
A
N

S
I

X
3
.1

3
3
-1

9
8
6

^ REFERENCE
ANSI X3.133-1986

American National Standard
Adopted for Use by

the Federal Government

FIPS PUB 126
See Notice on Inside

Front Cover

for information systems -

database language -
NDL

ansi
american national standards institute, me

1430 broadway, new york, new york 10018

1987

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the re¬

quirements for due process, consensus, and other criteria for approval have been met by

the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,

substantial agreement has been reached by directly and materially affected interests. Sub¬

stantial agreement means much more than a simple majority, but not necessarily unanim¬

ity. Consensus requires that all views and objections be considered, and that a concerted

effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not

in any respect preclude anyone, whether he has approved the standards or not. from man¬

ufacturing. marketing, purchasing, or using products, processes, or procedures not con¬

forming to the standards.

The American National Standards Institute does not develop standards and will in no cir¬

cumstances give an interpretation of any American National Standard. Moreover, no per¬

son shall have the right or authority to issue an interpretation of an American National

Standard in the name of the American National Standards Institute. Requests for inter¬

pretations should be addressed to the secretariat or sponsor whose name appears on the

title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at

any time. The procedures of the American National Standards Institute require that

action be taken to reaffirm, revise, or withdraw this standard no later than five years from

the date of approval. Purchasers of American National Standards may receive current infor¬

mation on all standards by calling or writing the American National Standards Institute.

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal Infor¬

mation Processing Standards Publication 126, Database Language NDL. For a complete

list of the publications available in the Federal Information Processing Standards Series,

write to the Standards Processing Coordinator (ADP), Institute for Computer Sciences and

Technology, National Bureau of Standards, Gaithersburg, MD 20899.

Published by

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1986 by American National Standards Institute, Inc

All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

PC2M687/20

Research Information Center

iNational Bureau of Standards

Gaithersburg, Maryland 20899
ANSI®

X3.133-1986

American National Standard
for Information Systems -

Database Language -
NDL

Secretariat

Computer and Business Equipment Manufacturers Association

Approved August 1, 1986

American National Standards Institute, Inc

American
National
Standard

Approval of an American National Standard requires verification by ANSI that the re¬

quirements for due process, consensus, and other criteria for approval have been met by

the standards developer.

Consensus is established when, in the judgment of the ANSI Board of Standards Review,

substantia] agreement has been reached by directly and materially affected interests. Sub¬

stantial agreement means much more than a simple majority, but not necessarily unanim¬

ity. Consensus requires that all views and objections be considered, and that a concerted

effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not

in any respect preclude anyone, whether he has approved the standards or not, from man¬

ufacturing, marketing, purchasing, or using products, processes, or procedures not con¬

forming to the standards.

The American National Standards Institute does not develop standards and will in no cir¬

cumstances give an interpretation of any American National Standard. Moreover, no per¬

son shall have the right or authority to issue an interpretation of an American National

Standard in the name of the American National Standards Institute. Requests for inter¬

pretations should be addressed to the secretariat or sponsor whose name appears on the

title page of this standard.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at

any time. The procedures of the American National Standards Institute require that

action be taken to reaffirm, revise, or withdraw this standard no later than five years from

the date of approval. Purchasers of American National Standards may receive current infor¬

mation on all standards by calling or writing the American National Standards Institute.

Published by

American National Standards Institute
1430 Broadway, New York, New York 10018

Copyright © 1986 by American National Standards Institute, Inc

All rights reserved.

No part of this publication may be reproduced in any form,
in an electronic retrieval system or otherwise, without
the prior written permission of the publisher.

Printed in the United States of America

PCIV2MI 186/22

Foreword

(This Foreword is not part of American National Standard X3.133-1986.)

American National Standard Database Language NDL specifies the syntax and semantics of interfaces to a
database management system for defining and accessing network structured databases. Together, these inter¬
faces are called Database Language NDL.

This standard was developed by the Technical Committee on Database, X3H2, under two projects authorized
by the Accredited Standards Committee on Information Processing Systems, X3. Project 309D, described in
document ANSI X3/SPARC/77-34, called for the development of

"...an American National Standard for a Data Description Language to be used in designing, main¬
taining, controlling, and protecting databases, based on the specifications set forth in the Journal of
Development (JOD) published by the Data Description Language Committee (DDLC) of the Confer¬
ence on Data Systems Languages (CODASYL)."

Under project 309D, Technical Committee X3H2 was specifically not chartered to develop standard interfaces
for accessing databases. The X3 Technical Committees on COBOL and FORTRAN were responsible for
specifying the syntax and semantics of the language facilities (subschema data definition and data manipu¬
lation) necessary to access databases defined using Technical Committee X3H2’s standardized data definition
language.

A 1981 Technical Committee letter ballot on a Data Definition Language for Network Structured Databases
indicated that Technical Committee X3H2 members were unwilling to forward the document to X3 for proc¬
essing as a standard without specifications of language for accessing databases. Committee X3 then approved
project 355D, which is described in document ANSI X3/SPARC/81-191 as follows:

"To develop a comprehensive standard for a data definition language and for database control system
functions to be used in designing, accessing, maintaining, controlling, and protecting databases."

The new project 355D subsumed the activities carried out under the data description language project 309D,
adding responsibility for defining the semantics of database access facilities. Standards development commit¬
tees for programming languages retained the responsibility for specifying programming language specific syntax
for invoking the database access facilities defined by Technical Committee X3H2.

American National Standard Database Language NDL is the culmination of work by many groups. Under
project 309D, the January 1978 Journal of Development of the CODASYL Data Description Language Com¬
mittee provided the basis for the NDL data definition language syntax and semantics. When project 355D
called for development of standard database access facilities, Technical Committee X3H2 added to its base
document a specification of subschema and data manipulation facilities adapted from the July 1980 Revision
Working Paper of the Technical Committee on COBOL, X3J4, Section XVI: "Database Module". That
working document of X3J4 had been adapted from the Database Module of the January 1978 Journal of
Development of the CODASYL COBOL Committee, derived from the earlier specifications of the CODASYL
Database Task Group (DBTG). During work on the NDL standard, Technical Committee X3H2 addressed all
proposals that were submitted, whether for addition, deletion, or change.

This standard was approved as an American National Standard by the American National Standards Institute
on August 1, 1986.

Suggestions for improvement of this standard are welcome. They should be sent to the Computer and Business
Equipment Manufacturing Association, 311 First Street NW, Washington, DC 20011.

This standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on
Information Processing Systems, X3. Committee approval of this standard does not necessarily imply that all
committee members voted for its approval. At the time that it approved this standard, the X3 Committee had
the following members:

E. Lohse, Chair
R. Gibson, Vice-Chair
C. A. Kachurik, Administrative Secretary

Organization Represented Name of Representative
American Express D. L. Seigal

L. Durfee (Alt)
American Library Association P. Peters
American Nuclear Society G. C. Main

D. R. Vondy (Alt)
AMP Inc. P. E. Lannan

E. Kelly (Alt)
Association for Computing Machinery K. Magel

J. A. Meads (Alt)
Association of the Institute for Certification of Computer Professionals T. M. Kurihara
AT&T Communications H. L. Marchese

R. Gibson (Alt)
AT&T Technologies H. V. Bertine

P. D. Bartoli (Alt)
S. M. Garland (Alt)

Burroughs Corporation S. Fenner
Control Data Corporation C. E. Cooper

K. A. Lucke (Alt)
Cooperating Users of Burroughs Equipment T. Easterday

D. Miller (Alt)
Data General Corporation J. Pilat

L. Chapin (Alt)
Data Processing Management Association C. G. Meyer

W. Arrington (Alt)
T. H. Felker (Alt)

Digital Equipment Computer Users Society W. Hancock
D. Perry (Alt)

Digital Equipment Corporation G. S. Robinson
D. L. Shoemaker (Alt)

Eastman Kodak G. Haines
C. C. Bard (Alt)

General Electric Company R. W. Signor
W. R. Kruesi (Alt)

General Services Administration W. C. Rinehuls
L. L. Jackson (Alt)

GUIDE International F. Kirshenbaum
S. S. Abraham (Alt)

Harris Corporation W. G. Fredrickson
R. Sinha (Alt)

Hewlett-Packard D. C. Loughry
Honeywell Information Systems T. J. McNamara

D. M. Taylor (Alt)

Organization Represented Name of Representative

IBM Corporation M. A. Gray
R. H. Follett (Alt)

IEEE Computer Society S. I. Sherr
T. M. Kurihara (Alt)
T. A. Varetoni (Alt)

Lawrence Berkeley Laboratory D. F. Stevens
R. L. Fink (Alt)

Moore Business Forms D. H. Oddy
National Bureau of Standards R. E. Rountree

J. H. Burrows (Alt)
National Communications System G. W. White
NCR Corporation T. W. Kern

A. R. Daniels (Alt)
Prime Computer, Inc. J. Schmidt

J. McHugh (Alt)
Railinc Corporation R. A. Petrash
Recognition Technology Users Association H. F. Schantz

G. W. Wetzel (Alt)
Scientific Computer Systems Corporation J. A. Baker

C. Haberland (Alt)
SHARE, Inc. T. B. Steel

R. P. Rannie (Alt)
Sperry Corporation M. W. Bass

J. G. Smith (Alt)
Texas Instruments, Inc. P. Smith

R. F. Trow, Jr (Alt)
3M Company P. D. Jahnke

J. W. Van Valkenburg (Alt)
Travelers Insurance Companies, Inc. J. T. Brophy
U. S. Department of Defense F. Virtue

B. Leong-Hong (Alt)
VIM C. Tanner

M. Sparks (Alt)
VISA USA J. T. McKenna

S. Crawford (Alt)
Wang Laboratories, Inc. M. Hayek

J. St. Amand (Alt)
Xerox Corporation J. L. Wheeler

R. Pierce (Alt)

Technical Committee X3H2 on Database, which developed this standard, had the following members:

Donald Deutsch, Chair
Oris Friesen, Vice-Chair
Michael Gorman, Secretary
Leonard Gallagher, International Representative

Dean Anderson Adrian Gonzalez Phil Neches
Jerry Baker Stephen Hollander Ken Paris
Nick Baxter Andrew Hutt John Robertson
Alan Bier Carol Joyce Phil Shaw
Jarvis Boykin Sue Karlin Val Skalabrin
Fritz Bryant Michael Kelley Jagan Sud
Jeannette Duffy Steve Klein Joan Sullivan
Andrew Eisenberg Bernard Kocis Ken Szczesny
Gerald Feldman May Kovalick Barry Vickers
Lynn Francis Dennis Leatherwood Elaine Volkman
Glen Fullmer Mark Lipp Jerry Wisdorf
Wally Gazdik Anthony Marriott

Others holding Technical Committee X3H2 membership while the committee wa
the following:

Jeff Ault Jack Jones Marie Pierce
Ellen Boughter Ealex Jupiter Shir lie Radcliffe
Grady Clendening Michael Kay Tom Reinertson
James Connors Keith Kidner Gill Ringland
Gene Cosloy John Knutson Tom Roberts
Richard Elkins Harold Kunecke Tom Rogers
Matthew Flavin Wassil Lagoey Bruce Rosen
Carol Greene Stefan Langsner John Rundell
Gary Gregory Frank Manola Lawrence Scearce, Jr
Ehud Gudes Scott Mayberry Presley Smith
Donald Guldan Gordon McClean, Jr Willem Stoeller
Katherine Hammer Charles McCoy Michael Thibado
Rita Hillyer Kenneth Parker Mary True
Gary James Richard Pelc Cal Waller
Jane Jodiet Larry Pelletier Dan Webb

Contents

1. Scope and field of application . 1

2. References . 3
2.1 American National Standards . 3
2.2 Other Standards . 3

3. Overview . 5
3.1 Organization . 5
3.2 Notation. 5
3.3 Conventions. 6
3.4 Conformance . 7

4. Concepts . 9
4.1 Datatype . 9

4.1.1 Character strings . 9
4.1.2 Numbers . 9

4.2 Components. 10
4.3 Records . 10

4.3.1 Database keys. 10
4.3.2 System record . 11

4.4 Set types . 11
4.4.1 Singular sets . 11
4.4.2 Recursive sets . 11

4.5 Schema . 11
4.6 Subschemas . 12
4.7 Database . 12
4.8 Modules . 12
4.9 Procedures . 12
4.10 Standard programming languages . 13
4.11 Temporary sets . 13
4.12 Parameters . 13

4.12.1 STATUS parameter . 13
4.12.2 TEST parameter . 13
4.12.3 RECORD parameter . 13

4.13 Session . 14
4.14 Transactions . 14
4.15 Integrity constraints . 14

4.15.1 Check conditions . 15
4.15.2 Default values . 15
4.15.3 Uniqueness constraints . 15
4.15.4 Set ordering criteria . 15
4.15.5 Set membership . 15

5. Common elements. 17
5.1 <condition> . 17
5.2 <operand> . 19
5.3 <identifier> 20
5.4 <literal> . 22
5.5 <data type> . 24

5.6 <occurs clause> . 26
5.7 <subscripts> . 27
5.8 Comments, spaces, and key words . 28

6. Schema definition language . 31
6.1 <schema> . 31
6.2 <schema name clause> . 32
6.3 <record type> . 33
6.4 <record name clause> 34
6.5 <record uniqueness clause> . 35
6.6 < component type> . 36
6.7 <component name clause> . 37
6.8 <default clause> . 38
6.9 <record check clause> . 39
6.10 <set type> . 40
6.11 <set name clause> . 41
6.12 <owner clause> . 42
6.13 <order clause> . 43
6.14 <member clause> . 45
6.15 <member record name clause> . 46
6.16 <insertion clause> . 47
6.17 <retention clause> . 49
6.18 <member uniqueness clause> . 50
6.19 <key clause> . 51
6.20 <member check clause> . 54
6.21 <component identifier> . 56

7. Subschema definition language ... 59
7.1 <subschema> . 59
7.2 <subschema name clause> . 60
7.3 <record view> . 61
7.4 <component view> . 62
7.5 <set view> . 63

8. Module language. 65
8.1 <module> . 65
8.2 <module name clause> . 67
8.3 <temporary set specifications> . 68
8.4 <procedure> . 69

9. Data manipulation language . 75
9.1 <commit statement> . 75
9.2 <connect statement> . 76
9.3 <disconnect statement> . 77
9.4 <erase statement> . 78
9.5 <find statement> 80
9.6 <get statement> . 85
9.7 <modify statement> . 86
9.8 <nullify cursor statement> . 88
9.9 <ready statement> . 89
9.10 <reconnect statement> . 91
9.11 <rollback statement> . 92
9.12 <store statement> . 93
9.13 <test database key equal statement> . 96
9.14 <test database key null statement> . 97
9.15 <test set empty statement> . 98

9.16 <test set membership statement> . 99
9.17 <database key identifier> . 100
9.18 <component view identifier> . 101
9.19 <parameter identifier> . 103
9.20 <to parameter move> and <to database move> . 104

10. Auxiliary operations . 107
10.1 <insert operation> . 107
10.2 < remove operation> . 109

11. Interpretive state . Ill
11.1 <session state> . Ill
11.2 <cursors> . 112
11.3 < temporary sets > . 114
11.4 <ready list> 115

12. Status codes . 117

13. Levels. 119

Annexes . 121

A. Example suppliers and parts problem. 121
A.l Example suppliers and parts < schema > . 121
A.2 Example suppliers and parts <subschema> . 122
A. 3 Example suppliers and parts program . 122
A. 4 Example suppliers and parts <module> . 123

B. Example recursive set problem . 125
B.l Example recursive set <schema> . 125
B.2 Example recursive set <subschema> . 125
B.3 Example recursive set program . 125
B. 4 Example recursive set <module> . 127

C. Example bill of materials problem . 129
C.l Example bill of materials <schema> 129
C.2 Example bill of materials <subschema> . 130
C.3 Example bill of materials program. 130
C.4 Example bill of materials <module> 131

Index 133

American National Standard
for Information Systems -

Database Language -
NDL

1. Scope and field of application

This standard specifies the syntax and semantics of three database languages:

1) A schema definition language, for declaring the structures and integrity constraints of an NDL database.

2) A subschema definition language, for declaring a user view of that database.

3) A module language and data manipulation language, for declaring the database procedures and executable
statements of a specific database application program.

This standard defines the logical data structures and basic operations for an NDL database. It provides func¬
tional capabilities for designing, accessing, maintaining, controlling, and protecting the database.

This standard provides a vehicle for portability of database definitions and application programs between con¬
forming implementations.

This standard specifies two levels. Level 2 is the complete NDL database language. Level 1 is the subset of
Level 2 defined in clause 13, “Levels” on page 119.

This standard does not specify some of the facilities that might be provided in operational database environ¬
ments, such as the following:

1) An access control facility for granting access and operational privileges to specific users

2) Additional integrity control capabilities for specifying more complex integrity constraints on the database

3) A facility to import and export schema definitions

4) A database unload facility for copying record and set populations to standard files for information inter¬
change

5) A schema database for making schema and subschema information available to accessing application pro¬
grams

6) A schema manipulation language for creating, modifying, or deleting portions of the schema or subschemas

7) Interfaces to a data dictionary

8) Application program pre-processing facilities for producing separate standard database modules and
standard language programs

Database Language NDL 1

AMERICAN NATIONAL STANDARD X3.133-1986

9) A data storage definition language for defining physical storage structures and physical access methods

10) Database procedures for user specified assertions and triggers

11) A natural language query facility for ad hoc access to the database

12) Report generator facilities for producing output tables and charts

13) Graphics capabilities for direct database interface with standard graphics systems

14) A distributed database facility for defining and accessing data at different nodes in a communications
network

Standards for such additional facilities could be specified in a manner that is upward compatible with this
standard. Some of the additional capabilities might be specified by subsequent versions of this standard, others
could be specified by separate standards, and some may always be implementor-defined.

This standard applies to implementations that exist in an environment that may include application program¬
ming languages, end-user query languages, report generator systems, data dictionary systems, program library
systems, and distributed communication systems, as well as various tools for database design, data adminis¬
tration, and performance optimization.

2 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

2. References

2.1 American National Standards

This standard is intended for use with the following American National Standards. When these standards are
superceded by revisions approved by the American National Standards Institute, the revisions shall apply.

ANSI X3.9-1978, ISO 1539-1980, Programming Language - FORTRAN.

ANSI X3.23-1985, ISO 1989-1985, Programming Language - COBOL.

ANSI X3.53-1976, ISO 6160-1979, Programming Language - PL/I.

2.2 Other Standards

This standard is also intended for use with Programming Language - Pascal 1, BSI BS 6192-1982, ISO
7185-1983.

l This British Standard is available from the American National Standards Institute, 1430 Broadway, New York, N.Y.
10018.

2. References 3

AMERICAN NATIONAL STANDARD X3.13 3-1986

3. Overview

3.1 Organization

The organization of this standard is as follows:

1) 3.2, “Notation” on page 5 and 3.3, “Conventions” on page 6 define the notations and conventions used
in this standard.

2) 3.4, “Conformance” on page 7 defines conformance criteria.

3) Clause 4, “Concepts” on page 9 defines terms and presents concepts used in the definition of NDL.

4) Clause 5, “Common elements” on page 17 defines language elements that occur in several parts of NDL
language.

5) Clause 6, “Schema definition language” on page 31 defines the NDL facilities for specifying a database.

6) Clause 7, “Subschema definition language” on page 59 defines the NDL facilities for specifying portions
of a database that can be referenced by an application program.

7) Clause 8, “Module language” on page 65 defines NDL modules and procedures.

8) Clause 9, “Data manipulation language” on page 75 defines the data manipulation statements of NDL.

9) Clause 10, “Auxiliary operations” on page 107 defines certain operations that are used in the definition
of NDL data manipulation statements.

10) Clause 11, “Interpretive state” on page 111 defines the "session state", which is used in the definition of
NDL data manipulation statements.

11) Clause 12, “Status codes” on page 117 defines the values of the STATUS parameter after the execution
of NDL data manipulation statements.

12) Clause 13, “Levels” on page 119 defines the two levels of NDL.

3.2 Notation

The syntactic notation used in this standard is BNF ("Backus Normal Form" or "Backus-Naur Form"), with
the following extensions:

1) Square brackets ([]) indicate optional elements.

2) Ellipses (...) indicate elements that may be repeated one or more times.

3) Braces ({}) group sequences of elements.

3. Overview 5

AMERICAN NATIONAL STANDARD X3.133-1986

In the BNF syntax, a production symbol <A> is defined to "contain" a production symbol if
occurs someplace in the expansion of <A>. If <A> contains , then is "contained in" <A>. If
<A> contains , then <A> is the "containing" <A> production symbol for .

A production symbol <A> "immediately contains" a production symbol if <A> contains and if
 occurs in the first expansion of <A>.

The lexical units of this standard (e.g. <separator>, <key word>, <identifier>, and <literal>) are defined
elsewhere in this standard. The following characters have special significance in some production rules:

In < escape identifier>
In < character string literal >

(In <comment>, <condition>, and <subscripts>
) In < comment >, < condition >, and < subscripts >
* In < comment >

In < numeric literal >
In < numeric literal >

< In < relation >
> In < relation >
= In < component identifier match >, <relation>, and

<test database key equal statement>
E In <approximate numeric literal>

In <identifier>
In <component identifiers <component view identi¬
fier >, < numeric literal >, < subschema name clause >,
and < subschema specification >

3.3 Conventions

Syntactic elements of this standard are specified in terms of:

1) Function: A short statement of the purpose of the element.

2) Format: A BNF definition of the syntax of the element.

3) Syntax Rules: Additional syntactic constraints not expressed in BNF that the element shall satisfy.

4) General Rules: A sequential specification of the run-time effect of the element.

In the Syntax Rules, the term "shall" defines conditions that are required to be true of syntactically conforming
NDL language. The treatment of NDL language that does not conform to the Formats or the Syntax Rules is
implementor-defined.

A conforming implementation is not required to perform the exact sequence of actions defined in the General
Rules, but shall achieve the same effect on the database as that sequence.

The term "persistent object" is used to characterize objects such as <module>s and <schema>s that are
created and destroyed by implementor-defined mechanisms.

In this standard, clauses begin a new odd-numbered page, and in clause 5, “Common elements” on page 17
through clause 11, “Interpretive state” on page 111 subclauses begin a new page. The resulting blank space is
not significant.

6 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

3.4 Conformance

This standard specifies conforming NDL language and conforming NDL implementations. Conforming NDL
language shall abide by the BNF Format and associated Syntax Rules. A conforming NDL implementation
shall process standard conforming NDL language according to the General Rules.

A conforming implementation may provide additional facilities or options not specified by this standard. An
implementation remains conforming even if it provides user options to process nonconforming NDL language
or to process conforming NDL language in a nonconforming manner.

This standard does not define the method or the time of binding between application programs and database
management system components.

