Federal Standard 1015 has been redesignated as Federal Information Processing Standards Publication (FIPS PUB) 137. Issued by the National Institute of Standards and Technology pursuant to Section 111 (d) of the Federal Property and Adminis. trative Services Act of 1949 as amended by the Fomputer Security Act of 1987. Public Law 100-235

## 

REFERENCE

NIST
PUBLICATIONS

# ANALOG TO DIGITAL CONVERSION OF VOICE BY 2,400 BIT/SECOND LINEAR PREDIGTIVE CODING 

> Prepared Byz
> National Communications System
> Office Of Technology \& Standards
> Published By:
> General Services Administration Office Of Information Resources Management


## FEDERALSTANDARD

## TELECOMMUNICATIONS: ANALOG TODIGITAL CONVERSION OF VOICE BY 2,400 BIT/SECOND LINEAR PREDICTIVE CODING

This standard is issued by the General Service Administration pursuant to the Federal Property and Administrative Services Act of 1949, as amended.

## 1. Scope

1.1 Description. This standard specifies interoperability requirements relating to the conversion of analog voice to 2,400 bit/s digitized voice by Linear Predictive Coding with 10 reflection coefficients (LPC-10), and reconversion back to analog voice.
1.2 Objective. The primary objective of this standard is to facilitate the interoperability of Government communication facilities and systems that employ $2,400 \mathrm{bit} / \mathrm{s}$ digitized voice.
1.3 Application. This standard applies to all synchronous (i.e. not packetized) 2,400 bit/s digitized voice telecommunications equipment procured or leased by Federal departments and agencies. While additional analog-to-digital conversion techniques and data rates may be used, all Government synchronous 2,400 bit/s digitized voice equipment shall be capable of LPC-1 0 operation in conformance with this standard.

## 2. Related Standards

a. Military Standard 188-113: COMMON LONG HAUL/TACTICAL STANDARDS FOR ANALOG/DIGITAL CONVERSION TECHNIQUES. (Copies of this standard are available from the Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120).
b. North Atlantic Treaty Organization (NATO) Standardization Agreement (STANAG) 4198: PARAMETERS AND CODING CHARACTERISTICS THAT MUST BE COMMON TO ASSURE INTEROPERABILITY OF 2400 BPS LINEAR PREDICTIVE ENCODED DIGITAL SPEECH (Controlled Distribution). (Copies of this standard are available from the Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120).

## 3. Requirements

3.1 Typical Block Diagrams
3.1.1 Transmitter. The block diagram of a typical Linear Predictive Coding (LPC) transmitter is shown below.


As shown in the diagram above, speech is band-pass filtered prior to analog-to-digital (A/D) conversion. After A/D conversion and preemphasis, Linear Predictive Coding (LPC) analysis is accomplished to determine reflection coefficients (RCs). Also, root-mean-square (RMS) amplitude is calculated. Additionally, after A/D conversion, pitch and voicing analysis is accomplished to determine whether to treat the LPC coded frame as voiced or otherwise. If voiced, pitch is determined. If not voiced, a determination is made whether the frame is to be considered as unvoiced or in voicing transition. Next, the RMS amplitude, reflection coefficients, and pitch and voicing are coded; transmission error control coding is added as applicable; a synchronization bit is added; and a 54 -bit frame is formed.
3.1.2 Receiver. The block diagram of a typical Linear Predictive Coding (LPC) receiver is shown below.


As shown in the diagram above, the Linear Predictive Coding (LPC) receiver's digital input is first unframed and error detection and forward error correction are performed, as applicable. Parameter decoding is then performed, along with interpolation and other enhancements, to obtain the proper voicing decision, pitch (for voiced frames), reflection coefficients, and RMS amplitude. Of these parameters, the voicing decision is forwarded to the voicing switch function that chooses the random noise generator (unvoiced) or the pitch generator (voiced) as the synthesizer input. Likewise, the correct pitch is forwarded to the pitch generator (if the frame is determined to be voiced), the reflection coefficients are forwarded to the synthesizer function, and the RMS amplitude is forwarded to the gain adjustment function. Lastly, the output of the gain adjustment function is de-emphasized, converted from digital to analog by a D/A converter, and low-pass filtered. (Note that some filtering is accomplished as a part of the de-emphasis function).

