi) §8.3.1.
kill() §3.3.2, sigemptyset() §3.3.3, sigfillseti) §3.3.3,
sigaddseti) §3.3.3, sigdelset() §3.3.3, sigismemberO

§3.3.3, sigactioni) §3.3.4, sigprocmaskO §3.3.5, sigpend-

ingO §3.3.6, sigsuspendi) §3.3.7.
filenoO §8.2.1 JdopenO §8.2.2.
umask() §5.3.3, mkdirO §5.4.1, mkfifof) §5.4.2, statO

§5.6.2, fstatO §5.6.2, chmodO §5.6.4.
times() §4.5.2.
uname() §4.4.1.
wait() §3.2.1, waitpidi) §3.2.1.
cfgetospeedi) §7.1.2.7, cfsetospeedO §7.1.2.7, cfgetispeed{)

§7.1.2.7, cfsetispeedi) §7.1.2.7, tcgetattri) §7.2.1,
tcsetattrO §7.2.1, tcsendbreakf) §7.2.2, tcdrainO §7.2.2,
tcflush() §7.2.2, tcflow() §7.2.2.
time() §4.5.1, tzsetO §8.3.2.
utime() §5.6.6.

2.9 Numerical Limits. The following subsections list magnitude limitations
imposed by a specific implementation. The braces notation, {LIMIT}, is used in
the standard to indicate these values, but the braces are not part of the name.

2.9.1 C Language Limits. Certain limits used in this standard are con¬
sidered to be defined in the C programming language. The following limits are
defined in the C Standard (for information on that standard, see the section on
C Language Standard §A.2.2): {CHAR.BIT}, {CHAR.MAX}, {CHARJMIN},
{INT.MAX}, {INT.MIN}, {LONG.MAX}, {LONG_MIN}, {MB_LEN_MAX},
{SCHAR.MAX}, {SCHAR_MIN}, {SHRT_MAX}, {SHRT_MIN}, {UCHAR.MAX},
{UINT_MAX}, {ULONG_MAX}, {USHRT_MAX}.

2.9.2 Minimum Values. The symbols in Table 2-2 shall be defined in
<limits.h> with the values shown. These are symbolic names for the most res¬
trictive value for certain features on a system conforming to this standard.
Related symbols are defined elsewhere in this standard which reflect the actual
implementation and which may not be as restrictive. A conforming implemen¬
tation shall provide values at least this large. A portable application shall not
require a larger value for correct operation.

2.9.3 Run-Time Increasable Values. The magnitude limitations in Table
2-3 shall be fixed by specific implementations.

A Strictly Conforming POSIX Application shall assume that the value
supplied by <limits.h> in a specific implementation is the minimum that per¬
tains whenever the Strictly Conforming POSIX Application is run under
that implementation. A specific instance of a specific implementation may
increase the value relative to that supplied by <limits.h> for that implementa¬
tion. The actual value supported by a specific instance shall be provided by the

44 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Table 2-2. Minimum Values

Name Description Value

{_POSIX_ARG_MAX} The length of the arguments for one of
the exec functions in bytes, including
environment data.

4096

LPOSIX_CHILD_MAX} The number of simultaneous processes
per real user ID.

6

{_POSIX_LINK_MAX} The value of a file’s link count. 8

{_POSIX_MAX_CANON} The number of bytes in a terminal
canonical input queue.

255

{_POSIX_MAX_INPUT} The number of bytes for which space
will be available in a terminal input

255

queue.

{_POSIX_NAME_MAX} The number of bytes in a filename. 14

{_PO SIX_N GROUPS_MAX} The number of simultaneous supple¬
mentary group IDs per process.

0

{_POSIX_OPEN_MAX} The number of files that one process
can have open at one time.

16

LPOSEX_PATH_MAX} The number of bytes in a pathname. 255

{_POSIX_PIPE_BUF} The number of bytes that can be writ¬
ten atomically when writing to a pipe.

512

Table 2-3. Run-Time Increasable Values

Name _Description_ Minimum Value

{NGROUPS_MAX} Maximum number of {_POSIX_NGROUPS_MAX}
simultaneous supplemen¬
tary group IDs per process.

sysconfi) §4.8.1 function.

2.9.4 Run-Time Invariant Values (Possibly Indeterminate). A defini¬
tion of one of the values in Table 2-4 shall be omitted from the <limits.h> on
specific implementations where the corresponding value is equal to or greater
than the stated minimum, but is indeterminate.

This might depend on the amount of available memory space on a specific
instance of a specific implementation. The actual value supported by a specific
instance shall be provided by the sysconfi) §4.8.1 function.

2.9.5 Pathname Variable Values. The values in Table 2-5 may be con¬
stants within an implementation, or may vary from one pathname to another.

For example, file systems or directories may have different characteristics.

2.9 Numerical Limits. 45

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Table 2-4. Run-Time Invariant Values (Possibly Indeterminate)

Name Description Minimum Value

{ARG.MAX}

{CHILD_MAX}

{OPEN_MAX}

Maximum length of arguments for {_POSEX_ARG_MAX}
the exec functions in bytes, includ¬
ing environment data.

Maximum number of simultaneous {_POSIX_CHILD_MAX}
processes per real user ID.

Maximum number of files that one {_POSIX_OPEN_MAX}
process can have open at any given
time.

Table 2-5. Pathname Variable Values

Name Description Minimum Value

{LINK_MAX} Maximum value of a file’s link
count.

{_POSIX_LINK_MAX}

{MAX.CANON} Maximum number of bytes in a ter¬
minal canonical input line. (See
Canonical Mode Input Process¬
ing §7.1.1.6.)

{_POSIX_MAX_CANON}

{MAXJNPUT} Minimum number of bytes for
which space will be available in a
terminal input queue; therefore,
the maximum number of bytes a
portable application may require to
be typed as input before reading
them.

{_POSIX_MAX_INPUT}

{NAME.MAX} Maximum number of bytes in a file
name (not a string length; count
excludes a terminating null).

{_POSIX_NAME_MAX}

{PATH_MAX} Maximum number of bytes in a
pathname (not a string length;
count excludes a terminating null).

{_POSIX_PATH_MAX}

{PIPE_BUF} Maximum number of bytes that
can be written atomically when
writing to a pipe.

{_POSIX_PIPE_BUF}

A definition of one of the values from Table 2-5 shall be omitted from the
<limits.h> on specific implementations where the corresponding value is equal
to or greater than the stated minimum, but where the value can vary depending
on the file to which it is applied. The actual value supported for a specific path¬
name shall be provided by the pathconfO §5.7.1 function.

46 Definitions and General Requirements

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

2.10 Symbolic Constants. A conforming implementation shall have the
header <unistd.h>. This header defines the symbolic constants and structures
referenced elsewhere in the standard. The constants defined by this header are
shown below. The actual values of the constants are implementation-defined.

2.10.1 Symbolic Constants for the access () Function. The constants
used by the access () function are shown in Table 2-6.

Table 2-6. Symbolic Constants for the access () Function

Constant _Description_

R_OK Test for read permission.
W_OK Test for write permission.
X_OK Test for execute or search permission.
F_OK Test for existence of file.

The constants F_OK, R_OK, W_OK, and X_OK and the expressions

R_OK I W_OK

(where the I represents the bitwise inclusive OR operator),

R_OK I X_OK

and

R_OK I W_OK I X_OK

shall all have distinct values.

2.10.2 Symbolic Constant for the Iseek () Function. The constants used
by the IseekO function are shown in Table 2-7.

Table 2-7. Symbolic Constants for the IseekO Function

Constant

SEEK.SET
SEEKCUR
SEEK.END

Description

Set file offset to offset.
Set file offset to current plus offset.
Set file offset to EOF plus offset.

2.10.3 Compile-Time Symbolic Constants for Portability Specifica¬
tions. The constants in Table 2-8 may be used by the application, at compile
time, to determine which optional facilities are present and what actions shall
be taken by the implementation.

Although a Strictly Conforming POSIX Application can rely on the values com¬
piled from the <unistd.h> header to afford it portability on all instances of an
implementation, it may choose to interrogate a value at run-time to take advan¬
tage of the current configuration. See sysconfO §4.8.1.

2.10 Symbolic Constants. 47

Table 2-8. Compile-Time Symbolic Constants

Name _Description __

{_POSEX_JOB_CONTROL} If this symbol is defined, it indicates that the imple¬
mentation supports job control.

{_POSIX_SAVED_IDS} If defined, each process has a saved set-user-ID and a
saved set-group-ID.

{_POSIX_VERSION} The integer value 198808L. This value will change
with each published version or revision of this stan¬
dard to indicate the (4-digit) year and (2-digit) month
that the standard was approved by the IEEE Stan¬
dards Board.

2.10.4 Execution-Time Symbolic Constants for Portability Specifica¬
tions. The constants in Table 2-9 may be used by the application, at execution
time, to determine which optional facilities are present and what actions shall
be taken by the implementation in some circumstances described by this stan¬
dard as implementation-defined.

If any of the constants in Table 2-9 are not defined in the header <unistd.h>,
the value varies depending on the file to which it is applied. See pathconfi)
§5.7.1.

If any of the constants in Table 2-9 are defined to have value -1 in the header
<unistd.h>, the implementation shall not provide the option on any file; if any
are defined to have a value other than -1 in the header <unistd.h>, the imple¬
mentation shall provide the option on all applicable files.

Table 2-9. Execution-Time Symbolic Constants

Name _Description__

{_POSIX_CHOWN_RESTRICTED} The use of the chowni) §5.6.5 function is
restricted to a process with appropriate
privileges, and to changing the group ID of
a file only to the effective group ID of the
process or to one of its supplementary
group IDs.

{_POSIX_NO_TRUNC} Pathname components longer than
{NAME_MAX} generate an error.

{_POSDC_VDISABLE} Terminal special characters defined in
<termios.h> §7.1.2 can be disabled using
this character value, if it is defined. See
tcgetattr () and tcsetattr () §7.2.1.

All of the constants in Table 2-9, whether defined in <unistd.h> or not, may
be queried with respect to a specific file using the pathconfi) or fpathconfi) func¬
tions.

48 Definitions and General Requirements

3. Process Primitives

The functions described in this chapter perform the most primitive operating
system services dealing with processes, interprocess signals, and timers. All
attributes of a process that are specified in this standard shall remain
unchanged by a process primitive unless the description of that process primi¬
tive states explicitly that the attribute is changed.

3.1 Process Creation and Execution.

3.1.1 Process Creation.
Function: fork ()

3.1.1.1 Synopsis.

#include <sys/types.h>
pid_t fork ()

3.1.1.2 Description. The fork () function creates a new process. The new
process (child process) shall be an exact copy of the calling process (parent pro¬
cess) except for the following:

(1) The child process has a unique process ID. The child process ID also does
not match any active process group ID.
(2) The child process has a different parent process ID (which is the process
ID of the parent process).
(3) The child process has its own copy of the parent’s file descriptors. Each of
the child’s file descriptors refers to the same open file description with the
corresponding file descriptor of the parent.
(4) The child process has its own copy of the parent’s open directory streams
(see Directory Operations §5.1.2). Each open directory stream in the child
process may share directory stream positioning with the corresponding direc¬
tory stream of the parent.
(5) The child process’s values of tmsjutime, tmsjstime, tmsjcutime, and
tmsjcstime are set to zero (see times0 §4.5.2).
(6) File locks previously set by the parent are not inherited by the child. (See
fcntlO §6.5.2.)
(7) Pending alarms are cleared for the child process. (See alarm0 §3.4.1.)
(8) The set of signals pending for the child process is initialized to the empty
set. (See <signal.h> §3.3.1.)

All other process characteristics defined by this standard shall be the same in
the parent and the child processes. The inheritance of process characteristics

3.1 Process Creation and Execution. 49

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

not defined by this standard is implementation-defined.
3.1.1.3 Returns. Upon successful completion, forkO shall return to the

child process a value of zero and shall return to the parent process the process
ID of the child process, and both processes shall continue to execute from the
fork () function. Otherwise, a value of-1 shall be returned to the parent process,
no child process shall be created, and errno shall be set to indicate the error.

3.1.1.4 Errors. If any of the following conditions occur, the forkO func¬
tion shall return -1 and set errno to the corresponding value:

[EAGAIN] The system lacked the necessary resources to create another
process, or the system-imposed limit on the total number of
processes under execution by a single user would be exceeded.

For each of the following conditions, if the condition is detected, the forkO

function shall return -1 and set errno to the corresponding value:
[ENOMEM] The process requires more space than the system is able to sup-

ply.
3.1.1.5 References. alarmO §3.4.1, exec §3.1.2, fcntlO §6.5.2, killO

§3.3.2, timesO §4.5.2, wait §3.2.1.

3.1.2 Execute a File.
Functions: ex eel (), execu (), e:cede (), exeeve (), exeelp (), exeevp ()

3.1.2.1 Synopsis.

int execl (path, argO, argl,..., argn, (char *) 0)
char *path, *arg0, *argl,..., *argn;

int exeev (path, argv)
char *path, *argv[];

int execle (path, argO, argl,..., argn, (char *) 0, envp)

char *path, *arg0, *argl,..., *argn, *envp[];

int exeeve (path, argv, envp);

char *path, *argv[], *envp[];

int exeelp (file, argO, argl,..., argn, (char *) 0)
char *file, *arg0, *argl,..., *argn;

int exeevp (file, argv)

char *file, *argv [];

extern char **environ;

3.1.2.2 Description. The exec family of functions shall replace the
current process image with a new process image. The new image is constructed
from a regular, executable file called the new process image file. There shall be
no return from a successful exec, because the calling process image is overlaid
by the new process image.

When a C program is executed as a result of this call, it shall be entered as a
C language function call as follows:

50 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

int main (argc, argv)
int argc;
char **argv;

where argc is the argument count and argv is an array of character pointers to
the arguments themselves. In addition, the following variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the environment
strings. The argv and environ arrays are each terminated by a NXJLL pointer.
The NULL pointer terminating the argv array is not counted in argc.

The arguments specified by a program with one of the exec functions shall be
passed on to the new process image in the corresponding main() arguments.

The argument path points to a pathname that identifies the new process
image file.

The argument file is used to construct a pathname that identifies the new pro¬
cess image file. If the file argument does not contain a slash character, the path
prefix for this file is obtained by a search of the directories passed as the
environment variable PATH (see Environment Description §2.7). If this
environment variable is not present, the results of the search are
implementation-defined.

The arguments argO, argl, ... , argn are pointers to null-terminated charac¬
ter strings. These strings constitute the argument list available to the new pro¬
cess image. The list is terminated by a NULL pointer. The argument argO
should point to a filename that is associated with the process being started by
one of the exec functions.

The argument argv is an array of character pointers to null-terminated
strings. The last member of this array shall be a NULL pointer. These strings
constitute the argument list available to the new process image. The value in
argv\0i\ should point to a filename that is associated with the process being
started by one of the exec functions.

The argument envp is an array of character pointers to null-terminated
strings. These strings constitute the environment for the new process image.
The envp array is terminated by a NULL pointer.

For those forms not containing an envp pointer (execlO, execv(), execlpi), and
execvp ()) the environment for the new process image is taken from the external
variable environ in the calling process.

The number of bytes available for the new process’s combined argument and
environment lists is {ARG_MAX}. The implementation shall specify in the sys¬
tem documentation (see Documentation §2.2.1.2) whether any combination of
null terminators, pointers, or alignment bytes are included in this total.

File descriptors open in the calling process image remain open in the new pro¬
cess image, except for those whose close-on-exec flag FD_CLOEXEC is set (see
fcntl() §6.5.2, <fcntl.h> §6.5.1). For those file descriptors that remain open, all
attributes of the open file description, including file locks (see fcntl0 §6.5.2),
remain unchanged by this function call.

3.1 Process Creation and Execution. 51

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Signals set to the default action (SIG_DFL) in the calling process image shall
be set to the default action in the new process image. Signals set to be ignored
(SIG_IGN) by the calling process image shall be set to be ignored by the new pro¬
cess image. Signals set to be caught by the calling process image shall be set to
the default action in the new process image (see <signal.h> §3.3.1).

If the set-user-ID mode bit of the new process image file is set (see chmod{)
§5.6.4), the effective user ID of the new process image is set to the owner ID of
the new process image file. Similarly, if the set-group-ID mode bit of the new
process image file is set, the effective group ID of the new process image is set to
the group ID of the new process image file. The real user ID, real group ID, and
supplementary group IDs of the new process image remain the same as those of
the calling process image. If {_POSIX_SAVED_IDS} is defined, the effective user
ID and effective group ID of the new process image shall be saved (as the saved
set-user-ID and the saved set-group-ID) for use by the setuid() function.

The new process image also inherits the following attributes from the calling
process image:

(1) process ID
(2) parent process ID
(3) process group ID
(4) session membership
(5) real user ID
(6) real group ID
(7) supplementary group IDs
(8) time left until an alarm clock signal (see alarm() §3.4.1)
(9) current working directory
(10) root directory
(11) file mode creation mask (see umask() §5.3.3)
(12) process signal mask (see sigprocmaskO §3.3.5)
(13) pending signals (see sigpending() §3.3.6)
(14) tms_utime, tms_stime, tmsjcutime, and tmsjcstime (see times() §4.5.2)

All process attributes defined by this standard and not specified in this sec¬
tion shall be the same in the new and old process images. The inheritance of
process attributes not defined by this standard is implementation-defined.

Upon successful completion, the exec functions shall mark for update the
stjatime field of the file. If the exec function failed but was able to locate the
process image file, whether the stjatime field is marked for update is unspeci¬
fied. Should the exec function succeed, the process image file shall be considered
to have been open ()-ed. The corresponding close () shall be considered to occur
at a time after this open, but before process termination or successful comple¬
tion of a subsequent call to one of the exec functions.

3.1.2.3 Returns. If one of the exec functions returns to the calling process
image, an error has occurred; the return value shall be -1, and errno shall be set
to indicate the error.

52 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

3.1.2.4 Errors. If any of the following conditions occur, the exec functions
shall return -1 and set errno to the corresponding value:

[E2BIG] The number of bytes used by the new process image’s argument
list and environment list is greater than the system-imposed
limit of {ARG_MAX} bytes.

[EACCES] Search permission is denied for a directory listed in the new
process image file’s path prefix, or the new process image file
denies execution permission, or the new process image file is
not a regular file and the implementation does not support exe¬
cution of files of its type.

[ENAMETOOLONG]
The length of the path or file arguments, or an element of the
environment variable PATH prefixed to a file, exceeds
{PATH_MAX}, or a pathname component is longer than
{NAME_MAX} and {_POSIX_NO_TRUNC} is in effect for that file.

[ENOENT] One or more components of the new process image file’s path¬
name do not exist, or the path or file argument points to an
empty string.

[ENOTDIR] A component of the new process image file’s path prefix is not a
directory.

If any of the following conditions occur, the execli), execvO, execleO, and
execve () functions shall return -1 and set errno to the corresponding value:

[ENOEXEC] The new process image file has the appropriate access permis¬
sion, but is not in the proper format.

For each of the following conditions, if the condition is detected, the exec func¬
tions shall return -1 and return the corresponding value in errno:

[ENOMEM] The new process image requires more memory than is allowed
by the hardware or system-imposed memory management con¬
straints.

3.1.2.5 References. alarmO §3.4.1, chmodO §5.6.4, _exit{) §3.2.2,fcntl()

§6.5.2, forkO §3.1.1, setuidO §4.2.2, <signal.h> §3.3.1, sigprocmaskO §3.3.5,
sigpending() §3.3.6, statO §5.6.2, <sys/stat.h> §5.6.1, timesO §4.5.2, umask()
§5.3.3, Environment Description §2.7.

3.2 Process Termination. There are two kinds of process termination:
(1) Normal termination occurs by a return from main{) or when requested
with the exit() or _exit() functions.
(2) Abnormal termination occurs when requested by the abortO function or
some signals are received (see <signal.h> §3.3.1).

The exit{) and abortO functions shall be as described in the C Standard (see C
Language Standard §A.2.2). Both exit() and abortO shall terminate a process
with the consequences specified in jexitO §3.2.2, except that the status made
available to waitO or waitpidO by abortO shall be that of a process terminated
by the SIGABRT signal.

A parent process can suspend its execution to wait for termination of a child
process with the waitO or waitpidO functions.

3.2 Process Termination. 53

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

3.2.1 Wait for Process Termination.
Functions: waitO, waitpidO

3.2.1.1 Synopsis.

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(statjoc)
int *stat_loc;

pid_t waitpid (pid, statjoc, options)
pid_t pid;
int * statjoc;
int options;

3.2.1.2 Description. The waiti) and waitpidO functions allow the calling
process to obtain status information pertaining to one of its child processes.
Various options permit status information to be obtained for child processes that
have terminated or stopped. If status information is available for two or more
child processes, the order in which their status is reported is unspecified.

The waitO function shall suspend execution of the calling process until status
information for one of its terminated child processes is available, or until
delivery of a signal whose action is either to execute a signal-catching function
or to terminate the process. If status information is available prior to the call to
waitO, return shall be immediate.

The waitpidO function shall behave identically to the waitO function, if the
pid argument has a value of -1 and the options argument has a value of zero.
Otherwise, its behavior shall be modified by the values of the pid and options

arguments.
The pid argument specifies a set of child processes for which status is

requested. The waitpidO function shall only return the status of a child process
from this set.

(1) If pid is equal to -1, status is requested for any child process. In this
respect, waitpidO is then equivalent to waitO.
(2) If pid is greater than zero, it specifies the process ID of a single child pro¬
cess for which status is requested.
(3) If pid is equal to zero, status is requested for any child process whose pro¬
cess group ID is equal to that of the calling process.
(4) If pid is less than -1, status is requested for any child process whose pro¬
cess group ID is equal to the absolute value of pid.

The options argument is constructed from the bitwise inclusive OR of zero or
more of the following flags, defined in the header <sys/wait.h>:

WNOHANG The waitpidO function shall not suspend execution of the
calling process if status is not immediately available for one
of the child processes specified by pid.

WUNTRACED If the implementation supports job control, the status of
any child processes specified by pid that are stopped, and
whose status has not yet been reported since they stopped,
shall also be reported to the requesting process.

54 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

If waiti) or waitpidi) return because the status of a child process is available,
these functions shall return a value equal to the process ID of the child process.
In this case, if the value of the argument statjoc is not NULL, information shall
be stored in the location pointed to by statjoc. If and only if the status
returned is from a terminated child process that returned a value of zero from
maini) or passed a value of zero as the status argument to _exit() or exit(), the
value stored at the location pointed to by statjoc shall be zero. Regardless of its
value, this information may be interpreted using the following macros, which
are defined in <sys/wait.h> and evaluate to integral expressions; the statjual
argument is the integer value pointed to by statjoc.

WIFEXITED(sta£_i;a/)
Evaluates to a non-zero value if status was returned for a child
process that terminated normally.

WEXITSTATUS(statjual)
If the value of WIFEXITED(sta£_i;aZ) is non-zero, this macro
evaluates to the low-order 8 bits of the status argument that the
child process passed to jexiti) or exit (), or the value the child
process returned from maini).

WIFSIGNALETKstatjual)
Evaluates to a non-zero value if status was returned for a child
process that terminated due to the receipt of a signal that was
not caught (see <signal.h> §3.3.1).

WTERMSIG(sta£_i;aZ)
If the value of WIESIGNALED(sta£_i/aZ) is non-zero, this macro
evaluates to the number of the signal that caused the termina¬
tion of the child process.

WIFSTOPPED(staO;aZ)
Evaluates to a non-zero value if status was returned for a child
process that is currently stopped.

WSTOPSI Gistatjual)
If the value of WIFSTOPPED(sta£_i;a/) is non-zero, this macro
evaluates to the number of the signal that caused the child pro¬
cess to stop.

If the information stored at the location pointed to by statjoc was stored
there by a call to the waitpidi) function that specified the WUNTRACED flag,
exactly one of the macros WIFEXITED(*sta£_Zoc), WIFSIGNALEDf*statJoc), and
WIFSTOPPED(*statJoc) shall evaluate to a non-zero value. If the information
stored at the location pointed to by statjoc was stored there by a call to the
waitpidi) function that did not specify the WUNTRACED flag or by a call to the
waiti) function, exactly one of the macros WTFEXITED(* statjoc) and
WIFSIGNALEDf*statJoc) shall evaluate to a non-zero value.

An implementation may define additional circumstances under which waiti)
or waitpidi) reports status. This shall not occur unless the calling process or
one of its child processes explicitly makes use of a nonstandard extension. In
these cases the interpretation of the reported status is implementation-defined.

If a parent process terminates without waiting for all of its child processes to
terminate, the remaining child processes shall be assigned a new parent process

3.2 Process Termination. 55

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

ID corresponding to an implementation-defined system process.
3.2.1.3 Returns. If the wait{) or waitpidO functions return because the

status of a child process is available, these functions shall return a value equal
to the process ID of the child process for which status is reported. If the waitO

or waitpidO functions return due to the delivery of a signal to the calling pro¬
cess, a value of -1 shall be returned and errno shall be set to [EINTR]. If the
waitpidO function was invoked with WNOHANG set in options, it has at least
one child process specified by pid for which status is not available, and status is
not available for any process specified by pid, a value of zero shall be returned.
Otherwise, a value of-1 shall be returned, and errno shall be set to indicate the
error.

3.2.1.4 Errors. If any of the following conditions occur, the waitO func¬
tion shall return -1 and set errno to the corresponding value:

[ECHILD] The calling process has no existing unwaited-for child
processes.

[EINTR] The function was interrupted by a signal. The value of the loca¬
tion pointed to by stat_loc is undefined.

If any of the following conditions occur, the waitpidO function shall return -1
and set errno to the corresponding value:

[ECHILD] The process or process group specified by pid does not exist or is
not a child of the calling process.

[EINTR] The function was interrupted by a signal. The value of the loca¬
tion pointed to by statjoc is undefined.

[EINVAL] The value of the options argument is not valid.
3.2.1.5 References. _exitO §3.2.2, forkO §3.1.1,pause() §3.4.2, times0

§4.5.2, <signal.h> §3.3.1.

3.2.2 Terminate a Process.
Function: jexitO

3.2.2.1 Synopsis.

void _exit (status)
int status;

3.2.2.2 Description. The jexitO function shall terminate the calling pro¬
cess with the following consequences:

(1) All open file descriptors and directory streams in the calling process are
closed.
(2) If the parent process of the calling process is executing a waitO or wait¬

pidO, it is notified of the calling process’s termination and the low order 8
bits of status are made available to it; see wait §3.2.1.
(3) If the parent process of the calling process is not executing a waitO or
waitpidO function, the exit status code is saved for return to the parent pro¬
cess whenever the parent process executes an appropriate subsequent waitO

or waitpidO.
(4) Termination of a process does not directly terminate its children. The
sending of a SIGHUP signal as described below indirectly terminates children
in some circumstances. Children of a terminated process shall be assigned a

56 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

new parent process ID, corresponding to an implementation-defined system
process.
(5) If the implementation supports the SIGCHLD signal, a SIGCHLD signal
shall be sent to the parent process.
(6) If the process is a controlling process, the SIGHUP signal shall be sent to
each process in the foreground process group of the controlling terminal
belonging to the calling process.
(7) If the process is a controlling process, the controlling terminal associated
with the session is disassociated from the session, allowing it to be acquired
by a new controlling process.
(8) If the implementation supports job control, and if the exit of the process
causes a process group to become orphaned, and if any member of the
newly-orphaned process group is stopped, then a SIGHUP signal followed by
a SIGCONT signal shall be sent to each process in the newly-orphaned pro¬
cess group.

These consequences shall occur on process termination for any reason.
3.2.2.3 Returns. The _exit() function cannot return to its caller.
3.2.2.4 References, close() §6.3.1, sigactionO §3.3.4, wait §3.2.1.

3.3 Signals.

3.3.1 Signal Concepts.
3.3.1.1 Signal Names. The <signal.h> header declares the sigsetj type

and the sigaction structure. It also defines the following symbolic constants,
each of which expands to a distinct constant expression of the type void(*)(),
whose value matches no declarable function.

Symbolic
Constant

SIG_DFL
SIG.IGN

Description

request for default signal handling
request that signal be ignored

The type sigsetjt is used to represent sets of signals. It is always an integral
or structure type. Several functions used to manipulate objects of type sigsetj
are defined in sigsetops §3.3.3.

The <signal.h> header also declares the constants that are used to refer to
the signals that occur in the system. Each of the signals defined by this stan¬
dard and supported by the implementation shall have distinct, positive integral
values. The value zero is reserved for use as the null signal (see kill{) §3.3.2).
An implementation may define additional signals that may occur in the system.

The constants shown in Table 3-1 shall be supported by all implementations.
The constants shown in Table 3-2 shall be defined by all implementations.

However, implementations that do not support job control are not required to
support these signals. If these signals are supported by the implementation,
they shall behave in accordance with this standard. Otherwise, the implemen¬
tation shall not generate these signals and attempts to send these signals or to
examine or specify their actions shall return an error condition. See killO §3.3.2
and sigaction() §3.3.4.

3.3 Signals. 57

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Table 3-1. Required Signals

Symbolic
Constant

Default
Action

Description

SIGABRT l Abnormal termination signal, such as is initiated by
the abort() function (as defined in the C Standard).

SIGALRM l Timeout signal, such as initiated by the alarm () func¬
tion (see alarm () §3.4.1).

SIGFPE l Erroneous arithmetic operation, such as division by
zero or an operation resulting in overflow.

SIGHUP 1 Hangup detected on controlling terminal (see Modem
Disconnect §7.1.1.10) or death of controlling process
(see _exit{) §3.2.2).

SIGILL l Detection of an invalid hardware instruction.

SIGINT l Interactive attention signal (see Special Characters
§7.1.1.9).

SIGKILL l Termination signal (cannot be caught or ignored).

SIGPIPE l Write on a pipe with no readers (see write () §6.4.2).

SIGQUIT l Interactive termination signal (see Special Charac¬
ters §7.1.1.9).

SIGSEGV 1 Detection of an invalid memory reference.

SIGTERM l Termination signal.
SIGUSR1 1 Reserved as application-defined signal 1.
SIGUSR2 1 Reserved as application-defined signal 2.

Table 3-2. Job Control Signals

Symbolic
Constant

Default
Action

Description

SIGCHLD 2 Child process terminated or stopped.

SIGCONT 4 Continue if stopped.
SIGSTOP 3 Stop signal (cannot be caught or ignored).
SIGTSTP 3 Interactive stop signal (see Special Characters

§7.1.1.9).

SIGTTIN 3 Read from control terminal attempted by a member of
a background process group (see Terminal Access
Control §7.1.1.4).

SIGTTOU 3 Write to control terminal attempted by a member of a
background process group (see Terminal Access
Control §7.1.1.4).

58 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Default actions for Tables 3-1 and 3-2 are as follows:
1 Abnormal termination of the process.
2 Ignore the signal.
3 Stop the process.
4 Continue the process if it is currently stopped; otherwise, ignore the

signal.
3.3.1.2 Signal Generation and Delivery. A signal is said to be gen¬

erated for (or sent to) a process when the event that causes the signal first
occurs. Examples of such events include detection of hardware faults, timer
expiration, and terminal activity, as well as the invocation of the kill() function.
In some circumstances, the same event generates signals for multiple processes.

Each process has an action to be taken in response to each signal defined by
the system (see Signal Actions §3.3.1.3). A signal is said to be delivered to a
process when the appropriate action for the process and signal is taken.

During the time between the generation of a signal and its delivery, the signal
is said to be pending. Ordinarily, this interval cannot be detected by an applica¬
tion. However, a signal can be blocked from delivery to a process. If the action
associated with a blocked signal is anything other than to ignore the signal, and
if that signal is generated for the process, the signal shall remain pending until
either it is unblocked or the action associated with it is set to ignore the the sig¬
nal. If the action associated with a blocked signal is to ignore the signal and if
that signal is generated for the process, it is unspecified whether the signal is
discarded immediately upon generation or remains pending.

Each process has a signal mask that defines the set of signals currently
blocked from delivery to it. The signal mask for a process is initialized from
that of its parent. The sigaction (), sigprocmaskO, and sigsuspendi) functions
control the manipulation of the signal mask.

The determination of which action is taken in response to a signal is made at
the time the signal is delivered, allowing for any changes since the time of gen¬
eration. This determination is independent of the means by which the signal
was originally generated. If a subsequent occurrence of a pending signal is gen¬
erated, it is implementation-defined as to whether the signal is delivered more
than once. The order in which multiple, simultaneously pending signals are
delivered to a process is unspecified.

When any stop signal (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU) is generated
for a process, any pending SIGCONT signals for that process shall be discarded.
Conversely, when SIGCONT is generated for a process, all pending stop signals
for that process shall be discarded. WTien SIGCONT is generated for a process
that is stopped, the process shall be continued, even if the SIGCONT signal is
blocked or ignored. If SIGCONT is blocked and not ignored, it shall remain
pending until it is either unblocked or a stop signal is generated for the process.

An implementation shall document any conditions not specified by this stan¬
dard under which the implementation generates signals. (See Documentation
§2.2.1.2.)

3.3 Signals. 59

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

3.3.1.3 Signal Actions. There are three types of actions that can be asso¬
ciated with a signal: SIG_DFL, SIG_IGN, or a pointer to a function. Initially, all
signals shall be set to SIG_DFL or SIG_IGN prior to entry of the main() routine
(see exec §3.1.2). The actions prescribed by these values are as follows:

(1) SIG_DFL — signal-specific default action
(a) The default actions for the signals defined in this standard are speci¬
fied in the preceding tables.
(b) If the default action is to stop the process, the execution of that pro¬
cess is temporarily suspended. When a process stops, a SIGCHLD signal
shall be generated for its parent process, unless the parent process has
set the SA_NOCLDSTOP flag (see sigactionO §3.3.4). While a process is
stopped, any additional signals that are sent to the process shall not be
delivered until the process is continued, except SIGKILL, which always
terminates the receiving process. A process that is a member of an
orphaned process group shall not be allowed to stop in response to the
SIGTSTP, SIGTTIN, or SIGTTOU signals. In cases where delivery of one of
these signals would stop such as process, the signal shall be discarded.
(c) Setting a signal action to SIG_DFL for a signal that is pending, and
whose default action is to ignore the signal (for example, SIGCHLD), shall
cause the pending signal to be discarded, whether or not it is blocked.

(2) SIG_IGN — ignore signal
(a) Delivery of the signal shall have no effect on the process. The
behavior of a process is undefined after it ignores a SIGFPE, SIGILL, or
SIGSEGV signal that was not generated by the kill{) function or the
raise() function defined by the C Standard.
(b) The system shall not allow the action for the signals SIGKILL or SIG-
STOP to be set to SIGJGN.
(c) Setting a signal action to SIG_IGN for a signal that is pending shall
cause the pending signal to be discarded, whether or not it is blocked.
(d) If a process sets the action for the SIGCHLD signal to SIG_IGN, the
behavior is unspecified.

(3) pointer to a function — catch signal
(a) On delivery of the signal, the receiving process is to execute the
signal-catching function at the specified address. After returning from
the signal-catching function, the receiving process shall resume execution
at the point at which it was interrupted.
(b) The signal-catching function shall be entered as a C language function
call as follows:

void func (signo)

int signo;

where func is the specified signal-catching function and signo is the sig¬
nal number of the signal being delivered.
(c) The behavior of a process is undefined after it returns normally from a
signal-catching function for a SIGFPE, SIGILL, or SIGSEGV signal that
was not generated by the kill{) function or the raise() function defined by

60 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

the C Standard.
(d) The system shall not allow a process to catch the signals SIGKILL and
SIGSTOP.
(e) If a process establishes a signal-catching function for the SIGCHLD sig¬
nal while it has a terminated child process for which it has not waited, it
is unspecified whether a SIGCHLD signal is generated to indicate that
child process.
(f) When signal-catching functions are invoked asynchronously with pro¬
cess execution, the behavior of some of the functions defined by this stan¬
dard is unspecified if they are called from a signal-catching function. The
following table defines a set of functions that shall be reentrant with
respect to signals (that is, applications may invoke them, without restric¬
tion, from signal-catching functions):

_exit{) getegid ()
access() geteuid ()
alarm () getgidf)
cfgetispeedi) getgroupsi)
cfgetospeed () getpgrp ()
cfsetispeedi) getpidO
cfsetospeed () getppidO
chdir{) getuidi)
chmodi) killO
chowni) link()
close() Iseek ()
creat() mkdir ()
dup2() mkfifoi)
dup () open ()
execle () pathconfi)
execve() paused)
fcntlO pipe ()
fork () read()
fstat ()

rename () tcdrain ()
rmdir () tcflow ()
setgid () tcflushO
setpgid () tcgetattrf)
setsid () tcgetpgrp ()
setuidO tcsendbreak ()
sigaction () tcsetattr()
sigaddset () tcsetpgrp ()
sigdelseti) time ()
sigemptyset () times ()
sigfillset () umask ()
sigismemberO uname ()
sigpending () unlink ()
sigprocmask () ustat ()
sigsuspend () utime ()
sleep () wait{)
stat () waitpidi)
sysconfi) write ()

All IEEE Std 1003.1-1988 functions not in the above table and all func¬
tions defined in the C Standard not stated to be callable from a signal-
catching function are considered to be unsafe with respect to signals. If
any function that is unsafe is interrupted by a signal-catching function
that then calls any function that is unsafe, the behavior is undefined.

3.3.1.4 Signal Effects on Other Functions. Signals affect the behavior
of certain functions defined by this standard if delivered to a process while it is
executing such a function. If the action of the signal is to terminate the process,
the process shall be terminated and the function shall not return. If the action
of the signal is to stop the process, the process shall stop until continued or ter¬
minated. Generation of a SIGCONT signal for the process causes the process to
be continued, and the original function shall continue at the point where the
process was stopped. If the action of the signal is to invoke a signal-catching

3.3 Signals. 61

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

function, the signal-catching function shall be invoked; in this case the original
function is said to be interrupted by the signal. If the signal-catching function
executes a return, the behavior of the interrupted function shall be as
described individually for that function. Signals that are ignored shall not
affect the behavior of any function; signals that are blocked shall not affect the
behavior of any function until they are delivered.

3.3.2 Send a Signal to a Process.
Function: kill{)

3.3.2.1 Synopsis.

#include <sys/types.h>
#include <signal.h>

int kill (pid, sig)

pid_t pid;

int sig;

3.3.2.2 Description. The killi) function shall send a signal to a process
or a group of processes specified by pid. The signal to be sent is specified by sig

and is either one from the list given in <signal.h> §3.3.1 or zero. If sig is zero
(the null signal), error checking is performed but no signal is actually sent. The
null signal can be used to check the validity of pid.

For a process to have permission to send a signal to a process designated by
pid, the real or effective user ID of the sending process must match the real or
effective user ID of the receiving process, unless the sending process has
appropriate privileges. If {_POSIX_SAVED_IDS} is defined, the saved set-user-ID
of the receiving process shall be checked in place of its effective user ID. If a
receiving process’s effective user ID has been altered through use of the S_ISUID
mode bit (see <sys/stat.h> §5.6.1), the implementation may still permit the
application to receive a signal sent by the parent process or by a process with
the same real user ID.

If pid is greater than zero, sig shall be sent to the process whose process ID is
equal to pid.

If pid is zero, sig shall be sent to all processes (excluding an implementation-
defined set of system processes) whose process group ID is equal to the process
group ID of the sender, and for which the process has permission to send a sig¬
nal.

If pid is -1, the behavior of the kill{) function is unspecified.
If pid is negative, but not -1, sig shall be sent to all processes whose process

group ID is equal to the absolute value of pid, and for which the process has per¬
mission to send a signal.

If the value of pid causes sig to be generated for the sending process, and if
sig is not blocked, either sig or at least one pending unblocked signal shall be
delivered to the sending process before the kill() function returns.

If the implementation supports the SIGCONT signal, the user ID tests
described above shall not be applied when sending SIGCONT to a process that is
a member of the same session as the sending process.

62 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

An implementation that provides extended security controls may impose
further implementation-defined restrictions on the sending of signals, including
the null signal. In particular, the system may deny the existence of some or all
of the processes specified by pid.

The kill() function is successful if the process has permission to send sig to
any of the processes specified by pid. If the kill() function fails, no signal shall
be sent.

3.3.2.3 Returns. Upon successful completion, the function shall return a
value of zero. Otherwise, a value of -1 shall be returned and errno shall be set
to indicate the error.

3.3.2.4 Errors. If any of the following conditions occur, the kill() func¬
tion shall return -1 and set errno to the corresponding value:

[EENVAL] The value of the sig argument is an invalid or unsupported sig¬
nal number.

[EPERM] The process does not have permission to send the signal to any
receiving process.

[ESRCH] No process or process group can be found corresponding to that
specified by pid.

3.3.2.5 References. getpidi) §4.1.1, setsidO §4.3.2, sigactionO §3.3.4,
<signal.h> §3.3.1.

3.3.3 Manipulate Signal Sets.
Functions: sigemptyset(), sigfillsetO, sigaddsetO, sigdelset(), sigismemberO

3.3.3.1 Synopsis.

#include <signal.h>

int sigemptyset (set)

sigset_t *set;

int sigfillset (set)

sigset_t *set;

int sigaddset (set, signo)

sigset_t *set;

int signo;

int sigdelset (set, signo)

sigset_t *se£;
int signo;

int sigismember (set, signo)

sigset_t *set;

int signo;

3.3.3.2 Description. The sigsetops primitives manipulate sets of signals.
They operate on data objects addressable by the application, not on any set of
signals known to the system, such as the set blocked from delivery to a process
or the set pending for a process (see <signal.h> §3.3.1).

The sigemptyset () function initializes the signal set pointed to by the argu¬
ment set, such that all signals defined in this standard are excluded.

3.3 Signals. 63

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

The sigfillset{) function initializes the signal set pointed to by the argument
set, such that all signals defined in this standard are included.

Applications shall call either sigemptyset () or sigfillsetO at least once for each
object of type sigsetjt prior to any other use of that object. If such an object is
not initialized in this way, but is nonetheless supplied as an argument to any of
the sigaddset (), sigdelset (), sigismemberO, sigaction (), sigprocmaskO, sigpend-

ing(), or sigsuspendO functions, the results are undefined.
The sigaddset () and sigdelset () functions respectively add and delete the indi¬

vidual signal specified by the value of the argument sigrto from the signal set
pointed to by the argument set.

The sigismemberO function tests whether the signal specified by the value of
the argument signo is a member of the set pointed to by the argument set.

3.3.3.3 Returns. Upon successful completion, the sigismemberO function
returns a value of one if the specified signal is a member of the specified set, or
a value of zero if it is not. Upon successful completion, the other functions
return a value of zero. For all of the above functions, if an error is detected, a
value of -1 is returned and errno is set to indicate the error.

3.3.3.4 Errors. For each of the following conditions, if the condition is
detected, the sigaddset(), sigdelset (), and sigismemberO functions shall return
-1 and set errno to the corresponding value:

[EINVAL] The value of the signo argument is an invalid or unsupported
signal number.

3.3.3.5 References, sigaction0 §3.3.4, <signal.h> §3.3.1, sigpendingO

§3.3.6, sigprocmaskO §3.3.5, sigsuspendO §3.3.7.

3.3.4 Examine and Change Signal Action.
Function: sigaction 0

3.3.4.1 Synopsis.

#include <signal.h>

int sigaction (sig, act, oact)
int sig;
struct sigaction *act, *oact;

3.3.4.2 Description. The sigaction 0 function allows the calling process
to examine or specify (or both) the action to be associated with a specific signal.
The argument sig specifies the signal; acceptable values are defined in
<signal.h> §3.3.1.

The structure sigaction, used to describe an action to be taken, is defined in
the header <signal.h> to include at least the following members:

Member
Type

void (*)()
sigsetjt

int

Member
Name

sajiandler
sajnask

sa Jlags

Description

SIG_DFL, SIG_IGN, or pointer to a function.
Additional set of signals to be blocked, during execu¬
tion of signal-catching function.

Special flags to affect behavior of signal.

64 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

If the argument act is not NULL, it points to a structure specifying the action to
be associated with the specified signal. If the argument oact is not NULL, the
action previously associated with the signal is stored in the location pointed to
by the argument oact. If the argument act is NULL, signal handling is
unchanged by this function call; thus, the call can be used to enquire about the
current handling of a given signal. The sajiandler field of the sigaction struc¬
ture identifies the action to be associated with the specified signal. If the
sajiandler field specifies a signal-catching function, the sajnask field identifies
a set of signals that shall be added to the process’s signal mask before the
signal-catching function is invoked. The SIGKILL and SIGSTOP signals shall not
be added to the signal mask using this mechanism; this restriction shall be
enforced by the system without causing an error to be indicated.

The sa_flags field can be used to modify the behavior of the specified signal.
The following flag bit, defined in the header <signal.h>, can be set in

sa _flags:

Symbolic
Constant

SA_NOCLDSTOP

Description

Do not generate SIGCHLD when children stop

If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa Jlags, and the
implementation supports the SIGCHLD signal, a SIGCHLD signal shall be gen¬
erated for the calling process whenever any of its child processes stop. If sig is
SIGCHLD and the SA_NOCLDSTOP flag is set in sa Jlags, the implementation
shall not generate a SIGCHLD signal in this way.

When a signal is caught by a signal-catching function installed by the sigac-

tion() function, a new signal mask is calculated and installed for the duration of
the signal-catching function (or until a call to either the sigprocmaskO or sig-

suspendi) function is made). This mask is formed by taking the union of the
current signal mask and the value of the sajnask for the signal being delivered,
and then including the signal being delivered. If and when the user’s signal
handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until
another action is explicitly requested (by another call to the sigaction () func¬
tion), or until one of the exec functions is called.

If the previous action for sig had been established by the signal () function,
defined in the C Standard, the values of the fields returned in the structure
pointed to by oact are unspecified, and in particular oact->sv Jiandler is not
necessarily the same value passed to the signal () function. However, if a
pointer to the same structure or a copy thereof is passed to a subsequent call to
the sigaction () function via the act argument, handling of the signal shall be as
if the original call to the signal () function were repeated.

If the sigaction () function fails, no new signal handler is installed.
3.3.4.3 Returns. Upon successful completion a value of zero is returned.

Otherwise, a value of-1 is returned and errno is set to indicate the error.

3.3 Signals. 65

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

3.3.4.4 Errors. If any of the following conditions occur, the sigactionO

function shall return -1 and set errno to the corresponding value:
[EINVAL] The value of the sig argument is an invalid or unsupported sig¬

nal number, or an attempt was made to catch a signal that can¬
not be caught or to ignore a signal that cannot be ignored. See
<signal.h> §3.3.1.

3.3.4.5 References. killO §3.3.2, <signal.h> §3.3.1, sigprocmaskO

§3.3.5, sigsetops §3.3.3, sigsuspendO §3.3.7.

3.3.5 Examine and Change Blocked Signals.
Function: sigprocmaskO

3.3.5.1 Synopsis.

#include <signal.h>

int sigprocmask {how, set, oset)
int how;

sigset_t *set, *oset;

3.3.5.2 Description. The sigprocmask () function is used to examine or
change (or both) the calling process’s signal mask. If the value of the argument
set is not NULL, it points to a set of signals to be used to change the currently
blocked set.

The value of the argument how indicates the manner in which the set is
changed, and shall consist of one of the following values, as defined in the
header <signal.h> §3.3.1:

Name

SIG_BLOCK

SIGJJNBLOCK

SIG_SETMASK

Description

The resulting set shall be the union of the current set
and the signal set pointed to by the argument set.

The resulting set shall be the intersection of the
current set and the complement of the signal set
pointed to by the argument set.

The resulting set shall be the signal set pointed to by
the argument set.

If the argument oset is not NULL, the previous mask is stored in the space
pointed to by oset. If the value of the argument set is NULL, the value of the
argument how is not significant and the process’s signal mask is unchanged by
this function call; thus, the call can be used to enquire about currently blocked
signals.

If there are any pending unblocked signals after the call to the sigprocmask ()
function, at least one of those signals shall be delivered before the sigprocmask ()
function returns.

It is not possible to block the SIGKILL and SIGSTOP signals; this shall be
enforced by the system without causing an error to be indicated.

If any of the SIGFPE, SIGILL, or SIGSEGV signals are generated while they are
blocked, the result is undefined, unless the signal was generated by a call to the
killO function or the raise0 function defined by the C Standard.

66 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

If the sigprocmaskO function fails, the process’s signal mask is not changed
by this function call.

3.3.5.3 Returns. Upon successful completion a value of zero is returned.
Otherwise, a value of-1 is returned and errno is set to indicate the error.

3.3.5.4 Errors. If any of the following conditions occur, the sigproc¬

maskO function shall return -1 and set errno to the corresponding value:
[EINVAL] The value of the how argument is not equal to one of the

defined values.
3.3.5.5 References. sigactionO §3.3.4, <signal.h> §3.3.1, sigpending()

§3.3.6, sigsetops §3.3.3, sigsuspendO §3.3.7.

3.3.6 Examine Pending Signals.
Function: sigpending0

3.3.6.1 Synopsis.

#include <signal.h>

int sigpending (set)

sigset__t

3.3.6.2 Description. The sigpending0 function shall store the set of sig¬
nals that are blocked from delivery and pending for the calling process, in the
space pointed to by the argument set.

3.3.6.3 Returns. Upon successful completion a value of zero is returned.
Otherwise, a value of-1 is returned and errno is set to indicate the error.

3.3.6.4 Errors. This standard does not specify any error conditions that
are required to be detected for the sigpending 0 function. Some errors may be
detected under implementation-defined conditions.

3.3.6.5 References. <signal.h> §3.3.1, sigprocmaskO §3.3.5, sigsetops

§3.3.3.

3.3.7 Wait for a Signal.
Function: sigsuspendO

3.3.7.1 Synopsis.

#include <signal.h>

int sigsuspend (sigmask)

sigset_t *sigmask;

3.3.7.2 Description. The sigsuspend () function replaces the process’s
signal mask with the set of signals pointed to by the argument sigmask and
then suspends the process until delivery of a signal whose action is either to
execute a signal-catching function or to terminate the process.

If the action is to terminate the process, the sigsuspendO function shall not
return. If the action is to execute a signal-catching function, the sigsuspendO

shall return after the signal-catching function returns, with the signal mask
restored to the set that existed prior to the sigsuspendO call.

It is not possible to block those signals that cannot be ignored, as documented
in <signal.h> §3.3.1; this shall be enforced by the system without causing an
error to be indicated.

3.3 Signals. 67

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

3.3.7.3 Returns. Since the sigsuspendO function suspends process exe¬
cution indefinitely, there is no successful completion return value. A value of -1
is returned and errno is set to indicate the error.

3.3.7.4 Errors. If any of the following conditions occur, the sigsuspendO

function shall return -1 and set errno to the corresponding value:
[EINTR] A signal is caught by the calling process and control is returned

from the signal-catching function.
3.3.7.5 References, pause0 §3.4.2, sigaction() §3.3.4, <signal.h> §3.3.1,

sigpendingO §3.3.6, sigprocmaskO §3.3.5, sigsetops §3.3.3.

3.4 Timer Operations. A process can suspend itself for a specific period of
time with the sleep 0 function or suspend itself indefinitely with the pause 0

function until a signal arrives. The alarmO function schedules a signal to
arrive at a specific time, so a pause 0 suspension need not be indefinite.

3.4.1 Schedule Alarm.
Function: alarmO

3.4.1.1 Synopsis.

unsigned int alarm (seconds)
unsigned int seconds;

3.4.1.2 Description. The alarmO function shall cause the system to send
the calling process a SIGALRM signal after the number of real time seconds
specified by seconds have elapsed.

Processor scheduling delays may cause the process to not actually begin han¬
dling the signal until after the desired time.

Alarm requests are not stacked; only one SIGALRM generation can be
scheduled in this manner; if the SIGALRM has not yet been generated, the call
will result in rescheduling the time at which the SIGALRM will be generated.

If seconds is zero, any previously-made alarmO request is canceled.
3.4.1.3 Returns. The alarmO function shall return the amount of time

remaining in seconds before the system is scheduled to generate the SIGALRM
signal, or zero if there is no previous alarm () request.

3.4.1.4 Errors. The alarmO function is always successful, and no return
value is reserved to indicate an error.

3.4.1.5 References, exec §3.1.2, forkO §3.1.1,pauseO §3.4.2, sigactionO

§3.3.4, <signal.h> §3.3.1.

3.4.2 Suspend Process Execution.
Function: pause()

3.4.2.1 Synopsis.

int pause ()

3.4.2.2 Description. The pause () function suspends the calling process
until delivery of a signal whose action is either to execute a signal-catching
function or to terminate the process.

If the action is to terminate the process, the pause () function shall not return.

68 Process Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

If the action is to execute a signal-catching function, the pause () function
shall return after the signal-catching function returns.

3.4.2.3 Returns. Since the pause() function suspends process execution
indefinitely, there is no successful completion return value. A value of -1 is
returned and errno is set to indicate the error.

3.4.2.4 Errors. If any of the following conditions occur, the pause () func¬
tion shall return -1 and set errno to the corresponding value:

[EINTR] A signal is caught by the calling process and control is returned
from the signal-catching function.

3.4.2.5 References. alarmO §3.4.1, kill() §3.3.2, wait §3.2.1, Signal
Effects on Other Functions §3.3.1.4.

3.4.3 Delay Process Execution.
Function: sleep ()

3.4.3.1 Synopsis.

unsigned int sleep (seconds)
unsigned int seconds;

3.4.3.2 Description. The sleep () function shall cause the current process
to be suspended from execution until either the number of real time seconds
specified by the argument seconds have elapsed or a signal is delivered to the
calling process and its action is to invoke a signal-catching function or to ter¬
minate the process. The suspension time may be longer than requested due to
the scheduling of other activity by the system.

If a SIGALRM signal is generated for the calling process during execution of
the sleep () function, and if the SIGALRM signal is being ignored or blocked from
delivery, it is unspecified whether sleep 0 returns when the SIGALRM signal is
scheduled. If the signal is being blocked, it is also unspecified whether it
remains pending after the sleep () function returns or it is discarded.

If a SIGALRM signal is generated for the calling process during execution of
the sleep() function, except as a result of a prior call to the alarm{) function,
and if the SIGALRM signal is not being ignored or blocked from delivery, it is
unspecified whether that signal has any effect other than causing the sleep ()
function to return.

If a signal-catching function interrupts the sleep () function and examines or
changes either the time a SIGALRM is scheduled to be generated, the action
associated with the SIGALRM signal, or whether the SIGALRM signal is blocked
from delivery, the results are unspecified.

If a signal-catching function interrupts the sleep () function and calls the
siglongjmp () or longjmp () function to restore an environment saved prior to the
sleep () call, the action associated with the SIGALRM signal and the time at
which a SIGALRM signal is scheduled to be generated are unspecified. It is also
unspecified whether the SIGALRM signal is blocked, unless the process’s signal
mask is restored as part of the environment (see sigsetjmp () §8.3.1).

3.4 Timer Operations. 69

3.4.3.3 Returns. If the sleep 0 function returns because the requested
time has elapsed, the value returned shall be zero. If the sleep () function
returns due to delivery of a signal, the value returned shall be the unslept
amount (the requested time minus the time actually slept) in seconds.

3.4.3.4 Errors. The sleep () function is always successful, and no return
value is reserved to indicate an error.

3.4.3.5 References. alarm() §3.4.1,pawse() §3.4.2, sigactionO §3.3.4.

70 Process Primitives

4. Process Environment

4.1 Process Identification.

4.1.1 Get Process and Parent Process EDs.
Functions: getpid(), getppid()

4.1.1.1 Synopsis.

#include <sys/types.h>

pid_t getpid ()

pid_t getppid ()

4.1.1.2 Description. The getpid0 function returns the process ID of the
calling process.

The getppidO function returns the parent process ED of the calling process.
4.1.1.3 Returns. See Description.
4.1.1.4 Errors. The getpidi) and getppidO functions are always success¬

ful, and no return value is reserved to indicate an error.
4.1.1.5 References, exec §3.1.2, forkO §3.1.1, killO §3.3.2.

4.2 User Identification.

4.2.1 Get Real User, Effective User, Real Group, and Effective Group
EDs.
Functions: getuid(), geteuid (), getgid (), getegid ()

4.2.1.1 Synopsis.

#include <sys/types.h>

uid_t getuid ()

uid_t geteuid ()

gid_t getgid ()

gid_t getegid ()

4.2.1.2 Description. The getuidO function returns the real user ID of the
calling process.

The geteuid() function returns the effective user ED of the calling process.
The getgid() function returns the real group ED of the calling process.

4.2 User Identification. 71

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

The get egidi) function returns the effective group ID of the calling process.
4.2.1.3 Returns. See Description.
4.2.1.4 Errors. The getuid(), geteuidi), getgidi), and getegidi) functions

are always successful, and no return value is reserved to indicate an error.
4.2.1.5 References, setuidi) §4.2.2.

4.2.2 Set User and Group IDs.
Functions: setuidi), setgidi)

4.2.2.1 Synopsis.

#include <sys/types.h>

int setuid (uid)
uid_t uid;

int setgid (gid)
gid_t gid;

4.2.2.2 Description. If {_POSIX_SAVED_IDS} is defined:
(1) If the process has appropriate privileges, the setuidi) function sets the
real user ID, effective user ID, and the saved set-user-ID to uid.

(2) If the process does not have appropriate privileges, but uid is equal to the
real user ID or the saved set-user-ID, the setuidi) function sets the effective
user ID to uid; the real user ID and saved set-user-ID remain unchanged by
this function call.
(3) If the process has appropriate privileges, the setgidi) function sets the
real group ID, effective group ID, and the saved set-group-ID to gid.

(4) If the process does not have appropriate privileges, but gid is equal to the
real group ID or the saved set-group-ID, the setgidi) function sets the effec¬
tive group ID to gid; the real group ID and saved set-group-ID remain
unchanged by this function call.

Otherwise:
(1) If the process has appropriate privileges, the setuidi) function sets the
real user ID and effective user ID to uid.

(2) If the process does not have appropriate privileges, but uid is equal to the
real user ID, the setuidi) function sets the effective user ID to uid; the real
user ID remains unchanged by this function call.
(3) If the process has appropriate privileges, the setgidi) function sets the
real group ID and effective group ID to gid.

(4) If the process does not have appropriate privileges, butgfc? is equal to the
real group ID, the setgidi) function sets the effective group ID to gid; the real
group ID remains unchanged by this function call.

Any supplementary group IDs of the calling process remain unchanged by
these function calls.

4.2.2.3 Returns. Upon successful completion, a value of zero is returned.
Otherwise, a value of-1 is returned and errno is set to indicate the error.

72 Process Environment

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

4.2.2.4 Errors. If any of the following conditions occur, the setuidi) func¬
tion shall return -1 and set errno to the corresponding value:

[EINVAL] The value of the uid argument is invalid and not supported by
the implementation.

[EPERM] The process does not have appropriate privileges and uid does
not match the real user ID or, if {_POSIX_SAVED_IDS} is defined,
the saved set-user-ID.

If any of the following conditions occur, the setgidi) function shall return -1
and set errno to the corresponding value:

[EINVAL] The value of the gid argument is invalid and not supported by
the implementation.

[EPERM] The process does not have appropriate privileges and gid does
not match the real group ID or, if {_POSIX_SAVED_IDS} is
defined, the saved set-group-ID.

4.2.2.5 References, exec §3.1.2,getuidi) §4.2.1.

4.2.3 Get Supplementary Group EDs.
Function: getgroups ()

4.2.3.1 Synopsis.

#include <sys/types.h>

int getgroups {gidsetsize,grouplist)
int gidsetsize;
gid_t grouplist[];

4.2.3.2 Description. The getgroups() function fills in the array grouplist
with the supplementary group IDs of the calling process. The gidsetsize argu¬
ment specifies the number of elements in the supplied array grouplist. The
actual number of supplementary group IDs is returned. The values of array
entries with indices larger than or equal to the returned value are undefined.

It is unspecified whether the effective group ID of the calling process is
included in or omitted from the returned list of supplementary group IDs.

As a special case, if the gidsetsize argument is zero, getgroupsi) returns the
number of supplemental group IDs associated with the calling process without
modifying the array pointed to by the grouplist argument.

4.2.3.3 Returns. Upon successful completion, the number of supplemen¬
tary group IDs is returned. This value is zero if {NGROUPS_MAX} is zero. A
return value of-1 indicates failure and errno is set to indicate the error.

4.2.3.4 Errors. If any of the following conditions occur, the getgroupsi)
function shall return -1 and set errno to the corresponding value:

[EINVAL] The gidsetsize argument is not equal to zero and is less than the
number of supplementary group IDs.

4.2.3.5 References, setgidi) §4.2.2.

4.2 User Identification. 73

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

4.2.4 Get User Name.
Functions: getloginO, cuserid()

4.2.4.1 Synopsis.

char *getlogin ()

#include <stdio.h>

char *cuserid (s)
char *s;

4.2.4.2 Description. These functions return a string giving a name of
the user associated with the current process. The cuserid() function returns a
name associated with the effective user ID of the process, and the getloginO
function returns the name associated by the login activity with the control ter¬
minal.

The recommended procedure is either to call the cuserid () function, or to call
getloginO and, if it fails, to call the getpwuidO function with the value returned
by the getuidO function.

The getloginO function returns a pointer to the user’s login name. The same
user ID may be shared by several login names. Therefore, to ensure that the
correct user database entry is found, the getloginO function should be used with
thegetpwnamO function.

If getloginO returns a non-NULL pointer, that pointer is to the name the user
logged in under, even if there are several login names with the same user ID.

The cuserid () function generates a character representation of the login name
of the owner of the current process. If s is not a NULL pointer, it is assumed
that s points to an array of at least L_cuserid bytes; the representation is
returned in this array. The symbolic constant L_cuserid is defined in
<stdio.h>, and shall have a value greater than zero.

4.2.4.3 Returns. The getloginO function returns a pointer to a string
containing the user’s login name, or a NULL pointer if the user’s login name
cannot be found.

The return value from getlogin () may point to static data and therefore may
be overwritten by each call.

If s is a NULL pointer, the result from cuserid 0 is generated in an area that
may be static, the address of which is returned. If the login name cannot be
found, cuserid () returns a NULL pointer. If s is not a NULL pointer, s is
returned. If the login name cannot be found, the null character shall be placed
at *s. The return value from cuserid 0 may point to static data and therefore
may be overwritten by each call.

The implementation of the cuserid () function may use the getpwnam () func¬
tion, so the results of a user’s call to either routine may be overwritten by a sub¬
sequent call to the other routine.

4.2.4.4 Errors. This standard does not specify any error conditions that
are required to be detected for the cuserid() or getloginO functions. Some errors
may be detected under implementation-defined conditions.

74 Process Environment

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

4.2.4.5 References, getpwnam{) §9.2.2,getpwuid() §9.2.2.

4.3 Process Groups.

4.3.1 Get Process Group ID.
Function: getpgrp()

4.3.1.1 Synopsis.

#include <sys/types.h>

pid_t getpgrp ()

4.3.1.2 Description. The getpgrp 0 function returns the process group ID
of the calling process.

4.3.1.3 Returns. See Description.
4.3.1.4 Errors. The getpgrp () function is always successful, and no

return value is reserved to indicate an error.
4.3.1.5 References, setpgidi) §4.3.3, setsidO §4.3.2, sigactionO §3.3.4.

4.3.2 Create Session and Set Process Group ID.
Function: setsidO

4.3.2.1 Synopsis.

#include <sys/types.h>

pid_t setsid ()

4.3.2.2 Description. If the calling process is not a process group leader,
the setsidO function shall create a new session. The calling process shall be the
session leader of this new session, shall be the process group leader of a new
process group, and shall have no controlling terminal. The process group ID of
the calling process shall be set equal to the process ID of the calling process.
The calling process shall be the only process in the new process group and the
only process in the new session.

4.3.2.3 Returns. Upon successful completion, the setsidO function
returns the value of the process group ID of the calling process.

4.3.2.4 Errors. If any of the following conditions occur, the setsidO func¬
tion shall return -1 and set err no to the corresponding value:

[EPERM] The calling process is already a process group leader or the pro¬
cess group ID of a process other than the calling process
matches the process ID of the calling process.

4.3.2.5 References, exec §3.1.2, jexitO §3.2.2, forkO §3.1.1 ,getpidO
§4.1.1, killO §3.3.2, setpgidO §4.3.3, sigactionO §3.3.4.

4.3.3 Set Process Group ID for Job Control.
Function: setpgidO

4.3.3.1 Synopsis.

#include <sys/types.h>

int setpgid (pid,pgid)
pid_t pid9pgid;

4.3 Process Groups. 75

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

4.3.3.2 Description.
If {_POSIX_JOB_CONTROL} is defined:

The setpgid () function is used to either join an existing process group
or create a new process group within the session of the calling process.
The process group ID of a session leader shall not change. Upon suc¬
cessful completion, the process group ID of the process with a process
ID that matches pid shall be set to pgid. As a special case, if pid is
zero, the process ID of the calling process shall be used. Also, if pgid is
zero, the process ID of the indicated process shall be used.

Otherwise:
Either the implementation shall support the setpgid () function as
described above or the setpgid() function shall fail.

4.3.3.3 Returns. Upon successful completion, the setpgid() function
returns a value of zero. Otherwise, a value of -1 is returned and errno is set to
indicate the error.

4.3.3.4 Errors. If any of the following conditions occur, the setpgid ()
function shall return -1 and set errno to the corresponding value:

[EACCES] The value of the pid argument matches the process ID of a child
process of the calling process and the child process has success¬
fully executed one of the exec functions.

[EINVAL] The value of the pgid argument is less than zero or is not a
value supported by the implementation.

[ENOSYS] The setpgid () function is not supported by this implementation.
[EPERM] The process indicated by the pid argument is a session leader.

The value of the pid argument is valid but matches the pro¬
cess ID of a child process of the calling process and the child
process is not in the same session as the calling process.

The value of the pgid argument does not match the process ID
of the process indicated by the pid argument and there is no
process with a process group ID that matches the value of the
pgid argument in the same session as the calling process.

[ESRCH] The value of the pid argument does not match the process ID of
the calling process or of a child process of the calling process.

4.3.3.5 References, getpgrp() §4.3.1, setsidO §4.3.2, tcsetpgrpl) §7.2.4,
exec §3.1.2.

4.4 System Identification.

4.4.1 System Name.
Function: uname()

4.4.1.1 Synopsis.

#include <sys/utsname.h>

int uname {name)

struct utsname *name;

76 Process Environment

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

4.4.1.2 Description. The uname () function stores information identify¬
ing the current operating system in the structure pointed to by the argument
name.

The structure utsname is defined in the header <sys/utsname.h>, and con¬
tains at least the members shown in Table 4-1.

Table 4-1. uname0 Structure Members

Member
Name

sysname

nodename

release

version

machine

Description

Name of this implementation of the operating system.

Name of this node within an implementation-specified communi¬
cations network.

Current release level of this implementation.

Current version level of this release.

Name of the hardware type that the system is running on.

Each of these data items is a null-terminated character array.
The format of each member is implementation-defined. The system documen¬

tation (see Documentation §2.2.1.2) shall specify the source and format of each
member and may specify the range of values for each member.

The inclusion of the nodename member in this structure does not imply that it
is sufficient information for interfacing to communications networks.

4.4.1.3 Returns. Upon successful completion, a non-negative value is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

4.4.1.4 Errors. This standard does not specify any error conditions that
are required to be detected for the uname() function. Some errors may be
detected under implementation-defined conditions.

4.5 Time.

4.5.1 Get System Time.
Function: time{)

4.5.1.1 Synopsis.

#include <time.h>

time_t time (tloc)
time_t *tloc;

4.5.1.2 Description. The time{) function returns the value of time in
seconds since the Epoch §2.3.

The argument tloc points to an area where the return value is also stored. If
tloc is a NULL pointer, no value is stored.

4.5 Time. 77

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

4.5.1.3 Returns. Upon successful completion, time () returns the value of
time. Otherwise, a value of ((timej) -1) is returned and errno is set to indicate
the error.

4.5.1.4 Errors. This standard does not specify any error conditions that
are required to be detected for the time () function. Some errors may be detected
under implementation-defined conditions.

4.5.2 Process Times.
Function: times()

4.5.2.1 Synopsis.

#include <sys/times.h>

clockjt times (buffer)
struct tms *buffer;

4.5.2.2 Description. The times () function shall fill the structure pointed
to by buffer with time-accounting information. The type clockjt and the tms
structure are defined in <sys/times.h>; the tms structure shall contain at least
the following members:

Member
Type

Member
Name

Description

clockjt tmsjutime User CPU time.
clock J tms_stime System CPU time.
clock J tmsjcutime User CPU time of terminated child processes.
clock_t tmsjcstime System CPU time of terminated child processes.

All times are in {CLK_TCK}ths of a second.
The times of a terminated child process are included in the tms_cutime and

tmsjcstime elements of the parent when a wait() or waitpidO function returns
the process ID of this terminated child. See wait §3.2.1. If a child process has
not waited for its terminated children, their times shall not be included in its
times.

The value tmsjutime is the CPU time charged for the execution of user
instructions.

The value tms_stime is the CPU time charged for execution by the system on
behalf of the process.

The value tmsjcutime is the sum of the tmsjutime s and tms_cutime s of the
child processes.

The value tmsjcstime is the sum of the tms_stime s and tmsjcstime s of the
child processes.

4.5.2.3 Returns. Upon successful completion, times 0 shall return the
elapsed real time, in {CLK_TCK}ths of a second, since an arbitrary point in the
past (for example, system start-up time). This point does not change from one
invocation of times () within the process to another. The return value may over¬
flow the possible range of type clock_t. If the times() function fails, a value of
((clockjt) -1) is returned and errno is set to indicate the error.

78 Process Environment

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

4.5.2.4 Errors. This standard does not specify any error conditions that
are required to be detected for the times() function. Some errors may be
detected under implementation-defined conditions.

4.5.2.5 References, exec §3.1.2,fork() §3.1.1, timeO §4.5.1, waitO §3.2.1.

4.6 Environment Variables.

4.6.1 Environment Access.
Function: getenvi)

4.6.1.1 Synopsis.

#include <stdlib.h>

char *getenv (name)

char *name;

4.6.1.2 Description. The getenvO function searches the environment list
(see Environment Description §2.7) for a string of the form name=value and
returns a pointer to value if such a string is present. If the specified name can¬
not be found, a NULL pointer is returned.

4.6.1.3 Returns. Upon successful completion, the getenvO function
returns a pointer to a string containing the value for the specified name, or a
NULL pointer if the specified name cannot be found. The return value from
getenvO may point to static data and therefore may be overwritten by each call.
Unsuccessful completion shall result in the return of a NULL pointer.

4.6.1.4 Errors. This standard does not specify any error conditions that
are required to be detected for the getenvO function. Some errors may be
detected under implementation-defined conditions.

4.6.1.5 References, environ §3.1.2, Environment Description §2.7.

4.7 Terminal Identification.

4.7.1 Generate Terminal Pathname.
Function: ctermidO

4.7.1.1 Synopsis.

#include <stdio.h>

char *ctermid (s)
char *s;

4.7.1.2 Description. The ctermidO function generates a string that,
when used as a pathname, refers to the current controlling terminal for the
current process.

If the ctermidO function returns a pathname, access to the file is not
guaranteed.

4.7.1.3 Returns. If s is a NULL pointer, the string is generated in an
area that may be static (and therefore may be overwritten by each call), the
address of which is returned. Otherwise s is assumed to point to a character
array of at least L_ctermid bytes; the string is placed in this array and the value
of s is returned. The symbolic constant L_ctermid is defined in <stdio.h>, and
shall have a value greater than zero.

4.7 Terminal Identification. 79

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

The ctermid () function shall return an empty string if the pathname that
would refer to the controlling terminal cannot be determined, of if the function
is unsuccessful.

4.7.1.4 Errors. This standard does not specify any error conditions that
are required to be detected for the ctermid () function. Some errors may be
detected under implementation-defined conditions.

4.7.1.5 References, ttyname() §4.7.2.

4.7.2 Determine Terminal Device Name.
Functions: ttyname(), isatty ()

4.7.2.1 Synopsis.

char *ttyname (fildes)
int fildes;

int isatty {fildes)

int fildes;

4.7.2.2 Description. The ttyname () function returns a pointer to a string
containing a null-terminated pathname of the terminal associated with file
descriptor fildes.

The return value of tty name () may point to static data that is overwritten by
each call.

The isatty () function returns 1 if fildes is a valid file descriptor associated
with a terminal, zero otherwise.

4.7.2.3 Returns. The ttyname () function returns a NULL pointer if fildes

is not a valid file descriptor associated with a terminal or if the pathname can¬
not be determined.

4.7.2.4 Errors. This standard does not specify any error conditions that
are required to be detected for the ttyname() or isatty () functions. Some errors
may be detected under implementation-defined conditions.

4.8 Configurable System Variables.

4.8.1 Get Configurable System Variables.
Function: sysconfO

4.8.1.1 Synopsis.

#include <unistd.h>

long sysconf {name)

int name;

4.8.1.2 Description. The sysconfO function provides a method for the
application to determine the current value of a configurable system limit or
option {variable).

The name argument represents the system variable to be queried. The imple¬
mentation shall support all of the variables listed in Table 4-2 and may support
others. The variables in Table 4-2 come from <limits.h> §2.9 or <unistd.h>
§2.10 (or <time.h> from the C Standard for {CLK_TCK}), and the symbolic con¬
stants, defined in <unistd.h>, that are the corresponding values used for name.

80 Process Environment

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Table 4-2. Configurable System Variables

Variable name Value

{ARG_MAX}
{CHILD.MAX}
{CLKTCK}
{NGROUPS.MAX}
{OPEN_MAX}
{_POSEX_JOB_CONTROL}
{_POSIX_SAVED_IDS}
{_POSIX_VERSION}

{_SC_SAVED_IDS}
{_SC_VERSION}

{_SC_CHILD_MAX}
(_SC_CLK_TCK)
{_SC_NGROUPS_MAX}
{_SC_OPEN_MAX}
{_SC_J OB_CONTROL}

{_SC_ARG_MAX}

The value of |CLK_TCK} is permitted to be evaluated at run-time by the
C Standard (and thus by this standard). The value returned by sysconfi) for
{_SC_CLK_TCK} shall be the same as that returned by {CLK_TCK}.

4.8.1.3 Returns. If name is an invalid value, sysconfi) shall return -1. If
the variable corresponding to name is not defined on the system, sysconfi) shall
return -1 without changing the value of errno.

Otherwise, the sysconfi) function returns the current variable value on the
system. The value returned shall not be more restrictive than the correspond¬
ing value described to the application when it was compiled with the
implementation’s <limits.h> §2.9 or <unistd.h> §2.10. The value shall not
change during the lifetime of the calling process.

4.8.1.4 Errors. If any of the following conditions occur, the sysconfi)
function shall return -1 and set errno to the corresponding value:

[EINVAL] The value of the name argument is invalid.

4.8 Configurable System Variables. 81

5. Files and Directories

The functions in this section perform the operating system services dealing
with the creation and removal of files and directories and the detection and
modification of their characteristics. They also provide the primary methods a
process will use to gain access to files and directories for subsequent I/O opera¬
tions (see Input and Output Primitives §6).

5.1 Directories.

5.1.1 Format of Directory Entries. The header <dirent.h> defines a
structure and a defined type used by the directory routines.

The internal format of directories is implementation-defined.
The readdir () function returns a pointer to an object of type struct dirent that

includes the member:

Member Member
Type Name

char [] djiame

Description

Null-terminated filename

The character array djiame is of unspecified size, but the number of bytes
preceding the terminating null character shall not exceed {NAME_MAX}.

5.1.2 Directory Operations.
Functions: opendir{), readdir(), rewinddir(), closedir()

5.1.2.1 Synopsis.

#include <sys/types.h>
#include <dirent.h>

DIR *opendir (dirname)

char *dirname;

struct dirent *readdir {dirp)
DIR *dirp;

void rewinddir {dirp)

DIR *dirp;

int closedir {dirp)
DIR *dirp;

5.1 Directories. 83

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

5.1.2.2 Description. The type DIR, which is defined in the header
<dirent.h> §5.1.1, represents a directory stream, which is an ordered sequence
of all the directory entries in a particular directory. Directory entries represent
files; files may be removed from a directory or added to a directory asynchro¬
nously to the operations described in this section. The type DIR may be imple¬
mented using a file descriptor. In that case, applications will only be able to
open up to a total of {OPEN_MAX} files and directories; see openi) §5.3.1. If a file
descriptor is used, the FD_CLOEXEC flag shall be set on that file descriptor; see
<fcntl.h> §6.5.1.

The opendiri) function opens a directory stream corresponding to the direc¬
tory named by the dirname argument. The directory stream is positioned at the
first entry.

The readdir () function returns a pointer to a structure representing the direc¬
tory entry at the current position in the directory stream to which dirp refers,
and positions the directory stream at the next entry. It returns a NULL pointer
upon reaching the end of the directory stream.

