
F
IP

S
 P

U
B
 1

01

FIPS PUB 101
NBS

RESEARCH
INFORMATION

"CWTER

FEDERAL INFORMATION
PROCESSING STANDARDS PUBLICATION

1983 JUNE 6

U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards

GUIDELINE
FOR

LIFECYCLE VALIDATION,
VERIFICATION, AND TESTING

OF COMPUTER SOFTWARE

- JK
468

- A8A3
#101
1983

iORY: SOFTWARE
ITEGORY: VALIDATION, VERIFICATION,

AND TESTING

S

U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Foreword

The Federal Information Processing Standards Publication Series of the National Bureau of
Standards (NBS) is the official publication relating to standards and guidelines adopted and
promulgated under the provisions of Public Law 89-306 (Brooks Act) and under Part 6 of Title 15,
Code of Federal Regulations. These legislative and executive mandates have given the Secretary
of Commerce important responsibilities for improving the utilization and management of
computers and automatic data processing in the Federal Government. To carry out the
Secretary’s responsibilities, NBS, through its Institute for Computer Sciences and Technology,
provides leadership, technical guidance, and coordination of Government efforts in the
development of guidelines and standards in these areas.

Comments concerning Federal Information Processing Standards Publications are welcomed
and should be addressed to the Director, Institute for Computer Sciences and Technology,
National Bureau of Standards, Washington, DC 20234.

James H. Burrows, Director
Institute for Computer Sciences and Technology

Abstract

This Guideline is intended for those who direct or implement software development projects. It recommends that

validation, verification, and testing (VV&T) be performed throughout the software development lifecycle, and presents

information on selection and use of such techniques to meet project requirements. The Guideline also explains how to

develop a VV&T plan to fulfill a specific project’s VV&T requirements.

Key words: automated software tools; computer software; Federal Information Processing Standards Publication; software

lifecycle; software testing; software validation; software verification; test coverage; test data generation.

Natl. Bur. Stand. (U.S.) Fed. Info. Process. Stand. Publ. (FIPS PUB) 101, 37 pages
(19841

CODEN.FIPPAT

For sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161

FIPS PUB 101

Federal Information
Processing Standards Publication 101

1983 June 6

ANNOUNCING THE

GUIDELINE FOR LIFECYCLE VALIDATION,
VERIFICATION, AND TESTING OF

COMPUTER SOFTWARE

Federal Information Processing Standards Publications are issued by the National Bureau of Standards pursuant to the Federal

Property and Administrative Services Act of 1949, as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive

Order 11717 (38 FR 12315, dated May 11, 1973), and Part 6 of Title 15 Code of Federal Regulations (CFR).

Name of Guideline: Guideline for Lifecycle Validation, Verification, and Testing of Computer Software

(FIPS PUB 101).

Category of Guideline: Software; Validation, Verification, and Testing.

Explanation: This Guideline presents an integrated approach to validation, verification, and testing

(VV&T) that should be used throughout the software lifecycle. Also included is a glossary of technical

terms and a list of supporting ICST publications. An appendix provides an outline for formulating a VV&T

plan, including the identification of VV&T requirements and the selection of supportive techniques and

tools. This Guideline is intended for use by software developers, managers, verifiers, maintainers, and end-

users.

Approving Authority: U.S. Department of Commerce, National Bureau of Standards (Institute for

Computer Sciences and Technology).

Maintenance Agency: U.S. Department of Commerce, National Bureau of Standards (Institute for

Computer Sciences and Technology).

Cross Index: None.

Applicability: This Guideline is intended as a basic reference guide for Federal ADP managers and

software developers for ensuring quality software by using validation, verification, and testing procedures

during development and operation. Its use is encouraged but is not mandatory.

Implementation: This Guideline should be consulted whenever Federal departments or agencies develop

new applications software or undertake major revisions of existing software.

Specifications: Federal Information Processing Standards Publication 101 (FIPS PUB 101), Guideline for

Lifecycle Validation, Verification, and Testing of Computer Software (affixed).

Qualifications: This Guideline is planned for use by Federal agencies when they develop new software or

undertake major revisions of existing software. The general lifecycle VV&T approach should be

implemented but may be augmented or diminished according to project goals and constraints.

Where to Obtain Copies of the Guideline: Copies of this publication are for sale by the National Technical

Information Service, U.S. Department of Commerce, Springfield, VA 22161. When ordering, refer to

Federal Information Processing Standards Publication 101 (FIPS-PUB-101), and title. When microfiche is

desired, this should be specified. Payment may be made by check, money order, or NTIS deposit account.

1

FIPS PUB 101

Federal Information
Processing Standards Publication 101

1983 June 6

Specifications for

GUIDELINE FOR LIFECYCLE VALIDATION,
VERIFICATION, AND TESTING OF

COMPUTER SOFTWARE

Contents

Page

1. OVERVIEW. 4

2. LIFECYCLE VALIDATION, VERIFICATION, AND TESTING. 5

2.1 Requirements Definition and Analysis Phase. 5

2.2 Design Phase. 7

2.3 Programming and Testing Phase. 7

2.4 Installation Phase. 8

2.5 Operations and Maintenance Phase. 8

3. SELECTION AND COMBINATION OF TECHNIQUES. 9

3.1 Requirements Definition and Analysis. 10

3.2 Design. 11

3.3 Programming and Testing. 12

3.4 Installation. 13

3.5 Operations and Maintenance. 13

3.6 Recommended Techniques. 13

SUPPORTING ICST DOCUMENTS. 15

REFERENCES. 15

GLOSSARY. 16

APPENDIX A. Planning for Validation, Verification, and Testing. 19

APPENDIX B. Example Applications of Validation, Verification, and Testing Technology. 21

B.l Overview of Examples. 21

B.2 Example 1: Software Development Using Basic VV&T Techniques. 23

B.3 Example 2: Software Development Using a Comprehensive VV&T Approach. 32

2

FIPS PUB 101

Figures

Page

Figure 2.1 Summary of VV&T activities. 5

Figure 3.1 General VV&T integration strategy. 10

Figure 3.2 Integrated approach to requirements VV&T. 11

Figure 3.3 Integrated approach to design VV&T.,. 12

Figure 3.4 Integrated approach to code VV&T. 12

Figure 3.5 Recommended techniques for lifecycle VV&T (basic approach). 13

Figure 3.6 Recommended techniques for VV&T (comprehensive approach). 14

Figure 3.7 Recommended techniques for VV&T for critical software. 14

Figure A.l A detailed outline of a project’s VV&T plan. 20

Figure B.1.1 Overview of examples. 21

Figure B.2.1 Informal prose requirements. 24

Figure B.2.2 Requirements graphical representation. 26

Figure B.2.3 Sample data base schema showing client-claims relation. 29

Figure B.2.4 Sample CLAIMS record description. 30

Figure B.2.5 Sample portion of code inspection checklist. 31

Figure B.3.1 Detailed PDL with ASSERTIONS. 35

Figure B.3.2 Find-policy subroutine and corresponding assertion violation message. 37

Tables
Page

Table B.l. 22

Table B.2. 33

3

FIPS PUB 101

1. OVERVIEW

This Guideline presents a methodology of lifecycle validation, verification, and testing (VV&T) for

computer software. It is addressed to people associated with software development and maintenance

including managers, developers, verifiers, maintainers, and end-users. This Guideline is a basic reference

guide for ensuring the production and maintenance of quality software. It recommends that VV&T be

performed throughout the software lifecycle.

A software lifecycle is the period of time beginning when the software product is conceived and ending

when the resultant software products are no longer available for use. The software lifecycle is typically

broken into phases, such as requirements, design, programming and testing, installation, and operations and

maintenance. Each phase consists of a well-defined set of activities whose products lead to the evolution of

the activities and products of each successive phase. From the outline of the specific lifecycle activities and

products of a particular software project, managers can more easily direct, and end-users can examine, the

progress of the software development and maintenance. Software developers and maintainers have a well-

defined set of tasks to perform. Verifiers, by checking the products of these tasks, can verify that the project

requirements are met at each phase.

A VV&T methodology is a procedure of review, analysis, and testing employed throughout the

software lifecycle from software planning through the end of software use to ensure the production and

maintenance of quality software. Validation determines the correctness of the final program or software

with respect to the software requirements. Verification employs integrity and evolution checking to

determine internal consistency and completeness. Integrity checking verifies the soundness of the products

at each phase of development by analyzing each product for internal consistency and completeness.

Evolution checking ensures the completeness and consistency of products at different development phases,

where one product is a refinement or elaboration of the other. Testing, either automated or manual,

examines program behavior by executing the program on sample data sets.

The term VV&T defines a method incorporating all three techniques for application throughout the

software lifecycle to determine functionality, to discover errors, and to ensure the production and

maintenance of quality software. Disciplined use of VV&T techniques should permeate all of the

development and maintenance processes. A VV&T methodology should also include the review, analysis,

and evaluation of intermediate and final products (documents as well as codes) of the lifecycle.

For purposes of illustration, the lifecycle phases used in this Guideline are requirements definition,

design, programming and testing, installation, and operations and maintenance. Section 2 presents generic

VV&T activities that should accompany each of these phases. Descriptions of development and

maintenance activities are also included in the text so that VV&T is placed in its appropriate perspective.

Specific techniques for implementing a VV&T approach are dependent upon a project and its development

method; hence, specific techniques vary with a project. However, the VV&T activities summarized in

figure 2.1 should occur for all projects. The integration of a VV&T methodology with the overall project,

beginning at the requirements phase, is essential in producing and maintaining quality software.

