AUTOMATIC MECHANICAL DRAFT OIL BURNERS
DESIGNED FOR DOMESTIC INSTALLATIONS

COMMERCIAL STANDARD CS75–39

Effective Date for New Production, From November 1, 1939

A RECORDED STANDARD OF THE INDUSTRY

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON : 1939

For sale by the Superintendent of Documents, Washington, D. C. - - - Price 5 cents
PROMULGATION

of

COMMERCIAL STANDARD CS75–39

for

AUTOMATIC MECHANICAL DRAFT OIL BURNERS
DESIGNED FOR DOMESTIC INSTALLATIONS

On April 27, 1939, at the instance of the Oil Burner Industry Standards Committee, a general conference of representative manufacturers, distributors, and users adopted a recommended commercial standard for automatic mechanical draft oil burners and recommended its circulation to the trade for written acceptance. The industry has since accepted and approved for promulgation by the United States Department of Commerce, through the National Bureau of Standards, the standard as shown herein.

The standard is effective for new production from November 1, 1939.

Promulgation recommended.
I. J. Fairchild,
Chief, Division of Trade Standards.

Promulgated.
Lyman J. Briggs,
Director, National Bureau of Standards.

Promulgation approved.
Harry L. Hopkins,
Secretary of Commerce.
AUTOMATIC MECHANICAL DRAFT OIL BURNERS
DESIGNED FOR DOMESTIC INSTALLATIONS

COMMERCIAL STANDARD CS75-39

PURPOSE

1. The purpose of this commercial standard is to establish minimum standard specifications and methods of test for automatic mechanical draft oil burners for the guidance of manufacturers, distributors, installing contractors, and users.

SCOPE

2. This standard covers:
 (a) General requirements.
 (b) Manufacturing and production tests.
 (c) Laboratory requirements and test procedure.
 (d) Installation requirements and performance tests.
 (e) Oil burner certificate placed with each burner installation.

GENERAL REQUIREMENTS

BURNER CONSTRUCTION

3a. Long-hour motor.—Oil burner motor service may be assumed to be equivalent to continuous operation, and the motor shall be of ample capacity and be designed for long-hour duty, and be so designated (motor name plate shall bear the words "Long-Hour Duty") by the motor manufacturer.

3b. Definition.—A long-hour duty motor shall conform to NEMA specifications for long-hour duty motors (see specifications attached, page 10).

3c. Motor load.—The motor shall be of long-hour specification, and its name-plate rating shall equal or exceed the load occurring when the burner is operated with air adjustment full open with maximum size fan and oil pressure at maximum recommended by the manufacturer in his installation manual. Motors capable of continuous operation at loads in excess of name-plate rating and within NEMA requirements for long-hour service shall be considered as meeting the above requirement when provided with suitable overtemperature protection.

4. Radio interference.—The burner shall cause no unreasonable amount of radio interference.

5. Quietness.—The burner shall be reasonably free from disturbing combustion or mechanical sound.
6. CO₂ rating.—The burner shall be capable of producing and maintaining the CO₂ in the flue gas at not less than 10 percent without visible smoke at all oil rates within the manufacturer’s rated capacity.

7. Smoke determination.—The determination of an acceptable specification on smoke and method of test for same is referred to the testing laboratory for determination, subject to approval of the industry. Until such time as the value of and test procedure for smoke is approved, it shall be required that no smoke be visible at chimney outlet.

BURNER SAFETY

8a. Safety standard.—The burner shall meet the safety standards of Underwriters' Laboratories, Inc., Standard for Domestic Oil Burners (Subj. 296), March 1934 and subsequent revisions.

8b. Test procedure.—In accordance with above. (Presence on the burner of label of Underwriters’ Laboratories, Inc., shall be accepted as evidence of compliance with this safety requirement.)

BURNER GUARANTEES

9. Guarantee.—Burner and burner controls shipped with the burner shall be guaranteed by the burner manufacturer against defects of material and workmanship for a period of 1 year from date of installation.