### 3.2 Input Conditioning

3.2.1 Band-pass Filtering. The LPC transmitter input passband should be essentially flat from $100-3600 \mathrm{~Hz}$. A typically used input filter has 3 dB attenuation points at 100 and $3,600 \mathrm{~Hz}$, less than l dB of inband ripple, and at tenuations at 4,000 and $4,400 \mathrm{~Hz}$ of 23 dB and 46 dB , respectively.
3.2.2 A/D Conversion. Analog-to-digital (A/D) conversion shall use an $8 \mathrm{kHz} \pm 0.1$ percent sampling frequency and have a dynamic range of at least 12 bits.
3.2.3 Preemphasis. Preemphasis shall use the first order digital transfer function $1-0.9375 z^{-1}$.

### 3.3 Transmission Format

3.3.1 Iransmission Rate. The transmission rate shall be 2400 bits $/ \mathrm{s} \pm .01$ percent. Since all frames contain 54 bits, the frame length is $22.5 \mathrm{~ms} \pm .01$ percent.
3.3.2 Bit Allocation. The allocation of the 54 bits in an LPC frame shall be as shown in the following table.

Voiced Nonvoiced

| Pitch \& Voicing | 7 | 7 |
| :--- | ---: | ---: |
| RMS Amplitude | 5 | 5 |
| RC(1) | 5 | 5 |
| RC(2) | 5 | 5 |
| RC(3) | 5 | 5 |
| RC(4) | 5 | 5 |
| RC(5) | 4 |  |
| RC(6) | 4 |  |
| RC(7) | 4 |  |
| RC(8) | 4 |  |
| RC(9) | 3 |  |
| RC(10) | 2 |  |
| Error Control |  | 20 |
| Synchronization | 1 | 1 |
| Unused |  | 1 |
| Total | 54 | 54 |

3.3.3 Bit Assignment. The assignment of bits within an LPC frame shall be as shown in the following table.

| Bit | Voiced | Nonvoiced | Bit | Voiced | Nonvoiced | Bit | Voiced | Nonvoiced |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RC(1)-0 | $\mathrm{RC}(1)-0$ | 19 | $\mathrm{RC}(3)-3$ | $\mathrm{RC}(3)-3$ | 37 | R C ( 8)-1 | R-6* |
| 2 | $\mathrm{RC}(2)-0$ | $\mathrm{RC}(2)-0$ | 20 | $\mathrm{RC}(4)-2$ | $\mathrm{RC}(4)-2$ | 38 | $\mathrm{RC}(5)-1$ | RC(1)-6* |
| 3 | $\mathrm{RC}(3)-0$ | $\mathrm{RC}(3)-0$ | 21 | R-3 | R-3 | 39 | R C (6)-1 | $\mathrm{RC}(2)-6 *$ |
| 4 | P-0 | P-0 | 22 | $\mathrm{RC}(1)-4$ | $\mathrm{RC}(1)-4$ | 40 | $\mathrm{RC}(7)-2$ | $\mathrm{RC}(3)-7 *$ |
| 5 | R-0 | R-0 | 23 | $\mathrm{RC}(2)-3$ | $\mathrm{RC}(2)-3$ | 41 | $\mathrm{RC}(9)-0$ | $\mathrm{RC}(4)-6 *$ |
| 6 | $\mathrm{RC}(1)-1$ | $\mathrm{RC}(1)-1$ | 24 | $\mathrm{RC}(3)-4$ | $\mathrm{RC}(3)-4$ | 42 | P-5 | P-5 |
| 7 | $\mathrm{RC}(2)-1$ | $\mathrm{RC}(2)-1$ | 25 | $\mathrm{RC}(4)-3$ | $\mathrm{RC}(4)-3$ | 43 | $\mathrm{RC}(5)-2$ | $\mathrm{RC}(1)-7 *$ |
| 8 | $\mathrm{RC}(3)-1$ | $\mathrm{RC}(3)-1$ | 26 | R-4 | R-4 | 44 | $\mathrm{RC}(6)-2$ | R C 2 ) -7* |
| 9 | P-1 | P-1 | 27 | P-3 | P-3 | 45 | $\mathrm{RC}(10)-1$ | Unused |
| 10 | R-1 | R-1 | 28 | $\mathrm{RC}(2)-4$ | $\mathrm{RC}(2)-4$ | 46 | $\mathrm{RC}(8)-2$ | R-7* |
| 11 | $\mathrm{RC}(1)-2$ | $\mathrm{RC}(1)-2$ | 29 | $\mathrm{RC}(7)-0$ | RC(3)-5* | 47 | P-6 | P-6 |
| 12 | $\mathrm{RC}(4)-0$ | $\mathrm{RC}(4)-0$ | 30 | $\mathrm{RC}(8)-0$ | R-5* | 48 | R C (9)-1 | $\mathrm{RC}(4)-7 *$ |
| 13 | $\mathrm{RC}(3)-2$ | $\mathrm{RC}(3)-2$ | 31 | P-4 | P-4 | 49 | RC(5)-3 | $\mathrm{RC}(1)-8 *$ |
| 14 | R-2 | R-2 | 32 | R C (4)-4 | $\mathrm{RC}(4)-4$ | 50 | $\mathrm{RC}(6)-3$ | $\mathrm{RC}(2)-8^{*}$ |
| 15 | P-2 | P-2 | 33 | $\mathrm{RC}(5)-0$ | R C(1)-5* | 51 | $\mathrm{RC}(7)-3$ | $\mathrm{RC}(3)-8 *$ |
| 16 | R C (4)-1 | R C (4)-1 | 34 | $\mathrm{RC}(6)-0$ | R C(2)-5* | 52 | $\mathrm{RC}(9)-2$ | $\mathrm{RC}(4)-8^{*}$ |
| 17 | $\mathrm{RC}(1)-3$ | $\mathrm{RC}(1)-3$ | 35 | R C (7)-1 | $\mathrm{RC}(3)-6 *$ | 53 | $\mathrm{RC}(8)-3$ | R-8* |
| 18 | $\mathrm{RC}(2)-2$ | $\mathrm{RC}(2)-2$ | 36 | RC(10)-0 | R C (4) -5* | 54 | Synch. | Synch. |