An implementation that conforms to Level 1 of this standard shall meet the requirements for Level 2 conform¬
ance except that it may omit certain facilities as specified in clause 13, “Levels” on page 119.

This standard specifies three languages and defines the syntax and semantics of each of them. Implementors of
database management systems may claim conformance for their products to this standard in two ways. An
implementation may support the identical syntax of the languages and claim both syntactic and functional con¬
formance, or it may use different syntax to express the same concepts, semantics, and functionality, and claim
functional conformance only.

Implementations claiming functional conformance to any of the three standard languages shall specify equiv¬
alence with the semantics and functionality of those standard languages. For example, it should be possible to
show that a schema displayed by a database management system display utility could be recoded using the
standard schema definition language syntax and have equivalent functionality.

3. Overview 7

AMERICAN NATIONAL STANDARD X3.133-1986

4. Concepts

4.1 Data type

A <data type> is a set of representable values. The logical representation of a value is a <literal>. The
physical representation of a value is implementor-defined.

A value is primitive, in that it has no logical subdivision within this standard. Values are the basis of definition
for data items and arrays.

A value is either a character string or a number. A character string and a number are not comparable values.

4.1.1 Character strings

A character string consists of a sequence of characters of the implementor-defined character set. A character
string has a length, which is a positive integer that specifies the number of characters in the sequence.

4.1.2 Numbers

A number is either an exact numeric value or an approximate numeric value. All numbers are comparable
values.

An exact numeric value has a precision and a scale. The precision is a positive integer that determines the
number of significant decimal digits. The scale is a signed integer. A scale of 0 indicates that the number is an
integer. For a scale of N, the exact numeric value is the integer value of the significant digits multiplied by 10
to the power -N.

An approximate numeric value consists of a mantissa and an exponent. The mantissa is a signed numeric value,
and the exponent is a signed integer that specifies the magnitude of the mantissa. An approximate numeric
value has a precision. The precision is a positive integer that specifies the number of significant binary digits in
the mantissa.

Whenever an exact numeric value is assigned to a data item or parameter representing an exact numeric value,
its value shall be exactly representable in the data type of the target. The value is converted to have the preci¬
sion and scale of the target.

Whenever an exact or approximate numeric value is assigned to a data item or parameter representing an
approximate numeric value, an approximation of its value is represented in the data type of the target. The
value is converted to have the precision of the target.

4. Concepts 9

AMERICAN NATIONAL. STANDARD X3.133-1986

4.2 Components

A component is either a data item or an array of data items. A <component type> defines a collection of
component occurrences all having the same <data type>.

A data item consists of a single value. An array consists of a sequence of data items.

An array is specified by <extents>, which are a list of < unsigned integers >. The number of data items that
occur in an array is equal to the product of the <unsigned integer>s.

A data item not contained in an array is referenced by a <component name> and a <database key>. A data
item contained in an array is referenced by a Ccomponent name>, a <database key>, and <subscripts>.

All values of the same <component type> have the same <data type>. If the Ccomponent type> defines an
array, then each component occurrence is an array with the same dimension and extent integers. All character
strings of the same character string component have the same < length >. All numbers of the same exact
numeric component have the same <precision> and < scale >. All numbers of the same approximate numeric
component have the same < precision >.

Every Ccomponent type> is defined as part of a Crecord type>. The Ccomponent type> specifies the cdata
type>. If a Ccomponent type> defines an array, then it specifies the Cextents>. A character string Ccompo¬
nent type> specifies the Clength> of its character strings. An exact numeric Ccomponent type> specifies the
Cprecision> and Cscale> of its numbers. An approximate numeric Ccomponent type> specifies the Cpreci¬
sion > of its numbers.

4.3 Records

The record is the basic unit of manipulation in this standard. Records are stored, erased, found, modified, and
connected, disconnected, and reconnected in sets.

A record is a collection of components. A Crecord type> defines a collection of record occurrences all having
the same Ccomponent type>s. A Crecord type> defines its Ccomponent type>s, and specifies integrity con¬
straints that its record occurrences shall satisfy.

Each record is an occurrence of exactly one Crecord type>, and consists of exactly the components defined by
that Crecord type>.

The records of each Crecord type> are maintained in an implementor-defined order.

4.3.1 Database keys

All records are distinguishable. Each record is identified uniquely by a Cdatabase key>. A Cdatabase key> is
either null, in which case it identifies no record, or it is nonnull and identifies exactly one record in the data¬
base. A Cdatabase key> has no logical representation, and is not available through any interface defined by
this standard. The physical representation of a Cdatabase key> is implementor-defined.

The Cdatabase key>s are used to model cursors in the session state and to define the semantics of statements
in the data manipulation language. In the session state, a Cdatabase key> is referenced by cdatabase key>.
In data manipulation language statements, a cdatabase key> is referenced by a Cdatabase key identifiers

10 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

4.3.2 System record

This standard assumes the existence of a special SYSTEM Crecord type>. The SYSTEM <record type> has
no <component type>s, no integrity constraints, and exactly one imaginary record occurrence, called the
system record.

This standard does not specify a <database key> for the system record. The system record and SYSTEM
<record type> exist only for the definition of singular sets.

4.4 Set types

A <set type> is a defined relationship between two or more <record type>s.

In a <set type>, one Crecord type> is designated as the owner Crecord type>, and each of the other Crecord
type>s is referred to as a member Crecord type> of the Cset type>.

For each Cset type>, there may be zero, one, or more sets in a database.

A set consists of an owner record, whose Crecord type> is the owner Crecord type>, and zero, one, or more
member records, each of whose Crecord type> is a member Crecord type>.

A set is identified uniquely in a database by its Cset name> and its owner record occurrence. When an occur¬
rence of the owner Crecord type> of a Cset type> is stored in the database, a new set of that Cset type> is
created.

When an occurrence of Crecord type> is stored in the database, it belongs to at most one set of each Cset
type> in which the Crecord type> is a member Crecord type>.

The member records of each set of a Cset type> are maintained in a sequential order determined by the
ordering criteria for that Cset type>.

4.4.1 Singular sets

A singular Cset type> is a Cset type> having SYSTEM as its owner Crecord type>. A singular set is the
unique occurrence of a singular Cset type>.

4.4.2 Recursive sets

A recursive Cset type> is a set type having the same Crecord type> as both the owner Crecord type> and as
a member Crecord type>. A recursive set is an occurrence of a recursive Cset type>.

4.5 Schema

A Cschema> is a persistent object specified by the schema definition language. The Cschema> is a logical
description of the database. A Cschema> consists of a Cschema name>, a collection of Crecord type>
descriptions, and a collection of Cset type> descriptions.

4. Concepts 11

AMERICAN NATIONAL STANDARD X3.133-1986

4.6 Subschemas

A <subschema> is a persistent object specified by the subschema definition language. The <subschema> is a
logical description of that portion of a database available to an accessing <module>. A <subschema> con¬
sists of a <subschema name>, a collection of <record view>s, and a collection of <set view>s.

A <record view> specifies the available <component type>s of a given <record type>. A <set view> speci¬
fies an available <set type>. The <record view>s and <set view>s taken together determine the available
member < record type>s of each <set type>.

The <record view>s and <set view>s may define alias Ccomponent view name>s, <record view name>s and
<set view name>s for <component type>s, <record type>s, and <set type>s. The ahas names become the
only names available for those Ccomponent type>s, Crecord type>s, and <set type>s to an accessing
< module >.

The records available to an accessing < module > are maintained in an implementor-defined order. This order
is not necessarily the same as the implementor-defined order of the records of each Crecord type>.

4.7 Database

A database is the collection of all data defined by a Cschema>. It consists of the occurrences of each Crecord
type> and each Cset type>. There is exactly one database for each C schema > definition.

4.8 Modules

A Cmodule> is a persistent object specified in the module language. A Cmodule> consists of an optional
Cmodule name>, a Clanguage clause>, a Csubschema specification>, an optional Ctemporary set specifica¬
tions;^ and one or more Cprocedure>s.

An application program is a segment of executable code, possibly consisting of multiple sub-programs. A
single C module > is associated with an application program during its execution. An application program shall
be associated with at most one C module >. The manner in which this association is specified, including the
possible requirement for execution of some implementor-defined statement, is implementor-defined.

4.9 Procedures

A <procedure> consists of a <procedure name>, an optional sequence of <parameter declarations, and an
optional sequence of <NDL statements.

An application program associated with a <module> may reference the <procedure>s of that <module> by a
"call" statement that specifies the <procedure name> of the <procedure> and supplies a sequence of param¬
eter values corresponding in number and in <data type> to the <parameter declarations of the procedure. A
call of a <procedure> causes the sequence of <NDL statements that it contains to be executed.

The <subschema specification> of a <module> specifies the <subschema> that defines the records and sets
that can be referenced by the <module>.

The <temporary set specifications> of a <module> defines temporary <set type>s that may be referenced by
the < module >.

12 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

4.10 Standard programming languages

This standard specifies the actions of < procedure >s in < module >s when those < procedure >s are called by
programs that conform to specified standard programming languages. The terms "standard COBOL program",
"standard FORTRAN program", "standard Pascal program", and "standard PL/I program" refer to programs
that meet the conformance criteria of the standards listed in clause 2, “References” on page 3.

4.11 Temporary sets

A < temporary set> is an occurrence of a temporary <set type>. A temporary <set type> is declared by a
< temporary set specification > in a < module >.

For each <temporary set specification> in a <module>, an occurrence of the corresponding temporary <set
type> is created when the < module > is initiated and destroyed when the < module > is terminated.

4.12 Parameters

A parameter is declared in a <procedure> by a <parameter declarations The <parameter declaration>
specifies whether the parameter is an elementary data item or an array of data items, and specifies the <data
type> of its values. A parameter either assumes or supplies the value or values of the corresponding argument
in the call of that procedure.

4.12.1 STATUS parameter

The STATUS parameter is a special parameter of <length> 5 characters. If such a parameter is declared in a
<procedure>, then its value is set to a status code that either indicates that a call of the < procedure > was
successfully completed or that identifies an exception condition that occurred dining execution of the < proce¬
dure >.

4.12.2 TEST parameter

The TEST parameter is a special parameter of <length> 1 character. If a test statement is executed in a <pro-
cedure> containing this parameter, then the value of the parameter is set to "1" if the test is true, and to "0" if
the test is false.

4.12.3 RECORD parameter

The RECORD parameter is a special parameter of <length> 18 characters. If such a parameter is declared in
a < procedure >, then it is set to the < record name> of the record identified by the < session cursor > of the
< session state >.

4. Concepts 13

AMERICAN NATIONAL STANDARD X3.133-1986

4.13 Session

A database operation is the execution of an <NDL statements

A session is the sequence of database operations performed during the execution of an application program
associated with a <module>.

A < session state > is an ephemeral object associated with a session. A < session state > is created prior to the
first database operation in a session and is destroyed after the last database operation in the session.

A <session state> consists of <cursors>, <temporary sets>, and a <ready list>. The <cursors> include: A
<session cursor> to identify the current session record, a <record cursor> to identify the current record of
each <subschema> <record type>, and a <set cursor> to identify the owner record and the current member
record in the current set of each <subschema> <set type>. The Ctemporary sets> maintain the contents of
each <temporary set> defined by the associated <module>. The <ready list> maintains the <ready
specifications for each <record type> that has been activated by a <ready statements

The <session state> is available to an application program only through <NDL statements. The contents of
the < session state > are modified by the database management system upon execution of <NDL statement >s
in a < procedure > of its associated < module >. The data manipulation language includes <NDL statement >s
to find and compare <database key>s and to modify the contents of the <ready list> and each <temporary
set>.

4.14 Transactions

A transaction is a sequence of operations, including database operations, that is atomic with respect to recovery
and concurrency. Transactions terminate with a <commit statement> or a <rollback statements If a trans¬
action terminates with a < commit statement >, then all changes made to the database by that transaction are
made accessible to all concurrent transactions. If a transaction terminates with a <rollback statements then
all changes made to the database by that transaction are canceled. Committed changes cannot be canceled.
Changes made to the database by a transaction can be perceived by that transaction, but cannot be perceived
by other transactions until that transaction terminates with a <commit statements

The execution of concurrent transactions is guaranteed to be serializable. A serializable execution is defined to
be an execution of the operations of concurrently executing transactions that produces the same effect as some
serial execution of those same transactions. A serial execution is one in which each transaction executes to
completion before the next transaction begins.

The execution of an <NDL statement > within a transaction has no effect on the database or < session state >
other than the effect stated in the General Rules for that <NDL statements Together with serializable exe¬
cution, this implies that all read operations are reproducible within a transaction, except for changes explicitly
made by the transaction itself.

4.15 Integrity constraints

Integrity constraints restrict the valid states of the database. Integrity constraints may be defined for <record
type>s or <set type>s, and for component constraints between owner and member <record type>s.

Integrity constraints are checked after execution of each <NDL statements If the objects associated with the
integrity constraint do not satisfy the constraint, then the <NDL statement> has no effect on the database,
and the STATUS parameter is set to indicate the specified exception.

14 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

4.15.1 Check conditions

A check condition is an expression that shall be satisfied by the values of a record when its status in the data¬
base is altered. The expression is specified by a <condition> of a <record check clause> of a <record type>
or a < member check clause > of a <set type>.

4.15.2 Default values

A default value is a value to be assumed by all component occurrences in the absence of an explicit value sup¬
plied by a < procedure >. A default value is specified by a < literal > in a < default clause > of a < component
type>.

4.15.3 Uniqueness constraints

A uniqueness constraint is a specification that no two records of a given < record type>, or no two member
records of a set of a given <set type>, may occur in the database with identical values for specified compo¬
nents. Uniqueness constraints are specified by <record uniqueness clause>s in a <record type>, or by
< member uniqueness clause >s in a < member clause > of a <set type>.

4.15.4 Set ordering criteria

A set ordering specifies the sequential ordering of member records in a set. The ordering is one of the fol¬
lowing:

1) Sorted by component values

2) Chronological or reversed chronological

3) Relative positioning as next or prior to a given member record

4) Implementor-defined

Set ordering criteria are specified by the < order clause > of a <set type>, and if the order is sorted, by the
<key clause> of each <member clause> contained in that <set type>.

4.15.5 Set membership

Set membership specifies the insertion and retention modes of a record for each set in which it occurs as a
member record. Each member <record type> has an insertion mode and a retention mode.

Insertion is either automatic, structural, or manual. If insertion is manual, then records shall be inserted as
member records in a set only by an explicit < connect statement >. If insertion is automatic or structural, then
each record of a member < record type> becomes a member of some set of that <set type> when it is initially
stored in the database. If insertion is automatic or manual, then the owner record is identified by the applica¬
tion program. If insertion is structural, then the owner record is selected by the database management system
to have values of specified data items equal to those of the record to be inserted. The insertion mode is speci¬
fied by an <insertion clause> in each <member clause> of the <schema>.

Retention is either fixed, mandatory, or optional. If retention is fixed, then a record, having once become a
member record of some set, remains a member of that set until it is erased from the database. If retention is
mandatory, then a record, having once become a member record of a set, remains a member of some set of the
same <set type> until it is erased from the database. If retention is optional, then a record, having once

4. Concepts 15

AMERICAN NATIONAL STANDARD X3.133-1986

become a member record of some set, need not remain a member of that set or of any set of that <set type>.
The retention mode is specified by a <retention clause> in each <member clause> of the <schema>.

16 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

5. Common elements

5.1 < condition >

Function

Specify an expression that shall be evaluated as either true or false.

Format

<condition> :: =
<alternative> [{OR <alternative>}...]

<alternative> :: =
<simple condition> [{AND <simple condition>}...]

<simple condition> :: =
< subcondition >

| < negated subcondition >
| < relation condition >

<subcondition> ::= (<condition>)

<negated subcondition> :: =
NOT (< condition >)

< relation condition > :: =
<operand> <relation> <operand>

< relation > :: =

< I <= I = I >= I > I <>

Syntax Rules

1) If the first <operand> in a <relation condition> specifies an array, then the second <operand> in that
<relation condition> shall not specify an array.

2) If the type of the first operand is character string, then the type of the second operand shall be character
string. If the type of the first operand is exact numeric, then the type of the second operand shall be exact
numeric or approximate numeric. If the type of the first operand is approximate numeric, then the type of
the second operand shall be exact numeric or approximate numeric.

General Rules

1) A <condition> is true if any <altemative> contained in it is true', otherwise, it is false.

2) An <altemative> is true if every <simple condition> contained in it is true', otherwise, it is false.

3) A <simple condition> that immediately contains a <subcondition> is true if the <subcondition> is true',

otherwise, it is false.

5. Common elements 17

AMERICAN NATIONAL STANDARD X3.133-1986

A <simple condition> that immediately contains a Cnegated subcondition> is true if the <condition>
immediately contained in the < negated subcondition> is false] otherwise, it is false.

A < simple condition > that immediately contains a <relation condition > is true if the < relation condi-
tion> is true; otherwise, it is false.

4) The first (second) operand of a <relation condition> is the value of the first (second) <operand> in that
< relation condition >.

5) The <relation> of a <relation condition> specifies a comparison to be made between the two operands of
the <relation conditions The comparisons specified by the alternative <relation>s are as follows:

elation > Comparison

< less than

< = less than or equal
= equal

<> not equal

> greater than

> = greater than or equal

6) If neither operand of a <relation condition> is an array, then the <relation condition> is true if the speci¬
fied comparison of the two operands is true; otherwise, the <re!ation condition> is false. If one of the
operands of a < relation condition > is an array, then the < relation condition > is true if the specified com¬
parison of every value in the array sequence with the other operand is true; otherwise, the <relation condi-
tion> is false.

7) Case:

a) If operands are of exact numeric or approximate numeric type, then the comparison is performed
according to their numeric values.

b) If the operands are of character string type, then:

i) If the lengths of the two operands are not equal, then the shorter operand is considered to be
extended on the right with space characters.

ii) The comparison is performed from left to right, comparing the individual characters of the oper¬
ands. If all such individual comparisons are equal, then the two operands are equal; otherwise, the
result of the comparison of the operands is defined to be the result of the leftmost nonequal com¬
parison of the individual characters.

iii) The comparison of individual characters is implementor-defined.

8) In General Rules, the terms "less than",
sponding relational operators.

"greater than", "equal", and "not equal" refer to the corre-

18 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

5.2 <operand>

Function

Specify a value.

Format

<operand> =
< component identifier>

| <component view identifier>
| <parameter identifier>
| < literal >

Syntax Rules

1) Case:

a) If an <operand> is contained in a <schema>, then it shall not be a <parameter identifier> or a
< component view identifier >.

b) If an <operand> is contained in a <module>, then it shall not be a Ccomponent identifiers

2) The data type of an <operand> is the data type of the Ccomponent identifiers Ccomponent view identi¬
fiers Cparameter identifier>, or Cliterals

General Rules

1) The value of an Coperand> is the data item or array referenced by the Ccomponent identifiers Ccompo¬
nent view identifiers or Cparameter identifiers or the value of the Cliterals

5. Common elements 19

AMERICAN NATIONAL STANDARD X3.133-1986

5.3 <identifier>

Function

Specify names for parameters in a <procedure> or objects in the database.

Format

<identifier> :: =
Cregular identifier> | <escape identifier>

<regular identifier> :: =
< upper case letter>
[{[<underscore>] <letter or digit>}...]

<underscore> _

< letter or digit > :: =
< upper case letter> | < digit >

< letter > :: =
< upper case letter > | < lower case letter >

<upper case letter> :: =
A|B|C|D|E|F|G|H|I

| J|K|L|M|N|0|P|Q|R
| S | T | U | V| W|X| Y|Z

<lower case letter> :: =
a|b|c|d|e|f|g|h|i

| j|k|l|m|n|o|p|q|r
|s|t|u|v|w|x|y|z

<digit> :: =
0|1|2|3|4|5|6|7|8|9

<escape identifier> :: =
’<escape identifier character representation>...’

<escape identifier character representation> :: =
<escape identifier character>

| < apostrophe representation >

<escape identifier character> :: =
See Syntax Rule 3.

<apostrophe representation> ”

20 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

Syntax Rules

1) A Cregular identifier> shall contain at most 18 characters. An <escape identifier> shall contain at most
18 <escape identifier character representation>s.

2) A <regular identifier> shall not be the same sequence of characters as a <key word> (see
5.8, “Comments, spaces, and key words” on page 28).

3) An <escape identifier character> is any character in the implementor-defined character set other than the
apostrophe character (’)•

4) Each <apostrophe representation> in an <escape identifier> represents a single apostrophe character.

5) If an <escape identifier> (apart from the enclosing apostrophes) conforms to the format of a Cregular
identifier^ and if it is not a <key word>, then it is equivalent to the Cregular identifier> formed by
removing the enclosing apostrophes.

General Rules

None.

5. Common elements 21

AMERICAN NATIONAL STANDARD X3.133-1986

5.4 <literal>

Function

Specify a literal value.

Format

< literal > :: =
< character string literal >

| < numeric literal >

<character string literal> :: =
'' < character representation>..."

<character representation> :: =
< nonquote character >

| < quote representation >

<nonquote character> :: =
See Syntax Rule 1.

<quote representation> =

<numeric literal> :: =
< exact numeric literal >

| < approximate numeric literal >

<exact numeric literal> :: =
[+ | -] { Cunsigned integer>[.<unsigned integer>]

| <unsigned integer>.
| . < unsigned integer >}

<approximate numeric literal> :: =
< mantissa > E < exponent >

<mantissa> ::= <exact numeric literal>

<exponent> ::= <signed integer>

<signed integer> ::= [+ I -] Cunsigned integer>

Cunsigned integer> :: =
Cdigit>...

22 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

Syntax Rules

1) A < nonquote character > is any character in the implementor-defined character set other than the double
quote mark character (").

2) The data type of a < character string literal > is character string. The length of a < character string literal >
is the number of <character representation>s that it contains. Each <quote representation> in a <char-
acter string literal > represents a single quotation mark character in both the value and the length of the
< character string literal >.

3) An <exact numeric literal> without a decimal point (.) has an implied decimal point following the last
< digit >.

4) The data type of an <exact numeric literal> is exact numeric. The precision of an <exact numeric literal>
is the number of <digit>s that it contains. The scale of an < exact numeric literal > is the number of
<digit>s to the right of the decimal point.

5) The data type of an approximate numeric literal> is approximate numeric. The precision of an Approx¬
imate numeric literal > is the number of binary digits required to represent the significant digits of its
mantissa.

General Rules

1) The value of a < character string literal > is the sequence of characters that it contains.

2) The numeric value of an <unsigned integer>, <signed integer>, or <exact numeric literal> is derived
from the normal mathematical interpretation of signed positional decimal notation.

3) The numeric value of an < approximate numeric literal > is the product of the exact numeric value repres¬
ented by the < mantissa > with the number obtained by raising the number 10 to the power represented by
the < exponent >.

