
A
N

S
I/

M
IL

-S
T

D
-1

8
1

5
A

-1
9

8
3

 
ANSI/MIL-STD-1815A-1983 



American 
National 
Standard 

An American National Standard implies a consensus of those substantially concerned with its 

scope and provisions. An American National Standard is intended as a guide to aid the manu¬ 

facturer, the consumer, and the general public. The existence of an American National Stan¬ 

dard does not in any respect preclude anyone, whether he has approved the standard or not, 

from manufacturing, marketing, purchasing, or using products, processes, or procedures not 

conforming to the standard. American National Standards are subject to periodic review and 

users are cautioned to obtain the latest editions. 

The American National Standards Institute does not develop standards and will in no circum¬ 

stances give an interpretation of any American National Standard. Moreover, no person shall 

have the right or authority to issue an interpretation of an American National Standard in the 

name of the American National Standards Institute. 

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any 

time. The procedures of the American National Standards Institute require that action be 

taken to reaffirm, revise, or withdraw this standard no later than five years from the date of 

approval. Purchasers of American National Standards may receive current information on all 

standards by calling or writing the American National Standards Institute. 

This standard has been adopted for Federal Government use. 

Details concerning its use within the Federal Government are contained in Federal In¬ 

formation Processing Standards Publication 119, ADA. For a complete list of the pub¬ 

lications available in the Federal Information Processing Standards Series, write to the 

Standards Processing Coordinator (ADP), Institute for Computer Sciences and Technol¬ 

ogy, National Bureau of Standards, Gaithersburg, MD 20899. 

Published by 

American National Standards Institute 

1430 Broadway, New York, New York 10018 

Printed in the United States of America 

PC2MS86/1 8 

•> 



ANSI/M IL-STD 

1815A-1983 

American National Standard 
Reference Manual for the 

Ada Programming Language 

Sponsor 

United States Department of Defense 

Approved February 17, 1983 

American National Standards Institute, Inc 

®Ada is a registered trademark of the U.S. Government, Ada Joint Program Office 



(The information on this page is n.ot a part of American National Standard Reference Manual for the Ada 
Programming Language, ANSI/MIL-STD-1815A-1983.) 

(R) 
Ada is a registered trademark of the United States Government, Department of 

Defense, Under Secretary for Research and Engineering. Its use is administered by the 

Ada Joint Program Office (AJPO). In all contexts, use of the term "Ada " should indicate 

conformance to the standard. In keeping with policies on voluntary conformance, use of 

the term Ada is equivalent to a voluntary statement of conformance to the standard. 

The use of the trademarked term Ada will be made freely available to those who use it to 

indicate conformance to the standard and in accordance with the following guidelines: 

In any published material the first appearance of the term Ada must be properly 
acknowledged and include the statement "Ada is a registered trademark of the 
U.S. Government (Ada Joint Program Office). " 

Describing, advertising, or promoting a language processor as an "Ada" 
processor is equivalent to making a voluntary statement of conformance to 
ANSl/MIL-STD- 1815A. 

The term Ada may be used in describing language processors which are not 
completely conforming or are not making a claim of conformance provided that 
there is a precise, easily visible statement of their non-conformance at the same 
time and in the same context. 

Uses of the term Ada other than those described above, including all organizations, 

companies and product names incorporating or utilizing the term Ada, need written 

authorization from the AJPO. Those persons advertising or otherwise promoting a 

language processor asserted as being a standard Ada processor for sale or public use 

are required to provide the AJPO with evidence sufficient to demonstrate conformance 

to the Ada standard. 

Use of the trademark does not imply any endorsement or warranty of the product by 

either DoD or ANSI. 

The Department of Defense (DoD), as the trademark owner, will allow others to use the 

Ada trademark free of charge and will not take action to prevent use of the Ada 

trademark so long as the trademark is used properly according to the above policy. 

Misuse of the trademark may lead to legal action. 

In the interest of information interchange, all users of this standard are encouraged to 

contact the Ada Joint Program Office, Department of Defense, OUSD(R&E), Washington, 

D.C. 20301, U.S.A. Users of the trademark and those reprinting the standard are 

required to notify the AJPO. 

Copyright 1980, 1982, 1983 owned by the United States Government as represented by the Under 

Secretary of Defense, Research and Engineering. All rights reserved. Provided that notice of 

copyright is included on the first page, this document may be copied in its entirety without 

alteration or as altered by (1) adding text that is clearly marked as an insertion; (2) shading o™ 
highlighting existing text; (3) deleting examples. Permission to publish other excerpts should be 

obtained from the Ada Joint Program Office, OUSDRE(R&AT), The Pentagon, Washington, D.C. 

20301, U.S.A. 



F Of© WOrd (This Foreword is not a part of American National Standard Reference Manual for the Ada Programming 
Language, ANSI/MIL-STD-1815A-1983.) 

Ada is the result of a collective effort to design a common language for programming large scale and real¬ 
time systems. 

The common high order language program began in 1974. The requirements of the United States Depart¬ 
ment of Defense were formalized in a series of documents which were extensively reviewed by the Ser¬ 
vices, industrial organizations, universities, and foreign military departments. The Ada language was 
designed in accordance with the final (1978) form of these requirements, embodied in the Steelman 
specification. 

The Ada design team was led by Jean D. Ichbiah and has included Bernd Krieg-Brueckner, Brian A. 
Wichmann, Henry F. Ledgard, Jean-C/aude Heliard, Jean-Loup Gailly, Jean-Raymond Abrial, John G.P. 
Barnes, Mike Woodger, Olivier Roubine, Paul N. HUfinger, and Robert Firth. 

At various stages of the project, several people closely associated with the design team made major con¬ 
tributions. They include J.B. Goodenough, R.F. Brender, M.W. Davis, G. Ferran, K. Lester, L. MacLaren, E. 
Morel, I.R. Nassi, I.C. Pyle, S.A. Schuman, and S.C. Vestal. 

Two parallel efforts that were started in the second phase of this design had a deep influence on the 
language. One was the development of a formal definition using denotational semantics, with the participa¬ 
tion of V. Donzeau-Gouge, G. Kahn, and B. Lang. The other was the design of a test translator with the par¬ 
ticipation of K. Ripken, P. Boullier, P. Cadiou, J. Holden, J.F. Hueras, R.G. Lange, and D.T. Cornhill. The 
entire effort benefitted from the dedicated assistance of Lyn Churchill and Marion Myers, and the effective 
technical support of B. Gravem, W.L. Heimerdinger, and P. Cleve. H.G. Schmitz served as program 
manager. 

Over the five years spent on this project, several intense week-long design reviews were conducted, with 
the participation of P. Belmont, B. Brosgol, P. Cohen, R. Dewar, A. Evans, G. Fisher, H. Harte, A.L. Hisgen, 
P. Knueven, M. Kronental, N. Lomuto, E. Ploedereder, G. Seegmue/ler, V. Stenning, D. Taffs, and also F. 
Belz, R. Converse, K. Correll, A.N. Habermann, J. Sammet, S. Squires, J. Teller, P. Wegner, and P.R. 
Wetherall. 

Several persons had a constructive influence with their comments, criticisms and suggestions. They include 
P. Brinch Hansen, G. Goos, C.A.R. Hoare, Mark Rain, W.A. Wulf, and also E. Boebert, P. Bonnard, H. 
Clausen, M. Cox, G. Dismukes, R. Eachus, T. Froggatt, H. Ganzinger, C. Hewitt, S. Kamin, R. Kotler, 0. 
Lecarme, JA.N. Lee, J.L. Mansion, F. Mine/, T. Phinney, J. Roehrich, V. Schneider, A. Singer, D. Slosberg, 
I.C. Wand, the reviewers of Ada-Europe, AdaTEC, Afcet, those of the LMSC review team, and those of the 
Ada Tokyo Study Group. 

These reviews and comments, the numerous evaluation reports received at the end of the first and second 
phase, the nine hundred language issue reports and test and evaluation reports received from fifteen dif¬ 
ferent countries during the third phase of the project, the thousands of comments received during the ANSI 
Canvass, and the on-going work of the IF/P Working Group 2.4 on system implementation languages and 
that of the Purdue Europe LTPL-E committee, all had a substantial influence on the final definition of Ada. 

The Military Departments and Agencies have provided a broad base of support including funding, extensive 
reviews, and countless individual contributions by the members of the High Order Language Working Group 
and other interested personnel. In particular, William A. Whitaker provided leadership for the program dur¬ 
ing the formative stages. David A. Fisher was responsible for the successful development and refinement of 
the language requirement documents that led to the Steelman specification. 

This language definition was developed by Cii Honeywell Bull and later Alsys, and by Honeywell Systems 
and Research Center, under contract to the United States Department of Defense. William E. Carlson, and 
later Larry E. Druffel and Robert F. Mathis, served as the technical representatives of the United States 
Government and effectively coordinated the efforts of all participants in the Ada program. 



This reference manual was prepared with a formatter specialized for Ada texts. It was developed by Jon F. 
Hueras for Multics, using the Cii Honeywell Bull photocomposition system. 



Table of Contents 

Introduction 
1.1 Scope of the Standard 1- 1 
1.1.1 Extent of the Standard 1- 1 
1.1.2 Conformity of an Implementation with the Standard 1- 2 
1.2 Structure of the Standard 1- 3 
1.3 Design Goals and Sources 1- 3 
1.4 Language Summary 1- 4 
1.5 Method of Description and Syntax Notation 1- 7 
1.6 Classification of Errors 1- 8 

Lexical Elements 
2.1 Character Set 2- 1 
2.2 Lexical Elements, Separators, and Delimiters 2- 2 
2.3 Identifiers 2- 4 
2.4 Numeric Literals 2- 4 
2.4.1 Decimal Literals 2- 4 
2.4.2 Based Literals 2- 5 
2.5 Character Literals 2- 6 
2.6 String Literals 2- 6 
2.7 Comments 2- 7 
2.8 Pragmas 2- 7 
2.9 Reserved Words 2- 9 
2.10 Allowable Replacements of Characters 2- 9 

Declarations and Types 
3.1 Declarations 3- 1 
3.2 Objects and Named Numbers 3- 2 
3.2.1 Object Declarations 3- 3 
3.2.2 Number Declarations 3- 5 
3.3 Types and Subtypes 3- 6 
3.3.1 Type Declarations 3- 7 
3.3.2 Subtype Declarations 3- 8 
3.3.3 Classification of Operations 3- 9 
3.4 Derived Types 3-10 
3.5 Scalar Types 3-12 
3.5.1 Enumeration Types 3-13 
3.5.2 Character Types 3-14 
3.5.3 Boolean Types 3-15 
3.5.4 Integer Types 3-15 
3.5.5 Operations of Discrete Types 3-16 
3.5.6 Real Types 3-19 
3.5.7 Floating Point Types 3-20 
3.5.8 Operations of Floating Point Types 3-22 
3.5.9 Fixed Point Types 3-24 
3.5.10 Operations of Fixed Point Types 3-26 
3.6 Array Types 3-27 
3.6.1 Index Constraints and Discrete Ranges 3-29 
3.6.2 Operations of Array Types 3-31 
3.6.3 The Type String 3-32 
3.7 Record Types 3-33 
3.7.1 Discriminants 3-34 
3.7.2 Discriminant Constraints 3-36 
3.7.3 Variant Parts 3-38 
3.7.4 Operations of Record Types 3-39 
3.8 Access Types 3-40 
3.8.1 Incomplete Type Declarations 3-41 
3.8.2 Operations of Access Types 3-42 
3.9 Declarative Parts 3-43 

I 



4. Names and Expressions 
4.1 Names 4- 1 
4.1.1 Indexed Components 4- 2 
4.1.2 Slices 4- 3 
4.1.3 Selected Components 4- 3 
4.1.4 Attributes 4- 5 
4.2 Literals 4- 6 
4.3 Aggregates 4- 7 
4.3.1 Record Aggregates 4- 8 
4.3.2 Array Aggregates 4- 9 
4.4 Expressions 4-11 
4.5 Operators and Expression Evaluation 4-12 
4.5.1 Logical Operators and Short-circuit Control Forms 4-13 
4.5.2 Relational Operators and Membership Tests 4-14 
4.5.3 Binary Adding Operators 4-16 
4.5.4 Unary Adding Operators 4-16 
4.5.5 Multiplying Operators 4-17 
4.5.6 Highest Precedence Operators 4-19 
4.5.7 Accuracy of Operations with Real Operands 4-20 
4.6 Type Conversions 4-21 
4.7 Qualified Expressions 4-24 
4.8 Allocators 4-24 
4.9 Static Expressions and Static Subtypes 4-26 
4.10 Universal Expressions 4-27 

5. Statements 
5.1 Simple and Compound Statements - Sequences of Statements 5- 1 
5.2 Assignment Statement 5- 2 
5.2.1 Array Assignments 5- 3 
5.3 If Statements 5- 4 
5.4 Case Statements 5- 5 
5.5 Loop Statements 5- 7 
5.6 Block Statements 5- 9 
5.7 Exit Statements 5-10 
5.8 Return Statements 5-10 
5.9 Goto Statements 5-11 

6. Subprograms 
6.1 Subprogram Declarations 6- 1 
6.2 Formal Parameter Modes 6- 3 
6.3 Subprogram Bodies 6- 4 
6.3.1 Conformance Rules 6- 5 
6.3.2 Inline Expansion of Subprograms 6- 6 
6.4 Subprogram Calls 6- 7 
6.4.1 Parameter Associations 6- 8 
6.4.2 Default Parameters 6- 9 
6.5 Function Subprograms 6-10 
6.6 Parameter and Result Type Profile - Overloading of Subprograms 6-10 
6.7 Overloading of Operators 6-1 1 

7. Packages 

7.1 Package Structure 7- 1 
7.2 Package Specifications and Declarations 7- 2 
7.3 Package Bodies 7- 3 
7.4 Private Type and Deferred Constant Declarations 7- 5 
7.4.1 Private Types 7- 5 
7.4.2 Operations of a Private Type 7- 6 
7.4.3 Deferred Constants 7- 9 
7.4.4 Limited Types 7- 9 
7.5 Example of a Table Management Package 7-11 
7.6 Example of a Text Handling Package 7-12 



8. Visibility Rules 
8.1 Declarative Region 8- 1 
8.2 Scope of Declarations 8- 2 
8.3 Visibility 8- 3 
8.4 Use Clauses 8- 6 

8.5 Renaming Declarations 8- 8 

8.6 The Package Standard 8-10 
8.7 The Context of Overload Resolution 8-11 

9. Tasks 

9.1 Task Specifications and Task Bodies 9- i 
9.2 Task Types and Task Objects 9- 3 

9.3 Task Execution - Task Activation 9- 5 

9.4 Task Dependence - Termination of Tasks 9- 6 

9.5 Entries, Entry Calls, and Accept Statements 9- 8 

9.6 Delay Statements, Duration, and Time 9-10 
9.7 Select Statements 9-12 
9.7.1 Selective Waits 9-12 
9.7.2 Conditional Entry Calls 9-14 
9.7.3 Timed Entry Calls 9-15 
9.8 Priorities 9-16 
9.9 Task and Entry Attributes 9-17 
9.10 Abort Statements 9-18 
9.11 Shared Variables 9-19 
9.12 Example of Tasking 9-20 

10. Program Structure and Compilation Issues 
10.1 Compilation Units - Library Units 10- 1 
10.1.1 Context Clauses - With Clauses 10- 2 
10.1.2 Examples of Compilation Units 10- 4 
10.2 Subunits of Compilation Units 10- 6 

10.2.1 Examples of Subunits 10- 7 

10.3 Order of Compilation 10- 9 

10.4 The Program Library 10-11 
10.5 Elaboration of Library Units 10-11 
10.6 Program Optimization 10-12 

11. Exceptions 
11.1 Exception Declarations 11- 1 
11.2 Exception Handlers 11-3 
11.3 Raise Statements 11-4 
11.4 Exception Handling 11-4 
11.4.1 Exceptions Raised During the Execution of Statements 11-4 
11.4.2 Exceptions Raised During the Elaboration of Declarations 11- 7 
11.5 Exceptions Raised During Task Communication 11-8 
11.6 Exceptions and Optimization 11-9 
11.7 Suppressing Checks 11-10 



1. Generic Units 
12.1 Generic Declarations 12- 1 

12.1.1 Generic Formal Objects 12- 3 

12.1.2 Generic Formal Types 12- 4 

12.1.3 Generic Formal Subprograms 12- 6 

12.2 Generic Bodies 12- 6 

12.3 Generic Instantiation 12- 8 

12.3.1 Matching Rules for Formal Objects 12-10 

12.3.2 Matching Rules for Formal Private Types 12-1 1 

12.3.3 Matching Rules for Formal Scalar Types 12-11 

12.3.4 Matching Rules for Formal Array Types 12-12 

12.3.5 Matching Rules for Formal Access Types 12-13 
12.3.6 Matching Rules for Formal Subprograms 12-14 
12.4 Example of a Generic Package 12-15 

13. Representation Clauses and Implementation-Dependent Features 
13.1 Representation Clauses 13- 1 
13.2 Length Clauses 13- 3 
13.3 Enumeration Representation Clauses 13- 5 
13.4 Record Representation Clauses 13- 5 
13.5 Address Clauses 13- 7 
13.5.1 Interrupts 13- 8 
13.6 Change of Representation 13- 9 
13.7 The Package System 13- 9 
13.7.1 System-Dependent Named Numbers 13-11 
13.7.2 Representation Attributes 13-12 
13.7.3 Representation Attributes of Real Types 13-13 
13.8 Machine Code Insertions 13-14 
13.9 Interface to Other Languages 13-15 # 
13.10 Unchecked Programming 13-16 
13.10.1 Unchecked Storage Deallocation 13-16 
13.10.2 Unchecked Type Conversions 13-17 

. Input-Output 
14.1 External Files and File Objects 14- 1 

14.2 Sequential and Direct Files 14- 2 
14.2.1 File Management 14- 3 
14.2.2 Sequential Input-Output 14- 5 
14.2.3 Specification of the Package SequentiaLIO 14- 6 
14.2.4 Direct Input- Output 14- 7 
14.2.5 Specification of the Package Direct_IO 14- 8 
14.3 Text Input- Output 14- 9 
14.3.1 File Management 14-1 1 
14.3.2 Default Input and Output Files 14-1 1 
14.3.3 Specification of Line and Page Lengths 14-12 
14.3.4 Operations on Columns, Lines, and Pages 14-13 
14.3.5 Get and Put Procedures 14-17 
14.3.6 Input-Output of Characters and Strings 14-19 
14.3.7 Input-Output for Integer Types 14-20 
14.3.8 Input-Output for Real Types 14-22 
14.3.9 Input-Output for Enumeration Types 14-24 
14.3.10 Specification of the Package Text_IO 14-26 
14.4 Exceptions in Input-Output 14-30 
14.5 Specification of the Package IO_Exceptions 14-32 
14.6 Low Level Input-Output 14-32 1 
14.7 Example of Input-Output 14-33 

▼ 

IV 



Annexes 

A. Predefined Language Attributes 

B. Predefined Language Pragmas 

C. Predefined Language Environment 

Appendices 

D. Glossary 

E. Syntax Summary 

F. Implementation-Dependent Characteristics 

Index 

Postscript: Submission of Comments 





1. Introduction 

Ada is a programming language designed in accordance with requirements defined by the United 
States Department of Defense: the so-called Steelman requirements. Overall, these requirements 
call for a language with considerable expressive power covering a wide application domain. As a 
result, the language includes facilities offered by classical languages such as Pascal as well as 
facilities often found only in specialized languages. Thus the language is a modern algorithmic 
language with the usual control structures, and with the ability to define types and subprograms. It 
also serves the need for modularity, whereby data, types, and subprograms can be packaged. It 
treats modularity in the physical sense as well, with a facility to support separate compilation. 

In addition to these aspects, the language covers real-time programming, with facilities to model 
parallel tasks and to handle exceptions. It also covers systems programming; this requires 
precise control over the representation of data and access to system-dependent properties. Finally, 
both application-level and machine-level input-output are defined. 

1.1 Scope of the Standard 

This standard specifies the form and meaning of program units written in Ada. Its purpose is to 
promote the portability of Ada programs to a variety of data processing systems. 

1.1.1 Extent of the Standard 

This standard specifies: 

(a) The form of a program unit written in Ada. 

(b) The effect of translating and executing such a program unit. 

(c) The manner in which program units may be combined to form Ada programs. 

(d) The predefined program units that a conforming implementation must supply. 

(e) The permissible variations within the standard, and the manner in which they must be 
specified. 

(f) Those violations of the standard that a conforming implementation is required to detect, and 
the effect of attempting to translate or execute a program unit containing such violations. 

(g) Those violations of the standard that a conforming implementation is not required to detect. 

1-1 Extent of the Standard 1.1.1 



A NS!/MIL-STD-1815A Ada Reference Manual 

This standard does not specify: 

(h) The means whereby a program unit written in Ada is transformed into object code executable 
by a processor. 

(i) The means whereby translation or execution of program units is invoked and the executing 
units are controlled. 

(j) The size or speed of the object code, or the relative execution speed of different language con¬ 
structs. 

(k) The form or contents of any listings produced by implementations; in particular, the form or 
contents of error or warning messages. 

(l) The effect of executing a program unit that contains any violation that a conforming 
implementation is not required to detect. 

(m) The size of a program or program unit that will exceed the capacity of a particular conforming 
implementation. 

Where this standard specifies that a program unit written in Ada has an exact effect, this effect is 
the operational meaning of the program unit and must be produced by all conforming implementa¬ 
tions. Where this standard specifies permissible variations in the effects of constituents of a 
program unit written in Ada, the operational meaning of the program unit as a whole is understood 
to be the range of possible effects that result from all these variations, and a conforming 
implementation is allowed to produce any of these possible effects. Examples of permissible varia¬ 
tions are: 

• The represented values of fixed or floating numeric quantities, and the results of operations 
upon them. 

• The order of execution of statements in different parallel tasks, in the absence of explicit syn¬ 
chronization. 

1.1.2 Conformity of an Implementation with the Standard 

A conforming implementation is one that: 

(a) Correctly translates and executes legal program units written in Ada, provided that they are 
not so large as to exceed the capacity of the implementation. 

(b) Rejects all program units that are so large as to exceed the capacity of the implementation. 

(c) Rejects all program units that contain errors whose detection is required by the standard. 

(d) Supplies all predefined program units required by the standard. 

(e) Contains no variations except where the standard permits. 

(f) Specifies all such permitted variations in the manner prescribed by the standard. 

/. 7.2 Conformity of an Implementation with the Standard 1-2 



Introduction 

1.2 Structure of the Standard 

This reference manual contains fourteen chapters, three annexes, three appendices, and an index. 

Each chapter is divided into sections that have a common structure. Each section introduces its 
subject, gives any necessary syntax rules, and describes the semantics of the corresponding 
language constructs. Examples and notes, and then references, may appear at the end of a sec¬ 
tion. 

Examples are meant to illustrate the possible forms of the constructs described. Notes are meant 
to emphasize consequences of the rules described in the section or elsewhere. References are 
meant to attract the attention of readers to a term or phrase having a technical meaning defined in 
another section. 

The standard definition of the Ada programming language consists of the fourteen chapters and 
the three annexes, subject to the following restriction: the material in each of the items listed 
below is informative, and not part of the standard definition of the Ada programming language: 

• Section 1.3 Design goals and sources 

• Section 1.4 Language summary 

• The examples, notes, and references given at the end of each section 

• Each section whose title starts with the word "Example" or "Examples" 

1.3 Design Goals and Sources 

Ada was designed with three overriding concerns: program reliability and maintenance, program¬ 
ming as a human activity, and efficiency. 

The need for languages that promote reliability and simplify maintenance is well established. 
Hence emphasis was placed on program readability over ease of writing. For example, the rules of 
the language require that program variables be explicitly declared and that their type be specified. 
Since the type of a variable is invariant, compilers can ensure that operations on variables are com¬ 
patible with the properties intended for objects of the type. Furthermore, error-prone notations 
have been avoided, and the syntax of the language avoids the use of encoded forms in favor of 
more English-like constructs. Finally, the language offers support for separate compilation of 
program units in a way that facilitates program development and maintenance, and which 
provides the same degree of checking between units as within a unit. 

Concern for the human programmer was also stressed during the design. Above all, an attempt 
was made to keep the language as small as possible, given the ambitious nature of the application 
domain. We have attempted to cover this domain with a small number of underlying concepts 
integrated in a consistent and systematic way. Nevertheless we have tried to avoid the pitfalls of 
excessive involution, and in the constant search for simpler designs we have tried to provide 
language constructs that correspond intuitively to what the users will normally expect. 

Like many other human activities, the development of programs is becoming ever more 
decentralized and distributed. Consequently, the ability to assemble a program from independent¬ 
ly produced software components has been a central idea in this design. The concepts of 
packages, of private types, and of generic units are directly related to this idea, which has ramifica¬ 
tions in many other aspects of the language. 

1-3 Design Goals and Sources 1.3 



A NS!/MIL-STD-1815A Ada Reference Manual 

No language can avoid the problem of efficiency. Languages that require over-elaborate com¬ 
pilers, or that lead to the inefficient use of storage or execution time, force these inefficiencies on 
all machines and on all programs. Every construct of the language was examined in the light of 
present implementation techniques. Any proposed construct whose implementation was unclear 
or that required excessive machine resources was rejected. 

None of the above design goals was considered as achievable after the fact. The design goals 
drove the entire design process from the beginning. 

A perpetual difficulty in language design is that one must both identify the capabilities required by 
the application domain and design language features that provide these capabilities. The difficulty 
existed in this design, although to a lesser degree than usual because of the Steelman require¬ 
ments. These requirements often simplified the design process by allowing it to concentrate on 
the design of a given system providing a well defined set of capabilities, rather than on the defini¬ 
tion of the capabilities themselves. 

Another significant simplification of the design work resulted from earlier experience acquired by 
several successful Pascal derivatives developed with similar goals. These are the languages 
Euclid, Lis, Mesa, Modula, and Sue. Many of the key ideas and syntactic forms developed in these 
languages have counterparts in Ada. Several existing languages such as Algol 68 and Simula, and 
also recent research languages such as Alphard and Clu, influenced this language in several 
respects, although to a lesser degree than did the Pascal family. 

Finally, the evaluation reports received on an earlier formulation (the Green language), and on 
alternative proposals (the Red, Blue, and Yellow languages), the language reviews that took place 
at different stages of this project, and the thousands of comments received from fifteen different 
countries during the preliminary stages of the Ada design and during the ANSI canvass, all had a 
significant impact on the standard definition of the language. 

1.4 Language Summary 

An Ada program is composed of one or more program units. These program units can be compiled 
separately. Program units may be subprograms (which define executable algorithms), package 
units (which define collections of entities), task units (which define parallel computations), or 
generic units (which define parameterized forms of packages and subprograms). Each unit nor¬ 
mally consists of two parts: a specification, containing the information that must be visible to 
other units, and a body, containing the implementation details, which need not be visible to other 
units. 

This distinction of the specification and body, and the ability to compile units separately, allows a 
program to be designed, written, and tested as a set of largely independent software components. 

An Ada program will normally make use of a library of program units of general utility. The 
language provides means whereby individual organizations can construct their own libraries. The 
text of a separately compiled program unit must name the library units it requires. 

Program Units 

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms: 
procedures and functions. A procedure is the means of invoking a series of actions. For example, it 
may read data, update variables, or produce some output. It may have parameters, to provide a 
controlled means of passing information between the procedure and the point of call. 

1.4 Language Summary 1-4 



Introduction 

A function is the means of invoking the computation of a value. It is similar to a procedure, but in 
addition will return a result. 

A package is the basic unit for defining a collection of logically related entities. For example, a 
package can be used to define a common pool of data and types, a collection of related sub¬ 
programs, or a set of type declarations and associated operations. Portions of a package can be 
hidden from the user, thus allowing access only to the logical properties expressed by the package 
specification. 

A task unit is the basic unit for defining a task whose sequence of actions may be executed in 
parallel with those of other tasks. Such tasks may be implemented on multicomputers, mul¬ 
tiprocessors, or with interleaved execution on a single processor. A task unit may define either a 
single executing task or a task type permitting the creation of any number of similar tasks. 

Declarations and Statements 

The body of a program unit generally contains two parts: a declarative part, which defines the 
logical entities to be used in the program unit, and a sequence of statements, which defines the 
execution of the program unit. 

The declarative part associates names with declared entities. For example, a name may denote a 
type, a constant, a variable, or an exception. A declarative part also introduces the names and 
parameters of other nested subprograms, packages, task units, and generic units to be used in the 
program unit. 

The sequence of statements describes a sequence of actions that are to be performed. The state¬ 
ments are executed in succession (unless an exit, return, or goto statement, or the raising of an 
exception, causes execution to continue from another place). 

An assignment statement changes the value of a variable. A procedure call invokes execution of a 
procedure after associating any actual parameters provided at the call with the corresponding for¬ 
mal parameters. 

Case statements and if statements allow the selection of an enclosed sequence of statements 
based on the value of an expression or on the value of a condition. 

The loop statement provides the basic iterative mechanism in the language. A loop statement 
specifies that a sequence of statements is to be executed repeatedly as directed by an iteration 
scheme, or until an exit statement is encountered. 

A block statement comprises a sequence of statements preceded by the declaration of local 
entities used by the statements. 

Certain statements are only applicable to tasks. A delay statement delays the execution of a task 
for a specified duration. An entry call statement is written as a procedure call statement; it 
specifies that the task issuing the call is ready for a rendezvous with another task that has this 
entry. The called task is ready to accept the entry call when its execution reaches a corresponding 
accept statement, which specifies the actions then to be performed. After completion of the 
rendezvous, both the calling task and the task having the entry may continue their execution in 
parallel. One form of the select statement allows a selective wait for one of several alternative 
rendezvous. Other forms of the select statement allow conditional or timed entry calls. 

1-5 Language Summary 1.4 



ANSI/MIL-STD-1815A Ada Reference Manual 

Execution of a program unit may encounter error situations in which normal program execution 
cannot continue. For example, an arithmetic computation may exceed the maximum allowed 
value of a number, or an attempt may be made to access an array component by using an incorrect 
index value. To deal with such error situations, the statements of a program unit can be textually 
followed by exception handlers that specify the actions to be taken when the error situation arises. 
Exceptions can be raised explicitly by a raise statement. 

Data Types 

Every object in the language has a type, which characterizes a set of values and a set of applicable 
operations. The main classes of types are scalar types (comprising enumeration and numeric 
types), composite types, access types, and private types. 

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of 
states or an alphabet of characters. The enumeration types BOOLEAN and CHARACTER are 
predefined. 

Numeric types provide a means of performing exact or approximate numerical computations. 
Exact computations use integer types, which denote sets of consecutive integers. Approximate 
computations use either fixed point types, with absolute bounds on the error, or floating point 
types, with relative bounds on the error. The numeric types INTEGER , FLOAT, and DURATION are 
predefined. 

Composite types allow definitions of structured objects with related components. The composite 
types in the language provide for arrays and records. An array is an object with indexed compo¬ 
nents of the same type. A record is an object with named components of possibly different types. 
The array type STRING is predefined. 

A record may have special components called discriminants. Alternative record structures that 
depend on the values of discriminants can be defined within a record type. 

Access types allow the construction of linked data structures created by the evaluation of 
allocators. They allow several variables of an access type to designate the same object, and com¬ 
ponents of one object to designate the same or other objects. Both the elements in such a linked 
data structure and their relation to other elements can be altered during program execution. 

Private types can be defined in a package that conceals structural details that are externally irrele¬ 
vant. Only the logically necessary properties (including any discriminants) are made visible to the 
users of such types. 

The concept of a type is refined by the concept of a subtype, whereby a user can constrain the set 
of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with 
a limited set of index values, and records and private types with particular discriminant values. 

Other Facilities 

Representation clauses can be used to specify the mapping between types and features of an 
underlying machine. For example, the user can specify that objects of a given type must be 
represented with a given number of bits, or that the components of a record are to be represented 
using a given storage layout. Other features allow the controlled use of low level, nonportable, or 
implementation-dependent aspects, including the direct insertion of machine code. 

Input-output is defined in the language by means of predefined library packages. Facilities are 
provided for input-output of values of user-defined as well as of predefined types. Standard means 
of representing values in display form are also provided. 

1.4 Language Summary 1-6 



Introduction 

Finally, the language provides a powerful means of parameterization of program units, called 
generic program units. The generic parameters can be types and subprograms (as well as objects) 
and so allow general algorithms to be applied to all types of a given class. 

1.5 Method of Description and Syntax Notation 

The form of Ada program units is described by means of a context-free syntax together with 
context-dependent requirements expressed by narrative rules. 

The meaning of Ada program units is described by means of narrative rules defining both the 
effects of each construct and the composition rules for constructs. This narrative employs 
technical terms whose precise definition is given in the text (references to the section containing 
the definition of a technical term appear at the end of each section that uses the term). 

All other terms are in the English language and bear their natural meaning, as defined in Webster's 
Third New International Dictionary of the English Language. 

The context-free syntax of the language is described using a simple variant of Backus-Naur-Form. 
In particular, 

(a) Lower case words, some containing embedded underlines, are used to denote syntactic 
categories, for example: 

adding_operator 

Whenever the name of a syntactic category is used apart from the syntax rules themselves, 
spaces take the place of the underlines (thus: adding operator). 

(b) Boldface words are used to denote reserved words, for example: 

array 

(c) Square brackets enclose optional items. Thus the two following rules are equivalent. 

return_statement ::= return [expression]; 
return_statement ::= return; | return expression; 

(d) Braces enclose a repeated item. The item may appear zero or more times; the repetitions 
occur from left to right as with an equivalent left-recursive rule. Thus the two following rules 
are equivalent. 

term factor (multiplying_operator factor] 
term ::= factor | term multiplying_operator factor 

1-7 Method of Description and Syntax Notation 1.5 



A NS I/M/L-STD-1815A Ada Reference Manual 

(e) A vertical bar separates alternative items unless it occurs immediately after an opening brace, 
in which case it stands for itself: 

letter_or_digit ::= letter | digit 
component_association ::= [choice (| choicel =>] expression 

(f) If the name of any syntactic category starts with an italicized part, it is equivalent to the 
category name without the italicized part. The italicized part is intended to convey some 
semantic information. For example fyy?e_name and ?as/r_name are both equivalent to name 
alone. 

Note: 

The syntax rules describing structured constructs are presented in a form that corresponds to the 
recommended paragraphing. For example, an if statement is defined as 

if_statement ::= 
if condition then 

sequence_of_statements 
| elsif condition then 

sequence_of_statements) 
[ else 

sequence_of_statements] 
end if; 

Different lines are used for parts of a syntax rule if the corresponding parts of the construct 
described by the rule are intended to be on different lines. Indentation in the rule is a recommenda¬ 
tion for indentation of the corresponding part of the construct. It is recommended that all indenta¬ 
tions be by multiples of a basic step of indentation (the number of spaces for the basic step is not 
defined). The preferred places for other line breaks are after semicolons. On the other hand, if a 
complete construct can fit on one line, this is also allowed in the recommended paragraphing. 

1.6 Classification of Errors 

The language definition classifies errors into several different categories: 

(a) Errors that must be detected at compilation time by every Ada compiler. 

These errors correspond to any violation of a rule given in this reference manual, other than 
the violations that correspond to (b) or (c) below. In particular, violation of any rule that uses 
the terms must, allowed, legal, or illegal belongs to this category. Any program that contains 
such an error is not a legal Ada program; on the other hand, the fact that a program is legal 
does not mean, per se, that the program is free from other forms of error. 

(b) Errors that must be detected at run time by the execution of an Ada program. 

The corresponding error situations are associated with the names of the predefined excep¬ 
tions. Every Ada compiler is required to generate code that raises the corresponding exception 
if such an error situation arises during program execution. If an exception is certain to be 
raised in every execution of a program, then compilers are allowed (although not required) to 
report this fact at compilation time. 

1.6 Classification of Errors 1-8 



Introduction 

(c) Erroneous execution. 

The language rules specify certain rules to be obeyed by Ada programs, although there is no 
requirement on Ada compilers to provide either a compilation-time or a run-time detection of 
the violation of such rules. The errors of this category are indicated by the use of the word 
erroneous to qualify the execution of the corresponding constructs. The effect of erroneous 
execution is unpredictable. 

(d) Incorrect order dependences. 

Whenever the reference manual specifies that different parts of a given construct are to be 
executed in some order that is not defined by the language, this means that the implementa¬ 
tion is allowed to execute these parts in any given order, following the rules that result from 
that given order, but not in parallel. Furthermore, the construct is incorrect if execution of 
these parts in a different order would have a different effect. Compilers are not required to 
provide either compilation-time or run-time detection of incorrect order dependences. The 
foregoing is expressed in terms of the process that is called execution; it applies equally to the 
processes that are called evaluation and elaboration. 

If a compiler is able to recognize at compilation time that a construct is erroneous or contains an 
incorrect order dependence, then the compiler is allowed to generate, in place of the code 
otherwise generated for the construct, code that raises the predefined exception 
PROGRAM_ERROR. Similarly, compilers are allowed to generate code that checks at run time for 
erroneous constructs, for incorrect order dependences, or for both. The predefined exception 
PROGRAM_ERROR is raised if such a check fails. 

1-9 Classification of Errors 1.6 



i 



2. Lexical Elements 

The text of a program consists of the texts of one or more compilations. The text of a compilation 
is a sequence of lexical elements, each composed of characters; the rules of composition are given 
in this chapter. Pragmas, which provide certain information for the compiler, are also described in 
this chapter. 

References: character 2.1, compilation 10.1, lexical element 2.2, pragma 2.8 

2.1 Character Set 

The only characters allowed in the text of a program are the graphic characters and format effec¬ 
tors. Each graphic character corresponds to a unique code of the ISO seven-bit coded character 
set (ISO standard 646), and is represented (visually) by a graphical symbol. Some graphic 
characters are represented by different graphical symbols in alternative national representations of 
the ISO character set. The description of the language definition in this standard reference manual 
uses the ASCII graphical symbols, the ANSI graphical representation of the ISO character set. 

graphic_character basic_graphic_character 
| lower_case_letter | other_special_character 

basic_graphic_character 
upper_case_letter | digit 

| speciaLcharacter | space_character 

basic_character ::= 
basic_graphic_character | format_effector 

The basic character set is sufficient for writing any program. The characters included in each of the 
categories of basic graphic characters are defined as follows: 

(a) upper case letters 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

(b) digits 
0123456789 

(c) special characters 

(d) the space character 

Format effectors are the ISO (and ASCII) characters called horizontal tabulation, vertical tabula¬ 
tion, carriage return, line feed, and form feed. 

2-1 Character Set 2.7 



ANSI/MIL-STD-1815A Ada Reference Manual 

The characters included in each of the remaining categories of graphic characters are defined as 

follows: 

(e) lower case letters 
abcdefghijklmnopqrstuvwxyz 

(f) other special characters 

I $ % ? @ [ \ ] " ' {} ~ 

Allowable replacements for the special characters vertical bar (|), sharp (#), and quotation (") are 
defined in section 2.10. 

Notes: 

The ISO character that corresponds to the sharp graphical symbol in the ASCII representation 
appears as a pound sterling symbol in the French, German, and United Kingdom standard national 
representations. In any case, the font design of graphical symbols (for example, whether they are in 
italic or bold typeface) is not part of the ISO standard. 

The meanings of the acronyms used in this section are as follows: ANSI stands for American 
National Standards Institute, ASCII stands for American Standard Code for Information 
Interchange, and ISO stands for International Organization for Standardization. 

The following names are used when referring to special characters and other special characters: 

symbol name symbol name 

- quotation > greater than 
# sharp underline 
& ampersand 1 vertical bar 
* apostrophe l exclamation mark 
( left parenthesis $ dollar 
) right parenthesis % percent 

star, multiply ? question mark 
+ plus @ commercial at 
, comma [ left square bracket 
- hyphen, minus \ back-slash 

dot, point, period 1 right square bracket 
/ slash, divide * circumflex 

colon 
\ 

grave accent 
semicolon 1 left brace 

< less than 1 right brace 
equal tilde 

2.2 Lexical Elements, Separators, and Delimiters 

The text of a program consists of the texts of one or more compilations. The text of each compila¬ 
tion is a sequence of separate lexical elements. Each lexical element is either a delimiter, an iden¬ 
tifier (which may be a reserved word), a numeric literal, a character literal, a string literal, or a com¬ 
ment. The effect of a program depends only on the particular sequences of lexical elements that 
form its compilations, excluding the comments, if any. 

2.2 Lexica! Elements, Separators, and Delimiters 2-2 



Lexical Elements 

In some cases an explicit separator is required to separate adjacent lexical elements (namely, 
when without separation, interpretation as a single lexical element is possible). A separator is any 
of a space character, a format effector, or the end of a line. A space character is a separator except 
within a comment, a string literal, or a space character literal. Format effectors other than horizon¬ 
tal tabulation are always separators. Horizontal tabulation is a separator except within a comment. 

The end of a line is always a separator. The language does not define what causes the end of a line. 
However if, for a given implementation, the end of a line is signified by one or more characters, 
then these characters must be format effectors other than horizontal tabulation. In any case, a 
sequence of one or more format effectors other than horizontal tabulation must cause at least one 
end of line. 

One or more separators are allowed between any two adjacent lexical elements, before the first of 
each compilation, or after the last. At least one separator is required between an identifier or a 
numeric literal and an adjacent identifier or numeric literal. 

A delimiter is either one of the following special characters (in the basic character set) 

&'()* + , - ./ :;< = >! 

or one of the following compound delimiters each composed of two adjacent special characters 

=> .. ** := /= >= <= << >> <> 

Each of the special characters listed for single character delimiters is a single delimiter except if 
this character is used as a character of a compound delimiter, or as a character of a comment, str¬ 
ing literal, character literal, or numeric literal. 

The remaining forms of lexical element are described in other sections of this chapter. 

Notes: 

Each lexical element must fit on one line, since the end of a line is a separator. The quotation, 
sharp, and underline characters, likewise two adjacent hyphens, are not delimiters, but may form 
part of other lexical elements. 

The following names are used when referring to compound delimiters: 

delimiter name 

=> arrow 
double dot 

** double star, exponentiate 
:= assignment (pronounced: "becomes") 
/= inequality (pronounced: "not equal") 
>= greater than or equal 
<= less than or equal 
<< left label bracket 
>> right label bracket 
<> box 

References: character literal 2.5, comment 2.7, compilation 10.1, format effector 2.1, identifier 2.3, numeric literal 

2.4, reserved word 2.9, space character 2.1, special character 2.1, string literal 2.6 

2-3 Lexica! Elements, Separators, and Delimiters 2.2 



ANSI/M/L-STD-1815A Ada Reference Manual 

2.3 Identifiers 

Identifiers are used as names and also as reserved words, 

identifier ::= 
letter ([underline] letter_or_digit| 

letter_or_digit ::= letter | digit 

letter ::= upper_case_letter | lower_case_letter 

All characters of an identifier are significant, including any underline character inserted between a 
letter or digit and an adjacent letter or digit. Identifiers differing only in the use of corresponding 
upper and lower case letters are considered as the same. 

Examples: 

COUNT X get_symbol Ethelyn Marion 

SNOBOI_4 XI PageCount STORE_NEXT_ITEM 

Note: 

No space is allowed within an identifier since a space is a separator. 

References: digit 2.1, lower case letter 2.1, name 4.1, reserved word 2.9, separator 2.2, space character 2.1, upper 

case letter 2.1 

2.4 Numeric Literals 

There are two classes of numeric literals: real literals and integer literals. A real literal is a numeric 
literal that includes a point; an integer literal is a numeric literal without a point. Real literals are 
the literals of the type universalweal. Integer literals are the literals of the type universalJnteger. 

numericjiteral ::= decimaLliteral | basedjiteral 

References: literal 4.2, universaUnteger type 3.5.4, universal_real type 3.5.6 

2.4.1 Decimal Literals 

A decimal literal is a numeric literal expressed in the conventional decimal notation (that is, the 
base is implicitly ten). 

decimaLliteral ::= integer [.integer] [exponent] 

integer ::= digit [[underline] digit] 

exponent ::= E [ + ] integer | E - integer 

2.4.1 Decimal Literals 2-4 



Lexical Elements 

An underline character inserted between adjacent digits of a decimal literal does not affect the 3 

value of this numeric literal. The letter E of the exponent, if any, can be written either in lower case 
or in upper case, with the same meaning. 

An exponent indicates the power of ten by which the value of the decimal literal without the expo- 4 

nent is to be multiplied to obtain the value of the decimal literal with the exponent. An exponent for 
an integer literal must not have a minus sign. 

Examples: 

12 

12.0 

1.34E-12 

0 1E6 

0.0 0.456 

1.0E + 6 

123_456 

3.1 41 59_26 

integer literals 

real literals 

real literals with exponent 

5 

Notes: 

Leading zeros are allowed. No space is allowed in a numeric literal, not even between constituents 6 
of the exponent, since a space is a separator. A zero exponent is allowed for an integer literal. 

References: digit 2.1, lower case letter 2.1, numeric literal 2.4, separator 2.2, space character 2.1, upper case letter 7 

2.1 

2.4.2 Based Literals 

A based literal is a numeric literal expressed in a form that specifies the base explicitly. The base 1 

must be at least two and at most sixteen. 

based_literal ::= 2 

base # based_integer [.based_integer] # [exponent] 

base ::= integer 

based_integer 
extended_digit [[underline] extended_digit[ 

extended_digit ::= digit | letter 

An underline character inserted between adjacent digits of a based literal does not affect the value 3 

of this numeric literal. The base and the exponent, if any, are in decimal notation. The only letters 
allowed as extended digits are the letters A through F for the digits ten through fifteen. A letter in a 
based literal (either an extended digit or the letter E of an exponent) can be written either in lower 
case or in upper case, with the same meaning. 

The conventional meaning of based notation is assumed; in particular the value of each extended 4 

digit of a based literal must be less than the base. An exponent indicates the power of the base by 
which the value of the based literal without the exponent is to be multiplied to obtain the value of 
the based literal with the exponent. 

2-5 Based Literals 2.4.2 



A NS!/MIL -STD-1815A Ada Reference Manual 

Examples: 

2#1111_1111# 
16#E#E 1 
16#F.FF^E+2 

16#FF# 016#0FF# 
2#1110_0000# 
2#1.1111_1111_111#E11 

integer literals of value 255 
integer literals of value 224 
real literals of value 4095.0 

References: digit 2.1, exponent 2.4.1, letter 2.3, lowercase letter 2.1, numeric literal 2.4, uppercase letter 2.1 

2.5 Character Literals 

A character literal is formed by enclosing one of the 95 graphic characters (including the space) 
between two apostrophe characters. A character literal has a value that belongs to a character 

type. 

character-literal 'graphic_character' 

Examples: 

A' 

References: character type 3.5.2, graphic character 2.1, literal 4.2, space character 2.1 

2.6 String Literals 

A string literal is formed by a sequence of graphic characters (possibly none) enclosed between 
two quotation characters used as string brackets. 

string-literal "|graphic_character(" 

A string literal has a value that is a sequence of character values corresponding to the graphic 
characters of the string literal apart from the quotation character itself. If a quotation character 
value is to be represented in the sequence of character values, then a pair of adjacent quotation 
characters must be written at the corresponding place within the string literal. (This means that a 
string literal that includes two adjacent quotation characters is never interpreted as two adjacent 
string literals.) 

The length of a string literal is the number of character values in the sequence represented. (Each 
doubled quotation character is counted as a single character.) 

Examples: 

"Message of the day:" 

an empty string literal 
"A.-- three string literals of length 1 

Characters such as $, %, and } are allowed in string literals" 

2.6 String Literals 2-6 



Lexical Elements 

Note: 

A string literal must fit on one line since it is a lexical element (see 2.2). Longer sequences of 6 
graphic character values can be obtained by catenation of string literals. Similarly catenation of 
constants declared in the package ASCII can be used to obtain sequences of character values that 
include nongraphic character values (the so-called control characters). Examples of such uses of 
catenation are given below: 

"FIRST PART OF A SEQUENCE OF CHARACTERS " & 
"THAT CONTINUES ON THE NEXT LINE" 

"sequence that includes the" & ASCII.ACK & "control character" 

References: ascii predefined package C, catenation operation 4.5.3, character value 3.5.2, constant 3.2.1, i 

declaration 3.1, end of a line 2.2, graphic character 2.1, lexical element 2.2 

2.7 Comments 

A comment starts with two adjacent hyphens and extends up to the end of the line. A comment i 
can appear on any line of a program. The presence or absence of comments has no influence on 
whether a program is legal or illegal. Furthermore, comments do not influence the effect of a 
program; their sole purpose is the enlightenment of the human reader. 

Examples: 2 

— the last sentence above echoes the Algol 68 report 

end; — processing of LINE is complete 

a long comment may be split onto 
two or more consecutive lines 

- the first two hyphens start the comment 

Note: 

Horizontal tabulation can be used in comments, after the double hyphen, and is equivalent to one 3 

or more spaces (see 2.2). 

References: end of a line 2.2, illegal 1.6, legal 1.6, space character 2.1 4 

2.8 Pragmas 

A pragma is used to convey information to the compiler. A pragma starts with the reserved word 
pragma followed by an identifier that is the name of the pragma. 

pragma ::= 
pragma identifier [(argument_association |, argument_association|)]; 

argument_association 
[argumentJ\den\\Wet =>] name 

| [argumentJ\6enX\Wer =>] expression 

2-7 Pragmas 2.8 



ANS//M/L-STD-J815A Ada Reference Manual 

Pragmas are only allowed at the following places in a program: 

• After a semicolon delimiter, but not within a formal part or discriminant part. 

• At any place where the syntax rules allow a construct defined by a syntactic category whose 
name ends with "declaration", "statement", "clause", or "alternative", or one of the syntactic 
categories variant and exception handler; but not in place of such a construct. Also at any 
place where a compilation unit would be allowed. 

Additional restrictions exist for the placement of specific pragmas. 

Some pragmas have arguments. Argument associations can be either positional or named as for 
parameter associations of subprogram calls (see 6.4). Named associations are, however, only pos¬ 
sible if the argument identifiers are defined. A name given in an argument must be either a name 
visible at the place of the pragma or an identifier specific to the pragma. 

The pragmas defined by the language are described in Annex B: they must be supported by every 
implementation. In addition, an implementation may provide implementation-defined pragmas, 
which must then be described in Appendix F. An implementation is not allowed to define pragmas 
whose presence or absence influences the legality of the text outside such pragmas. Consequently, 
the legality of a program does not depend on the presence or absence of implementation-defined 
pragmas. 

A pragma that is not language-defined has no effect if its identifier is not recognized by the (cur¬ 
rent) implementation. Furthermore, a pragma (whether language-defined or implementation- 
defined) has no effect if its placement or its arguments do not correspond to what is allowed for 
the pragma. The region of text over which a pragma has an effect depends on the pragma. 

Examples: 

pragma LIST(OFF); 
pragma OPTIMIZE(TIME); 
pragma INLINE(SETMASK); 
pragma SUPPRESS(RANGE_CHECK, ON => INDEX); 

Note: 

It is recommended (but not required) that implementations issue warnings for pragmas that are 
not recognized and therefore ignored. 

References: compilation unit 10.1, delimiter 2.2, discriminant part 3.7.1, exception handler 11.2, expression 4.4, 

formal part 6.1, identifier 2.3, implementation-defined pragma F, language-defined pragma B, legal 1.6, name 4.1, 

reserved word 2.9, statement 5, static expression 4.9, variant 3.7.3, visibility 8.3 

Categories ending with "declaration" comprise: basic declaration 3.1, component declaration 3.7, entry 
declaration 9.5, generic parameter declaration 12.1 

Categories ending with "clause" comprise: alignment clause 13.4, component clause 1 3.4, context clause 10.1.1, 
representation clause 13.1, use clause 8.4, with clause 10.1.1 

Categories ending with 'alternative" comprise: accept alternative 9.7.1, case statement alternative 5.4, delay 
alternative 9.7.1, select alternative 9.7.1, selective wait alternative 9.7.1, terminate alternative 9.7.1 

2 8 Pragmas 2-8 



Lexical Elements 

2.9 Reserved Words 

The identifiers listed below are called reserved words and are reserved for special significance in 
the language. For readability of this manual, the reserved words appear in lower case boldface. 

abort declare generic of select 
abs delay goto or separate 
accept delta others subtype 
access digits if out 
all do in task 
and is package terminate 
array pragma then 
at else private type 

elsif limited procedure 
end loop 

begin entry raise use 
body exception range 

exit mod record when 
rem while 

new renames with 
case for not return 
constant function null reverse xor 

A reserved word must not be used as a declared identifier. 

Notes: 

Reserved words differing only in the use of corresponding upper and lower case letters are con¬ 
sidered as the same (see 2.3). In some attributes the identifier that appears after the apostrophe is 
identical to some reserved word. 

References: attribute 4.1.4, declaration 3.1, identifier 2.3, lower case letter 2.1, upper case letter 2.1 

2.10 Allowable Replacements of Characters 

The following replacements are allowed for the vertical bar, sharp, and quotation basic characters: 

• A vertical bar character (|) can be replaced by an exclamation mark (!) where used as a 
delimiter. 

• The sharp characters {#) of a based literal can be replaced by colons (:) provided that the 
replacement is done for both occurrences. 

• The quotation characters (”) used as string brackets at both ends of a string literal can be 
replaced by percent characters (%) provided that the enclosed sequence of characters con¬ 
tains no quotation character, and provided that both string brackets are replaced. Any percent 
character within the sequence of characters must then be doubled and each such doubled 
percent character is interpreted as a single percent character value. 

2-9 Allowable Replacements of Characters 2.10 



ANSI/MIL-STD-1815A Ada Reference Manual 

s These replacements do not change the meaning of the program. 

Notes: 

e It is recommended that use of the replacements for the vertical bar, sharp, and quotation 
characters be restricted to cases where the corresponding graphical symbols are not available. 
Note that the vertical bar appears as a broken bar on some equipment; replacement is not recom¬ 
mended in this case. 

7 The rules given for identifiers and numeric literals are such that lower case and upper case letters 
can be used indifferently; these lexical elements can thus be written using only characters of the 
basic character set. If a string literal of the predefined type STRING contains characters that are 
not in the basic character set, the same sequence of character values can be obtained by 
catenating string literals that contain only characters of the basic character set with suitable 
character constants declared in the predefined package ASCII. Thus the string literal "AB $CD'' 
could be replaced by "AB " & ASCII .DOLLAR & "CD Similarly, the string literal "ABcd " with lower 
case letters could be replaced by "AB " & ASCII .LC_C & ASCII .IC_D . 

8 References: ascii predefined package C, based literal 2.4.2, basic character 2.1, catenation operation 4.5.3, character 

value 3 5.2, delimiter 2.2, graphic character 2.1, graphical symbol 2.1, identifier 2.3, lexical element 2.2, lower case 

letter 2 1, numeric literal 2.4, string bracket 2.6, string literal 2.6, upper case letter 2.1 

2.10 Allowable Replacements of Characters 2-10 



3. Declarations and Types 

This chapter describes the types in the language and the rules for declaring constants, variables, 
and named numbers. 

3.1 Declarations 

The language defines several kinds of entities that are declared, either explicitly or implicitly, by 
declarations. Such an entity can be a numeric literal, an object, a discriminant, a record compo¬ 
nent, a loop parameter, an exception, a type, a subtype, a subprogram, a package, a task unit, a 
generic unit, a single entry, an entry family, a formal parameter (of a subprogram, entry, or generic 
subprogram), a generic formal parameter, a named block or loop, a labeled statement, or an opera¬ 
tion (in particular, an attribute or an enumeration literal; see 3.3.3). 

There are several forms of declaration. A basic declaration is a form of declaration defined as fol¬ 
lows. 

basic_declaration 
object_declaration 

| type_declaration 
| subprogram_declaration 
| task_declaration 
| exception_declaration 
| renaming_declaration 

number_decla ration 
subtype_declaration 
package_declaration 
generic_declaration 
generic_instantiation 
deferred_constant_decla ration 

Certain forms of declaration always occur (explicitly) as part of a basic declaration; these forms are 
discriminant specifications, component declarations, entry declarations, parameter specifications, 
generic parameter declarations, and enumeration literal specifications. A loop parameter specifica¬ 
tion is a form of declaration that occurs only in certain forms of loop statement. 

The remaining forms of declaration are implicit: the name of a block, the name of a loop, and a 
statement label are implicitly declared. Certain operations are implicitly declared (see 3.3.3). 

For each form of declaration the language rules define a certain region of text called the scope of 
the declaration (see 8.2). Several forms of declaration associate an identifier with a declared entity. 
Within its scope, and only there, there are places where it is possible to use the identifier to refer to 
the associated declared entity; these places are defined by the visibility rules (see 8.3). At such 
places the identifier is said to be a name of the entity (its simple name); the name is said to denote 
the associated entity. 

Certain forms of enumeration literal specification associate a character literal with the cor¬ 
responding declared entity. Certain forms of declaration associate an operator symbol or some 
other notation with an explicitly or implicitly declared operation. 

The process by which a declaration achieves its effect is called the elaboration of the declaration; 
this process happens during program execution. 

3-1 Declarations 3.1 



A NS!/MIL-STD-1815A Ada Reference Manual 

After its elaboration, a declaration is said to be elaborated. Prior to the completion of its elabora¬ 
tion (including before the elaboration), the declaration is not yet elaborated. The elaboration of any 
declaration has always at least the effect of achieving this change of state (from not yet elaborated 
to elaborated). The phrase "the elaboration has no other effect" is used in this manual whenever 
this change of state is the only effect of elaboration for some form of declaration. An elaboration 
process is also defined for declarative parts, declarative items, and compilation units (see 3.9 and 
10.5). 

Object, number, type, and subtype declarations are described here. The remaining basic declara¬ 
tions are described in later chapters. 

Note: 

The syntax rules use the term identifier for the first occurrence of an identifier in some form of 
declaration; the term simple name is used for any occurrence of an identifier that already denotes 
some declared entity. 

References: attribute 4.1.4, block name 5.6, block statement 5.6, character literal 2.5, component declaration 3.7, 

declarative item 3.9, declarative part 3.9, deferred constant declaration 7.4, discriminant specification 3.7.1, elabora¬ 

tion 3.9, entry declaration 9.5, enumeration literal specification 3.5.1, exception declaration 11.1, generic declaration 

12.1, generic instantiation 12.3, generic parameter declaration 12.1, identifier 2.3, label 5.1, loop name 5.5, loop 

parameter specification 5.5, loop statement 5.5, name 4.1, number declaration 3.2.2, numeric literal 2.4, object 

declaration 3.2.1, operation 3.3, operator symbol 6.1, package declaration 7.1, parameter specification 6.1, record 

component 3.7, renaming declaration 8.5, representation clause 13.1, scope 8.2, simple name 4.1, subprogram body 

6.3, subprogram declaration 6.1, subtype declaration 3.3.2, task declaration 9.1, type declaration 3.3.1, visibility 8.3 

3.2 Objects and Named Numbers 

An object is an entity that contains (has) a value of a given type. An object is one of the following: 

• an object declared by an object declaration or by a single task declaration, 

• a formal parameter of a subprogram, entry, or generic subprogram, 

• a generic formal object, 

• a loop parameter, 

• an object designated by a value of an access type, 

• a component or a slice of another object. 

A number declaration is a special form of object declaration that associates an identifier with a 
value of type universalJnteger or universai_reai. 

object_declaration 
identifierJist : [constant] subtype_indication [:= expression]; 

| identifierjist : [constant] constrained_array_definition [:= expression]; 

number_declaration ::= 
identifierjist : constant := ty/7/Ve/'sa/_5faf/c_expression; 

identifierjist ::= identifier [, identifier] 

3.2 Objects and Named Numbers 3-2 



Declarations and Types 

An object declaration is called a single object declaration if its identifier list has a single identifier; it 
is called a multiple object declaration if the identifier list has two or more identifiers. A multiple 
object declaration is equivalent to a sequence of the corresponding number of single object 
declarations. For each identifier of the list, the equivalent sequence has a single object declaration 
formed by this identifier, followed by a colon and by whatever appears at the right of the colon in 
the multiple object declaration; the equivalent sequence is in the same order as the identifier list. 

A similar equivalence applies also for the identifier lists of number declarations, component 
declarations, discriminant specifications, parameter specifications, generic parameter declarations, 
exception declarations, and deferred constant declarations. 

In the remainder of this reference manual, explanations are given for declarations with a single 
identifier; the corresponding explanations for declarations with several identifiers follow from the 
equivalence stated above. 

Example: 

the multiple object declaration 

JOHN, PAUL : PERSON_NAME := new PERSONISEX => M); - see 3.8.1 

is equivalent to the two single object declarations in the order given 

JOHN : PERSONJVIAME := new PERSON(SEX => M); 
PAUL : PERSON_NAME := new PERSON(SEX => M); 

References: access type 3.8, constrained array definition 3.6, component 3.3, declaration 3.1, deferred constant 

declaration 7.4, designate 3.8, discriminant specification 3.7.1, entry 9.5, exception declaration 11.1, expression 4.4, 

formal parameter 6.1, generic formal object 12.1.1, generic parameter declaration 12.1, generic unit 12, generic sub¬ 

program 12.1, identifier 2.3, loop parameter 5.5, numeric type 3.5, parameter specification 6.1, scope 8.2, simple 

name 4.1, single task declaration 9.1, slice 4.1.2, static expression 4.9, subprogram 6, subtype indication 3.3.2, type 

3.3, universaljnteger type 3.5.4, universaLreal type 3.5.6 

3.2.1 Object Declarations 

An object declaration declares an object whose type is given either by a subtype indication or by a 
constrained array definition. If the object declaration includes the assignment compound delimiter 
followed by an expression, the expression specifies an initial value for the declared object; the type 
of the expression must be that of the object. 

The declared object is a constant if the reserved word constant appears in the object declaration; 
the declaration must then include an explicit initialization. The value of a constant cannot be 
modified after initialization. Formal parameters of mode in of subprograms and entries, and generic 
formal parameters of mode in, are also constants; a loop parameter is a constant within the cor¬ 
responding loop; a subcomponent or slice of a constant is a constant. 

An object that is not a constant is called a variable (in particular, the object declared by an object 
declaration that does not include the reserved word constant is a variable). The only ways to 
change the value of a variable are either directly by an assignment, or indirectly when the variable 
is updated (see 6.2) by a procedure or entry call statement (this action can be performed either on 
the variable itself, on a subcomponent of the variable, or on another variable that has the given 
variable as subcomponent). 

3-3 Object Declarations 3.2.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

The elaboration of an object declaration proceeds as follows: 

(a) The subtype indication or the constrained array definition is first elaborated. This establishes 
the subtype of the object. 

(b) If the object declaration includes an explicit initialization, the initial value is obtained by 
evaluating the corresponding expression. Otherwise any implicit initial values for the object or 
for its subcomponents are evaluated. 

(c) The object is created. 

(d) Any initial value (whether explicit or implicit) is assigned to the object or to the corresponding 
subcomponent. 

Implicit initial values are defined for objects declared by object declarations, and for components of 
such objects, in the following cases: 

• If the type of an object is an access type, the implicit initial value is the null value of the access 
type. 

• If the type of an object is a task type, the implicit initial (and only) value designates a cor¬ 
responding task. 

» If the type of an object is a type with discriminants and the subtype of the object is con¬ 
strained, the implicit initial (and only) value of each discriminant is defined by the subtype of 
the object. 

• If the type of an object is a composite type, the implicit initial value of each component that 
has a default expression is obtained by evaluation of this expression, unless the component is 
a discriminant of a constrained object (the previous case). 

In the case of a component that is itself a composite object and whose value is defined neither by 
an explicit initialization nor by a default expression, any implicit initial values for components of the 
composite object are defined by the same rules as for a declared object. 

The steps (a) to (d) are performed in the order indicated. For step (b), if the default expression for a 
discriminant is evaluated, then this evaluation is performed before that of default expressions for 
subcomponents that depend on discriminants, and also before that of default expressions that 
include the name of the discriminant. Apart from the previous rule, the evaluation of default 
expressions is performed in some order that is not defined by the language. 

The initialization of an object (the declared object or one of its subcomponents) checks that the 
initial value belongs to the subtype of the object; for an array object declared by an object declara¬ 
tion, an implicit subtype conversion is first applied as for an assignment statement, unless the 
object is a constant whose subtype is an unconstrained array type. The exception 
CONSTRAINT_ERROR is raised if this check fails. 

The value of a scalar variable is undefined after elaboration of the corresponding object declaration 
unless an initial value is assigned to the variable by an initialization (explicitly or implicitly). 

If the operand of a type conversion or qualified expression is a variable that has scalar subcompo¬ 
nents with undefined values, then the values of the corresponding subcomponents of the result are 
undefined. The execution of a program is erroneous if it attempts to evaluate a scalar variable with 
an undefined value. Similarly, the execution of a program is erroneous if it attempts to apply a 
predefined operator to a variable that has a scalar subcomponent with an undefined value. 

3.2.1 Object Declarations 3-4 



Declarations and Types 

Examples of variable declarations: 

COUNT. SUM 
SIZE 
SORTED 
COLOR_TABLE 
OPTION 

INTEGER; 
INTEGER range 0 .. 10_000 := 0; 
BOOLEAN := FALSE; 
array(1 .. N) of COLOR; 
BIT_VECTOR( 1 .. 10) := (others => TRUE); 

Examples of constant declarations: 

LIMIT 
LOW_LIMIT 
TOLERANCE 

constant INTEGER := 10_000; 
constant INTEGER := LIMIT/10; 
constant REAL := DISPERSION(1.15); 

Note: 

The expression initializing a constant object need not be a static expression (see 4.9). In the above 
examples, LIMIT and LOW_LIMIT are initialized with static expressions, but TOLERANCE is not if 
DISPERSION is a user-defined function. 

References: access type 3.8, assignment 5.2, assignment compound delimiter 5.2, component 3.3, composite type 

3.3, constrained array definition 3.6, constrained subtype 3.3, constraint_error exception 11.1, conversion 4.6, 

declaration 3.1, default expression for a discriminant 3.7, default initial value for an access type 3.8, depend on a dis¬ 

criminant 3.7.1, designate 3.8, discriminant 3.3, elaboration 3.9, entry 9.5, evaluation 4.5, expression 4.4, formal 

parameter 6.1, generic formal parameter 12.1 12.3, generic unit 12, in some order 1.6, limited type 7.4.4, mode in 

6.1, package 7, predefined operator 4.5, primary 4.4, private type 7.4, qualified expression 4.7, reserved word 2.9, 

scalar type 3.5, slice 4.1.2, subcomponent 3.3, subprogram 6, subtype 3.3, subtype indication 3.3.2, task 9, task type 

9.2, type 3.3, visible part 7.2 

3.2.2 Number Declarations 

A number declaration is a special form of constant declaration. The type of the static expression 
given for the initialization of a number declaration must be either the type universalJnteger or the 
type universalweal. The constant declared by a number declaration is called a named number and 
has the type of the static expression. 

Note: 

The rules concerning expressions of a universal type are explained in section 4.10. It is a conse¬ 
quence of these rules that if every primary contained in the expression is of the type univer¬ 
sal Jnteger, then the named number is also of this type. Similarly, if every primary is of the type 
universal_real, then the named number is also of this type. 

Examples of number declarations: 

PI : constant 
TWO_PI : constant 
MAX : constant 
POWER_16 : constant 
ONE, UN, EINS : constant 

3.141 59_26536; 
2.0*PI; 
500; 
2**16; 
1; 

-- a real number 

-- a real number 

-- an integer number 

-- the integer 65_536 

— three different names for 1 

References: identifier 2.3, primary 4.4, static expression 4.9, type 3.3, universaLinteger type 3.5.4, universaLreal 

type 3.5.6, universal type 4.10 

3-5 Number Declarations 3.2.2 



A NS!/MIL-STD-1815A Ada Reference Manual 

3.3 Types and Subtypes 

1 A type is characterized by a set of values and a set of operations. 

2 There exist several classes of types. Scalar types are integer types, real types, and types defined 
by enumeration of their values; values of these types have no components. Array and record 
types are composite; a value of a composite type consists of component values. An access type is 
a type whose values provide access to objects. Private types are types for which the set of possi¬ 
ble values is well defined, but not directly available to the users of such types. Finally, there are 
task types. (Private types are described in chapter 7, task types are described in chapter 9, the 
other classes of types are described in this chapter.) 

3 Certain record and private types have special components called discriminants whose values dis¬ 
tinguish alternative forms of values of one of these types. If a private type has discriminants, they 
are known to users of the type. Hence a private type is only known by its name, its discriminants if 
any, and by the corresponding set of operations. 

4 The set of possible values for an object of a given type can be subjected to a condition that is cal¬ 
led a constraint (the case where the constraint imposes no restriction is also included); a value is 
said to satisfy a constraint if it satisfies the corresponding condition. A subtype is a type together 
with a constraint; a value is said to belong to a subtype of a given type if it belongs to the type and 
satisfies the constraint; the given type is called the base type of the subtype. A type is a subtype 
of itself; such a subtype is said to be unconstrained’, it corresponds to a condition that imposes no 
restriction. The base type of a type is the type itself. 

5 The set of operations defined for a subtype of a given type includes the operations that are defined 
for the type; however the assignment operation to a variable having a given subtype only assigns 
values that belong to the subtype. Additional operations, such as qualification (in a qualified 
expression), are implicitly defined by a subtype declaration. 

6 Certain types have default initial values defined for objects of the type; certain other types have 
default expressions defined for some or all of their components. Certain operations of types and 
subtypes are called attributes’, these operations are denoted by the form of name described in sec¬ 
tion 4.1.4. 

7 The term subcomponent is used in this manual in place of the term component to indicate jither a 
component, or a component of another component or subcomponent. Where other subcompo¬ 
nents are excluded, the term component is used instead. 

8 A given type must not have a subcomponent whose type is the given type itself. 

9 The name of a class of types is used in this manual as a qualifier for objects and values that have a 
type of the class considered. For example, the term "array object" is used for an object whose type 
is an array type; similarly, the term "access value" is used for a value of an access type. 

Note: 

10 The set of values of a subtype is a subset of the values of the base type. This subset need not be a 
proper subset; it can be an empty subset. 

References: access type 3.8, array type 3.6, assignment 5.2, attribute 4.1.4, component of an array 3.6, component 

of a record 3.7, discriminant constraint 3.7.2, enumeration type 3.5.1, integer type 3.5.4, object 3.2.1, private type 

7 4. qualified expression 4.7, real type 3.5.6, record type 3.7, subtype declaration 3.3.2, task type 9.1, type declaration 

3.3.1 

3-6 



Declarations and Types 

3.3.1 Type Declarations 

A type declaration declares a type. , 

type_declaration ::= full_type_declaration 2 

| incomplete_type_declaration | private_type_declaration 

full_type_declaration 
type identifier [discriminant_part] is type_definition; 

type_definition ::= 
enumeration_type_definition | integer_type_definition 

| real_type_definition | array_type_definition 
| record_type_definition | access_type_definition 
| derived_type_definition 

The elaboration of a full type declaration consists of the elaboration of the discriminant part, if any 3 

(except in the case of the full type declaration for an incomplete or private type declaration), and of 
the elaboration of the type definition. 

The types created by the elaboration of distinct type definitions are distinct types. Moreover, the 4 
elaboration of the type definition for a numeric or derived type creates both a base type and a sub- 
type of the base type; the same holds for a constrained array definition (one of the two forms of 
array type definition). 

The simple name declared by a full type declaration denotes the declared type, unless the type 5 

declaration declares both a base type and a subtype of the base type, in which case the simple 
name denotes the subtype, and the base type is anonymous. A type is said to be anonymous if it 
has no simple name. For explanatory purposes, this reference manual sometimes refers to an 
anonymous type by a pseudo-name, written in italics, and uses such pseudo-names at places 
where the syntax normally requires an identifier. 

Examples of type definitions: e 

(WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK) 
range 1 .. 72 
array! 1 .. 10) of INTEGER 

Examples of type declarations: 7 

type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK); 
type COLUMN is range 1 .. 72; 
type TABLE is array(1 .. 10) of INTEGER; 

Notes: 

Two type definitions always define two distinct types, even if they are textually identical. Thus, the s 
array type definitions given in the declarations of A and B below define distinct types. 

A : array! 1 .. 10) of BOOLEAN; 
B : array(1 .. 10) of BOOLEAN; 

If A and B are declared by a multiple object declaration as below, their types are nevertheless dif- 9 

ferent, since the multiple object declaration is equivalent to the above two single object declara¬ 
tions. 

A, B : array! 1 .. 10) of BOOLEAN; 

3-7 Type Declarations 3.3.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

Incomplete type declarations are used for the definition of recursive and mutually dependent types 
(see 3.8.1). Private type declarations are used in package specifications and in generic parameter 
declarations (see 7.4 and 12.1). 

References: access type definition 3.8, array type definition 3.6, base type 3.3, constrained array definition 3.6, 

constrained subtype 3.3, declaration 3.1, derived type 3.4, derived type definition 3.4, discriminant part 3.7.1, 

elaboration 3.9, enumeration type definition 3.5.1, identifier 2.3, incomplete type declaration 3.8.1, integer type 

definition 3.5.4, multiple object declaration 3.2, numeric type 3.5, private type declaration 7.4, real type definition 

3.5.6, reserved word 2.9, type 3.3 

3.3.2 Subtype Declarations 

A subtype declaration declares a subtype. 

subtype_declaration ::= 
subtype identifier is subtypeJndication; 

subtypeJndication ::= type_mark [constraint] 

type_mark type_name | subtype_name 

constraint 
range_constraint | floating_point_constraint | fixed_point_constraint 

| index_constraint | discriminant_constraint 

A type mark denotes a type or a subtype. If a type mark is the name of a type, the type mark 
denotes this type and also the corresponding unconstrained subtype. The base type of a type mark 
is, by definition, the base type of the type or subtype denoted by the type mark. 

A subtype indication defines a subtype of the base type of the type mark. 

If an index constraint appears after a type mark in a subtype indication, the type mark must not 
already impose an index constraint. Likewise for a discriminant constraint, the type mark must not 
already impose a discriminant constraint. 

The elaboration of a subtype declaration consists of the elaboration of the subtype indication. The 
elaboration of a subtype indication creates a subtype. If the subtype indication does not include a 
constraint, the subtype is the same as that denoted by the type mark. The elaboration of a subtype 
indication that includes a constraint proceeds as follows: 

(a) The constraint is first elaborated. 

(b) A check is then made that the constraint is compatible with the type or subtype denoted by 
the type mark. 

The condition imposed by a constraint is the condition obtained after elaboration of the constraint. 
(The rules of constraint elaboration are such that the expressions and ranges of constraints are 
evaluated by the elaboration of these constraints.) The rules defining compatibility are given for 
each form of constraint in the appropriate section. These rules are such that if a constraint is com¬ 
patible with a subtype, then the condition imposed by the constraint cannot contradict any condi¬ 
tion already imposed by the subtype on its values. The exception CONSTRAINT_ERROR is raised if 
any check of compatibility fails. 

3.3.2 Subtype Declarations 3-8 



Declarations and Types 

Examples of subtype declarations: 

subtype RAINBOW is COLOR range RED .. BLUE; see 3.3.1 

subtype RED_BLUE is RAINBOW; 
subtype INT is INTEGER; 
subtype SMALUNT is INTEGER range -10 .. 10; 
subtype UP_TO_K is COLUMN range 1 .. K; see 3.3.1 

subtype SQUARE is MATRIX! 1 .. 10, 1 .. 10); see 3.6 

subtype MALE is PERSON(SEX => M); see 3.8 

Note: 

A subtype declaration does not define a new type. 

References: base type 3.3, compatibility of discriminant constraints 3.7.2, compatibility of fixed point constraints 

3.5.9, compatibility of floating point constraints 3.5.7, compatibility of index constraints 3.6.1, compatibility of range 

constraints 3.5, constraint_error exception 11.1, declaration 3.1, discriminant 3.3, discriminant constraint 3.7.2, 

elaboration 3.9, evaluation 4.5, expression 4.4, floating point constraint 3.5.7, fixed point constraint 3.5.9, index con¬ 

straint 3.6.1, range constraint 3.5, reserved word 2.9, subtype 3.3, type 3.3, type name 3.3.1, unconstrained subtype 

3.3 

3.3.3 Classification of Operations 

The set of operations of a type includes the explicitly declared subprograms that have a parameter 
or result of the type; such subprograms are necessarily declared after the type declaration. 

The remaining operations are each implicitly declared for a given type declaration, immediately 
after the type definition. These implicitly declared operations comprise the basic operations, the 
predefined operators (see 4.5), and enumeration literals. In the case of a derived type declaration, 
the implicitly declared operations include any derived subprograms. The operations implicitly 
declared for a given type declaration occur after the type declaration and before the next explicit 
declaration, if any. The implicit declarations of derived subprograms occur last. 

A basic operation is an operation that is inherent in one of the following: 

• An assignment (in assignment statements and initializations), an allocator, a membership test, 
or a short-circuit control form. 

• A selected component, an indexed component, or a slice. 

• A qualification (in qualified expressions), an explicit type conversion, or an implicit type con¬ 
version of a value of type universalJnteger or universal_real to the corresponding value of 
another numeric type. 

• A numeric literal (for a universal type), the literal null (for an access type), a string literal, an 
aggregate, or an attribute. 

For every type or subtype T, the following attribute is defined: 

T'BASE The base type of T. This attribute is allowed only as the prefix of the name of 
another attribute: for example, T'BASE 'FIRST. 

3-9 Classification of Operations 3.3.3 



ANSI/MIL-STD-1815A Ada Reference Manual 

Note: 

Each literal is an operation whose evaluation yields the corresponding value (see 4.2). Likewise, an 
aggregate is an operation whose evaluation yields a value of a composite type (see 4.3). Some 
operations of a type operate on values of the type, for example, predefined operators and certain 
subprograms and attributes. The evaluation of some operations of a type returns a value of the 
type, for example, literals and certain functions, attributes, and predefined operators. Assignment 
is an operation that operates on an object and a value. The evaluation of the operation cor¬ 
responding to a selected component, an indexed component, or a slice, yields the object or value 
denoted by this form of name. 

References: aggregate 4.3, allocator 4.8, assignment 5.2, attribute 4.1.4, character literal 2.5, composite type 3.3, 

conversion 4.6, derived subprogram 3.4, enumeration literal 3.5.1, formal parameter 6.1, function 6.5, indexed com¬ 

ponent 4.1.1, initial value 3.2.1, literal 4.2, membership test 4.5 4.5.2, null literal 3.8, numeric literal 2.4, numeric type 

3.5, object 3.2.1, 6.1, predefined operator 4.5, qualified expression 4.7, selected component 4.1.3. short-circuit con¬ 

trol form 4.5 4.5.1, slice 4.1.2, string literal 2.6, subprogram 6, subtype 3.3, type 3.3, type declaration 3.3.1, univer¬ 

sal Jnteger type 3.5.4, universaLreal type 3.5.6, universal type 4.10 

3.4 Derived Types 

A derived type definition defines a new (base) type whose characteristics are derived from those of 
a parent type; the new type is called a derived type. A derived type definition further defines a 
derived subtype, which is a subtype of the derived type. 

derived_type_definition new subtype_indication 

The subtype indication that occurs after the reserved word new defines the parent subtype. The 
parent type is the base type of the parent subtype. If a constraint exists for the parent subtype, a 
similar constraint exists for the derived subtype; the only difference is that for a range constraint, 
and likewise for a floating or fixed point constraint that includes a range constraint, the value of 
each bound is replaced by the corresponding value of the derived type. The characteristics of the 
derived type are defined as follows: 

• The derived type belongs to the same class of types as the parent type. The set of possible 
values for the derived type is a copy of the set of possible values for the parent type. If the 
parent type is composite, then the same components exist for the derived type, and the sub- 
type of corresponding components is the same. 

• For each basic operation of the parent type, there is a corresponding basic operation of the 
derived type. Explicit type conversion of a value of the parent type into the corresponding 
value of the derived type is allowed and vice versa as explained in section 4.6. 

• For each enumeration literal or predefined operator of the parent type there is a corresponding 
operation for the derived type. 

• If the parent type is a task type, then for each entry of the parent type there is a corresponding 
entry for the derived type. 

• If a default expression exists for a component of an object having the parent type, then the 
same default expression is used for the corresponding component of an object having the 
derived type. 

3.4 Derived Types 3-10 



Declarations and Types 

• If the parent type is an access type, then the parent and the derived type share the same col¬ 
lection; there is a null access value for the derived type and it is the default initial value of that 
type. 

• If an explicit representation clause exists for the parent type and if this clause appears before 
the derived type definition, then there is a corresponding representation clause (an implicit 
one) for the derived type. 

• Certain subprograms that are operations of the parent type are said to be derivable. For each 
derivable subprogram of the parent type, there is a corresponding derived subprogram for the 
derived type. Two kinds of derivable subprograms exist. First, if the parent type is declared 
immediately within the visible part of a package, then a subprogram that is itself explicitly 
declared immediately within the visible part becomes derivable after the end of the visible 
part, if it is an operation of the parent type. (The explicit declaration is by a subprogram 
declaration, a renaming declaration, or a generic instantiation.) Second, if the parent type is 
itself a derived type, then any subprogram that has been derived by this parent type is further 
derivable, unless the parent type is declared in the visible part of a package and the derived 
subprogram is hidden by a derivable subprogram of the first kind. 

Each operation of the derived type is implicitly declared at the place of the derived type declara¬ 
tion. The implicit declarations of any derived subprograms occur last. 

The specification of a derived subprogram is obtained implicitly by systematic replacement of the 
parent type by the derived type in the specification of the derivable subprogram. Any subtype of 
the parent type is likewise replaced by a subtype of the derived type with a similar constraint (as 
for the transformation of a constraint of the parent subtype into the corresponding constraint of 
the derived subtype). Finally, any expression of the parent type is made to be the operand of a type 
conversion that yields a result of the derived type. 

Calling a derived subprogram is equivalent to calling the corresponding subprogram of the parent 
type, in which each actual parameter that is of the derived type is replaced by a type conversion of 
this actual parameter to the parent type (this means that a conversion to the parent type happens 
before the call for the modes in and in out; a reverse conversion to the derived type happens after 
the call for the modes in out and out, see 6.4.1). In addition, if the result of a called function is of 
the parent type, this result is converted to the derived type. 

If a derived or private type is declared immediately within the visible part of a package, then, within 
this visible part, this type must not be used as the parent type of a derived type definition. (For 
private types, see also section 7.4.1.) 

For the elaboration of a derived type definition, the subtype indication is first elaborated, the 
derived type is then created, and finally, the derived subtype is created. 

Examples: 

type LOCALCOORDINATE is new COORDINATE; 
type MIDWEEK is new DAY range TUE .. THU; 
type COUNTER is new POSITIVE; 

two different types 
see 3.5.1 
same range as POSITIVE 

type SPECIAL_KEY is new KEY.MANAGER.KEY; - see 7.4.2 
— the derived subprograms have the following specifications: 

- procedure GET_KEY(K : out SPECIAL_KEY); 
- function "<"(X,Y : SPECIALKEY) return BOOLEAN; 

3-1 1 Derived Types 3.4 



A NS!/MIL-STD-1815A Ada Reference Manual 

Notes: 

The rules of derivation of basic operations and enumeration literals imply that the notation for any 
literal or aggregate of the derived type is the same as for the parent type; such literals and 
aggregates are said to be overloaded. Similarly, it follows that the notation for denoting a compo¬ 
nent, a discriminant, an entry, a slice, or an attribute is the same for the derived type as for the 
parent type. 

Hiding of a derived subprogram is allowed even within the same declarative region (see 8.3). A 
derived subprogram hides a predefined operator that has the same parameter and result type 
profile (see 6.6). 

A generic subprogram declaration is not derivable since it declares a generic unit rather than a sub¬ 
program. On the other hand, an instantiation of a generic subprogram is a (nongeneric) sub¬ 
program, which is derivable if it satisfies the requirements for derivability of subprograms. 

If the parent type is a boolean type, the predefined relational operators of the derived type deliver a 
result of the predefined type BOOLEAN (see 4.5.2). 

If a representation clause is given for the parent type but appears after the derived type declara¬ 
tion, then no corresponding representation clause applies to the derived type; hence an explicit 
representation clause for such a derived type is allowed. 

For a derived subprogram, if a parameter belongs to the derived type, the subtype of this 
parameter need not have any value in common with the derived subtype. 

References: access value 3.8, actual parameter 6.4.1, aggregate 4.3, attribute 4.1.4, base type 3.3, basic operation 

3.3.3, boolean type 3.5.3, bound of a range 3.5, class of type 3.3, collection 3.8, component 3.3, composite type 3.3, 

constraint 3.3, conversion 4.6, declaration 3.1, declarative region 8.1, default expression 3.2.1, default initial value for 

an access type 3.8, discriminant 3.3, elaboration 3.9, entry 9.5, enumeration literal 3.5.1, floating point constraint 

3.5.7. fixed point constraint 3.5.9, formal parameter 6.1, function call 6.4, generic declaration 12.1, immediately 

within 8.1, implicit declaration 3.1, literal 4.2, mode 6.1, overloading 6.6 8.7, package 7, package specification 7.1, 

parameter association 6.4, predefined operator 4.5, private type 7.4, procedure 6, procedure call statement 6.4, range 

constraint 3.5, representation clause 13.1, reserved word 2.9, slice 4.1.2, subprogram 6, subprogram specification 

6.1, subtype indication 3.3.2, subtype 3.3, type 3.3, type definition 3.3.1, visible part 7.2 

3.5 Scalar Types 

Scalar types comprise enumeration types, integer types, and real types. Enumeration types and 
integer types are called discrete types; each value of a discrete type has a position number which 
is an integer value. Integer types and real types are called numeric types. All scalar types are 
ordered, that is, all relational operators are predefined for their values. 

range_constraint ::= rang© range 

range range_attribute 

I simple_expression .. simple_expression 

3.5 Scalar Types 3-12 



Declarations and Types 

A range specifies a subset of values of a scalar type. The range L .. R specifies the values from L to 3 

R inclusive if the relation L <= R is true. The values L and R are called the lower bound and upper 
bound of the range, respectively. A value V is said to satisfy a range constraint if it belongs to the 
range; the value V is said to belong to the range if the relations L <= V and V <= R are both TRUE . 
A null range is a range for which the relation R < L is TRUE ; no value belongs to a null range. The 
operators <= and < in the above definitions are the predefined operators of the scalar type. 

If a range constraint is used in a subtype indication, either directly or as part of a floating or fixed 4 
point constraint, the type of the simple expressions (likewise, of the bounds of a range attribute) 
must be the same as the base type of the type mark of the subtype indication. A range constraint is 
compatible with a subtype if each bound of the range belongs to the subtype, or if the range con¬ 
straint defines a null range; otherwise the range constraint is not compatible with the subtype. 

The elaboration of a range constraint consists of the evaluation of the range. The evaluation of a 5 

range defines its lower bound and its upper bound. If simple expressions are given to specify the 
bounds, the evaluation of the range evaluates these simple expressions in some order that is not 
defined by the language. 

Attributes 6 

For any scalar type T or for any subtype T of a scalar type, the following attributes are defined: 7 

T'FIRST Yields the lower bound of T. The value of this attribute has the same type as T. s 

T'LAST Yields the upper bound of T. The value of this attribute has the same type as T. 9 

Note: 

Indexing and iteration rules use values of discrete types. 10 

References: attribute 4.1.4, constraint 3.3, enumeration type 3.5.1, erroneous 1.6, evaluation 4.5, fixed point 11 

constraint 3.5.9, floating point constraint 3.5.7, index 3.6, integer type 3.5.4, loop statement 5.5, range attribute 

3 6.2, real type 3.5.6, relational operator 4.5 4.5.2, satisfy a constraint 3.3, simple expression 4.4, subtype indication 

3.3.2, type mark 3.3.2 

3.5.1 Enumeration Types 

An enumeration type definition defines an enumeration type. 1 

enumeration_type_definition ::= 2 

(enumerationJiteraLspecification |, enumeration_literal_specification|) 

enumeration_literal_specification ::= enumeration_literal 

enumeration_literal identifier | character_literal 

The identifiers and character literals listed by an enumeration type definition must be distinct. Each 3 

enumeration literal specification is the declaration of the corresponding enumeration literal: this 
declaration is equivalent to the declaration of a parameterless function, the designator being the 
enumeration literal, and the result type being the enumeration type. The elaboration of an 
enumeration type definition creates an enumeration type; this elaboration includes that of every 

enumeration literal specification. 

3-13 Enumeration Types 3.5.1 



ANSI/M/L-STD-1815A Ada Reference Manual 

Each enumeration literal yields a different enumeration value. The predefined order relations 
between enumeration values follow the order of corresponding position numbers. The position 
number of the value of the first listed enumeration literal is zero; the position number for each 
other enumeration literal is one more than for its predecessor in the list. 

If the same identifier or character literal is specified in more than one enumeration type definition, 
the corresponding literals are said to be overloaded. At any place where an overloaded enumera¬ 
tion literal occurs in the text of a program, the type of the enumeration literal must be determinable 
from the context (see 8.7). 

Examples: 

type DAY 
type SUIT 
type GENDER 
type LEVEL 
type COLOR 
type LIGHT 

is (MON, TUE, WED, THU, FRI, SAT, SUN); 
is (CLUBS, DIAMONDS, HEARTS, SPADES); 
is (M, F); 
is (LOW, MEDIUM, URGENT); 
is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK); 
is (RED, AMBER, GREEN); — RED and GREEN are overloaded 

type HEXA is ('A', 'B', 'C', 'D', 'E', 'F'); 
type MIXED is ('A', 'B\ V, B, NONE, '?', '%'); 

subtype WEEKDAY is DAY range MON .. FRI; 
subtype MAJOR is SUIT range HEARTS .. SPADES; 
subtype RAINBOW is COLOR range RED .. BLUE; — the color RED, not the light 

Note: 

If an enumeration literal occurs in a context that does not otherwise suffice to determine the type 
of the literal, then qualification by the name of the enumeration type is one way to resolve the 
ambiguity (see 8.7). 

References: character literal 2.5, declaration 3.1, designator 6.1, elaboration 3.9, 6.1, function 6.5, identifier 2.3, 

name 4.1, overloading 6.6 8.7, position number 3.5, qualified expression 4.7, relational operator 4.5 4.5.2, type 3.3, 

type definition 3.3.1 

3.5.2 Character Types 

An enumeration type is said to be a character type if at least one of its enumeration literals is a 
character literal. The predefined type CHARACTER is a character type whose values are the 128 
characters of the ASCII character set. Each of the 95 graphic characters of this character set is 
denoted by the corresponding character literal. 

Example: 

type ROMAN_DIGIT is (T, 'V', 'X', ’L', 'C', 'D', 'M'); 

Notes: 

The predefined package ASCII includes the declaration of constants denoting control characters 
and of constants denoting graphic characters that are not in the basic character set. 

3.5.2 Character Types 3-14 



Declarations and Types 

A conventional character set such as EBCDIC can be declared as a character type; the internal 
codes of the characters can be specified by an enumeration representation clause as explained in 
section 13.3. 

References: ascii predefined package C, basic character 2.1, character literal 2.5, constant 3.2.1, declaration 3.1, 

enumeration type 3.5.1, graphic character 2.1, identifier 2.3, literal 4.2, predefined type C, type 3.3 

3.5.3 Boolean Types 

There is a predefined enumeration type named BOOLEAN. It contains the two literals FALSE and 
TRUE ordered with the relation FALSE < TRUE. A boolean type is either the type BOOLEAN or a 
type that is derived, directly or indirectly, from a boolean type. 

References: derived type 3.4, enumeration literal 3.5.1, enumeration type 3.5.1, relational operator 4.5 4.5.2, type 

3.3 

3.5.4 Integer Types 

An integer type definition defines an integer type whose set of values includes at least those of the 
specified range. 

integer_type_definition range_constraint 

If a range constraint is used as an integer type definition, each bound of the range must be defined 
by a static expression of some integer type, but the two bounds need not have the same integer 
type. (Negative bounds are allowed.) 

A type declaration of the form: 

type T is range L .. R; 

is, by definition, equivalent to the following declarations: 

type integerJype is new predefined_integer_type; 
subtype T is integer Jtype range integer_type(l) .. integer_type{R); 

where integer Jtype is an anonymous type, and where the predefined integer type is implicitly 
selected by the implementation, so as to contain the values L to R inclusive. The integer type 
declaration is illegal if none of the predefined integer types satisfies this requirement, excepting 
universalJnteger. The elaboration of the declaration of an integer type consists of the elaboration 
of the equivalent type and subtype declarations. 

The predefined integer types include the type INTEGER. An implementation may also have 
predefined types such as SHORTJNTEGER and LONGJNTEGER , which have (substantially) shorter 
and longer ranges, respectively, than INTEGER. The range of each of these types must be 
symmetric about zero, excepting an extra negative value which may exist in some implementa¬ 
tions. The base type of each of these types is the type itself. 

3-15 integer Types 3.5.4 



ANSI/MIL-STD-1815A Ada Reference Manual 

Integer literals are the literals of an anonymous predefined integer type that is called univer- 
salJnteger in this reference manual. Other integer types have no literals. However, for each 
integer type there exists an implicit conversion that converts a universalJnteger value into the cor¬ 
responding value (if any) of the integer type. The circumstances under which these implicit conver¬ 
sions are invoked are described in section 4.6. 

The position number of an integer value is the corresponding value of the type universal Jnteger. 

The same arithmetic operators are predefined for all integer types (see 4.5). The exception 
NUMERIC_ERROR is raised by the execution of an operation (in particular an implicit conversion) 
that cannot deliver the correct result (that is, if the value corresponding to the mathematical result 
is not a value of the integer type). However, an implementation is not required to raise the excep¬ 
tion NUMERIC_ERROR if the operation is part of a larger expression whose result can be computed 
correctly, as described in section 11.6. 

Examples: 

type PAGE_NUM is rang® 1 .. 2_000; 
type LINE_SIZE is range 1 .. MAX_LINE_SIZE; 

subtype SMAL!_INT is INTEGER range -10 .. 10; 
subtype CQLUMN_PTR is LINE.SIZE range 1 .. 10; 
subtype BUFFER_SIZE is INTEGER range 0 .. MAX; 

Notes: 

The name declared by an integer type declaration is a subtype name. On the other hand, the 
predefined operators of an integer type deliver results whose range is defined by the parent 
predefined type; such a result need not belong to the declared subtype, in which case an attempt 
to assign the result to a variable of the integer subtype raises the exception CONSTRAINT_ERROR . 

The smallest (most negative) value supported by the predefined integer types of an implementa¬ 
tion is the named number SYSTEM .MINJNT and the largest (most positive) value is 
SYSTEM.MAXJNT (see 13.7). 

References: anonymous type 3.3.1, belong to a subtype 3.3, bound of a range 3.5, constraint_error exception 11.1, 

conversion 4.6, identifier 2.3, integer literal 2.4, literal 4.2, numeric_error exception 11.1, parent type 3.4, predefined 

operator 4.5, range constraint 3.5, static expression 4.9, subtype declaration 3.3.2, system predefined package 13.7, 

type 3.3, type declaration 3.3.1, type definition 3.3.1, universal type 4.10 

3.5.5 Operations of Discrete Types 

The basic operations of a discrete type include the operations involved in assignment, the 
membership tests, and qualification; for a boolean type they include the short-circuit control forms; 
for an integer type they include the explicit conversion of values of other numeric types to the 
integer type, and the implicit conversion of values of the type universal Jnteger to the type. 

Finally, for every discrete type or subtype T, the basic operations include the attributes listed 
below. In this presentation, T is referred to as being a subtype (the subtype T) for any property that 
depends on constraints imposed by T; other properties are stated in terms of the base type of T. 

3.5.5 Operations of Discrete Types 3-16 



Declarations and Types 

The first group of attributes yield characteristics of the subtype T. This group includes the attribute 
BASE (see 3.3.2), the attributes FIRST and LAST (see 3.5), the representation attribute SIZE (see 
13.7.2), and the attribute WIDTH defined as follows: 

T’WIDTH Yields the maximum image length over all values of the subtype T (the image is the 
sequence of characters returned by the attribute IMAGE, see below). Yields zero 
for a null range. The value of this attribute is of the type universalJnteger. 

All attributes of the second group are functions with a single parameter. The corresponding actual 
parameter is indicated below by X. 

T'POS This attribute is a function. The parameter X must be a value of the base type of T. 
The result type is the type universal Jnteger. The result is the position number of 
the value of the parameter. 

T'VAL This attribute is a special function with a single parameter which can be of any 
integer type. The result type is the base type of T. The result is the value whose 
position number is the universal Jnteger value corresponding to X. The exception 
CONSTRAINT_ERROR is raised if the universal Jnteger value corresponding to X is 
not in the range T'POS(T'BASE'FIRST).. TPQS(T'BASE'LAST). 

T'SUCC This attribute is a function. The parameter X must be a value of the base type of T. 
The result type is the base type of T. The result is the value whose position number 
is one greater than that of X. The exception CONSTRAINT_ERROR is raised if X 
equals T'BASE'LAST. 

T'PRED This attribute is a function. The parameter X must be a value of the base type of T. 
The result type is the base type of T. The result is the value whose position number 
is one less than that of X. The exception CONSTRAINT_ERROR is raised if X equals 
T'BASE'FIRST. 

T'lMAGE This attribute is a function. The parameter X must be a value of the base type of T. 
The result type is the predefined type STRING . The result is the image of the value 
of X, that is, a sequence of characters representing the value in display form. The 
image of an integer value is the corresponding decimal literal; without underlines, 
leading zeros, exponent, or trailing spaces; but with a single leading character that 
is either a minus sign or a space. The lower bound of the image is one. 

The image of an enumeration value is either the corresponding identifier in upper 
case or the corresponding character literal (including the two apostrophes); 
neither leading nor trailing spaces are included. The image of a character C,other 
than a graphic character, is implementation-defined; the only requirement is that 
the image must be such that C equals CHARACTER'VALUE (CHARACTER'IMAGE (C)). 

T'VALUE This attribute is a function. The parameter X must be a value of the predefined type 
STRING. The result type is the base type of T. Any leading and any trailing spaces 
of the sequence of characters that corresponds to the parameter are ignored. 

For an enumeration type, if the sequence of characters has the syntax of an 
enumeration literal and if this literal exists for the base type of T, the result is the 
corresponding enumeration value. For an integer type, if the sequence of 
characters has the syntax of an integer literal, with an optional single leading 
character that is a plus or minus sign, and if there is a corresponding value in the 
base type of T, the result is this value. In any other case,, the exception 
CONSTRAINT_ERROR is raised. 

3-17 Operations of Discrete Types 3.5.5 



ANSI/MIL -STD-1815A Ada Reference Manual 

In addition, the attributes A'SIZE and A'ADDRESS are defined for an object A of a discrete type 
(see 13.7.2). 

Besides the basic operations, the operations of a discrete type include the predefined relational 
operators. For enumeration types, operations include enumeration literals. For boolean types, 
operations include the predefined unary logical negation operator not, and the predefined logical 
operators. For integer types, operations include the predefined arithmetic operators: these are the 
binary and unary adding operators - and +, all multiplying operators, the unary operator abs, and 
the exponentiating operator. 

The operations of a subtype are the corresponding operations of its base type except for the fol¬ 
lowing: assignment, membership tests, qualification, explicit type conversions, and the attributes 
of the first group; the effect of each of these operations depends on the subtype (assignments, 
membership tests, qualifications, and conversions involve a subtype check; attributes of the first 
group yield a characteristic of the subtype). 

Notes: 

For a subtype of a discrete type, the results delivered by the attributes SUCC, PRED, VAL, and 
VALUE need not belong to the subtype; similarly, the actual parameters of the attributes POS, 
SUCC, PRED, and IMAGE need not belong to the subtype. The following relations are satisfied (in 
the absence of an exception) by these attributes: 

T’POS(T'SUCC(X)) = T'POS(X) + 1 
TPOS(T'PRED(X)) = T'POS(X) - 1 

T'VAL(T'POS(X)) = X 
TPOSrrVAL(N)) = N 

Examples: 

For the types and subtypes declared in section 3.5.1 we have: 

- COLOR’FIRST = WHITE, COLOR'LAST = BLACK 
- RAINBOW'FIRST = RED, RAINBOW'LAST = BLUE 

- COLOR'SUCC(BLUE) - RAINBOW'SUCC(BLUE) = BROWN 
- CO LOR'POS (BLUE) = RAINBOW'POS(BLUE) = 4 
- COLOR'VAL(O) - RAIN BOW'VAL(O) = WHITE 

References: abs operator 4.5 4.5.6, assignment 5.2, attribute 4.1.4, base type 3.3, basic operation 3.3.3, binary 
adding operator 4.5 4.5.3, boolean type 3.5.3, bound of a range 3.5, character literal 2.5, constraint 3.3, con- 
straint_error exception 11.1, conversion 4.6, discrete type 3.5, enumeration literal 3.5.1, exponentiating operator 4.5 
4.5.6, function 6.5, graphic character 2.1, identifier 2.3, integer type 3.5.4, logical operator 4.5 4.5.1, membership 
test 4.5 4.5.2, multiplying operator 4.5 4.5.5, not operator 4.5 4.5.6, numeric literal 2.4, numeric type 3.5, object 3.2, 
operation 3.3, position number 3.5, predefined operator 4.5, predefined type C, qualified expression 4.7, relational 
operator 4.5 4.5.2, short-circuit control form 4.5 4.5.1, string type 3.6.3, subtype 3.3, type 3.3, unary adding operator 
4.5 4.5.4, universaUnteger type 3.5.4, universal type 4.10 

3.5.5 Operations of Discrete Types 3-18 



Declarations and Types 

3.5.6 Real Types 

Real types provide approximations to the real numbers, with relative bounds on errors for floating , 
point types, and with absolute bounds for fixed point types. 

real_type_definition ::= 2 
floating_point_constraint | fixed_point_constraint 

A set of numbers called model numbers is associated with each real type. Error bounds on the 3 

predefined operations are given in terms of the model numbers. An implementation of the type 
must include at least these model numbers and represent them exactly. 

An implementation-dependent set of numbers, called the safe numbers, is also associated with 4 

each real type. The set of safe numbers of a real type must include at least the set of model 
numbers of the type. The range of safe numbers is allowed to be larger than the range of model 
numbers, but error bounds on the predefined operations for safe numbers are given by the same 
rules as for model numbers. Safe numbers therefore provide guaranteed error bounds for opera¬ 
tions on an implementation-dependent range of numbers; in contrast, the range of model numbers 
depends only on the real type definition and is therefore independent of the implementation. 

Real literals are the literals of an anonymous predefined real type that is called universal_real in 5 

this reference manual. Other real types have no literals. However, for each real type, there exists an 
implicit conversion that converts a universal_real value into a value of the real type. The condi¬ 
tions under which these implicit conversions are invoked are described in section 4.6. If the 
universalweal value is a safe number, the implicit conversion delivers the corresponding value; if it 
belongs to the range of safe numbers but is not a safe number, then the converted value can be 
any value within the range defined by the safe numbers next above and below the universal_real 
value. 

The execution of an operation that yields a value of a real type may raise the exception 6 

NUMERIC_ERROR, as explained in section 4.5.7, if it cannot deliver a correct result (that is, if the 
value corresponding to one of the possible mathematical results does not belong to the range of 
safe numbers); in particular, this exception can be raised by an implicit conversion. However, an 
implementation is not required to raise the exception NUMERIC_ERROR if the operation is part of a 
larger expression whose result can be computed correctly (see 11.6). 

The elaboration of a real type definition includes the elaboration of the floating or fixed point con- 7 

straint and creates a real type. 

Note: 

An algorithm written to rely only upon the minimum numerical properties guaranteed by the type s 
definition for model numbers will be portable without further precautions. 

References: conversion 4.6, elaboration 3.9, fixed point constraint 3.5.9, floating point constraint 3.5.7, literal 4.2, 9 

numeric_error exception 11.1, predefined operation 3.3.3, real literal 2.4, type 3.3, type definition 3.3.1, universal 

type 4.10 

3-19 Rea! Types 3.5.6 



ANS//M/L-STD-1815A Ada Reference Manual 

3.5.7 Floating Point Types 

For floating point types, the error bound is specified as a relative precision by giving the required 
minimum number of significant decimal digits. 

floating_point_constraint 
floating_accuracy_definition [range_constraint] 

floating_accuracy_definition ::= digits sfar/c_simple_expression 

The minimum number of significant decimal digits is specified by the value of the static simple 
expression of the floating accuracy definition. This value must belong to some integer type and 
must be positive (nonzero); it is denoted by D in the remainder of this section. If the floating point 
constraint is used as a real type definition and includes a range constraint, then each bound of the 
range must be defined by a static expression of some real type, but the two bounds need not have 
the same real type. 

For a given radix, the following canonical form is defined for any floating point model number other 
than zero: 

sign \ mantissa * (radix ** exponent) 

In this form: sign is either +1 or -1; mantissa is expressed in a number base given by radix; and 
exponent is an integer number (possibly negative) such that the integer part of mantissa is zero 
and the first digit of its fractional part is not a zero. 

The specified number D is the minimum number of decimal digits required after the point in the 
decimal mantissa (that is, if radix is ten). The value of D in turn determines a corresponding 
number B that is the minimum number of binary digits required after the point in the binary man¬ 
tissa (that is, if radix is two). The number B associated with D is the smallest value such that the 
relative precision of the binary form is no less than that specified for the decimal form. (The 
number B is the integer next above (D*log(1Q)/log(2)) + 1.) 

The model numbers defined by a floating accuracy definition comprise zero and all numbers whose 
binary canonical form has exactly B digits after the point in the mantissa and an exponent in the 
range -4tB .. +4*B. The guaranteed minimum accuracy of operations of a floating point type is 
defined in terms of the model numbers of the floating point constraint that forms the cor¬ 
responding real type definition (see 4.5.7). 

The predefined floating point types include the type FLOAT. An implementation may also have 
predefined types such as SH0RT_F10AT and LONG_FLOAT, which have (substantially) less and 
more accuracy, respectively, than FLOAT. The base type of each predefined floating point type is 
the type itself. The model numbers of each predefined floating point type are defined in terms of 
the number D of decimal digits returned by the attribute DIGITS (see 3.5.8). 

For each predefined floating point type (consequently also for each type derived therefrom), a set 
of safe numbers is defined as follows. The safe numbers have the same number B of mantissa 
digits as the model numbers of the type and have an exponent in the range -E .. +E where E is 
implementation-defined and at least equal to the 4*B of model numbers. (Consequently, the safe 
numbers include the model numbers.) The rules defining the accuracy of operations with model 
and safe numbers are given in section 4.5.7. The safe numbers of a subtype are those of its base 
type. 

3.5.7 Floating Point Types 3-20 



Declarations and Types 

A floating point type declaration of one of the two forms (that is, with or without the optional range 
constraint indicated by the square brackets): 

type T is digits D [range L .. R]; 

is, by definition, equivalent to the following declarations: 

type floatingpointJtype is new predefined_floating_point_type; 
subtype T is floatingpoint-type digits D 

[range floatingpoint_type(L) .. floatingpoint_type{R)]; 

where floatingpoint-.type is an anonymous type, and where the predefined floating point type is 
implicitly selected by the implementation so that its model numbers include the model numbers 
defined by D; furthermore, if a range L R is supplied, then both L and R must belong to the range 
of safe numbers. The floating point declaration is illegal if none of the predefined floating point 
types satisfies these requirements, excepting universa/peal. The maximum number of digits that 
can be specified in a floating accuracy definition is given by the system-dependent named number 
SYSTEM. MAX_DIGITS (see 13.7.1). 

The elaboration of a floating point type declaration consists of the elaboration of the equivalent 
type and subtype declarations. 

If a floating point constraint follows a type mark in a subtype indication, the type mark must 
denote a floating point type or subtype. The floating point constraint is compatible with the type 
mark only if the number D specified in the floating accuracy definition is not greater than the cor¬ 
responding number D for the type or subtype denoted by the type mark. Furthermore, if the 
floating point constraint includes a range constraint, the floating point constraint is compatible 
with the type mark only if the range constraint is, itself, compatible with the type mark. 

The elaboration of such a subtype indication includes the elaboration of the range constraint, if 
there is one; it creates a floating point subtype whose model numbers are defined by the cor¬ 
responding floating accuracy definition. A value of a floating point type belongs to a floating point 
subtype if and only if it belongs to the range defined by the subtype. 