The readdir () function shall not return directory entries containing empty
names. If entries for dot or dot-dot exist, one entry shall be returned for dot and
one entry shall be returned for dot-dot; otherwise they shall not be returned.

The pointer returned by readdir () points to data which may be overwritten by
another call to readdir () on the same directory stream. This data shall not be
overwritten by another call to readdir () on a different directory stream.

The readdir () function may buffer several directory entries per actual read
operation; the readdir () function shall mark for update the stjatime field of the
directory each time the directory is actually read.

The rewinddirO function resets the position of the directory stream to which
dirp refers to the beginning of the directory. It also causes the directory stream
to refer to the current state of the corresponding directory, as a call to opendiri)
would have done. It does not return a value.

If a file is removed from or added to the directory after the most recent call to
opendiri) or rewinddirO, whether a subsequent call to readdir() returns an
entry for that file is unspecified.

The closediri) function closes the directory stream referred to by dirp and
returns a value of zero if successful. Otherwise, it returns -1 indicating an
error. Upon return, the value of dirp may no longer point to an accessible object
of type DIR. If a file descriptor is used to implement type DIR, that file descrip¬
tor shall be closed.

If the dirp argument passed to any of these functions does not refer to a
currently-open directory stream, the effect is undefined.

The result of using a directory stream after one of the exec family of functions
is undefined. After a call to the forki) function, either the parent or the child
(but not both) may continue processing the directory stream using readdir0 or
rewinddirO or both. If both the parent and child processes use these functions,
the result is undefined. Either or both processes may use closediri).

84 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

5.1.2.3 Returns. Upon successful completion, opendirO returns a pointer

to an object of type DIR. Otherwise, a value of NULL is returned and errno is

set to indicate the error.

Upon successful completion, readdirO returns a pointer to an object of type

struct dirent. When an error is encountered, a value of NULL is returned and

errno is set to indicate the error. When the end of the directory is encountered,

a value of NULL is returned and errno is not changed by this function call.

Upon successful completion, closedir() returns a value of zero. Otherwise, a

value of -1 is returned and errno is set to indicate the error.

5.1.2.4 Errors. If any of the following conditions occur, the opendirO

function shall return a value of NULL and set errno to the corresponding value:

[EACCES] Search permission is denied for any component of dirname or

read permission is denied for dirname.

[ENAMETOOLONG]

The length of the dirname argument exceeds {PATH_MAX}, or a

pathname component is longer than {NAME_MAX} while

{_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named directory does not exist.

[ENOTDIR] A component of dirname is not a directory.

For each of the following conditions, when the condition is detected, the open¬

dirO function shall return a value of NULL and set errno to the corresponding

value:

[EMFILE] Too many file descriptors are currently open for the process.

[ENFILE] Too many file descriptors are currently open in the system.

For each of the following conditions, when the condition is detected, the read¬

dirO function shall return a value of NULL and set errno to the corresponding

value:

[EBADF] The dirp argument does not refer to an open directory stream.

For each of the following conditions, when the condition is detected, the

closedir0 function shall return -1 and set errno to the corresponding value:

[EBADF] The dirp argument does not refer to an open directory stream.

5.1.2.5 References. <dirent.h> §5.1.1.

5.2 Working Directory.

5.2.1 Change Current Working Directory.
Function: chdirO

5.2.1.1 Synopsis.

int chdir (path)

char *path;

5.2.1.2 Description. The path argument points to the pathname of a

directory. The chdirO function causes the named directory to become the

current working directory, that is, the starting point for path searches of path¬

names not beginning with slash.

If the chdirO function fails, the current working directory shall remain

unchanged by this function call.

5.2 Working Directory. 85

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

5.2.1.3 Returns. Upon successful completion, a value of zero is returned.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

5.2.1.4 Errors. If any of the following conditions occur, the chdirO func¬

tion shall return -1 and set errno to the corresponding value:

[EACCES] Search permission is denied for any component of the path¬

name.

[ENAMETOOLONG]

The path argument exceeds {PATH_MAX} in length, or a path¬

name component is longer than {NAME_MAX} while

{_POSIX_N0_TRUNC} is in effect.

[ENOTDIR] A component of the pathname is not a directory.

[ENOENT] The named directory does not exist or path is an empty string.

5.2.1.5 References. getcwdO §5.2.2.

5.2.2 Working Directory Pathname.
Function: getcwdO

5.2.2.1 Synopsis.

char *getcwd (buf, size)

char *buf;

int size;

5.2.2.2 Description. The getcwdO function copies an absolute pathname

of the current working directory to the character array pointed to by the argu¬

ment buf and returns a pointer to the result. The size argument is the size in

bytes of the character array pointed to by the buf argument. If buf is a NULL

pointer, the behavior of getcwdO is undefined.

5.2.2.3 Returns. If successful, the buf argument is returned. A NULL

pointer is returned if an error occurs and the variable errno is set to indicate the

error. The contents of buf after an error is undefined.

5.2.2.4 Errors. If any of the following conditions occur, the getcwdO

function shall return a value of NULL and set errno to the corresponding value:

[EINVALj The size argument is less than or equal to zero.

[ERANGE] The size argument is greater than zero, but is smaller than the

length of the pathname plus 1.

For each of the following conditions, if the condition is detected, the getcwdO

function shall return a value of NULL and set errno to the corresponding value:

[EACCES] Read or search permission was denied for a component of the

pathname.

5.2.2.5 References. chdir() §5.2.1.

86 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

5.3 General File Creation.

5.3.1 Open a File.
Function: openi)

5.3.1.1 Synopsis.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open {path, oflag,...)

char *path;

int oflag;

5.3.1.2 Description. The openi) function establishes the connection

between a file and a file descriptor. It creates an open file description that

refers to a file and a file descriptor that refers to that open file description. The

file descriptor is used by other I/O functions to refer to that file. The path argu¬

ment points to a pathname naming a file.

The openi) function shall return a file descriptor for the named file which is

the lowest file descriptor not currently open for that process. The open file

description is new, and therefore the file descriptor does not share it with any

other process in the system. The file offset shall be set to the beginning of the

file. The file status flags and file access modes of the open file description shall

be set according to the value of oflag. The value of oflag is the bitwise inclusive

OR of values from the following list. See <fcntl.h> §6.5.1 for the definitions of

the symbolic constants. Applications shall specify exactly one of the first three

values (file access modes) below in the value of oflag:

0_RD0NLY Open for reading only.

0_WR0NLY Open for writing only.

0_RDWR Open for reading and writing. The result is undefined if this

flag is applied to a FIFO.

Any combination of the remaining flags may be specified in the value of oflag:

0_APPEND If set, the file offset shall be set to the end of the file prior to

each write.

0_CREAT This option requires a third argument, mode, which is of type

modejt. If the file exists, this flag has no effect, except as

noted under 0_EXCL, below. Otherwise, the file is created;

the file’s user ID shall be set to the process’s effective user ID;

the file’s group ID shall be set to the group ID of the directory

in which the file is being created or to the process’s effective

group ID. The file permission bits (see <sys/stat.h> §5.6.1)

shall be set to the value of mode except those set in the

process’s file mode creation mask (see umask () §5.3.3). When

bits in mode other than the file permission bits are set, the

effect is implementation-defined. The mode argument does

not affect whether the file is opened for reading, for writing,

or for both.

5.3 General File Creation. 87

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

0_EXCL If 0_EXCL and 0_CREAT are set, open() shall fail if the file

exists. The check for the existence of the file and the creation

O.NOCTTY

of the file if it does not exist shall be atomic with respect to

other processes executing open () naming the same filename

in the same directory with 0_EXCL and 0_CREAT set. If

0_EXCL is set and 0_CREAT is not set, the result is

implementation-defined.

If set, and path identifies a terminal device, the open () func¬

tion shall not cause the terminal device to become the control¬

ling terminal for the process (see The Controlling Termi-
nal §7.1.1.3).

0_N0NBL0CK

(1) When opening a FIFO with 0_RD0NLY or O.WRONLY

O.TRUNC

set:

(a) If O.NONBLOCK is set:

An open () for reading-only shall return without delay.

An open() for writing-only shall return an error if no

process currently has the file open for reading.

(b) If 0_N0NBL0CK is clear:

An open () for reading-only shall block until a process

opens the file for writing. An open () for writing-only

shall block until a process opens the file for reading.

(2) When opening a block special or character special file

that supports nonblocking opens:

(a) If O.NONBLOCK is set:

The open () shall return without waiting for the device

to be ready or available. Subsequent behavior of the

device is device-specific.

(b) If O.NONBLOCK is clear:

The open () shall wait until the device is ready or avail¬

able before returning.

(3) Otherwise, the behavior of O.NONBLOCK is unspeci¬

fied.

If the file exists and is a regular file, and the file is success¬

fully opened O.RDWR or O.WRONLY, it shall be truncated to

zero length and the mode and owner shall be unchanged by

this function call. O.TRUNC shall have no effect on FIFO spe¬

cial files or directories. Its effect on other file types is

implementation-defined. The result of using O.TRUNC with

O.RDONLY is undefined.

If 0_CREAT is set and the file did not previously exist, upon successful com¬

pletion, the open () function shall mark for update the stjatime, stjctime, and

stjntime fields of the file and the st_ctime and stjntime fields of the parent

directory.

If 0_TRUNC is set and the file did previously exist, upon successful comple¬

tion, the open () function shall mark for update the stjctime and stjntime fields

of the file.

88 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

[EEXIST]

[EINTR]

[EISDIR]

[EMFILE]

5.3.1.3 Returns. Upon successful completion, the function shall open the

file and return a non-negative integer representing the lowest numbered

unused file descriptor. Otherwise, it shall return -1 and shall set errno to indi¬

cate the error. No files shall be created or modified if the function returns -1.

5.3.1.4 Errors. If any of the following conditions occur, the open{) func¬

tion shall return -1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix,

or the file exists and the permissions specified by oflag are

denied, or the file does not exist and write permission is denied

for the parent directory of the file to be created, or 0_TRUNC is

specified and write permission is denied.

0_CREAT and 0_EXCL are set, and the named file exists.

The open{) operation was interrupted by a signal.

The named file is a directory and the oflag argument specifies

write or read/write access.

Too many file descriptors are currently in use by this process.

[ENAMETOOLONG]

The length of the path string exceeds {PATH_MAX}, or a path¬

name component is longer than {NAME_MAX} while

{_POSEX_NO_TRUNC} is in effect.

Too many files are currently open in the system.

0_CREAT is not set and the named file does not exist; or

0_CREAT is set and either the path prefix does not exist or the

path argument points to an empty string.

The directory or file system which would contain the new file

cannot be extended.

A component of the path prefix is not a directory.

O.NONBLOCK is set, the named file is a FIFO, O.WRONLY is

set, and no process has the file open for reading.

The named file resides on a read-only file system and either

0_WR0NLY, 0_RDWR, 0_CREAT (if the file does not exist), or

0_TRUNC is set in the oflag argument.

5.3.1.5 References, close() §6.3.1, creatO §5.3.2, dup{) §6.2.1, exec §3.1.2,

fcntli) §6.5.2, <fcntl.h> §6.5.1, Iseek() §6.5.3, read{) §6.4.1, <signal.h> §3.3.1,

stat() §5.6.2, <sys/stat.h> §5.6.1, write() §6.4.2, umask() §5.3.3, Signal Effects
on Other Functions §3.3.1.4.

[ENFILE]

[ENOENT]

[ENOSPC]

[ENOTDIR]

[ENXIO]

[EROFS]

5.3 General File Creation. 89

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

5.3.2 Create a New File or Rewrite an Existing One.
Function: creat()

5.3.2.1 Synopsis.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat {path, mode)

char * path;

mode_t mode;

5.3.2.2 Description. The function call:

creat {path, mode);

is equivalent to:

open {path, O.WRONLY I O.CREAT I O.TRUNC, mode);

5.3.2.3 References. open{) §5.3.1, <sys/stat.h> §5.6.1.

5.3.3 Set File Creation Mask.
Function: umask ()

5.3.3.1 Synopsis.

#include <sys/types.h>
#include <sys/stat.h>

mode_t umask {cmask)

mode_t cmask;

5.3.3.2 Description. The umask{) routine sets the process’s file mode

creation mask to cmask and returns the previous value of the mask. Only the

file permission bits (see <sys/stat.h> §5.6.1) of cmask are used; the meaning of

the other bits is implementation-defined.

The process’s file mode creation mask is used during open{), creat (), mkdir(),

and mkfifoi) calls to turn off permission bits in the mode argument supplied.

Bit positions that are set in cmask are cleared in the mode of the created file.

5.3.3.3 Returns. The previous value of the file mode creation mask is

returned.

5.3.3.4 Errors. The umask () function is always successful, and no return

value is reserved to indicate an error.

5.3.3.5 References. chmod{) §5.6.4, creat{) §5.3.2, mkdir{) §5.4.1,
mkfifoi) §5.4.2, openi) §5.3.1, <sys/stat.h> §5.6.1.

5.3.4 Link to a File.
Function: link{)

5.3.4.1 Synopsis.

int link {pathl,path2)

char *pathl, *path2;

90 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

5.3.4.2 Description. The argument pathl points to a pathname naming

an existing file. The argument path2 points to a pathname naming the new

directory entry to be created. Implementations may support linking of files

across file systems. The link() function shall atomically create a new link for

the existing file and increment the link count of the file by one.

If the link() function fails, no link shall be created and the link count of the

file shall remain unchanged by this function call.

The pathl argument shall not name a directory unless the user has appropri¬

ate privileges and the implementation supports using link() on directories.

The implementation may require that the calling process has permission to

access the existing file.

Upon successful completion, the linki) function shall mark for update the

stjctime field of the file. Also, the stjctime and stjmtime fields of the directory

that contains the new entry are marked for update.

5.3.4.3 Returns. Upon successful completion, link() shall return a value

of zero. Otherwise, a value of -1 is returned and errno is set to indicate the

error.

5.3.4.4 Errors. If any of the following conditions occur, the link () func¬

tion shall return -1 and set errno to the corresponding value:

[EACCES] A component of either path prefix denies search permission, or

the requested link requires writing in a directory with a mode

that denies write permission, or the calling process does not

have permission to access the existing file and this is required

by the implementation.

[EEXIST] The link named by path2 exists.

[EMLINK] The number of links to the file named by pathl would exceed

{LINK_MAX}.

[ENAMETOOLONG]

The length of the pathl or path2 string exceeds {PATH_MAX}, or

a pathname component is longer than {NAME_MAX} while

{_POSIX_N0_TRUNC} is in effect.

A component of either path prefix does not exist; the file named

by pathl does not exist; or either pathl or path2 points to an

empty string.

The directory that would contain the link cannot be extended.

A component of either path prefix is not a directory.

The file named by pathl is a directory and either the calling

process does not have appropriate privileges, or the implemen¬

tation prohibits using linkO on directories.

The requested link requires writing in a directory on a read¬

only file system.

The link named by path2 and the file named by pathl are on

different file systems and the implementation does not support

links between file systems.

5.3.4.5 References, rename() §5.5.3, unlinkO §5.5.1.

[ENOENT]

[ENOSPC]

[ENOTDIR]

[EPERM]

[EROFS]

[EXDEV]

5.3 General File Creation. 91

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

5.4 Special File Creation.

5.4.1 Make a Directory.
Function: mkdir()

5.4.1.1 Synopsis.

#include <sys/types.h>
#include <sys/stat.h>

int mkdir (path, mode)

char *path;

mode_t mode;

5.4.1.2 Description. The mkdirO routine creates a new directory with

name path. The file permission bits of the new directory are initialized from

mode. The file permission bits of the mode argument are modified by the

process’s file creation mask (see umask() §5.3.3). When bits in mode other than

the file permission bits are set, the meaning of these additional bits is

implementation-defined.

The directory’s owner ID is set to the process’s effective user ID. The

directory’s group ID shall be set to the group ID of the directory in which the

directory is being created or to the process’s effective group ID.

The newly-created directory shall be an empty directory.

Upon successful completion, the mkdir() function shall mark for update the

st_atime, stjctime, and stjntime fields of the directory. Also, the stjctime and

stjmtime fields of the directory that contains the new entry are marked for

update.

5.4.1.3 Returns. A return value of zero indicates success. A return value

of-1 indicates that an error has occurred and an error code is stored in errno.

No directory shall be created if the return value is -1.

5.4.1.4 Errors. If any of the following conditions occur, the mkdir () func¬

tion shall return -1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix,

or write permission is denied on the parent directory of the

directory to be created.

[EEXIST] The named file exists.

[EMLINK] The link count of the parent directory would exceed

{LINK_MAX}.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a

pathname component is longer than {NAME_MAX} while

{_POSIX_N0_TRUNC} is in effect.

[ENOENT] A component of the path prefix does not exist or the path argu¬

ment points to an empty string.

[ENOSPC] The file system does not contain enough space to hold the con¬

tents of the new directory or to extend the parent directory of

the new directory.

92 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The parent directory of the directory being created resides on a

read-only file system.

5.4.1.5 References. chmod{) §5.6.4, statO §5.6.2, <sys/stat.h> §5.6.1,

umask () §5.3.3.

5.4.2 Make a FIFO Special File.
Function: mkfifoO

5.4.2.1 Synopsis.

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo (path, mode)
char *path;
mode_t mode;

5.4.2.2 Description. The mkfifoO routine creates a new FIFO special file

named by the pathname pointed to by path. The file permission bits of the new

FIFO are initialized from mode. The file permission bits of the mode argument

are modified by the process’s file creation mask (see umask() §5.3.3). When bits

in mode other than the file permission bits are set, the effect is

implementation-defined.

The FIFO’s owner ID shall be set to the process’s effective user ID. The FIFO’s

group ID shall be set to the group ID of the directory in which the FIFO is being

created or to the process’s effective group ID.

Upon successful completion, the mkfifoO function shall mark for update the

stjatime, st_ctime, and stjntime fields of the file. Also, the stjctime and

stjntime fields of the directory that contains the new entry are marked for

update.

5.4.2.3 Returns. Upon successful completion a value of zero is returned.

Otherwise, a value of -1 is returned, no FIFO is created, and errno is set to indi¬

cate the error.

5.4.2.4 Errors. If any of the following conditions occur, the mkfifoO func¬

tion shall return -1 and set errno to the corresponding value:

[EACCES] A component of the path prefix denies search permission.

[EEXIST] The named file already exists.

[ENAMETOOLONG]

The length of the path string exceeds {PATH_MAX}, or a path¬

name component is longer than {NAME_MAX} while

{_POSEX_NO_TRUNC} is in effect.

[ENOENT] A component of the path prefix does not exist or the path argu¬

ment points to an empty string.

[ENOSPC] The directory that would contain the new file cannot be

extended or the file system is out of file allocation resources.

[ENOTDIR] A component of the path prefix is not a directory.

[EROFS] The named file resides on a read-only file system.

5.4 Special File Creation. 93

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

5.4.2.5 References. chmodi) §5.6.4, exec §3.1.2,pipei) §6.1.1, stat()

§5.6.2, <sys/stat.h> §5.6.1, umask() §5.3.3.

5.5 File Removal.

5.5.1 Remove Directory Entries.
Function: unlink ()

5.5.1.1 Synopsis.

int unlink {path)

char *path;

5.5.1.2 Description. The unlinki) function shall remove the link named

by the pathname pointed to by path and decrement the link count of the file

referenced by the link.

When the file’s link count becomes zero and no process has the file open, the

space occupied by the file shall be freed and the file shall no longer be accessible.

If one or more processes have the file open when the last link is removed, the

link shall be removed before unlinki) returns, but the removal of the file con¬

tents shall be postponed until all references to the file have been closed.

The path argument shall not name a directory unless the process has

appropriate privileges and the implementation supports using unlink () on direc¬

tories. Applications should use rmdiri) to remove a directory.

Upon successful completion, the unlinki) function shall mark for update the

st_ctime and stjntime fields of the parent directory. Also, if the file’s link count

is not zero, the st_ctime field of the file shall be marked for update.

5.5.1.3 Returns. Upon successful completion, a value of zero shall be

returned. Otherwise, a value of -1 shall be returned and err no shall be set to

indicate the error. If -1 is returned, the named file shall not be changed by this

function call.

5.5.1.4 Errors. If any of the following conditions occur, the unlinki) func¬

tion shall return -1 and set errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path prefix,

or write permission is denied on the directory containing the

link to be removed.

[EBUSY] The directory named by the path argument cannot be unlinked

because it is being used by the system or another process and

the implementation considers this to be an error.

[ENAMETOOLONG]

The length of the path argument exceeds {PATHJVLAX}, or a

pathname component is longer than {NAME_MAX} while

{_POSIX_N0_TRUNC} is in effect.

[ENOENT] The named file does not exist or the path argument points to an

empty string.

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The file named by path is a directory and either the calling pro¬

cess does not have appropriate privileges, or the implementa¬

tion prohibits using unlinki) on directories.

94 Files and Directories

IEEE

INTERFACE FOR COMPUTER ENVIRONMENTS Std 1003.1-1988

[EROFS] The directory entry to be unlinked resides on a read-only file

system.

5.5.1.5 References, close() §6.3.1, link() §5.3.4, openO §5.3.1, renamed)

§5.5.3, rmdirO §5.5.2.

5.5.2 Remove a Directory.
Function: rmdirO

5.5.2.1 Synopsis.

int rmdir (path)
char *path;

5.5.2.2 Description. The rmdirO function removes a directory whose

name is given by path. The directory shall be removed only if it is an empty

directory.

If the directory is the root directory or the current working directory of any

process, the effect of this function is implementation-defined.

If the directory’s link count becomes zero and no process has the directory

open, the space occupied by the directory shall be freed and the directory shall

no longer be accessible. If one or more processes have the directory open when

the last link is removed, the dot and dot-dot entries, if present, are removed

before rmdirO returns and no new entries may be created in the directory, but

the directory is not removed until all references to the directory have been

closed.

Upon successful completion, the rmdirO function shall mark for update the

stjctime and stjntime fields of the parent directory.

5.5.2.3 Returns. A return value of zero indicates success. A return value

of -1 indicates that an error has occurred and an error code has been stored in

errno.
5.5.2.4 Errors. If any of the following conditions occur, the rmdirO func¬

tion shall return -1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path or write

permission is denied on the parent directory of the directory to

be removed.

[EBUSY] The directory named by the path argument cannot be removed

because it is being used by another process and the implemen¬

tation considers this to be an error.

[EEXIST] or [ENOTEMPTY]

The path argument names a directory that is not an empty

directory.

[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a

pathname component is longer than {NAME_MAX} while

{_POSIX_N0_TRUNC} is in effect.

[ENOENT] The path argument names a non-existent directory or points to

an empty string.

5.5 File Removal. 95

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

[ENOTDIR] A component of the path is not a directory.

[EROFS] The directory entry to be removed resides on a read-only file

system.

5.5.2.5 References. mkdir{) §5.4.1, unlinki) §5.5.1.

5.5.3 Rename a File.
Function: rename ()

5.5.3.1 Synopsis.

int rename {old, new)

char *old;

char *new;

5.5.3.2 Description. The rename () function changes the name of a file.

The old argument points to the pathname of the file to be renamed. The new

argument points to the new pathname of the file.

If the old argument and the new argument both refer to links to the same

existing file, the rename () function shall return successfully and perform no

other action.

If the old argument points to the pathname of a file that is not a directory, the

new argument shall not point to the pathname of a directory. If the link named

by the new argument exists, it shall be removed and old renamed to new. In

this case, a link named new shall exist throughout the renaming operation and

shall refer either to the file referred to by new or old before the operation began.

Write access permission is required for both the directory containing old and the

directory containing new.

If the old argument points to the pathname of a directory, the new argument

shall not point to the pathname of a file that is not a directory. If the directory

named by the new argument exists, it shall be removed and old renamed to new.

In this case, a link named new shall exist throughout the renaming operation

and shall refer either to the file referred to by new or old before the operation

began. Thus, if new names an existing directory, it shall be required to be an

empty directory.

The new pathname shall not contain a path prefix that names old. Write

access permission is required for the directory containing old and the directory

containing new. If the old argument points to the pathname of a directory,

write access permission may be required for the directory named by old, and, if

it exists, the directory named by new.

If the link named by the new argument exists and the file’s link count

becomes zero when it is removed and no process has the file open, the space

occupied by the file shall be freed and the file shall no longer be accessible. If

one or more processes have the file open when the last link is removed, the link

shall be removed before rename() returns, but the removal of the file contents

shall be postponed until all references to the file have been closed.

Upon successful completion, the renameO function shall mark for update the

st_ctime and stjmtime fields of the parent directory of each file.

96 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

5.5.3.3 Returns. A return value of zero indicates success. A return value
of -1 indicates that an error has occurred and an error code has been stored in
errno.

5.5.3.4 Errors. If any of the following conditions occur, the rename()
function shall return -1 and set errno to the corresponding value:

[EACCES] A component of either path prefix denies search permission; or
one of the directories containing old or new denies write per¬
missions; or, write permission is required and is denied for a
directory pointed to by the old or new arguments.

[EBUSY] The directory named by old or new cannot be renamed because
it is being used by the system or another process and the imple¬
mentation considers this to be an error.

[EEXIST] or [ENOTEMPTY]
The link named by new is a directory containing entries other
than dot and dot-dot.

[EINVAL] The new directory pathname contains a path prefix that names
the old directory.

[EISDIR] The new argument points to a directory and the old argument
points to a file that is not a directory.

[ENAMETOOLONG]
The length of the old or new argument exceeds {PATH_MAX}, or
a pathname component is longer than {NAME_MAX} while
LPOSIX_NO_TRUNC} is in effect.

[ENOENT] The link named by the old argument does not exist or either old
or new points to an empty string.
The directory that would contain new cannot be extended.
A component of either path prefix is not a directory; or the old
argument names a directory and the new argument names a
nondirectory file.
The requested operation requires writing in a directory on a
read-only file system.
The links named by new and old are on different file systems
and the implementation does not support links between file sys¬
tems.

5.5.3.5 References, link() §5.3.4, rmdir() §5.5.2, unlinki) §5.5.1.

[ENOSPC]
[ENOTDIR]

[EROFS1

[EXDEV]

5.6 File Characteristics.

5.6.1 File Characteristics: Header and Data Structure. The header
<sys/stat.h> defines the structure stat, which includes the members shown in
Table 5-1, returned by the functions stat{) and fstati).

All of the described members shall appear in the stat structure. The structure
members st_mode, st_ino, stjdev, st_uid, st_gid, stjatime, stjctime, and
stjntime shall have meaningful values for all file types defined in this standard.
The value of the member st_nlink shall be set to the number of links to the file.

5.6 File Characteristics. 97

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Table 5-1. stat Structure

Member
Type

Member
Name

Description

modejt stjnode File mode (see <sys/stat.h> File Modes §5.6.1.2).

inojt st_ino File serial number.
devjt stjdeu ID of device containing this file.

File serial number and device ID taken together
uniquely identify the file within the system.

nlinkjt stjilink Number of links.
uidjt stjuid User ID of the file’s owner.
gid t st_gid Group ID of the file’s group.
offj stjsize For regular files, the file size in bytes. For other file

types, the use of this field is unspecified.

time_t stjatime Time of last access.
timejt stjntime Time of last data modification.
timejt st_ctime Time of last file status change.

S_ISCHR(m)
S_ISBLK(ra)
S_ISREG(m)
S_ISFIFO(m)

S IRWXU

5.6.1.1 <sys/stat.h> File Types. The following macros shall test whether
a file is of the specified type. The value m supplied to the macros is the value of
stjnode from a stat structure. The macro evaluates to a non-zero value if the
test is true, zero if the test is false.

S_ISDIR(ra) Test macro for directory file.
Test macro for character special file.
Test macro for block special file.
Test macro for regular file.
Test macro for pipe or FIFO special file.

5.6.1.2 <sys/stat.h> File Modes. The file modes portion of values of type
modejt, such as the stjnode value, are bit-encoded with the following masks
and bits:

Read, write, search (if a directory), or execute (otherwise) per¬
missions mask for the file owner class.

S_IRUSR Read permission bit for the file owner class.
S_IWUSR Write permission bit for the file owner class.
S_IXUSR Search (if a directory) or execute (otherwise)

permissions bit for the file owner class.
Read, write, search (if a directory), or execute (otherwise) per¬
missions mask for the file group class.

S_IRGRP Read permission bit for the file group class.
SJWGRP Write permission bit for the file group class.
S_IXGRP Search (if a directory) or execute (otherwise)

permissions bit for the file group class.
Read, write, search (if a directory), or execute (otherwise) per¬
missions mask for the file other class.

S IRWXG

S IRWXO

98 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

S_IROTH Read permission bit for the file other class.
S_IWOTH Write permission bit for the file other class.
S_EXOTH Search (if a directory) or execute (otherwise)

permissions bit for the file other class.
S_ISUID Set user ID on execution. The process’s effective user ID shall

be set to that of the owner of the file when the file is run as a
program (see exec). On a regular file, this bit should be cleared
on any write.

S_ISGID Set group ID on execution. Set effective group ID on the process
to the file’s group when the file is run as a program (see exec).
On a regular file, this bit should be cleared on any write.

The bits defined by S_IRUSR, SJWUSR, SJXUSR, SJRGRP, SJWGRP,
SJXGRP, SJROTH, SJWOTH, SJXOTH, SJSUID, and S_ISGID shall be unique.
SJRWXU shall be the bitwise inclusive OR of S_ERUSR, S_IWUSR, and SJXUSR.
S_IRWXG shall be the bitwise inclusive OR of S_IRGRP, S_IWGRP, and SJXGRP.
S_ERWXO shall be the bitwise inclusive OR of SJROTH, SJWOTH, and SJXOTH.
Implementations may OR other implementation-defined bits into S_ERWXU,
S_ERWXG, and SJRWXO, but they shall not overlap any of the other bits defined
in this standard. The file permission bits are defined to be those corresponding
to the bitwise inclusive OR of SJRWXU, SJRWXG, and SJRWXO.

5.6.1.3 <sys/stat.h> Time Entries. The time-related fields of struct stat
are as follows:

stjatime Accessed file data, for example readi).
stjmtime Modified file data, for example write ().
stjctime Changed file status, for example chmod().

These times are updated as described by file times update §2.4.
All the functions in this standard that change these fields directly describe

those changes in the context of the functions’ definitions. Other functions that
directly change stjatime, stjntime, or stjctime shall be implementation-defined.

Times are given in seconds since the Epoch §2.3.
5.6.1.4 References. chmodO §5.6.4, chownO §5.6.5, creatO §5.3.2, exec

§3.1.2, link() §5.3.4, mkdir{) §5.4.1, mkfifoO §5.4.2,pipe() §6.1.1, readi) §6.4.1,
unlink() §5.5.1, utimeO §5.6.6, write() §6.4.2, removed) (C Standard).

5.6.2 Get File Status.
Functions: stat (), f'stat ()

5.6.2.1 Synopsis.

#include <sys/types.h>
#include <sys/stat.h>

int stat (path, buf)
char *path;
struct stat *buf;

int fstat (fildes, buf)
int fildes;
struct stat *buf;

5.6 File Characteristics. 99

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

5.6.2.2 Description. The path argument points to a pathname naming a
file. Read, write or execute permission for the named file is not required, but all
directories listed in the pathname leading to the file must be searchable. The
stat () function obtains information about the named file and writes it to the
area pointed to by the huf argument.

Similarly, the fstat () function obtains information about an open file known
by the file descriptor fildes.

An implementation that provides additional or alternate file access control
mechanisms may, under implementation-defined conditions, cause the stat()
and fstat{) functions to fail. In particular, the system may deny the existence of
the file specified by path.

Both functions update any time-related fields as described in file times
update §2.4 before writing into the stat structure.

The huf is taken to be a pointer to a stat structure, as defined in the header
<sys/stat.h> §5.6.1, into which information is placed concerning the file.

5.6.2.3 Returns. Upon successful completion a value of zero shall be
returned. Otherwise, a value of -1 shall be returned and errno shall be set to
indicate the error.

5.6.2.4 Errors. If any of the following conditions occur, the stat{) func¬
tion shall return -1 and set errno to the corresponding value:

[EACCES] Search permission is denied for a component of the path prefix.
[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSEX_N0_TRUNC} is in effect.

[ENOENT] The named file does not exist or the path argument points to an
empty string.

[ENOTDIR] A component of the path prefix is not a directory.
If any of the following conditions occur, the fstat () function shall return -1

and set errno to the corresponding value:
[EBADF] The fildes argument is not a valid file descriptor.

5.6.2.5 References. creat{) §5.3.2, dup{) §6.2.1, fcntlO §6.5.2, openi)

§5.3.1,pipe() §6.1.1, <sys/stat.h> §5.6.1.

5.6.3 File Accessibility.
Function: access ()

5.6.3.1 Synopsis.

#include <unistd.h>

int access {path, amode)
char *path;

int amode;

5.6.3.2 Description. The access () function checks the accessibility of the
file named by the pathname pointed to by the path argument for the file access
permissions indicated by amode, using the real user ID in place of the effective
user ID and the real group ID in place of the effective group ID.

100 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

The value of amode is either the bitwise inclusive OR of the access permis¬
sions to be checked (R_OK, W_OK, and X_OK) or the existence test, F_OK. See
Symbolic Constants for the access () Function §2.10.1 for the description of
these symbolic constants.

If any access permission is to be checked, each shall be checked individually,
as described in file access permissions §2.4. If the process has appropriate
privileges, an implementation may indicate success for X_OK even if none of the
execute file permission bits are set.

5.6.3.3 Returns. If the requested access is permitted, a value of zero
shall be returned. Otherwise, a value of -1 shall be returned and errno shall be
set to indicate the error.

5.6.3.4 Errors. If any of the following conditions occur, the access () func¬
tion shall return -1 and set errno to the corresponding value:

[EACCES] The permissions specified by amode are denied, or search per¬
mission is denied on a component of the path prefix.

[ENAMETOOLONG]
The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

[ENOENT] The path argument points to an empty string or to the name of
a file that does not exist.

[ENOTDIR] A component of the path prefix is not a directory.
[EROFS] Write access was requested for a file residing on a read-only file

system.
For each of the following conditions, if the condition is detected, the access ()

function shall return -1 and set errno to the corresponding value:
[EINVAL] An invalid value was specified for amode.

5.6.3.5 References. chmodO §5.6.4, stat{) §5.6.2, <unistd.h> §2.10.

5.6.4 Change File Modes.
Function: chmodO

5.6.4.1 Synopsis.

#include <sys/types.h>
#include <sys/stat.h>

int chmod {path, mode)

char *path;

mode_t mode;

5.6.4.2 Description. The path argument shall point to a pathname nam¬
ing a file. If the effective user ID of the calling process matches the file owner or
the calling process has appropriate privileges, the chmod{) function shall set the
S_ISUID, S_ISGID, and the file permission bits, as described in <sys/stat.h>
§5.6.1, of the named file from the corresponding bits in the mode argument.
These bits define access permissions for the user associated with the file, the
group associated with the file, and all others, as described in file access per¬
missions §2.4. Additional implementation-defined restrictions may cause the
S_ISUID and S_ISGID bits in mode to be ignored.

5.6 File Characteristics. 101

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

If the calling process does not have appropriate privileges, and if the group ID
of the file does not match the effective group ID or one of the supplementary
group IDs, and if the file is a regular file, bit S_ISGID (set group ID on execution)
in the file’s mode shall be cleared upon successful return from chmod i).

The effect on file descriptors for files open at the time of the chmod i) function
is implementation-defined.

Upon successful completion, the chmod () function shall mark for update the
stjctime field of the file.

5.6.4.3 Returns. Upon successful completion, the function shall return a
value of zero. Otherwise, a value of -1 shall be returned and errno shall be set
to indicate the error. If -1 is returned, no change to the file mode shall have
occurred.

5.6.4.4 Errors. If any of the following conditions occur, the chmod 0

function shall return -1 and set errno to the corresponding value:
[EACCES] Search permission is denied on a component of the path prefix.
[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist or the path argument points to an

empty string.
[EPERM] The effective user ID does not match the owner of the file and

the calling process does not have the appropriate privileges.
[EROFS] The named file resides on a read-only file system.

5.6.4.5 References, chowni) §5.6.5, mkdiri) §5.4.1, mkfifoi) §5.4.2,
stati) §5.6.2, <sys/stat.h> §5.6.1.

5.6.5 Change Owner and Group of a File.
Function: chowni)

5.6.5.1 Synopsis.

#include <sys/types.h>

int chown (path, owner,group)

char *path;

uid_t owner;

gid_t group;

5.6.5.2 Description. The path argument points to a pathname naming a
file. The user ID and group ID of the named file are set to the numeric values
contained in owner and group respectively.

Only processes with an effective user ID equal to the user ID of the file or with
appropriate privileges may change the ownership of a file. If
{_POSIX_CHOWN_RESTRICTED} is in effect for path:

(1) Changing the owner is restricted to processes with appropriate privileges.
(2) Changing the group is permitted to a process with an effective user ID
equal to the user ID of the file, but without appropriate privileges, if and only
if owner is equal to the file’s user ID and group is equal either to the calling

102 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

process’s effective group ID or to one of its supplementary group IDs.
If the path argument refers to a regular file, the set-user-ID (S_ISUID) and

set-group-ID (S_ISGID) bits of the file mode shall be cleared upon successful
return from chowni), unless the call is made by a process with appropriate
privileges, in which case it is implementation-defined whether those bits are
altered. If the chowni) function is successfully invoked on a file that is not a
regular file, these bits may be cleared. These bits are defined in <sys/stat.h>
§5.6.1.

Upon successful completion, the chowni) function shall mark for update the
stjctime field of the file.

5.6.5.3 Returns. Upon successful completion, a value of zero shall be
returned. Otherwise, a value of -1 shall be returned and errno shall be set to
indicate the error. If — 1 is returned, no change shall be made in the owner and
group of the file.

5.6.5.4 Errors. If any of the following conditions occur, the chowni) func¬
tion shall return -1 and set errno to the corresponding value:

[EACCES] Search permission is denied on a component of the path prefix.
[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.
A component of the path prefix is not a directory.
The named file does not exist or the path argument points to an
empty string.
The effective user ID does not match the owner of the file or the
calling process does not have appropriate privileges and
{_POSIX_CHOWN_RESTRICTED} indicates that such privilege is
required.
The named file resides on a read-only file system.

For each of the following conditions, if the condition is detected, the chowni)
function shall return -1 and set errno to the corresponding value:

[EINVAL] The owner or group ID supplied is invalid and not supported by
the implementation.

5.6.5.5 References, chmodi) §5.6.4, <sys/stat.h> §5.6.1.

[ENOTDIR]
[ENOENT]

[EPERM]

[EROFS]

5.6.6 Set File Access and Modification Times.
Function: utimei)

5.6.6.1 Synopsis.

#include <sys/types.h>
#include <utime.h>

int utime ipath, times)

char *path;

struct utimbuf Himes;

5.6 File Characteristics. 103

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

5.6.6.2 Description. The argument path points to a pathname naming a
file. The utime() function sets the access and modification times of the named
file.

If the times argument is NULL, the access and modification times of the file
are set to the current time. The effective user ID of the process must match the
owner of the file, or the process must have write permission to the file or
appropriate privileges, to use the utime() function in this manner.

If the times argument is not NULL, it is interpreted as a pointer to a utimhuf

structure and the access and modification times are set to the values contained
in the designated structure. Only the owner of the file and processes with
appropriate privileges shall be permitted to use the utime () function in this way.

The utimhuf structure is defined by the header <utime.h>, and includes the
following members:

Member Member
Type Name

timejt actime

timejt modtime

Description

Access time
Modification time

The times in the utimhuf structure are measured in seconds since the
Epoch §2.3.

Upon successful completion, the utime () function shall mark for update the
stjctime field of the file.

5.6.6.3 Returns. Upon successful completion, the function shall return a
value of zero. Otherwise, a value of-1 shall be returned, errno is set to indicate
the error, and the file times shall not be affected.

5.6.6.4 Errors. If any of the following conditions occur, the utime () func¬
tion shall return -1 and set errno to the corresponding value:

[EACCES] Search permission is denied by a component of the path prefix;
or the times argument is NULL and the effective user ID of the
process does not match the owner of the file and write access is
denied.

[ENAMETOOLONG]
The length

[ENOENT]

[ENOTDIR]
[EPERM]

[EROFS]
5.6.6.5

of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.
The named file does not exist or the path argument points to an
empty string.
A component of the path prefix is not a directory.
The times argument is not NULL and the calling process’s effec¬
tive user ID has write access to the file but does not match the
owner of the file and the calling process does not have the
appropriate privileges.
The named file resides on a read-only file system.

References. <sys/stat.h> §5.6.1.

104 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

5.7 Configurable Pathname Variables.

5.7.1 Get Configurable Pathname Variables.
Functions: pathconf), fpathconf)

5.7.1.1 Synopsis.

#include <unistd.h>

long pathconf (path, name)
char *path;

int name;

long fpathconf (fildes, name)
int fildes, name;

5.7.1.2 Description. The pathconf 0 and fpathconf () functions provide a
method for the application to determine the current value of a configurable limit
or option (variable) that is associated with a file or directory.

For pathconf(), the path argument points to the pathname of a file or direc¬
tory. For fpathconf (), the fildes argument is an open file descriptor.

The name argument represents the variable to be queried relative to that file
or directory. The implementation shall support all of the variables listed in
Table 5-2 and may support others. The variables in Table 5-2 come from
<limits.h> §2.9 or <unistd.h> §2.10 and the symbolic constants, defined in
<unistd.h>, that are the corresponding values used for name.

Table 5-2. Configurable Pathname Variables

Variable name Value Notes

{LINK_MAX} {_PC_LINK_MAX} 1
{MAXCANON} LPC_MAX_CANON} 2
{MAXJNPUT} {_PC_MAX_INPUT} 2
{NAME.MAX} {_PC_NAME_MAX} 3, 4
{PATH.MAX} {_PC_PATH_MAX} 4,5
{PIPE_BUF} {_PC_PIPE_BUF} 6
{_POSIX_CHOWN_RESTRICTED} {_PC_CHOWN_RESTRICTED} 7
LPOSIX_NO_TRUNC} {_PC_N 0_TRUN C} 3,4
{_POSIX_VDISABLE} {_PC_VDISABLE} 2

The following Notes apply to the entries in Table 5-2:
1. If path or fildes refers to a directory, the value returned applies to the

directory itself.
2. The behavior is undefined if path or fildes does not refer to a terminal file.
3. If path or fildes refers to a directory, the value returned applies to the

filenames within the directory.
4. The behavior is undefined if path or fildes does not refer to a directory.
5. If path or fildes refers to a directory, the value returned is the maximum

length of a relative pathname when the specified directory is the working

5.7 Configurable Pathname Variables. 105

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

directory.
6. If path refers to a FIFO, or filedes refers to a pipe or FIFO, the value

returned applies to the referenced object itself. If path or fildes refers to a
directory, the value returned applies to any FIFOs that exist or can be
created within the directory. If path or fildes refer to any other type of file,
the behavior is undefined.

7. If path or fildes refer to a directory, the value returned applies to any files
defined in this standard, other than directories, that exist or can be
created within the directory.
5.7.1.3 Returns. If name is an invalid value, the pathconfO and fpath-

confi) functions shall return -1.
If the variable corresponding to name has no limit for the path or file descrip¬

tor, the pathconfO and fpathconfO functions shall return -1 without changing
errno.

If the implementation needs to use path to determine the value of name and
the implementation does not support the association of name with the file speci¬
fied by path, or if the process did not have the appropriate privileges to query
the file specified by path, or path does not exist, the pathconfi) function shall
return -1.

If the implementation needs to use fildes to determine the value of name and
the implementation does not support the association of name with the file speci¬
fied by fildes, or if fildes is an invalid file descriptor, the fpathconfO function
shall return -1.

Otherwise, the pathconfi) and fpathconfO functions return the current vari¬
able value for the file or directory without changing errno. The value returned
shall not be more restrictive than the corresponding value described to the
application when it was compiled with the implementation's <limits.h> §2.9 or
<unistd.h> §2.10.

5.7.1.4 Errors. If any of the following conditions occur, the pathconfO
and fpathconfO functions shall return -1 and set errno to the corresponding
value:

[EINVAL] The value of name is invalid.
For each of the following conditions, if the condition is detected, the path¬

confO function shall return -1 and set errno to the corresponding value:
[EACCES] Search permission is denied for a component of the path prefix.
[EINVAL] The implementation does not support an association of the vari¬

able name with the specified file.
[ENAMETOOLONG]

The length of the path argument exceeds {PATH_MAX}, or a
pathname component is longer than {NAME_MAX} while
{_POSIX_NO_TRUNC} is in effect.

[ENOENT] The named file does not exist or the path argument points to an
empty string.

[ENOTDIR] A component of the path prefix is not a directory.
For each of the following conditions, if the condition is detected, the fpath¬

confO function shall return -1 and set errno to the corresponding value:

106 Files and Directories

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

[EBADF]
[EINVAL]

The fildes argument is not a valid file descriptor.
The implementation does not support an association of the vari¬
able name with the specified file.

5.7 Configurable Pathname Variables. 107

6. Input and Output Primitives

The functions in this chapter deal with input and output from files and pipes.
Functions are also specified which deal with the coordination and management
of file descriptors and I/O activity.

6.1 Pipes.

6.1.1 Create an Inter-Process Channel.
Function: pipe ()

6.1.1.1 Synopsis.

int pipe (fildes)
int fildes [2];

6.1.1.2 Description. The pipe() function shall create a pipe and place
two file descriptors, one each into the arguments fildes[0] and fildes[1], that
refer to the open file descriptions for the read and write ends of the pipe. Their
integer values shall be the two lowest available at the time of the pipe() function
call. The 0_N0NBL0CK flag shall be clear on both file descriptors. (The fcntl()

function can be used to set the 0_N0NBL0CK flag.)
Data can be written to file descriptor fildes [1] and read from file descriptor

fildes [0]. A read on file descriptor fildes [0] shall access the data written to file
descriptor fildes [1] on a first-in-first-out basis.

A process has the pipe open for reading if it has a file descriptor open that
refers to the read end, fildes [0]. A process has the pipe open for writing if it has
a file descriptor open that refers to the write end, fildes [1].

Upon successful completion, the pipe{) function shall mark for update the
stjatime, stjctime, and stjntime fields of the pipe.

6.1.1.3 Returns. Upon successful completion, the function shall return a
value of zero. Otherwise, a value of -1 shall be returned and errno shall be set
to indicate the error.

6.1.1.4 Errors. If any of the following conditions occur, the pipe () func¬
tion shall return -1 and set errno to the corresponding value:

[EMFILE] More than {OPEN_MAX}-2 file descriptors are already in use by
this process.

[ENFILE] The number of simultaneously open files in the system would
exceed a system-imposed limit.

6.1 Pipes. 109

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

6.1.1.5 References, fcntli) §6.5.2, open() §5.3.1, read{) §6.4.1, write()

§6.4.2.

6.2 File Descriptor Manipulation.

6.2.1 Duplicate an Open File Descriptor.
Functions: dupO, dup2()

6.2.1.1 Synopsis.

int dup (fildes)
int fildes;

int dup2 {fildes, fildes2)
int fildes ,fildes2;

6.2.1.2 Description. The dup{) and dup2{) functions provide an alter¬
nate interface to the service provided by the fcntl () function using the F_DUPFD
command. The call:

fid = dup (fildes);

shall be equivalent to:

fid = fcntl (fildes, F_DUPFD, 0);

The call:

fid - dup2 (fildes, fildes2);

shall be equivalent to:

close (fildes2);
fid = fcntl (fildes, F_DUPFD, fildes2);

except for the following:
(1) If fildes2 is less than zero or greater than {OPEN_MAX}, the dup2{) func¬
tion shall return -1 and errno shall be set to [EBADF].
(2) If fildes is a valid file descriptor and is equal to fildes2, the dup2{) func¬
tion shall return fildes2 without closing it.
(3) If fildes is not a valid file descriptor, dup2{) shall fail and not close
fildes2.

6.2.1.3 Returns. Upon successful completion, the function shall return a
file descriptor. Otherwise, a value of -1 shall be returned and errno shall be set
to indicate the error.

6.2.1.4 Errors. If any of the following conditions occur, the dup{) and
dup2{) functions shall return -1 and set errno to the corresponding value:

[EBADF] The argument fildes is not a valid open file descriptor or fildes2

is out of range.
[EMFILE] The number of file descriptors would exceed {OPEN_MAX}, or no

file descriptors above fildes2 are available.
6.2.1.5 References, close() §6.3.1, creatf) §5.3.2, exec §3.1.2, fcntli)

§6.5.2, open() §5.3.1, pipeO §6.1.1.

110 Input and Output Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

6.3 File Descriptor Deassignment.

6.3.1 Close a File.
Function: close0

6.3.1.1 Synopsis.

int close (fildes)

int fildes;

6.3.1.2 Description. The close () function shall deallocate (i.e., make

available for return by subsequent openO’s, etc., executed by the process) the

file descriptor indicated by fildes. All outstanding record locks owned by the

process on the file associated with the file descriptor shall be removed (that is,

unlocked).

If the close () function is interrupted by a signal that is to be caught, it shall

return -1 with errno set to [EINTR] and the state of fildes is unspecified.

When all file descriptors associated with a pipe or FIFO special file have been

closed, any data remaining in the pipe or FIFO shall be discarded.

When all file descriptors associated with an open file description have been

closed, the open file description shall be freed.

If the link count of the file is zero, when all file descriptors associated with the

file have been closed, the space occupied by the file shall be freed and the file

shall no longer be accessible.

6.3.1.3 Returns. Upon successful completion, a value of zero shall be

returned. Otherwise, a value of -1 shall be returned and errno shall be set to

indicate the error.

6.3.1.4 Errors. If any of the following conditions occur, the close 0 func¬

tion shall return -1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.

[EINTR] The close function was interrupted by a signal.

6.3.1.5 References, creati) §5.3.2, dup() §6.2.1 ,exec §3.1.2,fcntl() §6.5.2,

fork() §3.1.1, open{) §5.3.1,pipeO §6.1.1, unlinki) §5.5.1, Signal Effects on
Other Functions §3.3.1.4.

6.4 Input and Output.

6.4.1 Read from a File.
Function: read()

6.4.1.1 Synopsis.

int read (fildes, buf, nbyte)

int fildes;

char *buf;

unsigned nbyte;

6.4.1.2 Description. The readO function shall attempt to read nbyte

bytes from the file associated with the open file descriptor, fildes, into the buffer

pointed to by buf.

If nbyte is zero, the read() function shall return zero and have no other

results.

6.4 Input and Output. Ill

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

On a regular file or other file capable of seeking, readO shall start at a posi¬

tion in the file given by the file offset associated with fildes. Before successful

return from read{), the file offset shall be incremented by the number of bytes

actually read.

On a file not capable of seeking, the read{) shall start from the current posi¬

tion. The value of a file offset associated with such a file is undefined.

Upon successful completion, the readO function shall return the number of

bytes actually read and placed in the buffer. This number shall never be greater

than nbyte. The value returned may be less than nbyte if the number of bytes

left in the file is less than nbyte, if the readO request was interrupted by a sig¬

nal, or if the file is a pipe (or FIFO) or special file and has fewer than nbyte bytes

immediately available for reading. For example, a readO from a file associated

with a terminal may return one typed line of data.

If a readO is interrupted by a signal before it reads any data, it shall return

-1 with errno set to [EINTR].

If a readO is interrupted by a signal after it has successfully read some data,

either it shall return -1 with errno set to [EINTR], or it shall return the number

of bytes read. A readO from a pipe or FIFO shall never return with errno set to

[EINTR] if it has transferred any data.

No data transfer shall occur past the current end-of-flle. If the starting posi¬

tion is at or after the end-of-file, zero shall be returned. If the file refers to a

device special file, the result of subsequent readO requests is implementation-

defined.

If the value of nbyte is greater than {INT_MAX}, the result is implementation-

defined.

When attempting to read from an empty pipe (or FIFO):

(1) If no process has the pipe open for writing, readO shall return zero to

indicate end-of-file.

(2) If some process has the pipe open for writing and 0_N0NBL0CK is set,

readO shall return -1 and set errno to [EAGAIN].

(3) If some process has the pipe open for writing and 0_N0NBL0CK is clear,

readO shall block until some data is written or the pipe is closed by all

processes that had opened the pipe for writing.

When attempting to read a file (other than a pipe or FIFO) that supports non-

blocking reads and has no data currently available:

(1) If 0_N0NBL0CK is set, readO shall return -1 and set errno to [EAGAIN].

(2) If 0_N0NBL0CK is clear, readO shall block until some data becomes

available.

(3) The use of the 0_N0NBL0CK flag has no effect if there is some data avail¬

able.

For any portion of a regular file, prior to the end-of-file, that has not been

written, readO shall return bytes with value zero.

Upon successful completion, the readO function shall mark for update the

stjatime field of the file.

112 Input and Output Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

6.4.1.3 Returns. Upon successful completion, read() shall return an

integer indicating the number of bytes actually read. Otherwise, read{) shall

return a value of -1 and set errno to indicate the error, and the content of the

buffer pointed to by buf is indeterminate.

6.4.1.4 Errors. If any of the following conditions occur, the read() func¬

tion shall return -1 and set errno to the corresponding value:

[EAGAIN] The 0_N0NBL0CK flag is set for the file descriptor and the pro¬

cess would be delayed in the read operation.

[EBADF] The fildes argument is not a valid file descriptor open for read¬

ing.

[EINTR] The read operation was interrupted by a signal, and either no

data was transferred or the implementation does not report par¬

tial transfer for this file.

[EIO] The implementation supports job control, the process is in a

background process group and is attempting to read from its

controlling terminal, and either the process is ignoring or block¬

ing the SIGTTIN signal or the process group of the process is

orphaned. This error may also be generated for

implementation-defined reasons.

6.4.1.5 References. creat{) §5.3.2, dup() §6.2.1, fcntlO §6.5.2, IseekO

§6.5.3, open() §5.3.1,pipe() §6.1.1, Signal Effects on Other Functions
§3.3.1.4, terminal Interface Characteristics §7.1.1.

6.4.2 Write to a File.
Function: write()

6.4.2.1 Synopsis.

int write (fildes, buf, nbyte)

int fildes;
char *buf;

unsigned nbyte;

6.4.2.2 Description. The write () function shall attempt to write nbyte

bytes from the buffer pointed to by buf to the file associated with the open file

descriptor, fildes.

If nbyte is zero, the write () function shall return zero and have no other

results if the file is a regular file; otherwise, the results are implementation-

defined.

On a regular file or other file capable of seeking, the actual writing of data

shall proceed from the position in the file indicated by the file offset associated

with fildes. Before successful return from write(), the file offset shall be incre¬

mented by the number of bytes actually written. On a regular file, if this incre¬

mented file offset is greater than the length of the file, the length of the file

shall be set to this file offset.

On a file not capable of seeking, the write () shall start from the current posi¬

tion. The value of a file offset associated with such a file is undefined.

If the 0_APPEND flag of the file status flags is set, the file offset shall be set to

the end of the file prior to each write.

6.4 Input and Output. 113

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

If a write() requests that more bytes be written than there is room for (for

example, the physical end of a medium), only as many bytes as there is room for

shall be written. For example, suppose there is space for 20 bytes more in a file

before reaching a limit. A write of 512 bytes would return 20. The next write of

a non-zero number of bytes would give a failure return (except as noted below).

Upon successful completion, the write() function shall return the number of

bytes actually written to the file associated with fildes. This number shall

never be greater than nbyte.
If a write() is interrupted by a signal before it writes any data, it shall return

-1 with errno set to [EINTR].

If write () is interrupted by a signal after it successfully writes some data,

either it shall return -1 with errno set to [EINTR], or it shall return the number

of bytes written. A write () to a pipe or FIFO shall never return with errno set to

[EINTR] if it has transferred any data and nbyte is less than or equal to

{PIPE_BUF}.

If the value of nbyte is greater than {INT_MAX}, the result is implementation-

defined.

Write requests to a pipe (or FIFO) shall be handled the same as a regular file

with the following exceptions:

(1) There is no file offset associated with a pipe, hence each write request

shall append to the end of the pipe.

(2) Write requests of {PIPE_BUF} bytes or less shall not be interleaved with

data from other processes doing writes on the same pipe. Writes of greater

than {PIPE_BUF} bytes may have data interleaved, on arbitrary boundaries,

with writes by other processes, whether or not the 0_N0NBL0CK flag of the

file status flags is set.

(3) If the 0_N0NBL0CK flag is clear, a write request may cause the process

to block, but on normal completion it shall return nbyte.
(4) If the 0_N0NBL0CK flag is set, write 0 requests shall be handled dif¬

ferently, in the following ways: the write0 function shall not block the pro¬

cess; write requests for {PIPE_BUF} or fewer bytes shall either succeed com¬

pletely and return nbyte, or return -1 and set errno to [EAGAIN]; a write()
request for greater than {PIPE_BUF} bytes shall either transfer what it can

and return the number of bytes written, or transfer no data and return -1

with errno set to [EAGAIN]. Also, if a writeO request is greater than

{PIPE_BUF} bytes and all data previously written to the pipe has been read,

writeO shall transfer at least {PIPE_BUF} bytes.

When attempting to write to a file descriptor (other than a pipe or FIFO) that

supports nonblocking writes and cannot accept the data immediately:

(1) If the 0_N0NBL0CK flag is clear, writeO shall block until the data can be

accepted.

(2) If the 0_N0NBL0CK flag is set, writeO shall not block the process. If

some data can be written without blocking the process, writeO shall write

what it can and return the number of bytes written. Otherwise, it shall

return -1 and errno shall be set to [EAGAIN].

Upon successful completion, the writeO function shall mark for update the

stjctime and stjntime fields of the file.

114 Input and Output Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

6.4.2.3 Returns. Upon successful completion, write() shall return an
integer indicating the number of bytes actually written. Otherwise, it shall
return a value of -1 and set errno to indicate the error.

6.4.2.4 Errors. If any of the following conditions occur, the write () func¬
tion shall return -1 and set errno to the corresponding value:

[EAGAIN] The 0_N0NBL0CK flag is set for the file descriptor and the pro¬

cess would be delayed in the write operation.

[EBADF] The fildes argument is not a valid file descriptor open for writ¬

ing.

[EFBIG] An attempt was made to write a file that exceeds an

implementation-defined maximum file size.

[EENTR] The write operation was interrupted by a signal, and either no

data was transferred or the implementation does not report par¬

tial transfers for this file.

[EIO] The implementation supports job control, the process is in a

background process group and is attempting to write to its con¬

trolling terminal, TOSTOP is set, the process is neither ignoring

nor blocking SIGTTOU signals, and the process group of the pro¬

cess is orphaned. This error may also be generated for

implementation-defined reasons.

[ENOSPC] There is no free space remaining on the device containing the

file.

[EPIPE] An attempt is made to write to a pipe (or FIFO) that is not open

for reading by any process. A SIGPEPE signal shall also be sent

to the process.

6.4.2.5 References. creatO §5.3.2, dup() §6.2.1, fcntlO §6.5.2, Iseek()

§6.5.3, openO §5.3.1,pipeO §6.1.1, Signal Effects on Other Functions
§3.3.1.4.

6.5 Control Operations on Files.

Constant

F.DUPFD

F.GETFD

F.GETLK

F.SETFD

F.GETFL

F.SETFL

FJ3ETLK

F_SETLKW

Table 6-1. cmd Values for fcntlO.

Description

Duplicate file descriptor.
Get file descriptor flags.
Get record locking information.
Set file descriptor flags.
Get file status flags.
Set file status flags.
Set record locking information.
Set record locking information; wait if blocked.

6.5 Control Operations on Files. 115

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Table 6-2. File Descriptor Flags Used For fcntli).

Constant Description

FD_CLOEXEC Close the file descriptor upon execution of an exec-

family function.

Table 6-3. l-type Values For Record Locking With fcntli).

Constant Description

F.RDLCK

FJJNLCK

F_WRLCK

Shared or read lock.

Unlock.

Exclusive or write lock.

Table 6-4. oflag Values For openi).

Constant Description

O.CREAT

0_EXCL

O.NOCTTY

O.TRUNC

Create file if it doesn’t exist.

Exclusive use flag.

Don’t assign a controlling terminal.

Truncate flag.

Table 6-5. File Status Flags Used For openi) and fcntli).

Constant Description

0_APPEND

O.NONBLOCK

Set append mode.

No delay.

Table 6-6. File Access Modes Used For openi) and fcntli).

Constant Description

O.RDONLY

0_RDWR

O.WRONLY

Open for reading only.

Open for reading and writing.

Open for writing only.

6.5.1 Data Definitions for File Control Operations. The header

<fcntl.h> defines the following requests and arguments for the fcntli) §6.5.2 and

openi) §5.3.1 functions. The values within each of the Tables 6-1 through 6-7

shall be unique numbers. In addition, the values of the entries for oflag values,

file status flags, and file access modes shall be unique.

116 Input and Output Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Table 6-7. Mask For Use With File Access Modes.

Constant _Description_

0_ACCM0DE Mask for file access modes.

6.5.2 File Control.
Function: fcntl{)

6.5.2.1 Synopsis.

#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>

int fcntl (fildes, cmd,...)

int fildes, cmd;

6.5.2.2 Description. The function fcntl() provides for control over open

files. The argument fildes is a file descriptor.

The available values for cmd are defined in the header <fcntl.h> §6.5.1,

which shall include:

F_DUPFD Return a new file descriptor which is the lowest numbered

available (i.e., not already open) file descriptor greater than or

equal to the third argument, arg, taken as an integer of type

int. The new file descriptor refers to the same open file descrip¬

tion as the original file descriptor, and shares any locks.

The FD_CLOEXEC flag associated with the new file descriptor

is cleared to keep the file open across calls to the exec family of

functions.

F_GETFD Get the file descriptor flags defined in Table 6-2 that are associ¬

ated with the file descriptor fildes. File descriptor flags are

associated with a single file descriptor and do not affect other

file descriptors that refer to the same file.

F_SETFD Set the file descriptor flags defined in Table 6-2 that are associ¬

ated with fildes, to the third argument, arg, taken as type int.

If the FD_CLOEXEC flag is zero, the file shall remain open

across exec functions; otherwise, the file shall be closed upon

successful execution of an exec function.

F_GETFL Get the file status flags, defined in Table 6-5 and file access

modes for the open file description associated with fildes. The

file access modes defined in Table 6-6 can be extracted from the

return value using the mask O.ACCMODE, which is defined in

<fcntl.h> §6.5.1. File status flags and file access modes are

associated with the open file description and do not affect other

file descriptors that refer to the same file with different open

file descriptions.

F_SETFL Set the file status flags, defined in Table 6-5 for the open file

description associated with fildes from the corresponding bits in

6.5 Control Operations on Files. 117

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

the third argument, arg, taken as type int. The file access

mode shall not be changed by this function call. If any other

bits are set in arg, the result is implementation-defined.

The following commands are available for advisory record locking. Advisory

record locking shall be supported for regular files, and may be supported for

other files.

F_GETLK Get the first lock which blocks the lock description pointed to by

the third argument, arg, taken as a pointer to type struct flock
(see below). The information retrieved overwrites the informa¬

tion passed to fcntl{) in the flock structure. If no lock is found

that would prevent this lock from being created, the structure

shall be left unchanged by this function call except for the lock

type which shall be set to FJJNLCK.

F_SETLK Set or clear a file segment lock according to the lock description

pointed to by the third argument, arg, taken as a pointer to

type struct flock (see below). F_SETLK is used to establish

shared (or read) locks (F_RDLCK) or exclusive (or write) locks,

(F_WRLCK), as well as to remove either type of lock (FJJNLCK).

FJtDLCK, F.WRLCK, and FJJNLCK are defined by the

<fcntl.h> §6.5.1 header. If a shared or exclusive lock cannot be

set, fcntl{) shall return immediately.

F_SETLKW This command is the same as F_SETLK except that if a shared

or exclusive lock is blocked by other locks, the process shall wait

until the request can be satisfied. If a signal that is to be

caught is received while fcntlf) is waiting for a region, the

fcntl{) shall be interrupted. Upon return from the process’s sig¬

nal handler, fcntlf) shall return -1 with errno set to [EINTR],

and the lock operation shall not be done.

The flock structure, defined by the <fcntl.h> §6.5.1 header, describes an

advisory lock. It includes the members shown in Table 6-8.

Table 6-8. flock Structure

Member

Type

Member

Name
Description

short Ltype F_RDLCK, F.WRLCK, or FJJNLCK.

short l_whence Flag for starting offset.

offj l_start Relative offset in bytes.

off-t l_len Size; if 0 then until EOF.

pidjt l _pid Process ID of the process holding the lock,

returned with F_GETLK.

When a shared lock has been set on a segment of a file, other processes shall

be able to set shared locks on that segment or a portion of it. A shared lock

prevents any other process from setting an exclusive lock on any portion of the

protected area. A request for a shared lock shall fail if the file descriptor was

not opened with read access.

118 Input and Output Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

An exclusive lock shall prevent any other process from setting a shared lock

or an exclusive lock on any portion of the protected area. A request for an

exclusive lock shall fail if the file descriptor was not opened with write access.

The value of l_whence is SEEK_SET, SEEK_CUR, or SEEK_END to indicate that

the relative offset, l_start bytes, will be measured from the start of the file,

current position, or end of the file, respectively. The value of l_len is the

number of consecutive bytes to be locked. If l_len is negative, the result is

implementation-defined. The l_pid field is only used with F_GETLK to return

the process ID of the process holding a blocking lock. After a successful

F_GETLK request, the value of ljuuhence shall be SEEK_SET.

Locks may start and extend beyond the current end of a file, but shall not

start or extend before the beginning of the file. A lock shall be set to extend to

the largest possible value of the file offset for that file if l_len is set to zero. If

the flock struct has ljuuhence and l_start that point to the beginning of the file,

and l_len of zero, the entire file shall be locked.

The calling process shall have only one type of lock set for each byte in the

file. Before successful return from a F_SETLK or F_SETLKW request, the previ¬

ous lock type for each byte in the specified region shall be replaced by the new

lock type. All locks associated with a file for a given process shall be removed

when a file descriptor for that file is closed by that process or the process hold¬

ing that file descriptor terminates. Locks are not inherited by a child process

created using the fork() function.

A potential for deadlock occurs if a process controlling a locked region is put

to sleep by attempting to lock another process’s locked region. If the system

detects that sleeping until a locked region is unlocked would cause a deadlock,

the fcntl() function shall fail with an [EDEADLK] error.

6.5.2.3 Returns. Upon successful completion, the value returned shall

depend on cmd. The various return values are shown in Table 6-9.

Table 6-9. fcntli) Return Values

Request Return Value

F_DUPFD A new file descriptor.

F.GETFD Value of the flags defined in Table 6-2, but the

return value shall not be negative.

F.SETFD Value other than -1.

F.GETFL Value of file status flags and access modes, but the

return value shall not be negative.

F_SETFL Value other than -1.

F_GETLK Value other than -1.

F_SETLK Value other than -1.

F.SETLKW Value other than -1.

Otherwise, a value of -1 shall be returned and errno shall be set to indicate

the error.

6.5 Control Operations on Files. 119

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

6.5.2.4 Errors. If any of the following conditions occur, the fcntl() func¬

tion shall return -1 and set errno to the corresponding value:

[EACCES] or [EAGAIN]

The argument cmd is F_SETLK, the type of lock (Ijtype) is a

shared lock (F_RDLCK) or exclusive lock (F_WRLCK), and the

segment of a file to be locked is already exclusive-locked by

another process, or the type is an exclusive lock and some por¬

tion of the segment of a file to be locked is already shared-

locked or exclusive-locked by another process.

[EBADF] The fildes argument is not a valid file descriptor.

The argument cmd is F_SETLK or F_SETLKW, the type of lock

(Ijtype) is a shared lock (F_RDLCK), and fildes is not a valid file

descriptor open for reading.

The argument cmd is F_SETLK or F_SETLKW, the type of lock

(l-type) is an exclusive lock (F_WRLCK), and fildes is not a valid

file descriptor open for writing.

[EINTR] The argument cmd is F_SETLKW and the function was inter¬

rupted by a signal.

[EINVAL] The argument cmd is F_DUPFD and the third argument is nega¬

tive or greater than or equal to {OPEN_MAX}.

The argument cmd is F_GETLK, F_SETLK, or F_SETLKW and

the data arg points to is not valid, or fildes refers to a file that

does not support locking.

[EMFILE] The argument cmd is F_DUPFD and {OPEN_MAX} file descrip¬

tors are currently in use by this process, or no file descriptors

greater than or equal to arg are available.

[ENOLCK] The argument cmd is F_SETLK or F_SETLKW and satisfying the

lock or unlock request would result in the number of locked

regions in the system exceeding a system-imposed limit.

For each of the following conditions, if the condition is detected, the fcntl ()

function shall return -1 and set errno to the corresponding value:

[EDEADLK] The argument cmd is F_SETLKW and a deadlock condition was

detected.

6.5.2.5 References, close0 §6.3.1, exec §3.1.2, openO §5.3.1, <fcntl.h>
§6.5.1, Signal Effects on Other Functions §3.3.1.4.

6.5.3 Reposition Read/Write File Offset.
Function: Iseek ()

6.5.3.1 Synopsis.

#include <sys/types.h>
#include <unistd.h>

off_t Iseek (fildes, offset, whence)

int fildes, whence;

off_t offset;

120 Input and Output Primitives

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

6.5.3.2 Description. The fildes argument is an open file descriptor. The
Iseek () function shall set the file offset for the open file description associated
with fildes as follows:

(1) If whence is SEEK_SET, the offset is set to offset bytes.
(2) If whence is SEEK_CUR, the offset is set to its current value plus offset
bytes.
(3) If whence is SEEK_END, the offset is set to the size of the file plus offset
bytes.

The symbolic constants SEEK_SET, SEEK_CUR, SEEK_END are defined in the
header <unistd.h> §2.10.

Some devices are incapable of seeking. The value of the file offset associated
with such a device is undefined. The behavior of the Iseek () function on such
devices is implementation-defined.

The Iseek () function shall allow the file offset to be set beyond the end of exist¬
ing data in the file. If data is later written at this point, subsequent reads of
data in the gap shall return bytes with the value zero until data is actually writ¬
ten into the gap.

The Iseek () function shall not, by itself, extend the size of a file.
6.5.3.3 Returns. Upon successful completion, the function shall return

the resulting offset location as measured in bytes from the beginning of the file.
Otherwise, it shall return a value of ((off_t) -1), shall set ermo to indicate the
error, and the file offset shall remain unchanged by this function call.

6.5.3.4 Errors. If any of the following conditions occur, the Iseek () func¬
tion shall return -1 and set errno to the corresponding value:

[EBADFl The fildes argument is not a valid file descriptor.
[EINVAL] The whence argument is not a proper value, or the resulting file

offset would be invalid.
[ESPIPE] The fildes argument is associated with a pipe or FIFO.

6.5.3.5 References, creati) §5.3.2, dupi) §6.2.1, fcntl() §6.5.2, openi)
§5.3.1, read() §6.4.1, sigactionO §3.3.4, write() §6.4.2. <unistd.h> §2.10.

6.5 Control Operations on Files. 121

7. Device- and Class-Specific Functions

7.1 General Terminal Interface. This section describes a general terminal
interface that shall be provided to control asynchronous communications ports.
It is implementation-defined whether this interface supports network connec¬
tions or synchronous ports or both. Certain functions in this chapter apply only
to the controlling terminal of a process. Where this is the case it will be so
noted.

7.1.1 Interface Characteristics.
7.1.1.1 Opening a Terminal Device File. When a terminal file is

opened, it normally causes the process to wait until a connection is established.
In practice, application programs seldom open these files; they are opened by
special programs and become an application’s standard input, output, and error
files.

As described in open() §5.3.1, opening a terminal device file with the
0_N0NBL0CK flag clear shall cause the process to block until the terminal dev¬
ice is ready and available. The CLOCAL flag can also affect open(). See Control
Modes §7.1.2.4.

7.1.1.2 Process Groups. A terminal may have a foreground process
group associated with it. This foreground process group plays a special role in
handling signal-generating input characters, as discussed below in Special
Characters §7.1.1.9.

If the implementation supports job control (if {_POSIX_JOB_CONTROL} is
defined; see Symbolic Constants §2.10), command interpreter processes* sup¬
porting job control can allocate the terminal to different jobs, or process groups,
by placing related processes in a single process group and associating this pro¬
cess group with the terminal. A terminal’s foreground process group may be set
or examined by a process, assuming the permission requirements in this section
are met; see tcgetpgrp() §7.2.3 and tcsetpgrp() §7.2.4. The terminal interface
aids in this allocation by restricting access to the terminal by processes that are
not in the foreground process group; see Terminal Access Control §7.1.1.4.

* The P1003.2 Working Group is working on a definition and description of command interpreters.
See Shell and Utilities §A.2.3.

7.1 General Terminal Interface. 123

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

7.1.1.3 The Controlling Terminal. A terminal may belong to a process
as its controlling terminal. Each process of a session that has a controlling ter¬
minal has the same controlling terminal. A terminal may be the controlling ter¬
minal for at most one session. The controlling terminal for a session is allocated
by the session leader in an implementation-defined manner. If a session leader
has no controlling terminal, and opens a terminal device file that is not already
associated with a session without using the 0_N0CTTY option (see open()

§5.3.1), it is implementation-defined whether the terminal becomes the control¬
ling terminal of the session leader. If a process which is not a session leader
opens a terminal file, or the 0_N0CTTY option is used on open (), that terminal
shall not become the controlling terminal of the calling process. When a control¬
ling terminal becomes associated with a session, its foreground process group
shall be set to the process group of the session leader.

The controlling terminal is inherited by a child process during a forkO func¬
tion. A process relinquishes its controlling terminal when it creates a new ses¬
sion with the setsid () function, or when all file descriptors associated with the
controlling terminal have been closed.

When a controlling process terminates, the controlling terminal is disassoci¬
ated from the current session, allowing it to be acquired by a new session leader.
Subsequent access to the terminal by other processes in the earlier session may
be denied, with attempts to access the terminal treated as if modem disconnect
had been sensed.

7.1.1.4 Terminal Access Control. If a process is in the foreground pro¬
cess group of its controlling terminal, read operations shall be allowed as
described in Input Processing and Reading Data §7.1.1.5. For those imple¬
mentations that support job control, any attempts by a process in a background
process group to read from its controlling terminal shall cause its process group
to be sent a SIGTTIN signal unless one of the following special cases apply: If
the reading process is ignoring or blocking the SIGTTIN signal, or if the process
group of the reading process is orphaned, the read () returns -1 with errno set to
[EIO] and no signal is sent. The default action of the SIGTTIN signal is to stop
the process to which it is sent. See Signal Names §3.3.1.1.

If a process is in the foreground process group of its controlling terminal,
write operations shall be allowed as described in Writing Data and Output
Processing §7.1.1.8. Attempts by a process in a background process group to
write to its controlling terminal shall cause the process group to be sent a
SIGTTOU signal unless one of the following special cases apply: If TOSTOP is not
set, or if TOSTOP is set and the process is ignoring or blocking the SIGTTOU sig¬
nal, the process is allowed to write to the terminal and the SIGTTOU signal is
not sent. If TOSTOP is set, and the process group of the writing process is
orphaned, and the writing process is not ignoring or blocking SIGTTOU, the
write() returns -1 with errno set to [EIO] and no signal is sent.

Certain calls that set terminal parameters are treated in the same fashion as
write, except that TOSTOP is ignored; that is, the effect is identical to that of ter¬
minal writes when TOSTOP is set. See Control Functions §7.2.

124 Device- and Class-Specific Functions

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

7.1.1.5 Input Processing and Reading Data. A terminal device associ¬
ated with a terminal device file may operate in full-duplex mode, so that data
may arrive even while output is occurring. Each terminal device file has associ¬
ated with it an input queue, into which incoming data is stored by the system
before being read by a process. The system may impose a limit, {MAX_INPUT},
on the number of bytes that may be stored in the input queue. The behavior of
the system when this limit is exceeded is implementation-defined.

Two general kinds of input processing are available, determined by whether
the terminal device file is in canonical mode or non-canonical mode. These
modes are described in Canonical Mode Input Processing §7.1.1.6 and
Non-Canonical Mode Input Processing §7.1.1.7. Additionally, input charac¬
ters are processed according to the c_iflag (see Input Modes §7.1.2.2) and
c_lflag (see Local Modes §7.1.2.5) fields. Such processing can include echoing,
which in general means transmitting input characters immediately back to the
terminal when they are received from the terminal. This is useful for terminals
that can operate in full-duplex mode.

The manner in which data is provided to a process reading from a terminal
device file is dependent on whether the terminal device file is in canonical or
non-canonical mode.