10. Manuals.—A printed comprehensive service and installation manual shall be prepared and one or more copies shall be submitted by the burner manufacturer to the authorized laboratory for approval. The manufacturer shall furnish one or more copies of his service and installation manual to each of his authorized dealers.

11. Tests.—Burner tests for certification shall be conducted according to test procedures established by this standard and approved by the oil burner industry.

MANUFACTURING AND PRODUCTION TESTS

12. The following standards apply to manufacturing and production tests on automatic mechanical draft oil burners:

PRODUCTION TESTS ON PRESSURE OIL BURNERS

13. Each burner shall be manufactured and tested according to the following procedure:

13a. Burners shall be manufactured so that—

(1) Proper alignment between motor and pump shaft is assured.
(2) All parts are interchangeable with like parts on like models.
(3) Where flexible couplings are used between motor shaft and pump shaft the misalignment (axial displacement) shall not exceed 0.005 inch per inch of distance between the two shaft ends and the axes of the two shafts shall be parallel within 1° (angular alignment).
(4) The motor and pump shall be securely mounted in such manner that the alignment of these two units shall remain permanent within the tolerances specified above.
(5) The motor load shall not exceed its rated capacity.
(6) The ignition points of electrodes shall be made of heat-resisting material and securely fastened to avoid change of location.

13b. Each assembled burner shall be bench-tested and adjusted for a suitable period of time:

(1) To reveal and eliminate—
 A. Oil leaks.
 B. Electrical defects.
 C. Mechanical noise and vibration.
 D. Other defects.

(2) To determine—
 A. Pressure regulating valve adjustment.
 B. Total motor load.
 C. Proper functioning of ignition means (with or without actual fire test).

13c. Each burner shall be tested at the maximum rated oil pressure recommended by the manufacturer in his installation manual, but in no case at less than 100 pounds per square inch for high-pressure atomization burners; for low-pressure and horizontal rotary domestic burners the burner shall be tested at the maximum pressure recommended in the manufacturer’s installation manual.

13d. At the conclusion of the operating tests of each burner the air gap between electrodes and the relation of electrodes to nozzle shall be inspected for acceptance and shall be in accordance with the specifications contained in the manufacturer’s manual for that particular model.

PRODUCTION TESTS ON WALL FLAME AND ATOMIZING VERTICAL ROTARY BURNERS

14. Each burner shall be manufactured and tested according to the following procedure:

(1) The tolerances of all parts shall be established and checked with suitable gages or fixtures so that they can be assembled without altering the parts.

(2) Motor shall operate as an assembly (motor and driven parts) and be checked for:
 A. Quiet operation.
 B. Shaft alignment.

(3) Oil-distributing device shall be inspected for:
 A. Tube angle.
 B. Tube concentricity.

(4) Fan shall be inspected for balance and run out.

(5) Igniters shall be inspected for:
 A. Spark gap.
 B. Insulation.

(6) Oil valve in its manufacture shall be tested for leakage.

(7) Igniter lead wire shall conform to Underwriters’ specifications in all respects.
LABORATORY REQUIREMENTS AND TEST PROCEDURE

15. The following standards apply to laboratory requirements and test procedure for automatic mechanical draft oil burners.

LABORATORY FACILITIES AND EQUIPMENT

16. The equipment and facilities required by the laboratory for conducting the above tests as outlined shall include the following:

(1) Space for not less than six heating boilers ranging in size, suitable for oil burners up to and including 8 gal/hr of capacity.
(2) At least three boilers covering the above range at the beginning of operations.
(3) A separate chimney or its equivalent for each boiler.
(4) Qualified mechanics for constructing refractory combustion chambers in accordance with drawings and specifications as submitted, and qualified mechanics for doing the necessary pipe work and mechanical assembly and adjustment in connection with the installation of burner.
(5) Approved sound-level meters and microphones.
(6) Approved radio-noise meters and accessories.
(7) Light-sensitive equipment for determining smoke.
(8) Approved flue-gas analysis equipment.
(9) Oil-rate flow meters or equivalent means for determining oil rates of burners in operation.
(10) Oil storage facilities.
(11) Accurate electric ammeters, voltmeters, and wattmeters.
(12) Accurate suitable draft gages.