The same arithmetic operators are predefined for all floating point types (see 4.5). 

Notes: 

A range constraint is allowed in a floating point subtype indication, either directly after +he type 
mark, or as part of a floating point constraint. In either case the bounds of the range must belong 
to the base type of the type mark (see 3.5). The imposition of a floating point constraint on a type 
mark in a subtype indication cannot reduce the allowed range of values unless it includes a range 
constraint (the range of model numbers that correspond to the specified number of digits can be 
smaller than the range of numbers of the type mark). A value that belongs to a floating point sub- 
type need not be a model number of the subtype. 

Examples: 

type COEFFICIENT is digits 10 range -1.0 .. 1.0; 

type REAL is digits 8; 
type MASS is digits 7 range 0.0 .. 1.0E35; 

subtype SHORT_COEFF is COEFFICIENT digits 5; -- a subtype with less accuracy 
subtype PROBABILITY is REAL range 0.0 .. 1.0; -- a subtype with a smaller range 

3-21 Floating Point Types 3.5.7 



19 

20 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A NS I/MIL -STD-1815A Ada Reference Manual 

Notes on the examples: 

The implemented accuracy for COEFFICIENT is that of a predefined type having at least 10 digits of 
precision. Consequently the specification of 5 digits of precision for the subtype SHORT_COEFF is 
allowed. The largest model number for the type MASS is approximately 1.27E30 and hence less 
than the specified upper bound (1.0E35). Consequently the declaration of this type is legal only if 
this upper bound is in the range of the safe numbers of a predefined floating point type having at 
least 7 digits of precision. 

References: anonymous type 3.3.1, arithmetic operator 3.5.5 4.5, based literal 2.4.2, belong to a subtype 3.3, bound 

of a range 3.5, compatible 3.3.2, derived type 3.4, digit 2.1, elaboration 3.1 3.9, error bound 3.5.6, exponent 2.4.1 

integer type 3.5.4, model number 3.5.6, operation 3.3, predefined operator 4.5, predefined type C, range constraint 

3.5, real type 3.5.6, real type definition 3.5.6, safe number 3.5.6, simple expression 4.4, static expression 4.9, subtype 

declaration 3.3.2, subtype indication 3.3.2, subtype 3.3, type 3.3, type declaration 3.3.1, type mark 3.3.2 

3.5.8 Operations of Floating Point Types 

The basic operations of a floating point type include the operations involved in assignment, 
membership tests, qualification, the explicit conversion of values of other numeric types to the 
floating point type, and the implicit conversion of values of the type universal_real to the type. 

In addition, for every floating point type or subtype T, the basic operations include the attributes 
listed below. In this presentation, T is referred to as being a subtype (the subtype T) for any 
property that depends on constraints imposed by T; other properties are stated in terms of the 
base type of T. 

The first group of attributes yield characteristics of the subtype T. The attributes of this group are 
the attribute BASE (see 3.3.2), the attributes FIRST and LAST (see 3.5), the representation 
attribute SIZE (see 1 3.7.2), and the following attributes: 

T'DIGITS Yields the number of decimal digits in the decimal mantissa of model numbers 
of the subtype T. (This attribute yields the number D of section 3.5.7.) The 
value of this attribute is of the type universalJnteger. 

T'MANTISSA 

T'EPSI LON 

T'EMAX 

T'SMALL 

Yields the number of binary digits in the binary mantissa of model numbers of 
the subtype T. (This attribute yields the number B of section 3.5.7.) The value 
of this attribute is of the type universal Jnteger. 

Yields the absolute value of the difference between the model number 1.0 and 
the next model number above, for the subtype T. The value of this attribute is 
of the type universalweal. 

Yields the largest exponent value in the binary canonical form of model 
numbers of the subtype T. (This attribute yields the product 4*B of section 
3.5.7.) The value of this attribute is of the type universal Jnteger. 

Yields the smallest positive (nonzero) model number of the subtype T. The 
value of this attribute is of the type universal-real. 

T LARGE Yields the largest positive model number of the subtype T. The value of this 
attribute is of the type universal-real. 

3.5.8 Operations of Floating Point Types 3-22 



Declarations and Types 

The attributes of the second group include the following attributes which yield characteristics of 
the safe numbers: 

T'SAFE_EMAX Yields the largest exponent value in the binary canonical form of safe numbers of 
the base type of T. (This attribute yields the number E of section 3.5.7.) The 
value of this attribute is of the type universalJnteger. 

T'SAFE_SMALL Yields the smallest positive (nonzero) safe number of the base type of T. The 
value of this attribute is of the type universal_real. 

T'SAFE_LARGE Yields the largest positive safe number of the base type of T. The value of this 
attribute is of the type universal_real. 

In addition, the attributes A'SIZE and A'ADDRESS are defined for an object A of a floating point 
type (see 13.7.2). Finally, for each floating point type there are machine-dependent attributes that 
are not related to model numbers and safe numbers. They correspond to the attribute designators 
MACHINE_RADIX , MACHINE_MANTISSA , MACHINE_EMAX , MACHINE_EMIN , MACHINE_ROUNDS , 
and MACHINE_0VERFLOWS (see 13.7.3). 

Besides the basic operations, the operations of a floating point type include the relational 
operators, and the following predefined arithmetic operators: the binary and unary adding 
operators - and +, the multiplying operators * and /, the unary operator abs, and the exponen¬ 
tiating operator. 

The operations of a subtype are the corresponding operations of the type except for the following: 
assignment, membership tests, qualification, explicit conversion, and the attributes of the first 
group; the effects of these operations are redefined in terms of the subtype. 

Notes: 

The attributes EMAX, SMALL, LARGE, and EPSILON are provided for convenience. They are all 
related to MANTISSA by the following formulas: 

T’EMAX = 4*T'MANTISSA 
T'EPS I LON = 2.0**(1 - T'MANTISSA) 
T'SMALL = 2.0**(-T'EMAX - 1) 
T'LARGE - 2.0**T'EMAX * (1.0 - 2.0**(-T‘MANTISSA)) 

The attribute MANTISSA, giving the number of binary digits in the mantissa, is itself related to 
DIGITS. The following relations hold between the characteristics of the model numbers and those 
of the safe numbers: 

T'BASE'EMAX <= T'SAFE_EMAX 
T'BASE'SMALL >= T'SAFE_SMALL 
T'BASE'LARGE <= T’SAFE_LARGE 

The attributes T'FIRST and T'LAST need not yield model or safe numbers. If a certain number of 
digits is specified in the declaration of a type or subtype T, the attribute T'DIGITS yields this 
number. 

References: abs operator 4.5 4.5.6, arithmetic operator 3.5.5 4.5, assignment 5.2, attribute 4.1.4, base type 3.3, 

basic operation 3.3.3, binary adding operator 4.5 4.5.3, bound of a range 3.5, constraint 3.3, conversion 4.6, digit 2.1, 

exponentiating operator 4.5 4.5.6, floating point type 3.5.7, membership test 4.5 4.5.2, model number 3.5.6, mul¬ 

tiplying operator 4.5 4.5.5, numeric type 3.5, object 3.2, operation 3.3, predefined operator 4.5, qualified expression 

4.7, relational operator 4.5 4.5.2, safe number 3.5.6, subtype 3.3, type 3.3, unary adding operator^.5 4.5.4, universal 

type 4.10, universal Jnteger type 3.5.4, universaLreal type 3.5.6 

3-23 Operations of Floating Point Types 3.5.8 



ANSI/M/L-STD-1815A Ada Reference Manual 

3.5.9 Fixed Point Types 

, For fixed point types, the error bound is specified as an absolute value, called the delta of the fixed 
point type. 

2 fixed_point_constraint ::= 
fixed_accuracy_definition [range_constraint] 

fixed_accuracy_definition delta star/c_simple_expression 

3 The delta is specified by the value of the static simple expression of the fixed accuracy definition. 
This value must belong to some real type and must be positive (nonzero). If the fixed point con¬ 
straint is used as a real type definition, then it must include a range constraint; each bound of the 
specified range must be defined by a static expression of some real type but the two bounds need 
not have the same real type. If the fixed point constraint is used in a subtype indication, the range 
constraint is optional. 

4 A canonical form is defined for any fixed point model number other than zero. In this form: sign is 
either +1 or -1; mantissa is a positive (nonzero) integer; and any model number is a multiple of a 
certain positive real number called small, as follows: 

sign mantissa * small 

5 For the model numbers defined by a fixed point constraint, the number small is chosen as the 
largest power of two that is not greater than the delta of the fixed accuracy definition. Alternative¬ 
ly, it is possible to specify the value of small by a length clause (see 13.2), in which case model 
numbers are multiples of the specified value. The guaranteed minimum accuracy of operations of a 
fixed point type is defined in terms of the model numbers of the fixed point constraint that forms 
the corresponding real type definition (see 4.5.7). 

6 For a fixed point constraint that includes a range constraint, the model numbers comprise zero and 
all multiples of small whose mantissa can be expressed using exactly B binary digits, where the 
value of B is chosen as the smallest integer number for which each bound of the specified range is 
either a model number or lies at most small distant from a model number. For a fixed point con¬ 
straint that does not include a range constraint (this is only allowed after a type mark, in a subtype 
indication), the model numbers are defined by the delta of the fixed accuracy definition and by the 
range of the subtype denoted by the type mark. 

7 An implementation must have at least one anonymous predefined fixed point type. The base type 
of each such fixed point type is the type itself. The model numbers of each predefined fixed point 
type comprise zero and all numbers for which mantissa (in the canonical form) has the number of 
binary digits returned by the attribute MANTISSA, and for which the number small has the value 
returned by the attribute SMALL. 

e A fixed point type declaration of the form: 

type T is delta D range L .. R; 

9 is, by definition, equivalent to the following declarations: 

type fixed_point_type is new predefined_fixed_point_type; 
subtype T is fixed_point_type 

range fixed^point_type{L) .. fixed_point_type(R); 

3.5.9 Fixed Point Types 3-24 



Declarations and Types 

In these declarations, f/xed_p>o/nt_type is an anonymous type, and the predefined fixed point type 
is implicitly selected by the implementation so that its model numbers include the model numbers 
defined by the fixed point constraint (that is, by D, L, and R, and possibly by a length clause 
specifying small). 

The fixed point declaration is illegal if no predefined type satisfies these requirements. The safe 
numbers of a fixed point type are the model numbers of its base type. 

The elaboration of a fixed point type declaration consists of the elaboration of the equivalent type 
and subtype declarations. 

If the fixed point constraint follows a type mark in a subtype indication, the type mark must denote 
a fixed point type or subtype. The fixed point constraint is compatible with the type mark only if the 
delta specified by the fixed accuracy definition is not smaller than the delta for the type or subtype 
denoted by the type mark. Furthermore, if the fixed point constraint includes a range constraint, 
the fixed point constraint is compatible with the type mark only if the range constraint is, itself, 
compatible with the type mark. 

The elaboration of such a subtype indication includes the elaboration of the range constraint, if 
there is one; it creates a fixed point subtype whose model numbers are defined by the cor¬ 
responding fixed point constraint and also by the length clause specifying small, if there is one. A 
value of a fixed point type belongs to a fixed point subtype if and only if it belongs to the range 
defined by the subtype. 

The same arithmetic operators are predefined for all fixed point types (see 4.5). Multiplication and 
division of fixed point values deliver results of an anonymous predefined fixed point type that is cal¬ 
led universal_fixed in this reference manual; the accuracy of this type is arbitrarily fine. The values 
of this type must be converted explicitly to some numeric type. 

Notes: 

If S is a subtype of a fixed point type or subtype T, then the set of model numbers of S is a subset 
of those of T. If a length clause has been given for T, then both S and T have the same value for 
small. Otherwise, since small is a power of two, the small of S is equal to the small of T multiplied 
by a nonnegative power of two. 

A range constraint is allowed in a fixed point subtype indication, either directly after the type mark, 
or as part of a fixed point constraint. In either case the bounds of the range must belong to the 
base type of the type mark (see 3.5). 

Examples: 

type VOLT is delta 0.125 range 0.0 .. 255.0; 
subtype ROUGH_VOLTAGE is VOLT delta 1.0; -- same range as VOLT 

A pure fraction which requires all the available space in a word 
on a two's complement machine can be declared as the type FRACTION: 

DEL : constant := 1,0/2**(WORD_LENGTH - 1); 
type FRACTION is delta DEL range -1.0 .. 1.0 - DEL; 

References: anonymous type 3.3.1, arithmetic operator 3.5.5 4.5, base type 3.3, belong to a subtype 3.3, bound of a 

range 3.5, compatible 3.3.2, conversion 4.6, elaboration 3.9, error bound 3.5.6, length clause 13.2, model number 

3.5.6, numeric type 3.5, operation 3.3, predefined operator 4.5, range constraint 3.5, real type 3.5.6, real type defini¬ 

tion 3.5.6, safe number 3.5.6, simple expression 4.4, static expression 4.9, subtype 3.3, subtype declaration 3.3.2, 

subtype indication 3.3.2, type 3.3, type declaration 3.3.1, type mark 3.3.2 

3-25 Fixed Point Types 3.5.9 



ANSI/MIL-STD-1815A Ada Reference Manual 

3.5.10 Operations of Fixed Point Types 

The basic operations of a fixed point type include the operations involved in assignment, 
membership tests, qualification, the explicit conversion of values of other numeric types to the fix¬ 
ed point type, and the implicit conversion of values of the type universal_real to the type. 

In addition, for every fixed point type or subtype T the basic operations include the attributes listed 
below. In this presentation T is referred to as being a subtype (the subtype T) for any property that 
depends on constraints imposed by T; other properties are stated in terms of the base type of T. 

The first group of attributes yield characteristics of the subtype T. The attributes of this group are 
the attributes BASE (see 3.3.2), the attributes FIRST and LAST (see 3.5), the representation 
attribute SIZE (see 1 3.7.2) and the following attributes: 

T'DELTA Yields the value of the delta specified in the fixed accuracy definition for the sub- 
type T. The value of this attribute is of the type universalweal. 

T'MANTISSA Yields the number of binary digits in the mantissa of model numbers of the sub- 
type T. (This attribute yields the number B of section 3.5.9.) The value of this 
attribute is of the type universalJnteger. 

T'SMALL Yields the smallest positive (nonzero) model number of the subtype T. The value 
of this attribute is of the type universal_real. 

T'LARGE Yields the largest positive model number of the subtype T. The value of this 
attribute is of the type universal_real. 

T'FORE Yields the minimum number of characters needed for the integer part of the 
decimal representation of any value of the subtype T, assuming that the 
representation does not include an exponent, but includes a one-character prefix 
that is either a minus sign or a space. (This minimum number does not include 
superfluous zeros or underlines, and is at least two.) The value of this attribute is 
of the type universal Jnteger. 

9 T'AFT Yields the number of decimal digits needed after the point to accommodate the 
precision of the subtype T, unless the delta of the subtype T is greater than 0.1, in 
which case the attribute yields the value one. (T’AFT is the smallest positive 
integer N for which (10**N)*T’DELTA is greater than or equal to one.) The value 
of this attribute is of the type universal Jnteger. 

io The attributes of the second group include the following attributes which yield characteristics of 
the safe numbers: 

11 T’SAFE_SMALL Yields the smallest positive (nonzero) safe number of the base type of T. The 
value of this attribute is of the type universalweal. 

12 T’SAFE_LARGE Yields the largest positive safe number of the base type of T. The value of this 
attribute is of the type universal_real. 

13 In addition, the attributes A’SIZE and A’ADDRESS are defined for an object A of a fixed point type 
(see 13.7.2). Finally, for each fixed point type or subtype T, there are the machine-dependent 
attributes T’MACHINE_ROUNDS and T’MACHINE_OVERFLOWS (see 13.7.3). 

3.5.10 Operations of Fixed Point Types 3-26 



Declarations and Types 

Besides the basic operations, the operations of a fixed point type include the relational operators, ,4 

and the following predefined arithmetic operators: the binary and unary adding operators - and +, 
the multiplying operators * and /, and the operator abs. 

The operations of a subtype are the corresponding operations of the type except for the following: 15 

assignment, membership tests, qualification, explicit conversion, and the attributes of the first 
group: the effects of these operations are redefined in terms of the subtype. 

Notes: 

The value of the attribute T’FORE depends only on the range of the subtype T. The value of the )6 

attribute T'AFT depends only on the value of TDELTA. The following relations exist between 
attributes of a fixed point type: 

T'LARGE = (2**T'MANTISSA - 1) * T'SMALL 
T'SAFEJ-ARGE = T'BASE’LARGE 
T'SAFE_SMALL = T’BASE'SMALL 

References: abs operator 4.5 4.5.6, arithmetic operator 3.5.5 4.5, assignment 5.2, base type 3.3, basic operation 17 

3.3.3, binary adding operator 4.5 4.5.3, bound of a range 3.5, conversion 4.6, delta 3.5.9, fixed point type 3.5.9, 

membership test 4.5 4.5.2, model number 3.5.6, multiplying operator 4.5 4.5.5, numeric type 3.5, object 3.2, opera¬ 

tion 3.3, qualified expression 4.7, relational operator 4.5 4.5.2, safe number 3.5 6, subtype 3.3, unary adding operator 

4.5 4.5.4, universaLinteger type 3.5.4, universaLreal type 3.5.6 

3.6 Array Types 

An array object is a composite object consisting of components that have the same subtype. The 1 

name for a component of an array uses one or more index values belonging to specified discrete 
types. The value of an array object is a composite value consisting of the values of its components. 

array_type_definition ::= 2 

unconstrained_array_definition | constrained_array_definition 

unconstrained_array_definition 
array(index_subtype_definition |, index_subtype_definition|) of 

co777poner7f_subtype_indication 

constrained_array_definition 
array index_constraint of corr7poner?f_subtype_indication 

index_subtype_definition ::= type_mark range <> 

index_constraint (discrete_range 1, discrete_range|) 

discrete_range c//screte_subtype_indication | range 

An array object is characterized by the number of indices (the dimensionality of the array), the type 3 

and position of each index, the lower and upper bounds for each index, and the type and possible 
constraint of the components. The order of the indices is significant. 

3-27 Array Types 3.6 



A NS!/MIL -STD-1815A Ada Reference Manual 

A one-dimensional array has a distinct component for each possible index value. A multidimen¬ 
sional array has a distinct component for each possible sequence of index values that can be 
formed by selecting one value for each index position (in the given order). The possible values for 
a given index are all the values between the lower and upper bounds, inclusive; this range of values 
is called the index range. 

An unconstrained array definition defines an array type. For each object that has the array type, the 
number of indices, the type and position of each index, and the subtype of the components are as 
in the type definition; the values of the lower and upper bounds for each index belong to the cor¬ 
responding index subtype, except for null arrays as explained in section 3.6.1. The index subtype 
for a given index position is, by definition, the subtype denoted by the type mark of the cor¬ 
responding index subtype definition. The compound delimiter <> (called a box) of an index sub- 
type definition stands for an undefined range (different objects of the type need not have the same 
bounds). The elaboration of an unconstrained array definition creates an array type; this elabora¬ 
tion includes that of the component subtype indication. 

A constrained array definition defines both an array type and a subtype of this type: 

• The array type is an implicitly declared anonymous type; this type is defined by an (implicit) 
unconstrained array definition, in which the component subtype indication is that of the con¬ 
strained array definition, and in which the type mark of each index subtype definition denotes 
the subtype defined by the corresponding discrete range. 

® The array subtype is the subtype obtained by imposition of the index constraint on the array 
type. 

If a constrained array definition is given for a type declaration, the simple name declared by this 
declaration denotes the array subtype. 

The elaboration of a constrained array definition creates the corresponding array type and array 
subtype. For this elaboration, the index constraint and the component subtype indication are 
elaborated. The evaluation of each discrete range of the index constraint and the elaboration of 
the component subtype indication are performed in some order that is not defined by the 
language. 

Examples of type declarations with unconstrained array definitions: 

type VECTOR is arrayONTEGER range <>) of REAL; 
type MATRIX is array(INTEGER range <>, INTEGER range <>) of REAL; 
type BIT_VECTOR is arrayONTEGER range <>) of BOOLEAN; 
type ROMAN is array(POSITIVE range <>) of ROMAN_DIGIT; 

Examples of type declarations with constrained array definitions: 

type TABLE is arrayd .. 10) of INTEGER; 
type SCHEDULE is array(DAY) of BOOLEAN; 
type LINE is array(1 .. MAX_LINE_SIZE) of CHARACTER; 

Examples of object declarations with constrained array definitions: 

GRID : arrayd .. 80, 1 .. 100) of BOOLEAN; 
MIX : array(COLOR range RED .. GREEN) of BOOLEAN; 
PAGE : arrayd .. 50) of LINE; -- an array of arrays 

3.6 Array Types 3-28 



Declarations and Types 

Note: 

For a one-dimensional array, the rule given means that a type declaration with a constrained array 
definition such as 

type T is array(POSITIVE range MIN .. MAX) of COMPONENT; 

is equivalent (in the absence of an incorrect order dependence) to the succession of declarations 

subtype index_subtype is POSITIVE range MIN .. MAX; 
type arrayjtype is array(index_jsubtype range <>) of COMPONENT; 
subtype T is array_type(index_subtype); 

where index_subtype and array_type are both anonymous. Consequently, T is the name of a sub- 
type and all objects declared with this type mark are arrays that have the same bounds. Similar 
transformations apply to multidimensional arrays. 

A similar transformation applies to an object whose declaration includes a constrained array defini¬ 
tion. A consequence of this is that no two such objects have the same type. 

References: anonymous type 3.3.1, bound of a range 3.5, component 3.3, constraint 3.3, discrete type 3.5, 

elaboration 3.1 3.9, in some order 1.6, name 4.1, object 3.2, range 3.5, subtype 3.3, subtype indication 3.3.2, type 

3.3, type declaration 3.3.1, type definition 3.3.1, type mark 3.3.2 

3.6.1 Index Constraints and Discrete Ranges 

An index constraint determines the range of possible values for every index of an array type, and 
thereby the corresponding array bounds. 

For a discrete range used in a constrained array definition and defined by a range, an implicit con¬ 
version to the predefined type INTEGER is assumed if each bound is either a numeric literal, a 
named number, or an attribute, and the type of both bounds (prior to the implicit conversion) is the 
type universalJnteger. Otherwise, both bounds must be of the same discrete type, other than 
universaUnteger, this type must be determinable independently of the context, but using the fact 
that the type must be discrete and that both bounds must have the same type. These rules apply 
also to a discrete range used in an iteration rule (see 5.5) or in the declaration of a family of entries 
(see 9.5). 

If an index constraint follows a type mark in a subtype indication, then the type or subtype denoted 
by the type mark must not already impose an index constraint. The type mark must denote either 
an unconstrained array type or an access type whose designated type is such an array type. In 
either case, the index constraint must provide a discrete range for each index of the array type and 
the type of each discrete range must be the same as that of the corresponding index. 

An index constraint is compatible with the type denoted by the type mark if and only if the con¬ 
straint defined by each discrete range is compatible with the corresponding index subtype. If any of 
the discrete ranges defines a null range, any array thus constrained is a null array, having no com¬ 
ponents. An array value satisfies an index constraint if at each index position the array value and 
the index constraint have the same index bounds. (Note, however, that assignment and certain 
other operations on arrays involve an implicit subtype conversion.) 

3-29 Index Constraints and Discrete Ranges 3.6.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

The bounds of each array object are determined as follows: 

• For a variable declared by an object declaration, the subtype indication of the corresponding 
object declaration must define a constrained array subtype (and, thereby, the bounds). The 
same requirement exists for the subtype indication of a component declaration, if the type of 
the record component is an array type; and for the component subtype indication of an array 
type definition, if the type of the array components is itself an array type. 

• For a constant declared by an object declaration, the bounds of the constant are defined by 
the initial value if the subtype of the constant is unconstrained; they are otherwise defined by 
this subtype (in the latter case, the initial value is the result of an implicit subtype conversion). 
The same rule applies to a generic formal parameter of mode in. 

• For an array object designated by an access value, the bounds must be defined by the 
allocator that creates the array object. (The allocated object is constrained with the cor¬ 
responding values of the bounds.) 

• For a formal parameter of a subprogram or entry, the bounds are obtained from the cor¬ 
responding actual parameter. (The formal parameter is constrained with the corresponding 
values of the bounds.) 

• For a renaming declaration and for a generic formal parameter of mode in out, the bounds are 
those of the renamed object or of the corresponding generic actual parameter. 

For the elaboration of an index constraint, the discrete ranges are evaluated in some order that is 
not defined by the language. 

Examples of array declarations including an index constraint: 

BOARD : MATRIX(1 .. 8, 1 .. 8); - see 3.6 
RECTANGLE : MATRIX(1 .. 20, 1 .. 30); 
INVERSE : MATRIX(1 .. N, 1 .. N); — N need not be static 

FILTER : BIT_VECT0R(0 .. 31); 

Example of array declaration with a constrained array subtype: 

MY_SCHEDULE : SCHEDULE; - all arrays of type SCHEDULE have the same bounds 

Example of record type with a component that is an array: 

type VAR_LINE(LENGTH : INTEGER) is 
record 

IMAGE : STRING(1 .. LENGTH); 
end record; 

NULL_LINE : VAR_LINE(0); - NULI_LINE.IMAGE is a null array 

Notes: 

The elaboration of a subtype indication consisting of a type mark followed by an index constraint 
checks the compatibility of the index constraint with the type mark (see 3.3.2). 

All components of an array have the same subtype. In particular, for an array of components that 
are one-dimensional arrays, this means that all components have the same bounds and hence the 
same length. 

3.6.1 Index Constraints and Discrete Ranges 3-30 



Declarations and Types 

References: access type 3.8, access type definition 3.8, access value 3.8, actual parameter 6.4.1, allocator 4.8, array 

bound 3.6, array component 3.6, array type 3.6, array type definition 3.6, bound of a range 3.5, compatible 3.3.2, 

component declaration 3.7, constant 3.2.1, constrained array definition 3.6, constrained array subtype 3.6, conversion 

4.6, designate 3.8, designated type 3.8, discrete range 3.6, entry 9.5, entry family declaration 9.5, expression 4.4, for¬ 

mal parameter 6.1, function 6.5, generic actual parameter 12.3, generic formal parameter 12.1 12.3, generic 

parameter 12.1, index 3.6, index constraint 3.6.1, index subtype 3.6, initial value 3.2.1, integer literal 2.4, integer type 

3.5.4, iteration rule 5.5, mode 12.1.1, name 4.1, null range 3.5, object 3.2, object declaration 3.2.1, predefined type 

C, range 3.5, record component 3.7, renaming declaration 8.5, result subtype 6.1, satisfy 3.3, subprogram 6, subtype 

conversion 4.6, subtype indication 3.3.2, type mark 3.3.2, unconstrained array type 3.6, unconstrained subtype 3.3, 

universal type 4.10, universaLinteger type 3.5.4, variable 3.2.1 

3.6.2 Operations of Array Types 

The basic operations of an array type include the operations involved in assignment and 
aggregates (unless the array type is limited), membership tests, indexed components, qualification, 
and explicit conversion; for one-dimensional arrays the basic operations also include the opera¬ 
tions involved in slices, and also string literals if the component type is a character type. 

If A is an array object, an array value, or a constrained array subtype, the basic operations also 
include the attributes listed below. These attributes are not allowed for an unconstrained array 
type. The argument N used in the attribute designators for the N-th dimension of an array must be 
a static expression of type universalJnteger. The value of N must be positive (nonzero) and no 
greater than the dimensionality of the array. 

A'FIRST Yields the lower bound of the first index range. The value of this attribute 
has the same type as this lower bound. 

A FIRST(N) Yields the lower bound of the N-th index range. The value of this attribute 
has the same type as this lower bound. 

A'LAST Yields the upper bound of the first index range. The value of this attribute 
has the same type as this upper bound. 

A’LAST(N) Yields the upper bound of the N-th index range. The value of this attribute 
has the same type as this upper bound. 

ARANGE 

A'RANGE(N) 

ALENGTH 

ALENGTH(N) 

Yields the first index range, that is, the range A'FIRST .. A'LAST. 

Yields the N-th index range, that is, the range A'FIRST(N).. A'LAST (N). 

Yields the number of values of the first index range (zero for a null range). 
The value of this attribute is of the type universal Jnteger. 

Yields the number of values of the N-th index range (zero for a null 
range). The value of this attribute is of the type universal Jnteger. 

In addition, the attribute T’BASE is defined for an array type or subtype T (see 3.3.3); the attribute 
T'SIZE is defined for an array type or subtype T, and the attributes A'SIZE and A'ADDRESS are 
defined for an array object A (see 13.7.2). 

3-31 Operations of Array Types 3.6.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

Besides the basic operations, the operations of an array type include the predefined comparison for 
equality and inequality, unless the array type is limited. For one-dimensional arrays, the operations 
include catenation, unless the array type is limited; if the component type is a discrete type, the 
operations also include all predefined relational operators; if the component type is a boolean 
type, then the operations also include the unary logical negation operator not, and the logical 
operators. 

Examples (using arrays declared in the examples of section 3.6.1): 

- FILTER'FIRST = 0 FILTER'LAST - 31 FILTER'LENGTH = 
- RECTANGLE'L^ST(I) = 20 RECTANGLE’LAST(2) = 30 

Notes: 

The attributes A'FIRST and A'FIRST(I) yield the same value. A similar relation exists for the 
attributes A'LAST, A'RANGE , and A'LENGTH . The following relations are satisfied (except for a null 
array) by the above attributes if the index type is an integer type: 

A'LENGTH = A'LAST - A'FIRST + 1 
A'LENGTH(N) - A’LAST(N) - A'FIRST(N) + 1 

An array type is limited if its component type is limited (see 7.4.4). 

References: aggregate 4.3, array type 3.6, assignment 5.2, attribute 4.1.4, basic operation 3.3.3, bound of a range 

3.5, catenation operator 4.5 4.5.3, character type 3.5.2, constrained array subtype 3.6, conversion 4.6, designator 

6.1, dimension 3.6, index 3.6, indexed component 4.1.1, limited type 7.4.4, logical operator 4.5 4.5.1, membership 

test 4.5 4.5.2, not operator 4.5 4.5.6, null range 3.5, object 3.2, operation 3.3, predefined operator 4.5, qualified 

expression 4.7, relational operator 4.5 4.5.2, slice 4.1.2, static expression 4.9, string literal 2.6, subcomponent 3.3, 

type 3.3, unconstrained array type 3.6, universal type 4.10, universaLinteger type 3.5.4 

3.6.3 The Type String 

The values of the predefined type STRING are one-dimensional arrays of the predefined type 
CHARACTER , indexed by values of the predefined subtype POSITIVE : 

subtype POSITIVE is INTEGER range 1 .. INTEGER'LAST; 
type STRING is array(POSITIVE range <>) of CHARACTER; 

Examples: 

STARS : STRINGd .. 120) := (1 .. 120 => V ); 
QUESTION : constant STRING := "HOW MANY CHARACTERS?"; 
- QUESTION FIRST - 1, QUESTION’LAST = 20 (the number of characters) 

ASK .TWICE : constant STRING := QUESTION & QUESTION; 
NINETY_SIX : constant ROMAN := "XCVI"; - see 3.6 

Notes: 

String literals (see 2.6 and 4.2) are basic operations applicable to the type STRING and to any 
other one-dimensional array type whose component type is a character type. The catenation 
operator is a predefined operator for the type STRING and for one-dimensional array types; it is 
represented as &. The relational operators <, <=, >, and >= are defined for values of these types, 
and correspond to lexicographic order (see 4.5.2). 

3.6.3 The Type String 3-32 



Declarations and Types 

References: aggregate 4.3, array 3.6, catenation operator 4.5 4.5.3, character type 3.5.2, component type (of an 

array) 3.6, dimension 3.6, index 3.6, lexicographic order 4.5.2, positional aggregate 4.3, predefined operator 4.5, 
predefined type C, relational operator 4.5 4.5.2, string literal 2.6, subtype 3.3, type 3.3 

3.7 Record Types 

A record object is a composite object consisting of named components. The value of a record 
object is a composite value consisting of the values of its components. 

record_type_definition ::= 
record 

componentJist 
end record 

componentJist 
component_declaration |component_declaration| 

| |component_declaration) variant_part 
| null; 

component_declaration 
identifierjist : component_subtype_definition [:= expression]; 

component_subtype_definition ::= subtypejndication 

Each component declaration declares a component of the record type. Besides components 
declared by component declarations, the components of a record type include any components 
declared by discriminant specifications of the record type declaration. The identifiers of all compo¬ 
nents of a record type must be distinct. The use of a name that denotes a record component other 
than a discriminant is not allowed within the record type definition that declares the component. 

A component declaration with several identifiers is equivalent to a sequence of single component 
declarations, as explained in section 3.2. Each single component declaration declares a record 
component whose subtype is specified by the component subtype definition. 

If a component declaration includes the assignment compound delimiter followed by an expres¬ 
sion, the expression is the default expression of the record component; the default expression 
must be of the type of the component. Default expressions are not allowed for components that 
are of a limited type. 

If a record type does not have a discriminant part, the same components are present in all values 
of the type. If the component list of a record type is defined by the reserved word null and there is 
no discriminant part, then the record type has no components and all records of the type are null 
records. 

The elaboration of a record type definition creates a record type; it consists of the elaboration of 
any corresponding (single) component declarations, in the order in which they appear, including 
any component declaration in a variant part. The elaboration of a component declaration consists 
of the elaboration of the component subtype definition. 

For the elaboration of a component subtype definition, if the constraint does not depend on a dis¬ 
criminant (see 3.7.1), then the subtype indication is elaborated. If, on the other hand, the con¬ 
straint depends on a discriminant, then the elaboration consists of the evaluation of any included 
expression that is not a discriminant. 

3-33 Record Types 3.7 



ANSI/M/L-STD-1815A Ada Reference Manual 

Examples of record type declarations: 

type DATE is 
record 

DAY : INTEGER rang® 1 .. 31; 
MONTH : MONTH.NAME; 
YEAR : INTEGER rang® 0 .. 4000; 

end record; 

type COMPLEX is 
record 

RE : REAL := 0.0; 
IM : REAL := 0.0; 

end record; 

Examples of record variables: 

TOMORROW, YESTERDAY : DATE; 
A, B, C : COMPLEX; 

-- both components of A, B, and C are implicitly initialized to zero 

Notes: 

The default expression of a record component is implicitly evaluated by the elaboration of the 
declaration of a record object, in the absence of an explicit initialization (see 3.2.1). If a component 
declaration has several identifiers, the expression is evaluated once for each such component of 
the object (since the declaration is equivalent to a sequence of single component declarations). 

Unlike the components of an array, the components of a record need not be of the same type. 

References: assignment compound delimiter 2.2, component 3.3, composite value 3.3, constraint 3.3, declaration 

3.1, depend on a discriminant 3.7.1, discriminant 3.3, discriminant part 3.7 3.7.1, elaboration 3.9, expression 4.4, 

identifier 2.3, identifier list 3.2, limited type 7.4.4, name 4.1, object 3.2, subtype 3.3, type 3.3, type mark 3.3.2, 

variant part 3.7.3 

3.7.1 Discriminants 

A discriminant part specifies the discriminants of a type. A discriminant of a record is a component 
of the record. The type of a discriminant must be discrete. 

discriminant_part 
(discriminant__specification {; discriminant_specification|) 

discriminant_specification 
identifierjist : type_mark [:= expression] 

A discriminant part is only allowed in the type declaration for a record type, in a private type 
declaration or an incomplete type declaration (the corresponding full declaration must then declare 
a record type), and in the generic parameter declaration for a formal private type. 

3.7.1 Discriminants 3-34 



Declarations and Types 

A discriminant specification with several identifiers is equivalent to a sequence of single discrimi¬ 
nant specifications, as explained in section 3.2. Each single discriminant specification declares a 
discriminant. If a discriminant specification includes the assignment compound delimiter followed 
by an expression, the expression is the default expression of the discriminant; the default expres¬ 
sion must be of the type of the discriminant. Default expressions must be provided either for all or 
for none of the discriminants of a discriminant part. 

The use of the name of a discriminant is not allowed in default expressions of a discriminant part if 
the specification of the discriminant is itself given in the discriminant part. 

Within a record type definition the only allowed uses of the name of a discriminant of the record 
type are: in the default expressions for record components; in a variant part as the discriminant 
name; and in a component subtype definition, either as a bound in an index constraint, or to 
specify a discriminant value in a discriminant constraint. A discriminant name used in these com¬ 
ponent subtype definitions must appear by itself, not as part of a larger expression. Such compo¬ 
nent subtype definitions and such constraints are said to depend on a discriminant. 

A component is said to depend on a discriminant if it is a record component declared in a variant 
part, or a record component whose component subtype definition depends on a discriminant, or 
finally, one of the subcomponents of a component that itself depends on a discriminant. 

Each record value includes a value for each discriminant specified for the record type; it also 
includes a value for each record component that does not depend on a discriminant. The values of 
the discriminants determine which other component values are in the record value. 

Direct assignment to a discriminant of an object is not allowed; furthermore a discriminant is not 
allowed as an actual parameter of mode in out or out, or as a generic actual parameter of mode in 
out. The only allowed way to change the value of a discriminant of a variable is to assign a 
(complete) value to the variable itself. Similarly, an assignment to the variable itself is the only 
allowed way to change the constraint of one of its components, if the component subtype defini¬ 
tion depends on a discriminant of the variable. 

The elaboration of a discriminant part has no other effect. 

Examples: 

type BUFFER(SIZE : BUFFER_SIZE := 100) is - see 3.5.4 
record 

POS : BUFFER_SIZE := 0; 
VALUE : STRINGd .. SIZE); 

end record; 

type SQUARE(SiDE : INTEGER) is 
record 

MAT : MATRIXd .. SIDE, 1 .. SIDE); - see 3.6 
end record; 

type DOUBLE_SQUARE(N UMBER : INTEGER) is 
record 

LEFT : SQUARE (NUMBER); 
RIGHT : SQUARE (NUMBER); 

end record; 

3-35 Discriminants 3.7.7 



A NS l/MIL-S TD-1815A Ada Reference Manual 

type ITEM(NUMBER : POSITIVE) is 
record 

CONTENT : INTEGER; 
no component depends on the discriminant 

end record; 

References: assignment 5.2, assignment compound delimiter 2.2, bound of a range 3.5, component 3.3, component 

declaration 3.7, component of a record 3.7, declaration 3.1, discrete type 3.5, discriminant 3.3, discriminant con¬ 

straint 3.7.2, elaboration 3.9, expression 4.4, generic formal type 12.1, generic parameter declaration 12.1, identifier 

2.3, identifier list 3.2, incomplete type declaration 3.8.1, index constraint 3.6.1, name 4.1, object 3.2, private type 7.4, 

private type declaration 7.4, record type 3.7, scope 8.2, simple name 4.1, subcomponent 3.3, subtype indication 

3.3.2, type declaration 3.3.1, type mark 3.3.2, variant part 3.7.3 

3.7.2 Discriminant Constraints 

A discriminant constraint is only allowed in a subtype indication, after a type mark. This type mark 
must denote either a type with discriminants, or an access type whose designated type is a type 
with discriminants. A discriminant constraint specifies the values of these discriminants. 

discriminant_constraint ::= 
(discriminant_association |, discriminant_association|) 

discriminant_association ::= 
[ disc rim /n a n r_s i m p I e_n a m e f| discriminant_s\mp\e_na me I =>] expression 

Each discriminant association associates an expression with one or more discriminants. A discrimi¬ 
nant association is said to be named if the discriminants are specified explicitly by their names; it 
is otherwise said to be positional. For a positional association, the (single) discriminant is implicitly 
specified by position, in textual order. Named associations can be given in any order, but if both 
positional and named associations are used in the same discriminant constraint, then positional 
associations must occur first, at their normal position. Hence once a named association is used, 
the rest of the discriminant constraint must use only named associations. 

For a named discriminant association, the discriminant names must denote discriminants of the 
type for which the discriminant constraint is given. A discriminant association with more than one 
discriminant name is only allowed if the named discriminants are all of the same type. Further¬ 
more, for each discriminant association (whether named or positional), the expression and the 
associated discriminants must have the same type. A discriminant constraint must provide exactly 
one value for each discriminant of the type. 

A discriminant constraint is compatible with the type denoted by a type mark, if and only if each 
discriminant value belongs to the subtype of the corresponding discriminant. In addition, for each 
subcomponent whose component subtype specification depends on a discriminant, the discrimi¬ 
nant value is substituted for the discriminant in this component subtype specification and the com¬ 
patibility of the resulting subtype indication is checked. 

A composite value satisfies a discriminant constraint if and only if each discriminant of the com¬ 
posite value has the value imposed by the discriminant constraint. 

3.7.2 Discriminant Constraints 3-36 



Declarations and Types 

The initial values of the discriminants of an object of a type with discriminants are determined as ? 
follows: 

• For a variable declared by an object declaration, the subtype indication of the corresponding 8 

object declaration must impose a discriminant constraint unless default expressions exist for 
the discriminants; the discriminant values are defined either by the constraint or, in its 
absence, by the default expressions. The same requirement exists for the subtype indication of 
a component declaration, if the type of the record component has discriminants; and for the 
component subtype indication of an array type, if the type of the array components is a type 
with discriminants. 

• For a constant declared by an object declaration, the values of the discriminants are those of 9 

the initial value if the subtype of the constant is unconstrained; they are otherwise defined by 
this subtype (in the latter case, an exception is raised if the initial value does not belong to this 
subtype). The same rule applies to a generic parameter of mode in. 

• For an object designated by an access value, the discriminant values must be defined by the 10 

allocator that creates the object. (The allocated object is constrained with the corresponding 
discriminant values.) 

• For a formal parameter of a subprogram or entry, the discriminants of the formal parameter « 
are initialized with those of the corresponding actual parameter. (The formal parameter is 
constrained if the corresponding actual parameter is constrained, and in any case if the mode 
is in or if the subtype of the formal parameter is constrained.) 

• For a renaming declaration and for a generic formal parameter of mode in out, the discrimi- 12 

nants are those of the renamed object or of the corresponding generic actual parameter. 

For the elaboration of a discriminant constraint, the expressions given in the discriminant associa- 13 

tions are evaluated in some order that is not defined by the language; the expression of a named 
association is evaluated once for each named discriminant. 

Examples (using types declared in the previous section): m 

LARGE : BUFFER(200); -- constrained, always 200 characters (explicit discriminant value) 
MESSAGE : BUFFER; -- unconstrained, initially 100 characters (default discriminant value) 

BASIS : SQUARE(5); -- constrained, always 5 by 5 
ILLEGAL : SQUARE; -- illegal, a SQUARE must be constrained 

Note: 

The above rules and the rules defining the elaboration of an object declaration (see 3.2) ensure 15 

that discriminants always have a value. In particular, if a discriminant constraint is imposed on an 
object declaration, each discriminant is initialized with the value specified by the constraint. 
Similarly, if the subtype of a component has a discriminant constraint, the discriminants of the 
component are correspondingly initialized. 

References: access type 3.8, access type definition 3.8, access value 3.8, actual parameter 6.4.1, allocator 4.8, array 16 

type definition 3.6, bound of a range 3.5, compatible 3.3.2, component 3.3, component declaration 3.7, component 

subtype indication 3.7, composite value 3.3, constant 3.2.1, constrained subtype 3.3, constraint 3.3, declaration 3.1, 

default expression for a discriminant 3.7, depend on a discriminant 3.7.1, designate 3.8, designated type 3.8, discrimi¬ 

nant 3.3, elaboration 3.9, entry 9.5, evaluation 4.5, expression 4.4, formal parameter 6.1, generic actual parameter 

12.3, generic formal parameter 12.1 12.3, mode in 6.1, mode in out 6.1, name 4.1, object 3.2, object declaration 

3.2.1, renaming declaration 8.5, reserved word 2.9, satisfy 3.3, simple name 4.1, subcomponent 3.3, subprogram 6, 

subtype 3.3, subtype indication 3.3.2, type 3.3, type mark 3.3.2, variable 3.2.1 

3-37 Discriminant Constraints 3.7.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

3.7.3 Variant Parts 

A record type with a variant part specifies alternative lists of components. Each variant defines the 
components for the corresponding value or values of the discriminant. 

variant_part ::= 

case discriminant_s\rrvp\e_r\ame is 
variant 

| variant) 
end case; 

variant ::= 
when choice (| choice) => 

component_list 

choice ::= simple_expression 
| discrete_range | others | compone/7r_simple_name 

Each variant starts with a list of choices which must be of the same type as the discriminant of the 
variant part. The type of the discriminant of a variant part must not be a generic formal type. If the 
subtype of the discriminant is static, then each value of this subtype must be represented once and 
only once in the set of choices of the variant part, and no other value is allowed. Otherwise, each 
value of the (base) type of the discriminant must be represented once and only once in the set of 
choices. 

The simple expressions and discrete ranges given as choices in a variant part must be static. A 
choice defined by a discrete range stands for all values in the corresponding range (none if a null 
range). The choice others is only allowed for the last variant and as its only choice; it stands for all 
values (possibly none) not given in the choices of previous variants. A component simple name is 
not allowed as a choice of a variant (although it is part of the syntax of choice). 

A record value contains the values of the components of a given variant if and only if the discrimi¬ 
nant value is equal to one of the values specified by the choices of the variant. This rule applies in 
turn to any further variant that is, itself, included in the component list of the given variant. If the 
component list of a variant is specified by no!!, the variant has no components. 

Example of record type with a variant part: 

type DEVICE is (PRINTER, DISK, DRUM); 
type STATE is (OPEN, CLOSED); 

type PERIPHERAUUNIT : DEVICE := DISK) is 
record 

STATUS : STATE; 
case UNIT is 

when PRINTER => 
LINE_COUNT : INTEGER range 1 .. PAGE_SIZE; 

when others => 
CYLINDER : CYLINDERJNDEX; 
TRACK : TRACK_NUMBER; 

end case; 
end record; 

3.7.3 Variant Parts 3-38 



Declarations and Types 

Examples of record subtypes: 

subtype DRUM_UNIT is PERIPHERAL!DRUM); 
subtype DISK_UNIT is PERIPHERAL(DISK); 

Examples of constrained record variables: 

WRITER : PERIPHERAL(UNIT => PRINTER); 
ARCHIVE : DISK_UNIT; 

Note: 

Choices with discrete values are also used in case statements and in array aggregates. Choices 
with component simple names are used in record aggregates. 

References: array aggregate 4.3.2, base type 3.3, component 3.3, component list 3.7, discrete range 3.6, 

discriminant 3.3, generic formal type 1 2.1.2, null range 3.5, record aggregate 4.3.1, range 3.5, record type 3.7, simple 

expression 4.4, simple name 4.1, static discrete range 4.9, static expression 4.9, static subtype 4.9, subtype 3.3 

3.7.4 Operations of Record Types 

The basic operations of a record type include the operations involved in assignment and 
aggregates (unless the type is limited), membership tests, selection of record components, 
qualification, and type conversion (for derived types). 

For any object A of a type with discriminants, the basic operations also include the following 
attribute: 

A'CONSTRAINED Yields the value TRUE if a discriminant constraint applies to the object A, 
or if the object is a constant (including a formal parameter or generic for¬ 
mal parameter of mode in); yields the value FALSE otherwise. If A is a 
generic formal parameter of mode in out, or if A is a formal parameter of 
mode in out or out and the type mark given in the corresponding 
parameter specification denotes an unconstrained type with discrimi¬ 
nants, then the value of this attribute is obtained from that of the cor¬ 
responding actual parameter. The value of this attribute is of the 
predefined type BOOLEAN . 

In addition, the attributes T'BASE and T'SIZE are defined for a record type or subtype T (see 3.3.3); 
the attributes A'SIZE and A'ADDRESS are defined for a record object A (see 1 3.7.2). 

Besides the basic operations, the operations of a record type include the predefined comparison 
for equality and inequality, unless the type is limited. 

Note: 

A record type is limited if the type of any of its components is limited (see 7.4.4). 

References: actual parameter 6.4.1, aggregate 4.3, assignment 5.2, attribute 4.1.4, basic operation 3.3.3, boolean 

type 3.5.3, constant 3.2.1, conversion 4.6, derived type 3.4, discriminant 3.3, discriminant constraint 3.7.2, formal 

parameter 6.1, generic actual parameter 12.3, generic formal parameter 12.1 12.3, limited type 7.4.4, membership 

test 4.5 4.5.2, mode 6.1, object 3.2.1, operation 3.3, predefined operator 4.5, predefined type C, qualified expression 

4.7, record type 3.7, relational operator 4.5 4.5.2, selected component 4.1.3, subcomponent 3.3, subtype 3.3, type 

3.3 

3-39 
Operations of Record Types 3.7.4 



A N SI/MIL -STD-1815A Ada Reference Manual 

3.8 Access Types 

, An object declared by an object declaration is created by the elaboration of the object declaration 
and is denoted by a simple name or by some other form of name. In contrast, there are objects 
that are created by the evaluation of allocators (see 4.8) and that have no simple name. Access to 
such an object is achieved by an access value returned by an allocator; the access value is said to 
designate the object. 

2 access_type_definition access subtypeJndication 

3 For each access type, there is a literal null which has a null access value designating no object at 
all. The null value of an access type is the default initial value of the type. Other values of an 
access type are obtained by evaluation of a special operation of the type, called an allocator. Each 
such access value designates an object of the subtype defined by the subtype indication of the 
access type definition; this subtype is called the designated subtype: the base type of this subtype 
is called the designated type. The objects designated by the values of an access type form a collec¬ 
tion implicitly associated with the type. 

4 The elaboration of an access type definition consists of the elaboration of the subtype indication 
and creates an access type. 

5 If an access object is constant, the contained access value cannot be changed and always 
designates the same object. On the other hand, the value of the designated object need not 
remain the same (assignment to the designated object is allowed unless the designated type is 
limited). 

« The only forms of constraint that are allowed after the name of an access type in a subtype indica¬ 
tion are index constraints and discriminant constraints. (See sections 3.6.1 and 3.7.2 for the rules 
applicable to these subtype indications.) An access value belongs to a corresponding subtype of 
an access type either if the access value is the null value or if the value of the designated object 
satisfies the constraint. 

7 Examples: 

type FRAME is access MATRIX; — see 3.6 

type BUFFER_NAME is access BUFFER; -- see 3.7.1 

Notes: 

a An access value delivered by an allocator can be assigned to several access objects. Hence it is 
possible for an object created by an allocator to be designated by more than one variable or cons¬ 
tant of the access type. An access value can only designate an object created by an allocator; in 
particular, it cannot designate an object declared by an object declaration. 

9 If the type of the objects designated by the access values is an array type or a type with discrimi¬ 
nants, these objects are constrained with either the array bounds or the discriminant values sup¬ 
plied implicitly or explicitly for the corresponding allocators (see 4.8). 

10 Access values are called pointers or references in some other languages. 

11 References: allocator 4.8, array type 3.6, assignment 5.2, belong to a subtype 3.3, constant 3.2.1, constraint 3.3, 

discriminant constraint 3.7.2, elaboration 3.9, index constraint 3.6.1, index specification 3.6, limited type 7.4.4, literal 

4 2, name 4.1, object 3.2.1, object declaration 3.2.1, reserved word 2.9, satisfy 3.3, simple name 4.1, subcomponent 

3 3, subtype 3.3, subtype indication 3.3.2, type 3.3, variable 3.2.1 

3.8 Access Types 3-40 



Declarations and Types 

3.8.1 Incomplete Type Declarations 

There are no particular limitations on the designated type of an access type. In particular, the type 
of a component of the designated type can be another access type, or even the same access type. 
This permits mutually dependent and recursive access types. Their declarations require a prior 
incomplete (or private) type declaration for one or more types. 

incomplete_type_declaration ::= type identifier [discriminant_part]; 

For each incomplete type declaration, there must be a corresponding declaration of a type with the 
same identifier. The corresponding declaration must be either a full type declaration or the 
declaration of a task type. In the rest of this section, explanations are given in terms of full type 
declarations; the same rules apply also to declarations of task types. If the incomplete type 
declaration occurs immediately within either a declarative part or the visible part of a package 
specification, then the full type declaration must occur later and immediately within this 
declarative part or visible part. If the incomplete type declaration occurs immediately within the 
private part of a package, then the full type declaration must occur later and immediately within 
either the private part itself, or the declarative part of the corresponding package body. 

A discriminant part must be given in the full type declaration if and only if one is given in the 
incomplete type declaration; if discriminant parts are given, then they must conform (see 6.3.1 for 
the conformance rules). Prior to the end of the full type declaration, the only allowed use of a name 
that denotes a type declared by an incomplete type declaration is as the type mark in the subtype 
indication of an access type definition; the only form of constraint allowed in this subtype indica¬ 
tion is a discriminant constraint. 

The elaboration of an incomplete type declaration creates a type. If the incomplete type declara¬ 
tion has a discriminant part, this elaboration includes that of the discriminant part: in such a case, 
the discriminant part of the full type declaration is not elaborated. 

Example of a recursive type: 

type CELL; — incomplete type declaration 
type LINK is access CELL; 

type CELL is 
record 

VALUE : INTEGER; 
SUCC : LINK; 
PRED : LINK; 

end record; 

HEAD : LINK := new CELL'(0, null, null); 
NEXT : LINK := HEAD.SUCC; 

Examples of mutually dependent access types: 

type PERSON(SEX : GENDER); -- incomplete type declaration 
type CAR; — incomplete type declaration 

type PERSON_NAME is access PERSON; 
type CAR_NAME is access CAR; 

type CAR is 
record 

NUMBER : INTEGER; 
OWNER : PERSON_NAME; 

end record; 

3-41 Incomplete Type Declarations 3.8.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

type PERSON(SEX : GENDER) is 
record 

NAME : STRING! 1 .. 20); 
BIRTH : DATE; 
AGE : INTEGER range 0 .. 130; 
VEHICLE : CAR_NAME; 
case SEX is 

when M => WIFE : PERS0N_NAME(SEX => F); 
when F => HUSBAND : PERSON_NAME(SEX => M); 

end case; 
end record; 

MY_CAR, Y0UR_CAR, NEXT_CAR : CAR_NAME; -- implicitly initialized with null value 

References: access type 3.8, access type definition 3.8, component 3.3, conform 6.3.1, constraint 3.3, declaration 

3.1, declarative item 3.9, designate 3.8, discriminant constraint 3.7.2, discriminant part 3.7.1, elaboration 3.9, iden¬ 

tifier 2.3, name 4.1, subtype indication 3.3.2, type 3.3, type mark 3.3.2 

3.8.2 Operations of Access Types 

The basic operations of an access type include the operations involved in assignment, allocators 
for the access type, membership tests, qualification, explicit conversion, and the literal null. If the 
designated type is a type with discriminants, the basic operations include the selection of the cor¬ 
responding discriminants; if the designated type is a record type, they include the selection of the 
corresponding components; if the designated type is an array type, they include the formation of 
indexed components and slices; if the designated type is a task type, they include selection of 
entries and entry families. Furthermore, the basic operations include the formation of a selected 
component with the reserved word aSS (see 4.1.3). 

If the designated type is an array type, the basic operations include the attributes that have the 
attribute designators FIRST, LAST, RANGE, and LENGTH (likewise, the attribute designators of the 
N-th dimension). The prefix of each of these attributes must be a value of the access type. These 
attributes yield the corresponding characteristics of the designated object (see 3.6.2). 

If the designated type is a task type, the basic operations include the attributes that have the 
attribute designators TERMINATED and CALLABLE (see 9.9). The prefix of each of these attributes 
must be a value of the access type. These attributes yield the corresponding characteristics of the 
designated task objects. 

In addition, the attribute T'BASE (see 3.3.3) and the representation attributes T'SIZE and 
i STORAGE_SIZE (see 13.7.2) are defined for an access type or subtype T; the attributes A'SIZE 
and A ADDRESS are defined for an access object A (see 13.7.2). 

Besides the basic operations, the operations of an access type include the predefined comparison 
for equality and inequality. 

References: access type 3.8, allocator 4.8, array type 3.6, assignment 5.2, attribute 4.1.4, attribute designator 4.1.4, 

base type 3.3, basic operation 3.3.3, collection 3.8, constrained array subtype 3.6, conversion 4.6, designate 3.8, 

designated subtype 3.8, designated type 3.8, discriminant 3.3, indexed component 4.1.1, literal 4.2, membership test 

4.5 4 5.2, object 3.2.1, operation 3.3, private type 7.4, qualified expression 4.7, record type 3.7, selected component 

4.1.3, slice 4.1.2, subtype 3.3, task type 9.1, type 3.3 

3.8.2 Operations of Access Types 3-42 



Declarations and Types 

3.9 Declarative Parts 

A declarative part contains declarative items (possibly none). i 

declarative_part ::= 2 
|basic_declarative_item| |later_declarative_item| 

basic_declarative_item ::= basic_declaration 
| representation_clause | use_clause 

later_declarative_item body 
| subprogram_declaration | package_declaration 
| task_declaration | generic_declaration 
| use_clause | generic_instantiation 

body proper_body | body_stub 

proper_body ::= subprogram_body | package_body | task_body 

The elaboration of a declarative part consists of the elaboration of the declarative items, if any, in 3 

the order in which they are given in the declarative part. After its elaboration, a declarative item is 
said to be elaborated. Prior to the completion of its elaboration (including before the elaboration), 
the declarative item is not yet elaborated. 

For several forms of declarative item, the language rules (in particular scope and visibility rules) are 4 

such that it is either impossible or illegal to use an entity before the elaboration of the declarative 
item that declares this entity. For example, it is not possible to use the name of a type for an object 
declaration if the corresponding type declaration is not yet elaborated. In the case of bodies, the 
following checks are performed: 

• For a subprogram call, a check is made that the body of the subprogram is already elaborated. 5 

• For the activation of a task, a check is made that the body of the corresponding task unit is 6 

already elaborated. 

• For the instantiation of a generic unit that has a body, a check is made that this body is 7 

already elaborated. 

The exception PROGRAM_ERROR is raised if any of these checks fails. s 

If a subprogram declaration, a package declaration, a task declaration, or a generic declaration is a 9 

declarative item of a given declarative part, then the body (if there is one) of the program unit 
declared by the declarative item must itself be a declarative item of this declarative part (and must 
appear later). If the body is a body stub, then a separately compiled subunit containing the cor¬ 
responding proper body is required for the program unit (see 10.2). 

References: activation 9.3, instantiation 12.3, program_error exception 1 1.1, scope 8.2, subprogram call 6.4, type 10 

3.3, visibility 8,3 

Elaboration of declarations: 3.1, component declaration 3.7, deferred constant declaration 7.4.3, discriminant n 

specification 3.7.1, entry declaration 9.5, enumeration literal specification 3.5.1, generic declaration 12.1, generic 
instantiation 12.3, incomplete type declaration 3.8.1, loop parameter specification 5.5, number declaration 3.2.2, 
object declaration 3.2.1, package declaration 7.2, parameter specification 6.1, private type declaration 7.4.1, renam¬ 
ing declaration 8.5, subprogram declaration 6.1, subtype declaration 3.3.2, task declaration 9.1, type declaration 3.3.1 

3-43 Declarative Parts 3.9 



ANSI/M/L-STD-1815A Ada Reference Manual 

12 Elaboration of type definitions: 3.3.1, access type definition 3.8, array type definition 3.6, derived type definition 

3 4, enumeration type definition 3.5.1, integer type definition 3.5.4, real type definition 3.5.6, record type definition 

3.7 

13 Elaboration of other constructs: context clause 10.1, body stub 10.2, compilation unit 10.1, discriminant part 

3.7.1, generic body 12.2, generic formal parameter 12.1 12.3, library unit 10.5, package body 7.1, representation 

clause 13.1, subprogram body 6.3, subunit 10.2, task body 9.1, task object 9.2, task specification 9.1, use clause 8.4, 

with clause 10.1.1 

3.9 Declarative Parts 3-44 



4. Names and Expressions 

The rules applicable to the different forms of name and expression, and to their evaluation, are , 
given in this chapter. 

4.1 Names 

Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can , 
also denote objects designated by access values; subcomponents and slices of objects and values; 
single entries, entry families, and entries in families of entries. Finally, names can denote attributes 
of any of the foregoing. 

name ::= simple_name 2 

| characterjiteral | operator_symbol 
| indexed_component | slice 
| selected_component | attribute 

simple_name ::= identifier 

prefix ::= name | function_call 

A simple name for an entity is either the identifier associated with the entity by its declaration, or 3 

another identifier associated with the entity by a renaming declaration. 

Certain forms of name (indexed and selected components, slices, and attributes) include a prefix 4 
that is either a name or a function call. If the type of a prefix is an access type, then the prefix must 
not be a name that denotes a formal parameter of mode out or a subcomponent thereof. 

If the prefix of a name is a function call, then the name denotes a component, a slice, an attribute, 5 

an entry, or an entry family, either of the result of the function call, or (if the result is ar. access 
value) of the object designated by the result. 

A prefix is said to be appropriate for a type in either of the following cases; 6 

® The type of the prefix is the type considered. 7 

• The type of the prefix is an access type whose designated type is the type considered. a 

The evaluation of a name determines the entity denoted by the name. This evaluation has no other 9 

effect for a name that is a simple name, a character literal, or an operator symbol. 

The evaluation of a name that has a prefix includes the evaluation of the prefix, that is, of the cor- 10 

responding name or function call. If the type of the prefix is an access type, the evaluation of the 
prefix includes the determination of the object designated by the corresponding access value; the 
exception CONSTRAINT_ERROR is raised if the value of the prefix is a null access value, except in 
the case of the prefix of a representation attribute (see 13.7.2). 

4-1 Names 4.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

Examples of simple names: 

PI the simple name of a number (see 3.2.2) 
LIMIT the simple name of a constant (see 3.2.1) 
COUNT the simple name of a scalar variable (see 3.2.1) 
BOARD the simple name of an array variable (see 3.6.1) 
MATRIX the simple name of a type (see 3.6) 
RANDOM the simple name of a function (see 6.1) 
ERROR the simple name of an exception (see 11.1) 

t2 References: access type 3.8, access value 3.8, attribute 4.1.4, belong to a type 3.3, character literal 2.5, component 

3.3, constraint_error exception 11.1, declaration 3.1, designate 3.8, designated type 3.8, entity 3.1, entry 9.5, entry 

family 9.5, evaluation 4.5, formal parameter 6.1, function call 6.4, identifier 2.3, indexed component 4.1.1, mode 6.1, 

null access value 3.8, object 3.2.1, operator symbol 6.1, raising of exceptions 1 1, renaming declarations 8.5, selected 

component 4.1.3, slice 4.1.2, subcomponent 3.3, type 3.3 

4.1.1 Indexed Components 

1 An indexed component denotes either a component of an array or an entry in a family of entries. 

2 indexed_component prefix(expression |, expression!) 

3 In the case of a component of an array, the prefix must be appropriate for an array type. The 
expressions specify the index values for the component; there must be one such expression for 
each index position of the array type. In the case of an entry in a family of entries, the prefix must 
be a name that denotes an entry family of a task object, and the expression (there must be exactly 
one) specifies the index value for the individual entry. 

4 Each expression must be of the type of the corresponding index. For the evaluation of an indexed 
component, the prefix and the expressions are evaluated in some order that is not defined by the 
language. The exception CONSTRAINT_ERROR is raised if an index value does not belong to the 
range of the corresponding index of the prefixing array or entry family. 

5 Examples of indexed components: 

MY_SCHEDULE(SAT) a component of a one-dimensional array (see 3.6.1 
PAGE(IO) a component of a one-dimensional array (see 3.6) 
BOARD(M, J + 1) a component of a two-dimensional array (see 3.6.1 
PAGE( 1 0)(20) a component of a component (see 3.6) 
REQUEST( MEDIUM) an i entry in a family of entries (see 9.5) 
NEXT_FRAME(L)(M, N) a component of a function call (see 6.1) 

Notes on the examples: 

6 Distinct notations are used for components of multidimensional arrays (such as BOARD) and 
arrays of arrays (such as PAGE ). The components of an array of arrays are arrays and can therefore 
be indexed. Thus PAGE(10)(20) denotes the 20th component of PAGE (10). In the last example 
NEXT_FRAME(L) is a function call returning an access value which designates a two-dimensional 
array. 

References: appropriate for a type 4.1, array type 3.6, component 3.3, component of an array 3.6, constraint_error 

exception 11.1, dimension 3.6, entry 9.5, entry family 9.5, evaluation 4.5, expression 4.4, function call 6.4, in some 

order 16, index 3.6, name 4.1, prefix 4.1, raising of exceptions 11, returned value 5.8 6.5, task object 9.2 

4.1.1 Indexed Components 4-2 



Names and Expressions 

4.1.2 Slices 

A slice denotes a one-dimensional array formed by a sequence of consecutive components of a i 
one-dimensional array. A slice of a variable is a variable; a slice of a constant is a constant; a slice 
of a value is a value. 

slice ::= prefix(discrete_range) 2 

The prefix of a slice must be appropriate for a one-dimensional array type. The type of the slice is 3 

the base type of this array type. The bounds of the discrete range define those of the slice and 
must be of the type of the index; the slice is a null slice denoting a null array if the discrete range is 
a null range. 

For the evaluation of a name that is a slice, the prefix and the discrete range are evaluated in some 4 

order that is not defined by the language. The exception CQNSTRAINT_ERROR is raised by the 
evaluation of a slice, other than a null slice, if any of the bounds of the discrete range does not 
belong to the index range of the prefixing array. (The bounds of a null slice need not belong to the 
subtype of the index.) 

Examples of slices: 5 

STARSO .. 15) a slice of 15 characters (see 3.6.3) 
PAGE(10 .. 10 + SIZE) a slice of 1 + SIZE components (see 3.6 and 3.2.1) 
PAGE(L)(A .. B) a slice of the array PAGE(L) (see 3.6) 
STARS! 1 .. 0) a null slice (see 3.6.3) 
MY_SCHEDULE(WEEKDAY) bounds given by subtype (see 3.6 and 3.5.1) 
STARS(5 .. 1 5)(K) same as STARS(K) (see 3.6.3) 

provided that K is in 5 .. 15 

Notes: 

For a one-dimensional array A, the name A(N .. N) is a slice of one component; its type is the base 6 

type of A. On the other hand, A(N) is a component of the array A and has the corresponding com¬ 
ponent type. 

References: appropriate for a type 4.1, array 3.6, array type 3.6, array value 3.8, base type 3.3, belong to a subtype 7 

3.3, bound of a discrete range 3.6.1, component 3.3, component type 3.3, constant 3.2.1, constraint 3.3, con- 

straint_error exception 11.1, dimension 3.6, discrete range 3.6, evaluation 4.5, index 3.6, index range 3.6, name 4.1, 

null array 3.6.1, null range 3.5, prefix 4.1, raising of exceptions 11, type 3.3, variable 3.2.1 

4.1.3 Selected Components 

Selected components are used to denote record components, entries, entry families, and objects 1 

designated by access values; they are also used as expanded names as described below. 

selected_component ::= prefix.selector 2 

selector ::= simple_name 
| characterjiteral | operator_symbol | all 

4-3 Selected Components 4.1.3 



ANSI/MIL -STD-1815A Ada Reference Manual 

The following four forms of selected components are used to denote a discriminant, a record com¬ 
ponent, an entry, or an object designated by an access value: 

(a) A discriminant: 

The selector must be a simple name denoting a discriminant of an object or value. The prefix 
must be appropriate for the type of this object or value. 

(b) A component of a record: 

The selector must be a simple name denoting a component of a record object or value. The 
prefix must be appropriate for the type of this object or value. 

For a component of a variant, a check is made that the values of the discriminants are such 
that the record has this component. The exception CONSTRAINT_ERROR is raised if this check 
fails. 

(c) A single entry or an entry family of a task: 

The selector must be a simple name denoting a single entry or an entry family of a task. The 
prefix must be appropriate for the type of this task. 

(d) An object designated by an access value: 

The selector must be the reserved word all. The value of the prefix must belong to an access 
type. 

A selected component of one of the remaining two forms is called an expanded name. In each 
case the selector must be either a simple name, a character literal, or an operator symbol. A func¬ 
tion call is not allowed as the prefix of an expanded name. An expanded name can denote: 

(e) An entity declared in the visible part of a package: 

The prefix must denote the package. The selector must be the simple name, character literal, 
or operator symbol of the entity. 

(f) An entity whose declaration occurs immediately within a named construct: 

The prefix must denote a construct that is either a program unit, a block statement, a loop 
statement, or an accept statement. In the case of an accept statement, the prefix must be 
either the simple name of the entry or entry family, or an expanded name ending with such a 
simple name (that is, no index is allowed). The selector must be the simple name, character 
literal, or operator symbol of an entity whose declaration occurs immediately within the con¬ 
struct. 

This form of expanded name is only allowed within the construct itself (including the body and 
any subunits, in the case of a program unit). A name declared by a renaming declaration is not 
allowed as the prefix. If the prefix is the name of a subprogram or accept statement and if 
there is more than one visible enclosing subprogram or accept statement of this name, the 
expanded name is ambiguous, independently of the selector. 

If, according to the visibility rules, there is at least one possible interpretation of the prefix of a 
selected component as the name of an enclosing subprogram or accept statement, then the only 
interpretations considered are those of rule (f), as expanded names (no interpretations of the prefix 
as a function call are then considered). 

4.1.3 Selected Components 4-4 



Names and Expressions 

The evaluation of a name that is a selected component includes the evaluation of the prefix. 

Examples of selected components: 

TO MORROW. MO NTH a record component (see 3.7) 
NEXT_CAR.OWNER a record component (see 3.8.1) 
NEXT_CAR.OWNER.AGE - a record component (see 3.8.1) 
WRITER.UNIT a record component (a discriminant) (see 3.7.3) 
MIN_CELL(H (.VALUE a record component of the result (see 6.1 and 3.8.1) 

— of the function call MIN_CELL(H) 

CONTROL.SEIZE an entry of the task CONTROL (see 9.1 and 9.2) 
POOL(K).WRITE an entry of the task POOL(K) (see 9.1 and 9.2) 

NEXT_CAR.all the object designated by 
— the access variable NEXT_CAR (see 3.8.1) 

Examples of expanded names: 

TABLE_MANAGER.INSERT _ a procedure of the visible part of a package (see 7.5) 
KEY_MANAGER."<" — an operator of the visible part of a package (see 7.4.2) 

DOT_PRO DU CT.SU M _ a variable declared in a procedure body (see 6.5) 
BUFFER.POOL — a variable declared in a task unit (see 9.12) 
BUFFER.READ — an entry of a task unit (see 9.12) 
SWAP.TEMP — a variable declared in a block statement (see 5.6) 
STANDARD. BOO LEAN - the name of a predefined type (see 8.6 and C) 

Note: 

For a record with components that are other records, the above rules imply that the simple name 
must be given at each level for the name of a subcomponent. For example, the name 
NEXT_CAR .OWNER .BIRTH .MONTH cannot be shortened (NEXT_CAR .OWNER .MONTH is not 
allowed). 

References: accept statement 9.5, access type 3.8, access value 3.8, appropriate for a type 4.1, block statement 5.6, 

body of a program unit 3.9, character literal 2.5, component of a record 3.7, constraint_error exception 11.1, declara¬ 

tion 3.1, designate 3.8, discriminant 3.3, entity 3.1, entry 9.5, entry family 9.5, function call 6.4, index 3.6, loop state¬ 

ment 5.5, object 3.2.1, occur immediately within 8.1, operator 4.5, operator symbol 6.1, overloading 8.3, package 7, 

predefined type C, prefix 4.1, procedure body 6.3, program unit 6, raising of exceptions 1 1, record 3.7, recora compo¬ 

nent 3.7, renaming declaration 8.5, reserved word 2.9, simple name 4.1, subprogram 6, subunit 10.2, task 9, task 

object 9.2, task unit 9, variable 3.7.3, variant 3.7.3, visibility 8.3, visible part 3.7.3 

4.1.4 Attributes 

An attribute denotes a basic operation of an entity given by a prefix, 

attribute prefix'attribute_designator 

attribute_designator simple_name [(t/n/Versa/_^sfar/c_expression)] 

The applicable attribute designators depend on the prefix. An attribute can be a basic operation 
delivering a value; alternatively it can be a function, a type, or a range. The meaning of the prefix of 
an attribute must be determinable independently of the attribute designator and independently of 
the fact that it is the prefix of an attribute. 

4-5 Attributes 4.1.4 



ANSI/M/L-STD-1815A Ada Reference Manual 

The attributes defined by the language are summarized in Annex A. In addition, an 
implementation may provide implementation-defined attributes; their description must be given in 
Appendix F. The attribute designator of any implementation-defined attribute must not be the 
same as that of any language-defined attribute. 

The evaluation of a name that is an attribute consists of the evaluation of the prefix. 

Notes: 

The attribute designators DIGITS , DELTA, and RANGE have the same identifier as a reserved word. 
However, no confusion is possible since an attribute designator is always preceded by an 
apostrophe. The only predefined attribute designators that have a universal expression are those 
for certain operations of array types (see 3.6.2). 

Examples of attributes: 

COLOR'FIRST 
RAINBOWBASE" FIRST 
REALDIGITS 
BQARD'LAST(2) 
BOARDRANGE(I) 
POOL(K)TERMINATED 
DATESIZE 
MESSAGE'ADDRESS 

— minimum value of the enumeration type COLOR (see 3.3.1 
-- same as COLOR'FIRST (see 3.3.2 
-- precision of the type REAL (see 3.5.7 
-- upper bound of the second dimension of BOARD (see 3.6.1 
— index range of the first dimension of BOARD (see 3.6.1 
— TRUE if task POOL(K) is terminated (see 9.2 
-- number of bits for records of type DATE (see 3.7 
-- address of the record variable MESSAGE (see 3.7.2 

3.5) 
3.3.3) 
3.5.8) 
3.6.2) 
3.6.2) 
9.9) 
13.7.2) 
13.7.2) 

References: appropriate for a type 4.1, basic operation 3.3.3, declared entity 3.1, name 4.1, prefix 4.1, reserved word 

2.9, simple name 4.1, static expression 4.9, type 3.3, universal expression 4.10 

4.2 Literals 

A literal is either a numeric literal, an enumeration literal, the literal null, or a string literal. The 
evaluation of a literal yields the corresponding value. 

Numeric literals are the literals of the types universalJnteger and universalweal. Enumeration 
literals include character literals and yield values of the corresponding enumeration types. The 
literal null yields a null access value which designates no objects at all. 

A string literal is a basic operation that combines a sequence of characters into a value of a one¬ 
dimensional array of a character type; the bounds of this array are determined according to the 
rules for positional array aggregates (see 4.3.2). For a null string literal, the upper bound is the 
predecessor, as given by the PRED attribute, of the lower bound. The evaluation of a null string 
literal raises the exception CONSTRAINT_ERROR if the lower bound does not have a predecessor 
(see 3.5.5). 

The type of a string literal and likewise the type of the literal null must be determinable solely from 
the context in which this literal appears, excluding the literal itself, but using the fact that the literal 
null is a value of an access type, and similarly that a string literal is a value of a one-dimensional 
array type whose component type is a character type. 

The character literals corresponding to the graphic characters contained within a string literal must 
be visible at the place of the string literal (although these characters themselves are not used to 
determine the type of the string literal). 

4.2 Literals 4-6 



Names and Expressions 

Examples: 

3.141 59_26536 

1 _345 

CLUBS 
A' 
"SOME TEXT" 

a real literal 
an integer literal 
an enumeration literal 
a character literal 
a string literal 

References: access type 3.8, aggregate 4.3, array 3.6, array bound 3.6, array type 3.6, character literal 2.5, character 

type 3.5.2, component type 3.3, constraint_error exception 11.1, designate 3.8, dimension 3.6, enumeration literal 

3.5.1, graphic character 2.1, integer literal 2.4, null access value 3.8, null literal 3.8, numeric literal 2.4, object 3.2.1, 

real literal 2.4, string literal 2.6, type 3.3, universaljnteger type 3.5.4, universaLreal type 3.5.6, visibility 8.3 

4.3 Aggregates 

An aggregate is a basic operation that combines component values into a composite value of a 
record or array type. 

aggregate ::= 
(component_association |, component_association|) 

component_association ::= 
[choice || choicel => ] expression 

Each component association associates an expression with components (possibly none). A compo¬ 
nent association is said to be named if the components are specified explicitly by choices; it is 
otherwise said to be positional. For a positional association, the (single) component is implicitly 
specified by position, in the order of the corresponding component declarations for record compo¬ 
nents, in index order for array components. 

Named associations can be given in any order (except for the choice others), but if both positional 
and named associations are used in the same aggregate, then positional associations must occur 
first, at their normal position. Hence once a named association is used, the rest of the aggregate 
must use only named associations. Aggregates containing a single component association must 
always be given in named notation. Specific rules concerning component associations exist for 
record aggregates and array aggregates. 

Choices in component associations have the same syntax as in variant parts (see 3.7.3). A choice 
that is a component simple name is only allowed in a record aggregate. For a component associa¬ 
tion, a choice that is a simple expression or a discrete range is only allowed in an array aggregate; 
a choice that is a simple expression specifies the component at the corresponding index value; 
similarly a discrete range specifies the components at the index values in the range. The choice 
others is only allowed in a component association if the association appears last and has this 
single choice; it specifies all remaining components, if any. 

Each component of the value defined by an aggregate must be represented once and only once in 
the aggregate. Hence each aggregate must be complete and a given component is not allowed to 
be specified by more than one choice. 

The type of an aggregate must be determinable solely from the context in which the aggregate 
appears, excluding the aggregate itself, but using the fact that this type must be composite and not 
limited. The type of an aggregate in turn determines the required type for each of its components. 

4-7 Aggregates 4.3 



ANSI/MIL-STD-J815A Ada Reference Manual 

Notes: 

8 The above rule implies that the determination of the type of an aggregate cannot use any informa¬ 
tion from within the aggregate. In particular, this determination cannot use the type of the expres¬ 
sion of a component association, or the form or the type of a choice. An aggregate can always be 
distinguished from an expression enclosed by parentheses: this is a consequence of the fact that 
named notation is required for an aggregate with a single component. 

9 References: array aggregate 4.3.2, array type 3.6, basic operation 3.3.3, choice 3.7.3, component 3.3, composite 

type 3.3. composite value 3.3, discrete range 3.6, expression 4.4, index 3.6, limited type 7.4.4, primary 4.4, record 

aggregate 4.3.1, record type 3.7, simple expression 4.4, simple name 4.1, type 3.3, variant part 3.7.3 

4.3.1 Record Aggregates 

t If the type of an aggregate is a record type, the component names given as choices must denote 
components (including discriminants) of the record type. If the choice others is given as a choice of 
a record aggregate, it must represent at least one component. A component association with the 
choice others or with more than one choice is only allowed if the represented components are all 
of the same type. The expression of a component association must have the type of the associated 
record components. 

2 The value specified for a discriminant that governs a variant part must be given by a static expres¬ 
sion (note that this value determines which dependent components must appear in the record 
value). 

3 For the evaluation of a record aggregate, the expressions given in the component associations are 
evaluated in some order that is not defined by the language. The expression of a named associa¬ 
tion is evaluated once for each associated component. A check is made that the value of each sub¬ 
component of the aggregate belongs to the subtype of this subcomponent. The exception 
CONSTRAINT_ERROR is raised if this check fails. 

4 Example of a record aggregate with positional associations: 

(4, JULY, 1776) - see 3.7 

5 Examples of record aggregates with named associations: 

(DAY => 4, MONTH => JULY, YEAR => 1776) 
(MONTH => JULY, DAY => 4, YEAR => 1776) 

(DISK, CLOSED, TRACK => 5, CYLINDER => 12) - see 3.7.3 
(UNIT => DISK, STATUS => CLOSED, CYLINDER => 9, TRACK => 1) 

e Example of component association with several choices: 

(VALUE => 0, SUCCIPRED => new CELL'(0, null, null)) - see 3.8.1 
The allocator is evaluated twice: SUCC and PRED designate different cells 

Note: 

7 For an aggregate with positional associations, discriminant values appear first since the discrimi¬ 
nant part is given first in the record type declaration; they must be in the same order as in the dis¬ 
criminant part. 

4.3.1 Record Aggregates 4-8 



Names and Expressions 

References: aggregate 4.3, allocator 4.8, choice 3.7.3, component association 4.3, component name 3.7, constraint 

3.3, constraint_error exception 11.1, depend on a discriminant 3.7.1, discriminant 3.3, discriminant part 3.7.1, 

evaluate 4.5, expression 4.4, in some order 1.6, program 10, raising of exceptions 1 1, record component 3.7, record 

type 3.7, satisfy 3.3, static expression 4.9, subcomponent 3.3, subtype 3.3.2, type 3.3, variant part 3.7.3 

4.3.2 Array Aggregates 

If the type of an aggregate is a one-dimensional array type, then each choice must specify values i 
of the index type, and the expression of each component association must be of the component 
type. 

If the type of an aggregate is a multidimensional array type, an n-dimensional aggregate is written 2 

as a one-dimensional aggregate, in which the expression specified for each component association 
is itself written as an (n-1 )-dimensional aggregate which is called a subaggregate-, the index sub- 
type of the one-dimensional aggregate is given by the first index position of the array type. The 
same rule is used to write a subaggregate if it is again multidimensional, using successive index 
positions. A string literal is allowed in a multidimensional aggregate at the place of a one¬ 
dimensional array of a character type. In what follows, the rules concerning array aggregates are 
formulated in terms of one-dimensional aggregates. 

Apart from a final component association with the single choice others, the rest (if any) of the com- 3 

ponent associations of an array aggregate must be either all positional or all named. A named 
association of an array aggregate is only allowed to have a choice that is not static, or likewise a 
choice that is a null range, if the aggregate includes a single component association and this com¬ 
ponent association has a single choice. An others choice is static if the applicable index constraint 
is static. 

The bounds of an array aggregate that has an others choice are determined by the applicable index 4 

constraint. An others choice is only allowed if the aggregate appears in one of the following con¬ 
texts (which defines the applicable index constraint): 

(a) The aggregate is an actual parameter, a generic actual parameter, the result expression of a 5 

function, or the expression that follows an assignment compound delimiter. Moreover, the 
subtype of the corresponding formal parameter, generic formal parameter, function result, or 
object is a constrained array subtype. 

For an aggregate that appears in such a context and contains an association with an others 6 
choice, named associations are allowed for other associations only in the case of a 
(nongeneric) actual parameter or function result. If the aggregate is a multidimensional array, 
this restriction also applies to each of its subaggregates. 

(b) The aggregate is the operand of a qualified expression whose type mark denotes a con- 7 

strained array subtype. 

(c) The aggregate is the expression of the component association of an enclosing (array or record) 
aggregate. Moreover, if this enclosing aggregate is a multidimensional array aggregate then it 
is itself in one of these three contexts. 

The bounds of an array aggregate that does not have an others choice are determined as follows. 9 

For an aggregate that has named associations, the bounds are determined by the smallest and 
largest choices given. For a positional aggregate, the lower bound is determined by the applicable 
index constraint if the aggregate appears in one of the contexts (a) through (c); otherwise, the 
lower bound is given by S'FIRST where S is the index subtype; in either case, the upper bound is 
determined by the number of components. 

4-9 Array Aggregates 4.3.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

,0 The evaluation of an array aggregate that is not a subaggregate proceeds in two steps. First, the 
choices of this aggregate and of its subaggregates, if any, are evaluated in some order that is not 
defined by the language. Second, the expressions of the component associations of the array 
aggregate are evaluated in some order that is not defined by the language; the expression of a 
named association is evaluated once for each associated component. The evaluation of a subag¬ 
gregate consists of this second step (the first step is omitted since the choices have already been 
evaluated). 

11 For the evaluation of an aggregate that is not a null array, a check is made that the index values 
defined by choices belong to the corresponding index subtypes, and also that the value of each 
subcomponent of the aggregate belongs to the subtype of this subcomponent. For an n- 
dimensional multidimensional aggregate, a check is made that all (n-1 )-dimensional subaggrega¬ 
tes have the same bounds. The exception CONSTRAINT_ERROR is raised if any of these checks 
fails. 

Note: 

12 The allowed contexts for an array aggregate including an others choice are such that the bounds of 
such an aggregate are always known from the context. 

13 Examples of array aggregates with positional associations: 

(7, 9, 5, 1, 3, 2, 4, 8, 6, 0) 
TABLE'(5, 8, 4, 1, others => 0) -- see 3.6 

14 Examples of array aggregates with named associations: 

(1 .. 5 => (1 ..8 => 0.0)) — two-dimensional 
(1 .. N => new CELL) — N new cells, in particular for N = 0 

TABLE'(2 | 4 | 10 => 1, others => 0) 
SCHEDULE'(MON .. FRI => TRUE, others => FALSE) - see 3.6 
SCHEDULE'(WED | SUN => FALSE, others => TRUE ) 

is Examples of two-dimensional array aggregates: 

— Three aggregates for the same value of type MATRIX (see 3.6): 

((1.1, 1.2, 1.3), (2.1, 2.2, 2.3)) 
(1 => (1.1, 1.2, 1.3), 2 => (2.1, 2.2, 2.3)) 
(1 => (1 => 1.1, 2 => 1.2, 3 => 1.3), 2 => (1 => 2.1, 2 => 2.2, 3 => 2.3)) 

,6 Examples of aggregates as initial values: 

A : TABLE := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); - A(1)=7, A(10)=0 
B : TABLE := TABLE'(2 | 4 | 10 => 1, others => 0); - B( 1 )=0, B(10)=1 
C : constant MATRIX := (1 .. 5 => (1 .. 8 => 0.0)); - C'FIRST(1 )=1, C'LAST(2)=8 

D : B!T_VECTOR(M .. N) := (M .. N => TRUE); - see 3.6 
E : BIT_VECTOR(M .. N) := (others => TRUE); 
F STRINGO .. 1) := (1 => 'F'); -- a one component aggregate: same as "F" 

17 References: actual parameter 6.4.1, aggregate 4.3, array type 3.6, assignment compound delimiter 5.2, choice 3.7.3, 
component 3.3, component association 4.3, component type 3.3, constrained array subtype 3.6, constraint 3.3, con- 
straint_error exception 11.1, dimension 3.6, evaluate 4.5, expression 4.4, formal parameter 6.1, function 6.5, in some 
order 1.6, index constraint 3.6.1, index range 3.6, index subtype 3.6, index type 3.6, named component association 
4 3, null array 3.6.1, object 3.2, positional component association 4.3, qualified expression 4.7, raising of exceptions 
11, static expression 4.9, subcomponent 3.3, type 3.3 

4.3.2 Array Aggregates 4-10 



Names and Expressions 

4.4 Expressions 

An expression is a formula that defines the computation of a value, 

expression 
relation land relation} | relation (and then relation} 

| relation (or relation} j relation (or else relation} 
| relation |xor relation} 

relation ::= 
simple_expression [relationaLoperator simple_expression] 

| simple_expression [not] in range 
| simple_expression [not] in type_mark 

simple_expression [unary_adding_operator] term [binary_adding_operator term} 

term ::= factor |multiplying_operator factor} 

factor ::= primary [** primary] | abs primary | not primary 

primary ::= 
numericjiteral | null | aggregate | string_literal | name | allocator 

| function_call | type_conversion | qualified_expression | (expression) 

Each primary has a value and a type. The only names allowed as primaries are named numbers; 
attributes that yield values; and names denoting objects (the value of such a primary is the value of 
the object) or denoting values. Names that denote formal parameters of mode out are not allowed 
as primaries; names of their subcomponents are only allowed in the case of discriminants. 

The type of an expression depends only on the type of its constituents and on the operators 
applied; for an overloaded constituent or operator, the determination of the constituent type, or the 
identification of the appropriate operator, depends on the context. For each predefined operator, 
the operand and result types are given in section 4.5. 

Examples of primaries: 
5 

4.0 
PI 
(1 .. 10 => 0) 
SUM 
INTEGERLAST 
SINE(X) 
COLOR'(BLUE) 
REAL(M*N) 
(LINE_COUNT + 10) 

real literal 
named number 
array aggregate 
variable 
attribute 
function call 
qualified expression 
conversion 
parenthesized expression 

Examples of expressions: 
6 

VOLUME 
not DESTROYED 
2 LINE_COUNT 
-4.0 
-4.0 + A 
B 2 - 4.0*A*C 
PASSWORD! 1 .. 3) = "BWV" 
COUNT in SMALI_INT 
COUNT not in SMALLJNT 
INDEX = 0 or ITEM_HIT 
(COLD and SUNNY) or WARM 
A: (B :*C) 

primary 
factor 
term 

- simple expression 
- simple expression 
- simple expression 

— relation 
— relation 
— relation 

— expression 
expression (parentheses are required) 
expression (parentheses are required) 

4-1 1 Expressions 4.4 



ANS//MIL-STD-1815A Ada Reference Manual 

References: aggregate 4.3, allocator 4.8, array aggregate 4.3.2, attribute 4.1.4, binary adding operator 4.5 4.5.3, 

context of overload resolution 8.7, exponentiating operator 4.5 4.5.6, function call 6.4, multiplying operator 4.5 4.5.5, 

name 4.1, named number 3.2, null literal 3.8, numeric literal 2.4, object 3.2, operator 4.5, overloading 8.3, 

overloading an operator 6.7, qualified expression 4.7, range 3.5, real literal 2.4, relation 4.5.1, relational operator 4.5 

4.5.2, result type 6.1, string literal 2.6, type 3.3, type conversion 4.6, type mark 3.3.2, unary adding operator 4.5 

4.5.4, variable 3.2.1 

4.5 Operators and Expression Evaluation 

The language defines the following six classes of operators. The corresponding operator symbols 
(except /=), and only those, can be used as designators in declarations of functions for user- 
defined operators. They are given in the order of increasing precedence. 

logicaLoperator ::= and | or 

relationaLoperator ::= = 1 /= 

binary_adding_operator ::= + 1 - 

unary_adding_operator + 1 - 

multiplying_operator ::= * 1 / 

highest_precedence_operator ** | abs 

The short-circuit control forms and then and or 
operators. The membership tests in and not in have 

xor 

< I <= I > I >= 

& 

mod | rem 

not 

else have the same precedence as logical 
he same precedence as relational operators. 

For a term, simple expression, relation, or expression, operators of higher precedence are 
associated with their operands before operators of lower precedence. In this case, for a sequence 
of operators of the same precedence level, the operators are associated in textual order from left to 
right; parentheses can be used to impose specific associations. 

The operands of a factor, of a term, of a simple expression, or of a relation, and the operands of an 
expression that does not contain a short-circuit control form, are evaluated in some order that is 
not defined by the language (but before application of the corresponding operator). The right 
operand of a short-circuit control form is evaluated if and only if the left operand has a certain 
value (see 4.5.1). 

For each form of type declaration, certain of the above operators are predefined, that is, they are 
implicitly declared by the type declaration. For each such implicit operator declaration, the names 
of the parameters are LEFT and RIGHT for binary operators; the single parameter is called RIGHT 
for unary adding operators and for the unary operators abs and not. The effect of the predefined 
operators is explained in subsections 4.5.1 through 4.5.7. 

The predefined operations on integer types either yield the mathematically correct result or raise 
the exception NUMERIC_ERROR. A predefined operation that delivers a result of an integer type 
(other than universalJnteger) can only raise the exception NUMERIC_ERROR if the mathematical 
result is not a value of the type. The predefined operations on real types yield results whose 
accuracy is defined in section 4.5.7. A predefined operation that delivers a result of a real type 
(other than universalweaf) can only raise the exception NUMERIC_ERROR if the result is not within 
the range of the safe numbers of the type, as explained in section 4.5.7. 

4.5 Operators and Expression Evaluation 4-12 



Names and Expressions 

Examples of precedence: 

not SUNNY or WARM 
X > 4.0 and Y > 0.0 

-4.0 A 2 
abs(1 + A) + B 
Y (-3) 
A / B * C 
A + (B + C) 

same as (not SUNNY) or WARM 
same as (X > 4.0) and (Y > 0.0) 

same as -(4.0 * (A**2)) 
same as (abs (1 + A)) + B 
parentheses are necessary 
same as (A/B)*C 
evaluate B + C before adding it to A 

References: designator 6.1, expression 4.4, factor 4.4, implicit declaration 3.1, in some order 1.6, integer type 3.5.4, 

membership test 4.5.2, name 4.1, numeric_error exception 11.1, overloading 6.6 8.7, raising of an exception 1 1, 

range 3.5, real type 3.5.6, relation 4.4, safe number 3.5.6, short-circuit control form 4.5 4.5.1, simple expression 4.4, 

term 4.4, type 3.3, type declaration 3.3.1, universaLinteger type 3.5.4, universaLreal type 3.5.6 

4.5.1 Logical Operators and Short-circuit Control Forms 

The following logical operators are predefined for any boolean type and any one-dimensional array 
type whose components are of a boolean type; in either case the two operands have the same 
type. 

Operator Operation Operand type Result type 

and conjunction any boolean type 
array of boolean components 

same 
same 

boolean type 
array type 

or inclusive disjunction any boolean type 
array of boolean components 

same 
same 

boolean type 
array type 

xor exclusive disjunction any boolean type 
array of boolean components 

same 
same 

boolean type 
array type 

The operations on arrays are performed on a component-by-component basis on matching compo¬ 
nents, if any (as for equality, see 4.5.2). The bounds of the resulting array are those of the left 
operand. A check is made that for each component of the left operand there is a matching compo¬ 
nent of the right operand, and vice versa. The exception CONSTRAINT_ERROR is raised if this 
check fails. 

The short-circuit control forms and then and or else are defined for two operands of a boolean type 
and deliver a result of the same type. The left operand of a short-circuit control form is always 
evaluated first. If the left operand of an expression with the control form and then evaluates to 
FALSE, the right operand is not evaluated and the value of the expression is FALSE. If the left 
operand of an expression with the control form or else evaluates to TRUE, the right operand is not 
evaluated and the value of the expression is TRUE. If both operands are evaluated, and then 
delivers the same result as and, and or else delivers the same result as or. 

Note: The conventional meaning of the logical operators is given by the following truth table: 

A B A and B A or B A xor B 

TRUE TRUE TRUE TRUE FALSE 

TRUE FALSE FALSE TRUE TRUE 

FALSE TRUE FALSE TRUE TRUE 

FALSE FALSE FALSE FALSE FALSE 

4-13 Logical Operators and Short-circuit Control Forms 4.5.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

Examples of logical operators: 

SUNNY or WARM 
FILTER! 1 .. 10) and FILTER(15 .. 24) - see 3.6.1 

Examples of short-circuit control forms: 

NEXT_CAR.OWNER /= nuSS and then NEXT_CAR.OWNER.AGE > 25 - see 3.8.1 
N = 0 of else A(N) = HIT.VALUE 

References: array type 3.6, boolean type 3.5.3, bound of an index range 3.6.1, component of an array 3.6, 

constraint_error exception 11.1, dimension 3.6, false boolean value 3.5.3, index subtype 3.6, matching component; of 

arrays 4.5.2, null array 3.6.1, operation 3.3, operator 4.5, predefined operator 4.5, raising of exceptions 11, true 

boolean value 3.5.3, type 3.3 

4.5.2 Relational Operators and Membership Tests 

1 The equality and inequality operators are predefined for any type that is not limited. The other 
relational operators are the ordering operators < (less than), <= (less than or equal), > (greater 
than), and >= (greater than or equal). The ordering operators are predefined for any scalar type, 
and for any discrete array type, that is, a one-dimensional array type whose components are of a 
discrete type. The operands of each predefined relational operator have the same type. The result 
type is the predefined type BOOLEAN . 

2 The relational operators have their conventional meaning: the result is equal to TRUE if the 
corresponding relation is satisfied; the result is FALSE otherwise. The inequality operator gives the 
complementary result to the equality operator: FALSE if equal, TRUE if not equal. 

3 Operator Operation Operand type Result type 

= /= equality and inequality any type BOOLEAN 

< <= > >= test for ordering any scalar type BOOLEAN 
discrete array type BOOLEAN 

4 Equality for the discrete types is equality of the values. For real operands whose values are nearly 
equal, the results of the predefined relational operators are given in section 4.5.7. Two access 
values are equal either if they designate the same object, or if both are equal to the null value of 
the access type. 

s For two array values or two record values of the same type, the left operand is equal to the right 
operand if and only if for each component of the left operand there is a matching component of the 
right operand and vice versa; and the values of matching components are equal, as given by the 
predefined equality operator for the component type. In particular, two null arrays of the same 
type are always equal; two null records of the same type are always equal. 

e For comparing two records of the same type, matching components are those which have the 
same component identifier. 

7 For comparing two one-dimensional arrays of the same type, matching components are those (if 
any) whose index values match in the following sense: the lower bounds of the index ranges are 
defined to match, and the successors of matching indices are defined to match. For comparing two 
multidimensional arrays, matching components are those whose index values match in successive 
index positions. 

4.5.2 Relational Operators and Membership Tests 4-14 



Names and Expressions 

If equality is explicitly defined for a limited type, it does not extend to composite types having sub- 8 

components of the limited type (explicit definition of equality is allowed for such composite types). 

The ordering operators <, <=, >, and >= that are defined for discrete array types correspond to 9 

lexicographic order using the predefined order relation of the component type. A null array is lex¬ 
icographically less than any array having at least one component. In the case of nonnull arrays, the 
left operand is lexicographically less than the right operand if the first component of the left 
operand is less than that of the right; otherwise the left operand is lexicographically less than the 
right operand only if their first components are equal and the tail of the left operand is lex¬ 
icographically less than that of the right (the tail consists of the remaining components beyond the 
first and can be null). 

The membership tests in and not in are predefined for all types. The result type is the predefined 10 

type BOOLEAN. For a membership test with a range, the simple expression and the bounds of the 
range must be of the same scalar type; for a membership test with a type mark, the type of the 
simple expression must be the base type of the type mark. The evaluation of the membership test 
in yields the result TRUE if the value of the simple expression is within the given range, or if this 
value belongs to the subtype denoted by the given type mark; otherwise this evaluation yields the 
result FALSE (for a value of a real type, see 4.5.7). The membership test not in gives the 
complementary result to the membership test in. 

Examples: 

X /= Y 

- TRUE 
- TRUE 

-- true if MY_CAR has been set to nu!! (see 3.8.1) 
— true if we both share the same car 
-- true if the two cars are identical 

< "A" and "A" < "AA" 
"AA" < "B" and "A" < "A 

MY_CAR = null 
MY_CAR = YOUR_CAR 
MY_CAR.a!l = YOUR_CAR.all 

N not in 1 .. 10 -- range membership test 
TODAY in MON .. FRI — range membership test 
TODAY in WEEKDAY — subtype membership test (see 3.5.1) 
ARCHIVE in DISK_UNIT -- subtype membership test (see 3.7.3) 

Notes: 

11 

No exception is ever raised by a predefined relational operator or by a membership test, but an 12 

exception can be raised by the evaluation of the operands. 

If a record type has components that depend on discriminants, two values of this type have mat- 13 

ching components if and only if their discriminants are equal. Two nonnull arrays have matching 
components if and only if the value of the attribute LENGTH(N) for each index position N is the 
same for both. 

References: access value 3.8, array type 3.6, base type 3.3, belong to a subtype 3.3, boolean predefined type 3.5.3, 14 

bound of a range 3.5, component 3.3, component identifier 3.7, component type 3.3, composite type 3.3, designate 

3.8, dimension 3.6, discrete type 3.5, evaluation 4.5, exception 1 1, index 3.6, index range 3.6, limited type 7.4.4, null 

access value 3.8, null array 3.6.1, null record 3.7, object 3.2.1, operation 3.3, operator 4.5, predefined operator 4.5, 

raising of exceptions 1 1, range 3.5, record type 3.7, scalar type 3.5, simple expression 4.4, subcomponent 3.3, suc¬ 

cessor 3.5.5, type 3.3, type mark 3.3.2 

4-1 5 Relational Operators and Membership Tests 4.5.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

4.5.3 Binary Adding Operators 

The binary adding operators + and - are predefined for any numeric type and have their conven¬ 
tional meaning. The catenation operators & are predefined for any one-dimensional array type that 
is not limited. 

Operator Operation Left operand type Right operand type Result type 

+ addition any numeric type same numeric type same numeric type 

- subtraction any numeric type same numeric type same numeric type 

& catenation any 
any 
the 
the 

array type 
array type 
component type 
component type 

same array type 
the component type 
any array type 
the component type 

same array type 
same array type 
same array type 
any array type 

3 For real types, the accuracy of the result is determined by the operand type (see 4.5.7). 

4 If both operands are one-dimensional arrays, the result of the catenation is a one-dimensional 
array whose length is the sum of the lengths of its operands, and whose components comprise the 
components of the left operand followed by the components of the right operand. The lower bound 
of this result is the lower bound of the left operand, unless the left operand is a null array, in which 
case the result of the catenation is the right operand. 

5 If either operand is of the component type of an array type, the result of the catenation is given by 
the above rules, using in place of this operand an array having this operand as its only component 
and having the lower bound of the index subtype of the array type as its lower bound. 

e The exception CONSTRAINT_ERROR is raised by catenation if the upper bound of the result 
exceeds the range of the index subtype, unless the result is a null array. This exception is also 
raised if any operand is of the component type but has a value that does not belong to the compo¬ 
nent subtype. 

7 Examples: 

Z + 0.1 

"A" & "BCD 
A' & "BCD" 
A' & TV 

— Z must be of a real type 

catenation of two string literals 
catenation of a character literal and a string literal 
catenation of two character literals 

References: array type 3.6, character literal 2.5, component type 3.3, constraint_error exception 11.1, dimension 3.6, 

index subtype 3.6, length of an array 3.6.2, limited type 7.4.4, null array 3.6.1, numeric type 3.5, operation 3.3, 

operator 4.5, predefined operator 4.5, raising of exceptions 11, range of an index subtype 3.6.1, real type 3.5.6, string 
literal 2.6, type 3.3 

4.5.4 Unary Adding Operators 

i The unary adding operators + and - are predefined for any numeric type and have their conven¬ 
tional meaning. For each of these operators, the operand and the result have the same type. 

4.5.4 Unary Adding Operators 4-16 



Names and Expressions 

Operator Operation Operand type Result type 

+ identity any numeric type same numeric type 

- negation any numeric type same numeric type 

References: numeric type 3.5, operation 3.3, operator 4.5, predefined operator 4.5, type 3.3 

4.5.5 Multiplying Operators 

The operators * and / are predefined for any integer and any floating point type and have their con¬ 
ventional meaning; the operators mod and rem are predefined for any integer type. For each of 
these operators, the operands and the result have the same base type. For floating point types, the 
accuracy of the result is determined by the operand type (see 4.5.7). 

Operator Operation Operand type Result type 

multiplication any integer type 
any floating point type 

same integer 
same floating 

type 
point type 

/ integer division 
floating division 

any integer type 
any floating point type 

same integer 
same floating 

type 
point type 

mod modulus any integer type same integer type 

rem remainder any integer type same integer type 

Integer division and remainder are defined by the relation 

A = (A/B)*B + (A rem B) 

where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Integer 
division satisfies the identity 

<-A)/B = -(A/B) = A/(-B) 

The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value 
less than the absolute value of B; in addition, for some integer value N, this result must satisfy the 
relation 

A = Bi=N + (A mod B) 

For each fixed point type, the following multiplication and division operators, with an operand of 
the predefined type INTEGER , are predefined. 

Operator Operation Left operand type Right operand type Result type 

* multiplication any fixed point type 
INTEGER 

INTEGER 
any fixed point type 

same 
same 

as left 
as right 

/ division any fixed point type INTEGER same as left 

4-17 Multiplying Operators 4.5.5 



ANSI/MIL-STD-1815A Ada Reference Manual 

Integer multiplication of fixed point values is equivalent to repeated addition. Division of a fixed 
point value by an integer does not involve a change in type but is approximate (see 4.5.7). 

Finally, the following multiplication and division operators are declared in the predefined package 
STANDARD. These two special operators apply to operands of all fixed point types (it is a conse¬ 
quence of other rules that they cannot be renamed or given as generic actual parameters). 

Operator Operation Left operand type Right operand type Result type 

* multiplication any fixed point type any fixed point type universal_fixed 

/ division any fixed point type any fixed point type universal_fixed 

Multiplication of operands of the same or of different fixed point types is exact and delivers a result 
of the anonymous predefined fixed point type universa/_fixed whose delta is arbitrarily small. The 
result of any such multiplication must always be explicitly converted to some numeric type. This 
ensures explicit control of the accuracy of the computation. The same considerations apply to divi¬ 
sion of a fixed point value by another fixed point value. No other operators are defined for the type 
uni versa/_fixed. 

The exception NUMERIC_ERROR is raised by integer division, rem, and mod if the right operand is 
zero. 

Examples: 

I 
J 
K 

INTEGER 
INTEGER 
INTEGER 

= 1 
= 2 
= 3 

X : REAL digits 6 := 1.0; — see 3.5.7 
Y : REAL digits 6 := 2.0; 

F : FRACTION deita 0.0001 := 0.1; _ see 3.5.9 
G : FRACTION delta 0.0001 := 0.1; 

Expression Value Result Type 

l*J 2 same as 1 and J, that is, INTEGER 
K/J 1 same as K and J, that is, INTEGER 
K mod J 1 same as K and J, that is. INTEGER 

X/Y 0.5 same as X and Y, that is, REAL 
F/2 0.05 same as F, that is, FRACTION 

3*F 0.3 same as F, that is, FRACTION 
F-G 0.01 universa/_fixed, conversion needed 
FRACTION(F*G) 0.01 FRACTION, as stated by the conversion 
REAL(J)*Y 4.0 REAL, the type of ! both operands after conversion of J 

4.5.5 Multiplying Operators 4-18 



Names and Expressions 

Notes: 

For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The 
following relations are satisfied by the rem operator: 

A rem (-B) = A rem B 
(-A) rem B = -(A rem B) 

For any integer K, the following identity holds: 

A mod B = (A +■ K*B) mod B 

relations 
e: 

between integer division, remainder, and modulus are illustrated by the following 

A B A/B A rem B A mod B A B A/B A rem B A mod 

10 5 2 0 0 -10 5 -2 0 0 
11 5 2 1 1 -11 5 -2 -1 4 
12 5 2 2 2 -12 5 -2 -2 3 
13 5 2 3 3 -13 5 -2 -3 2 
14 5 2 4 4 -14 5 -2 -4 1 

10 -5 -2 0 0 -10 -5 2 0 0 
1 1 -5 -2 1 -4 -11 -5 2 -1 -1 
12 -5 -2 2 -3 -12 -5 2 -2 -2 
13 -5 -2 3 -2 -13 -5 2 -3 -3 
14 -5 -2 4 -1 -14 -5 2 -4 -4 

References: actual parameter 6.4.1, base type 3.3, declaration 3.1, delta of a fixed point type 3.5.9, fixed point type 

3.5.9, floating point type 3.5.7, generic formal subprogram 12.1, integer type 3.5.4, numeric type 3.5, numeric_error 

exception 11.1, predefined operator 4.5, raising of exceptions 11, renaming declaration 8.5, standard predefined 

package 8.6, type conversion 4.6 

4.5.6 Highest Precedence Operators 

The highest precedence unary operator abs is predefined for any numeric type. The highest 
precedence unary operator not is predefined for any boolean type and any one-dimensional array 
type whose components have a boolean type. 

Operator Operation Operand type Result type 

abs absolute value any numeric type same numeric type 

not logical negation any boolean type 
array of boolean components 

same 
same 

boolean type 
array type 

The operator not that applies to a one-dimensional array of boolean components yields a one¬ 
dimensional boolean array with the same bounds; each component of the result is obtained by 
logical negation of the corresponding component of the operand (that is, the component that has 
the same index value). 

4-19 Highest Precedence Operators 4.5.6 



ANSI/MIL-STD-1815A Ada Reference Manual 

The highest precedence exponentiating operator ** is predefined for each integer type and for 
each floating point type. In either case the right operand, called the exponent, is of the predefined 

type INTEGER. 

Operator Operation Left operand type Right operand type Result type 

** exponentiation any integer type INTEGER same as le' 
any floating point type INTEGER same as le' 

Exponentiation with a positive exponent is equivalent to repeated multiplication of the left operand 
by itself, as indicated by the exponent and from left to right. For an operand of a floating point type, 
the exponent can be negative, in which case the value is the reciprocal of the value with the 
positive exponent. Exponentiation by a zero exponent delivers the value one. Exponentiation of a 
value of a floating point type is approximate (see 4.5.7). Exponentiation of an integer raises the 
exception CONSTRAINT_ERROR fora negative exponent. 