NOTES:
$\mathrm{P}=$ Pitch
$\mathrm{R}=\mathrm{RMS}$ Amplitude
RC = Reflection Coefficient

* $=$ Error Control Bit

Bit $0=$ least significant bit of data
Bit $5=$ least significant bit of error control
Order of transmission is from bit 1 to bit 54
Nonvoiced $=$ Unvoiced or In Voicing Transition

### 3.3.4 Synchronization. The synchronization bit shall alternate between ZERO and ONE from frame to frame.

### 3.4 Pitch and Voicing

3.4.1 Encoding. Pitch and voicing information shall be coded as a seven bit field. For error protection purposes, unvoiced frames shall be coded as seven ZERO bits and frames in voicing transition shall be coded as seven ONE bits. For voiced frames, one of 60 selected pitch values ( $51-400 \mathrm{~Hz}$ ) shall be selected and coded as shown in the following table. Note that the pitch period is the sampling frequency $(8,000 \mathrm{~Hz})$ divided by the pitch frequency.

| Pitch <br> Freq | Pitch <br> Period | Code | Pitch <br> Freq | Pitch <br> Period | Code | Pitch <br> Freq | Pitch <br> Period | Code | Pitch <br> Freq | Pitch <br> Period | Code |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

3.4.2 Decoding. The following table shall be used in decoding the seven-bit pitch and voicing field to determine if a frame is unvoiced (U), is in voicing transition (T), is invalid ( $D$, or is voiced. If voiced, the decoded value shall be used as the pitch period ( $8,000 \mathrm{~Hz}$ sampling frequency divided by pitch frequency).