BURNER CONSTRUCTION—MOTOR

17. The oil-burner unit as submitted for approval shall be equipped with a long-hour duty motor and tests shall be run at the maximum load conditions that this particular burner model may be adjusted to. The results of these tests shall indicate that the maximum motor loading is in accordance with NEMA requirements for a long-hour duty motor.

MECHANICAL CONSTRUCTION

18. The burner is to be inspected and checked for the following:

(1) Proper alignment between motor and pump.
(2) Interchangeability of all like parts on like models.
(3) Reasonable freedom from vibration and undue wear.
(4) Motor and pump are securely mounted in such manner that the alignment of these two units shall remain permanent within the specified tolerances.
(5) That the motor cannot be loaded in excess of its rated capacity under normal operating conditions.
(6) Ignition points of electrodes which shall be made of heat resistant material and securely fastened to avoid change of location.
SAFETY STANDARD

19. No burner shall be accepted at the authorized laboratory for inspection and test unless it complies with the requirements of paragraphs 8a and 8b.

DRAWINGS

20. A complete set of detail manufacturing blueprints and/or photographs to be the same as required by the Underwriters' Laboratories, Inc., shall accompany each model and shall remain in the confidential custody of the laboratory.

INSTALLATION AND SERVICE MANUAL

21. Each burner model submitted to the laboratory for test shall be accompanied by a printed comprehensive installation and service manual, and the laboratory shall review this manual and use the instructions therein contained for installing and testing the unit as submitted. The manual shall contain:

(1) Cross-sectional views of each model to disclose method of adjustments and replacement of parts.
(2) Combustion-chamber dimensions and construction.
(3) Oil-tank and piping diagrams and instructions.
(4) Electrical diagrams and instructions.
(5) Draft specifications and chimney information.
(6) Diagrams and instructions for installation adjustment and operation:
 (1) Electric controls and limits.
 (2) Combustion.
(7) Air requirements into the furnace room for satisfactory combustion.

LABORATORY TESTS

22a. Following the mechanical inspection outlined above, the burner shall be installed in a suitable boiler exactly in accordance with the installation instructions contained in the manufacturer's manual. After the burner is installed and during the entire period of its operating test, the entire boiler or furnace structure shall be maintained tight against air leakage so that infiltration of air into the combustion space or boiler passages cannot affect the flue-gas analysis readings at the boiler or furnace flue outlet.

COMBUSTION PERFORMANCE

22b. A burner submitted for test shall be operated on the heaviest grade of fuel for which it is approved by the Underwriters' Laboratories, and each model submitted shall be tested at its minimum and maximum firing rates, as indicated by the manufacturer and at intermediate rates in steps of 1 gal/hr in the case of models that are rated over a range exceeding 1 gal/hr difference between the minimum and maximum rate.

22c. Smoke determination.—The determination of an acceptable specification on smoke emission and method of test for the same is
referred to the testing laboratory for determination, subject to approval of the industry. Until such time as the value of and test procedure for smoke emission is approved, it shall be required that no smoke be visible at chimney outlet.

22d. Test procedure.—The test procedure shall begin with the manufacturer’s minimum rating and continue in steps of not more than 1 gal/hr to the manufacturer’s maximum rating. The flue gas sample for analysis shall be taken at the boiler or furnace flue gas outlet. The draft value in the combustion chamber for this test shall be in accordance with the manufacturer’s specifications. This same draft value shall be used in determining the maximum burning rate.