References: array type 3.6, boolean type 3.5.3, bound of an array 3.6.1, component of an array 3.6, constraint_error 

exception 11.1, dimensionality 3.6, floating point type 3.5.9, index 3.6, integer type 3.5.4, multiplication operation 

4.5.5, predefined operator 4.5, raising of exceptions 1 1 

4.5.7 Accuracy of Operations with Real Operands 

A real subtype specifies a set of model numbers. Both the accuracy required from any basic or 
predefined operation giving a real result, and the result of any predefined relation between real 
operands are defined in terms of these model numbers. 

A model interval of a subtype is any interval whose bounds are model numbers of the subtype. The 
model interval associated with a value that belongs to a real subtype is the smallest model interval 
(of the subtype) that includes the value. (The model interval associated with a model number of a 
subtype consists of that number only.) 

For any basic operation or predefined operator that yields a result of a real subtype, the required 
bounds on the result are given by a model interval defined as follows: 

® The result model interval is the smallest model interval (of the result subtype) that includes 
the minimum and the maximum of all the values obtained by applying the (exact) 
mathematical operation, when each operand is given any value of the model interval (of the 
operand subtype) defined for the operand. 

• The model interval of an operand that is itself the result of an operation, other than an implicit 
conversion, is the result model interval of this operation. 

• The model interval of an operand whose value is obtained by implicit conversion of a universal 
expression is the model interval associated with this value within the operand subtype. 

The result model interval is undefined if the absolute value of one of the above mathematical 
results exceeds the largest safe number of the result type. Whenever the result model interval is 
undefined, it is highly desirable that the exception NUMERIC_ERROR be raised if the 
implementation cannot produce an actual result that is in the range of safe numbers. This is, 
however, not required by the language rules, in recognition of the fact that certain target machines 
do not permit easy detection of overflow situations. The value of the attribute 
M ACH IN E_OVER FLOWS indicates whether the target machine raises the exception 
NUMERIC_ERROR in overflow situations (see 13.7.3). 

4.5.7 Accuracy of Operations with ReaI Operands 4-20 



Names and Expressions 

The safe numbers of a real type are defined (see 3.5.6) as a superset of the model numbers, for 
which error bounds follow the same rules as for model numbers. Any definition given in this sec¬ 
tion in terms of model intervals can therefore be extended to safe intervals of safe numbers. A 
consequence of this extension is that an implementation is not allowed to raise the exception 
NUMERIC_ERROR when the result interval is a safe interval. 

For the result of exponentiation, the model interval defining the bounds on the result is obtained by 
applying the above rules to the sequence of multiplications defined by the exponent, and to the 
final division in the case of a negative exponent. 

For the result of a relation between two real operands, consider for each operand the model inter¬ 
val (of the operand subtype) defined for the operand; the result can be any value obtained by 
applying the mathematical comparison to values arbitrarily chosen in the corresponding operand 
model intervals. If either or both of the operand model intervals is undefined (and if neither of the 
operand evaluations raises an exception) then the result of the comparison is allowed to be any 
possible value (that is, either TRUE or FALSE ). 

The result of a membership test is defined in terms of comparisons of the operand value with the 
lower and upper bounds of the given range or type mark (the usual rules apply to these com¬ 
parisons). 

Note: 

For a floating point type the numbers 15.0, 3.0, and 5.0 are always model numbers. Hence X/Y 
where X equals 15.0 and Y equals 3.0 yields exactly 5.0 according to the above rules. In the 
general case, division does not yield model numbers and in consequence one cannot assume that 
(1.0/X)*X - 1.0. 

References: attribute 4.1.4, basic operation 3.3.3, bound of a range 3.5, error bound 3.5.6, exponentiation operation 

4.5.6, false boolean value 3.5.3, floating point type 3.5.9, machine_overflows attribute 13.7.1, membership test 

4.5.2, model number 3.5.6, multiplication operation 4.5.5, numeric_error exception 11.1, predefined operation 3.3.3, 

raising of exceptions 1 1, range 3.5, real type 3.5.6, relation 4.4, relational operator 4.5.2 4.5, safe number 3.5.6, sub- 

type 3.3, true boolean value 3.5.3, type conversion 4.6, type mark 3.3.2, universal expression 4.10 

4.6 Type Conversions 

The evaluation of an explicit type conversion evaluates the expression given as the operand, and 
converts the resulting value to a specified target type. Explicit type conversions are allowed 
between closely related types as defined below. 

type_conversion type_mark(expression) 

The target type of a type conversion is the base type of the type mark. The type of the operand of a 
type conversion must be determinable independently of the context (in particular, independently of 
the target type). Furthermore, the operand of a type conversion is not allowed to be a literal null, an 
allocator, an aggregate, or a string literal; an expression enclosed by parentheses is allowed as the 
operand of a type conversion only if the expression alone is allowed. 

A conversion to a subtype consists of a conversion to the target type followed by a check that the 
result of the conversion belongs to the subtype. A conversion of an operand of a given type to the 
type itself is allowed. 

4-21 Type Conversions 4.6 



ANSI/MIL-STD-1815A Ada Reference Manual 

The other allowed explicit type conversions correspond to the following three cases: 

(a) Numeric types 

The operand can be of any numeric type; the value of the operand is converted to the target 
type which must also be a numeric type. For conversions involving real types, the result is 
within the accuracy of the specified subtype (see 4.5.7). The conversion of a real value to an 
integer type rounds to the nearest integer; if the operand is halfway between two integers 
(within the accuracy of the real subtype) rounding may be either up or down. 

(b) Derived types 

The conversion is allowed if one of the target type and the operand type is derived from the 
other, directly or indirectly, or if there exists a third type from which both types are derived, 
directly or indirectly. 

(c) Array types 

The conversion is allowed if the operand type and the target type are array types that satisfy 
the following conditions: both types must have the same dimensionality; for each index posi¬ 
tion the index types must either be the same or be convertible to each other; the component 
types must be the same; finally, if the component type is a type with discriminants or an 
access type, the component subtypes must be either both constrained or both unconstrained. 
If the type mark denotes an unconstrained array type, then, for each index position, the 
bounds of the result are obtained by converting the bounds of the operand to the cor¬ 
responding index type of the target type. If the type mark denotes a constrained array sub- 
type, then the bounds of the result are those imposed by the type mark. In either case, the 
value of each component of the result is that of the matching component of the operand (see 
4.5.2). 

In the case of conversions of numeric types and derived types, the exception CONSTRAINT_ERROR 
is raised by the evaluation of a type conversion if the result of the conversion fails to satisfy a con¬ 
straint imposed by the type mark. 

In the case of array types, a check is made that any constraint on the component subtype is the 
same for the operand array type as for the target array type. If the type mark denotes an 
unconstrained array type and if the operand is not a null array, then, for each index position, a 
check is made that the bounds of the result belong to the corresponding index subtype of the 
target type. If the type mark denotes a constrained array subtype, a check is made that for each 
component of the operand there is a matching component of the target subtype, and vice versa. 
The exception CQNSTRAINT_ERRQR is raised if any of these checks fails. 

If a conversion is allowed from one type to another, the reverse conversion is also allowed. This 
reverse conversion is used where an actual parameter of mode in out or out has the form of a type 
conversion of a (variable) name as explained in section 6.4.1. 

Apart from the explicit type conversions, the only allowed form of type conversion is the implicit 
conversion of a value of the type universalJnteger or universa/_real into another numeric type. An 
implicit conversion of an operand of type universal Jnteger to another integer type, or of an 
operand of type universa/_real to another real type, can only be applied if the operand is either a 
numeric literal, a named number, or an attribute; such an operand is called a convertible universal 
operand in this section. An implicit conversion of a convertible universal operand is applied if and 
only if the innermost complete context (see 8.7) determines a unique (numeric) target type for the 
implicit conversion, and there is no legal interpretation of this context without this conversion. 

4.6 Type Conversions 4-22 



Names and Expressions 

Notes: 

The rules for implicit conversions imply that no implicit conversion is ever applied to the operand of 15 

an explicit type conversion. Similarly, implicit conversions are not applied if both operands of a 
predefined relational operator are convertible universal operands. 

The language allows implicit subtype conversions in the case of array types (see 5.2.1). An explicit 16 

type conversion can have the effect of a change of representation (in particular see 13.6). Explicit 
conversions are also used for actual parameters (see 6.4). 

Examples of numeric type conversion: 17 

REAL(2U) — value is converted to floating point 
INTEGERf 1.6) - value is 2 
INTEGER(-0.4) - value is 0 

Example of conversion between derived types: is 

type A_FORM is new B_FORM; 

X : A_FORM; 
Y : B_FORM; 

X := A_FORM(Y); 
Y := B_FORM(X); -- the reverse conversion 

Examples of conversions between array types: 19 

type SEQUENCE is array (INTEGER range <>) of INTEGER; 
subtype DOZEN is SEQUENCEd .. 12); 
LEDGER : arrayd .. 100) of INTEGER; 

SEQUENCE! LEDGER) 
SEQUENCE(LEDGER(31 .. 42)) 
DOZEN(LEDGER(31 .. 42)) 

bounds are those of LEDGER 
bounds are 31 and 42 
bounds are those of DOZEN 

Examples of implicit conversions: 20 

X : INTEGER := 2; 

X + 1 + 2 
1 + 2 + X 
X + (1 + 2) 

2 = (1 + 1) 

A'LENGTH = B'LENGTH 
C : constant := 3 + 2; 

X = 3 and 1 = 2 

implicit conversion of each integer literal 
implicit conversion of each integer literal 
implicit conversion of each integer literal 

no implicit conversion: the type is universalJnteger 
no implicit conversion: the type is universal Jnteger 
no implicit conversion: the type is universal Jnteger 

implicit conversion of 3, but not of 1 and 2 

References: actual parameter 6.4.1, array type 3.6, attribute 4.1.4, base type 3.3, belong to a subtype 3.3, 21 

component 3.3, constrained array subtype 3.6, constraint_error exception 11.1, derived type 3.4, dimension 3.6, 

expression 4.4, floating point type 3.5.7, index 3.6, index subtype 3.6, index type 3.6, integer type 3.5.4, matching 

component 4.5.2, mode 6.1, name 4.1, named number 3.2, null array 3.6.1, numeric literal 2.4, numeric type 3.5, rais¬ 

ing of exceptions 11, real type 3.5.6, representation 13.1, statement 5, subtype 3.3, type 3.3, type mark 3.3.2, 

unconstrained array type 3.6, universaLinteger type 3.5.4, universaLreal type 3.5.6, variable 3.2.1 

4-23 Type Conversions 4.6 



ANSI/MIL-STD-1815A Ada Reference Manual 

4.7 Qualified Expressions 

A qualified expression is used to state explicitly the type, and possibly the subtype, of an operand 
that is the given expression or aggregate. 

qualified_expression 
type__mark'(expression) | type_mark'aggregate 

The operand must have the same type as the base type of the type mark. The value of a qualified 
expression is the value of the operand. The evaluation of a qualified expression evaluates the 
operand and checks that its value belongs to the subtype denoted by the type mark. The exception 
CONSTRAINT_ERROR is raised if this check fails. 

Examples: 

type MASK is (FIX, DEC, EXP, SIGNIF); 
type CODE is (FIX, CLA, DEC, TNZ, SUB); 

PRINT (MASK'(DEC)); - DEC is of type 
PRINT (CODE'(DEO); - DEC is of type 

for J in CODE'(FIX) .. CODE'(DEC) loop ... 
for J in CODE range FIX .. DEC loop ... 
for J in CODE'(FIX) .. DEC loop ... 

DOZEN'(1 | 3 | 5 | 7 => 2, others => 0) 

Notes: 

Whenever the type of an enumeration literal or aggregate is not known from the context, a quali¬ 
fied expression can be used to state the type explicitly. For example, an overloaded enumeration 
literal must be qualified in the following cases: when given as a parameter in a subprogram call to 
an overloaded subprogram that cannot otherwise be identified on the basis of remaining parame¬ 
ter or result types, in a relational expression where both operands are overloaded enumeration lite¬ 
rals, or in an array or loop parameter range where both bounds are overloaded enumeration lite¬ 
rals. Explicit qualification is also used to specify which one of a set of overloaded parameterless 
functions is meant, or to constrain a value to a given subtype. 

References: aggregate 4.3, array 3.6, base type 3.3, bound of a range 3.5, constraint-error exception 11.1, context of 
overload resolution 8.7, enumeration literal 3.5.1, expression 4.4, function 6.5, loop parameter 5.5, overloading 8.5, 
raising of exceptions 1 1, range 3.3, relation 4.4, subprogram 6, subprogram call 6.4, subtype 3.3, type 3.3, type mark 
3 3 2 

MASK 
CODE 

— qualification needed for either FIX or DEC 
— qualification unnecessary 
-- qualification unnecessary for DEC 

-- see 4.6 

4.8 Allocators 

The evaluation of an allocator creates an object and yields an access value that designates the 
object. 

allocator 
new subtypejndication I new qualified_expression 

4.8 Allocators 4-24 



Names and Expressions 

The type of the object created by an allocator is the base type of the type mark given in either the 
subtype indication or the qualified expression. For an allocator with a qualified expression, this 
expression defines the initial value of the created object. The type of the access value returned by 
an allocator must be determinable solely from the context, but using the fact that the value 
returned is of an access type having the named designated type. 

The only allowed forms of constraint in the subtype indication of an allocator are index and dis¬ 
criminant constraints. If an allocator includes a subtype indication and if the type of the object 
created is an array type or a type with discriminants that do not have default expressions, then the 
subtype indication must either denote a constrained subtype, or include an explicit index or dis¬ 
criminant constraint. 

If the type of the created object is an array type or a type with discriminants, then the created 
object is always constrained. If the allocator includes a subtype indication, the created object is 
constrained either by the subtype or by the default discriminant values. If the allocator includes a 
qualified expression, the created object is constrained by the bounds or discriminants of the initial 
value. For other types, the subtype of the created object is the subtype defined by the subtype 
indication of the access type definition. 

For the evaluation of an allocator, the elaboration of the subtype indication or the evaluation of the 
qualified expression is performed first. The new object is then created. Initializations are then per¬ 
formed as for a declared object (see 3.2.1); the initialization is considered explicit in the case of a 
qualified expression; any initializations are implicit in the case of a subtype indication. Finally, an 
access value that designates the created object is returned. 

An implementation must guarantee that any object created by the evaluation of an allocator 
remains allocated for as long as this object or one of its subcomponents is accessible directly or 
indirectly, that is, as long as it can be denoted by some name. Moreover, if an object or one of its 
subcomponents belongs to a task type, it is considered to be accessible as long as the task is not 
terminated. An implementation may (but need not) reclaim the storage occupied by an object 
created by an allocator, once this object has become inaccessible. 

When an application needs closer control over storage allocation for objects designated by values 
of an access type, such control may be achieved by one or more of the following means: 

(a) The total amount of storage available for the collection of objects of an access type can be set 
by means of a length clause (see 13.2). 

(b) The pragma CONTROLLED informs the implementation that automatic storage reclamation 
must not be performed for objects designated by values of the access type, except upon leav¬ 
ing the innermost block statement, subprogram body, or task body that encloses the access 
type declaration, or after leaving the main program. 

pragma CONTROLLED (access_fype_simple_name); 

A pragma CONTROLLED for a given access type is allowed at the same places as a 
representation clause for the type (see 13.1). This pragma is not allowed for a derived type. 

(c) The explicit deallocation of the object designated by an access value can be achieved by call¬ 
ing a procedure obtained by instantiation of the predefined generic library procedure 
UNCHECKED_DEALLOCATION (see 13.10.1). 

The exception STORAGE_ERROR is raised by an allocator if there is not enough storage. Note also 
that the exception CONSTRAINT_ERROR can be raised by the evaluation of the qualified 
expression, by the elaboration of the subtype indication, or by the initialization. 

4-25 Allocators 4.8 



ANSI/MIL-STD-1815A Ada Reference Manual 

Examples (for access types declared in section 3.8): 

new CELL'fO, null, null) 
new CELL’(VALUE => 0, SUCC => null, PRED => null) 
new CELL 

initialized explicitly 
initialized explicitly 
not initialized 

new MATRIX! 1 .. 10, 1 .. 20) 
new MATRIX'! 1 .. 10 => (1 .. 20 => 0.0)) 

the bounds only are given 
initialized explicitly 

new BUFFER! 100) -- the discriminant only is given 

new BUFFER'(SIZE => 80, POS => 0, VALUE => (1 .. 80 => 'A')) -- initialized explicitly 

15 References: access type 3.8, access type definition 3.8, access value 3.8, array type 3.6, block statement 5.6, bound 

of an array 3.6.1, collection 3.8, constrained subtype 3.3, constraint 3.3, constraint_error exception 11.1, context of 

overload resolution 8.7, derived type 3.4, designate 3.8, discriminant 3.3, discriminant constraint 3.7.2, elaboration 

3.9, evaluation of a qualified expression 4.7, generic procedure 12.1, index constraint 3.6.1, initial value 3.2.1, 

initialization 3.2.1, instantiation 12.3, length clause 13.2, library unit 10.1, main program 10.1, name 4.1, object 

3.2.1, object declaration 3.2.1, pragma 2.8, procedure 6, qualified expression 4.7, raising of exceptions 1 1, represen¬ 

tation clause 13.1, simple name 4.1, storage_error exception 11.1, subcomponent 3.3, subprogram body 6.3, subtype 

3.3, subtype indication 3.3.2, task body 9.1, task type 9.2, terminated task 9.4, type 3.3, type declaration 3.3.1, type 

mark 3.3.2 type with discriminants 3.3 

4.9 Static Expressions and Static Subtypes 

1 Certain expressions of a scalar type are said to be static. Similarly, certain discrete ranges are said 
to be static, and the type marks of certain scalar subtypes are said to denote static subtypes. 

2 An expression of a scalar type is said to be static if and only if every primary is one of those listed in 
(a) through (h) below, every operator denotes a predefined operator, and the evaluation of the 
expression delivers a value (that is, it does not raise an exception): 

3 (a) An enumeration literal (including a character literal). 

4 (b) A numeric literal. 

5 (c) A named number. 

e (d) A constant explicitly declared by a constant declaration with a static subtype, and initialized 
with a static expression. 

7 (e) A function call whose function name is an operator symbol that denotes a predefined 
operator, including a function name that is an expanded name; each actual parameter must 
also be a static expression. 

s (f) A language-defined attribute of a static subtype; for an attribute that is a function, the actual 
parameter must also be a static expression. 

4.9 Static Expressions and Static Subtypes 4-26 



Names and Expressions 

(g) A qualified expression whose type mark denotes a static subtype and whose operand is a 
static expression. 

(h) A static expression enclosed in parentheses. 

A static range is a range whose bounds are static expressions. A static range constraint is a range 
constraint whose range is static. A static subtype is either a scalar base type, other than a generic 
formal type; or a scalar subtype formed by imposing on a static subtype either a static range con¬ 
straint, or a floating or fixed point constraint whose range constraint, if any, is static. A static dis¬ 
crete range is either a static subtype or a static range. A static index constraint is an index con¬ 
straint for which each index subtype of the corresponding array type is static, and in which each 
discrete range is static. A static discriminant constraint is a discriminant constraint for which the 
subtype of each discriminant is static, and in which each expression is static. 

Notes: 

The accuracy of the evaluation of a static expression having a real type is defined by the rules given 
in section 4.5.7. If the result is not a model number (or a safe number) of the type, the value 
obtained by this evaluation at compilation time need not be the same as the value that would be 
obtained by an evaluation at run time. 

Array attributes are not static: in particular, the RANGE attribute is not static. 

References: actual parameter 6.4.1, attribute 4.1.4, base type 3.3, bound of a range 3.5, character literal 2.5, 

constant 3.2.1, constant declaration 3.2.1, discrete range 3.6, discrete type 3.5, enumeration literal 3.5.1, exception 

1 1, expression 4.4, function 6.5, generic actual parameter 12.3, generic formal type 12.1.2, implicit declaration 3.1, 

initialize 3.2.1, model number 3.5.6, named number 3.2, numeric literal 2.4, predefined operator 4.5, qualified expres¬ 

sion 4.7, raising of exceptions 1 1, range constraint 3.5, safe number 3.5.6, scalar type 3.5, subtype 3.3, type mark 

3.3.2 

4.10 Universal Expressions 

A universa/_expression is either an expression that delivers a result of type universalJnteger or 
one that delivers a result of type universal^real. 

The same operations are predefined for the type universaUnteger as for any integer type. The 
same operations are predefined for the type universa/_rea/ as for any floating point type. In addi¬ 
tion, these operations include the following multiplication and division operators: 

Operator Operation Left operand type Right operand type Result type 

* 

/ 

multiplication universaLreal 
universaUnteger 

universaUnteger 
universaLreal 

universaLreal 
universaLreal 

division universaLreal universaUnteger universaLreal 

The accuracy of the evaluation of a universal expression of type universal_real is at least as good 
as that of the most accurate predefined floating point type supported by the implementation, apart 
from universaiwea! itself. Furthermore, if a universal expression is a static expression, then the 
evaluation must be exact. 

4-27 Universal Expressions 4.10 



ANSI/MIL-STD-1815A Ada Reference Manual 

5 For the evaluation of an operation of a nonstatic universal expression, an implementation is 
allowed to raise the exception NUMERIC_ERROR only if the result of the operation is a real value 
whose absolute value exceeds the largest safe number of the most accurate predefined floating 
point type (excluding universal_rea!), or an integer value greater than SYSTEM .MAXJNT or less 
than SYSTEM .MINJNT. 

Note: 

6 It is a consequence of the above rules that the type of a universal expression is universalJnteger if 
every primary contained in the expression is of this type (excluding actual parameters of attributes 
that are functions, and excluding right operands of exponentiation operators) and that otherwise 
the type is universal_real. 

7 Examples: 

1 + 1 - 2 
abs(-10)*3 -- 30 

KILO : constant := 1000; 
MEGA : constant := KILO*KILO; -- 1_0Q0_000 
LONG : constant := FL0AT’DIG1TS*2; 

HALF_PI : constant := PI/2; -- see 3.2.2 
DEG_T0_RAD : constant := HALF_PI/90; 
RAD_TO_DEG : constant := 1,0/DEG_TO_RAD; - equivalent to 1.0/((3.14159_26536/2)/90) 

8 References: actual parameter 6.4.1, attribute 4.1.4, evaluation of an expression 4.5, floating point type 3.5.9, 

function 6.5, integer type 3.5.4, multiplying operator 4.5 4.5.5, predefined operation 3.3.3, primary 4.4, real type 

3.5.6, safe number 3.5.6, system.max_int 13.7, system.min_int 13.7, type 3.3, universal-integer type 3.5.4, univer¬ 

sal-real type 3.5.6 

4.10 Universal Expressions 4-28 



5. Statements 

A statement defines an action to be performed; the process by which a statement achieves its 
action is called execution of the statement. 

This chapter describes the general rules applicable to all statements. Some specific statements are 2 

discussed in later chapters. Procedure call statements are described in Chapter 6 on subprograms. 
Entry call, delay, accept, select, and abort statements are described in Chapter 9 on tasks. Raise 
statements are described in Chapter 1 1 on exceptions, and code statements in Chapter 13. The 
remaining forms of statements are presented in this chapter. 

References: abort statement 9.10, accept statement 9.5, code statement 13.8. delay statement 9.6, entry call 3 

statement 9.5, procedure call statement 6.4, raise statement 11.3, select statement 9.7 

5.1 Simple and Compound Statements - Sequences of Statements 

A statement is either simple or compound. A simple statement encloses no other statement. A 1 

compound statement can enclose simple statements and other compound statements. 

sequence_of_statements statement (statement} 2 

statement ::= 
I label! simple_statement | (label! compound_statement 

simple_statement ::= nulLstatement 
assignment_statement 
exit_statement 
goto_statement 
delay_statement 
raise_statement 

procedure_call_statement 
return_statement 
entry_call_statement 
abort_statement 
code_statement 

compound_statement ::= 
if_statement 

| loop_statement 
| accept_statement 

| case_statement 
| block-statement 
| select_statement 

label <</a6e/_simple_name>> 

nulLstatement null; 

A statement is said to be labeled by the label name of any label of the statement. A label name, 3 

and similarly a loop or block name, is implicitly declared at the end of the declarative part of the 
innermost block statement, subprogram body, package body, task body, or generic body that 
encloses the labeled statement, the named loop statement, or the named block statement, as the 
case may be. For a block statement without a declarative part, an implicit declarative part (and 
preceding declare) is assumed. 

5-1 Simple and Compound Statements - Sequences of Statements 5.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

4 The implicit declarations for different label names, loop names, and block names occur in the same 
order as the beginnings of the corresponding labeled statements, loop statements, and block state¬ 
ments. Distinct identifiers must be used for all label, loop, and block names that are implicitly 
declared within the body of a program unit, including within block statements enclosed by this 
body, but excluding within other enclosed program units (a program unit is either a subprogram, a 
package, a task unit, or a generic unit). 

5 Execution of a null statement has no other effect than to pass to the next action. 

e The execution of a sequence of statements consists of the execution of the individual statements 
in succession until the sequence is completed, or a transfer of control takes place. A transfer of 
control is caused either by the execution of an exit, return, or goto statement; by the selection of a 
terminate alternative; by the raising of an exception; or (indirectly) by the execution of an abort 
statement. 

7 Examples of labeled statements: 

<<HERE>> <<ICI>> <<AQUI>> <<HIER>> null; 

<<AFTER>> X := 1; 

Note: 

s The scope of a declaration starts at the place of the declaration itself (see 8.2). In the case of a 
label, loop, or block name, it follows from this rule that the scope of the implicit declaration starts 
before the first explicit occurrence of the corresponding name, since this occurrence is either in a 
statement label, a loop statement, a block statement, or a goto statement. An implicit declaration 
in a block statement may hide a declaration given in an outer program unit or block statement (ac¬ 
cording to the usual rules of hiding explained in section 8.3). 

9 References: abort statement 9.10, accept statement 9.5, assignment statement 5.2, block name 5.6, block 

statement 5.6, case statement 5.4, code statement 13.8, declaration 3.1, declarative part 3.9, delay statement 9.6, 

entry call statement 9.5, exception 1 1, exit statement 5.7, generic body 12.1, generic unit 12, goto statement 5.9, 

hiding 8.3, identifier 2.3, if statement 5.3, implicit declaration 3.1, loop name 5.5, loop statement 5.5, package 7, 

package body 7.1, procedure call statement 6.4, program unit 6, raise statement 1 1.3, raising of exceptions 1 1, return 

statement 5.8, scope 8.2, select statement 9.7, simple name 4.1, subprogram 6, subprogram body 6.3, task 9, task 

body 9.1, task unit 9.1, terminate alternative 9.7.1, terminated task 9.4 

5.2 Assignment Statement 

t An assignment statement replaces the current value of a variable with a new value specified by an 
expression. The named variable and the right-hand side expression must be of the same type; this 
type must not be a limited type. 

2 assignment_statement 
variable^name := expression; 

3 For the execution of an assignment statement, the variable name and the expression are first 
evaluated, in some order that is not defined by the language. A check is then made that the value 
of the expression belongs to the subtype of the variable, except in the case of a variable that is an 
array (the assignment then involves a subtype conversion as described in section 5.2.1). Finally, 
the value of the expression becomes the new value of the variable. 

5.2 Assignment Statement 5-2 



Statements 

The exception CONSTRAINT_ERROR is raised if the above-mentioned subtype check fails; in such a i 
case the current value of the variable is left unchanged. If the variable is a subcomponent that 
depends on discriminants of an unconstrained record variable, then the execution of the assign¬ 
ment is erroneous if the value of any of these discriminants is changed by this execution. 

Examples: 5 

VALUE := MAX_VALUE - 1; 
SHADE := BLUE; 

NEXT_FRAME(F)(M, N) := 2.5; - see 4.1.1 
U := DOT_PRODUCT(V, W); - see 6.5 

WRITER := (STATUS => OPEN, UNIT => PRINTER, LINE_COUNT => 60); - see 3.7.3 
NEXT_CAR.aH := (72074, null); - see 3.8.1 

Examples of constraint checks: 

I, J : INTEGER rang® 1 .. 10; 
K : INTEGER rang® 1 .. 20; 

I := J; — identical ranges 
K := J; — compatible ranges 
J := K; — will raise the exception CONSTRAINT_ERROR if K j> 10 

Notes: 

6 

The values of the discriminants of an object designated by an access value cannot be changed (not ^ 
even by assigning a complete value to the object itself) since such objects, created by allocators, 
are always constrained (see 4.8); however, subcomponents of such objects may be unconstrained. 

If the right-hand side expression is either a numeric literal or named number, or an attribute that 8 
yields a result of type universaUnteger or universal_real, then an implicit type conversion is per¬ 
formed, as described in section 4.6. 

The determination of the type of the variable of an assignment statement may require considera- 9 

tion of the expression if the variable name can be interpreted as the name of a variable designated 
by the access value returned by a function call, and similarly, as a component or slice of such a 
variable (see section 8.7 for the context of overload resolution). 

References: access type 3.8, allocator 4.8, array 3.6, array assignment 5.2.1, component 3.6 3.7, constraint_error 10 

exception 11.1, designate 3.8, discriminant 3.7.1, erroneous 1.6, evaluation 4.5, expression 4.4, function call 6.4, 

implicit type conversion 4.6, name 4.1, numeric literal 2.4, object 3.2, overloading 6.6 8.7, slice 4.1.2, subcomponent 

3.3, subtype 3.3, subtype conversion 4.6, type 3.3, universaUnteger type 3.5.4, universaLreal type 3.5.6, variable 

3.2.1 

5.2.1 Array Assignments 

If the variable of an assignment statement is an array variable (including a slice variable), the value 1 

of the expression is implicitly converted to the subtype of the array variable; the result of this sub- 
type conversion becomes the new value of the array variable. 

5-3 Array Assignments 5.2.1 



ANSI/M/L-STD-1815A Ada Reference Manual 

This means that the new value of each component of the array variable is specified by the 
matching component in the array value obtained by evaluation of the expression (see 4.5.2 for the 
definition of matching components). The subtype conversion checks that for each component of 
the array variable there is a matching component in the array value, and vice versa. The exception 
CONSTRAINT-ERROR is raised if this check fails; in such a case the value of each component of 
the array variable is left unchanged. 

Examples: 

A : STRING! 1 .. 31); 
B : STRINGP .. 33); 

A := B; — same number of components 

A(1 .. 9) := "tar sauce"; 
A(4 .. 12) ;= A(1 .. 9); -- A(1 .. 12) = "tartar sauce" 

Notes: 

Array assignment is defined even in the case of overlapping slices, because the expression on the 
right-hand side is evaluated before performing any component assignment. In the above example, 
an implementation yielding A(1 .. 12) = "tartartartar" would be incorrect. 

The implicit subtype conversion described above for assignment to an array variable is performed 
only for the value of the right-hand side expression as a whole; it is not performed for subcompo¬ 
nents that are array values. 

References: array 3.6, assignment 5.2, constraint-error exception 11.1, matching array components 4.5.2, slice 

4.1.2, subtype conversion 4.6, type 3.3, variable 3.2.1 

5.3 If Statements 

An if statement selects for execution one or none of the enclosed sequences of statements, 
depending on the (truth) value of one or more corresponding conditions. 

if_statement ::= 
if condition then 

sequence_of_statements 
I elsif condition then 

sequence_of_statements| 
[ else 

sequence_of_statements] 
end if; 

condition ::= boolean_expression 

An expression specifying a condition must be of a boolean type. 

For the execution of an if statement, the condition specified after if, and any conditions specified 
after elsif, are evaluated in succession (treating a final else as elsif TRUE then), until one evaluates 
to TRUE or all conditions are evaluated and yield FALSE . If one condition evaluates to TRUE, then 
the corresponding sequence of statements is executed; otherwise none of the sequences of state¬ 
ments is executed. 

5.3 If Statements 5-4 



Statements 

Examples: 

if MONTH = DECEMBER and DAY = 31 then 
MONTH := JANUARY; 
DAY := 1; 
YEAR := YEAR + 1; 

end if; 

if LINE_TOO_SHORT then 
raise LAYOUT_ERROR; 

elsif LINE_FULL then 
NEW_LINE; 
PUT(ITEM); 

else 
PUT(ITEM); 

end if; 

if MY_CAR.OWNER.VEHICLE /= MY_CAR then - see 3.8 
REPORT ("Incorrect data"); 

end if; 

References: boolean type 3.5.3, evaluation 4.5, expression 4.4, sequence of statements 5.1 6 

5.4 Case Statements 

A case statement selects for execution one of a number of alternative sequences of statements; i 
the chosen alternative is defined by the value of an expression. 

case_statement 2 
case expression is 

case_statement_alternative 
I case_statement_alternative| 

end case; 

case_statement_alternative :;= 
when choice (| choice ( => 

sequence_of_statements 

The expression must be of a discrete type which must be determinable independently of the con- 3 
text in which the expression occurs, but using the fact that the expression must be of a discrete 
type. Moreover, the type of this expression must not be a generic formal type. Each choice in a 
case statement alternative must be of the same type as the expression; the list of choices specifies 
for which values of the expression the alternative is chosen. 

If the expression is the name of an object whose subtype is static, then each value of this subtype 4 

must be represented once and only once in the set of choices of the case statement, and no other 
value is allowed; this rule is likewise applied if the expression is a qualified expression or type con¬ 
version whose type mark denotes a static subtype. Otherwise, for other forms of expression, each 
value of the (base) type of the expression must be represented once and only once in the set of 
choices, and no other value is allowed. 

5-5 Case Statements 5.4 



ANSI/MIL-STD-1815A Ada Reference Manual 

5 The simple expressions and discrete ranges given as choices in a case statement must be static. A 
choice defined by a discrete range stands for all values in the corresponding range (none if a null 
range). The choice others is only allowed for the last alternative and as its only choice; it stands 
for all values (possibly none) not given in the choices of previous alternatives. A component simple 
name is not allowed as a choice of a case statement alternative. 

e The execution of a case statement consists of the evaluation of the expression followed by the 
execution of the chosen sequence of statements. 

7 Examples: 

case SENSOR is 
when ELEVATION = > RECORD_ELEVATION (SENSOR_VALUE); 
when AZIMUTH = > RECORD_AZIMUTH (SENSOR_VALUE); 
when DISTANCE = > RECORD_DISTANCE (SENSOR_VALUE); 
when others => null; 

end case; 

case TODAY is 
when MON = > COMPUTE_INITIAL_BALANCE; 
when FRI = > COMPUTE_CLOSING_BALANCE; 
when TUE .. THU = > GENERATE_REPORT(TODAY); 
when SAT .. SUN = > null; 

end case; 

case BIN_NUMBER(CQUNT) is 
when 1 = > UPDATE_BIN( 1 ); 
when 2 => UPDATE_.BIN(2); 
when 3 | 4 => 

EMPTY_BIN( 1); 
EMPTY_BIN(2); 

when others => raise ERROR; 
end case; 

Notes: 

8 The execution of a case statement chooses one and only one alternative, since the choices are 
exhaustive and mutually exclusive. Qualification of the expression of a case statement by a static 
subtype can often be used to limit the number of choices that need be given explicitly. 

9 An others choice is required in a case statement if the type of the expression is the type univer- 
saUnteger (for example, if the expression is an integer literal), since this is the only way to cover 
all values of the type universalJnteger. 

io References: base type 3.3, choice 3.7.3, context of overload resolution 8.7, discrete type 3.5, expression 4.4, 

function call 6.4, generic formal type 12.1, conversion 4.6, discrete type 3.5, enumeration literal 3.5.1, expression 4.4, 

name 4.1, object 3.2.1, overloading 6.6 8.7, qualified expression 4.7, sequence of statements 5.1, static discrete 

range 4.9, static subtype 4.9, subtype 3.3, type 3.3, type conversion 4.6, type mark 3.3.2 

5.4 Case Statements 5-6 



Statements 

5.5 Loop Statements 

A loop statement includes a sequence of statements that is to be executed repeatedly, zero or , 
more times. 

loop_statement ::= 2 

[/oop_simple_name:] 
[ iteration_scheme] loop 

sequence_of_statements 
end loop [/oop_simple_name]; 

iteration_scheme while condition 
| for loop_parameter_specification 

loop_parameter_specification 
identifier in [reverse] discrete_range 

If a loop statement has a loop simple name, this simple name must be given both at the beginning 3 

and at the end. 

A loop statement without an iteration scheme specifies repeated execution of the sequence of 4 

statements. Execution of the loop statement is complete when the loop is left as a consequence of 
the execution of an exit statement, or as a consequence of some other transfer of control (see 5.1). 

For a loop statement with a while iteration scheme, the condition is evaluated before each execu- 5 

tion of the sequence of statements; if the value of the condition is TRUE, the sequence of 
statements is executed, if FALSE the execution of the loop statement is complete. 

For a loop statement with a for iteration scheme, the loop parameter specification is the declara- 6 

tion of the loop parameter with the given identifier. The loop parameter is an object whose type is 
the base type of the discrete range (see 3.6.1). Within the sequence of statements, the loop 
parameter is a constant. Hence a loop parameter is not allowed as the (left-hand side) variable of 
an assignment statement. Similarly the loop parameter must not be given as an out or in out 
parameter of a procedure or entry call statement, or as an in out parameter of a generic instantia¬ 
tion. 

For the execution of a loop statement with a for iteration scheme, the loop parameter specification 7 

is first elaborated. This elaboration creates the loop parameter and evaluates the discrete range. 

If the discrete range is a null range, the execution of the loop statement is complete. Otherwise, s 
the sequence of statements is executed once for each value of the discrete range (subject to the 
loop not being left as a consequence of the execution of an exit statement or as a consequence of 
some other transfer of control). Prior to each such iteration, the corresponding value of the discrete 
range is assigned to the loop parameter. These values are assigned in increasing order unless the 
reserved word reverse is present, in which case the values are assigned in decreasing order. 

Example of a loop statement without an iteration scheme: 9 

loop 
GET(CURRENT_CHARACTER ); 
exit when CURRENT_CHARACTER = V; 

end loop; 

5-7 Loop Statements 5.5 



ANSI/MIL-STD-1815A Ada Reference Manual 

Example of a loop statement with a while iteration scheme: 

while BID(N).PRICE < CUT_OFF.PRICE loop 
RECORD_BID(BID(N).PRICE); 
N := N + 1; 

end loop; 

Example of a loop statement with a for iteration scheme: 

for J in BUFFER'RANGE loop -- legal even with a null range 
if BUFFER(J) /= SPACE then 

PUKBUFFER(J)); 
end if; 

end loop; 

Example of a loop statement with a loop simple name: 

SUMMATION: 
while NEXT /= HEAD loop -- see 3.8 

SUM := SUM + NEXT. VALUE; 
NEXT := NEXT.SUCC; 

end loop SUMMATION; 

Notes: 

The scope of a loop parameter extends from the loop parameter specification to the end of the loop 
statement, and the visibility rules are such that a loop parameter is only visible within the sequence 
of statements of the loop. 

The discrete range of a for loop is evaluated just once. Use of the reserved word reverse does not 
alter the discrete range, so that the following iteration schemes are not equivalent; the first has a 
null range. 

for J in reverse 1 .. 0 
for J in 0 .. 1 

Loop names are also used in exit statements, and in expanded names (in a prefix of the loop 
parameter). 

References: actual parameter 6.4.1, assignment statement 5.2, base type 3.3, bound of a range 3.5, condition 5.3, 

constant 3.2.1, context of overload resolution 8.7, conversion 4.6, declaration 3.1, discrete range 3.6.1, elaboration 

3.1 entry call statement 9.5, evaluation 4.5, exit statement 5.7, expanded name 4.1.3, false boolean value 3.5.3, 

generic actual parameter 12.3, generic instantiation 12.3, goto statement 5.9, identifier 2.3, integer type 3.5.4, null 

range 3 5, object 3.2.1, prefix 4.1, procedure call 6.4, raising of exceptions 1 1, reserved word 2.9, return statement 

5 8 scope 8.2, sequence of statements 5.1, simple name 4.1, terminate alternative 9.7.1, true boolean value 3.5.3 

3 5 4 visibility 8.3 

5.5 Loop Statements 5-8 



Statements 

5.6 Block Statements 

A block statement encloses a sequence of statements optionally preceded by a declarative part t 
and optionally followed by exception handlers. 

block_statement 2 

[6/ocA_simple_name:] 
[ declare 

declarative_part] 
begin 

sequence_of_statements 
[ exception 

exception_handler 
I exception_handler|] 

end [6/oc/r_simple_name]; 

If a block statement has a block simple name, this simple name must be given both at the beginn- 3 

ing and at the end. 

The execution of a block statement consists of the elaboration of its declarative part (if any) fol- 4 

lowed by the execution of the sequence of statements. If the block statement has exception 
handlers, these service corresponding exceptions that are raised during the execution of the 
sequence of statements (see 1 1.2). 

Example: 5 

SWAP: 
declare 

TEMP : INTEGER; 
begin 

TEMP := V; V := U; U := TEMP; 
end SWAP; 

Notes: 

If task objects are declared within a block statement whose execution is completed, the block e 
statement is not left until all its dependent tasks are terminated (see 9.4). This rule applies also to 
a completion caused by an exit, return, or goto statement; or by the raising of an exception. 

Within a block statement, the block name can be used in expanded names denoting local entities 7 

such as SWAP .TEMP in the above example (see 4.1.3 (f)). 

References: declarative part 3.9, dependent task 9.4, exception handler 1 1.2, exit statement 5.7, expanded name 8 

4.1.3, goto statement 5.9, raising of exceptions 1 1, return statement 5.8, sequence of statements 5.1, simple name 

4.1, task object 9.2 

5-9 Block Statements 5.6 



ANSI/MIL-STD-1815A Ada Reference Manual 

5.7 Exit Statements 

1 An exit statement is used to complete the execution of an enclosing loop statement (called the 
loop in what follows); the completion is conditional if the exit statement includes a condition. 

2 exit_statement ::= 
exit [/oop_name] [when condition]; 

3 An exit statement with a loop name is only allowed within the named loop, and applies to that 
loop; an exit statement without a loop name is only allowed within a loop, and applies to the 
innermost enclosing loop (whether named or not). Furthermore, an exit statement that applies to a 
given loop must not appear within a subprogram body, package body, task body, generic body, or 
accept statement, if this construct is itself enclosed by the given loop. 

4 For the execution of an exit statement, the condition, if present, is first evaluated. Exit from the 
loop then takes place if the value is TRUE or if there is no condition. 

5 Examples: 

for N in 1 .. MAX_NUMJTEMS loop 
GET_NEWJTEM(NEWJTEM); 
MERGE_ITEM(NEW_ITEM, STORAGE-FILE); 
exit when NEWJTEM = TERMINAL-ITEM; 

end loop; 

MAIN-CYCLE: 
loop 

initial statements 
exit MAIN-CYCLE when FOUND; 

final statements 
end loop MAIN-CYCLE; 

Note: 

6 Several nested loops can be exited by an exit statement that names the outer loop. 

7 References: accept statement 9.5, condition 5.3, evaluation 4.5, generic body 12.1, loop name 5.5, loop statement 

5 5, package body 7.1, subprogram body 6.3, true boolean value 3.5.3 

5.8 Return Statements 

1 A return statement is used to complete the execution of the innermost enclosing function, 
procedure, or accept statement. 

2 return-statement ::= return [expression]; 

3 A return statement is only allowed within the body of a subprogram or generic subprogram, or 
within an accept statement, and applies to the innermost (enclosing) such construct; a return 
statement is not allowed within the body of a task unit, package, or generic package enclosed by 
this construct (on the other hand, it is allowed within a compound statement enclosed by this con¬ 
struct and, in particular, in a block statement). 

5.8 Return Statements 5-10 



Statements 

A return statement for an accept statement or for the body of a procedure or generic procedure 4 

must not include an expression. A return statement for the body of a function or generic function 
must include an expression. 

The value of the expression defines the result returned by the function. The type of this expression 5 

must be the base type of the type mark given after the reserved word return in the specification of 
the function or generic function (this type mark defines the result subtype). 

For the execution of a return statement, the expression (if any) is first evaluated and a check is 6 

made that the value belongs to the result subtype. The execution of the return statement is thereby 
completed if the check succeeds; so also is the execution of the subprogram or of the accept 
statement. The exception CONSTRAINT_ERROR is raised at the place of the return statement if the 
check fails. 

Examples: 7 

return; — in a procedure 
return KEY_VALUE(LAST_INDEX); — in a function 

Note: 

If the expression is either a numeric literal or named number, or an attribute that yields a result of & 
type universalJnteger or universal_real, then an implicit conversion of the result is performed as 
described in section 4.6. 

References: accept statement 9.5, attribute A, block statement 5.6, constraint_error exception 11.1, expression 4.4, 

function body 6.3, function call 6.4, generic body 12.1, implicit type conversion 4.6, named number 3.2, numeric 

literal 2.4, package body 7.1, procedure body 6.3, reserved word 2.9, result subtype 6.1, subprogram body 6.3, sub¬ 

program specification 6.1, subtype 3.3, task body 9.1, type mark 3.3.2, universaUnteger type 3.5.4, universaLreal 

type 3.5.6 

5.9 Goto Statements 

A goto statement specifies an explicit transfer of control from this statement to a target statement 1 

named by a label. 

goto_statement goto label_name; 2 

The innermost sequence of statements that encloses the target statement must also enclose the 3 

goto statement (note that the goto statement can be a statement of an inner sequence). Further¬ 
more, if a goto statement is enclosed by an accept statement or the body of a program unit, then 
the target statement must not be outside this enclosing construct; conversely, it follows from the 
previous rule that if the target statement is enclosed by such a construct, then the goto statement 
cannot be outside. 

The execution of a goto statement transfers control to the named target statement. 4 

5-1 1 Goto Statements 5.9 



ANSI/MIL-STD-J 815A Ada Reference Manual 

Note: 

5 The above rules allow transfer of control to a statement of an enclosing sequence of statements 
but not the reverse. Similarly, they prohibit transfers of control such as between alternatives of a 
case statement, if statement, or select statement; between exception handlers; or from an excep¬ 
tion handler of a frame back to the sequence of statements of this frame. 

6 Example: 

<<COMPARE>> 
if A(l) < ELEMENT then 

if LEFT(I) /= 0 then 
I := LEFT(I); 
goto COMPARE; 

end if; 
some statements 

end if; 

7 References: accept statement 9.5, block statement 5.6, case statement 5.4, compound statement 5.1, exception 

handler 11.2, frame 11.2, generic body 12.1, if statement 5.3, label 5.1, package body 7.1, program unit 6, select 

statement 9.7, sequence of statements 5.1, statement 5.1, subprogram body 6.3, task body 9.1, transfer of control 

5 1 

5.9 Goto Statements 5-12 



6. Subprograms 

Subprograms are one of the four forms of program unit, of which programs can be composed. The 
other forms are packages, task units, and generic units. 

A subprogram is a program unit whose execution is invoked by a subprogram call. There are two 
forms of subprogram: procedures and functions. A procedure call is a statement; a function call is 
an expression and returns a value. The definition of a subprogram can be given in two parts: a sub¬ 
program declaration defining its calling conventions, and a subprogram body defining its execu¬ 
tion. 

References: function 6.5, function call 6.4, generic unit 12, package 7, procedure 6.1, procedure call 6.4, subprogram 

body 6.3, subprogram call 6.4, subprogram declaration 6.1, task unit 9 

6.1 Subprogram Declarations 

A subprogram declaration declares a procedure or a function, as indicated by the initial reserved 
word. 

subprogram_declaration ::= subprogram_specification; 

subprogram_specification ::= 
procedure identifier [formaLpart] 

| function designator [formaLpart] return type_mark 

designator ::= identifier | operator_symbol 

operator_symbol ::= string_literal 

formaLpart ::= 
(parameter_specification {; parameter_specification|) 

parameter_specification ::= 
identifierjist : mode type_mark [:= expression] 

mode ::= [in] | in out | out 

The specification of a procedure specifies its identifier and its format parameters (if any). The 
specification of a function specifies its designator, its formal parameters (if any) and the subtype of 
the returned value (the result subtype). A designator that is an operator symbol is used for the 
overloading of an operator. The sequence of characters represented by an operator symbol must 
be an operator belonging to one of the six classes of overloadable operators defined in section 4.5 
(extra spaces are not allowed and the case of letters is not significant). 

6-1 Subprogram Declarations 6.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

A parameter specification with several identifiers is equivalent to a sequence of single parameter 
specifications, as explained in section 3.2. Each single parameter specification declares a formal 
parameter. If no mode is explicitly given, the mode in is assumed. If a parameter specification 
ends with an expression, the expression is the default expression of the formal parameter. A 
default expression is only allowed in a parameter specification if the mode is in (whether this mode 
is indicated explicitly or implicitly). The type of a default expression must be that of the cor¬ 
responding formal parameter. 

The use of a name that denotes a formal parameter is not allowed in default expressions of a for¬ 
mal part if the specification of the parameter is itself given in this formal part. 

The elaboration of a subprogram declaration elaborates the corresponding formal part. The 
elaboration of a formal part has no other effect. 

Examples of subprogram declarations: 

procedure TRAVERSE_TREE; 
procedure INCREMENTS : in out INTEGER); 
procedure RIGHT_INDENT(MARGIN : out LINE_SIZE); 
procedure SWITCH(FROM, TO : in out LINK); 

function RANDOM return PROBABILITY; 

function MIN_CELL(X : LINK) return CELL; 
function NEXT_FRAME(K : POSITIVE) return FRAME; 
function DOT_PRODUCT(LEFT,RIGHT: VECTOR) return REAL; 

function 'V'fLEFT,RIGHT : MATRIX) return MATRIX; 

see 3.5.4 
see 3.8.1 

see 3.5.7 

see 3.8.1 
see 3.8 
see 3.6 

see 3.6 

Examples of in parameters with default expressions: 

procedure PRINT_HEADER( PAGES : in NATURAL; 
HEADER : in LINE := (1 .. UNE LAST => ' '); - see 
CENTER : in BOOLEAN := TRUE); 

Notes: 

The evaluation of default expressions is caused by certain subprogram calls, as described in sec¬ 
tion 6.4.2 (default expressions are not evaluated during the elaboration of the subprogram declara¬ 
tion). 

All subprograms can be called recursively and are reentrant. 

References: declaration 3.1, elaboration 3.9, evaluation 4.5, expression 4.4, formal parameter 6.2, function 6.5, 

identifier 2.3, identifier list 3.2, mode 6.2, name 4.1, elaboration has no other effect 3.9, operator 4.5, overloading 6.6 

8.7 procedure 6, string literal 2.6, subprogram call 6.4, type mark 3.3.2 

6.1 Subprogram Declarations 6-2 



Subprograms 

6.2 Formal Parameter Modes 

The value of an object is said to be read when this value is evaluated; it is also said to be read 
when one of its subcomponents is read. The value of a variable is said to be updated when an 
assignment is performed to the variable, and also (indirectly) when the variable is used as actual 
parameter of a subprogram call or entry call statement that updates its value; it is also said to be 
updated when one of its subcomponents is updated. 

A formal parameter of a subprogram has one of the three following modes: 

in The formal parameter is a constant and permits only reading of the value of the 
associated actual parameter. 

in out The formal parameter is a variable and permits both reading and updating of the value of the 
associated actual parameter. 

out The formal parameter is a variable and permits updating of the value of the associated actual 
parameter. 

The value of a scalar parameter that is not updated by the call is undefined upon return; the 
same holds for the value of a scalar subcomponent, other than a discriminant. Reading 
the bounds and discriminants of the formal parameter and of its subcomponents is allowed, 
but no other reading. 

For a scalar parameter, the above effects are achieved by copy: at the start of each call, if the mode 
is in or in out, the value of the actual parameter is copied into the associated formal parameter; 
then after normal completion of the subprogram body, if the mode is in out or out, the value of the 
formal parameter is copied back into the associated actual parameter. For a parameter whose 
type is an access type, copy-in is used for all three modes, and copy-back for the modes in out and 
out. 

For a parameter whose type is an array, record, or task type, an implementation may likewise 
achieve the above effects by copy, as for scalar types. In addition, if copy is used for a parameter of 
mode out, then copy-in is required at least for the bounds and discriminants of the actual 
parameter and of its subcomponents, and also for each subcomponent whose type is an access 
type. Alternatively, an implementation may achieve these effects by reference, that is, by arranging 
that every use of the formal parameter (to read or to update its value) be treated as a use of the 
associated actual parameter, throughout the execution of the subprogram call. The language does 
not define which of these two mechanisms is to be adopted for parameter passing, nor whether 
different calls to the same subprogram are to use the same mechanism. The execution of a 
program is erroneous if its effect depends on which mechanism is selected by the implementation. 

For a parameter whose type is a private type, the above effects are achieved according to the rule 
that applies to the corresponding full type declaration. 

Within the body of a subprogram, a formal parameter is subject to any constraint resulting from 
the type mark given in its parameter specification. For a formal parameter of an unconstrained 
array type, the bounds are obtained from the actual parameter, and the formal parameter is con¬ 
strained by these bounds (see 3.6.1). For a formal parameter whose declaration specifies an 
unconstrained (private or record) type with discriminants, the discriminants of the formal 
parameter are initialized with the values of the corresponding discriminants of the actual 
parameter; the formal parameter is unconstrained if and only if the mode is in out or out and the 
variable name given for the actual parameter denotes an unconstrained variable (see 3.7.1 and 
6.4.1). 

If the actual parameter of a subprogram call is a subcomponent that depends on discriminants of 
an unconstrained record variable, then the execution of the call is erroneous if the value of any of 
the discriminants of the variable is changed by this execution; this rule does not apply if the mode 
is in and the type of the subcomponent is a scalar type or an access type. 

6-3 Formal Parameter Modes 6.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

Notes: 

For parameters of array and record types, the parameter passing rules have these consequences: 

® If the execution of a subprogram is abandoned as a result of an exception, the final value of an 
actual parameter of such a type can be either its value before the call or a value assigned to 
the formal parameter during the execution of the subprogram. 

@ If no actual parameter of such a type is accessible by more than one path, then the effect of a 
subprogram call (unless abandoned) is the same whether or not the implementation uses 
copying for parameter passing. If, however, there are multiple access paths to such a 
parameter (for example, if a global variable, or another formal parameter, refers to the same 
actual parameter), then the value of the formal is undefined after updating the actual other 
than by updating the formal. A program using such an undefined value is erroneous. 

The same parameter modes are defined for formal parameters of entries (see 9.5) with the same 
meaning as for subprograms. Different parameter modes are defined for generic formal 
parameters (see 12.1.1). 

For all modes, if an actual parameter designates a task, the associated formal parameter 
designates the same task; the same holds for a subcomponent of an actual parameter and the cor¬ 
responding subcomponent of the associated formal parameter. 

References: access type 3.8, actual parameter 6.4.1, array type 3.6, assignment 5.2, bound of an array 3.6.1, 

constraint 3.3, depend on a discriminant 3.7.1, discriminant 3.7.1, entry call statement 9.5, erroneous 1.6, evaluation 

4.5, exception 1 1, expression 4.4, formal parameter 6.1, generic formal parameter 12.1, global 8.1, mode 6.1, null 

access value 3.8, object 3.2, parameter specification 6.1, private type 7.4, record type 3.7, scalar type 3.5, subcompo¬ 

nent 3.3, subprogram body 6.3, subprogram call statement 6.4, task 9, task type 9.2, type mark 3.3.2, unconstrained 

array type 3.6, unconstrained type with discriminants 3.7.1, unconstrained variable 3.2.1, variable 3.2.1 

6.3 Subprogram Bodies 

A subprogram body specifies the execution of a subprogram. 

subprogram_body ::= 
subprogram_specification is 

[ declarative_part] 
begin 

sequence_of_statements 
[ exception 

exception_handler 
| exception_handler|] 

end [designator]; 

The declaration of a subprogram is optional. In the absence of such a declaration, the subprogram 
specification of the subprogram body (or body stub) acts as the declaration. For each subprogram 
declaration, there must be a corresponding body (except for a subprogram written in another 
language, as explained in section 13.9). If both a declaration and a body are given, the subprogram 
specification of the body must conform to the subprogram specification of the declaration (see 
section 6.3.1 for conformance rules). 

6.3 Subprogram Bodies 6-4 



Subprograms 

If a designator appears at the end of a subprogram body, it must repeat the designator of the sub¬ 
program specification. 

The elaboration of a subprogram body has no other effect than to establish that the body can from 
then on be used for the execution of calls of the subprogram. 

The execution of a subprogram body is invoked by a subprogram call (see 6.4). For this execution, 
after establishing the association between formal parameters and actual parameters, the 
declarative part of the body is elaborated, and the sequence of statements of the body is then 
executed. Upon completion of the body, return is made to the caller (and any necessary copying 
back of formal to actual parameters occurs (see 6.2)). The optional exception handlers at the end 
of a subprogram body handle exceptions raised during the execution of the sequence of state¬ 
ments of the subprogram body (see 11.4). 

Note: 

It follows from the visibility rules that if a subprogram declared in a package is to be visible outside 
the package, a subprogram specification must be given in the visible part of the package. The same 
rules dictate that a subprogram declaration must be given if a call of the subprogram occurs tex- 
tually before the subprogram body (the declaration must then occur earlier than the call in the 
program text). The rules given in sections 3.9 and 7.1 imply that a subprogram declaration and the 
corresponding body must both occur immediately within the same declarative region. 

Example of subprogram body: 

procedure PUSH(E : in ELEMENT_TYPE; S : in out STACK) is 
begin 

if S.INDEX = S.SIZE then 
raise STACK_OVERFLOW; 

else 
S.INDEX := S.INDEX + 1; 
S.SPACE(S.INDEX) := E; 

end if; 
end PUSH; 

References: actual parameter 6.4.1, body stub 10.2, conform 6.3.1, declaration 3.1, declarative part 3.9, declarative 

region 8.1, designator 6.1, elaboration 3.9, elaboration has no other effect 3.1, exception 1 1, exception handler 1 1.2, 

formal parameter 6.1, occur immediately within 8.1, package 7, sequence of statements 5.1, subprogram 6, sub¬ 

program call 6.4, subprogram declaration 6.1, subprogram specification 6.1, visibility 8.3, visible part 7.2 

6.3.1 Conformance Rules 

Whenever the language rules require or allow the specification of a given subprogram to be 
provided in more than one place, the following variations are allowed at each place: 

• A numeric literal can be replaced by a different numeric literal if and only if both have the 
same value. 

• A simple name can be replaced by an expanded name in which this simple name is the selec¬ 
tor, if and only if at both places the meaning of the simple name is given by the same declara¬ 
tion. 

• A string literal given as an operator symbol can be replaced by a different string literal if and 
only if both represent the same operator. 

6-5 Conformance Rules 6.3.1 



ANSI/M/L-STD-J815A Ada Reference Manual 

Two subprogram specifications are said to conform if, apart from comments and the above 
allowed variations, both specifications are formed by the same sequence of lexical elements, and 
corresponding lexical elements are given the same meaning by the visibility and overloading rules. 

Conformance is likewise defined for formal parts, discriminant parts, and type marks (for deferred 
constants and for actual parameters that have the form of a type conversion (see 6.4.1)). 

Notes: 

A simple name can be replaced by an expanded name even if the simple name is itself the prefix of 
a selected component. For example, Q .R can be replaced by p .Q .R if Q is declared immediately 
within p. 

The following specifications do not conform since they are not formed by the same sequence of 
lexical elements: 

procedure P(X,Y : INTEGER) 
procedure P(X : INTEGER; Y : INTEGER) 
procedure P(X,Y : in INTEGER) 

References: actual parameter 6.4 6.4.1, allow 1.6, comment 2.7, declaration 3.1, deferred constant 7.4.3, direct 

visibility 8.3, discriminant part 3.7.1, expanded name 4.1.3, formal part 6.1, lexical element 2, name 4.1, numeric 

literal 2.4, operator symbol 6.1, overloading 6.6 8.7, prefix 4.1, selected component 4.1.3, selector 4.1.3, simple 

name 4.1, subprogram specification 6.1, type conversion 4.6, visibility 8.3 

6.3.2 inline Expansion of Subprograms 

The pragma INLINE is used to indicate that inline expansion of the subprogram body is desired for 
every call of each of the named subprograms. The form of this pragma is as follows: 

pragma INLINE (name (, name)); 

Each name is either the name of a subprogram or the name of a generic subprogram. The pragma 
INLINE is only allowed at the place of a declarative item in. a declarative part or package specifica¬ 
tion, or after a library unit in a compilation, but before any subsequent compilation unit. 

If the pragma appears at the place of a declarative item, each name must denote a subprogram or 
a generic subprogram declared by an earlier declarative item of the same declarative part or 
package specification. If several (overloaded) subprograms satisfy this requirement, the pragma 
applies to all of them. If the pragma appears after a given library unit, the only name allowed is the 
name of this unit. If the name of a generic subprogram is mentioned in the pragma, this indicates 
that inline expansion is desired for calls of all subprograms obtained by instantiation of the named 
generic unit. 

The meaning of a subprogram is not changed by the pragma INLINE. For each call of the named 
subprograms, an implementation is free to follow or to ignore the recommendation expressed by 
the pragma. (Note, in particular, that the recommendation cannot generally be followed for a 
recursive subprogram.) 

References: allow 1.6, compilation 10.1, compilation unit 10.1, declarative item 3.9, declarative part 3.9, generic 

subprogram 12.1, generic unit 12 1 2.1, instantiation 12.3, library unit 10.1, name 4.1, overloading 6.6 8.7, package 

specification 7.1, pragma 2.8, subprogram 6, subprogram body 6.3, subprogram call 6.4 

6.3.2 Inline Expansion of Subprograms 6-6 



Subprograms 

6.4 Subprogram Calls 

A subprogram call is either a procedure call statement or a function call; it invokes the execution 
of the corresponding subprogram body. The call specifies the association of the actual parameters, 
if any, with formal parameters of the subprogram. 

procedure_call_statement ::= 
procedure^name [actual_parameter_part]; 

function_call 
function_name [actual_parameter_part] 

actual_parameter_part ::= 
(parameter_association (, parameter_association|) 

parameter_association 
[ formal_parameter =>] actuaLparameter 

formal_parameter parameter^simple_name 

actual_parameter ::= 
expression | variable^name | typ8_mark(var/a/b/e_name) 

Each parameter association associates an actual parameter with a corresponding formal 
parameter. A parameter association is said to be named if the formal parameter is named explicit¬ 
ly; it is otherwise said to be positional. For a positional association, the actual parameter corres¬ 
ponds to the formal parameter with the same position in the formal part. 

Named associations can be given in any order, but if both positional and named associations are 
used in the same call, positional associations must occur first, at their normal position. Hence 
once a named association is used, the rest of the call must use only named associations. 

For each formal parameter of a subprogram, a subprogram call must specify exactly one cor¬ 
responding actual parameter. This actual parameter is specified either explicitly, by a parameter 
association, or, in the absence of such an association, by a default expression (see 6.4.2). 

The parameter associations of a subprogram call are evaluated in some order that is not defined by 
the language. Similarly, the language rules do not define in which order the values of in out or out 
parameters are copied back into the corresponding actual parameters (when this is done). 

Examples of procedure calls: 

TRAVERSE_TREE; 
TABLE_MANAGER.INSERT(E); 
PRINT_HEADER(128, TITLE, TRUE); 

SWITCH(FROM => X, TO => NEXT); 
PRINT_HEADER(128, HEADER => TITLE, CENTER => TRUE); 
PRINT_HEADER(HEADER => TITLE, CENTER => TRUE, PAGES => 128); 

see 6.1 
see 7.5 
see 6.1 

see 6.1 
see 6.1 
see 6.1 

Examples of function calls: 

DOT_PRODUCT(U, V) - see 6.1 and 6.5 
CLOCK - see 9.6 

6-7 Subprogram Calls 6.4 



A NS!/MIL-STD-1815A Ada Reference Manual 

References: default expression for a formal parameter 6.1, erroneous 1.6, expression 4.4, formal parameter 6.1, 

formal part 6.1, name 4.1, simple name 4.1, subprogram 6, type mark 3.3.2, variable 3.2.1 

6.4.1 Parameter Associations 

Each actual parameter must have the same type as the corresponding formal parameter. 

An actual parameter associated with a formal parameter of mode in must be an expression; it is 
evaluated before the call. 

An actual parameter associated with a formal parameter of mode in out or out must be either the 
name of a variable, or of the form of a type conversion whose argument is the name of a variable. 
In either case, for the mode in out, the variable must not be a formal parameter of mode out or a 
subcomponent thereof. For an actual parameter that has the form of a type conversion, the type 
mark must conform (see 6.3.1) to the type mark of the formal parameter; the allowed operand and 
target types are the same as for type conversions (see 4.6). 

The variable name given for an actual parameter of mode in out or out is evaluated before the call. 
If the actual parameter has the form of a type conversion, then before the call, for a parameter of 
mode in out, the variable is converted to the specified type; after (normal) completion of the sub¬ 
program body, for a parameter of mode in out or out, the formal parameter is converted back to the 
type of the variable. (The type specified in the conversion must be that of the formal parameter.) 

The following constraint checks are performed for parameters of scalar and access types: 

• Before the call: for a parameter of mode in or in out, it is checked that the value of the actual 
parameter belongs to the subtype of the formal parameter. 

• After (normal) completion of the subprogram body: for a parameter of mode in out or out, it is 
checked that the value of the formal parameter belongs to the subtype of the actual variable. 
In the case of a type conversion, the value of the formal parameter is converted back and the 
check applies to the result of the conversion. 

In each of the above cases, the execution of the program is erroneous if the checked value is 
undefined. 

For other types, for all modes, a check is made before the call as for scalar and access types; no 
check is made upon return. 

The exception CONSTRAINT_ERROR is raised at the place of the subprogram call if either of these 
checks fails. 

Note: 

For array types and for types with discriminants, the check before the call is sufficient (a check 
upon return would be redundant) if the type mark of the formal parameter denotes a constrained 
subtype, since neither array bounds nor discriminants can then vary. 

6.4.7 Parameter Associations 6-8 



Subprograms 

If this type mark denotes an unconstrained array type, the formal parameter is constrained with the 12 

bounds of the corresponding actual parameter and no check (neither before the call nor upon 
return) is needed (see 3.6.1). Similarly, no check is needed if the type mark denotes an 
unconstrained type with discriminants, since the formal parameter is then constrained exactly as 
the corresponding actual parameter (see 3.7.1). 

References: actual parameter 6.4, array bound 3.6, array type 3.6, call of a subprogram 6.4, conform 6.3.1, 13 
constrained subtype 3.3, constraint 3.3, constraint_error exception 11.1, discriminant 3.7.1, erroneous 1.6, evaluation 

4.5, evaluation of a name 4.1, expression 4.4, formal parameter 6.1, mode 6.1, name 4.1, parameter association 6.4, 

subtype 3.3, type 3.3, type conversion 4.6, type mark 3.3.2, unconstrained array type 3.6, unconstrained type with 

discriminants 3.7.1, undefined value 3.2.1, variable 3.2.1 

6.4.2 Default Parameters 

If a parameter specification includes a default expression for a parameter of mode in, then cor- 1 

responding subprogram calls need not include a parameter association for the parameter. If a 
parameter association is thus omitted from a call, then the rest of the call, following any initial 
positional associations, must use only named associations. 

For any omitted parameter association, the default expression is evaluated before the call and the 2 
resulting value is used as an implicit actual parameter. 

Examples of procedures with default values: 3 

procedure ACTIVATE! PROCESS : in PROCESSJMAME; 
AFTER : in PRQCESS_NAME := NO_PROCESS; 
WAIT : in DURATION := 0.0; 
PRIOR : in BOOLEAN := FALSE); 

procedure PAIR(LEFT, RIGHT : PERSQN_NAME := new PERSON); 

Examples of their calls: 4 

ACTIVATE(X); 
ACTIVATED, AFTER => Y); 
ACTIVATED, WAIT => 60.0, PRIOR => TRUE); 
ACTIVATED, Y, 10.0, FALSE); 

PAIR; 
PAIR(LEFT => new PERSON, RIGHT => new PERSON); 

Note: 

If a default expression is used for two or more parameters in a multiple parameter specification, 5 

the default expression is evaluated once for each omitted parameter. Hence in the above exam¬ 
ples, the two calls of PAIR are equivalent. 

References: actual parameter 6.4.1, default expression for a formal parameter 6.1, evaluation 4.5, formal parameter 6 

6.1, mode 6.1, named parameter association 6.4, parameter association 6.4, parameter specification 6.1, positional 

parameter association 6.4, subprogram call 6.4 

6-9 Default Parameters 6.4.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

6.5 Function Subprograms 

1 A function is a subprogram that returns a value (the result of the function call). The specification of 
a function starts with the reserved word function, and the parameters, if any, must have the mode 
in (whether this mode is specified explicitly or implicitly). The statements of the function body (ex¬ 
cluding statements of program units that are inner to the function body) must include one or more 
return statements specifying the returned value. 

2 The exception PROGRAM_ERRGR is raised if a function body is left otherwise than by a return 
statement. This does not apply if the execution of the function is abandoned as a result of an 
exception. 

3 Example: 

function DOT_PRODUCT(LEFT, RIGHT : VECTOR) return REAL is 
SUM : REAL := 0.0; 

begin 
CHECK(LEFT'FIRST = RIGHT'FIRST and LEFT'LAST = RIGHT’LAST); 
for J in LEFT'RANGE loop 

SUM := SUM + LEFT(J)*RIGHT(J); 
end loop; 
return SUM; 

end DOT_PRODUCT; 

4 References: exception 11, formal parameter 6.1, function 6.1, function body 6.3, function call 6.4, function 

specification 6.1, mode 6.1, program_error exception 11.1, raising of exceptions 1 1, return statement 5.8, statement 

5 

6.6 Parameter and Result Type Profile - Overloading of Subprograms 

1 Two formal parts are said to have the same parameter type profile if and only if they have the same 
number of parameters, and at each parameter position corresponding parameters have the same 
base type. A subprogram or entry has the same parameter and result type profile as another sub¬ 
program or entry if and only if both have the same parameter type profile, and either both are func¬ 
tions with the same result base type, or neither of the two is a function. 

2 The same subprogram identifier or operator symbol can be used in several subprogram specifica¬ 
tions. The identifier or operator symbol is then said to be overloaded; the subprograms that have 
this identifier or operator symbol are also said to be overloaded and to overload each other. As 
explained in section 8.3, if two subprograms overload each other, one of them can hide the other 
only if both subprograms have the same parameter and result type profile (see section 8.3 for the 
other requirements that must be met for hiding). 

3 A call to an overloaded subprogram is ambiguous (and therefore illegal) if the name of the sub¬ 
program, the number of parameter associations, the types and the order of the actual parameters, 
the names of the formal parameters (if named associations are used), and the result type (for func¬ 
tions) are not sufficient to determine exactly one (overloaded) subprogram specification. 

6.6 Parameter and Result Type Profile - Overloading of Subprograms 6-10 



Subprograms 

Examples of overloaded subprograms: 

procedure PUT(X : INTEGER); 
procedure PUT(X : STRING); 

procedure SET(TINT : COLOR); 
procedure SET(SIGNAL : LIGHT); 

Examples of calls: 

PUT(28); 
PUT("no possible ambiguity here"); 

SET(TINT = > RED); 
SET(SIGNAL = > RED); 
SET(COLOR'(RED)); 

— SET (RED) would be ambiguous since RED may 
denote a value either of type COLOR or of type LIGHT 

Notes: 

The notion of parameter and result type profile does not include parameter names, parameter 
modes, parameter subtypes, default expressions and their presence or absence. 

Ambiguities may (but need not) arise when actual parameters of the call of an overloaded sub¬ 
program are themselves overloaded function calls, literals, or aggregates. Ambiguities may also 
(but need not) arise when several overloaded subprograms belonging to different packages are 
visible. These ambiguities can usually be resolved in several ways: qualified expressions can be 
used for some or all actual parameters, and for the result, if any; the name of the subprogram can 
be expressed more explicitly as an expanded name; finally, the subprogram can be renamed. 

References: actual parameter 6.4.1, aggregate 4.3, base type 3.3, default expression for a formal parameter 6.1, 

entry 9.5, formal parameter 6.1, function 6.5, function call 6.4, hiding 8.3, identifier 2.3, illegal 1.6, literal 4.2, mode 

6.1, named parameter association 6.4, operator symbol 6.1, overloading 8.7, package 7, parameter of a subprogram 

6.2, qualified expression 4.7, renaming declaration 8.5, result subtype 6.1, subprogram 6, subprogram specification 

6.1, subtype 3.3, type 3.3 

6.7 Overloading of Operators 

The declaration of a function whose designator is an operator symbol is used to overload an 
operator. The sequence of characters of the operator symbol must be either a logical, a relational, a 
binary adding, a unary adding, a multiplying, or a highest precedence operator (see 4.5). Neither 
membership tests nor the short-circuit control forms are allowed as function designators. 

The subprogram specification of a unary operator must have a single parameter. The subprogram 
specification of a binary operator must have two parameters; for each use of this operator, the first 
parameter takes the left operand as actual parameter, the second parameter takes the right 
operand. Similarly, a generic function instantiation whose designator is an operator symbol is only 
allowed if the specification of the generic function has the corresponding number of parameters. 
Default expressions are not allowed for the parameters of an operator (whether the operator is 
declared with an explicit subprogram specification or by a generic instantiation). 

6-1 1 Overloading of Operators 6.7 



ANSI/MIL-STD-1815A Ada Reference Manual 

3 For each of the operators " + " and overloading is allowed both as a unary and as a binary 
operator. 

4 The explicit declaration of a function that overloads the equality operator other than by a 
renaming declaration, is only allowed if both parameters are of the same limited type. An 
overloading of equality must deliver a result of the predefined type BOOLEAN ; it also implicitly 
overloads the inequality operator "/=" so that this still gives the complementary result to the 
equality operator. Explicit overloading of the inequality operator is not allowed. 

5 A renaming declaration whose designator is the equality operator is only allowed to rename 
another equality operator. (For example, such a renaming declaration can be used when equality is 
visible by selection but not directly visible.) 

Note: 

e Overloading of relational operators does not affect basic comparisons such as testing for 
membership in a range or the choices in a case statement. 

7 Examples: 

function "+" (LEFT, RIGHT : MATRIX) return MATRIX; 
function "+" (LEFT, RIGHT : VECTOR) return VECTOR; 

assuming that A, B, and C are of the type VECTOR 
the three following assignments are equivalent 

A := B + C; 

A ;= " + ''(B, C); 
A := " + "(LEFT => B, RIGHT => C); 

8 References: allow 1.6, actual parameter 6.4.1, binary adding operator 4.5 4.5.3, boolean predefined type 3.5.3, 

character 2.1, complementary result 4.5.2, declaration 3.1, default expression for a formal parameter 6.1, designator 

6.1, directly visible 8.3, equality operator 4.5, formal parameter 6.1, function declaration 6.1, highest precedence 

operator 4.5 4.5.6, implicit declaration 3.1, inequality operator 4.5.2, limited type 7.4.4, logical operator 4.5 4.5.1, 

membership test 4.5 4.5.2, multiplying operator 4.5 4.5.5, operator 4.5, operator symbol 6.1, overloading 6.6 8.7, 

relational operator 4.5 4.5.2, short-circuit control form 4.5 4.5.1, type definition 3.3.1, unary adding operator 4.5 

4.5.4, visible by selection 8.3 

6.7 Overloading of Operators 6-12 



7. Packages 

Packages are one of the four forms of program unit, of which programs can be composed. The 
other forms are subprograms, task units, and generic units. 

Packages allow the specification of groups of logically related entities. In their simplest form pac¬ 
kages specify pools of common object and type declarations. More generally, packages can be 
used to specify groups of related entities including also subprograms that can be called from outsi¬ 
de the package, while their inner workings remain concealed and protected from outside users. 

References: generic unit 1 2, program unit 6, subprogram 6, task unit 9, type declaration 3.3.1 

7.1 Package Structure 

A package is generally provided in two parts: a package specification and a package body. Every 
package has a package specification, but not all packages have a package body. 

package_declaration package_specification; 

package_specification ::= 
package identifier is 

|basic_declarative_item| 
[ private 

|basic_declarative_item|] 
end [pac/ra<7e_simple_name] 

packageJaody ::= 
package body pacAra^e_simple_name is 

[ declarative_part] 
[ begin 

sequence_of_statements 
[ exception 

exception_handier 
| exception_handler(]] 

end [pacAra^e_simple_name]; 

The simple name at the start of a package body must repeat the package identifier. Similarly if a 
simple name appears at the end of the package specification or body, it must repeat the package 
identifier. 

If a subprogram declaration, a package declaration, a task declaration, or a generic declaration is a 
declarative item of a given package specification, then the body (if there is one) of the program unit 
declared by the declarative item must itself be a declarative item of the declarative part of the body 
of the given package. 

7-1 Package Structure 7.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

Notes: 

A simple form of package, specifying a pool of objects and types, does not require a package body. 
One of the possible uses of the sequence of statements of a package body is to initialize such 
objects. For each subprogram declaration there must be a corresponding body (except for a sub¬ 
program written in another language, as explained in section 13.9). If the body of a program unit 
is a body stub, then a separately compiled subunit containing the corresponding proper body is 
required for the program unit (see 10.2). A body is not a basic declarative item and so cannot 
appear in a package specification. 

A package declaration is either a library package (see 10.2) or a declarative item declared within 
another program unit. 

References: basic declarative item 3.9, body stub 10.2, declarative item 3.9, declarative part 3.9, exception handler 

11.2, generic body 12.2, generic declaration 12.1, identifier 2.3, library unit 1 0.1, object 3.2, package body 7.3, pro¬ 

gram unit 6, proper body 3.9, sequence of statements 5.1, simple name 4.1, subprogram body 6.3, subprogram decla¬ 

ration 6.1, subunit 10.2, task body 9.1, task declaration 9.1, type 3.3 

7.2 Package Specifications and Declarations 

The first list of declarative items of a package specification is called the visible part of the packa¬ 
ge. The optional list of declarative items after the reserved word private is called the private part of 
the package. 

An entity declared in the private part of a package is not visible outside the package itself (a name 
denoting such an entity is only possible within the package). In contrast, expanded names deno¬ 
ting entities declared in the visible part can be used even outside the package; furthermore, direct 
visibility of such entities can be achieved by means of use clauses (see 4.1.3 and 8.4). 

The elaboration of a package declaration consists of the elaboration of its basic declarative items 
in the given order. 

Notes: 

The visible part of a package contains all the information that another program unit is able to know 
about the package. A package consisting of only a package specification (that is, without a packa¬ 
ge body) can be used to represent a group of common constants or variables, or a common pool of 
objects and types, as in the examples below. 

Example of a package describing a group of common variables: 

package PLOTTING_DATA is 
PEN_UP : BOOLEAN; 

CQNVERSION_FACTOR, 
X_OFFSET, Y_OFFSET, 
X_MIN, Y_MIN, 
X_MAX, Y_MAX: REAL; - see 3.5.7 

X_VALUE : array (1 .. 500) of REAL; 
Y_VALUE : array (1 .. 500) of REAL; 

end PLQTTING_DATA; 

7.2 Package Specifications and Declarations 7-2 



Packages 

Example of a package describing a common pool of objects and types: 

package WORK_DATA is 
type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN); 
type HOURS_SPENT is delta 0.25 range 0.0 .. 24.0; 
type TIME_TABLE is array (DAY) of HOURS_SPENT; 

WORK_HOURS : TIME_TABLE; 
NORMAI_HOURS : constant TIME_TABLE := 

(MON .. THU => 8.25, FRI => 7.0, SAT | SUN => 0.0); 
end WORK_DATA; 

References: basic declarative item 3.9, constant 3.2.1, declarative item 3.9, direct visibility 8.3, elaboration 3.9, 

expanded name 4.1.3, name 4.1, number declaration 3.2.2, object declaration 3.2.1, package 7, package declaration 

7.1, package identifier 7.1, package specification 7.1, scope 8.2, simple name 4.1, type declaration 3.3.1, use clause 

8.4, variable 3.2.1 

7.3 Package Bodies 

In contrast to the entities declared in the visible part of a package specification, the entities decla¬ 
red in the package body are only visible within the package body itself. As a consequence, a packa¬ 
ge with a package body can be used for the construction of a group of related subprograms (a pac¬ 
kage in the usual sense), in which the logical operations available to the users are clearly isolated 
from the internal entities. 

For the elaboration of a package body, its declarative part is first elaborated, and its sequence of 
statements (if any) is then executed. The optional exception handlers at the end of a package body 
service exceptions raised during the execution of the sequence of statements of the package body. 

Notes: 

A variable declared in the body of a package is only visible within this body and, consequently, its 
value can only be changed within the package body. In the absence of local tasks, the value of 
such a variable remains unchanged between calls issued from outside the package to subprograms 
declared in the visible part. The properties of such a variable are similar to those of an "own" 
variable of Algol 60. 

The elaboration of the body of a subprogram declared in the visible part of a package is caused by 
the elaboration of the body of the package. Hence a call of such a subprogram by an outside pro¬ 
gram unit raises the exception PR0GRAM_ERR0R if the call takes place before the elaboration of 
the package body (see 3.9). 

7-3 Package Bodies 7.3 



ANS//M/L-STD-1815A Ada Reference Manual 

5 Example of a package: 

package RATI ON Al_NUMBERS is 

type RATIONAL is 
record 

NUMERATOR : INTEGER; 
DENOMINATOR : POSITIVE; 

end record; 

function EQUAL (X,Y RATIONAL) return BOOLEAN; 

function 7" (X,Y INTEGER) return RATIONAL; 

function (X,Y RATIONAL) return RATIONAL- 
function (X,Y RATIONAL) return RATIONAL; 
function (X,Y RATIONAL) return RATIONAL- 
function T (X,Y RATIONAL) return RATIONAL; 

end; 

to construct a rational number 

package body RATIQNAI_NUMBERS is 

procedure SAME_DENOMINATOR (X,Y : in out RATIONAL) is 
begin 

reduces X and Y to the same denominator: 

end; 

function EQUAL(X,Y : RATIONAL) return BOOLEAN is 
U.V : RATIONAL; 

begin 
U := X; 
V := Y; 
SAME_DENOMINATOR (U.V); 
return U.NUMERATOR - V.NUMERATOR; 

end EQUAL; 

function 7" (X,Y : INTEGER) return RATIONAL is 
begin 

if Y > 0 then 
return (NUMERATOR => X, DENOMINATOR => Y); 

else 
return (NUMERATOR => -X, DENOMINATOR => -Y); 

end if; 
end 77 

function (X,Y RATIONAL) return RATIONAL is end " + 
function (X,Y RATIONAL) return RATIONAL is .. end 
function (X,Y RATIONAL) return RATIONAL is .. end 
function T (X,Y RATIONAL) return RATIONAL is .. end 7" 

end RATIONAL_NUMBERS; 

6 References: declaration 3.1, declarative part 3.9, elaboration 3.1 3.9, exception 11, exception handler 1 1.2, name 

4.1. package specification 7.1, program unit 6, program_error exception 11.1, sequence of statements 5.1, subpro¬ 

gram 6. variable 3.2.1, visible part 7.2 

7.3 Package Bodies 7-4 



Packages 

7.4 Private Type and Deferred Constant Declarations 

The declaration of a type as a private type in the visible part of a package serves to separate the 
characteristics that can be used directly by outside program units (that is, the logical properties) 
from other characteristics whose direct use is confined to the package (the details of the definition 
of the type itself). Deferred constant declarations declare constants of private types. 

private_type_declaration 
type identifier [discriminant_part] is [limited] private; 

deferred_constant_declaration 
identifierjist : constant type_mark; 

A private type declaration is only allowed as a declarative item of the visible part of a package, or 
as the generic parameter declaration for a generic formal type in a generic formal part. 

The type mark of a deferred constant declaration must denote a private type or a subtype of a pri¬ 
vate type; a deferred constant declaration and the declaration of the corresponding private type 
must both be declarative items of the visible part of the same package. A deferred constant decla¬ 
ration with several identifiers is equivalent to a sequence of single deferred constant declarations 
as explained in section 3.2. 

Examples of private type declarations: 

type KEY is private; 
type FILE_NAME is limited private; 

Example of deferred constant declaration: 

NULL_KEY : constant KEY; 

References: constant 3.2.1, declaration 3.1, declarative item 3.9, deferred constant 7.4.3, discriminant part 3.7.1, 

generic formal part 12.1, generic formal type 12.1, generic parameter declaration 12.1, identifier 2.3, identifier list 

3.2, limited type 7.4.4, package 7, private type 7.4.1, program unit 6, subtype 3.3, type 3.3, type mark 3.3.2, visible 

part 7.2 

7.4.1 Private Types 

If a private type declaration is given in the visible part of a package, then a corresponding declara¬ 
tion of a type with the same identifier must appear as a declarative item of the private part of the 
package. The corresponding declaration must be either a full type declaration or the declaration of 
a task type. In the rest of this section explanations are given in terms of full type declarations; the 
same rules apply also to declarations of task types. 

7-5 Private Types 7.4.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

2 A private type declaration and the corresponding full type declaration define a single type. The 
private type declaration, together with the visible part, define the operations that are available to 
outside program units (see section 7.4.2 on the operations that are available for private types). On 
the other hand, the full type declaration defines other operations whose direct use is only possible 
within the package itself. 

3 If the private type declaration includes a discriminant part, the full declaration must include a dis¬ 
criminant part that conforms (see 6.3.1 for the conformance rules) and its type definition must be a 
record type definition. Conversely, if the private type declaration does not include a discriminant 
part, the type declared by the full type declaration (the full type) must not be an unconstrained type 
with discriminants. The full type must not be an unconstrained array type. A limited type (in par¬ 
ticular a task type) is allowed for the full type only if the reserved word limited appears in the 
private type declaration (see 7.4.4). 

4 Within the specification of the package that declares a private type and before the end of the cor¬ 
responding full type declaration, a restriction applies to the use of a name that denotes the private 
type or a subtype of the private type and, likewise, to the use of a name that denotes any type or 
subtype that has a subcomponent of the private type. The only allowed occurrences of such a 
name are in a deferred constant declaration, a type or subtype declaration, a subprogram specifica¬ 
tion, or an entry declaration; moreover, occurrences within derived type definitions or within sim¬ 
ple expressions are not allowed. 

5 The elaboration of a private type declaration creates a private type. If the private type declaration 
has a discriminant part, this elaboration includes that of the discriminant part. The elaboration of 
the full type declaration consists of the elaboration of the type definition; the discriminant part, if 
any, is not elaborated (since the conforming discriminant part of the private type declaration has 
already been elaborated). 

Notes: 

6 It follows from the given rules that neither the declaration of a variable of a private type, nor the 
creation by an allocator of an object of the private type are allowed before the full declaration of 
the type. Similarly before the full declaration, the name of the private type cannot be used in a 
generic instantiation or in a representation clause. 

7 References: allocator 4.8, array type 3.6, conform 6.3.1, declarative item 3.9, deferred constant declaratir.i 7.4.3, 

derived type 3.4, discriminant part 3.7.1, elaboration 3.9, entry declaration 9.5, expression 4.4, full type declaration 

3.3.1, generic instantiation 1 2.3, identifier 2.3, incomplete type declaration 3.8.1, limited type 7.4.4, name 4.1, opera¬ 

tion 3.3, package 7, package specification 7.1, private part 7.2, private type 7.4, private type declaration 7.4, record 

type definition 3.7, representation clause 13.1, reserved word 2.9, subcomponent 3.3, subprogram specification 6.1, 

subtype 3.3, subtype declaration 3.3.2, type 3.3, type declaration 3.3.1, type definition 3.3.1, unconstrained array 

type 3 6, variable 3.2.1, visible part 7.2 

7.4.2 Operations of a Private Type 

The operations that are implicitly declared by a private type declaration include basic operations. 
These are the operations involved in assignment (unless the reserved word limited appears in the 
declaration), membership tests, selected components for the selection of any discriminant, 
qualification, and explicit conversions. 

7.4.2 Operations of a Private Type 7-6 



Packages 

For a private type T, the basic operations also include the attributes T'BASE (see 3.3.3) and T'SIZE 
(see 13.7.2). For an object A of a private type, the basic operations include the attribute 
A'CONSTRAINED if the private type has discriminants (see 3.7.4), and in any case the attributes 
A SIZE and A'ADDRESS (see 13.7.2). 

Finally, the operations implicitly declared by a private type declaration include the predefined com¬ 
parison for equality and inequality unless the reserved word limited appears in the private type 
declaration. 

The above operations, together with subprograms that have a parameter or result of the private 
type and that are declared in the visible part of the package, are the only operations from the 
package that are available outside the package for the private type. 

Within the package that declares the private type, the additional operations implicitly declared by 
the full type declaration are also available. However, the redefinition of these implicitly declared 
operations is allowed within the same declarative region, including between the private type 
declaration and the corresponding full declaration. An explicitly declared subprogram hides an 
implicitly declared operation that has the same parameter and result type profile (this is only possi¬ 
ble if the implicitly declared operation is a derived subprogram or a predefined operator). 

If a composite type has subcomponents of a private type and is declared outside the package that 
declares the private type, then the operations that are implicitly declared by the declaration of the 
composite type include all operations that only depend on the characteristics that result from the 
private type declaration alone. (For example the operator < is not included for a one-dimensional 
array type.) 

If the composite type is itself declared within the package that declares the private type (including 
within an inner package or generic package), then additional operations that depend on the 
characteristics of the full type are implicitly declared, as required by the rules applicable to the 
composite type (for example the operator < is declared for a one-dimensional array type if the full 
type is discrete). These additional operations are implicitly declared at the earliest place within the 
immediate scope of the composite type and after the full type declaration. 

The same rules apply to the operations that are implicitly declared for an access type whose 
designated type is a private type or a type declared by an incomplete type declaration. 

For every private type or subtype T the following attribute is defined: 

T'CONSTRAINED Yields the value FALSE if T denotes an unconstrained nonformal private type 
with discriminants; also yields the value FALSE if T denotes a generic formal 
private type, and the associated actual subtype is either an unconstrained type 
with discriminants or an unconstrained array type; yields the value TRUE 
otherwise. The value of this attribute is of the predefined type BOOLEAN. 

Note: 

A private type declaration and the corresponding full type declaration define two different views of 
one and the same type. Outside of the defining package the characteristics of the type are those 
defined by the visible part. Within these outside program units the type is just a private type and 
any language rule that applies only to another class of types does not apply. The fact that the full 
declaration might implement the private type with a type of a particular class (for example, as an 
array type) is only relevant within the package itself. 

7-7 Operations of a Private Type 7.4.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

,2 The consequences of this actual implementation are, however, valid everywhere. For example: 
any default initialization of components takes place; the attribute SIZE provides the size of the full 
type; task dependence rules still apply to components that are task objects. 

13 Example: 

package KEY_MANAGER is 
type KEY is private; 
NULLKEY : constant KEY; 
procedure GET_KEY(K : out KEY); 
function "<(" (X, Y : KEY) return BOOLEAN; 

private 
type KEY is new NATURAL; 
NULI_KEY : constant KEY := 0; 

end; 

package body KEY_MANAGER is 
LAST_KEY : KEY := 0; 
procedure GET_KEY(K : out KEY) is 
begin 

LAST_KEY := LAST_KEY + 1; 
K := LAST_KEY; 

end GET_KEY; 

function "<(" (X, Y : KEY) return BOOLEAN is 
begin 

return INTEGER(X) < INTEGER(Y); 
end 

end KEY_MANAGER; 

Notes on the example: 

h Outside of the package KEY_MANAGER, the operations available for objects of type KEY include 
assignment, the comparison for equality or inequality, the procedure GET_KEY and the operator 
"<"; they do not include other relational operators such as ">=", or arithmetic operators. 

15 The explicitly declared operator "<" hides the predefined operator "<" implicitly declared by the 
full type declaration. Within the body of the function, an explicit conversion of X and Y to the type 
INTEGER is necessary to invoke the "<" operator of this type. Alternatively, the result of the func¬ 
tion could be written as not (X >= Y), since the operator ">=" is not redefined. 

16 The value of the variable LAST_KEY, declared in the package body, remains unchanged between 
calls of the procedure GET_KEY. (See also the Notes of section 7.3.) 

References: assignment 5.2, attribute 4.1.4, basic operation 3.3.3, component 3.3, composite type 3.3, conversion 

4 6 declaration 3.1, declarative region 8.1, derived subprogram 3.4, derived type 3.4, dimension 3.6, discriminant 

3 3 equality 4.5.2, full type 7.4.1, full type declaration 3.3.1, hiding 8.3, immediate scope 8.2, implicit declaration 3.1, 

incomplete type declaration 3.8.1, membership test 4.5, operation 3.3, package 7, parameter of a subprogram 6.2, 

predefined function 8.6, predefined operator 4.5, private type 7.4, private type declaration 7.4, program unit 6, 

qualification 4.7, relational operator 4.5, selected component 4.1.3, subprogram 6, task dependence 9.4, visible part 

7 2 

7.4.2 Operations of a Private Type 7-8 



Packages 

7.4.3 Deferred Constants 

If a deferred constant declaration is given in the visible part of a package then a constant declara¬ 
tion (that is, an object declaration declaring a constant object, with an explicit initialization) with 
the same identifier must appear as a declarative item of the private part of the package. This 
object declaration is called the ftv//declaration of the deferred constant. The type mark given in the 
full declaration must conform to that given in the deferred constant declaration (see 6.3.1). Multi¬ 
ple or single declarations are allowed for the deferred and the full declarations, provided that the 
equivalent single declarations conform. 

Within the specification of the package that declares a deferred constant and before the end of the 
corresponding full declaration, the use of a name that denotes the deferred constant is only 
allowed in the default expression for a record component or for a formal parameter (not for a 
generic formal parameter). 

The elaboration of a deferred constant declaration has no other effect. 

The execution of a program is erroneous if it attempts to use the value of a deferred constant 
before the elaboration of the corresponding full declaration. 

Note: 

The full declaration for a deferred constant that has a given private type must not appear before 
the corresponding full type declaration. This is a consequence of the rules defining the allowed 
uses of a name that denotes a private type (see 7.4.1). 

References: conform 6.3.1, constant declaration 3.2.1, declarative item 3.9, default expression for a discriminant 

3.7.1, deferred constant 7.4, deferred constant declaration 7.4, elaboration has no other effect 3.1, formal parameter 

6.1, generic formal parameter 12.1 12.3, identifier 2.3, object declaration 3.2.1, package 7, package specification 7.1. 

private part 7.2, record component 3.7, type mark 3.3.2, visible part 7.2 

7.4.4 Limited Types 

A limited type is a type for which neither assignment nor the predefined comparison for equality 
and inequality is implicitly declared. 

A private type declaration that includes the reserved word limited declares a limited type. A task 
type is a limited type. A type derived from a limited type is itself a limited type. Finally, a com¬ 
posite type is limited if the type of any of its subcomponents is limited. 

The operations available for a private type that is limited are as given in section 7.4.2 for private 
types except for the absence of assignment and of a predefined comparison for equality and ine¬ 
quality. 

For a formal parameter whose type is limited and whose declaration occurs in an explicit sub¬ 
program declaration, the mode out is only allowed if this type is private and the subprogram 
declaration occurs within the visible part of the package that declares the private type. The same 
holds for formal parameters of entry declarations and of generic procedure declarations. The cor¬ 
responding full type must not be limited if the mode out is used for any such formal parameter. 
Otherwise, the corresponding full type is allowed (but not required) to be a limited type (in par¬ 
ticular, it is allowed to be a task type). If the full type corresponding to a limited private type is not 
itself limited, then assignment for the type is available within the package, but not outside. 

7-9 Limited Types 7.4.4 



ANSI/M/L-STD-1815A Ada Reference Manual 

5 The following are consequences of the rules for limited types: 

6 • An explicit initialization is not allowed in an object declaration if the type of the object is 
limited. 

? • A default expression is not allowed in a component declaration if the type of the record com¬ 
ponent is limited. 

8 ® An explicit initial value is not allowed in an allocator if the designated type is limited. 

9 • A generic formal parameter of mode in must not be of a limited type. 

Notes: 

The above rules do not exclude a default expression for a formal parameter of a limited type; they 
do not exclude a deferred constant of a limited type if the full type is not limited. An explicit 
declaration of an equality operator is allowed for a limited type (see 6.7). 

Aggregates are not available for a limited composite type (see 3.6.2 and 3.7.4). Catenation is not 
available for a limited array type (see 3.6.2). 

12 Example: 

package LO_PACKAGE is 
type FILE_NAME is limited private; 

procedure OPEN (F : 
procedure CLOSE (F : 
procedure READ (F : 
procedure WRITE (F : 

private 
type FILE_NAME is 

record 
INTERNAI_NAME 

end record; 
end l_Q_PACKAGE; 

n out FILEJSIAME); 
n out FILE_NAME); 
n FILE.NAME; ITEM 
n FILE_NAME; ITEM 

: INTEGER := 0; 

out INTEGER); 
in INTEGER); 

package body l_0_PACKAGE is 
LIMIT : constant := 200; 
type FILE_DESCRIPTOR is record ... end record; 
DIRECTORY : array (1 .. LIMIT) of FILEJDESCRIPTOR; 

procedure OPEN (F : in out FILE_NAME) is ... end; 
procedure CLOSE (F : in out FILE_NAME) is ... end; 
procedure READ (F : in FILE_NAME; ITEM : out INTEGER) is ... end; 
procedure WRITE (F : in FILEJMAME; ITEM : in INTEGER) is ... end; 

begin 

end l_0_PACKAGE; 

Notes on the example: 

13 In the example above, an outside subprogram making use of l_0_PACKAGE may obtain a file 
name by calling OPEN and later use it in calls to READ and WRITE. Thus, outside the package, a 
file name obtained from OPEN acts as a kind of password; its internal properties (such as 
containing a numeric value) are not known and no other operations (such as addition or com¬ 
parison of internal names) can be performed on a file name. 

7.4.4 Limited Types 7-10 



Packages 

This example is characteristic of any case where complete control over the operations of a type is 
desired. Such packages serve a dual purpose. They prevent a user from making use of the internal 
structure of the type. They also implement the notion of an encapsulated data type where the only 
operations on the type are those given in the package specification. 

References: aggregate 4.3, allocator 4.8, assignment 5.2, catenation operator 4.5, component declaration 3.7, 

component type 3.3, composite type 3.3, default expression for a discriminant 3.7, deferred constant 7.4.3, derived 

type 3.4, designate 3.8, discriminant specification 3.7.1, equality 4.5.2, formal parameter 6.1, full type 7.4.1, full type 

declaration 3.3.1, generic formal parameter 12.1 12.3, implicit declaration 3.1, initial value 3.2.1, mode 12.1.1, object 

3.2, operation 3.3, package 7, predefined operator 4.5, private type 7.4, private type declaration 7.4, record compo¬ 

nent 3.7, record type 3.7, relational operator 4.5, subcomponent 3.3, subprogram 6, task type 9.1 9.2, type 3.3 

7.5 Example of a Table Management Package 

The following example illustrates the use of packages in providing high level procedures with a 
simple interface to the user. 

The problem is to define a table management package for inserting and retrieving items. The 
items are inserted into the table as they are supplied. Each inserted item has an order number. The 
items are retrieved according to their order number, where the item with the lowest order number 
is retrieved first. 

From the user's point of view, the package is quite simple. There is a type called ITEM designating 
table items, a procedure INSERT for inserting items, and a procedure RETRIEVE for obtaining the 
item with the lowest order number. There is a special item NULLITEM that is returned when the 
table is empty, and an exception TABLE_FULL which is raised by INSERT if the table is already full. 

A sketch of such a package is given below. Only the specification of the package is exposed to the 
user. 

package TABLE_MANAGER is 

type ITEM is 
record 

ORDER_NUM 
ITEM_CODE 
QUANTITY 
ITEM_TYPE 

end record; 

INTEGER; 
INTEGER; 
INTEGER; 
CHARACTER; 

NULI_ITEM : constant ITEM := 
(ORDER_NUM | ITEM_CODE | QUANTITY => 0, ITEM_TYPE => ' '); 

procedure INSERT (NEWJTEM ; in ITEM); 
procedure RETRIEVE (FIRSTJTEM : out ITEM); 

TABLE_FULL : exception; -- raised by INSERT when table full 
end; 

7-1 1 Example of a Table Management Package 7.5 



ANSI/MIL-STD-1815A Ada Reference Manual 

The details of implementing such packages can be quite complex; in this case they involve a two- 
way linked table of internal items. A local housekeeping procedure EXCHANGE is used to move an 
internal item between the busy and the free lists. The initial table linkages are established by the 
initialization part. The package body need not be shown to the users of the package. 

package body TABLE_MANAGER is 
SIZE : constant := 2000; 
subtype INDEX is INTEGER rang© 0 .. SIZE; 

type INTERNALITEM is 
record 

CONTENT : ITEM; 
SUCC : INDEX; 
PRED : INDEX; 

end record; 

TABLE : array (INDEX) of INTERNALITEM; 
FIRSLBUSYJTEM : INDEX := 0; 
FIRST_FREE_ITEM : INDEX := 1; 

function FREE_LIST_EMPTY return BOOLEAN is ... end; 
function BUSY__LIST_EMPTY return BOOLEAN is ... end; 
procedure EXCHANGE (FROM : in INDEX; TO : in INDEX) is ... end; 

procedure INSERT (NEW_ITEM : in ITEM) is 
begin 

if FREE_LIST_EMPTY then 
raise TABLE_FULL; 

end if; 
remaining code for INSERT 

end INSERT; 

procedure RETRIEVE (FIRST_ITEM : out ITEM) is ... end; 

begin 

initialization of the table linkages 
end TABLE_MANAGER; 

7.6 Example of a Text Handling Package 

1 This example illustrates a simple text handling package. The users only have access to the visible 
part; the implementation is hidden from them in the private part and the package body (not 
shown). 

2 From a user's point of view, a TEXT is a variable-length string. Each text object has a maximum 
length, which must be given when the object is declared, and a current value, which is a string of 
some length between zero and the maximum. The maximum possible length of a text object is an 
implementation-defined constant. 

3 The package defines first the necessary types, then functions that return some characteristics of 
objects of the type, then the conversion functions between texts and the predefined CHARACTER 
and STRING types, and finally some of the standard operations on varying strings. Most operations 
are overloaded on strings and characters as well as on the type TEXT, in order to minimize the 
number of explicit conversions the user has to write. 

7.6 Example of a Text Handling Package 7-12 



Packages 

package TEXT_HANDLER is 
MAXIMUM : constant := SOME_VALUE; — implementation-defined 
subtype INDEX is INTEGER range 0 .. MAXIMUM; 

type TEXT(MAXIMUM_LENGTH : INDEX) is limited private; 

function LENGTH (T TEXT) return INDEX; 
function VALUE (T TEXT) return STRING; 
function EMPTY (T TEXT) return BOOLEAN; 

function T0_TEXT (S STRING; MAX : INDEX) return TEXT; maximum length 
function TO_TEXT (C CHARACTER; MAX : INDEX) return TEXT; 
function TO_TEXT (S STRING) return TEXT; maximum length S'LENGTH 
function TO_TEXT (C CHARACTER) return TEXT; 

function (LEFT 
function (LEFT 
function (LEFT 
function (LEFT 
function (LEFT 

: TEXT; 
: TEXT; 
: STRING; 
: TEXT; 

RIGHT 
RIGHT 
RIGHT 
RIGHT 

: CHARACTER; RIGHT 

TEXT) 
STRING) 
TEXT) 
CHARACTER) 
TEXT) 

return TEXT 
return TEXT 
return TEXT 
return TEXT 
return TEXT 

function "=" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN 
function "<(" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN 
function ">(=" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN 
function "j>" (LEFT : TEXT; RIGHT : : TEXT) return BOOLEAN 
function ">=" (LEFT : TEXT; RIGHT : : TEXT) return BOOLEAN 

procedure SET (OBJECT : in out TEXT; VALUE : in TEXT); 
procedure SET (OBJECT : in out TEXT; VALUE : in STRING); 
procedure SET (OBJECT : in out TEXT; VALUE : in CHARACTER); 

procedure APPEND (TAIL : in TEXT; TO in out TEXT); 
procedure APPEND (TAIL : in STRING; TO in out TEXT); 
procedure APPEND (TAIL : in CHARACTER; TO in out TEXT); 

procedure AMEND (OBJECT : in out TEXT; BY in TEXT; POSITION : in INDEX); 
procedure AMEND (OBJECT : in out TEXT; BY in STRING; POSITION : in INDEX); 
procedure AMEND (OBJECT : in out TEXT; BY in CHARACTER; POSITION : in INDEX); 

amend replaces part of the object by the given text, string, or character 
starting at the given position in the object 

function LOCATE (FRAGMENT : TEXT; WITHIN : TEXT) return INDEX 
function LOCATE (FRAGMENT : STRING; WITHIN : TEXT) return INDEX 
function LOCATE (FRAGMENT : CHARACTER; WITHIN : TEXT) return INDEX 

all return 0 if the fragment is not located 

private 
type TEXT(MAXIMUM_LENGTH : INDEX) is 

record 
POS : INDEX := 0; 
VALUE : STRINGfl .. MAXIMUM.LENGTH); 

end record; 
end TEXT_HANDLER; 

7-13 Example of a Text Handling Package 7.6 



ANSI/MIL-STD-1815A Ada Reference Manual 

Example of use of the text handling package: 

A program opens an output file, whose name is supplied by the string NAME. This string has the 
form 

[DEVICE :] [FILENAME [.EXTENSION]] 

There are standard defaults for device, filename, and extension. The user-supplied name is passed 
to EXPAND_FILE_NAME as a parameter, and the result is the expanded version, with any necessary 
defaults added. 

function EXPAND_FILE_NAME (NAME : STRING) return STRING is 
use TEXTJHANDLER; 

DEFAULT_DEVICE : constant STRING := "SY:"; 
DEFAULT_FILE_NAME : constant STRING := "RESULTS"; 
DEFAULT_EXTENSION : constant STRING := ".DAT"; 

MAXIMUM_FILE_NAME_LENGTH : constant INDEX := SOME_j4PPROPRIATE_VALUE; 
FILE_NAME : TEXT(MAXIMUM_FILE_NAME_LENGTH); 

begin 

SET(FILE_NAME, NAME); 

if EMPTY(FILE_NAME) then 
SET(FILE_NAME, DEFAULT_FILE_NAME); 

end if; 

if LOCATE!':', FILE_NAME) = 0 then 
SET(FILE_NAME, DEFAULT-DEVICE & FILEJMAME); 

end if; 

if LOCATE('.', FILE_NAME) = 0 then 
APPEND(DEFAULT_EXTENSION, TO => FILE_NAME); 

end if; 

return VALUE(FILE_NAME); 

end EXPAND_FILE_NAME; 

7.6 Example of a Text Handling Package 7-14 



8. Visibility Rules 

The rules defining the scope of declarations and the rules defining which identifiers are visible at 
various points in the text of the program are described in this chapter. The formulation of these 
rules uses the notion of a declarative region. 

References: declaration 3.1, declarative region 8.1, identifier 2.3, scope 8.2, visibility 8.3 

8.1 Declarative Region 

A declarative region is a portion of the program text. A single declarative region is formed by the 
text of each of the following: 

• A subprogram declaration, a package declaration, a task declaration, or a generic declaration, 
together with the corresponding body, if any. If the body is a body stub, the declarative region 
also includes the corresponding subunit. If the program unit has subunits, they are also 
included. 

• An entry declaration together with the corresponding accept statements. 

• A record type declaration, together with a corresponding private or incomplete type declara¬ 
tion if any, and together with a corresponding record representation clause if any. 

• A renaming declaration that includes a formal part, or a generic parameter declaration that 
includes either a formal part or a discriminant part. 

• A block statement or a loop statement. 

In each of the above cases, the declarative region is said to be associated with the corresponding 
declaration or statement. A declaration is said to occur immediately within a declarative region if 
this region is the innermost region that encloses the declaration, not counting the declarative 
region (if any) associated with the declaration itself. 

A declaration that occurs immediately within a declarative region is said to be local to the region. 
Declarations in outer (enclosing) regions are said to be global to an inner (enclosed) declarative 
region. A local entity is one declared by a local declaration; a global entity is one declared by a 
global declaration. 

Some of the above forms of declarative region include several disjoint parts (for example, other 
declarative items can be between the declaration of a package and its body). Each declarative 
region is nevertheless considered as a (logically) continuous portion of the program text. Hence if 
any rule defines a portion of text as the text that extends from some specific point of a declarative 
region to the end of this region, then this portion is the corresponding subset of the declarative 
region (for example it does not include intermediate declarative items between the two parts of a 
package). 