Another dependency is whether the 0_N0NBL0CK flag is set by open () or
fcntli). If the 0_N0NBL0CK flag is clear, then the read request shall be blocked
until data is available or a signal has been received. If the 0_N0NBL0CK flag is
set, then the read request shall be completed, without blocking, in one of three
ways:

(1) If there is enough data available to satisfy the entire request, the read()

shall complete successfully and return the number of bytes read.
(2) If there is not enough data available to satisfy the entire request, the
read() shall complete successfully, having read as much data as possible, and
return the number of bytes it was able to read.
(3) If there is no data available, the read{) shall return -1, with errno set to
[EAGAIN].

When data is available depends on whether the input processing mode is
canonical or non-canonical. The following sections, Canonical Mode Input
Processing §7.1.1.6 and Non-Canonical Mode Input Processing §7.1.1.7,
describe each of these input processing modes.

7.1.1.6 Canonical Mode Input Processing. In canonical mode input
processing, terminal input is processed in units of lines. A line is delimited by a
newline ('\n'). character, an end-of-file (EOF) character, or an end-of-line (EOL)
character. See Special Characters §7.1.1.9 for more information on EOF and
EOL. This means that a read request shall not return until an entire line has
been typed, or a signal has been received. Also, no matter how many bytes are
requested in the read call, at most one line shall be returned. It is not, however,
necessary to read a whole line at once; any number of bytes, even one, may be
requested in a read without losing information.

If {MAX_CANON} is defined for this terminal device, it is a limit on the number
of bytes in a line. The behavior of the system when this limit is exceeded is
implementation-defined. If {MAX_CANON} is not defined, there is no such limit;

7.1 General Terminal Interface. 125

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

see Pathname Variable Values §2.9.5.
Erase and kill processing occur when either of two special characters, the

ERASE and KILL characters (see Special Characters §7.1.1.9), is received.
This processing affects data in the input queue that has not yet been delimited
by a newline (NL), EOF, or EOL character. This un-delimited data makes up the
current line. The ERASE character deletes the last character in the current line,
if there is any. The KILL character deletes all data in the current line, if there
is any. The ERASE and KILL characters have no effect if there is no data in the
current line. The ERASE and KILL characters themselves are not placed in the
input queue.

7.1.1.7 Non-Canonical Mode Input Processing. In non-canonical
mode input processing, input bytes are not assembled into lines, and erase and
kill processing does not occur. The values of the MIN and TIME members of the
c_cc array are used to determine how to process the bytes received.

MIN represents the minimum number of bytes that should be received when
the read() function successfully returns. TIME is a timer of 0.1 second granular¬
ity that is used to time out bursty and short term data transmissions. If MIN is
greater than {MAX_INPUT}, the response to the request is implementation-
defined. The four possible values for MIN and TIME and their interactions are
described below.

7.1.1.7.1 Case A: MIN > 0, TIME > 0. In this case TIME serves as an
inter-byte timer and is activated after the first byte is received. Since it is an
inter-byte timer, it is reset after a byte is received. The interaction between
MIN and TIME is as follows: as soon as one byte is received, the inter-byte timer
is started. If MIN bytes are received before the inter-byte timer expires
(remember that the timer is reset upon receipt of each byte), the read is satis¬
fied. If the timer expires before MIN bytes are received, the characters received
to that point are returned to the user. Note that if TIME expires at least one
byte shall be returned because the timer would not have been enabled unless a
byte was received. In this case (MIN > 0, TIME > 0) the read shall block until the
MIN and TIME mechanisms are activated by the receipt of the first byte, or a
signal is received.

7.1.1.7.2 Case B: MIN > 0, TIME S 0. In this case, since the value of
TIME is zero, the timer plays no role and only MIN is significant. A pending
read is not satisfied until MIN bytes are received (i.e., the pending read shall
block until MIN bytes are received), or a signal is received. A program that uses
this case to read record-based terminal I/O may block indefinitely in the read
operation.

7.1.1.7.3 Case C: MIN = 0, TIME > 0. In this case, since MIN = 0, TIME
no longer represents an inter-byte timer. It now serves as a read timer that is
activated as soon as the read() function is processed. A read is satisfied as soon
as a single byte is received or the read timer expires. Note that in this case if
the timer expires, no bytes shall be returned. If the timer does not expire, the
only way the read can be satisfied is if a byte is received. In this case the read
shall not block indefinitely waiting for a byte; if no byte is received within
TIME*0.1 seconds after the read is initiated, the readO shall return a value of
zero, having read no data.

126 Device- and Class-Specific Functions

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

7.1.1.7.4 Case D: MIN = 0, TIME = 0. The minimum of either the
number of bytes requested or the number of bytes currently available shall be
returned without waiting for more bytes to be input. If no characters are avail¬
able, read() shall return a value of zero, having read no data.

7.1.1.8 Writing Data and Output Processing. When a process writes
one or more bytes to a terminal device file, they are processed according to the
cjoflag field (see Output Modes §7.1.2.3). The implementation may provide a
buffering mechanism; as such, when a call to write () completes, all of the bytes
written have been scheduled for transmission to the device, but the transmis¬
sion will not necessarily have completed. See also write() §6.4.2 for the effects of
O.NONBLOCK on write

7.1.1.9 Special Characters. Certain characters have special functions
on input or output or both. These functions are summarized as follows:

INTR Special character on input and is recognized if the ISIG flag (see
Local Modes §7.1.2.5) is enabled. Generates a SIGINT signal
which is sent to all processes in the foreground process group
for which the terminal is the controlling terminal. If ISIG is set,
the INTR character is discarded when processed.

QUIT Special character on input and is recognized if the ISIG flag is
enabled. Generates a SIGQUIT signal which is sent to all
processes in the foreground process group for which the termi¬
nal is the controlling terminal. If ISIG is set, the QUIT charac¬
ter is discarded when processed.

ERASE Special character on input and is recognized if the ICANON flag
is set. Erases the last character in the current line; see Canon¬
ical Mode Input Processing §7.1.1.6. It shall not erase
beyond the start of a line, as delimited by an NL, EOF, or EOL
character. If ICANON is set, the ERASE character is discarded
when processed.

KILL Special character on input and is recognized if the ICANON flag
is set. Deletes the entire line, as delimited by a NL, EOF, or
EOL character. If ICANON is set, the KILL character is dis¬
carded when processed.

EOF Special character on input and is recognized if the ICANON flag
is set. When received, all the bytes waiting to be read are
immediately passed to the process, without waiting for a new-
line, and the EOF is discarded. Thus, if there are no bytes wait¬
ing (that is, the EOF occurred at the beginning of a line), a byte
count of zero shall be returned from the read(), representing an
end-of-file indication. If ICANON is set, the EOF character is
discarded when processed.

NL Special character on input and is recognized if the ICANON flag
is set. It is the line delimiter ('\n').

EOL Special character on input and is recognized if the ICANON flag
is set. Is an additional line delimiter, like NL.

SUSP If job control is supported (see Special Control Characters
§7.1.2.6), the SUSP special character is recognized on input. If

7.1 General Terminal Interface. 127

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

the ISIG flag is enabled, receipt of the SUSP character causes a
SIGTSTP signal to be sent to all processes in the foreground pro¬
cess group for which the terminal is the controlling terminal,
and the SUSP character is discarded when processed.
Special character on both input and output and is recognized if
the IXON (output control) or IXOFF (input control) flag is set.
Can be used to temporarily suspend output. It is useful with
CRT terminals to prevent output from disappearing before it
can be read. If IXON is set, the STOP character is discarded
when processed.
Special character on both input and output and is recognized if
the IXON (output control) or IXOFF (input control) flag is set.
Can be used to resume output that has been suspended by a
STOP character. If IXON is set, the START character is dis¬
carded when processed.
Special character on input and is recognized if the ICANON flag
is set; it is the '\r'. When ICANON and ICRNL are set and
IGNCR is not set, this character is translated into a NL, and has
the same effect as a NL character.

The NL and CR characters cannot be changed. It is implementation-defined
whether the START and STOP characters can be changed. The values for INTR,
QUIT, ERASE, KILL, EOF, EOL, and SUSP (job control only), shall be changeable
to suit individual tastes.

If {_POSIX_VDISABLE} is in effect for the terminal file, special character func¬
tions associated with changeable special control characters can be disabled indi¬
vidually; see Special Control Characters §7.1.2.6.

If two or more special characters have the same value, the function performed
when that character is received is undefined.

A special character is recognized not only by its value, but also by its context;
for example, an implementation may define multibyte sequences that have a
meaning different from the meaning of the bytes when considered individually.
Implementations may also define additional single-byte functions. These
implementation-defined multibyte or single byte functions are recognized only if
the IEXTEN flag is set; otherwise, data is interpreted as normal characters or as
the special characters defined in this section.

7.1.1.10 Modem Disconnect. If a modem disconnect is detected by the
terminal interface for a controlling terminal, and if CLOCAL is not set in the
c_cflag field for the terminal (see Control Modes §7.1.2.4), the SIGHUP signal
is sent to the controlling process associated with the terminal. Unless other
arrangements have been made, this causes the controlling process to terminate;
see _exit() §3.2.2. Any subsequent read from the terminal device returns with
an end-of-file indication until the device is closed. Thus, processes that read a
terminal file and test for end-of-file can terminate appropriately after a discon¬
nect. Any subsequent write () to the terminal device returns -1, with errno set
to [EIO], until the device is closed.

STOP

START

CR

128 Device- and Class-Specific Functions

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

7.1.1.11 Closing a Terminal Device File. The last process to close a ter¬
minal device file shall cause any output to be sent to the device and any input to
be discarded. Then, if HUPCL is set in the control modes, and the communica¬
tions port supports a disconnect function, the terminal device shall perform a
disconnect.

7.1.2 Settable Parameters.
7.1.2.1 termios Structure. Routines that need to control certain terminal

I/O characteristics shall do so by using the termios structure as defined in the
header <termios.h>. The members of this structure include (but are not lim¬
ited to) those shown in Table 7-1.

Table 7-1. termios Structure

Member
Type

Array
Size

Member
Name

Description

tcflagjt cjfiag Input modes
tcflag_t cjoflag Output modes
tcflagjt cjcflag Control modes
tcflagj cjfiag Local modes
ccj NCOS c_cc Control characters

The types tcflagj and ccjt shall be defined in the header <termios.h>. They
shall be unsigned integral types.

The total size of the termios structure is implementation-defined.
7.1.2.2 Input Modes. Values of the cjfiag field, shown in Table 7-2,

describe the basic terminal input control, and are composed of the bitwise
inclusive OR of the masks shown, which shall be bitwise distinct. The mask
name symbols in this table are defined in <termios.h>.

Table 7-2. termios c_ifiag Field

Mask
Name

Description

BRKLNT Signal interrupt on break.
ICRNL Map CR to NL on input.
IGNBRK Ignore break condition.
IGNCR Ignore CR.
IGNPAR Ignore characters with parity errors.
INLCR Map NL to CR on input.
INPCK Enable input parity check.
ISTRIP Strip character.
LXOFF Enable start/stop input control.
IXON Enable start/stop output control.
PARMRK Mark parity errors.

7.1 General Terminal Interface. 129

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

In the context of asynchronous serial data transmission, a break condition is
defined as a sequence of zero-valued bits that continues for more than the time
to send one byte. The entire sequence of zero-valued bits is interpreted as a sin¬
gle break condition, even if it continues for a time equivalent to more than one
byte. In contexts other than asynchronous serial data transmission the defini¬
tion of a break condition is implementation-defined.

If IGNBRK is set, a break condition detected on input is ignored, that is, not
put on the input queue and therefore not read by any process. If IGNBRK is not
set and BRKINT is set, the break condition shall flush the input and output
queues and if the terminal is the controlling terminal of a foreground process
group, the break condition shall generate a single SIGINT signal to that fore¬
ground process group. If neither IGNBRK nor BRKINT is set, a break condition
is read as a single '\0', or if PARMRK is set, as '\37 7', '\0', '\0'.

If IGNPAR is set, a byte with a framing or parity error (other than break) is
ignored.

If PARMRK is set, and IGNPAR is not set, a byte with a framing or parity error
(other than break) is given to the application as the three-character sequence
'\37 7', '\0', X, where '\37 7', '\0' is a two-character flag preceding each
sequence and X is the data of the character received in error. To avoid ambi¬
guity in this case, if ISTRIP is not set, a valid character of '\37 7' is given to the
application as '\ 37 7', '\ 37 7'. If neither PARMRK nor IGNPAR is set, a framing
or parity error (other than break) is given to the application as a single charac¬
ter '\0'.

If INPCK is set, input parity checking is enabled. If INPCK is not set, input
parity checking is disabled, allowing output parity generation without input
parity errors. Note that whether input parity checking is enabled or disabled is
independent of whether parity detection is enabled or disabled (see Control
Modes §7.1.2.4). If parity detection is enabled but input parity checking is dis¬
abled, the hardware to which the terminal is connected shall recognize the par¬
ity bit, but the terminal special file shall not check whether this bit is set
correctly or not.

If ISTRIP is set, valid input bytes are first stripped to seven bits, otherwise all
eight bits are processed.

If INLCR is set, a received NL character is translated into a CR character. If
IGNCR is set, a received CR character is ignored (not read). If IGNCR is not set
and ICRNL is set, a received CR character is translated into a NL character.

If IXON is set, start/stop output control is enabled. A received STOP character
shall suspend output and a received START character shall restart output.
When IXON is set, START and STOP characters are not read, but merely perform
flow control functions. When IXON is not set, the START and STOP characters
are read.

If EXOFF is set, start/stop input control is enabled. The system shall transmit
one or more STOP characters, which are intended to cause the terminal device to
stop transmitting data, as needed to prevent the number of bytes in the input
queue from exceeding {MAX_INPUT}, and shall transmit one or more START
characters, which are intended to cause the terminal device to resume transmit¬
ting data, as soon as the device can continue transmitting data without risk of

130 Device- and Class-Specific Functions

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

overflowing the input queue. The precise conditions under which STOP and
START characters are transmitted are implementation-defined.

The initial input control value after open () is implementation-defined.
7.1.2.3 Output Modes. Values of the c_oflag field describe the basic ter¬

minal output control, and are composed of the bitwise inclusive OR of the follow¬
ing masks, which shall be bitwdse distinct:

Mask _
Name Description

OPOST Perform output processing.

The mask name symbols for the c_oflag field are defined in <termios.h>.
If OPOST is set, output data is processed in an implementation-defined

fashion so that lines of text are modified to appear appropriately on the terminal
device, otherwise characters are transmitted without change.

The initial output control value after open () is implementation-defined.
7.1.2.4 Control Modes. Values of the c_cflag field, shown in Table 7-3,

describe the basic terminal hardware control, and are composed of the bitwise
inclusive OR of the masks shown, which shall be bitwise distinct; not all values
specified are required to be supported by the underlying hardware. The mask
name symbols in this table are defined in <termios.h>.

Table 7-3. termios c_cflag Field

Mask
Name

Description

CLOCAL Ignore modem status lines.
CREAD Enable receiver.
CSIZE Number of bits per byte*:

CSS 5 bits
CS6 6 bits
CS7 7 bits
CS8 8 bits

CSTOPB Send two stop bits, else one.
HUPCL Hang up on last close.
PARENB Parity enable.
PARODD Odd parity, else even.

The CSIZE bits specify the byte size in bits for both transmission and recep¬
tion. This size does not include the parity bit, if any. If CSTOPB is set, two stop
bits are used, otherwise one stop bit. For example, at 110 baud, two stop bits

* CSIZE has historically described “character” size.

7.1 General Terminal Interface. 131

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

are normally used.
If CREAD is set, the receiver is enabled. Otherwise, no characters shall be

received.
If PARENB is set, parity generation and detection is enabled and a parity bit is

added to each character. If parity is enabled, PARODD specifies odd parity if set,
otherwise even parity is used.

If HUPCL is set, the modem control lines for the port shall be lowered when
the last process with the port open closes the port or the process terminates.
The modem connection shall be broken.

If CLOCAL is set, a connection does not depend on the state of the modem
status lines. If CLOCAL is clear, the modem status lines shall be monitored.

Under normal circumstances, a call to the open() function shall wait for the
modem connection to complete. However, if the 0_N0NBL0CK flag is set (see
open() §5.3.1) or if CLOCAL has been set, the open() function shall return
immediately without waiting for the connection.

If the object for which the control modes are set is not an asynchronous serial
connection, some of the modes may be ignored; for example, if an attempt is
made to set the baud rate on a network connection to a terminal on another
host, the baud rate may or may not be set on the connection between that termi¬
nal and the machine it is directly connected to.

The initial hardware control value after openO is implementation-defined.
7.1.2.5 Local Modes. Values of the cjflag field, shown in Table 7-4,

describe the control of various functions, and are composed of the bitwise
inclusive OR of the masks shown, which shall be bitwise distinct. The mask
name symbols in this table are defined in <termios.h>.

Table 7-4. termios cjflag Field

Description

Enable echo.
Echo ERASE as an error-correcting backspace.
Echo KILL.
Echo '\n'.
Canonical input (erase and kill processing).
Enable extended (implementation-defined) functions.
Enable signals.
Disable flush after interrupt, quit, or suspend.
Send SIGTTOU for background output.

Mask
Name

ECHO
ECHOE
ECHOK
ECHONL
ICANON
IEXTEN
ISIG
NOFLSH
TOSTOP

If ECHO is set, input characters are echoed back to the terminal. If ECHO is
not set, input characters are not echoed.

If ECHOE and ICANON are set, the ERASE character shall cause the terminal
to erase the last character in the current line from the display, if possible. If
there is no character to erase, an implementation may echo an indication that
this was the case or do nothing.

132 Device- and Class-Specific Functions

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

If ECHOK and ICANON are set, the KILL character shall either cause the ter¬
minal to erase the line from the display or shall echo the '\n' character after the
KILL character.

If ECHONL and ICANON are set, the '\n' character shall be echoed even if
ECHO is not set.

If ICANON is set, canonical processing is enabled. This enables the erase and
kill edit functions, and the assembly of input characters into lines delimited by
NL, EOF, and EOL, as described in Canonical Mode Input Processing
§7.1.1.6.

If ICANON is not set, read requests are satisfied directly from the input queue.
A read shall not be satisfied until at least MIN bytes have been received or the
timeout value TIME expired between bytes. The time value represents tenths of
seconds. See the Non-Canonical Mode Input Processing §7.1.1.7 section for
more details.

If ISIG is set, each input character is checked against the special control char¬
acters INTR, QUIT, and SUSP (job control only). If an input character matches
one of these control characters, the function associated with that character is
performed. If ISIG is not set, no checking is done. Thus these special input
functions are possible only if ISIG is set.

If IEXTEN is set, implementation-defined functions shall be recognized from
the input data. It is implementation-defined how IEXTEN being set interacts
with ICANON, ISIG, IXON, or IXOFF. If IEXTEN is not set, then
implementation-defined functions shall not be recognized, and the correspond¬
ing input characters shall be processed as described for ICANON, ISIG, EXON,
and EXOFF.

If NOFLSH is set, the normal flush of the input and output queues associated
with the INTR, QUIT, and SUSP (job control only) characters shall not be done.

If TOSTOP is set and the implementation supports job control, the signal
SIGTTOU is sent to the process group of a process that tries to write to its con¬
trolling terminal if it is not in the foreground process group for that terminal.
This signal, by default, stops the members of the process group. Otherwise, the
output generated by that process is output to the current output stream.
Processes that are blocking or ignoring SIGTTOU signals are excepted and
allowed to produce output and the SIGTTOU signal is not sent.

The initial local control value after openO is implementation-defined.

7.1.2.6 Special Control Characters. The special control characters

values are defined by the array c_cc. The subscript name and description for

each element in both canonical and non-canonical modes are shown in Table 7-5.

The subscript name symbols in this table are defined in <termios.h>.
The subscript values shall be unique, except that the VMIN and VTIME sub¬

scripts may have the same values as the VEOF and VEOL subscripts, respec¬
tively.

Implementations that do not support job control may ignore the SUSP charac¬

ter value in the c_cc array indexed by the VSUSP subscript.

The number of elements in the c_cc array, NCCS, is implementation-defined.

Implementations which do not support changing the START and STOP charac¬
ters may ignore the character values in the c_cc array indexed by the VSTART

7.1 General Terminal Interface. 133

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Table 7-5. termios c_cc Special Control Characters

Subscript Usage
Canonical

Mode
Non-Canonical

Mode
Description

VEOF EOF character
VEOL EOL character
VERASE ERASE character
VINTR VINTR INTR character
VKILL KILL character

VMIN MIN value
VQUIT VQUIT QUIT character
VSUSP VSUSP SUSP character

VTIME TIME value
VSTART VSTART START character
VSTOP VSTOP STOP character

and VSTOP subscripts when tcsetattr{) is called, but shall return the value in
use when tcgetattr() is called.

If {_POSIX_VDISABLE} is defined for the terminal device file, and the value of
one of the changeable special control characters (see Special Characters
§7.1.1.9) is {_POSIX_VDISABLE}, that function shall be disabled; that is, no input
data shall be recognized as the disabled special character. If ICANON is not set,
the value of {_POSIX_VDISABLE} has no special meaning for the VMIN and
VTIME entries of the c_cc array.

The initial values of all control characters are implementation-defined.
7.1.2.7 Baud Rate Functions.

Functions: cfgetispeedO, cfgetospeedO, cfsetispeed(), cfsetospeedO

7.1.2.7.1 Synopsis.

#include <termios.h>

speed_t cfgetospeed (termios_p)

struct termios * termios_p;

int cfsetospeed (termios _jd, speed)
struct termios * termios_p;

speed_t speed;

speed_t cfgetispeed (termios_p)

struct termios * termiosjo;

int cfsetispeed (termios_p> speed)
struct termios * termios _jd;
speed_t speed;

134 Device- and Class-Specific Functions

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

7.1.2.7.2 Description. The following interfaces are provided for get¬
ting and setting the values of the input and output baud rates in the termios
structure. The effects on the terminal device described below do not become
effective until the tcsetattr() function is successfully called.

The input and output baud rates are stored in the termios structure. The
values shown in Table 7-6 are supported. The name symbols in this table are
defined in <termios.h>.

Table 7-6. termios Baud Rate Values

Name Description Name Description

BO Hang up B600 600 baud
B50 50 baud B1200 1200 baud
B75 75 baud B1800 1800 baud
B110 110 baud B2400 2400 baud
B134 134.5 baud B4800 4800 baud
B150 150 baud B9600 9600 baud
B200 200 baud B19200 19200 baud
B300 300 baud B38400 38400 baud

The type speedj shall be defined in <termios.h> and shall be an unsigned
integral type.

The termios_p argument is a pointer to a termios structure.
cfgetospeed () returns the output baud rate stored in the termios structure

pointed to by termios__p.
cfsetospeedO sets the output baud rate stored in the termios structure pointed

to by termios_jp to speed. The zero baud rate, BO, is used to terminate the con¬
nection. If BO is specified, the modem control lines shall no longer be asserted.
Normally, this will disconnect the line.

cfgetispeedO returns the input baud rate stored in the termios structure.
cfsetispeedi) sets the input baud rate stored in the termios structure to speed.

If the input baud rate is set to zero, the input baud rate will be specified by the
value of the output baud rate. Both cfsetispeedO and cfsetospeedO return a
value of zero if successful and -1 to indicate an error. Attempts to set unsup¬
ported baud rates shall be ignored, and it is implementation-defined whether an
error is returned by any or all of cfsetispeed0, cfsetospeedO, or tcsetattr(). This
refers both to changes to baud rates not supported by the hardware, and to
changes setting the input and output baud rates to different values if the
hardware does not support this.

7.1.2.7.3 Returns. See Description.
7.1.2.7.4 Errors. This standard does not specify any error conditions

that are required to be detected for the cfgetispeedO, cfgetospeed0, cfsetispeedO,
or cfsetospeedO functions. Some errors may be detected under implementation-
defined conditions.

7.1.2.7.5 References, tcsetattr 0 §7.2.1.

7.1 General Terminal Interface. 135

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

7.2 General Terminal Interface Control Functions. The functions that
are used to control the general terminal function are described in this section.
If the implementation supports job control, unless otherwise noted for a specific
command, these functions are restricted from use by background processes.
Attempts to perform these operations shall cause the process group to be sent a
SIGTTOU signal. If the calling process is blocking or ignoring SIGTTOU signals,
the process is allowed to perform the operation and the SIGTTOU signal is not
sent.

In all the functions, fildes is an open file descriptor. However, the functions
affect the underlying terminal file, and not just the open file description associ¬
ated with the file descriptor.

7.2.1 Get and Set State.
Functions: tcgetattrO, tcsetattr()

7.2.1.1 Synopsis.

#include <termios.h>

int tcgetattr {fildes, termiosj))

int fildes;
struct termios Hermios_p;

int tcsetattr (fildes, optionaljactions, termios_j>)

int fildes, optional jactions;

struct termios Hermios_p;

7.2.1.2 Description. The tcgetattrO function shall get the parameters
associated with the object referred to by fildes and store them in the termios

structure referenced by termios_p. This function is allowed from a background
process; however, the terminal attributes may be subsequently changed by a
foreground process.

The tcsetattr0 function shall set the parameters associated with the terminal
(unless support is required from the underlying hardware that is not available)
from the termios structure referenced by termios_p as follows:

(1) If optional jactions is TCSANOW, the change shall occur immediately.
(2) If optional jactions is TCSADRAIN, the change shall occur after all output
written to fildes has been transmitted. This function should be used when
changing parameters that affect output.
(3) If optional jactions is TCSAFLUSH, the change shall occur after all output
written to the object referred to by fildes has been transmitted, and all input
that has been received but not read shall be discarded before the change is
made.

The symbolic constants for the values of optional jactions are defined in
<termios.h>.

7.2.1.3 Returns. Upon successful completion, a value of zero is returned.
Otherwise, a value of-1 is returned and errno is set to indicate the error.

136 Device- and Class-Specific Functions

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

7.2.1.4 Errors. If any of the following conditions occur, the tcgetattr{)
function shall return -1 and set err no to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.
[ENOTTYl The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcsetattr () function shall return -1
and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.
[EINVAL] The optionaljactions argument is not a proper value, or an

attempt was made to change an attribute represented in the ter-
mios structure to an unsupported value.

[ENOTTY] The file associated with fildes is not a terminal.
7.2.1.5 References. <termios.h> §7.1.2.

7.2.2 Line Control Functions.
Functions: tcsendbreaki), tcdrain (), tcflushO, tcflowO

7.2.2.1 Synopsis.

#include <termios.h>

int tcsendbreak {fildes, duration)
int fildes;
int duration;

int tcdrain {fildes)
int fildes;

int tcflush {fildes, queue_selector)
int fildes;
int queue_selector;

int tcflow {fildes, action)
int fildes;
int action;

7.2.2.2 Description. If the terminal is using asynchronous serial data
transmission, the tcsendbreak () function shall cause transmission of a continu¬
ous stream of zero-valued bits for a specific duration. If duration is zero, it shall
cause transmission of zero-valued bits for at least 0.25 seconds, and not more
that 0.5 seconds. If duration is not zero, it shall send zero-valued bits for an
implementation-defined period of time.

If the terminal is not using asynchronous serial data transmission, it is
implementation-defined whether the tcsendbreak () function sends data to gen¬
erate a break condition (as defined by the implementation) or returns without
taking any action.

The tcdrain () function shall wait until all output written to the object referred
to by fildes has been transmitted.

The tcflushO function shall discard data written to the object referred to by
fildes but not transmitted, or data received but not read, depending on the value
of queue^selector:

7.2 General Terminal Interface Control Functions. 137

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

(1) If queue_selector is TCIFLUSH, it shall flush data received but not read.
(2) If queue selector is TCOFLUSH, it shall flush data written but not
transmitted.
(3) If queue selector is TCIOFLUSH, it shall flush both data received but not
read, and data written but not transmitted.

The tcflowO function shall suspend transmission or reception of data on the
object referred to by fildes, depending on the value of action:

(1) If action is TCOOFF, it shall suspend output.
(2) If action is TCOON, it shall restart suspended output.
(3) If action is TCIOFF, the system shall transmit a STOP character, which is
intended to cause the terminal device to stop transmitting data to the sys¬
tem. (See the description of IXOFF in Input Modes §7.1.2.2.)
(4) If action is TCION, the system shall transmit a START character, which is
intended to cause the terminal device to start transmitting data to the sys¬
tem. (See the description of IXOFF in Input Modes §7.1.2.2.)

The symbolic constants for the values of queue selector and action are defined
in <termios.h>.

The default on open of a terminal file is that neither its input nor its output is
suspended.

7.2.2.3 Returns. Upon successful completion, a value of zero is returned.
Otherwise, a value of-1 is returned and errno is set to indicate the error.

7.2.2.4 Errors. If any of the following conditions occur, the tcsendbreakO
function shall return -1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.
[ENOTTY] The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcdrain () function shall return -1
and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.
[EINTR] A signal interrupted the tcdrain () function.
[ENOTTY] The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcflushO function shall return -1
and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.
[EINVAL] The queue selector argument is not a proper value.
[ENOTTY] The file associated with fildes is not a terminal.

If any of the following conditions occur, the tcflowO function shall return -1
and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.
[EINVAL] The action argument is not a proper value.
[ENOTTY] The file associated with fildes is not a terminal.

7.2.2.5 References. <termios.h> §7.1.2.

138 Device- and Class-Specific Functions

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

7.2.3 Get Foreground Process Group ID.
Function: tcgetpgrp ()

7.2.3.1 Synopsis.

#include <sys/types.h>

pid_t tcgetpgrp (fildes)
int fildes;

7.2.3.2 Description.
If {_POSIX_JOB_CONTROL} is defined:

(1) The tcgetpgrp() function shall return the value of the process
group ID of the foreground process group associated with the termi¬
nal.
(2) The tcgetpgrp () function is allowed from a process that is a
member of a background process group; however, the information
may be subsequently changed by a process that is a member of a
foreground process group.

Otherwise:
The implementation shall either support the tcgetpgrp () function as
described above, or the tcgetpgrp () call shall fail.

7.2.3.3 Returns. Upon successful completion, tcgetpgrp () returns the
process group ID of the foreground process group associated with the terminal.
Otherwise, a value of-1 is returned and errno is set to indicate the error.

7.2.3.4 Errors. If any of the following conditions occur, the tcgetpgrp ()
function shall return -1 and set errno to the corresponding value:

[EBADF] The fildes argument is not a valid file descriptor.
[ENOSYS] The tcgetpgrp () function is not supported in this implementa¬

tion.
[ENOTTY] The calling process does not have a controlling terminal or the

file is not the controlling terminal.
7.2.5.5 References. setsidO §4.3.2, setpgidi) §4.3.3, tcsetpgrp() §7.2.4.

7.2.4 Set Foreground Process Group ID.
Function: tcsetpgrp ()

7.2.4.1 Synopsis.

#include <sys/types.h>

int tcsetpgrp {fildes,pgrp_id)
int fildes;
pid_t pgrp_id;

7.2.4.2 Description.
If {_POSIX_JOB_CONTROL} is defined:

If the process has a controlling terminal, the tcsetpgrp () function shall
set the foreground process group ID associated with the terminal to
pgrp_id. The file associated with fildes must be the controlling termi¬
nal of the calling process and the controlling terminal must be
currently associated with the session of the calling process. The value

7.2 General Terminal Interface Control Functions. 139

of pgrp_id must match a process group ID of a process in the same ses¬
sion as the calling process.

Otherwise:
The implementation shall either support the tcsetpgrp () function as
described above, or the tcsetpgrp () call shall fail.

7.2.4.3 Returns. Upon successful completion, tcsetpgrp () returns a value
of zero. Otherwise, a value of -1 is returned and errno is set to indicate the
error.

7.2.4.4 Errors. If any of the following conditions occur, the tcsetpgrp ()
function shall return -1 and set errno to the corresponding value:

[EBADF]
[EINVAL]

The fildes argument is not a valid file descriptor.
The value of the pgrp_id argument is a value not supported by
the implementation.

[ENOSYS] The tcsetpgrp () function is not supported in this implementa¬
tion.

[ENOTTY] The calling process does not have a controlling terminal, or the
file is not the controlling terminal, or the controlling terminal is
no longer associated with the session of the calling process.

[EPERM] The value of pgrp_id is a value supported by the implementa¬
tion but does not match the process group ID of a process in the
same session as the calling process.

140 Device- and Class-Specific Functions

8. Language-Specific Services for the C Programming Language

8.1 Referenced C Language Routines. The functions listed below will be
described in the indicated sections of the C Standard. IEEE Std 1003.1-1988
with the C Language Binding comprises these functions, the extensions to them
described in this chapter, and the rest of the requirements stipulated in this
standard. The functions appended with plus signs (+) have requirements
beyond those set forth in the C Standard. Any implementation claiming confor¬
mance to IEEE Std 1003.1-1988 with the C Language Binding shall comply with
the requirements outlined in this chapter, the requirements stipulated in the
rest of this standard, and the requirements in the indicated sections of the
C Standard.

For requirements concerning conformance to this chapter, see Language-
Dependent Services for the C Programming Language §2.2.3 and its sub¬
sections.

4.2 Diagnostics
Functions: assert.

4.3 Character Handling
Functions: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit, tolower, toupper.

4.4 Localization
Functions: setlocale+.

4.5 Mathematics
Functions: acos, asin, atan, atan2, cos, sin, tan, cosh, sinh, tanh, exp,
frexp, ldexp, log, loglO, modf, pow, sqrt, ceil, fabs, floor, fmod.

4.6 Non-Local Jumps
Functions: setjmp, longjmp.

4.9 Input/Output
Functions: clearerr, fclose, feof, ferror, fflush, fgetc, fgets, fopen, fputc,
fputs, fread, freopen, fseek, ftell, fwrite, getc, getchar, gets, perror,
printf, fprintf, sprintf, putc, putchar, puts, remove, rename+, rewind,
scanf, fscanf, sscanf, setbuf, tmpfile, tmpnam, ungetc.

4.10 General Utilities
Functions: abs, atof, atoi, atol, rand, srand, calloc, free, malloc, real¬
loc, abort+, exit, getenv+, bsearch, qsort.

4.11 String Handling
Functions: strcpy, stmcpy, strcat, stmcat, strcmp, stmcmp, strchr,

8.1 Referenced C Language Routines. 141

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

strcspn, strpbrk, strrchr, strspn, strstr, strtok, strlen.
4.12 Date and Time

Functions: time, asctime, ctime+, gmtime+, localtime+, mktime+,
strftime-K

Systems conforming to the IEEE Std 1003.1-1988 shall make no distinction
between the “text streams” and the “binary streams” described in the
C Standard.

For the fseek () function, if the specified position is beyond end-of-file, the
consequences described in lseek() (see lseek() §6.5.3) shall occur.

The EXIT_SUCCESS macro, as used by the exit() function, shall evaluate to a
value of zero.

The relationship between a time in seconds since the Epoch used as an argu¬
ment to gmtime() and the tm structure (defined in <time.h>) is that the result
shall be as specified in the expression given in the definition of seconds since
the Epoch §2.3, where the names in the structure and in the expression
correspond. If the time zone UCTO is in effect, this shall also be true for local¬

time () and mktime().

8.1.1 Extensions to Time Functions. The contents of the environment
variable named TZ (see Environment Variables §2.7) shall be used by the
functions dime (), localtime (), strftime (), and mktime () to override the default
time zone. The value of TZ has one of the two forms (spaces inserted for clarity):

: characters

or:

std offset dst offset, rule

If TZ is of the first format (i.e., if the first character is a colon), the characters
following the colon are handled in an implementation-defined manner.

The expanded format (for all TZs whose value does not have a colon as the
first character) is as follows:

stdoffset[dst[offset][, start[/time\, end[/time]]\

Where:
std and dst Three or more bytes that are the designation for the standard

(std) or summer (dst) time zone. Only std is required; if dst is
missing, then summer time does not apply in this locale.
Upper- and lowercase letters are explicitly allowed. Any char¬
acters except a leading colon (:), digits, comma (,), minus (-),
plus (+), and ASCII NUL are allowed.

offset Indicates the value one must add to the local time to arrive at
Coordinated Universal Time. The offset has the form:

hh[: mm[: ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh)

shall be required and may be a single digit. The offset following
std shall be required. If no offset follows dst, summer time is

142 Language-Specific Services for the C Programming Language

INTERFACE FOR COMPLTER ENVIRONMENTS

IEEE

Std 1003.1-1988

assumed to be one hour ahead of standard time. One or more
digits may be used; the value is always interpreted as a decimal
number. The hour shall be between zero and 24, and the
minutes ' and seconds)—if present—between zero and 59. Out
of range values may cause unpredictable behavior. If preceded
by a the time zone shall be east of the Prime Meridian; oth¬
erwise it shall be west » which may be indicated by an optional
preceding

rule Indicates when to change to and back from summer time. The
rule has the form:

date I time ,date/time

where the first date describes when the change from standard
to summer time occurs and the second date describes when the
change back happens. Each time field describes when, in
current local time, the change to the other time is made.

The format of date shall be one of the following:
Jn The Julian day n l < n < 365 . Leap days shall

not be counted. That is, in all years—including
leap years—February 28 is day 59 and March 1 is
day 60. It is impossible to explicitly refer to the
occasional February 29.

n The zero-based Julian day (0 < n < 365). Leap
days shall be counted, and it is possible to refer to
February 29.

Mm ./i .d The day * 0 < d < 6) of week n of month m of
the year 1<tz<5, l<m< 12, where week 5
means “the last d day in month m" which may
occur in either the fourth or the fifth week).
Week 1 is the first week in which the cTth day
occurs. Day zero is Sunday.

The time has the same format as offset except that no leading
sign ” or “+") shall be allowed. The default* if time is not
given, shall be 02:00:00.

Whenever ctimei), strftime(), mktime\), or localtime() is called, the time zone
names contained in the external variable tzname shall be set as if the tzseP

§8.3.2 function had been called.
Applications are explicitly allowed to change TZ and have the changed TZ

apply to themselves.

8.1 Referenced C Language Routines. 143

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

8.1.2 Extensions to setlocale () Function.
Function: setlocale ()

8.1.2.1 Synopsis.

#include <locale.h>

char *setlocale {category, locale)
int category;

char *locale;

8.1.2.2 Description. The C Standard allows the specification of an
implementation-defined native environment for the setlocale () function, which
shall set a specific category to an implementation-defined default. For IEEE Std
1003.1-1988 systems, this corresponds to the value of the environment vari¬
ables.

A specific category may be set to an implementation-defined default value by
passing the locale argument with a pointer to a null string.

Possible values for category include:

LC.CTYPE
LC_COLLATE
LC_TIME
LC_NUMERIC
LC_MONETARY
Implementation-defined additional categories

In all cases, setlocale () shall first check the value of the corresponding
environment variable (for example, LC_CTYPE for the LC_CTYPE category) and
if valid (i.e., points to the name of a valid locale), setlocale () shall set the speci¬
fied category of the international environment to that value and return the
string corresponding to the locale set (i.e., the value of the environment vari¬
able, not " "). If the value is invalid, setlocale () shall return a NULL pointer
and the international environment is not changed by this function call.

If the environment variable corresponding to the specified category is not set
or is set to the empty string, the behavior of setlocale () is implementation-
defined, unless the LANG environment variable is set and valid in which case
setlocale () will set the category to the corresponding value of LANG. In some
implementations, this may default to a system-wide value, others may default to
the "C" locale. Setting all categories to the implementation-defined default is
similar to the previous usage, but it interrogates all the environment variables
to determine the specific value to set. To set all categories in the international
environment, setlocale () is invoked in the following manner:

setlocale(LC_ALL,

To satisfy this request, setlocale () first checks all the environment variables.
If any environment variable is invalid, setlocale () returns a null pointer and the
international environment is not changed by this function call. If all the
relevant environment variables are valid, setlocale () sets the international
environment to reflect the values of the environment variables. The categories
are set in the following order:

144 Language-Specific Services for the C Programming Language

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

LC.CTYPE
LC.COLLATE
LC_TIME
LC_NUMERIC
LC_MONETARY
Implementation-defined additional categories

Using this scheme, the categories corresponding to the environment variables
will override the value of the LANG environment variable for a particular
category.

If the LANG environment variable is not set or is set to the empty string, the
behavior of

set locale {category, " ")

is implementation-defined.

8.2 FILE-Type C Language Functions. This section describes functions
which make reference to the FILE type, (as described in the C Standard), and
their interactions with other functions defined by this standard.

The terms file position indicator and stream are those defined by the
C Standard.

A stream is considered local to a single process. After a fork() call each of the
parent and child have distinct streams which share an open file description.

8.2.1 Map a Stream Pointer to a File Descriptor.
Function: filenof)

8.2.1.1 Synopsis.

#include <stdio.h>

int fileno {stream)

FILE *stream;

8.2.1.2 Description. The filenoO function returns the integer file
descriptor associated with the stream (see open{) §5.3.1).

The following symbolic values in <unistd.h> §2.10 define the file descriptors
that shall be associated with the C language stdin, stdout, and stderr when the
application is started:

Name _Description_ Value

STDIN_FILENO Standard input value, stdin. 0

STDOUT_FILENO Standard output value, stdout. 1

STDERR_FILENO Standard error value, stderr. 2

8.2.1.3 Returns. See Description. If an error occurs, a value of -1 is
returned and errno is set to indicate the error.

8.2 FILE-Type C Language Functions. 145

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

8.2.1.4 Errors. This standard does not specify any error conditions that
are required to be detected for the fileno () function. Some errors may be
detected under implementation-defined conditions.

8.2.1.5 References. open() §5.3.1.

8.2.2 Open a Stream on a File Descriptor.
Function: fdopen ()

8.2.2.1 Synopsis.

#include <stdio.h>

FILE *fdopen {fildes, type)
int fildes;
char Hype;

8.2.2.2 Description. The fdopen () routine associates a stream with a file
descriptor.

The type argument is a character string having one of the following values:

" r " open for reading
" w " open for writing
" a " open for writing at end-of-file
"r+" open for update (reading and writing)
"w+" open for update (reading and writing)
" a+ " open for update (reading and writing) at end-of-file

The meaning of these flags is exactly as specified by the C Standard for
fopen(), except that "w" and "w+M do not cause truncation of the file. Addi¬
tional values for the type argument may be defined by an implementation.

The type of the stream must be allowed by the mode of the open file.
The file position indicator associated with the new stream is set to the posi¬

tion indicated by the file offset associated with the file descriptor.
fdopen () may cause the stjatime field of the underlying file to be marked for

update.
8.2.2.3 Returns. If successful, the fdopen () function returns a pointer to

a stream. Otherwise, a NXJLL pointer is returned and errno is set to indicate the
error.

8.2.2.4 Errors. This standard does not specify any error conditions that
are required to be detected for the fdopen () function. Some errors may be
detected under implementation-defined conditions.

8.2.2.5 References. openO §5.3.1, fopen() (C Standard).

8.2.3 Interactions of Other FILE-Type C Functions. A single open file
description can be accessed both through streams and through file descriptors.
Either a file descriptor or a stream will be called a handle on the open file
description to which it refers; an open file description may have several handles.

Handles can be created or destroyed by user action, without affecting the
underlying open file description. Some of the ways to create them include
fcntlO, dupO, fdopenO, fileno(), and fork{) (which duplicates existing ones into

146 Language-Specific Services for the C Programming Language

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

new processes). They can be destroyed by at least fclosei), close(), and the exec
functions (which close some file descriptors, and destroy streams).

A file descriptor which is never used in an operation that could affect the file

offset (for example read(), write (), or Iseek ()) is not considered a handle in this

discussion, but could give rise to one (as a consequence of fdopeni), dup(), or

forki), for example). This exception does include the file descriptor underlying a

stream, whether created with fopeni) or fdopeni), as long as it is not used

directly by the application to affect the file offset. (The read () and write 0 func¬

tions implicitly affect the file offset; Iseek() explicitly affects it.)

The result of function calls involving any one handle (the active handle) are

defined elsewhere in this standard, but if two or more handles are used, and any

one of them is a stream, their actions shall be coordinated as described below. If

this is not done, the result is undefined.

A handle which is a stream is considered to be closed when either an fclose ()

or freopen () is executed on it (the result of freopen 0 is a new stream for this dis¬

cussion, which cannot be a handle on the same open file description as its previ¬

ous value), or when the process owning that stream terminates with exitO or

abort(). A file descriptor is closed by close (), jexiti), or by one of the exec func¬

tions when FD_CLOEXEC is set on that file descriptor.

For a handle to become the active handle, the actions below must be per¬

formed between the last other use of the first handle (the current active handle)

and the first other use of the second handle (the future active handle). The

second handle then becomes the active handle. All activity by the application

affecting the file offset on the first handle shall be suspended until it again

becomes the active handle. (If a stream function has as an underlying function

which affects the file offset, the stream function will be considered to affect the

file offset. The underlying functions are described below.)

The handles need not be in the same process for these rules to apply.

(1) For the first handle, the first applicable condition below shall apply.

After the actions required below are taken, if the handle is still open, it may

be closed.

(a) If it is a file descriptor, no action is required.

(b) If the only further action to be performed on any handle to this open

file description is to close it, no action need be taken.

(c) If it is a stream which is unbuffered, no action need be taken.

(d) If it is a stream which is line-buffered, and the last operation had the

same effect on the underlying file as a fgetsi) or fputsi), no action need be

taken. In the case of an fgetsi), the effect above is to be interpreted as if

no readahead that the implementation may choose to do had actually

occurred.

(e) If it is a stream which is open for writing or append, (but not also open

for reading) either a fflushi) shall occur or the stream shall be closed.

(f) If the stream is open for reading and it is at the end of the file ifeofi) is

true), no action need be taken.

(g) If the stream is open with a mode that allows reading and the underly¬

ing open file description refers to a device that is capable of seeking,

either a fflushi) shall occur or the stream shall be closed.

8.2 FILE-Type C Language Functions. 147

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

(h) Otherwise, the result is undefined.

(2) For the second handle: if any previous active handle has called a function

that explicitly changed the file offset, except as required above for the first

handle, the application shall perform an Iseek () or fseek () (as appropriate to

the type of the handle) to an appropriate location.

(3) If the active handle ceases to be accessible before the requirements on the

first handle above have been met, the state of the open file description

becomes undefined. This might occur, for example, during a fork{) or _exit().

(4) The exec functions shall be considered to make inaccessible all streams

which are open at the time they are called, independent of what streams or

file descriptors may be available to the new process image.

(5) Implementations shall assure that an application, even one consisting of

several processes, shall yield correct results (no data is lost or duplicated

when writing, all data is written in order, except as requested by seeks, and

all data is seen on reading sequentially) when the rules above are followed,

regardless of the sequence of handles used. If the rules above are not fol¬

lowed, the result is unspecified.

(6) Each function that operates on a stream is said to have zero or more

underlying functions. This means that the stream function shares certain

traits with the underlying functions, but does not require that there be any

relation between the implementations of the stream function and its under¬

lying functions.

(7) Also, in the sections below, additional requirements on the standard I/O

routines, beyond those in the C Standard, are given.

8.2.3.1 fopen ()• fopenO shall allocate a file descriptor as open() does.

fopen () may cause the stjatime field of the underlying file to be marked for

update.

The underlying function is openf).

8.2.3.2 fclose (). fclose () shall perform a close () on the file descriptor that

is associated with the FILE stream. It shall also mark for update the stjctime

and stjmtime fields of the underlying file, if the stream was writable, and if buf¬

fered data had not been written to the file yet.

The underlying functions are write f) and close ().

If the file is not already at EOF, and the file is one capable of seeking, the file

offset of the underlying open file description shall be adjusted so that the next

operation on the open file description deals with the byte after the last one read

from or written to the stream being closed.

8.2.3.3 freopen (). freopen () has the properties of both fclose () and fopen ().

8.2.3.4 fflushi). fflushO shall mark for update the stjctime and stjmtime

fields of the underlying file if the stream was writable and if buffered data had

not been written to the file yet.

The underlying functions are read{), write0, and Iseek().

If the stream is open for reading, any unread data buffered in the stream

shall be invalidated.

For a stream open for reading, if the file is not already at EOF, and the file is

one capable of seeking, the file offset of the underlying open file description

shall be adjusted so that the next operation on the open file description deals

148 Language-Specific Services for the C Programming Language

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

with the byte after the last one read from or written to the stream being closed.

8.2.3.5 fgetc(), fgetsi), fread (), getci), getchari), getsi), scanfO, fscanfi).

These functions may mark the stjatime field for update. The stjatime field

shall be marked for update by the first successful execution of one of these func¬

tions that returns data not supplied by a prior call to ungetc ().

The underlying functions are readi) and Iseek().

8.2.3.6 fputd), fputsi), fwritei), putc(), putchari), puts (), printfi),

vprintfi), vfprintfO. The stjctime and stjntime fields of the file shall be

marked for update between the successful execution of one of these functions

and the next successful completion of a call to either fflushi) or fclose() on the

same stream or a call to exit{) or aborts).

The underlying functions are write () and Iseek ().

8.2.3.7 fseek (), rewind (). These functions shall mark the stjctime and

stjntime fields of the file for update if the stream was writable and if buffered

data had not yet been written to the file.

The underlying functions are Iseek () and write ().

If the most recent operation, other than ftelli), on a given stream is fflushi),

the file offset in the underlying open file description shall be adjusted to reflect

the location specified by the fseek ().

8.2.3.8 perrori). This function shall mark the file associated with the

standard error stream as having been written (stjctime, stjntime marked for

update) at some time between its successful completion and the completion of

fflushi) or fclose() on stderr, or exiti) or aborti).

8.2.3.9 tmpfilei). tmpfilei) shall allocate a file descriptor as fopeni) does.

8.2.3.10 ftelli). The underlying function is fseeki). The result of ftelli)

after an fflushi) shall be the same as the result before the fflushi).

8.2.3.11 Error Reporting. If any of the functions above return an error

indication caused by a condition that would be detected by the corresponding

underlying functions listed above, the value returned in errno shall be the one

provided for the underlying function.

8.2.3.12 exiti), abort i). The exiti) function shall have the effect of fclose i)

on every open stream, with the properties of fclose () as described above. The

abort() function shall also have these effects if the call to aborti) causes pro¬

gram termination (see the C Standard for the conditions where program termi¬

nation will not occur.)

8.2.4 Operations on Files — the remove () Function. The remove () func¬

tion shall have the same effect on file times as unlink ().

8.2 FILE-Type C Language Functions. 149

8.3 Other C Language Functions.

8.3.1 Non-Local Jumps.
Functions: sigsetjmp (), siglongjmp ()

8.3.1.1 Synopsis.

#include <setjmp.h>

int sigsetjmp {env, savemask)
sigjmpjbuf env;
int savemask;

void siglongjmp {env, val)
sigjmpjbuf env;

int val;

8.3.1.2 Description. The sigsetjmp () macro shall comply with the defini¬

tion of the setjmp () macro in the C Standard. If the value of the savemask argu¬

ment is not zero, the sigsetjmp () function shall also save the process’s current

signal mask (see <signal.h> §3.3.1) as part of the calling environment.

The siglongjmp () function shall comply with the definition of the longjmpO
function in the C Standard. If and only if the env argument was initialized by a

call to the sigsetjmp () function with a non-zero savemask argument, the

siglongjmp () function shall restore the saved signal mask.

8.3.1.3 References, sigactioni) §3.3.4, <signal.h> §3.3.1, sigprocmaski)
§3.3.5, sigsuspendO §3.3.7.

8.3.2 Set Time Zone.
Function: tzset{)

8.3.2.1 Synopsis.

#include <time.h>

void tzset ()

8.3.2.2 Description. The tzset() function uses the value of the environ¬

ment variable TZ to set time conversion information used by localtime (),
dime(), strftimei), and mktimei). If TZ is absent from the environment,

implementation-defined default time zone information shall be used.

The tzset () function shall set the external variable tzname:

extern char *tzname[2] = {"std", "dst" } ;

where std and dst are as described in Extensions to Time Functions §8.1.1.

150 Language-Specific Services for the C Programming Language

9. System Databases

9.1 System Databases. The routines described in this section allow an appli¬

cation to access the two system databases that are described below.

The group database contains the following information for each group:

(1) group name

(2) numerical group ID

(3) list of the names or numbers of all users allowed in the group

The user database contains the following information for each user:

(1) login name

(2) numerical user ID

(3) numerical group ID

(4) initial working directory

(5) initial user program

If the initial user program field is null, the system default is used.

If the initial working directory field is null, the interpretation of that field is

implementation-defined.

These databases may contain other fields that are implementation-defined.

9.2 Database Access.

9.2.1 Group Database Access.
Functions: getgrgid(), getgrnam ()

9.2.1.1 Synopsis.

#include <grp.h>

struct group *getgrgid (gid)

gid_t gid;

struct group *getgrnam (name)

char *name;

9.2.1.2 Description. The getgrgid() and getgrnam () routines both return

pointers to an object of type struct group containing an entry from the group

database with a matching gid or name. This structure, which is defined in

<grp.h>, includes the members shown in Table 9-1.

9.2 Database Access. 151

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Table 9-1. group Structure

Member

Type

char *

gidjt

char **

Member

Name

grjname

gr_gid

grjnem

Description

The name of the group.

The numerical group ID.

A null-terminated vector of pointers to

the individual member names.

9.2.1.3 Returns. A NULL pointer is returned on error or if the requested

entry is not found.

The return values may point to static data that is overwritten by each call.

9.2.1.4 Errors. This standard does not specify any error conditions that

are required to be detected for the getgrgidi) or getgrnam() functions. Some

errors may be detected under implementation-defined conditions.

9.2.1.5 References. getlogini) §4.2.4.

9.2.2 User Database Access.
Functions: getpwuid(), getpwnam ()

9.2.2.1 Synopsis.

#include <pwd.h>

struct passwd *getpwuid (uid)

uid_t uid;

struct passwd *getpwnam {name)

char *name;

9.2.2.2 Description. The getpwuidi) and getpwnami) functions both

return a pointer to an object of type struct passwd containing an entry from the

user database with a matching uid or name. This structure, which is defined in

<pwd.h>, includes the members shown in Table 9-2.

Table 9-2. passwd Structure

Member

Type

Member

Name
Description

char * pwjname User’s login name.

uidjt pwjuid User ID number.

gidjt pw_gid Group ID number.

char * pwjdir Initial Working Directory.

char * pw_shell Initial User Program.

The implementation of the cuserid() §4.2.4 function may use the getpwnami)

function; thus the results of a user’s call to either routine may be overwritten by

a subsequent call to the other routine.

152 System Databases

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

9.2.2.3 Returns. A NULL pointer is returned on error or if the requested

entry is not found.

The return values may point to static data that is overwritten on each call.
9.2.2.4 Errors. This standard does not specify any error conditions that

are required to be detected for the getpwuidO or getpwnam() functions. Some
errors may be detected under implementation-defined conditions.

9.2.2.5 References, cuseridi) §4.2.4, getloginO §4.2.4.

9.2 Database Access. 153

10. Data Interchange Format

10.1 Archive/Interchange File Format. A conforming system shall provide

a mechanism to copy files from a medium to the file hierarchy and copy files

from the file hierarchy to a medium using the interchange formats described

here. This standard does not define this mechanism.*

When this mechanism is used to copy files from the medium by a process

without appropriate privileges, the protection information (ownership and

access permissions) shall be set in the same fashion that creatO §5.3.2 would

when given the mode argument matching the file permissions supplied by the

mode field of extended tar format or the c_mode field of the extended cpio for¬

mat. A process with appropriate privileges shall restore the ownership and per¬

missions exactly as recorded on the medium, except that the symbolic user and

group IDs are used for the tar format, as described in Extended tar Format
§10.1.1.

The format-creating utility is used to translate from the file system to the for¬

mats defined in this section, in an implementation-defined way, and the

format-reading utility is used to translate from the formats defined in this sec¬

tion to a file system.

The headers of these formats are defined to use characters represented in

ASCII, however, no restrictions are made about the contents of the files them¬

selves. The data in a file may be binary data, or text represented in any format

available to the user. When these formats are used to transfer text at the

source level all characters shall be represented in ASCII.

10.1.1 Extended tar Format. An extended tar archive tape or file con¬

tains a series of blocks. Each block is a fixed size block of 512 bytes (see below).

Although this format may be thought of as being stored on 9-track industry

standard V2-inch magnetic tape, other types of transportable media are not

excluded. Each file archived is represented by a header block that describes the

file, followed by zero or more blocks that give the contents of the file. At the end

of the archive file are two blocks filled with binary zeroes, interpreted as an

end-of-archive indicator.

* The 1003.2 Working Group is working on this mechanism. See Shell and Utilities §A2.3.

10.1 Archive/Interchange File Format. 155

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

The blocks may be grouped for physical I/O operations. Each group of n blocks

(where n is set by the application utility creating the archive file) may be writ¬

ten with a single write() operation. On magnetic tape, the result of this write is

a single tape record. The last group of blocks is always at the full size, so blocks

after the two zero blocks contain undefined data.

The header block is structured as shown in Table 10-1. All lengths and offsets

are in decimal.

Table 10-1. tar Header Block

Field Name Byte Offset Length (in

name 0 100

mode 100 8

uid 108 8

gid 116 8

size 124 12

mtime 136 12

chksum 148 8

typeflag 156 1

linkname 157 100

magic 257 6

version 263 2

uname 265 32

gname 297 32

devmajor 329 8

devminor 337 8

prefix 345 155

Symbolic constants used in the header block are defined in the header

<tar.h> as follows:

#define TMAGIC " ustar" /* ustar and a . null */

#define TMAGLEN 6

#define TVERSION

o

o
 /* 00 and no null */

#define TVERSLEN 2

/* Values used in typeflag field */
#define REGTYPE 'O' /* Regular file */

#define AREGTYPE '\0' /* Regular file */
#define LNKTYPE '1' /* Link */
#define SYMTYPE '2' /* Reserved */

#define CHRTYPE '3' /* Character spec ial */

#define BLKTYPE '4' /* Block special */

#define DIRTYPE '5' /* Directory */
#define FIFOTYPE '6' /* FIFO special */
#define CONTTYPE '7' /* Reserved */

/* Bits used in the mode field - values in octal */

156 Data Interchange Format

INTERFACE FOR COMPUTER ENVIRONMENTS
IEEE

Std 1003.1-1988

#define TSUID 04 000 /* Set UID on execution */

#define TSGID 02 000 /* Set GID on execution */

#define TSVTX 01 000 /* Reserved */

/* File permissions */

#define TUREAD 00 400 /* read by owner */

#define TUWRITE 00 200 /* write by owner */

#define TUEXEC 00 100 /* execute/search by owner */
#define TGREAD 00 040 /* read by group */

#define TGWRITE 00 020 /* write by group */

#define TGEXEC 00 010 /* execute/search by group */
#define TOREAD 00 004 /* read by other */

#define TOWRITE 00 002 /* write by other */

#define TOEXEC 00 001 /* execute/search by other */

All characters are represented in the American Standard Code for Informa¬

tion Interchange, ASCII. For maximum portability between implementations,

names should be selected from characters represented by the portable
filename character set §2.3 as 8-bit characters with zero parity. If an

extended character set beyond the portable character set is used, and the

format-reading and format-creating utilities on the two distinct systems use the

same extended character set, the file name shall be preserved. However, the

format-reading utility shall never create file names on the local system that can¬

not be accessed via the functions described previously in this standard; see

open() §5.3.1, stat() §5.6.2, chdir{) §5.2.1, fcntlO §6.5.2, and opendir() §5.1.2. If

a file name is found on the medium that would create an invalid file name, the

implementation shall define if the data from the file is stored on the file hierar¬

chy and under what name it is stored. A format-reading utility may choose to

ignore these files as long as it produces an error indicating that the file is being

ignored.

Each field within the header block is contiguous; that is, there is no padding

used. Each character on the archive medium is stored contiguously.

The fields magic, uname, and gname are null-terminated character strings.

The fields name, linkname, and prefix are null-terminated character strings

except when all characters in the array contain non-null characters including

the last character. The version field is two bytes containing the characters

"00" (zero-zero). The typeflag contains a single character. All other fields are

leading zero-filled octal numbers in ASCII. Each numeric field is terminated by

one of more space or null characters.

The name and the prefix fields produce the pathname of the file. The

hierarchical relationship of the file is retained by specifying the pathname as a

path prefix, a slash character and filename as the suffix. If the prefix contains

non-null characters, prefix, a slash character, and name are concatenated

without modification or addition of new characters to produce a new pathname.

In this manner, pathnames of at most 256 characters can be supported. If a

pathname does not fit in the space provided, the format-creating utility shall

notify the user of the error, and no attempt shall be made by the format-creating

utility to store any part of the file, header or data, on the medium.

10.1 Archive/Interchange File Format. 157

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

The linkname field, described below, does not use the prefix to produce a path¬

name. As such, a linkname is limited to 99 characters. If the name does not fit

in the space provided, the format-creating utility shall notify the user of the

error, and the utility shall not attempt to store the link on the medium.

The mode field provides 9 bits specifying file permissions and 3 bits to specify

the set UID, set GID, and TSVTX modes. Values for these bits were defined pre¬

viously. When appropriate privilege is required to set one of these mode bits,

and the user restoring the files from the archive does not have the appropriate

privilege, the mode bits for which the user does not have appropriate privilege

shall be ignored. Some of the mode bits in the archive format are not mentioned

elsewhere in this standard. If the implementation does not support those bits,

they may be ignored.

The uid and gid fields are the user and group ID of the file’s owner and group,

respectively.

The size field is the size of the file in bytes. If the typeflag field is set to

specify a file to be of type LNKTYPE or SYMTYPE the size field shall be specified

as zero. If the typeflag field is set to specify a file of type DIRTYPE the size field

is interpreted as described under the definition of that record type. If the

typeflag field is set to CHAR TYPE, BLKTYPE, or FIFOTYPE the meaning of the

size field is implementation-defined and no data blocks are stored on the

medium. If the typeflag field is set to any other value, the number of blocks

written following the header is (size+ 511)/512 ignoring any fraction in the result

of the division.

The mtime field is the modification time of the file at the time it was archived.

It is the ASCII representation of the octal value of the modification time

obtained from the stat() function.

The chksum field is the ASCII representation of the octal value of the simple

sum of all bytes in the header block. Each 8-bit byte in the header is treated as

an unsigned value. These values are added to an unsigned integer, initialized to

zero, the precision of which shall be no less than 17 bits. When calculating the

checksum, the chksum field is treated as if it were all blanks.

The typeflag field specifies the type of file archived. If a particular implemen¬

tation does not recognize the type, or the user does not have appropriate

privilege to create that type, the file shall be extracted as if it were a regular file

if the file type is defined to have a meaning for the size field that could cause

data blocks to be written on the medium (see the previous description for size).

If conversion to an ordinary file occurs, the format-reading utility shall produce

an error indicating that the conversion took place.

ASCII digit 'O' represents a regular file. For backward compatibility, a

typeflag value of binary zero ('\0') should be recognized as

meaning a regular file when extracting files from the archive.

Archives written with this version of the archive file format

shall create regular files with a typeflag value of ASCII 'O'.

ASCII digit '1' represents a file linked to another file, of any type, previously

archived. Such files are identified by each file having the

same device and file serial number. The linked-to name is

specified in the linkname field with a trailing null.

158 Data Interchange Format

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

ASCII digit '2' is reserved to represent a link to another file, of any type,

whose device or file serial number differs. This is provided

for systems that support linked files whose device or file

serial numbers differ, and should be treated as a type '1' file

if this extension does not exist.

ASCII digits '3' and '4' represent character special files and block special

files respectively. In this case the devmajor and devminor

fields shall contain implementation-defined information

defining the device. Implementations may map the device

specifications to their own local specification, or may ignore

the entry.

ASCII digit '5' specifies a directory or sub-directory. On systems where disk

allocation is performed on a directory basis the size field shall

contain the maximum number of bytes (which may be

rounded to the nearest disk block allocation unit) that the

directory may hold. A size field of zero indicates no such lim¬

iting. Systems that do not support limiting in this manner

should ignore the size field.

ASCII digit '6' specifies a FIFO special file. Note that the archiving of a FIFO

file archives the existence of this file and not its contents.

ASCII digit '7' is reserved to represent a file to which an implementation has

associated some high performance attribute. Implementa¬

tions without such extensions should treat this file as a regu¬

lar file (type '0').

ASCII letters 'a' through 'z' are reserved for custom implementations. All

other values are reserved for specification in future revisions

of the standard.

The magic field is the specification that this archive was output in this

archive format. If this field contains TMAGIC, the uname and gname fields shall

contain the ASCII representation of the owner and group of the file respectively

(truncated to fit, if necessary). When the file is restored by a privileged,

protection-preserving version of the utility, the password and group files shall

be scanned for these names. If found, the user and group IDs contained within

these files shall be used rather than the values contained within the uid and gid

fields.

The encoding of the header is designed to be portable across machines.

10.1.1.1 References. <grp.h> §9.2.1, <pwd.h> §9.2.2, <sys/stat.h>
§5.6.1, stati) §5.6.2, <unistd.h> §2.10.

10.1.2 Extended cpio Format. The byte-oriented cpio archive format is

a series of entries, each comprised of a header that describes the file, the name

of the file, and then the contents of the file.

An archive may be recorded as a series of fixed size blocks of bytes. This

blocking shall be used only to make physical I/O more efficient. The last group

of blocks is always at the full size.

For the byte-oriented cpio archive format, the individual entry information

must be in the order indicated and described by Table 10-2.

10.1 Archive/Interchange File Format. 159

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Table 10-2. Byte-Oriented cpio Archive Entry

Header

Field Name Length (in bytes) Interpreted as

cjnagic 6 octal number

cjdev 6 octal number

cjno 6 octal number

cjnode 6 octal number

cjuid 6 octal number

c_gid 6 octal number

cjnlink 6 octal number

cjrdev 6 octal number

cjrntime 11 octal number

cjnamesize 6 octal number

cjilesize 11 octal number

File Name

Field Name Length Interpreted as

cjname cjiamesize pathname string

File Data

Field Name Length Interpreted as

c Jiledata cjilesize data

10.1.2.1 Header. For each file in the archive, a header as defined previ¬

ously shall be written. The information in the header fields shall be written as

streams of ASCII characters interpreted as octal numbers. The octal numbers

are extended to the necessary length by appending ASCII zeros at the most-

significant digit end of the number; the result is written to the stream of bytes

most significant digit first. The fields shall be interpreted as follows:

(1) cjnagic shall identify the archive as being a transportable archive by

containing the magic bytes as defined by MAGIC (070707).

(2) cjdev and cjno shall contain values which uniquely identify the file

within the archive (i.e., no files shall contain the same pair of cjdev and

c_ino values unless they are links to the same file). The values shall be

determined in an implementation-defined manner.

(3) cjnode shall contain the file type and access permissions as defined in

the tables below.

(4) cjuid shall contain the user ID of the owner.

(5) c_gid shall contain the group ID of the group.

(6) cjnlink shall contain the number of links referencing the file at the time

the archive was created.

(7) c_rdev shall contain implementation-defined information for character or

block special files.

(8) cjrntime shall contain the latest time of modification of the file at the time

the archive was created.

160 Data Interchange Format

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

(9) c_namesize shall contain the length of the pathname, including the ter¬

minating null byte.

(10) c Jlesize shall contain the length of the file in bytes. This is the length

of the data section following the header structure.

10.1.2.2 File Name. c_name shall contain the pathname of the file. The

length of this field in bytes is the value of cjiamesize. If a file name is found on

the medium that would create an invalid pathname, the implementation shall

define if the data from the file is stored on the file hierarchy and under what

name it is stored.

All characters are represented in ASCII. For maximum portability between

implementations, names should be selected from characters represented by the

portable filename character set §2.3 as 8-bit characters with zero parity. If

an extended character set beyond the portable character set is used, and the

format-reading and format-creating utilities on the two distinct systems use the

same extended character set, the file name shall be preserved. However, the

format-reading utility shall never create file names on the local system that can¬

not be accessed via the functions described previously in this standard; see

open() §5.3.1, stat() §5.6.2, chdir{) §5.2.1, fcntlO §6.5.2, and opendirO §5.1.2. If

a file name is found on the medium that would create an invalid file name, the

implementation shall define if the data from the file is stored on the local file

system and under what name it is stored. A format-reading utility may choose

to ignore these files as long as it produces an error indicating that the file is

being ignored.

10.1.2.3 File Data. Following c_name, there shall be c Jilesize bytes of

data. Interpretation of such data shall occur in a manner dependent on the file.

If c Jlesize is zero, no data shall be contained in c Jledata.

10.1.2.4 Special Entries. FIFO special files, directories, and the trailer

are recorded with c Jlesize equal to zero. For other special files, c Jlesize is

implementation-defined. The header for the next file entry in the archive shall

be written directly after the last byte of the file entry preceding it. A header

denoting the file name “TRAILER! ! \” shall indicate the end of the archive; the

contents of bytes in the last block of the archive following such a header are

undefined.

10.1.2.5 cpio Values. Values needed by the cpio archive format are

described in Table 10-3.

CJSDIR, CJSFIFO, and CJSREG shall be supported on an IEEE Std 1003.1-

1988 conforming system; additional values defined previously are reserved for

compatibility with existing systems. Additional file types may be supported;

however, such files should not be written on archives intended for transport to

portable systems.

C_ISVTX, CJSCTG, C_ISLNK, and C.ISSOCK have been reserved by this stan¬

dard to retain compatibility with some existing implementations.

When restoring from an archive:

(1) If the user does not have the appropriate privilege to create a file of the

specified type, the format interpreting utility shall ignore the entry, and

issue an error to the standard error output.

(2) Only regular files have data to be restored. Presuming a regular file

10.1 Archive/Interchange File Format. 161

Table 10-3. Values for cpio cjnode Field

File Permissions

Name Value Indicates

C_IRUSR 000400 Read by owner

C_IWUSR 000200 Write by owner

CJXUSR 000100 Execute by owner

C_IRGRP 000040 Read by group

C_IWGRP 000020 Write by group

CJKGRP 000010 Execute by group

C_IROTH 000004 Read by others

C_IWOTH 000002 Write by others

C.IXOTH 000001 Execute by others

C_ISUID 004000 Set uid

C_ISGID 002000 Set gid

C_ISVTX 001000 Reserved

File Type

Name Value Indicates

C_ISDIR 040000 Directory

C.ISFIFO 010000 FIFO

C_ISREG 0100000 Regular file

C_ISBLK 060000 Block special file

C.ISCHR 020000 Character special file

C.ISCTG 0110000 Reserved

CJSLNK 0120000 Reserved

C.ISSOCK 0140000 Reserved

meets any selection criteria that might be imposed on the format-reading

utility by the user, such data shall be restored.

(3) If a user does not have appropriate privilege to set a particular mode flag,

the flag shall be ignored. Some of the mode flags in the archive format are

not mentioned elsewhere in this standard. If the implementation does not

support those flags, they may be ignored.

10.1.2.6 References. <grp.h> §9.2.1, <pwd.h> §9.2.2, <sys/stat.h>
§5.6.1, chmodO §5.6.4, link{) §5.3.4, mkdir() §5.4.1, read() §6.4.1, statO §5.6.2.

10.1.3 Multiple Volumes. It shall be possible for data represented by the

Archive/Interchange File Format to reside in more than one file.

The format is considered a stream of bytes. An end-of-file (or equivalently an

end-of-media) condition may occur between any two bytes of the logical byte

stream. If this condition occurs, the byte following the end-of-file will be the

first byte on the next file. The format-reading utility shall, in an

implementation-defined manner, determine what file to read as the next file.

162 Data Interchange Format

Appendices

(These appendices are not a part of IEEE Std 1003.1-1988, IEEE Standard Portable Operating Sys¬

tem Interface for Computer Environments, but are included for information only.)

A, Related Standards

This appendix describes other standards efforts, related to IEEE Std 1003.1-

1988, that are available or under development.

A.1 Related Standards—Open System Environment. This IEEE Std

1003.1-1988 is intended to complement others that together would provide a

comprehensive Open System Environment. The standards in these areas fall

into three areas: ones directly related to the EEEE Std 1003.1-1988, ones already

available and of use to those interested in Open Systems Environments, and

finally, those in development.

EEEE and ANSI/IEEE standards cam be ordered from:

Publication Sales

EEEE Service Center

P.O. Box 1331

445 Hoes Lane

Piscataway, NJ 08854-1331

(201) 981-0060

The document X3/SD-4 provides a list of all active X3 and related ISO projects,

including approved standards. X3/SD-4 is available from:

CBEMA

X3 Secretariat

311 First Street, NW Suite 500

Washington, DC 20001-2178

(202) 737-8888

ANSI and ISO standards can be ordered from:

Sales Department

American National Standards Institute

1430 Broadway

New York, NY 10018

(212) 642-4900

A.1 Related Standards—Open System Environment 163

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

A.2 Standards Closely Related to the 1003.1 Document.

A.2.1 System Interface. The 1003.1 Working Group will be continuing

work in the area of system interface functions, preparing a supplement to IEEE

Std 1003.1-1988. Tasks this group will be addressing include:

(1) Language-independent service specifications.

(2) An enhanced and unified data interchange format.

(3) Various additional functions suggested as a result of this standard.

Contact the IEEE Standards Office to participate in this effort. If you are

interested in participating in this effort, or receiving working drafts and group

mailings, contact the IEEE Standards Office; the address is listed in the Fore¬
word.

A.2.2 C Language Standard. This document refers to the C Language

Standard effort presently under development by Technical Committee X3J11 of

the Accredited Standards Committee X3—Information Processing Systems. The

X3J11 and 1003.1 groups have been cooperating to ensure that the standards

are complementary and not overlapping. At the time of publication, the most

recent X3J11 material was the version for public comment of the ANSI 1X3.159-

198:t Programming Language C Standard, available from:

Global Engineering Documents, Inc.

2805 McGaw Street

Irvine, CA 92714

(800) 854-7179

(714) 261-1455

Telex: 692 373

Once the X3J11 document is approved, it will be available from the ANSI

address given previously.

A.2.3 Shell and Utilities. This area is currently in development by IEEE

Computer Society Working Group 1003.2. The proposed 1003.2 standard

defines a source code level interface to shell services and common utility pro¬

grams for application programs conforming to IEEE Std 1003.1-1988.* The pro¬

posed standard is being designed to be used by both application programmers

and system implementors.

The following goals have been established for the Working Group:

Specify a standard interface that may be accessed in common by both applica¬

tions programs and user terminal-controlling programs to provide services of a

more complex nature than the primitives provided by IEEE Std 1003.1-1988.

This interface shall be implementable on conforming IEEE Std 1003.1-1988

* An IEEE Std 1003.1-1988 conforming implementation is not necessarily required to support these
application programs. Implementations could be produced that are conformant only to those
1003.1 features required by the proposed 1003.2 standard, and that cannot claim full
conformance to all of IEEE Std 1003.1-1988.

164 Appendix A

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

systems. It shall include the following components:

(1) Application program primitives to specify instructions to an

implementation-defined “shell” facility.

(2) A standard command language for a shell that includes program execu¬

tion, I/O redirection and pipelining, argument handling, variable substitu¬

tion and expansion, and a series of control constructs similar to other high-

level structured programming languages.

(3) A recommended command syntax for command naming and argument

specification.

(4) Primitives to assist applications programs and the shell language in pars¬

ing and interpreting command arguments.

(5) Recommended environment variables for use by shell scripts and applica¬

tion programs.

(6) A minimum directory hierarchy required for the shell and applications.

(7) A group of utilities that may be called from application programs for com¬

plex data manipulation and other tasks common to many applications.

(8) An optional group of utilities to be used for the software development of

applications. The Working Group is examining both C language and FOR¬

TRAN software development requirements.

(9) Utilities and standards for the installation of applications.

The following areas are outside the scope of this standard:

(1) Operating system administrative commands (privileged processes, system

processes, daemons, etc.).

(2) Commands required for the installation, configuration, or maintenance of

operating systems or file systems.*

(3) Networking commands.

(4) Terminal control or user-interface programs (visual shells, window

managers, command history mechanisms, etc.).

(5) Graphics programs or interfaces.

(6) Text formatting programs or languages.

(7) Database programs or interfaces (for example, SQL, etc.).

The Working Group is considering an expansion of its scope to include a “User

Portability Extension,” comprised of utilities which are used primarily by online

users, such as full-screen editors. This subject area may be issued as a supple¬

ment to the first edition of the standard.

At the time of this printing, no approved document existed. Working drafts

were being circulated, with a target schedule of mid-1989 for balloting.

Contact the IEEE Standards Office to participate in this effort.

* This is contrasted against paragraph 9, above, by its orientation to installing the operating
system itself, versus application programs. The exclusion of operating system installation
facilities should not be interpreted to mean that the non-privileged application installation
procedures cannot be used for installing operating system components.

A.2 Standards Closely Related to the 1003.1 Document. 165

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

A.2.4 Verification Testing. This area is currently in development by IEEE

Computer Society Working Group 1003.3. A working draft is nearing comple¬

tion for test methods related to IEEE Std 1003.1-1988; further standards that

relate to the other working groups in 1003 are under study.