22e. In determining maximum burning rates for full mechanical draft burners, all air for combustion shall be supplied by the burner fan or blower. Where maximum burning rates are designated by manufacturer, with partial mechanical draft, such maximum burning rates shall be qualified in terms of minimum draft and port area in manufacturer’s manuals, rating and instruction sheets. Where burners are designed for partial mechanical draft the maximum burning rates shall be qualified in terms of minimum draft and port area in manufacturer’s manuals, rating, and instruction sheets.

RADIO INTERFERENCE

22f. The burner shall cause no unreasonable amount of radio interference. A suitable approved form of radio-interference noise meter shall be connected to the same power supply as that operating the burner, located within the same room with the burner and the burner shall be operated through a series of normal operating cycles while readings are taken on the radio-noise meter. A signal exceeding __________ intensity shall indicate excessive interference. This value is to be recommended by the oil burner industry standards committee as a result of accumulated experience over a length of time considered suitable by the committee for establishment of the standard and approved by the industry.

NOISE

22g. A burner shall be reasonably free from disturbing combustion and mechanical sounds.

TESTS

22h. Suitable noise-proof enclosures are to be provided for the burner and its boiler when under test, and noise readings are to be taken in accordance with American Standards Association procedure as applying to domestic equipment. The standard of permissible sound level shall be determined by the testing laboratory as the result of accumulated experience, subject to the approval of the oil burner industry through its standards committee.

Sound-level readings are to be taken of the burner:

(1) Operating without flame.
(2) Operating with flame and at minimum and maximum burning rates.
INSTALLATION REQUIREMENTS AND PERFORMANCE TESTS

INSTALLATION REQUIREMENTS

23. Size.—The burner shall be of adequate size for the boiler or furnace and the connected heating load as recorded on the oil burner certificate by the installer.

24. Certificate.—Following installation of the burner certain test data shall be obtained and recorded by the installer on the oil burner certificate to be placed with each oil burner installation. The test hall cover the following points: CO₂ in the flue gas by analysis, draft, stack temperature, firing rate, and smoke.

25. Requirements.—The standard requirements as approved by the industry are as follows:

1) CO₂.—The CO₂ in the flue gas by analysis shall be not less than 8 percent.
2) Draft.—The draft shall be in accordance with specifications in the manufacturer's installation manual. An automatic draft regulator or its equivalent is required.
3) Stack temperature.—The stack temperature shall be measured on the boiler side of automatic draft regulator and not more than 12 inches from the boiler smoke connection. The stack temperature shall be measured at the certified firing rate. If an automatic draft regulator is built into the boiler or furnace such regulator shall be closed when the stack temperature is measured.
4) Firing rate.—The firing rate shall be based on the burner manufacturer's recommendation for the existing total connected load. Burner shall be fired at that rate as a minimum, but not to exceed 25 percent additional for the maximum rate.
5) Smoke.—During the above test, there shall be no visible smoke at the chimney.
6) Installation Manual.—The burner shall be installed in accordance with manufacturer's installation manual.

INSTALLATION TEST PROCEDURE

26. Equipment.—The following equipment shall be available on each oil burner installation before the tests are started:

26a. Where the oil rate is not indicated on the nozzle tip, a suitable device for determining the rate in terms of gallons per hour fed to the burner shall be used. This may be in the form of a graduated glass vessel.

26b. A suitable flue-gas analyzer for determining the percentage of CO₂ in the flue gases.

26c. A suitable draft gage, graduated in hundredths of an inch of water.

26d. A suitable thermometer to indicate the flue-gas temperatures.

26e. Provision for inserting a thermometer into the flue pipe as follows: Not more than 12 inches from the boiler or furnace outlet, measured on the center line of the flue pipe, there shall be a hole not
more than \(\frac{1}{2} \)-inch in diameter, located at the side of the pipe on the center line so that the thermometer may be inserted horizontally. The thermometer is to be placed so that the sensitive element is one-fourth of the pipe diameter from the near side of the flue pipe. The opening around the thermometer stem shall be sealed to prevent air leakage. This same opening may be used for checking draft and sampling flue gases.