5. Common elements 23

AMERICAN NATIONAL STANDARD X3.133-1986

5.5 <data type>

Function

Specify a data type.

Format

<data type> :: =
< character string type>

| < exact numeric type>
| < approximate numeric type>

<character string type> :: =
CHARACTER [<length>]

<exact numeric type> :: =
FIXED < precision > [< scale >]

| NUMERIC < precision > [< scale >]
| INTEGER

<approximate numeric type> :: =
FLOAT < precision >

| REAL
| DOUBLE PRECISION

<length> ::= <unsigned integer>

<precision> ::= <unsigned integer>

<scale> ::= <signed integer>

Syntax Rules

1) The value of an <unsigned integer> that is a <length> or a <precision> shall be greater than 0.

2) If a <length> is omitted, then it is assumed to be 1. If a <scale> is omitted, then it is assumed to be 0.

General Rules

1) A <data type> specifies a class of data item values.

2) A data item of <data type> CHARACTER has a character string value with length equal to the value of
the specified < length >.

3) A data item of <data type> FIXED has an exact numeric value with scale equal to the value of the speci¬
fied <scale>, and with precision greater than or equal to the value of the specified <precision>.

4) A data item of <data type> NUMERIC has an exact numeric value with precision and scale equal respec¬
tively to the value of the specified <precision> and <scale>. If the precision is P and the scale is S, then
the absolute value of any nonzero NUMERIC data item shall be greater than or equal to 1E-S and less
than or equal to 1E(P-S)-1E-S.

24 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

5) A data item of <data type> INTEGER has an exact numeric value with a scale of 0 and with
implementor-defined precision.

6) A data item of <data type> FLOAT has an approximate numeric value with binary precision equal to or
greater than the value of the specified <precision>.

7) A data item of <data type> REAL has an approximate numeric value with implementor-defined precision.

8) A data item of <data type> DOUBLE PRECISION has an approximate numeric value with implementor-
defined precision that is greater than the implementor-defined precision of REAL.

5. Common elements 25

AMERICAN NATIONAL STANDARD X3.133-1986

5.6 <occurs clause>

Function

Define an array by specifying its <extents>.

Format

<occurs clause> :: =
OCCURS <extents>

<extents> <unsigned integer>...

Syntax Rules

1) The value of each <unsigned integer> in the <extents> shall be greater than 0.

General Rules

1) An < occurs clause > specifies an array of data items. The product of the values of the < unsigned
integer>s in the < extents > specifies the number of data items contained in each occurrence of the array.

26 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

5.7 <subscripts>

Function

Specify a data item of an array.

Format

<subscripts> :: =
(<operand>...)

Syntax Rules

1) The contextual < occurs clause > of a < subscripts > is specified in the Syntax Rules of the production
symbol that immediately contains the < subscripts >.

2) The number of <operand>s shall be equal to the number of < unsigned integer>s in the <extents> of the
contextual < occurs clause >.

3) Case:

a) If an <operand> is a <literal>, then it shall be an <unsigned integer> whose value is positive and is
not greater than the value of the corresponding <unsigned integer> of the <extents> of the contex¬
tual < occurs clause >.

b) If an <operand> is not a <literal>, then its data type shall be exact numeric with a scale of 0.

General Rules

1) Let d be the number of < operand >s in the < subscripts >.

2) For i from 1 to d, let Si be the value of the i-th <operand> in the <subscripts>.

3) For i from 1 to d, let Ei be the value of the i-th <unsigned integer> in the <extents> of the contextual
< occurs clause >.

4) For i from 1 to d, if Si is less than 1 or Si is greater than Ei, then raise exception array reference: subscript
out of bounds.

5) Let Md be 1. For i from 1 to (d-1), let Mi be the product of the terms Ej, for j from (i+1) to d.

6) Let J be the sum of the terms Mi*(Si-1), for i from 1 to d.

7) The value of the <subscripts> is J+l.

5. Common elements 27

AMERICAN NATIONAL STANDARD X3.133-1986

5.8 Comments, spaces, and key words I

Function

Specify lexical units.

Format

<separator> :: =
{ <comment> | <space> | <newline> }...

<comment> :: =
(*[<character>...]*)

<character> :: =
<digit> | <letter> | <special character>

<special character> :: =
See Syntax Rule 1.

<space> :: =
space character

<newline> :: =
implementor-defined end-of-line indicator

<word> :: =
<key word> | <identifier> | <literal>

<key word> :: =
ABSOLUTE | ALL | AND | AS | ASCENDING | AUTOMATIC

| CASCADE | CHARACTER | CHECK | COBOL
| COMMIT | CONNECT | CONTAINS
| DEFAULT | DESCENDING | DISCONNECT | DOUBLE | DUPLICATES
| EMPTY | ERASE | EXCLUSIVE
[FIND | FINISH | FIRST | FIXED | FLOAT | FOR | FORTRAN | FROM | FULL
| GET | IN | INSERTION | INTEGER | ITEM | KEY | LANGUAGE | LAST
| MANDATORY | MANUAL | MEMBER | MODIFY | MODULE
| NEXT | NOT | NULL | NULLIFY | NUMERIC
| OCCURS | OF | OPTIONAL | OR | ORDER | OWNER
| PARTIAL | PASCAL | PLI | PRECISION
| PRIOR | PROCEDURE | PROHIBITED | PROTECTED
| READY | REAL | RECONNECT | RECORD | RELATIVE | RENAMED
| RETAIN | RETENTION | RETRIEVE | ROLLBACK
| SCHEMA | SESSION | SET | SHARED | SORTED
| STATUS | STORE | STRUCTURAL | SUBSCHEMA | SYSTEM
| TEST | TO | TYPE | UNIQUE | UPDATE | WHERE | WITH

I

28 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

Syntax Rules

1) A <special character> is any character in the implementor-defined character set other than a <digit> or a
<letter>. If the implementor-defined end-of-line indicator (<newline>) is a character, then it is also
excluded from <special characters

2) A terminal production of <schema>, <subschema>, or <module> consists of a sequence of <word>s
and symbols optionally separated by <separator>s. A <word> shall not be immediately followed by
another <word> without an intervening <separator>.

3) The string "<characters.." within a <comment> shall not contain the substring

General Rules

None.

5. Common elements 29

AMERICAN NATIONAL STANDARD X3.133-1986

6. Schema definition language

6.1 <schema>

Function

Define the logical structure of a database.

Format

<schema> :: =
< schema name clause >
[{<record type> | <set type>}...]

Syntax Rules

None.

General Rules

None.

6. Schema definition language 31

AMERICAN NATIONAL STANDARD X3.133-1986

6.2 < schema name clause>

Function

Name a <schema>.

Format

<schema name clause> :: =
SCHEMA <schema name>

<schema name> ::= <identifier>

Syntax Rules

1) The <schema name> shall be different from the <schema name> of any other <schema> in the same
environment. The concept of environment is implementor-defined.

General Rules

1) A <schema name clause> defines the <identifier> to be a <schema name> that designates the containing
<schema>.

3 2 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6.3 < record type>

Function

Define a < record type>.

Format

<record type> :: =
< record name clause >
[{ < record uniqueness clause >

| < component type>
| <record check clause>}...]

Syntax Rules

None.

General Rules

None.

6. Schema definition language 33

AMERICAN NATIONAL STANDARD X3.133-1986

6.4 <record name clause>

Function

Name a < record type>.

Format

<record name clause> :: =
RECORD <record name>

<record name> ::= <identifier>

Syntax Rules

1) The <record name> shall be different from the Crecord name> of any other <record name clause> in
the containing < schema >.

General Rules

1) A Crecord name clause> defines the <identifier> to be a Crecord name> that designates the containing
Crecord type>.

34 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6.5 <record uniqueness clause>

Function

Specify a uniqueness constraint for occurrences of a <record type>.

Format

<record uniqueness clause> :: =
UNIQUE <component identifier>...

Syntax Rules

1) If the <component name> of a <component identifier> designates an array, then that <component iden¬
tified shall contain <subscripts>.

2) A given <component identified shall be contained at most once in a single <record uniqueness clause>.

3) The contextual <record type> of each <component identified in a <record uniqueness clause> is the
containing < record type>.

General Rules

1) When the <component identifieds of a <record uniqueness clause> are referenced for a record occur¬
rence, the contextual <database key> for those <component identifier>s is the <database key> of that
record occurrence.

2) A < record uniqueness clause > is violated if the database contains two occurrences of the containing
Crecord type> in which the values of each of the components designated by the <component identifieds
in the <record uniqueness clause> in the first record occurrence are equal to the values of the corre¬
sponding components in the second record occurrence.

6. Schema definition language 35

AMERICAN NATIONAL STANDARD X3.133-1986

6.6 < component type>

Function

Define a < component type>.

Format

< component type > :: =
< component name clause >
<data type>
[< occurs clause >]
[< default clause >]

Syntax Rules

None.

General Rules

None.

36 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6.7 < component name clause >

Function

Name a <component type>.

Format

<component name clause> ::= ITEM <component name>

Ccomponent name> ::= <identifier>

Syntax Rules

1) The Ccomponent name> shall be different from the Ccomponent name> of any other Ccomponent name
clause > in the containing C record type>.

General Rules

1) A Ccomponent name clause> defines the Cidentifier> to be a Ccomponent name> that designates the
containing Ccomponent type>.

6. Schema definition language 37

AMERICAN NATIONAL STANDARD X3.133-1986

6.8 <default clause>

Function

Specify a default value for a <component type>.

Format

<default clause> :: =
DEFAULT < literal >

Syntax Rules

1) The subject <data type> of a <default clause> is the <data type> of the containing <component type>.

2) Case:

a) If the subject <data type> defines character string values, then the <literal> shall be a <character
string literal >. The length of the < character string literal > shall not be greater than the value of the
< length > of the subject <data type>.

b) If the subject <data type> defines exact numeric values, then the <literal> shall be an <exact
numeric literal >. The number of significant digits to the right of the decimal point shall not be greater
than the <scale> of the subject <data type>. The number of significant digits to the left of the
decimal point shall not be greater than P-S, where P and S are respectively the <precision> and
< scale > of the subject <data type>.

c) If the subject <data type> defines approximate numeric values, then the <literal> shall be an
< approximate numeric literal > or an < exact numeric literal>. The number of binary digits required
to represent the significant digits shall not be greater than the <precision> of the subject <data
type>.

General Rules

1) When an occurrence of the containing <record type> is stored by a <store statement>, the value of each
data item contained in the occurrence of the containing <component type> is as follows:

Case:

a) If the <literal> is an <exact numeric literal>, then the value is the exact numeric value of the
< literal >.

b) If the <literal> is an Approximate numeric literal>, then the value is the approximate numeric value
of the < literal >.

c) If the <literal> is a <character string literal> and the length of the <literal> is equal to the length of
the subject <data type>, then the value is the <literal>.

d) If the <literal> is a <character string literal> and the length of the <literal> is less than the length of
the subject <data type>, then the value is the < character string literal>, extended on the right to the
length of the subject component with space characters.

38 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6.9 <record check clause>

Function

Specify a validity condition for occurrences of a <record type>.

Format

< record check clause > :: =
CHECK < condition >

Syntax Rules

1) The contextual <record type> of each <component identifier> in the <condition> is the containing
Crecord type>.

General Rules

1) When the <condition> of a <record check clause> is evaluated for a record occurrence, the contextual
<database key> for any <component identifier> in the <condition> is the <database key> of that
record occurrence.

2) A Crecord check clause> is violated if the database contains a record occurrence of the containing
Crecord type> for which the Ccondition> is false.

6. Schema definition language 39

AMERICAN NATIONAL STANDARD X3.133-1986

6.10 <settype>

Function

Define a <set type>.

Format

<set type> :: =
<set name clause >
< owner clause >
< order clause >
<member clause >...

Syntax Rules

None.

General Rules

None.

40 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6.11 < set name clause >

Function

Name a <set type>.

Format

<set name clause> :: =
SET <set name>

<set name> ::= <identifier>

Syntax Rules

1) The <set name> shall be different from the <set name> of any other <set name clause> in the con¬
taining < schema >.

General Rules

1) A <set name clause> defines the <identifier> to be a <set name> that designates the containing <set
type>.

6. Schema definition language 41

AMERICAN NATIONAL STANDARD X3.133-1986

6.12 <owner clause>

Function

Specify the owner of a <set type>.

Format

<owner clause> :: =
OWNER {<recordname> | SYSTEM}

Syntax Rules

1) If an < owner clause > contains a < record name>, then that < record name> shall designate a < record
type> in the containing < schema >.

General Rules

1) Case:

a) If the <owner clause> specifies a <record name>, then that <record name> is the owner <record
name> of the containing <set type>, and the < record type> designated by that < record name> is
the owner <record type> of that <set type>.

b) If the <owner clause> specifies SYSTEM, then the containing <set type> is a singular <set type>
with SYSTEM as its owner < record type>.

42 Database Language NDL

AMERICAN NATIONAL STANDARD X3.13 3-1986

6.13 <order clause>

Function

Specify the ordering of member records in a set.

Format

<order clause> :: =
ORDER < order option >

<order option> :: =
FIRST

| LAST
| NEXT
| PRIOR
| DEFAULT
1 < sorted order>

<sorted order> :: =
SORTED {< record type sequence > | < order duplicates >}

Crecord type sequence> —
RECORD TYPE <record name>...

<order duplicates> :: =
DUPLICATES

{ PROHIBITED
| FIRST
| LAST
| DEFAULT }

Syntax Rules

1) If <sorted order> is specified, then a <key clause> shall be included in each <member clause> of the
containing <set type>. Otherwise, no <member clause> of the containing <set type> shall include a
<key clause >.

2) If <record type sequence> is specified, then each <record name> shall designate a member Crecord
type> of the containing <set type>, and every Crecord name> that designates a member Crecord type>
of the containing Cset type> shall occur exactly once in the Crecord type sequence>.

3) If Crecord type sequence> is included, then the Ckey clause> of each Cmember clause> in the con¬
taining Cset type> shall include a Crecord type key item>; otherwise, no such Ckey clause> shall include
a Crecord type key item>.

4) If Corder duplicates> is specified, then no Ckey clause> of any Cmember clause> in the containing Cset
type> shall include a Ckey duplicates>; otherwise, each Ckey clause> of every Cmember clause> in the
containing Cset type> shall include a Ckey duplicates>.

6. Schema definition language 43

AMERICAN NATIONAL STANDARD X3.133-1986

NOTE: Together with rules governing the <key clause>, this ensures that set members with duplicate key
items are controlled either by a single < order duplicates > in the < order clause > or by a <key duplicates >
in each <member clause>.

General Rules

1) If the < order option > is LAST or FIRST, then the database control system shall maintain member records
of an occurrence of the containing <set type> respectively in chronological or reverse chronological order.
This chronology is based on the most recent time at which an < insert operation > inserts a member record
into the set occurrence. An <insert operation> resulting from a <modify statement> or <reconnect
statement> that (re)inserts a member record into the same set occurrence establishes a new point in the
chronology for LAST and FIRST.

2) If the <order option> is NEXT or PRIOR, then the database control system maintains the member
records of an occurrence of the containing <set type> in an order determined by the < position > con¬
tained in the object <set cursor > of the < insert operation >.

3) If the <order option> is DEFAULT, then the database control system shall maintain the member records
of an occurrence of the containing <set type> in an implementor-defined order. This order is subject to
the reproducibility requirement within a transaction, but it may change between transactions.

4) If < sorted order > is specified, then the database control system shall maintain the member records of an
occurrence of the containing <set type> in an order based on the sort control key of each member record,
where the sort control key of a member record consists of a sequence of key items as specified in the <key
clause > of the corresponding < member clause > of the containing <set type>.

5) If <record type sequence> is specified, then the member <record type>s of the containing <set type>
shall be used as key items in the sort control keys defined in the <key clause>s of the <member clause>s
of the containing <set type>. The sequence of <record name>s in the <record type sequence> specifies
the ascending order of <record type>s; the descending order of <record type>s is given by the reverse of
that sequence.

6) An < order duplicates > specifies the action taken by the database control system when an < insert opera¬
tion > would cause an occurrence of the containing <set type> to contain two or more member records
that have equal values for all of the key items:

Case:

a) If PROHIBITED is specified, then the <order clause> is violated.

b) If LAST or FIRST is specified, then member records that have equal values for the key items shall be
ordered respectively in chronological or reverse chronological sequence. This chronology is based on
the most recent time that a <store statement>, <modify statement>, <conneet statement>, or
<reconnect statement> inserted a given member record into the set occurrence, or a <modify state¬
ment specified values for one or more key items in the given member record. A <modify state¬
ment > that specifies values for one or more key items in a member record that are equal to the current
values for those key items in that record establishes a new point in the chronology for <order dupli¬
cates > FIRST and LAST.

c) If DEFAULT is specified, then member records that have equal values for all of the key items shall be
ordered in an implementor-defined sequence.

NOTE: If <order duplicates> is not specified, then the action to be taken is controlled by the <key dupli¬
cates > of each < member clause > of the containing <set type>.

44 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6.14 <member clause>

Function

Specify a member <record type> of a <set type>.

Format

<member clause> :: =
< member record name clause >
Cinsertion clause>
< retention clause >
[<member uniqueness clause>...]
[<key clause >]
[<member check clause>...]

Syntax Rules

None.

General Rules

None.

6. Schema definition language 45

AMERICAN NATIONAL STANDARD X3.133-1986

6.15 < member record name clause >

Function

Specify the <record name> of a member <record type> of a <set type>.

Format

<member record name clause> =
MEMBER < record name>

Syntax Rules

1) The < record name> shall designate a < record type> in the containing < schema >.

2) The < record name> shall not designate any other member < record type> in the containing <set type>.

General Rules

1) A Cmember record name clause> defines the <record type> designated by the <record name> to be a
member <record type> of the containing <set type> and to be the member <record type> of the con¬
taining < member clause >.

46 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6.16 <insertion clause>

Function

Define the insertion characteristics of a member < record type> of a <set type>.

Format

<insertion clause> :: =
INSERTION <insertion mode>

<insertion mode> :: =
AUTOMATIC

| STRUCTURAL <structural specification>
| MANUAL

<structural specification> :: =
<component identifier match>
[{AND <component identifier match>}...]

<component identifier match> :: =
<member component identifier> = <owner component identifier>

| <owner component identifier> = <member component identifier>

<member component identifier> ::= <component identifier>

<owner component identifier> ::= <component identifier>

Syntax Rules

1) If the <insertion clause> specifies STRUCTURAL, then:

a) If the <component name> of a <component identifier> designates an array, then that <component
identifier> shall contain <subscripts>.

b) The containing <set type> shall not be a singular <set type>. The object <record type> is the
owner <record type> of the containing <set type>. The subject Crecord type> is the member
Crecord type> of the containing <member clause>.

c) If the subject <record type> and the object <record type> are the same, then every <component
identifier> in the <component identifier match> shall contain a <qualifier> that specifies either
OWNER or MEMBER.

d) Any <component identifier> in a <component identifier match> that contains a <component name>
that is defined in both the subject Crecord type> and the object Crecord type> shall contain a Cqual-
ifier>.

e) If a Ccomponent identifier> in a Ccomponent identifier match> contains a Cqualifier> that specifies
a Crecord name>, then that Crecord name> shall be the Crecord name> of either the subject
Crecord type> or the object Crecord type>; the contextual Crecord type> of the Ccomponent iden¬
tified is that Crecord type>.

6. Schema definition language 47

AMERICAN NATIONAL STANDARD X3.133-1986

f) If a <component identifier> in a <component identifier match> contains a <qualifier> that specifies
OWNER (MEMBER), then the contextual <record type> of the <component identifier> is the
object (subject) <record type>.

g) If a <component identifier> in a <component identifier match> does not contain a <qualifier>, then
the <component name> of that <component identifier> shall be defined in either the subject <record
type> or the object <record type>; the contextual <record type> of the Ccomponent identifier> is
that < record type>.

h) The data items referenced by <owner component identifier>s shall be exactly the <component
identifiers listed in a <record uniqueness clause> in the object <record type>.

i) The data items referenced by <member component identifiers shall be data items of the subject
< record type>. The <data type> of the < component type> referenced by the < member component
identifier of a <component identifier match> shall be identical to the <data type> of the <compo-
nent type> referenced by the <owner component identifier of that <component identifier match>.

General Rules

1) If STRUCTURAL is specified, then let Ml, M2,... be the <component identifiers specified as <member
component identifiers. The contextual <database key> of those <component identifier>s is the data¬
base key> of the new member record occurrence. Let Ol, 02,... be the <component identifiers speci¬
fied as <owner component identifiers. The contextual database key> of those <component
identifier >s is the < database key> of the owner record occurrence of the set occurrence specified by the
<insert operations An implicit <member check clause> of the following form is enforced:

CHECK Ml = Ol AND M2 = 02 ...

48 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6.17 < retention clause >

Function

Define the retention characteristics of a member < record type> of a <set type>.

Format

<retention clause> =
RETENTION {FIXED | MANDATORY | OPTIONAL}

Syntax Rules

None.

General Rules

None.

6. Schema definition language 49

AMERICAN NATIONAL STANDARD X3.133-1986

6.18 < member uniqueness clause >

Function

Specify a uniqueness constraint for member records of each occurrence of a <set type>.

Format

<member uniqueness clause> :: =
UNIQUE <component identified...

Syntax Rules

1) If the <component name> of a <component identifier> designates an array, then that <component iden¬
tified shall contain <subscripts>.

2) A given <component identified shall be contained at most once in a single Cmember uniqueness clause>.

3) The subject < record type> of a < member uniqueness clause > is the member < record type> of the con¬
taining < member clause >.

The contextual <record type> of each <component identified in a <member uniqueness clause> is the
subject <record type>.

General Rules

1) When the <component identifieds of a <member uniqueness clause> are referenced for a record occur¬
rence, the contextual < database key> for those < component identifier >s is the < database key> of that
record occurrence.

2) A <member uniqueness clause> is violated if the database contains an occurrence of the containing <set
type> that contains two member occurrences of the subject < record type> in which the values of each of
the components designated by the <component identifieds in the <member uniqueness clause> in the
first record occurrence are equal to the values of the corresponding components in the second record
occurrence.

50 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6.19 <key clause>

Function

Define the sort control key for a member <record type> of a sorted <set type>.

Format

< key clause > :: =
KEY <key item>... [<key duplicates>]

<key item> :: =
{ASCENDING | DESCENDING}
{<component identifier> | <record type key item>}...

Crecord type key item> ::= RECORD TYPE

< key duplicates > :: =
DUPLICATES

{ PROHIBITED
| FIRST
| LAST
| DEFAULT }

Syntax Rules

1) If the <component name> of a <component identifier> designates an array, then that <component iden¬
tified shall contain < subscripts >.

2) A given <component identified shall be contained at most once in a single <key clause>.

3) The subject <record type> of a <key clause> is the member <record type> of the containing <member
clause >.