3.5 RMS Amplitude. Root-mean-square (RMS) preemphasized speech amplitude, scaled from 0-511 (i.e. 9 bits), shall be coded into 5 bits and decoded back to 9 bits as shown in the following table. When decoding, interpolation should be used to obtain intermediate values.

| From | To | Code | Decode | From | To | Code | Decode |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 31 | 35 | 16 | 32 |
| 1 | 1 | 1 | 1 | 36 | 42 | 17 | 39 |
| 2 | 2 | 2 | 2 | 43 | 51 | 18 | 46 |
| 3 | 3 | 3 | 3 | 52 | 60 | 19 | 55 |
| 4 | 4 | 4 | 4 | 61 | 72 | 20 | 66 |
| 5 | 5 | 5 | 5 | 83 | 86 | 21 | 79 |
| 6 | 6 | 6 | 6 | 103 | 22 | 94 |  |
| 7 | 7 | 7 | 7 | 104 | 123 | 23 | 113 |
| 8 | 8 | 8 | 8 | 124 | 147 | 24 | 135 |
| 9 | 10 | 9 | 9 | 148 | 176 | 25 | 164 |
| 11 | 12 | 10 | 11 | 177 | 210 | 26 | 192 |
| 13 | 14 | 11 | 13 | 211 | 251 | 27 | 230 |
| 15 | 17 | 12 | 16 | 252 | 300 | 28 | 275 |
| 18 | 21 | 13 | 19 | 301 | 359 | 29 | 328 |
| 22 | 25 | 14 | 23 | 360 | 428 | 30 | 392 |
| 26 | 30 | 15 | 27 | 429 | 511 | 31 | 468 |

### 3.6 Reflection Coefficients

3.6.1 Reflection Coefficients 1 and 2. The first Reflection Coefficient ( RCl ) shall be coded as 5 bits. Coding and decoding shall be as shown in the following table. The second Reflection Coefficient ( RC 2 ) shall be coded and decoded the same as RCl . Note that coded values are the index numbers expressed in binary "two's complement". Also, sign convention is such that $\mathrm{RCl}=\mathrm{R}_{1} / \mathrm{R}_{0}$, where $\mathrm{R}_{1}$ and $\mathrm{R}_{0}$ are autocorrelation functions with sample delays of 1 and 0 respectively. These conventions are used for all reflection coefficients.

| From | To | Code | Index | Decode |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| -.9999 | -.9844 | 10001 | -15 | -.9844 |  |
| -.9843 | -.9688 | 10010 | -14 | -.9688 |  |
| -.9687 | -.9531 | 10011 | -13 | -.9531 |  |
| -.9530 | -.9375 | 10100 | -12 | -.9375 |  |
| -.9374 | -.9063 | 10101 | -11 | -.9218 |  |
| -.9062 | -.8750 | 10110 | -10 | -.8906 |  |
| -.8749 | -.8281 | 10111 | -9 | -.8438 |  |
| -.8280 | -.7656 | 11000 | -8 | -.7812 | (Continued) |


| From | To | Code | Index | Decode |
| :--- | :--- | :--- | ---: | :--- |
| -.7655 | -.6875 | 11001 | -7 | -.7187 |
| -.6874 | -.6094 | 11010 | -6 | -.6406 |
| -.6093 | -.5313 | 11011 | -5 | -.5625 |
| -.5312 | -.4219 | 11100 | -4 | -.4688 |
| -.4218 | -.3125 | 11101 | -3 | -.3593 |
| -.3124 | -.2032 | 11110 | -2 | -.2500 |
| -.2031 | -.0938 | 11111 | -1 | -.1406 |
| .0937 | +.0937 | 00000 | 0 | +.0313 |
| .0938 | .2031 | 00001 | 1 | .1406 |
| .2032 | .3124 | 00010 | 2 | .2500 |
| .3125 | .4218 | 00011 | 3 | .3593 |
| .4219 | .5312 | 00100 | 4 | .4688 |
| .5313 | .6093 | 00101 | 5 | .5625 |
| .6094 | .6874 | 00110 | 6 | .6406 |
| .6875 | .7655 | 00111 | 7 | .7187 |
| .7656 | .8280 | 01000 | 8 | .7812 |
| .8281 | .8749 | 01001 | 9 | .8438 |
| .8750 | .9062 | 01010 | 10 | .8906 |
| .9063 | .9374 | 01011 | 11 | .9218 |
| .9375 | .9530 | 01100 | 12 | .9375 |
| .9531 | .9687 | 01101 | 13 | .9531 |
| .9688 | .9843 | 01110 | 14 | .9688 |
| .9844 | .9999 | 01111 | 15 | .9844 |