No single VV&T technique can guarantee correct, error-free software. However, a carefully chosen set

of techniques for a specific project can help to ensure the development and maintenance of quality software

for that project. Section 3 provides guidance in selecting and combining different types of techniques to

form an effective VV&T program. Static, dynamic, and formal analyses are discussed and guidance for their

use provided. Figures establishing three different levels of recommended VV&T approaches are also

included.

A VV&T program should be tailored to the needs and constraints associated with the software project.

An outline for developing a VV&T program is presented in the appendix. It indicates the information that

should be included and can also be used as a checklist to determine if appropriate planning is being done

and to ensure that necessary decisions are recorded.

Further aids for the understanding of VV&T concepts, lists of techniques and tools, and details on

VV&T planning are available from the supporting documents listed in this Guideline. A glossary provides

definitions for some of the more frequently used VV&T terms.

4

FIPS PUB 101

2. LIFECYCLE VALIDATION, VERIFICATION, AND TESTING

VV&T is a process of review, analysis, and testing employed throughout the software lifecycle to

ensure the production of quality software. The review and analysis should include the examination of the

development product and the documentation at each phase. Figure 2.1 presents an overview of the VV&T

activities that should accompany each phase of development. This summary provides a framework from

which a VV&T program can be tailored for specific projects. Each lifecycle phase is comprised of both

development and VV&T activities. In order to emphasize their relationships to each other, the following

sections elaborate on both the development and VV&T lifecycle activities and their products. Uppercase

titles are used for VV&T activities and products for which the VV&T team is responsible. The VV&T team

may be members of the development group, the same organization, or an independent group.

LIFECYCLE VV&T ACTIVITIES

I. Requirements Definition and Analysis Phase

* Development of the project VV&T plan

* Generation of requirements-based test cases

* Review and analysis of the requirements

* Review and analysis of the draft user manual

II. Design Phase

* Completion of VV&T plan

* Generation of design-based test scenarios

* Review and analysis of the design

Preliminary design integrity check

Preliminary design evolution check

* Development of test support software

III. Programming and Testing Phase

* Completion of test case specification

* Review, analysis, and testing of the program

Code integrity check

Code evolution check

Unit test

Integration test

System test

IV. Installation Phase

* System acceptance

V. Operations and Maintenance Phase

* Software evaluation

* Software modification evaluation

* Regression testing

Figure 2.1 Summary of VV&T activities

2.1 Requirements Definition and Analysis Phase

DESCRIPTION: The goal of the requirements phase is to specify both the problem and the

constraints upon the solution in a rigorous form. Requirements identification is somewhat iterative with the

requirement statement being subject to modification during design as the problem is better understood.

5

FIPS PUB 101

These modifications must be documented to create a traceable record of the progress and evolution of the

final product. Two planning activities occur during this phase: (1) project plans, budgets, and schedules are

developed; and (2) a VV&T plan is developed from the VV&T requirements identified in this phase.

DEVELOPMENT PRODUCTS:

* The Software Requirements Document: This document specifies what the system must do, including

the requisite information flows, processing functions, performance constraints, and the acceptance criteria

for deciding that specified requirements are satisfied. This document also contains those internal

specifications which, although transparent to the end user, are necessary to the development of the end

product. (Development Product)

* The Project Plan: The project plan explains the strategy for managing the development of the

software. This document defines the goals and activities for all phases of the project, estimates resource

requirements, and specifies intermediate milestones, including management and technical reviews. It defines

methods for design, coding, VV&T, documentation, problem reporting, and change control. In particular, it

assigns responsibility for the VV&T effort, depending on project size, criticality, and budget. The

responsible party may be the programmer, a separate member of a development group, member(s) outside

the development group but from the same organization, or from a completely independent organization.

The project plan also specifies supporting techniques and tools. (Development Product)

* Project Standards: Project standards define specific techniques and formats for requirements, design,

coding, languages, documentation, configuration management, and VV&T. (Development Product)

* Draft of Users’ Manual: A users’ manual describes in non-ADP terminology how to use the system.

The manual describes both the system functionality and the user interface. Its preparation during the

requirements phase is an excellent mechanism for ensuring that both the users and the developers share the

same view of the system. The manual serves as a reference document for the preparation of input data and

parameters and for interpretation of results. (Development Product)

VV&T ACTIVITIES AND PRODUCTS:

* DEVELOPMENT OF THE PROJECT VV&T PLAN: During this activity, the VV&T analyst (who

may be part of the development group or from a separate organization) will determine VV&T requirements;

design a VV&T process; select techniques and tools; and establish schedules, responsibilities, and budgets.

(VV&T Activity)

* THE VALIDATION, VERIFICATION, AND TESTING PLAN: The VV&T plan specifies goals

and approaches to the VV&T activities. It contains the outline for a project specific VV&T process,

identifies techniques and tools to be used, and specifies plans (schedules, budgets, responsibilities, etc.) for

performing the VV&T activities. (VV&T Product)

* INITIAL SOFTWARE TEST CASE SPECIFICATION: A basic set of test cases is developed to

clarify and to determine measurability of each software requirement. The acceptance criteria are used to

develop the test cases. Input data and expected results for each test case are included in the specification.

(VV&T Activity, Product)

* REVIEW AND ANALYSIS OF THE PROJECT REQUIREMENTS: Project requirements are

reviewed for clarity, completeness, consistency, testability, and traceability to the problem statement. The

goal of this activity is to ensure that these requirements will result in a practical, usable solution to the entire

problem. (VV&T Activity)

* REVIEW AND ANALYSIS OF USERS’ MANUAL: The users’ manual is reviewed for clarity and

consistency. It is checked for completeness against the requirements document. In addition, this verification

activity includes ensuring that the internal specifications of the requirements document are defined

sufficiently to lead to the production of the functions and interfaces described in the users’ manual. (VV&T

Activity)

6

FIPS PUB 101

2.2 Design Phase

DESCRIPTION: The goal of this phase is to design a solution that satisfies the requirements and

constraints. Alternative solutions are formulated and analyzed and the best solution is selected and refined.

A high-level specification which defines information aggregates, information flows, and logical processing

steps is generated and is refined into a detailed specification describing the physical solution (algorithms and

data structures). The result is a solution specification that can be implemented in code with little additional

refinement. Project plans (schedules, budgets, deliverables, etc.) are reviewed and revised as appropriate.

DEVELOPMENT PRODUCTS:

* The Design Specification: Frequently this specification contains two documents: (1) a preliminary

design document to identify a high-level solution developed during this phase and (2) a detailed design

document which defines and refines software (algorithms and data) to be coded in the following phase.

(Development Product)

* A Revised Requirements Specification: Design activities may reveal incorrect, inconsistent, infeasible, or

ambiguous requirements resulting in the revision of their specification. (Development Product)

* An Updated Project Plan: Upon completion of the preliminary design, the scope and complexity of the

solution should be well understood. As a result, the project plan (schedules, budgets, deliverables, etc.) is

more accurate and realistic. (Development Product)

VV&T ACTIVITIES AND PRODUCTS:

* AN UPDATED VV&T PLAN: New or revised project requirements may warrant revision of the

VV&T plan. The detailed design plan may indicate the need for additional testing procedures. (VV&T

Product)

* REVIEW AND ANALYSIS OF THE DESIGN: The design is analyzed to ensure internal consistency,

completeness, correctness and clarity, and to verify that the design, when implemented, will satisfy the

requirements. (VV&T Activity)

* SOFTWARE TEST CASE SPECIFICATION: Additional test scenarios and test cases (input data and

expected results) are developed to exercise and test logical and structural aspects of the design. (VV&T

Product)

* IMPLEMENT OR ACQUIRE TESTING SUPPORT TOOLS: Development or acquisition of any

support software needed for unit, integration, or system testing should be completed and installed during the

detailed design phase to ensure readiness during programming and testing. (VV&T Activity)

2.3 Programming and Testing Phase

DESCRIPTION: During this phase, the detailed design is implemented in code, resulting in a

program or system ready for installation. Three types of testing are performed: unit, integration, and system.

Although the programmer is responsible for unit testing, the responsibility for integration and system testing

is determined by the project management, depending on project size and criticality. The project plan

contains general information, and the VV&T plan specific details, assigning responsibilities for the

development, execution, and evaluation of all test cases and data at the various levels of testing. For large or

critical software, separate test teams may be used. Unit testing checks for typographic, syntactic, and logical

errors. Code modules are checked individually by the programmers who wrote them to ensure that each

correctly implements its design and satisfies the specified requirements. Integration testing focuses on

checking the intermodule communication links and on testing aggregate functions formed by groups of

modules. System testing examines the operation of the system as an entity, sometimes in a simulated

operating environment. This type of testing ensures that the software requirements have been satisfied both

singly and in combination. The final activity of this phase is to ensure readiness for the software installation,

including revision of plans as necessary and completion of all other coding, testing, and documentation.

7

FIPS PUB 101

DEVELOPMENT PRODUCTS:

* Program Code: Fully documented and tested code is constructed, ready for installation. (Development

Activity, Product)

* User Documentation: Manuals describing the input and report formats, user commands, error messages,

and instructions for operation by the user are completed. (Development Product)

* Maintenance Manual: Documentation to maintain the system is written; however, the manual may be

modified or completed during the installation phase. (Development Product)

* Installation Plan: Such a plan specifies the approach to, and details of, the installation of the software.

(Development Product)

* Problem Reports: Observed problems are recorded in formal statements and may require return to a

previous phase for resolution. (Development Product)

VV&T ACTIVITIES AND PRODUCTS:

* SOFTWARE TEST CASE SPECIFICATION: Final revisions and additions to the test data are made.

(VV&T Activity, Product)

* REVIEW AND ANALYSIS OF THE PROGRAM: This activity includes checking for adherence to

coding standards and manual/automated analysis of the program by static, dynamic, and formal methods.