Contact the IEEE Standards Office to participate in this effort.

A.2.5 Realtime Extensions. This area is currently in development by

IEEE Computer Society Working Group 1003.4, with a charter to develop and

ballot extensions to IEEE Std 1003.1-1988 to address service interfaces needed

for portable realtime applications.

The scope of the project includes the following realtime topics:

(1) High Resolution Timers

(2) Priority Scheduling

(3) Semaphores

(4) Contiguous Files

(5) Inter-Process Message Passing

(6) Event Notification

(7) Memory Locking

(8) Asynchronous I/O

(9) Synchronous I/O

The Working Group is an outgrowth of the /usr/group Technical Committee

Realtime Subcommittee, with whom it holds joint meetings. At the time of this

printing, no published document existed. Working drafts were being circulated.

Contact the IEEE Standards Office to participate in this effort.

A.2.6 Ada Language Bindings. This area is currently in development by

IEEE Computer Society Working Group 1003.5, with a charter to develop and

ballot extensions to IEEE Std 1003.1-1988 to provide an Ada language binding

specification to the appropriate operating system interfaces.

Contact the IEEE Standards Office to participate in this effort.

A.2.7 Trusted System Extensions. This area is currently in development

by IEEE Computer Society Working Group 1003.6, with a charter to develop and

ballot extensions to IEEE Std 1003.1-1988 to address service interfaces needed

for trusted, or high security systems. The Working Group is an outgrowth of

the /usr/group Technical Committee Security Subcommittee, with whom it holds

joint meetings.

Contact the IEEE Standards Office to participate in this effort. See also

Trusted Systems §A.4.2.

A.2.8 Open System Guidelines. This area is currently in development by

IEEE Computer Society Working Group 1003.0.

Contact the IEEE Standards Office to participate in this effort.

A.2.9 System Administration Extensions. A new working group is being

formed in IEEE to cover POSIX system administration issues.

Contact the IEEE Standards Office to participate in this effort.

166 Appendix A

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

A-2.10 Networking Standards. A new working group is being formed in

IEEE to cover POSEX net working-related issues. Contact the IEEE Standards

Office to participate in this effort.

The ISO/OSI (Open System Interconnect) networking specifications are avail¬

able from CBEMA or ANSI (and 802.rc from the IEEE Standards Office):

OSI Model ISO 7498 (ANSI)

Layer 1 CSMA/CD

Token Bus

Token Ring

IEEE 802.3 (IEEE)

IEEE 802.4 (IEEE)

IEEE 802.5 (IEEE)

Layer 2 Link Layer Control IEEE 802.2 (IEEE)

CCITT DR X.212 (CBEMA)

Layer 3 Network Layer ISO 8348, 8473, 7777 (CBEMA)

Layer 4 Transport Layer ISO 8072, 8073 (CBEMA)

Layer 5 Session Layer ISO 8326, 8327 (CBEMA)

Layer 6 Presentation Layer ISO DP 8822, DP 8823 (CBEMA)

Layer 7 Applications Layer

CASE (Common Services)

FTAM (File Transfer)

Mail/Message

Job Transfer

ISO DP 8649, DP 8650 (CBEMA)

ISO DP 8571 (CBEMA)

CCITT X.400 series (CBEMA)

ISO DP 8831, DP 8832 (CBEMA)

Wide Area Net Layers 1-3 CCITT X.25 (CBEMA)

A.2.11 Language Standards. The following language standards are avail¬

able from ANSI:

Ada Mil Std 1815-A-1983

Basic X3.113-1987

COBOL X3.23-1985

FORTRAN X3.9-1978

Mumps MDC Xll.1-1984

Pascal X3.97-1983

A.2.12 Graphics Standards. The following graphics-related standards are

available from CBEMA or ANSI:

GKS X3.124-1985 Graphical Kernel System; C language bindings are

in progress (0533-D). (ANSI)

PHIGS X3.144-198* Programmers' Hierarchical Interactive Graphics

System; C language bindings are in progress (0534-D).

(CBEMA)

CGM X3.122-1986 Computer Graphics Metafile, formerly known as

VDM, Virtual Device Metafile. (CBEMA)

X3H3.6 This working group is addressing windowing standards and

display management for graphical devices. (CBEMA)

A.2 Standards Closely Related to the 1003.1 Document. 167

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

A.2.13 Database Standards. The following database standards are avail¬

able from ANSI:

NDL X3.133-1986 Database Language NDL. (Network Databases.)

SQL X3.135-19SQ Database Language SQL. (Relational Databases.)

A.3 Industry Open Systems Publications. The following publications

describe recommendations formed by industry groups (as opposed to a single

company) about related standards efforts.

The XI OPEN Portability Guide III (multiple volumes):

Prentice-Hall

200 Old Tappan Road

Tappan, NJ 07675

Reports of the /usr/group Technical Committees:

/usr/group

4655 Old Ironsides Drive #200

Santa Clara, CA 95054

Applications Environment Specifications published by the Open Software

Foundation:

Open Software Foundation

20 Ballard Way

Lawrence, MA 01843

A.4 US Government Standards.

A.4.1 Federal Information Processing Standards (FIPS). Standards

designated by the US Government as Federal Information Processing Standards

frequently refer back to standards listed above.

For copies of POSIX-related FIPS documents and the NBS PCTS (POSIX FIPS

Conformance Test Suite), contact:

National Technical Information Service

US Department of Commerce

5285 Port Royal Road

Springfield, VA 22161

(703) 487-4650

The Interim FIPS on POSIX announced in April of 1988 is based on Draft 12 of

this document, which means that it differs in a few significant ways from this

final standard. NBS has announced its intention that these differences will be

eliminated in the next version of the FIPS, expected in late 1988.

A.4.2 Trusted Systems. A standard for secure, or trusted, systems, the

Department of Defense Trusted Computer System Evaluation Criteria, Depart¬

ment of Defense Standard DoD 5200.28-STD, December 1985, is available from:

168 Appendix A

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Office of Standards and Products

National Computer Security Center

Fort Meade, MD 20755-6000

Attn: Chief, Computer Security Standards

A.4 US Government Standards. 169

B. Rationale and Notes

This appendix summarizes the deliberations of the IEEE 1003.1 Working
Group, the committee charged by IEEE with devising an interface standard for a
portable operating system interface for computer environments, IEEE Std
1003.1-1988.

This appendix is derived in part from copyrighted draft documents developed
under the sponsorship of /usr/group*, as part of an ongoing program of that
association to support the IEEE 1003 standards program efforts.

The appendix is being published along with the standard to assist in the pro¬
cess of review. It contains historical information concerning the contents of the
standard and why features were included or discarded by the Working Group.
It also contains notes of interest to application programmers on recommended
programming practices, emphasizing the consequences of some aspects of the
standard that may not be immediately apparent.

B.l Introduction. The IEEE Std 1003.1-1988 is based on the UNIX operating
system developed by AT&T Bell Laboratories, and derives from efforts of the
Standards Committee of /usr/group, an association of individuals, corporations,
and institutions with an interest in the UNIX system that has long worked
toward the development of independent industry-driven standards. The IEEE
1003 Working Group represents a cross-section of the UNIX system community:
it consists of over 450 members representing hardware manufacturers, vendors
of operating systems and other software development tools, software designers,
consultants, academics, authors, applications programmers, and others. In the
course of its deliberations, it has reviewed related American and international
standards, both published and in progress.

Conceptually, this standard describes a set of fundamental services the 1003
Working Group feels are needed for the efficient construction of application pro¬
grams. Access to these services has been provided by defining an interface,
using the C programming language, which establishes standard semantics and

* Copyright © 1987 by /usr/group. Reprint rights granted to the IEEE for this appendix.

/usr/group is a registered trademark of /usr/group, the International Network of UNIX System
Users.

B.l Introduction. 171

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

syntax. Since this interface enables application writers to write portable
applications—it was developed with that goal in mind—it has been dubbed
POSEX, an acronym for Portable Operating System Interface. The name POSIX,
suggested by Richard Stallman, was adopted during the printing of the Trial
Use Standard.

Although originally coined by the IEEE to refer to IEEE Std 1003.1-1988, the
term POSIX more correctly refers to a family of related standards or working
groups, 1003.rc. These other activities are described in Appendix A. There are
some cases where this Rationale (and the standard itself) uses the term POSIX
as a synonym for IEEE Std 1003.1-1988. This incorrect usage is maintained for
purposes of readability only.

As explained in the Foreword, the term POSEX is expected to be pronounced
pahz-icks, as in positive, not poh-six, or other variations. The 1003 Working
Group has published the pronunciation of its term in an attempt to promulgate
a standardized way of referring to a standard operating system interface.

The intended audience for this standard is all persons concerned with an
industry-wide standard operating system based on the UNIX system. This
includes at least four groups of people:

(1) persons buying hardware and software systems;
(2) persons managing companies that are deciding on future corporate com¬
puting directions;
(3) persons implementing operating systems, and especially;
(4) persons developing applications where portability is an objective.

B.1.1 Scope. This Rationale focuses primarily on additions, clarifications,
and changes made to the UNIX system as described in the Base Documents
§B.1.3 from which the standard was derived. It is not a rationale for the UNIX
system as a whole, since the Working Group was charged with codifying existing
practice, not designing a new operating system. No attempt is made in this
Rationale to defend the pre-existing structure of UNIX systems. It is primarily
deviations from existing practice, as codified in the Base Documents, that are
explained or justified here.

Material which is “outside the scope” or otherwised not addressed by this
standard is implicitly “implementation-defined” if it is included in an implemen¬
tation.

The Rationale discusses some UNIX system features that were not adopted
into the standard. Many of these are features that are popular in some UNIX
system implementations, so that a user of those implementations might ques¬
tion why they do not appear in the standard. It is hoped that this Rationale can
provide appropriate answers.

There are choices allowed by the standard for some details of the interface
specification; some of these are specifiable optional subsets of the standard. See
Symbolic Constants §B.2.10. See also Specific Derivations §B. 1.3.3.

After deliberation, the 1003.1 Working Group decided that although the ser¬
vices this standard provides have been defined in the C language, the concept of
providing fundamental, standardized services should not be restricted only to
programs of a particular programming language. The possibility of

172 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

implementing interfaces in alternate programming languages prompted the
Working Group to coin the term IEEE Std 1003.1-1988 with the C Language
Binding. The word Binding refers to the binding of a conceptual set of services
and a standardized C interface which establishes rules and syntax for accessing
them. Forthcoming extensions to this standard are expected to include bindings
for other programming languages.

The current version of the C Standard will be the basis for functional defini¬
tions of core services that are independent of programming languages. The
standard as it stands now can be thought of as a C Language Binding. Chapters
1 through 7, and 9, correspond roughly to the C language implementation of
what will be defined in the programming language-independent core services
section of the standard; Chapter 8 corresponds to be the C language-specific sec¬
tion.

Readers are warned that the criteria used to choose the programming
language-independent core services may be different from expected. The core
services represent services that are common to those programming languages
likely to form language bindings to this standard—the greatest common denom¬
inator. They are not chosen to reflect the most important system services of an
ideal operating system. For this reason, some fundamental system services are
not included in this section. As an example, memory management routines
would at first seem to be a core service—they are an absolutely fundamental
system service. They must, however, be included in language-specific portions
of the standard because programming languages such as FORTRAN have tradi¬
tionally not provided memory management. Categorizing memory management
as a core service would impose unreasonable requirements for FORTRAN imple¬
mentations.

Implementors and programmers can rest assured, however, that any pro¬
gramming language traditionally supporting memory management will include
those routines in the language-dependent sections of their bindings. Work will
be done at a later time to standardize the classes of functions that must be
included in the language-dependent sections of language bindings if those func¬
tions have been traditionally implemented for that language. This will ensure
that certain classes of critical functions, such as memory management, will not
be excluded from any applicable language binding; see Language-Dependent
Services for the C Programming Language §B.2.2.3.

The standard is not a tutorial on the use of the specified interface, nor is this
Rationale. However, the Rationale includes some references to well-regarded
historical books on the UNIX System in Historical Implementations §B.11.2.

B.1.2 Purpose. Several principles guided the Working Group’s decisions.
B.1.2.1 Application Oriented. The basic goal of the Working Group was

to promote portability of application programs across UNIX system environ¬
ments by developing a clear, consistent, and unambiguous standard for the
interface specification of a portable operating system based on the UNIX system
documentation. This standard codifies the common, existing definition of the
UNIX system. There was no attempt to define a new system interface.

B.l Introduction. 173

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B. 1.2.2 Interface, Not Implementation. The standard defines an inter¬
face, not an implementation. No distinction is made between library functions
and system calls: both are referred to as functions. No details of the implemen¬
tation of any function are given (although historical practice is sometimes indi¬
cated in the Rationale). Symbolic names are given for constants (such as signals
and error numbers) rather than numbers.

B. 1.2.3 Source, Not Object, Portability. The standard has been writ¬
ten so that a program written and translated for execution on one conforming
implementation may also be translated for execution on another conforming
implementation. The standard does not guarantee that executable (object or
binary) code will execute under a different conforming implementation than
that for which it was translated, even if the underlying hardware is identical.
The Working Group has, however, attempted to put few impediments in the way
of binary compatibility, and some remarks are found in this Rationale. See
Requirements §B.2.2.1.1 and Configurable System Variables §B.4.8.

B. 1.2.4 The C Language and X3J11. The standard is written in terms
of the standard C language as specified in the C Standard (ANSI1X3.159-198x

Programming Language C Standard) produced by the X3J11 Working Group.
See Conformance §2.2. Guidelines used in negotiations between the two
Working Groups are discussed below in POSIX and the C Standard §B.1.4.

B. 1.2.5 No Super-User, No System Administration. There was no
intention to specify all aspects of an operating system. System administration
facilities and functions are excluded from the standard, and functions usable
only by the super-user have not been included. This Rationale notes several
such instances. Still, an implementation of the standard interface may also
implement features not in the standard: see Requirements §2.2.1.1. The stan¬
dard is also not concerned with hardware constraints or system maintenance.

B. 1.2.6 Minimal Interface, Minimally Defined. In keeping with the
historical design principles of the UNIX system, the standard is as minimal as
possible. For example, it usually specifies only one set of functions to implement
a capability. Exceptions were made in some cases where long tradition and
many existing applications included certain functions, such as creatO §5.3.2. In
such cases, as throughout the standard, redundant definitions were avoided:
creatO §5.3.2 is defined as a special case of open() §5.3.1. Redundant functions
or implementations with less tradition were excluded. For example, seekdiri)

and telldirO were not included in Directory Operations §5.1.2.
B.l.2.7 Broadly Implementable. The Working Group has endeavored

to make all specified functions implementable across a wide range of existing
and potential systems, including:

(1) All of the current major systems that are ultimately derived from AT&T
code (Version 7 or later).
(2) Compatible systems that are not derived from AT&T code.
(3) Emulations hosted on entirely different operating systems.
(4) Networked systems.
(5) Distributed systems.
(6) Systems running on a broad range of hardware.

174 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

No direct references to this goal appear in the standard, but some results of it
are mentioned in this Rationale.

B.l.2.8 Minimal Changes to Historical Implementations. There are
no known Historical Implementations §B. 1.3.2 that will not have to change
in some area to conform to the standard, and in a few areas the standard does
not exactly match any existing system interface (for example, see
O.NONBLOCK §B.6). Nonetheless, there is a set of functions, types, definitions,
and concepts that form an interface that is common to most historical imple¬
mentations. The standard specifies that common interface and extends it in
areas where there has historically been no consensus, preferably

(1) by standardizing an interface like one in an historical implementation,
e.g., Directories §5.1, or;
(2) by specifying an interface that is readily implementable in terms of, and
backwards compatible with, existing implementations, such as Extended
tar Format §10.1.1, or
(3) by specifying an interface that, when added to an historical implementa¬
tion, will not conflict with it, like 0_N0NBL0CK §B.6.

Required changes to historical implementations have been kept as few as pos¬
sible, but they do exist, and this Rationale points out some of them.

The standard is specifically not a codification of a particular vendor’s product.
It is like the UNIX system, but it is not identical to it. The word UNIX is not
used in the standard proper both for that reason, and because it is a trademark
of a particular vendor.

It should be noted that implementations will have different kinds of exten¬
sions. Some will reflect “historical usage” and will be preserved for execution of
pre-existing applications. These functions should be “deprecated” and the stan¬
dard functions used for new applications. Some extensions will represent func¬
tions beyond the scope of POSIX. These need to be used with careful manage¬
ment to be able to adapt to future POSIX Extensions, and/or port to implementa¬
tions that provide these services in a different manner.

B.1.2.9 Minimal Changes to Existing Application Code. The Work¬
ing Group wished to make less work for application developers, not more. How¬
ever, because every known historical implementation will have to change at
least slightly to conform, some applications will have to change. This Rationale
points out the major places where the standard implies such changes.

B.1.2.10 IEEE Consensus Process.. The IEEE consensus process was
used in deliberations. There are several levels of participation:

(1) Correspondents. Those interested in following the development of the
standard could subscribe to a mailing list to which copies of drafts, working
documents, and related material were sent. Also, anyone (including indivi¬
duals, companies, government agencies, or other organizations) could send
comments (or RFCs, Proposals, or Notes) to the Working Group.
(2) Working Group. This was the group responsible for producing the stan¬
dard document. It met four times a year and produced many drafts. It also
produced the Trial Use and Full Use Standards, and was responsible for
resolving balloting objections to them. The Working Group was composed of
individuals, even though many of them worked for companies with interests

B.l Introduction. 175

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

in the field.
(3) Balloting Group. This group voted on the proposed standards in the
manner detailed in the next subsection. The Balloting Group, like the Work¬
ing Group, was composed of individuals. Most of the people on the Working
Group also were in the Balloting Group, although the latter included many
others, as well.
(4) Institutional Representatives. Exceptions to the individual composi¬
tion of the Balloting Group were the Institutional Representatives, who
represented related standards bodies or professional organizations (in this
case, USENIX, /usr/group, and X/Open).

Decisions of the Working Group were not made by vote, not even of a large
majority. Decisions were made by consensus, which required that every indivi¬
dual believe that:

(1) their point of view had been heard.
(2) their point of view had been understood.
(3) other individuals’ points of view were adequately understood.
(4) there was general consensus.

A common way of moving discussion along was to ask if anyone would ballot
“no” on a particular issue.

B.l.2.11 IEEE Balloting Process. The IEEE balloting process was used
to attain the ANSI requirement for a consensus acceptance of a document as a
standard.

Balloting in IEEE is done by individuals who are members of IEEE or affiliated
with the IEEE Computer Society. They are given thirty days in which to return
the ballots, and 75% of those in the balloting group must return ballots.

Ballots from non-IEEE members (or non-Computer Society affiliates) are also
included in the process, with comments and objections treated the same as those
from members. However, non-IEEE members are not included in the percen¬
tages of returns required or the affirmative percentage required for approval.
Possible ballot responses (excluding abstentions) are:

(1) yes without comments.
(2) yes with comments. The comments indicate areas that should be
evaluated, but are not significant enough to warrant a negative ballot.
(3) no with objections. A negative ballot must include specific objections
and recommendations on how to resolve the objections. These objections
indicate areas that must be fixed to resolve the negative ballot.

At least 75% of those balloting (not abstaining) must provide an affirmative
response. Each objection, and many of the comments, are translated into pro¬
posed changes; and any outstanding objections, along with the rationale for not
making the changes to accommodate these objections, are fed back to the ballot¬
ing group.

Members of the balloting group are given ten (or more) days to change their
ballots, with similar options as above; however, objections are limited to the pro¬
posed changes and/or failure to resolve key objections. It is possible for the
number of negative responses to increase if a proposed change is objectionable,
or if a significant objection has not been addressed.

176 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

In general, the balloting process moves fairly quickly towards a high degree of
consensus. The final results are submitted to the IEEE Standards Board for
approval, and include the balloting percentages as well as documentation of any
unresolved negative objections.

The Institutional Representatives were exceptions in several ways.
(1) They are not required to be IEEE members.
(2) They ballot for their Institutions, not as individuals.
(3) Ballots of Institutional Representatives are reported separately to the
EEEE Standards Board.

As with other ballots, any unresolved negative objections are reported with
the rationale for not incorporating the associated changes. However, the
separate reporting of the Institutional ballots tends to make any objections more
visible, particularly in that Institution’s areas of expertise; consequently, any
unresolved objection could be enough to cause the document to be sent back to
the balloting process for further resolution.

The Trial Use period was from April 1986 to November 1987, when the ballot¬
ing of the revised document (Draft 12) began, and provided an additional level of
industry consensus. The high visibility of the document, as well as its
widespread distribution, provided additional feedback and information for the
formulation of the current standard. See also Specific Derivations §B. 1.3.3.

B.1.2.12 WeirdNIX ... or destructive QA of a standard.

As part of the evaluation of the Trial Use Standard, the EEEE 1003 Working
Group offered prizes for the best new and technically legal interpretation of the
POSIX standard which nevertheless violates the intuitive intent of the POSIX
standard.

The intent was to find how the standard might be misinterpreted, and then to
correct the errors that the misinterpretations point out. Like destructive test¬
ing of hardware, you stress it until it breaks and then fix what broke so you can
then stress it further.

The criteria for judging the misinterpretations were:
(1) It had to be an interpretation of the P1003.1 POSIX Trial Use standard (as
published by EEEE) which conforms completely to the standard. For the pur¬
poses of the contest, Appendices C.5, E.l and J were included as part of the
standard, but no other Appendices.
(2) It had to be represented as a detailed description in either pseudo-code
and/or text as how an implementation could behave so as to conform with the
standard and still do “the wrong thing.” Annotation as to why the interpre¬
tation is considered legal by the submitter was of significant value in judg¬
ing.
(3) Interpretations had to be of topics discussed in the standard. Areas that
are not covered by the standard are not eligible. Interpretations which use
some features of the standard and then take advantage of something upon
which the standard is silent (and thus should not be) were of significant
value.

The winners were judged by a subset of the EEEE 1003 Working Group.
Prizes were awarded to the Best and Most Demented interpretations. Best is

an interpretation that is legal and which is ‘likely,” in that one could reasonably

B. 1 Introduction. 177

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

make the mistake and implement a system which did that. Most Demented is a
legal interpretation that would not actually be implemented because it violates
common sense.

The prizes were:
(1) HP 16C calculators, donated by Hewlett-Packard,
(2) Having the winners’ names in a place of honor in the IEEE Std 1003.1-
1988 final use standard,
(3) A copy of the final use standard.

The winners were announced at the USENIX conference in January 1987 and
are recognized in the Foreword of this standard.

WeirdNIX Post Mortem: The results of the contest indicated that the idea
was probably sound, but the lack of available copies of the standard and the
short contest period (dictated by meeting schedules) made it less successful than
it could have been. Other standards, particularly in the computer area, might
wish to consider trying this again with better planning.

B.1.3 Base Documents. The Working Group consulted a number of docu¬
ments as representing features appropriate for consideration for inclusion in the
standard. Full bibliographic information may be found in Bibliographic
Notes §B.ll.

B. 1.3.1 Related Standards and Documents.
(1) 1984 /usr/group Standard

(2) ANSI/X3.159-198x Programming Language C Standard

(3) X/OPEN Portability Guide

The most direct ancestor is the 1984 /usr/group Standard, which is con¬
sidered to be Draft 1 of the present standard. It, in turn, was largely derived
from the programming interface of System III. The 1984 /usr/group Standard

is also the principal ancestor of the Library section of the C Standard.
The X3J11 and 1003.1 Working Groups cooperated closely. Details of the

relations of the two standards they produced are listed in this Rationale in
POSIX and the C Standard §B.1.4 because the C Standard is the standard
most closely related to POSIX. POSIX is written in terms of the C Standard,
although it is possible to have POSIX without Standard C: see Conformance
§B.2.2.

The X/OPEN Portability Guide proved useful because X/Open had in many
cases already addressed the same issues as P1003.1, though often in a slightly
different context.

The Working Group was aware of the Japanese SIGMA Project, which includes
as a goal a common operating system interface specification, and there was a
representative of SIGMA at many 1003.1 Working Group meetings.

B. 1.3.2 Historical Implementations. These include (with colloquial
names in parentheses):

(1) UNIX Time-Sharing System: UNIX Programmer’s Manual, Seventh Edi¬

tion (Version 7)

(2) UNIX System III Programmer’s Manual

(3) AT&T System V Interface Definition (SVID), Issue 2, Volumes 1-3

(4) 4.3 Berkeley Software Distribution, Virtual VAX-11 Version (4.3BSD)

178 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Manuals

The UNIX system has changed more since the 1984 /usr/group Standard was
written than has the C language, and there are more variants of the former.
Because of this, the present standard was radically reorganized and reformatted
after the first draft and had many changes in content. Thus there is no single
Base Document to provide context for all discussions in this Rationale, which
instead discusses aspects of Version 7, System III, System V, and 4.3BSD that
were included in this standard or that were considered in choosing what was
included.

Occasional mentions are made of the Eighth and Ninth Editions, which are
successors of Version 7, the Bell Laboratories research system. The context is
usually related to the streams inter-process communication mechanism, which
is not in this standard but which has influenced discussions about inter-process
communication mechanisms.

Although 4.2BSD was the current Berkeley Software Distribution when most
of the work on the standard was done, this Rationale refers to 4.3BSD instead
(in most places) because the differences between the two versions are almost
entirely in performance, the few programming interface differences are mostly
outside the scope of this standard, and the 4.3BSD manuals actually describe
4.2BSD better than the 4.2BSD manuals do.

The System V manuals are never referenced because the SVID is more defini¬
tive.

Much of the standard is closer to the SVID than to any other document.
Parts of documentation of many other related systems were considered in

deliberations on various aspects of the standard. As those were too numerous to
list all of them, none of them will be mentioned by name.

B. 1.3.3 Specific Derivations. Some areas of the standard are clearly
derived from facilities of specific systems. Most of the major areas are listed
here, together with references to the sections of the standard where they occur.
For most of them, there is also more detail in the corresponding sections of the
Rationale.

FIFOs The FIFO special file §2.3 facility exists in System III, the
1984 /usr/group Standard, and System V, but not in Version 7,
4.2BSD, or 4.3BSD.

reliable signals
Signals §3.3 includes reliable signals related to the 4.3BSD
model. These were introduced to address concerns with signal
reliability that were raised in balloting the Trial Use Standard
(thus the name “reliable signals”).

job control The job control §B.3.3 facility is derived from 4.3BSD and was
introduced between the Trial Use and Full Use Standards,

saved set-user-ID (saved set-group-ID)
This optional capability, mostly in exec §3.1.2 and Set User
and Group IDs §4.2.2, is derived from System V, and was
introduced in the Trial Use Standard,

supplementary groups
A single group per process as in System V is the default, but

B.l Introduction. 179

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

User Identification §4.2 (particularly getgroups() §4.2.3)
allows multiple groups per process as in 4.3BSD as an option.
This was introduced shortly before the Trial Use Standard.

unamei) The uname() §4.4.1 function is derived from the 1984

lusrlgroup Standard, which took it from System III, and it is
still in System V. It does not exist in Version 7 or 4.3BSD.

opendiri), readdiri), rewinddiri), closediri)

The section on Directory Operations §5.1 is derived from
4.2BSD and was introduced in an early draft of the standard. It
was later adopted in System V Release 3.

mkdir(), rmdir(), renamei)

The three functions mkdir() §5.4.1, rmdir() §5.5.2, and
renamei) §5.5.3 are derived from 4.2BSD. Except for renamei),
these functions now also appear in System V Release 3.

termios Device- and Class-Specific Functions §7, while closer to
System V than to 4.3BSD, does not correspond to any existing
system because none was found adequate when considerations
such as international character sets, fast interfaces, and net¬
works were taken into account. The final interface specification
was introduced shortly before the Full Use Standard,

archive format
The Extended tar Format §10.1.1 is derived from the tar
programs used in Version 7 and 4.3BSD, and provided with
System V. The precise format in the Full Use Standard has
evolved incrementally from that in earlier drafts of POSIX. The
Extended cpio Format §10.1.2 is derived from that of
System V.

B. 1.3.4 Working Documents. The model for the present Rationale was
the Rationale prepared by the X3J11 Working Group to accompany the
C Standard: X3J11 /86-152, October 1, 1986 “Rationale for Draft Proposed
American National Standard for Information Systems—Programming Language
C.” Its influence may be seen most clearly in POSIX and the C Standard
§B.1.4, but it also is present in more subtle ways throughout.

References to programs, functions, or facilities of systems described by the
Base Documents (such as the System V cpio utility program) have been freely
included in this Rationale where relevant, even though they would be inap¬
propriate in the standard itself. References to programs, functions, or facilities
not described by the base documents or to companies not directly associated
with them have been excluded where possible. Exceptions have been made
where facilities were derived from systems not described by the base documents,
and where the word “may” is used to describe an option that permits behavior of
such a system.

B.1.4 POSIX and the C Standard. Some C language functions and defini¬
tions were handled by POSIX, but most by X3Jll’s ANSI C Standard. The most
general guideline was that POSIX retained responsibility for operating-system
specific functions, while X3J11 defined C library functions. See also C

180 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Language Definitions §B.2.8 and Language-Specific Services for the C
Programming Language §B.8.

There are several areas in which the two standards differ philosophically:
(1) Function parameter type lists. These appear in the C Standard and
specify the types of the arguments and return values of functions in external
references to them. POSIX does not include them, except in a few places to
indicate variable number of arguments, e.g., File Control §B.6.5.2. Func¬
tion parameter type lists were not used because the Working Group was
aware that some vendors would wish to implement POSIX in terms of a bind¬
ing to an historical variant of the C language instead of to the C Standard,
since compilers for the latter would initially not be widespread. Since the
C Standard does not require the use of function parameter type lists, the
function definitions used in POSIX are nonetheless specified in terms of
Standard C. See also Signals §B.3.3.
(2) Single vs. multiple processes. The C Standard specifies a language
that can be used on single-process operating systems and as a freestanding
base for the implementation of operating systems or other standalone pro¬
grams. But the POSEX interface is that of a multi-process timesharing sys¬
tem. Thus POSIX has to take multiple processes into account in places where
the C Standard does not mention processes at all, such as kill{) §3.3.2. See
also Requirements §B.2.2.1.1.
(3) Single vs. multiple operating system environments. The
C Standard specifies a language that may be useful on more than one operat¬
ing system, and thus has means of tailoring itself to the particular current
environment. POSIX is an operating system interface specification, and thus
by definition is only concerned with one operating system environment, even
though it has been carefully written to be Broadly Implementable §B. 1.2.7
in terms of various underlying operating systems. See also Requirements
§B.2.2.1.1.
(4) Translation vs. execution environment. POSIX is primarily con¬
cerned with the Standard C execution environment, leaving the translation

environment to the C Standard. See also Requirements §B.2.2.1.1.
(5) Hosted vs. freestanding implementations. All POSIX implementa¬
tions are hosted in the sense of the C Standard. See also the remarks on con¬
formance in the Foreword.
(6) Text vs. binary file modes. X3JlLdefines text and binary modes for a
file. But the POSIX interface and historical implementations related to it
make no such distinction, and all functions defined by POSIX treat files as if
these modes are identical. (It is important not to say that POSIX files are
either text or binary.) X3J11 wrote their definitions so that this interpreta¬
tion is possible. In particular, text mode files are not required to end with a
fine separator, which also means that they are not required to include a line
separator at all.

And there is a basic difference in approach between the X3J11 Rationale and
the POSIX Rationale. The X3J11 Rationale addresses almost all changes as
differences from the Base Documents of the C Standard, usually either Ker-
nighan and Ritchie (see Related Standards §B.11.1) or the 1984 lusr/group

B. 1 Introduction. 181

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Standard. The present Rationale cannot do that, since there are many more
variants of (and Base Documents for) the operating system interface than for
the C language. The most noticeable aspect of this difference is that X3J11
marks QUIET CHANGES from the Base Documents in its Rationale. The POSIX
Rationale cannot include such markings, since a quiet change from one histori¬
cal implementation may correspond exactly to another historical implementa¬
tion, and may be very noticeable to an application written for yet another.

B. 1.4.1 Solely by POSIX. These return parameters from the operating
system environment: cuserid() §4.2.4, ctermid() §4.7.1, ttynamei) §4.7.2, and
isatty() §4.7.2.

The functions fileno() §8.2.1 and fdopeni) §8.2.2 map between C language
stream pointers and POSIX file descriptors.

B. 1.4.2 Solely by X3J11. There are many functions that are useful with
the operating system interface and are required for conformance with the
present standard, but that are properly part of the C Language. These are
listed in Referenced C Language Routines §8.1, which also notes which
functions are defined by both POSIX and X3J11. Certain terms defined by
X3J11 are incorporated by POSIX in C Language Definitions §2.8.

Some routines were considered too specialized by the 1003.1 Working Group
to be included in the standard. These include bsearchO and qsort().

B.1.4.3 By Neither POSIX Nor X3J11. Some functions were considered
of marginal utility and problematical when international character sets were
considered: _toupper(), _tolower{), toascii(), and isascii().

Though malloc() §8.1 and free{) §8.1 are in the C Standard and are required
by Referenced C Language Routines §8.1 of the present standard, neither
brk{) nor sbrk() occur in either standard (although they were in the 1984

/usr/group Standard), because this standard is designed to provide the basic
set of functions required to write a Conforming POSIX Application; the underly¬
ing implementation of malloc() or free{) is not an appropriate concern for the
standard.

B.l.4.4 Base by POSIX, Additions by X3J11. Since the C Standard does
not depend on POSIX in any way, there are no items in this category.

B.1.4.5 Base by X3J11,Additions by POSIX. X3J11 has to define errno

if only because examining that variable is the only way to tell when some
mathematics routines fail. But POSIX uses it more extensively, and adds some
semantics to it in Error Numbers §2.5, which also defines some values for it.

Many numerical limits used by X3J11 were incorporated by POSIX in Numer¬
ical Limits §2.9, and some new ones are added, all to be found in the header
<limits.h>.

The POSIX definition of signal §2.3 further specifies the C definition, and the
entire mechanism of Signals §3.3 is much more elaborate.

The function time{) §4.5.1 is used by X3J11, but POSIX further specifies the
time value.

The function getenv () §4.6.1 is referenced in Environment Description §2.7
and exec §3.1.2 and is also defined by X3J11.

The function rename() §5.5.3 is extended to further specify its behavior when
the new filename already exists or either argument refers to a directory.

182 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

B.1.4.6 Related Functions by Both. The X3J11 definition of compli¬
ance and the POSEX definition of Conformance §2.2 are similar, although the
latter notes certain potential hardware limitations.

POSIX defined a portable filename character set in General Terms §2.3, that
is like the X3J11 identifier character set. However, POSIX did not allow upper-
and lowercase characters to be considered equivalent. See filename portabil¬
ity §2.4.

The exit () function is defined only by X3J11, because it refers to closing
streams, and that subject, as well as fclosei) itself, is defined almost entirely by
X3J11. But POSIX defined _exit() §3.2.2, which also adds semantics to exit().

This also allows POSIX to ignore the X3J11 atexiti) function.
POSIX defined kill() §3.3.2, while X3J11 defined raisei), which is similar

except that it does not have a process ED argument, since the language defined
by X3J11 does not incorporate the idea of multiple processes.

The new functions sigsetjmp() §8.3.1 and siglongjmpO §8.3.1 were added to
provide similar functions to X3J11 setjmpO and longjmp () that additionally
save and restore signal state.

B.1.5 Organization.
B. 1.5.1 Organization of the Standard. See the Foreword.

It was decided very early that the traditional organization by manual section,
as used in the 1984 /usr/group Standard, would be confusing in an IEEE stan¬
dard. That organization assumed some background that was not relevant to the
purpose of the standard. It also made an implementation-oriented distinction
between system calls and library routines, which were in separate sections.

Two sections, Scope §1 and Definitions and General Requirements §2,
have been added because they are traditional in IEEE standards. A Foreword
was added for the same reason, even though it is not part of the standard
proper.

Although appendices were used in the Trial Use Standard to contain propo¬
sals for examination by the Balloting Group and the general public, the Full Use
Standard has no proposal appendices, because the text of the standard proper
must be complete. The Appendices of the Full Use Standard discuss either
related standards or the Full Use Standard itself. The Full Use Standard con¬
tains some new material that was not in the Trial Use Standard, mostly that
which was added to meet balloting objections. The most obvious examples are
the addition of reliable signal considerations to Signals §3.3 (including the
addition of Non-Local Jumps §8.3.1) and the resolution of Device- and
Class-Specific Functions §7. See also Specific Derivations §B. 1.3.3.

Because there were too many notes interpolated in the text of the Trial Use
Standard (which were nonetheless not part of the standard), and because there
were still not enough to explain why the Working Group had made many diffi¬
cult decisions, the Working Group decided to add a Rationale and Notes Appen¬
dix, modeled after the one the X3J11 Working Group was producing for the
C Standard. Most of the notes formerly in the main body of the draft wTere
moved to the Rationale appendix, although some were deleted and others were
incorporated into the text of the standard proper.

B.l Introduction. 183

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B. 1.5.2 Organization of this Appendix. Just as the standard proper

excludes all examples, footnotes, references, and appendices, this Rationale is

also not part of the standard. The POSIX interface is defined by the standard

alone. If any part of this Rationale is not in accord with that definition, the

IEEE Standards Office should be so informed. In the meantime, conflicts

between this Rationale and the standard are always resolved in favor of the

body of the standard.

All sections of this appendix beginning with Definitions and General
Requirements §B.2 follow the exact structure of the standard, and aspects of a

given section of the standard are considered in the corresponding section of the

Rationale. Where a given discussion touches on several areas, attempts have

been made to include cross-references within the text.

References to the standard are in the same format as references within the

standard to parts of itself, for example: General Terms §2.3. References to

this Rationale are given as references to Appendix B of the standard, that is, the

section numbers always begin with “B.” as in General Terms §B.2.3. Where a

reference both to part of the standard and to a related note in the Rationale

would be appropriate only the latter is given, because all parts of the Rationale

implicitly refer to the corresponding parts of the standard.

B. 1.5.3 Typographical Conventions. A summary of typographical con¬

ventions is shown in Table B-l.

Table B-l. Typographical Conventions

Reference Example

Command Name

Data Types

Defined Terms

Environment Variables

Error Numbers

Function Arguments

Functions

Global Externals

Headers

Limits

Macros

Section References

Symbolic Constants

cpio

long

file

PATH

[EINTR]

argl

open ()

errno

<sys/stat.h>
{OPEN_MAX}

S_ISDIR

Process Termination §3.2

{_POSIX_VDISABLE} or O.NONBLOCK

Defined terms are shown in three styles, depending on context:

(1) The initial appearance of the term is in italics. In the section General
Terms §2.3, every reference to a term is italicized, which highlights the

interrelationships between the definitions.

(2) Subsequent appearances of the term are in the Roman font.

(3) Cross references to terms from outside section 2.3, such as seconds
since the Epoch §2.3, are shown in bold, because that is the style for all

184 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

cross references to terms and headings.
Cross references to other section headings are not always exactly accurate. In

this Rationale, in particular, keywords and other short phrases are sometimes
used, rather than the full section heading text.

Macros are either uppercase, as shown, or lowercase, depending on their his¬
torical origins.

Symbolic constants are shown in two styles: those within braces are intended
to call the reader’s attention to values in <limits.h> and <unistd.h>; those
without braces are normally defined by one or a few related functions.

In this Rationale, occasional use is made of an historical artifact from the
UNIX system shell. In the shell, the asterisk (*) is used in file names or other
command line tokens to represent zero or more additional characters. Thus, the
construct LC_* represents all the environment variables beginning with the
characters LC_.

Defined names that are normally in lowercase, particularly function names,
are never used at the beginning of a sentence or anywhere else that normal
English usage would require them to be capitalized.

The above typographical conventions apply to both the standard and to this
Rationale. There are also some conventions peculiar to the Rationale, regarding
standards for the operating system interface and for the C language. These are
used frequently in POSIX and the C Standard §B.1.4 and are shown in Table
B-2.

Table B-2. Short Name Usages

Topic
Operating System

Interface
C Programming Language

Working Group
standard

1003.1
IEEE Std 1003.1-1988

short name POSIX
Rationale Appendix B

short name this Rationale

X3J11
ANSI/X3.159-198x Programming

Language C Standard

C Standard
Rationale for American National

Standard for Information Systems—
Programming Language C

X3J11 Rationale

The name POSIX is usually used for the IEEE Std 1003.1-1988 instead of the
name 1003.1, because the latter is too easily confused with the name of the
Working Group, 1003.1.

“Standard C” or the “C Standard” will eventually come to mean “ISO C,” but
currently refers to the ANSI1X3.159-198x Programming Language C Standard

produced by the X3J11 Working Group.

B.l Introduction. 185

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B. 1.5.4 Document Indexes. The document comes with two indexes that
are produced by completely different methods:

(1) The Identifier Index is built from hand-inserted macros in the document
text. It points to the definition of each of the functions, headers, global vari¬
ables (such as errno), and families (groups of functions, such as the exec and
wait families).
(2) The Topical Index is primarily the product of AT&T’s Documenter’s Work¬
bench* software. A list of key symbols and phrases is stored in a file and a
yacc-based program finds instances of these phrases in the document.
Merged into the output of that process are all of the hand-inserted macros
within the text, including definitions as well as the four categories of the
Identifier Index. These merged macros cause the page number reference to
be listed in bold face, such as:

index entry ... 57, 22, 55-60, 105

Thus, the bold reference is probably the most interesting first stop for the
index user. Other references may or may not be of interest, but are included
for completeness. The reader is warned that it may be difficult to find some
indexed phrases on the pages shown; the phrase scanner occasionally makes
intuitive leaps that connect unrelated words in a sentence; it is also possible
that a phrase close to the bottom of a page may be referenced on the follow¬
ing page number.

Of course, neither index is part of the standard and the presence or accuracy
of terms and page references have no normative effect. Suggestions for correct¬
ing errors or improving the index are welcome; this same indexing software is
used by all of the POSIX technical editors and many future standards may bene¬
fit. Address suggestions to the IEEE office listed in the Foreword, requesting
that they be forwarded to the Technical Editor of the 1003 Working Group.

B.2 Definitions and General Requirements.

B.2.1 Terminology. The meanings specified in the standard for the words
shall, should, and may are mandated by IEEE.

In this Rationale, the words shall, should, and may are sometimes used to
illustrate similar usages in the standard. However, the Rationale itself does not
specify anything regarding implementations or applications; see Organization
of this Appendix §B. 1.5.2.

implementation-defined. This definition is analogous to that of the
C Standard, and, together with undefined and unspecified, provides a range of
specification of freedom allowed to the interface implementor.

* Documenter’s Workbench is a trademark of AT&T, Inc.

186 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

may. The use of may has been limited as much as possible, due both to confu¬

sion stemming from its ordinary English meaning, and to objections regarding

the desirability of having as few options as possible and those as clearly speci¬

fied as possible.

shall. Declarative sentences are sometimes used in the standard as if they

included the word shall, and facilities thus specified are no less required. For

example, the two statements:

(1) The /bo() function shall return zero.

(2) The foo() function returns zero,

are meant to be exactly equivalent.

should. In this standard, the word should does not usually apply to the imple¬

mentation, but rather to the application. Thus the important words regarding

implementations are shall, which indicates requirements, and may, which indi¬

cates options.

supported. An example of this concept is the setpgid() function. If the imple¬

mentation does not support the optional job control feature, it nevertheless has

to provide a function named setpgid (), even though its only ability is that of

returning [ENOSYS].

undefined. See implementation-defined.

unspecified. See implementation-defined.

The definitions for unspecified and undefined appear nearly identical at first

examination, but are not. Unspecified means that a conforming program may

deal with the unspecified behavior, and it should not care what the outcome is-.

Undefined says that a conforming program should not do it because no defini¬

tion is provided for what it does (and implicitly it would care what the outcome

was if it tried it). It is important to remember, however, that if the syntax per¬

mits the statement at all, it must have some outcome in a real implementation.

Thus the terms undefined and unspecified apply to the way the application

should think about the feature. In terms of the implementation it is always

“defined:” there is always some result, even if it is an error. The implementa¬

tion is free to choose the behavior it prefers.

This also implies that an implementation, or another standard, could specify

or define the result in a useful fashion. The terms apply to the POSIX standard

specifically.

The term implementation-defined implies requirements for documentation

that are not required for undefined (or unspecified). Where there is no need for

a conforming program to know the definition, the term undefined is used, even

though implementation-defined could also have been used in this context. In an

ideal world, there could be a fourth term, specifying “We don’t say what this

does; it’s acceptable to define it in an implementation, but you don’t need to

document it,” and undefined would then be used very rarely for the few things

for which any definition is not useful.

B.2 Definitions and General Requirements. 187

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.2.2 Conformance. These conformance definitions are descended from

those of conforming implementation, conforming application, and conforming

portable application, of the Trial Use Standard, but were changed to clarify

(1) extensions, options, and limits;

(2) relations among the three terms, and;

(3) relations between POSIX and the C Standard.

B.2.2.1 Implementation Conformance. These definitions allow appli¬

cation developers to know what they can depend on in an implementation.

There is no definition of a strictly conforming implementation; that would be

an implementation that provides only those facilities specified by the standard

with no extensions whatsoever. This is because no actual operating system

implementation can exist without system administration and initialization facil¬

ities that are beyond the scope of the present standard.

B.2.2.1.1 Requirements. The word “support” is used rather than “pro¬

vide” in order to allow an implementation that has no resident software develop¬

ment facilities, but which supports the execution of a Strictly Conforming POSIX

Application, to be a conforming implementation. See also Translation vs.
Execution Environment §B.1.4.

B.2.2.1.2 Documentation. The conforming documentation shall use

the same numbering scheme as this standard for purposes of cross referencing.

(This also eliminates the need for a definitive “laundry list.”)

This proposal is consistent with and supplements the verification test suite

developed by the 1003.3 Working Group. All options that an implementation

chooses shall be reflected in <limits.h> and <unistd.h>.
Hardware Failures: Many systems incorporate buffering facilities, main¬

taining updated data in volatile storage and transferring such updates to nonvo¬

latile storage asynchronously. Various exception conditions, such as a power

failure or a system crash, can cause this data to be lost. The data may be associ¬

ated with a file that is still open, with one that has been closed, with a directory,

or with any other internal system data structures associated with permanent

storage. This data can be lost, in whole or part, so that only careful inspection

of file contents could determine that an update did not occur.

Also, interrelated file activities, where multiple files and/or directories are

updated, or where space is allocated or released in the file system structures,

can leave inconsistencies in the relationship between data in the various files

and directories, or in the file system itself. Such inconsistencies can break

applications that expect updates to occur in a specific sequence, so that updates

in one place correspond with related updates in another place.

For example, if a user creates a file, places information in the file, and then

records this action in another file, a system or power failure at this point fol¬

lowed by restart may result in a state in which the record of the action is per¬

manently recorded, but the file created (or some of its information) has been

lost. The consequences of this to the user may be arbitrarily bad. For a user on

such a system, the only safe action may be to require the system administrator

to have a policy that requires, after any system or power failure, that the entire

file system must be restored from the most recent backup copy (causing all

intervening work to be lost).

188 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

The characteristics of each implementation will vary in this respect, and may
or may not meet the requirements of a given application or user. Enforcement
of such requirements is beyond the scope of this standard. It is up to the pur¬
chaser to determine what facilities are provided in an implementation that
affect the exposure to possible data or sequence loss, and also what underlying
implementation techniques and/or facilities are provided that reduce or limit
such loss, or its consequences.

B.2.2.1.3 Conforming Implementation Options. Within this stan¬
dard there are some symbolic constants that, if defined, indicate that a certain
option is enabled. Other symbolic constants exist in the standard for other rea¬
sons. This section was placed in the standard to help clarify which constants
are related to true “options,” and which are related more to the behavior of
differing systems.

To accommodate historical implementations where there were distinct seman¬
tics in certain situations, but where one was not clearly better or worse than
another, the standard at one point permitted either of (typically) two options
using “may.” At the request of the 1003.3 Working Group, this was changed to
be specified by formal options with flags. It quickly became obvious that these
would be treated as options that could be selected by a purchaser, when the
intent of the Working Group was to allow either behavior (or both, in some
cases) to conform to the standard, and to constrain the application to accommo¬
date either. Thus, these options were removed and the phrase “An implementa¬
tion may either” introduced to replace the option. Where this phrase is used, it
indicates that an application shall tolerate either behavior.

The Working Group intends that all conforming applications shall tolerate
either behavior, and that only in the most exceptional of circumstances (driven
by technical need) should a purchaser specify only one behavior. Backwards
compatibility is not considered exceptional enough, as this is not consistent with
the intent of the standard: to promote the portability of applications (and the
development of portable applications).

An application can tolerate these behaviors either by ignoring the differences
(if they are irrelevant to the application) or by taking an action to assure a
known state. It might be that that action would be redundant on some imple¬
mentations.

Validation programs, which are applications in this sense, could either report
the actual result found, or simply ignore the difference. In no case should either
acceptable behavior be treated as an error. This may complicate the validation
slightly, but is more consistent with the intent of this permissible variation in
behavior.

In certain circumstances, the behavior may vary for a given process. For
example, in the presence of networked file systems, whether or not dot and dot-
dot are present in the directory may vary with the directory being searched, and
the program would only be portable if it tolerated, but did not require, the pres¬
ence of these entries in a directory.

In situations like this, it is typically easier to simply ignore dot and dot-dot if
they are found, than to try to determine if they should be expected or not.

B.2 Definitions and General Requirements. 189

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.2.2.2 Application Conformance. These definitions guide users or

adaptors of applications in determining on which implementations an applica¬

tion will run and how much adaptation would be required to make it run on oth¬

ers. These three definitions are modeled after related ones in the C Standard.

The standard (and this Rationale) occasionally use the expressions portable

application or conforming application. As they are used, these are synonyms

for any of these three terms. The differences between the three classes of appli¬

cation conformance relate to the requirements for other standards, or, in the

case of the Conforming POSIX Application Using Extensions, to implementation

extensions. When the two looser expressions are used, it should be apparent

from the context of the discussion which of the more formal names is appropri¬

ate.

B.2.2.2.1 Strictly Conforming POSIX Application. This definition

is analogous to that of a Standard C conforming program.

The major difference between a Strictly Conforming POSIX Application and a

Standard C strictly conforming program is that the latter is not allowed to use

features of POSIX that are not in the C Standard.

B.2.2.2.2 Conforming POSIX Application. Examples of <National

Bodies> include ANSI, BSI, and AFNOR.

B.2.2.2.3 Conforming POSIX Application Using Extensions. Due

to possible requirements for configuration or implementation characteristics in

excess of the specifications in <limits.h> §2.9 or related to the hardware (such

as array size or file space), not every Conforming POSIX Application Using

Extensions will run on every conforming implementation.

B.2.2.3 Language-Dependent Services for the C Programming
Language. This standard is, for historical reasons, both a specification of an

operating system interface and a C binding for that specification.

It is clear that these two need to be separated into separate entities, but the

urgency of getting any standard out, and the fact that C is the de facto primary

language on systems similar to the UNIX system, makes this a necessary and

workable situation.

Nevertheless, work will be done on language bindings, beyond that for C,

before the specification and the current binding are separated. Language bind¬

ings for languages other than C should not model themselves too closely on the

C binding, and in the process pick up various idiosyncrasies of C.

Where functionality is duplicated in this standard (e.g. open() and creat())

there is no reason for that duplication to be carried forward into another

language. On the other hand, some languages have functionality already in

them that is essentially the same as that provided in this standard. In this

case, a mapping between the functionality in that language and the underlying

functionality in this standard is a better choice than mimicking the C binding.

Since C has no syntax for I/O, and I/O is a large fraction of this standard, the

paradigm of functions has been used. This may not be appropriate to another

language. For example, FORTRAN’S REWIND statement is a candidate to map

onto a special case of Iseek (), and its SEEK statement may completely cover for

Iseek (). If this is the case, there is no reason to provide SUBROUTINES with the

same functionality. In the more general case, file descriptors and FORTRAN’S

190 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

logical unit numbers may have a useful mapping. FORTRAN’S ERR= option in

I/O operations might replace returning -1; the whole concept of errors might be

handled differently.

As was done with C, it is not unreasonable for other language bindings to

specify some areas that are undefined or unspecified by the underlying language

standard, or which are permissible as extensions. This may, in fact, solve some

difficult problems.

Using as much as possible of the target language in the binding enhances por¬

tability. If a program wishes to use some POSIX capabilities, and these are

bound to the language statements, rather than appearing as additional pro¬

cedure or function calls, and the program does in fact conform to the language

standard while using those functions, it will port to a larger range of systems

than one that is obligated to use procedure or function calls introduced specifi¬

cally for the binding to POSEX to do the same thing.

A program which requires the POSIX capabilities which are not bound to the

standard language directly (as above) has no chance to be portable outside the

POSIX environment. It doesn’t matter whether the extension is syntactic or a

new function; it still won’t port without effort. Given this, it seems unreason¬

able not to consider language extensions when determining how best to map the

functionality of POSIX into a particular language binding. For example, a new

statement similar to READ, which loads the values from a call like stat(), might

be the best solution for reading the data lists returned as structures in C into a

list of FORTRAN variables.

It should be clear that no attempt to mimic printfO or scanfO (or the rest of

the Standard C functions) should be made, but rather that the equivalent func¬

tions in the language should be used. (Formatted READ and WRITE in FOR¬

TRAN, read/readln and write/writeln in Pascal, for example.)

It should be noted that there is inherently a special relationship between an

operating system standard and a language standard. It is unlikely that stan¬

dards for other kinds of features (such as graphics) will have much likelihood of

binding directly to statements in a general purpose language. However, an

operating system standard should be providing the services required by a

language, and there should be a good chance of this happening. This is an

unusual situation, and the natural tendency to use only new functions and pro¬

cedures when creating a binding should be examined carefully. (A one-to-one

binding in all cases is probably too much to ask, but bindings such as those for

standard I/O in Chapter 8 of this standard are quite reasonable.)

Binding directly to the language, where possible, should be encouraged both

by making maximal use of the mapping between the operating system and the

language that naturally exists, and where appropriate, for the languages to

request changes to the operating system to facilitate a better such mapping. (A

future inclusion of a truncate function, specifically for the FORTRAN ENDFILE

statement, but which is also generally useful, is a good example.)

Clearly, part of the job of creating a binding is choosing names for functions

which are introduced, and these will need to be appropriate for that language.

It may be reasonable to use other than the most restrictive form of a name,

since, as discussed previously, using these functions inherently makes the

B.2 Definitions and General Requirements. 191

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

application not portable to systems which are not POSIX, and if POSIX confor¬

mant systems typically accept names which the lowest common denominator

system will not, there is no reason to a priori exclude such names. (The specific

example is C, where it is typically “non-UNIX” systems that limit external iden¬

tifiers to six characters.)

See Scope §B. 1.1 for additional information about C bindings.

B.2.2.3.1 Types of Conformance.
B.2.2.3.2 C Standard Language-Dependent System Support. The

issue of “namespace pollution” needs to be understood in this context. See

POSIX Symbols §B.2.8.2.
B.2.2.3.3 Common Usage C Language-Dependent System Sup¬

port. The issue of “namespace pollution” needs to be understood in this context.

See POSIX Symbols §B.2.8.2.

B.2.2.4 Other C Language Related Specifications. The information

concerning the use of library functions was adapted from a description in the

C Standard. Here is an example of how an application program can protect

itself from library functions that may or may not be macros, rather than true

functions:

The atoi() function may be used in any of several ways:

(1) by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>

/* ... */
i = atoi(str);

(2) by use of its associated header (assuredly generating a true function call)

#include <stdlib.h>

tundef atoi

/* ... */
i = atoi(str);

or

#include <stdlib.h>

/* ... */
i = (atoi) (str);

(3) by explicit declaration

extern int atoi (const char *);

/* ... */

i = atoi(str);

(4) by implicit declaration

/* ... */
i = atoi (str);

(Assuming no function prototype is in scope. This is not allowed by X3J11

for functions with variable arguments; furthermore, parameter type conver¬

sion “widening” is subject to different rules in this case.)

192 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Note that the C Standard reserves names starting with for the com¬

piler. Therefore, the compiler could, for example, implement an intrinsic,

built-in function __asm_builtin_atoi(), which it recognized and expanded into

inline assembly code. Then, in <stdlib.h>, there could be the following:

#define atoi(X) _asm_builtin_atoi(X)

The user’s “normal” call to atoi() would then be expanded inline, but the

implementor would also be required to provide a callable function named

atoi () for use when the application requires it; for example, if its address is

to be stored in a function pointer variable.

B.2.3 General Terms. Many of these definitions are necessarily circular,

and some of the terms (such as process) are variants of basic computing science

terms that are notoriously hard to define. Some are defined by context in the

prose topic descriptions of General Concepts §2.4, but most appear in the

alphabetical glossary format of General Terms §2.3. All technical terms not

explicitly defined have definitions in the IEEE Dictionary. See Bibliographic
Notes §B.11.1.

Some definitions must allow extension to cover terms or facilities that are not

explicitly mentioned in the standard. For example, the definition of file must

permit interpretation to include streams, as found in the Eighth Edition. The

use of abstract intermediate terms (such as object in place or in addition to file)

has mostly been avoided in favor of careful definition of more traditional terms.

Some terms in the following list of notes do not appear in the standard; these

are marked prefixed with a asterisk (*). Many of them have been specifically

excluded from the standard because they concern system administration, imple¬

mentation, or other issues that are not specific to the programming interface.

Those are marked with a reason, such as “implementation-defined.”

appropriate privileges. One of the fundamental security problems with UNIX

systems has been that the privilege mechanism is monolithic—a user has either

no privileges or all privileges. Thus, a successful “trojan horse” attack on a

privileged process defeats all security provisions. Therefore, the standard

allows more granular privilege mechanisms to be defined. For many existing

implementations of the UNIX system, the presence of the term appropriate

privileges in this standard may be understood as a synonym for super-user

(UID 0). However, future systems will undoubtedly emerge where this is not the

case and each discrete controllable action will have appropriate privileges asso¬

ciated with it.

controlling terminal. The question of which of possibly several special files

referring to the terminal is meant is not addressed in the standard.

^cooperating implementation. This refers to a POSEX implementation that is

done in combination with some other set of system specifications. This might be

as simple as supporting a POSEX environment concurrently with some specific

version of AT&Ts UNIX Operating System, or as complex as providing the POSEX

environment with some different vendor’s products, such as MS/DOS from Micro¬

soft, VMS from Digital Equipment Company, etc. A cooperating environment

B.2 Definitions and General Requirements. 193

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

would fall somewhere on the gray scale from hosted implementations to native,

depending on the degree of POSIX components that are serviced directly versus

those that are converted to correspond with one of the other system’s implemen¬

tations. (Note that the POSIX facilities might be native, and the other system

hosted; or both might be native.)

^device number. The concept is handled in stat () §5.6.2 as ID of device.

directory. The format of the directory file is implementation-defined, and

differs radically between System V and 4.3BSD. However, routines (derived

from 4.3BSD) for accessing directories are provided in Directory Operations
§5.1.2 and certain constraints on the format of the information returned by

those routines are made in Format of Directory Entries §5.1.1.

directory entry. Throughout the document, the term link is used (about link()

§5.3.4, for example) in describing the things that point to files from directories.

dot. The symbolic name dot is carefully used in the standard to distinguish the

working directory filename from period or decimal point.

dot-dot. Historical implementations permit the use of these filenames without

their special meanings. Such use precludes any meaningful use of these

filenames by a Conforming POSIX Application. Therefore such use is considered

an extension, the use of which makes an implementation non-conforming. See

also pathname resolution §B.2.4.

Epoch. Normally, the origin of UNIX system time is referred to as “00:00:00

GMT, January 1, 1970.” Greenwich Mean Time is actually not a term ack¬

nowledged by the international standards community; therefore, this term,

Epoch, is used to abbreviate the reference to the actual standard, Coordinated

Universal Time. The concept of leap seconds is added for precision; at the time

this standard was published, 14 leap seconds had been added since January 1,

1970. These 14 seconds are ignored to provide an easy and compatible method

of computing time differences.

Most systems’ notion of “time” is that of a continuously-increasing value, so

this value should increase even during leap seconds. However, not only do most

systems not keep track of leap seconds, but most systems are probably not syn¬

chronized to any standard time reference. Therefore, it is inappropriate to

require that a time represented as seconds since the Epoch precisely represent

the number of seconds between the referenced time and the Epoch.

It is sufficient to require that applications be allowed to treat this time as if it

represented the number of seconds between the referenced time and the Epoch.

It is the responsibility of the vendor of the system, and the administrator of the

system, to ensure that this value represents the number of seconds between the

referenced time and the Epoch as closely as necessary for the application being

run on that system.

It is important that the interpretation of time names and seconds since the

Epoch values be consistent across conforming systems. That is, it is important

that all conforming systems interpret “536457599 seconds since the Epoch” as

59 seconds, 59 minutes, 23 hours 31 December 1986, regardless of the accuracy

194 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

of the system’s idea of the current time. The expression is given to assure a con¬

sistent interpretation, not to attempt to specify the calendar. The relationship

between tm_yday and the day of week, day of month, and month is presumed to

be specified elsewhere, and not given in this standard.

Consistent interpretation of seconds since the Epoch can be critical to certain

types of distributed applications that rely on such timestamps to synchronize

events. The accrual of leap seconds in a time standard is not predictable. The

number of leap seconds since the Epoch will likely increase. The standard is

more concerned about the synchronization of time between applications of astro¬

nomically short duration and the Working Group expects these concerns to

become more critical in the future.

Note that tm_yday is zero-based, not one-based, so the day number in the

example above is 364. Note also that the divide is an integer divide (discarding

remainder) as in C.

Note also that in Chapter 8, the meaning of gmtime (), localtime (), and

mktime () is specified in terms of this expression. However, the C Standard com¬

putes tm_yday from tm_mday, tm_mon, and tmjyear in mktime (). Because it is

stated as a (bidirectional) relationship, not a function, and because the conver¬

sion between month-day-year and day-of-year dates is presumed well known,

and is also a relationship, this is not a problem.

Note that the expression given will fail after the year 2099. Since the issue of

timejt overflowing a 32-bit integer occurs well before that time, both of these

will have to be addressed in revisions to this standard.

FIFO special file. See pipe §B.2.3.

file. It is permissible for an implementation-defined file type to be non-readable

or non-writable.

file classes. These classes correspond to the historical sets of permission bits.

The classes are general to allow implementations flexibility in expanding the

access mechanism for more stringent security environments. Note that a pro¬

cess is in one and only one class, so there is no ambiguity.

filename. For now the primary responsibility for truncating filenames contain¬

ing multibyte characters must reside with the application. The /usr/group sub¬

committee for internationalization believes that in the future, the responsibility

must shift to the kernel. For now, there needs to be time to arrive at a better

understanding of the implications of making the kernel responsible for trunca¬

tion of multibyte file names.

The Working Group felt it would be inadvisable to adopt character level trun¬

cation as there is no support in this standard which advises how the kernel dis¬

tinguishes between single and multibyte characters. Until that time, it must be

incumbent upon application writers to determine where multibyte characters

must be truncated.

B.2 Definitions and General Requirements. 195

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

file system. Historically the meaning of this term has been overloaded with

two meanings: that of the complete file hierarchy §B.2.4, and that of a mount-

able subset of that hierarchy, i.e., a mounted file system §B.2.3. The standard

uses the term file system in the second sense, except that it is limited to the

scope of a process (and a process’s root directory). This usage also clarifies the

domain in which a file serial number is unique.

*group file. Implementation-defined; see System Databases §B.9.

^historical implementations. This refers to previously-existing implementa¬

tions of programming interfaces and operating systems that are related to the

interface specified by the standard, especially to those implementations

described by the Base Documents §B.1.3. See also Minimal Changes to His¬

torical Implementations §B. 1.2.8.

*hosted implementation. This refers to a POSIX implementation that is

accomplished through interfaces from the POSIX services to some alternate form

of operating system kernel services. Note that the line between a hosted imple¬

mentation and a native implementation is blurred, since most implementations

will provide some services directly from the kernel, and others through some

indirect path. (For example, fopen() might use open(); or mkfifoO might use

mknodO.) There is no necessary relationship between the type of implementa¬

tion and its correctness, performance, and/or reliability.

implementation. The term is generally used instead of its synonym, system,

to emphasize the consequences of decisions to be made by system implementors.

Perhaps if no options or extensions to POSIX were allowed, this usage would not

have occurred.

The term specific implementation is sometimes used as a synonym for imple¬

mentation. This should not be interpreted too narrowly; both terms can

represent a relatively broad group of systems. For example, a hardware vendor

could market a very wide selection of systems that all used the same instruction

set, with some systems desktop models and others large multi-user minicomput¬

ers. This wide range would probably share a common POSIX operating system,

allowing an application compiled for one to be used on any of the others; this is a

[specific] implementation.

However, that wide range of machines probably has some differences between

the models. Some may have different clock rates, different file systems, dif¬

ferent resource limits, different network connections, etc., depending on their

sizes or intended usages. Even on two identical machines, the system adminis¬

trators may configure them differently. Each of these different systems is

known by the term a specific instance of a specific implementation. This term is

only used in the portions of the standard dealing with run-time queries: sys-

confO §4.8.1 and pathconfO §5.7.1.

^incomplete pathname. Absolute pathname §2.4 has been adequately

defined.

196 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

job control. In order to understand the job control facilities in POSIX it is use¬
ful to understand how they are used by a job control cognizant shell to create
the user interface effect of job control.

While the job control facilities supplied by POSIX can, in theory, support dif¬
ferent types of interactive job control interfaces supplied by different types of
shells, there is historically one particular interface that is most common (pro¬
vided by BSD C Shell). This discussion describes that interface as a means of
illustrating how the POSIX job control facilities can be used.

Job control allows users to selectively stop (suspend) the execution of
processes and continue (resume) their execution at a later point. The user typi¬
cally employs this facility via the interactive interface jointly supplied by the
terminal I/O driver and a command interpreter (shell).

The user can launch jobs (command pipelines) in either the foreground or
background. When launched in the foreground, the shell waits for the job to
complete before prompting for additional commands. When launched in the
background, the shell does not wait but immediately prompts for new com¬
mands.

If the user launches a job in the foreground and subsequently regrets this, the
user can type the suspend character < typically set to control-Z) which causes the
foreground job to stop and the shell to begin prompting for new commands. The
stopped job can be continued by the user (via special shell commands) either as
a foreground job or as a background job. Background jobs can also be moved
into the foreground via shell commands.

If a background job attempts to access the login terminal (controlling termi¬
nal) it is stopped by the terminal driver and the shell is notified which, in turn,
notifies the user. (Terminal access includes readi) and certain terminal control
functions and conditionally includes write().) The user cam continue the stopped
job in the foreground, thus allowing the terminal access to succeed in an orderly
fashion. After the terminal access succeeds, the user can optionally move the
job into the background via the suspend character and shell commands.

Implementing Job Control Shells

The above interactive interface can be accomplished using the POSIX job con¬
trol facilities in the following way.

The key feature necessary to provide job control is a way to group processes
into jobs. This grouping is necessary in order to direct signals to a single job
and also to identify which job is in the foreground. (There is at most one job
that is in the foreground on any controlling terminal at a time.)

The concept of process groups is used to provide this grouping. The shell
places each job in a separate process group via the setpgid0 §4.3.3 function. To
do this, the setpgidi) function is invoked by the shell for each process in the job.
It is actually useful to invoke setpgidi) twice for each process: once in the child
process, after calling forki) to create the process but before calling exec0 to
begin execution of the program, and once in the parent shell process, after cal¬
ling forki) to create the child. The redundant invocation avoids a race condition
by ensuring that the child process is placed into the new process group before
either the parent or the child relies on this being the case. The process group ID

B.2 Definitions and General Requirements. 197

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

for the job is selected by the shell to be equal to the process ID of one of the
processes in the job. Some shells choose to make one process in the job be the
parent of the other processes in the job (if any). Other shells (e.g., the C Shell)
choose to make themselves the parent of all processes in the pipeline (job). In
order to support this latter case, the setpgidi) function accepts a process group
ID parameter since the correct process group ID cannot be inherited from the
shell. The shell itself is considered to be a job and is the sole process in its own
process group.

The shell also controls which job is currently in the foreground. A foreground
and background job differ in two ways: the shell waits for a foreground com¬
mand to complete (or stop) before continuing to read new commands, and the
terminal I/O driver inhibits terminal access by background jobs (causing the
processes to stop). Thus the shell must work cooperatively with the terminal I/O
driver and have a common understanding of which job is currently in the fore¬
ground. It is the user who decides which command should be currently in the
foreground and the user informs the shell via shell commands. The shell, in
turn, informs the terminal I/O driver via the tcsetpgrp () §7.2.4 function. This
indicates to the terminal I/O driver the process group ID of the foreground pro¬
cess group (job). When the current foreground job either stops or terminates,
the shell places itself in the foreground via tcsetpgrp () before prompting for
additional commands. Note that when a job is created the new process group
begins as a background process group. It requires an explicit act of the shell via
tcsetpgrp () to move a process group (job) into the foreground.

When a process in a job stops or terminates, its parent (e.g., the shell) receives
synchronous notification by calling the waitpidO function with the WUN-
TRACED flag set. Asynchronous notification is also provided when the parent
establishes a signal handler for SIGCHLD and does not specify the
SA_NOCLDSTOP flag. Usually all processes in a job stop as a unit since the ter¬
minal I/O driver always sends job control stop signals to all processes in the pro¬
cess group.

To continue a stopped job, the shell sends the SIGCONT signal to the process
group of the job. In addition, if the job is being continued in the foreground, the
shell invokes tcsetpgrp () to place the job in the foreground before sending
SIGCONT. Otherwise the shell leaves itself in the foreground and reads addi¬
tional commands.

There is additional flexibility in the POSIX job control facilities which allow
deviations from the typical interface. Clearing the TOSTOP terminal flag (see
Local Modes §7.1.2.5) allows background jobs to perform writeO functions
without stopping. The same effect can be achieved on a per-process basis by
having a process set the signal action for SIGTTOU to SIG_IGN.

Note that the terms job and process group can be used interchangeably. A
login session which is not using the job control facilities can be thought of as a
large collection of processes which are all in the same job (process group). Such
a login session may have a partial distinction between foreground and back¬
ground processes; that is, the shell may choose to wait for some processes before
continuing to read new commands and may not wait for other processes. How¬
ever, the terminal I/O driver will consider all these processes to be in the

198 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

foreground since they are all members of the same process group.
In addition to the basic job control operations already mentioned, a job control

cognizant shell needs to perform the following actions:
When a foreground (not background) job stops, the shell must sample and

remember the current terminal settings so that it can restore them later when it
continues the stopped job in the foreground (via the tcgetattr() and tcsetattr()
functions).

Because a shell itself can be spawned from a shell, it must take special action
to ensure that subshells interact well with their parent shells.

A subshell can be spawned to perform an interactive function (prompting the
terminal for commands) or a non-inter active function (reading commands from
a file). When operating non-inter actively, the job control shell will refrain from
performing the job control specific actions described above. It will behave as a
shell which does not support job control. For example, all jobs will be left in the
same process group as the shell which itself remains in the process group esta¬
blished for it by its parent. This allows the shell and its children to be treated
as a single job by a parent shell and they can be affected as a unit by terminal
keyboard signals.

An interactive subshell can be spawned from another job control cognizant
shell in either the foreground or background. (For example, from the C Shell
execute the command, csh &.) Before the subshell activates job control by cal¬
ling setpgid() to place itself in its own process group and tcsetpgrp () to place its
new process group in the foreground, it needs to ensure that it has already been
placed in the foreground by its parent. (Otherwise there could be multiple job
control shells which simultaneously attempt to control mediation of the termi¬
nal.) To determine this, the shell retrieves its own process group via getpgrpO

§4.3.1 and the process group of the current foreground job via tcgetpgrp () §7.2.3.
If these are not equal, the shell sends SIGTTIN to its own process group causing
itself to stop. When continued later by its parent, the shell repeats the process
group check. When the process groups finally match, the shell is in the fore¬
ground and it can proceed to take control. After this point, the shell ignores all
the job control stop signals so that it doesn’t inadvertently stop itself.

Implementing Job Control Applications

Most applications do not need to be aware of job control signals and opera¬
tions; the “right thing” happens by default. However, sometimes an application
can inadvertently interfere with normal job control processing. Or an applica¬
tion may choose to overtly effect job control in cooperation with normal shell
procedures.

An application can inadvertently subvert job control processing by “blindly”
altering the handling of signals. A common application error is to learn how
many signals the system supports and to ignore or catch them all. Such an
application makes the assumption: “I don’t know what this signal is, but I know
the right handling action for it.” The system may initialize the handling of job
control stop signals so that they are being ignored. This allows shells which do
not support job control to inherit and propagate these settings and hence to be
immune to stop signals. A job control shell will set the handling to the default

B.2 Definitions and General Requirements. 199

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

action and propagate this, allowing processes to stop. In doing so, the job con¬
trol shell is taking responsibility for restarting the stopped applications. If an
application wishes to catch the stop signals itself, it should first determine their
inherited handling states. If a stop signal is being ignored, the application
should continue to ignore it. This is directly analogous to the recommended
handling of SIGINT described by Kernighan and Ritchie in UNIX Programming

— Second Edition in the UNIX Programmer’s Manual.
If an application is reading the terminal and has disabled the interpretation

of special characters (by clearing the ISIG flag), the terminal I/O driver will not
send SIGTSTP when the suspend character is typed. Such an application can
simulate the effect of the suspend character by recognizing it and sending
SIGTSTP to its process group as the terminal driver would have done. Note that
the signal is sent to the process group, not just to the application itself; this
ensures that other processes in the job also stop. (Note that other processes in
the job could be children, siblings, or even ancestors.) Another point worth not¬
ing is that applications should not assume that the suspend character is
control-Z (or any particular value); they should retrieve the current setting at
startup.

Implementing Job Control Systems

The intent in adding 4.2BSD-style job control functionality was to adopt the
necessary 4.2BSD programmatic interface with only minimal changes to resolve
syntactic or semantic conflicts with System V or to close recognized security
holes. The goal was to maximize the ease of providing both conforming imple¬
mentations and Conforming POSIX Applications.

Discussions of the changes can be found in the sections which discuss the
specific interfaces. See sections: Wait for Process Termination §B.3.2.1,
Terminate a Process §B.3.2.2, Signal Names §B.3.3.1, Send a Signal to a
Process §B.3.3.2, Examine and Change Signal Action §B.3.3.4, Get Pro¬
cess Group ID §B.4.3.1, Set Process Group ID for Job Control §B.4.3.3,
Terminal Access Control §B.7.1.1.3, and Set Foreground Process Group
ID §B.7.2.4.

It is only useful for a process to be affected by job control signals if it is the
descendant of a job control shell. Otherwise, there will be nothing which contin¬
ues the stopped process. Because a job control shell is allowed, but not required,
by the standard, an implementation must provide a mechanism which shields
processes from job control signals when there is no job control shell. The usual
method is for the system initialization process (typically called init), which is
the ancestor of all processes, to launch its children with the signal handling
action set to SIG_IGN for the signals SIGTSTP, SIGTTIN, and SIGTTOU. Thus all
login shells start with these signals ignored. If the shell is not job control cog¬
nizant, then it should not alter this setting and all its descendants should
inherit the same ignored settings. At the point where a job control shell is
launched, it resets the signal handling action for these signals to be SIG_DFL for
its children and (by inheritance) their descendants. Also, shells which are not
job control cognizant will not alter the process group of their descendants or of
their controlling terminal; this has the effect of making all processes be in the

200 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

foreground (assuming the shell is in the foreground). While this approach is
valid, the standard added the concept of orphaned process groups to provide a
more robust solution to this problem. All processes in a session managed by a
shell which is not job control cognizant are in an orphaned process group and
are protected from stopping.

POSIX does not specify how controlling terminal access is affected by a user
logging out (that is, by a controlling process terminating). 4.2BSD uses the
vhangupi) function to prevent any access to the controlling terminal through
file descriptors opened prior to logout. System V does nothing to prevent con¬
trolling terminal access through file descriptors opened prior to logout (except
for the case of the special file, /dev/tty). Some implementations choose to
make processes immune from job control after logout (that is, such processes are
always treated as if in the foreground); other implementations continue to
enforce foreground/background checks after logout. Therefore, a Conforming
POSIX Application should not attempt to access the controlling terminal after
logout since such access is unreliable. Note that, if an implementation chooses
to deny access to a controlling terminal after its controlling process exits, the
standard requires a certain type of behavior (see The Controlling Terminal
§7.1.1.3).

^kernel. See system call.

* library routine. See system call.

*logical device. Implementation-defined.

*mount point. The directory on which a mounted file system is mounted. This
term, like mount() and umounti), was not included because it was
implementation-defined.

^mounted file system. See file system.