8-1 Declarative Region 8.1 



ANSI/M/L-STD-1815A Ada Reference Manual 

Notes: 

As defined in section 3.1, the term declaration includes basic declarations, implicit declarations, 
and those declarations that are part of basic declarations, for example, discriminant and parameter 
specifications. It follows from the definition of a declarative region that a discriminant specification 
occurs immediately within the region associated with the enclosing record type declaration. 
Similarly, a parameter specification occurs immediately within the region associated with the 
enclosing subprogram body or accept statement. 

The package STANDARD forms a declarative region which encloses all library units: the implicit 
declaration of each library unit is assumed to occur immediately within this package (see sections 
8.6 and 10.1.1). 

Declarative regions can be nested within other declarative regions. For example, subprograms, 
packages, task units, generic units, and block statements can be nested within each other, and can 
contain record type declarations, loop statements, and accept statements. 

References: accept statement 9.5, basic declaration 3.1, block statement 5.6, body stub 10.2, declaration 3.1, 

discriminant part 3.7.1, discriminant specification 3.7.1, entry declaration 9.5, formal part 6.1, generic body 12.2, 

generic declaration 12.1, generic parameter declaration 12.1, implicit declaration 3.1, incomplete type declaration 

3.8 1, library unit 10.1, loop statement 5.5, package 7, package body 7.1, package declaration 7.1, parameter 

specification 6.1, private type declaration 7.4, record representation clause 13.4, record type 3.7, renaming declara¬ 

tion 8.5, standard package 8.6, subprogram body 6.3, subprogram declaration 6.1, subunit 10.2, task body 9.1, task 

declaration 9.1, task unit 9 

8.2 Scope of Declarations 

For each form of declaration, the language rules define a certain portion of the program text called 
the scope of the declaration. The scope of a declaration is also called the scope of any entity 
declared by the declaration. Furthermore, if the declaration associates some notation with a 
declared entity, this portion of the text is also called the scope of this notation (either an identifier, 
a character literal, an operator symbol, or the notation for a basic operation). Within the scope of 
an entity, and only there, there are places where it is legal to use the associated notation in order 
to refer to the declared entity. These places are defined by the rules of visibility and overloading. 

The scope of a declaration that occurs immediately within a declarative region extends from the 
beginning of the declaration to the end of the declarative region; this part of the scope of a declara¬ 
tion is called the immediate scope. Furthermore, for any of the declarations listed below, the scope 
of the declaration extends beyond the immediate scope: 

(a) A declaration that occurs immediately within the visible part of a package declaration. 

(b) An entry declaration. 

(c) A component declaration. 

(d) A discriminant specification. 

(e) A parameter specification. 

(f) A generic parameter declaration. 

8.2 Scope of Declarations 8-2 



Visibility Rules 

In each of these cases, the given declaration occurs immediately within some enclosing declara¬ 
tion, and the scope of the given declaration extends to the end of the scope of the enclosing 
declaration. 

In the absence of a subprogram declaration, the subprogram specification given in the subprogram 
body or in the body stub acts as the declaration and rule (e) applies also in such a case. 

Note: 

The above scope rules apply to all forms of declaration defined by section 3.1; in particular, they 
apply also to implicit declarations. Rule (a) applies to a package declaration and thus not to the 
package specification of a generic declaration. For nested declarations, the rules (a) through (f) 
apply at each level. For example, if a task unit is declared in the visible part of a package, the scope 
of an entry of the task unit extends to the end of the scope of the task unit, that is, to the end of the 
scope of the enclosing package. The scope of a use clause is defined in section 8.4. 

References: basic operation 3.3.3, body stub 10.2, character literal 2.5, component declaration 3.7, declaration 3.1, 

declarative region 8.1, discriminant specification 3.7.1, entry declaration 9.5, extends 8.1, generic declaration 12.1, 

generic parameter declaration 12.1, identifier 2.3, implicit declaration 3.1, occur immediately within 8.1, operator 

symbol 6.1, overloading 6.6 8.7, package declaration 7.1, package specification 7.1, parameter specification 6.1, 

record type 3.7, renaming declaration 8.5, subprogram body 6.3, subprogram declaration 6.1, task declaration 9.1, 

task unit 9, type declaration 3.3.1, use clause 8.4, visibility 8.3, visible part 7.2 

8.3 Visibility 

The meaning of the occurrence of an identifier at a given place in the text is defined by the visibility 
rules and also, in the case of overloaded declarations, by the overloading rules. The identifiers con¬ 
sidered in this chapter include any identifier other than a reserved word, an attribute designator, a 
pragma identifier, the identifier of a pragma argument, or an identifier given as a pragma argu¬ 
ment. The places considered in this chapter are those where a lexical element (such as an iden¬ 
tifier) occurs. The overloaded declarations considered in this chapter are those for subprograms, 
enumeration literals, and single entries. 

For each identifier and at each place in the text, the visibility rules determine a set of declarations 
(with this identifier) that define possible meanings of an occurrence of the identifier. A declaration 
is said to be visible at a given place in the text when, according to the visibility rules, the declara¬ 
tion defines a possible meaning of this occurrence. Two cases arise. 

• The visibility rules determine at most one possible meaning. In such a case the visibility rules 
are sufficient to determine the declaration defining the meaning of the occurrence of the iden¬ 
tifier, or in the absence of such a declaration, to determine that the occurrence is not legal at 
the given point. 

• The visibility rules determine more than one possible meaning. In such a case the occurrence 
of the identifier is legal at this point if and only if exactly one visible declaration is acceptable 
for the overloading rules in the given context (see section 6.6 for the rules of overloading and 
section 8.7 for the context used for overload resolution). 

8-3 Visibility 8.3 



ANSI/MIL-STD-1815A Ada Reference Manual 

A declaration is only visible within a certain part of its scope; this part starts at the end of the 
declaration except in a package specification, in which case it starts at the reserved word is given 
after the identifier of the package specification. (This rule applies, in particular, for implicit 
declarations.) 

Visibility is either by selection or direct. A declaration is visible by selection at places that are 
defined as follows. 

(a) For a declaration given in the visible part of a package declaration: at the place of the selector 
after the dot of an expanded name whose prefix denotes the package. 

(b) For an entry declaration of a given task type: at the place of the selector after the dot of a 
selected component whose prefix is appropriate for the task type. 

(c) For a component declaration of a given record type declaration: at the place of the selector 
after the dot of a selected component whose prefix is appropriate for the type; also at the 
place of a component simple name (before the compound delimiter =>) in a named compo¬ 
nent association of an aggregate of the type. 

(d) For a discriminant specification of a given type declaration: at the same places as for a com¬ 
ponent declaration; also at the place of a discriminant simple name (before the compound 
delimiter =>) in a named discriminant association of a discriminant constraint for the type. 

(e) For a parameter specification of a given subprogram specification or entry declaration: at the 
place of the formal parameter (before the compound delimiter =>) in a named parameter 
association of a corresponding subprogram or entry call. 

(f) For a generic parameter declaration of a given generic unit: at the place of the generic formal 
parameter (before the compound delimiter =>) in a named generic association of a cor¬ 
responding generic instantiation. 

Finally, within the declarative region associated with a construct other than a record type declara¬ 
tion, any declaration that occurs immediately within the region is visible by selection at the place 
of the selector after the dot of an expanded name whose prefix denotes the construct. 

Where it is not visible by selection, a visible declaration is said to be directly visible. A declaration 
is directly visible within a certain part of its immediate scope; this part extends to the end of the 
immediate scope of the declaration, but excludes places where the declaration is hidden as 
explained below. In addition, a declaration occurring immediately within the visible part of a 
package can be made directly visible by means of a use clause according to the rules described in 
section 8.4. (See also section 8.6 for the visibility of library units.) 

A declaration is said to be hidden within (part of) an inner declarative region if the inner region con¬ 
tains a homograph of this declaration; the outer declaration is then hidden within the immediate 
scope of the inner homograph. Each of two declarations is said to be a homograph of the other if 
both declarations have the same identifier and overloading is allowed for at most one of the two. If 
overloading is allowed for both declarations, then each of the two is a homograph of the other if 
they have the same identifier, operator symbol, or character literal, as well as the same parameter 
and result type profile (see 6.6). 

Within the specification of a subprogram, every declaration with the same designator as the sub¬ 
program is hidden; the same holds within a generic instantiation that declares a subprogram, and 
within an entry declaration or the formal part of an accept statement; where hidden in this manner, 
a declaration is visible neither by selection nor directly. 

8.3 Visibility 8-4 



Visibility Rules 

Two declarations that occur immediately within the same declarative region must not be 
homographs, unless either or both of the following requirements are met: (a) exactly one of them 
is the implicit declaration of a predefined operation; (b) exactly one of them is the implicit declara¬ 
tion of a derived subprogram. In such cases, a predefined operation is always hidden by the other 
homograph; a derived subprogram hides a predefined operation, but is hidden by any other 
homograph. Where hidden in this manner, an implicit declaration is hidden within the entire scope 
of the other declaration (regardless of which declaration occurs first); the implicit declaration is 
visible neither by selection nor directly. 

Whenever a declaration with a certain identifier is visible from a given point, the identifier and the 
declared entity (if any) are also said to be visible from that point. Direct visibility and visibility by 
selection are likewise defined for character literals and operator symbols. An operator is directly 
visible if and only if the corresponding operator declaration is directly visible. Finally, the notation 
associated with a basic operation is directly visible within the entire scope of this operation. 

Example: 

procedure P is 
A, B : BOOLEAN; 

procedure Q is 
C : BOOLEAN; 
B : BOOLEAN; 

begin 
an inner homograph of B 

B 
C 

end; 
begin 

A := 
end; 

:= A; 
:= P.B; 

B; 

means 
means 

Q.B 
Q.C 

P.A; 
P.B; 

means P.A := P.B; 

Note on the visibility of library units: 

The visibility of library units is determined by with clauses (see 10.1.1) and by the fact that library 
units are implicitly declared in the package STANDARD (see 8.6). 

Note on homographs: 

The same identifier may occur in different declarations and may thus be associated with different 
entities, even if the scopes of these declarations overlap. Overlap of the scopes of declarations 
with the same identifier can result from overloading of subprograms and of enumeration literals. 
Such overlaps can also occur for entities declared in package visible parts and for entries, record 
components, and parameters, where there is overlap of the scopes of the enclosing package 
declarations, task declarations, record type declarations, subprogram declarations, renaming 
declarations, or generic declarations. Finally overlapping scopes can result from nesting. 

Note on immediate scope, hiding, and visibility: 

The rules defining immediate scope, hiding, and visibility imply that a reference to an identifier 
within its own declaration is illegal (except for packages and generic packages). The identifier 
hides outer homographs within its immediate scope, that is, from the start of the declaration; on 
the other hand, the identifier is visible only after the end of the declaration. For this reason, all but 
the last of the following declarations are illegal: 

8-5 Visibility 8.3 



ANSI/MIL-STD-1815A Ada Reference Manual 

K : INTEGER := K * K; 
T : T; 
procedure P(X : P); 
procedure Q(X : REAL := Q); 
procedure R(R : REAL); 

illegal 
illegal 

— illegal 
illegal, even if 

an inner declaration is legal 
there is a function named Q 
(although confusing) 

23 References: accept statement 9.5, aggregate 4.3, appropriate for a type 4.1, argument 2.8, basic operation 3.3.3, 

character literal 2.5, component association 4.3, component declaration 3.7, compound delimiter 2.2, declaration 3.1, 

declarative region 8.1, designate 3.8, discriminant constraint 3.7.2, discriminant specification 3.7.1, entry call 9.5, 

entry declaration 9.5, entry family 9.5, enumeration literal specification 3.5.1, expanded name 4.1.3, extends 8.1, for¬ 

mal parameter 6.1, generic association 12.3, generic formal parameter 12.1, generic instantiation 12.3, generic 

package 12.1, generic parameter declaration 12.1, generic unit 12, identifier 2.3, immediate scope 8.2, implicit 

declaration 3.1, lexical element 2.2, library unit 10.1, object 3.2, occur immediately within 8.1, operator 4.5, operator 

symbol 6.1, overloading 6.6 8.7, package 7, parameter 6.2, parameter association 6.4, parameter specification 6.1, 

pragma 2.8, program unit 6, record type 3.7, reserved word 2.9, scope 8.2, selected component 4.1.3, selector 4.1.3, 

simple name 4.1, subprogram 6, subprogram call 6.4, subprogram declaration 6.1, subprogram specification 6.1, task 

type 9.1, task unit 9, type 3.3, type declaration 3.3.1, use clause 8.4, visible part 7.2 

8.4 Use Clauses 

, A use clause achieves direct visibility of declarations that appear in the visible parts of named 
packages. 

2 use_clause us® package~s\avr\e (, package^name); 

3 For each use clause, there is a certain region of text called the scope of the use clause. This region 
starts immediately after the use clause. If a use clause is a declarative item of some declarative 
region, the scope of the clause extends to the end of the declarative region. If a use clause occurs 
within a context clause of a compilation unit, the scope of the use clause extends to the end of the 
declarative region associated with the compilation unit. 

4 In order to define which declarations are made directly visible at a given place by use clauses, con¬ 
sider the set of packages named by all use clauses whose scopes enclose this place, omitting from 
this set any packages that enclose this place. A declaration that can be made directly visible by a 
use clause (a potentially visible declaration) is any declaration that occurs immediately within the 
visible part of a package of the set. A potentially visible declaration is actually made directly visible 
except in the following two cases: 

5 • A potentially visible declaration is not made directly visible if the place considered is within 
the immediate scope of a homograph of the declaration. 

e • Potentially visible declarations that have the same identifier are not made directly visible 
unless each of them is either an enumeration literal specification or the declaration of a sub¬ 
program (by a subprogram declaration, a renaming declaration, a generic instantiation, or an 
implicit declaration). 

7 The elaboration of a use clause has no other effect. 

Note: 

8 The above rules guarantee that a declaration that is made directly visible by a use clause cannot 
hide an otherwise directly visible declaration. The above rules are formulated in terms of the set of 
packages named by use clauses. 

8.4 Use Clauses 8-6 



Visibility Rules 

Consequently, the following lines of text all have the same effect (assuming only one package P). 

use P; 
use P; use P, P; 

Example of conflicting names in two packages: 

procedure R is 
package TRAFFIC is 

type COLOR is (RED, AMBER, GREEN); 

end TRAFFIC; 

package WATER_COLORS is 
type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK); 

end WATER_COLORS; 

use TRAFFIC; -- COLOR, RED, AMBER, and GREEN are directly visible 
use WATER_COLORS; -- two homographs of GREEN are directly visible 

— but COLOR is no longer directly visible 

subtype LIGHT is TRAFFIC.COLOR; -- Subtypes are used to resolve 
subtype SHADE is WATER_COLORS.COLOR; -- the conflicting type name COLOR 

SIGNAL : LIGHT; 
PAINT : SHADE; 

begin 
SIGNAL := GREEN; - that of TRAFFIC 
PAINT ;= GREEN; - that of WATER.COLORS 

end R; 

Example of name identification with a use clause: 

package D is 
T, U, V : BOOLEAN; 

end D; 

procedure P is 
package E is 

B, W, V : INTEGER; 
end E; 

procedure Q is 
T, X : REAL; 
use D, E; 

begin 
the name T means Q.T, not D.T 
the name U means D.U 
the name B means E.B 
the name W means E.W 
the name X means Q.X 
the name V is illegal : either D.V 

end Q; 
begin 

end P; 

9 

10 

11 

8-7 Use Clauses 8.4 



ANSI/MIL-STD-1815A Ada Reference Manual 

References: compilation unit 10.1, context clause 10.1, declaration 3.1, declarative item 3.9, declarative region 8.1, 

direct visibility 8.3, elaboration 3.1 3.9, elaboration has no other effect 3.1, enumeration literal specification 3.5.1, 

extends 8.1, hiding 8.3, homograph 8.3, identifier 2.3, immediate scope 8.2, name 4.1, occur immediately within 8.1, 

package 7, scope 8.2, subprogram declaration 6.1, visible part 7.2 

8.5 Renaming Declarations 

, A renaming declaration declares another name for an entity. 

2 renaming_declaration ::= 
identifier : type_mark renames object-name; 

| identifier : exception renames exception-name; 
| package identifier renames package-name; 
| subprogram_specification renames subprogram-Or_entry_narr\e-, 

3 The elaboration of a renaming declaration evaluates the name that follows the reserved word 
renames and thereby determines the entity denoted by this name (the renamed entity). At any 
point where a renaming declaration is visible, the identifier, or operator symbol of this declaration 
denotes the renamed entity. 

4 The first form of renaming declaration is used for the renaming of objects. The renamed entity 
must be an object of the base type of the type mark. The properties of the renamed object are not 
affected by the renaming declaration. In particular, its value and whether or not it is a constant are 
unaffected; similarly, the constraints that apply to an object are not affected by renaming (any 
constraint implied by the type mark of the renaming declaration is ignored), The renaming declara¬ 
tion is legal only if exactly one object has this type and can be denoted by the object name. 

5 The following restrictions apply to the renaming of a subcomponent that depends on discriminants 
of a variable. The renaming is not allowed if the subtype of the variable, as defined in a cor¬ 
responding object declaration, component declaration, or component subtype indication, is an 
unconstrained type; or if the variable is a generic formal object (of mode in out). Similarly if the 
variable is a formal parameter, the renaming is not allowed if the type mark given in the parameter 
specification denotes an unconstrained type whose discriminants have default expressions. 

e The second form of renaming declaration is used for the renaming of exceptions; the third form, 
for the renaming of packages. 

? The last form of renaming declaration is used for the renaming of subprograms and entries. The 
renamed subprogram or entry and the subprogram specification given in the renaming declaration 
must have the same parameter and result type profile (see 6.6). The renaming declaration is legal 
only if exactly one visible subprogram or entry satisfies the above requirements and can be 
denoted by the given subprogram or entry name. In addition, parameter modes must be identical 
for formal parameters that are at the same parameter position. 

s The subtypes of the parameters and result (if any) of a renamed subprogram or entry are not 
affected by renaming. These subtypes are those given in the original subprogram declaration, 
generic instantiation, or entry declaration (not those of the renaming declaration); even for calls 
that use the new name. On the other hand, a renaming declaration can introduce parameter names 
and default expressions that differ from those of the renamed subprogram; named associations of 
calls with the new subprogram name must use the new parameter name; calls with the old sub¬ 
program name must use the old parameter names. 

8.5 Renaming Declarations 8-8 



Visibility Rules 

A procedure can only be renamed as a procedure. Either of a function or operator can be renamed 9 

as either of a function or operator; for renaming as an operator, the subprogram specification given 
in the renaming declaration is subject to the rules given in section 6.7 for operator declarations. 
Enumeration literals can be renamed as functions; similarly, attributes defined as functions (such 
as SUCC and PRED) can be renamed as functions. An entry can only be renamed as a procedure; 
the new name is only allowed to appear in contexts that allow a procedure name. An entry of a 
family can be renamed, but an entry family cannot be renamed as a whole. 

Examples: 10 

declare 
L : PERSON renames LEFTMQST_PERSON; -- see 3.8.1 

begin 
L.AGE := L.AGE + 1; 

end; 

FULL : exception renames TABLE_MANAGER.TABLE_FULL; — see 7.5 

package TM renames TABLE_MANAGER; 

function REAL_PLUS(LEFT, RIGHT : REAL ) return REAL renames " + "; 
function INT_PLUS (LEFT, RIGHT : INTEQER ) return INTEGER renames "+"; 

function ROUGE return COLOR renames RED; -- see 3.5.1 
function ROT return COLOR renames RED; 
function ROSSO return COLOR renames ROUGE; 

function NEXT(X : COLOR) return COLOR renames COLOR'SUCC; — see 3.5.5 

Example of a renaming declaration with new parameter names: u 

function (X,Y : VECTOR) return REAL renames DOT_PRODUCT; -- see 6.1 

Example of a renaming declaration with a new default expression: 12 

function MINIMUM(L : LINK := HEAD) return CELL renames MIN_CELL; — see 6.1 

Notes: 

Renaming may be used to resolve name conflicts and to act as a shorthand. Renaming with a dif- 13 

ferent identifier or operator symbol does not hide the old name; the new name and the old name 
need not be visible at the same points. The attributes POS and VAL cannot be renamed since the 
corresponding specifications cannot be written; the same holds for the predefined multiplying 
operators with a universal-fixed result. 

Calls with the new name of a renamed entry are procedure call statements and are not allowed at 
places where the syntax requires an entry call statement in conditional and timed entry calls; 
similarly, the COUNT attribute is not available for the new name. 

A task object that is declared by an object declaration can be renamed as an object. However, a 15 

single task cannot be renamed since the corresponding task type is anonymous. For similar 
reasons, an object of an anonymous array type cannot be renamed. No syntactic form exists for 
renaming a generic unit. 

A subtype can be used to achieve the effect of renaming a type (including a task type) as in 16 

subtype MODE is TEXTJO. FILE_MODE ; 

8-9 Renaming Declarations 8.5 



ANSI/MIL-STD-1815A Ada Reference Manual 

References: allow 1.6, attribute 4.1.4, base type 3.3, conditional entry call 9.7.2, constant 3.2.1, constrained subtype 

3.3, constraint 3.3, declaration 3.1, default expression 6.1, depend on a discriminant 3.7.1, discriminant 3.7.1, 

elaboration 3.1 3.9, entry 9.5, entry call 9.5, entry call statement 9.5, entry declaration 9.5, entry family 9.5, enumera¬ 

tion literal 3.5.1, evaluation of a name 4.1, exception 11, formal parameter 6.1, function 6.5, identifier 2.3, legal 1.6, 

mode 6.1, name 4.1, object 3.2, object declaration 3.2, operator 6.7, operator declaration 6.7, operator symbol 6.1, 

package 7, parameter 6.2, parameter specification 6.1, procedure 6.1, procedure call statement 6.4, reserved word 

2.9, subcomponent 3.3, subprogram 6, subprogram call 6.4, subprogram declaration 6.1, subprogram specification 

6.1, subtype 3.3.2, task object 9.2, timed entry call 9.7.3, type 3.3, type mark 3.3.2, variable 3.2.1, visibility 8.3 

8.6 The Package Standard 

The predefined types (for example the types BOOLEAN, CHARACTER and INTEGER) are the types 
that are declared in a predefined package called STANDARD; this package also includes the 
declarations of their predefined operations. The package STANDARD is described in Annex C. 
Apart from the predefined numeric types, the specification of the package STANDARD must be the 
same for all implementations of the language. 

The package STANDARD forms a declarative region which encloses every library unit and 
consequently the main program; the declaration of every library unit is assumed to occur 
immediately within this package. The implicit declarations of library units are assumed to be 
ordered in such a way that the scope of a given library unit includes any compilation unit that men¬ 
tions the given library unit in a with clause. However, the only library units that are visible within a 
given compilation unit are as follows: they include the library units named by all with clauses that 
apply to the given unit, and moreover, if the given unit is a secondary unit of some library unit, they 
include this library unit. 

Notes: 

If all block statements of a program are named, then the name of each program unit can always be 
written as an expanded name starting with STANDARD (unless this package is itself hidden). 

If a type is declared in the visible part of a library package, then it is a consequence of the visibility 
rules that a basic operation (such as assignment) for this type is directly visible at places where the 
type itself is not visible (whether by selection or directly). However this operation can only be 
applied to operands that are visible and the declaration of these operands requires the visibility of 
either the type or one of its subtypes. 

References: applicable with clause 10.1.1, block name 5.6, block statement 5.6, declaration 3.1, declarative region 

8 1, expanded name 4.1.3, hiding 8.3, identifier 2.3, implicit declaration 3.1, library unit 10.1, loop statement 5.5, 

main program 10.1, must 1.6, name 4.1, occur immediately within 8.1, operator 6.7, package 7, program unit 6, 

secondary unit 10.1, subtype 3.3, type 3.3, visibility 8.3, with clause 10.1.1 

8.7 The Context of Overload Resolution 

Overloading is defined for subprograms, enumeration literals, operators, and single entries, and 
also for the operations that are inherent in several basic operations such as assignment, 
membership tests, allocators, the literal null, aggregates, and string literals. 

8.7 The Context of Overload Resolution 8-10 



Visibility Rules 

For overloaded entities, overload resolution determines the actual meaning that an occurrence of 
an identifier has, whenever the visibility rules have determined that more than one meaning is 
acceptable at the place of this occurrence; overload resolution likewise determines the actual 
meaning of an occurrence of an operator or some basic operation. 

At such a place all visible declarations are considered. The occurrence is only legal if there is 
exactly one interpretation of each constituent of the innermost complete context; a complete con¬ 
text is one of the following: 

• A declaration. 

• A statement. 

• A representation clause. 

When considering possible interpretations of a complete context, the only rules considered are the 
syntax rules, the scope and visibility rules, and the rules of the form described below. 

(a) Any rule that requires a name or expression to have a certain type, or to have the same type as 
another name or expression. 

(b) Any rule that requires the type of a name or expression to be a type of a certain class; similar¬ 
ly, any rule that requires a certain type to be a discrete, integer, real, universal, character, 
boolean, or nonlimited type. 

(c) Any rule that requires a prefix to be appropriate for a certain type. 

(d) Any rule that specifies a certain type as the result type of a basic operation, and any rule that 
specifies that this type is of a certain class. 

(e) The rules that require the type of an aggregate or string literal to be determinable solely from 
the enclosing complete context (see 4.3 and 4.2). Similarly, the rules that require the type of 
the prefix of an attribute, the type of the expression of a case statement, or the type of the 
operand of a type conversion, to be determinable independently of the context (see 4.1.4, 5.4, 
4.6, and 6.4.1). 

(f) The rules given in section 6.6, for the resolution of overloaded subprogram calls; in section 
4.6, for the implicit conversions of universal expressions; in section 3.6.1, for the interpreta¬ 
tion of discrete ranges with bounds having a universal type; and in section 4.1.3, for the 
interpretation of an expanded name whose prefix denotes a subprogram or an accept state¬ 
ment. 

Subprogram names used as pragma arguments follow a different rule: the pragma can apply to 
several overloaded subprograms, as explained in section 6.3.2 for the pragma INLINE, in section 
11.7 for the pragma SUPPRESS, and in section 13.9 for the pragma INTERFACE. 

Similarly, the simple names given in context clauses (see 10.1.1) and in address clauses (see 13.5) 
follow different rules. 

8-1 1 The Context of Overload Resolution 8.7 



ANS//MIL-STD-1815A Ada Reference Manual 

Notes: 

If there is only one possible interpretation, the identifier denotes the corresponding entity. 
However, this does not mean that the occurrence is necessarily legal since other requirements 
exist which are not considered for overload resolution; for example, the fact that an expression is 
static, the parameter modes, whether an object is constant, conformance rules, forcing occur¬ 
rences for a representation clause, order of elaboration, and so on. 

Similarly, subtypes are not considered for overload resolution (the violation of a constraint does 
not make a program illegal but raises an exception during program execution). 

A loop parameter specification is a declaration, and hence a complete context. 

Rules that require certain constructs to have the same parameter and result type profile fall under 
the category (a); the same holds for rules that require conformance of two constructs since con¬ 
formance requires that corresponding names be given the same meaning by the visibility and 
overloading rules. 

References: aggregate 4.3, allocator 4.8, assignment 5.2, basic operation 3.3.3, case statement 5.4, class of type 

3.3, declaration 3.1, entry 9.5, enumeration literal 3.5.1, exception 1 1, expression 4.4, formal part 6.1, identifier 2.3, 

legal 1.6, literal 4.2, loop parameter specification 5.5, membership test 4.5.2, name 4.1, null literal 3.8, operation 

3.3.3, operator 4.5, overloading 6.6, pragma 2.8, representation clause 1 3.1, statement 5, static expression 4.9, static 

subtype 4.9, subprogram 6, subtype 3.3, type conversion 4.6, visibility 8.3 

Rules of the form (a): address clause 13.5, assignment 5.2, choice 3.7.3 4.3.2 5.4, component association 4.3.1 

4.3.2, conformance rules 9.5, default expression 3.7 3.7.1 6.1 12.1.1, delay statement 9.6, discrete range 3.6.1 5.5 

9.5. discriminant constraint 3.7.2, enumeration representation clause 13.3, generic parameter association 12.3.1, 

index constraint 3.6.1, index expression 4.1.1 4.1.2 9.5, initial value 3.2.1, membership test 4.5.2, parameter associa¬ 

tion 6.4.1, parameter and result type profile 8.5 12.3.6, qualified expression 4.7, range constraint 3.5, renaming of an 

object 8.5, result expression 5.8 

Rules of the form (b): abort statement 9.10, assignment 5.2, case expression 5.4, condition 5.3 5.5 5.7 9.7.1, 

discrete range 3.6.1 5.5 9.5, fixed point type declaration 3.5.9, floating point type declaration 3.5.7, integer type 

declaration 3.5.4, length clause 13.2, membership test 4.4, number declaration 3.2.2, record representation clause 

13.4, selected component 4.1.3, short-circuit control form 4.4, val attribute 3.5.5 

Rules of the form (c): indexed component 4.1.1, selected component 4.1.3, slice 4.1.2 

Rules of the form (d): aggregate 4.3, allocator 4.8, membership test 4.4, null literal 4.2, numeric literal 2.4, short- 

circuit control form 4.4, string literal 4.2 

8.7 The Context of Overload Resolution 8-12 



9. Tasks 

The execution of a program that does not contain a task is defined in terms of a sequential execu¬ 
tion of its actions, according to the rules described in other chapters of this manual. These actions 
can be considered to be executed by a single logical processor. 

Tasks are entities whose executions proceed in parallel in the following sense. Each task can be 
considered to be executed by a logical processor of its own. Different tasks (different logical 
processors) proceed independently, except at points where they synchronize. 

Some tasks have entries. An entry of a task can be called by other tasks. A task accepts a call of 
one of its entries by executing an accept statement for the entry. Synchronization is achieved by 
rendezvous between a task issuing an entry call and a task accepting the call. Some entries have 
parameters; entry calls and accept statements for such entries are the principal means of com¬ 
municating values between tasks. 

The properties of each task are defined by a corresponding task unit which consists of a task 
specification and a task body. Task units are one of the four forms of program unit of which 
programs can be composed. The other forms are subprograms, packages and generic units. The 
properties of task units, tasks, and entries, and the statements that affect the interaction between 
tasks (that is, entry call statements, accept statements, delay statements, select statements, and 
abort statements) are described in this chapter. 

Note: 

Parallel tasks (parallel logical processors) may be implemented on multicomputers, multiproces¬ 
sors, or with interleaved execution on a single physical processor. On the other hand, whenever an 
implementation can detect that the same effect can be guaranteed if parts of the actions of a given 
task are executed by different physical processors acting in parallel, it may choose to execute them 
in this way; in such a case, several physical processors implement a single logical processor. 

References: abort statement 9.10, accept statement 9.5, delay statement 9.6, entry 9.5, entry call statement 9.5, 

generic unit 12, package 7, parameter in an entry call 9.5, program unit 6, rendezvous 9.5, select statement 9.7, sub¬ 

program 6, task body 9.1, task specification 9.1 

9.1 Task Specifications and Task Bodies 

A task unit consists of a task specification and a task body. A task specification that starts with the 
reserved words task type declares a task type. The value of an object of a task type designates a 
task having the entries, if any, that are declared in the task specification; these entries are also cal¬ 
led entries of this object. The execution of the task is defined by the corresponding task body. 

9-1 Task Specifications and Task Bodies 9.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

A task specification without the reserved word type defines a single task. A task declaration with 
this form of specification is equivalent to the declaration of an anonymous task type immediately 
followed by the declaration of an object of the task type, and the task unit identifier names the 
object. In the remainder of this chapter, explanations are given in terms of task type declarations; 
the corresponding explanations for single task declarations follow from the stated equivalence. 

task_declaration ::= task_specification; 

task_specification 
task [type] identifier [is 

[entry _declaration[ 
|representation_clause| 

end [rasA_simple_name]] 

task_body ::= 
task body fasA_simple_name is 

[ declarative_part] 
begin 

sequence_of_statements 
[ exception 

exception_handler 
| exception_handler[] 

end [fasAr_simple_name]; 

The simple name at the start of a task body must repeat the task unit identifier. Similarly if a simple 
name appears at the end of the task specification or body, it must repeat the task unit identifier. 
Within a task body, the name of the corresponding task unit can also be used to refer to the task 
object that designates the task currently executing the body; furthermore, the use of this name as a 
type mark is not allowed within the task unit itself. 

For the elaboration of a task specification, entry declarations and representation clauses, if any, are 
elaborated in the order given. Such representation clauses only apply to the entries declared in the 
task specification (see 13.5). 

The elaboration of a task body has no other effect than to establish that the body can from then on 
be used for the execution of tasks designated by objects of the corresponding task type. 

The execution of a task body is invoked by the activation of a task object of the corresponding type 
(see 9.3). The optional exception handlers at the end of a task body handle exceptions raised dur¬ 
ing the execution of the sequence of statements of the task body (see 11.4). 

Examples of specifications of task types: 

task type RESOURCE is 
entry SEIZE; 
entry RELEASE; 

end RESOURCE; 

task type KEYBOARD_DRIVER is 
entry READ (C : out CHARACTER); 
entry WRITE (C : in CHARACTER); 

end KEYBOARD_DRIVER; 

9.1 Task Specifications and Task Bodies 9-2 



Tasks 

Examples of specifications of single tasks: 

task PRODUCER_CONSUMER is 
entry READ (V : out ITEM); 
entry WRITE (E : in ITEM); 

end; 

task CONTROLLER is 
entry REQUEST(LEVEL)(D : ITEM); -- a family of entries 

end CONTROLLER; 

task USER; — has no entries 

Example of task specification and corresponding body: 

task PROTECTED^ARRAY is 
INDEX and ITEM are global types 

entry READ (N : in INDEX; V : out ITEM); 
entry WRITE (N : in INDEX; E : in ITEM); 

end; 

task body PROTECTED_ARRAY is 
TABLE : array(INDEX) of ITEM := (INDEX => NULLITEM); 

begin 
loop 

select 
accept READ (N : in INDEX; V : out ITEM) do 

V := TABLE(N); 
end READ; 

or 
accept WRITE(N : in INDEX; E : in ITEM) do 

TABLE(N) := E; 
end WRITE; 

end select; 
end loop; 

end PROTECTED_ARRAY; 

Note: 

A task specification specifies the interface of tasks of the task type with other tasks of the same or 
of different types, and also with the main program. 

References: declaration 3.1, declarative part 3.9, elaboration 3.9, entry 9.5, entry declaration 9.5, exception handler 

11.2, identifier 2.3, main program 10.1, object 3.2, object declaration 3.2.1, representation clause 13.1, reserved 

word 2 9, sequence of statements 5.1, simple name 4.1, type 3.3, type declaration 3.3.1 

9.2 Task Types and Task Objects 

A task type is a limited type (see 7.4.4). Hence neither assignment nor the predefined comparison 
for equality and inequality are defined for objects of task types; moreover, the mode out is not 
allowed for a formal parameter whose type is a task type. 

9-3 Task Types and Task Objects 9.2 



ANS//M/L-STD-1815A Ada Reference Manual 

2 A task object is an object whose type is a task type. The value of a task object designates a task 
that has the entries of the corresponding task type, and whose execution is specified by the cor¬ 
responding task body. If a task object is the object, or a subcomponent of the object, declared by 
an object declaration, then the value of the task object is defined by the elaboration of the object 
declaration. If a task object is the object, or a subcomponent of the object, created by the evalua¬ 
tion of an allocator, then the value of the task object is defined by the evaluation of the allocator. 
For all parameter modes, if an actual parameter designates a task, the associated formal 
parameter designates the same task; the same holds for a subcomponent of an actual parameter 
and the corresponding subcomponent of the associated formal parameter; finally, the same holds 
for generic parameters. 

3 Examples: 

CONTROL : RESOURCE; 
TELETYPE : KEYBOARD_DRIVER; 
POOL : array! 1 .. 10) of KEYBOARD_D RIVER; 

see also examples of declarations of single tasks in 9.1 

4 Example of access type designating task objects: 

type KEYBOARD is access KEYBOARD_DRIVER; 

TERMINAL : KEYBOARD := new KEYBOARD_DRIVER; 

Notes: 

s Since a task type is a limited type, it can appear as the definition of a limited private type in a 
private part, and as a generic actual parameter associated with a formal parameter whose type is a 
limited type. On the other hand, the type of a generic formal parameter of mode in must not be a 
limited type and hence cannot be a task type. 

6 Task objects behave as constants (a task object always designates the same task) since their 
values are implicitly defined either at declaration or allocation, or by a parameter association, and 
since no assignment is available. However the reserved word constant is not allowed in the 
declaration of a task object since this would require an explicit initialization. A task object that is a 
formal parameter of mode in is a constant (as is any formal parameter of this mode). 

7 If an application needs to store and exchange task identities, it can do so by defining an access 
type designating the corresponding task objects and by using access values for identification pur¬ 
poses (see above example). Assignment is available for such an access type as for any access 
type. 

8 Subtype declarations are allowed for task types as for other types, but there are no constraints 
applicable to task types. 

9 References: access type 3.8, actual parameter 6.4.1, allocator 4.8, assignment 5.2. component declaration 3.7, 

composite type 3.3, constant 3.2.1, constant declaration 3.2.1, constraint 3.3, designate 3.8 9.1, elaboration 3.9, 

entry 9 5, equality operator 4.5.2, formal parameter 6.2, formal parameter mode 6.2, generic actual parameter 12.3, 

generic association 12.3, generic formal parameter 12.1, generic formal parameter mode 12.1.1, generic unit 12, ine¬ 

quality operator 4.5.2, initialization 3.2.1, limited type 7.4.4, object 3.2, object declaration 3.2.1, parameter associa¬ 

tion 6 4. private part 7.2, private type 7.4, reserved word 2.9, subcomponent 3.3, subprogram 6, subtype declaration 

3 3 2 task body 9.1, type 3.3 

9.2 Task Types and Task Objects 9-4 



9.3 Task Execution - Task Activation 

A task body defines the execution of any task that is designated by a task object of the cor¬ 
responding task type. The initial part of this execution is called the activation of the task object, 
and also that of the designated task; it consists of the elaboration of the declarative part, if any, of 
the task body. The execution of different tasks, in particular their activation, proceeds in parallel. 

If an object declaration that declares a task object occurs immediately within a declarative part, 
then the activation of the task object starts after the elaboration of the declarative part (that is, 
after passing the reserved word begin following the declarative part); similarly if such a declara¬ 
tion occurs immediately within a package specification, the activation starts after the elaboration 
of the declarative part of the package body. The same holds for the activation of a task object that 
is a subcomponent of an object declared immediately within a declarative part or package 
specification. The first statement following the declarative part is executed only after conclusion of 
the activation of these task objects. 

Should an exception be raised by the activation of one of these tasks, that task becomes a com¬ 
pleted task (see 9.4); other tasks are not directly affected. Should one of these tasks thus become 
completed during its activation, the exception TASKING_ERROR is raised upon conclusion of the 
activation of all of these tasks (whether successfully or not); the exception is raised at a place that 
is immediately before the first statement following the declarative part (immediately after the 
reserved word begin). Should several of these tasks thus become completed during their activa¬ 
tion, the exception TASKING_ERROR is raised only once. 

Should an exception be raised by the elaboration of a declarative part or package specification, 
then any task that is created (directly or indirectly) by this elaboration and that is not yet activated 
becomes terminated and is therefore never activated (see section 9.4 for the definition of a ter¬ 
minated task). 

For the above rules, in any package body without statements, a null statement is assumed. For any 
package without a package body, an implicit package body containing a single null statement is 
assumed. If a package without a package body is declared immediately within some program unit 
or block statement, the implicit package body occurs at the end of the declarative part of the 
program unit or block statement; if there are several such packages, the order of the implicit 
package bodies is undefined. 

A task object that is the object, or a subcomponent of the object, created by the evaluation of an 
allocator is activated by this evaluation. The activation starts after any initialization for the object 
created by the allocator; if several subcomponents are task objects, they are activated in parallel. 
The access value designating such an object is returned by the allocator only after the conclusion 
of these activations. 

Should an exception be raised by the activation of one of these tasks, that task becomes a com¬ 
pleted task; other tasks are not directly affected. Should one of these tasks thus become com¬ 
pleted during its activation, the exception TASKING_ERROR is raised upon conclusion of the 
activation of all of these tasks (whether successfully or not); the exception is raised at the place 
where the allocator is evaluated. Should several of these tasks thus become completed during 
their activation, the exception TASKING_ERROR is raised only once. 

Should an exception be raised by the initialization of the object created by an allocator (hence 
before the start of any activation), any task designated by a subcomponent of this object becomes 
terminated and is therefore never activated. 

9-5 Task Execution - Task Activation 9.3 



ANSI/MIL-STD-1815A Ada Reference Manual 

9 Example: 

procedure P is 

A, B : RESOURCE; -- elaborate the task objects A, B 
C : RESOURCE; — elaborate the task object C 

begin 
the tasks A, B, C are activated in parallel before the first statement 

end; 

Notes: 

10 An entry of a task can be called before the task has been activated. If several tasks are activated in 
parallel, the execution of any of these tasks need not await the end of the activation of the other 
tasks. A task may become completed during its activation either because of an exception or 
because it is aborted (see 9.10). 

i References: allocator 4.8, completed task 9.4, declarative part 3.9, elaboration 3.9, entry 9.5, exception 1 1, handling 

an exception 1 1.4, package body 7.1, parallel execution 9, statement 5, subcomponent 3.3, task body 9.1, task object 

9.2, task termination 9.4, task type 9.1, tasking_error exception 11.1 

9.4 Task Dependence - Termination of Tasks 

1 Each task depends on at least one master. A master is a construct that is either a task, a currently 
executing block statement or subprogram, or a library package (a package declared within another 
program unit is not a master). The dependence on a master is a direct dependence in the following 
two cases: 

2 (a) The task designated by a task object that is the object, or a subcomponent of the object, 
created by the evaluation of an allocator depends on the master that elaborates the cor¬ 
responding access type definition. 

3 (b) The task designated by any other task object depends on the master whose execution creates 
the task object. 

4 Furthermore, if a task depends on a given master that is a block statement executed by another 
master, then the task depends also on this other master, in an indirect manner; the same holds if 
the given master is a subprogram called by another master, and if the given master is a task that 
depends (directly or indirectly) on another master. Dependences exist for objects of a private type 
whose full declaration is in terms of a task type. 

5 A task is said to have completed its execution when it has finished the execution of the sequence 
of statements that appears after the reserved word begin in the corresponding body. Similarly a 
block or a subprogram is said to have completed its execution when it has finished the execution of 
the corresponding sequence of statements. For a block statement, the execution is also said to be 
completed when it reaches an exit, return, or goto statement transferring control out of the block. 
For a procedure, the execution is also said to be completed when a corresponding return state¬ 
ment is reached. For a function, the execution is also said to be completed after the evaluation of 
the result expression of a return statement. Finally the execution of a task, block statement, or sub¬ 
program is completed if an exception is raised by the execution of its sequence of statements and 
there is no corresponding handler, or, if there is one, when it has finished the execution of the cor¬ 
responding handler. 

9.4 Task Dependence - Termination of Tasks 9-6 



If a task has no dependent task, its termination takes place when it has completed its execution. 
After its termination, a task is said to be terminated. If a task has dependent tasks, its termination 
takes place when the execution of the task is completed and all dependent tasks are terminated. A 
block statement or subprogram body whose execution is completed is not left until all of its depen¬ 
dent tasks are terminated. 

Termination of a task otherwise takes place if and only if its execution has reached an open ter¬ 
minate alternative in a select statement (see 9.7.1), and the following conditions are satisfied: 

• The task depends on some master whose execution is completed (hence not a library 
package). 

• Each task that depends on the master considered is either already terminated or similarly 
waiting on an open terminate alternative of a select statement. 

When both conditions are satisfied, the task considered becomes terminated, together with all 
tasks that depend on the master considered. 

Example: 

declare 
type GLOBAL is access RESOURCE; 
A, B : RESOURCE; 
G : GLOBAL; 

begin 
activation of A and B 

declare 
type LOCAL is access RESOURCE; 
X : GLOBAL := new RESOURCE; - 
L : LOCAL := new RESOURCE; - 
C : RESOURCE; 

begin 
activation of C 

G := X; -- both G and X designate 

end; -- await termination of C and L.all (but not X.al!) 

end; — await termination of A, B, and G.all 

Notes: 

The rules given for termination imply that all tasks that depend (directly or indirectly) on a given 
master and that are not already terminated, can be terminated (collectively) if and only if each of 
them is waiting on an open terminate alternative of a select statement and the execution of the 
given master is completed. 

The usual rules apply to the main program. Consequently, termination of the main program awaits 
termination of any dependent task even if the corresponding task type is declared in a library 
package. On the other hand, termination of the main program does not await termination of tasks 
that depend on library packages; the language does not define whether such tasks are required to 
terminate. 

For an access type derived from another access type, the corresponding access type definition is 
that of the parent type; the dependence is on the master that elaborates the ultimate parent access 
type definition. 

see 9.1 

activation of X.all 
activation of L.all 

the same task object 

9-7 Task Dependence - Termination of Tasks 9.4 



ANSI/MIL-STD-1815A Ada Reference Manual 

15 A renaming declaration defines a new name for an existing entity and hence creates no further 
dependence. 

ic References: access type 3.8, allocator 4.8, block statement 5.6, declaration 3.1, designate 3.8 9.1, exception 1 1, 

exception handler 1 1.2, exit statement 5.7, function 6.5, goto statement 5.9, library unit 10.1, main program 10.1, 

object 3.2, open alternative 9.7.1, package 7, program unit 6, renaming declaration 8.5, return statement 5.8, selec¬ 

tive wait 9.7.1, sequence of statements 5.1, statement 5, subcomponent 3.3, subprogram body 6.3, subprogram call 

6.4, task body 9.1, task object 9.2, terminate alternative 9.7.1 

9.5 Entries, Entry Calls, and Accept Statements 

1 Entry calls and accept statements are the primary means of synchronization of tasks, and of com¬ 
municating values between tasks. An entry declaration is similar to a subprogram declaration and 
is only allowed in a task specification. The actions to be performed when an entry is called are 
specified by corresponding accept statements. 

2 entry_declaration 
entry identifier [(discrete_range)] [formaLpart]; 

entry_call_statement entry_name [actual_parameter_part[; 

accept_statement 
accept enr/y_simple_name [(entryjndex)] [formaLpart] [do 

sequence_of_statements 
end [enr/y_simple_name]]; 

entryjndex expression 

3 An entry declaration that includes a discrete range (see 3.6.1) declares a family of distinct entries 
having the same formal part (if any); that is, one such entry for each value of the discrete range. 
The term single entry is used in the definition of any rule that applies to any entry other than one of 
a family. The task designated by an object of a task type has (or owns) the entries declared in the 
specification of the task type. 

4 Within the body of a task, each of its single entries or entry families can be named by the cor¬ 
responding simple name. The name of an entry of a family takes the form of an indexed compo¬ 
nent, the family simple name being followed by the index in parentheses; the type of this index 
must be the same as that of the discrete range in the corresponding entry family declaration. Out¬ 
side the body of a task an entry name has the form of a selected component, whose prefix denotes 
the task object, and whose selector is the simple name of one of its single entries or entry families. 

5 A single entry overloads a subprogram, an enumeration literal, or another single entry if they have 
the same identifier. Overloading is not defined for entry families. A single entry or an entry of an 
entry family can be renamed as a procedure as explained in section 8.5. 

6 The parameter modes defined for parameters of the formal part of an entry declaration are the 
same as for a subprogram declaration and have the same meaning (see 6.2). The syntax of an 
entry call statement is similar to that of a procedure call statement, and the rules for parameter 
associations are the same as for subprogram calls (see 6.4.1 and 6.4.2). 

9.5 Entries, Entry Calls, and Accept Statements 9-8 



Tasks 

An accept statement specifies the actions to be performed at a call of a named entry (it can be an 
entry of a family). The formal part of an accept statement must conform to the formal part given in 
the declaration of the single entry or entry family named by the accept statement (see section 6.3.1 
for the conformance rules). If a simple name appears at trie end of an accept statement, it must 
repeat that given at the start. 

An accept statement for an entry of a given task is only allowed within the corresponding task 
body; excluding within the body of any program unit that is, itself, inner to the task body; and 
excluding within another accept statement for either the same single entry or an entry of the same 
family. (One consequence of this rule is that a task can execute accept statements only for its own 
entries.) A task body can contain more than one accept statement for the same entry. 

For the elaboration of an entry declaration, the discrete range, if any, is evaluated and the formal 
part, if any, is then elaborated as for a subprogram declaration. 

Execution of an accept statement starts with the evaluation of the entry index (in the case of an 
entry of a family). Execution of an entry call statement starts with the evaluation of the entry name; 
this is followed by any evaluations required for actual parameters in the same manner as for a sub¬ 
program call (see 6.4). Further execution of an accept statement and of a corresponding entry call 
statement are synchronized. 

If a given entry is called by only one task, there are two possibilities: 

• If the calling task issues an entry call statement before a corresponding accept statement is 
reached by the task owning the entry, the execution of the calling task is suspended. 

• If a task reaches an accept statement prior to any call of that entry, the execution of the task is 
suspended until such a call is received. 

When an entry has been called and a corresponding accept statement has been reached, the 
sequence of statements, if any, of the accept statement is executed by the called task (while the 
calling task remains suspended). This interaction is called a rendezvous. Thereafter, the calling 
task and the task owning the entry continue their execution in parallel. 

If several tasks call the same entry before a corresponding accept statement is reached, the calls 
are queued; there is one queue associated with each entry. Each execution of an accept state¬ 
ment removes one call from the queue. The calls are processed in the order of arrival. 

An attempt to call an entry of a task that has completed its execution raises the exception 
TASKING_ERROR at the point of the call, in the calling task; similarly, this exception is raised at the 
point of the call if the called task completes its execution before accepting the call (see also 9.1 0 
for the case when the called task becomes abnormal). The exception CONSTRAINT_ERROR is 
raised if the index of an entry of a family is not within the specified discrete range. 

Examples of entry declarations: 

entry READ(V : out ITEM); 
entry SEIZE; 
entry REQUEST(LEVEL)(D : ITEM); 

Examples of entry calls: 

8 family of entries 

CONTROL. RELEASE; 
PRODUCER_CONSUMER.WRITE(E); 
POOL(5).READ(NEXT_CHAR); 
CONTROLLER.REQUEST(LOWHSOMEJTEM); 

see 9.2 and 9.1 
see 9.1 
see 9.2 and 9.1 
see 9.1 

9-9 Entries, Entry Calls, and Accept Statements 9.5 



ANSI/M/L-STD-1815A Ada Reference Manual 

Examples of accept statements: 

accept SEIZE; 

accept READ(V : out ITEM) do 
V := LOCALJTEM; 

end READ; 

accept REQUEST(LOW)(D : ITEM) do 

end REQUEST; 

Notes: 

The formal part given in an accept statement is not elaborated; it is only used to identify the cor¬ 
responding entry. 

An accept statement can call subprograms that issue entry calls. An accept statement need not 
have a sequence of statements even if the corresponding entry has parameters. Equally, it can 
have a sequence of statements even if the corresponding entry has no parameters. The sequence 
of statements of an accept statement can include return statements. A task can call its own entries 
but it will, of course, deadlock. The language permits conditional and timed entry calls (see 9.7.2 
and 9.7.3). The language rules ensure that a task can only be in one entry queue at a given time. 

If the bounds of the discrete range of an entry family are integer literals, the index (in an entry 
name or accept statement) must be of the predefined type INTEGER (see 3.6.1). 

References: abnormal task 9.10, actual parameter part 6.4, completed task 9.4, conditional entry call 9.7.2, 

conformance rules 6.3.1, constraint_error exception 11.1, designate 9.1, discrete range 3.6.1, elaboration 3.1 3.9, 

enumeration literal 3.5.1, evaluation 4.5, expression 4.4, formal part 6.1, identifier 2.3, indexed component 4.1.1, 

integer type 3.5.4, name 4.1, object 3.2, overloading 6.6 8.7, parallel execution 9, prefix 4.1, procedure 6, procedure 

call 6.4, renaming declaration 8.5, return statement 5.8, scope 8.2, selected component 4.1.3, selector 4.1.3, 

sequence of statements 5.1, simple expression 4.4, simple name 4.1, subprogram 6, subprogram body 6.3, sub¬ 

program declaration 6.1, task 9, task body 9.1, task specification 9.1, tasking_error exception 1 1.1, timed entry call 

9 7 3 

9.6 Delay Statements, Duration, and Time 

The execution of a delay statement evaluates the simple expression, and suspends further execu¬ 
tion of the task that executes the delay statement, for at least the duration specified by the 
resulting value. 

delay_statement ::= delay simple_expression; 

The simple expression must be of the predefined fixed point type DURATION ; its value is 
expressed in seconds; a delay statement with a negative value is equivalent to a delay statement 
with a zero value. 

Any implementation of the type DURATION must allow representation of durations (both positive 
and negative) up to at least 86400 seconds (one day); the smallest representable duration, 
DURATION'SMALl must not be greater than twenty milliseconds (whenever possible, a value not 
greater than fifty microseconds should be chosen). Note that DURATION'SMALL need not 
correspond to the basic clock cycle, the named number SYSTEM .TICK (see 1 3.7). 

9.6 Delay Statements, Duration, and Time 9-10 



Tasks 

The definition of the type TIME is provided in the predefined library package CALENDAR. The 
function CLOCK returns the current value of TIME at the time it is called The functions YEAR, 
MONTH , DAY and SECONDS return the corresponding values for a given value of the type TIME ; 
the procedure SPLIT returns all four corresponding values. Conversely, the function TIME_OF 
combines a year number, a month number, a day number, and a duration, into a value of type 
TIME. The operators " + " and for addition and subtraction of times and durations, and the 
relational operators for times, have the conventional meaning. 

The exception TIME_ERROR is raised by the function TIME_OF if the actual parameters do not form 
a proper date. This exception is also raised by the operators "+" and if, for the given operands, 
these operators cannot return a date whose year number is in the range of the corresponding sub- 
type, or if the operatorcannot return a result that is in the range of the type DURATION . 

package CALENDAR is 
type TIME is private; 

subtype YEAR_NUMBER is INTEGER range 1901 .. 2099; 

subtype MONTH_NUMBER is INTEGER range 1 .. 12; 

subtype DAY_NUMBER is INTEGER range 1 .. 31; 
subtype DAY_DURATION is DURATION range 0.0 . . 86_400.0 

function CLOCK return TIME; 

function YEAR (DATE 
function MONTH (DATE 
function DAY (DATE 
function SECONDS (DATE 

TIME) return YEAR.NUMBER; 
TIME) return MONTH_NUMBER; 
TIME) return DAY_NUMBER; 
TIME) return DAY_DURATION; 

procedure SPLIT ( DATE 
YEAR 
MONTH 
DAY 
SECONDS 

: in TIME; 
: out YEAR_NUMBER; 
: out MONTH_NUMBER; 
: out DAY_NUMBER; 
: out DAY_DURATION); 

function TIME_OF( YEAR 
MONTH 
DAY 
SECONDS 

YEAR_NUMBER; 
MONTH_NUMBER; 
DAY_N UMBER; 
DAY_DURATION := 0.0) return TIME; 

function (LEFT : TIME; RIGHT DURATION) return TIME; 
function (LEFT : DURATION; RIGHT TIME) return TIME; 
function (LEFT ; TIME; RIGHT DURATION) return TIME; 
function (LEFT : TIME; RIGHT TIME) return DURATION 

function X" (LEFT, RIGHT TIME return BOOLEAN; 
function '<=" (LEFT, RIGHT TIME return BOOLEAN; 
function (LEFT, RIGHT TIME return BOOLEAN; 
function (LEFT, RIGHT TIME return BOOLEAN; 

TIME_ERROR : exception; -- can be raised by TIME_OF, "+", and 

private 
-- implementation-dependent 

end; 

9-11 Delay Statements, Duration, and Time 9.6 



ANSI/MIL-STD-1815A Ada Reference Manual 

8 Examples: 

delay 3.0; -- delay 3.0 seconds 

declare 
use CALENDAR; 
— INTERVAL is a global constant of type DURATION 
NEXT_TIME : TIME := CLOCK + INTERVAL; 

begin 

loop 
delay NEXT_TIME - CLOCK; 

some actions 
NEXT_TIME := NEXT_TIME + INTERVAL; 

end loop; 
end; 

Notes: 

9 The second example causes the loop to be repeated every INTERVAL seconds on average. This 
interval between two successive iterations is only approximate. However, there will be no 
cumulative drift as long as the duration of each iteration is (sufficiently) less than INTERVAL. 

io References: adding operator 4.5, duration C, fixed point type 3.5.9, function call 6.4, library unit 10.1, operator 4.5, 

package 7, private type 7.4, relational operator 4.5, simple expression 4.4, statement 5, task 9, type 3.3 

9.7 Select Statements 

1 There are three forms of select statements. One form provides a selective wait for one or more 
alternatives. The other two provide conditional and timed entry calls. 

2 select_statement selective_wait 
| conditional_entry_call | timed_entry_call 

3 References: selective wait 9.7.1, conditional entry call 9.7.2, timed entry call 9.7.3 

9.7.1 Selective Waits 

This form of the select statement allows a combination of waiting for, and selecting from, one or 
more alternatives. The selection can depend on conditions associated with each alternative of the 
selective wait. 

9. 7. 7 Selective Waits 9-12 



selective_wait 
select 

select_alternative 
I or 

select_alternative) 
[ else 

sequence__of_statements] 
end select; 

select_alternative ::= 
[ when condition =>] 

selective_wait_alternative 

selective_wait_alternative ::= accept_alternative 
| delay_alternative | terminate_alternative 

accept_alternative ::= accept_statement [sequence_of_statements] 

delay_alternative ::= delay_statement [sequence_of_statements] 

terminate_alternative ::= terminate; 

A selective wait must contain at least one accept alternative. In addition a selective wait can con¬ 
tain either a terminate alternative (only one), or one or more delay alternatives, or an else part; 
these three possibilities are mutually exclusive. 

A select alternative is said to be open if it does not start with when and a condition, or if the condi¬ 
tion is TRUE. It is said to be dosed otherwise. 

For the execution of a selective wait, any conditions specified after when are evaluated in some 
order that is not defined by the language; open alternatives are thus determined. For an open 
delay alternative, the delay expression is also evaluated. Similarly, for an open accept alternative 
for an entry of a family, the entry index is also evaluated. Selection and execution of one open 
alternative, or of the else part, then completes the execution of the selective wait; the rules for this 
selection are described below. 

Open accept alternatives are first considered. Selection of one such alternative takes place 
immediately if a corresponding rendezvous is possible, that is, if there is a corresponding entry call 
issued by another task and waiting to be accepted. If several alternatives can thus be selected, 
one of them is selected arbitrarily (that is, the language does not define which one). When such an 
alternative is selected, the corresponding accept statement and possible subsequent statements 
are executed. If no rendezvous is immediately possible and there is no else part, the task waits 
until an open selective wait alternative can be selected. 

Selection of the other forms of alternative or of an else part is performed as follows; 

« An open delay alternative will be selected if no accept alternative can be selected before the 
specified delay has elapsed (immediately, for a negative or zero delay in the absence of 
queued entry calls); any subsequent statements of the alternative are then executed. If several 
delay alternatives can thus be selected (that is, if they have the same d'elay), one of them is 
selected arbitrarily. 

• The else part is selected and its statements are executed if no accept alternative can be 
immediately selected, in particular, if all alternatives are closed. 

• An open terminate alternative is selected if the conditions stated in section 9.4 are satisfied. 
It is a consequence of other rules that a terminate alternative cannot be selected while there is 
a queued entry call for any entry of the task. 

9-13 Selective Waits 9.7.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

The exception PROGRAM_ERROR is raised if all alternatives are closed and there is no else part. 

Examples of a select statement: 

select 
accept DRIVER_AWAKE_SIGNAL; 

or 
delay 3Q.Q*SECQNDS; 
STOP_THE_TRAIN; 

end select; 

Example of a task body with a select statement: 

task body RESOURCE is 
BUSY : BOOLEAN := FALSE; 

begin 
loop 

select 
when not BUSY => 

accept SEIZE do 
BUSY := TRUE; 

end; 
or 

accept RELEASE do 
BUSY := FALSE; 

end; 
or 

terminate; 
end select; 

end loop; 
end RESOURCE; 

Notes: 

A selective wait is allowed to have several open delay alternatives. A selective wait is allowed to 
have several open accept alternatives for the same entry. 

References: accept statement 9.5, condition 5.3, declaration 3.1, delay expression 9.6, delay statement 9.6, duration 

9.6, entry 9.5, entry call 9.5, entry index 9.5, program_error exception 11.1, queued entry call 9.5, rendezvous 9.5, 

select statement 9.7, sequence of statements 5.1, task 9 

9.7.2 Conditional Entry Calls 

A conditional entry call issues an entry call that is then canceled if a rendezvous is not immediately 
possible. 

conditional_entry_call ::= 
select 

entry_call_statement 
[ sequence_of_statements] 

else 
sequence_of_statements 

end select; 

9.7.2 Conditional Entry Calls 9-14 



Tasks 

For the execution of a conditional entry call, the entry name is first evaluated. This is followed by 
any evaluations required for actual parameters as in the case of a subprogram call (see 6.4). 

The entry call is canceled if the execution of the called task has not reached a point where it is „ 
ready to accept the call (that is, either an accept statement for the corresponding entry, or a select 
statement with an open accept alternative for the entry), or if there are prior queued entry calls for 
this entry. If the called task has reached a select statement, the entry call is canceled if an accept 
alternative for this entry is not selected. 

If the entry call is canceled, the statements of the else part are executed. Otherwise, the rendez- 5 

vous takes place; and the optional sequence of statements after the entry call is then executed. 

The execution of a conditional entry call raises the exception TASKING_ERROR if the called task 6 
has already completed its execution (see also 9.10 for the case when the called task becomes 
abnormal). 

Example: 7 

procedure SPIN(R : RESOURCE) is 
begin 

loop 
select 

R.SEIZE; 

return; 
else 

null; -- busy waiting 
end select; 

end loop; 
end; 

References: abnormal task 9.10, accept statement 9.5, actual parameter part 6.4, completed task 9.4, entry call 8 

statement 9.5, entry family 9.5, entry index 9.5, evaluation 4.5. expression 4.4, open alternative 9.7.1, queued entry 

call 9.5, rendezvous 9.5, select statement 9.7, sequence of statements 5.1, task 9, tasking_error exception 11.1 

9.7.3 Timed Entry Calls 

A timed entry call issues an entry call that is canceled if a rendezvous is not started within a given 
delay. 

timed_entry_call 
select 

entry_call_statement 
[ sequence_of_statements] 

or 
delay_alternative 

end select; 

9-15 Timed Entry Calls 9.7.3 



ANSI/M/L-STD-1815A Ada Reference Manual 

For the execution of a timed entry call, the entry name is first evaluated. This is followed by any 
evaluations required for actual parameters as in the case of a subprogram call (see 6.4). The 
expression stating the deiay is then evaluated, and the entry call is finally issued. 

4 If a rendezvous can be started within the specified duration (or immediately, as for a conditional 
entry call, for a negative or zero delay), it is performed and the optional sequence of statements 
after the entry call is then executed. Otherwise, the entry call is canceled when the specified dura¬ 
tion has expired, and the optional sequence of statements of the delay alternative is executed. 

5 The execution of a timed entry call raises the exception TASKING_ERROR if the called task 
completes its execution before accepting the call (see also 9.10 for the case when the called task 
becomes abnormal). 

6 Example: 

select 
CONTROLLER.REQUEST(MEDIUM)(SOME_ITEM); 

or 
delay 45.0; 

controller too busy, try something else 
end select; 

7 References: abnormal task 9.10, accept statement 9.5, actual parameter part 6.4, completed task 9.4, conditional 

entry call 9.7.2, delay expression 9.6, delay statement 9.6, duration 9.6, entry call statement 9.5, entry family 9.5, 

entry index 9.5, evaluation 4.5, expression 4.4, rendezvous 9.5, sequence of statements 5.1, task 9, tasking_error 

exception 11.1 

9.8 Priorities 

1 Each task may (but need not) have a priority, which is a value of the subtype PRIORITY (of the type 
INTEGER ) declared in the predefined library package SYSTEM (see 1 3.7). A lower value indicates a 
lower degree of urgency; the range of priorities is implementation-defined. A priority is associated 
with a task if a pragma 

pragma PRIORITY [static^expression); 

2 appears in the corresponding task specification; the priority is given by the value of the expression. 
A priority is associated with the main program if such a pragma appears in its outermost 
declarative part. At most one such pragma can appear within a given task specification or for a 
subprogram that is a library unit, and these are the only allowed places for this pragma. A pragma 
PRIORITY has no effect if it occurs in a subprogram other than the main program. 

3 The specification of a priority is an indication given to assist the implementation in the allocation of 
processing resources to parallel tasks when there are more tasks eligible for execution than can be 
supported simultaneously by the available processing resources. The effect of priorities on 
scheduling is defined by the following rule: 

4 If two tasks with different priorities are both eligible for execution and could sensibly be 
executed using the same physical processors and the same other processing resources, then it 
cannot be the case that the task with the lower priority is executing while the task with the 
higher priority is not. 

9.8 Priorities 9-16 



Tasks 

For tasks of the same priority, the scheduling order is not defined by the language. For tasks 
without explicit priority, the scheduling rules are not defined, except when such tasks are engaged 
in a rendezvous. If the priorities of both tasks engaged in a rendezvous are defined, the rendezvous 
is executed with the higher of the two priorities. If only one of the two priorities is defined, the 
rendezvous is executed with at least that priority. If neither is defined, the priority of the rendez¬ 
vous is undefined. 

Notes: 

The priority of a task is static and therefore fixed. However, the priority during a rendezvous is not 
necessarily static since it also depends on the priority of the task calling the entry. Priorities should 
be used only to indicate relative degrees of urgency; they should not be used for task synchroniza¬ 
tion. 

References: declarative part 3.9, entry call statement 9.5, integer type 3.5.4, main program 10.1, package system 

13 7, pragma 2.8, rendezvous 9.5, static expression 4.9, subtype 3.3, task 9, task specification 9.1 

9.9 Task and Entry Attributes 

For a task object or value T the following attributes are defined: 

T'CALLABLE Yields the value FALSE when the execution of the task designated by T is 
either completed or terminated, or when the task is abnormal. Yields the 
value TRUE otherwise. The value of this attribute is of the predefined type 
BOOLEAN. 

T'TERMINATED Yields the value TRUE if the task designated by T is terminated. Yields the 
value FALSE otherwise. The value of this attribute is of the predefined type 
BOOLEAN. 

In addition, the representation attributes STORAGE_SIZE, SIZE, and ADDRESS are defined for a 
task object T or a task type T (see 13.7.2). 

The attribute COUNT is defined for an entry E of a task unit T. The entry can be either a single 
entry or an entry of a family (in either case the name of the single entry or entry family can be 
either a simple or an expanded name). This attribute is only allowed within the body of T, but 
excluding within any program unit that is, itself, inner to the body of T. 

E'COUNT Yields the number of entry calls presently queued on the entry E (if the 
attribute is evaluated by the execution of an accept statement for the entry 
E, the count does not include the calling task). The value of this attribute is 
of the type universalJnteger. 

Note: 

Algorithms interrogating the attribute E'COUNT should take precautions to allow for the increase 
of the value of this attribute for incoming entry calls, and its decrease, for example with timed entry 
calls. 

References: abnormal task 9.10, accept statement 9.5, attribute 4.1.4, boolean type 3.5.3, completed task 9.4, 

designate 9.1, entry 9.5, false boolean value 3.5.3, queue of entry calls 9.5, storage unit 1 3.7, task 9, task object 9.2, 

task type 9.1, terminated task 9.4, timed entry call 9.7.3, true boolean value 3.5.3, universaUnteger type 3.5.4 

5 

6 

7 

i 

2 

3 

4 

5 

6 

7 

8 

9-17 Task and Entry Attributes 9.9 



ANS//MIL-STD-1815A Ada Reference Manual 

9.10 Abort Statements 

An abort statement causes one or more tasks to become abnormal, thus preventing any further 
rendezvous with such tasks. 

abort_statement abort task_name (, tasAr_name|; 

The determination of the type of each task name uses the fact that the type of the name is a task 
type. 

For the execution of an abort statement, the given task names are evaluated in some order that is 
not defined by the language. Each named task then becomes abnormal unless it is already ter¬ 
minated; similarly, any task that depends on a named task becomes abnormal unless it is already 
terminated. 

Any abnormal task whose execution is suspended at an accept statement, a select statement, or a 
delay statement becomes completed; any abnormal task whose execution is suspended at an entry 
call, and that is not yet in a corresponding rendezvous, becomes completed and is removed from 
the entry queue; any abnormal task that has not yet started its activation becomes completed (and 
hence also terminated). This completes the execution of the abort statement. 

The completion of any other abnormal task need not happen before completion of the abort state¬ 
ment. It must happen no later than when the abnormal task reaches a synchronization point that is 
one of the following: the end of its activation; a point where it causes the activation of another 
task; an entry call; the start or the end of an accept statement; a select statement; a delay state¬ 
ment; an exception handler; or an abort statement. If a task that calls an entry becomes abnor¬ 
mal while in a rendezvous, its termination does not take place before the completion of the rendez¬ 
vous (see 1 1.5). 

The call of an entry of an abnormal task raises the exception TASKING_ERROR at the place of the 
call. Similarly, the exception TASKING_ERROR is raised for any task that has called an entry of an 
abnormal task, if the entry call is still queued or if the rendezvous is not yet finished (whether the 
entry call is an entry call statement, or a conditional or timed entry call); the exception is raised no 
later than the completion of the abnormal task. The value of the attribute CALLABLE is FALSE for 
any task that is abnormal (or completed). 

If the abnormal completion of a task takes place while the task updates a variable, then the value 
of this variable is undefined. 

Example: 

abort USER, TERMINAL .ail, P00L(3); 

Notes: 

An abort statement should be used only in extremely severe situations requiring unconditional ter¬ 
mination. A task is allowed to abort any task, including itself. 

References: abnormal in rendezvous 1 1.5, accept statement 9.5, activation 9.3, attribute 4.1.4, callable (predefined 

attribute) 9.9, conditional entry call 9.7.2, delay statement 9.6, dependent task 9.4, entry call statement 9.5, evalua¬ 

tion of a name 4.1, exception handler 1 1.2, false boolean value 3.5.3, name 4.1, queue of entry calls 9.5, rendezvous 

9 5 select statement 9.7, statement 5, task 9, tasking_error exception 11.1, terminated task 9.4, timed entry call 9.7.3 

9. TO Abort Statements 9-18 



Tasks 

9.11 Shared Variables 

The normal means of communicating values between tasks is by entry calls and accept state¬ 
ments. 

If two tasks read or update a shared variable (that is, a variable accessible by both), then neither of 
them may assume anything about the order in which the other performs its operations, except at 
the points where they synchronize. Two tasks are synchronized at the start and at the end of their 
rendezvous. At the start and at the end of its activation, a task is synchronized with the task that 
causes this activation. A task that has completed its execution is synchronized with any other task. 

For the actions performed by a program that uses shared variables, the following assumptions can 
always be made: 

• If between two synchronization points of a task, this task reads a shared variable whose type 
is a scalar or access type, then the variable is not updated by any other task at any time 
between these two points. 

• If between two synchronization points of a task, this task updates a shared variable whose 
type is a scalar or access type, then the variable is neither read nor updated by any other task 
at any time between these two points. 

The execution of the program is erroneous if any of these assumptions is violated. 

If a given task reads the value of a shared variable, the above assumptions allow an implementa¬ 
tion to maintain local copies of the value (for example, in registers or in some other form of tem¬ 
porary storage); and for as long as the given task neither reaches a synchronization point nor 
updates the value of the shared variable, the above assumptions imply that, for the given task, 
reading a local copy is equivalent to reading the shared variable itself. 

Similarly, if a given task updates the value of a shared variable, the above assumptions allow an 
implementation to maintain a local copy of the value, and to defer the effective store of the local 
copy into the shared variable until a synchronization point, provided that every further read or 
update of the variable by the given task is treated as a read or update of the local copy. On the 
other hand, an implementation is not allowed to introduce a store, unless this store would also be 
executed in the canonical order (see 11.6). 

The pragma SHARED can be used to specify that every read or update of a variable is a 
synchronization point for that variable; that is, the above assumptions always hold for the given 
variable (but not necessarily for other variables). The form of this pragma is as follows: 

pragma SHARED(v3/7a6/e_simple_name); 

This pragma is allowed only for a variable declared by an object declaration and whose type is a 
scalar or access type; the variable declaration and the pragma must both occur (in this order) 
immediately within the same declarative part or package specification; the pragma must appear 
before any occurrence of the name of the variable, other than in an address clause. 

An implementation must restrict the objects for which the pragma SHARED is allowed to objects 
for which each of direct reading and direct updating is implemented as an indivisible operation. 

References: accept statement 9.5, activation 9.3, assignment 5.2, canonical order 1 1.6, declarative part 3.9, entry 

call statement 9.5, erroneous 1.6, global 8.1, package specification 7.1, pragma 2.8, read a value 6.2, rendezvous 9.5, 

simple name 3.1 4.1, task 9, type 3.3, update a value 6.2, variable 3.2.1 

9-19 Shared Variables 9.11 



ANSI/MIL-STD-1815A Ada Reference Manual 

9.12 Example of Tasking 

1 The following example defines a buffering task to smooth variations between the speed of output 
of a producing task and the speed of input of some consuming task. For instance, the producing 
task may contain the statements 

2 loop 

produce the next character CHAR 
BUFFER.WRITE(CHAR); 
exit when CHAR = ASCII.EOT; 

end loop; 

3 and the consuming task may contain the statements 

4 lOOp 

BUFFER.READ(CHAR); 
consume the character CHAR 

exit when CHAR = ASCII.EOT; 
end loop; 

5 The buffering task contains an internal pool of characters processed in a round-robin fashion. The 
pool has two indices, an INJNDEX denoting the space for the next input character and an 
OUTJNDEX denoting the space for the next output character. 

6 task BUFFER is 
entry READ (C : out CHARACTER); 
entry WRITE (C : in CHARACTER); 

end; 

task body BUFFER is 
POOI—SIZE : constant INTEGER := 100; 
POOL : array( 1 .. PQQLSIZE) of CHARACTER; 
COUNT : INTEGER range 0 .. POOLSIZE := 0; 
INJNDEX, OUTJNDEX : INTEGER range 1 .. POOL_SlZE := 1; 

begin 
loop 

select 
when COUNT < POOUSIZE => 

accept WRITE(C : in CHARACTER) do 
POOL(INJNDEX) := C; 

end; 
INJNDEX := INJNDEX mod POOLSIZE + 1; 
COUNT := COUNT + 1; 

or when COUNT > 0 => 
accept READ(C : out CHARACTER) do 

C := POOL(OUTJNDEX); 
end; 
OUTJNDEX := OUTJNDEX mod PQ0L_SIZE + 1; 
COUNT := COUNT - 1; 

or 
terminate; 

end select; 
end loop; 

end BUFFER; 

9.12 Example of Tasking 9-20 



10. Program Structure and Compilation Issues 

The overall structure of programs and the facilities for separate compilation are described in this , 
chapter. A program is a collection of one or more compilation units submitted to a compiler in one 
or more compilations. Each compilation unit specifies the separate compilation of a construct 
which can be a subprogram declaration or body, a package declaration or body, a generic declara¬ 
tion or body, or a generic instantiation. Alternatively this construct can be a subunit, in which case 
it includes the body of a subprogram, package, task unit, or generic unit declared within another 
compilation unit. 

References: compilation 10.1, compilation unit 10.1, generic body 12.2, generic declaration 12.1, generic 2 

instantiation 12.3, package body 7.1, package declaration 7.1, subprogram body 6.3, subprogram declaration 6.1, 

subunit 10.2, task body 9.1, task unit 9 

10.1 Compilation Units - Library Units 

The text of a program can be submitted to the compiler in one or more compilations. Each com- 1 

pilation is a succession of compilation units. 

compilation ::= |compilation_unit( 2 

compilation_unit ::= 
context_clause library_unit | context_clause secondary_unit 

library_unit ::= 
subprogram_declaration | package_declaration 

| generic_declaration | generic_instantiation 
| subprogram_body 

secondary_uuit library_unit_body | subunit 

library_unit_body ::= subprogram_body | packageJoody 

The compilation units of a program are said to belong to a program library. A compilation unit 3 

defines either a library unit or a secondary unit. A secondary unit is either the separately compiled 
proper body of a library unit, or a subunit of another compilation unit. The designator of a 
separately compiled subprogram (whether a library unit or a subunit) must be an identifier. Within 
a program library the simple names of all library units must be distinct identifiers. 

The effect of compiling a library unit is to define (or redefine) this unit as one that belongs to the 4 

program library. For the visibility rules, each library unit acts as a declaration that occurs 
immediately within the package STANDARD. 

The effect of compiling a secondary unit is to define the body of a library unit, or in the case of a 5 

subunit, to define the proper body of a program unit that is declared within another compilation 
unit. 

10-1 Compilation Units - Library Units 10.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

e A subprogram body given in a compilation unit is interpreted as a secondary unit if the program 
library already contains a library unit that is a subprogram with the same name; it is otherwise 
interpreted both as a library unit and as the corresponding library unit body (that is, as a secondary 
unit). 

7 The compilation units of a compilation are compiled in the given order. A pragma that applies to 
the whole of a compilation must appear before the first compilation unit of that compilation. 

s A subprogram that is a library unit can be used as a main program in the usual sense. Each main 
program acts as if called by some environment task; the means by which this execution is initiated 
are not prescribed by the language definition. An implementation may impose certain require¬ 
ments on the parameters and on the result, if any, of a main program (these requirements must be 
stated in Appendix F). In any case, every implementation is required to allow, at least, main 
programs that are parameterless procedures, and every main program must be a subprogram that 
is a library unit. 

Notes: 

9 A simple program may consist of a single compilation unit. A compilation need not have any com¬ 
pilation units; for example, its text can consist of pragmas. 

10 The designator of a library function cannot be an operator symbol, but a renaming declaration is 
allowed to rename a library function as an operator. Two library subprograms must have distinct 
simple names and hence cannot overload each other. However, renaming declarations are 
allowed to define overloaded names for such subprograms, and a locally declared subprogram is 
allowed to overload a library subprogram. The expanded name STANDARD.L can be used for a 
library unit L (unless the name STANDARD is hidden) since library units act as declarations that 
occur immediately within the package STANDARD . 

References: allow 1.6, context clause 10.1.1, declaration 3.1, designator 6.1, environment 1 0.4, generic declaration 

12.1, generic instantiation 12.3, hiding 8.3, identifier 2.3, library unit 10.5, local declaration 8.1, must 1.6, name 4.1, 

occur immediately within 8.1, operator 4.5, operator symbol 6.1, overloading 6.6 8.7, package body 7.1, package 

declaration 7.1, parameter of a subprogram 6.2, pragma 2.8, procedure 6.1, program unit 6, proper body 3.9, renam¬ 

ing declaration 8.5, simple name 4.1, standard package 8.6, subprogram 6, subprogram body 6.3, subprogram 

declaration 6.1, subunit 10.2, task 9, visibility 8.3 

10.1.1 Context Clauses - With Clauses 

A context clause is used to specify the library units whose names are needed within a compilation 
unit. 

2 context_clause (with_clause |use_clause)I 

with_clause with ivn/Y_simple_name |, un/'r_simple_name); 

3 The names that appear in a context clause must be the simple names of library units. The simple 
name of any library unit is allowed within a with clause. The only names allowed in a use clause of 
a context clause are the simple names of library packages mentioned by previous with clauses of 
the context clause. A simple name declared by a renaming declaration is not allowed in a context 
clause. 

4 The with clauses and use clauses of the context clause of a library unit apply to this library unit and 
also to the secondary unit that defines the corresponding body (whether such a clause is repeated 
or not for this unit). Similarly, the with clauses and use clauses of the context clause of a compila¬ 
tion unit apply to this unit and also to its subunits, if any. 

10.1.1 Context Clauses - With Clauses 10-2 



Program Structure and Compilation Issues 

If a library unit is named by a with clause that applies to a compilation unit, then this library unit is 
directly visible within the compilation unit, except where hidden; the library unit is visible as if 
declared immediately within the package STANDARD (see 8.6). 

Dependences among compilation units are defined by with clauses; that is, a compilation unit that 
mentions other library units in its with clauses depends on those library units. These dependences 
between units are taken into account for the determination of the allowed order of compilation 
(and recompilation) of compilation units, as explained in section 10.8, and for the determination of 
the allowed order of elaboration of compilation units, as explained in section 10.5. 

Notes: 

A library unit named by a with clause of a compilation unit is visible (except where hidden) within 
the compilation unit and hence can be used as a corresponding program unit. Thus within the 
compilation unit, the name of a library package can be given in use clauses and can be used to 
form expanded names; a library subprogram can be called; and instances of a library generic unit 
can be declared. 

The rules given for with clauses are such that the same effect is obtained whether the name of a 
library unit is mentioned once or more than once by the applicable with clauses, or even within a 
given with clause. 

Example 1 : A main program: 

The following is an example of a main program consisting of a single compilation unit: a procedure 
for printing the real roots of a quadratic equation. The predefined package TEXTJO and a user- 
defined package REAL.OPE RATIONS (containing the definition of the type REAL and of the 
packages REALJO and REAL-FUNCTIONS) are assumed to be already present in the program 
library. Such packages may be used by other main programs. 

with TEXTJO, REAI_OPERATIONS; use REALOPERATIONS; 
procedure QUADRATIC-EQUATION is 

A, B, C, D : REAL; 
use REALJO, — achieves direct visibility of GET and PUT for REAL 

TEXTJO, -- achieves direct visibility of PUT for strings and of NEW_LINE 
REAI_FUNCTIONS; — achieves direct visibility of SORT 

begin 
GET(A); GET(B); GET(C); 
D := B**2 - 4.0*A*C; 
if D < 0.0 then 

PUT("lmaginary Roots."); 
else 

PUTC'Real Roots : XI = "); 
PUT((-B - SQRT(D))/(2.Q*A)); PUT(" X2 = "); 
PUT((-B + SQRT(D))/(2.0*A)); 

end if; 
NEWJ.INE; 

end QUADRATIC_EQUATION; 

Notes on the example: 

The with clauses of a compilation unit need only mention the names of those library subprograms 
and packages whose visibility is actually necessary within the unit. They need not (and should not) 
mention other library units that are used in turn by some of the units named in the with clauses, 
unless these other library units are also used directly by the current compilation unit. For example, 
the body of the package REAL_OPERATIONS may need elementary operations provided by other 
packages. The latter packages should not be named by the with clause of QUADRATIC_EQUATION 
since these elementary operations are not directly called within its body. 

10-3 Context Clauses - With Clauses 10.1.1 



ANSI/M/L-STD-1815A Ada Reference Manual 

References: allow 1.6, compilation unit 10.1, direct visibility 8.3, elaboration 3.9, generic body 12.2, generic unit 

12 1, hiding 8.3, instance 1 2.3, library unit 10.1, main program 10.1, must 1.6, name 4.1, package 7, package body 

7.1. package declaration 7.1, procedure 6.1, program unit 6, secondary unit 10.1, simple name 4.1, standard 

predefined package 8.6, subprogram body 6.3, subprogram declaration 6.1, subunit 10.2, type 3.3, use clause 8.4, 

visibility 8.3 

10.1.2 Examples of Compilation Units 

A compilation unit can be split into a number of compilation units. For example, consider the fol¬ 
lowing program. 

procedure PROCESSOR is 

SMALL : constant := 20; 
TOTAL ; INTEGER := 0; 

package STOCK is 
LIMIT : constant := 1000; 
TABLE : array (1 .. LIMIT) of INTEGER; 
procedure RESTART; 

end STOCK; 

package body STOCK is 
procedure RESTART is 
begin 

for N in 1 .. LIMIT loop 
TABLE(N) := N; 

end loop; 
end; 

begin 
RESTART; 

end STOCK; 

procedure UPDATE(X : INTEGER) is 
use STOCK; 

begin 

TABLE(X) := TABLE(X) + SMALL; 

end UPDATE; 

begin 

STOCK.RESTART; - reinitializes TABLE 

end PROCESSOR; 

The following three compilation units define a program with an effect equivalent to the above 
example (the broken lines between compilation units serve to remind the reader that these units 
need not be contiguous texts). 

10. 1.2 Examples of Compilation Units 10-4 



Program Structure and Compilation Issues 

Example 2 : Several compilation units: 

package STOCK is 
LIMIT : constant := 1000; 
TABLE : array (1 .. LIMIT) of INTEGER; 
procedure RESTART; 

end STOCK; 

package body STOCK is 
procedure RESTART is 
begin 

for N in 1 .. LIMIT loop 
TABLE(N) := N; 

end loop; 
end; 

begin 
RESTART; 

end STOCK; 

with STOCK; 
procedure PROCESSOR is 

SMALL : constant := 20; 
TOTAL : INTEGER := 0; 

procedure UPDATE(X ; INTEGER) is 
use STOCK; 

begin 

TABLE(X) := TABLE(X) + SMALL; 

end UPDATE; 
begin 

STOCK.RESTART; - reinitializes TABLE 

end PROCESSOR; 

Note that in the latter version, the package STOCK has no visibility of outer identifiers other than 
the predefined identifiers (of the package STANDARD). In particular, STOCK does not use any 
identifier declared in PROCESSOR such as SMALL or TOTAL; otherwise STOCK could not have 
been extracted from PROCESSOR in the above manner. The procedure PROCESSOR, on the other 
hand, depends on STOCK and mentions this package in a with clause. This permits the inner 
occurrences of STOCK in the expanded name STOCK .RESTART and in the use clause. 

These three compilation units can be submitted in one or more compilations. For example, it is 
possible to submit the package specification and the package body together and in this order in a 
single compilation. 

References: compilation unit 10.1, declaration 3.1, identifier 2.3, package 7, package body 7.1, package specification 

7.1, program 10, standard package 8.6, use clause 8.4, visibility 8.3, with clause 10.1.1 

10-5 Examples of Compilation Units 10.1.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

10.2 Subunits of Compilation Units 

, A subunit is used for the separate compilation of the proper body of a program unit declared within 
another compilation unit. This method of splitting a program permits hierarchical program 
development. 

2 body_stub ::= 

subprogram_specification is separate; 
| package body pacA-a^e_simple_name is separate; 
| task body rasA_simple_name is separate; 

subunit 

separate (parent_unit_name) proper_body 

3 A body stub is only allowed as the body of a program unit (a subprogram, a package, a task unit, or 
a generic unit) if the body stub occurs immediately within either the specification of a library 
package or the declarative part of another compilation unit. 

4 If the body of a program unit is a body stub, a separately compiled subunit containing the cor¬ 
responding proper body is required. In the case of a subprogram, the subprogram specifications 
given in the proper body and in the body stub must conform (see 6.3.1). 

5 Each subunit mentions the name of its parent unit, that is, the compilation unit where the cor¬ 
responding body stub is given. If the parent unit is a library unit, it is called the ancestor library unit. 
If the parent unit is itself a subunit, the parent unit name must be given in full as an expanded 
name, starting with the simple name of the ancestor library unit. The simple names of all subunits 
that have the same ancestor library unit must be distinct identifiers. 

6 Visibility within the proper body of a subunit is the visibility that would be obtained at the place of 
the corresponding body stub (within the parent unit) if the with clauses and use clauses of the sub¬ 
unit were appended to the context clause of the parent unit. If the parent unit is itself a subunit, 
then the same rule is used to define the visibility within the proper body of the parent unit. 

7 The effect of the elaboration of a body stub is to elaborate the proper body of the subunit. 

Notes: 

s Two subunits of different library units in the same program library need not have distinct iden¬ 
tifiers. In any case, their full expanded names are distinct, since the simple names of library units 
are distinct and since the simple names of all subunits that have a given library unit as ancestor 
unit are also distinct. By means of renaming declarations, overloaded subprogram names that 
rename (distinct) subunits can be introduced. 

9 A library unit that is named by the with clause of a subunit can be hidden by a declaration (with the 
same identifier) given in the proper body of the subunit. Moreover, such a library unit can even be 
hidden by a declaration given within a parent unit since a library unit acts as if declared in 
STANDARD; this however does not affect the interpretation of the with clauses themselves, since 
only names of library units can appear in with clauses. 

10.2 Subunits of Compilation Units 10-6 



Program Structure and Compilation Issues 

References: compilation unit 10.1, conform 6.3.1, context clause 10.1.1, declaration 3.1, declarative part 3.9, direct 

visibility 8.3, elaboration 3.9, expanded name 4.1.3, generic body 12.2, generic unit 12, hidden declaration 8.3, iden¬ 

tifier 2.3, library unit 10.1, local declaration 8.1, name 4.1, occur immediately within 8.1, overloading 8.3, package 7 

package body 7.1, package specification 7.1, program 10, program unit 6, proper body 3.9, renaming declaration 8.5, 

separate compilation 10.1, simple name 4.1, subprogram 6, subprogram body 6.3, subprogram specification 6.1, task 

9, task body 9.1, task unit 9.1, use clause 8.4, visibility 8.3, with clause 10.1.1 

10.2.1 Examples of Subunits 

The procedure TOP is first written as a compilation unit without subunits. , 

with TEXTJO; 2 

procedure TOP is 

type REAL is digits 10; 
R, S : REAL := 1.0; 

package FACILITY is 
PI ; constant 3.14159_26536; 
function F (X : REAL) return REAL; 
procedure G (Y, Z : REAL); 

end FACILITY; 

package body FACILITY is 
some local declarations followed by 

function F(X : REAL) return REAL is 
begin 

sequence of statements of F 

end F; 

procedure G(Y, Z : REAL) is 
local procedures using TEXT_I0 

begin 
sequence of statements of G 

end G; 
end FACILITY; 

procedure TRANSFORM(U : in out REAL) is 
use FACILITY; 

begin 
U := F(U); 

end TRANSFORM; 
begin -- TOP 

TRANSFORM(R); 

FACILITY.G(R, S); 
end TOP; 

10-7 Examples of Subunits 10.2.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

The body of the package FACILITY and that of the procedure TRANSFORM can be made into 
separate subunits of TOP. Similarly, the body of the procedure G can be made into a subunit of 
FACILITY as follows. 

Example 3: 

procedure TOP is 

type REAL is digits 10; 
R, S : REAL := 1.0; 

package FACILITY is 
PI : constant := 3.14159_26536; 
function F (X : REAL) return REAL; 
procedure G (Y, Z : REAL); 

end FACILITY; 

package body FACILITY is separate; — stub of FACILITY 
procedure TRANSFORMS : in out REAL) is separate; -- stub of TRANSFORM 

begin — TOP 
TRANSFORM(R); 

FACILITY.G(R, S); 
end TOP; 

separate (TOP) 
procedure TRANSFORM(U : in out REAL) is 

use FACILITY; 
begin 

U := F(U); 

end TRANSFORM; 

separate (TOP) 
package body FACILITY is 

some local declarations followed by 

function F(X : REAL) return REAL is 
begin 

sequence of statements of F 

end F; 

procedure G(Y, Z : REAL) is separate; — stub of G 
end FACILITY; 

10.2.1 Examples of Subunits 10-8 



Program Structure and Compilation Issues 

with TEXT_IO; 
separate (TOP.FACILITY) — full name of FACILITY 
procedure G(Y, Z : REAL) is 

local procedures using TEXT_IO 

begin 
sequence of statements of G 

end G; 

In the above example TRANSFORM and FACILITY are subunits of TOP, and G is a subunit of 
FACILITY. The visibility in the split version is the same as in the initial version except for one 
change: since TEXTJO is only used within G, the corresponding with clause is written for G 
instead of for TOP. Apart from this change, the same identifiers are visible at corresponding 
program points in the two versions. For example, all of the following are (directly) visible within 
the proper body of the subunit G: the procedure TOP, the type REAL, the variables R and S, the 
package FACILITY and the contained named number PI and subprograms F and G. 

References: body stub 10.2, compilation unit 10.1, identifier 2.3, local declaration 8.1, named number 3.2, package 

7, package body 7.1, procedure 6, procedure body 6.3, proper body 3.9, subprogram 6, type 3.3, variable 3.2.1, 

visibility 8.3, with clause 10.1.1 

10.3 Order of Compilation 

The rules defining the order in which units can be compiled are direct consequences of the visibility 
rules and, in particular, of the fact that any library unit that is mentioned by the context clause of a 
compilation unit is visible in the compilation unit. 

A compilation unit must be compiled after all library units named by its context clause. A secon¬ 
dary unit that is a subprogram or package body must be compiled after the corresponding library 
unit. Any subunit of a parent compilation unit must be compiled after the parent compilation unit. 

If any error is detected while attempting to compile a compilation unit, then the attempted com¬ 
pilation is rejected and it has no effect whatsoever on the program library; the same holds for 
recompilations (no compilation unit can become obsolete because of such a recompilation). 

The order in which the compilation units of a program are compiled must be consistent with the 
partial ordering defined by the above rules. 

Similar rules apply for recompilations. A compilation unit is potentially affected by a change in any 
library unit named by its context clause. A secondary unit is potentially affected by a change in the 
corresponding library unit. The subunits of a parent compilation unit are potentially affected by a 
change of the parent compilation unit. If a compilation unit is successfully recompiled, the com¬ 
pilation units potentially affected by this change are obsolete and must be recompiled unless they 
are no longer needed. An implementation may be able to reduce the compilation costs if it can 
deduce that some of the potentially affected units are not actually affected by the change. 

10-9 Order of Compilation 10.3 



ANSI/MIL-STD-1815A Ada Reference Manual 

The subunits of a unit can be recompiled without affecting the unit itself. Similarly, changes in a 
subprogram or package body do not affect other compilation units (apart from the subunits of the 
body) since these compilation units only have access to the subprogram or package specification. 
An implementation is only allowed to deviate from this rule for inline inclusions, for certain com¬ 
piler optimizations, and for certain implementations of generic program units, as described below. 

® If a pragma INLINE is applied to a subprogram declaration given in a package specification, 
inline inclusion will only be achieved if the package body is compiled before units calling the 
subprogram. In such a case, inline inclusion creates a dependence of the calling unit on the 
package body, and the compiler must recognize this dependence when deciding on the need 
for recompilation. If a calling unit is compiled before the package body, the pragma may be 
ignored by the compiler for such calls (a warning that inline inclusion was not achieved may 
be issued). Similar considerations apply to a separately compiled subprogram for which an 
INLINE pragma is specified. 

9 For optimization purposes, an implementation may compile several units of a given compila¬ 
tion in a way that creates further dependences among these compilation units. The compiler 
must then take these dependences into account when deciding on the need for recompila¬ 
tions. 

• An implementation may require that a generic declaration and the corresponding proper body 
be part of the same compilation, whether the generic unit is itself separately compiled or is 
local to another compilation unit. An implementation may also require that subunits of a 
generic unit be part of the same compilation. 

Examples of Compilation Order: 

(a) In example 1 (see 10.1.1): The procedure QUADRATIC_EQUATION must be compiled after the 
library packages TEXT JO and REAL-OPERATIONS since they appear in its with clause. 

(b) In example 2 (see 10.1.2): The package body STOCK must be compiled after the 
corresponding package specification. 

(c) In example 2 (see 1 0.1.2): The specification of the package STOCK must be compiled before 
the procedure PROCESSOR . On the other hand, the procedure PROCESSOR can be compiled 
either before or after the package body STOCK . 

(d) In example 3 (see 10.2.1): The procedure G must be compiled after the package TEXTJO 
since this package is named by the with clause of G. On the other hand, TEXTJO can be 
compiled either before or after TOP . 

(e) In example 3 (see 10.2.1): The subunits TRANSFORM and FACILITY must be compiled after 
the main program TOP. Similarly, the subunit G must be compiled after its parent unit 
FACILITY. 

Notes: 

For library packages, it follows from the recompilation rules that a package body is made obsolete 
by the recompilation of the corresponding specification. If the new package specification is such 
that a package body is not required (that is, if the package specification does not contain the 
declaration of a program unit), then the recompilation of a body for this package is not required. In 
any case, the obsolete package body must not be used and can therefore be deleted from the 
program library. 

7 0.3 Order of Compilation 10-10 



Program Structure and Compilation Issues 

References: compilation 10.1, compilation unit 10.1, context clause 10.1.1, elaboration 3.9, generic body 12.2, 

generic declaration 12.1, generic unit 12, library unit 10.1, local declaration 8.1, name 4.1, package 7, package body 

7.1 package specification 7.1, parent unit 10.2, pragma inline 6.3.2, procedure 6.1, procedure body 6.3, proper body 

3.9, secondary unit 10.1, subprogram body 6.3, subprogram declaration 6.1, subprogram specification 3.1, subunit 

10.2, type 3.3, variable 3.2.1, visibility 8.3, with clause 10.1.1 

10.4 The Program Library 

Compilers are required to enforce the language rules in the same manner for a program consisting 
of several compilation units (and subunits) as for a program submitted as a single compilation. 
Consequently, a library file containing information on the compilation units of the program library 
must be maintained by the compiler or compiling environment. This information may include sym¬ 
bol tables and other information pertaining to the order of previous compilations. 

A normal submission to the compiler consists of the compilation unit(s) and the library file. The 
latter is used for checks and is updated for each compilation unit successfully compiled. 

Notes: 

A single program library is implied for the compilation units of a compilation. The possible 
existence of different program libraries and the means by which they are named are not concerns 
of the language definition; they are concerns of the programming environment. 

There should be commands for creating the program library of a given program or of a given family 
of programs. These commands may permit the reuse of units of other program libraries. Finally, 
there should be commands for interrogating the status of the units of a program library. The form 
of these commands is not specified by the language definition. 

References: compilation unit 10.1, context clause 10.1.1, order of compilation 10.3, program 10.1, program library 

10.1, subunit 10.2, use clause 8.4, with clause 10.1.1 

10.5 Elaboration of Library Units 

Before the execution of a main program, all library units needed by the main program are 
elaborated, as well as the corresponding library unit bodies, if any. The library units needed by the 
main program are: those named by with clauses applicable to the main program, to its body, and 
to its subunits; those named by with clauses applicable to these library units themselves, to the 
corresponding library unit bodies, and to their subunits; and so on, in a transitive manner. 

The elaboration of these library units and of the corresponding library unit bodies is performed in 
an order consistent with the partial ordering defined by the with clauses (see 10.3). In addition, a 
library unit mentioned by the context clause of a subunit must be elaborated before the body of the 
ancestor library unit of the subunit. 

An order of elaboration that is consistent with this partial ordering does not always ensure that 
each library unit body is elaborated before any other compilation unit whose elaboration neces¬ 
sitates that the library unit body be already elaborated. If the prior elaboration of library unit 
bodies is needed, this can be requested by a pragma ELABORATE. The form of this pragma is as 
follows: 

pragma ELABORATE (//brary_an/f_simple_name |, //6rary_an/Y_simple_name}); 

10-1 1 Elaboration of Library Units 10.5 



ANSI/MIL-STD-1815A Ada Reference Manual 

These pragmas are only allowed immediately after the context clause of a compilation unit (before 
the subsequent library unit or secondary unit). Each argument of such a pragma must be the sim¬ 
ple name of a library unit mentioned by the context clause, and this library unit must have a library 
unit body. Such a pragma specifies that the library unit body must be elaborated before the given 
compilation unit. If the given compilation unit is a subunit, the library unit body must be 
elaborated before the body of the ancestor library unit of the subunit. 

The program is illegal if no consistent order can be found (that is, if a circularity exists). The 
elaboration of the compilation units of the program is performed in some order that is otherwise 
not defined by the language. 

References: allow 1.6, argument of a pragma 2.8, compilation unit 10.1, context clause 10.1.1, dependence between 

compilation units 1 0.3, elaboration 3.9, illegal 1.6, in some order 1.6, library unit 10.1, name 4.1, main program 10.1, 

pragma 2.8, secondary unit 10.1, separate compilation 10.1, simple name 4.1, subunit 10.2, with clause 10.1.1 

10.6 Program Optimization 

Optimization of the elaboration of declarations and the execution of statements may be performed 
by compilers. In particular, a compiler may be able to optimize a program by evaluating certain 
expressions, in addition to those that are static expressions. Should one of these expressions, 
whether static or not, be such that an exception would be raised by its evaluation, then the code in 
that path of the program can be replaced by code to raise the exception; the same holds for excep¬ 
tions raised by the evaluation of names and simple expressions. (See also section 11.6.) 

A compiler may find that some statements or subprograms will never be executed, for example, if 
their execution depends on a condition known to be FALSE. The corresponding object machine 
code can then be omitted. This rule permits the effect of conditional compilation within the 
language. 

Note: 

An expression whose evaluation is known to raise an exception need not represent an error if it 
occurs in a statement or subprogram that is never executed. The compiler may warn the program¬ 
mer of a potential error. 

References: condition 5.3, declaration 3.1, elaboration 3.9, evaluation 4.5, exception 11, expression 4.4, false 

boolean value 3.5.3, program 10, raising of exceptions 11.3, statement 5, static expression 4.9, subprogram 6 

10.6 Program Optimization 10-12 



11. Exceptions 

This chapter defines the facilities for dealing with errors or other exceptional situations that arise 
during program execution. Such a situation is called an exception. To raise an exception is to 
abandon normal program execution so as to draw attention to the fact that the corresponding 
situation has arisen. Executing some actions, in response to the arising of an exception, is called 
handling the exception. 

An exception declaration declares a name for an exception. An exception can be raised by a raise 
statement, or it can be raised by another statement or operation that propagates the exception. 
When an exception arises, control can be transferred to a user-provided exception handler at the 
end of a block statement or at the end of the body of a subprogram, package, or task unit. 

References: block statement 5.6, error situation 1.6, exception handler 11.2, name 4.1, package body 7.1, 

propagation of an exception 11.4.1 11.4.2, raise statement 11.3, subprogram body 6.3, task body 9.1 

11.1 Exception Declarations 

An exception declaration declares a name for an exception. The name of an exception can only be 
used in raise statements, exception handlers, and renaming declarations. 

exception_declaration ::= identifier_list : exception; 

An exception declaration with several identifiers is equivalent to a sequence of single exception 
declarations, as explained in section 3.2. Each single exception declaration declares a name for a 
different exception. In particular, if a generic unit includes an exception declaration, the exception 
declarations implicitly generated by different instantiations of the generic unit refer to distinct 
exceptions (but all have the same identifier). The particular exception denoted by an exception 
name is determined at compilation time and is the same regardless of how many times the excep¬ 
tion declaration is elaborated. Hence, if an exception declaration occurs in a recursive subprogram, 
the exception name denotes the same exception for all invocations of the recursive subprogram. 

The following exceptions are predefined in the language; they are raised when the situations 
described are detected. 

CONSTRAINT_ERROR This exception is raised in any of the following situations: upon an 
attempt to violate a range constraint, an index constraint, or a dis¬ 
criminant constraint; upon an attempt to use a record component that 
does not exist for the current discriminant values; and upon an 
attempt to use a selected component, an indexed component, a slice, 
or an attribute, of an object designated by an access value, if the 
object does not exist because the access value is null. 

11-1 Exception Declarations 11.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

NUMERIC_ERROR This exception is raised by the execution of a predefined numeric operation 
that cannot deliver a correct result (within the declared accuracy for real 
types); this includes the case where an implementation uses a predefined 
numeric operation for the execution, evaluation, or elaboration of some 
construct. The rules given in section 4.5.7 define the cases in which an 
implementation is not required to raise this exception when such an error 
situation arises; see also section 11.6. 

PROGRAM_ERRQR This exception is raised upon an attempt to call a subprogram, to activate a 
task, or to elaborate a generic instantiation, if the body of the cor¬ 
responding unit has not yet been elaborated. This exception is also raised if 
the end of a function is reached (see 6.5); or during the execution of a 
selective wait that has no else part, if this execution determines that all 
alternatives are closed (see 9.7.1). Finally, depending on the implementa¬ 
tion, this exception may be raised upon an attempt to execute an action 
that is erroneous, and for incorrect order dependences (see 1.6). 

STORAGE_ERROR This exception is raised in any of the following situations: when the dyna¬ 
mic storage allocated to a task is exceeded; during the evaluation of an 
allocator, if the space available for the collection of allocated objects is 
exhausted; or during the elaboration of a declarative item, or during the 
execution of a subprogram call, if storage is not sufficient. 

TASKING_ERROR This exception is raised when exceptions arise during intertask communi¬ 
cation (see 9 and 11.5). 

Note: 

The situations described above can arise without raising the corresponding exceptions, if the 
pragma SUPPRESS has been used to give permission to omit the corresponding checks (see 1 1.7). 

Examples of user-defined exception declarations: 

SINGULAR : exception; 
ERROR : exception; 
OVERFLOW, UNDERFLOW : exception; 

References: access value 3.8, collection 3.8, declaration 3.1, exception 11, exception handler 11.2, generic body 

12.2, generic instantiation 1 2.3, generic unit 12, identifier 2.3, implicit declaration 1 2.3, instantiation 1 2.3, name 4.1, 

object 3.2, raise statement 1 1.3, real type 3.5.6, record component 3.7, return statement 5.8, subprogram 6, sub¬ 

program body 6.3, task 9, task body 9.1 

Constraint_error exception contexts: aggregate 4.3.1 4.3.2, allocator 4.8, assignment statement 5.2 5.2.1, 

constraint 3.3.2, discrete type attribute 3.5.5, discriminant constraint 3.7.2, elaboration of a generic formal parameter 

12.3.1 12.3.2 12.3.4 12.3.5, entry index 9.5, exponentiating operator 4.5.6, index constraint 3.6.1, indexed compo¬ 

nent 4.1.1, logical operator 4.5.1, null access value 3.8, object declaration 3.2.1, parameter association 6.4.1, 

qualified expression 4.7, range constraint 3.5, selected component 4.1.3, slice 4.1.2, subtype indication 3.3.2, type 
conversion 4.6 

Numeric_error exception contexts: discrete type attribute 3.5.5, implicit conversion 3.5.4 3.5.6 4.6, numeric 

operation 3.5.5 3.5.8 3.5.10, operator of a numeric type 4.5 4.5.7 

Program_error exception contexts: collection 3.8, elaboration 3.9, elaboration check 3.9 7.3 9.3 12.2, erroneous 

1.6, incorrect order dependence 1.6, leaving a function 6.5, selective wait 9.7.1 

II.1 Exception Declarations 11-2 



Exceptions 

Storage_error exception contexts: allocator 4.8 

Tasking error exception contexts: abort statement 9.10, entry call 9.5 9.7.2 9.7.3, exceptions during task 

communication 11.5, task activation 9.3 

11.2 Exception Handlers 

The response to one or more exceptions is specified by an exception handler. 

exception_handler 
when exception_choice || exception_choice| => 

sequence_of_statements 

exception_choice exceptionsame | others 

An exception handler occurs in a construct that is either a block statement or the body of a sub¬ 
program, package, task unit, or generic unit. Such a construct will be called a frame in this 
chapter. In each case the syntax of a frame that has exception handlers includes the following 
part: 

begin 
sequence_of_statements 

exception 
exception_handler 

( exception_handler| 
end 

The exceptions denoted by the exception names given as exception choices of a frame must all be 
distinct. The exception choice others is only allowed for the last exception handler of a frame and 
as its only exception choice; it stands for all exceptions not listed in previous handlers of the frame, 
including exceptions whose names are not visible at the place of the exception handler. 

The exception handlers of a frame handle exceptions that are raised by the execution of the 
sequence of statements of the frame. The exceptions handled by a given exception handler are 
those named by the corresponding exception choices. 

Example: 

begin 
sequence of statements 

exception 
when SINGULAR | NUMERIC_ERROR => 

PUT(" MATRIX IS SINGULAR "); 
when others => 

PUT(" FATAL ERROR "); 
raise ERROR; 

end; 

Note: 

The same kinds of statement are allowed in the sequence of statements of each exception handler 
as are allowed in the sequence of statements of the frame. For example, a return statement is 
allowed in a handler within a function body. 