(VV&T Activity)

* TESTING THE PROGRAM: The program is executed with the test data; actual results are compared

with the expected results and are validated for satisfaction of the requirements. (VV&T Activity)

* TEST RESULTS AND TEST EVALUATION REPORTS: The testing activities, including

comparison of actual and expected results, are documented. (VV&T Product)

* PROBLEM REPORTS: Observed problems are recorded in formal statements and may necessitate

returning to a previous phase for resolution. (VV&T Product)

2.4 Installation Phase

DESCRIPTION: During this phase the system is placed into operation. The first task, integrating the

system components, may include installing hardware, installing the program(s) on the computer,

reformatting/creating the data base(s), and verifying that all components have been included. Modification

of the program code may be necessary to obtain compatibility between hardware and software, or between

different software modules for which earlier simulation testing may not have been adequate. The next task is

to test the system in its complete operating environment. The test data from earlier phases is enhanced and

used. The result is a system qualified and accepted for production use. The third task is the start of system

operation. If a previous system exists, then strategies for its replacement include immediate total

replacement, “phasing-in” of the new system, or parallel operation of both systems. A completely new

program could either be phased into operation or could be implemented at once. This task also includes

operator and user training.

DEVELOPMENT PRODUCT:

* Installation Report: This report describes the results of the installation activities, including data

conversion, installation testing/results, and software/system problems and modifications. (Development

Product)

VV&T ACTIVITIES AND PRODUCTS:

* ACCEPTANCE TESTING: Once the system is tested, the primary VV&T activity centers on

acceptance of the system by the customer (or principal user when the developers and users are the same).

Acceptance may range from review or acknowledgment of the VV&T activities during system

development to detailed acceptance testing by the customer prior to formal acceptance. (VV&T Activity)

8

FIPS PUB 101

FORMAL ACCEPTANCE: A customer representative should formally sign off on a form indicating that

testing has been completed and that the system is accepted. (VV&T Product)

2.5 Operations and Maintenance Phase

DESCRIPTION: This phase involves the actual use of the software and monitoring of its operation

to ensure that it succeeds in solving the user’s problem. Most often, some need for modifying the software

arises during this phase. The maintenance process involves determining the cause for each modification

which could be an error made in the original development or previous maintenance, a change in the

surrounding environment, the recognition of a new or evolving requirement, or the desire for a design

modification to improve performance, usability, etc. Once the cause is determined, the software (code and

documentation) is “redeveloped” from that point. For example, redevelopment due to a change in

requirements would result in modifications to the requirements specification, the design, the code, and user

and operation manuals. Problem reporting, change requests, and other change control mechanisms are used

to facilitate the systematic correction and evolution of the software. In addition, performance measurement

and evaluation activities are performed to ensure that the system continues to meet performance

requirements in the context of a changing system environment.

DEVELOPMENT PRODUCTS:

* Problem Reports: These are formal statements of observed problems. Their analyses may result in

software change requests. (Development Product)

* Change Requests: These are formal requests for specific modifications to the software. These could be

generated due to an error (i.e., problem report) or a modification of the requirements or design.

(Development Product)

* Revision to Initial Development Products: As a result of change requests, any one or all of the products

of the initiation and development phases may require revision. (Development Product)

VV&T ACTIVITIES AND PRODUCTS:

* SOFTWARE EVALUATION: Continuous monitoring and evaluation to assess the operation of the

software and to ensure continued satisfaction of user requirements occurs throughout the operation and

maintenance of the software. (VV&T Activity)

* CHANGE REQUESTS: Formal requests by VV&T personnel for specific changes to the software must

be submitted to those responsible for making the revisions. (VV&T Product)

* REGRESSION TESTING: Test cases which a program has previously executed correctly in order to

detect errors created during software modification are rerun and compared. (VV&T Activity)

* SOFTWARE MODIFICATION EVALUATION: Requested modifications to the system are

evaluated in the same manner that the original software development was evaluated. If the requirements or

design specifications are modified, the VV&T activities appropriate to those phases should be performed.

When the modifications are completed, they must be reviewed and tested to ensure that they not only fulfill

the modification request, but also have not adversely affected any other part of the system. (VV&T

Activity)

3. SELECTION AND COMBINATION OF TECHNIQUES

Software VV&T detects errors and validates that the product is correct, complete, and consistent with

respect to its requirements. However, no single VV&T technique can guarantee correct, error-free software.

A combination of carefully-applied techniques can provide confidence in the adequacy of the software.

Three types of analysis (static, dynamic, formal) are available and each provides the VV&T analyst with

different types of specific information about the solution being examined.

1. Static analysis detects errors through the examination of the product. It focuses on the form and

structure of the solution, but not the functional or computational aspects. It is also the technique used to

examine all document items at all phases of development.

9

FIPS PUB 101

2. Dynamic analysis is the process of determining the validity of a program and of detecting errors by
studying the program’s response to a set of input data. It addresses the functional, structural, and
computational aspects.

3. Formal analysis uses rigorous mathematical techniques to analyze the algorithms or properties of a
solution. It can provide a strong statement regarding certain properties of a solution including correctness,
but is limited by the difficulty of application and lack of automated support.

These three types of analysis should be used in conjunction with one another to provide a powerful
VV&T technology.

The integration strategy shown in figure 3.1 is simple. First, static analysis techniques are applied to
analyze the form of the specification. These techniques are straightforward and usually the least expensive
to apply. Applicable to all levels of specification, they identify flaws that could prevent application of
dynamic and formal techniques. However, dynamic analysis methods are needed to focus on the functional
meaning of the solution and to detect errors in their specification. These may be manually applied to the
requirements and design specifications. The code may undergo dynamic testing by executing test data on it.
Dynamic analysis techniques, when applied properly, are effective, comprehensive, and within the resource
constraints of nearly all projects. For further assurances, formal analysis techniques may be used; these are
usually quite expensive because they require highly trained people and sophisticated support.

The analysis techniques discussed above apply to different phases of the lifecycle. In figures 3.5
through 3.7, three levels of recommended combinations of VV&T techniques are presented. A VV&T
approach appropriate to the software requirements and resources of the project should be used. All
recommendations are cumulative. For example, the comprehensive set of techniques includes the basic set.
NBS Special Publications 500-75 and 500-93 contain information on specific techniques and tools that can be
used to support lifecycle VV&T.

3.1 Requirements Definition and Analysis

During the requirements phase, static analysis focuses on checking adherence to specification
conventions, consistency, completeness, and language syntax. Dynamic analysis focuses upon information
flows, functional interrelationships, and performance requirements. Manual methods such as inspections,
peer reviews, and walkthroughs are effective in accomplishing both types of analysis if rigorously
performed. If the constructs of the requirements specification scheme are clearly defined and capable of
being represented in a computer processable form, then automated tools may be used to perform both the
static and dynamic analyses. Several such specification methods with supporting tools are available.

10

FIPS PUB 101

Functional Traces to be Examined

Figure 3.2 Integrated approach to requirements VV& T

3.2 Design

As with the requirements, the representation schemes used to specify the design determine the specific

analysis techniques which should be employed. Design specification schemes generally provide mechanisms

for specifying algorithms and their inputs and outputs in terms of modules. Inconsistencies in specifying the

flow of data objects through the modules can be detected by static analysis techniques. Certain errors made

during the composition of a design can be detected, such as the inconsistencies between the inputs and

outputs specified for a high level module and the cumulative inputs and outputs of the submodules.

Dynamic analysis of a design is accomplished by some form of design simulation. This may be a manual

walkthrough or an automated simulation using a model of the design. Manual walkthroughs, when

rigorously performed and guided by documented test scenarios, are an effective technique for analyzing a

software design. For larger software designs and highly critical systems or components, an automated

simulation may be appropriate. This requires the construction and execution of a solution model with the

test scenarios. To be credible the model must be validated as a faithful representation of the solution,

although the higher the required degree of model fidelity, the higher the cost of simulation. This cost

generally increases with the complexity of the model.

Formal analysis techniques may be manually applied to a design specification if the specification is

sufficiently formal and exact. This involves tracing paths through the design specification and formulating a

composite function for each. This procedure is more feasible at higher levels of a hierarchical design

specification. Less detail is present and the resulting algorithm paths are relatively short and few in number.

Thus, the evolved functions remain concise and manageable. The purpose of deriving these composite

functions for a given level of design is to compare them to the functions of the previous level. This process

ensures that the design continues to specify the same functional solution as is hierarchically elaborated.

The formal analysis of a design specification can be improved by using automated symbolic execution

tools. Such tools can be expensive to create and operate; in return, however, they offer greater speed and

capacity for manipulating detailed specifications. Thus, the functional effects of all levels of a design

specification can be determined.

11

FIPS PUB 101

Design Specification

Modify

Test

No

Consistency

Detected Errors

Functional and
Performance

Behavior

Information About
Numerical Properties,

Complexity, and Correctness

No Errors

Detected Errors

Static Found Functional Found Formal
Analysis Simulation Analysis

Analysis

Detected Errors

Figure 3.3 Integrated approach to design VV&T

3.3 Programming and Testing

Static analysis techniques and tools are used to ensure the proper form of programming products, for

example, code and documentation. This can be accomplished by checking adherence to coding and

documentation conventions, interface and type checking, etc. The checking can be done by manual

techniques and automated tools. Inspections and code auditors fit into these categories, respectively.

Dynamic analysis techniques are employed to study the functional and computational correctness of the

code. Initially, such manual techniques as walkthroughs can be used as an effective forerunner to testing.

Testing is accomplished by running the code on the test data sets which were developed during the

requirements and design phases and completed during the programming and testing phase. The correctness

Of the test executions is determined more definitively when the expected results are specified. Testing for

adherence to assertions is also highly advisable. These assertions, are products of the design activity and

provide additional information regarding expected behavior of the software.