^native implementation. This refers to an implementation of POSIX that
interfaces directly to an operating system kernel addressed in the standard.
See also hosted implementation §B.2.3 and cooperating implementation
§B.2.3. A similar concept from the UNIX world is a native UNIX system, which
would a be kernel derived from one of AT&T's UNIX products.

*passwd file. Implementation-defined; see System Databases §B.9.

open file description. An open file description, as it is currently named,
“describes” how a file is being accessed. What is currently called a file descrip¬

tor is actually just an identifier or “handle;” it does not actually describe any¬
thing.

The following alternate names were discussed:
For open file description:

open instance, file access description, open file information, and file

access information.

For file descriptor:
file handle, file number [c.f., filenoO]. Some historical implementa¬
tions use the term file table entry.

B.2 Definitions and General Requirements. 201

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

orphaned process group. Historical implementations have a concept of an
orphaned process, which is a process whose parent process has exited. When job
control is in use, it is necessary to prevent processes from being stopped in
response to interactions with the terminal after they no longer are controlled by
a job control-cognizant program. Because signals generated by the terminal are
sent to a process group and not to individual processes, and because a signal
may be provoked by a process which is not orphaned but sent to another process
which is orphaned, it is necessary to define an orphaned process group. The
definition assumes that a process group will be manipulated as a group, and
that the job control-cognizant process controlling the group is outside of the
group and is the parent of at least one process in the group (so that state
changes may be reported via waitpid()). Therefore, a group is considered to be
controlled as long as at least one process in the group has a parent that is out¬
side of the process group but within the session.

This definition of orphaned process groups ensures that a session leader’s pro¬
cess group is always considered to be orphaned, and thus it is prevented from
stopping in response to terminal signals.

pipe. It proved convenient to define a pipe as a special case of a FIFO even
though historically the latter were only introduced in System III and do not
exist at all in 4.3BSD.

portable filename character set. The encoding of this character set is not
specified: specifically, ASCII is not required. But the implementation must pro¬
vide a unique character code for each of the printable graphics specified by the
standard. See also filename portability §B.2.4.

Note that situations where characters beyond the portable filename character
set (or simply ASCII) would be used (in a context where the portable filename
character set or ASCII is required herein) are expected to be common. Although
such a situation renders the use technically non-compliant, mutual agreement
among the users of an extended character set will make such use portable
between those users. Such a mutual agreement could be formalized as an
optional extension to this standard. (Making it required would eliminate too
many possible systems, as even those systems using ASCII as a base character
set extend their character sets for Western Europe, let alone the rest of the
world, in different ways.)

Nothing in this standard is intended to preclude the use of extended charac¬
ters where interchange is not required or where mutual agreement is obtained.
It has been suggested that in several places “should” be used instead of “shall.”
Because (in the worst case) use of any character beyond the portable filename
character set would render the program or data not portable to all possible sys¬
tems, permitting any extensions in this context defeats the purpose of the stan¬
dard.

regular file. The standard does not intend to preclude the addition of structur¬
ing data (e.g., record lengths) in the file, as long as such data is not visible to an
application that uses the features described in the standard.

202 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

root directory. This definition permits the operation of chroot (), even though
that function is not in the standard. See also file hierarchy §B.2.4.

*root file system. Implementation-defined.

*root of a file system. Implementation-defined. See mount point.

signal. The definition implies a double meaning for the term. Although a sig¬
nal is an event, common usage implies that a signal is an identifier of the class
of event.

^system call. The distinction between a system call and a library routine is an
implementation detail that may differ between implementations and has thus
been excluded from the standard. See Interface, Not Implementation
§B. 1.2.2.

*super-user. This concept, with great historical significance to UNIX system
users, has been replaced with the notion of appropriate privileges.

B.2.4 General Concepts.

extended security controls. Allowing an implementation to define extended
security controls enables the use of this standard in environments which require
different or more rigorous security than that provided in the standard. Exten¬
sions are allowed in two areas: privilege and file access permissions. The
semantics of these areas have been defined to permit extensions with reason¬
able, but not exact compatibility with all existing practices. For example, the
elimination of the super-user definition precludes identifying a process as
privileged or not by virtue of its effective user ID.

file access permissions. A process should not try to anticipate the result of
an attempt to access data by a priori use of these rules. Rather, it should make
the attempt to access data and examine the return value (and possibly errno, as
well), or use access() §5.6.3. An implementation may include other security
mechanisms in addition to those specified in the standard, and an access
attempt may fail because of those additional mechanisms even though it would
succeed according to the rules given in this section. (For example, the user’s
security level might be lower than that of the object of the access attempt.) The
optional supplementary group IDs provide another reason for a process to not
attempt to anticipate the result of an access attempt.

file hierarchy. Though the file hierarchy is commonly regarded to be a tree,
the standard does not define it as such for three reasons:

(1) As noted in the standard, links may join branches.
(2) In some network implementations, there may be no single absolute root
directory. See pathname resolution.

(3) With symbolic links (found in 4.3BSD), the file system need not be a tree
or even a Directed Acyclic Graph.

B.2 Definitions and General Requirements. 203

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

file permissions. Examples of implementation-defined constraints that may
deny access are mandatory labels and access control lists.

filename portability. Traditionally, certain filenames have been reserved.
This list includes core, /etc/passwd, etc. Care should be taken in portable
applications to avoid these.

Most historical implementations, including all of those described by the Base
Documents §B.1.3, prohibit case folding in filenames, i.e., treating upper- and
lowercase alphabetic characters as identical. However, some consider case fold¬
ing desirable

(1) For user convenience.
(2) For ease of implementation of the standard interface as a hosted system
on some popular operating systems, which is compatible with the goal of
making the standard interface Broadly Implementable §B. 1.2.7.

Variants such as maintaining case distinctions in filenames but ignoring them
in comparisons have been suggested. Methods of allowing escaped characters of
the case opposite the default have been proposed.

Many reasons have been expressed for not allowing case folding, including:
(1) No solid evidence has been produced as to whether case sensitivity or
case insensitivity is more convenient for users.
(2) Making case insensitivity a POSIX implementation option would be worse
than either having it or not having it, because

(a) More confusion would be caused among users.
(b) Application developers would have to account for both cases in their
code.
(c) POSIX implementors would still have other problems with native file
systems, such as short or otherwise constrained filenames or pathnames,
not to mention the lack of hierarchical directory structure.

(3) Case folding is not easily defined in many European languages, both
because many of them use characters outside the USASCII alphabetic set,
and because:

(a) In Spanish the digraph 11 is considered to be a single letter, the capi¬
talized form of which may be either LI or LL depending on context.
(b) In French the capitalized form of a letter with an accent may or may
not retain the accent depending on the country in which it is written.
(c) In German the sharp ess may be represented as a single character
resembling a Greek beta ((3) in lowercase but as the digraph SS in upper¬
case.
(d) In Greek there are several lowercase forms of some letters; the one to
use depends on its position in the word. Arabic has similar rules.

(4) Many East Asian languages, including Japanese, Chinese, and Korean,
do not distinguish case, and are sometimes encoded in character sets that
use more than one byte per character.
(5) Multiple character codes may be used on the same machine simultane¬
ously. There are several ISO character sets for European alphabets. In
Japan, several Japanese character codes are commonly used together, some¬
times even in filenames; this is evidently also the case in China. To handle

204 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

case insensitivity, the kernel would have to at least be able to distinguish for
which character sets the concept made sense.
(6) The file system implementation historically deals only with bytes, not
with characters, except for slash and the null byte.
(7) The purpose of the Working Group is to standardize the common, existing
definition (see Application Oriented §B. 1.2.1) of the UNIX system pro¬
gramming interface, not to change it. Mandating case insensitivity would
make all historical implementations non-standard.
(8) Not only the interface, but also application programs wrould need to
change, counter to the purpose of having minimal changes to existing
application code §B. 1.2.9.
(9) At least one of the original developers of the UNIX system has expressed
objection in the strongest terms to either requiring case insensitivity or mak¬
ing it an option, mostly on the basis that the standard should not hinder por¬
tability of application programs across related implementations in order to
allow compatibility with unrelated operating systems.

Two proposals were entertained regarding case folding in filenames:
(1) Remove all wording that previously permitted case folding.
Rationale: Case folding is inconsistent with portable filename character set
definition and filename definition (all characters except slash and null). No
known implementations allowing all characters except slash and null also do
case folding.
(2) Change “though this practice is not recommended:” to “although this
practice is strongly discouraged.”
Rationale: If case folding must be included in the standard, the wording
should be stronger to discourage the practice.

The consensus of the Working Group wras in favor of proposal (1). Otherwise,
a portable application would have to assume that case folding would occur when
it wasn’t ’wanted, but that it ’wouldn’t occur when it was wanted.

file times update. This section reflects the actions of historical implementa¬
tions. The times are not updated immediately, but are only marked for update
by the functions. An implementation may update these times immediately.

Earlier drafts had not required these times and did not clearly specify the
time update process. However, the Working Group felt that the functionality
provided was important.

The accuracy of the time update values is intentionally left unspecified so that
systems can control the bandwidth of a possible covert channel.

pathname resolution. What the filename dot-dot refers to relative to the root
directory is implementation-defined. In Version 7 it refers to the root directory
itself; this is the behavior mentioned in the standard. In some networked sys¬
tems the construction / . . /hostname/ is used to refer to the root directory of
another host, and the standard permits this behavior.

Other networked systems use the construct //hostname for the same pur¬
pose, i.e., a double initial slash is used. Because existing applications which
create full pathnames by taking a trunk and a relative pathname and making
them into a single string separated by / can accidentally create networked

B.2 Definitions and General Requirements. 205

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

pathnames when the trunk is /, the Working Group considered prohibiting this
practice. However, such applications can be made to conform by simply chang¬
ing to use / / as a separator instead of /:

(1) If the trunk is /, the full path name will begin with / // (the initial / and
the separator //). This is the same as /, which is what is desired. (This is
the general case of making a relative pathname into an absolute one by pre¬
fixing with / // instead of /.)
(2) If the trunk is /A, the result is /A/ / . . .; since non-leading sequences of
two or more slashes are treated as a single slash, this is equivalent to the
desired /A/....

(3) If the trunk is / /A, the implementation-defined semantics will apply.
(The multiple slash rule would apply.)

Application developers should avoid generating pathnames that start with
Implementations are strongly encouraged to avoid using this special

interpretation since a number of applications currently do not follow this prac¬
tice and may inadvertently generate

The term root directory is only defined in the standard relative to the process.
In some implementations, there may be no absolute root directory. The initiali¬
zation of the root directory of a process is implementation-defined.

B.2.5 Error Numbers. Checking the value of errno alone is not sufficient
to determine the existence or type of an error, since it is not required that a suc¬
cessful function call clear errno. The variable errno should only be examined
when the return value of a function indicates that the value of errno is meaning¬
ful. In that case, the function is required to set the variable to something other
than zero.

A successful function call may set the value of errno to zero, or to any other
value (except where specifically prohibited: see mkdir{) §B.5.4.1). But it is
meaningless to do so, since the value of errno is undefined except when the
description of a function explicitly states that it is set, and no function descrip¬
tion states that it should be set on a successful call. Most functions in most
implementations do not change errno on successful completion. Exceptions are
isatty() §4.7.2 and ptrace (). The latter is not in the standard, but is widely
implemented and clears errno when called. The value of errno is not defined
unless all signal handlers that use functions that could change errno save and
restore it.

The standard requires (in the Errors subsections of function descriptions)
certain error values to be set in certain conditions because many existing appli¬
cations depend on them. Some error numbers, such as [EFAULT], are entirely
implementation-defined and are noted as such in their description in Error
Numbers §2.5. This section otherwise allows wide latitude to the implementa¬
tion in handling error reporting.

All references to the term system call have been excised from the descriptions
of errors in this section.

Some of the Errors sections in the standard have two subsections. The first:

“If any of the following conditions occur, the foo{) function shall
return -1 and set errno to the corresponding value:”

206 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

could be called the “mandatory” section. The second:

“For each of the following conditions, when the condition is
detected, the foo{) function shall return -1 and set errno to the
corresponding value:”

has been known to the Working Group as the “optional” section. This latter sec¬
tion has evolved in meaning over time. Originally, it was only used for error
conditions that could not be detected by certain hardware configurations, such
as the [EFAULT] error, as described below. The section recently has also added
conditions associated with optional system behavior, such as job control errors.

Following each one-word symbolic name for an error, there is a one-line tag,
which is followed by a description of the error. The one-line tag is merely a
mnemonic or historical referent and is not part of the specification of the error.
Many programs print these tags on the standard error stream (often by using
the C Standard perror () function) when the corresponding errors are detected,
but the standard does not require this action.

[EFAULT] Most historical implementations do not catch an error and set
errno when a bad address is given to the functions wait{) §3.2.1,
time() §4.5.1, or times{) §4.5.2. Some implementations cannot
reliably detect a bad address. And most systems that detect bad
addresses will do so only for a system call §B.2.3, not for a
library routine §B.2.3.

[EINTR] The standard prohibits conforming implementations from res¬
tarting interrupted system calls. However, it does not require
that [EINTR] be returned when another legitimate value may be
substituted, e.g., a partial transfer count when read() or write0

are interrupted. This is only given when the signal catching
function returns normally as opposed to returns by mechanisms
like longjmp () or siglongjmp ().

[ENOMEM] The term main memory §B.2.3 has been eliminated from his¬
torical versions of this description as being implementation-
defined.

[ENOTTY] The symbolic name for this error is derived from a time when
device control was done by ioctl{) §B.7 and that operation was
only permitted on a terminal interface. The term “TTY” is
derived from teletypewriter, the devices to which this error ori¬
ginally applied.

[EPIPE] This condition normally generates the signal SIGPIPE; the error
is returned if the signal does not terminate the process.

[EROFS] In historical implementations, attempting to unlink () or
rmdir () a mount point would generate an [EBUSY] error. An
implementation could be envisioned where such an operation
could be performed without error. In this case, if either the
directory entry or the actual data structures reside on a read¬
only file system, [EROFS] is the appropriate error to generate.
(For example, changing the link count of a file on a read-only
file system could not be done, as is required by unlink (), and

B.2 Definitions and General Requirements. 207

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

thus an error should be reported.)
Two error numbers, [EDOM] and [ERANGE], were added to this section pri¬

marily for consistency with the C Standard.

B.2.6 Primitive System Data Types. Depending on which draft is con¬
sulted, a requirement that additional types defined in this section end in “_t”
may or may not have been present. The issue of namespace pollution (see
POSIX Symbols §B.2.8.2) decided this in favor of requiring that “_t” be used. It
is difficult to define a type in one header file and use it in another, where that
type is not one defined by this standard, without adding symbols to the
namespace of the program. To allow implementors to provide their own types,
programs which use <sys/types.h> are required by this standard to avoid sym¬
bols ending in “_t”, which permits the implementor to provide additional types.
Because a major use of types is in the definition of structure members, which
can (and in many cases must) be added to the structures defined in this stan¬
dard, the need for additional types is compelling.

The types such as ushort and ulong, which are in common usage, are not
defined in this standard (although ushortj would be permitted as an extension).
They can be added to <sys/types.h> using a feature test macro (see POSIX
Symbols §2.8.2). A suggested symbol for these is _SYSIII. Similarly the types
like u_short would probably be best controlled by _BSD.

Some of these symbols may appear in other headers; see C Language Defin¬
itions §2.8.

dev_t This type may be made large enough to accommodate host-
locality considerations of networked systems.

This type must be arithmetic. Earlier drafts allowed this to
be non-arithmetic (such as a structure) and provided a same-

file () function for comparison.
gidjt Some implementations had separated gid_t from uid_t before

this standard was completed. It would be a burden for them to
coalesce them when it was unnecessary. Additionally, it is quite
possible that user IDs might be different than group IDs because
the user ID might wish to span a heterogeneous network, where
the group ID might not.

For current implementations, the cost of having a separate
gidjt will be only lexical.

modej This type was chosen so that implementations could choose the
appropriate integral type, and for compatibility with the
C Standard. 4.3BSD uses unsigned short and the SVID uses
ushort, which is the same thing. Historically, only the low-
order sixteen bits are significant.

nlinkj This type was introduced in place of short for stjilink (see
<sys/stat.h> §5.6.1) in response to an objection that short was
too small.

offj This type is used only in Iseek() §6.5.3, fcntl{) §6.5.2, and
<sys/stat.h> §5.6.1. Many implementations would have diffi¬
culties if it were defined as anything other than long. The

208 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

pid_t

uidjt

Working Group realizes that requiring an integral type limits
the capabilities of lseek() to four gigabytes. See IreadO §B.6.4.
Also, the C Standard supplies routines that use larger types:
see fgetposO §B.6.5.3 and fsetposO §B.6.5.3.
There has been a lot of debate about the inclusion of this sym¬
bol. Much of it is tied to the issue of the representation of a pro¬
cess ID as a number. From the point of view of a portable appli¬
cation, process IDs should be “magic cookies” that are produced
by calls such as fork(), and used by calls such as waitpidO or
killO, and which are not otherwise analyzed. (Except that sign
is used as a flag for certain operations.)

The concept of {PID_MAX} interacted with this. Treating PIDs
as an opaque type both removes the requirement for {PID_MAX}
and allows system to be more flexible in providing PIDs that
span a large range of values, or a small one.

Since in the general case the values in uidjt, gidj, and pidj

will just be numbers, and will be potentially both large in mag¬
nitude and sparse, applications which are based on arrays of
objects of this type are unlikely to be fully portable in any case.
Solutions which treat them as magic cookies will be portable.

{CHILD_MAX} precludes the possibility of a “toy” implementa¬
tion where there would only be one process.
Before the addition of this type, the data types used to
represent these values varied throughout the standard. The
<sys/stat.h> §5.6.1 header defined these values as type short,
the <passwd.h> file (now <pwd.h> §9.2.2 and <grp.h> §9.2.1)
used an int and getuid() §4.2.1 returned an int. In response to
a strong objection to the inconsistent definitions, the Working
Group decided to switch all the types to uidj.

In practice, those historical implementations that use varying
types of this sort can typedef uidj to short with no serious
consequences.

The main problem associated with this change is a concern
about object compatibility after structure size changes. Since
most implementations will define uidj as a short, the only sub¬
stantive change will be a reduction in the size of the passwd

§9.2.2 structure. Consequently, implementations with an over¬
riding concern for object compatibility can pad the structure
back to its current size. For that reason, this problem wasn’t
considered critical enough to warrant the addition of a separate
type to the standard.

The types uidj and gidj are magic cookies. There is no
{UID_MAX} defined by the standard, and no structure imposed
on uidj and gidj other than that they be positive arithmetic
types. (In fact, they could be unsigned char.) There is no max¬
imum or minimum specified for the number of distinct user or
group IDs.

B.2 Definitions and General Requirements. 209

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.2.7 Environment Description.
LC_* The description of the environment variable names starting

with the characters “LC_” acknowledges the fact that the inter¬
faces presented in the draft are not complete and may be
extended as new international functionality is required. In the
X3J11 draft proposal, names preceded by “LC_” are reserved in
the name space for future categories.

To avoid name clashes, new categories and environments
variables will be divided into two classifications:
implementation-independent and implementation-dependent.

Implementation-independent names will have the following
format:

LiC_NAME

where NAME is the name of the new category and environment
variable. Capital letters must be used for implementation-
independent names.

Implementation-dependent names must be in lowercase
letter, as below:

'LCjiame

PATH Many historical implementations of the Bourne shell do not
interpret a trailing colon to represent the current working
directory, and are thus non-conforming. The C shell and the
Korn shell conform to the standard on this point. The usual
name of dot §2.3 may also be used to refer to the current work¬
ing directory.

TZ See Extensions to Time Functions §8.1.1 for an explanation
of the format.

LOGNAME 4.3BSD uses the environment variable USER for this purpose.
In most implementations, the value of such a variable is easily
forged, so security-critical applications should rely on other
means of determining user identity. LOGNAME is required to
be constructed from the portable filename character set for rea¬
sons of interchange. No diagnostic condition is specified for
violating this rule, and no requirement for enforcement exists.
The intent of the requirement is that if extended characters are
used, the “guarantee” of portability implied by a standard is
voided. (See also portable filename character set §B.2.3.)

The following environment variables have been used historically as indicated.
However, such use was either so variant as to not be amenable to standardiza¬
tion, or to be relevant only to other facilities not specified in this standard, and
they have therefore been excluded. They may or may not be included in future
POSIX standards. Until then, writers of conforming applications should be
aware that details of the use of these variables are likely to vary in different
contexts.

210 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

IFS Characters used as field separators.
MAIL System mailer information.
PS1 Prompting string for interactive programs.
PS2 Prompting string for interactive programs.
SHELL The shell command interpreter name.

B.2.8 C Language Definitions. The construct <name.h> for headers is
also taken from the C Standard.

B.2.8.1 Symbols From The C Standard. The reservation of identifiers
is taken directly from the C Standard. It is quoted because it needs to be part of
this standard, and because by quoting, if the C Standard does change, the
requirement here will not change, which is intended. The reservation of other
namespaces is particularly for <ermo.h>.

These identifiers may be used by implementations, particularly for feature
test macros. Care needs to be taken to assure that implementations do not use
feature test macro names that might be reasonably used by a standard.

Headers being included more than once is a reasonably common practice, and
should be carried forward from the C Standard. More significantly, having
definitions in more than one header is explicitly permitted. Where the potential
declaration is ‘"benign” (the same definition twice) the declaration can be
repeated, if that is permitted by the compiler. (This is usually true of macros,
for example.) In those situations where a repetition is not benign (e.g. typedefs),
conditional compilation must be used. The situation actually occurs both within
the C Standard and within this standard: timej should be in <sys/types.h>,
and the C Standard mandates that it be in <time.h>. This standard requires
using <sys/types.h> with <time.h> because of the common usage environment.

B.2.8.2 POSIX Symbols. This section addresses the issue of “namespace
pollution.” The C Standard requires that the namespace beyond what it
reserves not be altered except by explicit action of the application writer. This
section defines the actions to add the POSIX symbols for those headers where
both the C Standard and POSIX need to define symbols. Where there are non¬
overlapping uses of headers, of course there is no problem.

When headers are used to provide symbols, there is a potential for introducing
symbols that the application writer cannot predict. Ideally, each header should
only contain one set of symbols, but this is not practical for historical reasons.
Thus the concept of feature test macros is included. This is done in a general
way because it is expected that future additions to this standard and other
related standards will have this same problem. (Future standards not con¬
strained by historical practice should avoid the problem by using new header
files rather than using ones already extant.)

This idea is split into two sections: 2.8.2.1 covers the case of the C Standard
conformant systems, where the requirements of the C Standard are that unless
specifically requested you will not see any other symbols, and “Common Usage,”
where the default set of symbols is not well controlled, and backwards compati¬
bility is an issue.

The tricky part is common usage. In the C Standard case, each feature test
macro simply adds to the possible symbols. In common usage, _POSIX_SOURCE

B.2 Definitions and General Requirements. 211

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

is a special case in that it reduces the set to the sum of the C Standard and
POSIX. (It is up to X3J11 to determine if they want a similar macro to limit the
features to just the C Standard; the wording permits this because under those
circumstances _POSEX_SOURCE would be just another ordinary feature test
macro. The only order requirement is “before headers.”)

If _POSIX_SOURCE is not defined in a common usage environment, the user
presumably gets the same results as in previous releases. Some applications
may today be conformant without change, so they would continue to compile as
long as common usage is provided. When the C Standard is the default they
will have to change (unless they are already C Standard conformant), but this
can be done gradually.

Note that the net result of defining _POSIX_SOURCE at the beginning of a pro¬
gram is in either case the same: you won’t get implementation defined symbols
unless you ask for them. (But if you don’t use _POSEX_SOURCE you may or may
not; you get the implementation default, which is probably backwards compati¬
ble.)

Because members of structures and unions are a limited namespace, it is not
an issue of namespace pollution for an implementor to add fields to a structure
or union, and that special case is excepted.

There is also a special case for names of predefined forms. This is to permit
adding symbols (typedefs) of the form xxx_t to <sys/types.h>, which can be used
by structures or unions which appear in other header files. It is extremely diffi¬
cult to have these types appear only in the context where they are needed (for
example, in the extra fields of a stat or dir structure) without this exception.

Lastly, the standard is silent about whether additional symbols can be defined
in headers, as long as they are under control of _POSIX_SOURCE, with the
exception discussed above. This permits implementors to make a best judge¬
ment decision on such issues.

There are several common environments available today where a feature test
macro would be useful to applications programmers during the transition to
standard conforming environments from certain common historical environ¬
ments. The following, derived from common porting bases and “pseudo¬
standards,” are suggested. (The “owners” of these various bases are generally
fairly clear, and if these symbols are inappropriate or inaccurate they could sug¬
gest others, possibly to be included in later editions of this document.)

Symbol

_V7
_BSD
_BSD4_2
_BSD4_3
_SYSIII
_SYSV
_SYSV3
_XPGrc
_USR_GROUP

Description

Version 7
General BSD systems.
4.2BSD
4.3BSD
AT&T System III
AT&T System V.l V.2
AT&T System V.3
X/OPEN Portability Guide, Issue n

The 1984 /usr/group standard.

212 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

(Only symbols that are actually in the porting base or pseudo-standard should
be enabled by these symbols.)

Feature test macros for implementation extensions will also probably be
required. Quite a few of these are traditionally available, but are in violation of
the intent of namespace pollution control. These can be made conforming sim¬
ply by prefixing them with an underscore. Symbols beginning with “_POSEX” are
strongly discouraged, as they will probably be used by later revisions of this
standard.

The environment for compilation has traditionally been fairly portable in his¬
torical systems, but during the transition to the C Standard there will be confu¬
sion about how to specify that a C Standard compiler is expected, as considera¬
tions of backwards compatibility will constrain many implementors from provid¬
ing a conformant environment replacing the traditional one. This concern has
more to do with the issues of namespace than with the syntax of the language
accepted, which is highly compatible.

For systems which are sufficiently similar to traditional UNIX systems for this
to make sense (e.g. those that will probably conform to P1003.2), it is suggested
that if a compilation line of the form

cc -D_STDH_. . .

is provided, that the system provide an environment that is conformant with the
C Standard, at least with respect to namespace. (It is not expected that this will
be required in the future or that it will be formally standardized. It is suggested
as a convention during the transition.)

It was decided to use feature test macros, rather than the inclusion of a
header, both because <unistd.h> was already in use and would itself have this
problem, and because the underlying mechanism would probably have been this
anyway, but in a less flexible fashion.

The standard requires that headers be included in all cases, although it is not
directly clear from the text at this point in the standard. If a function doesn’t
need any special types, then it must be declared in <unistd.h>, as stated here.
If it does require something special, then it has an associated header, and the
program will not compile without that header.

B.2.8.3 Headers and Function Prototypes.

B.2.9 Numerical Limits. This section has been completely rewritten since
the Trial Use Standard, in order to clarify the scope and mutability of several
classes of limits.

B.2.9.1 C Language Limits. See also C Language Definitions §2.8
and POSIX and the C Standard §B.1.4.

{CHAR_MIN}
It is possible to tell if the implementation supports native char¬
acter comparison as signed or unsigned by comparing this limit
to zero.

{WORD.BIT}
This limit has been omitted, as it is not referenced elsewhere in
POSEX.

B.2 Definitions and General Requirements. 213

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

No limits are given in <limits.h> for floating point values because none of the
functions in the standard proper use floating point values and all the functions
that do that are imported from the C Standard by Referenced C Language
Routines §8.1 defined in the C Standard, as are the limits that apply to the
floating point values associated with them.

Though limits to the addresses to system calls were proposed, it is not clear
how to implement them for the range of systems being considered and, lacking a
complete proposal, the Working Group determined not to attempt this at this
time. Limits regarding hardware register characteristics were similarly pro¬
posed and not attempted.

B.2.9.2 Minimum Values. There has been a lot of confusion about the
minimum maxima, and when that is understood there is still a concern about
providing ways to allocate storage based on the symbols. This is particularly
true for those in Run-Time Invariant Values (Possibly Indeterminate)
§2.9.4 where an indeterminate value will leave the programmer with no symbol
to fall back upon.

By providing explicit symbols for the minima (from the implementor’s point of
view, or maxima from the the application’s point of view) this helps clear up a
lot of possible confusion. Symbols are still provided for the actual value, and it
is expected that many applications will take advantage of the larger values, but
they need not do so unless it is to their advantage. Where the values in this sec¬
tion are adequate for the application, it should use them. These are given sym¬
bolically both because it makes the standard easier to understand and because
the values of these symbols could change between revisions of the standard.
Arguments to “good programming practice” also apply.

B.2.9.3 Run-Time Increasable Values. The heading of the rightmost
column of the table is given as “Minimum Value” rather than “Value” in order to
emphasize that the numbers given in that column are minimal for the actual
values a specific implementation is permitted to define in its <limits.h>. The
values in the actual <limits.h> define, in turn, the maximum amount of a given
resource that a Conforming POSIX Application can depend on finding when
translated to execute on that implementation. A Conforming POSIX Application
Using Extensions must function correctly even if the value given in <limits.h>
is the minimum that is specified in the standard. (The application may still be
written so that it performs more efficiently when a larger value is found in
<limits.h>.) A conforming implementation must provide at least as much of a
particular resource as that given by the value in the standard. An implementa¬
tion that cannot meet this requirement (a “toy implementation”) cannot be a
conforming implementation.

B.2.9.4 Run-time Invariant Values (Possibly Indeterminate).
{CHILD_MAX}

This name can be misleading. This limit applies to all processes
in the system with the same user ID, regardless of ancestry.

214 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

B.2.9.5 Pathname Variable Values.
{MAXJNPUT}

Since the only use of this limit is in relation to terminal input
queues, it mentions them specifically. This limit was originally
named {MAX_CHAR} in early drafts. Application writers should
use {MAX_INPUT} primarily as an indication of the number of
bytes that can be written a single unit by one Conforming
POSIX Application Using Extensions communicating with
another via a terminal device. It is not implied that input lines
received from terminal devices always contain {MAX_INPUT}
bytes or fewer: an application that attempts to read more than
{MAX_INPUT} bytes from a terminal may receive more than
{MAXJNPUT} bytes.

It is not obvious that {MAXJNPUT} is of direct value to the
application writer. The existence of such a value (whatever it
may be) is directly of use in understanding how the tty driver
works (particularly with respect to flow control and dropped
characters). The value can be determined by finding out when
flow control takes effect (see the description of EKOFF in Input
Modes §7.1.2.2).

Understanding that the limit exists and knowing its magni¬
tude is important to making certain classes of applications work
correctly. It seems unlikely that it would be used in an applica¬
tion, but its presence makes the standard clearer.

{PATH.MAX}
A Conforming POSIX Application or Conforming POSIX Applica¬
tion Using Extensions that, for example, compiles to use dif¬
ferent algorithms depending on the value of {PATH_MAX} should
use code such as:

#if defined (path_max) && path_max < 512

#else

#if defined (path_max) /* path_max >= 512 */

#else /* path_max indeterminate */

#endif

#endif

This is because the value tends to be very large or indeter¬
minate on most historical implementations (it is arbitrarily
large on System V). On such systems there is no way to quan¬
tify the limit, and it seems counter-productive to include an
artificially small fixed value in <limits.h> in such cases.

B.2 Definitions and General Requirements. 215

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.2.10 Symbolic Constants.
B.2.10.1 Symbolic Constants for the access () Function.
B.2.10.2 Symbolic Constants for the Iseek() Function.
B.2.10.3 Compile-Time Symbolic Constants for Portability Specifi¬

cations. Related material appeared in an appendix of the Trial Use Standard.
The purpose there was to allow an application developer to have a chance to
determine whether a given application would run (or run well) on a given imple¬
mentation. To this purpose has been added that of simplifying development of
verification suites (see Verification Testing §A.2.4) for the standard. The con¬
stants given here were originally proposed for a separate file, <posix.h>, but
the Working Group decided that they should appear in <unistd.h> along with
other symbolic constants.

B.2.10.4 Execution-Time Symbolic Constants for Portability
Specifications. Without the addition of {_POSIX_NO_TRUNC} and
{_PC_NO_TRUNC} to this list, the standard says nothing about the effect of a
pathname component longer than {NAME_MAX}. There are only two effects in
common use in implementations: truncation, or an error. It is desirable to limit
allowable behavior to these two cases. It is also desirable to permit applications
to determine what an implementation’s behavior is, because services that are
available with one behavior may be impractical to provide with the other. How¬
ever, since the behavior may vary from one file system to another, it may be
necessary to use pathconfi) to resolve it.

B.3 Process Primitives. The Working Group considered enumerating all
characteristics of a process that the standard defines, and describing each func¬
tion in terms of its effects on those characteristics, rather than English text.
This is quite different from any known descriptions of existing implementations,
and it was not certain that this could be done adequately and completely enough
to produce a usable standard. Providing such descriptions in addition to the
text was also considered. This was not done because it would provide at best
two redundant descriptions, and more likely two descriptions with subtle incon¬
sistencies.

B.3.1 Process Creation and Execution. Running a new program takes
two steps. First the existing process (the parent) calls the fork() function, pro¬
ducing a new process (the child) which is a copy of itself. One of these processes
(normally, but not necessarily, the child) then calls one of the exec functions to
overlay itself with a copy of the new process image.

If the new program is to be run synchronously (the parent suspends execution
until the child completes), the parent process then uses either the waitO or
waitpid() §3.2.1 function. If the new program is to be run asynchronously, it
does not suffice to simply omit the wait{) or waitpid () call, because after the
child terminates it continues to hold some resources until it is waited for. A
common way to produce (“spawn”) a descendant process that does not need to be
waited on is to fork{) to produce a child and wait{) on the child. The child
fork()s again to produce a grandchild. The child then exits and the parent’s
wait() returns. The grandchild is thus disinherited by its grandparent.

216 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

A simpler method (from the programmer’s point of view) of spawning is to do

system("something &") ;

However, this depends on features of a process (the shell) that are outside the
scope of the present standard, although they are currently being addressed by
the 1003.2 Working Group.

B.3.1.1 Process Creation. Many existing implementations have timing
windows where a signal sent to a process group (e.g. an interactive SIGINT) just
prior to or during execution of fork () is delivered to the parent following the
fork() but not the child, because the forki) code clears the child’s set of pending
signals. It is not the intention of this standard to require, or even permit, this
behavior. However, it is pragmatic to expect that problems of this nature may
continue to exist in implementations that appear to conform to the standard and
pass available verification suites. The Trial Use Standard mentioned this
behavior in a Note that was not intended to be part of the standard, but gave
the appearance of permitting the behavior; this Note has been removed. This
behavior is only a consequence of the implementation failing to make the inter¬
val between signal generation and delivery totally invisible. From the
application’s perspective, a forki) call should appear atomic. A signal that is
generated prior to the forki) should be delivered prior to the forki). A signal
sent to the process group after the forki) should be delivered to both parent and
child. The implementation might actually initialize internal data structures
corresponding to the child’s set of pending signals to include signals sent to the
process group during the forki). Since the forki) call can be considered as
atomic from the application’s perspective, from that view the set would be ini¬
tialized as empty and such signals would have arrived after the forki). See also
Signal Generation and Delivery §B.3.3.1.2.

One approach that has been suggested to address the problem of signal inher¬
itance across forki) is to add an [EINTR] error which would be returned wdien a
signal is detected during the call. While this is preferable to losing signals, it
was not considered as good a fix as possible. Although it is not recommended for
this purpose, such an error would be an allowable extension for an implementa¬
tion.

The [ENOMEM] error value is reserved for those implementations that detect
and distinguish such a condition. This condition occurs when an implementa¬
tion detects that there is not enough memory to create the process. This is
intended to be returned when [EAGAIN] in not appropriate because there can
never be enough memory (either primary or secondary storage) to perform the
operation. Because forki) duplicates an existing process, this must be a condi¬
tion where there is sufficient memory for one such process, but not for two.
Many existing implementations actually return [ENOMEM] due to temporary
lack of memory, a case that is not generally distinct from [EAGAIN] from the
perspective of a portable application.

Part of the reason for including the optional error [ENOMEM] is because the
SVID specifies it and it should be reserved for the error condition specified there.
The condition is not applicable on many implementations.

B.3 Process Primitives. 217

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.3.1.2 Execute a File. The use of ellipses (...) in the Synopsis entries
for execlO, execleO, and execlp () is not intended to be strict C language syntax,
but to represent a concept that cannot be expressed fully in C.

The Trial Use Standard required that the value of argc passed to main{) be
“one or greater.” This was driven by the same requirement in drafts of the
C Standard. In fact, traditional implementations have passed a value of zero
when no arguments are supplied to the caller of the exec functions. This
requirement was removed from the C Standard and subsequently removed from
this standard as well. Note however that the wording of this standard, in par¬
ticular the use of the word “should,” requires a Strictly Conforming POSIX
Application (see Language-Dependent Services for the C Programming
Language §2.2.3) to pass at least one argument to the exec function, thus
guaranteeing than argc be one or greater when invoked by such an application.
In fact this is good practice, since many existing applications reference argv [0]
without first checking the value of argc.

Note that the requirement on a Strictly Conforming POSIX Application also
states that the value passed as the first argument be a filename associated with
the process being started. Although some existing applications pass a path¬
name rather than a filename in some circumstances, a filename is more gen¬
erally useful, since the common usage of argv [0] is in printing diagnostics. In
some cases the filename passed is not the actual filename of the file; for example
many implementations of the login utility use a convention of prefixing a
hyphen (-) to the actual filename, which indicates to the command interpreter
being invoked that it is a “login shell.”

Some systems can exec shell scripts. This functionality is outside the scope of
this standard, since it requires standardization of the command interpreter
language of the script and/or where to find a command interpreter. These fall in
the domain of the P1003.2 standard. However, it is important that this stan¬
dard neither require nor preclude any reasonable implementation of this
behavior. In particular, the description of the [ENOEXEC] error is intended to
permit implementations discretion on whether to give this error for shell
scripts.

One common existing implementation is that the excel(), execvO, execleO, and
execve () functions return an [ENOEXEC] error for any file not recognizable as an
executable, including a shell script. When the execlp 0 and execvp () functions
encounter such a file, they assume the file to be a shell script and invoke a
known command interpreter to interpret such files. These implementations of
execvp 0 and execlp 0 only give the [ENOEXEC] error in the rare case of a prob¬
lem with the command interpreter’s executable file. Because of these imple¬
mentations the [ENOEXEC] error is not mentioned for execlp 0 or execvp 0,

although implementations can still give it.
Another way that some existing implementations handle shell scripts is by

recognizing the first two bytes of the file as ASCII # ! and using the remainder
of the first line of the file as the name of the command interpreter to execute.

Some implementations provide a third argument to mainO called envp. This
is defined as a pointer to the environment. The C Standard specifies mainO to
be invoked with two arguments, so implementations must support applications

218 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

written this way. Since this standard defines the global variable environ, which
is also provided by existing implementations and can be used anywhere envp

could be used, there is no functional need for the envp argument. Furthermore,
application writers are usually better off using the getenv() function than
accessing the environment directly via either envp or environ. Implementations
are required to support the two-argument calling sequence, but this does not
prohibit an implementation from supporting envp as an optional, third argu¬
ment.

The standard specifies that signals set to SIG_IGN remain set to SIG_IGN, and
that the process signal mask be unchanged across an exec. This is consistent
with traditional implementations, and it permits some useful functionality, such
as the no hup command. However, it should be noted that many existing appli¬
cations wrongly assume that they start with certain signals set to the default
action and/or unblocked. In particular, applications written with a simpler sig¬
nal model that does not include blocking of signals, such as the one in the
C Standard, may not behave properly if invoked with some signals blocked.
Therefore it is best not to block or ignore signals across exec s without explicit
reason to do so, and especially not to block signals across execs of arbitrary not
closely co-operating) programs.

If {_POSEX_S AVED_IDS} is defined, the exec functions always save the value of
the effective user ID and effective group ED of the process at the completion of
the exec, whether or not the set-user-ED or the set-group-ED bit of the process
image file is set.

[E2BIG] The limit {ARG_MAX} applies not just to the size of the argu¬
ment list, but to the sum of that and the size of the environment
fist.

[EFAULT] Some existing systems return [EFAULT] rather than
[ENOEXEC] when the new process image file is corrupted. They
are non-conforming.

[ENAMETOOLONG]
Since the file pathname may be constructed by taking elements
in the PATH variable and putting them together with the
filename, the [ENAMETOOLONG] condition could also be
reached tins way.

[ETXTBSY] The error [ETXTBSY] was considered too implementation-
dependent to include. System V returns this error when the
executable file is currently open for writing by some process.
The standard neither requires nor prohibits this behavior.

Other systems (such as System V) may return [EENTR] from exec. This is not
addressed by the standard, but implementations may have a window between
the call to exec and the time that a signal could cause one of the exec calls to
return with [EENTR].

B.3.2 Process Termination. The Trial Use Standard drew a different dis¬
tinction between normal and abnormal process termination. Abnormal termina¬
tion was caused only by certain signals, and resulted in implementation-defined
“actions,” as discussed below. Subsequent drafts of the standard distinguished

B.3 Process Primitives. 219

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

three types of termination: normal termination (as in the current standard),
“simple abnormal termination,” and “abnormal termination with actions.”
Again the distinction between the two types of abnormal termination was that
they were caused by different signals and that implementation-defined actions
would result in the latter case. Given that these actions were completely
implementation-defined, the standard was only saying when they could occur
and how their occurrence could be detected, but not what they were. This was
of little or no use to portable applications, and thus the distinction was dropped
from the standard.

The implementation-defined actions usually include, in most historical imple¬
mentations, the creation of a file named core in the current working directory
of the process. This file contains an image of the memory of the process,
together with descriptive information about the process, perhaps sufficient to
reconstruct the state of the process at the receipt of the signal.

There is a potential security problem in creating a core file if the process was
set-user-ID and the current user is not the owner of the program, if the process
was set-group-ID and none of the user’s groups match the group of the program,
or if the user does not have permission to write in the current directory. In this
situation, an implementation either should not create a core file or should
make it unreadable by the user.

Despite the silence of the standard on this feature, applications are advised
not to create files named core because of potential conflicts in many implemen¬
tations. Some historical implementations use a different name than core for
the file, such as by appending the process ID to the filename.

B.3.2.1 Wait for Process Termination. A call on the wait() or wait-

pid() function only returns status on an immediate child process of the calling
process, i.e., a child that was produced by a single fork() §3.1.1 call (perhaps fol¬
lowed by an exec §3.1.2 or other function calls) from the parent. If a child pro¬
duces grandchildren by further use of fork(), none of those grandchildren nor
any of their descendants will affect the behavior of a wait() from the original
parent process. Nothing in the standard prevents an implementation from pro¬
viding extensions that permit a process to get status from a grandchild or any
other process, but a process that does not use such extensions must be
guaranteed to see status from only its direct children.

The waitpid() function is provided for three reasons. One is to support job
control (see Signals §B.3.3). The second is to permit a non-blocking version of
the wait{) function. The third is to permit a library routine, such as system() or
pclose(), to wait for its children without interfering with other terminated chil¬
dren that have not been waited for.

The first two of these facilities are based on the wait3() function provided by
4.3BSD. The interface uses the options argument, which is identical to an argu¬
ment to wait3(). The WUNTRACED flag is used only in conjunction with job con¬
trol on systems supporting that option. Its name comes from 4.3BSD, and refers
to the fact that there are two types of stopped process in that implementation:
processes being traced via the ptrace () debugging facility, and (untraced)
processes stopped by job control signals. Since ptrace () is not part of this stan¬
dard, only the second type is relevant. The working group chose to retain the

220 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

name WUNTRACED because its usage is the same, even though the name is not
intuitively meaningful in this context.

The third reason for the waitpid () function is to permit independent sections

of a process to spawn and wait for children without interfering with each other.

For example, consider the problem that the IEEE Std 1003.2 working group

addressed:

stream = popen ("/bin/true");

(void) system("sleep 100");

(void) pclose(stream);

On all traditional implementations, the final pclose () will fail to reap the wait

status of the popeni).

The status values are retrieved by macros rather than being given as specific

bit encodings as given in most historical implementations and thus expected by

existing programs. This was necessary to eliminate a limitation on the number

of signals an implementation can support that was inherent in the traditional

encodings. The standard does require that a status value of zero correspond to a

process calling _exit{0), as this is the most common encoding expected by exist¬

ing programs. Some of the macro names were adopted from 4.3BSD.

These macros syntactically operate on an arbitrary integer value. The

behavior is undefined unless that value is one stored by a successful call to

wait() or waitpid() in the location pointed to by the stat_loc argument. An ear¬

lier specification attempted to make this clearer by specifying each argument as

*stat_loc rather than statjoal. However, that did not follow the conventions of

other specifications in the standard or traditional usage. It also could have

implied that the argument to the macro must literally be *statJ,oc; in fact that

value can be stored or passed as an argument to other functions before being

interpreted by these macros.

The extension that affects wait () and waitpid () and is common in traditional

implementations is the ptrace() function. It is called by a child process and

causes that child to stop and return status that appears identical to the status

indicated by WIFSTOPPEDO. The status of ptraced children is traditionally

returned regardless of the WUNTRACED flag (or by the wait{) function). Most

applications do not need to concern themselves with such extensions, because

they have control over what extensions they or their children use. However,

applications, such as command interpreters, that invoke arbitrary processes

may see this behavior when those arbitrary processes misuse such extensions.

Implementations that support core file creation or other implementation-

defined actions on termination of some processes traditionally provide a bit in

the status returned by wait() to indicate that such actions have occurred.

B.3.2.2 Terminate a Process. Most C language programs should use

the exit() function rather than _exit{).

The function _exit{) is defined here instead of exit{) because the C Standard

defines the latter to have certain characteristics that are beyond the scope of the

present standard, specifically the flushing of buffers on open files and the use of

atexit(). See The C Language and X3J11 §B.1.2.4. There are several public

domain implementations of atexit () which may be of use to interface

B.3 Process Primitives. 221

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

implementors who wish to incorporate it.

It is important that the consequences of process termination as described in

this section occur regardless of whether the process called _exit{) (perhaps

indirectly through exit ()) or instead was terminated due to a signal or for some

other reason. Note that in the specific case of exit () this means that the status

argument to exit{) is treated the same as the status argument to _exit(). See

also Process Termination §B.3.2.

A language other than C may have other termination primitives than the C

language exit () function, and programs written in such a language should use

its native termination primitives, but those should have as part of their function

the behavior of _exit() as described in this section. Implementations in

languages other than C are outside the scope of the present standard, however.

As required by X3J11, using return from main() §3.1.2 is equivalent to cal¬

ling exit() with the same argument value. Also, reaching the end of the main{)

function is equivalent to using exit{) with an unspecified value.

A value of zero (or EXIT_SUCCESS, which is required to be zero in Refer¬

enced C Language Routines §8.1) for the argument status conventionally

indicates successful termination. This corresponds to the specification for exit{)

in the C Standard. The convention is followed by utilities such as make and

various shells, which interpret a zero status from a child process as success. For

this reason, applications should not call exit{0) or _exit(0) when they terminate

unsuccessfully, for example in signal-catching functions.

Historically, the implementation-dependent process that inherits children

whose parents have terminated without waiting on them is called init, and

has process ID 1.

The sending of a SIGHUP to the foreground process group when a controlling

process terminates corresponds to somewhat different existing implementa¬

tions. In System V the kernel sends a SIGHUP on termination of (essentially) a

controlling process. In 4.2BSD, the kernel does not send SIGHUP in a case like

this, but the termination of a controlling process is usually noticed by a system

daemon which arranges to send a SIGHUP to the foreground process group with

the vhangup () function. However, in 4.2BSD, due to the behavior of shells that

support job control, the controlling process is usually a shell with no other

processes in its process group. Thus a change to make _exit{) behave this way

in such systems should not cause problems with existing applications.

The termination of a process may cause a process group to become orphaned

in either of two ways. The connection of a process group to its parent(s) outside

of the group depends on both the parents and their children. Thus, a process

group may be orphaned by the termination of the last connecting parent process

outside of the group or by the termination of the last direct descendant of the

parent process(es). In either case, if the termination of a process causes a pro¬

cess group to become orphaned, processes within the group are disconnected

from their job control shell, which no longer has any information on the

existence of the process group. Stopped processes within the group would lan¬

guish forever. In order to avoid this problem, newly-orphaned process groups

that contain stopped processes are sent a SIGHUP signal and a SIGCONT signal

to indicate that they have been disconnected from their session. The SIGHUP

222 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

signal causes the process group members to terminate unless they are catching

or ignoring SIGHUP. Under most circumstances, all of the members of the pro¬

cess group are stopped if any of them are stopped.

The action of sending a SIGHUP and a SIGCONT signal to members of a

newly-orphaned process group is similar to the action of 4.2BSD, which sends

SIGHUP and SIGCONT to each stopped child of an exiting process. If such chil¬

dren exit in response to the SIGHUP, any additional descendants receive similar

treatment at that time. In POSEX, the signals will be sent to the entire process

group at the same time. Also, in POSIX but not in 4.2BSD, stopped processes

may be orphaned but may be members of a process group that is not orphaned;

therefore, the action taken at _exit() must consider processes other than child

processes.

B.3.3 Signals. Signals, as defined in the Trial Use Standard, and in Ver¬

sion 7, System III, the 1984 /usr/group Standard, and System V (except very

recent releases), have shortcomings which make them unreliable for many

application uses. Several objections were voiced against the Trial Use Standard

because of this. Therefore a new signal mechanism, based very closely on the

one of 4.2BSD and 4.3BSD, was added to the standard. With the exception of one

feature (see item 4 below and also sigpending() §3.3.6), it is possible to imple¬

ment the POSIX interface as a simple library veneer on top of 4.3BSD. There are

also a few minor aspects of the underlying 4.3BSD implementation (as opposed

to the interface) that would also need to change to conform to the standard.

The major differences from the BSD mechanism are:

(1) Signal mask type. BSD uses the type int to represent a signal mask,

thus limiting the number of signals to the number of bits in an int (typically

thirty-two). The new standard instead uses a defined type for signal masks.

Because of this change, the interface is significantly different than in BSD

implementations, although the functionality and potentially the implementa¬

tion are very similar.

(2) Restarting system calls. Unlike all previous historical implementa¬

tions, 4.2BSD restarts some interrupted system calls rather than returning

an error with errno set to [EINTR] after the signal-catching function returns.

This change caused problems for some existing application code. 4.3BSD and

other systems derived from 4.2BSD allow the application to choose whether

system calls are to be restarted. The standard (in sigactioni) §3.3.4) does not

require restart of functions, because it was not clear that the semantics of

system call restart in any existing implementation were useful enough to be

of value in a standard. Implementors are free to add such mechanisms as

extensions.

(3) Signal stacks. The 4.2BSD mechanism includes a function sigstack ().

The 4.3BSD mechanism includes this and a function sigreturn (). No

equivalent is included in the standard because these functions are not port¬

able, and no sufficiently portable and useful equivalent has been identified.

See also Non-local Jumps §8.4.

(4) Pending signals. The sigpending() §3.3.6 function is the sole new sig¬

nal operation introduced in the standard. It was requested by some

B.3 Process Primitives. 223

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

members of the Working Group and was seen as a simple and useful feature.

The Working Group considered making reliable signals optional. However,

the consensus was that this would hurt application portability, as a large per¬

centage of applications using signals can be hurt by the unreliable aspects of

traditional implementations of the signal () mechanism defined by the

C Standard. This unreliability stems from the fact that the signal action is reset

to SIG_DFL before the user’s signal-catching routine is entered. The C Standard

does not require this behavior, but does explicitly permit it, and most existing

implementations behave this way.

For example, an application that catches the SIGINT signal using signal ()

could be terminated with no chance to recover when two such signals arrive suf¬

ficiently close in time (e.g., when an impatient user types the INTR character

twice in a row on a busy system). Although the C Standard no longer requires

this unreliable behavior, many existing implementations, including System V,

will reset the signal action to SIG_DFL. For this reason, the Working Group

strongly recommends that the signal () function not be used by POSIX conform¬

ing applications. Implementations should also consider blocking signals during

the execution of the signal-catching function instead of resetting the action to

SIG_DFL, but backward compatibility considerations will most likely prevent

this from becoming universal.

Most traditional implementations do not queue signals, i.e., a process’s signal

handler is invoked once, even if the signal has been generated multiple times

before it is delivered. A notable exception to this is SIGCLD which, in System V,

is queued. The Working Group decided to neither require nor prohibit the

queueing of signals. See Signal Generation and Delivery §3.3.1.2. It is

expected that a future Realtime Extension to this standard (see Realtime

Extensions §A.2.5) will address the issue of reliable queueing of event notifica¬

tion.

B.3.3.1 Signal Concepts.

B.3.3.1.1 Signal Names. The restriction on the actual type used for

sigsetjt is intended to guarantee that these objects can always be assigned, have

their address taken, and be passed as parameters by value. It is not intended

that this type be a structure including pointers to other data structures, as that

could impact the portability of applications performing such operations. A rea¬

sonable implementation could be a structure containing an array of some

integer type.

The signals described in the document must have unique values so that they

may be named as parameters of case statements in the body of a C language

switch clause. However, implementation-defined signals may have values that

overlap with each other or with signals specified in this document. An example

of this is SIGABRT, which traditionally overlaps some other signal, such as

SIGIOT.

SIGKILL, SIGTERM, SIGUSR1, and SIGUSR2 are ordinarily generated only

through the explicit use of the kill{) function, although some implementations

generate SIGKILL under extraordinary circumstances. SIGTERM is traditionally

the default signal sent by the kill command.

224 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

The signals SIGBUS, SIGEMT, SIGIOT, SIGTRAP, and SIGSYS were omitted

from the standard because their behavior is implementation-dependent and

could not be adequately categorized. Conforming implementations may deliver

these signals, but must document the circumstances under which they are

delivered and note any restrictions concerning their delivery. The signals

SIGFPE, SIGILL, and SIGSEGV are similar in that they also generally result only

from programming errors. They were included in the standard because they do

indicate three relatively well categorized conditions. They are all defined by the

C Standard, and thus would have to be defined by any system with a

C Standard binding, even if not explicitly included in this standard.

There is very little if anything that a Conforming POSIX Application can do by

catching, ignoring, or masking any of the signals SIGILL, SIGTRAP, SIGIOT,

SIGEMT, SIGBUS, SIGSEGV, SIGSYS, or SIGFPE. They will generally be gen¬

erated by the system only in cases of programming errors. While it may be

desirable for some robust code (e.g., a library routine) to be able to detect and

recover from programming errors in other code, these signals are not nearly suf¬

ficient for that purpose. One portable use that does exist for these signals is

that a command interpreter can recognize them as the cause of a process’s ter¬

mination (with wait()) and print an appropriate message. The mnemonic tags

for these signals are derived from their PDP-11 origin.

The signals SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, and SIGCONT are pro¬

vided for job control and are unchanged from 4.2BSD. The signal SIGCHLD is

also typically used by job control shells to detect children which have terminated

or, as in 4.2BSD, stopped. See also Examine and Change Signal Action

§B.3.3.4.

Some implementations, including System V, have a signal named SIGCLD

which is similar to SIGCHLD in 4.2BSD. It is the intention of the standard to

permit implementations to have a single signal with both names. The standard

carefully specifies ways in which portable applications can avoid the semantic

differences between the two different implementations. The name SIGCHLD

was chosen for the standard because most current application usage of it can

remain unchanged in conforming applications. SIGCLD in System V has more

cases of semantics which the standard does not specify, and thus applications

using it are more likely to require changes in addition to the name change.

Some implementations that do not support job control may nonetheless imple¬

ment SIGCHLD. Similarly, such an implementation may choose to implement

SIGSTOP. Since the standard requires that symbolic names always be defined

(with the exception of certain names in <limits.h> §2.9 and <unistd.h> §2.10),

a portable method of determining, at run-time, whether an optional signal is

supported is to call the sigactioni) function with NULL act and oact arguments.

A successful return indicates that the signal is supported. Note that if sysconfi)

shows that job control is present, then all of the optional signals shall also be

supported.

The signals SIGUSR1 and SIGUSR2 are commonly used by applications for

notification of exceptional behavior and are described as “reserved as

application-defined” so that such use is not prohibited. Implementations should

not generate SIGUSR1 or SIGUSR2, except when explicitly requested by kill{)

B.3 Process Primitives. 225

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

§3.3.2. It is recommended that libraries not use these two signals, as such use

in libraries could interfere with their use by applications calling the libraries. If

such use is unavoidable it should be documented. It is prudent for non-portable

libraries to use non-standard signals to avoid conflicts with use of standard sig¬

nals by portable libraries.

The Trial Use Standard distinguished which signals do or don’t cause

“implementation-defined actions” as part of abnormal termination as their

default action on delivery. See Process Termination §B.3.2..

There is no portable way for an application to catch or ignore non-standard

signals. Some implementations define the range of signal numbers, so applica¬

tions can install signal catching functions for all of them. Unfortunately,

implementation-defined signals often cause problems when caught or ignored by

applications that do not understand the reason for the signal. While the desire

exists for an application to be more robust by handling all possible signals (even

those only generated by kill()), no existing mechanism was found to be suffi¬

ciently portable to include in the standard. The value of such a mechanism, if

included, would be diminished given that SIGKILL would still not be catchable.

B.3.3.1.2 Signal Generation and Delivery. The terms defined in

this section are not used consistently in documentation of existing systems.

Each signal can be considered to have a lifetime beginning with generation and

ending with delivery. The Working Group considered defining delivery to

exclude ignored signals, but the current definitions were chosen as more uni¬

form.

Implementations should deliver unblocked signals as soon after they are gen¬

erated as possible. However, it is difficult for the standard to make specific

requirements about this, beyond those in kill{) §3.3.2 and sigprocmaskO §3.3.5.

Even on systems with prompt delivery, scheduling of higher priority processes is

always likely to cause delays.

In general, the interval between the generation and delivery of unblocked sig¬

nals cannot be detected by an application. Thus, references to pending signals

generally apply to blocked, pending signals.

In the 4.3BSD system signals that are blocked and set to SIGJGN are dis¬

carded immediately upon generation. For a signal that is ignored as its default

action, if the action is SIG_DFL and the signal is blocked, a generated signal

remains pending. In the 4.1BSD system and in System V Release 3, two other

implementations that support a somewhat similar signal mechanism, all

ignored, blocked signals remain pending if generated. Because it is not nor¬

mally useful for an application to simultaneously ignore and block the same sig¬

nal, it was unnecessary for the standard to specify behavior that would invali¬

date any of the existing implementations.

There is one case in some existing implementations where an unblocked,

pending signal does not remain pending until it is delivered. In the System V

implementation of signal (), pending signals are discarded when the action is set

to SIG_DFL or a signal-catching routine (as well as to SIG_IGN). Except in the

case of setting SIGCHLD to SIG_DFL, implementations that do this do not con¬

form completely to the standard. Some earlier drafts of the standard explicitly

stated this, but these statements were redundant due to the requirement that

226 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

functions defined by the standard not change attributes of processes defined by

the standard except as explicitly stated (see Process Primitives §3).

The standard specifically states that the order in which multiple, simultane¬

ously pending signals are delivered is unspecified. This order has not been

explicitly specified in traditional implementations, but has remained quite con¬

sistent and been known to those familiar with the implementations. Thus there

have been cases where applications (usually system utilities) have been written

with explicit or implicit dependencies on this order. Implementors and people

porting existing applications may need to be aware of such dependencies.

When there are multiple pending signals that are not blocked, implementa¬

tions should arrange for the delivery of all signals at once if possible. Some

implementations stack calls to all pending signal-catching routines, making it

appear that each signal-catcher was interrupted by the next signal. In this

case, the implementation should ensure that this stacking of signals does not

violate the semantics of the signal masks established by sigaction (). Other

implementations process at most one signal when the operating system is

entered, with remaining signals saved for later delivery. Although this practice

is in widespread use, the Working Group did not wish to standardize, nor neces¬

sarily endorse, this behavior. In either case, implementations should attempt to

deliver signals associated with the current state of the process (e.g., SIGFPE)

before other signals if possible.

In 4.2BSD and 4.3BSD it is not permissible to ignore or explicitly block

SIGCONT. The reason is that, if blocking or ignoring this signal prevented it

from continuing a stopped process, such a process could never be continued

(only killed by SIGKILL). However, 4.2BSD and 4.3BSD do block SIGCONT dur¬

ing execution of its signal-catching function when it is caught, creating exactly

this problem. At one time the working group considered disallowing catching

SIGCONT as well as ignoring and blocking it, but this limitation led to objec¬

tions. The consensus was to require that SIGCONT always continue a stopped

process when generated. This removed the need to disallow ignoring or explicit

blocking of the signal; note that SIG_IGN and SIG_DFL are equivalent for

SIGCONT.

B.3.3.1.3 Signal Actions. Earlier drafts of the standard mentioned

SIGCONT as a second exception to the rule that signals are not delivered to

stopped processes until continued. Because the standard now specifies that

SIGCONT causes the stopped process to continue when it is generated, delivery

of SIGCONT is not prevented because a process is stopped, even without an

explicit exception to this rule.

Ignoring a signal by setting the action to SIG_IGN (or SIG_DFL for signals

whose default action is to ignore) is not the same as installing a signal-catching

function that simply returns. Invoking such a function will interrupt certain

system functions that block processes (e.g. wait(), sigsuspendO, pause (), read{),

write ()), while ignoring a signal has no such effect on the process.

Traditional implementations discard pending signals when the action is set to

SIG_IGN. However, they do not always do the same when the action is set to

SIG_DFL and the default action is to ignore the signal. The standard requires

this for the sake of consistency and also for completeness, since the only signal

B.3 Process Primitives. 227

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

this applies to is SIGCHLD and the standard disallows setting its action to

SIG_IGN.

The specification of the effects of SIG_IGN on SIGCHLD as implementation-

defined permits but does not require the System V effect of causing terminating

children to be ignored by wait() §3.2.1. Yet it permits SIGCHLD to be effectively

ignored in an implementation-independent manner by use of SIG_DFL.

Some implementations (System V, for example) assign different semantics for

SIGCLD depending on whether the action is set to SIG_IGN or SIG_DFL. Since

the standard requires that the default action for SIGCHLD be to ignore the sig¬

nal, applications should always set the action to SIG_DFL in order to avoid

SIGCHLD.

Some implementations (System V, for example) will deliver a SIGCLD signal

immediately when a process establishes a signal-catching function for SIGCLD

when that process has a child that has already terminated. Other implementa¬

tions, such as 4.3BSD, do not generate a new SIGCHLD signal in this way. In

general, a process should not attempt to alter the signal action for the SIGCHLD

signal while it has any outstanding children. However, it is not always possible

for a process to avoid this; for example shells sometimes start up processes in

pipelines with other processes from the pipeline as children. Processes that can¬

not ensure that they have no children when altering the signal action for

SIGCHLD thus need to be prepared for, but not depend on, generation of an

immediate SIGCHLD signal.

The default action of the stop signals (SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU)

is to stop a process that is executing. If a stop signal is delivered to a process

that is already stopped, it has no effect. In fact, if a stop signal is generated for

a stopped process whose signal mask blocks the signal, the signal will never be

delivered to the process, since the process must receive a SIGCONT, which dis¬

cards all pending stop signals, in order to continue executing.

The SIGCONT signal shall continue a stopped process, even if SIGCONT is

blocked (or ignored). However, if a signal-catching routine has been established

for SIGCONT, it will not be entered until SIGCONT is unblocked.

If a process in an orphaned process group stops, it is no longer under the con¬

trol of a job control shell and hence would not normally ever be continued.

Because of this, orphaned processes that receive terminal-related stop signals

(SIGTSTP, SIGTTIN, SIGTTOU, but not SIGSTOP) must not be allowed to stop.

The goal is to prevent stopped processes from languishing forever. (As SIGSTOP

is sent only via kill(), it is assumed that the process or user sending a SIGSTOP

can send a SIGCONT when desired.) Instead, the system must discard the stop

signal. As an extension, it may also deliver another signal in its place. 4.3BSD

sends a SIGKILL, which is effective, but probably too harsh, as SIGKILL is not

catchable. Another possible choice is SIGHUP. 4.3BSD also does this for

orphaned processes (processes whose parent has terminated) rather than

members of orphaned process groups; this is less desirable because job control

shells manage process groups. The standard also prevents SIGTTIN and

SIGTTOU signals from being generated for processes in orphaned process groups

as a direct result of activity on a terminal, preventing infinite loops when read{)

and write() calls generate signals that are discarded. (See Terminal Access

228 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Control §B.7.1.1.4.) The Working Group considered a similar restriction on the

generation of SIGTSTP, but that would be unnecessary and more difficult to

implement due to its asynchronous nature.

Although the standard requires that signal-catching functions be called with

only one argument, there is nothing to prevent conforming implementations

from extending the standard to pass additional arguments, as long as Strictly

Conforming POSIX Applications continue to compile and execute correctly. Most

traditional implementations do, in fact, pass additional, signal-specific argu¬

ments to certain signal-catching routines.

There was a proposal to change the declared type of the signal handler to:

void func (int sig, ...);

The usage of ellipses (“, ... ”) is C Standard syntax to indicate a variable

number of arguments. Its use was intended to allow the implementation to pass

additional information to the signal handler in a standard manner.

Unfortunately, this construct would require all signal handlers to be defined

with this syntax, because the C Standard allows implementations to use a dif¬

ferent parameter passing mechanism for variable parameter lists than for non¬

variable parameter lists. Thus all existing signal handlers in all existing appli¬

cations would have to be changed to use the variable syntax in order to be stan¬

dard and to be portable. This is in conflict with the goal of Minimal Changes
to Existing Application Code §B. 1.2.9.

When terminating a process from a signal-catching function, processes should

be aware of any interpretation that their parent may make of the status

returned by wait{) or waitpidi). In particular, a signal-catching function should

not call exit(0) or _exit{0) unless it wants to indicate successful termination. A

non-zero argument to exit () or _exit() can be used to indicate unsuccessful ter¬

mination. Alternatively, the process can use kill{) to send itself a fatal signal

(first ensuring that the signal is set to the default action and not blocked). (See

also _exit{) §B.3.2.2).

The behavior of unsafe functions, as defined by this section, is undefined

when they are invoked from signal-catching functions in certain circumstances.

The behavior of reentrant functions, as defined by this section, is as specified by

the standard, regardless of invocation from a signal-catching function. This is

the only intended meaning of the statement that reentrant functions may be

used in signal-catching functions without restriction. Applications must still

consider all effects of such functions on such things as data structures, files, and

process state. In particular, application writers need to consider the restrictions

on interactions when interrupting sleep() (see sleep () §3.4.3 and sleep() §B.3.4.3)

and interactions among multiple handles for a file description (see Interac¬
tions of Other FILE-Type C Functions §8.2.3 and §B.8.2.3). The fact that

any specific function is listed as reentrant does not necessarily mean that invo¬

cation of that function from a signal-catching function is recommended.

In order to prevent errors arising from interrupting non-reentrant function

calls, applications should protect calls to these functions either by blocking the

appropriate signals or through the use of some programmatic semaphore. The

standard does not address the more general problem of synchronizing access to

B.3 Process Primitives. 229

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

shared data structures. Note in particular that even the “safe” functions may

modify the global variable errno; the signal-catching function may want to save

and restore its value. Naturally, the same principles apply to the reentrancy of

application routines and asynchronous data access.

Note that longjmp () and siglongjmpO are not in the list of reentrant func¬

tions. This is because the code executing after the longjmp() or siglongjmpO

can call any unsafe functions with the same danger as calling those unsafe func¬

tions directly from the signal handler. Applications that use longjmp 0 or

siglongjmpO out of signal handlers require rigorous protection in order to be

portable. Many of the other functions that are excluded from the list are tradi¬

tionally implemented using either the C language malloc () or free 0 functions or

the C language standard I/O library, both of which traditionally use data struc¬

tures in a non-reentrant manner. Because any combination of different func¬

tions using a common data structure can cause reentrancy problems, the stan¬

dard does not define the behavior when any unsafe function is called in a signal

handler that interrupts any unsafe function.

B.3.3.1.4 Signal Effects on Other Functions. In the Trial Use Stan¬

dard the effect of signals interrupting functions was described under signals.

Because of the various different cases, they are now described under each of the

interruptible functions.

The most common behavior of an interrupted function after a signal-catching

function returns is for the interrupted function to give an [EINTR] error. How¬

ever, there are a number of specific exceptions, including sleep 0 and certain

situations with readO and write().

The traditional implementations of many functions defined by this standard

are not interruptible, but delay delivery of signals generated during their execu¬

tion until after they complete. This is never a problem for functions that are

guaranteed to complete in a short (imperceptible to a human) period of time. It

is normally those functions that can suspend a process indefinitely or for long

periods of time (e.g. waitO, pauseO, sigsuspendO, sleep0, or read{)/write() on a

slow device like a terminal) which are interruptible. This permits applications

to respond to interactive signals or to set timeouts on calls to most such function

with alarm 0. Therefore implementations should generally make such functions

(including ones defined as extensions) interruptible.

Functions not mentioned explicitly as interruptible may be on some imple¬

mentations, possibly as an extension where the function gives an [EINTR] error.

There are several functions (e.g. getpid(), getuidO) that are specified as never

returning an error, which can thus never be extended in this way.

B.3.3.2 Send a Signal to a Process. The semantics for permission

checking for killO differ between System V and most other implementations,

such as Version 7 or 4.3BSD. The semantics chosen for the standard agree with

System V. Specifically, a setuid process cannot protect itself against signals (or

at least not against SIGKILL) unless it changes its real user ID. This choice

allows the user who starts an application to send it signals even if it changes its

effective user ID. The other semantics give more power to an application that

wants to protect itself from the user who ran it. The statement that “the imple¬

mentation may still permit” a setuid application to receive such signals is

230 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

intended as a warning to application writers about this fact; the word may

should be interpreted as describing a possible scenario, not as a specification of

any optional semantics.

Some implementations provide semantic extensions to the kill() function

when the absolute value of pid is greater than some maximum, or otherwise

special, value. Negative values are a flag to killi). Since most implementations

return [ESRCH] in this case, the Working Group felt that this behavior should

not be standardized, although a conforming implementation could provide such

an extension.

The implementation-defined processes to which a signal cannot be sent may

include the scheduler or init.

Most existing implementations use kill (-1, sig) from a super-user process

to send a signal to all processes (excluding system processes like init). This

use of the killi) function is for administrative purposes only; portable applica¬

tions should not send signals to processes about which they have no knowledge.

In addition, there are semantic variations among different implementations

which, because of the limited use of this feature, were not necessary to resolve

by standardization. System V implementations also use kill (-1, sig) from a

non-super-user process to send a signal to all processes with matching user IDs.

This use was considered neither sufficiently widespread nor necessary for appli¬

cation portability to warrant inclusion in the standard.

There was strong sentiment in the Working Group to specify that, if pid speci¬

fies that a signal be sent to the calling process and that signal is not blocked,

that signal would be delivered before kill() returns. This would permit a pro¬

cess to call killi) and be guaranteed that the call never return. However, tradi¬

tional implementations that provide only the signal () interface only make the

weaker guarantee in the standard, because they only deliver one signal each

time a process enters the kernel. Modifications to such implementations to sup¬

port the sigactioni) interface generally require entry to the kernel following

return from a signal-catching function, in order to restore the signal mask.

Such modifications have the effect of satisfying the stronger requirement, at

least when sigactioni) is used, but not necessarily when signal() is used. The

Working Group considered making the stronger requirement except when sig¬

nal () is used, but felt this would be unnecessarily complex. Implementors are

encouraged to meet the stronger requirement whenever possible. In practice

the weaker requirement is the same except in the rare case when two signals

arrive during a very short window. This reasoning also applies to a similar

requirement for sigprocmaski) §3.3.5.

In 4.2BSD, the SIGCONT signal can be sent to any descendant process regard¬

less of user ID security checks. This allows a job control shell to continue a job

even if processes in the job have altered their user IDs (as in the su command).

In keeping with the addition of the concept of sessions, similar functionality is

provided by allowing the SIGCONT signal to be sent to any process in the same

session regardless of user ID security checks. This is less restrictive than BSD

in the sense that ancestor processes (in the same session) can now be the reci¬

pient. It is more restrictive than BSD in the sense that descendant processes

which form new sessions are now subject to the user ID checks. A similar

B.3 Process Primitives. 231

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

relaxation of security is not necessary for the other job control signals since

those signals are typically sent by the terminal driver in recognition of special

characters being typed; the terminal driver bypasses all security checks.

In secure implementations, a process may be restricted from sending a signal

to a process having a different security label. In order to prevent the existence

or non-existence of a process from being used as a covert channel, such

processes should appear non-existent to the sender; i.e., [ESRCH] should be

returned, rather than [EPERM], if pid refers only to such processes.

Existing implementations vary on the result of a kill() with pid indicating an

inactive process (a terminated process that has not been waited for by its

parent). Some indicate success on such a call (subject to permission checking),

while others give an error of [ESRCH]. Since this standard’s definition of process

lifetime covers inactive processes, the [ESRCH] error as described is inappropri¬

ate in this case. In particular this means that an application cannot have a

parent process check for termination of a particular child with kill{) (usually

this is done with the null signal); this can be done reliably with waitpidO

§3.2.1).

Various individuals have indicated that the name kill() is misleading, since

the function is not always intended to cause process termination. However, the

name is common to all traditional implementations, and any change would be in

conflict with the goal of Minimal Changes to Existing Application Code
§B. 1.2.9.

B.3.3.3 Manipulate Signal Sets. The implementation of the sigemp-

tyset() (or sigfillset()) functions could quite trivially clear (or set) all the bits in

the signal set. Alternatively, it would be reasonable to initialize part of the

structure, such as a version field, to permit binary compatibility between

releases where the size of the set varies. For such reasons, either sigemptyset ()
or sigfillset () must be called prior to any other use of the signal set, even if such

use is read-only (e.g., as an argument to sigpending()). This function is not

intended for dynamic allocation.

The sigfillset () and sigemptyset () functions require that the resulting signal

set include (or exclude) all the signals defined in this standard. Although it is

outside the scope of this standard to place this requirement on signals that are

implemented as extensions, it is recommended that implementation-defined sig¬

nals also be affected by these functions. However, there may be a good reason

for a particular signal not to be affected. For example, blocking or ignoring an

implementation-defined signal may have undesirable side effects whereas the

default action for that signal is harmless. In such a case, it would be preferable

for such a signal to be excluded from the signal set returned by sigfillset ().
In earlier drafts of the standard there was no distinction between invalid and

unsupported signals (the names of optional signals that were not supported by

an implementation were not defined by that implementation). The [EINVAL]

error was thus specified as a required error for invalid signals. With the dis¬

tinction, it does not make sense to require implementations of these functions to

determine whether an optional signal is actually supported, as that could have a

significant performance impact for little value. The error could have been

required for invalid signals and optional for unsupported signals, but this

232 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

seemed unnecessarily complex. Thus the error is optional in both cases.

B.3.3.4 Examine and Change Signal Action. Although the standard

requires that signals that cannot be ignored shall not be added to the signal

mask when a signal-catching function is entered, there is no explicit require¬

ment that subsequent calls to sigaction () reflect this in the information

returned in the oact argument. In other words, if SIGKILL is included in the

sajnask field of act, it is unspecified whether or not a subsequent call to sigac-

tion () will return with SIGKILL included in the sa_mask field of oact.

The SA_NOCLDSTOP flag, when supplied in the act->sa_flags parameter,

allows overloading SIGCHLD with the System V semantics that each SIGCLD

signal indicates a single terminated child. Most portable applications that catch

SIGCHLD are expected to install signal-catching functions that repeatedly call

the waitpidi) function with the WNOHANG flag set, acting on each child for

which status is returned, until waitpidi) returns zero. If stopped children are

not of interest, the use of the SA_NOCLDSTOP flag can prevent the overhead of

invoking the signal-catching routine when they stop.

Some existing implementations also define other mechanisms for stopping

processes, such as the ptracei) function. These implementations usually do not

generate a SIGCHLD signal when processes stop due to this mechanism, how¬

ever that is beyond the scope of this standard.

The standard requires that calls to sigactioni) that supply a NULL act argu¬

ment succeed, even in the case of signals that cannot be caught or ignored (i.e.,

SIGKILL or SIGSTOP). The System V signal() and BSD sigvec() functions return

[EENVAL] in these cases and, in this respect, their behavior varies from sigac¬

tioni).

The standard requires that sigactioni) properly save and restore a signal

action set up by the C Standard signalO function. However, there is no guaran¬

tee that the reverse be true, nor could there be given the greater amount of

information conveyed by the sigaction structure. Because of this, applications

should avoid using both functions for the same signal in the same process.

Since this cannot always be avoided in case of general-purpose library routines,

they should always be implemented with sigactioni).

It is the intention of the Working Group that signal 0 should be implement-

able as a library routine using sigactioni).