3.6.2 Reflection Coefficient 3. The third Reflection Coefficient (RC3) shall be coded as 5 bits. Coding and decoding shall be as shown in the following table.

| From | To | Code | Index | Decode |
| :--- | :---: | :--- | :---: | :---: |
| -.9999 | -.5891 | 10000 | -16 | -.6033 |
| -.5890 | -.5456 | 10001 | -15 | -.5598 |
| -.5455 | -.5019 | 10010 | -14 | -.5164 |
| -.5018 | -.4583 | 10011 | -13 | -.4729 |
| -.4582 | -.4148 | 10100 | -12 | -.4295 |
| -.4147 | -.3712 | 10101 | -11 | -.3860 |
| -.3711 | -.3276 | 10110 | -10 | -.3426 |
| -.3275 | -.2840 | 10111 | -9 | -.2991 |
| -.2839 | -.2404 | 11000 | -8 | -.2557 |
| -.2403 | -.1967 | 11001 | -7 | -.2122 |
| .1966 | -.1532 | 11010 | -6 | -.1687 |
| -.1531 | -.1096 | 11011 | -5 | -.1253 |
| -.1095 | -.0660 | 11100 | -4 | -.0818 |
| -.0659 | -.0224 | 11101 | -3 | -.0384 |
| -.0223 | .0212 | 11110 | -2 | .0051 |
| .0213 | .0648 | 11111 | -1 | .0485 |
| .0649 | .1139 | 00000 | 0 | .0920 |
| .1140 | .1575 | 00001 | 1 | .1355 |
| .1576 | .2011 | 00010 | 2 | .1789 |
| .2012 | .2447 | 00011 | 3 | .2224 |
| .2448 | .2883 | 00100 | 4 | .2658 |
| .2884 | .3318 | 00101 | 5 | .3093 |
| .3319 | .3755 | 00110 | 6 | .3527 |
| .3756 | .4191 | 00111 | 7 | .3962 |
| .4192 | .4626 | 01000 | 8 | .4396 |
| .4627 | .5062 | 01001 | 9 | .4831 |
| .5063 | .5499 | 01010 | 10 | .5266 |
| .5500 | .5934 | 01011 | 11 | .5700 |
| .5935 | .6370 | 01100 | 12 | .6135 |
| .6371 | .6807 | 01101 | 13 | .6569 |
| .6807 | .7242 | 01110 | 14 | .7004 |
| .7243 | .9999 | 01111 | 15 | .7438 |
|  |  |  |  |  |

3.6.3 Reflection Coefficient 4. The fourth Reflection Coefficient (RC4) shall be coded as 5 bits. Coding and decoding shall be as shown in the following table.

| From | To | Code | Index | Decode |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -.9999 | -.7627 | 10000 | -16 | -.7774 |  |
| -.7626 | -.7236 | 10001 | -15 | -.7383 |  |
| -.7236 | -.6846 | 10010 | -14 | -.6993 |  |
| -.6845 | -.6455 | 10011 | -13 | -.6602 | (Continued) |


| From | To | Code | Index | Decode |
| :---: | :---: | :---: | :---: | :---: |
| -. 6454 | -. 6065 | 10100 | -12 | -.6211 |
| -. 6064 | -. 5674 | 10101 | -11 | -. 5821 |
| -. 5673 | -. 5283 | 10110 | -10 | -. 5430 |
| -. 5282 | -. 4893 | 10111 | -9 | -. 5040 |
| -. 4892 | -. 4502 | 11000 | -8 | -. 4649 |
| -. 4501 | -. 4112 | 11001 | -7 | -. 4258 |
| -. 4111 | -. 3721 | 11010 | -6 | -. 3868 |
| -. 3720 | -. 3330 | 11011 | -5 | -. 3477 |
| -. 3329 | -. 2940 | 11100 | -4 | -. 3086 |
| -. 2939 | -. 2549 | 11101 | -3 | -. 2696 |
| -. 2548 | -. 2158 | 11110 | -2 | -. 2305 |
| -. 2157 | -. 1768 | 11111 | -1 | -. 1914 |
| $\bigcirc 1767$ | -1329 | 00000 | 0 | -. 1524 |
| -. 1328 | -. 0938 | 00001 | 1 | -. 1133 |
| -. 0937 | -. 0548 | 00010 | 2 | -. 0743 |
| -. 0547 | -. 0157 | 00011 | 3 | -. 0352 |
| -. 0156 | . 0234 | 00100 | 4 | . 0039 |
| . 0235 | . 0624 | 00101 | 5 | . 0429 |
| . 0625 | . 1015 | 00110 | 6 | . 0820 |
| . 1016 | . 1405 | 00111 | 7 | . 1211 |
| . 1406 | . 1796 | 01000 | 8 | . 1601 |
| . 1797 | . 2187 | 01001 | 9 | . 1992 |
| . 2188 | . 2577 | 01010 | 10 | . 2382 |
| . 2578 | . 2968 | 01011 | 11 | . 2773 |
| . 2969 | . 3359 | 01100 | 12 | . 3164 |
| . 3360 | . 3749 | 01101 | 13 | . 3554 |
| . 3750 | . 4140 | 01110 | 14 | . 3945 |
| . 4141 | . 9999 | 01111 | 15 | . 4336 |