If software is being developed in an environment other than the production environment, testing is

more problematic. Here the production environment can be simulated or taken into account informally. In

any case, the validity of the test results depends upon the fidelity of the simulation or informal judgments. If

there is a significant difference in the two environments, there will be an eventual need for some additional

testing in the actual production environment. The balance between simulation testing and actual production

environment testing must be determined for each individual project, based partially upon how available and

expensive the production environment is.

Whenever assurances of correctness over and above those provided by dynamic analysis are required,

formal analysis follows testing. Symbolic evaluation and formal proof techniques can be effective in

achieving high levels of confidence. An integrated VV&T approach is shown in figure 3.4.

Test Cases/Data

■ Modify

No

Differences
Between Actual &
Expected Outputs

Information About
Numerical Properties,

Complexity & Correctness

No

V_/Consistency

Detected Errors

Code Static
Frrors ^
Found Dynamic

Errors
Found Formal

a Analysis Analysis Analysis

Detected Errors

Analysis
Completed

Detected Errors

Figure 3.4 Integrated approach to code VV&T

12

FIPS PUB 101

3.4 Installation

During the installation phase, testing is done to verify earlier test results, to test special cases, and to

determine whether or not to accept the system. In the first case, samples of earlier tests from any phase and

technique are selected and rerun. This gives added assurance that the tests were accurate when first used

and that their results were not negated at a later stage of development. If earlier testing required simulation,

then some special tests may be run to verify those results in the actual production environment. Situations

unique to the operating environment are examined at this stage. Formal acceptance testing is performed, to

the extent required by the project. Such testing may include functional tests and trial use of the user

documentation or training.

3.5 Operations and Maintenance

During operations and maintenance, any problems within the system, additions and enhancements to it,

or modifications due to environmental changes involve the use of techniques appropriate to the

development phases that are affected.

3.6 Recommended Techniques

The methodology of validation, verification, and testing (VV&T) throughout the lifecycle of computer

software requires the integration of development activities with VV&T activities. The VV&T requirements

are tailored specifically to a project, and its requirements, constraints, and resources. Methodologies may

range from simple for small projects to very complex for large, and/or highly critical projects. Disciplined

application of a VV&T methodology developed from careful selection and combination of VV&T

techniques can help ensure the production of high quality software. All recommendations are cumulative;

for example, the comprehensive set of techniques assume the inclusion of the basic set.

Phase Technique

Requirements Review

Design Inspection

Code Inspection

Test Coverage

Unit: 100% statement

Integration: 100% module call

System: 95% module call

100% of major logic paths

Installation Acceptance Testing:

Insure continued validity of system test

Operations and maintenance For affected code:

Inspection

Test Coverage:

100% statement

100% module

Figure 3.5 Recommended techniques for lifecycle VV& T (basic approach)

13

FIPS PUB 101

Phase Technique

Requirements Inspection

Design Interface Analysis j

Data Flow Analysis !

Code Assertions j

Standards Audit

Interface Analysis ;

Data Flow Analysis

Explicit Trace-back of Code to Requirements

Installation Acceptance Testing

Operations and maintenance For affected code:

Reapply techniques used during development

Figure 3.6 Recommended techniques for VV& T (comprehensive approach)

Phase Technique

Requirements Automated Consistency Analysis

Design Automated Consistency Analysis

Automated Simulation

Proof of Critical Sections

Code Symbolic Evaluation

Proof of Critical Sections or Properties

Installation Acceptance Testing:

System Certification

Operations and maintenance Re-do proofs that cover affected areas; retest

Figure 3.7 Recommended techniques for VV&T for critical software

Note: All recommendations are cumulative, for example, the comprehensive set of techniques assume the inclusion of the basic set.

14

FIPS PUB 101

SUPPORTING ICST DOCUMENTS

* NBS Special Publication 500-56 “Validation, Verification, and Testing for the Individual Programmer,”

M. Branstad, J. Cherniavsky, and W. Adrion, 1980.

* NBS Special Publication 500-75 “Validation, Verification, and Testing of Computer Software,” W.

Adrion, M. Branstad, and J. Cherniavsky, 1981.

* NBS Special Publication 500-87 “Management Guide to Software Documentation,” A. Neumann, 1982.

* NBS Special Publication 500-88 “Software Development Tools,” R. Houghton, Jr., 1982.

* NBS Special Publication 500-93 “Software Validation, Verification, and Testing Technique and Tool

Reference Guide,” P. Powell, Editor, 1982.

* NBS Special Publication 500-98 “Planning for Software Validation, Verification, and Testing,” P.

Powell, Editor, 1982.

** FIPS 38 “Guidelines for Documentation of Computer Programs and Automated Data Systems,” 1976.

** FIPS 64 “Guidelines for Documentation of Computer Programs and Automated Data Systems for the

Initiation Phase,” 1979.

NOTES:

1. Subsequent NBS documents will include guidance on acceptance testing and maintenance.

2. NBS documents may be ordered from:

* Superintendent of Documents

U.S. Government Printing Office

Washington, DC 20402

(202) 783-3238

** National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

(703) 487-4650

REFERENCES

[CAIN] Caine, S. H.; Gordon, E. K. PDL: A tool for software design. Proceedings of the National

Computer Conference; 1975.

[SAMM] SAMM (Systematic Activity Modeling Method) Primer. BCS 10167; 1978 October.

[TEIC] Teichroew, D.; Hershey, E. PSA/PSL: A computer-aided technique for structured documentation

of information processing systems. IEEE Transactions on Software Engineering, Vol. SE-3: No. 1; 1977.

15

FIPS PUB 101

GLOSSARY

ACCEPTANCE TESTING: formal testing conducted to determine whether a software system satisfies its

acceptance criteria and to enable the customer to determine whether to accept the system.

ASSERTION: a logical expression specifying a program state that must exist or a set of conditions that

program variables must satisfy at a particular point during program execution.

CERTIFICATION: acceptance of software by an authorized agent usually after the software has been

validated by the agent, or after its validity has been demonstrated to the agent.

COMPLETENESS: the property that all necessary parts of the entity in question are included.

Completeness of a product is often used to express the fact that all requirements have been met by the
product.

CONSISTENCY: the property of logical coherency among constituent parts. Consistency may also be

expressed as adherence to a given set of rules.

CORRECTNESS: the extent to which software is free from design and coding defects, i.e., fault free. It is

also the extent to which software meets its specified requirements and user objectives.

DATA FLOW ANALYSIS: a graphical analysis technique to trace behavior of program variables as they

are initialized, modified, or referenced while the program executes.

DEBUGGING: the process of correcting syntactic and logical errors detected during coding. With the

primary goal of obtaining an executing piece of code, debugging shares certain techniques and strategies

with testing but differs in its usual ad hoc application and local scope.

DYNAMIC ANALYSIS: involves execution or simulation of a development phase product. It detects

errors by analyzing the response of a product to sets of input data.

EVOLUTION CHECKING: testing to ensure the completeness and consistency of a software product at

different levels of specification, where one product is a refinement or elaboration of another.

FORMAL ANALYSIS: use of rigorous mathematical techniques to analyze the algorithms of a solution.

The algorithms may be analyzed for numerical properties, efficiency, and/or correctness.

FUNCTIONAL TESTING: application of test data derived from the specified functional requirements

without regard to the final program structure.

INSPECTION: a manual analysis technique which examines the program (requirements, design, or code) in

a very formal and disciplined manner to discover errors.

INTEGRATION TESTING: orderly progression of testing in which software elements, hardware

elements, or both, are combined and tested, until all intermodule communication links have been integrated

INTEGRITY CHECKING: testing to verify the soundness of a software product at each phase of

development.

INTERFACE ANALYSIS: checking that intermodule communication links are performed correctly.

LIFECYCLE: see SOFTWARE LIFECYCLE

16

FIPS PUB 101

PROOF OF CORRECTNESS: use of techniques of mathematical logic to infer that a relation between

program variables assumed true at program entry implies that another relation between program variables

holds at program exit.

REGRESSION TESTING: Rerunning test cases which a program has previously executed correctly to

detect errors created during software correction or modification activities.

SIMULATION: use of an executable model to represent the behavior of an object. During testing, the

computational hardware, the external environment, and even code segments may be simulated.

SOFTWARE: computer programs, procedures, rules, and possibly associated documentation and data

pertaining to the operation of a computer system.

SOFTWARE LIFECYCLE: period of time beginning when a software product is conceived and ending

when the product is no longer available for use. The software lifecycle is typically broken into phases, such

as, requirements, design, programming and testing, installation, and operation and maintenance.

STANDARDS AUDIT: check to ensure that applicable standards are used properly.

STATEMENT TESTING: a test method satisfying the criterion that each statement in a program be

executed at least once during program testing.

STATIC ANALYSIS: direct analysis of the form and structure of a product without executing the product,

It may be applied to the requirements, design, or code.

SYMBOLIC EXECUTION or EVALUATION: an analysis technique deriving a symbolic expression for

each program path.

SYSTEM TEST: process of testing an integrated hardware and software system to verify that the system

meets its specified requirements.

TESTING: examining the behavior of a program by executing the program on sample data sets.

UNIT TEST: testing of a module for typographic, syntactic, and logical errors, for correct implementation

of its design, and for satisfaction of its requirements.

VALIDATION: determination of the correctness of the final program or software produced from a

development project with respect to the user needs and requirements.

VERIFICATION: the demonstration of consistency, completeness, and correctness of the software at each

stage and between each stage of the development lifecycle.

VV&T: validation, verification, and testing; used as an entity to define a procedure of review, analysis, and

testing throughout the software lifecycle to discover errors, determine functionality, and ensure the

production of quality software.