Note.—Other things being equal, flue-gas temperature may be expected to be higher by some 50°F if the smoke pipe is insulated. Stack temperature is largely controlled by boiler design. High stack temperatures do not necessarily condemn the burner.

26f. In addition to the above, provision shall be made on the boiler or furnace for inserting a small tube into the combustion chamber for measuring the draft. The area of the opening shall not exceed that of a \(\frac{1}{2} \)-inch diameter round hole. (\(\frac{3}{4} \)-inch pipe tap).

27. **Test procedure.**—The test procedure is as follows:

27a. The burner shall be operated and the fuel rate adjusted to that required for the particular installation.

27b. The draft then shall be adjusted to meet the burner manufacturer’s specifications, both over the fire and at the breeching.

27c. Combustion-air adjustments are to be made to give the highest \(\mathrm{CO}_2 \) without visible smoke (unburned carbon) at the chimney. If the minimum required percentage of \(\mathrm{CO}_2 \) cannot be obtained in the breeching, it will be permissible to take \(\mathrm{CO}_2 \) over the fire, which will be acceptable. In that event, both \(\mathrm{CO}_2 \) readings shall be recorded on the certificate. A considerable difference between the two \(\mathrm{CO}_2 \) readings indicates a leak of air into the flue passes or fire box of the boiler.

27d. Stack temperature shall be recorded after 10 minutes of operation after reaching steaming temperature for steam boilers, or 180°F water temperature for hot-water boilers, or 125°F bonnet temperature for hot-air heating plants.

28. **Readings.**—During the period of operation to permit flue-gas temperatures to reach maximum, periodic readings of draft, \(\mathrm{CO}_2 \), and oil rate shall be taken and the average recorded on the certificate. All controls and limiting devices shall be checked for proper operation.
OIL BURNER CERTIFICATE
AS REQUIRED BY COMMERCIAL STANDARD CS75-39

(Name of manufacturer) (Address)
Manufacturer of —— oil burner guarantees model ——, serial No. ——.

The company warrants all equipment manufactured by it and bearing its name plate to be free from defects in workmanship or material under normal use and service. If any part of the equipment herein described, and sold by the company proves to be defective in workmanship or material, and if such part is within 12 months from date of shipment from the company's factory returned to such factory, transportation charges prepaid, and if the same is found by the company to be defective in workmanship or material, it will be replaced or repaired, free of charge, f. o. b. factory. The company assumes no liability for consequential damages of any kind and the purchaser by acceptance of this equipment will assume all liability for the consequences of its use or misuse by the purchaser, his employees, or others. A defect in the meaning of this warranty in any part of said equipment shall not, when such part is capable of being renewed, repaired, or replaced, operate to condemn such equipment. This warranty is expressly in lieu of all other warranties, guarantees, obligations, or liabilities, expressed or implied by the company or its representatives.

This burner bears the seal of the official inspection agency of the oil burner industry evidencing compliance with Commercial Standard CS75-39 as issued by the National Bureau of Standards of the United States Department of Commerce.

This burner is approved for use with fuel oil not heavier than commercial standard grade No. ——.

——
——
Boiler Name ——
No. ——

The oil burner installed in
Furnace Name ——
No. ——

with —— square feet of standing
steam —— radiation plus
hot water —— square feet of additional connected load; or
with —— square inches cross-sectional area of warm air supply pipes measured at the furnace take off.

Other special data: —— and has been installed by

(Address) ——
(Name of installer and address) ——
in accordance with specifications in oil burner manufacturer's instruction manual.

——

This installation has been installed to comply with all local regulations, codes, and ordinances and required permits have been secured; and has been tested in accordance with test procedure of Commercial Standard CS75-39 and readings taken as follows:

\[\text{CO}_2 \] Over fire ———
\[\text{At breeching} \]

\[\text{Draft} \] Over fire ——— inches H\text{2}O.
\[\text{At breeching} \]

stack temperature at breeching ——— °F.