1 1-3 Exception Handlers 11.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

References: block statement 5.6, declarative part 3.9, exception 11, exception handling 11.4, function body 6.3, 

generic body 12.2, generic unit 12.1, name 4.1, package body 7.1, raise statement 11.3, return statement 5.8, 

sequence of statements 5.1, statement 5, subprogram body 6.3, task body 9.1, task unit 9 9.1, visibility 8.3 

11.3 Raise Statements 

1 A raise statement raises an exception. 

2 raise_statement ::= raise [excepf/o/7_name]; 

3 For the execution of a raise statement with an exception name, the named exception is raised. A 
raise statement without an exception name is only allowed within an exception handler (but not 
within the sequence of statements of a subprogram, package, task unit, or generic unit, enclosed 
by the handler); it raises again the exception that caused transfer to the innermost enclosing 
handler. 

4 Examples: 

raise SINGULAR; 
raise NUMERIC_ERROR; — explicitly raising a predefined exception 

raise; — only within an exception handler 

5 References: exception 1 1, generic unit 12, name 4.1, package 7, sequence of statements 5.1, subprogram 6, task 

unit 9 

11.4 Exception Handling 

1 When an exception is raised, normal program execution is abandoned and control is transferred to 
an exception handler. The selection of this handler depends on whether the exception is raised 
during the execution of statements or during the elaboration of declarations. 

2 References: declaration 3.1, elaboration 3.1 3.9, exception 1 1, exception handler 1 1.2, raising of exceptions 11.3, 

statement 5 

11.4.1 Exceptions Raised During the Execution of Statements 

The handling of an exception raised by the execution of a sequence of statements depends on 
whether the innermost frame or accept statement that encloses the sequence of statements is a 
frame or an accept statement. The case where an accept statement is innermost is described in 
section 11.5. The case where a frame is innermost is presented here. 

7 7.4.7 Exceptions Raised During the Execution of Statements 11-4 



Exceptions 

Different actions take place, depending on whether or not this frame has a handler for the excep¬ 
tion, and on whether the exception is raised in the sequence of statements of the frame or in that 
of an exception handler. 

If an exception is raised in the sequence of statements of a frame that has a handler for the excep¬ 
tion, execution of the sequence of statements of the frame is abandoned and control is transferred 
to the exception handler. The execution of the sequence of statements of the handler completes 
the execution of the frame (or its elaboration if the frame is a package body). 

If an exception is raised in the sequence of statements of a frame that does not have a handler for 
the exception, execution of this sequence of statements is abandoned. The next action depends on 
the nature of the frame: 

(a) For a subprogram body, the same exception is raised again at the point of call of the sub¬ 
program, unless the subprogram is the main program itself, in which case execution of the 
main program is abandoned. 

(b) For a block statement, the same exception is raised again immediately after the block state¬ 
ment (that is, within the innermost enclosing frame or accept statement). 

(c) For a package body that is a declarative item, the same exception is raised again immediately 
after this declarative item (within the enclosing declarative part). If the package body is that of 
a subunit, the exception is raised again at the place of the corresponding body stub. If the 
package is a library unit, execution of the main program is abandoned. 

(d) For a task body, the task becomes completed. 

An exception that is raised again (as in the above cases (a), (b), and (c)) is said to be propagated, 
either by the execution of the subprogram, the execution of the block statement, or the elaboration 
of the package body. No propagation takes place in the case of a task body. If the frame is a sub¬ 
program or a block statement and if it has dependent tasks, the propagation of an exception takes 
place only after termination of the dependent tasks. 

Finally, if an exception is raised in the sequence of statements of an exception handler, execution 
of this sequence of statements is abandoned. Subsequent actions (including propagation, if any) 
are as in the cases (a) to (d) above, depending on the nature of the frame. 

Example: 

function FACTORIAL (N : POSITIVE) return FLOAT is 
begin 

if N = 1 then 
return 1.0; 

else 
return FLOAT(N) * FACT0RIAL(N-1 ); 

end if; 
exception 

when NUMERIC-ERROR => return FLOAT'SAFE_LARGE; 
end FACTORIAL; 

If the multiplication raises NUMERIC-ERROR , then FLOAT'SAFE_LARGE is returned by the handler. 
This value will cause further NUMERIC-ERROR exceptions to be raised by the evaluation of the 
expression in each of the remaining invocations of the function, so that for large values of N the 
function will ultimately return the value FLOAT'SAFE-LARGE . 

11-5 Exceptions Raised During the Execution of Statements 11.4.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

13 Example: 

14 

15 

procedure P is 
ERROR : exception; 
procedure R; 

procedure Q is 
begin 

R; 

exception 

when ERROR => 

end Q; 

procedure R is 
begin 

end R; 

begin 

Q; 

exception 

when ERROR => 

error situation (2) 

handler E2 

error situation (3) 

error situation (1) 

handler El 

end P; 

The following situations can arise: 

(1) If the exception ERROR is raised in the sequence of statements of the outer procedure P, the 
handler El provided within P is used to complete the execution of P. 

is (2) If the exception ERROR is raised in the sequence of statements of Q, the handler E2 provided 
within Q is used to complete the execution of Q. Control will be returned to the point of call of 
Q upon completion of the handler. 

17 (3) If the exception ERROR is raised in the body of R, called by Q, the execution of R is abandoned 
and the same exception is raised in the body of Q. The handler E2 is then used to complete 
the execution of Q, as in situation (2). 

is Note that in the third situation, the exception raised in R results in (indirectly) transferring control 
to a handler that is part of Q and hence not enclosed by R. Note also that if a handler were 
provided within R for the exception choice others, situation (3) would cause execution of this 
handler, rather than direct termination of R. 

i9 Lastly, if ERROR had been declared in R, rather than in P, the handlers El and E2 could not provide 
an explicit handler for ERROR since this identifier would not be visible within the bodies of P and 
Q. In situation (3), the exception could however be handled in Q by providing a handler for the 
exception choice others. 

1 1.4.1 Exceptions Raised During the Execution of Statements 11-6 



Exceptions 

Notes: 

The language does not define what happens when the execution of the main program is aban¬ 
doned after an unhandled exception. 

The predefined exceptions are those that can be propagated by the basic operations and the 
predefined operators. 

The case of a frame that is a generic unit is already covered by the rules for subprogram and 
package bodies, since the sequence of statements of such a frame is not executed but is the 
template for the corresponding sequences of statements of the subprograms or packages obtained 
by generic instantiation. 

References: accept statement 9.5, basic operation 3.3.3, block statement 5.6, body stub 10.2, completion 9.4, 

declarative item 3.9, declarative part 3.9, dependent task 9.4, elaboration 3.1 3.9, exception 1 1, exception handler 

11.2, frame 11.2, generic instantiation 12.3, generic unit 12, library unit 10.1, main program 10.1, numeric_error 

exception 11.1, package 7, package body 7.1, predefined operator 4.5, procedure 6.1, sequence of statements 5.1, 

statement 5, subprogram 6, subprogram body 6.3, subprogram call 6.4, subunit 10.2, task 9, task body 9.1 

11.4.2 Exceptions Raised During the Elaboration of Declarations 

If an exception is raised during the elaboration of the declarative part of a given frame, this 
elaboration is abandoned. The next action depends on the nature of the frame: 

(a) For a subprogram body, the same exception is raised again at the point of call of the sub¬ 
program, unless the subprogram is the main program itself, in which case execution of the 
main program is abandoned. 

(b) For a block statement, the same exception is raised again immediately after the block state¬ 
ment. 

(c) For a package body that is a declarative item, the same exception is raised again immediately 
after this declarative item, in the enclosing declarative part. If the package body is that of a 
subunit, the exception is raised again at the place of the corresponding body stub. If the 
package is a library unit, execution of the main program is abandoned. 

(d) For a task body, the task becomes completed, and the exception TASKING_ERROR is raised at 
the point of activation of the task, as explained in section 9.3. 

Similarly, if an exception is raised during the elaboration of either a package declaration or a task 
declaration, this elaboration is abandoned; the next action depends on the nature of the declara¬ 
tion. 

(e) For a package declaration or a task declaration, that is a declarative item, the exception is 
raised again immediately after the declarative item in the enclosing declarative part or 
package specification. For the declaration of a library package, the execution of the main 
program is abandoned. 

An exception that is raised again (as in the above cases (a), (b), (c) and (e)) is said to be 
propagated, either by the execution of the subprogram or block statement, or by the elaboration of 
the package declaration, task declaration, or package body. 

1 1-7 Exceptions Raised During the Elaboration of Declarations 11.4.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

Example of an exception in the declarative part of a block statement (case (b)): 

procedure P is 

begin 
declare 

N : INTEGER := F; -- the function F may raise ERROR 

begin 

exception 
when ERROR => -- handler El 

end; 

exception 
when ERROR => -- handler E2 

end P; 

if the exception ERROR is raised in the declaration of N, it is handled by E2 

References: activation 9.3, block statement 5.6, body stub 10.2, completed task 9.4, declarative item 3.9, declarative 

part 3.9, elaboration 3.1 3.9, exception 11, frame 11.2, library unit 10.1, main program 10.1, package body 7.1, 

package declaration 7.1, package specification 7.1, subprogram 6, subprogram body 6.3, subprogram call 6.4, subunit 

10.2, task 9, task body 9.1, task declaration 9.1, tasking_error exception 11.1 

11.5 Exceptions Raised During Task Communication 

An exception can be propagated to a task communicating, or attempting to communicate, with 
another task. An exception can also be propagated to a calling task if the exception is raised during 
a rendezvous. 

When a task calls an entry of another task, the exception TASKING_ERROR is raised in the calling 
task, at the place of the call, if the called task is completed before accepting the entry call or is 
already completed at the time of the call. 

A rendezvous can be completed abnormally in two cases: 

(a) When an exception is raised within an accept statement, but not handled within an inner 
frame. In this case, the execution of the accept statement is abandoned and the same excep¬ 
tion is raised again immediately after the accept statement within the called task; the excep¬ 
tion is also propagated to the calling task at the point of the entry call. 

(b) When the task containing the accept statement is completed abnormally as the result of an 
abort statement. In this case, the exception TASKING_ERROR is raised in the calling task at 
the point of the entry call. 

On the other hand, if a task issuing an entry call becomes abnormal (as the result of an abort 
statement) no exception is raised in the called task. If the rendezvous has not yet started, the entry 
call is cancelled. If the rendezvous is in progress, it completes normally, and the called task is 
unaffected. 

/ 1.5 Exceptions Raised During Task Communication 11-8 



Exceptions 

References: abnormal task 9.10, abort statement 9.10, accept statement 9.5, completed task 9.4, entry call 9.5, 

exception 11, frame 11.2, rendezvous 9.5, task 9, task termination 9.4, tasking_error exception 11.1 

11.6 Exceptions and Optimization 

The purpose of this section is to specify the conditions under which an implementation is allowed 
to perform certain actions either earlier or later than specified by other rules of the language. 

In general, when the language rules specify an order for certain actions (the canonical order), an 
implementation may only use an alternative order if it can guarantee that the effect of the program 
is not changed by the reordering. In particular, no exception should arise for the execution of the 
reordered program if none arises for the execution of the program in the canonical order. When, 
on the other hand, the order of certain actions is not defined by the language, any order can be 
used by the implementation. (For example, the arguments of a predefined operator can be evalua¬ 
ted in any order since the rules given in section 4.5 do not require a specific order of evaluation.) 

Additional freedom is left to an implementation for reordering actions involving predefined opera¬ 
tions that are either predefined operators or basic operations other than assignments. This 
freedom is left, as defined below, even in the case where the execution of these predefined opera¬ 
tions may propagate a (predefined) exception: 

(a) For the purpose of establishing whether the same effect is obtained by the execution of cer¬ 
tain actions in the canonical and in an alternative order, it can be assumed that none of the 
predefined operations invoked by these actions propagates a (predefined) exception, provided 
that the two following requirements are met by the alternative order: first, an operation must 
not be invoked in the alternative order if it is not invoked in the canonical order; second, for 
each operation, the innermost enclosing frame or accept statement must be the same in the 
alternative order as in the canonical order, and the same exception handlers must apply. 

(b) Within an expression, the association of operators with operands is specified by the syntax. 
However, for a sequence of predefined operators of the same precedence level (and in the 
absence of parentheses imposing a specific association), any association of operators with 
operands is allowed if it satisfies the following requirement: an integer result must be equal to 
that given by the canonical left-to-right order; a real result must belong to the result model 
interval defined for the canonical left-to-right order (see 4.5.7). Such a reordering is allowed 
even if it may remove an exception, or introduce a further predefined exception. 

Similarly, additional freedom is left to an implementation for the evaluation of numeric simple 
expressions. For the evaluation of a predefined operation, an implementation is allowed to use the 
operation of a type that has a range wider than that of the base type of the operands, provided that 
this delivers the exact result (or a result within the declared accuracy, in the case of a real type), 
even if some intermediate results lie outside the range of the base type. The exception 
NUMERIC_ERROR need not be raised in such a case. In particular, if the numeric expression is an 
operand of a predefined relational operator, the exception NUMERIC_ERROR need not be raised by 
the evaluation of the relation, provided that the correct BOOLEAN result is obtained. 

A predefined operation need not be invoked at all, if its only possible effect is to propagate a prede¬ 
fined exception. Similarly, a predefined operation need not be invoked if the removal of subsequent 
operations by the above rule renders this invocation ineffective. 

1 1-9 Exceptions and Optimization 71.6 



A NS!/MIL-STD-1815A Ada Reference Manual 

Notes: 

Rule (b) applies to predefined operators but not to the short-circuit control forms. 

The expression SPEED < 300_000.0 can be replaced by TRUE if the value 300_000.0 lies outside 
the base type of SPEED , even Lhough the implicit conversion of the numeric literal would raise the 
exception NUMERIC_ERROR . 

Example: 

declare 
N : INTEGER; 

begin 
N := 0; - (1) 
for J in 1 .. 10 loop 

N := N + J**A(K); -- A and K are global variables 

end loop; 
PUT(N); 

exception 
when others => PUT("Some error arose''); PUT(N); 

end; 

The evaluation of A(K) may be performed before the loop, and possibly immediately before the 
assignment statement (1) even if this evaluation can raise an exception. Consequently, within the 
exception handler, the value of N is either the undefined initial value or a value later assigned. On 
the other hand, the evaluation of A(K) cannot be moved before begin since an exception would 
then be handled by a different handler. For this reason, the initialization of N in the declaration 
itself would exclude the possibility of having an undefined initial value of N in the handler. 

References: accept statement 9.5, accuracy of real operations 4.5.7, assignment 5.2, base type 3.3, basic operation 

3.3.3, conversion 4.6, error situation 1 1, exception 1 1, exception handler 1 1.2, frame 1 1.2, numeric_error exception 

11.1, predefined operator 4.5, predefined subprogram 8.6, propagation of an exception 11.4, real type 3.5.6, 

undefined value 3.2.1 

11.7 Suppressing Checks 

The presence of a SUPPRESS pragma gives permission to an implementation to omit certain run¬ 
time checks. The form of this pragma is as follows: 

pragma SUPPRESS (identifier [, [ON =>] name]); 

The identifier is that of the check that can be omitted. The name (if present) must be either a sim¬ 
ple name or an expanded name and it must denote either an object, a type or subtype, a task unit, 
or a generic unit; alternatively the name can be a subprogram name, in which case it can stand for 
several visible overloaded subprograms. 

/ 7.7 Suppressing Checks 11-10 



Exceptions 

A pragma SUPPRESS is only allowed immediately within a declarative part or immediately within 
a package specification. In the latter case, the only allowed form is with a name that denotes an 
entity (or several overloaded subprograms) declared immediately within the package specification. 
The permission to omit the given check extends from the place of the pragma to the end of the 
declarative region associated with the innermost enclosing block statement or program unit. For a 
pragma given in a package specification, the permission extends to the end of the scope of the 
named entity. 

If the pragma includes a name, the permission to omit the given check is further restricted: it is 
given only for operations on the named object or on all objects of the base type of a named type or 
subtype; for calls of a named subprogram; for activations of tasks of the named task type; or for 
instantiations of the given generic unit. 

The following checks correspond to situations in which the exception CONSTRAINT_ERROR may 
be raised; for these checks, the name (if present) must denote either an object or a type. 

ACCESS_CHECK When accessing a selected component, an indexed component, a 
slice, or an attribute, of an object designated by an access value, 
check that the access value is not null. 

DISCRIMINANT_CHECK Check that a discriminant of a composite value has the value imposed 
by a discriminant constraint. Also, when accessing a record compo¬ 
nent, check that it exists for the current discriminant values. 

INDEX_CHECK 

LENGTFL.CHECK 

RANGE_CHECK 

Check that the bounds of an array value are equal to the cor¬ 
responding bounds of an index constraint. Also, when accessing a 
component of an array object, check for each dimension that the given 
index value belongs to the range defined by the bounds of the array 
object. Also, when accessing a slice of an array object, check that the 
given discrete range is compatible with the range defined by the 
bounds of the array object. 

Check that there is a matching component for each component of an 
array, in the case of array assignments, type conversions, and logical 
operators for arrays of boolean components. 

Check that a value satisfies a range constraint. Also, for the elabora¬ 
tion of a subtype indication, check that the constraint (if present) is 
compatible with the type mark. Also, for an aggregate, check that an 
index or discriminant value belongs to the corresponding subtype. 
Finally, check for any constraint checks performed by a generic instan¬ 
tiation. 

The following checks correspond to situations in which the exception NUMERIC_ERROR is raised. 
The only allowed names in the corresponding pragmas are names of numeric types. 

DIVISION_CHECK Check that the second operand is not zero for the operations /, rem 
and mod. 

OVERFLOW_CHECK Check that the result of a numeric operation does not overflow. 

The following check corresponds to situations in which the exception PROGRAM_ERROR is raised. 
The only allowed names in the corresponding pragmas are names denoting task units, generic 
units, or subprograms. 

ELABORATION_CHECK When either a subprogram is called, a task activation is accomplished, 
or a generic instantiation is elaborated, check that the body of the cor¬ 
responding unit has already been elaborated. 

Suppressing Checks 11.7 11-1 1 



ANSI/MIL-STD-1815A Ada Reference Manual 

is The following check corresponds to situations in which the exception STORAGE_ERROR is raised. 
The only allowed names in the corresponding pragmas are names denoting access types, task 
units, or subprograms. 

17 STORAGE_CHECK Check that execution of an allocator does not require more space than is 
available for a collection. Check that the space available for a task or 
subprogram has not been exceeded. 

m If an error situation arises in the absence of the corresponding run-time checks, the execution of 
the program is erroneous (the results are not defined by the language). 

19 Examples: 

pragma SUPPRESS(RANGE_CHECK); 
pragma SUPPRESS(INDEX_CHECK, ON => TABLE); 

Notes: 

20 For certain implementations, it may be impossible or too costly to suppress certain checks. The 
corresponding SUPPRESS pragma can be ignored. Hence, the occurrence of such a pragma within 
a given unit does not guarantee that the corresponding exception will not arise; the exceptions 
may also be propagated by called units. 

21 References: access type 3.8, access value 3.8, activation 9.3, aggregate 4.3, allocator 4.8, array 3.6, attribute 4.1.4, 

block statement 5.6, collection 3.8, compatible 3.3.2, component of an array 3.6, component of a record 3.7, com¬ 

posite type 3.3, constraint 3.3, constraint_error exception 11.1, declarative part 3.9, designate 3.8, dimension 3.6, 

discrete range 3.6, discriminant 3.7.1, discriminant constraint 3.7.2, elaboration 3.1 3.9, erroneous 1.6, error situation 

11, expanded name 4.1.3, generic body 11.1, generic instantiation 12.3, generic unit 12, identifier 2.3, index 3.6, 

index constraint 3.6.1, indexed component 4.1.1, null access value 3.8, numeric operation 3.5.5 3.5.8 3.5.10, numeric 

type 3 5, numeric_error exception 11.1, object 3.2, operation 3.3.3, package body 7.1, package specification 7.1, 

pragma 2.8, program_error exception 11.1, program unit 6, propagation of an exception 1 1.4, range constraint 3.5, 

record type 3.7, simple name 4.1, slice 4.1.2, subprogram 6, subprogram body 6.3, subprogram call 6.4, subtype 3.3, 

subunit 10.2, task 9, task body 9.1, task type 9.1, task unit 9, type 3.3, type mark 3.3.2 

II.7 Suppressing Checks 11-12 



12. Generic Units 

A generic unit is a program unit that is either a generic subprogram or a generic package. A 

generic unit is a template, which is parameterized or not, and from which corresponding 
(nongeneric) subprograms or packages can be obtained. The resulting program units are said to be 
instances of the original generic unit. 

A generic unit is declared by a generic declaration. This form of declaration has a generic formal 
part declaring any generic formal parameters. An instance of a generic unit is obtained as the 
result of a generic instantiation with appropriate generic actual parameters for the generic formal 
parameters. An instance of a generic subprogram is a subprogram. An instance of a generic 
package is a package. 

Generic units are templates. As templates they do not have the properties that are specific to their 
nongeneric counterparts. For example, a generic subprogram can be instantiated but it cannot be 
called. In contrast, the instance of a generic subprogram is a nongeneric subprogram; hence, this 
instance can be called but it cannot be used to produce further instances. 

References: declaration 3.1, generic actual parameter 12.3, generic declaration 12.1, generic formal parameter 12.1, 

generic formal part 12.1, generic instantiation 12.3, generic package 1 2.1, generic subprogram 1 2.1, instance 12.3, 

package 7, program unit 6, subprogram 6 

12.1 Generic Declarations 

A generic declaration declares a generic unit, which is either a generic subprogram or a generic 
package. A generic declaration includes a generic formal part declaring any generic formal 
parameters. A generic formal parameter can be an object; alternatively (unlike a parameter of a 
subprogram), it can be a type or a subprogram. 

generic_declaration ::= generic_specification; 

generic_specification 
generic_formal_part subprogram_specification 

| generic_formal_part package_specification 

generic_formal_part generic [generic_parameter_declaration] 

generic_parameter_daclaration 
identifierjist : [in [out]] type_mark [:= expression]; 

| type identifier is generic_type_definition; 
| private_type_declaration 
| with subprogram_specification [is name]; 
| with subprogram_specification [is <>]; 

generic_type_definition ::= 
(<>) | range <> | digits <> | delta <> 

I array_type_definition | access_type_definition 

12-1 Generic Declarations 12.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

The terms generic formal object (or simply, format object), generic formal type (or simply, format 
type), and generic formal subprogram (or simply, format subprogram) are used to refer to cor¬ 
responding generic formal parameters. 

4 The only form of subtype indication allowed within a generic formal part is a type mark (that is, the 
subtype indication must not include an explicit constraint). The designator of a generic sub¬ 
program must be an identifier. 

5 Outside the specification and body of a generic unit, the name of this program unit denotes the 
generic unit. In contrast, within the declarative region associated with a generic subprogram, the 
name of this program unit denotes the subprogram obtained by the current instantiation of the 
generic unit. Similarly, within the declarative region associated with a generic package, the name 
of this program unit denotes the package obtained by the current instantiation. 

6 The elaboration of a generic declaration has no other effect. 

7 Examples of generic format parts: 

generic -- parameterless 

generic 
SIZE : NATURAL; - formal object 

generic 
LENGTH : INTEGER := 200; -- formal object with a default expression 
AREA : INTEGER := LENGTH*LENGTH; -- formal object with a default expression 

generic 
type ITEM is private; -- formal type 
type INDEX is (<>); -- formal type 
type ROW is array(INDEX rang© <>) of ITEM; -- formal type 
with function "<"(X, Y : ITEM) return BOOLEAN; — formal subprogram 

8 Examples of generic declarations declaring generic subprograms: 

generic 
type ELEM is private; 

procedure EXCHANGE(U, V : in out ELEM); 

generic 
type ITEM is private; 
with function "*"(U, V : ITEM) return ITEM is <>; 

function SQUARING(X : ITEM) return ITEM; 

9 Example of a generic declaration declaring a generic package: 

generic 
type ITEM is private; 
type VECTOR is array (POSITIVE range <>) of ITEM; 
with function SUM(X, Y : ITEM) return ITEM; 

package ON_VECTORS is 
function SUM (A, B : VECTOR) return VECTOR; 
function SIGMA (A : VECTOR) return ITEM; 
LENGTH_ERROR : exception; 

end; 

12.1 Generic Declarations 12-2 



Generic Units 

Notes: 

Within a generic subprogram, the name of this program unit acts as the name of a subprogram. 
Hence this name can be overloaded, and it can appear in a recursive call of the current instantia¬ 
tion. For the same reason, this name cannot appear after the reserved word new in a (recursive) 
generic instantiation. 

An expression that occurs in a generic formal part is either the default expression for a generic for¬ 
mal object of mode in, or a constituent of an entry name given as default name for a formal sub¬ 
program, or the default expression for a parameter of a formal subprogram. Default expressions for 
generic formal objects and default names for formal subprograms are only evaluated for generic 
instantiations that use such defaults. Default expressions for parameters of formal subprograms 
are only evaluated for calls of the formal subprograms that use such defaults. (The usual visibility 
rules apply to any name used in a default expression: the denoted entity must therefore be visible 
at the place of the expression.) 

Neither generic formal parameters nor their attributes are allowed constituents of static expres¬ 
sions (see 4.9). 

References: access type definition 3.8, array type definition 3.6, attribute 4.1.4, constraint 3.3, declaration 3.1, 

designator 6.1, elaboration has no other effect 3.1, entity 3.1, expression 4.4, function 6.5, generic instantiation 12.3, 

identifier 2.3, identifier list 3.2, instance 12.3, name 4.1, object 3.2, overloading 6.6 8.7, package specification 7.1, 

parameter of a subprogram 6.2, private type definition 7.4, procedure 6.1, reserved word 2.9, static expression 4.9, 

subprogram 6, subprogram specification 6.1, subtype indication 3.3.2, type 3.3, type mark 3.3.2 

12.1.1 Generic Formal Objects 

The first form of generic parameter declaration declares generic formal objects. The type of a 
generic formal object is the base type of the type denoted by the type mark given in the generic 
parameter declaration. A generic parameter declaration with several identifiers is equivalent to a 
sequence of single generic parameter declarations, as explained in section 3.2. 

A generic formal object has a mode that is either in or in cut. In the absence of an explicit mode 
indication in a generic parameter declaration, the mode in is assumed; otherwise the mode is the 
one indicated. If a generic parameter declaration ends with an expression, the expression is the 
default expression of the generic formal parameter. A default expression is only allowed if the 
mode is in (whether this mods is indicated explicitly or implicitly). The type of a default expression 
must be that of the corresponding generic formal parameter. 

A generic formal object of mode in is a constant whose value is a copy of the value supplied as the 
matching generic actual parameter in a generic instantiation, as described in section 12.3. The 
type of a generic formal object of mode in must not be a limited type; the subtype of such a generic 
formal object is the subtype denoted by the type mark given in the generic parameter declaration. 

A generic formal object of mode in out is a variable and denotes the object supplied as the 
matching generic actual parameter in a generic instantiation, as described in section 12.3. The 
constraints that apply to the generic formal object are those of the corresponding generic actual 
parameter. 

12-3 Generic Formal Objects 12.1.1 



ANSI/M/L-STD-1815A Ada Reference Manual 

Note: 

5 The constraints that apply to a generic formal object of mode in out are those of the corresponding 
generic actual parameter (not those implied by the type mark that appears in the generic 
parameter declaration). Whenever possible (to avoid confusion) it is recommended that the name 
of a base type be used for the declaration of such a formal object. If, however, the base type is 
anonymous, it is recommended that the subtype name defined by the type declaration for the base 
type be used. 

6 References: anonymous type 3.3.1, assignment 5.2, base type 3.3, constant declaration 3.2, constraint 3.3, 

declaration 3.1, generic actual parameter 12.3, generic formal object 12.1, generic formal parameter 12.1, generic 

instantiation 12.3, generic parameter declaration 12.1, identifier 2.3, limited type 7.4.4, matching generic actual 

parameter 1 2.3, mode 6.1, name 4.1, object 3.2, simple name 4.1, subtype 3.3, type declaration 3.3, type mark 3.3.2, 

variable 3.2.1 

12.1.2 Generic Formal Types 

1 A generic parameter declaration that includes a generic type definition or a private type declaration 
declares a generic formal type. A generic formal type denotes the subtype supplied as the cor¬ 
responding actual parameter in a generic instantiation, as described in 12.3(d). However, within a 
generic unit, a generic formal type is considered as being distinct from all other (formal or nonfor- 
mal) types. The form of constraint applicable to a formal type in a subtype indication depends on 
the class of the type as for a nonformal type. 

2 The only form of discrete range that is allowed within the declaration of a generic formal 
(constrained) array type is a type mark. 

3 The discriminant part of a generic formal private type must not include a default expression for a 
discriminant. (Consequently, a variable that is declared by an object declaration must be con¬ 
strained if its type is a generic formal type with discriminants.) 

4 Within the declaration and body of a generic unit, the operations available for values of a generic 
formal type (apart from any additional operation specified by a generic formal subprogram) are 
determined by the generic parameter declaration for the formal type: 

5 (a) For a private type declaration, the available operations are those defined in section 7.4.2 (in 
particular, assignment, equality, and inequality are available for a private type unless it is 
limited). 

6 (b) For an array type definition, the available operations are those defined in section 3.6.2 (for 
example, they include the formation of indexed components and slices). 

7 (c) For an access type definition, the available operations are those defined in section 3.8.2 (for 
example, allocators can be used). 

8 The four forms of generic type definition in which a box appears (that is, the compound delimiter 
<>) correspond to the following major forms of scalar type: 

9 (d) Discrete types: (<>) 

The available operations are the operations common to enumeration and integer types; these 
are defined in section 3.5.5. 

12.1.2 Generic FormaI Types 12-4 



Generic Units 

(e) Integer types: range <> 

The available operations are the operations of integer types defined in section 3.5.5. 

(f) Floating point types: digits <> 

The available operations are those defined in section 3.5.8. 

(g) Fixed point types: delta <> 

The available operations are those defined in section 3.5.10. 

In all of the above cases (a) through (f), each operation implicitly associated with a formal type n 
(that is, other than an operation specified by a formal subprogram) is implicitly declared at the 
place of the declaration of the formal type. The same holds for a formal fixed point type, except for 
the multiplying operators that deliver a result of the type universal-fixed (see 4.5.5), since these 
special operators are declared in the package STANDARD. 

For an instantiation of the generic unit, each of these operations is the corresponding basic opera- m 
tion or predefined operator of the matching actual type. For an operator, this rule applies even if 
the operator has been redefined for the actual type or for some parent type of the actual type. 

Examples of generic formal types: 15 

type ITEM is private; 
type BUFFER(LENGTFI : NATURAL) is limited private: 

type ENUM is (<>); 
type I NT is range <>; 
type ANGLE is delta <>; 
type MASS is digits <>; 

type TABLE is array (ENUM) of ITEM; 

Example of a generic formal part declaring a formal integer type: 

generic 
type RANK is range <>; 
FIRST : RANK := RANK'FIRST; 
SECOND : RANK := FIRST + 1; — the operator " + " of the type RANK 

References: access type definition 3.8, allocator 4.8, array type definition 3.6, assignment 5.2, body of a generic unit 17 

12.2, class of type 3.3, constraint 3.3, declaration 3.1, declaration of a generic unit 12.1, discrete range 3.6, discrete 

type 3.5, discriminant part 3.7.1, enumeration type 3.5.1, equality 4.5.2, fixed point type 3.5.9, floating point type 

3.5.7, generic actual type 1 2.3, generic formal part 1 2.1, generic formal subprogram 12.1.3, generic formal type 12.1, 

generic parameter declaration 12.1, generic type definition 12.1, indexed component 4.1.1, inequality 4.5.2, instantia¬ 

tion 12.3, integer type 3.5.4, limited private type 7.4.4, matching generic actual type 12.3.2 12.3.3 12.3.4 12.3.5, 

multiplying operator 4.5 4.5.5, operation 3.3, operator 4.5, parent type 3.4, private type definition 7.4, scalar type 3.5, 

slice 4.1.2, standard package 8.6 C, subtype indication 3.3.2, type mark 3.3.2, universaLfixed 3.5.9 

12-5 Generic Formal Types 12.1.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

12.1.3 Generic Formal Subprograms 

i A generic parameter declaration that includes a subprogram specification declares a generic for¬ 
mal subprogram. 

Two alternative forms of defaults can be specified in the declaration of a generic formal sub¬ 
program. In these forms, the subprogram specification is followed by the reserved word is and 
either a box or the name of a subprogram or entry. The matching rules for these defaults are 
explained in section 12.3.6. 

3 A generic formal subprogram denotes the subprogram, enumeration literal, or entry supplied as the 
corresponding generic actual parameter in a generic instantiation, as described in section 12.3(f). 

4 Examples of generic formal subprograms: 

with function INCREASED : INTEGER) return INTEGER; 
with function SUM(X, Y : ITEM) return ITEM; 

with function " + "(X, Y : ITEM) return ITEM is <>; 
with function IMAGE(X : ENUM) return STRING is ENUM'IMAGE; 

with procedure UPDATE is DEFAULT_UPDATE; 

Notes: 

5 The constraints that apply to a parameter of a formal subprogram are those of the corresponding 
parameter in the specification of the matching actual subprogram (not those implied by the cor¬ 
responding type mark in the specification of the formal subprogram). A similar remark applies to 
the result of a function. Whenever possible (to avoid confusion), it is recommended that the name 
of a base type be used rather than the name of a subtype in any declaration of a formal sub¬ 
program. If, however, the base type is anonymous, it is recommended that the subtype name 
defined by the type declaration be used. 

e The type specified for a formal parameter of a generic formal subprogram can be any visible type, 
including a generic formal type of the same generic formal part. 

References: anonymous type 3.3.1, base type 3.3, box delimiter 12.1.2, constraint 3.3, designator 6.1, generic actual 

parameter 12.3, generic formal function 12.1, generic formal subprogram 12.1, generic instantiation 12.3, generic 

parameter declaration 12.1, identifier 2.3, matching generic actual subprogram 12.3.6, operator symbol 6.1, 

parameter of a subprogram 6.2, renaming declaration 8.5, reserved word 2.9, scope 8.2, subprogram 6, subprogram 

specification 6.1, subtype 3.3.2, type 3.3, type mark 3.3.2 

12.2 Generic Bodies 

1 The body of a generic subprogram or generic package is a template for the bodies of the cor¬ 
responding subprograms or packages obtained by generic instantiations. The syntax of a generic 
body is identical to that of a riongeneric body. 

2 For each declaration of a generic subprogram, there must be a corresponding body. 

12.2 Generic Bodies 12-6 



Generic Units 

The elaboration of a generic body has no other effect than to establish that the body can from then 
on be used as the template for obtaining the corresponding instances. 

Example of a generic procedure body: 4 

procedure EXCHANGE(U, V : in out ELEM) is -- see example in 12.1 
T : ELEM; -- the generic formal type 

begin 
T := U; 
U := V; 
V := T; 

end EXCHANGE; 

Example of a generic function body. 

function SQUARING(X : ITEM) return ITEM is — see example in 12.1 
begin 

return XtX; -- the formal operator 
end; 

Example of a generic package body: 6 

package body ON_VECTORS is -- see example in 12.1 

function SUM(A, B : VECTOR) return VECTOR is 
RESULT : VECTOR(A'RANGE); - the formal type VECTOR 
BIAS : constant INTEGER := B'FIRST - A'FIRST; 

begin 
if A'LENGTH /= B'LENGTH then 

raise LENGTH_ERROR; 
end if; 

for N in A'RANGE loop 
RESULT(N) := SUM(A(N), B(N + BIAS)); - the formal function SUM 

end loop; 
return RESULT; 

end; 

function SIGMA(A : VECTOR) return ITEM is 
TOTAL ; ITEM := A(A'FIRST); - the formal type ITEM 

begin 
for N in A'FIRST + 1 .. A'LAST loop 

TOTAL := SUM(TOTAL, A(N)); - the formal function SUM 
end loop; 
return TOTAL; 

end; 
end; 

References: body 3.9, elaboration 3.9, generic body 12.1, generic instantiation 12.3, generic package 12.1, generic i 

subprogram 12.1, instance 12.3, package body 7.1, package 7, subprogram 6, subprogram body 6.3 

12-7 Generic Bodies 12.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

12.3 Generic Instantiation 

An instance of a generic unit is declared by a generic instantiation. 

generic_instantiation ::= 
package identifier is 

new generic_package_name [generic_actual_part]; 
| procedure identifier is 

new generic_procedure_narne [generic_actual_part]; 
| function designator is 

new generic-function_name [generic_actual_part]; 

generic_actual_part 
(generic_association {, generic_association|) 

generic_association 
[generic_formal_parameter =>] generic_actual_parameter 

generic_formaLparameter parametersimple_name | operator_symbol 

generic_actual_parameter ::= expression | variable_name 
| subprogram_name | entry_name | type_mark 

An explicit generic actual parameter must be supplied for each generic formal parameter, unless 
the corresponding generic parameter declaration specifies that a default can be used. Generic 
associations can be either positional or named, in the same manner as parameter associations of 
subprogram calls (see 6.4). If two or more formal subprograms have the same designator, then 
named associations are not allowed for the corresponding generic parameters. 

Each generic actual parameter must match the corresponding generic formal parameter. An 
expression can match a formal object of mode in; a variable name can match a formal object of 
mode in out; a subprogram name or an entry name can match a formal subprogram; a type mark 
can match a formal type. The detailed rules defining the allowed matches are given in sections 
12.3.1 to 12.3.6; these are the only allowed matches. 

The instance is a copy of the generic unit, apart from the generic formal part; thus the instance of 
a generic package is a package, that of a generic procedure is a procedure, and that of a generic 
function is a function. For each occurrence, within the generic unit, of a name that denotes a given 
entity, the following list defines which entity is denoted by the corresponding occurrence within 
the instance. 

(a) For a name that denotes the generic unit: The corresponding occurrence denotes the 
instance. 

(b) For a name that denotes a generic formal object of mode in: The corresponding name 
denotes a constant whose value is a copy of the value of the associated generic actual 
parameter. 

(c) For a name that denotes a generic formal object of mode in out; The corresponding name 
denotes the variable named by the associated generic actual parameter. 

(d) For a name that denotes a generic formal type: The corresponding name denotes the subtype 
named by the associated generic actual parameter (the actual suotype). 

(e) For a name that denotes a discriminant of a generic formal type: The corresponding name 
denotes the corresponding discriminant (there must be one) of the actual type associated with 
the generic formal type. 

12.3 Generic Instantiation 12-8 



Generic Units 

(f) For a name that denotes a generic formal subprogram: The corresponding name denotes the 
subprogram, enumeration literal, or entry named by the associated generic actual parameter 
(the actual subprogram). 

(g) For a name that denotes a formal parameter of a generic formal subprogram: The cor¬ 
responding name denotes the corresponding formal parameter of the actual subprogram 
associated with the formal subprogram. 

(h) For a name that denotes a local entity declared within the generic unit: The corresponding 
name denotes the entity declared by the corresponding local declaration within the instance. 

(i) For a name that denotes a global entity declared outside of the generic unit: The cor¬ 
responding name denotes the same global entity. 

Similar rules apply to operators and basic operations: in particular, formal operators follow a rule 
similar to rule (f), local operations follow a rule similar to rule (h), and operations for global types 
follow a rule similar to rule (i). In addition, if within the generic unit a predefined operator or basic 
operation of a formal type is used, then within the instance the corresponding occurrence refers to 
the corresponding predefined operation of the actual type associated with the formal type. 

The above rules apply also to any type mark or (default) expression given within the generic formal 
part of the generic unit. 

For the elaboration of a generic instantiation, each expression supplied as an explicit generic actual 
parameter is first evaluated, as well as each expression that appears as a constituent of a variable 
name or entry name supplied as an explicit generic actual parameter; these evaluations proceed in 
some order that is not defined by the language. Then, for each omitted generic association (if any), 
the corresponding default expression or default name is evaluated; such evaluations are per¬ 
formed in the order of the generic parameter declarations. Finally, the implicitly generated instance 
is elaborated. The elaboration of a generic instantiation may also involve certain constraint checks 
as described in later subsections. 

Recursive generic instantiation is not allowed in the following sense: if a given generic unit 
includes an instantiation of a second generic unit, then the instance generated by this instantiation 
must not include an instance of the first generic unit (whether this instance is generated directly, or 
indirectly by intermediate instantiations). 

Examples of generic instantiations (see 12.1): 

procedure SWAP is new EXCHANGE(ELEM => INTEGER); 
procedure SWAP is new EXCHANGE(CPIARACTER); — SWAP is overloaded 

function SQUARE is new SQUARING (INTEGER); — of INTEGER used by default 
function SQUARE is new SQUARING (ITEM => MATRIX, => MATRIX_PRODUCT); 
function SQUARE is new SQUARING (MATRIX, MATRIX_PRODUCT); — same as previous 

package INT_VECTORS is new ON_VECTORS(INTEGER, TABLE, " + "); 

Examples of uses of instantiated units: 

SWAP(A, B); 
A := SQUARE(A); 

T : TABLE(1 .. 5) := (10, 20, 30, 40, 50); 
N : INTEGER := INT_VECT0RS.SIGMA(T); - 150 (see 12.2 for the body of SIGMA) 

use INT_VECTORS; 
M : INTEGER := SIGMA(T); - 150 

12-9 Generic Instantiation 12.3 



ANS//MIL-STD-1815A Ada Reference Manual 

Notes: 

21 Omission of a generic actual parameter is only allowed if a corresponding default exists. If default 
expressions or default names (other than simple names) are used, they are evaluated in the order 
in which the corresponding generic formal parameters are declared. 

22 If two overloaded subprograms declared in a generic package specification differ only by the (for¬ 
mal) type of their parameters and results, then there exist legal instantiations for which all calls of 
these subprograms from outside the instance are ambiguous. For example: 

generic 
type A is (<>); 
type B is private; 

package G is 
function NEXT(X : A) return A; 
function NEXT(X : B) return B; 

end; 

package P is new G(A => BOOLEAN, B => BOOLEAN); 
— calls of P.NEXT are ambiguous 

23 References: declaration 3.1, designator 6.1, discriminant 3.7.1, elaboration 3.1 3.9, entity 3.1, entry name 9.5, 

evaluation 4.5, expression 4.4, generic formal object 12.1, generic formal parameter 12.1, generic formal subprogram 

12.1, generic formal type 12.1, generic parameter declaration 12.1, global declaration 8.1, identifier 2.3, implicit 

declaration 3.1, local declaration 8.1, mode in 12.1.1, mode in out 12.1.1, name 4.1, operation 3.3, operator symbol 

6.1, overloading 6.6 8.7, package 7, simple name 4.1, subprogram 6, subprogram call 6.4, subprogram name 6.1, 

subtype declaration 3.3.2, type mark 3.3.2, variable 3.2.1, visibility 8.3 

12.3.1 Matching Rules for Formal Objects 

A generic formal parameter of mode in of a given type is matched by an expression of the same 
type. If a generic unit has a generic formal object of mode in, a check is made that the value of the 
expression belongs to the subtype denoted by the type mark, as for an explicit constant declara¬ 
tion (see 3.2.1). The exception CQNSTRAINT_ERROR is raised if this check fails. 

2 A generic formal parameter of mode in out of a given type is matched by the name of a variable of 
the same type. The variable must not be a formal parameter of mode out or a subcomponent 
thereof. The name must denote a variable for which renaming is allowed (see 8.5). 

Notes: 

3 The type of a generic actual parameter of mode in must not be a limited type. The constraints that 
apply to a generic formal parameter of mode in out are those of the corresponding generic actual 
parameter (see 12.1.1). 

4 References: constraint 3.3, constraint_error exception 11.1, expression 4.4, formal parameter 6.1, generic actual 

parameter 12.3, generic formal object 12.1.1, generic formal parameter 12.1, generic instantiation 12.3, generic unit 

12.1, limited type 7.4.4, matching generic actual parameter 12.3, mode in 12.1.1, mode in out 12.1.1, mode out 6.2, 

name 4.1, raising of exceptions 11, satisfy 3.3, subcomponent 3.3, type 3.3, type mark 3.3.2, variable 3.2.1 

1 2.3.1 Matching Rules for Formal Objects 12-10 



Generic Units 

12.3.2 Matching Rules for Formal Private Types 

A generic formal private type is matched by any type or subtype (the actual subtype) that satisfies 
the following conditions: 

• If the formal type is not limited, the actual type must not be a limited type. (If, on the other 
hand, the formal type is limited, no such condition is imposed on the corresponding actual 
type, which can be limited or not limited.) 

• If the formal type has a discriminant part, the actual type must be a type with the same 
number of discriminants; the type of a discriminant that appears at a given position in the dis¬ 
criminant part of the actual type must be the same as the type of the discriminant that 
appears at the same position in the discriminant part of the formal type; and the actual sub- 
type must be unconstrained. (If, on the other hand, the formal type has no discriminants, the 
actual type is allowed to have discriminants.) 

Furthermore, consider any occurrence of the name of the formal type at a place where this name is 
used as an unconstrained subtype indication. The actual subtype must not be an unconstrained 
array type or an unconstrained type with discriminants, if any of these occurrences is at a place 
where either a constraint or default discriminants would be required for an array type or for a type 
with discriminants (see 3.6.1 and 3.7.2). The same restriction applies to occurrences of the name 
of a subtype of the formal type, and to occurrences of the name of any type or subtype derived, 
directly or indirectly, from the formal type. 

If a generic unit has a formal private type with discriminants, the elaboration of a corresponding 
generic instantiation checks that the subtype of each discriminant of the actual type is the same as 
the subtype of the corresponding discriminant of the formal type. The exception 
CONSTRAINT_ERROR is raised if this check fails. 

References: array type 3.6, constraint 3.3, constraint_error exception 11.1, default expression for a discriminant 

3.7.1, derived type 3.4, discriminant 3.7.1, discriminant part 3.7.1, elaboration 3.9, generic actual type 12.3, generic 

body 12.2, generic formal type 12.1.2, generic instantiation 12.3, generic specification 12.1, limited type 7.4.4, 

matching generic actual parameter 12.3, name 4.1, private type 7.4, raising of exceptions 1 1, subtype 3.3, subtype 

indication 3.3.2, type 3.3, type with discriminants 3.3, unconstrained array type 3.6, unconstrained subtype 3.3 

12.3.3 Matching Rules for Formal Scalar Types 

A generic formal type defined by (<>) is matched by any discrete subtype (that is, any enumera¬ 
tion or integer subtype). A generic formal type defined by range <> is matched by any integer 
subtype. A generic formal type defined by digits <> is matched by any floating point subtype. A 
generic formal type defined by delta <> is matched by any fixed point subtype. No other matches 
are possible for these generic formal types. 

References: box delimiter 12.1.2, discrete type 3.5, enumeration type 3.5.1, fixed point type 3.5.9, floating point type 

3.5.7, generic actual type 1 2.3, generic formal type 1 2.1.2, generic type definition 12.1, integer type 3.5.4, matching 

generic actual parameter 12.3, scalar type 3.5 

12-1 1 Matching Rules for Format Scalar Types 12.3.3 



ANSI/MlL-STD-1815A Ada Reference Manual 

12.3.4 Matching Rules for Formal Array Types 

, A formal array type is matched by an actual array subtype that satisfies the following conditions: 

• The formal array type and the actual array type must have the same dimensionality; the for¬ 
mal type and the actual subtype must be either both constrained or both unconstrained. 

3 • For each index position, the index type must be the same for the actual array type as for the 
formal array type. 

^ • The component type must be the same for the actual array type as for the formal array type. If 
the component type is other than a scalar type, then the component subtypes must be either 
both constrained or both unconstrained. 

5 If a generic unit has a formal array type, the elaboration of a corresponding instantiation checks 
that the constraints (if any) on the component type are the same for the actual array type as for the 
formal array type, and likewise that for any given index position the index subtypes or the discrete 
ranges have the same bounds. The exception CONSTRAINT_ERROR is raised if this check fails. 

6 Example: 

given the generic package 

generic 
type ITEM is private; 
type INDEX is (<>); 
type VECTOR is array (INDEX range <>) of ITEM; 
type TABLE is array (INDEX) of ITEM; 

package P is 

end; 

and the types 

type MIX is array (COLOR range <>) of BOOLEAN; 
type OPTION is array (COLOR) of BOOLEAN; 

then MIX can match VECTOR and OPTION can match TABLE 

package R is new P( ITEM => BOOLEAN, INDEX => COLOR, 
VECTOR => MIX, TABLE => OPTION); 

Note that MIX cannot match TABLE and OPTION cannot match VECTOR 

Note: 

? For the above rules, if any of the index or component types of the formal array type is itself a formal 
type, then within the instance its name denotes the corresponding actual subtype (see 12.3(d)). 

8 References: array type 3.6, array type definition 3.6, component of an array 3.6, constrained array type 3.6, 

constraint 3.3, constraint_error exception 11.1, elaboration 3.9, formal type 12.1, generic formal type 

12.1.2, generic instantiation 12.3, index 3.6, index constraint 3.6.1, matching generic actual parameter 

12 3, raise statement 1 1.3, subtype 3.3, unconstrained array type 3.6 

7 2.3.4 Matching Rules for Formal Array Types 12-12 



Generic Units 

12.3.5 Matching Rules for Formal Access Types 

A formal access type is matched by an actual access subtype if the type of the designated objects , 
is the same for the actual type as for the formal type. If the designated type is other than a scalar 
type, then the designated subtypes must be either both constrained or both unconstrained. 

If a generic unit has a formal access type, the elaboration of a corresponding instantiation checks 2 

that any constraints on the designated objects are the same for the actual access subtype as for 
the formal access type. The exception CONSTRAINT_ERROR is raised if this check fails. 

Example: 3 

the formal types of the generic package 

generic 
type NODE is private; 
type LINK is access NODE; 

package P is 

end; 

can be matched by the actual types 

type CAR; 
type CAR_NAME is access CAR; 

type CAR is 
record 

PRED, SUCC : CAR_NAME; 
NUMBER : LICENSE_NUMBER; 
OWNER : PERSON; 

end record; 

— in the following generic instantiation 

package R is new P(NODE => CAR, LINK => CAR_NAME); 

Note: 

For the above rules, if the designated type is itself a formal type, then within the instance its name 
denotes the corresponding actual subtype (see 12.3(d)). 

References: access type 3.8, access type definition 3.8, constraint 3.3, constraint_error exception 1 1.1, designate 

3.8, elaboration 3.9, generic formal type 12.1.2, generic instantiation 12.3, matching generic actual parameter 12.3, 

object 3.2, raise statement 1 1.3, value of access type 3.8 

12-13 Matching Rules for Format Access Types 12.3.5 



ANSI/MIL-STD-J815A Ada Reference Manual 

12.3.6 Matching Rules for Formal Subprograms 

I 
, A formal subprogram is matched by an actual subprogram, enumeration literal, or entry if both 

have the same parameter and result type profile (see 6.6); in addition, parameter modes must be 
identical for formal parameters that are at the same parameter position. 

2 If a generic unit has a default subprogram specified by a name, this name must denote a sub¬ 
program, an enumeration literal, or an entry, that matches the formal subprogram (in the above 
sense). The evaluation of the default name takes place during the elaboration of each instantiation 
that uses the default, as defined in section 12.3. 

3 If a generic unit has a default subprogram specified by a box, the corresponding actual parameter 
can be omitted if a subprogram, enumeration literal, or entry matching the formal subprogram, and 
with the same designator as the formal subprogram, is directly visible at the place of the generic 
instantiation; this subprogram, enumeration literal, or entry is then used by default (there must be 
exactly one subprogram, enumeration literal, or entry satisfying the previous conditions). 

4 Example: 

given the generic function specification 

generic 
type ITEM is private; 
with function (U, V : ITEM) return ITEM is <>; 

function SQUARING(X : ITEM) return ITEM; 
i 

and the function 

function MATRIX_PRODUCT(A, B : MATRIX) return MATRIX; 

the following instantiation is possible 

function SQUARE is new SQUARING(MATRIX, MATRIX_PRODUCT); 

the following instantiations are equivalent 

function SQUARE is new SQUARINGdTEM => INTEGER, => "*"); 
function SQUARE is new SQUARING!INTEGER, "*"); 
function SQUARE is new SQUARING(INTEGER); 

Notes: 

5 The matching rules for formal subprograms state requirements that are similar to those applying to 
subprogram renaming declarations (see 8.5). In particular, the name of a parameter of the formal 
subprogram need not be the same as that of the corresponding parameter of the actual subpro¬ 
gram; similarly, for these parameters, default expressions need not correspond. 

6 A formal subprogram is matched by an attribute of a type if the attribute is a function with a 
matching specification. An enumeration literal of a given type matches a parameterless formal 
function whose result type is the given type. 

7 References: attribute 4.1.4, box delimiter 12.1.2, designator 6.1, entry 9.5, function 6.5, generic actual type 12.3, 

generic formal subprogram 12.1.3, generic formal type 12.1.2, generic instantiation 12.3, matching generic actual 

parameter 12.3, name 4.1, parameter and result type profile 6.3, subprogram 6, subprogram specification 6.1, sub- 

type 3.3, visibility 8.3 

7 2.3.6 Matching Rules for Formal Subprograms 12-14 



Generic Units 

12.4 Example of a Generic Package 

The following example provides a possible formulation of stacks by means of a generic package. 
The size of each stack and the type of the stack elements are provided as generic parameters. 

generic 
SIZE : POSITIVE; 
type ITEM is private; 

package STACK is 
procedure PUSH (E : in ITEM); 
procedure POP (E : out ITEM); 
OVERFLOW, UNDERFLOW : exception; 

end STACK; 

package body STACK is 

type TABLE is array (POSITIVE range <>) of ITEM; 
SPACE : TABLEO .. SIZE); 
INDEX : NATURAL := 0; 

procedure PUSH(E : in ITEM) is 
begin 

if INDEX >= SIZE then 
raise OVERFLOW; 

end if; 
INDEX := INDEX + 1; 
SPACE(INDEX) := E; 

end PUSH; 

procedure POP(E : out ITEM) is 
begin 

if INDEX = 0 then 
raise UNDERFLOW; 

end if; 
E := SPACE(INDEX); 
INDEX := INDEX - 1; 

end POP; 

end STACK; 

Instances of this generic package can be obtained as follows: 

package STACK_INT is new STACK(SIZE => 200, ITEM => INTEGER); 
package STACK_BOOL is new STACK(100, BOOLEAN); 

Thereafter, the procedures of the instantiated packages can be called as follows: 

STACKJNT.PUSH(N); 
STAC K_B 00 L. PUSH (TRUE); 

12-15 Example of a Generic Package 12.4 



ANSI/MIL-STD-1815A Ada Reference Manual 

Alternatively, a generic formulation of the type STACK can be given as follows (package body 
omitted): 

generic 
type ITEM is private; 

package ON_STACKS is 
type STACK(SIZE : POSITIVE) is limited private: 
procedure PUSH (S : in out STACK; E : in ITEM); 
procedure POP (S : in out STACK; E : out ITEM); 
OVERFLOW, UNDERFLOW : exception; 

private 
type TABLE is array (POSITIVE range <>) of ITEM; 
type STACK(SIZE : POSITIVE) is 

record 
SPACE : TABLE(1 .. SIZE); 
INDEX : NATURAL := 0; 

end record; 
end; 

In order to use such a package, an instantiation must be created and thereafter stacks of the cor¬ 
responding type can be declared: 

declare 
package STACK_REAL is new QN_STACKS(REAL); use STACK_REAL; 
S : STACK(IOO); 

begin 

PUSH(S, 2.54); 

end; 

12.4 Example of a Generic Package 12-16 



13. Representation Clauses and Implementation-Dependent Features 

This chapter describes representation clauses, certain implementation-dependent features, and 
other features that are used in system programming. 

13.1 Representation Clauses 

Representation clauses specify how the types of the language are to be mapped onto the underly¬ 
ing machine. They can be provided to give more efficient representation or to interface with 
features that are outside the domain of the language (for example, peripheral hardware). 

representation_clause 
type_representation_clause | address_clause 

type_representation_clause length_clause 
| enumeration_representation_clause | record_representation_clause 

A type representation clause applies either to a type or to a first named subtype (that is, to a sub- 
type declared by a type declaration, the base type being therefore anonymous). Such a representa¬ 
tion clause applies to all objects that have this type or this first named subtype. At most one 
enumeration or record representation clause is allowed for a given type: an enumeration represen¬ 
tation clause is only allowed for an enumeration type; a record representation clause, only for a 
record type. (On the other hand, more than one length clause can be provided for a given type; 
moreover, both a length clause and an enumeration or record representation clause can be 
provided.) A length clause is the only form of representation clause allowed for a type derived from 
a parent type that has (user-defined) derivable subprograms. 

An address clause applies either to an object; to a subprogram, package, or task unit; or to an 
entry. At most one address clause is allowed for any of these entities. 

A representation clause and the declaration of the entity to which the clause applies must both 
occur immediately within the same declarative part, package specification, or task specification; 
the declaration must occur before the clause. In the absence of a representation clause for a given 
declaration, a default representation of this declaration is determined by the implementation. 
Such a default determination occurs no later than the end of the immediately enclosing declarative 
part, package specification, or task specification. For a declaration given in a declarative part, this 
default determination occurs before any enclosed body. 

In the case of a type, certain occurrences of its name imply that the representation of the type 
must already have been determined. Consequently these occurrences force the default determina¬ 
tion of any aspect of the representation not already determined by a prior type representation 
clause. This default determination is also forced by similar occurrences of the name of a subtype of 
the type, or of the name of any type or subtype that has subcomponents of the type. A forcing 
occurrence is any occurrence other than in a type or subtype declaration, a subprogram specifica¬ 
tion, an entry declaration, a deferred constant declaration, a pragma, or a representation clause for 
the type itself. In any case, an occurrence within an expression is always forcing. 

13-1 Representation Clauses 13.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

7 A representation clause for a given entity must not appear after an occurrence of the name of the 
entity if this occurrence forces a default determination of representation for the entity. 

8 Similar restrictions exist for address clauses. For an object, any occurrence of its name (after the 
object declaration) is a forcing occurrence. For a subprogram, package, task unit, or entry, any 
occurrence of a representation attribute of such an entity is a forcing occurrence. 

9 The effect of the elaboration of a representation clause is to define the corresponding aspects of 
the representation. 

to The interpretation of some of the expressions that appear in representation clauses is 
implementation-dependent, for example, expressions specifying addresses. An implementation 
may limit its acceptance of representation clauses to those that can be handled simply by the 
underlying hardware. If a representation clause is accepted by an implementation, the compiler 
must guarantee that the net effect of the program is not changed by the presence of the clause, 
except for address clauses and for parts of the program that interrogate representation attributes. 
If a program contains a representation clause that is not accepted, the program is illegal. For each 
implementation, the allowed representation clauses, and the conventions used for 
implementation-dependent expressions, must be documented in Appendix F of the reference 
manual. 

ii Whereas a representation clause is used to impose certain characteristics of the mapping of an 
entity onto the underlying machine, pragmas can be used to provide an implementation with 
criteria for its selection of such a mapping. The pragma PACK specifies that storage minimization 
should be the main criterion when selecting the representation of a record or array type. Its form is 
as follows: 

pragma PACK (fype_simple_name); 

,2 Packing means that gaps between the storage areas allocated to consecutive components should 
be minimized. It need not, however, affect the mapping of each component onto storage. This 
mapping can itself be influenced by a pragma (or controlled by a representation clause) for the 
component or component type. The position of a PACK pragma, and the restrictions on the named 
type, are governed by the same rules as for a representation clause; in particular, the pragma must 
appear before any use of a representation attribute of the packed entity. 

13 The pragma PACK is the only language-defined representation pragma. Additional representation 
pragmas may be provided by an implementation; these must be documented in Appendix F. (in 
contrast to representation clauses, a pragma that is not accepted by the implementation is 
ignored.) 

Note: 

14 No representation clause is allowed for a generic formal type. 

15 References: address clause 13.5, allow 1.6, body 3.9, component 3.3, declaration 3.1. declarative part 3.9, default 

expression 3.2.1, deferred constant declaration 7.4, derivable subprogram 3.4, derived type 3.4, entity 3.1, entry 9.5, 

enumeration representation clause 13.3, expression 4.4, generic formal type 12.1.2, illegal 1.6, length clause 13.2, 

must 1 6, name 4.1, object 3.2, occur immediately within 8.1, package 7, package specification 7.1, parent type 3.4, 

pragma 2.8, record representation clause 13.4, representation attribute 13.7.2 13.7.3, subcomponent 3.3, sub¬ 

program 6, subtype 3.3, subtype declaration 3.3.2, task specification 9.1, task unit 9, type 3.3, type declaration 3.3.1 

13.1 Representation Clauses 13-2 



Representation Clauses and Implementation-Dependent Features 

13.2 Length Clauses 

A length clause specifies an amount of storage associated with a type. 

Iength_clause ::= for attribute use simple_expression; 

The expression must be of some numeric type and is evaluated during the elaboration of the length 
clause (unless it is a static expression). The prefix of the attribute must denote either a type or a 
first named subtype. The prefix is called T in what follows. The only allowed attribute designators 
in a length clause are SIZE, STORAGE_SIZE, and SMALL. The effect of the length clause depends 
on the attribute designator: 

(a) Size specification: T’SIZE 

The expression must be a static expression of some integer type. The value of the expression 
specifies an upper bound for the number of bits to be allocated to objects of the type or first 
named subtype T. The size specification must allow for enough storage space to accom¬ 
modate every allowable value of these objects. A size specification for a composite type may 
affect the size of the gaps between the storage areas allocated to consecutive components. 
On the other hand, it need not affect the size of the storage area allocated to each component. 

The size specification is only allowed if the constraints on T and on its subcomponents (if any) 
are static. In the case of an unconstrained array type, the index subtypes must also be static. 

(b) Specification of collection size: T'STORAGE_SIZE 

The prefix T must denote an access type. The expression must be of some integer type (but 
need not be static); its value specifies the number of storage units to be reserved for the col¬ 
lection, that is, the storage space needed to contain all objects designated by values of the 
access type and by values of other types derived from the access type, directly or indirectly. 
This form of length clause is not allowed for a type derived from an access type. 

(c) Specification of storage for a task activation: T'STORAGE_SIZE 

The prefix T must denote a task type. The expression must be of some integer type (but need 
not be static); its value specifies the number of storage units to be reserved for an activation 
(not the code) of a task of the type. 

(d) Specification of small for a fixed point type: T'SMALL 

The prefix T must denote the first named subtype of a fixed point type. The expression must 
be a static expression of some real type; its value must not be greater than the delta of the 
first named subtype. The effect of the length clause is to use this value of small for the 
representation of values of the fixed point base type. (The length clause thereby also affects 
the amount of storage for objects that have this type.) 

Notes: 

A size specification is allowed for an access, task, or fixed point type, whether or not another form 
of length clause is also given for the type. 

13-3 Length Clauses 13.2 



ANS//MIL-STD-1815A Ada Reference Manual 

h What is considered to be part of the storage reserved for a collection or for an activation of a task 
is implementation-dependent. The control afforded by length clauses is therefore relative to the 
implementation conventions. For example, the language does not define whether the storage 
reserved for an activation of a task includes any storage needed for the collection associated with 
an access type declared within the task body. Neither does it define the method of allocation for 
objects denoted by values of an access type. For example, the space allocated could be on a stack; 
alternatively, a general dynamic aliocation scheme or fixed storage could be used. 

15 The objects allocated in a collection need not have the same size if the designated type is an 
unconstrained array type or an unconstrained type with discriminants. Note also that the allocator 
itself may require some space for internal tables and links. Hence a length clause for the collection 
of an access type does not always give precise control over the maximum number of allocated 
objects. 

16 Examples: 

assumed declarations: 

type MEDIUM is range 0 .. 65000; 
type SHORT is delta 0.01 range -100.0 .. 100.0; 
type DEGREE is delta 0.1 range -360.0 .. 360.0; 

BYTE : constant := 8; 
PAGE : constant := 2000; 

length clauses: 

for COLOR'SIZE use 1 *BYTE; - see 3.5.1 
for MEDIUM'SIZE use 2*BYTE; 
for SHORTSIZE use 15; 

for CAR_NAME'STORAGE_SIZE use — approximately 2000 cars 
2000 *((CAR'SIZE/SYSTEM.ST0 RAG E_U NIT) + 1); 

for KEYBOARD_DRIVER'STORAGE_SIZE use UPAGE; 

for DEGREE'SMALL use 360.0/2**(SYSTEM.ST0RAGE_UNIT - 1); 

17 Notes on the examples: 

In the length clause for SHORT, fifteen bits is the minimum necessary, since the type definition 
requires SHORT'SMALL = 2.0**(-7) and SHORT"MANTISSA = 14. The length clause for DEGREE 
forces the model numbers to exactly span the range of the type. 

is References: access type 3.8, allocator 4.8, allow 1.6, array type 3.6, attribute 4.1.4, collection 3.8, composite type 

3.3, constraint 3.3, delta of a fixed point type 3.5.9, derived type 3.4, designate 3.8, elaboration 3.9, entity 3.1, 

evaluation 4.5, expression 4.4, first named subtype 13.1, fixed point type 3.5.9, index subtype 3.6, integer type 3.5.4, 

must 1.6, numeric type 3.5, object 3.2, real type 3.5.6, record type 3.7, small of a fixed point type 3.5.10, static con¬ 

straint 4.9, static expression 4.9, static subtype 4.9, storage unit 13.7, subcomponent 3.3, system package 1 3.7, task 

9, task activation 9.3, task specification 9.1, task type 9.2, type 3.3, unconstrained array type 3.6 

/ 3.2 Length Clauses 13-4 



Representation Clauses and Implementation-Dependent Features 

13.3 Enumeration Representation Clauses 

An enumeration representation clause specifies the internal codes for the literals of the enumera¬ 
tion type that is named in the clause. 

enumeration_representation_clause ::= for fype_simple_name use aggregate; 

The aggregate used to specify this mapping is written as a one-dimensional aggregate, for which 
the index subtype is the enumeration type and the component type is universalJnteger. 

All literals of the enumeration type must be provided with distinct integer codes, and all choices 
and component values given in the aggregate must be static. The integer codes specified for the 
enumeration type must satisfy the predefined ordering relation of the type. 

Example: 

type MIX_CODE is (ADD, SUB, MUL, LDA, STA, STZ); 

for MIX_CODE use 
(ADD => 1, SUB => 2, MUL => 3, LDA => 8, STA => 24, STZ => 33); 

Notes: 

The attributes SUCC, PRED, and POS are defined even for enumeration types with a 
noncontiguous representation; their definition corresponds to the (logical) type declaration and is 
not affected by the enumeration representation clause. In the example, because of the need to 
avoid the omitted values, these functions are likely to be less efficiently implemented than they 
could be in the absence of a representation clause. Similar considerations apply when such types 
are used for indexing. 

References: aggregate 4.3, array aggregate 4.3.2, array type 3.6, attribute of an enumeration type 3.5.5, choice 

3.7.3, component 3.3, enumeration literal 3.5.1, enumeration type 3.5.1, function 6.5, index 3.6, index subtype 3.6, 

literal 4.2, ordering relation of an enumeration type 3.5.1, representation clause 13.1, simple name 4.1, static expres¬ 

sion 4.9, type 3.3, type declaration 3.3.1, universaLinteger type 3.5.4 

13.4 Record Representation Clauses 

A record representation clause specifies the storage representation of records, that is, the order, 
position, and size of record components (including discriminants, if any). 

record_representation_clause ::= 
for rype_simple_name use 

record [alignment_clause] 
|component_clause) 

end record; 

alignment-clause at mod sfat/c_simple_expression; 

component_clause ::= 
components name at staf/c_simple_expression range static- range; 

13-5 Record Representation Clauses 13.4 



ANSI/MIL-STD-1815A Ada Reference Manual 

The simple expression given after the reserved words at mod in an alignment clause, or after the 
reserved word at in a component clause, must be a static expression of some integer type. If the 
bounds of the range of a component clause are defined by simple expressions, then each bound of 
the range must be defined by a static expression of some integer type, but the two bounds need 
not have the same integer type. 

4 An alignment clause forces each record of the given type to be allocated at a starting address that 
is a multiple of the value of the given expression (that is, the address modulo the expression must 
be zero). An implementation may place restrictions on the allowable alignments. 

5 A component clause specifies the storage place of a component, relative to the start of the record. 
The integer defined by the static expression of a component clause is a relative address expressed 
in storage units. The range defines the bit positions of the storage place, relative to the storage 
unit. The first storage unit of a record is numbered zero. The first bit of a storage unit is numbered 
zero. The ordering of bits in a storage unit is machine-dependent and may extend to adjacent 
storage units. (For a specific machine, the size in bits of a storage unit is given by the 
configuration-dependent named number SYSTEM .STORAGE_UNIT.) Whether a component is 
allowed to overlap a storage boundary, and if so, how, is implementation-defined. 

6 At most one component clause is allowed for each component of the record type, including for 
each discriminant (component clauses may be given for some, all, or none of the components). If 
no component clause is given for a component, then the choice of the storage place for the com¬ 
ponent is left to the compiler. If component clauses are given for all components, the record 
representation clause completely specifies the representation of the record type and must be 
obeyed exactly by the compiler. 

7 Storage places within a record variant must not overlap, but overlap of the storage for distinct 
variants is allowed. Each component clause must allow for enough storage space to accom¬ 
modate every allowable value of the component. A component clause is only allowed for a compo¬ 
nent if any constraint on this component or on any of its subcomponents is static. 

8 An implementation may generate names that denote implementation-dependent components (for 
example, one containing the offset of another component). Such implementation-dependent 
names can be used in record representation clauses (these names need not be simple names; for 
example, they could be implementation-dependent attributes). 

9 Example: 

WORD : constant := 4; -- storage unit is byte, 4 bytes per word 

type STATE 
type MODE 

is (A, M, W, Ph¬ 
is (FIX, DEC, EXP, SIGN IF); 

type BYTE_MASK is array (0 .. 7) of BOOLEAN 
type STATE_MASK is array (STATE) of BOOLEAN 
type MODE_MASK is array (MODE) of BOOLEAN 

type PROGRAM_STATUS_WORD is 
record 

SYSTEM_MASK 
PROTECTION_KEY 
MACHINE_STATE 
INTERRUPT_CAUSE 
ILC 
CC 
PROGRAM_MASK 
INST__ADDRESS ADDRESS; 

INTEGER range 0 .. 3; 
STATE_MASK; 
INTERRUPTION_CODE; 
INTEGER range 0 .. 3; 
INTEGER range 0 .. 3; 
M0DE_MASK; 

BYTE_MASK; 

end record; 

13.4 Record Representation Clauses 13-6 



Representation Clauses and Implementation-Dependent Features 

for PROGRAM_STATUS_WORD use 
record at mod 8; 

SYSTEM_MASK at 0*WORD range 0 .. 7; 
PROTECT!ON_KEY at 0*WORD range 10 ..11; bits 8, 9 unused 
MACHINE_STATE at 0*WORD range 12 .. 15; 
INTER RUPT_CAUSE at 0*W0RD range 16 .. 31; 
ILC at 1 *WORD range 0 .. 1; second word 
CC at UWORD range 2 .. 3: 
PROGRAM_MASK at UWORD range 4 .. 7; 
INSTEAD DR ESS at UWORD range 8 .. 31; 

end record; 

for PROGRAM_STATUS_WORD'SIZE use 8*SYSTEM.ST0RAGE_UNIT; 

Note on the example: 

The record representation clause defines the record layout. The length clause guarantees that 
exactly eight storage units are used. 

References: allow 1.6, attribute 4.1.4, constant 3.2.1, constraint 3.3, discriminant 3.7.1, integer type 3.5.4, must 

1.6, named number 3.2, range 3.5, record component 3.7, record type 3.7, simple expression 4.4, simple name 4.1, 

static constraint 4.9, static expression 4.9, storage unit 1 3.7, subcomponent 3.3, system package 1 3.7, variant 3.7.3 

13.5 Address Clauses 

An address clause specifies a required address in storage for an entity. 

address_clause for simple_name use at simple_expression; 

The expression given after the reserved word at must be of the type ADDRESS defined in the 
package SYSTEM (see 13.7); this package must be named by a with clause that applies to the 
compilation unit in which the address clause occurs. The conventions that define the interpretation 
of a value of the type ADDRESS as an address, as an interrupt level, or whatever it may be, are 
implementation-dependent. The allowed nature of the simple name and the meaning of the cor¬ 
responding address are as follows: 

(a) Name of an object: the address is that required for the object (variable or constant). 

(b) Name of a subprogram, package, or task unit: the address is that required for the machine 
code associated with the body of the program unit. 

(c) Name of a single entry: the address specifies a hardware interrupt to which the single entry is 
to be linked. 

If the simple name is that of a single task, the address clause is understood to refer to the task unit 
and not to the task object. In all cases, the address clause is only legal if exactly one declaration 
with this identifier occurs earlier, immediately within the same declarative part, package specifica¬ 
tion, or task specification. A name declared by a renaming declaration is not allowed as the simple 
name. 

Address clauses should not be used to achieve overlays of objects or overlays of program units. 
Nor should a given interrupt be linked to more than one entry. Any program using address clauses 
to achieve such effects is erroneous. 

13-7 Address Clauses 13.5 



ANSI/MIL-STD-1815A Ada Reference Manual 

9 Example: 

for CONTROL use at 1 6 #0020#; — assuming that SYSTEM .ADDRESS is an integer type 

Notes: 

o The above rules imply that if two subprograms overload each other and are visible at a given point, 
an address clause for any of them is not legal at this point. Similarly if a task specification declares 
entries that overload each other, they cannot be interrupt entries. The syntax does not allow an 
address clause for a library unit. An implementation may provide pragmas for the specification of 
program overlays. 

ii References: address predefined type 13.7, apply 10.1.1, compilation unit 10.1, constant 3.2.1, entity 3.1, entry 9.5, 

erroneous 1.6, expression 4.4, library unit 10.1, name 4.1, object 3.2, package 7, pragma 2.8, program unit 6, 

reserved word 2.9, simple expression 4.4, simple name 4.1, subprogram 6, subprogram body 6.3, system package 

13.7, task body 9.1, task object 9.2, task unit 9, type 3.3, variable 3.2.1, with clause 10.1.1 

13.5.1 Interrupts 

1 An address clause given for an entry associates the entry with some device that may cause an 
interrupt; such an entry is referred to in this section as an interrupt entry. If control information is 
supplied upon an interrupt, it is passed to an associated interrupt entry as one or more parameters 
of mode in; only parameters of this mode are allowed. 

2 An interrupt acts as an entry call issued by a hardware task whose priority is higher than the 
priority of the main program, and also higher than the priority of any user-defined task (that is, any 
task whose type is declared by a task unit in the program). The entry call may be an ordinary entry 
call, a timed entry call, or a conditional entry call, depending on the kind of interrupt and on the 
implementation. 

3 If a select statement contains both a terminate alternative and an accept alternative for an inter¬ 
rupt entry, then an implementation may impose further requirements for the selection of the ter¬ 
minate alternative in addition to those given in section 9.4. 

4 Example: 

task INTERRUPT_HANDLER is 
entry DONE; 
for DONE use at 16#40#; — assuming that SYSTEM.ADDRESS is an integer type 

end INTERRUPT_HANDLER; 

Notes: 

5 Interrupt entry calls need only have the semantics described above; they may be implemented by 
having the hardware directly execute the appropriate accept statements. 

6 Queued interrupts correspond to ordinary entry calls. Interrupts that are lost if not immediately 
processed correspond to conditional entry calls. It is a consequence of the priority rules that an 
accept statement executed in response to an interrupt takes precedence over ordinary, user- 
defined tasks, and can be executed without first invoking a scheduling action. 

13.5.1 Interrupts 13-8 



Representation Clauses and Implementation-Dependent Features 

One of the possible effects of an address clause for an interrupt entry is to specify the priority of 
the interrupt (directly or indirectly). Direct calls to an interrupt entry are allowed. 

References: accept alternative 9.7.1, accept statement 9.5, address predefined type 13.7. allow 1.6, conditional 

entry call 9.7.2, entry 9.5, entry call 9.5, mode 6.1, parameter of a subprogram 6.2, priority of a task 9.8, select alter¬ 

native 9.7.1, select statement 9.7, system package 13.7, task 9, terminate alternative 9.7.1, timed entry call 9.7.3 

13.6 Change of Representation 

At most one representation clause is allowed for a given type and a given aspect of its representa¬ 
tion. Hence, if an alternative representation is needed, it is necessary to declare a second type, 
derived from the first, and to specify a different representation for the second type. 

Example: 

PACKED_DESCRIPTOR and DESCRIPTOR are two different types 
with identical characteristics, apart from their representation 

type DESCRIPTOR is 
record 

components of a descriptor 
end record; 

type PACKED_DESCRIPTOR is new DESCRIPTOR; 

for PACKED_DESCRIPTOR use 
record 

component clauses for some or for all components 
end record; 

Change of representation can now be accomplished by assignment with explicit type conversions: 

D : DESCRIPTOR; 
P : PACKED_DESCRIPTOR; 

P := PACKED_DESCRIPTOR(D); - pack D 
D := DESCRIPTOR(P); - unpack P 

References: assignment 5.2, derived type 3.4, type 3.3, type conversion 4.6, type declaration 3.1, representation 

clause 13.1 

13.7 The Package System 

For each implementation there is a predefined library package called SYSTEM which includes the 
definitions of certain configuration-dependent characteristics. The specification of the package 
SYSTEM is implementation-dependent and must be given in Appendix F. The visible part of this 
package must contain at least the following declarations. 

13-9 The Package System 13.7 



ANSI/MIL-STD-1815A Ada Reference Manual 

package SYSTEM is 
type ADDRESS 
type NAME 

is imp/emer>tation_defined: 
is impiementation_defined__enumerationjtype; 

SYSTEM_NAME : constant NAME := imptementation_defined: 

STORAGE_UNIT : constant := implementation_defined; 
MEMORY_SIZE : constant := implementation^defined; 

System-Dependent Named Numbers: 

MINJNT 
MAX_INT 
MAX_DIGITS 
MAX_MANTISSA 
FINE_DELTA 
TICK 

constant impiementation_defined] 
constant := implementation_defined; 
constant := implementation ^.defined', 
constant := implementation_defined; 
constant := implementation ^.defined', 
constant := impiementation_defined\ 

Other System-Dependent Declarations 

subtype PRIORITY is INTEGER range impiementation_defined; 

end SYSTEM ; 

The type ADDRESS is the type of the addresses provided in address clauses; it is also the type of 
the result delivered by the attribute ADDRESS. Values of the enumeration type NAME are the 
names of alternative machine configurations handled by the implementation; one of these is the 
constant SYSTEM_NAME. The named number STORAGE_UNIT is the number of bits per storage 
unit; the named number MEMORY_SIZE is the number of available storage units in the 
configuration; these named numbers are of the type universalJnteger. 

An alternative form of the package SYSTEM, with given values for any of SYSTEM_NAME, 
STORAGE_UNIT, and MEMORY_SIZE, can be obtained by means of the corresponding pragmas. 
These pragmas are only allowed at the start of a compilation, before the first compilation unit (if 
any) of the compilation. 

pragma SYSTEM_NAME (enumeration Jiteral); 

The effect of the above pragma is to use the enumeration literal with the specified identifier for the 
definition of the constant SYSTEM_NAME. This pragma is only allowed if the specified identifier 
corresponds to one of the literals of the type NAME. 

pragma STORAGE_UNIT(numericJiteral); 

The effect of the above pragma is to use the value of the specified numeric literal for the definition 
of the named number STORAGE_UNIT. 

pragma MEMORY_SIZE (numericJiteral); 

The effect of the above pragma is to use the value of the specified numeric literal for the definition 
of the named number MEMORY_SIZE. 

13.7 The Package System 13-10 



Representation Clauses and Implementation-Dependent Features 

The compilation of any of these pragmas causes an implicit recompilation of the package SYSTEM . 

Consequently any compilation unit that names SYSTEM in its context clause becomes obsolete 
after this implicit recompilation. An implementation may impose further limitations on the use of 
these pragmas. For example, an implementation may allow them only at the start of the first com¬ 
pilation, when creating a new program library. 

Note: 

It is a consequence of the visibility rules that a declaration given in the package SYSTEM is not 
visible in a compilation unit unless this package is mentioned by a with clause that applies (directly 
or indirectly) to the compilation unit. 

References: address clause 13.5, apply 10.1.1, attribute 4.1.4, compilation unit 1 0.1, declaration 3.1, enumeration 

literal 3.5.1, enumeration type 3.5.1, identifier 2.3, library unit 10.1, must 1.6, named number 3.2, number declaration 

3.2.2, numeric literal 2.4, package 7, package specification 7.1, pragma 2.8, program library 10.1, type 3.3, visibility 

8.3, visible part 7.2, with clause 10.1.1 

13.7.1 System-Dependent Named Numbers 

Within the package SYSTEM, the following named numbers are declared. The numbers 
FINE_DELTA and TICK are of the type universal_real; the others are of the type universalJnteger. 

MIN_INT The smallest (most negative) value of all predefined integer types. 

MAX_INT The largest (most positive) value of all predefined integer types. 

MAX_DIGITS The largest value allowed for the number of significant decimal digits in a 
floating point constraint. 

MAX_MANTISSA The largest possible number of binary digits in the mantissa of model numbers 
of a fixed point subtype. 

FINE_DELTA The smallest delta allowed in a fixed point constraint that has the range con¬ 
straint -1.0 .. 1.0. 

TICK The basic clock period, in seconds. 

References: allow 1.6, delta of a fixed point constraint 3.5.9, fixed point constraint 3.5.9, floating point constraint 

3.5.7, integer type 3.5.4, model number 3.5.6, named number 3.2, package 7, range constraint 3.5, system package 

13.7, type 3.3, universaUnteger type 3.5.4, universaLreal type 3.5.6 

13-1 1 System-Dependent Named Numbers 13.7.1 



I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

ANSI/MIL-STD-1815A Ada Reference Manual 

13.7.2 Representation Attributes 

The values of certain implementation-dependent characteristics can be obtained by interrogating 
appropriate representation attributes. These attributes are described below. 

For any object, program unit, label, or entry X: 

X'ADDRESS Yields the address of the first of the storage units allocated to X. For a sub¬ 
program, package, task unit or label, this value refers to the machine code 
associated with the corresponding body or statement. For an entry for which 
an address clause has been given, the value refers to the corresponding 
hardware interrupt. The value of this attribute is of the type ADDRESS defined 
in the package SYSTEM . 

For any type or subtype X, or for any object X: 

X'SIZE Applied to an object, yields the number of bits allocated to hold the object. 
Applied to a type or subtype, yields the minimum number of bits that is 
needed by the implementation to hold any possible object of this type or sub- 
type. The value of this attribute is of the type universalJnteger. 

For the above two representation attributes, if the prefix is the name of a function, the attribute is 
understood to be an attribute of the function (not of the result of calling the function). Similarly, if 
the type of the prefix is an access type, the attribute is understood to be an attribute of the prefix 
(not of the designated object: attributes of the latter can be written with a prefix ending with the 
reserved word all). 

For any component C of a record object R: 

R.C'POSITION Yields the offset, from the start of the first storage unit occupied by the record, 
of the first of the storage units occupied by C. This offset is measured in 
storage units. The value of this attribute is of the type universal Jnteger. 

R.C'FIRST_BIT Yields the offset, from the start of the first of the storage units occupied by C, 
of the first bit occupied by C. This offset is measured in bits. The value of this 
attribute is of the type universal Jnteger. 

R.C'LAST_BIT Yields the offset, from the start of the first of the storage units occupied by C, 
of the last bit occupied by C. This offset is measured in bits. The value of this 
attribute is of the type universal Jnteger. 

For any access type or subtype T: 

T'STORAGE_SIZE Yields the total number of storage units reserved for the collection associated 
with the base type of T. The value of this attribute is of the type univer¬ 
sal Jnteger. 

For any task type or task object T: 

T'STORAGE_SIZE Yields the number of storage units reserved for each activation of a task of the 
type T or for the activation of the task object T. The value of this attribute is of 
the type universal Jnteger. 

7 3.7.2 Representation A ttributes 13-12 



Representation Clauses and Implementation-Dependent Features 

Notes: 

For a task object X, the attribute X'SIZE gives the number of bits used to hold the object X, 
whereas X'STORAGE_SIZE gives the number of storage units allocated for the activation of the 
task designated by X. For a formal parameter X, if parameter passing is achieved by copy, then the 
attribute X ADDRESS yields the address of the local copy; if parameter passing is by reference, 
then the address is that of the actual parameter. 

References: access subtype 3.8, access type 3.8, activation 9.3, actual parameter 6.2. address clause 1 3.5, address 

predefined type 13.7, attribute 4.1.4, base type 3.3, collection 3.8, component 3.3, entry 9.5, formal parameter 6.1 

6.2, label 5.1, object 3.2, package 7, package body 7.1, parameter passing 6.2, program unit 6, record object 3.7, 

statement 5, storage unit 13.7, subprogram 6, subprogram body 6.3, subtype 3.3, system predefined package 13.7, 

task 9, task body 9.1, task object 9.2, task type 9.2, task unit 9, type 3.3, universaljnteger type 3.5.4 

13.7.3 Representation Attributes of Real Types 

For every real type or subtype T, the following machine-dependent attributes are defined, which 
are not related to the model numbers. Programs using these attributes may thereby exploit 
properties that go beyond the minimal properties associated with the numeric type (see section 
4.5.7 for the rules defining the accuracy of operations with real operands). Precautions must 
therefore be taken when using these machine-dependent attributes if portability is to be ensured. 

For both floating point and fixed point types: 

T'MACHINE_ROUNDS Yields the value TRUE if every predefined arithmetic operation on 
values of the base type of T either returns an exact result or performs 
rounding; yields the value FALSE otherwise. The value of this 
attribute is of the predefined type BOOLEAN. 

T'MACHINE_OVERFLOWS Yields the value TRUE if every predefined operation on values of the 
base type of T either provides a correct result, or raises the exception 
NUMERIC_ERROR in overflow situations (see 4.5.7); yields the 
value FALSE otherwise. The value of this attribute is of the 
predefined type BOOLEAN. 

For floating point types, the following attributes provide characteristics of the underlying machine 
representation, in terms of the canonical form defined in section 3.5.7: 

T'MACHINE_RADIX Yields the value of the radix used by the machine representation of 
the base type of T. The value of this attribute is of the type univer¬ 
saljnteger. 

TMACHINE_MANTISSA Yields the number of digits in the mantissa for the machine 
representation of the base type of T (the digits are extended digits in 
the range 0 to T'MACFIINE_RADIX -1). The value of this attribute is of 
the type universaljnteger. 

T'MACFIINE_EMAX Yields the largest value of exponent for the machine representation 
of the base type of T. The value of this attribute is of the type univer¬ 
saljnteger. 

T'MACFIINE_EMIN Yields the smallest (most negative) value of exponent for the 
machine representation of the base type of T. The value of this 
attribute is of the type universaljnteger. 

13-13 Representation Attributes of Real Types 13.7.3 



ANSI/MIL-STD-1815A Ada Reference Manual 

10 

11 

Note: 

For many machines the largest machine representable number of type F is almost 

(F'MACFHNE_RADIX)**(F'MACHINE_EMAX), 

and the smallest positive representable number is 

F'MACHINE_RADIX ** (F'MACHINE_EMIN - 1) 

12 References: arithmetic operator 4.5, attribute 4.1.4, base type 3.3, boolean predefined type 3.5.3, false boolean 

value 3.6.3, fixed point type 3.5.9, floating point type 3.5.7, model number 3.5.6, numeric type 3.5, numeric_error 

exception 11.1, predefined operation 3.3.3, radix 3.5.7, real type 3.5.6, subtype 3.3, true boolean value 3.5.3, type 

3.3, universaLinteger type 3.5.4 

13.8 Machine Code Insertions 

1 A machine code insertion can be achieved by a call to a procedure whose sequence of statements 
contains code statements. 

2 code_statement type_markVecorcLaggregate; 

3 A code statement is only allowed in the sequence of statements of a procedure body. If a 
procedure body contains code statements, then within this procedure body the only allowed form 
of statement is a code statement (labeled or not), the only allowed declarative items are use 
clauses, and no exception handler is allowed (comments and pragmas are allowed as usual). 

4 Each machine instruction appears as a record aggregate of a record type that defines the cor¬ 
responding instruction. The base type of the type mark of a code statement must be declared 
within the predefined library package called MACHINE_CODE; this package must be named by a 
with clause that applies to the compilation unit in which the code statement occurs. An implemen¬ 
tation is not required to provide such a package. 

5 An implementation is allowed to impose further restrictions on the record aggregates allowed in 
code statements. For example, it may require that expressions contained in such aggregates be 
static expressions. 

e An implementation may provide machine-dependent pragmas specifying register conventions and 
calling conventions. Such pragmas must be documented in Appendix F. 

7 Example: 

M : MASK; 
procedure SET_MASK; pragma INLINE(SET_MASK); 

procedure SET_MASK is 
use MACHINE_CODE; 

begin 
SI_FORMAT'(CODE => SSM, B => M'BASE_REG, D => M'DISP); 

M’BASE_REG and M'DISP are implementation-specific predefined attributes 
end; 

13-14 13.8 Machine Code Insertions 



Representation Clauses and Implementation-Dependent Features 

References: allow 1.6, apply 10.1.1, comment 2.7, compilation unit 10.1, declarative item 3.9, exception handler 

1 1.2, inline pragma 6.3.2, labeled statement 5.1, library unit 10.1, package 7, pragma 2.8, procedure 6 6.1, procedure 

body 6.3, record aggregate 4.3.1, record type 3.7, sequence of statements 5.1, statement 5, static expression 4.9, use 

clause 8.4, with clause 10.1.1 

13.9 Interface to Other Languages 

A subprogram written in another language can be called from an Ada program provided that all 
communication is achieved via parameters and function results. A pragma of the form 

pragma INTERFACE (language_narr\e, subprogram_name); 

must be given for each such subprogram; a subprogram name is allowed to stand for several 
overloaded subprograms. This pragma is allowed at the place of a declarative item, and must apply 
in this case to a subprogram declared by an earlier declarative item of the same declarative part or 
package specification. The pragma is also allowed for a library unit; in this case the pragma must 
appear after the subprogram declaration, and before any subsequent compilation unit. The 
pragma specifies the other language (and thereby the calling conventions) and informs the com¬ 
piler that an object module will be supplied for the corresponding subprogram. A body is not 
allowed for such a subprogram (not even in the form of a body stub) since the instructions of the 
subprogram are written in another language. 

This capability need not be provided by all implementations. An implementation may place 
restrictions on the allowable forms and places of parameters and calls. 

Example: 

package FORT_LI8 is 
function SORT (X : FLOAT) return FLOAT; 
function EXP (X : FLOAT) return FLOAT; 

private 
pragma INTERFACE!FORTRAN, SORT); 
pragma INTERFACE(FORTRAN, EXP); 

end FORT_LIB; 

Notes: 

The conventions used by other language processors that call Ada programs are not part of the Ada 
language definition. Such conventions must be defined by these other language processors. 

The pragma INTERFACE is not defined for generic subprograms. 

References: allow 1.6, body stub 10.2, compilation unit 10.1, declaration 3.1, declarative item 3.9, declarative part 

3.9, function result 6.5, library unit 1 0.1, must 1.6, name 4.1, overloaded subprogram 6.6, package specification 7.1, 

parameter of a subprogram 6.2, pragma 2.8, subprogram 6, subprogram body 6.3, subprogram call 6.4, subprogram 

declaration 6.1 

13-15 Interface to Other Languages 13.9 



ANSI/MIL-STD-1815A Ada Reference Manual 

13.10 Unchecked Programming 

1 The predefined generic library subprograms UNCHECKED_DEALLOCATION and 
UNCHECKED_CONVERSION are used for unchecked storage deallocation and for unchecked type 
conversions. 

2 generic 
type OBJECT is limited private; 
type NAME is access OBJECT; 

procedure UNCHECKED_DEALLOCATION(X : in out NAME); 

3 generic 
type SOURCE is limited private; 
type TARGET is limited private; 

function UNCHECKED_CONVERSION(S ; SOURCE) return TARGET; 

4 References: generic subprogram 12.1, library unit 10.1, type 3.3 

13.10.1 Unchecked Storage Deallocation 

Unchecked storage deallocation of an object designated by a value of an access type is achieved 
by a call of a procedure that is obtained by instantiation of the generic procedure 
UNCHECKED_DEALLOCATION. For example: 

| 
procedure FREE is new UNCHECKED_DEALLOCATION (object_type_name, access_type_name); 

2 Such a FREE procedure has the following effect: 

3 (a) after executing FREE (X), the value of X is null; 

4 (b) FREE (X), when X is already equal to null, has no effect; 

5 (c) FREE (X), when X is not equal to null, is an indication that the object designated by X is no 
longer required, and that the storage it occupies is to be reclaimed. 

6 If X and Y designate the same object, then accessing this object through Y is erroneous if this 
access is performed (or attempted) after the call FREE (X); the effect of each such access is not 
defined by the language. 

7 Notes: 

7 It is a consequence of the visibility rules that the generic procedure UNCFIECKED_DEALLOCATION 
is not visible in a compilation unit unless this generic procedure is mentioned by a with clause that 
applies to the compilation unit. 

s If X designates a task object, the call FREE (X) has no effect on the task designated by the value of 
this task object. The same holds for any subcomponent of the object designated by X, if this sub¬ 
component is a task object. 

9 References: access type 3.8, apply 10.1.1, compilation unit 10.1, designate 3.8 9.1, erroneous 1.6, generic 

instantiation 12.3, generic procedure 12.1, generic unit 12, library unit 10.1, null access value 3.8, object 3.2, 

procedure 6, procedure call 6.4, subcomponent 3.3, task 9, task object 9.2, visibility 8.3, with clause 10.1.1 

13.10.1 Unchecked Storage Deallocation 13-16 



Representation Clauses and Implementation-Dependent Features 

13.10.2 Unchecked Type Conversions 

An unchecked type conversion can be achieved by a call of a function that is obtained by instantia¬ 
tion of the generic function UNCHECKED_CONVERSION. 

The effect of an unchecked conversion is to return the (uninterpreted) parameter value as a value 
of the target type, that is, the bit pattern defining the source value is returned unchanged as the bit 
pattern defining a value of the target type. An implementation may place restrictions on unchecked 
conversions, for example, restrictions depending on the respective sizes of objects of the source 
and target type. Such restrictions must be documented in appendix F. 

Whenever unchecked conversions are used, it is the programmer's responsibility to ensure that 
these conversions maintain the properties that are guaranteed by the language for objects of the 
target type. Programs that violate these properties by means of unchecked conversions are 
erroneous. 

Note: 

It is a consequence of the visibility rules that the generic function UNCHECKED_CONVERSION is 
not visible in a compilation unit unless this generic function is mentioned by a with clause that 
applies to the compilation unit. 

References: apply 10.1.1, compilation unit 10.1, erroneous 1.6, generic function 1 2.1, instantiation 1 2.3, parameter 

of a subprogram 6.2, type 3.3, with clause 10.1.1 

13-17 Unchecked Type Conversions 13.10.2 





14. Input-Output 

Input-output is provided in the language by means of predefined packages. The generic packages 
SEQUENTIALJO and DIRECTJO define input-output operations applicable to files containing 
elements of a given type. Additional operations for text input-output are supplied in the package 
TEXTJO. The package IO_EXCEPTIONS defines the exceptions needed by the above three 
packages. Finally, a package LOW_LEVEl_IO is provided for direct control of peripheral devices. 

References: directJo package 14.2 14.2.4, io_exceptions package 14.5, lowJeveIJo package 14.6, sequentiaUo 

package 14.2 14.2.2, text_io package 14.3 

14.1 External Files and File Objects 

Values input from the external environment of the program, or output to the environment, are con¬ 
sidered to occupy external files. An external file can be anything external to the program that can 
produce a value to be read or receive a value to be written. An external file is identified by a string 
(the name). A second string (the form) gives further system-dependent characteristics that may be 
associated with the file, such as the physical organization or access rights. The conventions 
governing the interpretation of such strings must be documented in Appendix F. 

Input and output operations are expressed as operations on objects of some file type, rather than 
directly in terms of the external files. In the remainder of this chapter, the term file is always used 
to refer to a file object; the term external file is used otherwise. The values transferred for a given 
file must all be of one type. 

Input-output for sequential files of values of a single element type is defined by means of the 
generic package SEQUENTIALJO. The skeleton of this package is given below. 

with IO_EXCEPTIONS; 
generic 

type ELEMENTJTYPE is private; 
package SEQUENTIAI_10 is 

type FILE_TYPE is limited private; 

type FILE_MODE is (IN_FILE, OUT_FILE); 

procedure OPEN (FILE : in out FILE_TYPE; ...); 

procedure READ (FILE : in FILEJTYPE; ITEM : out ELEMENT_TYPE); 
procedure WRITE (FILE : in FILEJTYPE; ITEM : in ELEM ENTJTYPE); 

end SEQUENTIALJO; 

In order to define sequential input-output for a given element type, an instantiation of this generic 
unit, with the given type as actual parameter, must be declared. The resulting package contains 
the declaration of a file type (called FILEJTYPE) for files of such elements, as well as the opera¬ 
tions applicable to these files, such as the OPEN , READ , and WRITE procedures. 

14-1 Externa/ Files and File Objects 14.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

Input-output for direct access files is likewise defined by a generic package called DIRECTJO. 
Input-output in human-readable form is defined by the (nongeneric) package TEXT_IO. 

Before input or output operations can be performed on a file, the file must first be associated with 
an external file. While such an association is in effect, the file is said to be open, and otherwise the 
file is said to be dosed. 

The language does not define what happens to external files after the completion of the main 
program (in particular, if corresponding files have not been closed). The effect of input-output for 
access types is implementation-dependent. 

An open file has a current mode, which is a value of one of the enumeration types 

type FILE_MODE is (IN_FILE, INOUT_FILE, OUT_FILE); - for DIRECTJO 
type FILEJMODE is (IN_FILE, OUT_FILE); - for SEQUENTIALJO and TEXTJO 

These values correspond respectively to the cases where only reading, both reading and writing, or 
only writing are to be performed. The mode of a file can be changed. 

Several file management operations are common to the three input-output packages. These 
operations are described in section 14.2.1 for sequential and direct files. Any additional effects 
concerning text input-output are described in section 14.3.1. 

The exceptions that can be raised by a call of an input-output subprogram are all defined in the 
package IO_EXCEPTIONS ; the situations in which they can be raised are described, either 
following the description of the subprogram (and in section 1 4.4), or in Appendix F in the case of 
error situations that are implementation-dependent. 

Notes: 

Each instantiation of the generic packages SEQUENTIALJO and DIRECTJO declares a different 
type FILEJTYPE ; in the case of TEXTJO , the type FILEJTYPE is unique. 

A bidirectional device can often be modeled as two sequential files associated with the device, 
one of mode IN_FILE, and one of mode OUT_FILE. An implementation may restrict the number of 
files that may be associated with a given external file. The effect of sharing an external file in this 
way by several file objects is implementation-dependent. 

References: create procedure 14.2.1, current index 14.2, current size 14.2, delete procedure 14.2.1, direct access 

1 4.2, direct file procedure 14.2, directjo package 1 4.1 1 4.2, enumeration type 3.5.1, exception 1 1, file mode 14.2.3, 

generic instantiation 12.3, index 14.2, input file 14.2.2, io_exceptions package 14.5, open file 14.1, open procedure 

1 4.2 1, output file 14.2.2, read procedure 14.2.4, sequential access 1 4.2, sequential file 1 4.2, sequential input-output 

14 2 2 sequentialjo package 14.2 14.2.2, string 3.6.3, textJo package 14.3, write procedure 14.2.4 

14.2 Sequential and Direct Files 

Two kinds of access to external files are defined: sequential access and direct access. The cor¬ 
responding file types and the associated operations are provided by the generic packages 
SEQUENTIAI_10 and DIRECTJO. A file object to be used for sequential access is called a 
sequential file, and one to be used for direct access is called a direct file. 

For sequential access, the file is viewed as a sequence of values that are transferred in the order of 
their appearance (as produced by the program or by the environment). When the file is opened, 
transfer starts from the beginning of the file. 

/ 4.2 Sequential and Direct Files 14-2 



Input-Output 

For direct access, the file is viewed as a set of elements occupying consecutive positions in linear 
order; a value can be transferred to or from an element of the file at any selected position. The 
position of an element is specified by its index, which is a number, greater than zero, of the 
implementation-defined integer type COUNT. The first element, if any, has index one; the index of 
the last element, if any, is called the current size; the current size is zero if there are no elements. 
The current size is a property of the external file. 

An open direct file has a current index, which is the index that will be used by the next read or write 4 
operation. When a direct file is opened, the current index is set to one. The current index of a direct 
file is a property of a file object, not of an external file. 

All three file modes are allowed for direct files. The only allowed modes for sequential files are the 5 

modes IN_FILE and OUT_FILE. 

References: count type 14.3, file mode 14.1, in_file 14.1, out_file 14.1 6 

14.2.1 File Management 

The procedures and functions described in this section provide for the control of external files; their 1 

declarations are repeated in each of the three packages for sequential, direct, and text input- 
output. For text input-output, the procedures CREATE, OPEN, and RESET have additional effects 
described in section 14.3.1. 

procedure CREATE! FILE : in out FILE_TYPE; 2 

MODE : in FILE_MODE := defauit_mode\ 
NAME : in STRING := 
FORM : in STRING := 

Establishes a new external file, with the given name and form, and associates this 3 

external file with the given file. The given file is left open. The current mode of the 
given file is set to the given access mode. The default access mode is the mode 
OUT_FILE for sequential and text input-output; it is the mode INOUT_FILE for 
direct input-output. For direct access, the size of the created file is 
implementation-dependent. A null string for NAME specifies an external file that is 
not accessible after the completion of the main program (a temporary file). A null 
string for FORM specifies the use of the default options of the implementation for 
the external file. 

The exception STATUS_ERROR is raised if the given file is already open. The 4 

exception NAME_ERROR is raised if the string given as NAME does not allow the 
identification of an external file. The exception USE_ERROR is raised if, for the 
specified mode, the environment does not support creation of an external file with 
the given name (in the absence of NAME_ERROR ) and form. 

procedure OPEN( FILE : in out FILE_TYPE; 5 

MODE : in FILE_MODE; 
NAME : in STRING; 
FORM : in STRING := ""); 

Associates the given file with an existing external file having the given name and 6 
form, and sets the current mode of the given file to the given mode. The given file 
is left open. 

14-3 File Management 14.2.1 



ANSI/MIL-STD-1815A Ada Reference Manual 

The exception STATUS_ERROR is raised if the given file is already open. The exception 
NAME-ERROR is raised if the string given as NAME does not allow the identification of an external 
file; in particular, this exception is raised if no external file with the given name exists. The excep¬ 
tion USE-ERROR is raised if, for the specified mode, the environment does not support opening for 
an external file with the given name (in the absence of NAME_ERROR ) and form. 

procedure CLOSE(FILE : in out FILE-TYPE); 

Severs the association between the given file and its associated external file. The 
given file is left closed. 

The exception STATUS_ERRQR is raised if the given file is not open. 

procedure DELETE(FILE : in out FILE-TYPE); 

Deletes the external file associated with the given file. The given file is closed, and 
the external file ceases to exist. 

The exception STATUS_ERROR is raised if the given file is not open. The exception 
USE_ERROR is raised if (as fully defined in Appendix F) deletion of the external file 
is not supported by the environment. 

procedure RESET(FILE : in out FILE_TYPE; MODE : in FILE-MODE); 
procedure RESET(FILE : in out FILE-TYPE); 

Resets the given file so that reading from or writing to its elements can be 
restarted from the beginning of the file; in particular, for direct access this means 
that the current index is set to one. If a MODE parameter is supplied, the current 
mode of the given file is set to the given mode. 

The exception STATUS-ERROR is raised if the file is not open. The exception 
USE-ERROR is raised if the environment does not support resetting for the external 
file and, also, if the environment does not support resetting to the specified mode 
for the external file. 

function MODE(FILE : in FILE-TYPE) return FILE-MODE; 

Returns the current mode of the given file. 

The exception STATUS-ERROR is raised if the file is not open. 

function NAME(FILE : in FILE-TYPE) return STRING; 

Returns a string which uniquely identifies the external file currently associated with 
the given file (and may thus be used in an OPEN operation). If an environment 
allows alternative specifications of the name (for example, abbreviations), the str¬ 
ing returned by the function should correspond to a full specification of the name. 

The exception STATUS-ERROR is raised if the given file is not open. 

14.2.1 File Management 14-4 



Input-Output 

function FORM(FILE : in FILE_TYPE) return STRING; 23 

Returns the form string for the external file currently associated with the given file. 24 

If an environment allows alternative specifications of the form (for example, 
abbreviations using default options), the string returned by the function should cor¬ 
respond to a full specification (that is, it should indicate explicitly all options 
selected, including default options). 

The exception STATUS_ERROR is raised if the given file is not open. 25 

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN; 26 

Returns TRUE if the file is open (that is, if it is associated with an external file), 27 

otherwise returns FALSE. 

References: current mode 14.1, current size 14.1, closed file 14.1, direct access 14.2, external file 14.1, file 14.1, 28 

file_mode type 1 4.1, file type type 14.1, form string 14.1, inout file 14.2.4, mode 14.1, name string 14.1, name_er- 

ror exception 14.4, open file 14.1, out_file 14.1, status_error exception 14.4, use_error exception 14.4 

14.2.2 Sequential Input-Output 

The operations available for sequential input and output are described in this section. The excep- 1 

tion STATUS_ERROR is raised if any of these operations is attempted for a file that is not open. 

procedure READ(FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE); 2 

Operates on a file of mode IN_FILE. Reads an element from the given file, and 3 

returns the value of this element in the ITEM parameter. 

The exception MODE_ERROR is raised if the mode is not IN_FILE . The exception 4 

END_ERROR is raised if no more elements can be read from the given file. The 
exception DATA_ERROR is raised if the element read cannot be interpreted as a 
value of the type ELEMENT_TYPE ; however, an implementation is allowed to omit 
this check if performing the check is too complex. 

procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE); 5 

Operates on a file of mode OUT_FILE. Writes the value of ITEM to the given file. e 

The exception MODE_ERROR is raised if the mode is not OUT_FILE . The exception 7 

USE_ERROR is raised if the capacity of the external file is exceeded. 

function END_0F_FILE(FI LE : in FILE_TYPE) return BOOLEAN; 8 

Operates on a file of mode IN_FILE . Returns TRUE if no more elements can be read 9 

from the given file; otherwise returns FALSE . 

The exception MODE_ERROR is raised if the mode is not IN_FILE. 10 

References: data_error exception 14.4, element 14.1, element_type 14.1, end_error exception 14.4, external file 

14.1, file 14.1, file mode 14.1, file_type 14.1, in_file 14.1, mode_error exception 14.4, out_file 14.1, status_error 

exception 14.4, use_error exception 14.4 

14-5 Sequential Input-Output 14.2.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

14.2.3 Specification of the Package Sequential JO 

with IO_EXCEPTIONS; 
generic 

type ELEMENT_TYPE is private; 
package SEQUENTIAI_10 is 

type FILE_TYPE is limited private; 

type FILEJV10DE is (IN_FILE, 0UT_FILE); 

— File management 

procedure CREATE (FILE : in 
MODE : in 
NAME : in 
FORM : in 

procedure OPEN (FILE : in 
MODE : in 
NAME : in 
FORM : in 

out FILE.TYPE; 
FILE_MODE := OUT_FILE; 
STRING := 
STRING := ""); 

out FILE_TYPE; 
FILE_MODE ; 
STRING; 
STRING := ""); 

procedure CLOSE (FILE in 
procedure DELETE (FILE in 
procedure RESET (FILE in 
procedure RESET (FILE in 

function MODE (FILE in 
function NAME (FILE in 
function FORM (FILE in 

function IS_OPEN (FILE in 

— Input and output operation 

procedure READ (FILE in 
procedure WRITE (FILE in 

out FILE_TYPE); 
out FILE_TYPE); 
out FILE_TYPE; MODE 
out FILE_TYPE); 

in FILE_MODE); 

ITEM 
out ELEMENT_TYPE); 
in ELEMENT_TYPE); 

function END_0F_FILE(FILE : in FILE_TYPE) return BOOLEAN; 

— Exceptions 

STATUS_ERROR 
MODE_ERROR 
NAME_ERROR 
USE_ERROR 
DEVICE_ERROR 
END__ERROR 
DAT/A_ERROR 

exception 
exception 
exception 
exception 
exception 
exception 
exception 

renames IO_EXCEPTIONS.STATUS_ERROR; 
renames IO_EXCEPTIONS.MODE_ERROR; 
renames IO_EXCEPTIONS.NAME_ERROR; 
renames IO_EXCEPTIONS.USE_ERROR; 
renames IO_EXCEPTIONS.DEVICE_ERROR; 
renames IO_EXCEPTIONS.END_ERROR; 
renames IO_EXCEPTIONS.DATA^ERROR; 

private 
-- implementation-dependent 

end SEQUENTIALJO; 

14.2.3 Specification of the Package Sequential JO 14-6 



Input-Output 

References: close procedure 14.2.1, create procedure 14.2.1, data_error exception 14.4, delete procedure 14.2.1, 

device_error exception 14.4, end_error exception 14.4, end_of_file function 14.2.2, file_mode 14.1, file_type 14.1, 

form function 14.2.1, irufile 14.1, io_exceptions 14.4, is_open function 14.2.1, mode function 14.2.1, mode_error 

exception 14.4, name function 14.2.1, name_error exception 14.4, open procedure 14.2.1, out_file 14.1, read 

procedure 14.2.2, reset procedure 14.2.1, sequential_io package 14.2 14.2.2, status_error exception 14.4, use_error 

exception 14.4, write procedure 14.2.2, 

14.2.4 Direct Input-Output 

The operations available for direct input and output are described in this section. The exception 
STATUS_ERROR is raised if any of these operations is attempted for a file that is not open. 

procedure READ(FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE; 
FROM : in POSITIVE_COUNT); 

procedure READ(FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE); 

Operates on a file of mode IN_FILE or INOUT_FILE. In the case of the first form, 
sets the current index of the given file to the index value given by the parameter 
FROM. Then (for both forms) returns, in the parameter ITEM , the value of the 
element whose position in the given file is specified by the current index of the file; 
finally, increases the current index by one. 