WALKTHROUGH: a manual analysis technique in which the module author describes the module’s

structure and logic to an audience of colleagues.

NOTE: Most of the definitions above and many more terms common to VV&T and software practices

appear in:

ADRION, W. R.; BRANSTAD, M. A.; CHERNIAVSKY, J. C. Validation, verification, and testing of

computer software. Natl. Bur. Stand. (U.S.) Spec. Publ. 500-75.

17

FIPS PUB 101

IEEE Computer Society, Technical Committee on Software Engineering. Glossary of software engineering

terminology (Draft-IEEE Project 729), The Institute of Electrical and Electronics Engineers, Inc., 345 East

47th St., New York, NY 10017.

18

FIPS PUB 101

APPENDIX A
PLANNING FOR VALIDATION, VERIFICATION, AND TESTING

A validation, verification, and testing plan is a document, or group of documents, specifying a project’s

VV&T requirements and the procedures needed to achieve them. An outline of the plan may be general and

brief, or detailed as shown in figure A.l. Because the general planning drives the VV&T planning, in turn

providing feedback to the overall development, the general project planning and the VV&T planning are

closely integrated. Once the general background, goals, and requirements are clearly understood, the

VV&T planning begins. The following four-step approach is useful in developing a project’s VV&T plan:

(1) identify the VV&T requirements

(2) determine the constraints on the VV&T activities

(3) select VV&T techniques

(4) itemize results of the first three steps in a written VV&T document.

Some factors to consider during VV&T planning are the following:

* VV&T requirements are based on project needs and constraints.

* The VV&T techniques and tools that can be used are dependent upon and must be consistent with

the project’s development approach.

* The details of the VV&T plan, e.g., time and resource requirements, must be coordinated with the

overall schedule and budgets.

* Planning activities take place during the requirements phase, with attention paid to activities that

require long lead time or must begin early in the project, such as personnel training or the initiation of

tool acquisition.

* Revisions and refinements of the plan may occur during the design phase.

* A small project may have a brief plan; however, as the size, complexity, and critical nature of the

project increase, so will the complexity and formality of its VV&T plan and the effort required to

develop it.

The outline in figure A.l indicates the contents of a VV&T plan. The project’s background and

requirements, as well as the information from the first three steps of the four-step approach are included.

Section 1 contains the general project background and information on the proposed solution. Section 2

specifies the VV&T requirements, measurement criteria, and constraints. Section 3 states the VV&T

procedures to be applied during development in general and by phase. Supporting information for the

selections made in Section 4 is detailed in Appendix B of the plan. Further information on planning a

VV&T methodology may be found in NBS Special Publication 500-98, Planning for software validation,

verification, and testing.

19

FIPS PUB 101

I. Background and Introduction

Establishes the context for the VV&T document. Is brief and introductory in nature. i

Focuses on those aspects of the problem and/or solution which influence the VV&T needs
and approach.

A. Statement of problem

B. Proposed solution

C. References/related documents

II. VV&T Requirements and Measurement Criteria

Presents the VV&T requirements in one of several formats: the total VV&T requirements,

with all worksheets and phase information; a summary of requirements information;

statement of project level information, with phase data presented later.

A. VV&T requirements and their importance

1. Functional

2. Performance

3. Reliability

4. Other

B. Measurement criteria for each requirement

1. General

2. Product specific

3. Phase specific

C. References/related documents

III. Phase by Phase VV&T Plans

First, describes VV&T approach by phases, products, major reviews and checkpoints,

and practices common to all phases. Then, presents the specific activities to be carried

out phase by phase.

A. Project background and summary information

1. Project phases and products

2. Major reviews (both management and technical)

B. Requirements phase VV&T activities

1. VV&T activities

2. VV&T techniques and tools selected

a. Reviews

b. Methods of analysis

3. Required support tools, automated & other

4. Roles and responsibilities

5. Schedules

6. Budgets

7. Personnel

C. Design phase

D. Programming and testing phase

E. Installation phase

F. Operations and maintenance phase

(C-F contain items 1-7, as indicated in B, as needed)

Appendix A Project and Environmental Considerations

A. Technical issues

B. Project constraints

C. Computing resources

Appendix B Technique and Tool Selection Information

A. Candidate list of techniques and tools

B. Rationale for selection of techniques and tools___

Figure A.l A detailed outline of a project’s VV&T plan

20

FIPS PUB 101

APPENDIX B
EXAMPLE APPLICATIONS OF VALIDATION, VERIFICATION,

AND TESTING TECHNOLOGY

This appendix presents examples in which the concepts of software development, software VV&T, and

VV&T planning are illustrated. The purpose is to show how these concepts may be applied in a variety of

situations.

Two examples are presented, which use an automobile insurance transaction processing procedure as

the system being developed. These examples illustrate adaptation of both the basic and the comprehensive

VV&T approaches to specific projects. These examples cover only the development phases, with the design

phase subdivided into a preliminary design and a detailed design. The VV&T techniques for these examples

differ slightly from the recommended VV&T approaches of figures 3.5 and 3.6. These differences illustrate

that a VV&T methodology may be tailored to fit the goals and constraints of a specific software project.

B.l Overview of Examples

Example 2 builds upon Example 1. The tools introduced in Example 2 are to be used in addition to the

techniques described in the first example. Figure B.1.1 presents an overview of the different VV&T tools

and techniques which are used in the examples.

Software Development

Example

(#1)
Basic

Techniques

(#2)
Comprehensive

Supporting

Technology

Graphical Requirements

Representation

Static Analysis Walkthroughs

Reviews

Inspection

Interface Checker

Dataflow Analyzer

Standards Checker

Dynamic Analysis Functional Testing

Test Coverage

Analysis

Assertion Generation

Assertion Checking !

Formal Analysis

Figure B.1.1 Overview of examples

The software development subphases for each example are:

o Requirements,

o Preliminary design,

o Detailed design, and

o Programming (includes testing).

Each of the examples will be presented showing for each phase:

o Inputs to the phase,

o Outputs from the phase,

o Supporting technology used in the phase, and

o Activities which comprise the phase.

21

FIPS PUB 101

Most activities will contain:

o VV&T purpose for the activity,

o VV&T technique(s) used by the activity, and

o Example(s).

Tables B.l and B.2 provide a summary of the development and VV&T techniques and activities for the

basic and comprehensive activities. These tables present a synopsis of the examples.

Table B.l Example 1. Summary software development using basic VV&T techniques

Subphases Requirements Preliminary design Detailed design Programming

INPUT

•Informal prose

requirements

•Detailed requirements

specification

-Revised prose

description

-Revised graphical

GR representation

•VV&T plan

•Preliminary design

document

•VV&T plan

•Test cases

•Detailed design

document

•VV&T plan

•Test cases

OUTPUT

•Detailed requirements

specification

•VV&T plan

•Initial test cases

•Preliminary design

document

-Further refined GR

system representation

-Detailed user input/

output specification

-Basic control flow

design

-Basic system infor¬

mation specification

•Additional test cases

•Detailed design

document

•Additional test

cases

•System software

•Test results

SUPPORTING

TECHNOLOGY

•Formal requirements

reviews

•A graphical requirements

representation method

•Requirements-based

functional testing

•Reviews

•A graphical requirements

representation method

•Design-based functional

testing

•Reviews

•Database management

system (DBMS)

•Design-based func¬

tional testing

•Cross reference

•Compilers

•Database manage¬

ment system

•Operating system

•Reviews

•Test coverage

analyzer

ACTIVITIES

•Initial requirements

reviews

•Requirements analysis

•VV&T planning

•Initial test case

generation

•Interaction with

customer

•Sign-off by customer

•Refinement of graphical

representation

•Specify information

design

•Design program architec¬

ture & allocate require¬

ments

•Design basic control flow

•Test case generation

•Preliminary design

review

•Traceback

•Detailed database

design

•Detailed module

design

•Test case genera¬

tion

•Design review

•Design inspection

•Traceback

•Code development

•Module testing

•Function testing

•Test coverage

analysis

•Traceback

The application area used in the examples is representative of a large number of Government and

commercial systems. Transaction processing systems are perhaps the most common of all commercial

systems. Many banking, billing, payroll, inventory, and insurance applications are in this category. Thus, the

four examples focus on this area.

The transaction processing system is set in the context of an auto insurance application. In order to

limit the size of the presentations some simplifications have been made in the application area. An expert in

22

FIPS PUB 101

the auto insurance field will surely detect omissions and simplifications in details of the system as described.
The reader is encouraged, however, to not focus on the application area, but rather on the VV&T principles
applied. The details provided enable presentation of specific instances of the application of VV&T
techniques.

The Auto Insurance Management System (AIMS) described in the examples supports all the major
activities of such a company: accounts payable (claims processing), accounts receivable (premium
processing), management reports, and database management. AIMS must issue client premium due notices,
checks to repair shops (or clients), recommend policies that should be cancelled, monitor the company’s
day-to-day financial health, and so forth. Further details of the system’s requirements are included in the
first example.

B.2 EXAMPLE 1: Software Development Using Basic VV&T Techniques

In this example the details of the AIMS are presented in addition to the actual manual VV&T practices
which are applied within each of the four phases of the software development lifecycle.

B.2.1 Requirements Subphase Activity Descriptions

B. 2.1.1 Initial Requirements Review

The informal prose requirements for the AIMS is given in figure B.2.1. Appropriate management and
technical personnel from the software development group review these requirements for completeness,
consistency, and correctness and prepare a list of questions addressing particular aspects of the
requirements. This list is then supplied to the customer and a Requirements Review meeting is scheduled
and held with customer and user, e.g., clerks, agents. During the meeting the questions are discussed to
establish a more specific and unambiguous set of requirements.