The contextual <record type> of each <component identifier> in a <key clause> is the subject Crecord
type> of the <key clause >.

4) A <key clause> shall be specified if the containing <set type> specifies Csorted order>; otherwise, a
<key clause> shall not be specified.

5) A <key duplicates> shall be specified if the containing <set type> does not specify a Csorted order>
with Corder duphcates>; otherwise, a Ckey duphcates> shall not be specified.

NOTE: Together with rules governing the Corder clause>, this ensures that set members with duplicate
key items are controlled either by a single Corder duplicates> in the Corder clause> or by a Ckey dupli-
cates> in each Cmember clause>.

6) A single Ckey clause> shall contain exactly one Crecord type key item> if the containing Cset type>
specifies a Csorted order> with Crecord type sequence>; otherwise, a Ckey clause> shall not contain a
Crecord type key item>.

6. Schema definition language 51

AMERICAN NATIONAL STANDARD X3.133-1986

7) The Ccomponent identifiers and Crecord type key item> specified in a <key clause> are the key items

that constitute the sort control key for the subject <record type> as a member <record type> of the con¬
taining <set type>. If a key item is immediately preceded by ASCENDING or DESCENDING, then the
direction of the key item is defined to be respectively ascending or descending. If a key item K is imme¬
diately preceded by another key item K2, then the direction of key item K is defined to be the direction of
key item K2.

8) If no <record type key item> is specified in a <key clause>, then all key items in that <key clause> are
defined to be common key items; otherwise, the common key items of a <key clause> are defined to be
the < record type key item> together with those key items whose ordinal position in the <key clause > is
less than the ordinal position of the Crecord type key item>. Each Cmember clause> of a <set type>
shall contain the same number of common key items. All common key items that are at the same ordinal
position in the <key clause> of Cmember clause>s in a Cset type> shall have the same direction and
shall either be Crecord type key item> or shall designate Ccomponent type>s that have identical Cdata
type>s.

General Rules

1) When the Ccomponent identifiers of a Ckey clause> are referenced for a record occurrence, the contex¬
tual cdatabase key> for those Ccomponent identifiers is the Cdatabase key> of that record occurrence.

2) The key items are stated in a Ckey clause> in order of decreasing significance.

3) Depending on whether the direction of a key item is ascending or descending, values of that key item are
ordered respectively from the lowest to the highest or from the highest to the lowest.

4) Case:

a) If a key item is a Ccomponent identifier, then the ordering of that key item is defined by either the
less than or the greater than relation condition, depending on whether the direction of the key item is
ascending or descending.

b) If a key item is Crecord type key item>, then the ordering of that key item is defined by the sequence
of Crecord name>s specified in the Crecord type sequence> of the Csorted order> of the containing
Cset type>.

5) The Ckey duplicates> specifies the action to be taken when the execution of a Cstore statement>,
Cmodify statement>, Cconnect statement>, or Creconnect statement> would cause an occurrence of the
containing Cset type> to contain two or more member records that have equal values for all of the key
items:

Case:

a) If PROHIBITED is specified, then the Ckey clause> is violated.

b) If LAST or FIRST is specified, then member records that have equal values for the key items shall be
ordered respectively in chronological or reverse chronological sequence. This chronology is based on
the most recent time at which a Cstore statement>, Cmodify statements Cconnect statements or
Creconnect statement> inserted a given member record into the set occurrence or a Cmodify state¬
ment specified values for one or more key items in the given member record. A Cmodify state¬
ment > that specifies values for one or more key items in a member record that are equal to the current
values for those key items in that record establishes a new point in the chronology.

c) If DEFAULT is specified, then member records that have equal values for all of the key items shall be
ordered in an implementor-defined sequence.

52 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

If <key duplicates > is not specified, then the action to be taken is controlled by the < order duplicates > of
the containing <set type>.

6. Schema definition language 53

AMERICAN NATIONAL STANDARD X3.133-1986

6.20 <member check clause>

Function

Specify a validity condition on member records of each occurrence of a <set type>.

Format

< member check clause > :: =
CHECK <condition>

Syntax Rules

1) The subject < record type> of a < member check clause > is the member < record type> of the containing
< member clause >.

If the containing <set type> of a < member check clause > is a nonsingular <set type>, then the object
< record type> of the < member check clause > is the owner < record type> of the containing <set type>.
If the containing <set type> of a <member check clause> is a singular <set type>, then the <member
check clause > has no object < record type>.

2) If the subject <record type> and the object <record type> are the same, then every <component identi¬
fied in the <condition> shall contain a <qualifier> that specifies either OWNER or MEMBER.

3) Any <component identified in the <condition> that contains a <component name> that is defined in
both the subject <record type> and the object <record type> (if any) of the <member check clause>
shall contain a <qualifier>.

4) Case:

a) If a <component identifier> in the <condition> contains a <qualifier> that specifies a <record
name>, then that < record name> shall be the < record name> of either the subject < record type> or
the object <record type> (if any); the contextual <record type> of the <component identified is
that < record type>.

b) If a Ccomponent identifier> in the <condition> contains a <qualifier> that specifies OWNER, then
the Ccomponent identified shall have an object Crecord type>, and the contextual Crecord type> of
the Ccomponent identified is that Crecord type>.

c) If a Ccomponent identified in the Ccondition> contains a Cqualified that specifies MEMBER, then
the contextual Crecord type> of the Ccomponent identified is the subject Crecord type>.

d) If a Ccomponent identified in the Ccondition> does not contain a Cqualified, then the Ccompo¬
nent name> of that Ccomponent identified shall be defined in either the subject Crecord type> or
the object Crecord type> (if any); the contextual Crecord type> of the Ccomponent identified is
that Crecord type>.

54 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

General Rules

1) When the <condition> of a <member check clause> is evaluated for a set occurrence, the contextual
<database key> for the <component identifier>s in that <condition> whose contextual <record type> is
the owner < record type> of the set is the < database key> of the owner record occurrence of that set
occurrence, and the contextual <database key> for the < component identifiers in that <condition>
whose contextual < record type> is the member < record type> of the set is the < database key> of the
member record occurrence of that set occurrence.

2) A < member check clause > is violated if the database contains an occurrence of the containing <set type>
in which the < condition > is false when evaluated in respect to the owner record occurrence (if any) and
any occurrence of the subject <record type> that is a member of that set occurrence.

6. Schema definition language 55

AMERICAN NATIONAL STANDARD X3.133-1986

6.21 < component identifier>

Function

Reference a component or data item.

Format

< component identifier> :: =
<dot style component identifier>

| <of style component identifier>

<dot style component identifier> :: =
[<qualifier>.] <component name> [<subscripts>]

<of style component identifier> :: =
<component name> [<subscripts>] [OF <qualifier>]

<qualifier> :: =
< record name>

| OWNER
| MEMBER

Syntax Rules

1) The contextual <record type> of a <component identifier> is specified in the Syntax Rules of the pro¬
duction symbol that immediately contains the < subscripts >.

2) If the <component identifier> contains a <qualifier>, then:

a) If the < qualifier > contains a < record name>, then that < record name> shall designate the contextual
< record type>.

b) If the <qualifier> specifies OWNER, then the <component identifier> shall be contained in a <set
type>, and the owner < record type> of that <set type> shall be the contextual < record type>.

c) If the <qualifier> specifies MEMBER, then the Ccomponent identifier> shall be contained in a
< member clause >, and the member < record name> of that < member clause > shall designate the
contextual < record type>.

3) The < component name> shall designate a < component type> of the contextual < record type>. That
< component type> is the subject < component type>.

4) If a <component identifier> contains <subscripts>, then:

a) The subject Ccomponent type> shall define an array.

b) The contextual < occurs clause > of the < subscripts > is the < occurs clause > contained in the subject
Ccomponent type>.

c) Each Coperand> in the Csubscripts> shall be a Cliteral>.

56 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

General Rules

1) The contextual <database key> of a <component identifier> is specified in the General Rules of the pro¬
duction symbol that immediately contains the <component identifier^

2) A <component identifier> references a data item or array in the record referenced by the contextual
<database key>, as follows:

Case:

a) If the subject <component type> of a <component identifier> defines a data item, then the Compo¬
nent identifier> references that data item.

b) If the subject Component type> of a Component identifier> defines an array and the Component
identifier> does not contain <subscripts>, then the Component identifier> references that array.

c) If the subject Component type> of a Component identifier> defines an array and the Component
identifier> contains <subscripts>, then the <component identifier> references the i-th data item in
the array, where i is the value of the < subscripts >.

6. Schema definition language 57

AMERICAN NATIONAL STANDARD X3.133-1986

7. Subschema definition language

7.1 < subschema >

Function

Define a user view of the database.

Format

<subschema> :: =
< subschema name clause >
[{<record view> | <set view>}...]

Syntax Rules

None.

General Rules

None.

7. Subschema definition language 59

AMERICAN NATIONAL STANDARD X3.133-1986

7.2 < subschema name clause >

Function

Name a < subschema >.

Format

<subschema name clause> :: =
<dot style subschema name clause >

| <of style subschema name clause >

<dot style subschema name clause> :: =
SUBSCHEMA <schema name>.<subschema name>

<of style subschema name clause > :: =
SUBSCHEMA <subschema name> OF <schema name>

<subschema name> ::= <identifier>

Syntax Rules

1) The < schema name> shall designate a < schema > in the same environment as the < subschema >. That
<schema> is the subject <schema> of the <subschema>. The concept of environment is implementor-
defined.

2) The <subschema name> of a <subschema> shall be different from the <subschema name> of any other
< subschema > that has the same subject < schema >.

General Rules

1) A <subschema name clause> defines the <identifier> to be a <subschema name> that designates the
containing <subschema> within the subject <schema>.

60 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

7.3 < record view>

Function

Specify that a < record type> is to be included in a < subschema >, and declare an < identifier > that shall des¬
ignate it within the < subschema >.

Format

<record view> :: =
RECORD [Crecord renamed>] <record view name>
[< component list>]

<record renamed> :: =
< record name> RENAMED

<record view name> =
<identifier>

<component list> :: =
<component view>... | ALL

Syntax Rules

1) Case:

a) If a <record renamed> is specified, then the <record name> shall designate a Crecord type> in the
subject <schema>. That Crecord type> is the subject Crecord type>.

b) If a Crecord renamed> is omitted, then the Crecord view name> shall be a Crecord name> that des¬
ignates a Crecord type> in the subject Cschema>. That Crecord type> is the subject Crecord
type>.

2) The Crecord view name> shall be different from the Crecord view name> of every other Crecord view>
in the containing Csubschema>. The subject Crecord type> shall be different from the subject Crecord
type> of every other Crecord view> in the containing Csubschema>.

3) If a Ccomponent list> of ALL is specified, then it is equivalent to a Ccomponent list> that contains a
Ccomponent view> for every Ccomponent type> in the subject Crecord type>, where the Ccomponent
view> corresponding to a Ccomponent type> contains a Ccomponent view name> that is the Ccompo¬
nent name> of the Ccomponent type>, and contains no Ccomponent renamed>.

General Rules

1) A Crecord view> defines the Cidentifier> to be a Crecord view name> that designates the subject
Crecord type>.

7. Subschema definition language 61

AMERICAN NATIONAL STANDARD X3.133-1986

7.4 <component view>

Function

Specify that a <component type> is to be included within a <subschema>, and declare an <identifier> that
shall designate it within the < subschema >.

Format

<component view> =
ITEM [Ccomponent renamed>] <component view name>

<component renamed> :: =
< component name> RENAMED

< component view name> :: =
< identifier >

Syntax Rules

1) The subject <record type> is the <record type> designated by the <record view name> of the containing
<record view>.

2) Case:

a) If a <component renamed> is specified, then the <component name> shall designate a <component
type> contained in the subject < record type>. That < component type> is the subject < component
type>.

b) If a <component renamed> is omitted, then the <component view name> shall be a <component
name> that designates a < component type> contained in the subject < record type>. That < compo¬
nent type> is the subject < component type>.

3) The < component view name> shall be different from the < component view name> of every other < com¬
ponent view> in the containing Crecord view>. The subject <component type> shall be different from
the subject <component type> of every other <component view> in the containing Crecord view>.

General Rules

1) A Ccomponent view> defines the <identifier> to be a <component view name> that designates the
subject Ccomponent type>.

62 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

7.5 <setview>

Function

Specify that a <set type> is to be included in a <subschema>, and declare an <identifier> that shall desig¬
nate it within the < subschema >.

Format

<set view> =
SET [<set renamed >] <set view name>

<set renamed> =
<set name> RENAMED

<set view name> =
<identifier>

Syntax Rules

1) Case:

a) If a <set renamed> is specified, then the <set name> shall designate a <set type> in the subject
< schema >. That <set type> is the subject <set type>.

b) Ifa <set renamed> is omitted, then the <set view name> shall be a <set name> that designates a
<set type> in the subject < schema >. That <set type> is the subject <set type>.

2) The <set view name> shall be different from the <set view name> of every other <set view> in the
containing <subschema>. The subject <set type> shall be different from the subject <set type> of every
other <set view> in the containing < subschema >.

3) The owner < record type> and at least one member <record type> of the subject <set type> shall be
designated by a < record view> of the containing < subschema >.

General Rules

1) A <set view> defines the <identifier> to be a <set view name> that designates the subject <set type>.

7. Subschema definition language 63

AMERICAN NATIONAL STANDARD X3.133-1986

8. Module language

8.1 <module>

Function

Define a module.

Format

<module> :: =
< module name clause >
< language clause >
< subschema specification >
[< temporary set specifications >]
<procedure>...

<language clause> :: =
LANGUAGE {COBOL | FORTRAN | PASCAL | PLI}

< subschema specification > :: =
<dot style subschema specification>

| <of style subschema specification >

<dot style subschema specification> :: =
SUBSCHEMA <schema name>.<subschema name>

<of style subschema specification> :: =
SUBSCHEMA <subschema name> OF <schema name>

Syntax Rules

1) The < schema name> shall designate a < schema > in the same environment as the < module >. That
< schema > is the subject < schema > of the < module >. The concept of environment is implementor-
defined.

2) The <subschema name> shall designate a <subschema> in the same environment as the <module>. The
subject <schema> of that <subschema> shall be the subject <schema> of the <module>. That
<subschema> is the subject <subschema> of the <module>.

General Rules

1) A <module> shall be associated with an application program during its execution. An application program
shall be associated with at most one <module>.

2) If the <language clause> of a <module> specifies COBOL (respectively FORTRAN, PASCAL, PLI) and
if the agent that performs a call of a <procedure> in that <module> is not a standard COBOL program
(respectively standard FORTRAN, Pascal, PL/I program), then the results are undefined.

8. Module language 65

AMERICAN NATIONAL STANDARD X3.133-1986

3) Before the first time that a programming language agent performs a call of a <procedure> in a <module>,
construct an initial < session state >, and associate that < session state > with every call by that program¬
ming language agent of any < procedure > in the < module >.

4) After the last time that a programming language agent performs a call of a <procedure> in a <module>,
perform a < rollback statement > specifying FINISH, and destroy the < session state > associated with the
< module >.

66 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

8.2 <module name clause>

Function

Name a <module>.

Format

<module name clause> :: =
MODULE [< module name>]

<module name> ::= <identifier>

Syntax Rules

1) The Cmodule name> shall be different from the <module name> of any other <module> in the same
environment. The concept of environment is implementor-defined.

General Rules

1) A <module name clause> defines the optional <identifier> to be a <module name> that designates the
containing Cmodule> within the environment.

8. Module language 67

AMERICAN NATIONAL STANDARD X3.133-1986

8.3 <temporary set specifications>

Function

Specify temporary sets.

Format

< temporary set specifications > :: =
<temporary set specification^..

<temporary set specification> :: =
SET <set view name>

Syntax Rules

1) The <set view name> of each <temporary set specification> shall be different from the <set view name>
of any other <temporary set specification> in the containing <module>, and shall be different from the
<set view name> of any <set view> in the subject < subschema >.

2) A <temporary set specification> with a <set view name> S defines a temporary <set type> with an
implicit <set name clause>, <owner clause>, and <order clause> as follows:

SET S OWNER SYSTEM ORDER LAST

and, for each <record view name> R specified in the subject <subschema>, a <member clause> with a
<member record name clause>, an <insertion clause>, and a <retention clause> as follows:

MEMBER R INSERTION MANUAL RETENTION OPTIONAL

General Rules

1) The <set view name> of a < temporary set specification > designates the temporary <set type> defined
by the < temporary set specification >.

68 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

8.4 <procedure>

Function

Define a procedure.

Format

<procedure> :: =
PROCEDURE <procedure name> [<parameter declaration^*...]

[<NDL statement>...]

<parameter declaration> :: =
<parameter name> <data type> [<occurs clause>]

| RECORD
| STATUS
| TEST

<procedure name> ::= <identifier>

<parameter name> ::= <identifier>

<NDL statement> :: =
< commit statement >

| < connect statement >
| < disconnect statement >
| < erase statement >
| <find statement>
| <get statement>
| < modify statement >
| < nullify cursor statement >
| <ready statement>
| <reconnect statement>
| < rollback statement >
| < store statement >
| <test statement >

<test statement> :: =
<test database key equal statement >

| <test database key null statement>
| <test set empty statement >
| <test set membership statement>

8. Module language 69

AMERICAN NATIONAL STANDARD X3.133-1986

Syntax Rules

1) The < procedure name> shall be different from the < procedure name> of any other < procedure > in the
containing < module >.

2) The <parameter name> of each <parameter declaration> in a <procedure> shall be different from the
<parameter name> of any other <parameter declaration> in that <procedure>.

3) Any <parameter name> contained in an <NDL statement> in a <procedure> shall be specified in a
< parameter declaration > in that < procedure >.

4) If a <component view name> in a <component view identifier> in an <NDL statement> is identical to a
<parameter name> specified in the containing <procedure>, then the <component view identifier> shall
contain a < record view name>.

5) The <record type> designated by each <record view name> in each <NDL statement> shall be defined
in the subject <subschema>.

6) The <set type> designated by each <set view name> in each <NDL statement> shall be defined in the
subject <subschema> or in the <temporary set specifications> of the containing <module>.

7) A <procedure> shall include at most one RECORD <parameter declaration>, at most one STATUS
<parameter declaration>, and at most one TEST <parameter declarations

8) A <procedure> shall contain at most one <test statements

9) If a < procedure > contains a <test statement >, then the <procedure> shall contain a TEST < parameter
declarations If a <procedure> does not contain a <test statement>, then it shall not contain a TEST
< parameter declaration >.

10) A <procedure> shall contain at most one <NDL statement> that is a <commit statement> or a
<rollback statements If a <procedure> contains such an <NDL statements then it shall be the last
<NDL statement> in the <procedure>.

11) A valid call of a <procedure> shall supply n parameters, where n is the number of <parameter
declaration >s in that < procedure >.

12) Case:

a) If the i-th <parameter declaration> contains an <occurs clauses then the i-th parameter shall be an
array with the same number of data item occurrences.

b) If the i-th <parameter declaration> is the RECORD <parameter declarations then the type of the
i-th parameter shall define a single occurrence of a character string of length 18.

c) If the i-th <parameter declaration> is the STATUS <parameter declarations then the type of the i-th
parameter shall define a single occurrence of a character string of length 5.

d) If the i-th <parameter declaration> is the TEST <parameter declarations then the type of the i-th
parameter shall define a single occurrence of a character string of length 1.

13) If the i-th <parameter declaration> of a <procedure> is respectively the RECORD, STATUS, or TEST
<parameter declarations then the i-th parameter that is supplied in a call of that <procedure> is referred
to as the RECORD parameter, the STATUS parameter, or the TEST parameter.

70 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

14) The subject <language clause> of a <procedure> is the Clanguage clause> of the containing <module>.

15) Case:

a) If the subject <language clause> specifies COBOL, then:

i) Any <data type> in a <parameter declaration> shall specify either CHARACTER or
NUMERIC.

ii) If the i-th <parameter declaration> specifies a <data type> that is CHARACTER L for some
<length> L, then the type of the i-th parameter shall be COBOL alphanumeric with a length of L.

iii) If the i-th <parameter declaration> specifies a <data type> that is NUMERIC P S for some
<precision> and <scale> P and S, then the type of the i-th parameter shall be COBOL usage
DISPLAY sign LEADING SEPARATE and the following PICTURE:

iv) Case:

1. If S>P, then a PICTURE with an "S" followed by a "V" followed by S-P "P"s followed by P
"9"s.

2. If S=P, then a PICTURE with an "S" followed by a "V" followed by P "9"s.

3. If P>S>0, then a PICTURE with an "S" followed by P-S "9"s followed by a "V" followed
by S "9"s.

4. If S=0, then a PICTURE with an "S" followed by P "9"s followed by a "V".

5. If S<0, then a PICTURE with an "S" followed by P "9"s followed by abs(S) "P"s.

b) If the subject <language clause> specifies FORTRAN, then:

i) Any <data type> in a < parameter declaration > shall specify either CHARACTER, INTEGER,
REAL, or DOUBLE PRECISION.

ii) If the i-th <parameter declaration> specifies a <data type> that is CHARACTER L for some
<length> L, then the type of the i-th parameter shall be FORTRAN CHARACTER with a length
of L.

iii) If the i-th <parameter declaration> specifies a <data type> that is INTEGER, REAL, or
DOUBLE PRECISION, then the type of the i-th parameter shall be respectively FORTRAN
INTEGER, REAL, or DOUBLE PRECISION.

c) If the subject Clanguage clause> specifies PASCAL, then:

i) Any <data type> in a Cparameter declaration> shall specify either CHARACTER, INTEGER,
or REAL.

ii) If the i-th Cparameter declaration> specifies a Cdata type> that is CHARACTER L for some
C length > L, then the type of the i-th parameter shall be Pascal string with a length of L.

iii) If the i-th Cparameter declaration> specifies a cdata type> that is INTEGER or REAL, then the
type of the i-th parameter shall be respectively Pascal INTEGER or REAL.

d) If the subject Clanguage clause> specifies PLI, then:

8. Module language 71

AMERICAN NATIONAL STANDARD X3.133-1986

i) Any <data type> in a <parameter declaration> shall specify either CHARACTER, FIXED, or
FLOAT.

ii) If the i-th <parameter declaration> specifies a <data type> that is CHARACTER L for some
< length > L, then the type of the i-th parameter shall be PL/I CHARACTER with a length of L.

iii) If the i-th <parameter declaration> specifies a <data type> that is FIXED P S for some <preci-
sion> and <scale> P and S, then the type of the i-th parameter shall be PL/I FIXED REAL
DECIMAL (P,S).

iv) If the i-th <parameter declaration> specifies a <data type> that is FLOAT P for some <preci-
sion> P, then the type of the i-th parameter shall be PL/I FLOAT REAL BINARY (P).

General Rules

1) A < procedure > defines a procedure that may be called by an implementor-defined agent.