Firing rate ——— gal/hr.

All controls and limiting devices have been checked for proper operation.

Fuel used CSG No. ——
The above test results are certified to be true.

Date ——— Per ———
(Company) (Signature)

24-hour service on this oil-burner installation without charge is guaranteed for a period of 1 year from ——— by

(Date) ———
(Company) (Signature)

Telephone ———

1 The wording of this paragraph may be varied to suit the individual manufacturer.
NEMA SPECIFICATIONS FOR LONG-HOUR SERVICE

Motors used on mechanical draft oil burners shall comply in every respect with National Electrical Manufacturers Association Motor and Generator Standards (publication 38-49 and superseding issues) for small power motors:

Direct current................. MG8–30 to MG8–70, inclusive, and
Alternating current........... MG8–80 to MG8–127, inclusive

The following extracts taken from NEMA Motor and Generator Standards, publication 38-49, for alternating-current motors are given as an indication of the more pertinent items to be considered in determining whether or not a given motor as applied meets the oil burner industry standards:

PERFORMANCE STANDARDS
MG8–100 TEMPERATURE RISE

The temperature rise of each of the various parts, above the temperature of the cooling medium, shall not exceed the values given in the following table:

<table>
<thead>
<tr>
<th>Class of insulation</th>
<th>Load, percentage of rated capacity</th>
<th>Time rating</th>
<th>Temperature rise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O</td>
<td>100</td>
<td>Continuous</td>
</tr>
</tbody>
</table>

1. Coil windings, cores, and mechanical parts in contact with or adjacent to insulation:
 (a) General-purpose motors .. 40°C C
 (b) Totally enclosed and totally enclosed fan-cooled motors 55°C C
 (c) Motors and generators other than (a) and (b) 35°C C

2. Commutators and collector rings:
 (a) General-purpose motors .. 55°C C
 (b) Totally enclosed and totally enclosed fan-cooled motors 65°C C
 (c) Motors and generators other than (a) and (b) 50°C C

MG8-101 MINIMUM EFFICIENCIES, POWER FACTORS, AND APPARENT EFFICIENCIES

The efficiency, power factor, and apparent efficiency of the following ratings shall not be less than the values given below at rated voltage, frequency, and load.

2-, 4-, 6-, and 8-pole, 60-cycle motors, single-phase

(a) Long-hour service

<table>
<thead>
<tr>
<th>Rating</th>
<th>Efficiency</th>
<th>Power factor</th>
<th>Apparent efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Speed (rpm)</td>
<td>Speed (rpm)</td>
<td>Speed (rpm)</td>
</tr>
<tr>
<td></td>
<td>3,600</td>
<td>1,800</td>
<td>1,200</td>
</tr>
<tr>
<td>hp</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>1/4</td>
<td>45</td>
<td>53</td>
<td>45</td>
</tr>
<tr>
<td>1/4</td>
<td>49</td>
<td>58</td>
<td>50</td>
</tr>
<tr>
<td>1/4</td>
<td>53</td>
<td>62</td>
<td>53</td>
</tr>
<tr>
<td>1/4</td>
<td>54</td>
<td>63</td>
<td>54</td>
</tr>
<tr>
<td>1/4</td>
<td>55</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>1/4</td>
<td>57</td>
<td>67</td>
<td>57</td>
</tr>
</tbody>
</table>

1 The power factor and efficiency must not be less than the values shown and such that their product is not less than the values given for apparent efficiency.
SIGNIFICANCE OF INSTALLATION REQUIREMENTS AND PERFORMANCE TESTS

29. The oil-burner certificate posted after installation is the guaran-
tee or affidavit to the ultimate consumer that the installation complies
with these minimum standards. The significance of the various
recorded data on this certificate is summarized as follows:

30a. CO₂ (carbon dioxide) is one of the products of combustion of
fuel oil. Its percentage by volume under prescribed test conditions is
an important index of the quality of the combustion performance of
the burner. High CO₂ with no chimney smoke shows that the burner
has been designed, installed, and adjusted so well it needs little excess
air to give a clean fire. It will be noted that the manufacturing
laboratory standards prescribe a minimum performance of 10 percent
of CO₂, whereas the installation standards permit a minimum of 8
percent of CO₂. This difference takes into account the effect of
variables that are impracticable to control under normal operating
conditions to the extent possible under laboratory test procedure and
supervision.

30b. Lower CO₂ may or may not be a reflection on the design of
the burner itself but may be caused by (1) improper burner air-
shutter adjustment, (2) poor atomization of the fuel, (3) improper
flame shape, (4) improper size, shape, or material of combustion
chamber or combustion hearth, (5) excessive or uncontrolled draft,
(6) underfired boiler or furnace, and (7) air leaks in boiler or furnace
setting. This latter cause is often due to improper installation of
boiler or furnace. These standards provide a definite means of
checking this condition by stating that when the minimum CO₂ of 8
percent cannot be obtained in the breeching, it will be permissible to
take a CO₂ over the fire, in which case both readings must be recorded
on the certificate. CO₂ considerably higher over the fire than in the
breeching (1 or 2 percent or more) is an indication of a sizeable air
leak into the flue gas passages of the boiler or furnace which should be
located and sealed. In new boilers the installer of the boiler or furnace
is responsible for the location and correction of such air leaks. In
any event, the installer of the oil burner should immediately advise
the purchaser of this condition when it is encountered, particularly
in those cases where it is not corrected.

31. Draft intensity depends upon the height of the chimney and
the temperature difference between the outside air and the chimney
gases. The capacity of the chimney is determined by the draft in-
tensity and the cross-sectional area of the chimney. The function of
the chimney and draft is to dispose of the products of combustion
from the boiler or furnace. Either too high or too low a draft may
adversely affect the performance of the burner and heating plant;
therefore, a draft regulator is required by these standards to adjust
high or low drafts to acceptable values within reasonable limits, that
is, high enough to dispose of the combustion gases so that smoke or
odor nuisance is not created and at the same time, low enough to maintain economical operation. Any feature of design, construction, or use which impairs the proper functions of the chimney is likely to cause combustion difficulties; therefore, any additional openings in a chimney connected to the central heating plant, such as for fireplaces, stoves, heaters, or vents should be eliminated.

32a. Stack temperature shows how well a furnace or boiler absorbs the heat released in it by the burning fuel. It is largely controlled by boiler or furnace design, although the burner design, application, or adjustment also may be responsible for increasing stack temperatures above normal. The principal causes of high stack temperature directly related to the burner or burner installation are (1) improper size or shape of combustion chamber, (2) excessive firing rate adjustment, (3) excessive draft, and (4) dirty boiler or furnace flues. Given proper burner application and performance for the connected heating load, and assuming clean heating surfaces in boiler or furnace and proper water conditions where a steam boiler is used, high stack temperatures generally indicate (1) an undersized boiler or furnace, or (2) insufficient or poorly designed heating surface in the boiler or furnace.

32b. To properly evaluate stack temperatures, they must be considered in relation to CO₂ for the purpose of determining the stack loss, or percentage of heat in the fuel burned which goes up the chimney. Figure 1 is a chart showing this relationship. It will be noted that with 8 percent of CO₂ and a stack temperature of 400° F., the stack loss is approximately 18 percent; with 13 percent of CO₂ the stack temperature can be increased to 600° F without increasing the percentage of stack loss. While excessively high stack temperatures are usually objectionable because of increased stack loss, excessively low stack temperatures due either to poor design or underfiring of boiler or furnace may be equally objectionable in that they may be inadequate for the maintenance of proper draft and, further, the condensation, in the chimney, of water vapor from the combustion gases can be highly destructive to certain materials.
33. **Firing rate** is important in that it must be adequate in the coldest weather to supply the requirements of the total connected load, which includes installed radiation or its equivalent, allowance for piping loss, reserve for pick-up, and allowance for domestic hot water where supplied by the heating system, and at the same time avoid creating a condition that may cause excessive stack temperatures or uneconomical operation for the reasons discussed above. The 25 percent excess firing rate permitted in the standards should not be used except where required to offset deficiencies in boiler or furnace capacity or deficiencies in installed radiation or equivalent.