VV&T Purpose: To produce a requirements specification providing the foundation from which more
formal requirements specification, VV&T planning, and test planning will be accomplished.

VV&T Technique: The review itself is the VV&T technique used in this activity. Some of the
questions addressed during the review could be:

o Shouldn’t a claims record contain some kind of indication as to the nature of the claim? For
example: if it is due to an accident, who was at fault?
o How is the “reasonableness” of a claim amount determined?
o How does one know what claim numbers are valid for which agents?
o When is the premium rate computed? How is it computed?
o Shouldn’t the acceptance criteria include provisions for testing more than just the functional
capabilities?

23

FIPS PUB 101

24

F
ig

u
re

 B
.2

.1

In
fo

rm
al

 p
ro

se
 r

eq
u

ir
em

en
ts

FIPS PUB 101

B.2.1.2 Requirements Analysis

The requirements analysis involves translation of the informal prose requirements into a formal

representation. This results in identifying other aspects of the requirements needing clarification or further

definition. For this example, the graphical representation (GR) scheme used is a modification of the

Systematic Activity Modeling Method [SAMM],

VV&T Purpose: To identify inadequately specified requirements such as incomplete, ambiguous, or

otherwise unclear requirements statements.

VV&T Technique: Formal reviews are used to achieve the above purpose on this project. Problem

issues identified during the requirements analysis are documented and distributed to the customer and a

second Requirements Review is scheduled. This review again involves dialogue between the customer and

the developers; it centers on the formal requirements statement and the identified issues. The result is a

revised set of requirements in both formal and informal forms and a graphical representation (GR). Specific

activities performed within this review are:

o Verification that all requirements have been correctly represented using the formal scheme,

o Identification of the problems encountered during the restatement elaboration of the requirements,

and

o Discussion and resolution of the problems.

Example:

The formal representation for the basic system and the accounts payable function are shown in figure

B.2.2. The graphical representation is interpreted as follows:

Master input files are at the top of the diagram.

Master output files are at the right of the diagram.

The upper half of figure B.2.2 is the root which contains five modules, A-E. The data flow within

the root and to and from master files are labeled according to their source. If the data are internal to

the root, its identifier is preceded by the module letter.

The lower half of figure B.2.2 is an expansion of module A from the root. The lower left corner of

each box contains the parent, i.e., A in the root. The lower right corner of each box is the letter

designator for each module, i.e., A-E. Data created by the accounts payable activity labeled

according to source, e.g., data B.l, a validated claims transaction, is created by module B, validate

claims transaction, and used by modules C-E. Data B.2, invalid claims transaction notice, is created

by B and put on master file 7, user/client notices.

Some of the problems which could be identified are:

o What does the system do with an invalid claims transaction? Solution: Output a notice to the user

identifying the errors.

o The involved driver’s record in the client’s record needs to be updated to reflect a new claim due to

an accident. There does not appear to be enough information in the client record for this. Solution:

Add the necessary information to the claims transaction.

25

FIPS PUB 101

ACTIVITY-DATA FLOW DIAGRAM Root

title
Auto Insurance Management System (AIMS)

DATA ID DATA DESCRIPTION
1 AIMS Data Base

2 Claims Transaction File

3 Premium Payment Transaction File

4 Client Transaction

5 Payout Account Transaction

6 Claim Payment Check

7 User/Client Notices

8 Updated AIMS Data Base

9 Management Reports

C.1 AIMS Account Information

E.1 AIMS Account Transactions

ACTIVITY-DATA FLOW DIAGRAM A.A

6,7,
8

7,8

7,8

9

title
Accounts Payable

DATA ID DATA DESCRIPTION

1 AIMS Database

2 Claims Transaction File

A. l Client Record

B. l Validated Claims Transaction

B. 2 Invalid Claims Transaction Notice

C. 1 Claims Record

D. 1 Claims Payment Check

D.2 Updated Payout Account

D.3 Insufficient Funds Notice

D. 4 Claims Transaction Log

E. 1 Updated Client Record

E.2 Cancellation Notice

E.3 Rate Increase Notice

Figure B.2.2 Requirements graphical representation

B.2.1.3 VV&T Planning

VV&T planning is one aspect of the overall planning process. It is accomplished in parallel with other

planning activities and the requirements identification activity.

VV&T Purpose: To choose VV&T practices which can be implemented to suit the project needs. The

objectives are:

o Identify the goals of the AIMS project’s VV&T activities,

o Select supporting VV&T techniques and tools, and

o Develop plans for each phase’s VV&T activities. (Plans include tasks, e.g., acquiring or developing

tools), schedules, responsibilities, and resources.)

26

FIPS PUB 101

B.2.1.4 Initial Test Case Generation

The AIMS requirements will be analyzed and test cases will be designed to test the functional

capabilities of the system. These test cases will also form the basic set of acceptance tests.

VV&T Purpose: To design test cases which, when used to test the AIMS software, will maximize the

possibility of revealing the presence of errors in the software.

VV&T Technique: Requirements-based functional testing is applied to generate this initial set of test

cases.

Example:

In the accounts payable function a claims transaction is validated by checking (among other things)

that the claim number is valid for the given agent. Each agent has a specified range in which claim

numbers associated with claims issued by that agent must fall. Assuming an agent was assigned claim

numbers in the range 801000 to 801999, test cases which are generated to test accounts payable

should include claim numbers as follows.

Test data class Test claim number Expected output comment

Non-extremal 801500 None valid

Non-extremal 801317 None valid

Extremal 801000 None upper bound

Extremal 801999 None lower bound

Extremal 800999 Invalid claim number lower bound-1

Extremal 802000 Invalid claim number upper bound +1

Special 80100A Invalid claim number

Special 80100Z Invalid claim number

Special 80150 Invalid claim number

Special -01500 Invalid claim number

Special 80L500 Invalid claim number

B.2.2 Preliminary Design Subphase Activity Descriptions

B.2.2.1 Refinement of Graphical Representation

The GR diagrams developed during requirements analysis will be decomposed to reflect the

requirements for the system in more detail.

VV&T Purpose: The completeness and consistency of the GR description of the requirements and

preliminary design should be ensured.

VV&T Technique: A review of the resulting diagrams will be performed to verify:

o identification of all basic activities necessary to perform a particular function,

o identification of all inputs and outputs required by each activity, and

o consistency and completeness of the data flows.

Example:

Within the accounts payable function, there is no indication as to the action to be taken when a claim

transaction is processed for a claim which has been previously entered. This error would be

discovered during the review of the GR activity for the accounts payable function.

B.2.2.2 Specify Information Design

The preliminary design of the information consists of a detailed user input/output specification and a

description of the basic content and structure of the data used by the system. The detailed user input/output

specification essentially amounts to preparing a user’s manual for the system. The formats used to input

claims and premium payment transactions are defined as well as the output responses. The printed report

27

FIPS PUB 101

formats for the management reports are also defined. Specification of the basic data structures and content

will consist of identification of variables and records needed by the system, and the relationships among

them.

VV&T Purpose: The VV&T purpose in this activity is twofold. First, the detailed user specifications

need to be shown to be usable and that they satisfy the needs of the user. Second, the system data structures

and content need to be verified and shown to be complete (i.e., that which is required to perform all system

functions) and correct (i.e., the data types and relationships are consistent with the functions which need to

be performed).

VV&T Technique:

o A formal session will be held with the customer to review the detailed user input/output

specifications. This session will be preceded by informal dialogue between the user community and the

developers to assist in the development of the specifications. Once satisfied, the customer will formally

sign off on the specification.

o Formal inspections of the system data structures and content will be performed.

Example:

Discovered by the customer participating in the formal review of the detailed input/output spec was

that a client is not always the owner of the car, so that lien-holder information needs to be included

in the client record.

B.2.2.3 Design Program Architecture & Allocate Requirements

The program architecture design gives a complete high-level description of the software. It refines and

groups functions defining software components and interfaces.

VV&T Purpose: Requirements are cross-referenced by the design to ensure that all the requirements

have been addressed.

VV&T Technique: Requirement trace-back.

Example:

A complete set of cross-references is defined and maintained. These show the evolution from the

prose requirements to the requirements represented by the GR and finally to the components

identified in the design.

B.2.2.4 Design Basic Control Flow

The GR represents the data flow within a system but only shows control flow in an implicit way. The

system’s control flow, therefore, needs to be explicitly designed. The activities identified in the GR need to

be mapped into modules. The control flow between modules must also be described using an informal

design language. This defines the program architecture. The hierarchical structure of the modules

comprising the system are developed.

VV&T Purpose: To produce a correct and understandable description of the basic control flow of the

system.

VV&T Technique: An inspection of the control flow design will be performed to verify:

o consistency with the GR representation,

o correctness of the high-level logic, and

o quality of the modularization, i.e., are the functional boundaries natural?

B.2.2.5 Test Case Generation

VV&T Purpose: To generate test data that will exercise and test each function, and also to

demonstrate that the code is consistent with the design.

VV&T Technique: Design-based functional testing.

28

FIPS PUB 101

Example:

Test cases for a function adding the amount of the premium payment to the payout account would

include: a negative (or zero) amount, an amount which is greater than zero but less than that which

would leave the balance larger than the maximum allowed, and one which would leave the balance

greater than the maximum allowed.

B.2.2.6 Preliminary Design Review

At the completion of the preliminary design activity, a formal review is held. This review involves

management and technical staff representing the developer and the customer/user and covers all aspects of

the design and results of VV&T activities. Management of customer/user and developer sign off of

acceptance is required.