2) When a <procedure> is called by a programming language agent:

a) If no transaction is active for that agent, then initiate a transaction and associate that transaction with
this call and with subsequent calls by that agent of any <procedure> in the containing <module>
until the agent terminates that transaction.

b) If the <procedure> contains a list of one or more <NDL statements, then perform each <NDL
statement in that list, from left to right, as specified in the General Rules of each <NDL statement.

3) The < parameter name> of a < parameter declaration > in a < procedure > designates that < parameter dec¬
laration > in the < procedure >.

4) If execution of any <NDL statement in the <procedure> cannot be completed because of a deadlock,
then raise exception procedure: deadlock.

5) Case:

a) If no exception is raised during the execution of any <NDL statement in the <procedure>, then:

Case:

i) If the <procedure> contains a STATUS <parameter declarations then set the value of the
STATUS parameter to the value specified for procedure: success in clause 12, “Status codes” on
page 117.

ii) If the <procedure> contains a RECORD <parameter declarations then:

Case:

1. If the <database key> of the <session cursor> is not null, then set the value of the RECORD
parameter to the < record view name> that designates the < record type> of the record refer¬
enced by that <database keys

2. If the <database key> of the <session cursor> is null, then set the value of the RECORD
parameter to all space characters.

b) If an exception is raised during the execution of any <NDL statement> in the <procedure>, then:

i) Cancel all changes made to the database by the execution of the <procedure>.

72 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

ii) Cancel all changes made to the <session state> by the execution of the <procedure>.

iii) If the <procedure> contains a STATUS <parameter declaration>, then set the value of the
STATUS parameter to the value specified for the exception in clause 12, “Status codes” on
page 117.

iv) If the <procedure> contains a TEST <parameter declaration^*, then set the value of the TEST
parameter to "0".

8. Module language 73

AMERICAN NATIONAL STANDARD X3.133-1986

9. Data manipulation language

9.1 < commit statement >

Function

Terminate the current transaction with commit.

Format

<commit statement> =
COMMIT [FINISH]

Syntax Rules

None.

General Rules

1) Terminate the current transaction.

2) Make all database changes made by the current transaction accessible to concurrent sessions.

3) For each <temporary set> in the <temporary sets>, remove each member record from membership in
that set.

4) Set the <cursors> to the initial <cursors> for the subject <subschema>.

5) If FINISH is specified, then set the <ready list> to empty.

9. Data manipulation language 75

AMERICAN NATIONAL STANDARD X3.133-1986

9.2 <connect statement>

Function

Establish the membership of a record occurrence in a set.

Format

<connect statement> :: =
CONNECT <database key identifier> TO <set view name>

Syntax Rules

1) An eligible < record type> is a Crecord type> that is defined as a member < record type> of the <set
type> designated by the <set view name>, and that has an <insertion clause> specifying MANUAL or a
<retention clause> specifying OPTIONAL in that <set type>.

2) If the <database key identifier> specifies a Crecord view name>, then that Crecord view name> shall
designate an eligible Crecord type>.

General Rules

1) The object cdatabase key> is the Cdatabase key> referenced by the Cdatabase key identifier>. If that
Cdatabase key> is null, then raise exception connect: database key is null.

The object Crecord type> is the Crecord type> referenced by the object Cdatabase key>.

2) If the Crecord view name> of the object Crecord type> does not designate a Cready specification> in the
Cready list> having an Caccess intent> of UPDATE, then raise exception connect: record not ready for

update.

3) If the object Crecord type> is not an eligible Crecord type>, then raise exception connect: ineligible record

type.

4) Perform the Cinsert operation> with the object cdatabase key> as the Cinsert record>, the Cset view
name> of the Cconnect statement> as the Cinsert set type>, the Cdatabase key> of the Cowner> of the
Cset cursor> designated by the Cset view name> of the Cconnect statement> as the Cinsert set owner>,
and update as the Cinsert cursor disposition>.

7 6 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

9 9.3 < disconnect statement >

Function

Remove a record from set membership in a specified <set type>.

Format

<disconnect statement> :: =
DISCONNECT <database key identifier> FROM <set view name>

Syntax Rules

1) An eligible <record type> is a <record type> that is defined as a member <record type> of the <set
type> designated by the <set view name>, and that has a < retention clause > in that <set type> speci¬
fying OPTIONAL.

2) If the <database key identifier> specifies a <record view name>, then that <record view name> shall
designate an ehgible < record type>.

General Rules

1) The object <database key> is the <database key> referenced by the <database key identifier>. If that
<database key> is null, then raise exception disconnect: database key is null.

^ The object <record type> is the <record type> referenced by the object <database key>.

2) If the <record view name> of the object <record type> does not designate a <ready specification> in the
<ready list> having an <access intent> of UPDATE, then raise exception disconnect: record not ready for

update.

3) If the object < record type> is not an ehgible < record type>, then raise exception disconnect: ineligible

record type.

4) Perform the <remove operation> with the object <database key> as the <remove record> and the <set
view name> of the < disconnect statement > as the < remove set type>.

>

9. Data manipulation language 77

AMERICAN NATIONAL STANDARD X3.133-1986

9.4 <erase statement>

Function

Remove one or more records from the database.

Format

<erase statement> :: =
ERASE <database key identifier> WITH <cascade specification>

Ccascade specification> :: =
FULL CASCADE | PARTIAL CASCADE

Syntax Rules

None.

General Rules

1) The object <database key> is the <database key> referenced by the <database key identifiers If that
<database key> is null, then raise exception erase: database key is null.

The object record is the record referenced by the object <database key>. The object <record type> is
the < record type> of the object record.

2) If the < record view name> of the object < record type> does not designate a < ready specification > in the
<ready list> having an < access intent > of UPDATE, then raise exception erase: record not ready for

update.

3) For each <set type> of which the object record is currently a member, perform the <remove operation>
with the object <database key> as the <remove record> and the <set name> of the <set type> as the
< remove set type>.

4) The affected sets are those whose owner record is the object record. The affected records are those that
are members of one or more affected sets.

5) Case:

a) If the <cascade specification> specifies FULL CASCADE, then erase all affected records.

b) If the Ccascade specification> specifies PARTIAL CASCADE, then:

i) If any affected set contains any mandatory member, then raise exception erase: set has mandatory

member.

ii) Erase any affected record that is a fixed member of any affected set.

iii) For each affected record that is an optional member of any affected set, perform the Cremove
operation> with the cdatabase key> of the affected record as the Cremove record> and the Cset
name> of the Cset type> of the affected set as the Cremove set type>.

7 8 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

6) Erase the object record. The relative order of other record occurrences under implementor-defined
ordering criteria remains unchanged.

7) If the <database key> of the <session cursor> is equal to the <database key> of the object record, then
set the < session cursor> to null.

If the <database key> of any <record cursor> is equal to the <database key> of the object record, then
set the <database key> of that <record cursor> to null.

If the <database key> of the object record is equal to the <owner> in any <set cursor>, then set both
the <owner> and the <position> of that <set cursor> to null.

8) Apply General Rules 3 through 8 of the <erase statement> to each erased record as if it were the object
record.

9. Data manipulation language 79

AMERICAN NATIONAL STANDARD X3.133-1986

9.5 <find statement>

Function

Select a record in the database.

Format

<find statement> :: =
FIND

<find specification >
[<find intent>]
[<find cursor disposition >]

<find specification> =
<database key identifier>

| < search specification >

<search specification> :: =
< search orientation >
< domain specification >
[WHERE < condition >]

<search orientation> =
FIRST | LAST | NEXT | PRIOR

| [ABSOLUTE | RELATIVE} <signed integer>

<domain specification> :: =
< record type domain >

| <set domain >
| < subschema domain >

Crecord type domain > :: =
< record view name>

<set domain> :: =
[< record view name>] IN <set view name>

< subschema domain > :: =
SUBSCHEMA RECORD

<find intent> :: =
FOR [RETRIEVE | UPDATE}

<find cursor disposition> :: =
RETAIN ALL

| <find specific disposition >

<find specific disposition> :: =
[<position member>]
[<find specific retention>]

80 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

<position member> :: =
AS MEMBER <set view name>...

<find specific retention> :: =
RETAIN RECORD

| RETAIN SET <set view name>...
| RETAIN RECORD SET <set view name>...

Syntax Rules

1) If the <find specification> is a <search specification>, then:

a) If the <search orientation> contains a <signed integer>, then the value of that <signed integer>
shall not be 0.

b) Case:

i) If the < domain specification > is a <record type domain >, then the object < record type> of the
< search specification > is the < record type> designated by the < record view name> contained in
the <domain specification^*.

ii) If the <domain specification> is a <set domain>, then:

1. The object <set type> of the <domain specification> is the <set type> designated by the
<set view name>.

2. If the <search specification> includes a WHERE <condition> and the object <set type>
contains multiple member <record type>s, then the <set domain> shall specify a <record
view name>.

If the <set domain> specifies a <record view name>, then the <record type> designated by
< record view name> shall be a member < record type> of the object <set type>. That
Crecord type> is the object <record type> of the <search specification^

If the <set domain > does not specify a < record view name>, then the object < record type>s
of the <search specification> are all subschema Crecord type>s that are member Crecord
type>s of the object Cset type>.

iii) If the Cdomain specification> is a Csubschema domain>, then:

1. The object Crecord type>s of the Csearch specification> are the Crecord type>s specified
by the Crecord view>s of the subject Csubschema>.

2. If the Csearch specification> includes a WHERE Ccondition>, then the subject
Csubschema> shall contain exactly one Crecord view>.

c) If the Csearch specification> contains a WHERE Ccondition>, then the contextual Crecord type> of
each Ccomponent view identifier> in the Ccondition> is the object Crecord type>

2) Every Cset view name> contained within a Cfind cursor disposition> shall be different from every other
Cset view name> within that Cfind cursor disposition>.

3) A Cset view name> contained in a Cposition member> shall designate a Cset type> that has a member
Crecord type> identical to its owner Crecord type>.

9. Data manipulation language 81

AMERICAN NATIONAL STANDARD X3.133-1986

4) If the <find intent> is omitted, then it is assumed to be FOR RETRIEVE.

General Rules

1) Locate a specific record occurrence in the database, determined by the <find specification> as follows:

Case:

a) If the <find specification> is a <database key identifiers*, then:

i) The object <database key> is the <database key> referenced by the <database key identifiers-.

ii) If the object <database keys* is null, then raise exception find: database key is null.

iii) Select the record referenced by the object <database key>.

b) If the <find specifications- is a <search specifications-, then:

i) Case:

1. If the < domain specification > is a < record type domain >, then the domain of the < search
specification > consists of all record occurrences of the object < record type> of the < search
specification >. The ordering of the record occurrences in the domain is implementor-defined.
This order is subject to the reproducibility requirement within a transaction, but it may change
between transactions. The object-position of the <search specification> is the <database
keys- of the <record cursor> designated by the <record view name>.

2. If the <domain specification> is a <set domains*, then:

A. The object <set cursor> of the <set domains- is the <set cursor> designated by the <set
view name>.

B. If the object <set type> is singular, then the object set of the <set domains* is the one
and only occurrence of the object <set types* in the database.

If the object <set type> is not singular, then the object set of the <set domain> is the set
referenced by the <database keys- of the <owner> of the object <set cursors*. If that
<database keys* is null, then raise exception find: database key is null.

C. The domain of the <search specifications* consists of all record occurrences that are
members of the object set. The ordering of the record occurrences in the domain is deter¬
mined by the ordering criteria for the object <set type>.

D. The object-position of the <search specifications* is the <position> of the object <set
cursor >.

3. If the <domain specification> is a <subschema domains*, then the domain of the <search
specifications* consists of all record occurrences of the object <record type>s. The ordering
of record occurrences in the domain is implementor-defined. This order is subject to the
reproducibility requirement within a transaction, but it may change between transactions.

The object-position of the <search specification> is the <database keys* of the <session
cursor>.

82 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

ii) If the <search orientation> contains a <signed integer>, then let i be the value of that <signed
integer>. If the <search orientation> specifies FIRST or NEXT, then let i be +1. If the <search
orientation > specifies LAST or PRIOR, then let i be -1.

iii) If NEXT, PRIOR, or RELATIVE is specified and the value of i is positive (negative), then:

Case:

1. If the object-position is a single <database key> that is not null, then remove from the
domain the record referenced by that < database key> and all record occurrences that are
ordered before (after) that record.

2. If the object-position is a pair of <database key>s whose second (first) <database key> is
not null, then remove from the domain all record occurrences that are ordered before (after)
the record referenced by that <database key>.

3. If the object-position is a pair of <database key>s whose second (first) <database key> is
null, then remove all record occurrences from the domain.

iv) If a <set domain > containing a < record view name> is specified, then remove from the domain
all record occurrences that are not of the object < record type>.

v) If the <search specification> contains a <condition>, then for each record occurrence in the
domain:

1. The contextual <database key> of each <component view identifier> in the <condition> is
the <database key> of the record occurrence.

2. Evaluate that <condition> for the record occurrence.

3. If the <condition> is false, then remove the record occurrence from the domain.

vi) Let n be the number of record occurrences remaining in the domain. If the value of i is positive,
then let j be i. Otherwise, let j be n+i+1.

If j is greater than 0 and not greater than n, then select the j-th record occurrence of the domain.
Otherwise, raise exception find: no record found.

2) If the <record view name> of the selected record does not designate a <ready specification> in the
<ready list>, then raise exception find: record not ready. If the <access intent> of that <ready specifica-
tion> is RETRIEVE and the <find intent> specifies UPDATE, then raise exception find: record not ready

for update.

3) Set the <database key> of the <session cursor> to the <database key> of the selected record.

4) If the <find cursor disposition> is omitted or it specifies neither ALL nor RECORD, then set the data¬
base key> of the <record cursor> designated by the <record view name> of the selected record to the
database key> of the selected record.

5) If the <find cursor disposition> is omitted or it specifies does not specify ALL, then for each <set
cursor> whose <set view name> is not specified in a <find specific retention> in the <find cursor dispo¬
sition >:

Case:

9. Data manipulation language 83

AMERICAN NATIONAL STANDARD X3.133-1986

a) If the < record type> of the selected record is the owner < record type> of the <set type> of the <set
cursor>, and if the <set view name> that designates the <set cursor> is not specified in a <position
member>, then set the <owner> of that <set cursor> to the <database key> of the selected record,
and set the <position> of that <set cursor> to null.

b) If the <set view name> of the <set cursor> is specified in a <position member> and the selected
record is not a member of any set occurrence of the <set type> designated by that <set view name>,
then raise exception find: no record found.

c) If the selected record is a member of a set occurrence of the <set type> designated by the <set view
name> of the <set cursor>, then if either the <record type> of the selected record is not the owner
Crecord type> of that <set type> or the <set view name> of the <set cursor> is specified in a
<position member>, then:

i) Set the <position> of the <set cursor> to the <database key> of the selected record.

ii) If that <set type> is a nonsingular <set type>, then set the <owner> of the <set cursor> to the
<database key> of the owner record occurrence of that set occurrence.

d) Otherwise, do not update the <set cursor>.

84 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

9.6 <get statement>

Function

Set parameter values to component values from a selected record occurrence.

Format

<get statement> :: =
GET <to parameter move>

Syntax Rules

None.

General Rules

1) The object record is the record referenced by the <database key> of the <record cursor> designated by
the <record view name> of the <to parameter move>. If that <database key> is null, then raise excep¬
tion get: record cursor is null.

2) The contextual <database key> of each <component view identifier> in the <to parameter move clause>
is the <database key> of the object record.

3) Evaluate all <operand>s in the <to parameter move>.

4) For each <to parameter move clause> in the <to parameter move>, from left to right:

a) Perform the data transfer specified by the <to parameter move clause>.

b) If an exception is raised while performing the data transfer for the <to parameter move clause>, then
do not assign a value to the parameter designated by that <to parameter move clause >, do not
perform any subsequent <to parameter move clause> of the <to parameter move>, and retain the
effect of prior <to parameter move clause>s that have been performed.

5) Set the <database key> of the <session cursor> to the <database key> of the object record.

9. Data manipulation language 85

AMERICAN NATIONAL STANDARD X3.133-1986

9.7 <modify statement>

Function

Replace the contents of one or more data items in a record occurrence.

Format

<modify statement> :: =
MODIFY <to database move>

Syntax Rules

None.

General Rules

1) The object < record view name> is the < record view name> of the <to database move>. The object
< record type> is the < record type> designated by the object < record view name>.

2) If the object <record view name> does not designate a <ready specification> in the <ready list> having
an <access intent> of UPDATE, then raise exception modify: record not ready for update.

3) The object record is the record referenced by the <database key> of the <record cursor> designated by
the object <record view name>. If that <database key> is null, then raise exception modify: record cursor

is null.

4) A modified data item is any data item designated by a Ccomponent view identifier> in a target identifier
of the <to database move>.

5) The contextual < database key> of each < component view identifier> in the <to database move> is the
< database key> of the object record.

6) Evaluate all < operand >s in the <to database move>.

7) For each <to database move clause> in the <to database move>, perform the data transfer specified by
each <to database move clause > in the <to database move>.

8) For each <set type> of which the object <record type> is a member <record type>, let the object
< member clause > be the <member clause > of that <set type> whose member < record type> is the
object Crecord type>. If the <insertion clause> of the object Cmember clause> specifies STRUC¬
TURAL, and if a modified data item is referenced by a <component identifier> that is specified as a
Cmember component identifier> in that Cinsertion clause>, then:

a) Perform the Cremove operation> with the Cdatabase key> of the object record as the <remove
record>, and the <set view name> of the <set type> as the Cremove set type>.

b) Let D be the cdatabase key> of the occurrence of the Crecord type> designated by the owner
Crecord view name> of the Cset type> that has values for each data item referenced by an Cowner
component identifier> of a Ccomponent identifier match> of the Cinsertion clause> equal to the
value of the data item in the object record that is referenced by the Cmember component identifier>

86 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

of that <component identifier match>. If there is no such record occurrence, then raise exception
modify: no match for set insertion.

c) Perform the <insert operation> with the <database key> of the object record as the Cinsert record>,
the <set name> of the <set type> as the Cinsert set type>, the Cdatabase key> D as the Cinsert set
owner>, and retain as the cinsert cursor dispositions

d) If the C retention clause > of the object C member clause > specifies FIXED and the set occurrence
into which the object record was inserted is not the set occurrence from which it was removed, then
raise exception modify: retention is fixed.

9) If the object record is currently a member of a set of a Cset type> for which the preceding General Rule
does not apply, and a modified component is designated by a Ccomponent identifier> in a Ckey clause>
of the Cset type>, then:

a) Perform the Cremove operation> with the Cdatabase key> of the object record as the Cremove
record> and the Cset name> of the Cset type> as the Cremove set type>.

b) Perform the Cinsert operation> with the cdatabase key> of the object record as the Cinsert record>,
the Cset name> of the Cset type> as the Cinsert set type>, retain as the Cinsert cursor dispositions
and:

Case:

i) If the Cset type> is a singular Cset type>, then null as the cinsert set owners

ii) If the Cset type> is not a singular Cset types then the Cdatabase key> of the owner of the set
from which the object record was removed as the Cinsert set owner>.

10) If execution of the Cmodify statement> would cause a Crecord uniqueness clauses Cmember uniqueness
clauses Ckey clauses or Corder clause> to be violated, then raise exception modify: duplicates are pro¬

hibited. If it would cause a Crecord check clause> to be violated, then raise exception modify: record check

violated. If it would cause a Cmember check clause> to be violated, then raise exception modify: member

check violated.

9. Data manipulation language 87

AMERICAN NATIONAL STANDARD X3.133-1986

9.8 <nullify cursor statement>

Function

Set the referenced cursor to null.

Format

< nullify cursor statement > :: =
NULLIFY <database key identifier>

Syntax Rules

None.

General Rules

1) Case:

a) If the <database key identifier> specifies SESSION, then set the <database key> of the <session
cursor> to null.

b) If the <database key identifier> specifies a <record view name>, then set the <database key> of the
<record cursor> designated by the <record view name> of the <nullify cursor statement> to null.

c) If the <database key identifier> specifies OWNER, then set both the <owner> and the <position>
of the <set cursor> designated by the <set view name> of the <nullify cursor statement> to null.

d) If the <database key identifier> specifies MEMBER, then set the <position> of the <set cursor>
designated by the <set view name> of the <nullify cursor statement> to null.

8 8 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

9.9 <ready statements

Function

Prepare one or more Crecord type>s for processing.

Format

<ready statement> :: =
READY <ready specification>...

<ready specification> :: =
< record view name>
< share specification >
<access intent>

<share specification> :: =
EXCLUSIVE | PROTECTED | SPLARED

<access intent> :: =
RETRIEVE | UPDATE

Syntax Rules

1) The same Crecord view name> shall not be specified more than once in a <ready statements*.

General Rules

1) If a Crecord view name> in the Cready statement> designates a Cready specification> in the Cready
hst>, then raise exception ready: record already ready.

2) If any of the following conditions is true, then raise exception ready: lock conflict.

a) A Cready specification> has a Cshare specification> that is EXCLUSIVE and a Crecord view
name> that is contained in the Cready list> of a concurrent Csession state>.

b) One or more of the Crecord view name>s is contained in the Cready list> of a concurrent Csession
state> with a Cshare specification> that is EXCLUSIVE.

c) A Cready specification> has a Cshare specification> that is SHARED, an Caccess intent> that is
UPDATE, and a Crecord view name> that is specified in the Cready list> of a concurrent Csession
state> with a Cshare specification> that is PROTECTED.

d) A Cready specification> has a Cshare specification> that is PROTECTED, an Caccess intent> that
is UPDATE, and a Crecord view name> that is specified in the Cready list> of a concurrent Csession
state> with a Cshare specification> of PROTECTED or with an Caccess intent> of UPDATE.

e) A Cready specification> has a Cshare specification> that is PROTECTED, an Caccess intent> that
is RETRIEVE, and a Crecord view name> that is specified in the Cready list> of a concurrent
Csession state> with an Caccess intent> of UPDATE.

3) Append the Cready specification^ to the Cready list> of the Csession state>.

9. Data manipulation language 89

90 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

9.10 < reconnect statement >

Function

Change the membership of a record occurrence in a < set type>

Format

<reconnect statement> :: =
RECONNECT <database key identifier> IN <set view name>

Syntax Rules

1) An eligible <record type> is a <record type> that is defined as a member <record type> in the <set
type> designated by the <set view name>.

2) If the <database key identifier> specifies a <record view name>, then that Crecord view name> shall
designate an eligible <record type>.

General Rules

1) The object <database key> is the <database key> referenced by the <database key identifiers If that
<database key> is null, then raise exception reconnect: database key is null.

The object <record type> is the Crecord type> referenced by the object cdatabase key>.

2) If the Crecord view name> of the object Crecord type> does not designate a Cready specification> in the
Cready list> having an Caccess intent> of UPDATE, then raise exception reconnect: record not ready for

update.