B.3.3.5 Examine and Change Blocked Signals. Note that when a

process’s signal mask is changed in a signal-catching function that is installed

by sigactioni), that the restoration of the signal mask on return from the

signal-catching function overrides that change (see sigactioni) §3.3.4). If the

signal-catching function was installed with signal () it is unspecified wrhether

this occurs.

See killi) §B.3.3.2 for a discussion of the requirement on delivery of signals.

B.3.3.6 Examine Pending Signals.
B.3.3.7 Wait for a Signal. Normally, at the beginning of a critical code

section, a specified set of signals is blocked using the sigprocmaski) function.

When the process has completed the critical section and needs to wait for the

previously blocked signal(s), it pauses by calling sigsuspendi) with the mask

that was returned by the sigprocmask () call.

B.3 Process Primitives. 233

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.3.4 Timer Operations.
B.3.4.1 Schedule Alarm. Many traditional implementations (including

Version 7 and System V) allow an alarm to occur up to a second early. Other

implementations allow alarms up to half a second early, up to 1/{CLK_TCK}

seconds early, or do not allow them to occur early at all. The latter is considered

most appropriate, since it gives the most predictable behavior, especially since

the signal can always be delayed for an indefinite amount of time due to

scheduling. Applications can thus choose the seconds argument as the

minimum amount of time they wish to have elapse before the signal.

The term “real time” here and elsewhere {sleep (), times ()) is intended to mean

“wall clock” time as common English usage, and has nothing to do with “real¬

time operating systems.” It is in contrast to “virtual time,” which could be

misinterpreted if just “time” were used.

In some implementations, including 4.3BSD, very large values of the seconds

argument are silently rounded down to an implementation-defined maximum

value. This maximum is large enough (on the order of several months) that the

effect is not noticeable.

Application writers should note that the type of the argument seconds and the

return value of alarm () is unsigned int. That means that a Strictly Conforming

POSIX Application cannot pass a value greater than the minimum guaranteed

value for {UINT_MAX}, which the C Standard sets as 65 535, and any application

passing a larger value is restricting its portability. The Working Group con¬

sidered using a different type, but existing implementations, including those

with a 16-bit int type, consistently use either unsigned int or int.

Application writers should be aware of possible interactions when the same

process uses both the alarm{) and sleep() functions (see sleep() §3.4.3 and

§B.3.4.3).

B.3.4.2 Suspend Process Execution. Many common uses of pause ()

have timing windows. The scenario involves checking a condition related to a

signal and, if the signal has not occurred, calling pause (). When the signal

occurs between the check and the call to pause (), the process often blocks inde¬

finitely. The sigprocmask () and sigsuspend () functions can be used to avoid this

type of problem.

B.3.4.3 Delay Process Execution. There are two general approaches to

the implementation of the sleep () function. One is to use the alarm{) function to

schedule a SIGALRM signal and then suspend the process waiting for that sig¬

nal. The other is to implement an independent facility. The standard permits

either approach.

In order to comply with the wording of the introduction to Chapter 3, that no

primitive shall change a process attribute unless explicitly described by the

standard, an implementation using SIGALRM must carefully take into account

any SIGALRM signal scheduled by previous alarm () calls, the action previously

established for SIGALRM, and whether SIGALRM was blocked. If a SIGALRM

has been scheduled before the sleep () would ordinarily complete, the sleep ()

must be shortened to that time, and a SIGALRM generated (possibly simulated

by direct invocation of the signal-catching function) before sleep () returns. If a

SIGALRM has been scheduled after the sleep () would ordinarily complete, it

234 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

must be rescheduled for the same time before sleep () returns. The action and

blocking for SIGALRM must be saved and restored.

Traditional implementations often implement the SIGALRM-based version

using alarm () and pause (). One such implementation is prone to infinite hangs

as described in pause() §B.3.4.2. Another such implementation uses the C

language setjmpO and longjmpi) functions to avoid that window. That imple¬

mentation introduces a different problem; when the SIGALRM signal interrupts

a signal catching function installed by the user to catch a different signal the

longjmpi) aborts that signal-catching function. An implementation based on

sigprocmaskO, alarmi), and sigsuspendO can avoid these problems.

Despite all reasonable care, there are several very subtle but detectable and

unavoidable differences between the two types of implementation. These are

the cases mentioned in the standard where some other activity relating to

SIGALRM takes place, and the results are stated to be unspecified. All of these

cases are sufficiently unusual as not to be of concern to most applications.

(See also the discussion of the term “real time” in Schedule Alarm §B.3.4.1.)

Because sleep () can be implemented using alarm (), the discussion about

alarms occurring early under alarm{) §B.3.4.1 apply to sleep() as well.

Application writers should note that the type of the argument seconds and the

return value of sleep () is unsigned int. That means that a Strictly Conforming

POSIX Application cannot pass a value greater than the minimum guaranteed

value for {UINT_MAX}, which the C Standard sets as 65 535, and any application

passing a larger value is restricting its portability. The Working Group con¬

sidered using a different type, but existing implementations, including those

with a 16 bit int type, consistently use either unsigned int or int.

Scheduling delays may cause the process to return from the sleep () function

significantly after the requested time. In such cases, the return value should be

set to zero, since the formula (requested time minus the time actually spent)

yields a negative number and sleep () returns an unsigned int.

B.4 Process Environment.

B.4.1 Process Identification.
B.4.1.1 Get Process and Parent Process IDs.

B.4.2 User Identification.
B.4.2.1 Get Real User, Effective User, Real Group, and Effective

Group IDs.
B.4.2.2 Set User and Group IDs. The saved set-user-ID capability

allows a program to regain the effective user ID established at the last exec

§3.1.2 call. Similarly, the saved set-group-ID capability allows a program to

regain the effective group ID established at the last exec call.

These two capabilities are derived from System V. Without them, a program

may have to run as super-user in order to perform the same functions, because

super-user can write on the user’s files. This is a problem because such a pro¬

gram can write on any user’s files, and so must be carefully written to emulate

the permissions of the calling process properly.

B.4 Process Environment. 235

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

A process with appropriate privilege on a system with this saved ID capability

establishes all relevant IDs to the new value since this function is used to estab¬

lish the identity of the user during login or su. Any change to this behavior

would be dangerous since it involves programs that need to be trusted.

The behavior of 4.2BSD and 4.3BSD that allows setting the real ID to the effec¬

tive ID is viewed as a value-dependent special case of appropriate privilege.

B.4.2.3 Get Supplementary Group IDs. The related function set-

groups() §B.4.2.3 is a privileged operation and therefore is not covered by this

standard.

The effective group ID may appear in the array returned by getgroups (), or it

may be returned only by getegidO- This is a warning to programmers that

duplication may exist, and that one needs to call getegidO to be sure of getting

all of the information. Various implementation and administrative sequences

(how did you get into these sets of groups, etc.) will cause these to vary.

B.4.2.4 Get User Name. L_cuserid must be defined appropriately for a

given implementation and must be greater than zero so that array declarations

using it are accepted by the compiler. The value includes the terminating null

byte.

B.4.3 Process Groups.
B.4.3.1 Get Process Group ID. 4.3BSD provides a getpgrp () function

that returns the process group ID for a specified process. Although this function

is used to support job control, all known job control shells always specify the cal¬

ling process with this function. Thus the simpler System V getpgrp() suffices

and the added complexity of the 4.3BSD getpgrp () has been omitted from the

standard.

B.4.3.2 Create Session and Set Process Group ID. The setsidO func¬

tion is similar to the setpgrp () function of System V. System V, without job con¬

trol, groups processes into process groups and creates new process groups via

setpgrp (); only one process group may be part of a login session.

Job control allows multiple process groups within a login session. In order to

limit job control actions so that they can only affect processes in the same login

session, POSIX adds the concept of a session which is created via setsidO. The

setsidO function also creates the initial process group contained in the session.

Additional process groups can be created via the setpgidO function. A System V

process group would correspond to a POSIX session containing a single POSIX

process group. Note that this function requires that the calling process not be a

process group leader. The usual way to ensure this is true is to create a new

process with forkO and have it call setsidO. The forkO function guarantees that

the process ID of the new process does not match any existing process group ID.

B.4.3.3 Set Process Group ID for Job Control. The setpgidO function

is used to group processes together for the purpose of signaling, placement in

foreground or background, and other job control actions. See job control
§B.2.3.

The setpgidO function is similar to the setpgrp0 function of 4.2BSD, except

that 4.2BSD allowed the specified new process group to assume any value. This

presents certain security problems and is more flexible than necessary to

236 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

support job control.

To provide tighter security, setpgidi) only allows the calling process to join a

process group already in use inside its session or create a new process group

whose process group ID was equal to its process ID.

When a job control shell spawns a new job, the processes in the job must be

placed into a new process group via setpgidi). There are two timing constraints

involved in this action:

(1) The new process must be placed in the new process group before the

appropriate program is launched via one of the exec functions.

(2) The new process must be placed in the new process group before the shell

can correctly send signals to the new process group.

To address these constraints, the following actions are performed: The new

processes call setpgidi) to alter their own process groups after forki) but before

exec. This satisfies the first constraint. Under 4.3BSD, the second constraint is

satisfied by the synchronization property of vforki); that is, the shell is

suspended until the child has completed the exec, thus ensuring that the child

has completed the setpgidi). The Working Group considered adding a new ver¬

sion of forki) with this same synchronization property, but decided instead to

merely allow the parent shell process to adjust the process group of its child

processes via setpgidi). Both timing constraints are now satisfied by having

both the parent shell and the child attempt to adjust the process group of the

child process; it doesn’t matter which succeeds first.

Because it would be confusing to an application to have its process group

change after it began executing (i.e., after exec) and because the child process

would already have adjusted its process group before this, the [EACCES] error

was added to disallow this.

One non-obvious use of setpgidi) is to allow a job control shell to return itself

to its original process group (the one in effect when the job control shell was exe¬

cuted). A job control shell does this before returning control back to its parent

when it is terminating or suspending itself as a way of restoring its job control

“state” back to what its parent would expect. (Note that the original process

group of the job control shell typically matches the process group of its parent,

but this is not necessarily always the case.) See also tcsetpgrpi) §B.7.1.7.

B.4.4 System Identification.
B.4.4.1 System Name. The values of the structure members are not con¬

strained to have any relation to the version of this interface standard imple¬

mented in the operating system. An application implementor should instead

depend on {_POSK_VERSION} and related constants defined in Symbolic Con¬
stants §2.10.

The standard does not define the sizes of the members of the structure and

permits them to be of different sizes, although most implementations define

them all to be the same size: eight bytes plus one byte for the string terminator.

That size for nodename is not enough for use with many networks.

The unamei) function is specific to System III, System V, and related imple¬

mentations, and it does not exist in Version 7 or 4.3BSD. The values it returns

are set at system compile time in those existing implementations.

B.4 Process Environment. 237

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

4.3BSD hasgethostnamei) andgethostidO, which return a symbolic name and

a numeric value, respectively. There are related sethostnameO and sethostid()

functions that are used to set the values the other two functions return. The

length of the host name is limited to 31 characters in most implementations and

the host ID is a 32-bit integer.

B.4.5 Time. The time{) §4.5.1 function returns a value in seconds (type

timej) while times() §4.5.2 returns a set of values in {CLK_TCK}ths of a second

(type clock J).

Some historical implementations, such as 4.3BSD, have mechanisms capable

of returning more precise times (see gettimeofday() §B.4.5.1). A generalized

timing scheme to unify these various timing mechanisms has been proposed but

not adopted in this standard; see Realtime Extensions §A.2.5.

B.4.5.1 Get System Time. Implementations in which timejt is a 32-bit

signed integer (most historical implementations) will fail in the year 2038. The

Working Group chose not to try to fix this. But they did require the use of

time_t in order to ease the eventual fix.

The use of the header <time.h> instead of <sys/types.h> allows compatibility

with the C Standard.

Many historical implementations (including Version 7) and the 1984

/usr/group Standard use long instead of timejt. The present standard uses the

latter type in order to agree with the C Standard.

4.3BSD includes time{) only as an interface to the more flexible gettimeofday {)

function.

B.4.5.2 Process Times. The accuracy of the times reported is intention¬

ally left unspecified to allow implementations flexibility in design, from unipro¬

cessor to multiprocessor networks.

The inclusion of times of child processes is recursive, so that a parent process

may collect the total times of all of its descendants. But the times of a child are

only added to those of its parent when its parent successfully waits on the child.

Thus it is not guaranteed that a parent process will always be able to see the

total times of all its descendants.

(See also the discussion of the term “real time” in Schedule Alarm §B.3.4.1.)

If the type clock J is defined to be a signed 32-bit integer, it will overflow in

somewhat more than a year if {CLK_TCK} is 60, or less than a year if it is 100.

There are individual systems that run continuously for longer than that. The

standard permits an implementation to make the reference point for the

returned value be the startup time of the process, rather than system startup

time.

The term “charge” in this context has nothing to do with billing for services.

The operating system accounts for time used in this way. That information

must be correct, regardless of how that information is used.

238 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

B.4.6 Environment Variables.
B.4.6.1 Environment Access. Additional functions putenvi) and

clearenvO were considered but rejected because they were considered to be more

oriented towards system administration than ordinary application programs.

This is being reconsidered for a supplement to this standard because uses from

within an application have been identified since the decision was made.

It was proposed that this function is properly part of Chapter 8. It is an

extension to a function in Standard C. Because this function should be avail¬

able from any language, not just C, it appears here, to separate it from the

material in Chapter 8 which is specific to the C binding. (The localization exten¬

sions to C are not, at this time, appropriate for other languages.)

B.4.7 Terminal Identification. The difference between ctermid{) and

tty name () is that tty name () must be passed a file descriptor and returns the

pathname of the terminal associated with that file descriptor, while ctermidi)

returns a string (such as /dev/tty) that will refer to the controlling terminal if

used as a pathname. Thus ttynamei) is useful only if the process already has at

least one file open to a terminal.

The historical value of ctermidi) is /dev/tty; this is acceptable. The cter-

mid{) function should not be used to determine if a process actually has a con¬

trolling terminal, but merely the name that would be used.

B.4.7.1 Generate Terminal Pathname. L_ctermid must be defined

appropriately for a given implementation and must be greater than zero so that

array declarations using it are accepted by the compiler. The value includes the

terminating null byte.

B.4.7.2 Determine Terminal Device Name. The term “terminal” is

used instead of the historical term “terminal device” in order to avoid a refer¬

ence to an undefined term.

B.4.8 Configurable System Variables. This section was added in

response to requirements of application developers, and particularly the X/Open

system vendors. It is closely related to Configurable Pathname Variables
§B.5.7 as well.

Although a portable application can run on all systems by never demanding

more resources than the minimum values published in the standard, it is useful

for that application to be able to use the actual value for the quantity of a

resource available on any given system. To do this, the application will make

use of the value of a symbolic constant in <limits.h> or <unistd.h>.
However, once compiled, the application must still be able to cope if the

amount of resource available is increased. To that end, an application may need

a means of determining the quantity of a resource, or the presence of an option,

at execution time.

Two examples are offered:

(1) Applications may wish to act differently on systems with or without job

control. Applications vendors who wish to distribute only a single binary

package to all instances of a computer architecture would be forced to

assume job control is never available if it were to rely solely on the

<unistd.h> value published in the standard.

B.4 Process Environment. 239

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

(2) International applications vendors occasionally require knowledge of the

{CLK_TCK} value. Without the facilities of this section, they would be

required to either distribute their applications partially in source form or to

have 50 Hertz and 60 Hertz versions for the various countries they do busi¬

ness in.

It is the understanding that many applications are actually distributed widely

in executable form that lead to this facility. If limited to the most restrictive

values in the headers, such applications would have to be prepared to accept the

most limited environments offered by the smallest microcomputers. Although

this is entirely portable, it was felt by the Working Group that they should be

able to take advantage of the facilities offered by large systems, without the res¬

trictions associated with source and object distributions.

During the very heated arguments that accompanied the discussions of this

feature, it was pointed out that it is almost always possible for an application to

discern what a value might be at run-time by suitably testing the waters. And,

in any event, it could always be written to adequately deal with error returns

from the various functions. In the end, it was felt that this imposed an unrea¬

sonable level of complication and sophistication on the application writer.

This run-time facility is not meant to provide ever-changing values that appli¬

cations will have to check multiple times. The values are seen as changing no

more frequently than once per system initialization, such as by a system

administrator or operator with an automatic configuration program. The stan¬

dard specifies that they shall not change within the lifetime of the process.

Some values apply to the system overall and others vary at the file system or

directory level. These latter are described in Configurable Pathname Vari¬
ables §B.5.7.

B.4.8.1 Get Configurable System Variables. Note that all values

returned must be expressible as integers. The Working Group considered using

string values, but the additional flexibility of this approach was rejected due to

its added complexity of implementation and use.

Some values, such as {PATH_MAX}, are sometimes so large that they must not

be used to, say, allocate arrays. The sysconfO function will return a negative

value to show that this symbolic constant isn’t even defined, in this case.

{CLK_TCK} is not defined in languages other than C, so {_SC_CLK_TCK} is

required for those languages. Because {CLK_TCK} has been in a state of change

in the C Standard, there is a possibility of redundancy between that standard

and POSIX because the number of ticks per second can be accessed both via

{CLK_TCK} and via sysconfO. {CLK_TCK} is the preferred mechanism to access

this value if it reflects the possibility of variation (as permitted by the

C Standard at this writing). In fact, an attractive way to implement {CLK_TCK}

is using sysconfO. To assure that there is at least one way to access the value,

sysconfO continues to support access to the value. The specification assures

that the redundancy won’t lead to different values.

240 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

B.5 Files and Directories. See pathname resolution §2.4.

The wording regarding the group of a newly-created regular file, directory, or

FIFO in open() §5.3.1, mkdirO §5.4.1, mkfifoO §5.4.2, respectively, defines the

two acceptable behaviors in order to permit both the System V (and Version 7)

behavior (in which the group of the new object is set to the effective group ID of

the creating process) and the 4.3BSD behavior (in which the new object has the

group of its parent directory). An application that needs a file to be created

specifically in one or the other of the possible groups should use chownO §5.6.5

to ensure the new group regardless of the style of groups the interface imple¬

ments. Most applications will not and should not be concerned with the group

ID of the file.

B.5.1 Directories. Historical implementations prior to 4.2BSD had no spe¬

cial functions, types, or headers for directory access. Instead, directories were

read with read() §6.4.1 and each program that did so had code to understand

the internal format of directory files. Many such programs did not correctly

handle the case of a maximum-length (historically fourteen character) filename

and would neglect to add a null character string terminator when doing com¬

parisons. The access methods in the standard eliminate that bug, as well as

hiding differences in implementations of directories or file systems.

The directory access functions as described in an Appendix of the POSIX Trial

Use Standard were derived from 4.2BSD, were adopted in System V Release 3

and are in SVID Volume 3, with the exception of a type difference for the d_ino

field. That field represents implementation-dependent or even file system-

dependent information (the i-node number in most implementations). Since the

directory access mechanism is intended to be implementation-independent, and

since only system programs, not ordinary applications, need to know about the

i-node number (or file serial number §2.3) in this context, the d_ino field does

not appear in the present standard. Also, programs that want this information

can get it with stat() §5.6.2.

B.5.1.1 Format of Directory Entries. Information similar to that in the

header <dirent.h> is contained in a file <sys/dir.h> in 4.2BSD and 4.3BSD.

The equivalent in these implementations of struct dirent from the standard is

struct direct. The filename was changed because the name <sys/dir.h> was

also used in earlier implementations to refer to definitions related to the older

access method; this produced name conflicts. The name of the structure was

changed because the standard does not completely define what is in the struc¬

ture, so it could be different on some implementations from struct direct.

The name of a character array of an unspecified size should not be used as an

lvalue. Use of

sizeof (dname)

is incorrect; use

strlen (d_name)

instead.

B.5 Files and Directories. 241

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

This description of the djiame element was changed because the previous

version gave the impression that the character array djiame was of a fixed size.

Implementations may need to declare struct dirent with an array size for

djiame of 1, but the actual number of characters provided matches (or only

slightly exceeds) the length of the file name.

Currently, implementations are excluded if they have djiame with type

char *. Lacking experience of such implementations, the Working Group

declined to try to describe in standards language what to do if either type were

permitted.

B.5.1.2 Directory Operations. Based on historical implementations,

the rules about file descriptors apply to directory streams as well. However, the

standard does not mandate that the directory stream be implemented using file

descriptors. Wording was added to the description of opendiri) to clarify that if

a file descriptor is used for the directory stream it is mandatory that closedirO

deallocate the file descriptor.

The returned value of readdir () merely represents a directory entry. No

equivalence should be inferred.

Since the structure and buffer allocation, if any, for directory operations are

defined by the implementation, the standard imposes no portability require¬

ments for erroneous program constructs, erroneous data, or the use of indeter¬

minate values such as the use or referencing of a dirp value or a dirent struc¬

ture value after a directory stream has been closed or after a fork () or one of the

exec function calls.

Historical implementations of readdir () obtain multiple directory entries on a

single read operation which permits subsequent readdir () operations to operate

from the buffered information. Any wording which required each successful

readdir () operation to mark the directory st_atime field for update would mili¬

tate against the historical performance-oriented implementations.

Since readdir () returns NULL both:

(1) when it detects an error, and;

(2) when the end of the directory is encountered;

an application that needs to tell the difference must set errno to zero before the

call and check it if NULL is returned. Because the function must not change

errno in case (2) and must set it to a non-zero value in case (1), zero errno after a

call returning NULL indicates end of directory, otherwise an error.

Routines to deal with this problem more directly were proposed:

int derror (dirp)

DIR *dirp;

void clearderr (dirp)

DIR *dirp;

The first would indicate whether an error had occurred, and the second would

clear the error indication. The simpler method involving errno was adopted

instead by requiring that readdir () not change errno when end-of-directory is

encountered.

242 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Historical implementations include two more functions:

long telldir (dirp)
DIR *dirp;

void seekdir (dirp, loc)

DIR *dirp;

long loc;

The telldir () function returns the current location associated with the named

directory stream.

The seekdir () function sets the position of the next readdir () operation on the

directory stream. The new position reverts to the one associated with the direc¬

tory stream when the telldir() operation was performed.

These functions have restrictions on their use related to implementation

details. Their capability can usually be accomplished by saving a filename

found by readdir () and later using rewinddirO and a loop on readdir () to relo¬

cate the position from which the filename was saved. Though this method is

probably slower than using seekdir() and telldir(), there are few applications in

which the capability is needed. Furthermore, directory systems that are imple¬

mented using technology such as balanced trees where the order of presentation

may vary from access to access do not lend themselves well to any concept along

these lines. For these reasons, the Working Group decided not to include seek¬

dir () and telldir() in the standard.

An error or signal indicating that a directory has changed while open was con¬

sidered but rejected.

B.5.2 Working Directory.
B.5.2.1 Change Current Working Directory. The chdirO function

only affects the working directory of the current process.

The result if a NULL argument is passed to chdirO is left implementation-

defined because some implementations dynamically allocate space in that case.

B.5.2.2 Working Directory Pathname. Since the maximum pathname

length is arbitrary unless {PATH_MAX} is defined, an application cannot supply

a buf with size {{PATH_MAX} + 1} in general.

Having the routine take no arguments and instead use the C function mal-

loc() to produce space for the returned argument was considered. The advan¬

tage is that getcwd () knows how big the working directory pathname is and can

allocate an appropriate amount of space. But the programmer would have to

use the C function free() to free the resulting object, or each use of getcwdO

would further reduce the available memory. Also, raalloc() and freeO are used

nowhere else in the present standard. Finally, getcwdO is taken from the SVID,

where it has the two arguments used in the standard.

The older function getwdO was rejected for use in this context because it had

only a buffer argument and no size argument, and thus had no way to prevent

overwriting the buffer, except to depend on the programmer to provide a large

enough buffer.

B.5 Files and Directories. 243

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

The result if a NULL argument is passed to getcwdO is left implementation-

defined because some implementations dynamically allocate space in that case.

If a program is operating in a directory where some (grand)parent directory

does not permit reading, getcwdO may fail, as in most implementations it must

read the directory to determine the name of the file. This can occur if search

but not read permission is granted in an intermediate directory, or if the pro¬

gram is placed in that directory by some more privileged process (e.g. login).

Including this error, [EACCESS], makes the reporting of the error consistent,

and warns the application writer that getcwdO can fail for reasons beyond the

control of the application writer or user. Some implementations can avoid this

occurrence (e.g. by implementing getcwdO using pwd, where pwd is a set-user-

root process), thus the error was made optional.

Because the standard permits the addition of other errors, this would be a

common addition and yet one that applications could not be expected to deal

with without this addition.

Some current implementations use {PATH_MAX}+2 bytes. These will have to

be changed. Many of those same implementations also may not diagnose the

[ERANGE] error properly anyway or deal with a common bug having to do with

newline in a directory name (the fix to which is essentially the same as the fix

for using +1 bytes), so this is not a severe hardship.

B.5.3 General File Creation. Because there is no portable way to specify

a value for the argument indicating the file mode bits (except zero),

<sys/stat.h> is included with the functions that reference mode bits.

B.5.3.1 Open a File. Except as specified in the standard, the flags

allowed in oflag are not mutually exclusive and any number of them may be

used simultaneously.

Some implementations permit opening FIFOs with 0_RDWR. Since FIFOs

could be implemented in other ways, and since two file descriptors can be used

to the same effect, this possibility is left as undefined.

See getgroups0 §B.4.2.3 about the group of a newly-created file.

The use of openO §5.3.1 to create a regular file is preferable to the use of

creatO §5.3.2 because the latter is redundant and included only for historical

reasons.

The use of the OJTRUNC flag on FIFOs and directories (pipes cannot be

openO-ed) must be permissible without unexpected side-effects (e.g., creatO on a

FIFO must not remove data). Other file types, particularly implementation-

defined ones, are left implementation-defined.

Implementations may deny access and return [EACCES] for reasons other

than just those listed in the [EACCES] definition.

The 0_N0CTTY flag was added to allow applications to avoid unintentionally

acquiring a controlling terminal as a side-effect of opening a terminal file. The

standard does not specify how a controlling terminal is acquired, but it allows

an implementation to provide this on openO if the 0_N0CTTY flag is not set and

other conditions specified in The Controlling Terminal §7.1.1.3 are met. The

0_N0CTTY flag is an effective no-op if the file being opened is not a terminal

device.

244 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

In historical implementations the value of 0_RD0NLY is zero. Because of that

it is not possible to detect the presence of 0_RD0NLY and another option.

Future implementations and revisions would be wise to encode 0_RD0NLY and

0_WR0NLY as bit flags so that:

O.RDONLY I 0_WR0NLY == 0_RDWR

See the rationale for the change from 0_NDELAY to 0_N0NBL0CK in Input
and Output Primitives §B.6.

B.5.3.2 Create a New File or Rewrite an Existing One. The creatO

function is redundant. Its services are also provided by the open{) function. It

has been included primarily for historical purposes since many existing applica¬

tions depend on it. It is best considered a part of the C binding rather than a

function that should be provided in other languages.

B.5.3.3 Set File Creation Mask. Unsigned argument and return types

for umask () were proposed. The return type and the argument were both

changed to modejt §B.2.6.

Historical implementations have made use of additional bits in cmask for

their implementation-specific purposes. The addition of the text that the mean¬

ing of other bits of the field are implementation-defined permits these imple¬

mentations to conform to the standard.

B.5.3.4 Link to a File. See directory entry §B.2.3.

Linking to a directory is restricted to the super-user in most historical imple¬

mentations because this capability may produce loops in the file hierarchy or

otherwise corrupt the file system. This standard continues that philosophy by

prohibiting link() and unlink() from doing this. Other functions could do it if

the implementor designed such an extension.

Some historical implementations allow linking of files on different file sys¬

tems. Wording was added to explicitly allow this optional behavior.

B.5.4 Special File Creation.
B.5.4.1 Make a Directory. See modejt §B.2.6.

The mkdir() function originated in 4.2BSD and was added to System V in

Release 3.0, following the Trial Use Standard.

4.3BSD detects [ENAMETOOLONG].

See getgroupsO §B.4.2.3 about the group of a newly-created directory.

B.5.4.2 Make a FIFO Special File. The syntax of this routine is

intended to maintain compatibility with existing implementations of mknod{).

The latter function was included in the 1984 / usr /group Standard, but only for

use in creating FIFO special files. The mknod() function was excluded from

POSIX as implementation-defined and replaced by mkdir() §5.4.1 and mkfifoO

§5.4.2.

See getgroups §B.4.2.3 about the group of a newly-created FIFO.

B.5.5 File Removal. The rmdir() and renamed) functions originated in

4.2BSD and they used [ENOTEMPTY] for the condition when the directory to be

removed does not exist or new already exists. When the 1984 / usr I group Stan¬

dard was published, it contained [EEXIST] instead. When AT&T adopted these

functions into System V, they used the /usr/group Standard as their reference.

B.5 Files and Directories. 245

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Therefore, several existing applications and implementations support/use both

forms and the Working Group could not agree on either value. All implementa¬

tions are required to supply both [EEXIST] and [ENOTEMPTY] in <errno.h>

with distinct values so that applications can use both values in C language

case statements.

When this function was added to System V (in Release 3.0) it used [ENOENT]

where the standard uses [ENAMETOOLONG]. Volume 3 of the SVID, page 129,

states: “FUTURE DIRECTION: To conform with the IEEE POSIX standard, when

it is adopted as a full-use standard, the value of errno indicating that...”

B.5.5.1 Remove Directory Entries. Unlinking a directory is restricted

to the super-user in many historical implementations for reasons given in link ()

§B.5.3.4. But see renamei) §B.5.5.3.

The meaning of [EBUSY] in traditional implementations is “mount point

busy.” Since this standard does not cover the system administration concepts of

mounting and unmounting, the description of the error was changed to

“resource busy.” (This meaning is used by some device drivers when a second

process tries to open an exclusive use device.) The wording is also intended to

allow implementations to refuse to remove a directory if it is the root or current

working directory of any process.

B.5.5.2 Remove a Directory. See also File Removal §B.5.5 and

[EBUSY] §B.5.5.1.

B.5.5.3 Rename a File. This rename () function is equivalent for regular

files to that defined by the C Standard. Its inclusion here expands that defini¬

tion to include actions on directories and specifies behavior when the new

parameter names a file that already exists. That specification requires that the

action of the function be atomic.

One of the reasons for introducing this function was to have a means of

renaming directories while permitting implementations to prohibit the use of

link() §5.3.4 and unlink() §5.5.1 with directories, thus constraining links to

directories to those made by mkdir{) §5.4.1.

The specification that if old and new refer to the same file describes existing,

although undocumented, 4.3BSD behavior. It is intended to guarantee that:

rename("x", "x");

does not remove the file.

Renaming dot or dot-dot is prohibited in order to prevent cyclical file system

paths.

See also the descriptions of [ENOTEMPTY] and [ENAMETOOLONG] in File

Removal §B.5.5 and [EBUSY] in Remove Directory Entries §B.5.5.1.

B.5.6 File Characteristics. The function ustat(), which appeared in the

1984 /usr/group Standard and is still in the SVID, was removed from the

present standard before Trial Use because it was:

(1) Not reliable. The amount of space available can change between the time

the call is made and the time the calling process attempts to use it.

(2) Not required. The only known program that uses it is the text editor ed.

246 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

It was also not readily extensible to networked systems.

B.5.6.1 File Characteristics: Header and Data Structure. See Prim¬
itive System Data Types §B.2.6.

A conforming C language application must include <sys/stat.h> for functions

that have arguments or return values of type modej, so that symbolic values

for that type can be used. An alternative would be to require that these con¬

stants are also defined by including <sys/types.h>.
The S_ISUID and S_ISGID bits may be cleared on any write, not just on open()

§5.3.1, as some historical implementations do it.

System calls that update the time entry fields in the stat structure must be

documented by the implementors. POSIX conforming systems should not update

the time entry fields for functions listed in the standard unless the standard

requires that they do, except in the case of documented extensions to the stan¬

dard.

Note that st_dev must be unique within a Local Area Network (LAN) in a “sys¬

tem” made up of multiple computers5 file systems connected by a LAN.

Networked implementations of a POSIX system must guarantee that all files

visible within the file tree (including parts of the tree that may be remotely

mounted from other machines on the network) on each individual processor are

uniquely identified by the combination of the st_ino and stjdev fields.

B.5.6.2 Get File Status. The intent of the paragraph describing “addi¬

tional or alternate file access control mechanisms” is to allow a secure imple¬

mentation where a process with a label that does not dominate the file’s label

cannot perform a stat() function. This is not related to read permission; a pro¬

cess with a label that dominates the file’s label will not need read permission.

An implementation that supports write-up operations could fail fstati) function

calls even though it has a valid file descriptor open for wTiting.

B.5.6.3 File Accessibility. Some Working Group discussions centered

around inadequacies in the access () function led to the creation of an eaccess 0

function because:

(1) Historical implementations of access () don’t test file access correctly

when the process’s real user ID is super-user. In particular, they always

return zero when testing execute permissions without regard to whether the

file is executable.

(2) The super-user has complete access to all files on a system. As a conse¬

quence, programs started by the super-user and switched to the effective

user ID with lesser privileges cannot use accessi) to test their file access per¬

missions.

After eaccess () was reviewed, the Working Group found that it still didn’t

resolve problem (1), so the standard now allows access 0 to behave in the desired

way because several implementations have corrected the problem. It was also

argued that problem (2) is more easily solved by using openi), chdiri), or one of

the exec functions as appropriate and responding to the error there, rather than

creating a new function that wouldn’t be as reliable. Therefore, eaccess () was

taken back out of the standard.

Secure implementations will probably need an extended access (Hike func¬

tion, but the Working Group did not have enough of the requirements to define

B.5 Files and Directories. 247

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

it yet. This could be proposed as an extension to the Full Use Standard. See

Trusted System Extensions §A.2.7.

The sentence concerning appropriate privileges and execute permission bits

reflects the two possibilities implemented by historical implementations when

checking super-user access for X_OK.

B.5.6.4 Change File Modes. The standard specifies that the S_ISGID bit

is cleared by chmod() on a regular file under certain conditions. This is speci¬

fied on the assumption that regular files may be executed and the system should

prevent users from making executable setgid files perform with privileges that

the caller doesn’t have. On implementations that support execution of other file

types, the S_ISGID bit should be cleared for those file types under the same cir¬

cumstances.

Implementations which use the S_ISUID bit to indicate some other function

(for example, mandatory record locking) on non-executable files need not clear

this bit on writing. They should clear the bit for executable files and any other

cases where the bit grants special powers to processes that change the file con¬

tents. Similar comments apply to the S_ISGID bit.

B.5.6.5 Change Owner and Group of File. System III and System V

allow a user to give away files, that is, the owner of a file may change its user ID

to anything. This is a serious problem for implementations which are intended

to meet government security regulations. Version 7 and 4.3BSD permit only the

super-user to change the user ID of a file. Some government agencies (usually

not ones concerned directly with security) find this limitation too confining. The

standard uses “may” to permit secure implementations while not disallowing

System V.

System III and System V allow the owner of a file to change the group ID to

anything. Version 7 permits only the super-user to change the group ID of a file.

4.3BSD permits the owner to change the group ID of a file to its effective group

ID or to any of the groups in the list of supplementary group IDs, but to no oth¬

ers.

Although chownO can be used on some systems by the file owner to change

the owner and group to any desired values, the only portable use of this function

is to change the group of a file to the effective GID of the calling process or to a

member of its group set.

The decision to require that, for non-privileged processes, the S_ISUID and

S_ISGID bits be cleared on regular files but only may be cleared on non-regular

files was to allow plans for using these bits in implementation-specified

manners on directories. Similar cases could be made for other file types, so the

standard does not require that these bits be cleared except on regular files.

Note that as these cases arise, the system implementors will have to determine

whether these features enable any security loopholes and specify appropriate

restrictions. If the implementation supports executing any file types other than

regular files, the S_ISUID and S_ISGID bits should be cleared for those file types

in the same way as they are on regular files.

248 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

B.5.6.6 Set File Access and Modification Times. The actime struc¬

ture member must be present, so that an application may set it, even though an

implementation may ignore it and not change the access time on the file. If an

application intends to leave one of the times of a file unchanged while changing

the other, it should use stat() §5.6.2 to retrieve the file’s stjatime and stjntime

§5.6.1.3 parameters, set actime and modtime in the buffer, and change one of

them before making the utime() call.

B.5.7 Configurable Pathname Variables. When the run-time facility

described in Configurable System Variables §B.4.8 was designed, it was

realized that some variables change depending on the file system. For example,

it is quite feasible for a system to have two varieties of file systems mounted: a

System V, and; a Berkeley “Fast File System.”

If limited to strictly compile-time features, no application that was widely dis¬

tributed in executable binary form could rely on more than 14 bytes in a path¬

name component, as that is the minimum published for {NAME_MAX} in this

standard. The pathconfO function allows the application to take advantage of

the most liberal file system available at run-time. In many Berkeley-based sys¬

tems, 255 bytes are allowed for pathname components.

These values are potentially changeable at the directory level, not just at the

file system. And, unlike the overall system variables, there is no guarantee that

these might not change during program execution.

B.5.7.1 Get Configurable Pathname Variables. The pathconfO func¬

tion was proposed immediately after the sysconfi) function when it was realized

that some configurable values may differ across file system, directory, or device

boundaries.

For example, {NAMEJVLAX} frequently changes between System V and BSD-

based file systems; System V uses a maximum of 14, Berkeley 255. On an

implementation that provided both types of file systems, an application would

be forced to limit all pathname components to 14 bytes, as this would be the

value specified in <limits.h> on such a system.

Therefore, various useful values can be queried on any pathname or file

descriptor, assuming that the appropriate permissions are in place.

The value returned for the variable {PATH_MAX} indicates the longest relative

pathname that could be given if the specified directory is the process’s current

working directory. A process may not always be able to generate a name that

long and be able to use it if a subdirectory in the pathname crosses into a more

restrictive file system.

The value returned for the variable {_POSIX_CHOWN_RESTRICTED} also

applies to directories that are not mounted on. The value may change when

crossing a mount point, so applications that need to know should check for each

directory. (Note that an even easier check is to try the chownO function and

look for an error in case it happens.)

Unlike the values returned by sysconfi), the pathname-oriented variables are

potentially more volatile and are not guaranteed to remain constant throughout

the process’s lifetime. For example, in between two calls to pathconfO the file

system in question may have been unmounted and remounted with different

B.5 Files and Directories. 249

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

characteristics.

Also note that most of the errors are optional. If one of the variables always

has the same value on an implementation, the implementation need not look at

path or fildes to return that value and is, therefore, not required to detect any of

the errors except the meaning of [EINVAL] that indicates that the value of name

is not valid for that variable.

If the value of any of the limits described in Run-Time Invariant Values
(Possibly Indeterminate) §2.9.4 or Pathname Variable Values §2.9.5 are

indeterminate (logically infinite), they will not be defined in <limits.h> and the

pathconfO and fpathconfi) functions will return -1 without changing errno.

This can be distinguished from the case of giving an unrecognized name argu¬

ment because errno will be set to [EINVAL] in this case.

Since -1 is a valid return value for the pathconfO and fpathconfO functions,

applications should set errno to zero before calling them and check errno only if

the return value is -1.

B.6 Input and Output Primitives. Rationale for the Change from

0_NDELAY to O.NONBLOCK.

System III and System V have included a flag, 0_NDELAY, to mark file

descriptors so that user processes would not block when doing I/O to them. If

the flag is set, a readO §6.4.1 or writeO §6.4.2 call which would otherwise need

to block for data returns a value of zero instead. But a readO call also returns a

value of zero on end-of-file, and applications have no way to distinguish between

these two conditions.

BSD systems support a similar feature through a flag with the same name,

but somewhat different semantics. The flag applies to all users of a file (or

socket) rather than only to those sharing a file descriptor. The BSD interface

provides a solution to the problem of distinguishing between a blocking condi¬

tion and an end-of-file condition by returning an error, [EWOULDBLOCK], on a

blocking condition.

The 1984 /usr/group Standard includes an interface with some features from

both AT&T and BSD. The overall semantics are that it applies only to a file

descriptor. However, the return indication for a blocking condition is an error,

[EAGAIN]. This was the starting point for POSIX.

The problem with the 1984 I usr /group Standard is that it does not allow

compatibility with existing applications. An implementation cannot both con¬

form to this standard and support applications written for existing AT&T or BSD

systems. This was the cause of at least one objection during the trial-use ballot¬

ing. Several changes have been considered, either at that time or more recently,

to address this issue. These include:

(1) No change (from 1984 / usr /group Standard)',

(2) Changing to System III/V semantics;

(3) Changing to BSD semantics;

(4) Broadening the standard to allow conforming implementation a choice

among these semantics;

(5) Changing the name of the flag from 0_NDELAY;

(6) Changing to System III/V semantics and providing a new call to

250 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

distinguish between blocking and end-of-file conditions.

The consensus of the Working Group was that (5) is the best alternative. The

new name is 0_N0NBL0CK. This alternative allows a conforming implementa¬

tion to provide backward compatibility at the source and/or object level with

either AT&T or BSD systems (but the standard does not require or even suggest

that this be done). It also allows a Conforming POSIX Application Using Exten¬

sions the functionality to distinguish between blocking and end-of-file condi¬

tions, and to do so in as simple a manner as any of the alternatives. The

greatest shortcoming was that it forces all existing AT&T and BSD applications

that use this facility to be modified in order to strictly conform to the standard.

This same shortcoming applies to (1) and (4) as well, and it applies to one group

of applications for (2), (3), and (6).

Systems may choose to implement both 0_NDELAY and 0_N0NBL0CK, and

there is no conflict as long as an application does not turn both flags on at the

same time.

See also the discussion of scope in Data Definitions for File Control
Operations §B.5.6.1.

B.6.1 Pipes. An implementation that fails write() operations on fildes[0] or

read()s on fildes[1] is not required. Historical implementations (Version 7 and

System V) return the error [EBADF] in such cases. This allows implementations

to set up a second pipe for full duplex operation at the same time. A conforming

application that uses the pipe() function as described in this standard will

succeed whether this second pipe is present or not.

B.6.1.1 Create an Inter-Process Channel. The wording carefully

avoids using the verb “to open” in order to avoid any implication of use of open{)

§5.3.1.

See also Write to a Pipe §B.6.4.2.

B.6.2 File Descriptor Manipulation.
B.6.2.1 Duplicate an Open File Descriptor. The dupO and dup2{)

functions are redundant. Their services are also provided by the fcntl () func¬

tion. They have been included in this standard primarily for historical reasons,

since many existing applications use them.

The dup2{) function is not intended for use in critical regions as a synchroni¬

zation mechanism.

In the description of [EBADF] the case of fildes being out of range is covered

by the given case of fildes not being valid. The descriptions for fildes and fildes2

are different because the only kind of invalidity that is relevant for fildes2 is

whether it is out of range, that is, it does not matter whether fildes2 refers to an

open file when the dup2{) call is made.

If fildes2 is a valid file descriptor, it shall be closed, regardless of whether the

function returns an indication of success or failure, unless fildes2 is equal to

fildes.

B.6 Input and Output Primitives. 251

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.6.3 File Descriptor Deassignment.
B.6.3.1 Close a File. Once a file is closed, the file descriptor no longer

exists, since the integer corresponding to it no longer refers to a file.

The use of interruptible device close routines should be discouraged to avoid

problems with the implicit closes of file descriptors by exec and exit{). The stan¬

dard only intends to permit such behavior by specifying the [EINTR] error case.

B.6.4 Input and Output. Whether the return values of, and nbyte argu¬

ments to, read{) §6.4.1 and write0 §6.4.2 should be signed or unsigned was a

chronic source of controversy. On machines where type int is of sixteen bits,

only 32 767 bytes may be transferred on one function call. If nbyte were

unsigned, it would be convenient for the return value to be of the same type.

But if the returned value were unsigned, it would be necessary to compare it to

{{unsigned)-1) in order to detect an error. Although a definition such as IO_ERR

could be provided to simplify code, still many existing applications would not

conform.

The Working Group decided to make nbyte unsigned, with the results of use of

values greater than {INT_MAX} (often 32 767) being made implementation-

defined. However, the return value was left signed to avoid the error-detection

problem. It is still possible to compare the return value directly with nbyte,
since the C Standard specifies that the comparison will be done unsigned.

Use of the type long was considered in order to avoid the sixteen bit problem,

but not adopted.

New functions like read{) and write() called Iread() and lwrite{) and differing

only in that their nbyte argument and return values would be of type offjt §2.6

were proposed but rejected. The Working Group is not necessarily against the

creation of Iread{) and Iwrite() calls, but was unable to clearly identify the need

given the above. It was also noted that C has similar constraints parallel to

those mentioned above, and that the type of sizeof is not necessarily long (where

the largest object cannot exceed sizeof (char [int max]).

The standard requires that no action be taken when nbyte is zero. This is not

intended to take precedence over detection of errors (such as bad buffer pointers

or file descriptors). This is consistent with the rest of the standard, but the

phrasing here could be misread to require detection of the zero case before any

other errors. A value of zero is to be considered a correct value, for which the

semantics are a no-op.

There were recommendations to add format parameters to read{) and write()
in order to handle networked transfers among heterogeneous file system and

base hardware types. Such a facility may be required for support by the OSI

presentation of layer services. However, the Working Group determined that

this should correspond with similar C Language facilities, and that is beyond

the scope of the 1003.1 effort. The concept was suggested to X3J11 for their con¬

sideration as a possible area for future work.

In 4.3BSD, a read{) or write() that is interrupted by a signal before transfer¬

ring any data does not by default return an [EINTR] error, but is restarted. In

4.2BSD, 4.3BSD, and the Eighth Edition there is an additional function, select(),
whose purpose is to pause until specified activity (data to read, space to write,

252 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

etc.) is detected on specified file descriptors. It is common in applications writ¬

ten for those systems for select {) to be used before readi) in situations (such as

keyboard input) where interruption of I/O due to a signal is desired. But this

approach does not conform, because select() is not in the standard. 4.3BSD

semantics can be provided by extensions to this standard.

The standard permits readi) and writei) to return the number of bytes suc¬

cessfully transferred when interrupted by an error. This is not simply required

because it was not done by Version 7, System III, or System V, and because

some hardware may not be capable of returning information about partial

transfers if a device operation is interrupted. This unhappily does make writing

a Conforming POSIX Application more difficult in circumstances where this

could occur.

Requiring this behavior does not address the situation of pipelined buffers,

such as might be found in streaming tape drives or other devices that read

ahead of the actual requests. The signal interruption will often indicate an

exceptional condition and flush all buffers. Thus the amount read from the dev¬

ice may be different from the amount transferred to the application.

The issue of which files or file types are interruptible is considered an imple¬

mentation design issue. This is often affected primarily by hardware and relia¬

bility issues.

B.6.4.1 Read from a File. The standard does not specify the value of the

file offset after an error is returned; there are too many cases. For program¬

ming errors, such as [EBADF], the concept is meaningless since no file is

involved. For errors that are detected immediate!}7, such as [EAGAIN], clearly

the pointer should not change. After an interrupt or hardware error, however,

an updated value would be very useful and is the behavior of man}7 implementa¬

tions.

References to actions taken on an “unrecoverable error” have been removed.

It is considered beyond the scope of this standard to describe what happens in

the case of hardware errors.

B.6.4.2 Write to a File. An attempt to write to a pipe or FIFO has

several major characteristics:

Atomic/non-atomic

A write is atomic if the whole amount written in one operation is not

interleaved with data from any other process. This is useful when

there are multiple writers sending data to a single reader. Applications

need to know how large a write request can be expected to be per¬

formed atomically. This maximum is called {PIPE_BUF}. The standard

does not say whether write requests for more than {PIPE_BUF} bytes

will be atomic, but requires that writes of {PIPE_BUF} or less bytes shall

be atomic.

Blocking/immediate

Blocking is only possible with 0_N0NBL0CK clear. If there is enough

space for all the data requested to be written immediately, the imple¬

mentation should do so. Otherwise, the process may block, that is,

pause until enough space is available for writing. The effective size of a

pipe or FIFO (the maximum amount that can be written in one

B.6 Input and Output Primitives. 253

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

operation without blocking) may vary dynamically, depending on the

implementation, so it is not possible to specify a fixed value for it.

Complete/partial/deferred

A write request,

int fildes, nbyte, ret;

char *buf;

ret = write {fildes, buf, nbyte)',

may return

complete: ret = nbyte

partial: ret < nbyte

This shall never happen if nbyte < {PIPE_BUF}. If it does

happen (with nbyte > {PIPE_BUF}), the standard does not

guarantee atomicity, even if ret < {PIPE_BUF}, because

atomicity is guaranteed according to the amount

requested, not the amount written,

deferred: ret = -1, errno = [EAGAIN]

This error indicates that a later request may succeed. It

does not indicate that it shall succeed, even if nbyte <

{PIPE_BUF}, because if no process reads from the pipe or

FIFO, the write will never succeed. An application could

usefully count the number of times [EAGAIN] is caused by

a particular value of nbyte > {PIPE_BUF} and perhaps do

later writes with a smaller value, on the assumption that

the effective size of the pipe may have decreased.

Partial and deferred writes are only possible with 0_N0NBL0CK set.

The relations of these properties are best shown in tables.

Write to a Pipe or FIFO with 0 N0NBL0CK clear

immediately

writable: none some nbyte

nbyte <

{PIPE BUF}

atomic atomic atomic

blocking blocking immediate

nbyte nbyte nbyte

nbyte >

{PIPE_BUF}

blocking blocking blocking

nbyte nbyte nbyte

If the 0_N0NBL0CK flag is clear, a write request shall block if the amount

writable immediately is less than that requested. If the flag is set (by fcntli)), a

write request shall never block.

The Working Group decided not to make an exception regarding partial writes

when 0_N0NBL0CK is set. With the exception of writing to an empty pipe, the

standard does not specify exactly when a partial write will be performed since

that would require specifying internal details of the implementation. Every

application should be prepared to handle partial writes when 0_N0NBL0CK is

set and the requested amount is greater than {PIPE_BUF}, just as every

254 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Write to a Pipe or FIFO with O.NONBLOCK set

immediately

writable: none some nbyte

nbyte <

{PIPE BUF}

-1, -1, atomic

[EAGAIN] [EAGAIN] nbyte

nbyte >

{PIPE_BUF}

< nbyte < nbyte

-1, or -1, or -1,

[EAGAIN] [EAGAIN] [EAGAIN]

application should be prepared to handle partial writes on other kinds of file

descriptors.

Where the standard requires -1 returned and errno set to [EAGAIN], most his¬

torical implementations return zero (with the 0_NDELAY flag set: that flag is

the historical predecessor of 0_N0NBL0CK, but is not itself in the standard).

The error indications in the standard were chosen so that an application can

distinguish these cases from end-of-file. While write0 cannot receive an indica¬

tion of end-of-file, read() can, and the Working Group chose to make the two

functions have similar return values. Also, some existing systems (e.g., Eighth

Edition) permit a write of zero bytes to mean that the reader should get an end-

of-file indication: for those systems, a return value of zero from write () indicates

a successful write of an end-of-file indication.

The concept of a {PIPE_MAX} limit (indicating the maximum number of bytes

that can be written to a pipe in a single operation) was discussed by the Work¬

ing Group. The Group decided this concept would unnecessarily limit applica¬

tion writing.

See also the discussion of OJNTONBLOCK in Input and Output Primitives
§B.6.

The standard does not specify the value of the file offset after an error is

returned, there are too many cases. For programming errors, such as [EBADF],

the concept is meaningless since no file is involved. For errors that are detected

immediately, such as [EAGAIN], clearly the pointer should not change. After an

interrupt or hardware error, however, an updated value would be very useful

and is the behavior of many implementations.

The standard does not specify behavior of concurrent writes to a file from

multiple processes. Applications should use some form of concurrency control.

References to actions taken on an “unrecoverable error” have been removed.

It is considered beyond the scope of this standard to describe what happens in

the case of hardware errors.

B.6.5 Control Operations on Files.
B.6.5.1 Data Definitions for File Control Operations. The main dis¬

tinction between the file descriptor flags and the file status flags is scope. The

former apply to a single file descriptor only, while the latter apply to all file

descriptors that share a common open file description (by inheritance through

fork() §3.1.1 or an F_FDUPFD operation with fcntlO §6.5.2). For 0_N0NBL0CK,

this scoping is like that of 0_NDELAY in System V rather than in 4.3BSD, where

the scoping for 0_NDELAY is different from all the other flags accessed via the

B.6 Input and Output Primitives. 255

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

same commands.

For example:

fell = open (pathname, oflags) ;

fd2 = dup (fdl);

fd3 = open (pathname, oflags);

Does an fcntl () call on fdl also apply to fd2 or fd3 or to both? According to the

standard, F_SETFD applies only to fdl, while F_SETFL applies to fdl and fd2 but

not to fd3. This is in agreement with all common historical implementations

except for BSD with the F_SETFL command and the 0_NDELAY flag (which

would apply to fd3 as well). Note that this does not force any incompatibilities

in BSD implementations, because 0_NDELAY is not in the standard. See also

0_N0NBL0CK §B.6.

B.6.5.2 File Control. The ellipsis in the Synopsis is the syntax specified

by the C Standard for a variable number of arguments. It is used because

System V uses pointers for the implementation of file locking functions.

POSIX permits concurrent read and write access to file data using the fcntl()

function; this is a change from the /usr/group Standard and previous drafts,

which included a lockf{) function. Without concurrency controls, this feature

may not be fully utilized without occasional loss of data. Since other mechan¬

isms for creating critical regions, such as semaphores, are not included, a file

record locking mechanism was thought appropriate. The fcntl0 mechanism

may be used to implement semaphores, although access is not first-in-first-out

without extra application development effort.

Data losses occur in several ways. One is that read and write operations are

not atomic, and as such a reader may get segments of new and old data if con¬

currently written by another process. Another occurs when several processes

try to update the same record, without sequencing controls; several updates

may occur in parallel and the last writer will “win.” Another case is a b-tree or

other internal list-based database that is undergoing reorganization. Without

exclusive use to the tree segment by the updating process, other reading

processes chance getting lost in the database when the index blocks are split,

condensed, inserted, or deleted. While fcntl() is useful for many applications, it

is not intended to be overly general, and will not handle the b-tree example well.

This facility is only required for regular files, because it is not appropriate for

many devices such as terminals and network connections.

Since fcntl() works with “any file descriptor associated with that file, however

it is obtained,” the file descriptor may have been inherited through a fork{)

§3.1.1 or exec §3.1.2 operation and thus may affect a file that another process

also has open.

The use of the open file description to identify what to lock requires extra

calls and presents problems if several processes are sharing an open file descrip¬

tion but there are too many implementations of the existing mechanism for the

standard to use different specifications.

But note that while an open file description may be shared through fork (),

locks are not inherited through fork(). Yet locks may be inherited through one

of the exec functions.

256 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

The identification of a machine in a network environment is outside of the

scope of this standard. Thus, an l_sysid member, such as found in System V, is

not included in the locking structure.

Since locking is performed with fcntlO, rather than lockfi), this specification

prohibits use of advisory exclusive locking on a file that is not open for writing.

Before successful return from a F_SETLK or F_SETLKW request, the previous

lock type for each byte in the specified region shall be replaced by the new lock

type. This can result in a previously locked region being split into smaller

regions. If this would cause the number of regions being held by all processes in

the system to exceed a system-imposed limit, the fcntlO function returns -1

with errno set to [ENOLCK].

Mandatory locking was a major feature of the 1984 /usr/group Standard.

For advisory file record locking to be effective, all processes that have access to a

file must cooperate and use the advisory mechanism before doing I/O on the file.

Enforcement-mode record locking is important when it cannot be assumed that

all processes are cooperating. For example, if one user uses an editor to update

a file at the same time that a second user executes another process that updates

the same file, if only one of the two processes is using advisory locking, the

processes are not cooperating. Enforcement mode record locking would protect

against accidental collisions.

Secondly, advisory record locking requires a process using locking to bracket

each I/O operation with lock (or test) and unlock operations. With enforcement

mode file and record locking, a process can lock the file once and unlock when

all I/O operations have been completed. Enforcement mode record locking pro¬

vides a base that can be enhanced, for example, with shareable locks. That is,

the mechanism could be enhanced to allow a process to lock a file so other

processes could read it but none of them could write it.

Mandatory locks were omitted for several reasons:

(1) Mandatory lock setting was done by multiplexing the setgid bit in most

implementations; this was confusing, at best.

(2) Relationship to file truncation as supported in 4.2BSD was not well speci¬

fied.

(3) Any publicly readable file could be locked by anyone. Many historical

implementations keep the password database in a publicly-readable file. A

malicious user could thus prohibit logins. Another possibility would be to

hold open a long-distance telephone line.

(4) Some demand-paged historical implementations offer memory mapped

files, and enforcement cannot be done on that type of file.

Since sleeping on a region is interrupted with any signal, alarmO §3.4.1 may

be used to provide a timeout facility in applications requiring it. This is useful

in deadlock detection. Because implementation of full deadlock detection is not

always feasible, the [EDEADLK] error was made optional.

The l_start element of the flock structure and the offset argument of Iseek ()

are, in some cases, taken as signed offsets from some position in a file, but the

type of these objects is allowed to be unsigned. This apparent conflict is avoided

by the C Standard’s definitions of conversions from signed to unsigned and of

arithmetic operations on unsigned types. If U is of type offjt, the expressions

B.6 Input and Output Primitives. 257

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

U + ((off_t) (—i))

and

U - i

will produce the same result, and, for example,

lseek (fd, (off_t) - 4, SEEK_END);

is well defined.

B.6.5.3 Reposition Read/Write File Offset. The C Standard includes

the functions fgetpos() §B.6.5.3 and fsetpos() §B.6.5.3 which work on very large

files by use of a special positioning type.

Although lseek() may position the file offset beyond the end of the file, this

function does not itself extend the size of the file. While the only function in

POSIX that may extend the size of the file is write() §6.4.2, several Standard C

functions, such as fwriteO, fprintfO, etc., may do so (by causing calls on writeO).

An illegal file offset that would cause [EINVAL] to be returned may be both

implementation-defined and device-dependent (for example, memory may have

few illegal values). A negative file offset may be legal for some devices in some

implementations.

SeefcntlO §B.6.5.2 for a explanation of the use of signed and unsigned offsets

with lseek ().

B.7 Device- and Class-Specific Functions. This section has probably

undergone more debate and revision than any other in the standard. Numerous

historical implementations were investigated, and at least four major proposals

were made.

There are several sources of the difficulties of this section:

(1) The basic Version 7 ioctl{) mechanism is difficult to specify adequately,

due to its use of a third argument that varies in both size and type according

to the second, command, argument.

(2) System III introduced and System V continued ioctl () commands that are

completely different from those of Version 7.

(3) 4.2BSD and other Berkeley systems added to the basic Version 7 ioctl ()

command set; some of these were for features such as job control that POSEX

eventually adopted.

(4) None of the basic historical implementations are adequate in an interna¬

tional environment. This concern is not technically within the scope of

POSIX, but the Working Group did not want to supply unnecessary impedi¬

ments to internationalization.

The 1984 /usr/group Standard attempted to specify a portable mechanism

that application writers could use to get and set the modes of an asynchronous

terminal. The intention of that committee was to provide an interface that was

neither implementation-specific nor hardware dependent. Initial proposals

dealt with high level routines similar to the curses library (available on most

historical implementations). In such an implementation, the user interface

would consist of calls similar to:

258 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

setraw();

setcooked();

It was quickly pointed out that if such routines were standardized, the defini¬

tion of “raw” and “cooked” would have to be provided. If these modes were not

well defined in the standard, application code could not be written in a portable

way. However, the definition of the terms would force low level concepts to be

included in a supposedly high level interface definition.

Recognizing the pitfalls of the high level approach, the Working Group

focused on the necessary low level attributes that were needed to support the

necessary terminal characteristics (e.g., line speeds, raw mode, cooked mode,

etc.). After considerable debate, a structure similar to, but more flexible than,

the AT&T System III termio was agreed upon. The format of that structure,

referred to as the termios structure, has formed the basis for the current sec¬

tion.

A method is needed to communicate with the system about the termios infor¬

mation. Proposals have included:

(1) The ioctl () function as in System V. This has the same problems as men¬

tioned above for the Version 7 ioctl () function, and is basically identical to it.

Another problem is that the direction of the command (whether information

is written from or read into the third argument) is not specified: in historical

implementations only the device driver knows for sure. This is a problem for

networked implementations. It is also a problem that there is no size param¬

eter to specify the variable size of the third argument, and similarly for its

type.

(2) An iocntl() function with additional arguments specifying direction, type,

and size. But these new arguments would not help application writers, who

would have no control over their values, which would have to match each

command exactly. The new arguments do, however, solve the problems of

networked implementations. And iocntl() is implementable in terms of

ioctl () on historical implementations (without need for modifying existing

code), although it is easy to update existing code to use the arguments

directly.

(3) A termcntli) function with the same arguments as proposed for the

iocntl() function. The difference would be that termcntli) would be limited to

terminal interface functions: there would be other interface functions, such

as a tapecntli) function for tape interfaces, rather than a single general dev¬

ice interface routine.

(4) Unspecified functions. The issue of what the interface function(s) should

be called was sidestepped for some time after the Trial Use Standard while

the Working Group concentrated on the details of the information to be han¬

dled. The resulting specification resembles the information in System V, but

attempts to avoid problems of case, speed, networks, and internationaliza¬

tion.

(5) Specific tc*() functions to replace each ioctli) function were finally incor¬

porated into the standard, instead of any of the above-mentioned proposals.

B.7 Device- and Class-Specific Functions. 259

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

The issue of modem control was excluded from POSIX on the grounds that:

(1) It was concerned with setting and control of hardware timers;

(2) The appropriate timers and settings vary widely internationally;

(3) Feedback from X/Open indicated that this facility was not consistent with

European needs, and that specification of such a facility was not a require¬

ment for portability from their “international perspective.”

B.7.1 General Terminal Interface. Although the Working Group

attempted to take into account needs of both interface implementors and appli¬

cation developers throughout the standard, more attention was paid to the

needs of the latter in this section. This is because, while many aspects of the

programming interface can be hidden from the user by the application

developer, the terminal interface is usually a large part of the user interface.

Although to some extent the application developer can build missing features or

work around inappropriate ones, the difficulties of doing that are greater in the

terminal interface than elsewhere. For example, efficiency prohibits the aver¬

age program from interpreting every character passing through it in order to

simulate character erase, line kill, etc. These functions should usually be done

by the operating system, possibly at interrupt level.

The tc*() functions were introduced as a way of avoiding the problems

inherent in the traditional ioctl {) §B.7.1 function and in variants of it that were

proposed. For example, tcsetattr () is specified in place of the use of the TCSETA

ioctl () command function. This allows specification of all the arguments in a

manner consistent with the C Standard, unlike the varying third argument of

ioctl (), which is sometimes a pointer (to any of many different types) and some¬

times an int.

The advantages of this new method include:

(1) It allows strict type checking.

(2) The direction of transfer of control data is explicit.

(3) Portable capabilities are clearly identified.

(4) The need for a general interface routine is avoided.

(5) Size of the argument is well-defined (there is only one type).

The disadvantages include:

(1) No historical implementation uses the new method.

(2) There are many small routines instead of one general-purpose one.

(3) The historical parallel with fcntl() §6.5.2 is broken.

B.7.1.1 Interface Characteristics.
B.7.1.1.1 Opening a Terminal Device File. Further implications of

the effects of CLOCAL are discussed in Control Modes §7.1.2.4.

B.7.1.1.2 Process Groups.
B.7.1.1.3 The Controlling Terminal. The standard does not specify a

mechanism by which to allocate a controlling terminal. This is normally done

by a system utility (such as getty) and is considered an administrative feature

outside the scope of this standard.

Traditional implementations allocate controlling terminals on certain open{)

calls. Since open () is part of the standard, its behavior had to be dealt with.

The Working Group did not wish to require the traditional behavior, because it

260 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

is not very straightforward or flexible for either implementations or applica¬

tions. However, because of its prevalence, it was not practical to disallow this

behavior either. Thus a mechanism was standardized to ensure portable,

predictable behavior in open() §B.5.3.1.

B.7.1.1.4 Terminal Access Control. The access controls described in

this section apply only to a process that is accessing its controlling terminal. A

process accessing a terminal that is not its controlling terminal is effectively

treated the same as a member of the foreground process group. While this may

seem unintuitive, note that these controls are for the purpose of job control, not

security, and job control relates only to a process’s controlling terminal. Normal

file access permissions handle security.

If the process calling read{) or write () is in a background process group that is

orphaned, it is not desirable to stop the process group, as it is no longer under

the control of a job control shell which could put it into foreground again.

Accordingly, calls to read{) or write() functions by such processes receive an

immediate error return. This is different than in 4.2BSD, which kills orphaned

processes which receive terminal stop signals.

The foreground/background/orphaned process group check performed by the

terminal driver must be repeatedly performed until the calling process moves

into the foreground or until the process group of the calling process becomes

orphaned. That is, when the terminal driver determines that the calling process

is in the background and should receive a job control signal, it sends the

appropriate signal (SIGTTIN or SIGTTOU) to every process in the process group

of the calling process and then it allows the calling process to immediately

receive the signal. The latter is typically performed by blocking the process so

that the signal is immediately noticed. Note, however, that after the process

finishes receiving the signal and control is returned to the driver, the terminal

driver must reexecute the foreground/background/orphaned process group

check. The process may still be in the background, either because it was contin¬

ued in the background by a job control shell, or because it caught the signal and

did nothing.

The terminal driver repeatedly performs the foreground/back¬

ground/orphaned process group checks whenever a process is about to access the

terminal. In the case of write() or the Control Functions §7.2, the check is

performed at the entry of the function. In the case of read(), the check is per¬

formed not only at the entry of the function but also after blocking the process to

wait for input characters (if necessary). That is, once the driver has determined

that the process calling the read{) function is in the foreground, it attempts to

retrieve characters from the input queue. If the queue is empty, it blocks the

process waiting for characters. When characters are available and control is

returned to the driver, the terminal driver must return to the repeated fore¬

ground/background/orphaned process group check again. The process may have

moved from the foreground to the background while it was blocked waiting for

input characters.

See also job control §B.2.3.

B.7 Device- and Class-Specific Functions. 261

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.7.1.1.5 Input Processing and Reading Data.
B.7.1.1.6 Canonical Mode Input Processing. The term “character”

is intended here. ERASE should erase the last character, not the last byte. In

the case of multibyte characters, these two may be different.

4.3BSD has a WERASE character that erases the last “word” typed (but not

any preceding blanks or tabs). A word is defined as a sequence of non-blank

characters, with tabs counted as blanks. Like ERASE, WERASE does not erase

beyond the beginning of the line. This WERASE feature has not been specified

in the standard because it is difficult to define in the international environment.

It is only useful for languages where words are delimited by blanks. In some

ideographic languages, such as Japanese and Chinese, words are not delimited

at all. The WERASE character should presumably take one back to the begin¬

ning of a sentence in those cases: practically, this means it would not get much

use for those languages.

B.7.1.1.7 Non-Canonical Mode Input Processing. Some points to

note about MIN and TIME:

(1) In the preceding explanations one may notice that the interactions of MIN

and TIME are not symmetric. For example, when MIN > 0 and TIME = 0,

TIME has no effect. However, in the opposite case where MIN = 0 and TIME >

0, both MIN and TIME play a role in that MIN is satisfied with the receipt of a

single character.

(2) Also note that in case A (MIN > 0, TIME > 0), TIME represents an inter¬

character timer while in case C (MIN = 0, TIME > 0) TIME represents a read

timer.

These two points highlight the dual purpose of the MIN/TIME feature. Cases

A and B, where MIN > 0, exist to handle burst mode activity (e.g., file transfer

programs) where a program would like to process at least MIN characters at a

time. In case A, the intercharacter timer is activated by a user as a safety meas¬

ure; while in case B, it is turned off.

Cases C and D exist to handle single character timed transfers. These cases

are readily adaptable to screen-based applications that need to know if a charac¬

ter is present in the input queue before refreshing the screen. In case C the

read is timed; while in case D, it is not.

Another important note is that MIN is always just a minimum. It does not

denote a record length. That is, if a program does a read of 20 bytes, MIN is 10,

and 25 characters are present, 20 characters shall be returned to the user.

B.7.1.1.8 Writing Data and Output Processing.
B.7.1.1.9 Special Characters.
B.7.1.1.10 Modem Disconnect.
B.7.1.1.11 Closing a Terminal Device File.

B.7.1.2 Settable Parameters.
B.7.1.2.1 termios Structure. This structure is part of an interface

which in general retains the historic grouping of flags. Although a more optimal

structure for implementations may be possible, the degree of change to applica¬

tions would be significantly larger.

262 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

B.7.1.2.2 Input Modes. Some historical implementations treated a

long break as multiple events, as many as one per character time. The wording

in the standard explicitly prohibits this.

Although the ISTRIP flag is normally superfluous with today’s terminal

hardware and software, it is historically supported. Therefore, applications may

be using ISTRIP, and there is no technical problem with supporting this flag.

Also, applications may wish to receive only 7-bit input bytes, and may not be

connected directly to the hardware terminal device (for example, when a connec¬

tion traverses a network).

Also, there is no requirement in general that the terminal device ensure that

high-order bits beyond the specified character size are cleared. ISTRIP provides

this function for 7-bit characters, which are common.

In dealing with multibyte characters, the consequences of a parity error in

such a character, or worse in an escape sequence affecting the current character

set, are beyond the scope of this standard and are best dealt with by the applica¬

tion processing the multibyte characters.

B.7.1.2.3 Output Modes. This standard does not describe postprocess¬

ing of output to a terminal, or detailed control of that from a portable applica¬

tion. (That is, translation of newline to carriage return followed by linefeed or

tab processing.) There is nothing that a portable application should do to its

output for a terminal because that would require knowledge of the operation of

the terminal. It is the responsibility of the operating system to provide postpro¬

cessing appropriate to the output device, whether it is a terminal or some other

type of device.

Extensions to the standard to control the type of postprocessing already exist,

and are expected to continue into the future. The control of these features is

primarily to adjust the interface between the system and the terminal device so

the output appears on the display correctly. This should be set up before use by

any application.

In general, both the input and output modes should not be set absolutely, but

rather modified from the inherited state.

B.7.1.2.4 Control Modes.
B.7.1.2.5 Local Modes. Non-canonical mode is provided to allow fast

bursts of input to be read efficiently while still allowing single character input.

The ECHONL function has historically been in many implementations. Since

there seems to be no technical problem with supporting ECHONL it is included

in the standard to increase consensus.

The alternate behavior possible when ECHOK or ECHOE are specified with

ICANON is permitted as a compromise depending on what the actual terminal

hardware can do. Erasing characters and lines is preferred, but is not always

possible.

B.7.1.2.6 Special Control Characters. Permitting VMIN and VTIME

to overlap with VEOF and VEOL was a compromise for existing implementa¬

tions. Only when backwards compatibility of object code is a serious concern to

an implementor should an implementation continue this practice. Correct

applications which work with the overlap (at the source level) should also work

if it is not present, but not the reverse.

B.7 Device- and Class-Specific Functions. 263

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.7.1.2.7 Baud Rate Functions. The term baud is used historically

here, but is not technically correct. This is properly “bits per second,” which

may not be the same as “baud.” However, the term is used because of the his¬

torical usage and understanding.

These functions do not take numbers as arguments, but rather symbolic

names. There are two reasons for this: historically numbers were not used

because of the way the rate was stored in the data structure. This is retained

even though an interface function is now used. Secondly, and more importantly,

only a limited set of possible rates is at all portable, and this constrains the

application to that set. There is nothing to prevent an implementation to

accept, as an extension, a number (such as 126) if it wished, and because the

encoding of the Bxxx symbols is not specified, this can be done so no ambiguity

is introduced.

The standard specifies that if an attempt to set the input baud rate to zero is

made by cfsetispeedO, the input baud rate will be instead set to the output baud

rate by cfsetispeedO. This allows implementations to provide support for split

baud rates or not.

In historical implementations, the baud rate information is traditionally kept

in c_cflag. Applications should be written to presume that this might be the

case (and thus not blindly copy cjcfLag) but not to rely on it, in case it is in some

other field of the structure. Setting the c_cflag field absolutely after setting a

baud rate is a bad idea because of this. In general, the unused parts of the flag

fields might be used by the implementation, and should not be blindly copied

from the descriptions of one terminal device to another.

B.7.2 General Terminal Interface Control Functions. The restrictions

described in this section on access from processes in background process groups

controls apply only to a process that is accessing its controlling terminal. (See

Terminal Access Control §B.7.1.1.5).

Care must be taken when changing the terminal attributes. Applications

should always do a tcgetattrO, save the termios structure values returned, and

then do a tcsetattrO changing only the necessary fields. The application should

use the values saved from the tcgetattrO to reset the terminal state whenever it

is done with the terminal. This is necessary because terminal attributes apply

to the underlying port, and not to each individual open instance; that is, all

processes that have used the terminal see the latest attribute changes.

A program which uses these functions should be written to catch all signals

and take other appropriate actions to assure that when the program terminates,

whether planned or not, the terminal device’s state is restored to its original

state. Not doing this is at best antisocial. See also General Terminal Inter¬
face §B.7.1.

B.7.2.1 Get and Set State.
B.7.2.2 Line Control Functions.

264 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

B.7.2.3 Get Foreground Process Group ID. The tcgetpgrpi) function

has identical functionality to the 4.2BSD ioctl() function TIOCGPGRP except for

the additional security restriction that the referenced terminal must be the con¬

trolling terminal for the calling process.

B.7.2.4 Set Foreground Process Group ID. The tcsetpgrp () function

has identical functionality to the 4.2BSD ioctl() function TIOCSPGRP except for

the additional security restrictions that the referenced terminal must be the

controlling terminal for the calling process and the specified new process group

must be currently in use in the caller's session.

See the discussion of C functions in POSIX and the C Standard §B.1.4.

B.8 Language-Specific Services for the C Programming Language.
Common usage may be defined by historical publications as The C Program¬

ming Language, by Kemighan and Ritchie, fisted in Bibliographic Notes
§B.ll.

The null set of supported languages is allowed.

The fist of functions comprises the fist of “common usage” functions, plus

those that are not in common usage that are addressed by this standard. The

rules for common usage conformance to the standard address whether the func¬

tions that are not generally considered in common usage are implemented.

There are a large number of functions found in various systems that, although

frequently found, are not broadly enough available to be considered in common

usage. The signal() function (although in common usage) is omitted because it

is the belief of the working group that programs conforming to POSIX should use

sigaction () instead.

B.8.1 Referenced C Language Routines.
B.8.1.1 Extensions to Time Functions. System V uses the TZ environ¬

ment variable to set some information about time. It has the form (spaces

inserted for clarity):

std offset dst

where the first three characters (std) are the name of the standard time zone,

the digits which follow (offset) represent the time added to the local time zone to

arrive at Coordinated Universal Time, and the next three characters (dst) are

the name of the summer time zone. The meaning of offset implies that most

sites west of the Prime Meridian will have a positive offset (preceded by an

optional plus sign, while most sites east of the Prime Meridian will have a

negative offset (preceded by a minus sign, Both std and offset are required;

if dst is missing, summer time does not apply.

Currently, the UNIX system localtime 0 function translates a number of

seconds since the Epoch §2.3 into a detailed breakdown of that time. This

breakdown includes:

(1) Time of day: Hours, minutes, and seconds.

(2) Day of the month, month of the year, and the year.

(3) Day of the vreek and day of the year (Julian day).

(4) Whether or not summer (daylight saving) time is in effect.

B.8 Language-Specific Services for the C Programming Language. 265

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

It is the first and last items that present a nasty problem: The time of the day

depends on whether or not summer time is in effect. Whether or not summer

time is in effect depends on the locale and date.

Most historical systems had time zone rules compiled into the C library.

These rules usually represented United States rules for 1970 to 1986. This did

not accommodate the changes of 1987, nor other world variations (Mi-hour time,

double daylight time, and solar time being common but not complete examples).

Some recent systems addressed these problems in various ways.

Having the rules compiled into the program made binary distributions that

accommodated all the variations (including sudden changes to the law), and

per-process rule changes, difficult at best.

The current standard includes a way of specifying the time zone in the TZ

string, but only permits one time zone pattern at a time, thus not dealing with

different patterns in previous years, and does not deal with such issues as solar

time. Methods exist to deal with all the problems above. The method in this

standard appears to be simpler to implement and may be faster in execution

when it is adequate.

The current standard also permits an implementation-defined rule set which

begins with a colon. (The previous format cannot begin with a colon.)

Rules of the form AAAn or AAAnBBB (the style used in many historical imple¬

mentations) do not carry with them any statement about the start and end of

daylight time (neither the date nor the time of day; the default to 02:00 not

applying if no rule is present at all), thus implying that the implementation

must provide the appropriate rule s. An implementation may provide those

rules in any way it sees fit, as long as the constraints implied by the TZ string as

provided by the user are met. Specifically the implementation may use the

string as an index into a table, which may reside either on disk or in memory.