The exception MODE_ERROR is raised if the mode of the given file is OUT_FILE. 
The exception END_ERROR is raised if the index to be used exceeds the size of the 
external file. The exception DATA_ERROR is raised if the element read cannot be 
interpreted as a value of the type ELEMENT_TYPE ; however, an implementation is 
allowed to omit this check if performing the check is too complex. 

procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE; 
TO : in POSITIVE_COUNT); 

procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE); 

Operates on a file of mode INOUT_FILE or OUT_FILE. In the case of the first form, 
sets the index of the given file to the index value given by the parameter TO. Then 
(for both forms) gives the value of the parameter ITEM to the element whose 
position in the given file is specified by the current index of the file; finally, 
increases the current index by one. 

The exception MODE_ERROR is raised if the mode of the given file is IN_FILE. The 
exception USE_ERROR is raised if the capacity of the external file is exceeded. 

procedure SETJNDEX(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT); 

Operates on a file of any mode. Sets the current index of the given file to the given 
index value (which may exceed the current size of the file). 

function INDEX(FILE : in FILE_TYPE) return POSITIVE_COUNT; 

Operates on a file of any mode. Returns the current index of the given file. 

2 

i 

2 

3 

4 

5 

6 

7 

8 

9 

0 

II 

14-7 Direct Input-Output 14.2.4 



ANSI/MIL-STD-1815A Ada Reference Manual 

12 function SIZE(FILE : in FILE_TYPE) return COUNT; 

13 Operates on a file of any mode. Returns the current size of the external file that is 
associated with the given file. 

M function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN; 

15 Operates on a file of mode IN_FILE or INOUT_FILE. Returns TRUE if the current 
index exceeds the size of the external file; otherwise returns FALSE . 

is The exception MODE_ERROR is raised if the mode of the given file is OUT_FILE. 

17 References: count type 14.2, current index 14.2, current size 14.2, data_error exception 14.4, element 14.1, 

element_type 14.1, end_error exception 14.4, external file 14.1, file 14.1, file mode 14.1, file_type 14.1, in_file 14.1, 

index 14.2, inout_file 14.1, mode_error exception 14.4, open file 14.1, positive_count 14.3, status_error exception 

14 4, use_error exception 14.4 

14.2.5 Specification of the Package Direct_IO 

with IO_EXCEPTIONS; 
generic 

type ELEMENT_TYPE is private; 
package DIRECT_IO is 

type FILE_TYPE is limited private; 

type FILE_MODE is (IN_FILE, INOUT_FILE, OUT_FILE); 
type COUNT is range 0 .. implementation^defined] 
subtype POSITIVE_CQUNT is COUNT range 1 .. COUNT'LAST; 

— File management 

procedure CREATE ( FILE 
MODE 
NAME 
FORM 

procedure OPEN ( FILE 
MODE 
NAME 
FORM 

in out FILE_TYPE; 
in FILE_MODE := INOUT_FILE; 
in STRING := 
in STRING := ""); 

in out FILE_TYPE; 
in FILE_MODE; 
in STRING; 
in STRING := ""); 

procedure CLOSE (FILE : in out FILE_TYPE); 
procedure DELETE (FILE : in out FILE_TYPE); 
procedure RESET (FILE : in out FILE_TYPE; MODE : in FILE_MODE); 
procedure RESET (FILE : in out FILE_TYPE); 

function MODE (FILE : in FILE_TYPE) return FILE_MODE; 
function NAME (FILE : in FILE_TYPE) return STRING; 
function FORM (FILE : in FILE_TYPE) return STRING; 

function IS_OPEN (FILE : in FILE_TYPE) return BOOLEAN; 

14.2.5 Specification of the Package Direct...JO 14-8 



Input-Output 

— Input and output operations 

procedure READ (FILE : in FILE_TYPE; ITEM 
procedure READ (FILE : in FILE_TYPE; ITEM 

out ELEMENT_TYPE; FROM : POSITIVE_COUNT); 
out ELEMENT_TYPE); 

procedure WRITE (FILE : in FILE_TYPE; ITEM : 
procedure WRITE (FILE : in FILE_TYPE; ITEM : 

in ELEMENT_TYPE; TO : POSITIVE_COUNT); 
in ELEMENT_TYPE); 

procedure SET_INDEX(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT); 

function INDEX (FILE : in FILE_TYPE) return POSITIVE_COUNT; 
function SIZE (FILE : in FILE_TYPE) return COUNT; 

function END_OF_FILE (FILE : in FILE_TYPE) return BOOLEAN; 

-- Exceptions 

STATUS_ERROR 
MODE_ERROR 
NAME_ERROR 
USE_ERROR 
DEVICE_ERROR 
END_ERROR 
DATA_ERROR 

exception renames 
exception renames 
exception renames 
exception renames 
exception renames 
exception renames 
exception renames 

IO_EXCEPTIONS.STATUS_ERROR; 
IO_EXCEPTIONS.MODE_ERROR; 
IO_EXCEPTIONS.NAME_ERROR; 
IO_EXCEPTIONS.USE_ERROR; 
IO_EXCEPTIONS.DEVICE_ERROR; 
IO_EXCEPTIONS.END_ERROR; 
IO_EXCEPTIONS.DATA_ERROR; 

private 
— implementation-dependent 

end DIRECT JO; 

References close procedure 14.2.1, count type 14.2, create procedure 14.2.1, data_error exception 14.4, 2 

default_mode 14.2.5, delete procedure 14.2.1, device_error exception 14.4, element_type 14.2.4, end_error excep¬ 

tion 14.4, end_of_file function 14.2.4, file_mode 14.2.5, file_type 14.2.4, form function 14.2.1, in_file 14.2.4, index 

function 14.2.4, inout_file 14.2.4 14.2.1, io_exceptions package 14.4, is_open function 14.2.1, mode function 

14.2.1, mode_error exception 14.4, name function 14.2.1, name_error exception 14.4, open procedure 14.2.1, out_- 

file 14.2.1, read procedure 14.2.4, set_index procedure 14.2.4, size function 14.2.4, status_error exception 14.4, 

use_error exception 14.4, write procedure 14.2.4 14.2.1 

14.3 Text Input-Output 

This section describes the package TEXTJO, which provides facilities for input and output in 
human-readable form. Each file is read or written sequentially, as a sequence of characters 
grouped into lines, and as a sequence of lines grouped into pages. The specification of the package 
is given below in section 14.3.10. 

The facilities for file management given above, in sections 14.2.1 and 1 4.2.2, are available for text 2 

input-output. In place of READ and WRITE, however, there are procedures GET and PUT that 
input values of suitable types from text files, and output values to them. These values are provided 
to the PUT procedures, and returned by the GET procedures, in a parameter ITEM. Several 
overloaded procedures of these names exist, for different types of ITEM. These GET procedures 
analyze the input sequences of characters as lexical elements (see Chapter 2) and return the cor¬ 
responding values; the PUT procedures output the given values as appropriate lexical elements. 
Procedures GET and PUT are also available that input and output individual characters treated as 
character values rather than as lexical elements. 

14-9 Text Input-Output 14.3 



ANS//M/L-STD-1815A Ada Reference Manual 

3 In addition to the procedures GET and PUT for numeric and enumeration types of ITEM that 
operate on text files, analogous procedures are provided that read from and write to a parameter of 
type STRING. These procedures perform the same analysis and composition of character 
sequences as their counterparts which have a file parameter. 

4 For all GET and PUT procedures that operate on text files, and for many other subprograms, there 
are forms with and without a file parameter. Each such GET procedure operates on an input file, 
and each such PUT procedure operates on an output file. If no file is specified, a default input file or 
a default output file is used. 

5 At the beginning of program execution the default input and output files are the so-called standard 
input file and standard output file. These files are open, have respectively the current modes 
IN_FILE and OUT_FILE, and are associated with two implementation-defined external files. 
Procedures are provided to change the current default input file and the current default output file. 

6 From a logical point of view, a text file is a sequence of pages, a page is a sequence of lines, and a 
line is a sequence of characters; the end of a line is marked by a line terminator-, the end of a page 
is marked by the combination of a line terminator immediately followed by a page terminator; and 
the end of a file is marked by the combination of a line terminator immediately followed by a page 
terminator and then a file terminator. Terminators are generated during output; either by calls of 
procedures provided expressly for that purpose; or implicitly as part of other operations, for exam¬ 
ple, when a bounded line length, a bounded page length, or both, have been specified for a file. 

7 The actual nature of terminators is not defined by the language and hence depends on the 
implementation. Although terminators are recognized or generated by certain of the procedures 
that follow, they are not necessarily implemented as characters or as sequences of characters. 
Whether they are characters (and if so which ones) in any particular implementation need not con¬ 
cern a user who neither explicitly outputs nor explicitly inputs control characters. The effect of 
input or output of control characters (other than horizontal tabulation) is not defined by the 
language. 

8 The characters of a line are numbered, starting from one; the number of a character is called its 
column number. For a line terminator, a column number is also defined: it is one more than the 
number of characters in the line. The lines of a page, and the pages of a file, are similarly 
numbered. The current column number is the column number of the next character or line ter¬ 
minator to be transferred. The current tine number is the number of the current line. The current 
page number is the number of the current page. These numbers are values of the subtype 
POSITlVE_COUNT of the type COUNT (by convention, the value zero of the type COUNT is used to 
indicate special conditions). 

type COUNT is rang® 0 .. implementation ^defined-, 
subtype POSITIVE_COUNT is COUNT rang© 1 .. COUNT'LAST; 

9 For an output file, a maximum tine length can be specified and a maximum page length can be 
specified. If a value to be output cannot fit on the current line, for a specified maximum line length, 
then a new line is automatically started before the value is output; if, further, this new line cannot 
fit on the current page, for a specified maximum page length, then a new page is automatically 
started before the value is output. Functions are provided to determine the maximum line length 
and the maximum page length. When a file is opened with mode OUT_FILE, both values are zero: 
by convention, this means that the line lengths and page lengths are unbounded. (Consequently, 
output consists of a single line if the subprograms for explicit control of line and page structure are 
not used.) The constant UNBOUNDED is provided for this purpose. 

io References: count type 14.3.1 0, default current input file 1 4.3.2, default current output file 14.3.2, external file 14.1, 

file 14 1, get procedure 1 4.3.5, in_file 14.1, out_file 14.1, put procedure 14.3.5, read 1 4.2.2, sequential access 1 4.1, 

standard input file 14.3.2, standard output file 14.3.2 

14.3 Text Input-Output 14-10 



Input-Output 

14.3.1 File Management 

The only allowed file modes for text files are the modes IN_FILE and OUT_FILE . The subprograms , 
given in section 14.2.1 for the control of external files, and the function END_OF_FILE given in 
section 14.2.2 for sequential input-output, are also available for text files. There is also a version of 
END_OF_FILE that refers to the current default input file. For text files, the procedures have the fol¬ 
lowing additional effects: 

• For the procedures CREATE and OPEN: After opening a file with mode OUT_FILE, the page 2 

length and line length are unbounded (both have the conventional value zero). After opening a 
file with mode IN_FILE or OUT_FILE, the current column, current line, and current page 
numbers are set to one. 

• For the procedure CLOSE : If the file has the current mode OUT_FILE , has the effect of calling 
NEW_PAGE, unless the current page is already terminated; then outputs a file terminator. 

• For the procedure RESET: If the file has the current mode OUT_FILE , has the effect of calling 4 

NEW_PAGE, unless the current page is already terminated; then outputs a file terminator. If 
the new file mode is OUT_FILE, the page and line lengths are unbounded. For all modes, the 
current column, line, and page numbers are set to one. 

The exception MODE_ERROR is raised by the procedure RESET upon an attempt to change the 5 

mode of a file that is either the current default input file, or the current default output file. 

References: create procedure 14.2.1, current column number 14.3, current default input file 14.3, current line 6 

number 14.3, current page number 14.3, end_of_file 14.3, external file 14.1, file 14.1, file mode 14.1, file terminator 

14.3, in—file 14.1, line length 14.3, mode_error exception 14.4, open procedure 14.2.1, out_file 14.1, page length 

14.3, reset procedure 14.2.1 

14.3.2 Default Input and Output Files 

The following subprograms provide for the control of the particular default files that are used when i 
a file parameter is omitted from a GET, PUT or other operation of text input-output described 
below. 

procedure SET_INPUT(FILE : in FILE.TYPE); 2 

Operates on a file of mode IN_FILE. Sets the current default input file to FILE . 3 

The exception STATUS_ERROR is raised if the given file is not open. The exception 4 

MODE_ERROR is raised if the mode of the given file is not IN_FILE . 

procedure SET_OUTPUT(FILE : in FILE_TYPE); 5 

Operates on a file of mode OUT_FILE. Sets the current default output file to FILE. e 

The exception STATUS_ERROR is raised if the given file is not open. The exception 7 

MODE_ERROR is raised if the mode of the given file is not OUT_FILE . 

14-1 1 Default Input and Output Fites 14.3.2 



ANSI/MIL-STD-1815A Ada Reference Manual 

function STANDARD_INPUT return FILE_TYPE; 

Returns the standard input file (see 14.3). 

function STANDARD_OUTPUT return FILE_TYPE; 

Returns the standard output file (see 14.3). 

function CURRENTJNPUT return FILE_TYPE; 

Returns the current default input file. 

' function CURRENT_OUTPUT return F!LE_TYPE; 

Returns the current default output file. 

Note: 

The standard input and the standard output files cannot be opened, closed, reset, or deleted, 
because the parameter FILE of the corresponding procedures has the mode in out. 

References: current default file 14.3, default file 14.3, file_type 14.1, get procedure 14.3.5, mode_error exception 

14.4 put procedure 14.3.5, status_error exception 14.4 

14.3.3 Specification of Line and Page Lengths 

The subprograms described in this section are concerned with the line and page structure of a file 
of mode OUT_FILE. They operate either on the file given as the first parameter, or, in the absence 
of such a file parameter, on the current default output file. They provide for output of text with a 
specified maximum line length or page length. In these cases, line and page terminators are out¬ 
put implicitly and automatically when needed. When line and page lengths are unbounded (that is, 
when they have the conventional value zero), as in the case of a newly opened file, new lines and 
new pages are only started when explicitly called for. 

In all cases, the exception STATUS_ERROR is raised if the file to be used is not open; the exception 
MODE_ERROR is raised if the mode of the file is not OUT_FILE . 

procedure SET_LINE_LENGTH(FILE : in FILE_TYPE; TO : in COUNT); 
procedure SET_LINE_LENGTH(TO : in COUNT); 

Sets the maximum line length of the specified output file to the number of 
characters specified by TO. The value zero for TO specifies an unbounded line 
length. 

The exception USE_ERROR is raised if the specified line length is inappropriate for 
the associated external file. 

14.3.3 Specification of Line and Page Lengths 14-12 



Input-Output 

procedure SET_PAGE_LENGTH (FILE : in FILE_TYPE; TO : in COUNT); 
procedure SET_PAGE_LENGTH (TO : in COUNT); 

Sets the maximum page length of the specified output file to the number of lines 
specified by TO . The value zero for TO specifies an unbounded page length. 

The exception USE_ERROR is raised if the specified page length is inappropriate for 
the associated external file. 

function LINE_LENGTH(FILE : in FILE_TYPE) return COUNT; 
function LINE_LENGTH return COUNT; 

Returns the maximum line length currently set for the specified output file, or zero 
if the line length is unbounded. 

function PAGE_LENGTFI(FILE : in FILE._TYPE) return COUNT; 
function PAGE_LENGTH return COUNT; 

Returns the maximum page length currently set for the specified output file, or zero 
if the page length is unbounded. 

References: count type 14.3, current default output file 14.3, external file 14.1, file 14.1, file_type 14.1, line 14.3, 

line length 14.3, line terminator 14.3, maximum line length 14.3, maximum page length 14.3, mode_error exception 

14.4, open file 14.1, out_file 14.1, page 14.3, page length 14.3, page terminator 14.3, status_error exception 14.4, 

unbounded page length 14.3, use_error exception 14.4 

14.3.4 Operations on Columns, Lines, and Pages 

The subprograms described in this section provide for explicit control of line and page structure; 
they operate either on the file given as the first parameter, or, in the absence of such a file 
parameter, on the appropriate (input or output) current default file. The exception STATUS_ERROR 
is raised by any of these subprograms if the file to be used is not open. 

procedure NEW_LINE(FILE : in FILE_TYPE; SPACING : in POSITIVE_COUNT := 1); 
procedure NEW_LINE(SPACING : in POSITIVE_COUNT := 1); 

Operates on a file of mode OUT_FILE. 

For a SPACING of one: Outputs a line terminator and sets the current column 
number to one. Then increments the current line number by one, except in the case 
that the current line number is already greater than or equal to the maximum page 
length, for a bounded page length; in that case a page terminator is output, the 
current page number is incremented by one, and the current line number is set to 
one. 

For a SPACING greater than one, the above actions are performed SPACING times. 

The exception MODE_ERROR is raised if the mode is not OUT_FILE . 

14-13 Operations on Columns, Lines, and Pages 14.3.4 



6 

7 

8 

9 

10 

11 

12 

13 

M 

15 

16 

17 

18 

19 

ANSI/MIL-STD-1815A Ada Reference Manual 

procedure SKIP_LINE(FILE : in FILE_TYPE; SPACING : in P0SITIVE_C0UNT := 1); 
procedure SKIP__UNE(S PACING : in POSITIVE_COUNT := 1); 

Operates on a file of mode IN_FILE . 

For a SPACING of one: Reads and discards all characters until a line terminator 
has been read, and then sets the current column number to one. If the line ter¬ 
minator is not immediately followed by a page terminator, the current line number 
is incremented by one. Otherwise, if the line terminator is immediately followed by 
a page terminator, then the page terminator is skipped, the current page number is 
incremented by one, and the current line number is set to one. 

For a SPACING greater than one, the above actions are performed SPACING times. 

The exception MODE_ERROR is raised if the mode is not IN_FILE. The exception 
END_ERROR is raised if an attempt is made to read a file terminator. 

function END_OF_LINE(FILE : in FILE.TYPE) return BOOLEAN; 
function END_OF_LINE return BOOLEAN; 

Operates on a file of mode IN_FILE. Returns TRUE if a line terminator or a file 
terminator is next; otherwise returns FALSE . 

The exception MODE_ERROR is raised if the mode is not IN_FILE. 

procedure NEW_PAGE(FILE : in FILE_TYPE); 
procedure NEW_PAGE; 

Operates on a file of mode OUT_FILE . Outputs a line terminator if the current line is 
not terminated, or if the current page is empty (that is, if the current column and 
line numbers are both equal to one). Then outputs a page terminator, which ter¬ 
minates the current page. Adds one to the current page number and sets the cur¬ 
rent column and line numbers to one. 

The exception MODE_ERROR is raised if the mode is not OUT_FILE . 

procedure SKIP_PAGE(FILE : in FILE_TYPE); 
procedure SKIP_PAGE; 

Operates on a file of mode IN_FILE. Reads and discards all characters and line 
terminators until a page terminator has been read. Then adds one to the current 
page number, and sets the current column and line numbers to one. 

The exception MODE_ERROR is raised if the mode is not IN_FILE. The exception 
END_ERROR is raised if an attempt is made to read a file terminator. 

14.3.4 Operations on Columns, Lines, and Pages 14-14 



Input-Output 

function END_OF_PAGE(FILE : in FILE_TYPE) return BOOLEAN; 
function END_OF_PAGE return BOOLEAN; 

Operates on a file of mode IN_FILE. Returns TRUE if the combination of a line 
terminator and a page terminator is next, or if a file terminator is next; otherwise 
returns FALSE. 

The exception MODE_ERROR is raised if the mode is not IN_FILE. 

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN; 
function END_OF_FILE return BOOLEAN; 

Operates on a file of mode IN_FILE. Returns TRUE if a file terminator is next, or if 
the combination of a line, a page, and a file terminator is next; otherwise returns 
FALSE. 

The exception MODE_ERROR is raised if the mode is not IN_FILE. 

The following subprograms provide for the control of the current position of reading or writing in a 
file. In all cases, the default file is the current output file. 

procedure SET_COL(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT); 
procedure SET_COL(TO : in POSITIVE.COUNT); 

If the file mode is OUT_FILE : 

If the value specified by TO is greater than the current column number, 
outputs spaces, adding one to the current column number after each 
space, until the current column number equals the specified value. If the 
value specified by TO is equal to the current column number, there is no 
effect. If the value specified by TO is less than the current column number, 
has the effect of calling NEW_LINE (with a spacing of one), then outputs 
(TO - 1) spaces, and sets the current column number to the specified value. 

The exception LAYOUT_ERROR is raised if the value specified by TO 
exceeds LINE_LENGTH when the line length is bounded (that is, when it 
does not have the conventional value zero). 

If the file mode is IN_FILE : 

Reads (and discards) individual characters, line terminators, and page ter¬ 
minators, until the next character to be read has a column number that 
equals the value specified by TO; there is no effect if the current column 
number already equals this value. Each transfer of a character or ter¬ 
minator maintains the current column, line, and page numbers in the same 
way as a GET procedure (see 14.3.5). (Short lines will be skipped until a 
line is reached that has a character at the specified column position.) 

The exception END_ERROR is raised if an attempt is made to read a file 
terminator. 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

14-15 Operations on Columns, Lines, and Pages 14.3.4 



34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

ANSI/MIL-STD-1815A Ada Reference Manual 

procedure SET_LINE(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT); 
procedure SET_LINE(TO : in POSITIVE_COUNT); 

If the file mode is OUT_FllE : 

If the value soecified by TO is greater than the current line number, has the 
effect of repeatedly calling NEW_LINE (with a spacing of one), until the 
current line number equals the specified value. If the value specified by TO 
is equal to the current line number, there is no effect. If the value specified 
by TO is less than the current line number, has the effect of calling 
NEW_PAGE followed by a call of NEW_LINE with a spacing equal to (TO - 
1). 

The exception LAYOUT_ERROR is raised if the value specified by TO 
exceeds PAGE_LENGTH when the page length is bounded (that is, when it 
does not have the conventional value zero). 

If the mode is IN_FILE : 

Has the effect of repeatedly calling SKIP_LINE (with a spacing of one), until 
the current line number equals the value specified by TO ; there is no effect 
if the current line number already equals this value. (Short pages will be 
skipped until a page is reached that has a line at the specified line position ) 

The exception END_ERROR is raised if an attempt is made to read a file 
terminator. 

function COL(FILE : in FILE.TYPE) return POSITIVE_COUNT; 
function COL return POSITIVE_COUNT; 

Returns the current column number. 

The exception LAYOUT_ERROR is raised if this number exceeds COUNT'LAST. 

function LINE(FILE : in FILE_TYPE) return POSITIVE_COUNT; 
function LINE return POSITIVE_COUNT; 

Returns the current line number. 

The exception LAYOUT_ERROR is raised if this number exceeds COUNT'LAST. 

function PAGE(FILE : in FILE_TYPE) return POSITIVE_COUNT; 
function PAGE return POSIT!VE_COUNT; 

Returns the current page number. 

The exception LAYOUT_ERROR is raised if this number exceeds COUNT'LAST. 

The column number, line number, or page number are allowed to exceed COUNT'LAST (as a 
consequence of the input or output of sufficiently many characters, lines, or pages). These events 
do not cause any exception to be raised. However, a call of COL, LINE, or PAGE raises the 
exception LAYOUT_ERROR if the corresponding number exceeds COUNT'LAST. 

14.3.4 Operations on Columns, Lines, and Pages 14-16 



Input-Output 

Note: 

A page terminator is always skipped whenever the preceding line terminator is skipped. An 
implementation may represent the combination of these terminators by a single character, 
provided that it is properly recognized at input. 

References: current column number 14.3, current default file 14.3, current line number 14.3, current page number 

14.3, end_error exception 14.4, file 1 4.1, file terminator 1 4.3, get procedure 14.3.5, in_file 1 4.1, layout_error excep¬ 

tion 14.4, line 14.3, line number 14.3, line terminator 14.3, maximum page length 14.3, mode_error exception 14.4, 

open file 14.1, page 14.3, page length 14.3, page terminator 14.3, positive count 14.3, status_error exception 14.4 

14.3.5 Get and Put Procedures 

The procedures GET and PUT for items of the types CHARACTER, STRING, numeric types, and 
enumeration types are described in subsequent sections. Features of these procedures that are 
common to most of these types are described in this section. The GET and PUT procedures for 
items of type CHARACTER and STRING deal with individual character values; the GET and PUT 
procedures for numeric and enumeration types treat the items as lexical elements. 

All procedures GET and PUT have forms with a file parameter, written first. Where this parameter 
is omitted, the appropriate (input or output) current default file is understood to be specified. Each 
procedure GET operates on a file of mode IN_FILE. Each procedure PUT operates on a file of 
mode OUT_FILE. 

All procedures GET and PUT maintain the current column, line, and page numbers of the specified 
file: the effect of each of these procedures upon these numbers is the resultant of the effects of 
individual transfers of characters and of individual output or skipping of terminators. Each transfer 
of a character adds one to the current column number. Each output of a line terminator sets the 
current column number to one and adds one to the current line number. Each output of a page 
terminator sets the current column and line numbers to one and adds one to the current page 
number. For input, each skipping of a line terminator sets the current column number to one and 
adds one to the current line number; each skipping of a page terminator sets the current column 
and line numbers to one and adds one to the current page number. Similar considerations apply to 
the procedures GET_LINE , PUT_LINE, and SET_COL. 

Several GET and PUT procedures, for numeric and enumeration types, have format parameters 
which specify field lengths; these parameters are of the nonnegative subtype FIELD of the type 
INTEGER. 

Input-output of enumeration values uses the syntax of the corresponding lexical elements. Any 
GET procedure for an enumeration type begins by skipping any leading blanks, or line or page ter¬ 
minators; a blank being defined as a space or a horizontal tabulation character. Next, characters 
are input only so long as the sequence input is an initial sequence of an identifier or of a character 
literal (in particular, input ceases when a line terminator is encountered). The character or line ter¬ 
minator that causes input to cease remains available for subsequent input. 

For a numeric type, the GET procedures have a format parameter called WIDTH . If the value given 
for this parameter is zero, the GET procedure proceeds in the same manner as for enumeration 
types, but using the syntax of numeric literals instead of that of enumeration literals. If a nonzero 
value is given, then exactly WIDTH characters are input, or the characters up to a line terminator, 
whichever comes first; any skipped leading blanks are included in the count. The syntax used for 
numeric literals is an extended syntax that allows a leading sign (but no intervening blanks, or line 
or page terminators). 

14-17 Get and Put Procedures 14.3.5 



ANSI/MIL-STD-1815A Ada Reference Manual 

Any PUT procedure, for an item of a numeric or an enumeration type, outputs the value of the item 
as a numeric literal, identifier, or character literal, as appropriate. This is preceded by leading 
spaces if required by the format parameters WIDTH or FORE (as described in later sections), and 
then a minus sign for a negative value; for an enumeration type, the spaces follow instead of 
leading. The format given for a PUT procedure is overridden if it is insufficiently wide. 

Two further cases arise for PUT procedures for numeric and enumeration types, if the line length of 
the specified output file is bounded (that is, if it does not have the conventional value zero). If the 
number of characters to be output does not exceed the maximum line length, but is such that they 
cannot fit on the current line, starting from the current column, then (in effect) NEW_UNE is called 
(with a spacing of one) before output of the item. Otherwise, if the number of characters exceeds 
the maximum line length, then the exception LAYOUT_ERROR is raised and no characters are 
output. 

The exception STATUS_ERROR is raised by any of the procedures GET, GET_LINE, PUT, and 
PUTJJNE if the file to be used is not open. The exception MODE_ERROR is raised by the 
procedures GET and GET_LINE if the mode of the file to be used is not IN_FILE; and by the 
procedures PUT and PUT_LINE, if the mode is not OUT_FILE . 

The exception END_ERROR is raised by a GET procedure if an attempt is made to skip a file 
terminator. The exception DATA_ERRQR is raised by a GET procedure if the sequence finally input 
is not a lexical element corresponding to the type, in particular if no characters were input; for this 
test, leading blanks are ignored; for an item of a numeric type, when a sign is input, this rule 
applies to the succeeding numeric literal. The exception LAYOUT_ERROR is raised by a PUT 
procedure that outputs to a parameter of type STRING, if the length of the actual string is 
insufficient for the output of the item. 

Examples: 

In the examples, here and in sections 14.3.7 and 14.3.8, the string quotes and the lower case let¬ 
ter b are not transferred: they are shown only to reveal the layout and spaces. 

N : INTEGER; 

GET(N); 

— Characters at input Sequence input Value of N 

bb-12535b -12535 
bbl2_535E1b 12_535E1 
bbl2_535E; 12_535E 

-12535 
125350 
(none) DATA_ERROR raised 

Example of overridden width parameter: 

PUTOTEM => -23, WIDTH => 2); - "-23 

References: blank 14.3.9, column number 14.3, current default file 14.3, data_error exception 14.4, end_error 

exception 14.4, file 14.1, fore 14.3.8, get procedure 14.3.6 14.3.7 14.3.8 14.3.9, in_file 1 4.1, layout_error exception 

14.4, line number 14.1, line terminator 14.1, maximum line length 14.3, mode 14.1, mode_error exception 14.4, 

new_file procedure 14.3.4, out_file 14.1, page number 14.1, page terminator 14.1, put procedure 14.3.6 14.3.7 

14.3.8 14.3.9, skipping 14.3.7 14.3.8 14.3.9, status_error exception 14.4, width 14.3.5 14.3.7 14.3.9 

14.3.5 Get and Put Procedures 14-18 



Input-Output 

14.3.6 Input-Output of Characters and Strings 

For an item of type CHARACTER the following procedures are provided: 

procedure GET(FILE : in FILE_TYPE; ITEM : out CHARACTER); 
procedure GETOTEM : out CHARACTER); 

After skipping any line terminators and any page terminators, reads the next 
character from the specified input file and returns the value of this character in the 
out parameter ITEM. 

The exception END_ERROR is raised if an attempt is made to skip a file terminator. 

procedure PUTfFILE : in FILE_TYPE; ITEM : in CHARACTER); 
procedure PUTOTEM : in CHARACTER); 

If the line length of the specified output file is bounded (that is, does not have the 
conventional value zero), and the current column number exceeds it, has the effect 
of calling NEW_LINE with a spacing of one. Then, or otherwise, outputs the given 
character to the file. 

For an item of type STRING the following procedures are provided: 

procedure GETfFILE : in FILE_TYPE; ITEM : out STRING); 
procedure GETOTEM : out STRING); 

Determines the length of the given string and attempts that number of GET 
operations for successive characters of the string (in particular, no operation is per¬ 
formed if the string is null). 

procedure PUT(FILE : in FILE.TYPE; ITEM : in STRING); 
procedure PUTOTEM : in STRING); 

Determines the length of the given string and attempts that number of PUT 
operations for successive characters of the string (in particular, no operation is per¬ 
formed if the string is null). 

procedure GET_LINE(FILE : in FILE_TYPE; ITEM : out STRING; LAST : out NATURAL); 
procedure GET_LINE(ITEM : out STRING; LAST : out NATURAL); 

Replaces successive characters of the specified string by successive characters 
read from the specified input file. Reading stops if the end of the line is met, in 
which case the procedure SKIP_LINE is then called (in effect) with a spacing of 
one; reading also stops if the end of the string is met. Characters not replaced are 
left undefined. 

If characters are read, returns in LAST the index value such that ITEM (LAST) is the 
last character replaced (the index of the first character replaced is ITEM'FIRST). If 
no characters are read, returns in LAST an index value that is one less than 

ITEM'FIRST. 

The exception END_ERROR is raised if an attempt is made to skip a file terminator. 

14-19 Input-Output of Characters and Strings 14.3.6 



ANSI/MIL-STD-1815A Ada Reference Manual 

procedure PUT_LINE(FILE : in FILE.TYPE; ITEM : in STRING); 
procedure PUT_LINE(ITEM : in STRING); 

Calls the procedure PUT for the given string, and then the procedure NEW_LINE 
with a spacing of one. 

Notes: 

In a literal string parameter of PUT, the enclosing string bracket characters are not output. Each 
doubled string bracket character in the enclosed string is output as a single string bracket 
character, as a consequence of the rule for string literals (see 2.6). 

A string read by GET or written by PUT can extend over several lines. 

References: current column number 14.3, end_error exception 14.4, file 14.1, file terminator 14.3, get procedure 

14.3.5, line 14.3, line length 14.3, new_line procedure 14.3.4, page terminator 14.3, put procedure 14.3.4, skipping 

14.3.5 

14.3.7 Input-Output for Integer Types 

The following procedures are defined in the generic package INTEGERJO. This must be 
instantiated for the appropriate integer type (indicated by NUM in the specification). 

Values are output as decimal or based literals, without underline characters or exponent, and 
preceded by a minus sign if negative. The format (which includes any leading spaces and minus 
sign) can be specified by an optional field width parameter. Values of widths of fields in output for¬ 
mats are of the nonnegative integer subtype FIELD. Values of bases are of the integer subtype 
NUMBER_BASE. 

subtype NUMBER_BASE is INTEGER range 2 .. 16; 

The default field width and base to be used by output procedures are defined by the following 
variables that are declared in the generic package INTEGERJO : 

DEFAULTJ/VIDTH : FIELD := NUM'WIDTH; 
DEFAULT_BASE : NUMBER_BASE := 10; 

The following procedures are provided: 

procedure GET(FILE : in FILE_TYPE; ITEM : out NUM; WIDTH : in FIELD := De¬ 
procedure GETOTEM : out NUM; WIDTH : in FIELD := 0); 

If the value of the parameter WIDTH is zero, skips any leading blanks, line 
terminators, or page terminators, then reads a plus or a minus sign if present, then 
reads according to the syntax of an integer literal (which may be a based literal). If 
a nonzero value of WIDTH is supplied, then exactly WIDTH characters are input, or 
the characters (possibly none) up to a line terminator, whichever comes first; any 
skipped leading blanks are included in the count. 

Returns, in the parameter ITEM, the value of type NUM that corresponds to the 
sequence input. 

The exception DATA_ERROR is raised if the sequence input does not have the 
required syntax or if the value obtained is not of the subtype NUM . 

14.3.7 Input-Output for Integer Types 14-20 



procedure 

procedure 

PUT( FILE in 
ITEM in 
WIDTH in 
BASE in 

PUT( ITEM in 
WIDTH in 
BASE in 

FILE_TYPE; 
NUM.- 
FIELD := DEFAULT_WIDTH; 
NUMBER_BASE := DEFAULT_BASE); 

NUM; 
FIELD := DEFAULT_WIDTH; 
NUMBER_BASE := DEFAULT_BASE); 

Outputs the value of the parameter ITEM as an integer literal, with no underlines, 
no exponent, and no leading zeros (but a single zero for the value zero), and a 
preceding minus sign for a negative value. 

If the resulting sequence of characters to be output has fewer than WIDTH 
characters, then leading spaces are first output to make up the difference. 

Uses the syntax for decimal literal if the parameter BASE has the value ten (either 
explicitly or through DEFAULT_BASE); otherwise, uses the syntax for based literal, 
with any letters in upper case. 

procedure GET(FROM : in STRING; ITEM : out NUM; LAST : out POSITIVE); 

Reads an integer value from the beginning of the given string, following the same 
rules as the GET procedure that reads an integer value from a file, but treating the 
end of the string as a file terminator. Returns, in the parameter ITEM , the value of 
type NUM that corresponds to the sequence input. Returns in LAST the index 
value such that FROM (LAST) is the last character read. 

The exception DATA_ERROR is raised if the sequence input does not have the 
required syntax or if the value obtained is not of the subtype NUM . 

procedure PUT(TO : out STRING; 
ITEM : in NUM; 
BASE : in NUMBER_BASE := DEFAULT_BASE); 

Outputs the value of the parameter ITEM to the given string, following the same 
rule as for output to a file, using the length of the given string as the value for 
WIDTH. 

Examples: 

package INT_IO is new INTEGER_IO(SMALI_I NT); use I NT_10; 
— default format used at instantiation, DEFAULT_WIDTH = 4, DEFAULT_BASE = 10 

PUTU26); - "bl 26" 
PUT(-126, 7); - "bbb-126" 
PUT( 126, WIDTH => 13, BASE => 2); - "bbb2#1 1 11 1 10#" 

References: based literal 2.4.2, blank 14.3.5, data_error exception 14.4, decimal literal 2.4.1, field subtype 14.3.5, 

file_type 14.1, get procedure 14.3.5, integer_io package 14.3.10, integer literal 2.4, layout_error exception 14.4, line 

terminator 14.3, put procedure 14.3.5, skipping 14.3.5, width 14.3.5 

14-21 Input-Output for Integer Types 7 4.3.7 



ANSI/MIL-STD-1815A Ada Reference Manual 

14.3.8 fnput-Output for R®a8 Types 

1 The following procedures are defined in the generic packages FLOATJO and FIXEDJO, which 
must be instantiated for the appropriate floating point or fixed point type respectively (indicated by 
NUM in the specifications). 

2 Values are output as decimal literals without underline characters. The format of each value output 
consists of a FORE field, a decimal point, an AFT field, and (if a nonzero EXP parameter is supplied) 
the letter E and an EXP field. The two possible formats thus correspond to: 

FORE . AFT 

3 and to: 

FORE . AFT E EXP 

without any spaces between these fields. The FORE field may include leading spaces, and a minus 
sign for negative values. The AFT field includes only decimal digits (possibly with trailing zeros). 
The EXP field includes the sign (plus or minus) and the exponent (possibly with leading zeros). 

5 For floating point types, the default lengths of these fields are defined by the following variables 
that are declared in the generic package FLOATJO : 

DEFAULT_FORE : FIELD := 2; 
DEFAULT J^FT : FIELD := NUM'DIGITS-1 ; 
DEFAULT_EXP : FIELD := 3; 

e For fixed point types, the default lengths of these fields are defined by the following variables that 
are declared in the generic package FIXEDJO : 

DEFAULT_FORE : FIELD 
DEFAULUAFT : FIELD 
DEFAULT_EXP : FIELD 

NUM'FORE; 
NUM'AFT; 
0; 

7 The following procedures are provided: 

s procedure GET(FILE : in FILE_TYPE; ITEM : out NUM; WIDTH : in FIELD := 0); 
procedure GETOTEM : out NUM; WIDTH : in FIELD := 0); 

9 If the value of the parameter WIDTH is zero, skips any leading blanks, line 
terminators, or page terminators, then reads a plus or a minus sign if present, then 
reads according to the syntax of a real literal (which may be a based literal). If a 
nonzero value of WIDTH is supplied, then exactly WIDTH characters are input, or 
the characters (possibly none) up to a line terminator, whichever comes first; any 
skipped leading blanks are included in the count. 

io Returns, in the parameter ITEM, the value of type NUM that corresponds to the 
sequence input. 

” The exception DATA_ERROR is raised if the sequence input does not have the 
required syntax or if the value obtained is not of the subtype NUM . 

14.3.8 Input-Output for Rea! Types 14-22 



Input-Output 

procedure PUT(FILE : in 
ITEM : in 
FORE : in 
AFT : in 
EXP : in 

procedure PUTdTEM : in 
FORE : in 
AFT : in 
EXP : in 

FILE_TYPE; 
NUM; 
FIELD := DEFAULT_FORE; 
FIELD := DEFAULT_AFT; 
FIELD := DEFAULT.EXP); 

NUM; 
FIELD := DEFAULT_FORE; 
FIELD := DEFAULT_AFT; 
FIELD := DEFAULT.EXP); 

Outputs the value of the parameter ITEM as a decimal literal with the format 
defined by FORE, AFT and EXP. If the value is negative, a minus sign is included in 
the integer part. If EXP has the value zero, then the integer part to be output has as 
many digits as are needed to represent the integer part of the value of ITEM, 
overriding FORE if necessary, or consists of the digit zero if the value of ITEM has 
no integer part. 

If EXP has a value greater than zero, then the integer part to be output has a single 
digit, which is nonzero except for the value 0.0 of ITEM . 

In both cases, however, if the integer part to be output has fewer than FORE 
characters, including any minus sign, then leading spaces are first output to make 
up the difference. The number of digits of the fractional part is given by AFT, or is 
one if AFT equals zero. The value is rounded; a value of exactly one half in the last 
place may be rounded either up or down. 

If EXP has the value zero, there is no exponent part. If EXP has a value greater than 
zero, then the exponent part to be output has as many digits as are needed to 
represent the exponent part of the value of ITEM (for which a single digit integer 
part is used), and includes an initial sign (plus or minus). If the exponent part to be 
output has fewer than EXP characters, including the sign, then leading zeros 
precede the digits, to make up the difference. For the value 0.0 of ITEM, the 
exponent has the value zero. 

procedure GET(FROM : in STRING; ITEM : out NUM; LAST : out POSITIVE); 

Reads a real value from the beginning of the given string, following the same rule 
as the GET procedure that reads a real value from a file, but treating the end of the 
string as a file terminator. Returns, in the parameter ITEM , the value of type NUM 
that corresponds to the sequence input. Returns in LAST the index value such that 
FROM( LAST) is the last character read. 

The exception DATA_ERROR is raised if the sequence input does not have the 
required syntax, or if the value obtained is not of the subtype NUM . 

procedure PUT(TO : out STRING; 
ITEM : in NUM; 
AFT : in FIELD := DEFAULT_AFT; 
EXP : in INTEGER := DEFAULT_EXP); 

Outputs the value of the parameter ITEM to the given string, following the same 
rule as for output to a file, using a value for FORE such that the sequence of 
characters output exactly fills the string, including any leading spaces. 

14-23 Input-Output for Rea/ Types 14.3.8 



A NS!/MIL -STD-1815A Ada Reference Manual 

Examples: 

package REAI_10 is new FL0AT_I0(REAL); use REAI_10; 
— default format used at instantiation, DEFAULT_EXP = 3 

X : REAL := -123.4567; - digits 8 (see 3.5.7) 

PUT(X); — default format "-1.2345670E+02" 
PUT(X, FORE => 5, AFT => 3, EXP => 2); - "bbb-1.235E + 2" 
PUT(X, 5, 3, 0); - "b-123.457" 

Note: 

For an item with a positive value, if output to a string exactly fills the string without leading spaces, 
then output of the corresponding negative value will raise LAY0UT_ERR0R . 

References: aft attribute 3.5.10, based literal 2.4.2, blank 14.3.5, data_error exception 14.3.5, decimal literal 2.4.1, 

field subtype 14.3.5, file_type 14.1, fixed_io package 14.3.10, floating_io package 14.3.10, fore attribute 3.5.10, get 

procedure 14.3.5, layout_error 14.3.5, line terminator 14.3.5, put procedure 14.3.5, real literal 2.4, skipping 14.3.5, 

width 14.3.5 

14.3.9 Input-Output for Enumeration Types 

The following procedures are defined in the generic package ENUMERATI0N_I0, which must be 
instantiated for the appropriate enumeration type (indicated by ENUM in the specification). 

Values are output using either upper or lower case letters for identifiers. This is specified by the 
parameter SET, which is of the enumeration type TYPE_SET. 

type TYPE_SET is (LOWER.CASE, UPPERCASE); 

The format (which includes any trailing spaces) can be specified by an optional field width 
parameter. The default field width and letter case are defined by the following variables that are 
declared in the generic package ENUMERATION_IO : 

DEFAULT_WIDTH : FIELD := 0; 
DEFAULT_SETTING : TYPE_SET := UPPERCASE; 

The following procedures are provided: 

procedure GET(FILE : in FILE_TYPE; ITEM : out ENUM); 
procedure GETOTEM : out ENUM); 

After skipping any leading blanks, line terminators, or page terminators, reads an 
identifier according to the syntax of this lexical element (lower and upper case 
being considered equivalent), or a character literal according to the syntax of this 
lexical element (including the apostrophes). Returns, in the parameter ITEM, the 
value of type ENUM that corresponds to the sequence input. 

The exception DATA_ERROR is raised if the sequence input does not have the 
required syntax, or if the identifier or character literal does not correspond to a 
value of the subtype ENUM . 

14.3.9 Input-Output for Enumeration Types 14-24 



Input-Output 

procedure 

procedure 

PUT( FILE in 
ITEM in 
WIDTH in 
SET in 

PUT( ITEM in 
WIDTH in 
SET in 

FILE_TYPE; 
ENUM; 
FIELD := DEFAULT_WIDTH; 
TYPE_SET := DEFAULT_SETTING); 

ENUM; 
FIELD := DEFAULT_WIDTH; 
TYPE_SET := DEFAULT_SETTING); 

Outputs the value of the parameter ITEM as an enumeration literal (either an 
identifier or a character literal). The optional parameter SET indicates whether 
lower case or upper case is used for identifiers; it has no effect for character 
literals. If the sequence of characters produced has fewer than WIDTH characters, 
then trailing spaces are finally output to make up the difference. 

procedure GET(FROM : in STRING; ITEM : out ENUM; LAST : out POSITIVE): 

Reads an enumeration value from the beginning of the given string, following the 
same rule as the GET procedure that reads an enumeration value from a file, but 
treating the end of the string as a file terminator. Returns, in the parameter ITEM, 
the value of type ENUM that corresponds to the sequence input. Returns in LAST 
the index value such that FROM (LAST) is the last character read. 

The exception DATA_ERROR is raised if the sequence input does not have the 
required syntax, or if the identifier or character literal does not correspond to a 
value of the subtype ENUM . 

procedure PUT(TO : out STRING; 
ITEM : in ENUM; 
SET : in TYPE.SET := DEFAULT_SETTING); 

Outputs the value of the parameter ITEM to the given string, following the same 
rule as for output to a file, using the length of the given string as the value for 
WIDTH. 

Although the specification of the package ENUMERATIQN_IO would allow instantiation for an 
integer type, this is not the intended purpose of this generic package, and the effect of such instan¬ 
tiations is not defined by the language. 

Notes: 

There is a difference between PUT defined for characters, and for enumeration values. Thus 

TEXT_IO.PUT('A'); -- outputs the character A 

package CHARJO is new TEXTJO.ENUMERATIONJO(CHARACTER); 
CHAR_IO.PUT(’A'); -- outputs the character 'A', between single quotes 

The type BOOLEAN is an enumeration type, hence ENUMERATIONS can be instantiated for this 
type. 

References: blank 14.3.5, data_error 14.3.5, enumeration_io package 14.3.10, field subtype 14.3.5, file_type 14.1, 

get procedure 14.3.5, line terminator 14.3.5, put procedure 14.3.5, skipping 14.3.5, width 14.3.5 

14-25 Input-Output for Enumeration Types 14.3.9 



ANSI/MIL-STD-1815A Ada Reference Manual 

14.3.10 Specification of the Package Text JO 

with IO_EXCEPTIONS; 
package TEXT_I0 is 

type FILE_TYPE is limited private; 

type FILEJVIODE is (IN_FILE, 0UT_FILE); 

type COUNT is range 0 .. implementation-defined; 
subtype P0SITIVE_C0UNT is COUNT range 1 .. COUNT'LAST; 
UNBOUNDED : constant COUNT := 0; — line and page length 

subtype FIELD is INTEGER range 0 .. impiementation_define&, 
subtype NUMBER_BASE is INTEGER range 2 .. 16; 

type TYPE_SET is (LOWER.CASE, UPPERCASE); 

— File Management 

procedure CREATE ( FILE in out FILE_TYPE; 
MODE : in FILE_M0DE := 0UT_FILE; 
NAME : in STRING := 
FORM : in STRING := ""); 

procedure OPEN ( FILE in out FILE_TYPE; 
MODE : in FILE_MQDE; 
NAME : in STRING; 
FORM : in STRING := 

procedure CLOSE (FILE in out FILE.TYPE); 
procedure DELETE (FILE in out FILE_TYPE); 
procedure RESET (FILE in out FILE_TYPE; MODE : in FILE_M0DE) 
procedure RESET (FILE in out FILE_TYPE); 

function MODE (FILE in FILE_TYPE) return FILE_M0DE ; 
function NAME (FILE in FILE_TYPE) return STRING; 
function FORM (FILE in FILE_TYPE) return STRING; 

function IS_OPEN (FILE in FILE_TYPE) return BOOLEAN; 

— Control of default input and output files 

procedure SETJNPUT (FILE : in FILE_TYPE); 
procedure SET_OUTPUT (FILE : in FILE_TYPE); 

function STANDARDJNPUT return FILE_TYPE; 
function STAN DARD_0UTPUT return FILE_TYPE; 

function CURRENTJNPUT 
function CURRENT_OUTPUT 

return FILE_TYPE; 
return FILE_TYPE; 

14.3.10 Specification of the Package Text JO 14-26 



Input-Output 

— Specification of line and page lengths 

procedure SET_LINE_LENGTH (FILE : in FILE_TYPE; TO : in COUNT); 
procedure SET_LINE_LENGTH (TO : in COUNT); 

procedure SET_PAGE_LENGTH (FILE : in FILE_TYPE; TO : in COUNT); 
procedure SET_PAGE_LENGTH (TO : in COUNT); 

function 
function 

LINE_LENGTH 
LINE_LENGTH 

(FILE : 
return 

in FILE_TYPE) return COUNT; 
COUNT; 

function 
function 

PAGE_LENGTH (FILE : 
PAGE_LENGTH return 

in FILE_TYPE) return COUNT; 
COUNT; 

— Column, Line, and Page Control 

procedure 
procedure 

NEWJJNE 
NEWJJNE 

(FILE : in FILE.TYPE; SPACING : in POSITIVES 
(SPACING : in POSITIVE_COUNT := 1); 

procedure 
procedure 

SKIP_LINE 
SKIP_LINE 

(FILE : in FILE_TYPE; SPACING : in POSITIVES 
(SPACING : in POSITIVE_COUNT ;= 1); 

function 
function 

END_OF_LINE 
END_OF_LINE 

(FILE : 
return 

in FILE_TYPE) return BOOLEAN; 
BOOLEAN; 

procedure 
procedure 

NEW_PAGE 
NEW_PAGE; 

(FILE : in FILE_TYPE); 

procedure 
procedure 

SKIP_PAGE 
SKIP_PAGE; 

(FILE : in FILE_TYPE); 

function 
function 

END_OF_PAGE (FILE : 
END_OF_PAGE return 

in FILE_TYPE) return BOOLEAN; 
BOOLEAN; 

function 
function 

END_OF_FILE 
END_0 F_FILE 

(FILE : 
return 

in FILE_TYPE) return BOOLEAN; 
BOOLEAN; 

procedure SET_COL (FILE : in FILE_TYPE; TO : in POSITIVE_COUNT); 

1); 

1); 

procedure SET_COL (TO ; in POSITIVE_COUNT); 

procedure SET_LINE (FILE 
procedure SET_LINE (TO 

in FILE_TYPE; TO ; in POSITIVE_COUNT); 
in POSITIVE_COUNT); 

function COL (FILE : in FILE_TYPE) return POSITIVE_COUNT; 
function COL return POSITIVE_COUNT; 

function LINE (FILE : in FILE_TYPE) return POSITIVE_COUNT; 
function LINE return POSITIVE.COUNT; 

function PAGE (FILE : in FILE_TYPE) return POSITIVE_COUNT; 
function PAGE return POSITIVE_COUNT; 

14-27 Specification of the Package Text JO 14.3.10 



ANSI/M/L-STD-1815A Ada Reference Manual 

— Character Input-Output 

procedure GET(FILE : in FILE_TYPE; ITEM out CHARACTER); 
procedure GETOTEM : out CHARACTER); 
procedure PUT(FILE : in FILE_TYPE; ITEM in CHARACTER); 
procedure PUTOTEM : in CHARACTER); 1 

— String Input-Output 

procedure GET(F!LE in FILE.TYPE; ITEM out STRING); 
procedure GETOTEM out STRING); 
procedure PUT(FILE in FILE_TYPE; ITEM in STRING); 
procedure PUTOTEM in STRING); 

procedure GET_LINE(FILE : in FILE_TYPE; ITEM : out STRING; LAST : cut NATURAL); 
procedure GET_LINE(ITEM : out STRING; LAST ; out NATURAL); 
procedure PUT_LINE(FILE : in F!LE_TYPE; ITEM : in STRING); 
procedure PUT_LINE(ITEM : in STRING); 

— Generic package for Input-Output of Integer Types 

generic 
type NUM is range <>; 

package INTEGER_IO is 

DEFAULT_WIDTH : FIELD := NUM'WIDTH; 
DEFAULT_BASE ; NUMBER_BASE := 10; 

procedure GETIFILE ; in FILE_TYPE; ITEM out NUM; WIDTH : 
procedure GETOTEM : out NUM; WIDTH : in FIELD := 0); 

procedure PUT( FILE in FILE_TYPE; 
ITEM in NUM; 
WIDTH in FIELD := DEFAULT_WIDTH; 
BASE in NUMBER.BASE = DEFAULT_BASE); 

procedure PUT( ITEM in NUM; 
WIDTH in FIELD := DEFAULT.WIDTH; 
BASE in NUMBER_BASE = DEFAULT_BASE); 

procedure GET( FROM : in STRING; ITEM : out NUM; LAST : out 
procedure PUT(T0 : out STRING; 

ITEM : in NUM; 
BASE : in NUMBER.BASE := DEFAULT_BASE); 

in FIELD := 0); 

out POSITIVE); 

end INTEGERJO; 

14.3.10 Specification of the Package Text JO 14-28 



Input-Output 

— Generic packages for Input-Output of Real Types 

generic 
type NUM is digits <>; 

package FLOAT_IO is 

DEFAULT_FORE : FIELD 
DEFAULT^AFT : FiELD 
DEFAULT_EXP : FIELD 

2; 
NUM’DIGITS-1; 
3; 

procedure GET(FILE : in FILE_TYPE; ITEM : out NUM; WIDTH : in FIELD := 0); 
procedure GETOTEM : out NUM; WIDTH : in FIELD := 0); 

procedure PUT(FILE : in 
ITEM : in 
FORE : in 
AH' : in 
EXP : in 

procedure PUT(ITEM : in 
FORE : in 
AFT : in 
EXP : in 

FILE_TYPE; 
NUM; 
FIELD := DEFAULT_FORE; 
FIELD := DEFAULT^AFT; 
FIELD := DEFAULT_EXP); 
NUM; 
FIELD := DEFAULT_FORE; 
FIELD := DEFAULT_AFT; 
FIELD := DEFAULT_EXP); 

procedure GET(FR0M 
procedure PUT(T0 

ITEM 
AFT 
EXP 

end FLOAT_IO; 

in STRING; ITEM : out NUM; LAST : out POSITIVE); 
out STRING; 
in NUM; 
in FIELD := DEFAULT_AFT; 
in FIELD := DEFAULT_EXP); 

generic 
type NUM is delta <>; 

package FIXED_I0 is 

DEFAULT_FORE : FIELD 
DEFAULT_AFT : FIELD 
DEFAULT_EXP : FIELD 

NUM'FORE; 
NUM'AFT; 
0; 

procedure GET(FILE : in FILE_TYPE; ITEM : out NUM; WIDTH : in FIELD := 0); 
procedure GETOTEM : out NUM; WIDTH : in FIELD := 0); 

procedure PUT(FILE : in 
ITEM : in 
FORE : in 
AFT : in 
EXP : in 

procedure PUTflTEM : in 
FORE : in 
AFT : in 
EXP ; in 

FILE_TYPE; 
NUM.- 
FIELD := DEFAULT.FORE; 
FIELD := DEFAULT_AFT; 
FIELD := DEFAULT_EXP); 
NUM; 
FIELD := DEFAULT_FORE; 
FIELD := DEFAULTS FT; 
FIELD := DEFAULT.EXP); 

procedure GET(FR0M 
procedure PUT(T0 

ITEM 
AFT 
EXP 

in STRING; ITEM : out NUM; LAST : out POSITIVE); 
out STRING; 
in NUM; 
in FIELD := DEFAULT_AFT; 
in FIELD := DEFAULT_EXP); 

end FIXEDJO; 

14-29 Specification of the Package Text JO 14.3.10 



ANSI/MIL-STD-1815A Ada Reference Manual 

— Generic package for Input-Output of Enumeration Types 

generic 
type ENUM is (<>); 

package ENUMERATION_IO is 

DEFAULT_WIDTH : FIELD := 0; 
DEFAULT_SETTING : TYPE_SET := UPPERCASE; 

procedure GET( FILE : in FILE_TYPE; ITEM : out ENUM); 
procedure GET(ITEM : out ENUM); 

procedure PUT( FILE in FILE_TYPE; 
ITEM in ENUM; 
WIDTH in FIELD := DEFAULT_WIDTH; 
SET in TYPE_SET := DEFAULT_SETTING); 

procedure PUTOTEM in ENUM; 
WIDTH in FIELD := DEFAULT_WIDTH; 
SET in TYPE.SET := D E F AU LT_S ETTIN G); 

procedure GET( FROM : in STRING; ITEM : out ENUM; LAST : out POSITIVE), 
procedure PUT(T0 : out STRING; 

ITEM : in ENUM; 
SET ; in TYPE_SET := DEFAULT_SETTING); 

end ENUMERATIONS; 

— Exceptions 

STATUS_ERROR 
M0DE_ERR0R 
NAME_ERROR 
USE_ERR0R 
DEVICE_ERROR 
END_ERR0R 
DATA_ERROR 
LAYOUT_ERROR 

exception renames IO_EXCEPTIONS.STATUS_ERROR; 
exception renames I0_EXCEPTI0NS.M0DE_ERR0R; 
exception renames I0_EXCEPTI0NS.NAME_ERR0R; 
exception renames I0_EXCEPTI0NS.USE_ERR0R; 
exception renames I0_EXCEPTI0NS.DEVICE_ERR0R; 
exception renames IO_EXCEnTIONS.END_ERROR; 
exception renames I0_EXCEPTI0NS.DATA_ERR0R; 
exception renames I0_EXCEPTI0NS.LAY0UT_ERR0R; 

private 
— implementation-dependent 

end TEXT JO; 

14.4 Exceptions in Input-Output 

The following exceptions can be raised by input-output operations. They are declared in the 
package I0_EXCEPTI0NS , defined in section 14.5; this package is named in the context clause for 
each of the three input-output packages. Only outline descriptions are given of the conditions 
under which NAME_ERROR, USE_ERR0R, and DEVICE_ERROR are raised; for full details see 
Appendix F. If more than one error condition exists, the corresponding exception that appears 
earliest in the following list is the one that is raised. 

The exception STATUS_ERROR is raised by an attempt to operate upon a file that is not open, and 
by an attempt to open a file that is already open. 

14.4 Exceptions in Input-Output 14-30 



Input-Output 

The exception MODE_ERROR is raised by an attempt to read from, or test for the end of, a file 
whose current mode is OUT_FILE, and also by an attempt to write to a file whose current mode is 
IN_FILE. In the case of TEXTJO, the exception MODE_ERROR is also raised by specifying a file 
whose current mode is OUT_FILE in a call of SETJNPUT, SKIP_LINE, END_OF_LINE, SKIP_PAGE, 
or END_OF_PAGE; and by specifying a file whose current mode is IN_FILE in a call of 
SET_OUTPUT, SET_LINE_LENGTH, SET_PAGE_LENGTH , LINE_LENGTH, PAGE_LENGTH, 
NEW_LINE , or NEW_PAGE . 

The exception NAME_ERROR is raised by a call of CREATE or OPEN if the string given for the « 
parameter NAME does not allow the identification of an external file. For example, this exception is 
raised if the string is improper, or, alternatively, if either none or more than one external file corres¬ 
ponds to the string. 

The exception USE_ERROR is raised if an operation is attempted that is not possible for reasons 5 

that depend on characteristics of the external file. For example, this exception is raised by the 
procedure CREATE, among other circumstances, if the given mode is OUT_FILE but the form 
specifies an input only device, if the parameter FORM specifies invalid access rights, or if an 
external file with the given name already exists and overwriting is not allowed. 

The exception DEVICE_ERROR is raised if an input-output operation cannot be completed because 6 

of a malfunction of the underlying system. 

The exception END_ERROR is raised by an attempt to skip (read past) the end of a file. 7 

The exception DATA^ERROR may be raised by the procedure READ if the element read cannot be s 
interpreted as a value of the required type. This exception is also raised by a procedure GET 
(defined in the package TEXTJO) if the input character sequence fails to satisfy the required 
syntax, or if the value input does not belong to the range of the required type or subtype. 

The exception LAYOUT_ERROR is raised (in text input-output) by COL, LINE, or PAGE if the value 9 

returned exceeds COUNT'LAST. The exception LAYOUT_ERROR is also raised on output by an 
attempt to set column or line numbers in excess of specified maximum line or page lengths, 
respectively (excluding the unbounded cases). It is also raised by an attempt to PUT too many 
characters to a string. 

References: col function 14.3.4, create procedure 14.2.1, end_ofJine function 14.3.4, end_of_page function 14.3.4, 10 

external file 14.1, file 14.1, form string 14.1, get procedure 14.3.5, injile 14.1, io_exceptions package 14.5, line 

function 14.3.4, linejength function 14.3.4, name string 14.1, newjine procedure 14.3.4, new_page procedure 

14.3.4, open procedure 14.2.1, out_file 14.1, page function 14.3.4, pageJength function 14.3.4, put procedure 

14.3.5, read procedure 14.2.2 14.2.3, set_input procedure 14.3.2, seUineJength 14.3.3, set_pageJength 14.3.3, 

set_output 14.3.2, skipjine procedure 14.3.4, skip_page procedure 14.3.4, text_io package 14.3 

14-31 Exceptions in Input-Output 14.4 



ANSI/MIL-STD-1815A Ada Reference Manual 

14.5 Specification of the Package IQJExceptions 

This package defines the exceptions needed by the packages SEQUENTIAUO, DIRECTJO, and 

TEXT JO. 

2 package IO_EXCEPTIONS is 

STATUS_ERROR 
MODE_ERROR 
NAME_ERROR 
USE_ERROR 
DEVICE_ERROR 
END_ERROR 
DATA_ERROR 
LAYOUT_ERROR 

exception; 
exception; 
exception; 
exception; 
exception; 
exception; 
exception; 
exception; 

end IO_EXCEPTIONS; 

14.6 Low Level Input-Output 

1 A low level input-output operation is an operation acting on a physical device. Such an operation 
is handled by using one of the (overloaded) predefined procedures SEND_CONTROL and 
RECEIVE_CONTROL 

2 A procedure SEND_CONTROL may be used to send control information to a physical device. A 
procedure RECEIVE_COIMTROl may be used to monitor the execution of an input-output operation 
by requesting information from the physical device. 

3 Such procedures are declared in the standard package lOW_LEVEL_IO and have two parameters 
identifying the device and the data. However, the kinds and formats of the control information will 
depend on the physical characteristics of the machine and the device. Hence, the types of the 
parameters are implementation-defined. Overloaded definitions of these procedures should be 
provided for the supported devices. 

4 The visible part of the package defining these procedures is outlined as follows; 

5 package LOW_LEVEI_10 is 
— declarations of the possible types for DEVICE and DATA; 

declarations of overloaded procedures for these types: 
procedure SEND_CONTROL (DEVICE : device-type; DATA : in out datajype); 
procedure RECEIVE_CONTROL (DEVICE : device-type; DATA : in out datajtype); 

end; 

b The bodies of the procedures SEND_CONTROL and RECEIVE_CONTROL for various devices can be 
supplied in the body of the package LOW_LEVEL_IO . These procedure bodies may be written with 
code statements. 

14.6 Low Level Input-Output 14-32 



Input-Output 

14.7 Example of Input-Output 

The following example shows the use of some of the text input-output facilities in a dialogue with 
a user at a terminal. The user is prompted to type a color, and the program responds by giving the 
number of items of that color available in stock, according to an inventory. The default input and 
output files are used. For simplicity, all the requisite instantiations are given within one sub¬ 
program; in practice, a package, separate from the procedure, would be used. 

with TEXTJO; us® TEXTJO; 
procedure DIALOGUE is 

type COLOR is (WHITE, RED, ORANGE, YELLOW, GREEN, BLUE. BROWN); 
package CQLQRJO is new ENUMERATION_IO(ENUM => COLOR); 
package NUMBER_IO is new INTEGERJO(INTEGER); 
use COLOR JO, NUMBERJO; 

INVENTORY : array (COLOR) of INTEGER := (20, 17, 43, 10, 28, 173, 87); 
CHOICE : COLOR; 

procedure ENTER_COLOR (SELECTION : out COLOR) is 
begin 

loop 
begin 

PUT ("Color selected: "); -- prompts user 
GET (SELECTION); — accepts color typed, or raises exception 
return; 

exception 
when DATA_ERROR => 

PUT("lnvalid color, try again. "); — user has typed new line 
NEW_LINE(2); 

completes execution of the block statement 
end; 

end loop; — repeats the block statement until color accepted 
end; 

begin — statements of DIALOGUE; 

NUMBERJO.DEFAULT_WIDTH := 5; 

loop 

ENTER_COLOR(CHOICE); -- user types color and new line 

SET_COL(5); PUT(CHOICE); PUT(" items available:"); 
SET_COL(40); PUT(INVENTORY(CHOICE)); - default width is 5 
NEWJJNE; 

end loop; 
end DIALOGUE; 

Example of an interaction (characters typed by the user are italicized): 

Color selected: Black 
Invalid color, try again. 

Color selected: Blue 
BLUE items available: 173 

Color selected: Yellow 
YELLOW items available: 10 

14-33 Example of Input-Output 14.7 





A. Predefined Language Attributes 

This annex summarizes the definitions given elsewhere of the predefined language attributes. 

P'ADDRESS For a prefix P that denotes an object, a program unit, a label, or an entry: 2 

Yields the address of the first of the storage units allocated to P. For a sub¬ 
program, package, task unit,or label, this value refers to the machine code 
associated with the corresponding body or statement. For an entry for 
which an address clause has been given, the value refers to the cor¬ 
responding hardware interrupt. The value of this attribute is of the type 
ADDRESS defined in the package SYSTEM . (See 1 3.7.2.) 

P'AFT For a prefix P that denotes a fixed point subtype: 3 

Yields the number of decimal digits needed after the point to accommodate 
the precision of the subtype P, unless the delta of the subtype P is greater 
than 0.1, in which case the attribute yields the value one. (P'AFT is the 
smallest positive integer N for which (10**N)*P'DELTA is greater than or 
equal to one.) The value of this attribute is of the type universalJnteger. 
(See 3.5.10.) 

P'BASE For a prefix P that denotes a type or subtype: 4 

This attribute denotes the base type of P. It is only allowed as the prefix of 
the name of another attribute: for example, P'BASE'FIRST. (See 3.3.3.) 

P'CALLABLE For a prefix P that is appropriate for a task type: 5 

Yields the value FALSE when the execution of the task P is either completed 
or terminated, or when the task is abnormal; yields the value TRUE 
otherwise. The value of this attribute is of the predefined type BOOLEAN. 
(See 9.9.) 

P'CONSTRAINED For a prefix P that denotes an object of a type with discriminants: e 

Yields the value TRUE if a discriminant constraint applies to the object P, or 
if the object is a constant (including a formal parameter or generic formal 
parameter of mode in); yields the value FALSE otherwise. If P is a generic 
formal parameter of mode in out, or if P is a formal parameter of mode in out 
or out and the type mark given in the corresponding parameter specification 
denotes an unconstrained type with discriminants, then the value of this 
attribute is obtained from that of the corresponding actual parameter. The 
value of this attribute is of the predefined type BOOLEAN . (See 3.7.4.) 

A-1 



ANSI/M/L-STD-1815A Ada Reference Manual 

P'CONSTRAINED 

P'COUNT 

P'DELTA 

P'DIGITS 

P'EMAX 

P'EPSILON 

P'FIRST 

m P'FIRST 

For a prefix P that denotes a private type or subtype: 

Yields the value FALSE if P denotes an unconstrained nonformal private type 
with discriminants; also yields the value FALSE if P denotes a generic formal 
private type and the associated actual subtype is either an unconstrained 
type with discriminants or an unconstrained array type; yields the value 
TRUE otherwise. The value of this attribute is of the predefined type 
BOOLEAN. (See 7.4.2.) 

For a prefix P that denotes an entry of a task unit: 

Yields the number of entry calls presently queued on the entry (if the 
attribute is evaluated within an accept statement for the entry P, the count 
does not include the calling task). The value of this attribute is of the type 
universalJnteger. (See 9.9.) 

For a prefix P that denotes a fixed point subtype: 

Yields the value of the delta specified in the fixed accuracy definition for the 
subtype P. The value of this attribute is of the type universal^jeal. (See 
3.5.10.) 

For a prefix P that denotes a floating point subtype: 

Yields the number of decimal digits in the decimal mantissa of model 
numbers of the subtype P. (This attribute yields the number D of section 
3.5.7. ) The value of this attribute is of the type universal Jnteger. (See 
3.5.8. ) 

For a prefix P that denotes a floating point subtype: 

Yields the largest exponent value in the binary canonical form of model 
numbers of the subtype P. (This attribute yields the product 4*B of section 
3.5.7. ) The value of this attribute is of the type universal Jnteger. (See 
3.5.8. ) 

For a prefix P that denotes a floating point subtype: 

Yields the absolute value of the difference between the model number 1.0 
and the next model number above, for the subtype P. The value of this 
attribute is of the type universal_real. (See 3.5.8.) 

For a prefix P that denotes a scalar type, or a subtype of a scalar type: 

Yields the lower bound of P. The value of this attribute has the same type as 
P. (See 3.5.) 

For a prefix P that is appropriate for an array type, or that denotes a con¬ 
strained array subtype: 

Yields the lower bound of the first index range. The value of this attribute 
has the same type as this lower bound. (See 3.6.2 and 3.8.2.) 

A-2 



Predefined Language Attributes 

P'FIRST(N) For a prefix P that is appropriate for an array type, or that denotes a con- 15 
strained array subtype: 

Yields the lower bound of the N-th index range. The value of this attribute 
has the same type as this lower bound. The argument N must be a static 
expression of type universaUnteger. The value of N must be positive 
(nonzero) and no greater than the dimensionality of the array. (See 3.6.2 and 
3.8.2.) 

P'FIRST_BIT For a prefix P that denotes a component of a record object: ,6 

P'FORE 

Yields the offset, from the start of the first of the storage units occupied by 
the component, of the first bit occupied by the component. This offset is 
measured in bits. The value of this attribute is of the type universaUnteger. 
(See 13.7.2.) 

For a prefix P that denotes a fixed point subtype: v 

Yields the minimum number of characters needed for the integer part of the 
decimal representation of any value of the subtype P, assuming that the 
representation does not include an exponent, but includes a one-character 
prefix that is either a minus sign or a space. (This minimum number does not 
include superfluous zeros or underlines, and is at least two.) The value of 
this attribute is of the type universaUnteger. (See 3.5.10.) 

P'lMAGE For a prefix P that denotes a discrete type or subtype: is 

This attribute is a function with a single parameter. The actual parameter X 
must be a value of the base type of P. The result type is the predefined type 
STRING. The result is the image of the value of X, that is, a sequence of 
characters representing the value in display form. The image of an integer 
value is the corresponding decimal literal; without underlines, leading 
zeros, exponent, or trailing spaces; but with a one character prefix that is 
either a minus sign or a space. 

The image of an enumeration value is either the corresponding identifier in 
upper case or the corresponding character literal (including the two 
apostrophes); neither leading nor trailing spaces are included. The image of 
a character other than a graphic character is implementation-defined. (See 
3.5.5.) 

P'LARGE For a prefix P that denotes a real subtype: 19 

The attribute yields the largest positive model number of the subtype P. The 
value of this attribute is of the type universaUeal. (See 3.5.8 and 3.5.10.) 

P'LAST For a prefix P that denotes a scalar type, or a subtype of a scalar type: 20 

Yields the upper bound of P. The value of this attribute has the same type as 
P. (See 3.5.) 

P'LAST For a prefix P that is appropriate for an array type, or that denotes a con- 21 

strained array subtype: 

Yields the upper bound of the first index range. The value of this attribute 
has the same type as this upper bound. (See 3.6.2 and 3.8.2.) 

A-3 



ANSI/MiL-STD-1815A Ada Reference Manual 

22 P'LAST(N) For a prefix P that is appropriate for an array type, or that denotes a 
constrained array subtype: 

Yields the upper bound of the N-th index range. The value of this 
attribute has the same type as this upper bound. The argument N 
must be a static expression of type universalJnteger. The value of N 
must be positive (nonzero) and no greater than the dimensionality of 
the array. (See 3.6.2 and 3.8.2.) 

23 P'LAST_BIT For a prefix P that denotes a component of a record object: 

Yields the offset, from the start of the first of the storage units 
occupied by the component, of the last bit occupied by the compo¬ 
nent. This offset is measured in bits. The value of this attribute is of 
the type universal Jnteger. (See 13.7.2.) 

24 P'LENGTH For a prefix P that is appropriate for an array type, or that denotes a 
constrained array subtype: 

Yields the number of values of the first index range (zero for a null 
range). The value of this attribute is of the type universal Jnteger. 
(See 3.6.2.) 

25 P'LENGTH(N) For a prefix P that is appropriate for an array type, or that denotes a 
constrained array subtype: 

Yields the number of values of the N-th index range (zero for a null 
range). The value of this attribute is of the type universal Jnteger. 
The argument N must be a static expression of type univer- 
saljnteger. The value of N must be positive (nonzero) and no 
greater than the dimensionality of the array. (See 3.6.2 and 3.8.2.) 

26 P'MACH INE_E MAX For a prefix P that denotes a floating point type or subtype: 

Yields the largest value of exponent for the machine representation 
of the base type of P. The value of this attribute is of the type univer¬ 
sal Jnteger. (See 13.7.3.) 

27 P'MACHINE_EMIN For a prefix P that denotes a floating point type or subtype: 

Yields the smallest (most negative) value of exponent for the 
machine representation of the base type of P. The value of this 
attribute is of the type universal Jnteger. (See 13.7.3.) 

28 P'MACHINE_MANTISSA For a prefix P that denotes a floating point type or subtype: 

Yields the number of digits in the mantissa for the machine 
representation of the base type of P (the digits are extended digits in 
the range 0 to P'MACHINE_RADIX - 1). The value of this attribute is 
of the type universal Jnteger. (See 13.7.3.) 

A-4 



Predefined Language Attributes 

P'MACHINE_OVERFLOWS 

P'MACHINE_RADIX 

P'MACHINE_ROUNDS 

P'MANTISSA 

P'POS 

P'POSITION 

P'PRED 

P'RANGE 

For a prefix P that denotes a real type or subtype: 

Yields the value TRUE if every predefined operation on values of the 
base type of P either provides a correct result,or raises the exception 
NUMERICLERROR in overflow situations; yields the value FALSE 
otherwise. The value of this attribute is of the predefined type 
BOOLEAN. (See 13.7.3.) 

For a prefix P that denotes a floating point type or subtype: 

Yields the value of the radix used by the machine representation of 
the base type of P. The value of this attribute is of the type univer¬ 
sal Jnteger. (See 13.7.3.) 

For a prefix P that denotes a real type or subtype: 

Yields the value TRUE if every predefined arithmetic operation on 
values of the base type of P either returns an exact result or performs 
rounding; yields the value FALSE otherwise. The value of this 
attribute is of the predefined type BOOLEAN . (See 13.7.3.) 

For a prefix P that denotes a real subtype: 

Yields the number of binary digits in the binary mantissa of model 
numbers of the subtype P. (This attribute yields the number B of 
section 3.5.7 for a floating point type, or of section 3.5.9 for a fixed 
point type.) The value of this attribute is of the type univer¬ 
sal Jnteger. (See 3.5.8 and 3.5.10.) 

For a prefix P that denotes a discrete type or subtype: 

This attribute is a function with a single parameter. The actual 
parameter X must be a value of the base type of P. The result type is 
the type universaUnteger. The result is the position number of the 
value of the actual parameter. (See 3.5.5.) 

For a prefix P that denotes a component of a record object: 

Yields the offset, from the start of the first storage unit occupied by 
the record, of the first of the storage units occupied by the compo¬ 
nent. This offset is measured in storage units. The value of this 
attribute is of the type universal Jnteger. (See 1 3.7.2.) 

For a prefix P that denotes a discrete type or subtype: 

This attribute is a function with a single parameter. The actual 
parameter X must be a value of the base type of P. The result type is 
the base type of P. The result is the value whose position number is 
one less than that of X. The exception CONSTRAINT_ERROR is 
raised if X equals P'BASE'FIRST. (See 3.5.5.) 

For a prefix P that is appropriate for an array type, or that denotes a 
constrained array subtype: 

Yields the first index range of P, that is, the range P'FIRST .. P'LAST. 
(See 3.6.2.) 



ANSI/MIL-STD-1815A Ada Reference Manual 

37 P'RANGE(N) For a prefix P that is appropriate for an array type, or that denotes a 
constrained array subtype: 

Yields the N-th index range of P, that is, the range P'FIRST(N) .. 
P'LAST(N). (See 3.6.2.) 

38 P'SAFE_EMAX For a prefix P that denotes a floating point type or subtype: 

Yields the largest exponent value in the binary canonical form of safe 
numbers of the base type of P. (This attribute yields the number E of 
section 3.5.7.) The value of this attribute is of the type univer- 
saUnteger. (See 3.5.8.) 

39 P'SAFE_LARGE For a prefix P that denotes a real type or subtype: 

Yields the largest positive safe number of the base type of P. The value 
of this attribute is of the type universal_reai. (See 3.5.8 and 3.5.10.) 

90 P'SAFE.SMALL For a prefix P that denotes a real type or subtype: 

Yields the smallest positive (nonzero) safe number of the base type of P. 
The value of this attribute is of the type universa/_reai. (See 3.5.8 and 
3.5.10.) 

4, P'SIZE For a prefix P that denotes an object: 

Yields the number of bits allocated to hold the object. The value of this 
attribute is of the type universalJnteger. (See 13.7.2.) 

42 P'SIZE For a prefix P that denotes any type or subtype: 

Yields the minimum number of bits that is needed by the implementation 
to hold any possible object of the type or subtype P. The value of this 
attribute is of the type universal Jnteger. (See 13.7.2.) 

43 P'SMALL For a prefix P that denotes a real subtype: 

Yields the smallest positive (nonzero) model number of the subtype P. 
The value of this attribute is of the type universa/_real. (See 3.5.8 and 
3.5.10.) 

44 P'STORAGE_SIZE For a prefix P that denotes an access type or subtype: 

Yields the total number of storage units reserved for the collection 
associated with the base type of P. The value of this attribute is of the 
type universaUnteger. (See 13.7.2.) 

45 P’STORAGE_SIZE For a prefix P that denotes a task type or a task object: 

Yields the number of storage units reserved for each activation of a task 
of the type P or for the activation of the task object P. The value of this 
attribute is of the type universal Jnteger. (See 13.7.2.) 

A-6 



Predefined Language Attributes 

P'SUCC 

P'TERMINATED 

P'VAL 

P'VALUE 

P'WIDTH 

For a prefix P that denotes a discrete type or subtype: 

This attribute is a function with a single parameter. The actual parameter 
X must be a value of the base type of P. The result type is the base type 
of P. The result is the value whose position number is one greater than 
that of X. The exception CONSTRAINT_ERROR is raised if X equals 
P'BASE'IAST. (See 3.5.5.) 

For a prefix P that is appropriate for a task type: 

Yields the value TRUE if the task P is terminated; yields the value FALSE 
otherwise. The value of this attribute is of the predefined type BOOLEAN . 
(See 9.9.) 

For a prefix P that denotes a discrete type or subtype: 

This attribute is a special function with a single parameter X which can 
be of any integer type. The result type is the base type of P. The result is 
the value whose position number is the universalJnteger value cor¬ 
responding to X. The exception CONSTRAINT_ERRQR is raised if the 
universal Jnteger value corresponding to X is not in the range 
P ROS (P'BASE'FIRST ) .. P'POS (P'BASE'LAST). (See 3.5.5.) 

For a prefix P that denotes a discrete type or subtype: 

This attribute is a function with a single parameter. The actual parameter 
X must be a value of the predefined type STRING . The result type is the 
base type of P. Any leading and any trailing spaces of the sequence of 
characters that corresponds to X are ignored. 

For an enumeration type, if the sequence of characters has the syntax of 
an enumeration literal and if this literal exists for the base type of P, the 
result is the corresponding enumeration value. For an integer type, if the 
sequence of characters has the syntax of an integer literal, with an 
optional single leading character that is a plus or minus sign, and if there 
is a corresponding value in the base type of P, the result is this value. In 
any other case, the exception CONSTRAINT_ERROR is raised. (See 3.5.5.) 

For a prefix P that denotes a discrete subtype: 

Yields the maximum image length over all values of the subtype P (the 
image is the sequence of characters returned by the attribute IMAGE). 
The value of this attribute is of the type universal Jnteger. (See 3.5.5.) 



i 



B. Predefined Language Pragmas 

This annex defines the pragmas LIST, PAGE , and OPTIMIZE , and summarizes the definitions given 
elsewhere of the remaining language-defined pragmas. 

Pragma Meaning 

CONTROLLED Takes the simple name of an access type as the single argument. This pragma 2 

is only allowed immediately within the declarative part or package specification 
that contains the declaration of the access type; the declaration must occur 
before the pragma. This pragma is not allowed for a derived type. This pragma 
specifies that automatic storage reclamation must not be performed for objects 
designated by values of the access type, except upon leaving the innermost 
block statement, subprogram body, or task body that encloses the access type 
declaration, or after leaving the main program (see 4.8). 

ELABORATE Takes one or more simple names denoting library units as arguments. This 3 

pragma is only allowed immediately after the context clause of a compilation 
unit (before the subsequent library unit or secondary unit). Each argument 
must be the simple name of a library unit mentioned by the context clause. This 
pragma specifies that the corresponding library unit body must be elaborated 
before the given compilation unit. If the given compilation unit is a subunit, the 
library unit body must be elaborated before the body of the ancestor library unit 
of the subunit (see 10.5). 

INLINE Takes one or more names as arguments; each name is either the name of a 4 

subprogram or the name of a generic subprogram. This pragma is only allowed 
at the place of a declarative item in a declarative part or package specification, 
or after a library unit in a compilation, but before any subsequent compilation 
unit. This pragma specifies that the subprogram bodies should be expanded 
inline at each call whenever possible; in the case of a generic subprogram, the 
pragma applies to calls of its instantiations (see 6.3.2). 

INTERFACE Takes a language name and a subprogram name as arguments. This pragma is 5 

allowed at the place of a declarative item, and must apply in this case to a sub¬ 
program declared by an earlier declarative item of the same declarative part or 
package specification. This pragma is also allowed for a library unit; in this 
case the pragma must appear after the subprogram declaration, and before any 
subsequent compilation unit. This pragma specifies the other language (and 
thereby the calling conventions) and informs the compiler that an object 
module will be supplied for the corresponding subprogram (see 13.9). 

LIST Takes one of the identifiers ON or OFF as the single argument. This pragma is e 
allowed anywhere a pragma is allowed. It specifies that listing of the compila¬ 
tion is to be continued or suspended until a LIST pragma with the opposite 
argument is given within the same compilation. The pragma itself is always 
listed if the compiler is producing a listing. 

MEMORY_SIZE Takes a numeric literal as the single argument. This pragma is only allowed at 7 

the start of a compilation, before the first compilation unit (if any) of the com¬ 
pilation. The effect of this pragma is to use the value of the specified numeric 
literal for the definition of the named number MEMORY_SIZE (see 13.7). 

B-1 



ANSI/MIL-STD-1815A Ada Reference Manual 

OPTIMIZE 

PACK 

PAGE 

PRIORITY 

SHARED 

STORAGE_UNIT 

SUPPRESS 

SYSTEM_NAME 

Takes one of the identifiers TIME or SPACE as the single argument. This 
pragma is only allowed within a declarative part and it applies to the block or 
body enclosing the declarative part. It specifies whether time or space is the 
primary optimization criterion. 

Takes the simple name of a record or array type as the single argument. The 
allowed positions for this pragma, and the restrictions on the named type, are 
governed by the same rules as for a representation clause. The pragma 
specifies that storage minimization should be the main criterion when selecting 
the representation of the given type (see 13.1). 

This pragma has no argument, and is allowed anywhere a pragma is allowed. It 
specifies that the program text which follows the pragma should start on a new 
page (if the compiler is currently producing a listing). 

Takes a static expression of the predefined integer subtype PRIORITY as the 
single argument. This pragma is only allowed within the specification of a task 
unit or immediately within the outermost declarative part of a main program. It 
specifies the priority of the task (or tasks of the task type) or the priority of the 
main program (see 9.8). 

Takes the simple name of a variable as the single argument. This pragma is 
allowed only for a variable declared by an object declaration and whose type is 
a scalar or access type; the variable declaration and the pragma must both 
occur (in this order) immediately within the same declarative part or package 
specification. This pragma specifies that every read or update of the variable is 
a synchronization point for that variable. An implementation must restrict the 
objects for which this pragma is allowed to objects for which each of direct 
reading and direct updating is implemented as an indivisible operation (see 
9.1 1). 

Takes a numeric literal as the single argument. This pragma is only allowed at 
the start of a compilation, before the first compilation unit (if any) of the com¬ 
pilation. The effect of this pragma is to use the value of the specified numeric 
literal for the definition of the named number STORAGE_UNIT (see 1 3.7). 

Takes as arguments the identifier of a check and optionally also the name of 
either an object, a type or subtype, a subprogram, a task unit, or a generic unit. 
This pragma is only allowed either immediately within a declarative part or 
immediately within a package specification. In the latter case, the only allowed 
form is with a name that denotes an entity (or several overloaded subprograms) 
declared immediately within the package specification. The permission to omit 
the given check extends from the place of the pragma to the end of the 
declarative region associated with the innermost enclosing block statement or 
program unit. For a pragma given in a package specification, the permission 
extends to the end of the scope of the named entity. 

If the pragma includes a name, the permission to omit the given check is further 
restricted: it is given only for operations on the named object or on all objects 
of the base type of a named type or subtype; for calls of a named subprogram; 
for activations of tasks of the named task type; or for instantiations of the given 
generic unit (see 11.7). 

Takes an enumeration literal as the single argument. This pragma is only 
allowed at the start of a compilation, before the first compilation unit (if any) of 
the compilation. The effect of this pragma is to use the enumeration literal with 
the specified identifier for the definition of the constant SYSTEM_NAME. This 
pragma is only allowed if the specified identifier corresponds to one of the 
literals of the type NAME declared in the package SYSTEM (see 1 3.7). 

B-2 



C. Predefined Language Environment 

This annex outlines the specification of the package STANDARD containing all predefined 
identifiers in the language. The corresponding package body is implementation-defined and is not 
shown. 

The operators that are predefined for the types declared in the package STANDARD are given in 
comments since they are implicitly declared. Italics are used for pseudo-names of anonymous 
types (such as universal_real) and for undefined information (such as implementation_defined and 
any_fixe d_p oint_type). 

package STANDARD is 3 

type BOOLEAN is (FALSE, TRUE); 

— The predefined relational operators for this type are as follows: 

— function "=" 
-- function "/=" 
— function X" 
— function "<(=" 
— function ")>" 
— function ")>=" 

(LEFT, RIGHT : BOOLEAN) return BOOLEAN 
(LEFT, RIGHT : BOOLEAN) return BOOLEAN 
(LEFT, RIGHT : BOOLEAN) return BOOLEAN 
(LEFT, RIGHT : BOOLEAN) return BOOLEAN 
(LEFT, RIGHT : BOOLEAN) return BOOLEAN 
(LEFT, RIGHT : BOOLEAN) return BOOLEAN 

-- The predefined logical operators and the predefined logical negation operator are as follows: 

- function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAN; 
- function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN; 
- function "xor" (LEFT, RIGHT : BOOLEAN) return BOOLEAN; 

— function "not" (RIGHT : BOOLEAN) return BOOLEAN; 

— The universal type universaUnteger is predefined. 

type INTEGER is implementation __defined\ 

— The predefined operators for this type are as follows: 

-- function (LEFT, RIGHT INTEGER) return BOOLEAN 
-- function "/=" (LEFT, RIGHT INTEGER) return BOOLEAN 
-- function (LEFT, RIGHT INTEGER) return BOOLEAN 
-- function (LEFT, RIGHT INTEGER) return BOOLEAN 
— function (LEFT, RIGHT INTEGER) return BOOLEAN 
— function ">=" (LEFT, RIGHT INTEGER) return BOOLEAN 

C-1 



ANSI/MIL-STD-1815A Ada Reference Manual 

- function " + " (RIGHT : INTEGER) return INTEGER; 

- function (RIGHT : INTEGER) return INTEGER; 

- function "abs" (RIGHT : INTEGER) return INTEGER; 

- function "+" (LEFT, RIGHT INTEGER) return INTEGER 

- function (LEFT, RIGHT INTEGER) return INTEGER 

- function (LEFT, RIGHT INTEGER) return INTEGER 

- function "/" (LEFT, RIGHT INTEGER) return INTEGER 

- function "rem" (LEFT, RIGHT INTEGER) return INTEGER 

- function "mod" (LEFT, RIGHT INTEGER) return INTEGER 

- function "**" (LEFT INTEGER; RIGHT : INTEGER) return INTEGER; 

— An implementation may provide additional predefined integer types. It is recommended that the 
— names of such additional types end with INTEGER as in SHORT_iNTEGER or LONGJNTEGER. 

- The specification of each operator for the type universalJnteger, or for any additional 
— predefined integer type, is obtained by replacing INTEGER by the name of the type in the 
— specification of the corresponding operator of the type INTEGER, except for the right operand 
— of the exponentiating operator. 

8 — The universal type universal_reai is predefined. 

type FLOAT is implementation^defined; 

— The predefined operators for this type are as follows: 

— function (LEFT, RIGHT FLOAT) return BOOLEAN 

— function "/=" (LEFT, RIGHT FLOAT) return BOOLEAN 

— function X" (LEFT, RIGHT FLOAT) return BOOLEAN 
— function "<=" (LEFT, RIGHT FLOAT) return BOOLEAN 

— function (LEFT, RIGHT FLOAT) return BOOLEAN 
— function (LEFT, RIGHT FLOAT) return BOOLEAN 

— function (RIGHT : FLOAT) return FLOAT; 
— function (RIGHT : FLOAT) return FLOAT; 
— function "abs" (RIGHT : FLOAT) return FLOAT; 

— function (LEFT, RIGHT FLOAT) return FLOAT; 

— function 
.... 

(LEFT, RIGHT FLOAT) return FLOAT; 
— function (LEFT, RIGHT FLOAT) return FLOAT; 
— function 7" (LEFT, RIGHT FLOAT) return FLOAT; 

function "**" (LEFT : FLOAT; RIGHT : INTEGER) return FLOAT; 

to — An implementation may provide additional predefined floating point types. It is recom- 
- mended that the names of such additional types end with FLOAT as in SHORT_FLOAT or 

-- LONG_FLOAT. The specification of each operator for the type universalweal, or for any 
- additional predefined floating point type, is obtained by replacing FLOAT by the name of the 

— type in the specification of the corresponding operator of the type FLOAT. 

C-2 



Predefined Language Environment 

— In addition, the following operators are predefined for universal types: 

— function "*" (LEFT : universalJnteger; RIGHT : universal_real) return universal_real; 
— function "*" (LEFT : universal_real; RIGHT : universal Jnteger) return universal weal-, 
— function (LEFT : universalweal; RIGHT : universal Jnteger) return universal_real] 

— The type universalJixed is predefined. The only operators declared for this type are 

— function "*" (LEFT : anyjixed^pointjype; RIGHT : a n yjix e d_p o in t_type) return universal Jixed] 
— function (LEFT : anyjixed^pointjype; RIGHT : anyJixed__point_type) return universal Jixed] 

— The following characters form the standard ASCII character set. Character literals cor- 
— responding to control characters are not identifiers; they are indicated in italics in this definition. 

type CHARACTER is 13 

( nul, sob, stx, etx, eot, enq, ack, bel, 
bs, ht, If, vt, ff, cr, so, si, 
die, del, dc2, dc3, dc4, nak, syn, etb, 
can, e/77, sub, esc, fs, gs. rs, us, 

■ ■ '!', '$', '%', 
... 

7. , , ' ' 7, 
'O', '1', '2', '3', '4', '5', '6', '7', 
'8', '9', '=', 

'A', 'B', 'C', 'D', 'E', 'F', 'G', 
'H', '1', 'J\ 'K', 'L', 'M', 'N', O', 
'P', 'Q'. 'FT, 'S', T, 'U', 'V', 'W', 
X, 'V', Z', 'V, 

<- 'a'. 'b', 'c'. 'd'. 'e'. 7, 'g'. 
'h\ 'i\ 'k', T, 'm'. 'n'. 'o'. 
'p'. 'q\ Y, 's’. 't', 'u'. 'v', 'w'. 
'x', V. 'z , T, r. ~ , del)] 

CHARACTER use 128 ASCII character set without holes 
(0, 1, 2, 3, 4, 5, .. 125, 126, 127); 

-- The predefined operators for the type CHARACTER are the same as for any enumeration type, m 

C-3 



I 

ANS//MIL-STD-1815A Ada Reference Manual 

package ASCII is 

Control characters: 

NUL : constant CHARACTER = nut; SOH constant CHARACTER = soh; 
STX : constant CHARACTER = stx; ETX constant CHARACTER = etx: 
EOT : constant CHARACTER = eot; ENQ constant CHARACTER = enq; 
ACK : constant CHARACTER - ack; BEL constant CHARACTER bet] 
BS : constant CHARACTER - bs: HT constant CHARACTER = ht; 
LF : constant CHARACTER = If; VT constant CHARACTER = Vft) 
FF : constant CHARACTER = ff; CR constant CHARACTER = cr; 
SO : constant CHARACTER = so; SI constant CHARACTER si; 
DLE : constant CHARACTER = die; DC1 constant CHARACTER del; 
DC2 : constant CHARACTER dc2; DC3 constant CHARACTER - dc3; 
DC4 : constant CHARACTER = dc4; NAK constant CHARACTER nak; 
SYN : constant CHARACTER = syn; ETB constant CHARACTER - etb; 
CAN : constant CHARACTER = can; EM constant CHARACTER = em; 
SUB : constant CHARACTER = sub; ESC constant CHARACTER = esc; 
FS : constant CHARACTER fs; GS constant CHARACTER := gs; 
RS : constant CHARACTER - rs; US constant CHARACTER = us; 
DEL : constant CHARACTER = del; 

— Other characters: 

EXCLAM constant CHARACTER - T; QUOTATION constant CHARACTER = 
SHARP constant CHARACTER = DOLLAR constant CHARACTER = 
PERCENT constant CHARACTER = AMPERSAND constant CHARACTER 
COLON constant CHARACTER = * * SEMICOLON constant CHARACTER - 

QUERY constant CHARACTER _ '?'; AT.SIGN constant CHARACTER = 
1_BRACKET constant CHARACTER = T; BACK_SLASH constant CHARACTER = 'V; | 
R_BRACKET constant CHARACTER = T; CIRCUMFLEX constant CHARACTER = 1 
UNDERLINE constant CHARACTER — * GRAVE constant CHARACTER = '' '• 

1_BRACE constant CHARACTER = BAR constant CHARACTER = T;’ 
R_BRACE constant CHARACTER = 'Y; TILDE constant CHARACTER = 

— Lower case letters: 

: constant CHARACTER := 'a' 

LC_Z : constant CHARACTER := 'z'; 

end ASCII; 

t6 — Predefined subtypes: 

subtype NATURAL is INTEGER rang© 0 .. INTEGER'LAST; 
subtype POSITIVE is INTEGER range 1 .. INTEGER'LAST; 



Predefined Language Environment 

— Predefined string type: 

type STRING is array(POSITIVE range <>) of CHARACTER; 

pragma PACK(STRING); 

— The predefined operators for this type are as follows: 

— function (LEFT, RIGHT STRING) return BOOLEAN; 

— function "/=" (LEFT, RIGHT STRING) return BOOLEAN; 

— function (LEFT, RIGHT STRING) return BOOLEAN; 

— function (LEFT, RIGHT STRING) return BOOLEAN; 

— function (LEFT, RIGHT STRING) return BOOLEAN; 

-- function ">=" (LEFT, RIGHT STRING) return BOOLEAN; 

— function (LEFT STRING; RIGHT STRING) return STRING; 
— function (LEFT CHARACTER; RIGHT STRING) return STRING; 

— function (LEFT STRING; RIGHT CHARACTER) return STRING; 
— function (LEFT CHARACTER; RIGHT CHARACTER) return STRING; 

type DURATION is delta implementation_defined range implementation_defined; 

— The predefined operators for the type DURATION are the same as for any fixed point type. 

— The predefined exceptions: 

CONSTRAINT_ERROR : exception; 
NUMERIC_ERROR : exception; 
PROGRAM_ERROR : exception; 
STORAGE_ERROR : exception; 
TASKING_ERROR : exception; 

end STANDARD; 

Certain aspects of the predefined entities cannot be completely described in the language itself. 
For example, although the enumeration type BOOLEAN can be written showing the two 
enumeration literals FALSE and TRUE, the short-circuit control forms cannot be expressed in the 
language. 

Note: 

The language definition predefines the following library units: 

- The package CALENDAR (see 9.6) 

- The package SYSTEM (see 13.7) 
The package MACHINE_CODE (if provided) (see 13.8) 

- The generic procedure UN CHECK ED_DEALLOCATION (see 13.10.1) 
- The generic function UNCHECKED_CONVERSION (see 13.10.2) 

- The generic package SEQUENTIALJO (see 14.2.3) 
The generic package DIRECTJO (see 14.2.5) 

- The package TEXTJO (see 14.3.10) 
- The package IO_EXCEPTIONS (see 14.5) 
- The package LOW_LEVEI_10 (see 14.6) 





|This glossary is not part of the standard definition of the Ada programming language.] 

D. Glossary 

This appendix is informative and is not part of the standard definition of the Ada programming 
language. Italicized terms in the abbreviated descriptions below either have glossary entries 
themselves or are described in entries for related terms. 

Accept statement. See entry. 

Access type. A value of an access type (an 
access value) is either a null value, or a value 
that designates an object created by an 
allocator. The designated object can be read 
and updated via the access value. The defini¬ 
tion of an access type specifies the type of 
the objects designated by values of the 
access type. See also collection. 

Actual parameter. See parameter. 

Aggregate. The evaluation of an aggregate 
yields a value of a composite type. The value 
is specified by giving the value of each of the 
components. Either positional association or 
named association may be used to indicate 
which value is associated with which compo¬ 
nent. 

Allocator. The evaluation of an allocator 
creates an object and returns a new access 
value which designates the object. 

Array type. A value of an array type consists 
of components which are all of the same sub- 
type (and hence, of the same type). Each 
component is uniquely distinguished by an 
index (for a one-dimensional array) or by a 
sequence of indices (for a multidimensional 
array). Each index must be a value of a dis¬ 
crete type and must lie in the correct index 
range. 

Assignment. Assignment is the operation 
that replaces the current value of a variable 
by a new value. An assignment statement 
specifies a variable on the left, and on the 
right, an expression whose value is to be the 
new value of the variable. 

Attribute. The evaluation of an attribute 
yields a predefined characteristic of a named 
entity; some attributes are functions. 

Block statement. A block statement is a 
single statement that may contain a 
sequence of statements. It may also include 
a declarative part, and exception handlers; 
their effects are local to the block statement. 

Body. A body defines the execution of a sub¬ 
program, package, or task. A body stub is a 
form of body that indicates that this execu¬ 
tion is defined in a separately compiled sub¬ 
unit. 

Collection. A collection is the entire set of 
objects created by evaluation of allocators for 
an access type. 

Compilation unit. A compilation unit is the 
declaration or the body of a program unit, 
presented for compilation as an independent 
text. It is optionally preceded by a context 
clause, naming other compilation units upon 
which it depends by means of one more with 
clauses. 

Component. A component is a value that is a 
part of a larger value, or an object that is part 
of a larger object. 

Composite type. A composite type is one 
whose values have components. There are 
two kinds of composite type: array types and 
record types. 

Constant. See object. 

Constraint. A constraint determines a subset 
of the values of a type. A value in that subset 
satisfies the constraint. 

D-1 



ANS//M/L-STD-1815A Ada Reference Manual 

Context clause. See compilation unit. 

Declaration. A declaration associates an 
identifier (or some other notation) with an 
entity. This association is in effect within a 
region of text called the scope of the declara¬ 
tion. Within the scope of a declaration, there 
are places where it is possible to use the 
identifier to refer to the associated declared 
entity. At such places the identifier is said to 
be a simple name of the entity; the name is 
said to denote the associated entity. 

Declarative Part. A declarative part is a 
sequence of declarations. It may also contain 
related information such as subprogram 
bodies and representation clauses. 

Denote. See declaration. 

Derived Type. A derived type is a type whose 
operations and values are replicas of those of 
an existing type. The existing type is called 
the parent type of the derived type. 

Designate. See access type, task. 

Direct visibility. See visibility. 

Discrete Type. A discrete type is a type 
which has an ordered set of distinct values. 
The discrete types are the enumeration and 
integer types. Discrete types are used for 
indexing and iteration, and for choices in case 
statements and record variants. 

Discriminant. A discriminant is a dis¬ 
tinguished component of an object or value 
of a record type. The subtypes of other com¬ 
ponents, or even their presence or absence, 
may depend on the value of the discriminant. 

Discriminant constraint. A discriminant con¬ 
straint on a record type or private type 
specifies a value for each discriminant of the 
type. 

Elaboration. The elaboration of a declaration 
is the process by which the declaration 
achieves its effect (such as creating an 
object): this process occurs during program 
execution. 

Entry. An entry is used for communication 
between tasks. Externally, an entry is called 
just as a subprogram is called; its internal 
behavior is specified by one or more accept 
statements specifying the actions to be per¬ 
formed when the entry is called. 

Enumeration type. An enumeration type is a 
discrete type whose values are represented 
by enumeration literals which are given 
explicitly in the type declaration. These 
enumeration literals are either identifiers or 
character literals. 

Evaluation. The evaluation of an expression 
is the process by which the value of the 
expression is computed. This process occurs 
during program execution. 

Exception. An exception is an error situation 
which may arise during program execution. 
To raise an exception is to abandon normal 
program execution so as to signal that the 
error has taken place. An exception handler is 
a portion of program text specifying a 
response to the exception. Execution of such 
a program text is called handling the excep¬ 
tion. 

Expanded name. An expanded name denotes 
an entity which is declared immediately 
within some construct. An expanded name 
has the form of a selected component: the 
prefix denotes the construct (a program unit) 
or a block, loop, or accept statement); the 
selector is the simple name of the entity. 

Expression. An expression defines the com¬ 
putation of a value. 

Fixed point type. See real type. 

Floating point type. See real type. 

Formal parameter. See parameter. 

Function. See subprogram. 

Generic unit. A generic unit is a template 
either for a set of subprograms or for a set of 
packages. A subprogram or package created 
using the template is called an instance of 
the generic unit. A generic instantiation is the 
kind of declaration that creates an instance. 

D-2 



Glossary 

A generic unit is written as a subprogram or 
package but with the specification prefixed 
by a generic formal part which may declare 
generic format parameters. A generic formal 
parameter is either a type, a subprogram, or 
an object. A generic unit is one of the kinds of 
program unit. 

Handler. See exception. 

Index. See array type. 

Index constraint An index constraint for an 
array type specifies the lower and upper 
bounds for each index range of the array 
type. 

Indexed component. An indexed component 
denotes a component in an array. It is a form 
of name containing expressions which 
specify the values of the indices of the array 
component. An indexed component may 
also denote an entry in a family of entries. 

Instance. See generic unit. 

Integer type. An integer type is a discrete 
type whose values represent all integer 
numbers within a specific range. 

Lexical element. A lexical element is an iden¬ 
tifier, a literal, a delimiter, or a comment. 

Limited type. A limited type is a type for 
which neither assignment nor the predefined 
comparison for equality is implicitly declared. 
All task types are limited. A private type can 
be defined to be limited. An equality operator 
can be explicitly declared for a limited type. 

Literal. A literal represents a value literally, 
that is, by means of letters and other 
characters. A literal is either a numeric literal, 
an enumeration literal, a character literal, or a 
string literal. 

Mode. See parameter. 

Model number. A model number is an exact¬ 
ly representable value of a real type. Opera¬ 
tions of a real type are defined in terms of 
operations on the model numbers of the type. 

The properties of the model numbers and of 

their operations are the minimal properties 
preserved by all implementations of the real 
type. 

Name. A name is a construct that stands for 
an entity: it is said that the name denotes the 
entity, and that the entity is the meaning of 
the name. See also declaration, prefix. 

Named association. A named association 
specifies the association of an item with one 
or more positions in a list, by naming the 
positions. 

Object. An object contains a value. A 
program creates an object either by 
elaborating an object declaration or by 
evaluating an allocator. The declaration or 
allocator specifies a type for the object: the 
object can only contain values of that type. 

Operation. An operation is an elementary 
action associated with one or more types. It 
is either implicitly declared by the declaration 
of the type, or it is a subprogram that has a 
parameter or result of the type. 

Operator. An operator is an operation which 
has one or two operands. A unary operator is 
written before an operand; a binary operator 
is written between two operands. This nota¬ 
tion is a special kind of function call. An 
operator can be declared as a function. Many 
operators are implicitly declared by the 
declaration of a type (for example, most type 
declarations imply the declaration of the 
equality operator for values of the type). 

Overloading. An identifier can have several 
alternative meanings at a given point in the 
program text: this property is called 
overloading. For example, an overloaded 
enumeration literal can be an identifier that 
appears in the definitions of two or more 
enumeration types. The effective meaning of 
an overloaded identifier is determined by the 
context. Subprograms, aggregates, 
allocators, and string literals can also be 
overloaded. 

D-3 



ANS//M/L-STD-1815A Ada Reference Manual 

Package. A package specifies a group of 
logically related entities, such as types, 
objects of those types, and subprograms with 
parameters of those types. It is written as a 
package declaration and a package body. 
The package declaration has a visible part, 
containing the declarations of all entities that 
can be explicitly used outside the package. It 
may also have a private part containing struc¬ 
tural details that complete the specification 
of the visible entities, but which are irrelevant 
to the user of the package. The package body 
contains implementations of subprograms 
(and possibly tasks as other packages) that 
have been specified in the package declara¬ 
tion. A package is one of the kinds of 
program unit. 

Parameter. A parameter is one of the named 
entities associated with a subprogram, entry, 
or generic unit, and used to communicate 
with the corresponding subprogram body, 
accept statement or generic body. A formal 
parameter is an identifier used to denote the 
named entity within the body. An actual 
parameter is the particular entity associated 
with the corresponding formal parameter by 
a subprogram call, entry call, or generic 
instantiation. The mode of a formal 
parameter specifies whether the associated 
actual parameter supplies a value for the for¬ 
mal parameter, or the formal supplies a value 
for the actual parameter, or both. The 
association of actual parameters with formal 
parameters can be specified by named 
associations, by positional associations, or by 
a combination of these. 

Parent type. See derived type. 