3.6.4 Reflection Coefficient 5. The fifth Reflection Coefficient ( $\mathrm{R} C 5$ ), used when a frame is voiced, shall be coded as 4 bits. Coding and decoding shall be as shown in the following table.

| From | To | Code | Index | Decode |
| :---: | :---: | :---: | :---: | :---: |
| -.9999 | -.6047 | 1000 | -8 | -.6358 |
| -.6046 | -.5324 | 1001 | -7 | -.5635 |
| -.5323 | -.4600 | 1010 | -6 | -.4912 |
| -.4599 | -.3877 | 1011 | -5 | -.4190 |
| -.3876 | -.3153 | 1100 | -4 | -.3467 |
| -.3152 | -.2430 | 1101 | -3 | -.2744 |
| -.2429 | -.1707 | 1110 | -2 | -.2022 |
| -.1706 | -.0984 | 1111 | 1 | -.1299 |
| -.0983 | -.0214 | 0000 | 0 | -.0577 |
| -.0213 | .0509 | 0001 | 1 | .0146 |
| .0510 | .1232 | 0010 | 2 | .0869 |
| .1233 | .1955 | 0011 | 3 | .1591 |
| .1956 | .2679 | 0100 | 4 | .2314 |
| .2680 | .3403 | 0101 | 5 | .3037 |
| .3404 | .4126 | 0110 | 6 | .3759 |
| .4127 | .9999 | 0111 | 7 | .4482 |

3.6.5 Reflection Coefficient 6. The sixth Reflection Coefficient (RC6), used when a frame is voiced, shall be coded as 4 bits. Coding and decoding shall be as shown in the following table.

| From | To | Code | Index | Decode |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| -.9999 | -.7011 | 1000 | -8 | -.7315 |  |
| -.7010 | -.6328 | 1001 | -7 | -.6631 |  |
| -.6327 | -.5645 | 1010 | -6 | -.5948 |  |
| -.5644 | -.4962 | 1011 | -5 | -.5264 |  |
| -.4961 | -.4279 | 1100 | -4 | -.4581 |  |
| -.4278 | -.3596 | 1101 | -3 | -.3897 |  |
| -.3595 | -.2913 | 1110 | -2 | -.3213 |  |
| -.2912 | -.2230 | 1111 | -1 | -.2530 |  |
| -.2229 | -1505 | 0000 | 0 | -.1846 |  |
| -.1504 | -.0822 | 0001 | 1 | -.1162 |  |
| -.0821 | -.0139 | 0010 | 2 | -.0479 |  |
| -.0138 | .0544 | 0011 | 3 | .0205 | (Continued) |
| .0545 | .1227 | 0100 | 4 | .0888 |  |


| From | To | Code | Index | Decode |
| :---: | :---: | :---: | :---: | :---: |
| .1228 | .1910 | 0101 | 5 | .1572 |
| .1911 | .2593 | 0110 | 6 | .2256 |
| .2594 | .9999 | 0111 | 7 | .2939 |

3.6.6 Reflection Coefficient 7. The seventh Reflection Coefficient (RC7), used when a frame is voiced, shall be coded as $\overline{4}$ bits. Coding and decoding shall be as shown in the following table.