3) If the object Crecord type> is not an eligible Crecord type>, then raise exception reconnect: ineligible

record type.

4) Perform the Cremove operation> with the object cdatabase key> as the Cremove record> and the Cset
view name> of the Creconnect statement> as the Cremove set type>.

5) Perform the Cinsert operation> with the object Cdatabase key> as the Cinsert record>, the Cset view
name> of the Creconnect statement> as the Cinsert set type>, the Cdatabase key> of the Cowner> of
the Cset cursor> designated by the Cset view name> of the Creconnect statement> as the Cinsert set
owner>, and update as the Cinsert cursor disposition>.

6) If the object Crecord type> has a Cretention clause> specifying FIXED in the Cset type> designated by
the Cset view name>, and the set into which the object record was inserted is not the set from which it
was removed, then raise exception reconnect: retention is fixed.

9. Data manipulation language 91

AMERICAN NATIONAL STANDARD X3.133-1986

9.11 < rollback statement >

Function

Terminate the current transaction with rollback.

Format

<rollback statement> :: =
ROLLBACK [FINISH]

Syntax Rules

None.

General Rules

1) Terminate the current transaction. Cancel the effect on the database of all statements executed by the
session during that transaction.

2) Set the <cursors> to the initial <cursors> for the subject <subschema>.

3) For each ctemporary set> in the <temporary sets>, remove each member record from membership in
that set.

4) If FINISH is specified, then set the <ready list> to empty.

92 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

9.12 < store statement >

Function

Store a record in the database.

Format

<store statement> —
STORE <to database move> [<store retention>]

< store retention > :: =
RETAIN ALL

| RETAIN RECORD
| RETAIN SET <set view name>...
| RETAIN RECORD SET <set view name>...

Syntax Rules

1) The object < record view name> is the < record view name> of the <to database move>. The object
<record type> is the <record type> designated by the object <record view name>. The object <record
view> is the <record view> designated by the object <record view name>.

2) Each <component type> in the object <record type> that is not designated by a <component view
name> in the object < record view> shall contain a < default clause >.

3) Each < component type> in the object < record type> that is not designated by the < component view
name> of a target <component view identifier> in the <to database move> shall contain a <default
clause >.

4) The subject <subschema> shall include a <set view> for each <set type> in which the object Crecord
type> is defined as a member Crecord type> with an <insertion clause> that specifies AUTOMATIC.

5) Every <set view name> contained within a Cstore retention> shall be different from every other <set
view name> within that <store retention>.

6) For each <set view name> specified in a Cstore retention>, the object Crecord type> shall be either a
member Crecord type> or owner Crecord type> of the Cset type> referenced by that Cset view name>.

General Rules

1) If the object Crecord view name> does not designate a Cready specification> in the Cready list> having
an C access intent> of UPDATE, then raise exception store: record not ready for update.

2) Create in the database a record occurrence of the object Crecord type>. The new record occurrence is
the object record. The object record assumes an implementor-defined position relative to other record
occurrences, and the relative order of the other occurrences remains unchanged.

NOTE: The construction of a new record occurrence is specified in the General Rules of 6.8, “cdefault
clause>” on page 38.

9. Data manipulation language 93

AMERICAN NATIONAL STANDARD X3.133-1986

3) The contextual <database key> of each <component view identifier> in the <to database move clause>
is the <database key> of the object record.

4) Evaluate all <operand>s in the <to database move>.

5) For each <to database move clause> in the <to database move>, perform the data transfer specified by
each <to database move clause > in the <to database move>.

6) Establish the object record as the owner of an empty set for each <set type> in which the object <record
type> is the owner < record type>.

7) For each <set type> of which the object <record type> is a member <record type>:

a) Let the object <member clause> be the <member clause> of that <set type> whose member
< record type> is the object < record type>.

b) If the <store retention> specifies ALL, or if the <set type> is designated by a <set view name> in
the <store retention>, then let C be retain. Otherwise, let C be update.

c) Case:

i) If the Cinsertion clause> of the object <member clause> specifies AUTOMATIC, then perform
the Cinsert operation> with the <database key> of the object record as the <insert record>, the
<set name> of the <set type> as the Cinsert set type>, the Cdatabase key> of the <owner> of
the <set cursor> whose <set view name> designates the <set type> as the Cinsert set owner>,
and C as the Cinsert cursor disposition>.

ii) If the Cinsertion clause> of the object Cmember clause> specifies STRUCTURAL, then:

1. Let D be the Cdatabase key> of the occurrence of the owner Crecord type> of the Cset
type> that has values for each data item referenced by an Cowner component identifier> of a
Ccomponent identifier match> of the Cinsertion clause> equal to the value of the data item
in the record occurrence being stored that is referenced by the Cmember component identi¬
fier > of that Ccomponent identifier match>. If there is no such record occurrence, then raise
exception store: no match for set insertion.

2. Perform the Cinsert operation> with the Cdatabase key> of the object record as the Cinsert
record>, the Cset name> of the Cset type> as the Cinsert set type>, the Cdatabase key> D
as the Cinsert set owner>, and C as the Cinsert cursor dispositions

iii) If the Cinsertion clause> of the object Cmember clause> specifies MANUAL, then do not insert
the object record in any occurrence of the Cset type>.

8) Set the Csession cursor> to reference the object record.

9) If the Cstore retention> specifies neither ALL nor RECORD, then set the Crecord cursor> designated by
C record view name> to reference the object record.

If the Cstore retention> does not specify ALL, then for each Cset type> designated by a Cset view> in
the subject Csubschema> in which the object Crecord type> is the owner Crecord type>, if that Cset
type> is not designated by a Cset view name> in the Cstore retentions then set the Cowner> of the
Cset cursor> for that Cset type> to the cdatabase key> of the object record and set the Cposition> of
that Cset cursor> to null.

94 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

10) If execution of the < store statement> would cause a < record uniqueness clause > to be violated, then raise
exception store: duplicates are prohibited. If it would cause a <record check clause> to be violated, then
raise exception store: record check violated.

9. Data manipulation language 95

AMERICAN NATIONAL STANDARD X3.133-1986

9.13 <test database key equal statement >

Function

Determine whether two <database key>s reference the same record.

Format

<test database key equal statement > :: =
TEST < operand 1> = < operand 2>

<operand 1> ::= <database key identifier>

<operand2> ::= <database key identifier>

Syntax Rules

None.

General Rules

1) If the <database key> referenced by <operand 1 > or <operand 2> is null, then raise exception test: data¬

base key is null.

2) If the <database key> referenced by <operand 1> and the <database key> referenced by <operand 2>
reference the same record occurrence, then set the value of the TEST parameter to "1". Otherwise, set the
value of the TEST parameter to "0".

96 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

9.14 <test database key null statement >

Function

Determine whether a <database key> is null.

Format

<test database key null statement> :: =
TEST NULL <database key identifier>

Syntax Rules

None

General Rules

1) If the <database key> referenced by the <database key identifier> is null, then set the value of the TEST
parameter to "1". Otherwise, set the value of the TEST parameter to "0".

9. Data manipulation language 97

AMERICAN NATIONAL STANDARD X3.133-1986

9.15 <test set empty statement >

Function

Determine whether a set has any member records.

Format

<test set empty statement> =
TEST SET EMPTY <set view name>

Syntax Rules

1) The object <set type> is the <set type> designated by <set view name>. The object <set cursor> is the
<set cursor> designated by <set view name>.

General Rules

1) Case:

a) If the object <set type> is a singular <set type>, then the object set is the one-and-only occurrence
of the object <set type>.

b) If the object <set type> is a nonsingular <set type>, then:

Case:

i) If the <owner> of the object <set cursor> is null, then raise exception test: set cursor is null.

ii) If the <owner> of the object <set cursor> is not null, then the object set is the set referenced by
the object <set cursor>.

2) If the object set has one or more members whose <record type> is included in the subject <subschema>,
then set the value of the TEST parameter to "0". Otherwise, set the value of the TEST parameter to "1".

98 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

9.16 <test set membership statement >

Function

Determine whether a record is a member of some occurrence of a <set type>.

Format

<test set membership statement> =
TEST SET <set view name> CONTAINS <database key identifier>

Syntax Rules

None.

General Rules

1) The object <database key> is the <database key> referenced by the <database key identifier>. If the
object <database key> is null, then raise exception test: database key is null.

2) If the <record type> of the record referenced by the object <database key> is not defined as a member
<record type> of the <set type> designated by <set view name>, then raise exception test: ineligible

record type.

3) If the record referenced by the object <database key> is a member of an occurrence of the <set type>
designated by <set view name>, then set the value of the TEST parameter to "1". Otherwise, set the
value of the TEST parameter to "0".

9. Data manipulation language 99

AMERICAN NATIONAL STANDARD X3.133-1986

9.17 < database key identifier >

Function

Reference a <database key>.

Format

<database key identifier> :: =
SESSION

| < record view name>
| {OWNER | MEMBER} <set view name>

Syntax Rules

1) If the <database key identifier> specifies OWNER, then the <set type> designated by the <set view
name> shall not be a singular <set type>.

General Rules

1) Case:

a) If SESSION is specified, then the <database key identifier> references the <database key> of the
<session cursor>.

b) If a <record view name> is specified, then the <database key identifier> references the <database
key> of the <record cursor> designated by the <record view name> of the <database key identi¬
fier >.

c) If OWNER is specified, then the <database key identifier> references the <database key> of the
<owner> of the <set cursor> designated by the <set view name> of the <database key identifiers

d) If MEMBER is specified, then

i) The object <position> is the <position> of the <set cursor> designated by the <set view name>
of the <database key identifier>.

ii) If the object <position> is a single <database key>, then the <database key identifier> refer¬
ences that < database key>.

If the object <position> is a pair of <database key>s, then the <database key identifier> refer¬
ences null.

100 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

) 9.18 < component view identifier>

Function

Reference a component or data item.

Format

< component view identifier > :: =
<dot style component view identifier>

| <of style component view identifier>

<dot style component view identifier> :: =
[<record view name>.] <component view name> [<subscripts>] [CURSOR]

<of style component view identifier> :: =
< component view name> [< subscripts >]
[OF <record view name>] [CURSOR]

Syntax Rules

1) The contextual < record type> of a < component view identifier > is specified in the Syntax Rules of the
<NDL statement> that contains the <component view identifiers

^ 2) Case:

a) If a <component view identifier> does not specify CURSOR, then the Ccomponent view identifier>
shall designate a <component type> of the contextual <record type>, and the <record view name>,
if specified, shall designate the contextual <record type>. The subject <record type> of the Com¬
ponent view identifier> is the contextual <record type>.

b) If a Ccomponent view identifier> specifies CURSOR, then it shall specify a Crecord view name>,
and the subject Crecord view> is the Crecord view> designated by that Crecord view name>.

3) The Ccomponent view name> shall designate a Ccomponent type> of the subject Crecord type>. That
Ccomponent type> is the subject Ccomponent type>.

4) If a Ccomponent view identifier> contains Csubscripts>, then:

a) The subject Ccomponent type> shall define an array.

b) The contextual C occurs clause > of the C subscripts > is the C occurs clause > contained in the subject
Ccomponent type>.

General Rules

1) The contextual Cdatabase key> of a Ccomponent view identifier> is specified in the General Rules of the
statement that contains the Ccomponent view identifiers

| 2) Case:

9. Data manipulation language 101

AMERICAN NATIONAL STANDARD X3.133-1986

a) If a <component view identifier> specifies CURSOR, then the subject <database key> is the data¬
base key> of the <record cursor> whose <record view name> designates the subject <record type>.
If that database key> is null, then raise exception cursor reference: database key is null.

b) If a <component view identifier> does not specify CURSOR, then the subject database key> is the
contextual < database key>.

3) A <component view identifier> references a data item or array in the record referenced by the subject
database key>, as follows:

Case:

a) If the subject <component type> of a <component view identifier> defines a data item, then the
<component view identifier> references that data item.

b) If the subject <component type> of a <component view identifier> defines an array and the <com¬
ponent view identifier> does not contain < subscripts >, then the domponent view identifier> refer¬
ences that array.

c) If the subject <component type> of a <component view identifier> defines an array and the <com¬
ponent view identifier> contains <subscripts>, then the <component view identifier> references the
i-th data item in the array, where i is the value of the < subscripts >.

102 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

9.19 < parameter identifier>

Function

Reference a parameter item.

Format

<parameter identifier> :: =
< parameter name> [< subscripts >]

Syntax Rules

1) The object <parameter declaration> of a <parameter identifier> is the <parameter declaration> desig¬
nated by the <parameter name> of the <parameter identifiers

2) If the object <parameter declaration> does not contain an <occurs clause>, then <subscripts> shall not
be specified.

If the object < parameter declaration> contains an < occurs clause > and a < subscripts > is specified, then
that < occurs clause > is the contextual < occurs clause > of the < subscripts >.

General Rules

1) Case:

a) If a <subscripts> is not specified, then the <parameter identifier> references the data item or array
supplied as the parameter corresponding with the object <parameter declarations

b) If a <subscripts> is specified, then the <parameter identifier> references the i-th data item in the
array supplied as the parameter corresponding with the object <parameter declarations where i is the
value of the < subscripts >.

9. Data manipulation language 103

AMERICAN NATIONAL STANDARD X3.133-1986

9.20 <to parameter move> and <to database move>

Format

<to parameter move> :: =
<record view name> <to parameter move clause>...

<to parameter move clause> :: =
SET < parameter identifier > TO < operand >

<to database move> :: =
<record view name> [<to database move clause>...]

<to database move clause> :: =
SET Ccomponent view identifier> TO <operand>

Syntax Rules

1) For a <to parameter move>, the target identifier is the <parameter identifier>. For a <to database
move> the target identifier is the Ccomponent view identified.

2) Let a move be either a <to parameter move> or a < to database move>. Let a move clause be either a
<to parameter move clause > or a <to database move clause >.

3) The object < record type> of the move and the contextual < record type> of each < component view iden¬
tified in the move is the <record type> designated by the <record view name>.

4) Case:

a) If the type of the target identifier of a move clause is character string, then the type of the source
< operand > shall be character string.

b) If the type of the target identifier of a move clause is exact numeric, then the type of the source
< operand > shall be exact numeric.

c) If the type of the target identifier of a move clause is approximate numeric, then the type of the source
< operand > shall be approximate numeric or exact numeric.

5) Case:

a) If the target identifier of a move clause references a data item or a data item of an array, then the
< operand > of that move clause shall be a data item.

b) If the target identifier of a move clause references an array, then the <operand> of that move clause
shall be an array.

6) No ccomponent view identified that is a target identifier shall specify CURSOR. If a Ccomponent view
identifier> that is a target identifer specifies a C record view name>, then that C record view name> shall
be the same as the C record view name> of the Cto database move>.

7) A Ccomponent view identified that is contained in an Coperand> of the Cto database move> shall
specify CURSOR.

104 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

General Rules

1) The target item is the item referenced by the target identifier. The source value is the value of the source
< operand >.

2) Case:

a) If the type of the target item is character string of length L, then:

Case:

i) If the length of the source value is L, then set the target item to the source value.

ii) If the length of the source value is M, and M>L, then if the last M-L characters of the source
value are space characters, then set the target item to the first L characters of the source value;
otherwise, raise exception data transfer: string truncation.

iii) If the length of the source value is M, and M<L, then set the first M characters of the target item
to the source value, and set the last L-M characters of the target item to space characters.

b) If the type of the target item is exact numeric and the source value can be represented exactly as a
value of the target item data type, then set the target item to that value; otherwise, raise exception data

transfer: numeric truncation.

c) If the type of the target item is approximate numeric, then set the target item to the approximate
numeric value of the source value.

9. Data manipulation language 105

AMERICAN NATIONAL STANDARD X3.133-1986

10. Auxiliary operations

10.1 <insert operation>

Function

Insert a record occurrence into a set.

Format

Cinsert operation> :: =
< insert record >
< insert set type>
< insert set owner >
< insert cursor disposition >

Cinsert record> :: =
Cdatabase key>

Cinsert set type> :: =
Cset name> | Cset view name>

Cinsert set owner> :: =
Cdatabase key>

Cinsert cursor disposition> :: =
retain | update

Syntax Rules

None.

General Rules

1) The object record is the record referenced by the Cdatabase key> of the Cinsert record>. The object
Crecord type> is the Crecord type> of the object record. The object Cset type> is the Cset type> desig¬
nated by the Cset name> or Cset view name> of the Cinsert set type>. The object Cset cursor>, if any,
is the Cset cursor>, if any, whose Cset view name> designates the object cset type>.

2) If the object record is already a member of an occurrence of the object Cset type>, then raise exception
insert: record already a member of set.

3) Case:

a) If the object Cset type> is a singular Cset type>, then the object set is the one-and-only occurrence
of the object Cset type>.

b) If the object Cset type> is not a singular Cset type>, then the object set is the occurrence of the
object Cset type> that is owned by the record occurrence referenced by the Cdatabase key> of the

10. Auxiliary operations 107

AMERICAN NATIONAL STANDARD X3.133-1986

Cinsert set owner>. If that <database key> is null, then raise exception insert: set cursor is null. If
the < order clause > of the object <set type> specifies NEXT or PRIOR, then:

i) If there is no object <set cursor>, then raise exception insert: set is not in subschema.

ii) If the object set is not the set occurrence referenced by the object <set cursor>, then raise excep¬
tion insert: record not member of set.

4) Insert the object record as a member of the object set in accordance with the set ordering criteria specified
by the < order clause > or the <key clause >s of the object <set type>. The relative order of other
members of the object set remains unchanged.

5) If the <order clause> of the object <set type> specifies NEXT (PRIOR), then:

Case:

a) If the <position> of the object <set cursor> is a single <database key> that is not null, then insert
the object record as a member record in the object set immediately after (before) the member record
referenced by that < database key>.

b) If the <position> of the object <set cursor> is a single <database key> that is null, then insert the
object record as the first (last) member record in the set occurrence referenced by that <set cursor>.

c) If the <position> of the object <set cursor> is a pair of <database key>s and the first (second) of
those <database key>s is not null, then insert the object record immediately after (before) the
member record referenced by that first (second) <database key>.

d) If the <position> of the object <set cursor> is a pair of <database key>s and the first (second) of
those <database key>s is null, then insert the object record as the first (last) member record in the set
occurrence referenced by that <set cursor>.

6) If the <insert operation> would cause a <member uniqueness clause>, an <order clause>, or a <key
clause> in the object <set type> to be violated, then raise exception insert: duplicates are prohibited. If it
would cause a < member check clause > or an implied < member check clause > derived from the
< insertion clause > to be violated, then raise exception insert: member check violated.

7) If there is an object <set cursor>, then:

Case:

a) If the <insert cursor disposition> is update, then set the <position> of the object <set cursor> to the
<database key> of the object record.

b) If the <insert cursor disposition> is retain and the following condition is true, then set the <position>
of the object <set cursor> to the <database key> of the object record.

Condition: The <position> of the object <set cursor> is a pair of <database key>s such that
either the first such <database key> references a record that immediately precedes the object
record in the object set or the second such <database key> references a record that immediately
follows the object record in the object set.

108 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

10.2 <remove operation>

Function

Remove a record occurrence from a set.

Format

<remove operation> =
< remove record >
< remove set type>

< remove record > :: --
< database key>

<remove set type> =
<set name> | <set view name>

Syntax Rules

None.

General Rules

1) The object record is the record referenced by the <database key> of the <remove record>. The object
<record type> is the <record type> of the object record. The object <set type> is the <set type> desig¬
nated by the <set name> or <set view name> of the < remove set type>.

2) The object set is the occurrence of the object <set type> of which the object record is a member. If the
object record is not currently a member of any occurrence of the object <set type>, then raise exception
remove: record not member of set.

3) If there is a <set cursor> whose <set view name> designates the object <set type>, then:

Case:

a) If the <position> of that <set cursor> is a single <database key> that references the object record,
then:

i) If there is a record occurrence that is a member of the object set and that immediately precedes the
object record in that set, then let L be the <database key> of that record occurrence. Otherwise,
let L be null.

ii) If there is a record occurrence that is a member of the object set and that immediately follows the
object record in that set, then let R be the <database key> of that record occurrence. Otherwise,
let R be null.

iii) Set the <position> of that <set cursor> to the pair of <database key>s L and R, in that order.

b) If the <position> of that <set eursor> is a pair of <database key>s the first (second) of which refer¬
ences the object record, then:

10. Auxiliary operations 109

AMERICAN NATIONAL STANDARD X3.133-1986

i) If there is a record occurrence that is a member of the object set and that immediately precedes
(follows) the object record in that set, then let L (R) be the <database key> of that record occur¬
rence. Otherwise, let L (R) be null.

ii) Replace the first (second) <database key> of the <position> of that <set cursor> with L (R).

c) Otherwise, do nothing to that <set cursor>.

4) Remove the object record from membership in the object set. The relative order of other members of the
object set remains unchanged.

110 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

11. Interpretive state

11.1 < session state >

Format

<session state> :: =
< cursors >
< temporary sets>
<ready list>

General Rules

1) An initial < session state > for a < module > contains an initial < cursors > for the < module >, an initial
Ctemporary sets> for the Ctemporary set specifications> of the <module>, and an initial <ready list>.

11. Interpretive state 111

AMERICAN NATIONAL STANDARD X3.133-1986

11.2 <cursors>

Format

<cursors> :: =

<session cursor>

[Crecord cursor>...]

[<set cursor>...]

<session cursor> :: =

<database key>

Crecord cursor> :: =

< record view name> < database key>

<set cursor> =

<set view name>

< owner >

< position >

<owner> ::= <database key>

<position> :: =

< database key>

| <database key> <database key>

<database key> :: =

See General Rule 1.

General Rules

1) A < database key> is an implementation-defined value that either identifies exactly one record in the data¬

base or that is null and identifies no record.

2) The Crecord view name> of a Crecord cursor> designates that Crecord cursor>. The Cset view name>

of a Cset cursor> designates that Cset cursor>.

3) An initial ccursors> for a Cmodule> contains:

a) An initial Csession cursor>.

b) An initial Crecord cursor> for each crecord view> of the subject Csubschema> of the Cmodule>.

c) An initial Cset cursor> for each Cset view> contained in the subject Csubschema> of the

C module >.

d) An initial cset cursor> for each ctemporary set specification> contained in the Cmodule>.

4) An initial csession cursor> contains a cdatabase key> that is null.

5) An initial Crecord cursor> for a Crecord view> contains:

112 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

a) A <record view name> equal to the <record view name> contained in the <record view>.

b) A <database key> that is null.

6) An initial <set cursor> for a <set view> contains:

a) A <set view name> equal to the <set view name> contained in the <set view>.

b) An <owner> that is a <database key> that is null.

c) A <position> that is a <database key> that is null.

7) An initial <set cursor> for a <temporary set specification> contains:

a) A <set view name> equal to the <set view name> contained in the <temporary set specification^

b) An <owner> that is a <database key> that is null.

c) A <position> that is a <database key> that is null.