Such tables could contain rules which are sensitive to the year to which they are

applied, again since the user did not specify the exact rule. (Although impracti¬

cal, every possible TZ string could be represented in a table, as a detail of imple¬

mentation; the less specific the user is about the TZ string, the more freedom

the implementation has to interpret it.)

There is at least one public domain time zone implementation (the

Olson/Harris method) that uses non-specific TZ strings and a table, as described

above and handles all the general time zone problems mentioned above. This

implementation also appears in a late release of 4.3BSD. If this implementation

honors all the specifications provided in the TZ string it would conform to the

standard. Nothing precludes the implementation from adding information

beyond that given by the user in the TZ string.

The fully-specified TZ environment variable extends the historical meaning to

also include a rule for when to use standard time and when to use summer time.

Southern hemisphere time zones are supported by allowing the first rule date

(change to summer time) to be later in the year than the second rule date

(change to standard time).

This mechanism accommodates the “floating day” rules (for example “last

Sunday in October”) used in the U.S. and Canada (and the European Economic

Community for the last several years). In theory, TZ only has to be set once and

266 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

then never touched again unless the law is changed.

Julian dates are proposed with two syntaxes, one zero-based, the other one-

based. They are here for historical reasons. The one-based counting (J) is used

more commonly in Europe (and on calendars people may use for reference). The

zero-based counting in) is used currently in some implementations and should

be kept for historical reasons as well as being the only way to specify Leap day.

It is expected the leading colon format will allow systems to implement an

even broader range of specifications for the time zone without having to resort

to a file, or to permit naming an explicit file containing the appropriate rules.

The specification in the standard for TZ assumes that very few programs need

to be historically accurate as long as the relative timing of two events is

preserved.

Summer time is governed by both locale and date. This proposal only handles

the locale dependency. Using an implementation-defined file format for either

the entire TZ variable or to specify the rules for a particular time zone is allowed

as a means by which both the locale and date dependency can be handled.

Since historical implementations do not examine TZ beyond the assumed end

of dst, it is possible to literally extend TZ and break very little existing software.

Since much historical software doesn’t work anyway outside the U.S. time

zones, minor changes to TZ (such as extending offset to be hh :mm—as long as

the colon and minutes, :mm, are optional) should have little effect.

B.8.1.2 Extensions to setlocale () Function. The C Standard defines a

collection of interfaces to support internationalization. One of the most signifi¬

cant aspects of these interfaces is a facility to set and query the international

environment. The international environment is a repository of information that

affects the behavior of certain functionality, namely:

(1) Character Handling

(2) String Handling (i.e., collating)

(3) Date/Time Formatting

(4) Numeric Editing.

The setlocale () function provides the application developer with the ability to

set all or portions, called categories, of the international environment. These

categories correspond to the areas of functionality, mentioned above. The syn¬

tax for setlocale () is the following:

char *setlocale (category, locale)

int category;

char *locale

where category is the name of one of five categories, namely:

LC_CTYPE
LC_COLLATE
LC_TIME
LC.MONETARY
LC_NUMERIC

In addition, a special value, called LC_ALL, directs setlocale () to set all

categories.

B.8 Language-Specific Services for the C Programming Language. 267

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

The locale argument is a character string that points to a specific setting for

the international environment, or locale. There are three preset values for the

locale argument, namely:

"C" Specifies the minimal environment for C translation. If setlo¬

caleO is not invoked, the "C" locale is the default.

" " Specifies an implementation-defined native environment.

NULL Used to direct setlocaleO to query the current international

environment and return the name of the locale.

This section describes the behavior of an implementation of setlocale () and its

use of environment variables in controlling this behavior on POSIX-based sys¬

tems. There are two primary uses of setlocale ():

(1) Querying the international environment to find out what it is set to;

(2) Setting the international environment, or locale, to a specific value.

The following subsections describe the behavior of setlocale () in these two

areas. Since it is difficult to describe the behavior in words, examples will be

used to illustrate the behavior of specific uses.

To query the international environment, setlocale () is invoked with a specific

category and the NULL pointer as the locale. The NULL pointer is a special

directive to setlocale () that tells it to query rather than set the international

environment. Below is the syntax for using setlocale () to query the name of the

international environment:

setlocale (

LC_ALL

LCjCTYPE

LCJCOLLATE

< LCTIME

LCJSTUMERIC

LCJMONETARY

, {char *) NULL);

The setlocale () function returns the string corresponding to the current inter¬

national environment. This value may be used by a subsequent call to setlo¬

caleO to reset the international environment to this value. However, it should

be noted that the return value from setlocale () is a pointer to a static area

within the function and is not guaranteed to remain unchanged (i.e., it may be

modified by a subsequent call to setlocaleO). Therefore, if the purpose of calling

setlocale () is to save the value of the current international environment so it can

be changed and reset back later, the return value should be copied to a charac¬

ter array in the calling program.

There are three ways to set the international environment with setlocaleO:

setlocale(category, string)

This usage will set a specific category in the international

environment to a specific value corresponding to the value of

the string. A specific example is provided below:

setlocale(LC_ALL, "Fr_FR.8859");

268 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

In this example, all categories of the international environ¬

ment will be set to the locale corresponding to the string

"Fr_FR. 8859", or the French language as spoken in France

using the ISO 8859/1 code set.

If the string does not correspond to a valid locale, setlocale ()

will return a NULL pointer and the international environment

is not changed. Otherwise, setlocale () will return the name of

the locale just set.

setlocale (category, "C")

The C Standard draft proposal states that one locale must exist

on all conforming implementations. The name of the locale is

"C", and corresponds to a minimal international environment

needed to support the C programming language,

setlocale (category, "")

This will set a specific category to an implementation-defined

default. For POSIX-based systems, this corresponds to the value

of the environment variables.

B.8.2 FILE-Type C Language Functions.
B.8.2.I Map a Stream Pointer to a File Descriptor. Without some

specification of which file descriptors are associated with these streams, it is

impossible for an application to set up the streams for another application it

starts with fork() §3.1.1 and exec §3.1.2. In particular, it would not be possible

to write a portable version of the sh command processor (although there may be

other constraints that would prevent that portability).

B.8.2.2 Open a Stream on a File Descriptor. The file descriptor may

have been obtained from open{) §5.3.1, creati) §5.3.2,pipe() §6.1.1, dup{) §6.2.1,

fcntlO §6.5.2, or inherited through fork{) §3.1.1 or exec §3.1.2, or perhaps

obtained by implementation-dependent means, such as the 4.3BSD socket() call.

The meanings of the type arguments of fdopenO and fopen() differ. With fdo-

pen(), open for write ("w" or "w+") does not truncate and append ("a" or "a+")

cannot create for writing. There is no need for "b" in the format due to the

equivalence of binary and text files in POSIX. See Text vs. binary file modes
§B.1.4.

B.8.2.3 Interactions of Other FILE-Type C Functions. Note that the

existence of open streams on a file implies open file descriptors, and thus affects

the timestamps of the file. The intent is that using stdio routines to read a file

must eventually update the access time, and using them to write a file must

eventually update the modify and change times. However, the exact timing of

marking the stjatime, stjctime, and stjntime fields cannot be specified, as that

would be tantamount to mandating a particular buffering strategy.

The purpose of the rules about handles is to give the application writer a

fighting chance of writing a program that uses stdio and does some shell-like

things, in particular create an open file for a child process to use, where both the

parent and child wish to use stdio, with the consequences of buffering. This in

most cases cannot happen in Standard C (because there is no way to create a

second handle), but the systemO function can cause this to occur, at least in

B.8 Language-Specific Services for the C Programming Language. 269

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

most historical implementations.

There are some implied rules about inter-process synchronization, but no

mechanism is given, intentionally. In the simplest case, if the parent meets the

requirements on all its files, and then performs a fork{) and a waiti) before

further activity on them (and a fflushi) on input files after that), the synchroni¬

zation desired will be achieved. Synchronization could in theory be done with

signals, but the only likely case is the one just described. The terms handle and

active handle were required to make the text readable, and are not intended for

use outside this discussion.

Note that since exit() implies _exit(), a file descriptor is also closed by exitO.

Because a handle is either freshly opened, or if not must have handed off con¬

trol of the open file description as specified, the new handle is always ready to

be used (except for seeks), with no initialization. (A freshly opened stream has

not yet done any reads, as required by Standard C, at least implicitly by the

rules associated with setvhufi).)

In requiring the seek to an appropriate location for the new handle, the appli¬

cation is required to know what it is doing if it is passing streams around with

seeks involved. If the required seek is not done, the results are undefined (and

in fact the program probably won’t work on many common implementations).

A naive program used as a utility can be reasonably expected to work properly

when the constraints are met by the calling program, because it will not hand

off file descriptors except with closes.

The exec functions are treated specially, because the application should

always fflushi) everything before performing one of the exec functions. If stdout

is available on the same open file description after the exec, it is a different

stream, at least because any unflushed data will be discarded during the exec.

(Similarly for stdin.) Process termination is also special because a process ter¬

minating due to a signal or _exit{) will not have the buffers flushed.

The standard does not specify asynchronous I/O, and when dealing with asyn¬

chronous I/O the problem of coordinating access to streams will be more difficult.

If asynchronous I/O is provided as an extension, the problems it introduces in

this area should be addressed as part of that extension.

It may be that functions such as system () and popen (), currently being con¬

sidered by P1003.2, will have to perform some of these operations.

The introduction of underlying functions allows generic reference to errno

values returned by those functions, and also to other side effects (as required in

the handles discussion above). It is not intended to specify implementation,

although many implementations may in fact use those functions. Standard C

says very little about errno in the context of stdio. In the more restricted POSIX

environment, providing a reasonable set of errno values become possible.

Specifying the semantics with respect to line buffered streams is difficult

because specifying exactly what a line is gets complex. Rather than respecify it,

the semantics of fgets() and fputsi) are used, as they have the right conceptual

effect. The problem with this is that ordinary files require some kind of reada-

head to find the separating linefeed. Thus the addition that any implied buffer¬

ing doesn’t exist for the purposes of the discussion. In a typical system, the real

meaning is “seek back to the last linefeed you actually consumed, assuming you

270 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

read the file beyond it in the first place.” This cannot be said directly because it
presumes an ordinary file, which is not presumed in this section; remote access
to a line-oriented file might be likely. Line-buffered output streams don’t have
the problem because they cannot buffer back, by definition.

B.8.2.3.1 fopenO-
B.8.2.3.2 fclose(). The fclose() function is required to synchronize the

buffer pointer with the file pointer (unless it already is, which would be the case
at EOF). Functionality equivalent to:

fseek {stream, ftell {stream) , seek set)

does this nicely. The exception for devices incapable of seeking is an obvious
requirement, but the implication is that there is no way to reliably read a buf¬
fered pipe and hand off handles. This is reality as it is in historical implementa¬
tions, and is inherent in any “readahead” buffering scheme. This limitation is
also reflected in the handle hand-off* rules.

Note that the last byte read from a stream, and the last byte read from an
open file description are not necessarily the same; in most cases the open file
description’s pointer will be past that of the stream because of the stream’s rea¬
dahead.

B.8.2.3.3 freopen ().
B.8.2.3.4 fflushO. The fflushO function is required to flush its buffers

on input, and resynchronize the buffer pointer. The reasoning is quite similar to
fsync (). Standard C already requires this for input.

B.8.2.3.5 fgetc (), fgets (), fread (), getcQ, getcharO, getsO, scanfO,
fscanfO.

B.8.2.3.6 fputci), fputs (), fwrite (), putc (), putcharO, puts (), printfO,
vprintfO, vfprintfO.

B.8.2.3.7 fseekO, rewind(). The fseekO function must operate as speci¬
fied, to make the case where seeking is being done wTork. The key requirement
is to avoid an optimization such that an fseekO would not result in an Iseek() if
the fseekO pointed within the current buffer. This optimization is valuable in
general, so it is only required after an fflushO.

B.8.2.3.8 perror().
B.8.2.3.9 tmpfilei).
B.8.2.3.10 ftell ().
B.8.2.3.11 Error Reporting. [ENOMEM] wras considered for addition

as an explicit possible error, because most implementations use malloc (). This
was not done because the scope does not include “out of resource” errors.
Nevertheless this is the most likely error to be added to the possible error condi¬
tions. Other implementation-defined errors, particularly in the f*openO family,
are to be expected, and the generic rules about adding (or deleting) possible
errors apply, except that it is expected that implementation-defined changes in
the error set returned by openO would also apply to fopenO (unless the condi¬
tion can’t possibly happen in fopenO, which may be possible, but appears
unlikely.).

B.8 Language-Specific Services for the C Programming Language. 271

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

B.8.2.3.12 exit (), abort().
B.8.2.4 Operations on Files — the remove () Function.

B.8.3 Other C Language Functions.
B.8.3.1 Non-Local Jumps. The C Standard specifies various restrictions

on the usage of the setjmp () macro in order to permit implementors to recognize
the name in the compiler and not implement an actual function. These same
restrictions apply to the sigsetjmpO macro.

There are processors that cannot easily support these calls, but the Working
Group did not consider that a sufficient reason not to include them.

The distinction between setjmp O/longjmpO and sigsetjmp{)/siglongjmp{) is
only significant for programs which use the sigaction (), sigprocmaskO, or sig-
suspend() functions. Since earlier implementations did not have signal masks,
only a single pair was provided.

4.2BSD and 4.3BSD systems provide functions named _setjmp() and
_longjmp{) which, together with setjmp O/longjmpO, provide the same func¬
tionality as sigsetjmp()/siglongjmp(). On those systems, setjmp()/longjmp()
save and restore signal masks, while _setjmp{)/JongjmpO do not. On System V
Release 3 and in corresponding issues of the SVID, setjmp()/longjmp() are expli¬
citly defined not to save and restore signal masks. In order to permit existing
practice in both cases, the Working Group decided not to specify the relation of
setjmp ()/longjmp{) to signal masks and to define a new set of functions instead.

B.8.3.2 Set Time Zone.

B.9 System Databases. At one time, this chapter was entitled Passwords,
but this title was changed as all references to a “password file” were changed to
refer to a “user database.”

B.9.1 System Databases. There are no references in the standard to a
passwd file or a group file and there is no requirement that the group or passwd
databases be kept in ASCII files. Many large timesharing systems use passwd
databases that are hashed for speed. Certain security classifications prohibit
certain information in the passwd database from being publicly readable.

The encoded password fields were deleted from both the passwd and group
databases in order to meet the requirements of the US Government NBS Pass¬
word FIPS (Publication 112, Password Usage, dated May 30, 1985, and FIPS con¬
cerns in general).

The term “encoded” is used instead of “encrypted” in order to avoid the imple¬
mentation connotations (such as reversibility, or use of a particular algorithm)
of the latter term.

The functions getgrent{), setgrent(), endgrenti), getpwentO, setpwentO, and
endpwentO are not included in this standard because they provide a linear data¬
base search capability that is not generally useful (the getpwuidO, getpwnamO,
getgrgid{), and getgrnami) functions are provided for keyed lookup), and
because in certain distributed systems, especially those with different authenti¬
cation domains, it may not be possible or desirable to provide an application
with the ability to browse the system databases indiscriminately.

272 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

B.9.2 Database Access.
B.9.2.1 Group Database Access.
B.9.2.2 User Database Access.

B.10 Data Interchange Format.

B.10.1 Archive/Interchange File Format. There are three areas of
interest associated with file interchange:

(1) Media. There are other existing standards that define the media used
for data interchange.
(2) User Interface. This rightfully should be in the IEEE Std 1003.2 stan¬
dard.
(3) Format of the Data. None of the 1003 Working Groups address topics
that match this area. The Working Groups felt that this area is closest to
the types of things that should be in the IEEE Std 1003.1-1988 document, as
the level of that document most closely matches the level of data required.

There appear to be two programs in wide use today, tar and cpio. There are
large camps of supporters for each program. Four options were considered for
the standard:

(1) Make both formats optional. This was considered unacceptable because it
does not allow any portable method for data interchange.
(2) Require one format.
(3) Require one format with the other optional.
(4) Require both formats.

Both the Extended cpio and the Extended tar Formats are required by this
standard.

There are a number of concerns about defining extensions that are known to
be required by existing implementations. Failure to specify a consistent method
to implement these extensions will severely limit portability of the program and,
more importantly, will create severe confusion if these extensions are later
standardized.

Two of these extensions that the Working Group felt should be documented
are symbolic links, that were defined by 4.2BSD and 4.3BSD systems, and high
performance (or contiguous) files, that exist in a number of implementations
and are now being considered for the 1003.4 standard.

By defining these extensions, implementors are able to recognize these
features and take appropriate implementation-defined actions for these files.
For example, a high performance file could be converted to a regular file if the
system didn’t support high performance files; symbolic links might be replaced
by normal hard links.

The Working Group has held to the policy of not defining user interfaces to
utilities by avoiding any description of a tar or cpio command. The behavior
of the former command was described in some detail in previous drafts.

The possibilities for transportable media include, but are not limited to:
(1) V2-inch magnetic tape, 9 track, 1600 BPI
(2) V^-inch magnetic tape, 9 track, 6250 BPI
(3) QIC-11, 14-inch streamer tape
(4) QIC-24, 14-inch streamer tape

B.10 Data Interchange Format. 273

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

(5) 5.25-inch floppies, 9 512-byte sectors/track, 96 TPI
(6) 5.25-inch floppies, 9 512-byte sectors/track, 48 TPI
(7) IBM 3480 cartridges.

Specification of such media was considered part of the scope of the Trial Use
Standard, but has been excluded from the Full Use Standard.

The utilities are not restricted to work only with transportable media: exist¬
ing related utilities are often used to transport data from one place to another in
the file hierarchy.

The formats are included to provide implementation-independent ways to
move files from one system to another and also to provide ways for a user to
save data on a transportable medium to be restored at a later date. Unfor¬
tunately, these two goals can contradict each other as system security problems
are easy to find in tape systems if they are not protected. Thus there are strict
requirements about how the mechanism to copy files shall react when operated
by both privileged and nonprivileged users. The general concept is that a
privileged (historically using the ISUID bit in the file’s mode with the owner UID
of the file set to super-user) version of the utility (or one operated by a
privileged user) can be used as a save/restore scheme, but a nonprivileged ver¬
sion is used to interpret media from a different system without compromising
system security.

Regardless of the archive format used, guidelines should be observed when
writing tapes to be read on other systems. Assuming the target system is POSIX
comformant, archives created should only use definitions found in POSIX (e.g.,
file types, minimum values as found in Chapter 2) and should only use relative
pathnames (i.e., no leading slash).

Both tar and cpio formats have traditionally been used for both exchange of
information and archiving. These formats have a number of features that facili¬
tate archiving, for example, the ability to store information about a file which is
a device. This standard does not assume this kind of data is portable. It is
intended that these formats provide for the portable exchange of source infor¬
mation between dissimilar systems. This requires specification of the character
set to be used (ASCII) when these formats are used to write source information.

All data written by format-creating utilities and read by format-reading utili¬
ties is an ordered stream of bytes. The first byte of the stream should be first on
the medium, the second byte second, etc. On systems where the hardware
swaps bytes or otherwise rearranges the byte stream on output or input, the
implementor of these utilities must compensate for this, so that the data on the
storage device retains its ordered nature.

This standard describes two different formats for data archiving and inter¬
change. Through the balloting process the Working Group found strong support
for both formats. This is a clear indication of the need for both formats due to
existing practice. The balloting process has also defined a number of deficien¬
cies of each format. The strong support indicates that these deficiencies are not
sufficient to remove either format from the standard, but will need to be
addressed by the Working Group in the future. It was not practical to remedy
these deficiencies during the balloting process. Considerable thought and
review must occur before making any changes to these formats. It was felt that

274 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

the best solution is to advise implementors and application writers of these defi¬
ciencies by documenting them in the rationale and to include both formats in
the standard.

The Working Group recognizes the desirability for migration toward one com¬
mon format and has been made aware of some strong inputs to consider both
formats in light of existing practice, current technology trends and the 1003
standards activities such as security and high performance systems to develop
one format that is technically superior. This format will be incorporated into a
future version of this standard when it is developed.

The deficiencies that have been identified in the existing formats are as fol¬
lows. The size of a file link is limited to 100 characters in tar. A number of
fields in the cpio header (c JUesize, c_dev, c_ino, cjnode, and c_rdev) are too
short to support values that the standard allows these fields to contain. Some
existing implementations and current trends in development will require the
ability to represent even larger values in these fields. The cpio format does not
provide a mechanism to represent the user and group IDs symbolically, and a
range of implementation-defined file types have not been reserved for the user.
The cpio format specification does not reserve any formats for
implementation-defined usage. The extensions that have been made to cpio for
this standard are compatible with existing versions of cpio. Correction of some
of these deficiencies would make existing versions of cpio behave unpredict-
ably. When these changes are made the cpio magic number will have to be
changed.

This chapter uses the term file name, which is actually a defined term in
P1003.2. Note that filename and file name are not synonyms; the latter is a
synonym for pathname, in that it includes the slashes between filenames.

In earlier drafts, the word “local” was used in the context of “file system” and
was taken (incorrectly) to be related to “remotely-mounted file system.” This
was not intended. The term “(local) file system” refers to the file hierarchy as
seen by the utilities, and ‘local” was removed because of this confusion.

B. 10.1.1 Extended tar Format. The original model for this facility is
the 4.3BSD or Version 7 tar program and format, but the format given here is
an extension of the traditional tar format. The name USTAR was adopted to
reflect this.

This description reflects numerous enhancements over previous versions.
The goal of these changes was not only to provide the functional enhancements
desired, but to retain compatibility between new and old versions. This compa¬
tibility has been retained. Archives written using the old archive format are
compatible with the new format. Archives written using this new format may
be read by applications designed to use the old format as long as the functional
enhancements provided here are not used. This means the user is limited to
archiving only regular type files and nonsymbolic links to such files.

Implementors should be aware that the previous file format did not include a
mechanism to archive directory type files. For this reason, the convention of
using a file name ending with slash was adopted to specify a directory on the
archive.

B.10 Data Interchange Format. 275

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Note that the total size of the name and prefix fields have been set to meet the

minimum requirements for {PATH_MAX}. If a pathname will fit within the

name field, it is recommended that the pathname be stored there without the

use of the prefix field. Although the name field is known to be too small to con¬

tain {PATHJMAX} characters, the value was not changed in this version of the

archive file format to retain backward compatibility and instead the prefix was

introduced. Also because of the earlier version of the format, there is no way to

remove the limitation on the linkname field being limited in size to just that of

the name field.

The size field is required to be meaningful in all implementation extensions,

although it could be zero. This is required so that the data blocks can always be

properly counted.

It is suggested that if device special files need to be represented which cannot

be represented in the standard format that one of the extension types ('a'-'z')

be used, and that the additional information for the special file be represented

as data, and be reflected in the size field.

Attempting to restore a special file type, where it is converted to ordinary

data and it conflicts with an existing file name, need not be specially detected by

the utility. If run as an ordinary user, a format-reading utility should not be

able to overwrite the entries in (say) /dev in any case (whether the file is con¬

verted to another type or not). If run as a privileged user, it should be able to do

so, and it would be considered a bug if it did not. The same is true of ordinary

data files and similarly-named special files; it is impossible to anticipate the

user’s needs (who could really intend to overwrite the file), so the behavior

should be predictable (and thus regular) and rely on the protection system as

required.

The values '2' and '7' in the typeflag field are intended to define how symbolic

links and contiguous files can be stored in a tar archive. The standard does not

require the symbolic link or contiguous file extensions, but does define a stan¬

dard way of archiving these files so that all conforming systems can interpret

these file types in a meaningful and consistent manner. On a system which

does not support extended file types, the format-interpreting utility should do

the best it can with the file and go on to the next.

B.10.1.2 Extended cpio Format. The model for this format is the exist¬

ing System V cpio -c data interchange format. This model documents the

portable version of cpio format and not the binary version. It has the flexibil¬

ity to transfer data of any type described within the POSIX standard, yet is

extensible to transfer data types specific to extensions beyond POSIX (e.g., sym¬

bolic links or contiguous files). Because it describes existing practice, there is no

question of maintaining upward compatibility.

This section does not standardize behavior for the utility when the file type is

not understood or supported. It is useful for the utility to report to the user

whatever action is taken in this case, though the standard neither requires nor

recommends this.

276 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

B.10.1.2.1 Header. There has been some concern that the size of the

c_ino field of the header is too small to handle those systems which have very

large i-node numbers. However, the c_ino field in the header is used strictly as

a hard link resolution mechanism for archives. It is not necessarily the same

value as the i-node number of the file in the location that file is extracted from.

B. 10.1.2.2 File Name. For most current implementations of the cpio

utility, {PATH_MAX} bytes can be used to describe the pathname without the

addition of any other header fields (the null byte would be included in this

count). {PATH_MAX} is the minimum value for pathname size, documented as

256 bytes in Chapter 2 of the standard. However, an implementation may use

cjiamesize to determine the exact length of the pathname. With the current

description of the cpio header, this pathname size can be as large as a number

which is described in six octal digits.

B.10.1.2.3 File Data.
B. 10.1.2.4 Special Entries. These are provided to maintain backward

compatibility.

B.10.1.2.5 cpio Values. Three values are documented under the

c_mode field values to provide for extensibility for known file types:

0110000 Reserved for contiguous files. The implementation may treat

the rest of the information for this archive like a regular file. If

this file type is undefined, the implementation may create the

file as a regular file.

0120000 Reserved for files with symbolic links. The implementation may

store the link name within the data portion of the file. If this

type is undefined, the implementation may not know how to

fink this file or be able to understand the data section. The

implementation may decide to ignore this file type and output a

warning message.

0140 000 Reserved for sockets. If this type is undefined on the target sys¬

tem, the implementation may decide to ignore this file type and

output a warning message.

This provides for extensibility of the cpio format while allowing for the abil¬

ity to read old archives. Files of an unknown type may be read as “regular files”

on some implementations. On a system which does not support extended file

types, the format-interpreting utility should do the best it can with the file and

go on to the next.

B. 10.1.3 Multiple Volumes. Multi-volume archives have been intro¬

duced in a manner that has become a de facto standard in many implementa¬

tions. Though it is not required by POSEX, classical implementations of the

format-reading and -creating utility, upon reading logical end-of-file, check to

see if an error channel is open to a controlling terminal. The utility then pro¬

duces a message requesting a new medium to be made available. The utility

waits for a new medium to be made available by attempting to read a message

to restart from the controlling terminal. In all cases, the communication with

the controlling terminal is in an implementation-defined manner.

The section Multiple Volumes §10.1.3 is intended to handle the issue of mul¬

tiple volume archives. Since the end-of-medium and transition between media

B.10 Data Interchange Format. 277

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

are not properly part of this standard, the transition is described in terms of

files; the word “file” is used in a very broad, but correct, sense—a tape drive is a

file.

The intent is that files will be read serially until the end-of-archive indication

is encountered, and that file or media change will be handled by the utilities in

an implementation-defined manner.

Note that there was an issue with the representation of this on magnetic tape,

and the standard is intended to be interpreted such that each byte of the format

is represented on the media exactly once. In some current implementations, it

is not deterministic whether encountering the end-of-medium reflector foil on

magnetic tape during a write will yield an error during a subsequent read{) of

that record, or if that record is actually recorded on the tape. It is also possible

that read{) will encounter the end-of-medium when end-of-medium was not

encountered when the data was written. This has to do with conditions where

the end of [magnetic] record is in such a position that the reflector foil is on the

verge of being detected by the sensor and is detected during one operation and

not on a later one, or vice-versa.

An implementation of the format-creating utility must assure when it writes a

record that the data appears on the tape exactly once. This implies that the pro¬

gram and the tape driver work in concert. An implementation of the format¬

reading utility must assure that an error in a boundary condition described

above will not cause loss of data.

The general consensus was that the following would be considered as correct

operation of a tape driver when end-of-medium is detected:

(1) During writing, either:

(a) The record where the reflector spot was detected is backspaced over by

the driver so that the trailing tape mark that will be written on close 0
will overwrite. Writing the tape mark should not yield an end-of-medium

condition.

(b) Or, the condition is reported as an error on the write 0 following the

one where the end-of-medium is detected (the one where the end-of-

medium is actually detected completing successfully). No data will be

actually transferred on the write 0 reporting the error. The subsequent

close () would write 0 a tape mark following the last record actually writ¬

ten. Writing the tape mark, and writing any subsequent records, should

not yield any end-of-medium conditions.

(The latter behavior permits the implementation of ANSI standard labels

because several records (the trailer records) can be written after the end-of-

medium indications. It also permits dealing with, for example, COBOL “ON”

statements.)

(2) During reading, the end-of-medium indicator is simply ignored, presum¬

ing that a tape mark (end-of-file) will be recorded on the magnetic medium,

and the reflector foil was advisory only to the write ().

Systems where these conditions are not met by the tape driver should assure

that the format-creating and -reading utilities assure proper representation and

interpretations of the files on the media, in a way consistent with the above

recommendations.

278 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

The typical failures on systems that do not meet the above conditions are

either:

(1) To leave the record written when the end-of-medium is encountered on

the tape, but to report that it was not written. The format-creating utility

would then rewrite it, and then the format-reading utility could see the

record twice if the end-of-medium is not sensed during the read operations.

(2) Or, the write() occurs uneventfully, but the read{) senses the error and

does not actually see the data, causing a record to be omitted.

Nothing in this standard requires that end-of-medium be determined by any¬

thing on the medium itself (for example, a predetermined maximum size would

be an acceptable solution for the format creating utility). The format-reading

utility must be able to read{) tapes written by machines that do use the whole

medium, however.

On media where end-of-medium and end-of-file are reliably coincident, such

as disks, end-of-medium and end-of-file can be treated as synonyms.

Note that partial physical records (corresponding to a single write ()) can be

written on some media, but that only full physical records will actually be writ¬

ten to magnetic tape, given the way the tape operates.

B.ll Bibliographic Notes. There are far more related papers and books than

are mentioned here, and some of them may be as good or better.

B.ll.l Related Standards. The standard assumes that any terms not

defined in Chapter 2 are defined in the IEEE Standard Dictionary of Electrical

and Electronics Terms, IEEE Std 100-1977.

The 1984 /usr/group Standard may be ordered from

/usr/group Standards Committee

4655 Old Ironsides Drive, Suite 200

Santa Clara, California 95054

(408) 986-8840

The basic historical reference on the C language is

• Kernighan, Brian W. and Ritchie, Dennis M., The C Programming

Language, Prentice-Hall, Englewood Cliffs, New Jersey (1978).

B.11.2 Historical Implementations. A principal ancestor of all the histor¬

ical implementations is the Multics System

• Organick, Elliot I., The Multics System: An Examination of Its Structure,

The MIT Press, Cambridge, MA (1972).

The most basic and influential paper on historical implementations is

• Ritchie, D. M. and Thompson, K, “The UNIX Time-Sharing System,” Bell

System Technical Journal 57(6 Part 2) pp. 1905-1929 American Telephone

and Telegraph Company, (July-August 1978). This is a revised version

and describes Version 7.

• Ritchie, D. M. and Thompson, K., “The UNIX Time-Sharing System,” Com-

mun. ACM 7(7) pp. 365-375 Association for Computing Machinery, (July

1974). This is the original paper, which describes Version 6.

B.ll Bibliographic Notes. 279

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

The Version 7 manual is

• AT&T, UNIX Time Sharing System: UNIX Programmer's Manual, Seventh

Edition, Bell Telephone Laboratories, Inc., Murray Hill, New Jersey (Janu¬

ary, 1979).

Dennis Ritchie has also done several papers on the history and evolution of

the system

• Ritchie, Dennis, “The Evolution of the UNIX Time-sharing System,” AT&T

Bell Laboratories Technical Journal 63(8) pp. 1577-1593 American Tele¬

phone and Telegraph Company, (October 1984).

• Ritchie, Dennis M., “Reflections on Software Research,” Commun. ACM

27(8) pp. 758-760 Association for Computing Machinery, (August 1984).

ACM Turing Award Lecture.

• Ritchie, Dennis M., “Unix: A Dialectic,” Winter 1987 USENIX Association

Conference Proceedings, Washington, DC, pp. 29-34 USENIX Association,

P.O. Box 2299, Berkeley, CA 94710, (21-23 January 1987).

Important collections of papers on the system may be found in

• BSTJ, “UNIX Time-Sharing System,” Bell System Technical Journal 57(6

Part 2)American Telephone and Telegraph Company, (July-August 1978).

• BLTJ, “The UNIX System,” AT&T Bell Laboratories Technical Journal 63(8

Part 2)American Telephone and Telegraph Company, (October 1984).

The System III manual is

• AT&T, UNIX System III Programmer’s Manual, Western Electric Company,

Inc., Greensboro, N.C. (October, 1981).

The SVID

• AT&T, System V Interface Definition, Issue 2, AT&T (1986).

may be ordered from:

AT&T Customer Information Center

Attn: Customer Service Representative

P.O. Box 19901

Indianapolis, IN 46219

(800) 432-6600 (Inside U.S.A.)

(800) 255-1242 (Inside Canada)

(317) 352-8557 (Outside U.S.A. and Canada)

using the following Select Codes:

320-011 Volume I

320-012 Volume II

320-013 Volume III

307-131 all three volumes

280 Appendix B

INTERFACE FOR COMPUTER ENVIRONMENTS Std 1003.1-1988

The implementation of System V is described in

• Bach, Maurice J., The Design of the UNIX Operating System, Prentice-Hall,

Englewood Cliffs, New Jersey (1986).

The 4.3BSD manual

• UCB-CSRG, 4.3 Berkeley Software Distribution, Virtual VAX-11 Version,

The Regents of the University of California, Berkeley, California (April

1986).

is printed by the USENIX Association, and their members may order from them:

USENIX Association

P.O. Box 2299

Berkeley, CA 94710

(415) 528-8649

The implementation of the kernel of 4.3BSD is described in

• Quarterman, John S., Silberschatz, Abraham, and Peterson, James L.,

“4.2BSD and 4.3BSD as Examples of the UNIX System,” ACM Computing

Surveys 17(4) pp. 379-418 Association for Computing Machinery,

(December 1985).

• Leffler, Samuel J., McKusick, Marshall Kirk, Karels, Michael J., Quarter-

man, John S., and Stettner, Armando, The Design and Implementation of

the 4.3BSD UNIX Operating System, Addison-Wesley, Reading, Mas¬

sachusetts (1988).

B.11.3 Historical Application Programming Tutorials. A useful

tutorial on programming in the C language is

• Harbison, Samuel P. and Steele, Guy L., C: A Reference Manual, Prentice-

Hall, Englewood Cliffs, New Jersey (1987).

A highly regarded book, though not one for beginners, is

• Kernighan, Brian W. and Pike, Rob, The UNIX Programming Environ¬

ment, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1984).

One more oriented towards Berkeley systems is

• McGilton, Henry and Morgan, Rachel, Introducing the UNIX System,

McGraw-Hill (BYTE Books), New York (1983).

and a more recent one is

• Rochkind, Marc J., Advanced UNIX Programming, Prentice-Hall, Engle¬

wood Cliffs, New Jersey (1985).

B.ll Bibliographic Notes. 281

Identifier Index

access () File Accessibility. {5.6.3} . 100

alarmi) Schedule Alarm. {3.4.1}. 68

asctime() Extensions to Time Functions. {8.1.1} . 142

cfgetispeedO Baud Rate Functions. {7.1.2.7}. 134

cfgetospeedO Baud Rate Functions. {7.1.2.7} . 134

cfsetispeedO Baud Rate Functions. {7.1.2.7} . 134

cfsetospeedO Baud Rate Functions. {7.1.2.7} . 134

chdir() Change Current Working Directory. {5.2.1}. 85

chmodO Change File Modes. {5.6.4} . 101

chownO Change Owner and Group of a File. {5.6.5} . 102

close() Close a File. {6.3.1} . Ill

closedir() Directory Operations. {5.1.2} . 83

cpio Extended cpio Format. {10.1.2}. 159

creatO Create a New File or Rewrite an Existing One. {5.3.2} . 90

ctermidO Generate Terminal Pathname. {4.7.1} . 79

cuseridi) Get User Name. {4.2.4} . 74

directory Directory Operations. {5.1.2} . 83

<dirent.h> Format of Directory Entries. {5.1.1} . 83

dup() Duplicate an Open File Descriptor. {6.2.1}. 110

dup2() Duplicate an Open File Descriptor. {6.2.1}. 110

environ Execute a File. {3.1.2} . 50

errno Error Numbers. {2.5}. 37

<ermo.h> Error Numbers. {2.5}. 37

exec Execute a File. {3.1.2} . 50

execli) Execute a File. {3.1.2} . 50

execleO Execute a File. {3.1.2} . 50

execlpO Execute a File. {3.1.2} . 50

execvO Execute a File. {3.1.2} . 50

execveO Execute a File. {3.1.2} . 50

execvpO Execute a File. {3.1.2} . 50

_exit() Terminate a Process. {3.2.2} .. 56

fcntlO File Control. {6.5.2} . 117

<fcntl.h> Data Definitions for File Control Operations. {6.5.1} . 116

fdopen () Open a Stream on a File Descriptor. {8.2.2} . 146

fileno() Map a Stream Pointer to a File Descriptor. {8.2.1}. 145

fork 0 Process Creation. {3.1.1} . 49

fpathconfO Get Configurable Pathname Variables. {5.7.1} . 105

fstat() Get File Status. {5.6.2} . 99

getcwdO Working Directory Pathname. {5.2.2} . 86

getegidO Get Real User, Effective User, Real Group, and Effective

Group IDs. {4.2.1} . 71

Index 283

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

getenvO Environment Access. {4.6.1} . 79

geteuidO Get Real User, Effective User, Real Group, and Effective

Group IDs. {4.2.1} . 71

getgid() Get Real User, Effective User, Real Group, and Effective

Group IDs. {4.2.1} . 71

getgrgid() Group Database Access. {9.2.1} . 151

getgrnamO Group Database Access. {9.2.1} . 151

getgroups() Get Supplementary Group IDs. {4.2.3} . 73

getloginO Get User Name. {4.2.4} . 74

getpgrp() Get Process Group ID. {4.3.1} . 75

getpidO Get Process and Parent Process IDs. {4.1.1}. 71

getppidO Get Process and Parent Process IDs. {4.1.1}. 71

getpwnamO User Database Access. {9.2.2}. 152

getpwuidO User Database Access. {9.2.2}. 152

getuid() Get Real User, Effective User, Real Group, and Effective

Group IDs. {4.2.1} . 71

group Group Database Access. {9.2.1} . 151

<grp.h> Group Database Access. {9.2.1} . 151

isatty() Determine Terminal Device Name. {4.7.2} . 80

kill{) Send a Signal to a Process. {3.3.2} . 62

<limits.h> Numerical Limits. {2.9}. 44

link() Link to a File. {5.3.4} . 90

longjmpO Non-Local Jumps. {8.3.1} . 150

Iseek () Reposition Read/Write File Offset. {6.5.3} . 120

main() Execute a File. {3.1.2} . 50

mkdirO Make a Directory. {5.4.1} . 92

mkfifoO Make a FIFO Special File. {5.4.2} . 93

openO Open a File. {5.3.1} . 87

opendirO Directory Operations. {5.1.2} . 83

passwd User Database Access. {9.2.2}. 152

pathconfO Get Configurable Pathname Variables. {5.7.1} . 105

pause() Suspend Process Execution. {3.4.2} . 68

pipe() Create an Inter-Process Channel. {6.1.1} . 109

<pwd.h> User Database Access. {9.2.2}. 152

readO Read from a File. {6.4.1} . Ill

readdir() Directory Operations. {5.1.2} . 83

rename() Rename a File. {5.5.3} . 96

rewinddir() Directory Operations. {5.1.2} . 83

rmdir{) Remove a Directory. {5.5.2} . 95

setgidO Set User and Group IDs. {4.2.2} . 72

setjmp() Non-Local Jumps. {8.3.1} . 150

setlocale() Extensions to setlocale() Function. {8.1.2}. 144

setpgidO Set Process Group ID for Job Control. {4.3.3}. 75

setsid() Create Session and Set Process Group ID. {4.3.2}. 75

setuidO Set User and Group IDs. {4.2.2} . 72

sigaction() Examine and Change Signal Action. {3.3.4}. 64

sigaddset() Manipulate Signal Sets. {3.3.3} . 63

284 Index

IEEE

INTERFACE FOR COMPUTER ENVIRONMENTS Std 1003.1-1988

sigdelsetO Manipulate Signal Sets. {3.3.3} . 63

sigemptyset() Manipulate Signal Sets. {3.3.3} . 63

sigfillsetO Manipulate Signal Sets. {3.3.3} . 63

sigismemberO Manipulate Signal Sets. {3.3.3} . 63

siglongjmpO Non-Local Jumps. {8.3.1} . 150

<signal.h> Signal Concepts. {3.3.1} . 57

sigpending() Examine Pending Signals. {3.3.6} . 67

sigprocmask () Examine and Change Blocked Signals. {3.3.5}. 66

sigsetjmp () Non-Local Jumps. {8.3.1} . 150

sigsetops Manipulate Signal Sets. {3.3.3} . 63

sigsuspend() Wait for a Signal. {3.3.7} . 67

sleep() Delay Process Execution. {3.4.3} . 69

statO Get File Status. {5.6.2} . 99

<stat.h> File Characteristics: Header and Data Structure. {5.6.1}

. 97

sysconfO Get Configurable System Variables. {4.8.1} . 80

<sys/stat.h> File Characteristics: Header and Data Structure. {5.6.1}

. 97

<sys/types.h> Primitive System Data Types. {2.6} . 40

<sys/wait.h> Wait for Process Termination. {3.2.1} . 54

tar Extended tar Format. {10.1.1} . 155

tcdrainO Line Control Functions. {7.2.2} . 137

tcflowO Line Control Functions. {7.2.2} . 137

tcflushO Line Control Functions. {7.2.2} . 137

tcgetattri) Get and Set State. {7.2.1}. 136

tcgetpgrp () Get Foreground Process Group ID. {7.2.3}. 139

tcsendbreakO Line Control Functions. {7.2.2} . 137

tcsetattrO Get and Set State. {7.2.1}. 136

tcsetpgrp() Set Foreground Process Group ID. {7.2.4} . 139

termios General Terminal Interface. {7.1} . 123

<termios.h> Settable Parameters. {7.1.2} . 129

timeO Get System Time. {4.5.1} . 77

timesO Process Times. {4.5.2} . 78

ttyname() Determine Terminal Device Name. {4.7.2} . 80

<types.h> Primitive System Data Types. {2.6} . 40

tzseti) Set Time Zone. {8.3.2} . 150

umask() Set File Creation Mask. {5.3.3} . 90

uname() System Name. {4.4.1} . 76

<unistd.h> Symbolic Constants. {2.10} . 47

unlink() Remove Directory Entries. {5.5.1} . 94

utime() Set File Access and Modification Times. {5.6.6}. 103

<utsname.h> System Name. {4.4.1} . 76

wait Wait for Process Termination. {3.2.1} . 54

<wait.h> Wait for Process Termination. {3.2.1} . 54

waitpidO Wait for Process Termination. {3.2.1} . 54

writeO Write to a File. {6.4.2} . 113

Index 285

'

Topical Index

/usr/group ... 4, 9, 166, 168, 171, 176,
178-180, 182-183, 195, 212, 223,
238, 245-246, 250, 256-258, 279

1003 ... 6, 166, 171-172, 177, 186, 273,
275

1003.0 ... 166
1003.1 ... 3-4, 6, 9, 164, 171-172, 178,

182,185,252
1003.2 ... 164, 4-5, 155, 164, 172, 217,

221, 273
1003.3 ... 166, 5, 166, 172, 188-189
1003.4 ... 166, 5, 166, 172, 273
1003.5 ... 166, 5, 166, 172
1003.6 ... 166, 5, 166, 172
4.1 ... 226
4.2 ... 4, 141, 179-180, 200-201, 212,

222-223, 225, 227, 231, 236-237,
241, 245, 252, 257-258, 261, 265,
272-273

4.3 ... 4, 141, 179-180, 194, 202-203, 208,
210, 212, 220-221, 223, 226-228,
230, 234, 236-238, 241, 245-246,
248, 252-253, 255, 262, 266, 269,
272-273, 275, 281

8-bit characters ... 157, 161
802.2 ... 167
802.3 ... 167
802.4 ... 167
<National Body> Conforming POSIX

Application ... 25
<sys/stat.h> File Modes ... 98
abnormal termination ... 53, 57, 59, 220,

226
abnormal termination with actions ...

220
abort... 141, 53, 57, 141, 147, 149, 235,

272
abs ... 141

absolute pathname ... 28, 36, 86, 196,
203,206

absolute value ... 54, 62, 231
access ... 100
access control... 30-31, 35, 58, 100, 123-

124, 197, 200-201, 203-204, 229,
247, 256, 261, 264

access mechanism ... 35, 100, 155, 195,
203, 240-241, 256-257

access mode ... 28, 31, 87, 91, 101, 116-
119,124, 257

access permissions ... 29-31, 34-35, 53,
91, 96, 100-101, 155, 160, 195,
247-248, 261

access time ... 36, 97, 103-104, 249, 257,
269

acos ... 141
actime ... 104, 249
active handle ... 147-148, 270
Ada ... 5, 166-167
Ada Language Bindings ... 166
additional access control mechanism ...

35, 100
address space ... 28, 27-28, 32-33
advisory record locking ... 118, 257
AFNOR ... 190
alarm ... 68, 49-50, 52-53, 57, 61, 68-70,

230, 234-235, 238, 257
alarm clock ... 52
alarm requests ... 68
alternate access control mechanism ...

35, 100
amode ... 100-101
ANSI... 26, 28, 163-164, 167-168, 174,

176, 178, 180, 185, 190, 278
append ... 114, 116, 141, 147, 160, 220,

269
Application Conformance ... 25, 190
application developer ... 21-22, 175, 188,

204-206, 216, 239, 260, 267
Application Oriented ... 173
application portability ... 3, 21, 23-24,

287

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

47, 172-173, 189, 205, 224, 231,
234-235

application programs ... 22-24, 41, 123,
164-165, 171, 173, 189, 192, 205,
214, 240-241, 260, 269-270, 281

application writer ... 147, 156, 172, 182,
195, 210-211, 215, 219, 229, 231,
234-235, 240, 244, 250, 253-256,
258-259, 269, 275

appropriate privileges ... 28, 32, 35, 40,
48, 72-73, 91, 94, 101-104, 106,
155, 158, 161-162, 193, 203, 236,
248

archive ... 155-162, 180, 274-277
archive/interchange format... 155, 162,

273
AREGTYPE ... 156
arg list... 37
argc ... 50-51, 218
argument count... 51, 96
argument list... 37, 51, 53, 80, 100, 105,

219
argv ... 50-51, 218
ARG_MAX ... 45, 37, 42, 45, 51, 53, 81,

219
array ... 29, 40, 42, 51, 73-74, 77, 79, 83,

86, 126, 129, 133-134, 157, 190,
209, 224, 236, 239, 241-242, 268

array size ... 83, 86, 190, 241-242
ASCII... 142, 155, 157-161, 202, 218,

272, 274
asctime ... 142
asin ... 141
assert... 141
associated process group ... 28, 30-31,

123-124, 139-140, 227
asynchronous communications ports ...

123
asynchronous serial connection ... 132
asynchronous terminal ... 123, 132, 137,

258
AT&T ... 4, 171, 174, 178, 186, 193, 201,

212, 245, 250-251, 259, 280
atan ... 141
atan2 ... 141
atexit... 183, 221-222
atof... 141
atoi... 141, 192-193
atol... 141
atomic ... 88, 217, 246, 253-254, 256
attention signal... 57

background ... 28, 30, 58, 113, 115, 124,
132, 136, 139, 183, 197-199, 236,
261, 264

background process group ... 28, 30, 58,
113, 115, 124, 136, 139, 198, 236,
261, 264

backward compatibility ... 158, 189, 211,
213, 224, 251, 263, 276-277

balanced trees ... 243
Balloting Group ... 176, 9, 176, 183
bandwidth ... 205
Base by POSIX, Additions by X3J11 ...

182
Base by X3J11, Additions by POSIX ...

182
Base Documents ... 178
Basic ... 167
baud ... 132, 134-135, 264
Baud Rate Functions ... 134
Bell Laboratories ... 171, 179
Berkeley ... 179, 249, 258, 281
binary ... 22, 142, 155, 158, 174, 181,

232, 239, 249, 266, 269, 276
binary compatibility ... 158, 174, 232,

276
binary zero ... 155, 158
binding ... 3, 21, 26-27, 141, 166-167,

173, 181, 190-192, 225, 245
bit-encoded ... 98
bits ... 30, 35, 52, 55-56, 62, 65, 87, 90,

92-93, 98-99, 101-103, 118, ISO-
132, 137, 157-158, 208, 219, 221,
223, 232, 235, 244-245, 247-248,
252, 257, 263-264, 274

bitwise inclusive OR ... 87, 99, 101
BLKTYPE ... 156, 158
block special file ... 28, 28-30, 88, 98,

156,159, 161
blocked signal... 59, 62-63, 66-67, 69,

118, 124-125, 133, 136, 219, 224,
226-234, 261

Bourne ... 210
break ... 21, 129-130, 137, 177, 188, 263,

267
brk ... 182
BRKINT ... 129-130
Broadly Implementable ... 174
BSD ... 4, 179-180, 194, 197, 200-203,

208, 210, 212, 220-223, 225-228,
230-231, 233-234, 236-238, 241,
245-246, 248-253, 255-258, 261-

288

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

262, 265-266, 269, 272-273, 275,
281

bsearch ... 141, 182
BSI... 190
buffer ... 78, 84, 111-113, 127, 148-149,

188, 221, 242-243, 249, 252-253,
269-271

bug ... 241, 244, 276
bus ... 167
By Neither POSEX Nor X3J11... 182
byte ... 28, 30, 32-33, 36-37, 42, 44-45,

51, 53, 74, 79, 83, 86, 111-115, 119,
121, 125-128, 130-131, 133, 142,
148-149, 155-162, 204-205, 215,
218, 237, 244, 249, 252-253, 255,
257, 262-263, 271, 274, 277-278

byte-oriented ... 159
C language binding ... 3, 26-27, 167
C Language Definitions ... 42
C Language Library ... 141
C language standard ... 3, 21, 26, 44, 53,

164, 173, 179, 182, 222, 230
C Language Standard ... 164
C Shell... 197-199
C Standard ... 28, 26-28, 38, 40, 42-44,

53, 57, 60-61, 65-66, 99, 141, 144,
146, 150, 164, 173-174, 178, ISO-
183, 185-186, 188, 190, 192-193,
207-209, 211-214, 218-219, 221,
224, 229, 238, 246, 252, 256-258,
260

callable function ... 25, 61, 193
calloc ... 141
canonical mode ... 45, 125, 127, 133, 262
Canonical Mode Input Processing ... 125
CASE Services ... 167
catch ... 60-61, 66, 200, 207, 223-227,

233, 235, 264
caught signal... 38, 52, 55, 57-58, 65-66,

68-69, 111, 118, 226, 233, 261
CBEMA ... 163, 167
CCITT ... 167
cc_t... 129
ceil... 141
cfgetispeed ... 134, 44, 61, 134-135
cfgetospeed ... 134, 44, 61, 134-135
cfsetispeed ... 134, 44, 61, 134-135, 264
cfsetospeed ... 134, 44, 61, 134-135
Change Current Working Directory ...

85, 243
Change File Modes ... 101, 248

Change Owner and Group of File ... 102,
248

character ... 28
character array ... 29, 42, 51, 74, 77, 79,

83, 86, 133, 157, 241-242, 268
character framing error ... 130
character pointers ... 51, 74, 79, 86, 268
character special... 28-30, 34, 48, 57-58,

88, 98, 123, 125-128, 133-134, 156,
159-161, 197, 200, 232

character special file ... 28, 28-30, 34,
88, 98, 128, 134, 156, 159, 161

character string ... 29, 41-42, 51, 79, 146,
157, 241, 268

CHAR.BIT ... 44
CHARJMAX ... 44
CHAR_MIN ... 44, 213
chdir ... 85, 61, 85-86, 157, 161, 243, 247
child process ... 28, 32, 38, 49-50, 53-56,

58,61, 65, 76, 78, 84,119, 124,
145, 198, 216-217, 220-223, 228,
232, 237-238, 269

child times ... 78, 238
CHILD_MAX ... 45, 81, 209, 214
chksum ... 156, 158
chmod ... 10L 35, 44, 52-53, 61, 90, 93-

94, 99, 101-103, 162, 248
chown ... 102, 48, 61, 99, 102-103, 241,

248-249
chroot... 203
CHRTYPE ... 156
clear errno ... 206, 242
clearenv ... 239
clearerr ... 141, 221
CLKTCK ... 28, 42, 78, 80-81, 234, 238,

240
CLOCAL ... 123, 128, 131-132, 260
clock tick ... 28
clock_t... 28, 42, 78, 238
close ... 11% 52, 57, 61, 84, 89, 95, 110-

112, 116-117, 119-120, 129, 132,
147-148, 183, 186, 188, 200, 224,
242, 251-252, 262, 270, 278

close file ... 52, 110-111, 116-117, 119,
129, 147-148, 188, 251-252, 262,
270

closedir ... 83, 43, 83-85, 180, 242
Closing a Terminal Device File ... 129
cmask ... 90, 245
cmd Values for fcntl... 115
collation ... 41

289

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

command ... 31, 41, 110, 118, 123, 136,
165, 184-185, 197-199, 211, 218-
219, 221, 224-225, 231, 256, 258-
260, 269, 273

command interpreter ... 31, 123, 197,
211,218, 221,225

commercial applications ... 22
common usage ... 26-27, 43, 192, 203,

208, 211-212, 218, 234, 265
Common Usage-Dependent Support...

43
compatibility ... 4, 158, 161, 174, 189,

203, 205, 208-209, 211, 213, 224,
232, 238, 245, 250-251, 263,
275-277

compile time ... 31, 47, 237, 239, 266
Compile-Time Symbolic Constants ... 47
compiler ... 31, 47, 181, 193, 211-213,

215, 229, 236-237, 239, 272
computer architecture ... 239
concurrency ... 22, 255-256
concurrent writes ... 255-256
configurable pathname variables ... 105,

239-240, 249
configurable system variables ... 80, 174,

239-240, 249
configuration ... 22, 47, 165, 190, 207,

240
Conformance ... 24
conformance documentation ... 24, 26,

187-188
conformance test suite ... 168
conforming application ... 22-26, 31, 44,

47, 164-165, 175, 182, 188-190,
194, 201, 206, 210, 212, 214-215,
217-218, 225, 229, 234-235, 247,
250-253

Conforming Implementation ... 25, 189
conforming implementation ... 24
Conforming POSIX Application ... 25,

22-26, 44, 47, 182, 188, 190, 201,
214-215, 218, 225, 234-235, 251,
253

Conforming POSIX Application Using
Extensions ... 26, 23-24, 26, 190,
214-215, 251

conforming program ... 21-23, 26, 164-
165, 174, 187, 190-191, 265, 269

conforming system ... 5, 24-25, 44, 142,
155, 161, 175, 182, 188, 191, 195,
207, 213, 247, 251, 253, 265, 276

connection ... 28, 30, 87, 123, 132, 135,
196, 222, 263

consensus ... 12, 175-177, 205, 224, 227,
251, 263, 278

constants ... 4, 25, 31, 45, 47-48, 57-58,
65, 74, 79-80, 101, 105, 115-116,
121, 123, 136, 138, 156, 172, 174,
184-185, 189, 216, 237, 239-240,
247, 250

constraining links ... 246
contiguous files ... 166, 273, 276-277
continue signal... 59-62, 198-200, 217,

227-228, 261
control character ... 127-130, 133-134,

197, 215, 232, 261
Control Functions ... 136
Control Modes ... 131, 123, 128, 130-131,

260
Control Operations on Files ... 255
control-Z ... 197, 200
controlling process ... 28, 30-33, 35, 54,

57-59, 63, 68-69, 74-75, 79, 88,
113, 115, 119, 123-124, 127-128,
130, 132-133, 136, 139-140, 197-
203, 221-222, 228, 231, 236-237,
239, 244, 247, 256, 261, 264-265

controlling terminal ... 28, 30-31, 57-58,
74-75, 79-80, 88, 113, 115-116,
123-124, 127-134, 136, 139-140,
165, 193, 197-202, 229, 232, 239,
244, 260-261, 263-265, 277

CONTTYPE ... 156
cooked mode ... 259
Coordinated Universal Time ... 34, 194,

265
core file ... 220
core services ... 21, 173
corrupt... 245
cos ... 141
cosh ..: 141
covert channel... 205, 232
cpio ... 159, 155, 159-161, 180, 273-277
cpio Archive Entry ... 160
cpio c_mode Field ... 161
CPU time ... 78
CREAD ... 131-132
creat... 90
creat function ... 32-33, 49-50, 75-76, 87,

89-91, 109, 118-119, 124, 147, 157,
161, 191-192, 198, 227, 236, 245,
247, 256, 270

290

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

create new file ... 90-92, 119, 124, 147,
241, 245

Create Session and Set Process Group
ID ... 75

created directory ... 87, 89, 92-93, 95,
106, 220, 241

csh ... 199
CSIZE ... 131
CSMA/CD ... 167
CSTOPB ... 131-132
ctermid ... 79, 79-80, 182, 239
ctime ... 142, 142-143, 150
current directory ... 29, 35-36, 41, 52,

84-86, 95, 106, 210, 220, 243, 246,
249

current working directory ... 29, 35-36,
41, 52, 85-86, 95, 210, 220, 243,
246, 249

curses ... 258
cuserid ... 74, 152-153, 182
c_cc ... 133, 126, 129, 133-134
c_cflag ... 131, 128-129, 131, 264
c_dev ... 160, 275
c_filedata ... 160-161
c_filesize ... 160-161
c_gid ... 160
c_ifiag ... 129, 125, 129
c_ino ... 160, 275, 277
C_IRGRP ... 161
C_IROTH ... 161
C_IRUSR ... 161
C_ISBLK... 161
CJSCHR ... 161
CJSCTG ... 161
CJSDIR... 161
C.ISFIFO ... 161
CJSGID ... 161
C_ISLNK... 161
C_ISREG ... 161
CJSSOCK... 161
C_ISUID ... 161
C.ISVTX... 161
C_IWGRP ... 161
CJWOTH ... 161
C_IWUSR ... 161
C_IXGRP ... 161
C_EXOTH ... 161
CJXUSR ... 161
cjflag ... 132, 125, 129, 132
c_magic ... 160
c_mode ... 155, 160-161, 275, 277

c_mtime ... 160
c_name ... 160-161
c_namesize ... 160-161, 277
c_nlink ... 160
c_oflag ... 131, 127, 129, 131
c_rdev ... 160, 275
c_uid ... 160
daemon ... 165, 222
Data Definitions for File Control Opera¬

tions ... 11Q 31, 116, 251,255
Data Interchange Format... 155, 273
data structure ... 36, 97, 161, 188, 191,

202, 207, 217, 224, 229-230, 242,
247, 264

Data Types ... 40, 184, 208, 247
database ... 22, 41, 74, 151-152, 165,

168, 196, 201, 256-257, 272-273
database access ... 151-152, 273
Database Standards ... 168
Date and Time ... 142
date/time ... 41, 267
daylight saving time ... 265
de facto standard ... 190, 277
deadlock ... 38, 119-120, 257
debugging ... 221
decimal... 143, 156, 194
decrement... 94
default... 52, 57-60, 124, 133, 138, 142-

144, 150-151, 179, 199-200, 204,
211-212, 219, 224, 226-229, 232,
252, 266, 268-269

default action ... 52, 59-60, 124, 200,
219, 226-229, 232

default shell... 199-200
delay ... 68-69, 88, 113, 115-116, 230,

234-235
delay process execution ... 69, 230, 234
deliver ... 54, 56, 59-63, 65-70, 217, 224-

228, 230-231, 233
Department of Defense ... 168
Determine Terminal Device Name ... 80,

239
device ... 29, 28-30, 34, 39-40, 80, 88, 97,

112, 115, 121, 123-125, 127-131,
134-135, 138, 147, 158-159, 167,
180, 183, 194, 201, 207, 215, 230,
239, 244, 246, 249, 252-253, 256,
258-260, 262-264, 271, 274, 276

device number ... 97, 125, 130, 158-159,
194, 215, 274

Device- and Class-Specific Functions ...

291

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

123, 180, 183, 258
device-dependent... 258
devmajor ... 156, 159
devminor ... 156, 159
dev_t... 40, 97, 208
Diagnostics ... 141
digits ... 142-143, 158-160, 265
dir.h ... 241
directory ... 29
directory ... 83
directory access ... 29, 35, 89, 91, 96,

241, 243
directory entry ... 29, 31, 84, 91-93, 95-

96, 194, 207, 242, 245
directory format... 83, 194, 241, 275
directory level... 240, 249
Directory Operations ... 83, 49, 83, 174,

180,194, 242
directory routines ... 194
directory search permission ... 35, 53,

89, 91-92, 94-95, 97-99, 244
directory stream ... 49, 56, 84-85,

242-243
dirent... 83, 85, 241-242
dirent.h ... 83, 43, 83-85, 241
dirname ... 83-85
DIRTYPE ... 156, 158
disconnect... 57, 124, 128-129, 135, 222,

262
document... 4-5, 12, 23-27, 59, 67, 163-

166, 168, 171-172, 175-182, 186-
187, 194, 196, 204, 212, 224-225,
247, 273, 275-277

Document Indexes ... 186
Documentation ... 24, 51, 59, 77
domain ... 27, 38, 196, 218, 222, 266, 272
dominate ... 247
dot... 29, 29-31, 36, 39, 84, 95, 97, 189,

194,210, 246
dot-dot... 29, 29-31, 36, 39, 84, 95, 97,

189, 194, 205, 246
double initial slash ... 205
dup ... 11Q 61, 89, 100, 110-111, 113,

115, 121, 147, 251, 256, 269
dup2 ... 110, 61, 110, 251
Duplicate an Open File Descriptor ...

110,251
d_name ... 83, 241-242
E2BIG... 37,53, 219
EACCES ... 37, 53, 76, 85-86, 89, 91-95,

97, 100-104, 106, 120, 237, 244

eaccess ... 244, 247
EAGAIN ... 37, 50, 112-115, 120, 125,

217, 250, 253-255
EBADF ... 37, 85, 100, 107, 110-111,

113, 115, 120-121, 137-140, 251,
253, 255

EBUSY ... 37, 94-95, 97, 207, 246
ECHILD ... 38, 56
ECHO ... 132-133
ECHOE ... 132, 263
ECHOK... 132-133, 263
ECHONL ... 132-133, 263
EDEADLK ... 38, 119-120, 257
EDOM ... 38, 208
EEXIST ... 38, 89, 91-93, 95, 97, 245-246
EFAULT ... 38, 206-207, 219
EFBIG ... 38, 115
effective group ID ... 29, 29-31, 33-34,

48, 52, 71-72, 87, 92, 99-100, 102-
103, 219, 235, 241, 248

effective user ID ... 29, 29-31, 33-34, 52,
62, 71-72, 74, 87, 92-93, 99-100,
102, 230, 235

Eighth Edition ... 253, 255
EINTR ... 38, 56, 68-69, 89, 111-115,

118, 120, 138, 184, 207, 217, 219,
223, 230, 252

EINVAL ... 38, 56, 63-64, 66-67, 73, 76,
81, 86, 97, 101, 103, 106-107, 120-
121, 137-138, 140, 233, 250, 258

EIO ... 38, 113, 115, 124, 128
EISDIR ... 38, 89, 97
elapsed real time ... 69, 78
EMFILE ... 38, 85, 89, 109-110, 120
EMLINK... 38, 91-92
empty ... 29
empty directory ... 29, 39, 84, 86, 92,

95-96
empty pipe ... 112, 254
empty string ... 29, 31, 39, 53, 80, 86, 89,

91-95, 97, 100-104, 106, 144-145
ENAMETOOLONG ... 38, 53, 85-86, 89,

91-95, 97, 100-104, 106, 219,
245-246

encoded ... 159, 202, 204, 221, 245, 264,
272

encoded password... 272
end-of-archive ... 155, 278
end-of-directory ... 242
end-of-file ... 112, 125, 127-128, 142, 146,

162, 250-251, 255, 277-279

292

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

end-of-medium ... 278-279
endgrent... 272
endpwent... 272
ENFILE ... 39, 85, 89, 109
ENODEV... 39
ENOENT ... 39, 53, 85-86, 89, 91-95, 97,

100-104, 106, 246
ENOEXEC ... 39, 53, 218-219
ENOLCK... 39, 120, 257
ENOMEM ... 39, 50, 53, 207, 217, 271
ENOSPC ... 39, 89, 91-93, 97, 115
ENOSYS ... 39, 76, 139-140, 187
ENOTDIR ... 39, 53, 85-86, 89, 91-95,

97, 100-104, 106
ENOTEMPTY ... 39, 95, 97, 245-246
ENOTTY ... 39, 137-140, 207
environ ... 50, 40, 42, 50-51, 79, 219
environment... 3-4, 21, 24, 37, 40-45, 51,

53, 69, 71, 79, 142, 144-145, 150,
163, 165, 168, 171, 173, 181-182,
184-185, 188, 191, 193-194, 203,
210-213, 218-219, 235, 239-240,
257-258, 262, 265-270

environment access ... 79, 203, 219, 239
Environment Description ... 40, 4, 40,

51, 53, 79, 182, 210
environment list... 37, 51, 53, 79, 219
environment strings ... 40-41, 51, 79,

144-145, 268-269
Environment Variables ... 40, 142, 184,

239
envp ... 42, 50-51, 218-219
ENXIO ... 39, 89
EOF ... 47, 118, 125-128, 133, 148-149,

271
EOL ... 125-128, 133
EPERM ... 39, 63, 73, 75-76, 91, 94,

102-104, 140, 232
EPIPE ... 40, 115, 207
Epoch ... 29, 34, 77, 99, 104, 142, 185,

194-195, 265
ERANGE ... 40, 86, 208, 244
ERASE ... 126-128, 132-133, 262
ERASE character ... 126-127, 132-133,

262
EROFS ... 40, 89, 91, 93, 95-97, 101-104,

207-208
errno ... 37, 4, 37, 50, 52-53, 56, 63-69,

72-73, 75-78, 81, 85-86, 89, 91-95,
97, 100-104, 106, 109-115, 118-
121, 124-125, 128, 136-140, 145-

146, 149, 182, 184, 186, 203, 206-
207, 223, 230, 242, 246, 250, 254-
255, 257, 270

errno.h... 37,211,246
error code ... 92, 95, 97, 225
error number ... 4, 37, 89, 113, 115, 174,

182, 184, 206, 208, 230, 253
Error Numbers ... 37
ESPIPE ... 40, 121
ESRCH ... 40, 63, 76, 231-232
ETXTBSY... 219
event notification ... 166, 224
Examine and Change Blocked Signals ...

66,233
Examine and Change Signal Action ...

64, 200, 225, 233
Examine Pending Signals ... 67, 233
exclusive lock ... 116, 118-120, 257
EXDEV ... 40, 91, 97
exec ... 50, 29, 33, 39, 42, 44-45, 50-53,

60, 65, 68, 71, 73, 75-76, 79, 84, 89,
94, 99, 110-111, 116-117, 120,
147-148, 179, 182, 186, 198, 216,
218-220, 235, 237, 242, 247, 252,
256, 269-270

exec family ... 50, 84, 116-117
exec functions ... 44-45, 50-53, 65, 84,

116-117, 147-148, 186, 198, 216,
218-220, 242, 247, 270

execl... 50
execle ... 50, 53, 61, 218
execlp ... 50, 50-51, 53, 218
executable binary form ... 249
executable form ... 240, 249
execute access bits ... 35, 248
execute by group ... 161, 199
execute by others ... 34, 61, 161, 248
execute by owner ... 161
execute file ... 35, 39, 50, 88, 98-101,

111, 147,218, 247-248, 257
execute mode ... 257
execute permission ... 35, 39, 47, 98-101,

247-248
execution environment... 181, 188
execution time ... 48, 69, 78, 227, 230,

239,266
Execution-Time Symbolic Constants ...

48
execv ... 50
execve ... 50, 50-51, 53, 61, 218
execvp ... 50, 50-51, 53, 218

293

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

exit... 141, 53, 55-57, 141-142, 147, 149,
183, 201, 216, 221-223, 229, 252,
270, 272

exit status code ... 56
EXIT.SUCCESS ... 142, 222
exp ... 141
extended cpio ... 155, 159, 180, 273, 277
Extended cpio Format... 159
extended function ... 35, 39, 121, 157,

161, 175, 229-230, 248, 258
extended security ... 35, 63, 203
extended security controls ... 35, 63, 203
extended tar ... 155, 175, 180, 273, 276
Extended tar Format... 155
extension ... 4-5, 23-24, 26, 37, 41, 43,

55, 141-142, 144, 150, 159, 165-
166, 173, 175, 188,190-191, 193-
194, 196, 202-203, 208, 210, 213-
215, 217, 220-221, 224, 228, 230-
232, 238-239, 245, 247-248, 251,
253, 263-265, 267, 270, 273,
275-276

Extensions to setlocaleO Function ... 144
Extensions to Time Functions ... 142
external variable ... 4, 37, 40, 51, 143,

150, 181
fabs ... 141
Fast File System ... 249
fclose ... 141, 147-149, 183, 271
fcntl... 117, 44, 49-51, 53, 61, 89, 100,

109-111, 113, 115-121, 125, 147,
157, 161, 208, 251, 254-258, 260,
269

fcntl Return Values ... 119
fcntl.h ... 110, 44, 51, 84, 87, 89-90, 116-

118,120
fdopen ... 146, 44, 146-147, 182, 269
FD.CLOEXEC ... 51, 84, 116-117, 147
feature ... 29, 23-24, 29, 40, 42-44, 164,

171-172, 174, 177-178, 187, 190-
191, 197, 202, 208, 211-213, 217,
220, 223-224, 231, 240, 248-250,
256-258, 260, 262-263, 273-274

feature test macro ... 29, 40, 42-43, 208,
211-213

Federal Information Processing Stan¬
dards ... 168

feof... 141, 147
ferror ... 141
fflush ... 141, 147-149, 270-271
fgetc ... 141, 147, 149, 271

fgetpos ... 209, 258
fgets ... 141, 147, 149, 271
FIFO ... 29-30, 32, 40, 87-89, 93, 98, 106,

111-112, 114-115, 121, 156, 159,
161, 179, 195, 202, 241, 244-245,
253-254

FIFO special file ... 29, 29-30, 32, 93,
111-112, 156, 179

FIFOTYPE ... 156, 158
fildes ... 80, 99-100, 105-107, 109-115,

117-118, 120-121, 136-140, 146,
250-251, 254

fildes2 ... 110, 251
file ... 29
file access control... 31, 35, 100, 201,

203, 247, 256, 261
file access mask ... 116
file access modes ... 116
File Access Modes Used For open and

fcntl... 116
file access permissions ... 35, 29-31, 34-

35, 53, 91, 96, 100-101, 155, 160,
247, 261

file accessibility ... 100, 247
File Characteristics ... 97, 246-247
file control operations ... 31, 39, 116,

247, 251, 255
file creation mask ... 52, 87, 90, 92-93,

245
file description ... 29, 29-31, 49, 51, 87,

109, 111, 117-118, 121, 136, 145-
149, 158, 201, 229, 242, 251, 255-
256, 270-271, 275

file descriptor ... 30, 30-32, 37-38, 49, 51,
56, 80, 84-85, 87, 89, 100, 102,
105-107, 109-111, 113-121, 124,
136-140, 145-149, 190, 201, 239,
242, 244, 247, 249-252, 255-256,
269-270

File Descriptor Flags Used For fcntl...
116

File Descriptor Manipulation ... 251
file group class ... 30, 35, 98
file hierarchy ... 36, 32, 36, 155, 157,

161, 196, 203, 245, 274-275
file mode ... 30, 28, 30-31, 52, 87, 90-93,

97-98, 101-103, 116-119, 125, 130,
146-147, 155, 157-158, 181, 244,
248, 257, 262, 269, 274, 276

file mode creation mask ... 52, 87, 90,
92-93

294

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

file name ... 29-30, 32, 38, 45, 92, 96-97,
101, 105-107, 157-161, 185, 218,
242, 244, 246, 249-250, 275-277

file name length ... 45, 161, 242
file offset... 30, 30-31, 47, 87, 112-114,

119-121, 146-149, 253, 255,
257-258

file other class ... 30, 35, 98-99
file owner class ... 30, 35, 98
file owners ... 30, 35, 40, 52, 97-99, 101-

104, 157-159, 248, 274
file permission ... 29-31, 34-35, 39, 53,

87, 89-93, 96, 98-101, 104, 155,
157-158, 160-161, 235, 244, 247,
249, 261

file permission bits ... 30, 35, 87, 90, 92-
93, 98-99, 101, 157-158

file pointer ... 80, 104, 118, 145, 252,
269, 271

file record locking ... 39, 111, 118, 248,
256-257

File Removal... 245-246
file serial number ... 30, 97, 158-159,

196, 241
file size ... 38, 97, 115, 121, 155-156, 158,

190, 242, 258, 275-277
file space ... 30, 39, 92, 94, 96, 111, 114-

115, 157, 188, 190, 253
File Status ... 99, 116, 247
file status ... 116
file status flags ... 87, 113-114, 116-119,

255
File Status Flags Used For open and

fcntl... 116
file system ... 30, 33, 36, 39-40, 45, 83,

85, 87, 89, 91-93, 95-97, 100-104,
109, 125, 155, 157, 159, 161, 165,
179, 185, 188-189, 194, 196, 201,
203-205, 207-208, 216, 219, 240-
241, 245-250, 252-253, 267,
271-278

file table entry ... 201
file times update ... 36, 52, 99-100, 205,

257, 269
file types ... 28-29, 31, 36, 40, 53, 84, 87-

88, 97-98, 106, 117-120, 145-146,
148, 155, 158-161, 181, 195, 208-
209, 241, 244, 248-249, 253, 257-
258, 269, 274-277

filename ... 30, 29-30, 32, 36, 41-42, 44,
51, 83, 88, 105, 157, 161, 182-183,

194-195, 202, 204-205, 210, 218-
220, 241, 243, 275

filename portability ... 36, 183, 202, 204,
210

fileno ... 145, 44, 145-147, 182, 201
Files and Directories ... 83, 241
FIPS ... 168, 272
first-in-first-out... 29, 109, 256
flag ... 51, 54-55, 60, 64-65, 84, 87, 109,

112-119, 123, 125, 127-128, 130,
132, 146, 162, 198, 200, 209, 220-
221, 231, 233, 244-245, 250-251,
254-256, 263-264

floating point values ... 214
flock ... 118-119, 257
flock Structure ... 118
floor ... 141
flow control... 130, 215
flush ... 130, 132-133, 137-138, 221, 253,

271
fmod ... 141
fold ... 42, 204-205
fopen ... 141, 146-149, 196, 269, 271
foreground ... 28, 30-31, 57, 123-124,

127-128, 130, 133, 136, 139, 197-
201, 222, 236, 261, 265

foreground process group ... 30, 28, 30-
31, 57, 123-124, 127-128, 130, 133,
139, 197-201, 222, 236, 261, 265

foreground process group ID ... 31, 139,
198, 200, 236, 265

foreground/background checks ... 201
fork ... 49, 32-33, 49-50, 53, 56, 61, 68,

71, 75, 79, 84, 111, 119, 124, 145,
147-148, 198, 209, 216-217, 220,
236-237, 242, 255-256, 269-270

Format of Directory Entries ... 83, 194,
241

format-creating utility ... 155, 157-158,
161, 278-279

format-reading utility ... 155, 157-158,
161-162, 276-279

FORTRAN ... 5, 165, 167, 173, 190-191
fpathconf... 105, 48, 105-106, 250
fprintf... 141, 258
fputc ... 141, 147, 149, 271
fputs ... 141, 147, 149, 271
framing... 130
fread ... 141, 149, 271
free ... 141
free function ... 39, 182, 223, 230, 243

295

IEEE
Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

freopen ... 141, 147-148, 271
frexp ... 141
fscanf... 141, 149, 271
fseek ... 141, 141-142, 148-149, 271
fsetpos ... 209, 258
fstat... 99, 35-36, 44, 61, 97, 99-100, 247
FTAM ... 167
ftell... 141, 149, 271
Full Use ... 176, 179-180, 183, 248, 274
full-duplex mode ... 125
function address ... 27, 32-33, 60, 164,

193, 207, 221, 230, 265
function argument... 27, 38, 54, 63-67,

69, 73, 77, 84-87, 96, 100, 104,
117-118, 120-121, 150, 218, 221-
222, 229, 232, 243-244, 247, 250,
252, 259-260

function descriptions ... 27, 37, 49, 87,
101, 109, 118, 121, 136, 146-147,
192, 206, 216, 270

fwrite ... 141, 149, 258, 271
F.DUPFD ... 110, 115, 117, 119-120
F_GETFD ... 115, 117, 119
F.GETFL ... 115, 117, 119
F_GETLK... 115, 118-120
F_OK... 47, 101
F_RDLCK ... 116, 118, 120
F.SETFD ... 115, 117, 119, 256
F.SETFL ... 115, 118-119, 256
F.SETLK ... 115, 118-120, 257
F_SETLKW ... 115, 118-120, 257
F_UNLCK... 116, 118
F.WRLCK ... 116, 118, 120
general concepts ... 35, 193, 203, 211,

274
General File Creation ... 244
general terminal interface ... 28, 34, 123,

136, 259-260, 264
General Terminal Interface ... 123
General Terms ... 28, 4, 28, 183-184, 193
General Utilities ... 141
Generate Terminal Pathname ... 79, 239
Get Foreground Process Group ID ... 139
getc ... 141, 149, 271
getchar ... 141, 149, 271
getcwd ... 86, 243-244
getegid ... 71, 61, 71-72, 236
getenv ... 79, 141, 182, 219
geteuid ... 71, 61, 71-72
getgid ... 71, 61, 71-72
getgrent... 272

getgrgid ... 151, 44, 151-152, 272
getgrnam ... 151, 44, 151-152, 272
getgroups ... 73, 61, 73, 180, 236,

244-245
gethostid ... 238
gethostname ... 238
getlogin ... 74, 152-153
getpgrp ... 75, 61, 75-76, 199, 236
getpgrp2 ... 61, 75-76, 199, 236
getpid ... 71, 61, 63,71, 75, 230
getppid ... 71, 61, 71
getpwent... 272
getpwnam ... 152, 44, 74-75, 152-153,

272
getpwuid ... 152, 44, 74-75, 152-153, 272
gets ... 141
gettimeofday ... 238
getty ... 135, 190, 236, 256, 260
getuid ... 71, 61, 71-74, 209, 230
getwd ... 243
gid ... 72-73, 151, 156-159, 161, 248
gid_t... 40, 31, 40, 71-73, 97, 102, 151-

152, 208-209
GKS ... 167
Global Externals ... 184
GMT ... 194
gmtime ... 142, 195
gname ... 156-157, 159
grandchildren ... 220
graphics ... 22, 28, 165, 167, 191, 202
Graphics Standards ... 167
Greenwich Mean Time ... 194
group ... 151
group database ... 151, 272-273
group database access ... 151, 273
group databases ... 151, 272-273
group file ... 29-31, 34-35, 48, 52, 87, 97-

99, 101-103, 140, 155-159, 181,
196, 199, 216, 241, 244, 247-248,
261, 272

group ID ... 31, 29-34, 40, 44, 48-49, 52,
62, 71-73, 75-76, 87, 92-93, 97, 99-
100, 102-103, 139, 151-152, 158,
160, 179, 198, 200, 203, 208, 219,
235-237, 241, 248, 265

group name ... 5, 151, 185, 221, 251
group Structure ... 151
grouplist... 73
grp.h ... 151, 44, 151, 159, 162, 209
gr_gid ... 151
gr_mem ... 151

296

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

gr_name ... 151
hang up ... 131, 135
hard link ... 273, 277
hardware ... 28, 34, 39, 53, 57, 59, 77,

130-132, 135-136, 171-172, 174,
177, 183, 188, 190, 196, 207, 214,
252-253, 255, 258, 260, 263, 274

hardware control... 130-132, 260
header ... 4, 21, 24, 27, 29, 37-38, 40-43,

47-48, 54, 57, 64-66, 77, 83-84, 97,
100, 104, 116-118, 121, 129, 155-
161, 182, 184, 186, 192, 208-209,
211-213, 238, 240-241, 247, 275,
277

Header and Data Structure ... 97, 247
header block ... 155-158, 161
header prototype ... 43
Headers and Function Prototypes ... 43
hertz ... 240
hierarchy ... 32, 36, 155, 157, 161, 165,

196, 203, 245, 274-275
historical implementation ... 173-175,

178, 181-182, 189, 194-196, 201-
202, 204-205, 207, 209-210, 215,
220-221, 223, 238, 241-243, 245-
248, 251, 255-260, 263-264, 266-
267, 271, 279

Historical Implementations ... 178
historical reasons ... 190, 246, 251, 267
historical term ... 181, 201, 239, 259, 264
historical usage ... 4, 175, 264-265
history ... 165, 280
HOME ... 41
home directory ... 41
HUP CL ... 129, 131-132
i-node ... 241, 277
I/O ... 22, 30-31, 39, 83, 87, 109, 126,

129, 148, 156, 159, 165-166, 190-
191, 197-200, 230, 250, 253, 257,
270

ICANON ... 127-128, 132-134, 263
ICRNL ... 128-130
Identifier Index ... 186
IEEE ... 3-6, 9, 11-12, 21, 24, 26-27, 32,

47, 61, 141-142, 144, 161, 163-167,
171-173, 175-178, 183-186, 193,
221, 246, 273, 279

IEEE Balloting Process ... 176
IEEE Consensus Process ... 175
IEEE Standards Board ... 5, 9, 11-12,

177

IEXTEN ... 128, 132-133
IFS ... 211
IGNBRK... 129-130
IGNCR ... 128-130
IGNPAR ... 129-130
implementation characteristics ... 189-

190,216
implementation conformance ... 21-26,

31-32, 44, 47, 141, 164, 174-175,
177, 182, 187-190, 194, 200-201,
207, 210, 213-214, 217-218, 223-
225, 227, 229, 231, 245, 250-251,
266

implementation details ... 174, 177, 203,
254, 266

implementation-defined ... 23, 23-25, 28,
31-33, 35, 37-38, 40, 48, 56-57, 59,
62-63, 67, 74, 77-80, 99-101, 103,
113, 115, 123-124, 128, 131-133,
135, 137, 142, 144, 146, 150, 152-
153, 155, 158-160, 162, 165, 187,
194-196, 201, 204, 206, 220-221,
224, 226, 228, 231-232, 234, 243-
245, 258, 266-269, 271, 273, 275,
277-278

implementation-dependent... 210, 219,
222, 225, 241, 269

implementation-independent... 210,
228, 241, 274

implementation-specific ... 77, 245, 248,
258

implementor ... 3, 26-27, 173, 186, 193,
204, 208, 212-214, 222-223, 227,
231, 237, 245, 248, 260, 263,
272-275

inclusive OR ... 87, 99, 101
incomplete pathname ... 196
Industry Open Systems Publications ...