B.2.3 Detailed Design Subphase Activity Descriptions

B.2.3.1 Detailed Database Design

The format and structure of the data to be stored in the system database is designed. This includes

describing data which are logically related in the form of records, as well as the relationships existing

between records. The logical structure of the database will be described using a graphical database design

representation. Record descriptions will be specified in a data definition language. Examples are shown in

figures B.2.3 and B.2.4.

In figure B.2.3, ovals represent record access (key) fields, boxes represent records, “1:M” means that

for each client record there are potentially many (1 or more) claims records.

^Policy-Num^ ^Driver-Name^

Figure B.2.3 Sample database schema showing client-claims relation

VV&T Purpose: The database design must be verified for consistency with the preliminary design. In

addition, the database structure will be verified to ensure that it is correct and is reasonable with respect to

potential storage consumption and access time.

VV&T Technique: An inspection of the database design is performed to ensure that the above VV&T

purpose is met.

Example:

During the inspection of the database design an error is found in the claims record (fig. B.2.4) where

POLICY-NUM is identified as the key field whereas the schema diagram (fig. B.2.3) indicates

CLAIM-NUM. The solution is to change the key field in the claims record description to CLAIM-

NUM.

29

FIPS PUB 101

record name is CLAIMS

location mode is calc in CALC-KEY using POLICY-NUM

01 CLAIM-NUM PIC 9 (6)

01 DATE-OF-CLAIM PIC 9 (6)
01 ACC-REP-NUM PIC 9 (9)

01 DRIVER

02 LAST PIC X (15)

02 FIRST PIC X (15)

02 MIDDLE-INTL PIC X

01 PAYEE

02 NAME PIC X (31)

02 ADDRESS

03 STREET PIC X (24)

03 CITY PIC X (15)

03 STATE PIC X (2)

03 ZIP PIC X (5)

01 POLICY-NUM PIC 9 (8)

01 AGENT PIC 9 (5)

Figure B.2.4 Sample CLAIMS record description

B.2.3.2 Detailed Module Design

Detailed module design includes, for each module, a description of the function performed and

descriptions of input and output data, as well as a high-level description of how the function is to be done
(i.e., the algorithm used).

VV&T Purpose: To show that (1) all of the system’s functional capabilities are addressed by one or

more modules, and (2) each module addresses one or more system functions. Moreover, relationships

among and interfaces between all modules are identified and verified.

VV&T technique:

o Inspections of the system modules include (1) manual checking of the module interfaces to ensure

that all modules are used and that their inputs and outputs are consistent, and (2) informal verification

of the correctness of the algorithms used.

o Requirements tracing is accomplished by identifying each module with the lowest level GR activity

(from the preliminary design) in which the module is contained.

Example:

A module which updates the date and time of the last access to the payout account record has the

premium payment transaction as one of its inputs. However, manual interface checking detects an

inconsistency whereby the premium payment transaction is not supplied. As it turns out, the

transaction is not used within the module and is deleted as an input.

B.2.3.3 Test Case Generation

This involves refining and adding to test data

previously developed.

VV&T Purpose: Test cases are developed to exercise and test the internal

structures and functions of modules.

VV&T Technique:

o Branch testing

o Path testing

30

FIPS PUB 101

Example:

The module which validates a claim number checks for six error conditions. Associated with these

conditions are three actions. Test data are developed to exercise all combinations of error conditions

and resulting actions, i.e., all branches and all paths through the modules.

B.2.3.4. Design Review (DR)

After the detailed design is completed, a formal review is held. Primarily involving project

management and technical personnel, this review covers all aspects of the design (including the test cases).

Sign off by management indicating their acceptance of the design is required.

B.2.4 Programming Subphase Activity Descriptions

B. 2.4.1 Code Developmen t

The detailed design of a given component provides the information needed to write the code for that

component in the host programming language, e.g., COBOL. Once written, the code is entered into the

computer and all compilation errors are removed.

VV&T Purpose: VV&T of the compiled code is performed to:

o Verify the consistency of the code with the detailed design,

o Identify errors, and

o Ensure adherence to programming standards.

VV&T Technique: Inspection of each system module.

Example:

During an inspection of “issue policy notices” module the section of code responsible for issuing a

premium due notice is found to be in error. The error is that the premium due notice is printed

without having the appropriate data moved into the printer buffer. A sample portion of the

inspection checklist used is shown below in figure B.2.5. This particular error is discovered using

question two under “data reference.”

DATA DECLARATION

1. Are all variables declared?

2. Are the correct attributes assigned?

3. Are variables properly initialized?

4. Are variable naming conventions followed?

5. Is the proper explanatory comment included for each variable?

DATA REFERENCE

1. Are there any unreferenced variables?

2. Are there any references to unassigned variables?

3. Are subscripts within range?

4. Are there off-by-one errors in subscript computations?

Figure B.2.5 Sample portion of code inspection checklist

o A cross-referencer is used to produce cross-reference lists of all identifiers used by a program. This

list is included with the source code listings for module inspections.

Example:

A careful examination of the cross-reference listing of module ISSUE-CHECK in ACCOUNTS-

PAYABLE during the code inspection indicated that two variables, PAYOUT-ACCOUNT-BAL

and PAYOUT-ACCT-BAL, were referenced. The error was that PAYOUT-ACCOUNT-BAL,

should have been coded “PAYOUT-ACCT-BAL.”

31

FIPS PUB 101

B.2.4.2 Module Testing

An incremental, bottom-up testing strategy is used to test the AIMS modules. This involves

individually testing the lowest level modules; then combining and testing those modules with the higher

level modules which call them. The process continues until all modules are combined into the complete

system. Test drivers are written to control the testing of the individual modules. The test data used is that

created by design-based functional testing which were generated from analyses of the functional, structural

and interface specifications of the individual modules during detailed design.

VV&T Purpose: To reveal errors present in the individual modules.

VV&T Technique: A test coverage analyzer is used to supplement module testing. Each module to be

tested is instrumented to collect execution frequency counts and then executed. The execution counts for

each statement are then listed with the corresponding statement by a post-execution routine. Untested or

poorly tested portions of the module can be identifed and additional test cases can be generated to test

those specific segments.

Example:

ACCOUNTS-PAYABLE processes claims transactions read from a file which contains a given day’s

claims. The module contains a check to verify that each record is indeed a claims transaction and, if

not, invokes an error handling routine which logs the error. Use of a test coverage analyzer showed

that this particular situation did not arise during testing of the module using the tests created during

detailed design. As a result, those tests are supplemented with invalid claims transactions and the

module retested. This, in turn, results in an error being revealed whereby the error handler responds

with an incorrect output response.

B.2.4.3 Function Testing

Function testing of AIMS uses the test cases developed from requirements-based functional testing

during preliminary design to test the functional capabilities of the AIMS software.

VV&T Purpose: To reveal errors where the software fails to perform a function as specified in the

requirements.

Function testing is supplemented with the use of a file comparator. Associated with each of the

requirements-based functional test cases is the expected output. This is stored on a file in the exact format

expected to be produced. When the AIMS software is tested, the resulting output is stored on a separate

file. A file comparator is used to detect automatically any discrepancies which may have occurred.

Example:

In preparing the test cases for the New Clients report, a form is used which formats the expected

output data in accordance with the specification. Each report corresponding to a given test case is

then stored on a file in the order in which the tests are to be executed. Testing is then performed and

the actual output is compared to the expected output using a file comparator. The results show the

presence of two errors, a format error and a data output error. The format error is a misalignment

caused by incorrect spacing between output fields. The data output error is a missing agent name

which is to be printed with the agent number.

B.3 EXAMPLE 2: Software Development Using a Comprehensive VV&T Approach

The comprehensive VV&T includes those techniques contained in the basic approach described earlier

as well as those described in this section. The additional tools and the applicable lifecycle phase are shown

below.

o Preliminary Design

- Assertion generation

o Detailed Design

- Assertion generation

32

FIPS PUB 101

o Code

- Interface checker

- Data flow analyzer

- Assertion processor

- Standards analyzer

- Requirements trace-back

Table B.2 Example 2. Summary software development using a comprehensive VV&T approach

Subphases Requirements Preliminary design Detailed design Programming

INPUT •(No additions to

basic approach)

•(No additional inputs) •Preliminary design

document including

assertions

•Detailed design

document including

assertions

OUTPUT •(No additions to

basic approach)

•Preliminary design

document including

assertions about the

design

•Detailed design

document including

additional assertions

•(No additional outputs)

SUPPORTING

TECHNOLOGY

•(No additions to

basic approach)

•Assertion generation •Assertion generation •Interface checker

•Data flow analyzer

•Assertion processor

•Standards analyzer

•Requirements traceback

ACTIVITIES •(No additions to

basic approach)

•Design basic control

flow

•Detailed module

design

•Code development

•Module testing

B.3.1 Requirements Subphase Activity Description

(No additions to basic approach.)

B.3.2 Preliminary Design Subphase Activity Description

VV&T Technique: Assertion generation is used to specify the desired functional properties of the

individual modules. This is done by including in the module specifications input and, to the extent possible,

output assertions.

Example:

Policy numbers are stored in the database in blocks of arrays where each block contains a fixed

number (n) of policy numbers (policy-num) and the address (policy-addr) of their associated client

records. Policy numbers are stored in the policy-num array in ascending order. A procedure, find-

policy, is called to search the policy-num array for a supplied policy number and return the address

of its client record. If the supplied policy number is not found an address of zero is returned. The

input and output assertions which capture the functional properties of find-policy are given below.

1) /*assert input policy-num (1)< = num< = policy-num (m) V and

2) /*assert input forall i in l...n-l:policy-num (i)< = policy-num (i + 1) V

3) /*assert output (exists in i in l...n : num = policy-num (i)) */ or

4) /*assert output (add = 0 and forall i in l...n:num = policy-num (i)) V

33

FIPS PUB 101

B.3.3 Detailed Design Subphase Activity Description

VV&T Technique: Assertions are generated to include algorithmic detail in addition to input and

output specifications of the functional properties of the individual modules.