8) The <session cursor> references the record referenced by the <database key> of the <session cursor>.

A <record cursor> references the record referenced by the <database key> of the <record cursor>.

If the <set view name> of a <set cursor > designates a nonsingular <set type>, then the <set cursor >
references the set that is owned by the record occurrence referenced by the <database key> of the
< owner > of the <set cursor>.

If the <set view name> of a <set cursor> designates a singular <set type>, then the <set cursor> refer¬
ences the one-and-only occurrence of that <set type> in the database or the < session state >.

11. Interpretive state 113

AMERICAN NATIONAL STANDARD X3.133-1986

11.3 <temporary sets>

Format

<temporary sets> =
[<temporary set>...]

<temporary set> :: =
See General Rule 1.

General Rules

1) A < temporary set> is an occurrence of a temporary <set type>.

2) An initial <temporary sets> for a <temporary set specifications> contains an empty occurrence of each
temporary <set type> defined in the < temporary set specifications >.

114 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

11.4 <readylist>

Format

<readylist> ::= empty | <ready specification>...

General Rules

1) An initial < ready list> contains empty.

11. Interpretive state 115

AMERICAN NATIONAL STANDARD X3.133-1986

12. Status codes

Figure 1 specifies the value returned in the STATUS parameter for each condition,
(leftmost) digit of all current and future status codes specified for NDL shall be a
that the second digit shall be either "0" or "1". Status codes of the form "lxxxx",
and "l lxxx", are reserved for implementor use.

It is intended that the first
value other than "1", and
and in particular "lOxxx"

Value Condition
01610 array reference: subscript out of bounds
01810 connect: record already a member
01310 connect: database key is null
01330 connect: ineligible record type
01920 connect: record not ready for update
01310 cursor reference: database key is null
01410 data transfer: string truncation
01420 data transfer: numeric truncation
01310 disconnect: database key is null
01330 disconnect: ineligible record type
01920 disconnect: record not ready for update
01310 erase: database key is null
01920 erase: record not ready for update
01720 erase: set has mandatory member
01310 find: database key is null
00100 find: no record found
01910 find: record not ready
01920 find: record not ready for update
01320 get: record cursor is null
01510 insert: duplicates are prohibited
01860 insert: member check violated
01810 insert: record already a member
01830 insert: record not member of set
01340 insert: set cursor is null
01610 insert: set is not in subschema
01320 modify: record cursor is null
01840 modify: record check violated
01510 modify: duplicates are prohibited
01860 modify: member check violated
01230 modify: no match for set insertion
01920 modify: record not ready for update
01820 modify: retention is fixed
OHIO procedure: deadlock
00000 procedure: success

Figure 1 (Part 1 of 2). STATUS Values

12. Status codes 117

AMERICAN NATIONAL STANDARD X3.133-1986

Value Condition

01940 ready: lock conflict
01950 ready: record already ready
01310 reconnect: database key is null
01920 reconnect: record not ready for update
01330 reconnect: ineligible record type
01820 reconnect: retention is fixed
01830 remove: record not member of set
01840 store: record check violated
01510 store: duplicates are prohibited
01230 store: no match for set insertion
01920 store: record not ready for update
01310 test: database key is null
01330 test: ineligible record type
01340 test: set cursor is null

Figure 1 (Part 2 of 2). STATUS Values

118 Database Language NDL

AMERICAN NATIONAL STANDARD X3.133-1986

13. Levels

This standard specifies two levels. Level 2 is the complete NDL database language. Level 1 is the subset of
Level 2 that obeys the following additional rules.

1) 6.3, “<record type>” on page 33 and 6.9, “<record check clause>” on page 39:

A < record type> shall not contain a < record check clause >.

2) 6.14, “<member clause>” on page 45 and 6.20, “<member check clause>” on page 54:

A < member clause > shall not contain a < member check clause >.

3) 9.5, “<find statement>” on page 80:

A <find statement > shall not contain a WHERE < condition >.

4) Clause 8, “Module language” on page 65 and 8.3, “<temporary set specifications>” on page 68:

A <module> shall not contain a <temporary set specifications>.

5) 6.16, “<insertion clause>” on page 47:

An <insertion clause> shall not contain STRUCTURAL <structural specification>.

6) 6.15, “<member record name clause>” on page 46:

The < record name> contained in a < member record name clause > of a <set type> shall not be the same
as the < record name> contained in the < owner clause > of that <set type>.

13. Levels 119

Annexes

A. Example suppliers and parts problem

(This annex is not an integral part of the body of the standard.)

The following annex provides an example 2 <schema>, <subschema>, principal elements of a COBOL
program, and <module> for a "Suppliers and Parts" problem.

A.l Example suppliers and parts < schema >

SCHEMA SUPPLIERS_AND_PARTS

RECORD S
UNIQUE SNO
ITEM SNO CHARACTER 5
ITEM SNAME CHARACTER 20
ITEM SSTATUS NUMERIC 3
ITEM CITY CHARACTER 15

RECORDP
UNIQUE PNO
ITEM PNO CHARACTER 6
ITEM PNAME CHARACTER 20
ITEM COLOR CHARACTER 6
ITEM WEIGHT NUMERIC 3 DEFAULT -1
ITEM CITY CHARACTER 15

RECORD SP
UNIQUE SNO PNO
ITEM SNO CHARACTER 5
ITEM PNO CHARACTER 6
ITEM QTY NUMERIC 5
CHECK QTY >= 0

Adapted from chapters 24 through 26 of C.J. Date, "An Introduction to Database Systems (Third Edition)",
Addison-Wesley, Menlo Park, California, USA, 1981.

Annexes 121

ANNEX

SET S_SP
OWNER S
ORDER SORTED DUPLICATES PROHIBITED
MEMBER SP

INSERTION STRUCTURAL SP.SNO = S.SNO
RETENTION FIXED
KEY ASCENDING PNO

SET P_SP
OWNER P
ORDER SORTED DUPLICATES PROHIBITED
MEMBER SP

INSERTION STRUCTURAL SP.PNO = P.PNO
RETENTION FIXED
KEY ASCENDING SNO

A. 2 Example suppliers and parts < subschema >

SUBSCHEMA SUPPLIERS OF SUPPLIERS_AND_PARTS

RECORD S
ITEM SSTATUS
ITEM CITY

RECORD SP
ALL

SET S SP RENAMED SUPPLIES

A.3 Example suppliers and parts program

The following elements of a COBOL program set the Status value of each Paris Supplier to the maximum
Status value for Paris Suppliers.

01 DB-STATUS PIC X(5).
01 S-STATUS PIC S9(3) SIGN LEADING SEPARATE.
01 S-CITY PIC X(15).
01 M PIC S9(3).
01 NOTFOUND PIC XXX.
01 LISTEMPTY PIC XXX.

MAINLINE.
CALL ’begin’ USING DB-STATUS.
PERFORM CHECK-FOR-DB-ERROR.
MOVE ’PARIS’ TO S-CITY.
MOVE ZERO TO M.
MOVE ’NO’ TO NOTFOUND.

122 Database Language NDL

ANNEX

CALL ’find-first-s’ USING S-CITY DB-STATUS.
IF DB-STATUS = ’00100’

DISPLAY ’No suppliers for Paris’
STOP RUN.

PERFORM CHECK-FOR-DB-ERROR.
PERFORM UNTIL NOTFOUND = ’YES’

CALL ’keep-s’ USING DB-STATUS.
PERFORM CHECK-FOR-DB-ERROR.
CALL ’get-s’ USING S-STATUS DB-STATUS.
PERFORM CHECK-FOR-DB-ERROR.
IF S-STATUS GREATER THAN M

MOVE S-STATUS TO M.
CALL ’find-next-s’ USING S-CITY DB-STATUS.
IF DB-STATUS = ’00100’

MOVE ’YES’ TO NOTFOUND.
PERFORM CHECK-FOR-DB-ERROR.

END-PERFORM

MOVE ’NO’ TO LISTEMPTY.
PERFORM UNTIL LISTEMPTY = ’YES’

CALL ’find-free-modify’ USING M DB-STATUS.
IF DB-STATUS - ’00100’

MOVE ’YES’ TO LISTEMPTY.
PERFORM CHECK-FOR-DB-ERROR.

END-PERFORM

CALL ’commit-finish’ USING DB-STATUS.
PERFORM CHECK-FOR-DB-ERROR.
DISPLAY ’Processing complete’.
STOP RUN.

CHECK-FOR-DB-ERROR.
IF DB-STATUS NOT EQUAL ’00000’ AND ’00100’

DISPLAY ’Database error ’ DB-STATUS
STOP RUN.

A.4 Example suppliers and parts < module >

MODULE
LANGUAGE COBOL
SUBSCHEMA SUPPLIERS OF SUPPLIERS_AND__PARTS
SETLISTA

PROCEDURE begin STATUS
READY S SHARED UPDATE

PROCEDURE ’find-first-s’
S_CITY CHARACTER 15
STATUS

FIND FIRST S WHERE CITY = S CITY

A. Example suppliers and parts problem 123

ANNEX

PROCEDURE ’find-next-s’
S_CITY CHARACTER 15
STATUS

FIND NEXT S WHERE CITY = S_CITY

PROCEDURE ’keep-s’ STATUS
CONNECTS TO LISTA

PROCEDURE ’get-s’
S_STATUS NUMERIC 3
STATUS

GET S SET S STATUS TO SSTATUS

PROCEDURE ’find-free-modify’

S__STATUS NUMERIC 3
STATUS

FIND FIRST S IN LISTA FOR UPDATE
DISCONNECT MEMBER LISTA FROM LISTA
MODIFY S SET SSTATUS TO S_STATUS

PROCEDURE ’commit-finish’ STATUS
COMMIT FINISH

124 Database Language NDL

ANNEX

B. Example recursive set problem

(This annex is not an integral part of the body of the standard.)

The following annex provides an example <schema>, <subschema>, PL/I program, and <module> for a
"Recursive Set" problem.

B.l Example recursive set <schema>

SCHEMA ORGANIZATION

RECORD EMPLOYEE
UNIQUE ID
ITEM ID CHARACTER 5
ITEM NAME CHARACTER 20
ITEM MANAGERID CHARACTERS

SET ORGANIZATION_STRUCTURE
OWNER EMPLOYEE
ORDER LAST
MEMBER EMPLOYEE

INSERTION STRUCTURAL MEMBER.MANAGERID = OWNER.ID
RETENTION MANDATORY

B.2 Example recursive set < subschema>

SUBSCHEMA CHART OF ORGANIZATION

RECORD EMPLOYEE ALL
SET ORGANIZATION STRUCTURE

B.3 Example recursive set program

The following PL/I program lists a specific set occurrence of the the ORGANIZATION_STRUCTURE set
type in top-down, left-to-right order.

PRINT_CHART: PROC;
DCL begin ENTRY (CHAR(5));
DCL find_root_emp ENTRY (CHAR(5), CHAR(5));
DCL get_employee ENTRY (CHAR(20));
DCL find_next_as_member ENTRY (CHAR(5));
DCL find_member_as_owner ENTRY;
DCL find_owner_as_member ENTRY;
DCL finish ENTRY (CHAR(5));

B. Example recursive set problem 125

ANNEX

DCL DB_STATUS CHARACTERS);
DCL E_ID CHARACTERS);
DCL E_NAME CHARACTER(20);

CALL begin (DB_STATUS);
IF DB_STATUS - = ’00000’ THEN GOTO DB_ERROR;
GET LIST(E_ID);
CALL find_root_emp (E_ID, DB_STATUS);
IF DB_STATUS = ’00100’
THEN DO;

PUT LIST(’employee ’ | | E_ID | | ’ not found’);
RETURN;

END;
IF DB_STATUS - = ’00000’ THEN GOTO DB_ERROR;
CALL RECURSION;
CALL finish (DB_STATUS);
IF DB_STATUS = ’00000’ THEN GOTO DB_ERROR;
PUT LIST(’Processing complete’);
RETURN;

DB_ERROR:
PUT LIST(’database error ’ | | DB_STATUS);
RETURN;

RECURSION: PROCEDURE RECURSIVE;
CALL get_employee(E NAME);
PUT LIST(E_NAME);
CALL find_next_as_member(DB_STATUS);
DO WHILE DB_STATUS = ’00000’

CALL find_member_as_owner;
CALL RECURSION;
CALL find_owner_as_member;
CALL find_next_as_member (DB_STATUS);

END;
END RECURSION;

END PRINT_CHART;

126 Database Language NDL

ANNEX

B.4 Example recursive set <module>

MODULE
LANGUAGE PLI
SUBSCHEMA CHART OF ORGANIZATION

PROCEDURE begin STATUS
READY EMPLOYEE SHARED RETRIEVE

PROCEDURE find_root_emp
E_ID CHARACTER 5
STATUS

FIND FIRST EMPLOYEE WHERE ID = E_ID

PROCEDURE get_employee
E_NAME CHARACTER 20

GET EMPLOYEE SET E_NAME TO NAME

PROCEDURE find_next_as_member STATUS
FIND NEXT EMPLOYEE IN ORGANIZATION_STRUCTURE

AS MEMBER ORGANIZATION_STRUCTURE

PROCEDURE find_member_as_owner
FIND MEMBER ORGANIZATION_STRUCTURE

PROCEDURE find_owner_as_member
FIND OWNER ORGANIZATION_STRUCTURE

AS MEMBER ORGANIZATION_STRU CTURE

PROCEDURE finish STATUS
COMMIT FINISH

B. Example recursive set problem 127

ANNEX

C. Example bill of materials problem

(This annex is not an integral part of the body of the standard.)

The following annex provides an example <schema>, <subschema>, FORTRAN program, and <module>
for a "Bill of Materials" problem.

C.l Example bill of materials < schema>

SCHEMA PARTS

RECORD PART
UNIQUE ID
ITEM ID CHARACTER 5
ITEM NAME CHARACTER 20

RECORD STRUCTURE
UNIQUE PARENTID COMPONENTID
ITEM PARENTID CHARACTER 5
ITEM COMPONENTID CHARACTERS
ITEM QUANTITY INTEGER

SET USES
OWNER PART
ORDER NEXT
MEMBER STRUCTURE

INSERTION STRUCTURAL
STRUCTURE.PARENTID = PART.ID

RETENTION MANDATORY

SET WHERE_USED
OWNER PART
ORDER NEXT
MEMBER STRUCTURE

INSERTION STRUCTURAL
STRUCTURE.COMPONENTID = PART.ID

RETENTION MANDATORY

C. Example bill of materials problem 129

ANNEX

C.2 Example bill of materials <subschema>

SUBSCHEMA BILL_OF_MATERIALS OF PARTS

RECORD PART ALL
RECORD STRUCTURE ALL
SET USES
SET WHERE USED

C.3 Example bill of materials program

The following example FORTRAN program lists all assemblies, subassemblies, and parts necessary to build the
"axle". It neither accumulates total item counts nor lists a full indentured parts list.

SUBROUTINE BOMEXP(PRTID)
EXTERNAL begin, fndprt, fndcn, fnddg, fndowu, test, finish

CHARACTERS PRTID, PID, CID, DBSTAT
CHARACTER* 1 DBTST
INTEGER QTY

CALL begin (DBSTAT)
CALL CHKSTS (DBSTAT)
CALL fndprt (PRTID, DBSTAT)
IF (DBSTAT .EQ. ’00100’) THEN

WRITE(*,10) PRTID
RETURN

END IF
10 FORMAT(’ Part ’, A5, ’ not found’)

CALL CHKSTS (DBSTAT)
CALL GETCMP

20 CALL fnddg (PID, CID, QTY, DBSTAT)
IF (DBSTAT .EQ. ’00100’) GOTO 30
CALL CHKSTS (DBSTAT)
WRITE (*, 25) PID, QTY, CID

25 FORMAT(’ Each part’, A5, ’contains’, 13, ’of part’, A5
CALL fndowu (DBSTAT)
CALL CHKSTS (DBSTAT)
CALL test (DBTST, DBSTAT)
CALL CHKSTS (DBSTAT)
IF (DBTST .EQ. ’O’) THEN CALL GETCMP
GOTO 20

30 CALL finish (DBSTAT)
CALL CHKSTS (DBSTAT)
WRITE (*, 35)

35 FORMAT(’ Processing complete’)
RETURN

130 Database Language NDL

ANNEX

SUBROUTINE GETCMP
CHARACTER*5 DBSTAT

50 CALL fndcn (DBSTAT)
IF (DBSTAT .EQ. ’00000’) GOTO 50
CALL CHKSTS (DBSTAT)
RETURN

END
SUBROUTINE CHKSTS (DBSTAT)

CHARACTER*5 DBSTAT

IF DBSTAT .EQ. ’00000’) RETURN
40 WRITE(*, 45) DBSTAT
45 FORMATO Database error ’, A5)

STOP
END

END

C.4 Example bill of materials < module >

MODULE
LANGUAGE FORTRAN
SUBSCHEMA BILL_OF_MATERIALS OF PARTS
SET STRUCTURE_LIST

PROCEDURE begin STATUS
READY PART SHARED RETRIEVE
READY STRUCTURE SHARED RETRIEVE

PROCEDURE fndprt
PART_ID CHARACTER 5
STATUS

FIND FIRST PART WHERE ID = PART_ED

PROCEDURE fndcn STATUS
FIND NEXT STRUCTURE IN USES
CONNECT STRUCTURE TO STRUCTURE_LIST

PROCEDURE fnddg
PARENT_ID CHARACTERS
COMPONENT_ID CHARACTER 5
C OMPONENT_QTY INTEGER
STATUS

FIND FIRST IN STRUCTURE_LIST
DISCONNECT SESSION FROM STRUCTURE_LIST
GET STRUCTURE

SET PARENT_ID TO PARENTID
SET COMPONENT_ID TO COMPONENT®
SET COMPONENT_QTY TO QTY

PROCEDURE fndowu STATUS
FIND OWNER WHERE USED

C. Example bill of materials problem 131

ANNEX

PROCEDURE test TEST STATUS
TEST SET EMPTY USES

PROCEDURE finish STATUS
COMMIT FINISH

132 Database Language NDL

Index

0
ABSOLUTE 28,80
<access intent> 89, 76, 77, 78, 83, 86, 89, 91, 93
ALL 28,61,94,122,125,130
< alternative > 17, 17
AND 17, 28, 47, 48
<apostrophe representation> 20, 20, 21
<approximate numeric literal> 22, 6, 22, 23, 38
< approximate numeric type> 24, 24
AS 28,81
ASCENDING 28, 51, 52, 122
AUTOMATIC 28, 47, 93, 94

CASCADE 28, 78
<cascade specification> 78, 78
<character> 28, 28, 29
CHARACTER 24, 28, 71, 72, 121, 123, 124,

125, 127, 129, 131
<character representation> 22, 22, 23
<character string literal> 22, 6, 22, 23, 38
<character string type> 24, 24
CHECK 28, 39, 48, 54, 121
COBOL 13,28,65,71,121,122,123
<comment> 28, 6, 28, 29
COMMIT 28, 75, 124, 127, 132
<commit statement> 75, 14, 69, 70, 75
Ccomponent identifier> 56, 6, 19, 35, 39, 47, 48,

50, 51, 52, 54, 55, 56, 57, 86, 87
<component identifier match> 47, 6, 47, 48, 86,

87, 94
<component list> 61,61
<component name clause> 37, 36, 37
<component renamed> 62, 61, 62
<component type> 36, 10, 11, 12, 15, 33, 36, 37,
38, 48, 52, 56, 57, 61, 62, 93, 101, 102

<component view> 62, 61, 62
<component view identifier> 101, 6, 19, 70, 81,
83, 85, 86, 93, 94, 101, 102, 104

<component view name> 62, 12, 61, 62, 70, 93,
101

<condition> 17, 6, 15, 17, 18, 39, 54, 55, 80, 81,
83,119

CONNECT 28,76
Cconnect statement> 76, 15, 44, 52, 69, 76
CONTAINS 28,99
<cursors> 112, 14, 75, 92, 111, 112

<data type> 24, 9, 10, 12, 13, 24, 25, 36, 38, 48,
52, 69, 71, 72

<database key> 112, 10, 11, 14, 35, 39, 48, 50,
52, 55, 57, 72, 76, 77, 78, 79, 82, 83, 84, 85, 86,
87, 88, 91, 94, 96, 97, 99, 100, 101, 102, 107,
108, 109, 110, 112, 113

<database key identifier> 100, 10, 76, 77, 78, 80,
82, 88, 91, 96, 97, 99, 100

DEFAULT 28,38,43,44,51,52,121
<default clause> 38, 15, 36, 38, 93
DESCENDING 28,51,52
<digit> 20, 20, 22, 23, 28, 29
DISCONNECT 28, 77, 124, 131
<disconnect statement> 77, 69, 77
<domain specification> 80, 80, 81, 82
<dot style component identifier> 56, 56
<dot style component view identifier > 101, 101
<dot style subschema name clause> 60, 60
<dot style subschema specification> 65, 65
DOUBLE 24,25,28,71
DUPLICATES 28,43,51,122

0
EMPTY 28,98
ERASE 28, 78
<erase statement> 78, 69, 78, 79
<escape identifier> 20, 6, 20, 21
<escape identifier character> 20, 20, 21
<escape identifier character representation> 20,
20, 21

<exact numeric literal> 22, 22, 23, 38
< exact numeric type> 24, 24
EXCLUSIVE 28,89
<exponent> 22, 22, 23
<extents> 26, 10, 26, 27

0
FIND 28, 80, 123, 124, 127, 131
<find cursor disposition> 80, 80, 81, 83
<find intent> 80, 80, 82, 83
<find specific disposition> 80, 80

Index 133

INDEX

<find specific retention> 81,80,83
<find specification> 80, 80, 81, 82
<find statement> 80, 69, 80, 119
FINISH 28, 66, 75, 92, 124, 127, 132
FIRST 28, 43, 44, 51, 52, 80, 83, 123, 124, 127,

131
FIXED 24,28,49,72,87,91,122
FLOAT 24, 25, 28, 72
FOR 28,80
FORTRAN 13,28,65,71,129,130,131
FROM 28,77,124,131
FULL 28,78

0
GET 28,85,124,127,131
<get statement> 85, 69, 85

0
<identifier> 20, 6, 20, 28, 32, 34, 37, 41, 60, 61,
62, 63, 67, 69

IN 28,80,91,127,131
<insert cursor disposition> 107, 76, 87, 91, 94,

107, 108
<insert operation> 107, 44, 48, 76, 87, 91, 94,

107,108
<insert record> 107, 76, 87, 91, 94, 107
<insert set owner> 107, 76, 87, 91, 94, 107, 108
Cinsert set type> 107, 76, 87, 91, 94, 107
INSERTION 28, 47, 68, 122, 125, 129
<insertion clause> 47, 15, 45, 47, 68, 76, 86, 93,
94, 108, 119