168
inheritance of process attributes ... 52
inherits ... 49-50, 52, 119, 124, 198, 200-

201, 217, 222, 255-256, 263, 269
init... 200, 222, 231
initial user program ... 151-152
initial working directory ... 41, 151-152
initial working directory field ... 151
initialization ... 49, 51, 59, 63-64, 92-93,

150, 158, 188, 200, 206, 217, 232,
240

ENLCR ... 129-130
inline ... 4, 193

297

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

ino_t... 40, 97
INPCK... 129-130
Input and Output... 83, 109, 245, 250,

252,255
Input and Output Primitives ... 109, 83,

109, 245, 250, 255
input character ... 123, 125-128, ISO-

134, 261-263
input control value ... 129, 131
input modes ... 45, 125-127, 129-130,

133, 138, 215, 262-263
Input Modes ... 129
input parity checking ... 129-130
input processing ... 45, 123-127, 129-130,

132-133, 261-262
Input Processing and Reading Data ...

125
input queue ... 44-45, 125-126, 130-131,

133, 215, 261-262
Input/Output... 141
Institutional Representatives ... 176,

176-177
int... 43, 50, 54, 56, 60, 62-64, 66-68,

72-73, 75-76, 80, 83, 85-87, 90, 92-
96, 99-103, 105, 109-111, 113,
117-118, 120, 134, 136-137, 139,
144-146, 150, 192, 209, 223, 229,
234-235, 242, 252, 254, 260, 267

integer ... 30-34, 47, 55, 89, 109, 113,
115, 117, 145, 158, 195, 221, 224,
238,252

integral ... 55, 57, 129, 135, 208-209
inter-process communication ... 179
inter-process signals ... 270
Interactions of Other FILE-Type C

Functions ... 146
intercharacter timer ... 262
Interface Characteristics ... 123, 113,

123,260
Interface, Not Implementation ... 174
international applications ... 171, 240,

267
interpreter ... 31, 123, 197, 211, 218,

221, 225
interrupted call... 38, 61, 69, 223, 227,

230
interrupted operation ... 89, 113, 115
interval ... 28, 59, 217, 226
INTR ... 127-128, 133, 224
INT.MAX ... 44, 112, 114, 252
INT.MIN ... 44

iocntl... 259
ioctl... 207, 258-260, 265
IO„ERR ... 252
isalnum ... 141
isalpha ... 141
isascii... 182
isatty ... 80, 182, 206
iscntrl... 141
isdigit... 141
isgraph ... 141
ISIG ... 127-128, 132-133, 200
islower ... 141
ISO ... 24-26, 34, 163, 167, 185, 205, 269
ISO Conforming POSIX Application ...

25
ISO member body ... 24-25
isprint... 141
ispunct... 141
isspace ... 141
ISTRIP... 129-130, 263
ISUID ... 274
isupper ... 141
isxdigit... 141
DCOFF ... 128-130, 133, 138, 215
IXON ... 128-130, 133
job access control... 197, 201, 261
job control... 31, 25, 31, 47, 54, 57-58,

75, 113, 115, 123-124, 127-128,
133, 136, 179, 187, 197-202, 207,
220-222, 225, 228, 231-232, 236-
237, 239, 258, 261

job control shell... 197-201, 222, 225,
228, 231, 236-237, 261

job control signals ... 57-58, 133, 197-
200, 202, 225, 228, 232, 236, 261

Job Control Signals ... 58
Julian ... 7, 143, 265, 267
kernel... 167, 195-196, 201, 205, 222,

231,281
kill ... 62, 38, 44, 50, 57, 59-63, 66, 69,

71, 75, 126-128, 132-133, 181, 183,
209, 224, 226-233, 260-261

Korn shell... 210
LAN ... 247
LANG ... 41, 144-145
Language Binding ... 26-27, 141, 173
Language Standards ... 167, 164, 167
Language-Dependent Services for the C

Programming Language ... 26
Language-Dependent Support... 26, 43
Language-Specific Services for the C

298

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

Programming Language ... 141
LC_ALL ... 144, 267-268
LC_COLLATE ... 41, 144, 267
LC_CTYPE ... 41, 144, 267
LC_MONETARY ... 41, 144, 267
LC_NUMERIC ... 41, 144, 267
LC_TIME ... 41, 144, 267
ldexp ... 141
leap seconds ... 194-195
library functions ... 27, 141, 174, 180,

192, 220, 230, 233
library routine ... 203, 207, 220, 225, 233
lifetime ... 29, 31-34, 81, 226, 232, 240,

250
limits.h ... 44, 24-25, 44-46, 80-81, 105-

106, 182, 185, 188, 190, 213-215,
225, 239, 249-250

line control functions ... 137, 264
line speeds ... 135, 259
linefeed ... 263, 271
link ... 90, 29, 31, 38, 40, 44-45, 61, 90-

92, 94-97, 99, 111, 156, 158-160,
162, 167, 194, 203, 208, 245-246,
273, 275-277

link count... 31, 38, 44-45, 91-92, 94-96,
111,208

link definition ... 29
Link Layer Control... 167
linking across file systems ... 91
linkname ... 156-158, 276
LINK_MAX ... 45, 38, 45, 91-92, 105
LNKTYPE ... 156, 158
Local Area Network ... 247
local control value ... 132-133
local file system ... 157, 161, 275
Local Modes ... 132, 125, 127, 132, 198
locale ... 144, 41, 125, 127, 129, 132-133,

142-145, 157, 159, 161, 198, 247,
263, 265-269, 275

locale.h ... 41, 142, 144, 268
localtime ... 142, 142-143, 150, 195, 265
lock ... 7, 38-39, 49, 51, 111, 115-116,

118-120, 166, 248, 256-257
locked region ... 118-120, 256-257
lockf... 38-39, 49, 51, 111, 115-116, 118-

120, 166, 248, 256-257
locking process ... Ill, 118-120, 248,

256-257
locking requests ... 118-120, 257
log ... 141
loglO ... 141

logical device ... 201
login account... 41
login name ... 41, 74, 151-152, 244
login shell... 197-198, 200
LOGNAME ... 41, 210
logout... 201
longjmp ... 141, 69, 141, 150, 183, 207,

230, 235, 272
longjmp ... 150, 69, 141, 150, 183, 207,

230,235, 272
LONG.MAX ... 44
LONG_MIN ... 44
lowercase ... 32, 42, 142, 183, 185, 204,

210
lread ... 209, 252
lseek ... 120, 29, 40, 47, 61, 89, 113, 115,

120-121, 142, 147-149, 190, 208-
209, 216, 257-258, 271

lvalue ... 241
lwrite ... 252
L_ctermid ... 79, 239
L_cuserid ... 74, 236
l_len ... 118-119
l_pid ... 118-119
Lstart... 118-119, 257
Ltype ... 116, 118
l_type Values For Record Locking With

fcntl... 116
l_whence ... 118-119
machine ... 77
macro ... 27, 29, 40, 42-43, 55, 98, 142,

150, 184-186, 192, 208, 211-213,
221, 272

magic ... 156-157, 159-160, 209, 275
magic bytes ... 157, 160
magic cookie ... 209
magic field ... 157, 159
mail... 175, 211
main ... 50, 5, 50-51, 53, 55, 60, 183,

207, 209, 218-219, 222, 255
make directory ... 92, 245
malloc ... 141, 182, 230, 243, 271
mandatory locks ... 248, 257
manipulate signal sets ... 63, 232
marked for update ... 36, 52, 84, 88, 91-

96, 102-104, 109, 112, 114, 146,
148-149, 205, 242

mask ... 52, 59, 65-67, 69, 87, 90, 92-93,
98, 116-117, 129, 131-132, 150,
219, 223, 225, 227-228, 231, 233,
245, 272

299

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

Mask For Use With File Access Modes ...
116

maximum pathname length ... 45, 106,
243

MAX_CANON ... 45, 105, 125-126
MAX_CHAR ... 215
MAX.INPUT ... 45, 105, 125-126, 130,

215
may ... 23
MB_LEN_MAX... 44
medium ... 114, 155, 157-158, 161, 274,

277-279
memory management... 39, 53, 173
metafile ... 167
MIN ... 126-127, 133, 262
Minimal Changes to Existing Applica¬

tion Code ... 175
Minimal Changes to Historical Imple¬

mentations ... 175, 196
Minimal Interface, Minimally Defined

... 174
mkdir ... 92, 35, 44, 61, 90, 92, 96, 99,

102, 162, 180, 206, 241, 245-246
mkfifo ... 93, 35, 44, 61, 90, 93, 99, 102,

196, 241, 245
mknod ... 196, 245
mktime ... 142, 142-143, 150, 195
mode ... 31
mode field ... 129, 131-132, 155, 157-158
modem access ... 28, 31, 87, 91, 101,

116-119, 124, 257
modem connection ... 132, 135
modem control lines ... 132, 135
Modem Disconnect... 128, 57, 128
modem line control... 132, 135
modem lines ... 125-127, 132, 135, 181,

259
modem status lines ... 132
mode_t... 40, 87, 90, 92-93, 97-98, 101,

208, 245, 247
modf... 141
modification time ... 97, 103-104, 158,

160, 231, 249
modtime ... 104, 249
mount... 196, 201, 203, 207, 246-247,

249
mount point... 201, 203, 207, 246, 249
mounted file system ... 196, 201, 247,

249
mtime ... 156, 158
Multi-volume archives ... 277

Multics ... 279
multiple groups option ... 25, 73
Multiple Volumes ... 162, 277-278
Mumps ... 167
name field ... 131, 156-158, 160-161, 212,

276
name path ... 41, 91-92, 94-97, 101, 105-

106, 157, 206, 210
name.h ... 29, 44, 74, 76, 80, 152, 161,

179, 211, 236-237, 239, 242, 277
namespace pollution ... 192, 208,

212-213
NAME_MAX ... 45, 30, 36, 38, 45, 48,

53, 83, 85-86, 89, 91-95, 97, 100-
106, 216, 249

National Body Conforming POSIX
Application ... 25

NBS ... 168, 272
nbyte ... 111-114, 252, 254
NCCS ... 129, 133
NDL ... 168
network connection ... 123, 132, 196, 263
networked systems ... 22, 167, 171, 180,

189, 196, 205, 247, 252, 257
networked transfers ... 252
Networking Standards ... 167, 5, 167
NGROUPSJMAX ... 44, 25, 34, 44, 73,

81
NL ... 126-130, 133
nlink_t... 40, 97, 208
No Super-User, No System Administra¬

tion ... 174
nodename ... 77, 237
NOFLSH ... 132-133
nohup ... 219
non-canonical mode input processing ...

125-126, 133
Non-Canonical Mode Input Processing ...

126
non-local jumps ... 141, 150, 183, 223,

272
NUL ... 142
NULL ... 27, 42, 51, 55, 65-66, 74, 77,

79-80, 84-86, 104, 144, 146, 152-
153, 225, 233, 242-244, 268-269

null byte ... 30, 32, 42, 45, 51, 74, 79, 83,
86, 205, 277

null character ... 29-30, 32, 42, 51, 74,
79, 83, 86, 205, 241

null pathname ... 32, 36, 45, 80, 86, 161,
239,277

300

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

null pointer ... 27, 42, 51, 74, 77, 79-80,
84-86, 104, 144, 146, 152-153,
268-269

null signal... 57, 62-63, 65-66, 225,
232-233

null string ... 29, 31, 42, 45, 51, 74, 79,
144, 241, 269

null-terminated character array ... 51,
77, 157

null-terminated character string ... 51,
157

null-terminated filename ... 51, 83
null-terminated pathname ... 80
null-terminated string ... 51, 80, 157
Numerical Limits ... 44
object compatibility ... 174, 209, 251, 263
object file ... 29-30, 32, 193, 241, 257
octal... 157-158, 160, 277
odd parity ... 131-132
off_t... 40, 97, 118, 120-121, 208, 252,

257-258
oflag ... 87, 89, 116, 244, 256
oflag Values For open ... 116
open ... 87
open file ... 31, 29-31, 36-39, 44-45, 49,

51-52, 56, 84-85, 87-90, 94, 96,
100, 102, 105, 109-111, 113, 115-
121, 123-124, 136, 138, 145-149,
188, 201, 219, 221, 239, 244, 247,
251, 255-257, 260, 269-271

open file description ... 31, 29-31, 49, 51,
87, 109, 111, 117-118, 121, 136,
145- 149, 201, 251, 255-256,
270-271

open file descriptor ... 30-31, 37, 49, 51,
56, 84-85, 87, 89, 100, 102, 105,
109-111, 113, 115, 117-121, 136,
146- 148, 201, 247, 251, 255, 269

open flag bits ... 118
open function ... 36, 52, 84, 87-90, 100,

102, 109, 111, 113, 117-118, 121,
132, 136, 146-149, 174, 184, 201,
245, 247, 269-270

open instance ... 201, 264
Open Software Foundation ... 168
Open System Guidelines ... 166
Open Systems ... 5, 163, 168
opendir ... 83, 43, 83-85, 157, 161, 180,

242
Opening a Terminal Device File ... 123
OPEN_MAX ... 45, 38, 45, 81, 84, 109-

110, 120, 184
operating environment... 3, 21, 163,

171, 173, 181-182, 193
operating system documentation ... 24,

3, 24, 173
OPOST ... 131
optional error ... 23, 207, 217, 233, 244,

250, 257
optional facilities ... 47-48
optional features ... 23, 187
optional_actions ... 136-137
OR ... 47, 54, 87, 99, 101, 129, 131-132
Organization of the Standard ... 183
orphan ... 31, 57, 60, 124, 201-202, 222-

223, 228, 261
orphaned process group ... 31, 57, 60,

124, 201-202, 222-223, 228, 261
OSI Model... 167
output baud rates ... 135, 264
output characters ... 127-128, 130-131
output control value ... 131
Output Modes ... 131, 127, 131
output primitives ... 83, 109, 245, 250,

255
output processing ... 123-125, 127, 129-

131, 133, 186
output queue ... 125, 130, 133
owner ... 12, 30, 35, 40, 52, 74, 88, 92-93,

97-99, 101-104, 157-161, 220, 248,
274

owner ID ... 30, 52, 92, 97, 99, 101-104,
158, 160, 220, 248

O.ACCMODE ... 116-117
0_APPEND ... 87, 113, 116
O.CREAT ... 87-90, 116
0_EXCL ... 87-89, 116
O.NDELAY ... 245, 250-251, 255-256
O.NOCTTY ... 88, 116, 124, 244
0_NONBLOCK ... 88-89, 109, 112-116,

123, 125, 127, 132, 175, 184, 245,
250-251, 253-256

0_RDONLY ... 87-88, 116, 245
O.RDWR ... 87-89, 116, 245
0_TRUNC ... 88-90, 116, 244
0_WRONLY ... 87-89, 116, 245
parameter ... 4, 124, 129, 136, 181-182,

192, 198, 224, 229, 233, 246, 249,
252, 259, 262

PARENB ... 131-132
parent directory ... 31, 36, 49, 84, 88-89,

92-96, 241, 244

301

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

parent process ... 31, 31-32, 34, 49-50,
52-53, 55-57, 59-60, 62, 71, 78, 84,
145, 198-199, 202, 216-217, 220,
222, 228-229, 232, 235, 237-238,
244, 269

parent process ID ... 31, 34, 49-50, 52,
71, 198, 222, 235

parity ... 129-132, 157, 161, 263
parity error ... 130, 263
PARMRK... 129-130
PARODD ... 131-132
Pascal... 167, 191
passwd ... 152
passwd database ... 152, 272
passwd file ... 201, 272
passwd Structure ... 152
passwd.h ... 209
password ... 159, 257, 272
password database ... 257, 272
PATH ... 41, 4, 41, 51, 53, 184, 210, 219
path prefix ... 32, 36, 41, 51, 53, 89, 91-

94, 96-97, 100-104, 106, 157
pathconf... 105, 36, 46, 48, 61, 105-106,

196, 216, 249-250
pathname ... 32, 28-30, 32-33, 35-36,

38-39, 41, 44-46, 48, 51, 53, 79-80,
85-87, 89, 91-97, 100-106, 126,
157-158, 160-161, 194, 196, 203-
206, 215-216, 218-219, 239-241,
243, 249-250, 256, 274-277

pathname component... 32, 30, 32, 36,
38-39, 48, 53, 85-86, 89, 91-95, 97,
100-104, 106, 216, 249

pathname resolution ... 36, 28-30, 32-33,
35-36, 194, 203, 205, 241

Pathname Variable Values ... 45
PATH_MAX ... 45, 32, 38, 45, 53, 85-86,

89, 91-95, 97, 100-106, 215, 240,
243-244, 249, 276-277

pause ... 68, 56, 61, 68-70, 227, 230,
233-235, 253

pclose ... 220-221
PCTS ... 168
pending signals ... 49, 52, 59-60, 62-63,

66-67, 69, 217, 226-228, 233
permission ... 4, 29-31, 34-35, 37, 39, 47,

53, 62-63, 85-87, 89-104, 106, 123,
155, 157-158, 160-161, 195, 220,
230, 232, 235, 244, 247-249, 261

permission bits ... 30, 35, 87, 90, 92-93,
98-99, 101, 157-158, 248

permission checking ... 100-101, 230,
232,248

perror ... 141, 149, 207, 271
pgrp_id ... 139-140
PHIGS ... 167
physical end ... 114
pid ... 54, 56, 62-63, 75-76, 209, 231-232
PID_MAX ... 209
pid_t... 40, 32-33, 40, 49, 54, 62, 71, 75,

118,139, 209
pipe ... 109, 30, 32, 40, 44-45, 57, 61, 94,

98-100, 106, 109-115, 121, 195,
198, 202, 228, 244, 251, 253-255,
269, 271

pipe definition ... 32
pipeline ... 30, 32, 40, 57, 61, 94, 98-100,

106, 109-115, 121, 195, 198, 202,
228, 244, 251, 253-255, 269, 271

PIPE.BUF ... 45, 105, 114, 253-255
PIPEJVLAX... 255
popen ... 221, 270
port... 123, 129, 132, 168, 175, 191,

212-213, 227, 264
portability specifications ... 47-48, 173,

216,260
portable application ... 42, 44-45, 172-

173, 188-190, 192, 204-205, 209,
217, 220, 225-226, 229-231, 233,
239-240, 258-259, 263-264

portable filename character set... 32,
36, 41, 157, 161, 183, 202, 205, 210

portable library ... 225, 258
portable mechanism ... 223, 226, 229,

258, 261
Portable Operating System Interface ...

3, 21, 163
portable pathname ... 32
portable way ... 225-226, 244, 264
POSIX ... 3, 5, 22-26, 42-44, 47, 166-168,

172, 174-175, 177-178, 180-188,
190-194, 196-198, 200-201, 204,
208, 210-215, 218, 223-225, 229,
234-236, 240-241, 245-247, 250-
251, 253, 256, 258, 260, 265, 268-
270, 274, 276-277

POSIX and the C Standard ... 180
POSIX Extensions ... 23-24, 26, 175,

190, 214-215, 251
POSIX Symbols ... 42, 42-43, 192, 208
posix.h ... 216
pow ... 141

302

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

prefix ... 32, 36, 41, 51, 53, 89, 91-94,
96-97, 100-104, 106, 156-158, 193,
206, 213, 218, 276

prefix field ... 157-158, 276
Prime Meridian ... 143, 265
primitive system data types ... 40, 208,

247
Primitive System Data Types ... 40
primitives ... 40, 49, 63, 83, 109, 165,

208, 216, 222, 227, 234, 245, 247,
250, 255

printf... 141 149, 165-166, 172, 191,
207, 218, 225, 271, 281

privilege ... 32. 28, 30, 32, 35, 40, 48,
72-73, 91, 94, 101-104, 106, 155,
158-159, 161-162, 165, 193, 203,
236, 244, 247-248, 274, 276

privileged operation ... 40, 236
process ... 32
process creation ... 33, 49, 83, 87-88, 90,

92-93, 216-217, 221
Process Environment ... 71, 235
process group ... 32. 9, 28-34, 40, 44, 48-

49. 52, 54, 56-58, 60, 62-63, 71-73,
75-76, 87, 92-93, 99, 102-103, 113,
115, 123-124, 127-128, 130, 133,
136, 139-140, 155, 164, 171, 179-
180, 197-203, 205, 216-217, 221-
223, 227-228, 231, 236-237, 241,
248, 261, 264-265, 275

process group ED ... 32, 29-34, 44, 48-49,
52, 62, 71-73, 75-76, 87, 92, 99,
102-103,139, 198, 200, 203, 236-
237, 241, 265

process group leader ... 33. 75-76, 124,
202,236

process group lifetime ... 33, 29, 32-34
process ED ... 33, 29-34, 40, 44-45, 48-50,

52, 54-57, 62, 71-76, 87, 92-93, 99,
101-104, 118-119,139-140, 183,
198, 200, 203, 209, 219-220, 222,
231, 235-237, 241, 265

process identification ... 71, 235
process image ... 37, 39, 50-53, 148, 216,

219-220
process image file ... 50-53, 148, 219-220
process lifetime ... 33. 29, 31-34, 81, 232,

240, 250
Process Primitives ... 49, 216, 227
Process Termination ... 53. 53-54, 184,

200, 220, 222, 226

Process Times ... 78. 238
processor scheduling delays ... 68
programming errors ... 37, 123, 189, 207,

225,244,253, 255,278
prompt... 173, 197-199, 211, 226
protection information ... 155
prototype ... 43, 192
PS1 ...'211

PS2 ... 211
ptrace ... 206, 221, 233
putc ... 141 149, 271
putchar ... 141 149, 271
putenv... 239
puts ... 141 119, 130, 141, 149, 174, 261,

271
pwd.h ... 152. 41, 44, 152, 159, 162, 209
pw_dir... 152
pw_gid ... 152
pw_name ... 152
pw_shell... 152
pw_uid ... 152
qsort... 141 182
queue ... 44-45, 125-126, 130-131,133,

215, 224, 261-262
queue_selector... 137-138
QUIT character ... 127. 133
race conditions ... 198
radix ... 41
raise ... 60-61, 66, 179, 183
rand ... 141 6-7, 9, 141
range ... 25, 37, 77-78, 110, 143, 174,

186, 191, 196, 209, 214, 226, 251,
267, 275

Rationale and Notes ... 171
raw mode ... 259
read ... Ill
read by group ... 58, 124, 157, 161,199,

261
read by others ... 29, 112, 157, 161, 256
read by owner ... 157, 161
read function ... 36, 39, 84, 100, 109,

111-113, 121, 126, 137, 147-149,
197, 199, 207, 227, 230, 241, 247,
252-253, 255-256, 259, 261, 269

read operations ... 84, 113, 124, 126,
147-149, 242, 247, 251, 256-257,
278

read request... 35, 37,112,118,125,
127, 133, 148, 277

read-only file system ... 33, 40, 89. 91,
93. 95-97j 101-104, 207-208

303

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

readahead ... 147, 271
readdir ... 83, 43, 83-85, 180, 242-243
real group ID ... 33, 31, 33, 52, 71-72,

100, 235
real time ... 33, 68-69, 78, 234-235, 238
real user ID ... 33, 31, 33-34, 45, 52, 62,

71-72, 235
realloc ... 141
realtime ... 5, 166, 224, 234, 238
Realtime Extensions ... 166
Referenced C Language Routines ... 141
region ... 118-120, 251, 256-257
REGTYPE ... 156
regular file ... 33, 29-30, 33, 39, 50, 53,

88, 97-99, 102-103, 112-114, 118,
156, 158-159, 161-162, 202, 241,
244, 246, 248, 256, 273, 275-277

Related Standards ... 163, 3, 22, 163-
164, 172, 178, 182, 279

Related Standards and Documents ...
178

Related Standards—Open System
Environment... 163

relative pathname ... 33
release ... 77, 180, 188, 212, 223, 226,

232, 241, 245-246, 266, 272
reliable ... 38, 179, 183, 224, 246-247
reliable queueing ... 224
reliable signal... 179, 183, 224
remove ... 141
Remove Directory Entries ... 94, 246
remove function ... 27, 94-95, 111, 119,

149, 246, 272
rename ... 96, 61, 91, 95-97, 141, 180,

182, 245-246
renaming directories ... 96, 246
renaming dot... 246
reposition ... 120, 258
requested access ... 35, 91, 101, 118-119
Required Signals ... 57
restore signal masks ... 67, 69, 150, 231,

272
return value ... 3-4, 36-37, 50, 52-53, 55-

56, 63-81, 84-87, 89-95, 97, 100-
106, 109-113, 115, 117, 119-121,
126-127, 134-140, 144-145, 149,
152-153, 181, 191, 203, 206-207,
217, 231, 234-235, 237-238, 240,
242, 247, 249-250, 252-253, 255,
258, 264, 268, 270

returned argument... 54-55, 65, 73, 77,

86, 96, 117, 229, 234-235, 243, 245,
250,252

returning zero ... 37, 50, 55-56, 63-65,
67, 70, 72-74, 76, 80, 84-86, 91-97,
100-104, 109, 111-113, 121, 126-
127, 135-136, 138, 140, 187, 206,
233, 235, 242, 247, 250, 255

rewind ... 141
rewinddir ... 83, 43, 83-84, 180, 243
rewinding ... 141, 149, 190, 271
rewrite existing file ... 90, 245
rmdir ... 95, 61, 94-95, 97, 180, 207, 245
root directory ... 33, 36, 52, 95, 196, 203,

205-206, 246
root file system ... 196, 203
run-time ... 25, 44-45, 47, 81, 196, 214,

225, 240, 249-250
run-time facility ... 240, 249
Run-Time Increasable Values ... 44, 25,

44
Run-Time Invariant Values (Possibly

Indeterminate)... 45
run-time invariant values ... 45, 214,

250
run-time limits ... 196
running process ... 216
R_OK... 47, 101
samefile ... 208
save ... 150, 183, 206, 219, 230, 233, 264,

268,272, 274
saved process group ... 31, 33, 52, 227
saved process group ID ... 31, 33, 52
saved set-group-ID ... 33, 31, 33, 47, 52,

72-73, 179, 235
saved set-user-ID ... 33, 33-34, 47, 52,

62, 72-73, 179, 235
sa_flags ... 64-65, 233
sa_handler ... 64-65
sa_mask ... 64-65, 233
SA_NOCLDSTOP ... 60, 65, 198, 233
sbrk ... 182
scanf... 141, 149, 191, 271
SCHARJV1AX... 44
SCHAR.MIN ... 44
scheduler ... 68, 165, 178, 231, 234-235,

238
scheduling ... 68-69, 127, 165-166, 178,

226, 234-235, 238
scheduling delays ... 68, 234-235
seconds since the Epoch ... 34, 29, 34,

77, 99, 104, 142, 185, 194-195, 265

304

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

secure implementation ... 232, 247-248
security ... 35, 63, 166, 168, 193, 195,

200, 203, 220, 231-232, 237, 248,
261, 265, 272, 274-275

security label... 232
seekdir... 174, 243
seeking ... 26, 40, 112-113, 120, 147-149,

190, 270-271
SEEK.CUR ... 47, 119, 121
SEEK.END ... 47, 119, 121, 258
SEEKJ3ET ... 47, 119, 121, 271
select... 30, 157, 161, 189, 198, 253, 280
semaphores ... 166, 230, 256
session ... 34, 28, 30-31, 34, 52, 57, 62,

75-76, 124, 140, 167, 198, 201-202,
222, 231, 236-237, 265

session leader ... 34, 28, 34, 75-76, 124,
202

session lifetime ... 34
session process group leader ... 75-76,

124, 202
Set File Access and Modification Times

... 103, 249
Set File Creation Mask ... 90, 245
Set Foreground Process Group ID ... 139
set gid ... 157, 161
set group ID ... 34, 52, 72, 75, 87, 92-93,

99, 102, 139, 179, 200, 235-236,
241, 265

set process group ... 34, 52, 62, 72, 75,
92, 99, 123-124, 130, 139, 200, 217,
236, 241, 265

setuid... 157-158, 161,274
set user ... 52, 72, 87, 92-93, 99, 102,

104, 158, 162, 179, 197, 202, 235,
250, 258, 274

set-group-ID ... 31, 33, 47, 52, 72-73,
103, 179, 219-220, 235

set-user-ID ... 33-34, 47, 52, 62, 72-73,
103, 179, 219-220, 235

setbuf... 141
setgid ... 72, 29, 33, 61, 72-73, 248, 257
setgrent... 272
setgroups ... 236
sethostid ... 238
sethostname ... 238
setjmp ... 141, 150, 183, 235, 272
setjmp ... 150, 141, 150, 183, 235, 272
setjmp.h ... 44, 150
setlocale ... 144, 141, 144-145, 267-269
setpgid ... 75, 33-34, 61, 75-76, 139, 187,

198-199, 236-237
setpwent... 272
setsid ... 75, 33-34, 61, 63, 75-76, 124,

139,236
setuid ... 72, 29, 33, 52-53, 61, 72-73,

230-231
setvbuf... 270
Seventh Edition ... 4, 178
shall... 23
shell ... 5, 22, 123, 155, 164-165, 185,

197-201, 210-211, 217-218, 222,
225, 228, 231, 236-237, 261

Shell and Utilities ... 164
should ... 23
SHRTJMAX... 44
SHRT_MIN ... 44
SIGABRT ... 57, 53, 57, 224
sigaction ... 64, 44, 57, 59-61, 63-68, 70,

75, 121, 150, 223, 225, 227, 231,
233, 265, 272

sigaddset... 63, 44, 61, 63-64
SIGALRM ... 57, 68-69, 234-235
SIGBUS ... 225
SIGCHLD ... 58, 57-58, 60-61, 65, 198,

225-226, 228, 233
SIGCLD ... 224-225, 228, 233
SIGCONT ... 58, 57-59, 62, 198, 222-

223, 225, 227-228, 231
sigdelset... 63, 44, 61, 63-64
sigemptyset... 63, 44, 61, 63-64, 232
SIGEMT ... 225
sigfillset... 63, 44, 61, 63-64, 232
SIGFPE ... 57, 60, 66, 225, 227
SIGHUP ... 57, 128, 222-223, 228
SIGILL ... 57, 60, 66, 225
SIGINT ... 57, 38, 57, 127, 130, 200, 217,

224
SIGIOT ... 224-225
sigismember ... 63, 44, 61, 63-64
SIGKILL ... 57, 60-61, 65-66, 224, 226-

228,230, 233
siglongjmp ... 150, 44, 69, 150, 183, 207,

230,272
SIGMA Project... 178
signal... 34
Signal Actions ... 60
Signal Concepts ... 57
Signal Effects on Other Functions ... 61
Signal Generation and Delivery ... 59
signal handler ... 38, 65, 118, 198, 206,

224, 229-230, 270

305

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

signal handling ... 57, 65, 68, 200, 226,
270

signal interfaces ... 28, 174, 223, 231
signal mask ... 52, 59, 65-67, 69, 150,

219, 223, 225, 227-228, 231, 233,
272

signal names ... 57, 124, 174, 179, 200,
221, 224-225, 232

Signal Names ... 57
signal-catching function ... 54, 60-62,

64-65, 67-69, 223-224, 227-231,
233-235

signal.h ... 57, 34, 38, 44, 49, 52-53, 55-
57, 59, 62-68, 89, 111, 120, 136,
150, 203, 220, 226-228, 233-234,
261

Signals ... 57
sigpending ... 67, 44, 52-53, 61, 64, 67-

68, 223-224, 232
SIGPIPE ... 57, 115, 207
sigprocmask ... 66, 44, 52-53, 59, 61, 64-

68, 150, 226, 231, 233-235, 272
SIGQUIT... 57,38, 57, 127
sigreturn ... 223
SIGSEGV ... 57, 60-61, 66, 225
sigsetjmp ... 150, 44, 69, 150, 183, 272
sigsetops ... 63, 57, 63, 66-68
sigset_t... 57, 63-64, 66-67, 224
sigstack ... 223
SIGSTOP ... 58, 58-61, 65-66, 225, 228,

233
sigsuspend ... 67, 44, 59, 61, 64-68, 150,

227, 230, 233-235, 272
SIGSYS ... 225
SIGTERM ... 57, 224
SIGTRAP ... 225
SIGTSTP ... 58, 58-60, 128, 200, 225,

228-229
SIGTTIN ... 58, 58-60, 113, 124, 199-

200, 225, 228, 261
SIGTTOU ... 58, 58-60, 115, 124, 132-

133, 136, 198, 200, 225, 228, 261
SIGUSR1 ... 57, 224-225
SIGUSR2 ... 57, 224-225
sigvec ... 233
SIG_BLOCK... 66
SIG_DFL ... 57, 52, 57, 60, 64, 201, 224,

226-228
SIG_IGN ... 57, 52, 57, 60, 64, 198, 200,

219, 226-228
SIG_SETMASK... 66

SIGJJNBLOCK... 66
simple abnormal termination ... 220
sin ... 141
single-byte functions ... 128
sinh ... 141
size field ... 97, 158-159, 232, 275-277
slash ... 34, 30, 32-36, 41, 51, 85, 157,

205-206, 274-275
sleep ... 69, 61, 68-70, 119, 221, 229-230,

234-235, 257
socket... 250, 269
Solely by POSIX ... 182
Solely by X3J11 ... 182
solidus ... 34
source code level ... 21-22, 164, 263
source form ... 240
source level ... 3, 21-22, 155, 164, 251,

263
Source, Not Object, Portability ... 174
Special Characters ... 127, 57-58, 123,

125-128, 133-134
Special Control Characters ... 133, 127-

128, 133
special files ... 28-30, 32, 34, 39, 88, 92-

93, 98, 111-112, 123, 128, 130, 134,
156, 159, 161, 179, 193, 195, 201,
245, 248, 258, 270, 276

special functions ... 22, 28, 32, 39, 127-
128, 133-134, 191, 213, 231, 241,
245, 248, 270

Specific Derivations ... 179
specific implementation ... 24, 26, 37,

44-46, 54, 59, 63, 100, 106-107,
136, 144, 146, 158, 188-189, 193,
196, 202-203, 214, 218, 221, 225-
227, 231, 233, 237, 248-249, 259,
264, 266

specific interfaces ... 23, 173, 175, 193,
196, 231, 264

speed_t... 134-135
sprintf... 141
SQL ... 165, 168
sqrt... 141
srand ... 141
sscanf... 141
stacked alarm request... 68
Standard C ... 174, 178, 181, 185, 190-

191, 211, 239, 258, 270-271
standard input... 123, 145, 253, 264,

271, 275
standard output... 123, 145, 161,

306

INTERFACE FOR COMPUTER ENVIRONMENTS

• 263-264
Standards Closely Related to the 1003.1

Document... 164
START ... 128, 130-131, 133, 138
start/stop input control... 129-130
start/stop output control... 129-130
stat... 99
stat file types ... 97-98
stat function ... 27, 33, 37, 49, 61, 84, 97,

99-100, 158, 191, 195, 206, 213,
227, 229, 247, 264

stat structure ... 97-98, 100, 191, 212,
229, 247, 264

stat Structure ... 97
stat.h ... 97
static data ... 74, 79-80, 152-153
stat_loc ... 54-56, 221
stderr ... 145, 149
STDERRJFILENO .,. 145
stdin... 145, 270
STDENLFILENO ... 145
stdio ... 269-270
stdio.h ... 44, 74, 79, 145-146
stdlib.h ... 79, 192-193
stdout... 145, 270
STDOUT.FILENO ... 145
stop signal... 55, 58-61, 65, 124, 133,

198-200, 202, 227-228, 233
stopped children ... 65, 200, 222-223, 233
stopped process ... 31, 54, 57, 59-61, 124,

133, 197-200, 202, 221-223, 227-
228, 233, 261

strcat... 141
strchr ... 141 141-142
strcmp ... 141
strcpy... 141
strcspn ... 142
stream ... 49, 56, 84-85, 133, 137, MS-

149, 160, 162, 179, 182-183, 193,
207, 221, 242-243, 253, 269-271,
274

streams inter-process communications ...
179

strftime ... 142, 142-143, 150
strictly conforming implementation ...

22-23, 44, 47, 188, 218, 229
Strictly Conforming POSIX Application

... 25, 22, 24-25, 44, 47, 188, 190,
218, 234-235

string ... 29, 31-32, 38-42, 45, 51, 53, 74,
79-80, 86, 89, 91-95, 97, 100-104,

IEEE

Std 1003.1-1988

106, 141, 144-146, 157, 160, 205,
211, 237, 239-241, 266-269

String Handling ... 141, 267
string terminator ... 237, 241
strlen ... 142, 241
stmcat... 141
stmcmp ... 141
stmcpy... 141
strpbrk ... 142
strrchr ... 142
strspn... 142
strstr... 142
strtok... 142
structure ... 21, 24, 28, 33, 36, 43, 47, 57,

64-65, 77-78, 83-84, 97-98, 100,
104, 118, 129, 135-137, 142, 151-
152, 156, 161, 165, 172, 184, 188,
191, 202, 204, 207-209, 212, 217,
224, 229-230, 232-233, 237, 241-
242, 247, 249, 257, 259, 262, 264

structure elements ... 257
structure members ... 43, 64, 77-78, 97,

104, 129, 151-152, 208, 212, 237,
249

st_atime ... 97, 52, 84, 88, 92-93, 97, 99,
109, 112, 146, 148-149, 242, 249,
269

st_ctime ... 97, 88, 91-97, 99, 102-104,
109, 114, 148-149, 269

st_dev... 97, 247
st_gid ... 97
st_ino ... 97, 247
st_mode ... 97, 97-98
st_mtime ... 97. 88, 91-97, 99, 109, 114,

148-149, 249, 269
st_nlink ... 97, 208
st_size ... 97
st_uid ... 97
subscript... 133-134
subshell... 199
suffix ... 157
summer time ... 142-143, 265-267
super-user ... 174, 193, 203, 231, 235,

245-248, 274
supplementary group ID ... 34, 30-31,

34, 44, 48, 52, 72-73, 102-103, 203,
236, 248

supported... 23
supported languages ... 26-27, 43, 173,

265, 269
SUSP ... 127-128, 133

307

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

suspend ... 31, 53-54, 67-69, 128, 130,
132, 138, 147, 197, 200, 216, 230,
234, 237

suspend character ... 130, 197, 200
suspend process execution ... 31, 53-54,

68-69, 197, 216, 230, 234
suspended input... 128
suspended output... 128, 130, 138
SVID ... 178-179, 208, 217, 241, 243,

246, 272, 280
symbolic constant... 4, 25, 31, 47-48, 57,

74, 79-80, 101, 105, 121, 123, 136,
138, 156, 172, 174, 184-185, 189,
216, 237, 239-240, 247

Symbolic Constants ... 47
Symbolic Constants for the access Func¬

tion ... 47
Symbolic Constants for the access ()

Function ... 47
Symbolic Constants for the lseek Func¬

tion ... 47
symbolic link ... 203, 273, 276-277
symbolic name ... 4, 37, 44, 57, 74, 80,

105, 174, 194, 207, 225, 238, 277
Symbols From The C Standard ... 42
SYMTYPE ... 156, 158
sys/dir.h ... 241
sys/stat.h ... 97, 30, 36, 44, 53, 62, 87,

89-90, 92-94, 97-104, 159, 162,
184, 208-209, 244, 247

sys/times.h ... 44, 78
sys/types.h ... 40, 49, 54, 62, 71-73, 75,

83, 87, 90, 92-93, 99, 101-103, 117,
120, 139, 208, 211-212, 238, 247

sys/utsname.h ... 44, 76-77
sys/wait.h ... 54, 44, 54-55
sysconf... 80, 45, 47, 61, 80-81, 196, 225,

240, 249-250
sysname ... 77
system ... 34
system administration ... 5, 166, 174,

188, 193, 239, 246
System Administration Extensions ...

166
system CPU time ... 78
system databases ... 22, 151, 196, 201,

272
system documentation ... 3-4, 24, 51, 77,

173, 179
system identification ...76, 237, 257
System III... 4, 178-180, 202, 212, 223,

237, 248, 250, 253, 258-259, 280
System III/V... 250
System Interface ... 164
system process ... 34, 22, 31-34, 37, 49-

50, 56-57, 59, 61-63, 68-69, 78, 83,
87, 94, 97, 119, 125, 165, 179, 181,
189, 193, 196, 200, 214, 222, 225-
227, 230-231, 236, 238, 240, 246,
249-250, 257

system services ... 21-22, 49, 83, 173,
190-191, 194, 196, 216

System V ... 4, 178-180, 194, 200-201,
212, 215, 219, 222-226, 228, 230-
231, 233-237, 241, 245-246, 248-
251, 253, 255-259, 265, 272, 276,
280-281

SJRGRP ... 98-99
S_IROTH ... 99
SJRUSR... 98-99
S.IRWXG ... 98-99
SJRWXO ... 98-99
SJRWXU ... 98-99
S_ISBLK... 98
SJSCHR... 98
SJSDIR ... 98, 184
SJSFIFO ... 98
SJSGID ... 99, 101-103, 247-248
S.ISREG... 98
S_ISUID ... 62, 99, 101, 103, 247-248
S.IWGRP ... 98-99
S.IWOTH ... 99
S_IWUSR ... 98-99
SJXGRP ... 98-99
SJXOTH ... 99
S_IXUSR ... 98-99
tabs ... 262-263
tan ... 141
tanh ... 141
tape ... 39, 155-156, 253, 259, 273-274,

278-279
tape mark ... 278
tapecntl... 259
tar ... 155, 155-156, 175, 180, 273-276
tar Header Block ... 156
tar.h ... 156
tc ... 259-260
tcdrain ... 137, 44, 61, 137-138
tcflow ... 137, 44, 61, 137-138
tcflush ... 137, 44, 61, 137-138
tcgetattr ... 136, 44, 48, 61, 134, 136-137,

199,264

308

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

tcgetpgrp ... 139, 61, 123, 139, 199, 265
TCIFLUSH ... 138
TCIOFF ... 138
TCIOFLUSH ... 138
TCION ... 138
TCOFLUSH ... 138
TCOOFF ... 138
TCOON ... 138
TCSADRAIN ... 136
TCSAFLUSH ... 136
TCSANOW ... 136
tcsendbreak ... 137, 44, 61, 137-138
tcsetattr ... 136, 44, 48, 61, 134-137, 199,

260, 264
tcsetpgrp ... 139, 61, 76, 123, 139-140,

198-199,237, 265
teletypewriter ... 207
telldir ... 174, 243
TERM ... 41
termcntl... 259
terminal ... 34
Terminal Access Control... 124, 30, 58,

123-124, 200, 229, 261, 264
terminal device ... 28, 30, 34, 80, 88,

123-125, 127-131, 134-135, 138,
215, 230, 239, 244, 256, 259-260,
262- 264

terminal device file ... 28, 30, 123-125,
127-129, 134, 244, 256, 260, 262

terminal device name ... 80, 239
terminal driver ... 197-198, 200, 232, 261
terminal file ... 28, 30, 34, 36, 80, 105,

112, 123-125, 127-130, 134, 136-
140, 193, 199, 201, 239, 244, 256,
260-262

Terminal Identification ... 239
terminal input... 28, 44-45, 123-125,

129-132, 135, 138, 215, 261, 263
terminal instead of terminal device ...

239
terminal interface ... 28, 31, 34, 123,

128, 135-136, 197, 207, 258-260,
263- 264

terminal parameters ... 124, 136
Terminate Process ... 56, 200, 221
terminated child ... 54-55, 58, 61, 78,

216, 222, 233
terminated children ... 56-57, 78, 220,

222, 225, 228
termination ... 33, 52-57, 59, 149, 184,

200, 219-222, 225-226, 229, 232,

270
termination consequences ... 57, 222
termination signal... 53, 55, 57, 220,

222, 225-226, 229, 232, 270
Terminology ... 23, 4, 21, 23, 186
termios ... 123
termios Baud Rate Values ... 135
termios c_cc Special Control Characters

... 133
termios c_cflag Field ... 131
termios c_iflag Field ... 129
termios c_lflag Field ... 132
termios information ... 259
termios Structure ... 129
termios structure ... 129, 135-137, 259,

262,264
termios.h ... 129, 44, 48, 129, 131-133,

135-138
termios_p ... 135-136
test suite ... 168, 188
Text vs. binary file modes ... 181, 269
TGEXEC ... 157
TGREAD ... 157
TGWRITE ... 157
The C Language and X3J11 ... 174
The Controlling Terminal... 124
TIME ... 126-127, 133, 262
time ... 77
time remaining ... 33, 59, 68
time standard ... 6, 12, 36, 48, 78-79,

143, 164, 176, 194-195, 219, 230-
231, 238, 247, 251, 257, 259, 263,
265-266

time zone ... 41, 142-143, 150, 265-267,
272

time-accounting information ... 78
time-related fields ... 36, 99-100
time.h ... 29, 39-40, 44-45, 68, 77-78, 80,

104, 137, 142-143, 194-195, 197,
207, 211, 214, 223, 230, 235, 238-
239, 251, 262-263, 265-266

timeout facility ... 257
timer operations ... 84, 149, 234
timer value ... 34, 36, 70, 77-78, 104,

109, 126, 133,142-143, 150, 158,
182, 194-195, 205, 235, 237-238

times ... 78
times function ... 36, 41, 52, 59, 68-70,

77-79, 84, 102, 104, 109, 126, 142,
148-150, 158, 173, 210, 227, 230-
231, 235, 238-239, 247, 259, 265,

309

IEEE

Std 1003.1-1988 IEEE STANDARD PORTABLE OPERATING SYSTEM

269
times.h ... 78, 103, 238, 240, 249, 269
time_t... 40, 42, 77-78, 97, 104, 195,

211,238
timing windows ... 217
TIOCGPGRP ... 265
TIOCSPGRP ... 265
title ... 272
tloc ... 77
TMAGIC ... 156, 159
TMAGLEN ... 156
tmpfile ... 141, 149, 271
tmpnam ... 141
tms_cstime ... 78, 49, 52, 78
tms_cutime ... 78, 49, 52, 78
tms_stime ... 78, 49, 52, 78
tms_utime ... 78, 49, 52, 78
toascii... 182
TOEXEC ... 157
Token Bus ... 167
Token Ring ... 167
tolower ... 141
Topical Index ... 186
TOREAD ... 157
TOSTOP ... 115, 124, 132-133, 198
toupper ... 141
TOWRITE ... 157
toy implementation ... 214
traditional function ... 221, 229-232, 260
traditional implementations ... 218-219,

221, 224, 227, 229-232, 234-235,
246, 261

trailer ... 161, 278
trailing null... 32, 158
translate ... 22, 128, 130, 155, 174, 176,

214, 265
translation ... 181, 188, 263, 268
Translation vs. Execution Environment

... 188
transmission ... 127, 130-131, 137-138
transmitting data ... 130-131, 137-138
transportable archive ... 155, 160
transportable medium ... 274
trojan horse ... 193
trusted system ... 5, 166, 168, 248
Trusted System Extensions ... 166
Trusted Systems ... 168
TSGID ... 157
TSUID ... 157
TSVTX... 157-158
tty ... 207, 215

ttyname ... 80, 182, 239
TUEXEC ... 157
TUREAD ... 157
TUWRITE ... 157
TVERSION ... 156
TVERSLEN ... 156
type arguments ... 181, 192, 247, 258-

259.269
typeflag ... 156-158, 276
types.h ... 40, 98, 129, 208-209, 252, 257
Typographical Conventions ... 184
TZ ... 41, 142-143, 150, 210, 265-267
tzname ... 143, 150
tzset... 150, 44, 143, 150
UCHARJV1AX ... 44
UID ... 157-158, 193, 274
UID.MAX ... 209
uid_t... 40, 34, 40, 71-72, 97, 102, 152,

208-209
UINT_MAX ... 44, 234-235
ulong ... 208
ULONG_MAX ... 44
umask ... 90, 44, 52-53, 61, 87, 89-90,

92-94, 245
umount... 201
uname ... 76, 44, 61, 76-77, 156-157,

159, 180, 237
uname Structure Members ... 77
undefined ... 23, 23-24, 38, 60, 66, 87,

105, 156, 186-187, 191, 206, 221,
229, 239, 270, 277

undefined results ... 23, 66, 87, 156, 187,
270

undefined term ... 187, 239
underlying function ... 136, 147-149,

182.270
ungetc ... 141
unique ... 5, 30, 32, 37, 42, 49, 99, 116,

133, 196, 202, 224, 247
unistd.h ... 47, 24-25, 42-43, 47-48, 80-

81, 101, 105-106, 121, 145, 159,
185, 188, 213, 216, 225, 239

United States ... 266
units ... 125, 159, 191, 198-199, 215, 266
UNIX ... 3-4, 171-175, 178-179, 185, 190,

192-194, 200-201, 203, 205, 213,
265

unlink ... 94, 61, 91, 94-97, 99, 111, 149,
207-208, 245-246

unlock ... Ill, 116, 119-120, 257
unmount... 246, 250

310

INTERFACE FOR COMPUTER ENVIRONMENTS

IEEE

Std 1003.1-1988

unpredictable behavior ... 143
unrecoverable error ... 253, 255
unsigned ... 68-69, 111, 113, 129, 135,

158, 208-209, 213, 234-235, 245,
252, 257-258

unsigned argument... 234-235, 245
unsigned char ... Ill, 113, 209
unsigned offsets ... 258
unsigned short... 208
unspecified ... 24, 59, 61, 65, 69, 73, 83,

186-187, 191, 205, 222, 233, 238,
241, 259

uppercase ... 42, 185, 204
US Government Standards ... 168
USASCII... 204
USENIX ... 9, 176, 178, 281
User CPU time ... 78
user database ... 151, 41, 74, 151-152,

257, 272-273
user ID ... 34, 29-31, 33-34, 40, 45, 52,

62, 71-72, 74, 87, 92-93, 97, 99-
100, 102, 151-152, 179, 203, 208,
220, 230-231, 235-236, 248, 275

User Identification ... 180, 235
User Name ... 74, 236
user processes ... 29-31, 33-34, 44-45, 50,

52, 62, 71-74, 87, 92-93, 99, 102,
104, 147, 155, 193, 197, 201, 203,
214, 220, 228, 231, 235, 244, 247,
250, 257

user utility ... 157-159, 161-162, 274,
276

ushort... 208
ushort_t... 208
USHRT_MAX ... 44
USTAR ... 275
ustat... 61, 246
utilities ... 5, 123, 141, 155, 157, 161,

164-165, 222, 227, 273-275, 278
utility ... 4-5, 155-159, 161-162, 164, 180,

182, 218, 260, 270, 274, 276-279
utimbuf... 104
utimbuf structure ... 104
utime ... 103, 44, 61, 99, 103-104, 249
utime.h ... 44, 104
utsname.h ... 76
valid file descriptor ... 80, 100, 107, 110-

111, 113, 115, 120-121, 137-140,
247, 251

variable ermo ... 37, 81, 86, 106, 182,
186, 206, 230, 250

variable number ... 27, 37, 181, 229, 256
variable parameter lists ... 229
VDM ... 167
vector ... 151
VEOF ... 133, 263
VEOL ... 133, 263
VERASE ... 133
verb ... 251
verification suites ... 188, 216
Verification Testing ... 166, 3, 5, 166,

216
version ... 77
Version 7 ... 174, 178-180, 205, 212, 223,

230, 234, 237-238, 241, 248, 251,
253, 258-259, 275, 279-280

vfprintf... 149, 271
vhangup ... 201, 222
VINTR ... 133
virtual time ... 234
visibility of symbols ... 42-43
VKILL ... 133
VMIN ... 133-134, 263
void ... 56-57, 60, 64, 83, 150, 221, 229,

242-243
vprintf... 149, 271
VQUIT ... 133
VST ART ... 133-134
VSTOP ... 133-134
VSUSP ... 133
VTIME ... 133-134, 263
wait... 54
Wait for Process Termination ... 54, 200,

220
wait function ... 33, 38, 54-56, 78, 126,

132, 137, 186, 216, 220-221, 227,
229-230, 233, 261

wait.h ... 54
wait3 ... 220
waitpid ... 54, 33, 38, 44, 53-56, 61, 78,

198, 202, 209, 216, 220-221, 229,
232-233

wall clock time ... 234
WeirdNIX... 177
WERASE ... 262
WEXITSTATUS ... 55
WIFEXITED ... 55
WIFSIGNALED ... 55
WIFSTOPPED ... 55, 221
WNOHANG ... 54, 56, 233
WORD_BIT ... 213
working directory ... 35, 29, 35-36, 41,

311

52, 85-86, 95, 106, 151-152, 194,
210, 220, 243, 246, 249

Working Directory Pathname ... 86, 243
working documents ... 165-166, 172, 175,

178, 180, 273, 275
Working Documents ... 180
Working Group ... 175, 3-4, 6, 9, 123,

155, 164-166, 171-178, 180-183,
185, 189, 195, 205-207, 209, 214,
216, 224, 226-227, 229, 231, 233-
235, 237-238, 240, 242-243, 246-
248, 251-252, 254-255, 258-261,
272-273, 275

write ... 113
write by group ... 58, 124, 133, 156-157,

161, 261, 275
write by others ... 113-114, 157, 161,

211, 256
write by owner ... 157, 161
write function ... 36, 39, 100, 104, 109,

113-115, 147-149, 182, 197-198,
207, 219, 227, 229, 234-235, 252-
253, 255-256, 258-259, 261, 269

Write requests ... 114
Writing Data and Output Processing ...

127
WSTOPSIG... 55
WTERMSIG ... 55
WUNTRACED ... 54, 54-55, 198,

220-221
W_OK... 47, 101
X.212 ... 167
X.25 ... 167
X.400 ... 167
X/Open ... 9, 176, 178, 239, 260
X/OPEN Portability Guide ... 168, 178,

212
X3.159-198x ... 26, 28, 164, 174, 178, 185
X3H3.6 ... 167
X3J11... 164, 174, 178, 180-183, 185,

192, 210, 212, 221-222, 252
X3J11 Rationale ... 178, 180-183, 185
X_OK ... 47, 101, 248
yardstick ... 3
zero-filled ... 157
zero-valued bits ... 130, 137
_asm_builtin_atoi... 193
_BSD ... 208, 212
_exit... 56, 53, 55-57, 61, 75, 128, 147-

148, 183, 221-223, 229, 270
_longjmp ... 272

_PC_CHOWN_RESTRICTED ... 105
_PC_LINK_MAX ... 105
_PC_MAX_C AN ON ... 105
_PC_MAX_INPUT ... 105
_PC_NAME_MAX ... 105
_PC_N0_TRUNC ... 105, 216
_PC_PATH_MAX... 105
_PC_PIPE_BUF ... 105
_PC_VDISABLE ... 105
_POSIX_ARG_MAX... 44, 44-45
_POSIX_CHILD_MAX... 44, 44-45
_POSIX_CHOWN_RESTRICTED ... 48,

25, 48, 102-103, 105, 249
_POSIX_JOB_CONTROL ... 47, 25, 31,

47, 76, 81, 123, 139
_POSIX_LINK_MAX... 44, 44-45
_POSIX_MAX_CANON ... 44, 44-45
_POSIX_MAX_INPUT ... 44, 44-45
_POSIX_NAME_MAX ... 44, 44-45
_POSIX_NGROUPS_MAX... 44
_POSIX_NO_TRUNC ... 48, 36, 39, 48,

53, 85-86, 89, 91-95, 97, 100-106,
216

_POSIX_OPEN_MAX... 44, 44-45
_POSIX_PATH_MAX... 44, 44-45
_POSIX_PIPE_BUF ... 44, 44-45
_POSIX_SAVED_IDS ... 47, 52, 62, 72-

73, 81, 219
_POSIX_SOURCE ... 43, 212
_POSIX_VDISABLE ... 48, 105, 128,

134, 184
_POSIX_VERSION ... 47, 81, 237
_SC_ARG_MAX ... 81
_SC_CHILD_MAX ... 81
_SC_CLK_TCK... 81, 240
_SC_NGROUPS_MAX... 81
_SC_OPEN_MAX ... 81
_SC_SAVED_IDS ... 81
_SC_VERSION ... 81
_setjmp ... 272
_SYSIII... 208, 212
_SYSV... 212
_tolower ... 182
_toupper ... 182
_USR_GROUP ... 212

312

Acknowledgements

We wish to thank the following organizations for donating significant com¬
puter, printing, and editing resources to the production of this standard:
/usr/group, Amdahl Corporation, Digital Equipment Corporation, MASSCOMP,
and UniSoft Corporation.

Also we wish to thank the organizations employing the members of the Work¬
ing Group and the Balloting Group for both covering the expenses related to
attending and participating in meetings, and donating the time required both in
and out of meetings for this effort.

/usr/group*
/usr/group/cdn

Absolut Software

ACM
ADDAMAX

Aeon Technologies, Inc.

AFUU

AGS Information Services
Air Force Institute of Technology

Aktiengesellschaft
Alcyon Corporation

Alliant Computer Systems
Alsup

Amdahl Corporation*

Analysts International

ANFOR

Anistics, Inc.
ANSI

Apollo Computer, Inc.

Apple Computer
Applicon

Applied Network Technology

APT Data Services

Archives Ltd.

Associated Computer Experts
AT Computing/Toemooiveld
AT&T*

AT&T Bell Laboratories
AT&T Information Systems

AT&T UNIX Europe Ltd.
Atlanta UNIX Users Group
ATTAGE

Australian Government Dept, of Science
Australian UNIX Systems User Group

Automation Resource Group

Automation Technologies
Baldwin Information Processing
Barrister Information Systems Corporation

Batelle Columbus Labs

BBN Communications Corporation

BBN Laboratories
Bell Communications Research

Bell-Northern Research Ltd.

Billy Shakespeare & Company
Boeing Aerospace Company

BP America Research & Development

Brake Systems, Inc.
British Airways

British Olivetti Ltd.

British Standards Institute
British Telecom

Brown & Sharpe

Bull Sems

Bull, Inc.
Burroughs Corporation

Burtek, Inc.

C. S. Draper Lab, Inc.

California State University
California University

Calspan Corporation

Carnegie-Mellon University
CCTA, Riverwalk House

Celerity Computing

Central Computer & Telecommunications

Central Intelligence Agency

Centre National D’Etudes des Telecomm.
CFI

Charles River Data Systems*

Chorus Systems

Citicorp Transaction Tech., Inc.

Classic Conferences
Cleveland State University

CMC Ltd.

CommUNDCations

COMPASS
Compugraphic Corporation
Computer Design

Computer Systems Engineering

Computer Systems News
Computer Systems Resources, Inc.

Computer Task Group
Computer Works

Computer X, Inc.

Computerworld
Comtek

Concord Data Systems

Concurrent Computer Corporation*

Control Data Corporation*

Convergent Technologies
Convex Computer Corporation

COSMIC
Cray Research, Inc.

Cullinet Software, Inc.

Custom Development Environments
Dana Computers
Dansk Data Elektronik A/S DDE

Acknowledgements 313

Dansk Standardiseringsradd

Dartmouth College
Data Connection
Data General Corporation

Data Logic Ltd.
Data Systems Engineering

DataBoard, Inc.
Datamation
Datamension Corporation

Datapoint Corporation
DEC International
Defence Communication Agency

Deutsches Institut fur Normung

DGM&S, Inc.
Digital Equipment Corporation*

Digital Equipment GmbH

Digital Sound Corporation
Directorate Land Armament
Dravo Automation Sciences (DAS)

Eastman-Stuart Ltd.
Eclipse Systems Corporation

EDS Corporation

EDV Zentrum der TU Wien
Electronic Engineering Times

Electrospace Systems, Inc.
Emerald City

Emerging Technologies Group, Inc.

ENEA DATA Svenska AB
Epicom

Epilogue Technology Corporation
Ericsson Information Systems AB

ETA Systems, Inc.

European Laboratory for Particle Physics
European UNIX

Eurotherm International

EUUG*
Exxon Chemical Pakistan Ltd.

Fern Universitat
FGAN/FFM

Fidcom System Ltd.
Flexible Automation

Flexible Computer Corporation

Floating Point Systems

Ford Aerospace
Ford Motor Company

Fortune Systems Corporation
Free Software Foundation, Inc.

Fujitsu America, Inc.
Future Tech, Inc.

FUUG (Finland)
Gartner Group

Geac Computer International
GEC Telecomms Ltd.

General Dynamics
General Electric Company
General Motors Corporation

General Motors Technical Center
George Mason University

Georgia Institute of Technology
Gilbert International
Gould CSD

Gould Electronics

Gould SEL*
Government Computer News
Grebyn Corporation

Grumman Aircraft
Grumman Data

Grupo de Redes de Computadores
GUUG (West Germany)
Harrie Corporation

Harris Corporation Computer Systems Division
Hayden Publishing
HCR Corporation

Hewlett-Packard Company*

Hi-Tech Editorial, Inc.

High Tech Publishing Company, Inc.
Honeywell

Honeywell ISI

Honeywell Ltd.

Hughes Aircraft Company
Human Computing Resources
LAI MBT

IBM Corporation*

IBM Federal Systems Division
IBM Research Center

IBM Thomas J. Watson Research Center
ICL

IDC

IEEE Computer Magazine
IEEE Computer Society

IEEE Micro
IEEE Reflector

IEEE Standards Office

Imperial College
Industrial Technology Institute

InfoPro Systems

Information Concepts Pty Ltd.

Ing. C. Olivetti & C., SPA

Inside Information

Institute for Defense Analysis

Institute of Software Academia Sinica
Instruction Set

International Bureau of Software Test

Integrated Systems Design, Inc.
Intel Corporation
INTERACTIVE Systems

Intergraph Corporation

International Computers Ltd.

Internet Systems

Iowa State University
Irish UNIX Systems Users Group

Iskra Automatika
ISO-OSCRAC

Israel Aircraft Industries
Italian UNIX Systems User Group i2u

Itom International
ITT
ITUS A

Japanese Industrial Stds. Committee
Johnson Controls, Inc.

K.E.T.R.I.
KAIST

314 Acknowledgements

Kendall Square Research Corporation

Key Tech
King Abdulziz University

Korean UNIX User Group
Lachman Associates, Inc.
Lawrence Livermore National Laboratory

Liberty Mutual Research Center
Lisp Machine, Inc.
LM Ericsson

Lockheed

Lockheed S.O.C
Logicon, Inc.

Lowell University
LSI Appl. Info. & Learning Center

LTV Aerospace & Defense

M.B.F. Systems, Inc.

Maharishi International University

Mallinckrodt Institute of Radiology
Mark Williams Company
Markor

Martin Marietta Aerospace

Martin Marietta Data Systems
MASSCOMP

Maxim Technologies, Inc.

McDonnell Douglas
McDonnell Douglas Computer Company

McGill University

Mercury Computer Systems, Inc.

Meridian Software Systems

Microfocus

Micrology, Inc.
Microsoft Corporation

Microtex

Mindcraft, Inc.

Mini-Micro Systems
MIPS Computer Systems

MIT-LCS

Mitre Corporation
Modcomp

Modular Systems

Molecular Genetics, Inc.

Monarch Data Systems

Mortice Kern Systems, Inc.

Motorola Israel, Inc.

Motorola, Inc.
MT XINU

NAPS, Inc.
NASA

NASA Ames Research Center

NASA Johnson Space Center

NASA Kennedy Space Center

National Bureau of Standards
National Cancer Institute

National Computer Security Center
National Electrical Manufacturers Assoc.

National Research Council

National UNIX Systems User Group
Naval Ocean Systems Center

Naval Postgraduate School
Naval Surface Weapons Center

Naval Underwater Systems Center

NBI, Inc.

NCR*
NCR Cambridge

NEC Info Systems
Nederlands Normalisatie-instituut
New Media Development Center

New Zealand UNIX Systems User Group, Inc.

Nicolet Instrument Corporation

Nikkei Byte, Nikkei McGraw-Hill, Inc.
Nippon Tel & Tel Corporation

NIUIS 77
Nixdorf Computer AG

Norsk Data Ltd.

North Holland P&C
Northern N.E. UNIX User Group

Northwestern Bell

Northwestern University

Novell
Novon Research Group

NRAO

OCLC
Ohio State University

Olivetti

Olivetti & C., SPA
Oren Yuen Associates

Osterreichesches Normungsinstitut

Oxford Systems, Inc.

Pacific Marine Technology
Palladium Data Systems

Patricia Seybold’s Office Computing Grp.

Perennial

Philadelphia Area Computer Society
Philips and Picker Medical Systems

Philips Data Systems

Phillips Publishing, Inc.
Planning Research Corporation

Plum Hall, Inc.
Plus Five Computer Services

Polish Computer Society

Politecnic Di Torino-DIP Automatic

Politecnico Di Mikeno
Portland Community College

Prime Computer, Inc.
Princeton University

Programming Concepts, Inc.

Purdue University
Pyramid Technology

Pyramid Technology Ltd.

Rabbit Software Corporation
RCA Automated Systems

RDA Logicon

Relcom, Inc.

Release 1.0

Richmond Computerware
Ricoh Systems, Inc.

RJO Enterprises
Rogers State University

Rolm Corporation

Rolm Mil-Spec Computers
S. J. Lipton, Inc.
SAH Consulting

Acknowledgements 315

Sandia National Labs
Santa Cruz Operation
SAS Institute, Inc.
Schlumberger Well Services

SCI Systems, Inc.
Scientific Computer Systems

SCS
SDRC
Seattle/UNIX Group

Seay Systems, Inc.
SEI Information Technology

SELENIA SP. A
Sequent Computer Systems
Shreerang Society

Siemens AG
Sigma, IPA

Silicon Valley Net
Simpact Associates, Inc.

Singapore UNIX Association

Softech, Inc.

Softtech
Software Engineering Company

Software Laboratories Ltd.

Software News

Software Productivity Consortium
Software Research Associates, Inc.

Software-PEI

SoHar

Spectra-Tek U.K. Ltd.

Sperry Corporation

Sperry Ltd. Education Centre

Sphinx Ltd.

ssc
St. Lawrence College

Standards Council of Canada

Statskontoret
Stellar Computer, Inc.

Stewart Research Enterprises

Stratus Computer

Strong Consulting

Structural Dynamics Research Corporation
Structured Methods

Summit Computer Systems, Inc.
Sun Microsystems, Inc.*
Syntactics

Syntek Systems

System House, Inc.*

Systems & Software Magazine
Systems Development Corporation

Tampere University of Technology
Tandem Computers, Inc.

Technical Solutions, Inc.

Technical University of Delft

Technische Universitat Berlin
Teknekron Infos witch
Tektronix, Inc.*

Telephone Organization of Thailand
Teli Foretagssystem

Tenis Software Consulting, Inc.
Texas Instruments, Inc.
Texas Instruments-DSG

Texas Internet Consulting

The C Journal, InfoPro Systems

The Charles Stark Draper Laboratory, Inc.
The Foxboro Company
The Wollongong Group

Thinking Machines Corporation

TIS
Torch Computers Ltd.

Toshiba Corporation

Treasury Board of Canada
TRW

Tsinghua University Computer Dept.
U.S. Air Force

U.S. Army

U.S. Army Ballistic Research Lab.

U.S. Army ISEC

U.S. D.O.T. Systems Center

U.S. Department of Defense

U.S. Department of H.U.D.

U.S. Dept, of Commerce NOAA/NOS
U.S. Federal Judicial Center

U.S. West Advanced Technologies
U.K. UNIX Systems User Group

UNI Karlsruhe, Informatik II

Uni’C’ Computer Systems

Uni-Ops
UnigramiX

Unigroup of New York, Inc.

UNIQ Digital Technologies
UniSoft Corporation

UniSoft Ltd.

UNISYS*

UNIT-C

Universitat Dortmund

Universitat Zurich-Irchel

University of California, Berkeley
University of California, Irvine

University of California, I -os Angeles

University of Colorado

University of Copenhagen
University of Evansville

University of Hong Kong

University of Indonesia

University of Lowell

University of Maryland
University of Minnesota, Dept, of CS

University of Nevada, Las Vegas*

University of New Mexico

University of Portland
University of Santa Cruz

University of South Florida

University of Surrey

University of Technology
University of Tennessee
University of Texas at Arlington

University of Texas at Austin

University of Toronto
University of Utah

University of Victoria
University of Vienna Dept, of Statistics
University of Wisconsin-Milwaukee

316 Acknowledgements

University of Zagreb

UNIX Houston
UNIX Review

UNIX Systems
UNIX Technologies
UNIX User Group Austria

UNIX Users of Minnesota

UNIX World
UNIX-C Club
UNIX/WORLD

USE NIX Association*

USSR State Committee for Standards

Varian
Venturcom

Verdix Corporation

Veritas Technology, Inc.

Videoton
Virginia Polytech & State University

Wang Laboratories, Inc.

West Virginia University
Western Digital

Whitesmiths, Ltd.

Wind River Systems, Inc.

Woods Hole Oceanographic Institution

World UNIX & C
X/Open

XIOS Systems Corporation

Yates Ventures

In the preceding list, the organizations marked with an asterisk (*) have
hosted 1003 Working Group meetings since the group’s inception in 1985. pro¬
viding useful logistical support for the ongoing work of the committees.

Acknowledgements 317

For Applications Portability Look
to IEEE's POSIX Standard.

IEEE Std 1003.1-1988 defines a standard operating system interface and

environment based on the UNIX* Operating System documentation to pro¬

vide for the portability of applications software at the source-code level,

between computer systems from multiple vendors.

In its present form, the standard focuses primarily on the C Language

interface to the operating system. It complements related standards for

computer languages, database management, and computer graphics,

and is intended to be used by both application developers and system

implementors.

The IEEE POSIX specification provides a solid base for systems procure¬

ment and evaluation. Specifying POSIX conformance will allow system pur¬

chasers to productively manage their software environments and to

achieve the benefits from applications portability. Hardware and software

manufacturers will have a clear specification to follow in designing systems

and applications for the open software environment.

This standard also constitutes a major step in the industry to provide a

comprehensive applications environment. The IEEE's POSIX committees are

continuing POSIX-related standards work in areas such as POSIX-based

Open System architecture (IEEE Project 1003.0), shell and utilities (IEEE Pro¬

ject 1003.2), test methods (IEEE Project 1003.3), real time systems interfaces

(IEEE Project 1003.4), Ada language binding for POSIX (IEEE Project

1003.5), and systems security (IEEE Project 1003.6).

To be placed on our mailing list for these yet-to-be-published standards,

please send your name, address, and the project numbers that interest

you to: The Institute of Electrical and Electronics Engineers, Inc., The Stan¬

dards Department, 445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-

1331, USA.

*UNIX is a registered trademark of AT&T.

ISBN 1-55937-003