| From | To | Code | Index | Decode |
| :---: | :---: | :---: | :---: | :---: |
| -.9999 | -.5474 | 1000 | -8 | -.5762 |
| -.5473 | -.4809 | 1001 | -7 | -.5098 |
| -.4808 | -.4145 | 1010 | -6 | -.4434 |
| -.4144 | -.3480 | 1011 | -5 | -.3770 |
| -.3479 | -.2816 | 1100 | -4 | -.3106 |
| -.2815 | -.2152 | 1101 | -3 | -.2442 |
| -.2151 | -.1488 | 1110 | -2 | -.1778 |
| -.1487 | -.0824 | 1111 | -1 | -.1114 |
| -.0823 | -.0117 | 0000 | 0 | -.0450 |
| -.0116 | .0547 | 0001 | 1 | .0214 |
| .0548 | .1211 | 0010 | 2 | .0878 |
| .1212 | . .275 | 0011 | 3 | .1542 |
| . .1876 | .2540 | 0100 | 4 | .2206 |
| .2541 | .3204 | 0101 | 5 | .2870 |
| .3205 | .3869 | 0110 | 6 | .3534 |
| .3870 | .9999 | 0111 | 7 | .4198 |

3.6.7 Reflection Coefficient 8. The eighth Reflection Coefficient (RC8), used when a frame is voiced, shall be coded as 4 bits. Coding and decoding shall be as shown in the following table.

| From | To | Code | Index | Decode |
| :---: | :---: | :---: | :---: | :---: |
| -.9999 | -.6242 | 1000 | -8 | -.6539 |
| -.6241 | -.5568 | 1001 | -7 | -.5865 |
| -.5567 | -.4895 | 1010 | -6 | -.5191 |
| -.4894 | -.4221 | 1011 | -5 | -.4517 |
| -.4220 | -.3548 | 1100 | -4 | -.3843 |
| -.3547 | -.2874 | 1101 | -3 | -.3169 |
| -.2873 | -.2201 | 1110 | -2 | -.2496 |
| -.2200 | -.1527 | 1111 | -1 | -.1822 |
| -.1526 | -.0811 | 0000 | 0 | -.1148 |
| -.0810 | -.0138 | 0001 | 1 | -.0474 |
| -.0137 | .0536 | 0010 | 2 | .0200 |
| .0537 | .1209 | 0011 | 3 | .0874 |
| .1210 | .1883 | 0100 | 4 | .1548 |
| .1884 | .2556 | 0101 | 5 | .2222 |
| .2557 | .3230 | 0110 | 6 | .2895 |
| .3231 | .9999 | 0111 | 7 | .3569 |

3.6.8 Reflection Coefficient 9. The ninth Reflection Coefficient (RC9), used when a frame is voiced, shall be coded as 3 bits. Coding and decoding shall be as shown in the following table.

| From | To | Code | Index | Decode |
| :---: | :---: | :---: | :---: | :---: |
| -.9999 | -.3077 | 100 | -4 | -.3634 |
| -.3076 | -.1908 | 101 | -3 | -.2462 |
| -.1907 | -.0738 | 110 | -2 | -.1290 |
| -.0737 | .0432 | 111 | -1 | -.0118 |
| .0433 | . .638 | 000 | 0 | .1054 |
| .1639 | .2807 | 001 | 1 | .2226 |
| .2808 | .3977 | 010 | 2 | .3398 |
| .3978 | .9999 | 011 | 3 | .4570 |

3.6.9 Reflection Coefficient 10. The tenth Reflection Coefficient (RC10), used when a frame is voiced, shall be coded as 2 bits. Coding and decoding shall be as shown in the following table.

| From | To | Code | Index | Decode |
| :---: | :---: | :---: | :---: | :---: |
| -.9999 | -.3117 | 10 | -2 | -.4043 |
| -.3116 | -.1203 | 11 | -1 | -.2129 |
| -.1202 | .0743 | 00 | 0 | -.0215 |
| .0744 | .9999 | 01 | 1 | .1699 |