Positional association. A positional associa¬ 
tion specifies the association of an item with 
a position in a list, by using the same position 
in the text to specify the item. 

Pragma. A pragma conveys information to 
the compiler. 

Prefix. A prefix is used as the first part of cer¬ 
tain kinds of name. A prefix is either a func¬ 
tion call or a name. 

Private part. See package. 

Private type. A private type is a type whose 
structure and set of values are clearly 
defined, but not directly available to the user 
of the type. A private type is known only by 
its discriminants (if any) and by the set of 
operations defined for it. A private type and 
its applicable operations are defined in the 
visible part of a package, or in a generic for¬ 
mal part. Assignment, equality, and ine¬ 
quality are also defined for private types, 
unless the private type is limited. 

Procedure. See subprogram. 

Program. A program is composed of a 
number of compilation units, one of which is 
a subprogram called the main program. 
Execution of the program consists of execu¬ 
tion of the main program, which may invoke 
subprograms declared in the other compila¬ 
tion units of the program. 

Program unit. A program unit is any one of a 
generic unit, package, subprogram, or task 
unit. 

Qualified expression. A qualified expression 
is an expression preceded by an indication of 
its type or subtype. Such qualification is 
used when, in its absence, the expression 
might be ambiguous (for example as a conse¬ 
quence of overloading). 

Raising an exception. See exception. 

Range. A range is a contiguous set of values 
of a scalar type. A range is specified by giv¬ 
ing the lower and upper bounds for the 
values. A value in the range is said to belong 
to the range. 

Range constraint. A range constraint of a 
type specifies a range, and thereby deter¬ 
mines the subset of the values of the type 
that belong to the range. 

Real type. A real type is a type whose values 
represent approximations to the real 
numbers. There are two kinds of real type: 
fixed point types are specified by absolute 
error bound; floating point types are 
specified by a relative error bound expressed 
as a number of significant decimal digits. 

D-4 



Glossary 

Record type. A value of a record type con¬ 
sists of components which are usually of dif¬ 
ferent types or subtypes. For each compo¬ 
nent of a record value or record object, the 
definition of the record type specifies an 
identifier that uniquely determines the com¬ 
ponent within the record. 

Renaming declaration. A renaming declara¬ 
tion declares another name for an entity. 

Rendezvous. A rendezvous is the interaction 
that occurs between two parallel tasks when 
one task has called an entry of the other task, 
and a corresponding accept statement is 
being executed by the other task on behalf of 
the calling task. 

Representation clause. A representation 
clause directs the compiler in the selection of 
the mapping of a type, an object, or a task 
onto features of the underlying machine that 
executes a program. In some cases, 
representation clauses completely specify the 
mapping; in other cases, they provide criteria 
for choosing a mapping. 

Satisfy. See constraint, subtype. 

Scalar type. An object or value of a scalar 
type does not have components. A scalar 
type is either a discrete type or a real type. 
The values of a scalar type are ordered. 

Scope. See declaration. 

Selected component. A selected component 
is a name consisting of a prefix and of an 
identifier called the selector. Selected com¬ 
ponents are used to denote record compo¬ 
nents, entries, and objects designated by 
access values; they are also used as 
expanded names. 

Selector. See selected component. 

Simple name. See declaration, name. 

Statement. A statement specifies one or 
more actions to be performed during the 
execution of a program. 

Subcomponent. A subcomponent is either a 
component, or a component of another sub¬ 
component. 

Subprogram. A subprogram is either a 
procedure or a function. A procedure 
specifies a sequence of actions and is 
invoked by a procedure call statement. A 
function specifies a sequence of actions and 
also returns a value called the result, and so a 
function call is an expression. A subprogram 
is written as a subprogram declaration, which 
specifies its name, formal parameters, and 
(for a function) its result; and a subprogram 
body which specifies the sequence of 
actions. The subprogram call specifies the 
actual parameters that are to be associated 
with the formal parameters. A subprogram is 
one of the kinds of program unit. 

Subtype. A subtype of a type characterizes a 
subset of the values of the type. The subset is 
determined by a constraint on the type. Each 
value in the set of values of a subtype 
belongs to the subtype and satisfies the con¬ 
straint determining the subtype. 

Subunit. See body. 

Task. A task operates in parallel with other 
parts of the program. It is written as a task 
specification (which specifies the name of the 
task and the names and formal parameters of 
its entries), and a task body which defines its 
execution. A task unit is one of the kinds of 
program unit. A task type is a type that per¬ 
mits the subsequent declaration of any 
number of similar tasks of the type. A value 
of a task type is said to designate a task. 

D-5 



ANS//M/L-STD-1815A Ada Reference Manual 

Type. A type characterizes both a set of 
values, and a set of operations applicable to 
those values. A type definition is a language 
construct that defines a type. A particular 
type is either an access type, an array type, a 
private type, a record type, a scalar type, or a 
task type. 

Use clause. A use clause achieves direct 
visibility of declarations that appear in the 
visible parts of named packages. 

Variable. See object. 

Variant part. A variant part of a record 
specifies alternative record components, 
depending on a discriminant of the record. 
Each value of the discriminant establishes a 
particular alternative of the variant part. 

Visibility. At a given point in a program text, 
the declaration of an entity with a certain 
identifier is said to be visible if the entity is an 
acceptable meaning for an occurrence at that 
point of the identifier. The declaration is visi¬ 
ble by selection at the place of the selector in 
a selected component or at the place of the 
name in a named association. Otherwise, the 
declaration is directly visible, that is, if the 
identifier alone has that meaning. 

Visible part. See package. 

With clause. See compilation unit. 

D-6 



[This syntax summary is not part of the standard definition of the Ada programming language ] 

E. Syntax Summary 

2.1 3 1 

graphic_character ::= basic_graphic_character 
| lower_case_letter | other_special_character 

basic_graphic_character ::= 
upper_case_letter | digit 

| speciaLcharacter | space_character 

basic_character ::= 
basic_graphic_character | format_effector 

basic_declaration :: 
object_declaration 

I type_declaration 
I subprogram_declaration 
I task^declaration 
I exception_declaration 
I renaming_declaration 

number_declaration 
subtype_declaration 
package_declaration 
generic_declaration 
generic_instantiation 
deferred_constant_declaration 

3 2 

2.3 

identifier ::= 
letter I [underline] letter_or_digit| 

objecLdeclaration ::= 
identifier_list : [constant] subtype_indication [:= expression] 

I identifier_list : [constant] constrained_array_definition 
[:= expression] 

letter_or_digit ::= letter | digit 

letter ::= upper_case_letter | lower_case_letter 

2.4 

number_declaration ::= 
identifierjist : constant := t/r?/Ve/-sa/_sf9f/c_expression; 

identifier_list ::= identifier |, identifier] 

numeric_literal ::= decimaLliteral | based_literal 

2.4.1 

decimaLliteral ::= integer [.integer] [exponent] 

integer ::= digit ([underline] digit] 

type_declaration ::= full_type_declaration 
| incomplete_type_declaration | private_type_declaration 

full_type_declaration ::= 
type identifier [discriminant_part] is type_definition; 

exponent ::= E [ + ] integer | E - integer 

2 4.2 

basedJiteral ::= 
base # based_integer ].based_integer] # [exponent] 

base ::= integer 

based_integer ::= 
extended_digit [[underline] extended_digit| 

extended_digit ::= digit | letter 

2.5 

characterjiteral ::= graphic_character' 

2.6 

type_definition ::= 
enumeration_type_definition | integer_type_definition 

I reaLtype_definition | array_type_definition 
I record_type_definition | access_type_definition 
| derived_type_definition 

3.3 2 

subtype_declaration ::= 
subtype identifier is subtypejndication; 

subtype_indication ::= type_mark [constraint] 

type_mark ::= type_name | subtype^name 

constraint 
range_constraint | floating_point_constraint 

| fixed_point_constraint | index_constraint 
I discriminant_constraint 

string_literal ::= "|graphic_character[" 

2.8 

pragma ::= 
pragma identifier ((argument_association 

|, argument_association|)]; 

argument_association ::= 
\argument_\6enX\Wer =>] name 

| [argi/menLidentifier =>] expression 

3.4 

derived_type_definition ::= new subtype_indication 

3.5 

range_constraint ::= range range 

range ::= range_attribute 
I simple_expression .. simple_expression 

E-1 



ANSI/MIL-STD-1815A Ada Reference Manual 

3.5.1 

enumeration_type_definition ::= 

(enumeration—literal—specification 

|, enumeration_literal_specification|) 

enumeration_literal_specification ::= enumeration—literal 

enumerationjiteral ::= identifier | characterjiteral 

3.5.4 

integer_type_definition ::= range_constraint 

3.5.6 

real-type—definition ::= 

floating_point_constraint | fixed_point_constraint 

3 5 7 

floating_point_constraint ::= 

floating-accuracy-definition [range_constraint] 

floating_accuracy_definition ::= 

digits sfaf/c_simple_expression 

3.5 9 

fixed-point—constraint ::= 

fixed_accuracy_definition [range-constraint] 

fixed_accuracy_definition 

delta sfaf/c_simple—expression 

3.6 

array_type_definition ::= 

unconstrained_array_definition | constrained_array_definition 

unconstrained—array-definition ::= 

array(index_subtype_definition |, index_subtype_definition|) of 

components subtype_indication 

constrained_array_definition ::= 

array index—constraint of compone/7f-Subtype_indication 

index_subtype_definition type_mark range <> 

index—constraint ::= (discrete_range |, discrete_range|) 

discrete_range ::= <7/'screfe_subtype_indication | range 

3.7 

record-type-definition ::= 

record 

component_list 

end record 

component_list ::= 

component_declaration |component_declaration | 

i 1 component_declaration| variant—part 

I null: 

component_declaration ::= 

identifier_list : component_subtype_definition [:= expression]; 

component_subtype_definition ::= subtype_indication 

3.7.1 

discriminant_part ::= 
(discriminant_specification |; discriminant-specification]) 

discriminant_specification ::= 
identifier_list : type_mark [:= expression] 

3.7.2 

discriminant_constraint :;= 
(discriminant-association |, discriminant_association|) 

discriminant_association ::= 
\discriminant_ simple_name ]| cZ/scr/m/nan f_sim pi e_n a me I 

expression 

3.7.3 

variant-part ::= 
case (7/scwT7/r)anf_simple_name is 

variant 
I variant] 

end case: 

variant ::= 
when choice || choice] => 

component-list 

choice ::= simple_expression 
| discrete_range | others | componenf_simple_name 

3.8 

access_type_definition ::= access subtype_indication 

3.8.1 

incomplete_type_declaration ::= 
type identifier [discriminant_part]; 

3.9 

declarative_part ::= 
|basic_declarative_item| |later_declarative_item( 

basic_declarative_item basic_declaration 
| representation_clause | use_clause 

later_declarative_item ::= body 
| subprogram-declaration | package-declaration 
| task—declaration | generic-declaration 
| use-clause | generic-instantiation 

body ::= proper_body | body_stub 

proper-body ::= 
subprogram-body | package-body | task-body 

E-2 



Syntax Summary 

4.1 4.5 

name ::= simple_name 
| characterJiteral | operator_symbol 
| indexed_component | slice 
| selected_component | attribute 

simple_name ::= identifier 

prefix name | function_call 

4.1.1 

indexed_component ::= prefixfexpression |, expression)) 

logical-operator ;:= and | or | xor 

relationaLoperator = 1 /= i < 

binary_adding—operator + i - i 

unary_adding_operator + 1 - 

multiplying—operator ::= * 1 / 1 mod 

highesLprecedence_operator * * 

4.6 

4.1.2 

slice ::= prefix(discrete_range) 

4.1.3 

selected_component ::= prefix.selector 

selector ::= simple_name 
| characterJiteral | operator—symbol | all 

type_conversion ::= type_mark(expression) 

4.7 

qualified_expression ::= 
type_mark'(expression) | type_mark'aggregate 

4.8 

allocator ::= 
new subtypeJndication | new qualifiedLexpression 

4.1.4 5.1 

attribute ::= prefix'attribute_designator sequence_of_statements ::= statement {statement) 

attribute_designator ::= 
simple_name [(un/VersaLsfaf/c-expression)] 

statement ::= 
I label) simple_statement | {label) compound_statement 

4.3 

aggregate ::= 
(component_association {, component-association)) 

component-association ::= 
[choice || choice) => ] expression 

4.4 

simple_statement ::= null_statement 
assignment-statement 
exit_statement 
goto_statement 
delay_statement 
raise_statement 

procedure_call_statement 
return_statement 
entry _call_statement 
abort-statement 
code_statement 

compound_statement 
if_statement | case_statement 

I loop_statement | block_statement 
| accept_statement | select-statement 

expression 
relation land relation! | relation (and then relation) 

| relation |or relation) j relation |or alee relation) 
| relation |xor relation) 

relation 
simple_expression [relationaLoperator simple_expression] 

I simple_expression [not] in range 
| simple_expression [not] in type_mark 

simple_expression ::= 
[unary_adding_operator] term |binary_addlng_operator term] 

term ::= factor [multiplying_operator factor] 

factor ::= primary [** primary] | abe primary | not primary 

primary ::= 
numericJiteral | null | aggregate | stringjlteral 

| name | allocator | functlon_call | type_conversion 
| qualified_expression | (expression) 

label ::= <</a6e/_simple_name>> 

nulLstatement ::= null; 

5.2 

assignment_statement ::= 
veriabte_name := expression; 

5.3 

if_statement ::= 
if condition then 

sequence_of_statements 
I elsif condition then 

sequence_of_statements] 
[ else 

sequence_of_statements] 
end if; 

condition ::= 6oo/ear?_expression 

E-3 



ANS//M/L-STD-1815A Ada Reference Manual 

5.4 6.3 

case_statement ::= 
case expression is 

case_statement_alternative 
I case_statement_alternative| 

end case; 

subprogram_body :;= 
subprogram_specification is 

[ declarative_part] 
begin 

sequence_of_statements 
[ exception 

case_statement_alternative ::= 
when choice || choice I => 

sequence_of_statements 

exception_handler 
I exception_handler|] 

end [designator]; 

5.5 6.4 

loop_statement ::= 
[/oop_simple_name:] 

[ iteration_scheme] loop 
sequence_of_statements 

end loop [/oop_simple_name]; 

procedure_call_statement ::= 
procedures*ame [actual_parameter_part]; 

function_call ::= 
functionsame [actual_parameter_part] 

iteration_scheme while condition 
| for loop_parameter_specification 

actual_parameter_part ::= 
(parameter_association |, parameter_association[) 

loop_parameter_specification ::= 
identifier in [reverse] discrete_range 

parameter_association ::= 
[ formal_parameter =>] actuaLparameter 

5.6 formal_parameter ::= para/nefe/-_simple_name 

block_statement ::= 
[b/oc£_simple_name:] 

[ declare 
declarative_part] 

begin 
sequence_of_statements 

[ exception 
exception_handler 

| exception_handler|] 
end [b/ocL_simple_name]; 

actuaLparameter ::= 
expression | variables ame | ty pe_m a rk( variables ame) 

7.1 

package_declaration ::= package_specification; 

package_specification 
package identifier is 

|basic_declarative_item| 

5.7 
[ private 

!basic_declarative_item[] 

exit_statement ::= 
exit [/oop_name] [when condition]; 

end [p3c£ape_simple_name] 

package_body ::= 

5.8 
package body pac7ra<7e_simple_name is 

[ declarative_part] 

return_statement ::= return [expression]; 
[ begin 

sequence_of_statements 

5.9 
[ exception 

exception_handler 

goto_statement goto labels name; 
I exception_handler]]] 

end [pac/rape_simple_name]; 

6.1 
7.4 

subprogram_declaration ::= subprogram_specification; 
private_type_declaration 

type identifier [discriminanLpart] is [limited] private; 

subprogram__specification 
procedure identifier [formal_part] 

| function designator [formaLpart] return tYpe_mark 

deferred_constanLdeclaration ::= 
identifierjist : constant type_mark; 

designator ::= identifier | operator_symbol 8.4 

operator_symbol ::= string_literal use_clause ::= use packagesame |, packagesavne|; 

formaLpart ::= 
(parameter_specification [; parameter_specification|) 

8.5 

renaming_declaration 

parameter_specification ::= 
identifier_list : mode type_mark [:= expression] 

identifier : type_mark renames objectsame: 
| identifier : exception renames exceptionsame; 
[ package identifier renames pacArape_name; 

mode ::= [in] | in out | out | subprogram_specification renames 
subprogramsrsn trysa m e; 

E-4 



Syntax Summary 

9.1 

task_declaration ::= task_specification; 

task-specification ::= 
task [type] identifier [is 

|entry_declaration[ 
|representation_clause[ 

end [fas£_simple_name]] 

task_body ::= 
task body fasAr_simple_name is 

[ declarative_part] 
begin 

sequence_of_statements 
[ exception 

exception_handler 
I exception_handler|] 

end [fas£_simple_name]; 

9.5 

entry..declaration ::= 
entry identifier [(discrete_range)] [formal_part]; 

entry_call_statement ::= 
enf/y_name [actual_parameter_part]; 

accept_statement ::= 
accept enfry_simple_name [(entry_index)] [formal_part] [do 

sequence_of_statements 
end [enfry_simple_name]]; 

entry_index ::= expression 

9.6 

delay_statement ::= delay simple_expression; 

9.7 

select_statement selective_wait 
| conditional_entry_call | timed_entry„call 

9.7.1 

selective_wait ::= 
select 

select_alternative 
I or 

select_alternative[ 
[ else 

sequence_of_statements] 
end select; 

select_alternative ::= 
[ when condition =>] 

selective_wait_alternative 

selective_wait_alternative ::= accept_alternative 
| delay_alternative | terminate_al;ernative 

accept_alternative ::= 
accept_statement [sequence_of_statements] 

delay_alternative ::= 
delay_statement [sequence_of_statements] 

::= terminate; 

9.7.2 

conditional_entry_call :;= 
select 

entry _call_statement 
[ sequence_of_statements] 

else 

sequence_of_statements 
end select; 

9.7.3 

timed_entry_call ;:= 
select 

entry _call_statement 
[ sequence_of_statements] 

or 
delay_alternative 

end select; 

9.10 

abort_statement ::= abort fas/r_name [, fasA:_name[; 

10.1 

compilation :;= |compilation_unit| 

compilation_unit ::= 
context_clause library_unit 

[ context_clause secondary_unit 

library_unit ::= 
subprogram_declaration | package_declaration 

| generic_declaration | generic_instantlation 
| subprogram_body 

secondary_unit ::= library_unit_body | subunit 

library_unit_body ::= subprogram_body | package_body 

10.1.1 

context_clause ::= |with_clause |use_clause|| 

with_clause ::= 
with un/'f_simple_name |, t/rt/f_simple_name|; 

10.2 

body_stub ::= 
subprogram_specification is separate; 

| package body pac/ra<7e_simple_name is separate; 
| task body fas*_simple_name is separate; 

subunit ::= separate (parent_unit~r\ame) proper_body 

11.1 

exception_declaration ::= identifierjist : exception; 

11.2 

exception_handler ::= 
when exception_choica || exceptlon_cholce| => 

sequence_of_statements 

exception_choice excepf/on_name | others 

11.3 

raise_statement ::= raise [oxception_narr\e]; terminate_alternative 

E-5 



ANSI/MIL-STD-1815A Ada Reference Manual 

12.1 

generic_declaration ::= generic_specification; 

generic_specification ::= 
generic_formal_part subprogram_specification 

I generic_formal_part package_specification 

generic_parameter_declaration ::= 
identifier_list : [in [out]] type_mark [:= expression]; 

| type identifier is generic_type_definition; 
| private_type_declaration 
| with subprogram_specification [is name]; 
| with subprogram_specification [is <>]; 

generic_type_definition :;= 
(<>) | range <> | digits <> | delta <> 

I array_type_definition | access_type_definition 

12 3 

generic_instantiation 
package identifier is 

new generic_package_name [generic_actual_part]; 
| procedure identifier is 

new generic^procedure^nama [generic_actual_part]; 
I function designator is 

new generic_Junction_r\ame [generic_actual_part]; 

generic_actual_part :;= 
(generic_association |, generic_association|) 

generic_association ::= 
|generic_formal_parameter =>] generic_actual_parameter 

generic_formal_parameter ::= 
paramefer_simple_name | operator_symbol 

generic_actual_parameter expression | variable^name 
| subprogram^name \ entry_navr\e | type_mark 

13.1 

representation_clause ::= 
type_representation_clause | address_clause 

type_representation_clause length_clause 
I enumeration_representation_clause 
| record_representation_clause 

13.2 

length_clause for attribute use simple_expression; 

13.3 

enumeration_representation_clause ::= 
for fype_simple_name use aggregate; 

13 4 

record_representation_clause ::= 
for rype_simple_name use 

record [alignment_clause[ 
lcomponent_clause[ 

end record; 

alignment_clause ::= at mod sfaf/c_simple_expression; 

component_clause ::= 
component^name at sfaf/'c_simple_expression 

range sfaf/c_range; 

13.5 

address_clause ::= 
for simple_name use at simple_expression; 

13.8 

code_statement ::= type_markVecord_aggregate; 

generic_formal_part ::= generic |generic_parameter_declaration| 

E-6 



Syntax Cross Reference 

In the list given below each syntactic category is followed by the section number where it is 
defined. For example: 

adding_operator 4.5 

In addition, each syntactic category is followed by the names of other categories in whose defini¬ 
tion it appears. For example, adding_operator appears in the definition of simple_expression: 

adding_operator 4.5 
simple_expression 4.4 

An ellipsis (...) is used when the syntactic category is not defined by a syntax rule. For example: 

lower_case_letter 

All uses of parentheses are combined in the term "()". The italicized prefixes used with some terms 
have been deleted here. 

abort 
abort_statement 9.10 

abort-statement 9.10 
simple_statement 5.1 

abs 
factor 4.4 
highest_precedence_operator 4.5 

accept 
accepC^statement 9.5 

accept_alternative 9.7.1 
selective_wait_alternative 9.7.1 

accept_statement 9-5 
accept_alternativ8 9.7.1 
compound_statement 5.1 

access 
access_type_definition 3.8 

access_type_definition 3.8 
generic_type_definition 12.1 
type_definition 3.3.1 

actual_parameter 6.4 
parameter_associatlon 6.4 

actual_parameter_part 6.4 
entry _call_statement 9.5 
function_call 6.4 
procedure_call_statement 6.4 

address_clause 13.5 
representation_clause 13.1 

aggregate 4.3 
code_statement 13.8 
enumeration_representation_clause 13.3 
primary 4.4 
qualified_expression 4.7 

alignment_clause 13.4 
record_representation_clause 13.4 

all 
selector 4.1.3 

allocator 4.8 
primary 4.4 

E-7 



ANSI/MIL-STD-1815A Ada Reference Manual 

and case 
expression 4.4 case_statement 5.4 
logicaLoperator 4.5 variant—part 3.7.3 

argument-association 2.8 case_statement 5.4 
pragma 2.8 compound-statement 5.1 

array case_statement—alternative 5.4 
constrained—array-definition 3.6 case-statement 5.4 
unconstrained_array_definition 3.6 

character—literal 2.5 
array_type_definition 3.6 enumeration-literal 3.5.1 

generic-type_definition 12.1 name 4.1 
type-definition 3.3.1 selector 4.1.3 

assignment-statement 5.2 choice 3.7.3 
simple_statement 5.1 case_statement_alternative 5.4 

component-association 4.3 
St variant 3.7.3 

address_clause 13.5 
alignment—clause 13.4 code-statement 13.8 
component—clause 13.4 simple-statement 5.1 

attribute 4.1.4 compilation 10.1 
length-clause 13.2 
name 4.1 compilation-unit 10.1 
range 3.5 compilation 10.1 

attribute-designator 4.1.4 component-association 4.3 
attribute 4.1.4 aggregate 4.3 

base 2.4.2 component-clause 13.4 
based-literal 2.4.2 record_representation_clause 13.4 

based-integer 2.4.2 component-declaration 3.7 
based-literal 2.4.2 component—list 3.7 

based_!iteral 2.4.2 component—list 3.7 
numeric-literal 2.4 record—type-definition 3.7 

variant 3.7.3 
basic-character 2.1 

component_subtype—definition 3.7 
basic-declaration 3.1 component-declaration 3.7 

basic_declarativeJtem 3.9 

compound-statement 5.1 
basic_declarative—item 3.9 statement 5.1 

declarative-part 3.9 
package—specification 7.1 condition 5.3 

exit-statement 5.7 
basic_graphic-character 2.1 if_statement 5.3 

basic_character 2.1 iteration-scheme 5.5 
graphic-character 2.1 select—alternative 9.7.1 

begin conditional-entry-call 9.7.2 
block—statement 5.6 select—statement 9.7 
package-body 7.1 
subprogram-body 6.3 
task—body 9.1 constant 

deferred-constant-declaration 7.4 
binary-adding—operator 4.5 number-declaration 3.2 

simple_expression 4.4 object-declaration 3.2 

block-statement 5.6 constrained_array_definition 3.6 
compound-statement 5.1 array-type-definition 3.6 

object—declaration 3.2 
body 3.9 

later_declarative-item 3.9 

body 
constraint 3.3.2 

subtype-indication 3.3.2 
body-stub 10.2 
package—body 7.1 context—clause 10.1.1 
task—body 9.1 compilation-unit 10.1 

body_stub 10.2 decimal-literal 2.4.1 
body 3.9 numeric-literal 2.4 

E-8 



Syntax Cross Reference 

declarative—part 3.9 else 
block-statement 5.6 conditional—entry _call 9.7.2 
package-body 7.1 expression 4.4 
subprogram-body 6.3 if-Statement 5.3 
task—body 9.1 selective_wait 9.7.1 

declare 
block—statement 5.6 eisif 

if_statement 5.3 
deferred-constant—declaration 7.4 

basic-declaration 3.1 end 
accept—statement 9.5 

delay block—statement 5.6 
delay_statement 9.6 case-statement 5.4 

conditional_entry_call 9.7.2 
delay—alternative 9.7.1 if_statement 5.3 

selective_wait—alternative 9.7.1 loop_statement 5.5 
timed_entry_call 9.7.3 package-body 7.1 

package—specification 7.1 
delay_statement 9.6 record—representation—clause 13.4 

delay_alternative 9.7.1 record—type_definition 3.7 
simple_statement 5.1 selective-wait 9.7.1 

subprogram-body 6.3 
delta task—body 9.1 

fixed_accuracy_definition 3.5.9 task—specification 9.1 
generic_type—definition 12.1 timed_entry_call 9.7.3 

variant—part 3.7.3 
derived-type_definition 3.4 

type_definition 3.3.1 
entry 

designator 6.1 entry_declaration 9.5 
generic-instantiation 12.3 
subprogram—body 6.3 ®ntry_call—statement 9.5 
subprogram-specification 6.1 conditional_entry_call 9.7.2 

simple_statement 5.1 

digit timed_entry_call 9.7.3 
basic_graphic_character 2.1 
extended-digit 2.4.2 entry-declaration 9.5 
integer 2.4.1 task—specification 9.1 
letter_or_digit 2.3 

entry-index 9.5 
accept—statement 9.5 

digits 
floating—accuracy-definition 3.5.7 enumeration-literal 3.5.1 

generic_type_definition 12.1 enumerationjiteral-speclflcatlon 3.5.1 

discrete—range 3.6 enumeration-literal—specification 3.5.1 

choice 3.7.3 enumeration-type_deflnltlon 3.5.1 

entry-declaration 9.5 
index-constraint 3.6 enumeration-representation—clause 13.3 

loop-parameter-specification 5.5 type_representation^clause 13.1 

slice 4.1.2 
enumeration—type-definition 3.5.1 

discriminant—association 3.7.2 type-definition 3.3.1 

discriminant-constraint 3.7.2 
exception 

discriminant—constraint 3.7.2 block—statement 5.6 

constraint 3.3.2 exception-declaration 11.1 
package-body 7.1 

discriminant—part 3.7.1 renaming-declaration 8.5 

fulLtype-declaration 3.3.1 subprogram—body 6.3 

incomplete_type_declaratlon 3.8.1 task-body 9.1 

private_type-declaratlon 7.4 
exception—choice 11.2 

discriminant-specification 3.7.1 exception—handler 11.2 

discriminant—part 3.7.1 
exception—declaration 11.1 

basic-declaration 3.1 

do exception—handler 11.2 
accept_statement 9.5 block-statement 5.6 

package-body 7.1 
E subprogram-body 6.3 

exponent 2.4.1 task—body 9.1 

E-9 



ANSI/MIL-STD-1815A Ada Reference Manual 

exit 
exit_statement 5.7 

exiLstatement 5.7 
simple_statement 5.1 

exponent 2.4.1 
basedjiteral 2.4.2 
decimaIJiteral 2.4.1 

expression 4.4 
actual_parameter 6.4 
argument_association 2.8 
assignment_statement 5.2 
attribute_designator 4.1.4 
case_statement 5.4 
component_association 4.3 
component_declaration 3.7 
condition 5.3 
discriminant_association 3.7.2 
discriminant_specification 3.7.1 
entry_index 9.5 
generic_actual_parameter 12.3 
generic_parameter_declaration 12.1 
indexed_component 4.1.1 
number_declaration 3.2 
object_declaration 3.2 
parameter_specification 6.1 
primary 4.4 
qualified_expression 4.7 
return_statement 5.8 
type_conversion 4.6 

extended_digit 2.4.2 
based_integer 2.4.2 

factor 4.4 
term 4.4 

fixed_aecuracy_definition 3.5.9 
fixed_point_constraint 3.5.9 

fixed_point_constraint 3.5.9 
constraint 3.3.2 
real_type_definition 3.5.6 

floating_accuracy_definition 3.5.7 
floating_point_constraint 3.5.7 

floating_point_constraint 3.5.7 
constraint 3.3.2 
real_type_definition 3.5.6 

for 

address_clause 13.5 
enumeration_representation_clause 13.3 
iteration_scheme 5.5 
length_clause 13.2 
record_representation_clau3e 13.4 

formal_parameter 6.4 
parameter_association 6.4 

formaI_part 6.1 
accept_3tatement 9.5 
entry_declaration 9.5 
subprogram_specification 6.1 

format_effector 
basic_character 2.1 

full_type_declaration 3.3.1 
type_declaration 3.3.1 

function 
generic_instantiation 12.3 
subprogram_specification 6.1 

function_call g.4 
prefix 41 
primary 44 

generic 
generic_formal_part 12.1 

0©neric_actual_param®t®r 12.3 
generic_association 12.3 

generic_actual_part 12.3 
genericjnstantiation 12.3 

generic^association 12.3 
generic_actual_part 12.3 

generic_declaration 12.1 
basic_declaration 3.1 
later_declarative_item 3.9 
library_unit iq. 1 

generic_fonmal_parameter 12.3 
generic_association 12.3 

generic Jormal_part 12.1 
generic_specification 12.I 

genericjnstantiation 12.3 
basic_declaration 31 
later_declarativeJtem 3.9 
library_unit 1 q. 1 

generic_parameter_declaration 12.1 
generic_formal_part 12.1 

generic_specification 12.1 
generic_declaration 12.1 

generic_type_definition 12 1 
generic_parameter_declaration 12.1 

goto 
goto_statement 5,9 

goto_stateiment 5.9 
simple_statement 5.1 

graphic_character 2.1 
characterjiteral 2.5 
stringjiteral 2.6 

highest_precedence_operator 4.5 

identifier 2 3 
argument_association 2.8 
designator gj 
entry_declaration 9.5 

enumeration Jiteral 3.5.1 
full_type_declaration 3.3.1 
genericjnstantiation 12.3 
generic_parameter_declaration 12.1 
identifierjist 32 
incomplete_type_declaration 3.8.1 
loop_parameter_specification 5.5 
package_specification 7.1 
pragma 2.8 
private_type_declaration 7.4 
renaming_declaration 8.5 
simple_name 4,1 
subprogra m_specification 6.1 
subtype_declaration 3.3.2 
task_specification 9.1 

E-10 



Syntax Cross Reference 

identifierJist 3.2 letter_or_digit 2.3 
component_declaration 3.7 identifier 2.3 
deferred_constant_declaration 7.4 
discriminant_specification 3.7.1 library _unit 10.1 
exception_declaration 11.1 compilation_unit 10.1 
generic_parameter_declaration 12.1 
number_declaration 3.2 library _unit_body 10.1 
object_declaration 3.2 secondary_unit 10.1 
parameter_specification 6.1 

limited 
if private_type_declaration 7.4 

if_statement 5.3 

logical-operator 4.5 
if_statement 5.3 

compound_statement 5.1 loop 
loop_statement 5.5 

in 
generic_parameter_declaration 12.1 loop_pa ra m eter_specification 5.5 
loop_parameter_specification 5.5 iteration_scheme 5.5 
mode 6.1 

relation 4.4 loop_statement 5.5 
compound_statement 5.1 

incomplete_type_declaration 3.8.1 

type_declaration 3.3.1 lower_caseJetter 
graphic_character 2.1 

index_constraint 3.6 letter 2.3 
constrained_array_definition 3.6 

constraint 3.3.2 mod 
alignment_clause 13.4 

index_subtype_definition 3.6 multiplying_operator 4.5 
unconstrained_array_definition 3.6 

mode 6.1 
indexed_component 4.1.1 parameter_specification 6.1 

name 4.1 
multiplying_operator 4.5 

integer 2.4.1 term 4.4 

base 2.4.2 

decimaLliteral 2.4.1 name 4.1 
exponent 2.4.1 abort_statement 9.10 

actual_parameter 6.4 
integer_type_definition 3.5.4 argument_association 2.8 

type_definition 3.3.1 assignment_statement 5.2 
component_clause 13.4 

is entry _call_statement 9.5 
body_stub 10.2 exception_choice 11.2 
case_statement 5.4 exit_statement 5.7 
full_type_declaration 3.3.1 function_call 6.4 
generic_instantiation 12.3 generic_actual_parameter 12.3 
generic_parameter_declaration 12.1 generic_instantiation 12.3 
package_body 7.1 generic_parameter_declaration 12.1 
package_specification 7.1 goto_statement 5.9 
private_type_declaration 7.4 prefix 4.1 
subprogram_body 6.3 primary 4.4 
subtype_declaration 3.3.2 procedure_call_statement 6.4 
task_body 9.1 raise_statement 11.3 
task_specification 9.1 renaming_declaration 8.5 
variant_part 3.7.3 subunit 10.2 

type_mark 3.3.2 
iteration_scheme 5.5 use_clause 8.4 

loop_statement 5.5 
new 

label 5.1 allocator 4.8 
statement 5.1 derived_type_definition 3.4 

generic_instantiation 12.3 
later_declarative_item 3.9 

declarative_part 3.9 not 
factor 4.4 

length_clause 13.2 highest_precedence_operator 4.5 
type_representation_clause 13.1 relation 4.4 

letter 2.3 null 
extended_digit 2.4.2 component_list 3.7 
identifier 2.3 null_statement 5.1 
letter_or_digit 2.3 primary 4.4 

E-1 1 



ANSI/MIL-STD-1815A Ada Reference Manual 

null-statement 5.1 
simple-statement 5.1 

number-declaration 3.2 
basic-declaration 3.1 

numeric—literal 2.4 
primary 4.4 

object-declaration 3.2 
basic-declaration 3.1 

of 
constrained_array_definition 3.6 
unconstrained_array_deflnitlon 3.6 

operator—symbol 6.1 
designator 6.1 
generic-formal—parameter 12.3 
name 4.1 
selector 4.1.3 

or 
expression 4.4 
logical-operator 4.5 
selective_wait 9.7.1 
timed-entry-call 9.7.3 

other_special_character 
graphic-character 2.1 

others 
choice 3.7.3 
exception-choice 11.2 

out 
generic_parameter-declaratlon 12.1 
mode 0.1 

package 
body—stub 10.2 
generic-instantiation 12.3 
package-body 7.1 
package-specification 7.1 
renaming-declaration 8.5 

package-body 7.1 
libra ry-unit_body 10.1 
proper-body 3.9 

package-declaration 7.1 
basic-declaration 3.1 
later-declarativejtem 3.9 
library-unit 10.1 

package-specification 7.1 
generic-specification 12.1 
package-declaration 7.1 

parameter^association 6.4 
actuaLparameter-part 6.4 

parameter-specification 8.1 
formal-part 6.1 

pragma 2.8 

pragma 
pragma 2.8 

prefix 4.1 
attribute 4.1.4 
indexed—component 4.1.1 
selected—component 4.1.3 
slice 4.1.2 

primary 44 
factor 4.4 

private 
package_specification 7.1 
private_type_declaratlon 7.4 

private_type_declaration 7.4 
generic_parameter_declaration 12.1 
type_declaration 3.3.1 

procedure 
generic_instantiation 12.3 
subprogram_specification 6.1 

procedure_call—statement 6.4 
simple_statement 5.1 

proper-body 3.9 
body 3.9 
subunit 10.2 

qualified-expression 4.7 
allocator 4.8 
primary 4.4 

raise 
raise_statement 11.3 

raise_statement 11.3 
simple_statem0nt 5.1 

range 3.5 
component_clause 13.4 
discrete_range 3.6 
range_constraint 3,5 
relation 4.4 

range 
component_clause 13.4 
generic_type_definitlon 12.1 
index_subtype_definltlon 3.6 
range_constraint 3.5 

range_constraint 3.5 
constraint 3.3.2 
fixed_point_constralnt 3.6.9 
floating_point_constraint 3.5.7 
integer_type_definition 3.6.4 

real_type_definition 3.5.6 
type_definition 3.3.1 

record 
record_representatlon_clause 13.4 
record_type_definitlon 3.7 

record_representation_clause 13.4 
type_representatlon_clause 13.1 

record_type_definition 3.7 
type_definition 3.3.1 

relation 4.4 
expression 4.4 

relational-operator 4.5 
relation 4.4 

rem 
multiplying_operator 4.5 

renames 
renaming_declaratlon 8.5 

E-12 



Syntax Cross Reference 

renaming_declaration 8.5 
basic_declaration 3.1 

representation-clause 13.1 
basic_declarative_item 3.9 
task-specification 9.1 

return 
return-statement 5.8 
subprogram-specification 6.1 

return-statement 5.8 
simple-statement 5.1 

reverse 
loop_parameter-specification 5.5 

secondary-unit 10.1 
compilation-unit 10.1 

select 
conditional_entry_call 9.7.2 
selective_wait 9.7.1 
timed-entry-call 9.7.3 

select—alternative 9.7.1 
selective-wait 9.7.1 

select-statement 9.7 
compound-statement 5.1 

selected-component 4.1.3 
name 4.1 

selective_wait 9.7.1 
select-statement 9.7 

selective_wait—alternative 9.7.1 
select-alternative 9.7.1 

selector 4.1.3 
selected-component 4.1.3 

separate 
body_stub 10.2 
subunit 10.2 

sequence_of_statements 5.1 
accept_alternative 9.7.1 
accept_statement 9.5 
block—statement 5.6 
case_statement_altemative 5.4 
conditionaLentry-call 9.7.2 
delay-alternative 9.7.1 
exception-handler 11.2 
if_statement 5.3 
loop_statement 5.5 
package-body 7.1 
selective-wait 9.7.1 
subprogram-body 6.3 
task—body 9.1 
timed_entry-call 9.7.3 

simple_expression 4.4 
address_clause 13.5 
alignment-clause 13.4 
choice 3.7.3 
component-clause 13.4 
delay-statement 9.6 
fixed-accuracy-definition 3.5.9 
floating_accuracy-definition 3.5.7 
length-clause 13.2 
range 3.5 
relation 4.4 

simple—name 4.1 
accept—statement 9.5 
address—clause 13.5 
attribute-designator 4.1.4 
block—statement 5.6 
body-stub 10.2 
choice 3.7.3 
discriminant—association 3.7.2 
enumeration_representation_clause 13.3 
formal-parameter 6.4 
generic-formaLparameter 12.3 
label 5.1 
loop_statement 5.5 
name 4.1 
package-body 7.1 
package—specification 7.1 
record_representation_clause 13.4 
selector 4.1.3 
task-body 9.1 
task—specification 9.1 
variant—part 3.7.3 
with-dause 10.1.1 

simple-statement 5.1 
statement 5.1 

slice 4.1.2 
name 4.1 

space-character 
basic_graphic_character 2.1 

special—character 
basic_graphic_character 2.1 

statement 5.1 
sequence_of—statements 5.1 

string—literal 2.6 
operator-symbol 6.1 
primary 44 

subprogram-body 6.3 
library-unit 10.1 
library-unit_body 10.1 
proper-body 3.9 

subprogram-declaration 6.1 
basic-declaration 3.1 
later_declarative_item 3.9 
library-unit 10.1 

subprogram—specification 6.1 
body_stub 10.2 
generic-parameter-declaration 12.1 
generic-specification 12.1 
renaming-declaration 8.5 
subprogram—body 6.3 
subprogram-declaration 6.1 

subtype 
subtype-declaration 3.3.2 

subtype_declaration 3.3.2 
basic-declaration 3.1 

subtype_indication 3.3.2 
access-type-definition 3.8 
allocator 4.8 
component—subtype_deflnition 3.7 
constrained_array_definitlon 3.6 
derived_type_deflnltion 3.4 
discrete-range 3.6 
object-declaration 3.2 
subtype_declaratlon 3.3.2 
unconstrained_array_deflnltion 3.6 

E-13 



ANSI/MIL-STD-1815A Ada Reference Manual 

subunit 10.2 
secondary_unit 10.1 

task 
body_stub 10.2 
task_body 9.1 
task_specification 9.1 

task-body 9.1 
proper-body 3.9 

task-declaration 9.1 
basic—declaration 3.1 
Iater_declarative_it9m 3.9 

task_specification 9.1 
task_declaration 9.1 

term 4.4 
simple_expression 4.4 

terminate 
terminate_alternative 9.7.1 

terminate_alternative 9.7.1 
selective_wait_alternative 9.7.1 

then 
expression 4.4 
if_statement 5.3 

timed_entry_call 9.7.3 
select_statement 9.7 

type 
full_type_decla ration 3.3.1 
generic_parameter_declaration 12.1 
incomplete_type_declaration 3.8.1 
private_type_declaration 7.4 
task—specification 9.1 

underline 
based_integer 2.4.2 
identifier 2.3 
integer 2.4.1 

uppercase Jetter 
basic_graphic_character 2.1 
letter 2.3 

use 
address_clause 13.5 
enumeration_representation_clause 13.3 
length_clause 13.2 
record_representation_clause 13.4 
use_clause 8.4 

use_clause 8.4 
basic_declarative_item 3.9 
context_clause 10.1.1 
later_declarative_item 3.9 

variant 3.7.3 
variant_part 3.7.3 

variant-part 3.7.3 
component_list 3.7 

when 
case_statement_alternative 5.4 
exception_handler 11.2 
exit_statement 5.7 
select-alternative 9.7.1 
variant 3.7.3 

while 
iteration_scheme 5.5 

with 
generic_parameter_declaration 12.1 
with_clause 10.1.1 

type_conversion 
primary 

4.6 
4.4 

with_clause 
context_clause 

10.1.1 
10.1.1 

type_declaration 3.3.1 
basic_declaration 3.1 

type_definition 3.3.1 
fu ll_type_decla ration 3.3.1 

type_mark 3.3.2 
actuaLparameter 6.4 
code_statement 13.8 
deferred_constant_declaration 7.4 
discriminant-specification 3.7.1 
generic_actual_para meter 12.3 
generic_parameter_declaration 12.1 
index_subtype_definition 3.6 
parameter-specification 6.1 
qualified-expression 4.7 
relation 4.4 
renaming_declaration 8.5 
subprogram_specification 6.1 
subtype_indication 3.3.2 
type_conversion 4.6 

type_representation_clause 13.1 
representation_clause 13.1 

unary _adding_operator 4.5 
simple_expression 4.4 

unconstrained -array-definition 3.6 
array_type_definition 3.6 

xor 
expression 4.4 
logicaLoperator 4.5 

string—literal 2.6 

based-literal 2.4.2 

& 

binary -adding—operator 4.5 

attribute 4.1.4 
characterjiteral 2.5 
code_statement 13.8 
qualified_expression 4.7 

( ) 

accept-statement 9.5 
actual_parameter 6.4 
actual_paramete'_part 6.4 
aggregate 4.3 
attribute_designator 4.1.4 
discriminant-constraint 3.7.2 
discriminant_part 3.7.1 
entry_declaration 9.5 
enumeration_type_definition 3.5.1 
formal_part 6.1 

E-14 



Syntax Cross Reference 

generic_actual_part 12.3 
generic_type_definition 12.1 
index_constraint 3.6 assignment_statement 5.2 
indexed_component 4.1.1 component_declaration 3.7 
pragma 2.8 discriminant_specification 3.7.1 
primary 4.4 generic_parameter_declaration 12.1 
qualified_expression 4.7 number_declaration 3.2 
slice 4.1.2 object_declaration 3.2 
subunit 10.2 parameter_specification 6.1 
type_conversion 4.6 
unconstrained_array_definition 3.6 • y 

abort_statement 9.10 
accept_statement 9.5 

multiplying_operator 4.5 address_clause 13.5 
alignment_clause 13.4 
assignment_statement 5.2 

factor 4.4 block_statement 5.6 
highest_precedence_operator 4.5 body_stub 10.2 

case_statement 5.4 
code_statement 13.8 

binary_adding_operator 4.5 component_clause 13.4 
exponent 2.4.1 component_declaration 3.7 
unary_adding_operator 4.5 component_list 3.7 

conditionaLentry_call 9.7.2 
deferred_constant_declaration 7.4 
delay_statement 9.6 

abort_statement 9.10 discriminant__part 3.7.1 
actual_parameter_part 6.4 entry_call_statement 9.5 
aggregate 4.3 entry _declaration 9.5 
discriminant_constraint 3.7.2 enumeration_representation_clause 13.3 
enumeration_type_definition 3.5.1 exception_declaration 11.1 
generic_actual_part 12.3 exit_statement 5.7 
identifier_list 3.2 formal_part 6.1 
index_constraint 3.6 full_type_declaration 3.3.1 
indexed_component 4.1.1 generic_declaration 12.1 
pragma 2.8 generic_instantiation 12.3 
unconstrained_array_definition 3.6 generic_parameter_declaration 12.1 
use_clause 8.4 goto_statement 5.9 
with_clause 10.1.1 if_statement 5.3 

incomplete_type_declaration 3.8.1 
length_clause 13.2 
loop_statement 5.5 

binary _adding_operator 4.5 nulLstatement 5.1 

exponent 2.4.1 number_declaration 3.2 

unary_adding_operator 4.5 object_declaration 3.2 
package_body 7.1 
package_declaration 7.1 

based_literal 2.4.2 pragma 2.8 

decimaljiteral 2.4.1 private_type_declaration 7.4 

selected_component 4.1.3 procedure_call_statement 6.4 
raise_statement 11.3 
record_representation_clause 13.4 

range 3.5 renaming_declaration 8.5 
return_statement 5.8 
selective_wait 9.7.1 

multiplying_operator 4.5 subprogra m_body 6.3 
subprogram_decla ration 6.1 
subtype_declaration 3.3.2 

relationaLoperator 4.5 task_body 9.1 
task_declaration 9.1 
terminate_alternative 9.7.1 
timed_entry_call 9.7.3 
use_clause 8.4 

block_statement 5.6 variant_part 3.7.3 
componenLdeclaration 3.7 with_clause 10.1.1 
deferred_constant_declaration 7.4 
discriminant_specification 3.7.1 < 
exception_declaration 11.1 relationaLoperator 4.5 
generic_parameter_declaration 12.1 
loop_statement 5.5 << 
number_declaration 3.2 label 5.1 
object_declaration 3.2 
parameter_specification 6.1 < = 
renaming_declaration 8.5 relationaLoperator 4.5 

E-1 5 



ANSI/MIL-STD-1815A Ada Reference Manual 

<> > 
generic—parameter-declaration 12.1 relational—operator 4.5 
generic_typ0_dafinition 12.1 
index_subtyp0_definition 3.6 

>= 
relational-operator 4.5 

relationaLoperator 4.5 

>> 
argument-association 2.8 label 5.1 

case-statement_alternative 5.4 
component-association 4.3 
discriminant-association 3.7.2 1 

exception-handler 11.2 case_statement—alternative 5.4 

generic-association 12.3 component-association 4.3 

parameter-association 6.4 discriminant—association 3.7.2 

select-alternative 9.7.1 exception-handler 11.2 

variant 3.7.3 variant 3.7.3 

E-16 



[This appendix is not part of the standard definition of the Ada programming language.) 

F. Implementation-Dependent Characteristics 

The Ada language definition allows for certain machine-dependences in a controlled manner. No i 
machine-dependent syntax or semantic extensions or restrictions are allowed. The only allowed 
implementation-dependences correspond to implementation-dependent pragmas and attributes, 
certain machine-dependent conventions as mentioned in chapter 13, and certain allowed restric¬ 
tions on representation clauses. 

The reference manual of each Ada implementation must include an appendix (called Appendix F) 2 
that describes all implementation-dependent characteristics. The appendix F for a given implemen¬ 
tation must list in particular: 

(1) The form, allowed places, and effect of every implementation-dependent pragma. 3 

(2) The name and the type of every implementation-dependent attribute. 4 

(3) The specification of the package SYSTEM (see 13.7). 5 

(4) The list of all restrictions on representation clauses (see 13.1) e 

(5) The conventions used for any implementation-generated name denoting implementation- 7 
dependent components (see 13.4). 

(6) The interpretation of expressions that appear in address clauses, including those for interrupts s 
(see 13.5). 

(7) Any restriction on unchecked conversions (see 13.10.2). 9 

(8) Any implementation-dependent characteristics of the input-output packages (see 14). 10 

F-1 



i 

( 

(I 



(This index is not part of the standard definition of the Ada programming language.I 

Index 

An entry exists in this index for each technical term or phrase that is defined in the reference 
manual. The term or phrase is in boldface and is followed by the section number where it is 
defined, also in boldface, tor example: 

Record aggregate 4.3.1 

References to other sections that provide additional information are shown after a semicolon, for 
example: 

Record aggregate 4.3.1; 4.3 

References to other related entries in the index follow in brackets, and a line that is indented below 
a boldface entry gives the section numbers where particular uses of the term or phrase can be 
found; for example: 

Record aggregate 4.3.1; 4.3 
[see also: aggregate] 

as a basic operation 3.3.3; 3.7.4 
in a code statement 13.8 

The index also contains entries for different parts of a phrase, entries that correct alternative ter¬ 
minology, and entries directing the reader to information otherwise hard to find, for example: 

Check 
[see: suppress pragma] 

Abandon elaboration or evaluation (of declarations or 
statements) 

[see: exception, raise statement] 

Abnormal task 9.10; 9.9 
[see also: abort statement] 

as recipient of an entry call 9.7.2, 9.7.3, 11.5; 9.5 
raising tasking_error in a calling task 11.5; 9.5 

Abort statement 9.10 
[see also: abnormal task, statement, task] 

as a simple statement 5.1 

Abs unary operator 4.5.6; 4.5 
[see also: highest precedence operator] 

as an operation of a fixed point type 3.5.10 
as an operation of a floating point type 3.5.8 
as an operation of an integer type 3.5.5 
in a factor 4.4 

Absolute value operation 4.5.6 

Accept alternative (of a selective wait) 9.7.1 
for an interrupt entry 13.5.1 

Accept statement 9.5; 9, D 
(see also: entry call statement, simple name in..., state¬ 
ment, task] 

accepting a conditional entry call 9.7.2 
accepting a timed entry call 9.7.3 
and optimization with exceptions 11.6 
as a compound statement 5.1 
as part of a declarative region 8.1 
entity denoted by an expanded name 4.1.3 

in an abnormal task 9.10 
in a select alternative 9.7.1 
including an exit statement 5.7 
including a goto statement 5.9 
including a return statement 5.8 
raising an exception 11.5 
to communicate values 9.11 

Access to external files 14.2 

Access type 3.8; 3.3, D 
[see also: allocator, appropriate for a type, class of type, 
collection, derived type of an access type, null access 
value, object designated by...] 

as a derived type 3.4 
as a generic formal type 12.1.2, 12.3.5 
deallocation [see: unchecked_deallocation] 
designating a limited type 7.4.4 
designating a task type determining task 
dependence 9.4 
formal parameter 6.2 
name in a controlled pragma 4.8 
object initialization 3.2.1 
operation 3.8.2 
prefix 4.1 
value designating an object 3.2, 4.8 
value designating an object with discriminants 5.2 
with a discriminant constraint 3.7.2 
with an index constraint 3.6.1 

Access type definition 3.8; 3.3.1, 12.1.2 
as a generic type definition 12.1 

Access_check 
[see: constraint_error, suppress] 

1-1 Abandon • Access_check 



ANS l/MIL -STD-1815A Ada Reference Manual 

Accuracy 
of a numeric operation 4.5.7 
of a numeric operation of a universal type 4.10 

Activation 
[see: task activation] 

Actual object 
[see: generic actual object] 

Actual parameter 6.4.1; D; (of an operator) 6.7; (of a sub¬ 
program) 6.4; 6.2, 6.3 

[see also: entry call, formal parameter, function call, 
procedure call statement, subprogram call] 

characteristics and overload resolution 6.6 
in a generic instantiation [see: generic actual 
parameter] 
of an array type 3.6.1 
of a record type 3.7.2 
of a task type 9.2 
that is an array aggregate 4.3.2 
that is a loop parameter 5.5 

Actual parameter part 6.4 
in a conditional entry call 9.7.2 
in an entry call statement 9.5 
in a function call 6.4 
in a procedure call statement 6.4 
in a timed entry call 9.7.3 

Actual part 
[see: actual parameter part, generic actual part] 

Actual subprogram 
[see: generic actual subprogram] 

Actual type 
[see: generic actual type] 

Adding operator 
[see: binary adding operator, unary adding operator] 

Addition operation 4.5.3 
accuracy for a real type 4.5.7 

ADDRESS (predefined attribute) 13.7.2; 3.5.5, 3.5.8, 
3.5.10, 3 6 2, 3.7.4, 3.8.2, 7.4.2, 9.9, 13.7, A 

[see also: address clause, system.address] 

ADDRESS (predefined type) 
|see: system.address] 

Address clause 13.5; 13.1, 13.7 
|see also: storage address, system.address] 

as a representation clause 13.1 
for an entry 1 3.5.1 

AFT (predefined attribute) for a fixed point type 3.5.10; A 

Aft field of text_io output 14.3.8, 14.3.10 

Aggregate 4.3, D 
|see also: array aggregate, overloading of..., record 
aggregate! 

as a basic operation 3.3.3; 3.6.2, 3.7.4 
as a primary 4.4 
in an allocator 4.8 
in a code statement 13.8 
in an enumeration representation clause 13.3 
in a qualified expression 4.7 
must not be the argument of a conversion 4.6 
of a derived type 3.4 

Alignment clause (in a record representation clause) 13.4 

All in a selected component 4.1.3 

Allocation of processing resources 9.8 

Allocator 4.8; 3.8, D 
[see also: access type, collection, exception raised during..., 
initial value, object, overloading of...] 

as a basic operation 3.3.3; 3.8.2 
as a primary 4.4 
creating an object with a discriminant 4.8; 5.2 
for an array type 3.6.1 
for a generic formal access type 12.1.2 
for a private type 7.4.1 
for a record type 3.7.2 
for a task type 9.2; 9.3 
must not be the argument of a conversion 4.6 
raising storage_error due to the size of the collec¬ 
tion being exceeded 11.1 
setting a task value 9.2 
without storage check 11.7 

Allowed 1.6 

Alternative 

[see: accept alternative, case statement alternative, closed 
alternative, delay alternative, open alternative, select alter¬ 
native, selective wait, terminate alternative] 

Ambiguity 

[see: overloading] 

Ampersand 

Isee: catenation] 
character 2.1 
delimiter 2.2 

Ancestor library unit 10.2 

And operator 

[see: logical operator] 

And then control form 

[see: short circuit control form] 

Anonymous type 3.3.1; 3.5.4, 3.5.7, 3.5.9, 3.6, 9.1 

anonymous base type [see: first named subtype] 

ANSI (american national standards institute) 2.1 

Apostrophe character 2.1 

in a character literal 2.5 

Apostrophe delimiter 2.2 

in an attribute 4.1.4 
of a qualified expression 4.7 

Apply 10.1.1 

Appropriate for a type 4.1 

for an array type 4.1.1, 4.1.2 
for a record type 4.1.3 
for a task type 4.1.3 

Arbitrary selection of select alternatives 9.7.1 

Argument association in a pragma 2.8 

Argument identifier in a pragma 2.8 

Arithmetic operator 4.5 
Isee also: binary adding operator, exponentiating operator, 
multiplying operator, predefined operator, unary adding 
operator] 

as an operation of a fixed point type 3.5.10 

Accuracy « Arithmetic operator 1-2 



Index 

as an operation of a floating point type 3.5.8 
as an operation of an integer type 3.5.5 
rounding for real types 13.7.3 

Array aggregate 4.3.2; 4.3 

[see also: aggregate] 
as a basic operation 3.3.3; 3.6.2 
in an enumeration representation clause 13.3 

Array assignment 5.2.1 

Array bounds 

[see: bound of an array] 

Array component 

[see: array type, component, indexed component] 

Array type 3.6; 3.3, D 

[see also: component, composite type, constrained array, 
constrained..., index, matching components, null slice, 
slice, unconstrained...] 

as a full type 7.4.1 
as a generic formal type 12.1.2 
as a generic parameter 12.3.4 
as the type of a formal parameter 6.2 
conversion 4.6 
for a prefix of an indexed component 4.1.1 
for a prefix of a slice 4.1.2 
operation 3.6.2; 4.5.2, 4.5.3 
operation on an array of boolean components 4.5.1, 
4.5.6 
with a component type with discriminants 3.7.2 
with a limited component type 7.4.4 

Array type definition 3.6; 3.3.1, 12.1.2, 12.3.4 

[see also: constrained array definition, elaboration of..., 
unconstrained array definition] 

as a generic type definition 12.1 

Arrow compound delimiter 2.2 

ASCII (american standard code for information interchange) 
2.1 

ASCII (predefined library package) 3.5.2; 2.6, C 
[see also: graphical symbol] 

Assignment compound delimiter 2.2; 5.2 
in an object declaration 3.2.1 

Assignment operation 5.2; D 

[see also: initial value, limited type] 
as a basic operation 3.3, 3.3.3; 3.5.5, 3.5.8, 3.5.10, 
3.6.2, 3.7.4, 3.8.2, 7.4.2, 12.1.2 
for a generic formal type 12.1.2 
not available for a limited type 7.4.4 
of an array aggregate 4.3.2 
of an initial value to an object 3.2.1 
to an array variable 5.2.1; 5.2 
to a loop parameter 5.5 
to an object designated by an access value 3.8 
to a shared variable 9.1 1 

Assignment statement 5.2; D 

[see also: statement] 
as a simple statement 5.1 

Associated declarative region of a declaration or statement 

8.1 

Association 

[see: component association, discriminant association, 
generic association, parameter association] 

Attribute 4.1.4; D 

Isee also: predefined attribute, representation attribute] 
as a basic operation 3.3.3 
as a name 4.1 
as a primary 4.4 
in a length clause 13.2 
in a static expression in a generic unit 12.1 
of an access type 3.5.8 
of an array type 3.6.2 
of a derived type 3.4 
of a discrete type or subtype 3.5.5 
of an entry 9.9 
of a fixed point type 3.5.10 
of a floating point type 3.5.8 
of an object of a task type 9.9 
of a private type 7.4.2; 3.7.4 
of a record type 3.7.4 
of a static subtype in a static expression 4.9 
of a task type 9.9 
of a type 3.3 
of a type as a generic actual function 12.3.6 
of a type with discriminants 3.7.4 
renamed as a function 8.5 
that is a function 3.5.5 

Attribute designator 4.1.4 

[see: vertical bar] 

BASE (predefined attribute) 3.3.3; A 

for an access type 3.8.2 
for an array type 3.6.2 
for a discrete type 3.5.5 
for a fixed point type 3.5.10 
for a floating point type 3.5.8 
for a private type 7.4.2 
for a record type 3.7.4 

Base type (of a subtype) 3.3 

as a static subtype 4.9 
as target type of a conversion 4.6 
due to elaboration of a type definition 3.3.1 
name [see: name of a base type] 
of an array type 3 6; 4.1.2 
of a derived subtype 3.4 
of a discriminant determining the set of choices of a 
variant part 3.7.3 
of a fixed point type 3.5.9 
of a floating point type 3.5.7 
of a formal parameter of a generic formal sub¬ 
program 12.1.3 
of an integer type 3.5.4 
of a parent subtype 3.4 
of a qualified expression 4.7 
of a type mark 3.3.2 
of a type mark in a membership test 4.5.2 
of the discrete range in a loop parameter specifica¬ 
tion 5.5 
of the expression in a case statement 5.4 
of the result of a generic formal function 12.1.3 
of the result subtype of a function 5.8 
of the subtype indication in an access type definition 
3.8 
of the type in the declaration of a generic formal 
object 12.1.1 
of the type mark in a renaming declaration 8.5 

Based literal 2.4.2; 14.3.7 
(see also: colon character, sharp character) 

as a numeric literal 2.4 

1-3 Array aggregate • Based literal 



ANSI/MIL-STD-1815A Ada Reference Manual 

Basic character 2.1 
[see also: basic graphic character, character] 

Basic character set 2.1 
is sufficient for a program text 2.10 

Basic declaration 3.1 
as a basic declarative item 3.9 

Basic declarative item 3.9 
in a package specification 7.1; 7.2 

Basic graphic character 2.1 
[see also: basic character, digit, graphic character, space 
character, special character, upper case letter] 

Basic operation 3.3.3 
(see also: operation, scope of..., visibility...] 

accuracy for a real type 4.5.7 
implicitly declared 3.1, 3.3.3 
of an access type 3.8.2 
of an array type 3.6.2 
of a derived type 3.4 
of a discrete type 3.5.5 
of a fixed point type 3.5.10 
of a floating point type 3.5.8 
of a limited type 7.4.4 
of a private type 7.4.2 
of a record type 3.7.4 
of a task type 9.9 
propagating an exception 11.6 
raising an exception 11.4.1 
that is an attribute 4.1.4 

Belong 
to a range 3.5 
to a subtype 3.3 
to a subtype of an access type 3.8 

Binary adding operator 4.5; 4.5.3, C 
[see also: arithmetic operator, overloading of an operator] 

for time predefined type 9.6 
in a simple expression 4.4 
overloaded 6.7 

Binary operation 4.5 

Bit 
[see: storage bits] 

Blank skipped by a text_io procedure 14.3.5 

Block name 5.6 
declaration 5.1 
implicitly declared 3.1 

Block statement 5.6, D 
[see also: completed block statement, statement] 

as a compound statement 5.1 
as a declarative region 8.1 
entity denoted by an expanded name 4.1.3 
having dependent tasks 9.4 
including an exception handler 11.2; 11 
including an implicit declaration 5.1 
including a suppress pragma 11.7 
raising an exception 11.4.1, 11.4.2 

Body 3.9; D 
[see also: declaration, generic body, generic package body, 
generic subprogram body, library unit, package body, 
proper body, subprogram body, task body] 

as a later declarative item 3.9 

Body stub 10.2; D 

acting as a subprogram declaration 6.3 
as a body 3.9 
as a portion of a declarative region 8.1 
must be in the same declarative region as the 
declaration 3.9, 7.1 

BOOLEAN (predefined type) 3.5.3; C 
derived 3.4; 3.5.3 
result of a condition 5.3 
result of an explicitly declared equality operator 6.7 

Boolean expression 

[see: condition, expression] 

Boolean operator 

[see: logical operator] 

Boolean type 3.5.3 

[see also: derived type of a boolean type, predefined type] 
operation 3.5.5; 4.5.1, 4.5.2, 4.5.6 
operation comparing real operands 4.5.7 

Bound 

[see: error bound, first attribute, last attribute] 

Bound of an array 3.6, 3.6.1 

[see also: index range, slice] 
aggregate 4.3.2 
ignored due to index_check suppression 11.7 
initialization in an allocator constrains the allocated 
object 4.8 
that is a formal parameter 6.2 
that is the result of an operation 4.5.1,4.5.3, 4.5.6 

Bound of a range 3.5; 3.5.4 
of a discrete range in a slice 4.1.2 
of a discrete range is of universaUnteger type 3.6.1 
of a static discrete range 4.9 

Bound of a scalar type 3.5 

Bound of a slice 4.1.2 

Box compound delimiter 2.2 

in a generic parameter declaration 12.1, 12.1.2, 
12.1.3, 12.3.3 
in an index subtype definition 3.6 

Bracket 

[see: label bracket, left parenthesis, parenthesized expres¬ 
sion, right parenthesis, string bracket] 

CALENDAR (predefined library package) 9.6; C 

Call 

[see: conditional entry call, entry call statement, function 
call, procedure call statement, subprogram call, timed 
entry call] 

CALLABLE (predefined attribute) 
for an abnormal task 9.10 
for a task object 9.9; A 

Calling conventions 

[see: subprogram declaration] 
of a subprogram written in another language 13.9 

Cancelation of an entry call statement 9.7.2, 9.7.3 

Basic character ® Cancelation 1-4 



Index 

Carriage return format effector 2.1 

Case of a letter 
[see: letter, lower case letter, upper case letter] 

Case statement 5.4 

(see also: statement] 
as a compound statement 5.1 

Case statement alternative 5.4 

Catenation operation 4.5.3 

for an array type 3.6.2 
in a replacement of a string literal 2.10 

Catenation operator 4.5: 2.6, 3.6.3, 4.5.3, C 
(see also: predefined operator] 

Character 2.1 

[see also: ampersand, apostrophe, basic character, colon, 
divide, dot, equal, exclamation mark character, graphic 
character, greater than, hyphen, less than, minus, other 
special character, parenthesis, percent, period, plus, point 
character, pound sterling, quotation, semicolon, sharp, 
space, special character, star, underline, vertical bar] 

in a lexical element 2, 2.2 
names of characters 2.1 
replacement in program text 2.10 

CHARACTER (predefined type) 3.5.2; C 
as the component type of the type string 3.6.3 

Character literal 2.5; 3.5.2, 4.2 
[see also: scope of..., space character literal, visibility of...] 

as a basic operation 3.3.3 
as an enumeration literal 3.5.1 
as a name 4.1 
as a selector 4.1.3 
declared by an enumeration literal specification 3.1 
in a static expression 4.9 
in homograph declarations 8.3 
must be visible at the place of a string literal 4.2 

Character type 3.5.2: 2.5 

operation 3.5.5 

Check 

[see: suppress pragma] 

Choice 3.7.3 

[see also: exception choice] 
in an aggregate 4.3 
in an array aggregate 4.3.2 
in a case statement alternative 5.4 
in a component association 4.3, 4.3.1, 4.3.2 
in a record aggregate 4.3.1 
in a variant of a record type definition 3.7.3 

Circularity in dependences between compilation units 10.5 

Class of type 3.3; 12.1.2 

[see also: access type, composite type, private type, scalar 
type, task type] 

of a derived type 3.4 

Clause 

[see: address clause, alignment clause, component clause, 
context clause, enumeration representation clause, length 
clause, record representation clause, representation 
clause, use clause, with clause] 

CLOCK (predefined function) 9.8 

(see also: system.tick] 

CLOSE (input-output procedure) 
in an instance of directJo 14.2.1; 14.2.5 
in an instance of sequentialjo 14.2.1, 14.2.3 
in textJo 14.2.1; 14.3.10 

Closed alternative (of a selective wait) 9.7.1; 11.1 
[see also: alternative] 

Closed file 14.1 

Code statement 13.8 

[see also: statement] 
as a simple statement 5.1 

COL (texCJo function) 14.3.4; 14.3.10 
raising an exception 14.4 

Collection (of an access type) 3.8; 4.8, D 
[see also: access type, allocator, length clause, object, 
storage units allocated, storage_size attribute] 

of a derived access type 13.2; 3.4 

Colon character 2.1 

[see also: based literal] 
replacing sharp character 2.10 

Colon delimiter 2.2 

Column 14.3.4 

Comma 

character 2.1 
delimiter 2.2 

Comment 2.7; 2.2 
in a conforming construct 6.3.1 

Communication 

between tasks [see: accept statement, entry, 
rendezvous] 
of values between tasks 9.5, 9.1 1 

Comparison 

[see: relational operator] 

Compatibility (of constraints) 3.3.2 

[see also: constraint] 
failure not causing constraint_error 11.7 
of a discrete range with an index subtype 3.6.1 
of discriminant constraints 3.7.2 
of fixed point constraints 3.5.9 
of floating point constraints 3.5.7 
of index constraints 3.6.1 
of range constraints 3.5 

Compilation 10.1; 10, 10.4 

as a sequence of lexical elements 2 
including an inline pragma 6.3.2 

Compilation order 

[see: order of compilation] 

Compilation unit 10.1; 10, 10.4, D 

[see also: library unit, secondary unit] 
compiled after library units named in its context 
clause 10.3 
followed by an inline pragma 6.3.2 
with a context clause 10.1.1 
with a use clause 8.4 

Compile time evaluation of expressions 10.0; 4.9 

Compiler 10.4 

1-5 Carriage return • Compiler 



ANS//M/L-STD-1815A Ada Reference Manual 

Compiler listing 
[see: list pragma, page pragma] 

Compiler optimization 
[see: optimization, optimize pragma] 

Completed block statement 9.4 

Completed subprogram 9.4 

Completed task 9.4; 9.9 
[see also: tasking_error, terminated task] 

as recipient of an entry call 9.5, 9.7.2, 9.7.3 
becoming abnormal 9.10 
completion during activation 9.3 
due to an exception in the task body 11.4.1, 11.4.2 

Component (of a composite type) 3.3; 3.6, 3.7, D 
[see also: component association, component clause, 
component list, composite type, default expression, 
dependence on a discriminant, discriminant, indexed com¬ 
ponent, object, record type, selected component, subcom¬ 
ponent] 

combined by aggregate 4.3 
depending on a discriminant 3.7.1; 11.1 
name starting with a prefix 4.1 
of an array 3.6 [see also: array type] 
of a constant 3.2.1 
of a derived type 3.4 
of an object 3.2 
of a private type 7.4.2 
of a record 3.7 [see also: record type] 
of a variable 3.2.1 
simple name as a choice 3.7.3 
subtype 3.7 
subtype itself a composite type 3.6.1, 3.7.2 
that is a task object 9.3 
whose type is a limited type 7.4.4 

Component association 4.3 
in an aggregate 4.3 
including an expression that is an array aggregate 
4.3.2 
named component association 4.3 
named component association for selective visibility 
8.3 
positional component association 4.3 

Component clause (in a record representation clause) 13.4 

Component declaration 3.7 
Isee also: declaration, record type definition] 

as part of a basic declaration 3.1 
having an extended scope 8.2 
in a component list 3.7 
of an array object 3.6.1 
of a record object 3.7.2 
visibility 8.3 

Component list 3.7 
in a record type definition 3.7 
in a variant 3.7.3 

Component subtype definition 3.7 
[see also: dependence on a discriminant] 

in a component declaration 3.7 

Component type 
catenation with an array type 4.5.3 
object initialization [see: initial value] 
of an expression in an array aggregate 4.3.2 
of an expression in a record aggregate 4.3.1 
of a generic formal array type 12.3.4 
operation determining a composite type operation 
4.5.1. 4.5.2 

Composite type 3.3: 3.6, 3.7, D 
[see also: array type, class of type, component, discrimi¬ 
nant, record type, subcomponent] 

including a limited subcomponent 7.4.4 
including a task subcomponent 9.2 
object initialization 3.2.1 [see also: initial value] 
of an aggregate 4.3 
with a private type component 7.4.2 

Compound delimiter 2.2 
[see also: arrow, assignment, box, delimiter, double dot, 
double star, exponentiation, greater than or equal, in¬ 
equality, left label bracket, less than or equal, right la¬ 
bel bracket] 

names of delimiters 2.2 

Compound statement 5.1 
[see also: statement] 

including the destination of a goto statement 5.9 

Concatenation 
[see: catenation] 

Condition 5.3 
[see also: expression] 

determining an open alternative of a selective wait 
9.7.1 
in an exit statement 5.7 
in an if statement 5.3 
in a while iteration scheme 5.5 

Conditional compilation 10.6 

Conditional entry call 9.7.2; 9.7 
and renamed entries 8.5 
subject to an address clause 13.5.1 

Conforming 6.3.1 
discriminant parts 6.3.1; 3.8.1, 7.4.1 
formal parts 6.3.1 
formal parts in entry declarations and accept state¬ 
ments 9.5 
subprogram specifications 6.3.1; 6.3 
subprogram specifications in body stub and subunit 
10.2 
type marks 6.3.1; 7.4.3 

Conjunction 
[see: logical operator] 

Constant 3.2.1; D 
[see also: deferred constant, loop parameter, object] 

access object 3.8 
formal parameter 6.2 
generic formal object 12.1.1, 12.3 
in a static expression 4.9 
renamed 8.5 
that is a slice 4.1.2 

Constant declaration 3.2.1 
[see also: deferred constant declaration] 

as a full declaration 7.4.3 
with an array type 3.6.1 
with a record type 3.7.2 

CONSTRAINED (predefined attribute) 
for an object of a type with discriminants 3.7.4; A 
for a private type 7.4.2, A 

Constrained array definition 3.6 
in an object declaration 3.2, 3.2.1 

Constrained array type 3.6 
[see also: array type, constraint] 

Compiler listing • Constrained array type 1-6 



Index 

Constrained subtype 3.3; 3.2.1,3.6, 3.6.1,3.7, 3.7.2, 6.4.1, 
12.3.4 

[see also: constraint, subtype, type, unconstrained sub- 
type] 

due to elaboration of a type definition 3.3.1 
due to the elaboration of a derived type definition 
3.4 
object declarations 3.2.1 
of a subtype indication in an allocator 4.8 

Constraint (on an object of a type) 3.3, 3.3.2; D 
[see also: accuracy constraint, compatibility, constrained 
subtype, dependence on a discriminant, discriminant con¬ 
straint, elaboration of..., fixed point constraint, floating 
point constraint, index constraint, range constraint, satisfy, 
subtype, unconstrained subtype] 

explicitly specified by use of a qualification 4.7 
in a subtype indication in an allocator 4.8 
not considered in overload resolution 8.7 
on a derived subtype 3.4 
on a formal parameter 6.2 
on a formal parameter of a generic formal sub¬ 
program 12.1.3 
on a generic actual parameter 12.3.1 
on a generic formal object 12.1.1 
on a generic formal parameter 12.1; 12.3.1 
on an object designated by an access value 3.8 
on a renamed object 8.5 
on a subcomponent subject to a component clause 
must be static 13.4 
on a subtype of a generic formal type 12.1.2 
on a type mark in a generic parameter declaration 
12.3.1 
on a variable 3.2.1, 3.3, 3.6 
on the result of a generic formal function 12.1.3 

CONSTRAINT_ERROR (predefined exception) 11.1 

[see also: suppress pragma] 
raised by an accept statement 9.5 
raised by an actual parameter not in the subtype of 
the formal parameter 6.4.1 
raised by an allocator 4.8 
raised by an assignment 5.2; 3.5.4 
raised by an attribute 3.5.5 
raised by a component of an array aggregate 4.3.2 
raised by a component of a record aggregate 4.3.1 
raised by an entry call statement 9.5 
raised by a formal parameter not in the subtype of 
the actual parameter 6.4.1 
raised by an index value out of bounds 4.1.1,4.1.2 
raised by a logical operation on arrays of different 
lengths 4.5.1 
raised by a name with a prefix evaluated to a null 
access value 4.1 
raised by a qualification 4.7 
raised by a result of a conversion 4.6 
raised by a return statement 5.8 
raised by incompatible constraints 3.3.2 
raised by integer exponentiation with a negative 
exponent 4.5.6 
raised by matching failure in an array assignment 
5.2.1 
raised by naming of a variant not present in a record 
4.1.3 
raised by the elaboration of a generic instantiation 
12.3.1, 12.3.2, 12.3.4. 12.3.5 
raised by the initialization of an object 3.2.1 
raised by the result of a catenation 4.5.3 

Context clause 10.1.1; D 

[see also: use clause, with clause) 
determining order of elaboration of compilation 
units 10.5 
in a compilation unit 10.1 

including a use clause 8.4 
inserted by the environment 10.4 
of a subunit 10.2 

Context of overload resolution 8.7 

[see also: overloading] 

Control form 

[see: short circuit control form] 

CONTROLLED (predefined pragma) 4.8; B 

Conversion operation 4.6 

[see also: explicit conversion, implicit conversion, numeric 
type, subtype conversion, type conversion, unchecked 
conversion] 

applied to an undefined value 3.2.1 
as a basic operation 3.3.3; 3.3, 3.5.5, 3.5.8, 3.5.10, 
3.6.2, 3.7.4, 3.8.2, 7.4.2 
between array types 4.6 
between numeric types 3.3.3, 3.5.5, 4.6 
from universaLfixed type 4.5.5 
in a static expression 4.9 
of a universal type expression 5.2 
of the bounds of a loop parameter 5.5 
to a derived type 3.4 
to a real type 4.5.7 

Convertible universal operand 4.6 

Copy (parameter passing) 6.2 

COUNT (predefined attribute) for an entry 0.9; A 

COUNT (predefined integer type) 14.2, 14.2.5, 14.3.10; 
14.2.4. 14.3, 14.3.3, 14.3.4, 14.4 

CREATE (input-output procedure) 
in an instance of direct_io 14.2.1; 14.2.5 
in an instance of sequentiaLio 14.2.1; 14.2.3 
in textJo 14.2.1, 14.3.1: 14.3.10 
raising an exception 14.4 

Current column number 14.3; 14.3.1, 14.3.4, 14.3.5, 14.3.6 

Current index of a direct access file 14.2, 14.2.1; 14.2.4 

Current line number 14.3; 14.3.1, 14.3.4, 14.3.5 

Current mode of a file 14.1, 14.2.1; 14.2.2, 14.2.4, 14.3, 
14.3.5, 14.4 

Current page number 14.3; 14.3.1, 14.3.4, 14.3.5 

Current size of a direct access file 14.2 

CURRENT_INPUT (text_io function) 14.3.2; 14.3.10 

CURRENT_OUTPUT (textJo function) 14.3.2; 14.3.10 

DATA_ERROR (input-output exception) 14.4; 14.2.2. 
14.2.3. 14.2.4, 14.2.5, 14.3.5, 14.3.7, 14.3.8, 14.3.9, 
14.3.10, 14.5 

Date 

[see: day, month, time, year] 

DAY (predefined function) 9.6 

Dead code elimination 

[see: conditional compilation] 

1-7 Constrained subtype • Dead code elimination 



ANSI/MIL-STD- 1815A Ada Reference Manual 

Deallocation 
[see: access type, unchecked_deallocation] 

Decimal literal 2.4.1; 14.3.7, 14.3.8 
as a numeric literal 2.4 

Decimal number (in text_io) 14.3.7 

Decimal point 
[see: fixed point, floating point, point character] 

Declaration 3.1; D 
[see also: basic declaration, block name declaration, body, 
component declaration, constant declaration, deferred 
constant declaration, denote, discriminant specification, 
entry declaration, enumeration literal specification, excep¬ 
tion declaration, exception raised during..., generic 
declaration, generic formal part, generic instantiation, 
generic parameter declaration, generic specification, 
hiding, implicit declaration, incomplete type declaration, 
label declaration, local declaration, loop name declaration, 
loop parameter specification, number declaration, object 
declaration, package declaration, package specification, 
parameter specification, private type declaration, renam¬ 
ing declaration, representation clause, scope of..., 
specification, subprogram declaration, subprogram 
specification, subtype declaration, task declaration, task 
specification, type declaration, visibility] 

as an overload resolution context 8.7 
determined by visibility from an identifier 8.3 
made directly visible by a use clause 8.4 
of an enumeration literal 3.5.1 
of a formal parameter 6.1 
of a loop parameter 5.5 
overloaded 6.6 
raising an exception 11.4.2; 11.4 
to which a representation clause applies 13.1 

Declarative item 3.9 
[see also: basic declarative item, later declarative item] 

in a code procedure body 13.8 
in a declarative part 3.9; 6.3.2 
in a package specification 6.3.2 
in a visible part 7.4 
that is a use clause 8.4 

Declarative part 3.9; D 
[see also: elaboration of...] 

in a block statement 5.6 
in a package body 7.1; 7.3 
in a subprogram body 6.3 
in a task body 9.1; 9.3 
including a generic declaration 12.2 
including an inline pragma 6.3.2 
including an interface pragma 13.9 
including a representation clause 13.1 
including a suppress pragma 11.7 
including a task declaration 9.3 
with implicit declarations 5.1 

Declarative region 8.1; 8.2, 8.4 
[see also: scope of...] 

determining the visibility of a declaration 8.3 
formed by the predefined package standard 8.6 
in which a declaration is hidden 8.3 
including a full type definition 7.4.2 
including a subprogram declaration 6.3 

Declared immediately within 
[see: occur immediately within] 

Default determination of a representation for an entity 13.1 

Default expression 
[see: default initial value, default initialization, discriminant 
specification, formal parameter, generic formal object, 
initial value] 

cannot include a forcing occurrence 13.1 
for a component 3.3; 7.4.3, 7.4.4 
for a component of a derived type object 3.4 
for a discriminant 3.7.1; 3.2.1, 3.7.2, 12.3.2 
for a formal parameter 6.1, 6.4.2; 6.4, 6.7, 7.4.3 
for a formal parameter of a generic formal sub¬ 
program 12.1; 7.4.3 
for a formal parameter of a renamed subprogram or 
entry 8.5 
for a generic formal object 12.1, 12.1.1; 12.3 
for the discriminants of an allocated object 4.8 
in a component declaration 3.7 
in a discriminant specification 3.7.1 
including the name of a private type 7.4.1 

Default file 14.3.2; 14.3 

Default generic formal subprogram 12.1; 12.1.3, 12.3.6 

Default initial value (of a type) 3.3 
[see also: default expression, initial value] 

for an access type object 3.8; 3.2.1 [see also: null 
access value] 
for a record type object 3.7; 3.2.1 

Default initialization (for an object) 3.2.1, 3.3 
[see also: default expression, default initial value, initial 
value] 

Default mode (of a file) 14.2.1; 14.2.3, 14.2.5, 14.3.10 

Default_aft (field length) 
of fixed_io or float_io 14.3.8; 14.3.10 

Default_base 
of integerjo 14.3.7; 14.3.10 

Default_exp (field length) 
o.' fixed_io or float_io 14.3.8; 14.3.10 

Default_fore (field length) 
of fixed Jo or floatJo 14.3.8; 14.3.10 

Default_setting (letter case) 
of enumeration Jo 14.3.9; 14.3.10 

Default_width (field length) 
of enumerationjo 14.3.9; 14.3.10 
of integerjo 14.3.7; 14.3.10 

Deferred constant 7.4.3 
of a limited type 7.4.4 

Deferred constant declaration 7.4; 7.4.3 
[see also: private part (of a package), visibie part (of a 
package)] 

as a basic declaration 3.1 
is not a forcing occurrence 13.1 

Definition 
[see: access type definition, array type definition, compo¬ 
nent subtype definition, constrained array definition, 
derived type definition, enumeration type definition, 
generic type definition, index subtype definition, integer 
type definition, real type definition, record type definition, 
type definition, unconstrained array definition] 

Delay alternative (of a selective wait) 9.7.1 

Deallocation • Delay alternative 1-8 



Index 

Delay expression 9.6; 9.7.1 
[see also: duration] 

in a timed entry call 9.7.3 

Delay statement 9.6 

Isee also: statement, task] 
as a simple statement 5.1 
in an abnormal task 9.10 
in a select alternative 9.7.1 
in a timed entry call 9.7.3 

DELETE (input-output procedure) 
in an instance of direct_io 14.2.1; 14.2.5 
in an instance of sequentiaUo 14.2.1, 14.2.3 
in text_io 14.2.1; 14.3.10 

Delimiter 2.2 

[see also: ampersand, apostrophe, arrow, assignment, 
colon, compound delimiter, divide, dot, double dot, equal, 
exclamation mark, exponentiation, greater than or equal, 
greater than, inequality, label bracket, less than or equal, 
less than, minus, parenthesis, period, plus, point, 
semicolon, star, vertical bar] 

Delta (of a fixed point type) 3.5.9 

[see also: fixed point type] 
of universaLfixed 4.5.5 

DELTA (predefined attribute) 3.5.10; 4.1.4, A 

Denote an entity 3.1, 4.1; D 

[see also: declaration, entity, name] 

Dependence between compilation units 10.3; 10.5 
[see also: with clause] 

circularity implying illegality 10.5 

Dependence on a discriminant 3.7.1; 3.7 
[see also: component subtype definition, component, con¬ 
straint, discriminant constraint, discriminant, index con¬ 
straint, subcomponent, subtype definition, variant part] 

affecting renaming 8.5 
by a subcomponent that is an actual parameter 6.2 
effect on compatibility 3.7.2 
effect on matching of components 4.5.2 
for an assignment 5.2 

Dependent task 9.4 
delaying exception propagation 11.4.1 
of an abnormal task 9.10 

Derivable subprogram 3.4 

prohibiting representation clauses 13.1 

Derived subprogram 3.4 

as an operation 3.3.3 
implicitly declared 3.3.3 

Derived type 3.4, D 

[see also: parent type] 
conversion to or from a parent type or related type 
4.6 
of an access type [see: access type, collection] 
of an access type designating a task type determin¬ 
ing task dependence 9.4 
of a boolean type 3.4, 3.5.3 
of a limited type 7.4.4 
of a private type 7.4.1 
subject to a representation clause 13.1, 13.6 

Derived type definition 3.4; 3.3.1 
[see also: elaboration of...] 

Designate 3.8, 9.1; D 
[see also: access type, allocator, object designated by..., 
task designated by.... task object designated by ...] 

Designated subtype (of an access type) 3.8 

Designated type (of an access type) 3.8 

Designator (of a function) 6.1 

[see also: attribute designator, operator, overloading of...] 
in a function declaration 4.5 
in a subprogram body 6.3 
in a subprogram specification 6.1; 6.3 
of a generic formal subprogram 12.3.6; 12.1, 12.1.3 

of a library unit 10.1 
overloaded 6.6 

DEVICE_ERROR (input-output exception) 14.4; 14.2.3, 
14.2.5, 14.3.10, 14.5 

Digit 2.1 

[see also: basic graphic character, extended digit, letter or 
digit] 

in a based literal 2.4.2 
in a decimal literal 2.4.1 
in an identifier 2.3 

Digits (of a floating point type) 3.5.7 

[see also: floating point type] 

DIGITS (predefined attribute) 3.5.8; 4.1.4, A 

Dimensionality of an array 3.6 

Direct access file 14.2; 14.1, 14.2.1 

Direct input-output 14.2.4; 14.2.1 

Direct visibility 8.3; D 

[see also: basic operation, character literal, operation, 
operator symbol, selected component, visibility] 

due to a use clause 8.4 
of a library unit due to a with clause 10.1.1 
within a subunit 10.2 

DIRECT_IO (predefined input-output generic package) 14.2, 

14.2.4; 14, 14.1, 14.2.5, C 
exceptions 14.4; 14.5 
specification 14.2.5 

Discrete range 3.6, 3.6.1 

[see also: range, static discrete range] 
as a choice 3.7.3 
as a choice in an aggregate 4.3 
for a loop parameter 5.5 
in a choice in a case statement 5.4 
in a generic formal array type declaration 12.1.2; 
12.3.4 
in an index constraint 3.6 
in a loop parameter specification 5.5 
in a slice 4.1.2 
of entry indices in an entry declaration 9.5 

Discrete type 3.5; D 

[see also: basic operation of..., enumeration type, index, 
integer type, iteration scheme, operation of..., scalar type] 

as a generic actual parameter 12.3.3 
as a generic formal type 12.1.2 
expression in a case statement 5.4 
of a discriminant 3.7.1 
of a loop parameter 5.5 
of index values of an array 3.6 
operation 3.5.5; 4.5.2 

1-9 Delay expression • Discrete type 



ANSI/MIL-STD-1815A Ada Reference Manual 

Discriminant 3.3, 3.7.1; 3.7, D 
[see also: component clause, component, composite type, 
default expression, dependence on..., record type, selected 
component, subcomponent] 

in a record aggregate 4.3.1 
initialization in an allocator constrains the allocated 
object 4.8 
of a derived type 3.4 
of a formal parameter 6.2 
of a generic actual type 12.3.2 
of a generic formal type 12.3, 12.3.2 
of an implicitly initialized object 3.2.1 
of an object designated by an access value 3.7.2; 
5.2 
of a private type 7.4.2; 3.3 
of a variant part must not be of a generic formal 
type 3.7.3 
simple name in a variant part 3.7.3 
subcomponent of an object 3.2.1 
with a default expression 3.7.1; 3.2.1 

Discriminant association 3.7.2 
in a discriminant constraint 3.7.2 
named discriminant association 3.7.2 
named discriminant association for selective 
visibility 8.3 
positional discriminant association 3.7.2 

Discriminant constraint 3.7.2; 3.3.2, D 
[see also: dependence on a discriminant] 

ignored due to access_check suppression 11.7 
in an allocator 4.8 
on an access type 3.8 
violated 11.1 

Discriminant part 3.7.1; 3.7 
(see also: elaboration of...] 

absent from a record type declaration 3.7 
as a portion of a declarative region 8.1 
conforming to another 3.8.1, 6.3.1, 7.4.1 
in a generic formal type declaration 3.7.1; 12.1 
in an incomplete type declaration 3.8.1 
in a private type declaration 7.4, 7.4.1 
in a type declaration 3.3, 3.3.1 
must not include a pragma 2.8 
of a full type declaration is not elaborated 3.3.1 

Discriminant specification 3.7.1 
Isee also: default expression] 

as part of a basic declaration 3.1 
declaring a component 3.7 
having an extended scope 8.2 
in a discriminant part 3.7.1 
visibility 8.3 

Discriminant_check 
[see: constraint_error, suppress] 

Disjunction 
Isee: logical operator] 

Divide 
character 2.1 
delimiter 2.2 

Division operation 4.5.5 
accuracy for a real type 4.5.7 

Division operator 
[see: multiplying operator] 

Division_check 
Isee: numeric_error, suppress] 

Discriminant • Elaboration of 

Dot 
[see: double dot] 

character 2.1 [see also: double dot, point character] 
delimiter 2.2 
delimiter of a selected component 8.3; 4.1.3 

Double dot compound delimiter 2.2 

Double hyphen starting a comment 2.7 

Double star compound delimiter 2.2 
[see also: exponentiation compound delimiter] 

DURATION (predefined type) 9.6; C 
[see also: delay expression, fixed point type] 

of alternative delay statements 9.7.1 

Effect 
[see: elaboration has no other effect] 

ELABORATE (predefined pragma) 10.5; B 

Elaborated 3.9 

Elaboration 3.9; 3.1, 3.3, 10.1, D 
[see also: exception raised during..., order of elaboration] 

optimized 10.6 

Elaboration has no other effect 3.1 

Elaboration of 
an access type definition 3.8 
an array type definition 3.6 
a body stub 10.2 
a component declaration 3.7 
a component subtype definition 3.7 
a constrained array definition 3.6 
a declaration 3.1 
a declarative item 3.9 
a declarative part 3.9 
a deferred constant declaration 7.4.3 
a derived type definition 3.4 
a discriminant constraint 3.7.2 
a discriminant part 3.7.1 
a discriminant specification 3.7.1 
an entry declaration 9.5 
an enumeration literal specification 3.5.1 
an enumeration type definition 3.5.1 
a fixed point type declaration 3.5.9 
a floating point type declaration 3.5.7 
a formal part 6.1 
a full type declaration 3.3.1 
a generic body 12.2 
a generic declaration 12.1 
a generic instantiation 12.3 
an incomplete type declaration 3.8.1 
an index constraint 3.6.1 
an integer type definition 3.5.4 
a library unit 10.5 
a loop parameter specification 5.5 
an object declaration 3.2.1 
a package body 7.3 
a package declaration 7.2 
a parameter specification 6.1 
a private type declaration 7.4.1 
a range constraint 3.5 
a real type definition 3.5.6 
a record type definition 3.7 
a renaming declaration 8.5 
a representation clause 13.1 

1-10 



Index 

a subprogram body 6.3 
a subprogram declaration 6.1 
a subtype declaration 3.3.2 
a subtype indication 3.3.2 
a task body 9.1 
a task declaration 9.1 
a task specification 9.1 
a type declaration 3.3.1, 3.8.1, 7.4.1 
a type definition 3.3.1 
an unconstrained array definition 3.6 
a use clause 8.4 

Elaboration_check 

[see: program_error exception, suppress] 

Element in a file 14, 14.1; 14.2 
in a direct access file 14.2.4 
in a sequential access file 14.2.2 

ELEMENTLTYPE (generic formal type of direct_io) 14.2.5; 
14.1, 14.2.4 

ELEMENTLTYPE (generic formal type of sequentiaLio) 
14.2.3: 14.1, 14.2.2 

Else part 

of a conditional entry call 9.7.2 
of an if statement 5.3 
of a selective wait 9.7.1; 11.1 

EMAX (predefined attribute) 3.5.8; A 
|see also: machine_emax] 

Emin 

[see: machine_emin] 

Empty string literal 2.6 

End of line 2.2 

as a separator 2.2 
due to a format effector 2.2 
terminating a comment 2.7 

END_ERROR (input-output exception) 14.4; 14.2.2, 14.2.3, 
14.2.4, 14.2.5, 14.3.4. 14.3.5, 14.3.6, 14.3.10, 14.5 

END_OF_FILE (input-output function) 
in an instance of direct_io 14.2.4; 14.2.5 
in an instance of sequentiaLio 14.2.2; 14.2.3 
in text_io 14.3.1, 14.3.10 

END_OF_LINE (text_io function) 14.3.4; 14.3.10 
raising an exception 14.4 

END_OF_PAGE (text_io function) 14.3.4; 14.3.10, 14.4 

Entry (of a task) 9.5; 9, 9.2, D 
|see also: actual parameter, address attribute, attribute of..., 
formal parameter, interrupt entry, overloading of..., 
parameter and result type profile, parameter, subprogram] 

declared by instantiation of a generic formal 
parameter 12.3 
denoted by an indexed component 4.1.1 
denoted by a selected component 4.1.3 
name [see: name of an entry] 
name starting with a prefix 4.1 
of a derived task type 3.4 
of a task designated by an object of a task type 9.5 
renamed 8.5 
subject to an address clause 13.5, 13.5.1 
subject to a representation clause 13.1 

Entry call 9.5, 9, 9.7.1, 9.7.2, 9.7.3 
[see also: actual parameter, conditional entry call, sub¬ 

program call, timed entry call] 
to an abnormal task 9.5, 9.10, 11.5; 9.5 
to communicate values 9.1 1 

Entry call statement 9.5 

|see also: accept statement, actual parameter, statement, 
task declaration, task] 

as a simple statement 5.1 
in an abnormal task 9.10 
in a conditional entry call 9.7.2: 9.5 
in a timed entry call 9.7.3; 9.5 

Entry declaration 9.5 

[see also: elaboration of...] 
as an overloaded declaration 8.3 
as part of a basic declaration 3.1 
cannot include a forcing occurrence 13.1 
having an extended scope 8.2 
in a task specification 9.1 
including the name of a private type 7.4.1 
visibility 8.3 

Entry family 9.5 

denoted by a selected component 4.1.3 
name starting with a prefix 4.1 

Entry index (in the name of an entry of a family) 9.5 

for an open accept alternative 9.7.1 
in a conditional entry call 9.7.2 
in a timed entry call 9.7.3 

Entry queue (of calls awaiting acceptance) 9.5 

count of calls in the queue 9.9 
due to queued interrupts 13.5.1 
of an abnormal task 9.10 

Enumeration literal 3.5.1, 4.2 

[see also: overloading of..., predefined function] 
as an operation 3.3.3 
as an operator 3.5.5 
as result for image attribute 3.5.5 
as the parameter for value attribute 3.5.5 
implicitly declared 3.3.3 
in a static expression 4.9 
in pragma system_name 13.7 
of a derived type 3.4 
overloaded 8.3 
renamed as a function 8.5 
representation 1 3.3 

Enumeration literal specification 3.5.1 

as part of a basic declaration 3.1 
made directly visible by a use clause 8.4 

Enumeration representation clause 13.3 

as a representation clause 13.1 

Enumeration type 3.5.1; 3.3, 3.5, D 

(see also: discrete type, scalar type] 
as a character type 3.5.2 
as a generic formal type 12.1.2 
as a generic parameter 12.3.3 
boolean 3.5.3 
operation 3.5.5 

Enumeration type definition 3.5.1; 3.3.1 

[see also: elaboration of...] 