Example:

The example in the previous section describes the find-policy procedure and specifies the input and

output assertions associated with it. Shown in figure B.3.1 is the PDL for find-policy which is

implemented using a binary search algorithm.

The input and output assertions capture the functional properties of the procedure independent of the

algorithm used to implement the search. Assertions 1, 2 and 3, however, capture conditions which

are very dependent upon the algorithm. Assertion 1 is always correct whenever num is in the

policy-num array. If num is not in the array, assertion 1 is violated the last time through the loop

(when high — low). This is an acceptable result, however, in that num should be a valid policy

number.

FIPS PUB 101

Find-policy:

/* searches sorted global array policy-num for

num (input argument) and, if

found, returns the associated policy-addr in

addr (output argument). If

not found a zero is returned in addr V

/* assert input policy-num (1)< = num< =

policy-num (n) V

/* assert input forall i i_n l...n-l: policy-num

(i)< = policy-num (i+1) */

set addr to 0

set low to 1

set high to n

do until high< low or num - policy-num (i)

(1) /* assert 1< = low< = high< = n and policy-num

(low)< = num<=

policy-num (high) */

set m to (low + high) /2

i_f num< policy-num (i)

set high to m-i

else if num> policy-num (i)

set low to m+i

else goto successful

enddo

/* unsuccessful V

(2) /* assert high = low-1 and policy-num (high)<

num< policy-num (low) */

/* assert output addr = 0 and forall i in

l...n: num ^ policy-num (i) V

return

/*successful*/

set addr to policy-num (i)

(3) /* assert 1< = low< = m< = high< = n and num =

policy-num (m) V

/* assert output exists i in l...n: num =

policy-num (i) */

return

end find-policy;

Figure B.3.1 Detailed PDL with ASSERTIONS

B.3.4 Programming Subphase Activity Descriptions

B. 3.4.1 Code Development

The code development activities described in earlier sections are supplemented in a full tool set

environment with an interface checker, data flow analyzer, and standards analyzer. These tools can be

separate but are often included as capabilities provided by a single tool. They are all static analysis

techniques and are therefore applied prior to software testing. The output resulting from each of the

capabilities is included with the material for the formal code inspections.

35

FIPS PUB 101

VV&T Techniques:

o Interface checking is used to check the consistency of the interfaces between modules.

Example:

An error is detected between the module which reads client records for premium payment

processing and the “find-policy” module. It is an inconsistency in the type of the arguments for the

policy numbers. “Find-policy” is being called with a policy number of type character where it should

be type integer.

o Data flow analysis is used to identify variable reference/definition anomalies.

Example:

When data flow analysis is performed on the module which updates the payout account with a

premium payment, a reference to an uninitialized variable is noted. The variable should contain the

current date and time and is used to update the date and time of the last change to the payout

account. A call to the routine which updates the time and date should be made prior to the reference.

o Standards’ analyzers are used to ensure adherence to program coding and documentation standards.

One of the primary capabilities provided by most commonly available standards’ analyzers is the

notification of the use of nonstandard language features.

Example:

One of the requirements for the AIMS software is that it be portable. To assist in the development of

portable code, a COBOL standards’ analyzer is used. All places where a standards’ violation occurs

is either changed or justified. Even trivial nonstandard features such as the use of the abbreviation

“DISP” for “DISPLAY” are detected. In addition, a variety of undesirable standard language

constructs such as the “ALTER” statement and “NEXT SENTENCE” clause are detected with the

tool.

o Requirements trace-back, via code to design and design to code is used to verify that the code

adheres to, and satisfies, the requirements as specified by the design. Both missing code and extraneous

code may be discovered.

Example:

One of the requirements for the client record for each policy holder is to contain the number of

claims made on this policy. During a trace of the design to the code, it is found that no code exists to

keep track of the number of claims. However, code is discovered that keeps track of the number of

changes to the coverage.

B. 3.4.2 Module Testing

The module testing activities described in earlier sections are supplemented with a dynamic assertions

processor. This processor is generally included as part of a broader dynamic analysis tool including, for

example, statement execution counts.

VV&T Technique: Assertions processor: A dynamic assertions processor translates assertions,

usually specified as part of the source program, into source language statements which check the validity of

the assertion during program execution. Generally, when an assertion is violated, an informative message is
output.

Example:

Figure B.3.2 shows a portion of a FORTRAN implementation of the find-policy routine from figure

B.3.1. Also shown is an example of an assertion violation message which was printed when the

assertion in line 14 of the program was violated (i.e., false) during program execution. Subsequent

analysis of the problem indicated that the error was an incorrect coding of line 18 from the PDL

where HIGH should have been set to M-l, not M + l.

36

FIPS PUB 101

13 100 CONTINUE
14 C* ASSERT(1.LE.LOW.AND.LOW.LE.HIGH.AND.HIGH.LE.N
15 C* .AND.POLNUM(LOW).LE.NUM.AND.NUM.LE.POLNUM(HIGH))
16 M = (LOW + HIGH)/2
17 IF (NUM .LT. POLNUM(M)) THEN
18 HIGH = M + 1
19 ELSE IF (NUM .GT. POLNUM(M)) THEN
20 LOW = M + 1
21 ELSE
22 GO TO 200
23 ENDIF
24 IF(HIGH.LE.LOW.AND.NUM.NE.POLNUM(M)) GO TO 100

*** ASSERTION VIOLATION AT LINE 14 OF SUBROUTINE FNDPOL:
CURRENT EXECUTION COUNT = 2
LOW = 1, HIGH =65, N = 64, NUM = 22707,

POLNUM(LOW) = 16747, POLNUM(HIGH) = 36757

Figure B.3.2 Find-policy subroutine and corresponding assertion violation message

*U.S. GOVKRMBHT PHIHHHG OFFICE : 1984 0-432-178/521

37

I

i

i

NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH—The Journal of Research of the

National Bureau of Standards reports NBS research and develop¬

ment in those disciplines of the physical and engineering sciences in

which the Bureau is active. These include physics, chemistry,

engineering, mathematics, and computer sciences. Papers cover a

broad range of subjects, with major emphasis on measurement

methodology and the basic technology underlying standardization

Also included from time to lime are survey articles on topics

closely related to the Bureau's technical and scientific programs.

As a special service to subscribers each issue contains complete

citations to all recent Bureau publications in both NBS and non-

NBS media. Issued six times a year. Annual subscription: domestic

SI8; foreign $22.50. Single copy, $5.50 domestic; $6.90 foreign.

NONPERIODICALS

Monographs—Major contributions to the technical literature on

various subjects related to the Bureau's scientific and technical ac¬

tivities.

Handbooks—Recommended codes of engineering and industrial

practice (including safety codes) developed in cooperation with in¬

terested industries, professional organizations, and regulatory

bodies.

Special Publications—Include proceedings of conferences spon¬

sored by NBS, NBS annual reports, and other special publications

appropriate to this grouping such as wall charts, pocket cards, and

bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and

studies of special interest to physicists, engineers, chemists,

biologists, mathematicians, computer programmers, and others

engaged in scientific and technical work.

National Standard Reference Data Series—Provides quantitative

data on the physical and chemical properties of materials, com¬

piled from the world's literature and critically evaluated.

Developed under a worldwide program coordinated by NBS under

the authority of the National Standard Data Act (Public Law

90-396).

NOTE; The principal publication outlet for the foregoing data is

the Journal of Physical and Chemical Reference Data (JPCRD)

published quarterly for NBS by the American Chemical Society

(ACS) and the American Institute of Physics (AIP). Subscriptions,

reprints, and supplements available from ACS, 1155 Sixteenth St.,

NW, Washington, DC 20056.

Building Science Series—Disseminates technical information

developed at the Bureau on building materials, components,

systems, and whole structures. The series presents research results,

test methods, and performance criteria related to the structural and

environmental functions and the durability and safety charac¬

teristics of building elements and systems.

Technical Notes—Studies or reports which are complete in them¬

selves but restrictive in their treatment of a subject. Analogous to

monographs but not so comprehensive in scope or definitive in

treatment of the subject area. Often serve as a vehicle for final

reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures

published by the Department of Commerce in Part 10. Title 15, of

the Code of Federal Regulations. The standards establish

nationally recognized requirements for products, and provide all

concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a

supplement to the activities of the private sector standardizing

organizations.

Consumer Information Series—Practical information, based on

N BS research and experience, covering areas of interest to the con¬

sumer. Easily understandable language and illustrations provide

useful background knowledge for shopping in today's tech¬

nological marketplace.

Order the above NBS publications from: Superintendent of Docu¬

ments. Government Printing Office. Washington. DC 20402.

Order the following NBS publications—FIPS and NBSIR's—from

the National Technical Information Service. Springfield. VA 22161.

Federal Information Processing Standards Publications (FIPS

PUB)—Publications in this series collectively constitute the

Federal information Processing Standards Register. The Register

serves as the official source of information in the Federal Govern¬

ment regarding standards issued by NBS pursuant to the Federal

Property and Administrative Services Act of 1949 as amended.

Public Law 89-306 (79 Stat. 1127), and as implemented by Ex¬

ecutive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6

of Title 15 CFR (Code of Federal Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or

final reports on work performed by NBS for outside sponsors

(both government and non-government). In general, initial dis¬

tribution is handled by the sponsor; public distribution is by the

National Technical Information Service , Springfield, VA 22161,

in paper copy or microfiche form.

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 221B1

POSTAGE AND FEES PAID
U.S. DEPARTMENT DF COMMERCE

COM-211

OFFICIAL BUSINESS 3rd Class Sulk Rate