< insertion mode> 47, 47
INTEGER 24, 25, 28, 71, 129, 130, 131
ITEM 28, 37, 62, 121, 122, 125, 129

0
KEY 28,51,122
<key clause> 51, 15, 43, 44, 45, 51, 52, 87, 108
<key duplicates> 51, 43, 44, 51, 52, 53
<key item> 51,51
<key word> 28, 6, 21, 28

0
LANGUAGE 28, 65, 123, 127, 131
<language clause> 65, 12, 65, 71
LAST 28,43,44,51,52,68,80,83,125
< length > 24,10,13,24,38,71,72
<letter> 20, 28, 29
<letter or digit> 20, 20
<literal> 22, 6, 9, 15, 19, 22, 27, 28, 38, 56
<lower case letter> 20, 20

M

MANDATORY 28, 49, 125, 129
<mantissa> 22, 22, 23
MANUAL 28, 47, 68, 76, 94
MEMBER 28, 46, 47, 48, 54, 56, 68, 81, 88, 100,

122, 124, 125, 127, 129
<member check clause> 54, 15, 45, 48, 54, 55,
87,108,119

<member clause> 45, 15, 16, 40, 43, 44, 45, 46,
47, 50, 51, 52, 54, 56, 68, 86, 87, 94, 119

<member component identifier> 47, 47, 48, 86,
87, 94

<member record name clause> 46, 45, 46, 68,
119

<member uniqueness clause> 50, 15, 45, 50, 87,
108

MODIFY 28, 86, 124
Cmodify statement> 86, 44, 52, 69, 86, 87
<module> 65, 6, 12, 13, 14, 19, 29, 65, 66, 67,
68, 70, 71, 72, 111, 112, 119, 121, 123, 125, 127,
129, 131

MODULE 28, 67, 123, 127, 131
<module name> 67, 12, 67
<module name clause> 67, 65, 67

N

<NDL statement> 69, 12, 14, 69, 70, 72, 101
< negated subcondition > 17,17,18
<newline> 28, 28, 29
NEXT 28, 43, 44, 80, 83, 108, 124, 127, 129, 131
<nonquote character> 22, 22, 23
NOT 17,28
NULL 28,97
NULLIFY 28,88
Cnullify cursor statement> 88, 69, 88
NUMERIC 28, 124
<numeric literal> 22, 6, 22

134 Database Language NDL

INDEX

OCCURS 26,28
<occurs clause> 26, 26, 27, 36, 56, 69, 70, 101,

103
OF 28, 56, 60, 65, 101, 122, 123, 125, 127, 130,

131
<of style component identifier> 56, 56
<of style component view identifier> 101, 101
<of style subschema name clause> 60, 60
<of style subschema specification> 65, 65
<operand> 19, 17, 18, 19, 27, 56, 85, 86, 94,

104, 105
< operand 1> 96,96
<operand 2> 96, 96
OPTIONAL 28, 49, 68, 76, 77
OR 17,28
ORDER 28, 43, 68, 122, 125, 129
<order clause> 43, 15, 40, 43, 44, 51, 68, 87, 108
<order duplicates> 43, 43, 44, 51, 53
<order option> 43, 43, 44
<owner> 112, 76, 79, 82, 84, 88, 91, 94, 98, 100,

112, 113
OWNER 28, 42, 47, 48, 54, 56, 68, 88, 100,

122, 125, 127, 129, 131
< owner clause> 42, 40, 42, 68, 119
<owner component identifier> 47, 47, 48, 86, 94

P

<parameter declaration> 69, 12, 13, 69, 70, 71,
72, 73, 103

<parameter identifier> 103, 19, 103, 104
<parameter name> 69, 69, 70, 72, 103
PARTIAL 28,78
PASCAL 28, 65, 71
PLI 28,65,71,127
<position> 112, 44, 79, 82, 84, 88, 94, 100, 108,

109, 110, 112, 113
<position member> 81, 80, 81, 84
<precision> 24,10,24,25,38,71,72
PRECISION 24,25,28,71
PRIOR 28, 43, 44, 80, 83, 108
<procedure> 69, 12, 13, 14, 15, 20, 65, 66, 69,
70,71,72,73

PROCEDURE 28, 69, 123, 124, 126, 127, 131,
132

<procedure name> 69, 12, 69, 70
PROHIBITED 28, 43, 44, 51, 52, 122
PROTECTED 28, 89

Q

<qualifier> 56, 47, 48, 54, 56
<quote representation> 22, 22, 23

0
READY 28, 89, 123, 127, 131
<readylist> 115, 14, 75, 76, 77, 78, 83, 86, 89,
91, 92, 93, 111, 115

<ready specification> 89, 14, 76, 77, 78, 83, 86,
89, 90, 91, 93, 115

<ready statement> 89, 14, 69, 89
REAL 24,25,28,71,72
RECONNECT 28,91
<reconnect statement> 91, 44, 52, 69, 91
RECORD 13, 28, 34, 43, 51, 61, 69, 70, 72, 80,

81, 83, 93, 94, 121, 122, 125, 129, 130
<record check clause> 39, 15, 33, 39, 87, 95, 119
<record cursor> 112, 14, 79, 82, 83, 85, 86, 88,
94, 100, 102, 112, 113

<record name> 34, 13, 34, 42, 43, 44, 46, 47, 52,
54, 56, 61, 119

<record name clause> 34, 33, 34
< record renamed > 61,61
<record type> 33, 10, 11, 12, 14, 15, 31, 33, 34,
35, 37, 38, 39, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 54, 55, 56, 61, 62, 63, 70, 72, 76, 77, 78,
81, 82, 83, 84, 86, 89, 91, 93, 94, 98, 99, 101,
102, 104, 107, 109, 119

<record type domain> 80, 80, 81, 82
<record type key item> 51, 43, 51, 52
<record type sequence> 43, 43, 44, 51, 52
<record uniqueness clause> 35, 15, 33, 35, 48,

87, 95
<record view> 61, 12, 59, 61, 62, 63, 81, 93,

101, 112, 113
<record view name> 61, 12, 61, 62, 68, 70, 72,
76, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91,
93, 94, 100, 101, 102, 104, 112, 113

<regular identifier> 20, 20, 21
<relation> 17, 6, 17, 18
< relation condition > 17,17,18
RELATIVE 28, 80, 83
<remove operation> 109, 77, 78, 86, 87, 91, 109
<remove record> 109, 77, 78, 86, 87, 91, 109
<remove set type> 109, 77, 78, 86, 87, 91, 109
RENAMED 28, 61, 62, 63, 122
RETAIN 28, 80, 81, 93
RETENTION 28, 49, 68, 122, 125, 129
<retention clause> 49, 16, 45, 49, 68, 76, 77, 87,

91

Index 135

INDEX

RETRIEVE 28,80,82,83,89,127,131
ROLLBACK 28,92
<rollback statement^ 92, 14, 66, 69, 70, 92

0
< scale > 24,10,24,38,71,72
<schema> 31, 6, 11, 12, 15, 16, 19, 29, 31, 32,

34, 41, 42, 46, 60, 61, 63, 65, 121, 125, 129
SCHEMA 28,32,121,129
<schema name> 32, 11, 32, 60, 65
<schema name clause> 32,31,32
<search orientation> 80, 80, 81, 83
<search specification> 80, 80, 81, 82, 83
<separator> 28, 6, 29
SESSION 28,88,100,131
<session cursor> 112, 13, 14, 72, 79, 82, 83, 85,

88, 94, 100,112, 113
<session state> 111, 13, 14, 66, 73, 89, 111, 113
SET 28, 41, 63, 68, 81, 93, 98, 99, 104, 122, 123,

124, 125, 127, 129, 130, 131, 132
<set cursor> 112, 14, 44, 76, 79, 82, 83, 84, 88,
91, 94, 98, 100, 107, 108, 109, 110, 112, 113

<set domain> 80, 80, 81, 82, 83
<set name> 41, 11, 41, 63, 78, 87, 94, 107, 109
<set name clause> 41,40,41,68
<set renamed> 63, 63
<set type> 40, 11, 12, 13, 14, 15, 16, 31, 40, 41,
42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55,
56, 63, 68, 70, 76, 77, 78, 81, 82, 84, 86, 87, 91,
93, 94, 98, 99, 100, 107, 108, 109, 113, 114, 119

<set view> 63, 12, 59, 63, 68, 93, 94, 112, 113
<set view name> 63, 12, 63, 68, 70, 76, 77, 80,

81, 82, 83, 84, 86, 88, 91, 93, 94, 98, 99, 100,
107, 109, 112, 113

<share specification> 89, 89
SHARED 28, 89, 123, 127, 131
<signed integer> 22, 22, 23, 24, 80, 81, 83
<simple condition> 17,17,18
SORTED 28, 43, 122
<sorted order> 43,43,44,51,52
<space> 28,28
<special character> 28, 28, 29
STATUS 13, 14, 28, 69, 70, 72, 73, 117, 123,

124,127,131
STORE 28,93
<store retention> 93, 93, 94
<store statement 93, 38, 44, 52, 69, 93, 95
STRUCTURAL 28, 47, 48, 86, 94, 119, 122, 125,

129
<structural specification> 47, 47, 119
< subcondition > 17, 17

<subschema> 59, 12, 14, 29, 59, 60, 61, 62, 63,
65, 68, 70, 75, 81, 92, 93, 94, 98, 112, 121, 122,
125, 129, 130

SUBSCHEMA 28, 60, 65, 80, 122, 123, 125,
127, 130, 131

<subschema domain> 80, 80, 81, 82
<subschema name> 60, 12, 60, 65
<subschema name clause> 60, 6, 59, 60
<subschema specification> 65, 6, 12, 65
<subscripts> 27, 6, 10, 27, 35, 47, 50, 51, 56, 57,

101, 102, 103
SYSTEM 11,28,42,68

0
<temporary set> 114, 13, 14, 75, 92, 114
Ctemporary set specification> 68, 13, 68, 112,

113
<temporary set specifications> 68, 12, 65, 68, 70,

111, 114, 119
<temporary sets> 114, 14,75,92, 111, 114
TEST 13, 28, 69, 70, 73, 96, 97, 98, 99, 132
<test database key equal statement> 96, 6, 69, 96
<test database key null statement> 97, 69, 97
<test set empty statement> 98, 69, 98
<test set membership statement> 99, 69, 99
<test statement> 69, 69, 70
TO 28,76,104,124,127,131
<to database move> 104, 86, 93, 94, 104
<to database move clause> 104, 86, 94, 104
<to parameter move> 104, 85, 104
<to parameter move clause> 104, 85, 104
TYPE 28,43,51

< underscore > 20, 20

UNIQUE 28, 35, 50, 121, 125, 129
<unsigned integer> 22, 10, 22, 23, 24, 26, 27
UPDATE 28, 76, 77, 78, 80, 83, 86, 89, 91, 93,

123,124
<upper case letter> 20, 20

W

WHERE 28,80,81,123,124,127,131
WITH 28,78
<word> 28,29

136 Database Language NDL

'

X3.115-1984 Unformatted 80 Megabyte Trident Pack for Use

at 370 tpi and 6000 bpi (General, Physical, and Magnetic Charac¬

teristics)

X3.116-1986 Recorded Magnetic Tape Cartridge, 4-Track, Serial

0.250 Inch (6.30 mm) 6400 bpi (252 bpmm). Inverted Modified

Frequency Modulation Encoded

X3.117-1984 Printable/lmage Areas for Text and Facsimile Com¬

munication Equipment

X3.118-1984 Financial Services — Personal Identification Number

- PIN Pad

X3.119-1984 Contact Start/Stop Storage Disk, 1 58361 Flux Trans¬

itions per Track, 8.268 Inch (210 mm) Outer Diameter and 3.937

inch (100 mm) Inner Diameter

X3.120-1984 Contact Start/Stop Storage Disk

X3.121-1984 Two-Sided, Unformatted, 8-Inch (200-mm), 48-tpi,

Double-Density, Flexible Disk Cartridge for 13 262 ftpr Two-Headed

Application

X3.122-1986 Computer Graphics Metafile for the Storage and

Transfer of Picture Description Information

X3.124-1985 Graphical Kernel System (GKS) Functional

Description

X3.124.1-1985 Graphical Kernel System (GKS) FORTRAN

Binding

X3.125-1985 Two-Sided, Double-Density, Unformatted 5.25-inch

(1 30-mm), 48-tpi (1,9-tpmm). Flexible Disk Cartridge for 7958

bpr Use

X3.126-1986 One- or Two-Sided Double-Density Unformatted

5.25-inch (1 30-mm), 96 Tracks per Inch, Flexible Disk Cartridge

X3.127-1987 Unrecorded Magnetic Tape Cartridge for Information

I nterchange

X3.128-1986 Contact Start-Stop Storage Disk — 83 000 Flux

Transitions per Track, 1 30-mm (5.118-in) Outer Diameter and

40-mm (1.575-in) Inner Diameter

X3.129-1986 Intelligent Peripheral Interface, Physical Level

X3.130-1986 Intelligent Peripheral Interface, Logical Device

Specific Command Sets for Magnetic Disk Drive

X3.131-1986 Small Computer Systems Interface

X3.132-1987 Intelligent Peripheral Interface — Logical Device

Generic Command Set for Optical and Magnetic Disks

X3.133-1986 Database Language—NDL

X3.135-1986 Database Language — SQL

X3.136-1986 Serial Recorded Magnetic Tape Cartridge for

Information Interchange, Four and Nine Track

X3.139-1987 Fiber Distributed Data Interface (FDDI) Token Ring

Media Access Control (MAC)

X3.140-1986 Open Systems Interconnection — Connection

Oriented Transport Layer Protocol Specification

X3.141-1987 Data Communication Systems and Services — Mea¬

surement Methods for User-Oriented Performance Evaluation

X3.146-1987 Device Level Interface for Streaming Cartridge

and Cassette Tape Drives

X3.147-1987 Intelligent Peripheral Interface — Logical Device

Generic Command Set for Magnetic Tapes

X3.153-1987 Open Systems Interconnection — Basic Connection

Oriented Session Protocol Specification

X11.1-1977 Programming Language MUMPS

IEEE 416-1978 Abbreviated Test Language for All Systems

(ATLAS)

IEEE 716-1982 Standard C/ATLAS Language

IEEE 717-1982 Standard C/ATLAS Syntax

IEEE 770X3.97-1983 Programming Language PASCAL

IEEE 771-1980 Guide to the Use of ATLAS

ISO 8211-1986 Specifications for a Data Descriptive File for

Information Interchange

MIL-STD-1815A-1983 Reference Manual for the Ada Programming

Language

NBS-ICST 1-1986 Fingerprint Identification — Data Format for

Information Interchange

X3/TRI-82 Dictionary for Information Processing Systems

(Technical Report)

American National Standards for Information Processing
X3.1-1976 Synchronous Signaling Rates for Data Transmission

X3.2-1970 Print Specifications for Magnetic Ink Character

Recognition

X3.4-1986 Coded Character Sets — 7-Bit ASCII

X3.5-1970,.FIowchart Symbols and Their Usage

X3.6-1965 Perforated Tape Code

X3.9-1978 Programming Language FORTRAN

X3.11-1969 General Purpose Paper Cards

X3.14-1983 Recorded Magnetic Tape (200 CPI, NRZI)

X3.15-1976 Bit Sequencing of the American National Standard

Code for Information Interchange in Serial-by-Bit Data Transmission

X3.16-1976 Character Structure and Character Parity Sense for

Serial-by-Bit Data Communication in the American National Stan¬

dard Code for Information Interchange

X3.17-1981 Character Set for Optical Character Recognition

(OCR-A)

X3.18-1974 One-Inch Perforated Paper Tape

X3.19-1974 Eleven-Sixteenths-Inch Perforated Paper Tape

X3.20-1967 Take-Up Reels for One-Inch Perforated Tape

X3.21-1967 Rectangular Holes in Twelve-Row Punched Cards

X3.22-1983 Recorded Magnetic Tape (800 CPI, NRZI)

X3.23-1985 Programming Language COBOL

X3.25-1976 Character Structure and Character Parity Sense for

Parallel-by-Bit Data Communication in the American National

Standard Code for Information Interchange

X3.26-1980 Hollerith Punched Card Code

X3.27-1978 Magnetic Tape Labels and File Structure

X3.28-1976 Procedures for the Use of the Communication Control

Characters of American National Standard Code for Information

Interchange in Specified Data Communication Links

X3.29-1971 Specifications for Properties of Unpunched Oiled

Paper Perforator Tape

X3.30-1986 Representation for Calendar Date and Ordinal Date

X3.31-1973 Structure for the Identification of the Counties of the

United States

X3.32-1973 Graphic Representation of the Control Characters of

American National Standard Code for Information Interchange

X3.34-1972 Interchange Rolls of Perforated Tape

X3.37-1980 Programming Language APT

X3.38-1972 Identification of States of the United States

(Including the District of Columbia)

X3.39-1986 Recorded Magnetic Tape (1600 CPI, PE)

X3.40-1983 Unrecorded Magnetic Tape (9-Track 800 CPI, NRZI;

1600 CPI, PE; and 6250 CPI, GCR)

X3.41-1974 Code Extension Techniques for Use with the 7-Bit

Coded Character Set of American National Standard Code for Infor¬

mation Interchange

X3.42-1975 Representation of Numeric Values in Character Strings

X3.43-1986 Representations of Local Time of Day

X3.44-1974 Determination of the Performance of Data Communi¬

cation Systems

X3.45-1982 Character Set for Handprinting

X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General, Physical,

and Magnetic Characteristics)

X3.47-1977 Structure for the Identification of Named Populated

Places and Related Entities of the States of the United States for

Information Interchange

X3.48-1986 Magnetic Tape Cassettes (3.81-mm [0.150-Inch)

Tape at 32 bpmm [800 bpi], PE)

X3.49-1975 Character Set for Optical Character Recognition (OCR-B)

X3.50-1986 Representations for U.S. Customary, SI, and Other

Units to Be Used in Systems with Limited Character Sets

X3.51-1986 Representations of Universal Time, Local Time Differ¬

entials, and United States Time Zone References

X3.52-1976 Unrecorded Single-Disk Cartridge (Front Loading,

2200 BPI) (General, Physical, and Magnetic Requirements)

X3.53-1976 Programming Language PL/I

X3.54-1986 Recorded Magnetic Tape (6250 CPI, Group Coded

Recording)

X3.55-1982 Unrecorded Magnetic Tape Cartridge, 0.250 Inch

(6.30 mm), 1600 bpi (63 bpmm). Phase encoded

X3.56-1986 Recorded Magnetic Tape Cartridge, 4 Track, 0.250

Inch (6.30 mm), 1600 bpi (63 bpmm). Phase Encoded

X3.57-1977 Structure for Formatting Message Headings Using the

American National Standard Code for Information Interchange for

Data Communication Systems Control

X3.58-1977 Unrecorded Eleven-Disk Pack (General, Physical, and

Magnetic Requirements)

X3.60-1978 Programming Language Minimal BASIC

X3.61-1986 Representation of Geographic Point Locations

X3.62-1987 Paper Used in Optical Character Recognition (OCR)

Systems

X3.63-1981 Unrecorded Twelve-Disk Pack (100 Megabytes) (Gen¬

eral, Physical, and Magnetic Requirements)

X3.64-1979 Additional Controls for Use with American National

Standard Code for Information Interchange

X3.66-1979 Advanced Data Communication Control Procedures

(ADCCP)

X3.72-1981 Parallel Recorded Magnetic Tape Cartridge, 4 Track,

0.250 Inch (6.30 mm), 1600 bpi (63 bpmm), Phase Encoded

X3.73-1980 Single-Sided Unformatted Flexible Disk Cartridge

(for 6631-BPR Use)

X3.74-1981 Programming Language PL/I, General-Purpose Subset

X3.76-1981 Unformatted Single-Disk Cartridge (Top Loading,

200 tpi 4400 bpi) (General, Physical, and Magnetic Requirements)

X3.77-1980 Representation of Pocket Select Characters

X3.78-1981 Representation of Vertical Carriage Positioning Char¬

acters in Information Interchange

X3.79-1981 Determination of Performance of Data Communica¬

tions Systems That Use Bit-Oriented Communication Procedures

X3.80-1981 Interfaces between Flexible Disk Cartridge Drives

and Their Host Controllers

X3.82-1980 One-Sided Single-Density Unformatted 5.25-Inch

Flexible Disk Cartridge (for 3979-BPR Use)

X3.83-1980 ANSI Sponsorship Procedures for ISO Registration

According to ISO 2375

X3.84-1981 Unformatted Twelve-Disk Pack (200 MegabytesHGen-

eral, Physical, and Magnetic Requirements

X3.85-1981 1/2-Inch Magnetic Tape Interchange Using a Self

Loading Cartridge

X3.86-1980 Optical Character Recognition (OCR) Inks

X3.88-1981 Computer Program Abstracts

X3.89-1981 Unrecorded Single-Disk, Double-Density Cartridge

(Front Loading, 2200 bpi, 200 tpi) (General, Physical, and Mag¬

netic Requirements)

X3.91M-1987 Storage Module Interfaces

X3.92-1981 Data Encryption Algorithm

X3.93M-1981 OCR Character Positioning

X3.94-1985 Programming Language PANCM

X3.95-1982 Microprocessors — Hexadecimal Input/Output, Using

5-Bit and 7-Bit Teleprinters

X3.96-1983 Continuous Business Forms (Single-Part)

X3.98-1983 Text Information Interchange in Page Image Format

(PIF)

X3.99-1983 Print Quality Guideline for Optical Character Recogni¬

tion (OCR)

X3.100-1983 Interface Between Data Terminal Equipment and

Data Circuit-Terminating Equipment for Packet Mode Operation

with Packet Switched Data Communications Network

X3.101-1984 Interfaces Between Rigid Disk Drivels) and Host(s)

X3.102-1983 Data Communication Systems and Services — User-

Oriented Performance Parameters

X3.103-1983 Unrecorded Magnetic Tape Minicassette for Informa¬

tion Interchange, Coplanar 3.81 mm (0.150 in)

X3.104-1983 Recorded Magnetic Tape Minicassette for Informa¬

tion Interchange, Coplanar 3.81 mm (0.150 in). Phase Encoded

X3.105-1983 Data Link Encryption

X3.106-1983 Modes of Operation for the Data Encryption Algorithm

X3.110-1983 Videotex/Teletext Presentation Level Protocol Syntax

X3.111-1986 Optical Character Recognition (OCR) Matrix Charac¬

ter Sets for OCR-M
X3.112-1984 14-in (356-mm) Diameter Low-Surface-Friction

Magnetic Storage Disk

X3.113-1987 Programming Language FULL BASIC

X3.114-1984 Alphanumeric Machines; Coded Character Sets for

Keyboard Arrangements in ANSI X4.23-1982 and X4.22-1983

(Continued on reverse)

March 1987