3.7 Error Control Coding. When a frame is nonvoiced, a total of 20 bits shall be used for transmission error detection and correction. The four most significant bits of the RMS amplitude and first four reflection coefficients shall be protected by a four bit Error Control (EC) code as shown below (in hexadecimal form).

| Data | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EC | 0 | 7 | B | C | D | A | 6 | 1 | E | 9 | 5 | 2 | 3 | 4 | 8 | F |

### 3.8 Synthesis

3.8.1 Voiced Periods. Voiced speech shall' be synthesized by a 10 th order all-pole filter excited by pitch-synchronous pulses. The relative amplitudes of 40 recommended excitation values are shown in the following table.

| Index | Amplitude | Index | Amplitude | Index | Amplitude | Index | Amplitude |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 249 | 11 | -82 | 21 | -82 | 31 | -29 |
| 2 | -262 | 12 | 376 | 22 | -123 | 32 | -21 |
| 3 | 363 | 13 | 288 | 23 | -39 | 33 | -18 |
| 4 | -362 | 14 | -65 | 24 | 65 | 34 | -27 |
| 5 | 100 | 15 | -20 | 25 | 64 | 35 | -31 |
| 6 | 367 | 16 | 138 | 26 | 19 | 36 | -22 |
| 7 | 79 | 17 | -62 | 27 | 16 | 37 | -12 |
| 8 | 78 | 18 | -315 | 28 | 32 | 38 | -10 |
| 9 | 10 | 19 | -247 | 29 | 19 | 39 | -10 |
| 10 | -277 | 20 | -78 | 30 | -15 | 40 | -4 |

Note that if the pitch period is equal to 40 , the 40 excitation values should be used as pitch excitation throughout the pitch period. If the pitch period is greater than 40, the 40 excitation values should be used as pitch excitation, followed by zero values for the remainder of the pitch period. And, if the pitch period is less than 40 (i.e., between 20 and 39 ), all 40 excitation values should be used as pitch excitation. Those values remaining at the end of the current pitch period, scaled to reflect the RMS amplitude change between this pitch period and the next, should be added to the excitation values in the next pitch period. For example, if the pitch period is 38 , excitation value 39 of one pitch period (scaled to reflect the RMS change between periods) would be added to excitation value 1 of the next pitch period.
3.8.2 Unvoiced Periods. Unvoiced speech shall be synthesized by a 4 th order all-pole filter with pseudorandom or quasi-random excitation.
3.8.3 Transitional Periods. Speech in voicing transition shall be synthesized by an all-pole filter excited by pitch-synchronous pulses during the voiced part of the frame and excited with pseudorandom or quasi-random excitation during the unvoiced part of the frame. Typically, pitch, RMS amplitude, and reflection coefficients from the adjacent voiced and unvoiced frames are used in synthesizing the voiced and unvoiced parts.
3.8.4 De-emphasis. The de-emphasis digital transfer function (which provides both de-emphasis and filtering) shall be:

$$
\frac{1}{1-0.75 z^{-1}}
$$

4. Effective Data. The use of this standard by U.S. government departments and agencies is mandatory effective 180 days following the date of this standard.
5. Changes. When a Government department or agency considers that this standard does not provide for its essential needs, a statement citing specific requirements shall be sent in duplicate to the General Services Administration (K), Washington, DC, 20405, in accordance with the provisions of the Federal Property Management Regulation 41 CFR 101-29.403-1. The General Services Administration will determine the appropriate action to be taken and will notify the agency.

## PREPARING ACTIVITY:

Natinnal Communications System
Office of Technology and Standards
Washington, DC 20305

## MILITARY INTERESTS:

$\frac{\text { Military Coordinating Activity }}{\text { DCA }- \text { DC }}$
$\frac{\text { Review Activities }}{\text { Army --AD, CR }}$
Navy -- AS, OM
RADC -- 26

Custodians
Army --SC
Navy -- EC
Air Force -- 90
JTCO -- TT

This document is available from the General Services Administration (GSA), acting as agent for the Superintendent of Documents. A copy for bidding and contracting purposes is available from GSA Business Centers. Copies are for sale at the GSA Specification Unit (WFSLS), Room 6039, 7th and D Streets S.W., Washington, D.C. 20407; telephone (202) 472-220 5. Please call in advance to arrange for pickup service.