ENUMERATIOFVLIO (textJo inner generic package) 14.3.9; 

14.3.10 

Environment of a program 10.4 

environment task calling the main program 10.1 

1-1 1 Elaboration-jcheck • Environment 



ANSI/MIL-STD-1815A Ada Reference Manual 

EPSILON (predefined attribute) 3.5.8; A 

Equal 

character 2.1 
delimiter 2.2 

Equality operator 4.5; 4.5.2 
(see also: limited type, relational operator] 

explicitly declared 4.5.2, 6.7; 7.4.4 
for an access type 3.8.2 
for an array type 3.6.2 
for a generic formal type 12.1.2 
for a limited type 4.5.2, 7.4.4 
for a real type 4.5.7 
for a record type 3.7.4 

Erroneous execution 1.6 

[see also: program_error] 
due to an access to a deallocated object 13.10.1 
due to an unchecked conversion violating properties 
of objects of the result type 13.10.2 
due to assignment to a shared variable 9.1 1 
due to changing of a discriminant value 5.2, 6.2 
due to dependence on parameter-passing 
mechanism 6.2 
due to multiple address clauses for overlaid entities 
13.5 
due to suppression of an exception check 1 1.7 
due to use of an undefined value 3.2.1 

Error bounds of a predefined operation of a real type 3.5.9, 

4.5.7; 3.5.6, 3.5.7 

Error detected at 

compilation time 1.6 
run time 1.6 

Error situation 1.6, 11, 11.1; 11.6 

Error that may not be detected 1.6 

Evaluation (of an expression) 4.5: D 
[see also: compile time evaluation, expression] 

at compile time 4.9, 10.6 
of an actual parameter 6.4.1 
of an aggregate 4.3: 3.3.3 
of an allocator 4.8 
of an array aggregate 4.3.2 
of a condition 5.3, 5.5, 5.7, 9.7.1 
of a default expression 3.7.2 
of a default expression for a formal parameter 6.4.2; 
6.1 
of a discrete range 3.5; 9.5 
of a discrete range used in an index constraint 3.6.1 
of an entry index 9.5 
of an expression in an assignment statement 5.2 
of an expression in a constraint 3.3.2 
of an expression in a generic actual parameter 12.3 
of an indexed component 4.1.1 
of an initial value [see: default expression] 
of a literal 4.2; 3.3.3 
of a logical operation 4.5.1 
of a name 4.1; 4.1.1, 4.1.2, 4.1.3, 4.1.4 
of a name in an abort statement 9.10 
of a name in a renaming declaration 8.5 
of a name of a variable 5.2, 6.4.1, 12.3 
of a primary 4.4 
of a qualified expression 4.7; 4.8 
of a range 3.5 
of a record aggregate 4.3.1 
of a short circuit control form 4.5.1 
of a static expression 4.9 
of a type conversion 4.6 
of a universal expression 4.10 

of the bounds of a loop parameter 5.5 
of the conditions of a selective wait 9.7.1 

Evaluation order 

[see: order of evaluation] 

Exception 11; 1.6, D 
[see also: constraint_error, numeric_error, predefined .., 
program_error, raise statement, raising of.., storage_error, 
tasking_error, time_error] 

causing a loop to be exited 5.5 
causing a transfer of control 5.1 
due to an expression evaluated at compile time 
10.6 
implicitly declared in a generic instantiation 11.1 
in input-output 14.4; 14.5 
renamed 8.5 
suppress pragma 11.7 

Exception choice 11.2 

Exception declaration 11.1; 11 

as a basic declaration 3.1 

Exception handler 11.2; D 
in an abnormal task 9.10 
in a block statement 5.6 
in a package body 7.1; 7.3 
in a subprogram body 6.3 
in a task body 9.1 
including a raise statement 11.3 
including the destination of a goto statement 5.9 
including the name of an exception 11.1 
not allowed in a code procedure body 13.8 
raising an exception 11.4.1 
selected to handle an exception 11.4.1; 11.6 

Exception handling 11.4; 11.4.1, 11.4.2, 11.5 

Exception propagation 11 

delayed by a dependent task 1 1.4.1 
from a declaration 11.4.2 
from a predefined operation 11.6 
from a statement 11.4.1 
to a communicating task 11.5 

Exception raised during execution or elaboration of 

an accept statement 11.5 
an allocator of a task 9.3 
a conditional entry 9.7.2 
a declaration 11.4.2; 11.4 
a declarative part that declares tasks 9.3 
a generic instantiation 12.3.1, 12.3.2, 12.3.4, 
12.3.5 
a selective wait 9.7.1 
a statement 11.4.1; 11.4 
a subprogram call 6.3; 6.2, 6.5 
a task 11.5 
a timed entry call 9.7.3 
task activation 9.3 

Exceptions and optimization 11.6 

Exclamation character 2.1 

replacing vertical bar 2.10 

Exclusive disjunction 

[see: logical operator] 

Execution 
[see: sequence of statements, statement, task body, task] 

Exit statement 5.7 

[see also: statement] 

Epsilon • Exit statement 1-12 



Index 

as a simple statement 5.1 
causing a loop to be exited 5.5 
causing a transfer of control 5.1 
completing block statement execution 9.4 

Expanded name 4.1.3; D 

denoting a loop 5.5 
in a static expression 4.9 
of a parent unit 10.2 
replacing a simple name 6.3.1 

Explicit conversion 4.6 

(see also: conversion operation, implicit conversion, sub¬ 
type conversion, type conversion] 

from universaLfixed type 4.5.5 
to a real type 4.5.7 

Explicit declaration 3.1; 4.1 

Isee also: declaration] 

Explicit initialization 

(see: allocator, object declaration, qualified expression] 

Exponent of a floating point number 3.5.7; 13.7.3 

Exponent part 

in output of real values 14.3.8 
of a based literal 2.4.1, 2.4.2 
of a decimal literal 2.4.1 

Exponentiating operator 4.5; 4.5.6 
[see also: highest precedence operator] 

in a factor 4.4 
overloaded 6.7 

Exponentiation compound delimiter 2.2 

[see also: double star compound delimiter] 

Exponentiation operation 4.5.6 

Expression 4.4; D 

[see also: compile time evaluation, default expression, 
delay expression, evaluation, qualified expression, simple 
expression, static expression, universal type expression] 

as an actual parameter 6.4, 6.4.1 
as a condition 5.3 
as a generic actual parameter 12.3; 12.3.1 
as the argument of a pragma 2.8 
in an actual parameter of a conditional entry call 
9.7.2 
in an actual parameter of an entry call statement 
9.5 
in an actual parameter of a timed entry call 9.7.3 
in an allocator 4.8 
in an assignment statement 5.2 
in an attribute designator 4.1.4 
in a case statement 5.4 
in a choice in a case statement 5.4 
in a component association 4.3 
in a component declaration 3.7 
in a constraint 3.3.2 
in a conversion 4.6 
in a discriminant association 3.7.2 
in a discriminant specification 3.7.1 
in a generic formal part 12.1 
in an indexed component 4.1.1 
in a length clause 13.2 
in a name of a variable 5.2, 6.4.1,12.3 
in a number declaration 3.2 
in an object declaration 3.2, 3.2.1 
in a parameter specification 6.1 
in a primary 4.4 
in a qualified expression 4.7 
in a representation clause 13.1 

in a return statement 5.8 
in a specification of a derived subprogram 3.4 
in a type conversion 8.7 
including the name of a private type 7.4.1 
specifying an entry in a family 4.1.1 
specifying the value of an index 4.1.1 
with a boolean result 4.5.1, 4.5.2, 4.5.6 

Extended_digit in a based literal 2.4.2 

External file 14.1 
Isee also: file] 

Factor 4.4 

in a term 4.4 

FALSE boolean enumeration literal 3.5.3; C 

Family of entries 

(see: entry family] 

FIELD (predefined integer subtype) 14.3.5; 14.3.7, 14.3.10 

File (object of a file type) 14.1 

Isee also: external file] 

File management 14.2.1 

in text_io 14.3.1 

File terminator 14.3; 14.3.1, 14.3.4, 14.3.5, 14.3.6, 14.3.7, 
14.3.8. 14.3.9 

FILE_MODE (input-output type) 
in an instance of direct_io 14.1, 14.2.1; 14.2.5 
in an instance of sequentiaLio 14.1, 14.2.1; 14.2.3 
in text_io 14.1, 14.2.1; 14.3.10 

FILE_TYPE (input-output type) 
in an instance of directJo 14.1, 14.2.1; 14.2, 
14.2.4. 14.2.5 
in an instance of sequentiaLio 14.1, 14.2.1; 14.2, 
14.2.2, 142.3 
in texUo 14.1, 14.2.1; 14.2. 14.3.3, 14.3.4, 
14.3.6. 143.7, 14.3.8, 14.3.9. 14.3.10 

FINE_DELTA 

[see: system.fine_delta] 

FIRST (predefined attribute) A 

[see also: bound] 
for an access value 3.8.2 
for an array type 3.6.2 
for a scalar type 3.5 

First named subtype 13.1 

(see also: anonymous base type, representation clause] 

FIRST_BIT (predefined attribute) 13.7.2; A 
[see also: record representation clause] 

Fixed accuracy definition 3.5.9 

Fixed point constraint 3.5.9: 3.5.6 
on a derived subtype 3.4 

Fixed point predefined type 3.5.9 

Fixed point type 3.5.9: D 

[see also: basic operation of..., duration, numeric type, 
operation of..., real type, scalar type, small, 
system.fine_delta, system.max__mantissa] 

1-13 Expanded name • Fixed point type 



ANSI/MIL-STD-1815A Ada Reference Manual 

accuracy of an operation 4.5.7 
as a generic actual type 12.3.3 
as a generic formal type 12.1.2 
error bounds 4.5.7; 3.5.6 
operation 3.5.10; 4.5.3, 4.5.4, 4.5.5 
result of an operation out of range of the type 4.5.7 

FIXED_IO (text_io inner generic package) 14.3.8; 14.3.10 

FLOAT (predefined type) 3.5.7; C 

F10AT_!0 (text_io inner generic package) 14.3.8; 14.3.10 

Floating accuracy definition 3.5.7 

Floating point constraint 3.5.7; 3.5.6 
on a derived subtype 3.4 

Floating point predefined type 
(see: FLOAT, LONG_FLOAT, SH0RT_FL0AT] 

Floating point type 3.5.7; D 

(see also: numeric type, real type, scalar type, 
system.max_digits] 

accuracy of an operation 4.5.7 
as a generic actual type 12.3.3 
as a generic formal type 12.1.2 
error bounds 4.5.7; 3.5.6 
operation 3.5.8; 4.5.3, 4.5.4, 4.5.5, 4.5.6 
result of an operation out of range of the type 4.5.7 

Font design of graphical symbols 2.1 

For loop 

(see: loop statement] 

Forcing occurrence (of a name leading to default determina¬ 
tion of representation) 13.1 

FORE (predefined attribute) for a fixed point type 3.5.10; A 

Fore field of text_io input or output 14.3.8, 14.3.10; 14.3.5 

FORM (input-output function) 
in an instance of directJo 14.2.1; 14.2.5 
in an instance of sequentiaLio 14.2.1, 14.2.3 
in text_io 14.2.1; 14.3.10 
raising an exception 14.4 

Form feed format effector 2.1 

Form string of a file 14.1; 14.2.1. 14.2.3, 14.2.5, 14.3.10 

Formal object 

(see: generic formal object] 

Formal parameter 6.1; D; (of an entry) 9.5; 3.2, 3.2.1; (of a 
function) 6.5; (of an operator) 6.7; (of a subprogram) 6.1, 
6.2, 6 4. 3.2. 3.2.1, 6.3 

Isee also: actual parameter, default expression, entry, 
generic formal parameter, mode, object, subprogram] 

as a constant 3.2.1 
as an object 3.2 
as a variable 3.2.1 
names and overload resolution 6.6 
of a derived subprogram 3.4 
of a generic formal subprogram 12.1, 12.1.3 
of a main program 10.1 
of an operation 3.3.3 
of a renamed entry or subprogram 8.5 
whose type is an array type 3.6.1 
whose type is a limited type 7.4.4 
whose type is a record type 3.7.2 
whose type is a task type 9.2 

Formal part 6.1; 6.4 

[see also: generic formal part, parameter type profile] 
conforming to another 6.3.1 
in an accept statement 9.5 
in an entry declaration 9.5 
in a subprogram specification 6.1 
must not include a pragma 2.8 

Formal subprogram 

(see: generic formal subprogram] 

Formal type 

[see: generic formal type] 

Format effector 2.1 

(see also: carriage return, form feed, horizontal tabulation, 
line feed, vertical tabulation] 

as a separator 2.2 
in an end of line 2.2 

Format of text Jo input or output 14.3.5, 14.3.7, 14.3.8, 

14.3 9 

Formula 

[see: expression] 

Frame 11.2 

and optimization 1 1.6 
in which an exception is raised 11.4.1, 11.4.2 

Full declaration 

of a deferred constant 7.4.3 

Full type declaration 3.3.1 

discriminant part is not elaborated 3.3.1 
of an incomplete type 3 8.1 
of a limited private type 7.4.4 
of a private type 7.4.1; 7.4.2 

Function 6.1, 6.5; 6, 12.3, D 
[see also: operator, parameter and result type profile, 
parameter, predefined function, result subtype, return 
statement, subprogram] 

as a main program 10.1 
renamed 8.5 
result (see: returned value] 
that is an attribute 4.1.4; 12.3.6 

Function body 

[see: subprogram body] 

Function call 6.4; 6 

[see also: actual parameter, subprogram call] 
as a prefix 4.1, 4.1.3 
as a primary 4.4 
in a static expression 4.9 
with a parameter of a derived type 3.4 
with a result of a derived type 3.4 

Function specification 

[see: subprogram specification] 

Garbage collection 4.8 

Generic actual object 12.3.1; 12.1.1 
[see also: generic actual parameter] 

Generic actual parameter 12.3; 12 

[see also: generic actual object, generic actual sub¬ 
program, generic actual type, generic association, generic 
formal parameter, generic instantiation, matching] 

Fixed Jo • Generic actual parameter 1-14 



Index 

cannot be a universaLfixed operation 4.5.5 
for a generic formal access type 12.3.5 
for a generic formal array type 12.3.4 
for a generic formal object 12.1.1 
for a generic formal private type 12.3.2 
for a generic formal scalar type 12.3.3 
for a generic formal subprogram 12.1.3; 12.3.6 
for a generic formal type 12.1.2 
is not static 4.9 
that is an array aggregate 4.3.2 
that is a loop parameter 5.5 
that is a task type 9.2 

Generic actual part 12.3 

Generic actual subprogram 12.1.3, 12.3.6 

[see also: generic actual parameter] 

Generic actual type 

[see: generic actual parameter] 
for a generic formal access type 12.3.5 
for a generic formal array type 12.3.4 
for a generic formal scalar type 12.3.3 
for a generic formal type with discriminants 12.3.2 
for a generic private formal type 12.3.2 
that is a private type 7.4.1 

Generic association 12.3 

[see also: generic actual parameter, generic formal 
parameter) 

named generic association 12.3 
named generic association for selective visibility 8.3 
positional generic association 12.3 

Generic body 12.2; 12.1, 12.1.2, 12.3.2 
[see also: body stub, elaboration of...] 

in a package body 7.1 
including an exception handler 11.2; 11 
including an exit statement 5.7 
including a goto statement 5.9 
including an implicit declaration 5.1 
must be in the same declarative region as the 
declaration 3.9, 7.1 
not yet elaborated at an instantiation 3.9 

Generic declaration 12.1; 12, 12.1.2, 12.2 

[see also: elaboration of...] 
and body as a declarative region 8.1 
and proper body in the same compilation 10.3 
as a basic declaration 3.1 
as a later declarative item 3.9 
as a library unit 10.1 
in a package specification 7.1 
recompiled 10.3 

Generic formal object 12.1, 12.1.1; 3.2, 12.3, 12.3.1 
[see also: default expression, generic formal parameter] 

of an array type 3.6.1 
of a record type 3.7.2 

Generic formal parameter 12.1, 12.3; 12, D 
[see also: generic actual parameter, generic association, 
generic formal object, generic formal subprogram, generic 
formal type, matching, object] 

as a constant 3.2.1 
as a variable 3.2.1 
of a limited type 7.4.4 
of a task type 9.2 

Generic formal part 12.1; 12, D 

Generic formal subprogram 12.1, 12.1.3; 12.1.2, 12.3, 
12.3.6 

[see also: generic formal parameter] 
formal function 12.1.3 
with the same name as another 12.3 

Generic formal type 12.1, 12.1.2; 12.3 

[see also: constraint on..., discriminant of..., generic formal 
parameter, subtype indication...] 

as index or component type of a generic formal 
array type 1 2.3.4 
formal access type 12.1.2, 12.3.5 
formal array type 12.1.2, 12.3.4 
formal array type (constrained) 12.1.2 
formal discrete type 12.1.2 
formal enumeration type 12.1.2 
formal fixed point type 12.1.2 
formal floating point type 12.1.2 
formal integer type 12.1.2 
formal limited private type 12.3.2 
formal limited type 12.1.2 
formal part 12.1.2 
formal private type 12.1.2, 12.3.2 
formal private type with discriminants 12.3.2 
formal scalar type 12.1.2, 12.3.3 

Generic function 

[see: generic subprogram] 

Generic instance 12.3; 12, 12.1, 12.2, D 
[see also: generic instantiation, scope of...] 

inlined in place of each call 6.3.2 
of a generic package 12.3 
of a generic subprogram 12.3 
raising an exception 11.4.1 

Generic instantiation 12.3; 12.1, 12.1.3, 12.2, D 

[see also: declaration, elaboration of..., generic actual 
parameter] 

as a basic declaration 3.1 
as a later declarative item 3.9 
as a library unit 10.1 
before elaboration of the body 3.9, 11.1 
implicitly declaring an exception 11.1 
invoking an operation of a generic actual type 12.1.2 
of a predefined input-output package 14.1 
recompiled 10.3 
with a formal access type 12.3.5 
with a formal array type 12.3.4 
with a formal scalar type 12.3.3 
with a formal subprogram 12.3.6 

Generic package 12.1; 12 

for input-output 1 4 
instantiation 12.3; 12, 12.1 [see also: generic 
instantiation] 
specification 12.1 [see also: generic specification] 

Generic package body 12.2; 12.1 

[see also: package body] 

Generic parameter declaration 12.1; 12.1.1, 12.1.2, 12.1.3, 

12.3 

[see also: generic formal parameter] 
as a declarative region 8.1 
having an extended scope 8.2 
visibility 8.3 

Generic procedure 

[see: generic subprogram] 

Generic specification 12.1; 12.3.2 
[see also: generic package specification, generic sub¬ 
program specification] 

1-15 Generic actual part • Generic specification 



ANSI/MIL-STD-1815A Ada Reference Manual 

Generic subprogram 12.1; 12 

body 12.2; 12.1 [see also: subprogram body] 
instantiation 12.3; 12, 12.1 [see also: generic 
instantiation] 
interface pragma is not defined 13.9 
specification 12.1 [see also: generic specification] 

Generic type definition 12.1; 12.1.2, 12.3.3, 12.3.4 

Generic unit 12, 12.1; 12.2, 12.3, D 

[see also: generic declaration, program unit] 
including an exception declaration 11.1 
including a raise statement 11.3 
subject to a suppress pragma 11.7 
with a separately compiled body 10.2 

Generic unit body 

[see: generic body] 

Generic unit specification 

[see: generic specification] 

GET (text_io procedure) 14.3.5; 14.3, 14.3.2, 14.3.4, 
14.3.10 

for character and string types 14.3.6 
for enumeration types 14.3.9 
for integer types 14.3.7 
for real types 14.3.8 
raising an exception 14.4 

GET_LINE (text_io procedure) 14.3.6; 14.3.10 

Global declaration 8.1 

of a variable shared by tasks 9.11 

Goto statement 5.9 

[see also: statement] 
as a simple statement 5.1 
causing a loop to be exited 5.5 
causing a transfer of control 5.1 
completing block statement execution 9.4 

Graphic character 2.1 

[see also: basic graphic character, character, lower case 
letter, other special character] 

in a character literal 2.5 
in a string literal 2.6 

Graphical symbol 2.1 

[see also: ascii] 
not available 2.10 

Greater than 

character 2.1 
delimiter 2.2 
operator [see: relational operator] 

Greater than or equal 

compound delimiter 2.2 
operator [see: relational operator] 

Handler 

[see: exception handler, exception handling] 

Hiding (of a declaration) 8.3 

[see also: visibility] 
and renaming 8.5 
and use clauses 8.4 
due to an implicit declaration 5.1 
of a generic unit 12.1 
of a library unit 10.1 

of a subprogram 6.6 
of or by a derived subprogram 3.4 
of the package standard 10.1 
within a subunit 10.2 

Highest precedence operator 4.5 

[see also: abs, arithmetic operator, exponentiating 

operator, not unary operator, overloading of an operator, 

predefined operator] 
as an operation of a discrete type 3.5.5 
as an operation of a fixed point type 3.5.10 
as an operation of a floating point type 3.5.8 
overloaded 6.7 

Homograph (declaration) 8.3 

[see also: overloading] 
and use clauses 8.4 

Horizontal tabulation 

as a separator 2.2 
character in a comment 2.7 
format effector 2.1 
in text_io input 14.3.5 

Hyphen character 2.1 

[see also: minus character] 
starting a comment 2.7 

Identifier 2.3; 2.2 
[see also: direct visibility, loop parameter, name, 
overloading of..., scope of..., simple name, visibility] 

and an adjacent separator 2.2 
as an attribute designator 4.1.4 
as a designator 6.1 
as a reserved word 2.9 
as a simple name 4.1 
can be written in the basic character set 2.10 
denoting an object 3.2.1 
denoting a value 3.2.2 
in a deferred constant declaration 7.4.3 
in an entry declaration 9.5 
in an exception declaration 11.1 
in a generic instantiation 12.3 
in an incomplete type declaration 3.8.1 
in a number declaration 3.2.2 
in an object declaration 3.2 
in a package specification 7.1 
in a private type declaration 7.4; 7.4.1 
in a renaming declaration 8.5 
in a subprogram specification 6.1 
in a task specification 9.1 
in a type declaration 3.3.1; 7.4.1 
in its own declaration 8.3 
in pragma systerruname 13.7 
of an argument of a pragma 2.8 
of an enumeration value 3.5.1 
of a formal parameter of a generic formal sub¬ 
program 12.1.3 
of a generic formal object 12.1, 12.1.1 
of a generic formal subprogram 12.1; 12.1.3 
of a generic formal type 12.1; 12.1.2 
of a generic unit 12.1 
of a library unit 10.1 
of a pragma 2.8 
of a subprogram 6.1 
of a subtype 3.3.2 
of a subunit 10.2 
of homograph declarations 8.3 
overloaded 6.6 
versus simple name 3.1 

Generic subprogram • Identifier 1-16 



Index 

Identifier list 3.2 

in a component declaration 3.7 
in a deferred constant declaration 7.4 
in a discriminant specification 3.7.1 
in a generic parameter declaration for generic for¬ 
mal objects 12.1 
in a number declaration 3.2 
in an object declaration 3.2 
in a parameter specification 6.1 

Identity operation 4.5.4 

If statement 5.3 

[see also: statement] 
as a compound statement 5.1 

Illegal 1.6 

IMAGE (predefined attribute) 3.5.5; A 

Immediate scope 8.2; 8.3 

Immediately within (a declarative region) 
[see: occur immediately within] 

Implementation defined 

[see: system dependent] 

Implementation defined pragma F 

Implementation dependent 

[see: system dependent] 

Implicit conversion 4.6 

[see also: conversion operation, explicit conversion, sub- 
type conversion] 

of an integer literal to an integer type 3.5.4 
of a real literal to a real type 3.5.6 
of a universal expression 3.5.4, 3.5.6 
of a universal real expression 4.5.7 

Implicit declaration 3.1; 4.1 

[see also: scope of...] 
by a type declaration 4.5 
hidden by an explicit declaration 8.3 
of a basic operation 3.1, 3.3.3 
of a block name, loop name, or label 5.1; 3.1 
of a derived subprogram 3.3.3, 3.4 
of an enumeration literal 3.3.3 
of an equality operator 6.7 
of an exception due to an instantiation 11.1 
of a library unit 8.6, 10.1 
of a predefined operator 4.5 
of universaLfixed operators 4.5.5 

Implicit initialization of an object 
[see: allocator, default initial value] 

Implicit representation clause 

for a derived type 3.4 

In membership test 

[see: membership test] 

In mode 

(see: mode in] 

In out mode 

[see: mode in out] 

IN_FILE (input-output file mode enumeration literal) 14.1 

Inclusive disjunction 

[see: logical operator] 

Incompatibility (of constraints) 
[see: compatibility) 

Incomplete type 3.8.1 

corresponding full type declaration 3.3.1 

Incomplete type declaration 3.8.1; 3.3.1, 7.4.1 
as a portion of a declarative region 8.1 

Incorrect order dependence 1.6 

[see also: program error] 
assignment statement 5.2 
bounds of a range constraint 3.5 
component association of an array aggregate 4.3.2 
component association of a record aggregate 4.3.1 
component subtype indication 3.6 
default expression for a component 3.2.1 
default expression for a discriminant 3.2.1 
expression 4.5 
index constraint 3.6 
library unit 10.5 
parameter association 6.4 
prefix and discrete range of a slice 4.1.2 

Index 3.6; D 

[see also: array, discrete type, entry index] 

INDEX (input-output function) 
in an instance of direct_io 14.2.4; 14.2.5 

Index constraint 3.6, 3.6.1; D 

[see also: dependence on a discriminant] 
ignored due to index_check suppression 11.7 
in an allocator 4.8 
in a constrained array definition 3.6 
in a subtype indication 3.3.2 
on an access type 3.8 
violated 11.1 

Index of an element in a direct access file 14.2; 14.2.4 

Index range 3.6 

matching 4.5.2 

Index subtype 3.6 

Index subtype definition 3.6 

Index type 

of a choice in an array aggregate 4.3.2 
of a generic formal array type 12.3.4 

lndex_check 

[see: constraint_error, suppress] 

Indexed component 4.1.1; 3.6, D 

as a basic operation 3.3.3; 3.3, 3.6.2, 3.8.2 
as a name 4.1 
as the name of an entry 9.5 
of a value of a generic formal array type 12.1.2 

Indication 

[see: subtype indication] 

Inequality compound delimiter 2.2 

Inequality operator 4.5; 4.5.2 

[see also: limited type, relational operator] 
cannot be explicitly declared 6.7 
for an access type 3.8.2 
for an array type 3.6.2 
for a generic formal type 12.1.2 
for a real type 4.5.7 
for a record type 3.7.4 
not available for a limited type 7.4.4 

1-17 Identifier list • Inequality operator 



ANSI/MIL-STD-1815A Ada Reference Manual 

Initial value (of an object) 3.2.1 
[see also: allocator, composite type, default expression, 
default initial value, default initialization] 

in an allocator 4.8; 3.8, 7.4.4 
of an array object 3.6.1 
of a constant 3.2.1 
of a constant in a static expression 4.9 
of a discriminant of a formal parameter 6.2 
of a discriminant of an object 3.7.2 
of a limited private type object 7.4.4 
of an object declared in a package 7.1 
of an out mode formal parameter 6.2 
of a record object 3.7.2 

Initialization 
[see: assignment, default expression, default initialization, 
initial value] 

INLINE (predefined pragma) 6.3.2; B 
creating recompilation dependence 10.3 

INQUT_FILE (input-output file_mode enumeration literal) 
14.1 

Input-output 14 
(see also: direct_io, io_exceptions, lowJeveLio, sequen- 
tiaLio, text_io] 

at device level 14.6 
exceptions 14.4; 14.5 
with a direct access file 14.2.4 
with a sequential file 14.2.2 
with a text file 14.3 

Instance 
[see: generic instance] 

Instantiation 
[see: generic instantiation] 

INTEGER (predefined type) 3.5.4; C 
as base type of a loop parameter 5.5 
as default type for the bounds of a discrete range 
3.6.1; 9.5 

Integer literal 2.4 
[see also: based integer literal, universaUnteger type] 

as a bound of a discrete range 9.5 
as a universaUnteger literal 3.5.4 
in based notation 2.4.2 
in decimal notation 2.4.1 

Integer part 
as a base of a based literal 2.4.2 
of a decimal literal 2.4.1 

Integer predefined type 3.5.4 
[see also INTEGER. LONGJNTEGER, SHORTJNTEGER] 

Integer subtype 
[see: priority] 

due to an integer type definition 3.5.4 

Integer type 3.5.4; 3.3, 3.5, D 
[see also: discrete type, numeric type, predefined type, 
scalar type, system. max_int, system.min_int, univer¬ 
saUnteger type] 

as a generic formal type 12.1.2 
as a generic parameter 12.3.3 
operation 3.5.5; 4.5.3, 4.5.4, 4.5.5, 4.5.6 
result of a conversion from a numeric type 4.6 
result of an operation out of range of the type 4.5 

Integer type declaration 
[see: integer type definition] 

Integer type definition 3.5.4; 3.3.1 

[see also: elaboration of...] 

Integer type expression 

in a length clause 13.2 
in a record representation clause 13.4 

INTEGERUO (texUio inner generic package) 14.3.6; 14.3.10 

INTERFACE (predefined pragma) 13.9; B 

Interface to other languages 13.9 

Interrupt 13.5 

Interrupt entry 13.5.1 

[see also: address attribute] 

Interrupt queue 

[see: entry queue] 

IO_EXCEPTIONS (predefined input-output package) 14.4; 
14, 14.1, 14.2.3, 14.2.5, 14.3.10, C 

specification 14.5 

IS_OPEN (input-output function) 
in an instance of direcuio 14.2.1; 14.2.5 
in an instance of sequentiaLio 14.2.1, 14.2.3 
in text_io 14.2.1; 14.3.10 

ISO (international organization for standardization) 2.1 

ISO seven bit coded character set 2.1 

Item 

[see: basic declarative item, later declarative item] 

Iteration scheme 5.5 

[see also: discrete type] 

Label 5.1 

[see also: address attribute, name, statement] 
declaration 5.1 
implicitly declared 3.1 
target of a goto statement 5.9 

Label bracket 

compound delimiter 2.2 

Labeled statement 5.1 

in a code statement 13.8 

LARGE (predefined attribute) 3.5.8, 3.5.10; A 

LAST (predefined attribute) A 
[see also: bound] 

for an access value 3.8.2 
for an array type 3.6.2 
for a scalar type 3.5 

LAST_BIT (predefined attribute) 13.7.2; A 
[see also: record representation clause] 

Later declarative item 3.9 

Layout recommended 

[see: paragraphing recommended] 

LAYOUT_ERROR (input-output exception) 14.4; 14.3.4, 

14.3.5, 14.3.7, 14.3.8, 14.3.9, 14.3.10, 14.5 

Initial value • Layout^error 1-18 



Index 

Leading zeros in a numeric literal 2.4.1 

Left label bracket compound delimiter 2.2 

Left parenthesis 
character 2.1 
delimiter 2.2 

Legal 1.6 

LENGTH (predefined attribute) 3.6.2; A 
for an access value 3.8.2 

Length clause 13.2 
as a representation clause 13.1 
for an access type 4.8 
specifying small of a fixed point type 13.2; 3.5.9 

Length of a string literal 2.6 

Length of the result 
of an array comparison 4.5.1 
of an array logical negation 4.5.6 
of a catenation 4.5.3 

Length_check 
(see: constraint_error, suppress] 

Less than 
character 2.1 
delimiter 2.2 
operator [see: relational operator] 

Less than or equal 
compound delimiter 2.2 
operator [see: relational operator] 

Letter 2.3 
[see also: lower case letter, upper case letter] 

e or E in a decimal literal 2.4.1 
in a based literal 2.4.2 
in an identifier 2.3 

Letter_or_digit 2.3 

Lexical element 2, 2.2; 2.4, 2.5, 2.6, D 
as a point in the program text 8.3 
in a conforming construct 6.3.1 
transferred by a text_io procedure 14.3, 14.3.5, 
14.3.9 

Lexicographic order 4.5.2 

Library package 
[see: library unit, package] 

having dependent tasks 9.4 

Library package body 
[see: library unit, package body] 

raising an exception 11.4.1, 11.4.2 

Library unit 10.1; 10.5 
[see also: compilation unit, predefined package, predefined 
subprogram, program unit, secondary unit, standard 
predefined package, subunit] 

compiled before the corresponding body 10.3 
followed by an inline pragma 6.3.2 
included in the predefined package standard 8.6 
must not be subject to an address clause 13.5 
named in a use clause 10.5 
named in a with clause 10.1.1; 10.3, 10.5 
recompiled 10.3 
scope 8.2 
subject to an interface pragma 13.9 

that is a package 7.1 
visibility due to a with clause 8.3 
whose name is needed in a compilation unit 10.1.1 
with a body stub 10.2 

Limited private type 7.4.4 
[see also: private type] 

as a generic actual type 12.3.2 
as a generic formal type 12.1.2 

Limited type 7.4.4; 9.2, 12.3.1, D 
[see also: assignment, equality operator, inequality 
operator, predefined operator, task type] 

as a full type 7.4.1 
component of a record 3.7 
generic formal object 12.1.1 
in an object declaration 3.2.1 
limited record type 3.7.4 
operation 7 4.4; 4.5.2 
parameters for explicitly declared equality operators 
6.7 

Line 14.3. 14.3.4 

LINE (text_io function) 14.3.4; 14.3.10 
raising an exception 14.4 

Line feed format effector 2.1 

Line length 14.3, 14.3.3; 14.3.1, 14.3.4, 14.3.5, 14.3.6 

Line terminator 14.3; 1 4.3.4, 1 4.3.5, 1 4.3.6, 1 4.3.7, 1 4.3.8, 
14.3.9 

LINE_LENGTH (textjo function) 14.3.3, 14.3.4; 14.3.3, 
14.3.10 

raising an exception 14.4 

List 
[see: component list, identifier_Iist] 

LIST (predefined pragma) B 

Listing of program text 
[see: list pragma, page pragma] 

Literal 4.2; D 
[see also: based literal, character literal, decimal literal, 
enumeration literal, integer literal, null literal, numeric 
literal, overloading of..., real literal, string literal] 

as a basic operation 3.3.3 
of a derived type 3.4 
of universaUnteger type 3.5.4 
of universaLreal type 3.5.6 
specification [see: enumeration literal specification] 

Local declaration 8.1 
in a generic unit 12.3 

Logical negation operation 4.5.6 

Logical operation 4.5.1 

Logical operator 4.5; 4.4, 4.5.1, C 
[see also: overloading of an operator, predefined operator] 

as an operation of boolean type 3.5.5 
for an array type 3.6.2 
in an expression 4.4 
overloaded 6.7 

Logical processor 9 

LONG_FLOAT (predefined type) 3.5.7: C 

LONG_INTEGER (predefined type) 3.5.4; C 

1-19 
Leading zeros • Longjnteger 



ANSI/MIL-STD-1815A Ada Reference Manual 

Loop name 5.5 

declaration 5.1 

implicitly declared 3.1 

in an exit statement 5.7 

Loop parameter 5.5 

Isee also: constant, object] 

as an object 3.2 

Loop parameter specification 5.5 

Isee also: elaboration of...] 

as an overload resolution context 8.7 

is a declaration 3.1 

Loop statement 5.5 

(see also: statement] 

as a compound statement 5.1 

as a declarative region 8.1 

denoted by an expanded name 4.1.3 

including an exit statement 5.7 

LOW_LEVELIO (predefined input-output package) 14.6; 

14, C 

Lower bound 

Isee: bound, first attribute] 

Lower case letter 2.1 

Isee also: graphic character] 

a to f in a based literal 2.4.2 

e in a decimal literal 2.4.1 

in an identifier 2.3 

Machine code insertion 13.8 

Machine dependent attribute 13.7.3 

Machine representation 

Isee: representation] 

MACHINE_CODE (predefined package) 13.8; C 

MACH1NE_EMAX (predefined attribute) 13.7.3: 3.5.8, A 

MACHINE_EMIN (predefined attribute) 13.7.3; 3.5.8, A 

MACH!NE_MANTISSA (predefined attribute) 13.7.3: 3.5.8, 

A 

MACHINE_OVERFLOWS (predefined attribute) 13.7.3; 

3 5 8, 3.5.10, A 

MACHINE_RADIX (predefined attribute) 13.7.3; 3.5.8, A 

MACHINE_ROUNDS (predefined attribute) 13.7.3; 3.5.8, 

3.5.10, A 

Main program 10.1 

execution requiring elaboration of library units 10.5 

included in the predefined package standard 8.6 

including a priority pragma 9.8 

raising an exception 11.4.1, 11.4.2 

termination 9.4 

MANTISSA (predefined attribute) 3.5.8, 3.5.10; A 

Mantissa 

of a fixed point number 3.5.9 

of a floating point number 3.5.7; 13.7.3 

Mark 

Isee: type_mark| 

Master (task) 9.4 

Matching components 

of arrays 4.5.2; 4.5.1, 5.2.1 

of records 4.5.2 

Matching generic formal 

and actual parameters 12.3 

access type 12.3.5 

array type 12.3.4 

default subprogram 12.3.6; 12.1.3 

object 12.3.1; 12.1.1 

private type 1 2.3.2 

scalar type 12.3.3 

subprogram 12.3.6; 12.1.3 

type 12.3.2, 12.3.3, 12.3.4, 12.3.5; 12.1.2 

Mathematically correct result of a numeric operation 4.5; 

4.5.7 

MAX_DIGITS 

Isee: system.max_digits] 

MAX_INT 

[see: system.max_int] 

MAX_MANTISSA 

[see: system.max_mantissa] 

Maximum line length 14.3 

Maximum page length 14.3 

Membership test 4.4, 4.5.2 

cannot be overloaded 6.7 

Membership test operation 4.5 

[see also: overloading of...] 

as a basic operation 3.3.3: 3.3, 3.5.5, 3.5.8, 3.5.10, 

3.6.2, 3.7.4. 3.8.2, 7.4.2 

for a real type 4.5.7 

MEMORY_SIZE (predefined named number) 

(see: system.memory_size] 

MEMORY_SIZE (predefined pragma) 13.7; B 

MIN_INT 

Isee: system.min_int] 

Minimization of storage 

[see: pack predefined pragma] 

Minus 

character [see: hyphen character] 

character in an exponent of a numeric literal 2.4.1 

delimiter 2.2 

operator [see: binary adding operator, unary adding 

operator] 

unary operation 4.5.4 

Mod operator 4.5.5 

[see also: multiplying operator] 

MODE (input-output function) 

in an instance of direct_io 14.2.1; 14.2.5 

in an instance of sequentiaUo 14.2.1; 14.2.3 

in texuo 14.2.1; 14.3.3, 14.3.4, 14.3.10 

Mode (of a file) 14.1; 14.2.1 

of a direct access file 14.2; 14.2.5 

of a sequential access file 14.2; 14.2.3 

of a text_io file 14.3.1; 14.3.4 

Loop name • Mode 1-20 



Index 

Mode (of a formal parameter) 6.2; 6.1, D 
[see also: formal parameter, generic formal parameter] 

of a formal parameter of a derived subprogram 3.4 
of a formal parameter of a renamed entry or sub¬ 
program 8.5 
of a generic formal object 12.1.1 

Mode in for a formal parameter 6.1, 6.2; 3.2.1 
of a function 6.5 
of an interrupt entry 13.5.1 

Mode in for a generic formal object 12.1.1; 3.2.1, 12.3, 
12.3.1 

Mode in out for a formal parameter 6.1, 6.2; 3.2.1 
of a function is not allowed 6.5 
of an interrupt entry is not allowed 13.5.1 

Mode in out for a generic formal object 12.1.1; 3.2.1, 12.3, 
12.3.1 

Mode out for a formal parameter 6.1, 6.2 

of a function is not allowed 6.5 
of an interrupt entry is not allowed 13.5.1 

MODE_ERROR (input-output exception) 14.4; 14.2.2, 
14.2.3, 14.2.4, 14.2.5, 14.3.1, 14.3.2, 14.3.3, 14.3.4, 
14.3.5. 14.3.10, 14.5 

Model interval of a subtype 4.5.7 

Model number (of a real type) 3.5.6; D 
[see also: real type, safe number] 

accuracy of a real operation 4.5.7 
of a fixed point type 3.5.9; 3.5.10 
of a floating point type 3.5.7; 3.5.8 

Modulus operation 4.5.5 

MONTH (predefined function) 9.6 

Multidimensional array 3.6 

Multiple 

component declaration 3.7; 3.2 
deferred constant declaration 7.4; 3.2 
discriminant specification 3.7.1; 3.2 
generic parameter declaration 12.1; 3.2 
number declaration 3.2.2; 3.2 
object declaration 3.2 
parameter specification 6.1; 3.2 

Multiplication operation 4.5.5 

accuracy for a real type 4.5.7 

Multiplying operator 4.5; 4.5.5, C 
[see also: arithmetic operator, overloading of an operator] 

in a term 4.4 
overloaded 6.7 

Must (legality requirement) 1.6 

Mutually recursive types 3.8.1; 3.3.1 

NAME (input-output function) 
in an instance of direct_io 14.2.1 
in an instance of sequentiaUo 14.2.1 
in text_io 14.2.1 

NAME (predefined type) 
(see: system.name] 

Name (of an entity) 4.1; 2.3, 3.1, D 
Isee also: attribute, block name, denote, designator, 
evaluation of..., forcing occurrence, function call, identifier, 
indexed component, label, loop name, loop parameter, 
operator symbol, renaming declaration, selected compo¬ 
nent, simple name, slice, type_mark, visibility] 

as a prefix 4.1 
as a primary 4.4 
as the argument of a pragma 2.8 
as the expression in a case statement 5.4 
conflicts 8.5 
declared by renaming is not allowed as prefix of cer¬ 
tain expanded names 4.1.3 
declared in a generic unit 12.3 
denoting an entity 4.1 
denoting an object designated by an access value 
4.1 
generated by an implementation 13.4 
starting with a prefix 4.1; 4.1.1,4.1.2, 4.1.3, 4.1.4 

Name string (of a file) 14.1; 14.2.1, 14.2.3, 14.2.5, 14.3, 
14.3.10. 14.4 

NAME_ERROR (input-output exception) 14.4; 14.2.1, 
14.2.3, 142.5, 14.3.10, 14.5 

Named association 6.4.2, D 

[see also: component association, discriminant associa¬ 
tion, generic association, parameter association] 

Named block statement 

[see: block name] 

Named loop statement 

[see: loop name] 

Named number 3.2; 3.2.2 
as an entity 3.1 
as a primary 4.4 
in a static expression 4,9 

NATURAL (predefined integer subtype) C 

Negation 

[see: logical negation operation] 

Negation operation (numeric) 4.5.4 

Negative exponent 

in a numeric literal 2.4.1 
to an exponentiation operator 4.5.6 

NEW_LINE (text_io procedure) 14.3.4; 14.3.5, 14.3.6, 
14 3.10 

raising an exception 14.4 

NEW_PAGE (text_io procedure) 14.3.4; 14.3.10 
raising an exception 14.4 

No other effect 

[see: elaboration has no other effect] 

Not equal 
compound delimiter [see: inequality compound 
delimiter] 
operator [see: relational operator] 

Not in membership test 

[see: membership test] 

Not unary operator 

[see: highest precedence operator] 
as an operation of an array type 3.6.2 
as an operation of boolean type 3.5.5 
in a factor 4.4 

1-21 Mode • Not unary operator 



ANSI/M/L-STD-1815A Ada Reference Manual 

Not yet elaborated 3.9 

Null access value 3.8; 3.4, 4.2, 6.2, 11.1 
(see also: default initial value of an access type object] 

causing constraint_error 4.1 
not causing constraint_error 11.7 

Null array 3.6.1; 3.6 
aggregate 4.3.2 
and relational operation 4.5.2 
as an operand of a catenation 4.5.3 

Null component list 3.7 

Null literal 3.8 4.2 
Isee also: overloading of...] 

as a basic operation 3.3.3: 3.8.2 
as a primary 4.4 
must not be the argument of a conversion 4.6 

Null range 3.5 
as a choice of a variant part 3.7.3 
for a loop parameter 5.5 

Null record 3.7 
and relational operation 4.5.2 

Null slice 4 12 
[see also: array type] 

Null statement 5.1 
Isee also: statement] 

as a simple statement 5.1 

Null string literal 2.6 

Number 
[see: based literal, decimal literal] 

Number declaration 3.2, 3.2.2 
as a basic declaration 3.1 

NUMBER_BASE (predefined integer subtype) 14.3.7; 
14 3.10 

Numeric literal 2.4, 4.2; 2.2, 2.4.1, 2.4.2 
fsee also: universal type expression] 

and an adjacent separator 2.2 
as a basic operation 3.3.3 
as a primary 4.4 
as the parameter of value attribute 3.5.5 
as the result of image attribute 3.5.5 
assigned 5.2 
can be written in the basic character set 2.10 
in a conforming construct 6.3.1 
in a static expression 4.9 
in pragma memory _size 13.7 
in pragma storage_unit 13.7 

Numeric operation of a universal type 4.10 

Numeric type 3.5 
[see also: conversion, fixed point type, floating point type, 
integer type, real type, scalar type] 

operation 4.5, 4.5.2, 4.5.3, 4.5.4, 4.5.5, 4.5.6 

Numeric type expression 
in a length clause 13.2 

Numeric value of a named number 3.2 

NUMERIC_ERROR (predefined exception) 11.1 
Isee also: suppress pragma] 

not raised due to lost overflow conditions 13.7.3 

not raised due to optimization 11.6 
raised by a numeric operator 4.5 
raised by a predefined integer operation 3.5.4 
raised by a real result out of range of the safe 
numbers 4.5.7 
raised by a universal expression 4.10 
raised by integer division remainder or modulus 
4.5.5 
raised due to a conversion out of range 3.5.4, 3.5.6 

Object 3.2; 3.2.1, D 
[see also: address attribute, allocator, collection, compo¬ 
nent, constant, formal parameter, generic formal 
parameter, initial value, loop parameter, size attribute, 
storage bits allocated, subcomponent, variable] 

as an actual parameter 6.2 
as a generic formal parameter 12.1.1 
created by an allocator 4.8 
created by elaboration of an object declaration 3.2.1 
of an access type (see: access type object] 
of a file type [see: file! 
of a task type [see: task object] 
renamed 8.5 
subject to an address clause 13.5 
subject to a representation clause 13.1 
subject to a suppress pragma 11.7 

Object declaration 3.2, 3.2.1 
[see also: elaboration of..., generic parameter declaration] 

as a basic declaration 3.1 
as a full declaration 7.4.3 
implied by a task declaration 9.1 
in a package specification 7.1 
of an array object 3.6.1 
of a record object 3.7.2 
with a limited type 7.4.4 
with a task type 9.2; 9.3 

Object designated 
by an access value 3.2, 3.8, 4.8; 4.1.3, 5.2, 9.2, 
111 [see also: task object designated...] 
by an access value denoted by a name 4.1 
by an access-to-array type 3.6.1 
by an access-to-record type 3.7.2 
by a generic formal access type value 12.3.5 

Object module 
for a subprogram written in another language 1 3.9 

Obsolete compilation unit (due to recompilation) 10.3 

Occur immediately within (a declarative region) 8.1: 8.3, 
8.4, 10.2 

Omitted parameter association for a subprogram call 6.4.2 

OPEN (input-output procedure) 
in an instance of direct_io 14.2.1; 14.1, 14.2.5 
in an instance of sequentiaUo 14.2.1; 14.1, 14.2.3 
in text_io 14.2.1; 14.1, 14.3.1, 14.3.10 
raising an exception 14.4 

Open alternative 9.7.1 
[see also: alternative] 

accepting a conditional entry call 9.7.2 
accepting a timed entry call 9.7.3 

Open file 14.1 

Operation 3.3, 3.3.3; D 
[see also: basic operation, direct visibility, operator. 

Not yet elaborated • Operation 1-22 



Index 

predefined operation, visibility by selection, visibility] 
classification 3.3.3 
of an access type 3.8.2 
of an array type 3.6.2 
of a discrete type 3.5.5 
of a fixed point type 3.5.10 
of a floating point type 3.5.8 
of a generic actual type 12.1.2 
of a generic formal type 12.1.2; 12.3 
of a limited type 7.4.4 
of a private type 7.4.2; 7.4.1 
of a record type 3.7.4 
of a subtype 3.3 
of a subtype of a discrete type 3.5.5 
of a type 3.3 
of a universal type 4.10 
propagating an exception 11.6 
subject to a suppress pragma 11.7 

Operator 4.5; 4.4, C, D 

[see also: binary adding operator, designator, exponen¬ 
tiating operator, function, highest precedence operator, 
logical operator, multiplying operator, overloading of..., 
predefined operator, relational operator, unary adding 
operator] 

as an operation 3.3.3 (see also: operation] 
implicitly declared 3.3.3 
in an expression 4.4 
in a static expression 4.9 
of a derived type 3.4 
of a generic actual type 12.1.2 
overloaded 6.7; 6.6 
renamed 8.5 

Operator declaration 6.1; 4.5, 6.7 

Operator symbol 6.1 

(see also: direct visibility, overloading of .., scope of..., 
visibility by selection, visibility] 

as a designator 6.1 . 
as a designator in a function declaration 4.5 
as a name 4.1 
before arrow compound delimiter 8.3 
declared 3.1 
declared in a generic unit 12.3 
in a renaming declaration 8.5 
in a selector 4.1.3 
in a static expression 4.9 
not allowed as the designator of a library unit 10.1 
of a generic formal function 12.1.3, 12.3 
of homograph declarations 8.3 
overloaded 6.7; 6.6 

Optimization 10.6 

(see also: optimize pragma] 
and exceptions 11.6 

OPTIMIZE (predefined pragma) B 

Or else control form 

Isee: short circuit control form] 

Or operator 

(see: logical operator] 

Order 

(see: Lexicographic order] 

Order not defined by the language 
[see: incorrect order dependence] 

Order of application of operators in an expression 4.6 

Order of compilation (of compilation units) 10.1, 10.3; 
10.1.1, 10.4 

creating recompilation dependence 10.3 

Order of copying back of out and in out formal parameters 
6.4 

Order of elaboration 3.9 

[see also: incorrect order dependence]; (of compilation 
units) 10.5; 10.1.1 

Order of evaluation 1.6 

(see also: incorrect order dependence] 
and exceptions 1 1.6 
of conditions in an if statement 5.3 
of default expressions for components 3.2.1 
of expressions and the name in an assignment 
statement 5.2 
of operands in an expression 4.5 
of parameter associations in a subroutine call 6.4 
of the bounds of a range 3.5 
of the conditions in a selective wait 9.7.1 

Order of execution of statements 5.1 

(see also: incorrect order dependence] 

Ordering operator 4.5; 4.5.2 

Ordering relation 4.5.2 

(see also: relational operator] 
for a real type 4.5.7 
of an enumeration type preserved by a representa¬ 
tion clause 13.3 
of a scalar type 3.5 

Other effect 

[see: elaboration has no other effect] 

Other special character 2.1 

(see also: graphic character] 

Others 3.7.3 

as a choice in an array aggregate 4.3.2 
as a choice in a case statement alternative 5.4 
as a choice in a component association 4.3 
as a choice in a record aggregate 4.3.1 
as a choice in a variant part 3.7.3 
as an exception choice 11.2 

Out mode 

[see: mode out] 

OUT_FILE (input-output file mode enumeration literal) 14.1 

Overflow of real operations 4.5.7; 13.7.3 

Overflow_check 

(see: numeric_error, suppress] 

Overlapping scopes 

[see: hiding, overloading] 

Overlapping slices in array assignment 5.2.1 

Overlaying of objects or program units 13.5 

Overloading 8.3; D 

(see also: designator, homograph declaration, identifier, 
operator symbol, scope, simple name, subprogram, 
visibility] 

and visibility 8.3 
in an assignment statement 5.2 

1-23 Operator • Overloading 



ANSI/MIL-STD-1815A Ada Reference Manual 

in an expression 4.4 
resolution 6.6 
resolution context 8.7 
resolved by explicit qualification 4.7 

Overloading of 

an aggregate 3.4 
an allocator 4.8 
a declaration 8.3 
a designator 6.6; 6.7 
an entry 9.5 
an enumeration literal 3.5.1; 3.4 
a generic formal subprogram 12.3 
a generic unit 12.1 
an identifier 6.6 
a library unit by a locally declared subprogram 10.1 
a library unit by means of renaming 10.1 
a literal 3.4 
a membership test 4.5.2 
an operator 4.5, 6.7; 4.4, 6.1 
an operator symbol 6.6; 6.7 
a subprogram 6.6; 6.7 
a subprogram subject to an interface pragma 13.9 
the expression in a case statement 5.4 

PACK (predefined pragma) 13.1; B 

Package 7, 7.1; D 

(see also: deferred constant declaration, library unit, 
predefined package, private part, program unit, visible 
part) 

as a generic instance 12.3; 12 
including a raise statement 11.3 
named in a use clause 8.4 
renamed 8.5 
subject to an address clause 1 3.5 
subject to representation clause 13.1 
with a separately compiled body 10.2 

Package body 7.1, 7.3; D 

[see also: body stub] 
as a generic body 12.2 
as a proper body 3.9 
as a secondary unit 10.1 
as a secondary unit compiled after the cor¬ 
responding library unit 10.3 
in another package body 7.1 
including an exception handler 11.2; 11 
including an exit statement 5.7 
including a goto statement 5.9 
including an implicit declaration 5.1 
must be in the same declarative region as the 
declaration 3.9 
raising an exception 11.4.1, 11.4.2 
recompiled 10.3 
subject to a suppress pragma 11.7 

Package declaration 7.1, 7.2; D 

and body as a declarative region 8.1 
as a basic declaration 3.1 
as a later declarative item 3.9 
as a library unit 10.1 
determining the visibility of another declaration 8.3 
elaboration raising an exception 11.4.2 
in a package specification 7.1 
recompiled 10.3 

Package identifier 7.1 

Package specification 7.1, 7.2 

in a generic declaration 12.1 

including an inline pragma 6.3.2 
including an interface pragma 13.9 
including a representation clause 13.1 
including a suppress pragma 11.7 

Page 143 14.3.4 

PAGE (predefined pragma) 8 

PAGE (text_io function) 14.3.4; 14.3.10 
raising an exception 14.4 

Page length 14.3, 14.3.3; 14.3.1, 14.3.4, 14.4 

Page terminator 14.3; 14.3.3, 14.3.4, 14.3.5 

PAGE_LENGTH (text_io function) 14.3.3; 14.3.10 
raising an exception 14.4 

Paragraphing recommended for the layout of programs 1.5 

Parallel execution 

(see: task] 

Parameter D 

[see also: actual parameter, default expression, entry, for¬ 
mal parameter, formal part, function, generic actual 
parameter, generic formal parameter, loop parameter, 
mode, procedure, subprogram] 

of a main program 10.1 

Parameter and result type profile 6.6 

Parameter association 6.4, 6.4.1 

for a derived subprogram 3.4 
named parameter association 6.4 
named parameter association for selective visibility 
8.3 
omitted for a subprogram call 6.4.2 
positional parameter association 6.4 

Parameter declaration 

[see: generic parameter declaration, parameter 
specification] 

Parameter part 

[see: actual parameter part] 

Parameter specification 6.1 

[see also: loop parameter specification] 
as part of a basic declaration 3.1 
having an extended scope 8.2 
in a formal part 6.1 
visibility 8.3 

Parameter type profile 6.6 

Parent subprogram (of a derived subprogram) 3.4 

Parent subtype (of a derived subtype) 3.4 

Parent type (of a derived type) 3.4; D 

[see also: derived type] 
declared in a visible part 3.4 
of a generic actual type 12.1.2 
of a numeric type is predefined and anonymous 
3.5.4, 3.5.7, 3.5.9 

Parent unit (of a body stub) 10.2 

compiled before its subunits 10.3 

Parenthesis 

character 2.1 
delimiter 2.2 

Overloading of • Parenthesis 1-24 



Index 

Parenthesized expression 

as a primary 4.4; 4.5 
in a static expression 4.9 

Part 

(see: actual parameter part, declarative part, discriminant 
part, formal part, generic actual part, generic formal part, 
variant parti 

Partial ordering of compilation 10.3 

Percent character 2.1 

(see also: string literal] 
replacing quotation character 2.10 

Period character 2.1 

[see also: dot character, point character] 

Physical processor 9; 9.8 

Plus 

character 2.1 
delimiter 2.2 
operator (see: binary adding operator, unary adding 
operator] 
unary operation 4.5.4 

Point character 2.1 

(see also: dot] 
in a based literal 2.4.2 
in a decimal literal 2.4.1 
in a numeric literal 2.4 

Point delimiter 2.2 

Pointer 

[see: access type] 

Portability 1.1 

of programs using real types 13.7.3; 3.5.6 

POS (predefined attribute) 3.5.5; 13.3, A 

POSITION (predefined attribute) 13.7.2; A 

(see also: record representation clause] 

Position number 

as parameter to val attribute 3.5.5 
of an enumeration literal 3.5.1 
of an integer value 3.5.4 
of a value of a discrete type 3.5 
returned by pos attribute 3.5.5 

Position of a component within a record 
[see: record representation clause] 

Position of an element in a direct access file 14.2 

Positional association 6.4; 6.4.2, D 
[see also: component association, discriminant associa¬ 
tion, generic association, parameter association] 

POSITIVE (predefined integer subtype) 3.6.3; 14.3.7, 
14.3.8. 14.3.9. 14.3.10, C 

as the index type of the string type 3.6.3 

POSITIVE_COUNT (predefined integer subtype) 14.2.5, 

14.3.10: 14.2.4, 14.3, 14.3.4 

Potentially visible declaration 8.4 

Pound sterling character 2.1 

Power operator 

[see: exponentiating operator] 

Pragma 2.8; 2, D 

[see also: predefined pragma] 
applicable to the whole of a compilation 10.1 
argument that is an overloaded subprogram name 
6.3.2, 8 7, 13.9 
for the specification of a subprogram body in 
another language 13.9 
for the specification of program overlays 13.5 
in a code procedure body 1 3.8 
recommending the representation of an entity 13.1 
specifying implementation conventions for code 
statements 13.8 

Precedence 4.5 

Precision (numeric) 
[see: delta, digits! 

PRED (predefined attribute) 3.5.5; 13.3, A 

Predecessor 

[see: pred attribute] 

Predefined attribute 

[see: address, base, callable, constrained, count, first, 
first_bit, image, last, last_bit, pos, pred, range, size, small, 
storage_size, succ, terminated, val, value, width] 

Predefined constant 8.6; C 
[see also: system.system_name] 

for CHARACTER values [see: ascii] 

Predefined exception 8.6, 11.1; 11.4.1, C 
[see also: constraint_error, io_exceptions, numeric_error, 
prograrruerror, tasking_error, time_error] 

Predefined function 8.6; C 
[see also: attribute, character literal, enumeration literal, 
predefined generic library function] 

Predefined generic library function 8.6, C 
[see also: unchecked_conversion] 

Predefined generic library package 8.6; C 
[see also: direct_io, input-output package, sequential Jo] 

Predefined generic library procedure 8.6; C 
[see also: unchecked_deallocation] 

Predefined generic library subprogram 8.6; C 

Predefined identifier 8.6; C 

Predefined library package 8.6; C 
[see also: predefined generic library package, predefined 
package, ascii, calendar, input-output package, ^excep¬ 
tions, lowJeveIJo, machine_code, system, text_io] 

Predefined library subprogram 

[see: predefined generic library subprogram] 

Predefined named number 

[see: system.fine_delta, system.max_digits, system.maxjnt. 
system.max_mantissa, system. memory_size, 
system.minjnt, system.storage_unit, system.tick] 

Predefined operation 3.3, 3.3.3; 8.6 

[see also: operation, predefined operator] 
accuracy for a real type 4.5.7 
of a discrete type 3.5.5 
of a fixed point type 3.5.10 
of a floating point type 3.5.8 
of a universal type 4.10 
propagating an exception 11.6 

1-25 Parenthesized expression • Predefined operation 



ANSI/MIL-STD-1815A Ada Reference Manual 

Predefined operator 4.5, 8.6; C 
[see also: abs, arithmetic operator, binary adding operator, 
catenation, equality, exponentiating operator, highest 
precedence operator, inequality, limited type, logical 
operator, multiplying operator, operator, predefined opera¬ 
tion. relational operator, unary adding operator] 

applied to an undefined value 3.2.1 
as an operation 3.3.3 
for an access type 3.8.2 
for an array type 3.6.2 
for a record type 3.7.4 
implicitly declared 3.3.3 
in a static expression 4.9 
of a derived type 3.4 
of a fixed point type 3.5.9 
of a floating point type 3.5.7 
of an integer type 3.5.4 
raising an exception 11.4.1 

Predefined package 8.6; C 
[see also: ascii, library unit, predefined library package, 
standard] 

for input-output 1 4 

Predefined pragma 
Isee: controlled, elaborate, inline, interface, list, 
memory_size. optimize, pack, page, priority, shared, 
storage_unit, suppress, system_name] 

Predefined subprogram 8.6: C 
Isee also: input-output subprogram, library unit, 
predefined generic library subprogram] 

Predefined subtype 8.6; C 
Isee also: field, natural, number_base, positive, priority] 

Predefined type 8.6; C 
Isee also: boolean, character, count, duration, float, 
integer, long_float. long_integer, priority, short_float, short_ 
integer string, system.address, system .name, time, 
uni versa Linteger, universaLreal] 

Prefix 4.1; D 

[see also: appropriate for a type, function call, name, 
selected component, selector] 

in an attribute 4.1.4 
in an indexed component 4.1.1 
in a selected component 4.1.3 
in a slice 4.1.2 
that is a function call 4.1 
that is a name 4.1 

Primary 4.4 
in a factor 4.4 
in a static expression 4.9 

PRIORITY (predefined integer subtype) 9.8; 13.7, C 
Isee also: Task priority] 

PRIORITY (predefined pragma) 9.8; 13.7, B 
[see also: Task priority] 

Private part (of a package) 7.2; 7.4.1, 7.4.3, D 
Isee also: deferred constant declaration, private type 
declaration! 

Private type 3.3, 7.4, 7.4.1; D 

Isee also: class of type, derived type of a private type, 
limited private type, type with discriminants] 

as a generic actual type 12.3.2 
as a generic formal type 12.1.2 
as a parent type 3.4 
corresponding full type declaration 3.3.1 
formal parameter 6.2 

of a deferred constant 7.4; 3.2.1 
operation 7.4.2 

Private type declaration 7.4; 7.4.1, 7.4.2 

[see also: private part (of a package), visible part (of a 

package)] 
as a generic type declaration 12.1 
as a portion of a declarative region 8.1 
including the word 'limited' 7.4.4 

Procedure 6.1, 6. D 

(see also: parameter and result type profile, parameter, 
subprogram] 

as a main program 10.1 
as a renaming of an entry 9.5 
renamed 8.5 

Procedure body 

(see: subprogram body] 
including code statements 13.8 

Procedure call 6.4; 6, D 

(see also: subprogram call] 

Procedure call statement 6.4 

Isee also: actual parameter, statement] 
as a simple statement 5.1 
with a parameter of a derived type 3.4 

Procedure specification 

[see: subprogram specification] 

Processor 9 

Profile 

(see: parameter and result type profile, parameter type 
profile] 

Program 10, D 

[see also: main program] 

Program legality 1.6 

Program library 10.1, 10.4; 10.5 
creation 10.4; 13.7 
manipulation and status 10.4 

Program optimization 11.6; 10.6 

Program text 2.2, 10.1; 2.10 

Program unit 6, 7, 9, 12: D 

(see also: address attribute, generic unit, library unit, 
package, subprogram, task unit] 

body separately compiled [see: subunit] 
including a declaration denoted by an expanded 
name 4.1.3 
including a suppress pragma 11.7 
subject to an address clause 13.5 
with a separately compiled body 10.2 

PROGRAM_ERROR (predefined exception) 11.1 

[see also: erroneous execution, suppress pragma] 
raised by an erroneous program or incorrect order 
dependence 1.6; 11.1 
raised by a generic instantiation before elaboration 
of the body 3.9; 12.1, 12.2 
raised by a selective wait 9.7.1 
raised by a subprogram call before elaboration of 
the body 3.9; 7.3 
raised by a task activation before elaboration of the 
body 3.9 
raised by reaching the end of a function body 6.5 

Predefined operator • Program_error 1-26 



Index 

Propagation of an exception 
[see: exception propagation] 

Proper body 3.9 

as a body 3.9 
in a subunit 10.2 
of a library unit separately compiled 10.1 

PUT (text_io procedure) 14.3, 14.3.5; 14.3.2, 14.3.10 
for character and string types 14.3.6 
for enumeration types 14.3.9 
for integer types 14.3.7 
for real types 14.3.8 
raising an exception 14.4 

Qualification 4.7 

as a basic operation 3.3.3; 3.3, 3.5.5, 3.5.8, 3.5.10, 
3.6.2, 3.7.4, 3.8.2, 7.4.2 
using a name of an enumeration type as qualifier 
3.5.1 

Qualified expression 4.7; D 

as a primary 4.4 
in an allocator 4.8 
in a case statement 5.4 
in a static expression 4.9 
qualification of an array aggregate 4.3.2 
to resolve an overloading ambiguity 6.6 

Queue of entry calls 

[see: entry queue] 

Queue of interrupts 

[see: entry queue] 

Quotation character 2.1 

in a string literal 2.6 
replacement by percent character 2.10 

Radix of a floating point type 3.5.7; 13.7.3 

Raise statement 11.3; 11 

[see also: exception, statement] 
as a simple statement 5.1 
including the name of an exception 11.1 

Raising of an exception 11, 11.3; D 
[see also: exception] 

causing a transfer of control 5.1 

Range 3.5; D 

[see also: discrete range, null range] 
as a discrete range 3.6 
in a record representation clause 13.4 
in a relation 4.4 
of an index subtype 3.6 
of an integer type containing the result of an opera¬ 
tion 4.5 
of a predefined integer type 3.5.4 
of a real type containing the result of an operation 
4.5.7 
yielded by an attribute 4.1.4 

RANGE (predefined attribute) 3.6.2; 4.1.4, A 
for an access value 3.8.2 

Range constraint 3.5: D 

[see also: elaboration of...] 

ignored due to range_check suppression 11.7 
in a fixed point constraint 3.5.9 
in a floating point constraint 3.5.7 
in an integer type definition 3.5.4 
in a subtype indication 3.5; 3.3.2 
on a derived subtype 3.4 
violated 11.1 

Range_check 

|see: constraint_error, suppress] 

READ (input-output procedure) 
in an instance of direct_io 14.2.4; 14.1, 14.2, 
14.2.5 
in an instance of sequentiaLio 14.2.2; 14.1, 14.2, 
14.2.3 

Reading the value of an object 6.2, 9.11 

Real literal 2.4 

[see also: universaLreal type] 
in based notation 2.4.2 
in decimal notation 2.4.1 
is of type universaLreal 3.5.6 

Real type 3.5.6; 3.3, 3.5, D 
[see also: fixed point type, floating point type, model 
number, numeric type, safe number, scalar type, univer¬ 
saLreal type] 

accuracy of an operation 4.5.7 
representation attribute 13.7.3 
result of a conversion from a numeric type 4.5.7; 
4.6 
result of an operation out of range of the type 4.5.7 

Real type definition 3.5.6; 3.3.1, 3.5.7, 3.5.9 

[see also: elaboration of...] 

RECEIVE_CONTROL (lowjeveljo procedure) 14.6 

Reciprocal operation in exponentiation by a negative integer 
4.5.6 

Recompilation 10.3 

Record aggregate 4.3.1; 4.3 

[see also: aggregate] 
as a basic operation 3.3.3; 3.7.4 
in a code statement 13.8 

Record component 

[see: component, record type, selected component] 

Record representation clause 13.4 

[see also: first_bit attribute, last_bit attribute, position 
attribute] 

as a representation clause 13.1 

Record type 3.7; 3.3, D 

[see also: component, composite type, discriminant, 
matching components, subcomponent, type with discrimi¬ 
nants, variant] 

formal parameter 6.2 
including a limited subcomponent 7.4.4 
operation 3.7.4 

Record type declaration 

[see: record type definition, type declaration] 
as a declarative region 8.1 
determining the visibility of another declaration 8.3 

Record type definition 3.7: 3.3.1 

[see also: component declaration] 

1-27 Propagation • Record type definition 



ANSI/MIL-STD-1815A Ada Reference Manual 

Recursive 
call of a subprogram 6.1, 12.1; 6.3.2 
generic instantiation 12.1, 12.3 
types 3.8.1; 3.3.1 

Reentrant subprogram 6.1 

Reference (parameter passing) 6.2 

Relation (in an expression) 4.4 

Relational expression 
(see: relation, relational operator] 

Relational operation 4.5.2 
of a boolean type 3.5.3 
of a discrete type 3.5.5 
of a fixed point type 3.5.10 
of a floating point type 3.5.8 
of a scalar type 3.5 
result for real operands 4.5.7 

Relational operator 4.5; 4.5.2, C 
[see also: equality operator, inequality operator, ordering 
relation, overloading of an operator, predefined operator] 

for an access type 3.8.2 
for an array type 3.6.2 
for a private type 7.4.2 
for a record type 3.7.4 
for time predefined type 9.6 
in a relation 4.4 
overloaded 6.7 

Relative address of a component within a record 
[see: record representation clause] 

Rem operator 4.5.5 
Isee also: multiplying operator] 

Remainder operation 4.5.5 

Renaming declaration 8.5; 4.1, 12.1.3, D 
|see also: namel 

as a basic declaration 3.1 
as a declarative region 8.1 
cannot rename a universaLfixed operation 4.5.5 
for an array object 3.6.1 
for an entry 9.5 
for a record object 3.7.2 
name declared is not allowed as a prefix of certain 
expanded names 4.1.3 
to overload a library unit 10.1 
to overload a subunit 10.2 
to resolve an overloading ambiguity 6.6 

Rendezvous (of tasks) 9.5; 9, 9.7.1, 9.7.2, 9.7.3, D 
during which an exception is raised 11.5 
priority 9.8 
prohibited for an abnormal task 9.10 

Replacement of characters in program text 2.10 

Representation (of a type and its objects) 13.1 

recommendation by a pragma 13.1 

Representation attribute 13.7.2, 13.7.3 

as a forcing occurrence 13.1 
with a prefix that has a null value 4.1 

Representation clause 13.1; 13.6, D 
Isee also: address clause, elaboration of..., enumeration 
representation clause, first named subtype, length clause, 
record representation clause, type] 

as a basic declarative item 3.9 

as a portion of a declarative region 8.1 
cannot include a forcing occurrence 13.1 
for a derived type 3.4 
for a private type 7.4.1 
implied for a derived type 3.4 
in an overload resolution context 8.7 
in a task specification 9.1 

Reserved word 2.9; 2.2, 2.3 

RESET (input-output procedure) 
in an instance of directJo 14.2.1; 14.2.5 
in an instance of sequentiaLio 14.2.1; 14.2.3 
in texuio 14.2.1; 14.3.1, 14.3.10 

Resolution of overloading 

[see: overloading] 

Result subtype (of a function) 6.1 

of a return expression 5.8 

Result type profile 

[see: parameter and...] 

Result type and overload resolution 6.6 

Result of a function 

[see: returned value] 

Return 

[see: carriage return] 

Return statement 5.8 

[see also: function, statement] 
as a simple statement 5.1 
causing a loop to be exited 5.5 
causing a transfer of control 5.1 
completing block statement execution 9.4 
completing subprogram execution 9.4 
expression that is an array aggregate 4.3.2 
in a function body 6.5 

Returned value 

[see: function call] 
of a function call 5.8, 6.5; 8.5 
of an instance of a generic formal function 12.1.3 
of a main program 10.1 
of an operation 3.3.3 
of a predefined operator of an integer type 3.5.4 
of a predefined operator of a real type 3.5.6, 4.5.7 

Right label bracket compound delimiter 2.2 

Right parenthesis 

character 2.1 
delimiter 2.2 

Rounding 
in a real-to-integer conversion 4.6 
of results of real operations 4.5.7; 13.7.3 

Run time check 11.7; 11.1 

Safe interval 4.5.7 

Safe number (of a real type) 3.5.6; 4.5.7 
Isee also: model number, real type representation 
attribute, real type] 

limit to the result of a real operation 4.5.7 
of a fixed point type 3.5.9; 3.5.10 
of a floating point type 3.5.7; 3.5.8 
result of universal expression too large 4.10 

Recursive • Safe number 1-28 



Index 

SAFE_EMAX (predefined attribute) 3.5.8; A 

SAFE_LARGE (predefined attribute) 3.5.8, 3.5.10; A 

SAFE_SMALL (predefined attribute) 3.5.8, 3.5.10; A 

Satisfy (a constraint) 3.3; D 
[see also: constraint, subtype] 

a discriminant constraint 3.7.2 
an index constraint 3.6.1 
a range constraint 3.5 

Scalar type 3.3, 3.5; D 
(see also: class of type, discrete type, enumeration type, 
fixed point type, floating point type, integer type, numeric 
type, real type, static expression] 

as a generic parameter 12.1.2, 12.3.3 
formal parameter 6.2 
of a range in a membership test 4.5.2 
operation 3.5.5; 4.5.2 

Scheduling 9.8; 13.5.1 

Scheme 

[see: iteration scheme] 

Scope 8.2; 8.3, D 
[see also: basic operation, character literal, declaration, 
declarative region, generic instance, identifier, immediate 
scope, implicit declaration, operator symbol, overloading, 
visibility] 

of a use clause 8.4 

Secondary unit 10.1 

(see also: compilation unit, library unit] 
compiled after the corresponding library unit or 
parent unit 10.3 
subject to pragma elaborate 10.5 

SECONDS (predefined function) 9.6 

Select alternative (of a selective wait) 9.7.1 

Select statement 9.7; 9.7.1, 9.7.2, 9.7.3 
[see also: statement, task, terminate alternative] 

as a compound statement 5.1 
in an abnormal task 9.10 

Selected component 4.1.3; 8.3, D 
|see also: direct visibility, prefix, selector, visibility by 
selection, visibility] 

as a basic operation 3.3.3; 3.3, 3.7.4, 3.8.2, 7.4.2 
as a name 4.1 
as the name of an entry or entry family 9.5 
for selective visibility 8.3 
in a conforming construct 6.3.1 
starting with standard 8.6 
using a block name 5.6 
using a loop name 5.5 
whose prefix denotes a package 8.3 
whose prefix denotes a record object 8.3 
whose prefix denotes a task object 8.3 

Selection of an exception handler 11.4,11.4.1,11.4.2; 1 1.6 

Selective visibility 

[see: visibility by selection] 

Selective wait 9.7.1: 9.7 

[see also: terminate alternative] 
accepting a conditional entry call 9.7.2 
accepting a timed entry call 9.7.3 
raising program_error 11.1 

Selector 4.1.3; D 

[see also: prefix, selected component] 

Semicolon character 2.1 

Semicolon delimiter 2.2 

followed by a pragma 2.8 

SEND_CONTROL (low_level_io procedure) 14.6 

Separate compilation 10. 10,1; 10.5 
of a proper body 3.9 
of a proper body declared in another compilation 
unit 10.2 

Separator 2.2 

Sequence of statements 5.1 

in an accept statement 9.5 
in a basic loop 5.5 
in a block statement 5.6; 9.4 
in a case statement alternative 5.4 
in a conditional entry call 9.7.2 
in an exception handler 11.2 
in an if statement 5.3 
in a package body 7.1; 7.3 
in a selective wait statement 9.7.1 
in a subprogram body 6.3; 9.4, 13.8 
in a task body 9.1; 9.4 
in a timed entry call 9.7.3 
including a raise statement 11.3 
of code statements 13.8 
raising an exception 11.4.1 

Sequential access file 14.2; 14.1, 14.2.1 

Sequential execution 

[see: sequence of statements, statement] 

Sequential input-output 14.2.2; 14.2.1 

SEQUENTIAL!© (predefined input-output generic package) 
14.2, 14.2.2; 14, 14.1, 14.2.3, C 

exceptions 14.4; 14.5 
specification 14.2.3 

SET_COL (text_io procedure) 14.3.4; 14.3.10 

SET_INDEX (input-output procedure) 
in an instance of direct_io 14.2.4; 14.2.5 

SET_INPUT (text_io procedure) 14.3.2; 14.3.10 
raising an exception 14.4 

SET_LINE (text_io procedure) 14.3.4; 14.3.10 

SET_LINE_LENGTH (texUo procedure) 14.3.3; 14.3.10 
raising an exception 14.4 

SET_OUTPUT (text_io procedure) 14.3.2; 14.3.10 
raising an exception 14.4 

SET_PAGE_LENGTH (text_io procedure) 14.3.3; 14.3.10 
raising an exception 14.4 

SHARED (predefined pragma) 9.11; B 

Shared variable (of two tasks) 9.11 

[see also: task] 

Sharp character 2.1 

[see also: based literal] 
replacement by colon character 2.10 

1-29 Safe_emax • Sharp character 



ANS//MIL-STD-1815A Ada Reference Manual 

Short circuit control form 4.5, 4.5.1; 4.4 
as a basic operation 3.3.3; 3.5.5 
in an expression 4.4 

SHORT-FLOAT (predefined type) 3.5.7; C 

SHORT-INTEGER (predefined type) 3.5.4; C 

Sign of a fixed point number 3.5.9 

Sign of a floating point number 3.5.7 

Significant decimal digits 3.5.7 

Simple expression 4.4 
as a choice 3.7.3 
as a choice in an aggregate 4.3 
as a range bound 3.5 
for an entry index in an accept statement 9.5 
in an address clause 13.5 
in a delay statement 9.6 
in a fixed accuracy definition 3.5.9 
in a floating accuracy definition 3.5.7 
in a record representation clause 13.4 
in a relation 4.4 

Simple name 4.1; 2.3, D 
(see also: block name, identifier, label, loop name, loop 
simple name, name, overloading, visibility] 

as a choice 3.7.3 
as a formal parameter 6.4 
as a label 5.1 
as a name 4.1 
before arrow compound delimiter 8.3 
in an accept statement 9.5 
in an address clause 13.5 
in an attribute designator 4.1.4 
in a conforming construct 6.3.1 
in a discriminant association 3.7.2 
in an enumeration representation clause 13.3 
in a package body 7.1 
in a package specification 7.1 
in a record representation clause 13.4 
in a selector 4.1.3 
in a suppress pragma 1 1.7 
in a task body 9.1 
in a variant part 3.7.3 
in a with clause 10.1.1 
versus identifier 3.1 

Simple statement 5.1 
(see also: statement] 

Single task 9.1 

SIZE (input-output function) 
in an instance of direct_io 14.2.4; 14.2.5 

SIZE (predefined attribute) 13.7.2; A 
(see also: storage bits] 

specified by a length clause 13.2 

SKIP-LINE (textjo procedure) 14.3.4; 14.3.10 
raising an exception 14.4 

SKIP-PAGE (text_io procedure) 14.3.4; 14.3.10 
raising an exception 14.4 

Slice 4.1.2 
(see also: array type] 

as a basic operation 3.3.3; 3.6.2, 3.8.2 
as a name 4.1 
as destination of an assignment 5.2.1 
of a constant 3.2.1 

of a derived type 3.4 
of an object as an object 3.2 
of a value of a generic formal array type 12.1.2 
of a variable 3.2.1 
starting with a prefix 4.1, 4.1.2 

SMALL (predefined attribute) 3.5.8, 3.5.10; A 

(see also: fixed point type] 
specified by a length clause 13.2 

Small of a fixed point model number 3.5.9 

Some order not defined by the language 
(see: incorrect order dependence] 

Space character 2.1 

(see also: basic graphic character] 
as a separator 2.2 
in a comment 2.7 
not allowed in an identifier 2.3 
not allowed in a numeric literal 2.4.1 

Space character literal 2.5; 2.2 

Special character 2.1 

(see also: basic graphic character, other special character] 
in a delimiter 2.2 

Specification 

(see: declaration, discriminant specification, enumeration 
literal specification, generic specification, loop parameter 
specification, package specification, parameter specifica¬ 
tion, subprogram specification, task specification] 

STANDARD (predefined package) 8.6; C 
[see also: library unit] 

as a declarative region 8.1 
enclosing the library units of a program 10.1.1; 
10.1, 10.2 
including implicit declarations of fixed point cross¬ 
multiplication and cross-division 4.5.5 

STANDARD-INPUT (text_io function) 14.3.2; 14.3.10 

STANDARD-OUTPUT (textjo function) 14.3.2: 14.3.10 

Star 

(see: double star] 
character 2.1 
delimiter 2.2 

Statement 5.1; 5, D 
[see also: abort statement, accept statement, address 
attribute, assignment statement, block statement, case 
statement, code statement, compound statement, delay 
statement, entry call statement, exit statement, goto state¬ 
ment, if statement, label, loop statement, null statement, 
procedure call statement, raise statement, return state¬ 
ment, select statement, sequence of statements, target 
statement] 

allowed in an exception handler 11.2 
as an overload resolution context 8.7 
optimized 10.6 
raising an exception 11.4.1; 11.4 
that cannot be reached 10.6 

Statement alternative 

(see: case statement alternative] 

Static constraint 4.9 

on a subcomponent subject to a component clause 
13.4 
on a type 3.5.4, 3.5.7, 3.5.9, 13.2 

Short circuit • Static constraint 1-30 



Index 

Static discrete range 4.9 
as a choice of an aggregate 4.3.2 
as a choice of a case statement 5.4 
as a choice of a variant part 3.7.3 

Static expression 4.9; 8.7 
as a bound in an integer type definition 3.5.4 
as a choice in a case statement 5.4 
as a choice of a variant part 3.7.3 
for a choice in a record aggregate 4.3.2 
for a discriminant in a record aggregate 4.3.1 
in an attribute designator 4.1.4 
in an enumeration representation clause 13.3 
in a fixed accuracy definition 3.5.9 
in a floating accuracy definition 3.5.7 
in a generic unit 12.1 
in a length clause 13.2 
in a number declaration 3.2, 3.2.2 
in a record representation clause 13.4 
in priority pragma 9.8 
whose type is a universal type 4.10 

Static others choice 4.3.2 

Static subtype 4.9 
of a discriminant 3.7.3 
of the expression in a case statement 5.4 

STATUS_ERROR (input-output exception) 14.4; 14.2.1, 
14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3.2, 14.3.3, 14.3.4, 
14.3.5, 14.3.10, 14.5 

Storage address of a component 13.4 
[see also: address clause] 

Storage bits 
allocated to an object or type 13.2; 1 3.7.2 [see also: 
size! 
of a record component relative to a storage unit 
13.4 
size of a storage unit 13.7 

Storage deallocation 
[see: unchecked_deallocation] 

Storage minimization 
[see: pack pragma] 

Storage reclamation 4.8 

Storage representation of a record 13.4 

Storage unit 13.7 
offset to the start of a record component 13.4 
size of a storage unit in bits 13.7 

Storage units allocated 
[see: storage_size] 

to a collection 13.2; 4.8, 11.1, 13.7.2 
to a task activation 13.2; 9.9, 11.1, 13.7.2 

Storage_check 
[see: program_error exception, suppress] 

STORAGE_ERROR (predefined exception) 11.1 
[see also: suppress pragma] 

raised by an allocator exceeding the allocated 
storage 4.8; 11.1 
raised by an elaboration of a declarative item 11.1 
raised by a task activation exceeding the allocated 
storage 11.1 
raised by the execution of a subprogram call 11.1 

STORAGE_SIZE (predefined attribute) 13.7.2; A 
[see also: storage units allocated] 

for an access type 3.8.2 
for a task object or task type 9.9 
specified by a length clause 13.2 

STORAGE_UNIT (predefined named number) 
[see: system.storage_unit] 

STORAGE_UNIT (predefined pragma) 13.7; B 
[see also: system.storage_unit] 

STRING (predefined type) 3.6.3; C 
[see also: predefined type] 

as the parameter of value attribute 3.5.5 
as the result of image attribute 3.5.5 

String bracket 2.6; 2.10 

String literal 2.6, 4.2; 2.2, 3.6.3 
[see also: overloading of..., percent mark character, quota¬ 
tion character) 

as a basic operation 3.3.3, 4.2; 3.6.2 
as an operator symbol 6.1 
as a primary 4.4 
must not be the argument of a conversion 4.6 
replaced by a catenation of basic characters 2.10 

Stub 
[see: body stub! 

Subaggregate 4.3.2 

Subcomponent 3.3; D 
[see also: component, composite type, default expression, 
discriminant, object] 

depending on a discriminant 3.7.1; 5.2, 6.2 , 8.5 
of a component for which a component clause is 
given 13.4 
renamed 8.5 
that is a task object 9.2; 9.3 
whose type is a limited type 7.4.4 
whose type is a private type 7.4.1 

Subprogram 6; 0 
[see also: actual parameter, completed subprogram, 
derived subprogram, entry, formal parameter, function, 
library unit, overloading of..., parameter and result type 
profile, parameter, predefined subprogram, procedure, 
program unit] 

as a generic instance 12.3; 12 
as a main program 10.1 
as an operation 3.3.3; 7.4.2 
including a raise statement 11.3 
of a derived type 3.4 
overloaded 6.6 
renamed 8.5 
subject to an address clause 13.5 
subject to an inline pragma 6.3.2 
subject to an interface pragma 13.9 
subject to a representation clause 13.1 
subject to a suppress pragma 11.7 
with a separately compiled body 10.2 

Subprogram body 6.3; 6, D 
[see also: body stub] 

as a generic body 12.2 
as a library unit 10.1 
as a proper body 3.9 
as a secondary unit 10.1 
as a secondary unit compiled after the cor¬ 
responding library unit 10.3 

1-31 Static discrete range • Subprogram body 



ANSI/MIL-STD-1815A Ada Reference Manual 

having dependent tasks 9.4 
in a package body 7.1 
including an exception handler 11.2; 11 
including an exit statement 5.7 
including a goto statement 5.9 
including an implicit declaration 5.1 
including a return statement 5.8 
including code statements must be a procedure 
body 13.8 
inlined in place of each call 6.3.2 
must be in the same declarative region as the 
declaration 3.9, 7.1 
not allowed for a subprogram subject to an interface 
pragma 13.9 
not yet elaborated at a call 3.9 
raising an exception 11.4.1, 11.4.2 
recompiled 10.3 

Subprogram call 6.4; 6, 6.3, 12.3 
[see also: actual parameter, entry call statement, entry cal- 
I, function call, procedure call statement, procedure call] 

before elaboration of the body 3.9,11.1 
statement replaced by an inlining of the body 6.3.2 
statement with a default actual parameter 6.4.2 
to a derived subprogram 3.4 
to a generic instance 12 

Subprogram declaration 6.1; 6, D 

and body as a declarative region 8.1 
as a basic declaration 3.1 
as a later declarative item 3.9 
as a library unit 10.1 
as an overloaded declaration 8.3 
implied by the body 6.3, 10.1 
in a package specification 7.1 
made directly visible by a use clause 8.4 
of an operator 6.7 
recompiled 10.3 

Subprogram specification 6.1 

and forcing occurrences 13.1 
conforming to another 6.3.1 
for a function 6.5 
in a body stub 10.2 
in a generic declaration 12.1; 12.1.3 
in a renaming declaration 8.5 
in a subprogram body 6.3 
including the name of a private type 7.4.1 
of a derived subprogram 3.4 

Subtraction operation 4.5.3 

for a real type 4.5.7 

Subtype 3.3, 3.3.2; D 
[see also: attribute of..., base attribute, constrained sub- 
type. constraint, first named subtype, operation of..., result 
subtype, satisfy, size attribute, static subtype, type, 
unconstrained subtype] 

declared by a numeric type declaration 3.5.4, 3.5.7, 
3.5 9 
in a membership test 4.5.2 
name [see: name of a subtype, type_mark of a sub- 
type] 
not considered in overload resolution 8.7 
of an access type 3.8 
of an actual parameter 6.4.1 
of an array type [see: constrained array type, index 
constraint) 
of a component of an array 3.6 
of a component of a record 3.7 
of a constant in a static expression 4.9 
of a discriminant of a generic formal type 12.3.2 
of a formal parameter 6.4.1 

of a formal parameter or result of a renamed sub¬ 
program or entry 8.5 
of a generic formal type 12.1.2 
of an index of a generic formal array type 12.3.4 
of an object [see: elaboration of...] 
of a private type 7.4, 7 4.1 
of a real type 3.5.7, 3.5.9; 3.5.6, 4.5.7 
of a record type [see: constrained record type, dis¬ 
criminant constraint] 
of a scalar type 3.5 
of a task type 9.2 
of a variable 5.2 
subject to a representation clause 13.1 

Subtype conversion 4.6 

[see also: conversion operation, explicit conversion, 
implicit conversion, type conversion) 

in an array assignment 5.2.1; 5.2 
to a real type 4.5.7 

Subtype declaration 3.3.2; 3.1 

and forcing occurrences 13.1 
as a basic declaration 3.1 
including the name of a private type 7.4.1 

Subtype definition 

[see: component subtype definition, dependence on a dis¬ 
criminant, index subtype definition] 

Subtype indication 3.3.2 

[see also: elaboration of...] 
as a component subtype indication 3.7 
as a discrete range 3.6 
for a subtype of a generic formal type 12.1.2 
in an access type definition 3.8 
in an allocator 4.8 
in an array type definition 3.6 
in a component declaration 3.7 
in a constrained array definition 3.6 
in a derived type definition 3.4 
in a generic formal part 12.1 
in an object declaration 3.2, 3.2.1 
in an unconstrained array definition 3.6 
including a fixed point constraint 3.5.9 
including a floating point constraint 3.5.7 
with a range constraint 3.5 

Subunit 10.2; D 

[see also: library unit] 
as a compilation unit 10.4 
as a library unit 10.4 
as a secondary unit 10.1 
compiled after the corresponding parent unit 10.3 
not allowed for a subprogram subject to an interface 
pragma 13.9 
of a compilation unit subject to a context clause 
10.1.1 
raising an exception 11.4.1, 11.4.2 
recompiled (does not affect other compilation units) 
10.3 

SUCC (predefined attribute) 3.5.5; 13.3, A 

Successor 

[see: succ attribute] 

SUPPRESS (predefined pragma) 11.7, 11.1, B 

Symbol 

[see: graphical symbol, operator symbol] 

Synchronization of tasks 

[see: task synchronization] 

Subprogram call • Synchronization of tasks 1-32 



Index 

Syntactic category 1.5 

Syntax notation 1.5 

Syntax rule 1.5; E 

SYSTEM (predefined library package) 13.7; C, F 

System dependent F 
attribute 13.4 
constant 13.7 
named number 13.7, 13.7.1 
record component 13.4 
type 13.7 

SYSTEM.ADDRESS (predefined type) 13.7; 13.5 
[see also: address attribute, address clause] 

SYSTEM.FINE_DELTA (predefined named number) 13.7.1 

SYSTEM.MAX_DIGITS (predefined named number) 13.7.1 
limit on the significant digits of a floating point type 
3.5.7 

SYSTEM.MAX_INT (predefined named number) 13.7.1; 
3 5.4 

exceeded by the value of a universal expression 
4.10 

SYSTEM.MAX_MANTISSA (predefined named number) 
13.7.1 

SYSTEM.MEMORY_SIZE (predefined named number) 13.7 

SYSTEM.MIN_INT (predefined named number) 13.7.1; 
3.5.4 

greater than the value of a universal expression 
4.10 

SYSTEM.NAME (predefined type) 13.7 

SYSTEM.STORAGE_UN!T (predefined named number) 
13.7; 13.4 

SYSTEM.SYSTEM_NAME (predefined constant) 13.7 
[see also: system_name] 

SYSTEM.TICK (predefined named number) 13.7.1; 9.6 

SYSTEM_NAME (predefined pragma) 13.7; B 
[see also: system.system_name predefined constant] 

Tabulation 

[see: horizontal tabulation, vertical tabulation] 

Target statement (of a goto statement) 5.9 

Target type of a conversion 4.6 

Task 9; D 

[see also: abnormal task, abort statement, accept state¬ 
ment, communication between..., completed task, delay 
statement, dependent task, entry (of a task), entry call 
statement, rendezvous, select statement, selective wait, 
shared variable, single task, terminated task] 

calling the main program 10.1 
raising an exception 11.5 
scheduling 9.8 
suspension awaiting a rendezvous 9.5 
suspension by a delay statement 9.6 
suspension by a selective wait 9.7.1 
suspension of an abnormal task 9.10 

Task activation 9.3 

[see also: length clause, storage units allocated, 
storage_size attribute] 

before elaboration of the body 3.9 
causing synchronization 9.10, 9.11 
not started for an abnormal task 9.10 
of a task with no task body 11.1 

Task body 9.1; 9, D 
[see also: body stub, elaboration of...] 

as a proper body 3.9 
in a package body 7.1 
including an exception handler 11.2; 11 
including an exit statement 5.7 
including a goto statement 5.9 
including an implicit declaration 5.1 
must be in the same declarative region as the 
declaration 3.9, 7.1 
not yet elaborated at an activation 3.9 
raising an exception 11.4.1, 11.4.2 
specifying the execution of a task 9.2, 9.3 

Task communication 

[see: rendezvous] 

Task completion 

|see: completed task] 

Task declaration 9.1 

and body as a declarative region 8.1 
as a basic declaration 3.1 

as a later declarative item 3.9 
elaboration raising an exception 11.4.2 
in a package specification 7.1 

Task dependence 

(see: dependent task] 

Task designated 

by a formal parameter 6.2 
by a value of a task type 9.1; 9.2, 9.4, 9.5 

Task execution 9.3 

Task object 9.2; 9.1, 9.5 
[see also: attribute of..., task activation] 

designated by an access value 9.2 
determining task dependence 9.4 
renamed 8.5 

Task priority 9.8 

(see also: priority pragma, priority subtype] 
of a task with an interrupt entry 13.5.1 

Task specification 9.1; 9, D 

[see also: elaboration of...] 
including an entry declaration 9.5 
including a priority pragma 9.8 
including a representation clause 13.1 

Task synchronization 9.5; 9.1 1 

Task termination 

[see: terminated task] 

Task type 9.1, 9.2; D 

[see also: attribute of..., class of type, derived type of a task 
type, limited type] 

completing an incomplete type definition 3.8.1 
formal parameter 6.2 
object initialization 3.2.1 
value designating a task object 3.2.1, 9.1, 9.2 

1-33 Syntactic category • Task type 



ANSI/M/L-STD-1815A Ada Reference Manual 

Task unit 9.1; 9 
[see also: program unit] 

declaration determining the visibility of another 
declaration 8.3 
including a raise statement 11.3 
subject to an address clause 13.5 
subject to a representation clause 13.1 
subject to a suppress pragma 11.7 
with a separately compiled body 10.2 

TASKING_ERROR (predefined exception) 11.1 

[see also: suppress pragma] 
raised by an entry call to an abnormal task 9.10, 
11.5 
raised by an entry call to a completed task 9.5, 
9.7.2, 9.7.3, 11.5 
raised by an exception in the task body 11.4.2 
raised by failure of an activation 9.3; 1 1.4.2 

Template 

[see: generic unit] 

Term 4.4 

in a simple expression 4.4 

Terminate alternative (of a selective wait) 9.7.1 

[see also: select statement] 
causing a transfer of control 5.1 
in a select statement causing a loop to be exited 5.5 
selection 9.4 
selection in the presence of an accept alternative for 
an interrupt entry 13.5.1 

TERMINATED (predefined attribute) for a task object 9.9; A 

Terminated task 9.4; 9.3, 9.9 

[see also: completed task] 
not becoming abnormal 9.10 
object or subcomponent of an object designated by 
an access value 4.8 
termination of a task during its activation 9.3 

Terminator 

(see: file terminator, line terminator, page terminator] 

Text input-output 14.3; 14.2.1 

Text of a program 2.2, 10.1 

TEXT_IO (predefined input-output package) 14.3; 14, 14.1, 
14 3.9, 14 3.10, C 

exceptions 14.4; 14.5 
specification 14.3.10 

TICK 

[see: system.tick] 

TIME (predefined type) 9.6 
[see also: clock, date, day, make_time, month, system.tick, 
year] 

TIME_ERROR (predefined exception) 9.6 

TIME_OF (predefined function) 9.6 

Timed entry call 9.7.3; 9.7 

and renamed entries 8.5 
subject to an address clause 13.5.1 

Times operator 

[see: multiplying operator] 

Transfer of control 5.1 

[see also: exception, exit statement, goto statement, return 
statement, terminate alternative] 

TRUE boolean enumeration literal 3.5.3; C 

Type 3.3; D 

[see also: access type, appropriate for a type, array type, 
attribute of..., base attribute, base type, boolean type, 
character type, class of type, composite type, constrained 
type, derived type, discrete type, discriminant of..., 
enumeration type, fixed point type, floating point type, 
forcing occurrence, generic actual type, generic formal 
type, integer type, limited private type, limited type, 
numeric type, operation of.... parent type, predefined type, 
private type, real type, record type, representation clause, 
scalar type, size attribute, storage allocated, subtype, 
unconstrained subtype, unconstrained type, universal 
type] 

name 3.3.1 
of an actual parameter 6.4.1 
of an aggregate 4.3.1, 4.3.2 
of an array component of a generic formal array 
type 12.3.4 
of an array index of a generic formal array type 
12.3.4 
of a case statement expression 5.4 
of a condition 5.3 
of a declared object 3.2, 3.2.1 
of a discriminant of a generic formal private type 
12.3.2 
of an expression 4.4 
of a file 14.1 
of a formal parameter of a generic formal sub¬ 
program 12.1.3 
of a generic actual object 12.3.1 
of a generic formal object 12.1.1; 12.3.1 
of an index 4.1.1 
of a loop parameter 5.5 
of a named number 3.2, 3.2.2 
of an object designated by a generic formal access 
type 12.3.5 
of a primary in an expression 4.4 
of a shared variable 9.1 1 
of a slice 4.1.2 
of a string literal 4.2 
of a task object 9.2 
of a universal expression 4.10 
of a value 3.3: 3.2 
of discriminants of a generic formal object and the 
matching actual object 12.3.2 
of of the literal null 4.2 
of the result of a generic formal function 12.1.3 
renamed 8.5 
subject to a representation clause 13.1; 13.6 
subject to a suppress pragma 11.7 
yielded by an attribute 4.1.4 

Type conversion 4.6 

[see also: conversion operation, conversion, explicit con¬ 
version, subtype conversion, unchecked_conversion] 

as an actual parameter 6.4, 6.4.1 
as a primary 4.4 
in a static expression 4.9 
to a real type 4.5.7 

Type declaration 3.3.1 

[see also: elaboration of..., incomplete type declaration, 
private type declaration] 

as a basic declaration 3.1 
as a full declaration 7.4.1 
implicitly declaring operations 3.3.3 
in a package specification 7.1 
including the name of a private type 7.4.1 

Task unit • Type declaration 1-34 



Index 

of a fixed point type 3.5.9 
of a floating point type 3.5.7 
of an integer type 3.5.4 
of a subtype 13.1 

Type definition 3.3.1, D 

[see also: access type definition, array type definition, 
derived type definition, elaboration of..., enumeration type 
definition, generic type definition, integer type definition, 
real type definition, record type definition] 

Type mark (denoting a type or subtype) 3.3.2 

as a generic actual parameter 12.3 
in an allocator 4.8 
in a code statement 13.8 
in a conversion 4.6 
in a deferred constant declaration 7.4 
in a discriminant specification 3.7.1 
in a generic formal part 12.1, 12.3 
in a generic parameter declaration 12.3.1 
in an index subtype definition 3.6 
in a parameter specification 6.1; 6.2 
in a qualified expression 4.7 
in a relation 4.4 
in a renaming declaration 8.5 
in a subprogram specification 6.1 
of a formal parameter of a generic formal sub¬ 

program 12.1.3 
of a generic formal array type 12.1.2 
of a static scalar subtype 4.9 
of the result of a generic formal function 12.1.3 

Type with discriminants 3.3; 3.3.1, 3.3.2, 3.7, 3.7.1, 7.4, 

7.4.1 
[see also: private type, record type] 

as an actual to a formal private type 12.3.2 
as the component type of an array that is the 
operand of a conversion 4.6 

Unary adding operator 4.4, 4.5, C; 4.5.4 

[see also: arithmetic operator, overloading of an operator, 
predefined operator] 

as an operation of a discrete type 3.5.5 
in a simple expression 4.4 
overloaded 6.7 

Unary operator 4.5; 3.5.5, 3.5.8, 3.5.10, 3.6.2, 4.5.4, 4.5.6, 

C 
[see also: highest precedence operator, unary adding 
operator] 

UNCHECKED_CONVERSION (predefined generic library 
function) 13.10.2; 13.10, C 

UNCHECKED_DEALLOCATION (predefined generic library 
procedure) 13.10.1; 4.8. 13.10, C 

Unconditional termination of a task 
[see: abnormal task, abort statement] 

Unconstrained array definition 3.6 

Unconstrained array type 3.6; 3.2.1 

as an actual to a formal private type 12.3.2 
formal parameter 6.2 
subject to a length clause 13.2 

Unconstrained subtype 3.3, 3.3.2 

[see also: constrained subtype, constraint, subtype, type] 
indication in a generic unit 12.3.2 

Unconstrained type 3.3; 3.2.1. 3.6, 3.6.1, 3.7, 3.7.2 
formal parameter 6.2 
with discriminants 6.4.1, 12.3.2 

Unconstrained variable 3.3, 3.6, 3.7; 12.3.1 

as a subcomponent [see: subcomponent] 

Undefined value 

of a scalar parameter 6.2 
of a scalar variable 3.2.1 

Underline character 2.1 

in a based literal 2.4.2 
in a decimal literal 2.4.1 
in an identifier 2.3 

Unhandled exception 11.4.1 

Unit 

[see: compilation unit, generic unit, library unit, program 
unit, storage unit, task unit] 

Universal expression 4.10 

assigned 5.2 
in an attribute designator 4.1.4 
of a real type implicitly converted 4.5.7 
that is static 4.10 

Universal type 4.10 

[see also: conversion, implicit conversion] 
expression [see: expression, numeric literal] 
of a named number 3.2.2; 3.2 
result of an attribute [see: attribute] 

UNIVERSALFIXED (predefined type) 3.5.9 

resuit of fixed point multiplying operators 4.5.5 

UNI VERSA!_INTEGER (predefined type) 3.5.4, 4.10; C 
[see also: integer literal] 

argument of a conversion 3.3.3, 4.6 
attribute 3.5.5, 13.7.1, 13.7.2, 13.7.3; 9.9 
bounds of a discrete range 3.6.1 
bounds of a loop parameter 5.5 
codes representing enumeration type values 13.3 
converted to an integer type 3.5.5 
of integer literals 2.4, 4.2 
result of an operation 4.10; 4.5 

UNIVERSALREAL (predefined type) 3.5.6. 4.10 

[see also: real literal] 
argument of a conversion 3.3.3, 4.6 
attribute 13.7.1 
converted to a fixed point type 3.5.10 
converted to a floating point type 3.5.8 
of real literals 2.4, 4.2 
result of an operation 4.10; 4.5 

Updating the value of an object 6.2 

Upper bound 

[see: bound, last attribute] 

Upper case letter 2.1 

[see also: basic graphic character] 
A to F in a based literal 2.4.2 
E in a decimal literal 2.4.1 
in an identifier 2.3 

Urgency of a task 
[see: task priority] 

Use clause (to achieve direct visibility) 8.4; 8.3, D 
[see also: context clause] 

1-35 Type definition • Use clause 



ANSI/MIL-STD-1815A Ada Reference Manual 

as a basic declarative item 3.9 
as a later declarative item 3.9 
in a code procedure body 13.8 
in a context clause of a compilation unit 10.1.1 
in a context clause of a subunit 10.2 
inserted by the environment 10.4 

USE_ERROR (input-output exception) 14.4; 14.2.1, 14.2.3, 
14.2.5. 14.3.3. 14.3.10. 14.5 

VAL (predefined attribute) 3.5.5; A 

Value 
[see: assignment, evaluation, expression, initial value, 
returned value, subtype, task designated..., type] 

in a constant 3.2.1; 3.2 
in a task object 9.2 
in a variable 3.2.1, 5.2; 3.2 
of an access type [see: object designated, task 
object designated] 
of an array type 3.6; 3.6.1 [see also: array, slice] 
of a based literal 2.4.2 
of a boolean type 3.5.3 
of a character literal 2.5 
of a character type 3.5.2; 2.5, 2.6 
of a decimal literal 2.4.1 
of a fixed point type 3.5.9, 4.5.7 
of a floating point type 3.5.7, 4.5.7 
of a record type 3.7 
of a record type with discriminants 3.7.1 
of a string literal 2.6; 2.10 
of a task type [see: task designated] 
returned by a function call [see: returned value] 

VALUE (predefined attribute) 3.5.5; A 

Variable 3.2.1; D 
[see also: object, shared variable] 

as an actual parameter 6.2 
declared in a package body 7.3 
formal parameter 6.2 
in an assignment statement 5.2 
of an array type as destination of an assignment 
5.2.1 
of a private type 7.4.1 
renamed 8.5 
that is a slice 4.1.2 

Variable declaration 3.2.1 

Variant 3.7.3; 4.1.3 
[see also: component clause, record type] 

in a variant part 3.7.3 

Variant part 3.7.3; D 
(see also: dependence on a discriminant] 

in a component list 3.7 
in a record aggregate 4.3.1 

Vertical bar character 2.1 
replacement by exclamation character 2.10 

Vertical bar delimiter 2.2 

Vertical tabulation format effector 2.1 

Violation of a constraint 
[see: constraint_error exception] 

Visibility 8.3; 8.2, D 
[see also: direct visibility, hiding, identifier, name, opera¬ 
tion, overloading) 

and renaming 8.5 
determining multiple meanings of an identifier 8.4, 
8.7; 8.5 
determining order of compilation 10.3 
due to a use clause 8.4 
of a basic operation 8.3 
of a character literal 8.3 
of a default for a generic formal subprogram 12.3.6 
of a generic formal parameter 12.3 
of a library unit due to a with clause 8.6. 10.1.1 
of a name of an exception 11.2 
of an operation declared in a package 7.4.2 
of an operator symbol 8.3 
of a renaming declaration 8.5 
of a subprogram declared in a package 6.3 
of declarations in a package body 7.3 
of declarations in a package specification 7.2 
of declarations in the package system 13.7 
within a subunit 10.2 

Visibility by selection 8.3 
[see also: basic operation, character literal, operation, 
operator symbol, selected component] 

Visible part (of a package) 7.2; 3.2.1, 7.4, 7.4.1, 7.4.3, D 
[see also: deferred constant declaration, private type 
declaration] 

expanded name denoting a declaration in a visible 
part 8.2 
scope of a declaration in a visible part 4.1.3 
use clause naming the package 8.4 
visibility of a declaration in a visible part 8.3 

Wait 

Isee: selective wait, task suspension] 

While loop 

[see: loop statement] 

WIDTH (predefined attribute) 3.5.5; A 

With clause 10.1.1; D 

[see also: context clause] 
determining order of compilation 10.3 
determining the implicit order of library units 8.6 
in a context clause of a compilation unit 10.1.1 
in a context clause of a subunit 10.2 
inserted by the environment 10.4 
leading to direct visibility 8.3 

WRITE (input-output procedure) 
in an instance of directJo 14.2.4; 14.1, 14.2, 14.2. 5 

in an instance of sequentiaUo 14.2.2; 14.1, 14.2, 
14.2.3 

Writing to an output file 14.1, 14.2.2, 14.2.4 

Xor operator 

Isee: logical operator] 

YEAR (predefined function) 9.8 

Use_error • Year 1-36 



iThis postscript is not part of the standard definition of the Ada programming language ] 

Postscript : Submission of Comments 

For submission of comments on this standard Ada reference manual, we would appreciate them being sent 
by Arpanet to the address 

Ada-Comment at ECLB 

If you do not have Arpanet access, please send the comments by mail 

Ada Joint Program Office 
Office of the Under Secretary of Defense Research and Engineering 
Washington, DC 20301 
United States of America. 

For mail comments, it will assist us if you are able to send them on 8-inch single-sided single-density IBM 
format diskette - but even if you can manage this, please also send us a paper copy, in case of problems 
with reading the diskette. 

All comments are sorted and processed mechanically in order to simplify their analysis and to facilitate giv¬ 
ing them proper consideration. To aid this process you are kindly requested to precede each comment with 
a three line header 

Isection ... 
Iversion 1983 
Itopic ... 

The section line includes the section number, the paragraph number enclosed in parentheses, your name or 
affiliation (or both), and the date in ISO standard form (year-month-day). The paragraph number is the one 
given in the margin of the paper form of this document (it is not contained in the ECLB files); paragraph 
numbers are optional, but very helpful. As an example, here is the section line of comment #11 94 on a 
previous version: 

Isection 03.02.01 (12) D . Taffs 82-04-26 

The version line, for comments on the current standard, should only contain " Iversion 1 983". Its purpose is 
to distinguish comments that refer to different versions. 

The topic line should contain a one line summary of the comment. This line is essential, and you are kindly 
asked to avoid topics such as "Typo" or "Editorial comment" which will not convey any information when 
printed in a table of contents. As an example of an informative topic line consider: 

Itopic Subcomponents of constants are constants 

Note also that nothing prevents the topic line from including all the information of a comment, as in the fol¬ 
lowing topic line: 

Itopic Insert: "... are (implicitly) defined by a subtype declaration" 

As a final example here is a complete comment received on a prior version of this manual: 

Isection 03.02.01(12) D . Taffs 82-04-26 
Iversion 10 
Itopic Subcomponents of constants are constants 

Change "component" to "subcomponent" in the last sentence. 

Otherwise the statement is inconsistent with the defined use of subcomponent in 3.3, 
which says that subcomponents are excluded when the term component is used instead 

of subcomponent. 



<) 

I 



I 
1 





X3.115-1984 Unformatted 80 Megabyte Trident Pack for Use 

at 370 tpi and 6000 bpi (General, Physical, and Magnetic Charac¬ 

teristics) 

X3.117-1984 Printable/Image Areas for Text and Facsimile Com¬ 

munication Equipment 

X3.118-1984 Financial Services — Personal Identification Number 

- PIN Pad 

X3.119-1984 Contact Start/Stop Storage Disk, 158361 Flux Trans¬ 

itions per Track, 8.268 Inch (210 mm) Outer Diameter and 3.937 

inch (100 mm) Inner Diameter 

X3.120-1984 Contact Start/Stop Storage Disk 

X3.121-1985 Two-Sided, Double-Density, Unformatted 5.25-inch 

(130-mm), 48-tpi (1,9-tpmm), Flexible Disk Cartridge for 7958 

bpr Use 

X3.124-1985 Graphical Kernel System (GKS) Functional 

Description 

X3.124.1-1985 Graphical Kernel System (GKS) FORTRAN 

Binding 

X3.126-1985 One-or Two-Sided Double Density Unformatted 

Flexible Disk Cartridge for 7958 BPR Use 

X11.1-1977 Programming Language MUMPS 

IEEE 416-1978 Abbreviated Test Language for All Systems 

(ATLAS) 

IEEE 716-1982 Standard C/ATLAS Language 

IEEE 717-1982 Standard C/ATLAS Syntax 

IEEE 770X3.97-1983 Programming Language PASCAL 

IEEE 771-1980 Guide to the Use of ATLAS 

MlL-STD-1815A-1983 Reference Manual for the Ada Programming 

Language 

X3/TRI-82 Dictionary for Information Processing Systems 

(Technical Report) 



American National Standards for Information Processing 
X3.1-1976 Synchronous Signaling Rates for Data Transmission 

X3.2-1970 Print Specifications for Magnetic Ink Character 

Recognition 

X3.4-1977 Code for Information Interchange 

X3.5-1970 Flowchart Symbols and Their Usage 

X3.6-1965 Perforated Tape Code 

X3.9-1978 Programming Language FORTRAN 

X3.11-1969 General Purpose Paper Cards 

X3.14-1983 Recorded Magnetic Tape (200 CPI, NRZI) 

X3.15-1976 Bit Sequencing of the American National Standard 

Code for Information Interchange in Serial-by-Bit Data Transmission 

X3.16-1976 Character Structure and Character Parity Sense for 

Serial-by-Bit Data Communication in the American National Stan¬ 

dard Code for Information Interchange 

X3.17-1981 Character Set for Optical Character Recognition 

(OCR-A) 

X3.18-1974 One-Inch Perforated Paper Tape 

X3.19-1974 Eleven-Sixteenths-Inch Perforated Paper Tape 

X3.20-1967 Take-Up Reels for One-Inch Perforated Tape 

X3.21-1967 Rectangular Holes in Twelve-Row Punched Cards 

X3.22-1983 Recorded Magnetic Tape (800 CPI, NRZI) 

X3.23-1985 Programming Language COBOL 

X3.25-1976 Character Structure and Character Parity Sense for 

Parallel-by-Bit Data Communication in the American National 

Standard Code for Information Interchange 

X3.26-1980 Hollerith Punched Card Code 

X3.27-1978 Magnetic Tape Labels and File Structure 

X3.28-1976 Procedures for the Use of the Communication Control 

Characters of American National Standard Code for Information 

Interchange in Specified Data Communication Links 

X3.29-1971 Specifications for Properties of Unpunched Oiled 

Paper Perforator Tape 

X3.30-1971 Representation for Calendar Date and Ordinal Date 

X3.31-1973 Structure for the Identification of the Counties of the 

United States 

X3.32-1973 Graphic Representation of the Control Characters of 

American National Standard Code for Information Interchange 

X3.34-1972 Interchange Rolls of Perforated Tape 

X3.36-1975 Synchronous High-Speed Data Signaling Rates between 

Data Terminal Equipment and Data Communication Equipment 

X3.37-1980 Programming Language APT 

X3.38-1972 Identification of States of the United States 

(Including the District of Columbia) 

X3.39-1973 Recorded Magnetic Tape (1 600 CPI, PE) 

X3.40-1983 Unrecorded Magnetic Tape (9-Track 800 CPI, NRZI, 

1600 CPI, PE; and 6250 CPI, GCR) 

X3.41-1974 Code Extension Techniques for Use with the 7-Bit 

Coded Character Set of American National Standard Code for Infor¬ 

mation Interchange 

X3.42-1975 Representation of Numeric Values in Character Strings 

X3.43-1977 Representations of Local Time of the Day 

X3.44-1974 Determination of the Performance of Data Communi¬ 

cation Systems 

X3.45-1982 Character Set for Handprinting 

X3.46-1974 Unrecorded Magnetic Six-Disk Pack (General, Physical, 

and Magnetic Characteristics) 

X3.47-1977 Structure for the Identification of Named Populated 

Places and Related Entities of the States of the United States for 

Information Interchange 

X3.48-1977 Magnetic Tape Cassettes (3.810-mm [0.150-Inch] 

Tape at 32 bpmm [800 bpi] , PE) 

X3.49-1975 Character Set for Optical Character Recognition (OCR-B) 

X3.50-1976 Representations for U.S. Customary, SI, and Other 

Units to Be Used in Systems with Limited Character Sets 

X3.51-1975 Representations of Universal Time, Local Time Differ¬ 

entials, and United States Time Zone References 

X3.52-1976 Unrecorded Single-Disk Cartridge (Front Loading, 

2200 BPI) (General, Physical, and Magnetic Requirements) 

X3.53-1976 Programming Language PL/I 

X3.54-1976 Recorded Magnetic Tape (6250 CPI, Group Coded 

Recording) 

X3.55-1982 Unrecorded Magnetic Tape Cartridge, 0.250 Inch 

(6.30 mm), 1 600 bpi (63 bpmm), Phase encoded 

X3.56-1977 Recorded Magnetic Tape Cartridge, 4 Track, 0.250 

Inch (6.30 mm), 1600 bpi (63 bpmm), Phase Encoded 

X3.57-1977 Structure for Formatting Message Headings Using the 

American National Standard Code for Information Interchange for 

Data Communication Systems Control 

X3.58-1977 Unrecorded Eleven-Disk Pack (General, Physical, and 

Magnetic Requirements) 

X3.59-1981 Magnetic Tape Cassettes, Dual Track Complementary 

Return-to-Bias (CRB) Four-States Recording on 3.81-mm (0.150- 
Inch) Tape 

X3.60-1978 Programming Language Minimal BASIC 

X3.61-1978 Representation of Geographic Point Locations 

X3.62-1979 Paper Used in Optical Character Recognition (OCR) 

Systems 

X3.63-1981 Unrecorded Twelve-Disk Pack (100 Megabytes) (Gen¬ 

eral, Physical, and Magnetic Requirements) 

X3.64-1979 Additional Controls for Use with American National 

Standard Code for Information Interchange 

X3.66-1979 Advanced Data Communication Control Procedures 

(ADCCP) 

X3.72-1981 Parallel Recorded Magnetic Tape Cartridge, 4 Track, 

0.250 Inch (6.30 mm), 1 600 bpi (63 bpmm), Phase Encoded 

X3.73-1980 Single-Sided Unformatted Flexible Disk Cartridge 

(for 6631-BPR Use) 

X3.74-1981 Programming Language PL/I, General-Purpose Subset 

X3.76-1981 Unformatted Single-Disk Cartridge (Top Loading, 

200 tpi 4400 bpi) (General, Physical, and Magnetic Requirements) 

X3.77-1980 Representation of Pocket Select Characters 

X3.78-1981 Representation of Vertical Carriage Positioning Char¬ 

acters in Information Interchange 

X3.79-1981 Determination of Performance of Data Communica¬ 

tions Systems That Use Bit-Oriented Communication Procedures 

X3.80-1981 Interfaces between Flexible Disk Cartridge Drives 

and Their Host Controllers 

X3.82-1980 One-Sided Single-Density Unformatted 5.25-Inch 

Flexible Disk Cartridge (for 3979-BPR Use) 

X3.83-1980 ANSI Sponsorship Procedures for ISO Registration 

According to ISO 2375 

X3.84-1981 Unformatted Twelve-Disk Pack (200 Megabytes) (Gen¬ 

eral, Physical, and Magnetic Requirements) 

X3.85-1981 1/2-Inch Magnetic Tape Interchange Using a Self 

Loading Cartridge 

X3.86-1980 Optical Character Recognition (OCR) Inks 

X3.88-1981 Computer Program Abstracts 

X3.89-1981 Unrecorded Single-Disk, Double-Density Cartridge 

(Front Loading, 2200 bpi, 200 tpi) (General, Physical, and Mag¬ 

netic Requirements) 

X3.91M-1982 Storage Module Interfaces 

X3.92-1981 Data Encryption Algorithm 

X3.93M-1981 OCR Character Positioning 

X3.94-1985 Programming Language PANCM 

X3.95-1982 Microprocessors — Hexadecimal Input/Output, Using 

5-Bit and 7-Bit Teleprinters 

X3.96-1983 Continuous Business Forms (Single-Part) 

X3.98-1983 Text Information Interchange in Page Image Format 

(PIF) 

X3.99-1983 Print Quality Guideline for Optical Character Recogni¬ 

tion (OCR) 

X3.100-1983 Interface Between Data Terminal Equipment and 

Data Circuit-Terminating Equipment for Packet Mode Operation 

with Packet Switched Data Communications Network 

X3.101-1984 Interfaces Between Rigid Disk Drive(s) and Host(s) 

X3.102-1983 Data Communication Systems and Services — User- 

Oriented Performance Parameters 

X3.103-1983 Unrecorded Magnetic Tape Minicassette for Informa¬ 

tion Interchange, Coplanar 3.81 mm (0.150 in) 

X3.104-1983 Recorded Magnetic Tape Minicassette for Informa¬ 

tion Interchange, Coplanar 3.81 mm (0.150 in), Phase Encoded 

X3.105-1983 Data Link Encryption 

X3.106-1983 Modes of Operation for the Data Encryption Algorithm 

X3.110-1983 Videotex/Teletext Presentation Level Protocol Syntax 

X3.112-1984 14-in (356-mm) Diameter Low-Surface-Friction 

Magnetic Storage Disk 

X3.114-1984 Alphanumeric Machines; Coded Character Sets for 

Keyboard Arrangements in ANSI X4.23-1982 and X4.22-1983 

(continued on reverse) 

December 1985 