34. **Smoke** is unburned carbon in the combustion gases and is evidence of improper burner application or adjustment. Smoke should not be confused with the appearance of condensed water vapor in the products of combustion sometimes visible as a light haze at the top of the chimney.

35. **Controls** are required to be tested as an additional precaution to prove accuracy of electrical work and instrument adjustment before allowing automatic operation of the equipment.

MANUFACTURER’S CERTIFICATE

36. In order that purchasers of oil burners may become familiar with the significance of minimum standard requirements and tests, as a basis for fair competition and improved confidence in oil burner performance, it is recommended that the following statement be included in manufacturer’s warranties, labels, invoices, contracts, sales literature, etc.:

This oil burner is certified by the _______________ Company, manufacturer, to comply with the requirements of Commercial Standard CS75-39 as issued by the National Bureau of Standards, of the United States Department of Commerce. It bears the seal of the official inspection agency of the oil burner industry evidencing compliance therewith.

EFFECTIVE DATE

The standard is effective for new production from November 1, 1939.

STANDING COMMITTEE

The following comprises the membership of the standing committee, which is to review, prior to circulation for acceptance, revisions proposed to keep the standard abreast of progress. Each association nominated its own representatives. Comment concerning the standard and suggestions for revision may be addressed to any member of the committee or to the Division of Trade Standards, National Bureau of Standards, which acts as secretary for the committee.

Manufacturers:

R. M. Sherman (chairman), Silent Glow Oil Burner Corporation, Hartford, Conn.

W. O. Lum, General Electric Co., Bloomfield, N. J.

C. Muirhead, Williams Oil-O-Matic Heating Corporation, 1231 Graybar Bldg., 420 Lexington Ave., New York, N. Y.
ALLAN F. REIF, Reif-Rexoil, Inc., 37 Carroll Street, Buffalo, N. Y.
T. H. SMOOT, Fluid Heat Division, Anchor Post Fence Co., Baltimore, Md.

Distributors:
PACIFIC OIL BURNER ASSOCIATION. Invited to appoint representative.

Users:
CHARLOTTE PAYNE, representing National Council of Women, 501 Madison Avenue, New York, N. Y.
R. K. THULMAN, Federal Housing Administration, Washington, D. C.
H. A. ROLNICK, Trent Engineering Laboratories, Trenton, N. J.
WILLIAM VAN ALEN, New York Chapter A. I. A., 141 East 52d St., New York, N. Y. Representing American Institute of Architects.

HISTORY OF PROJECT

Following a series of industry-wide meetings for the development of standards for mechanical draft oil burners, the Oil Burner Industry Standards Committee, under date of February 17, 1939, requested the cooperation of the National Bureau of Standards in the establishment of a commercial standard for mechanical draft oil burners. A preliminary manufacturer-distributor conference was held on March 15, 1939, at the Chamber of Commerce of the United States, Washington, D. C., which reviewed and revised a proposed draft of the standard.

The proposed commercial standard as revised by the conference of March 15 was then circulated to producers, distributors, installing contractors, and users for comment and criticism, and a general conference of all those directly concerned was held on April 27, 1939, at the Departmental Auditorium, Washington, D. C. This conference revised the draft further and recommended that it be circulated to the trade for written acceptance. Accordingly, the recommended commercial standard was submitted to producers, distributors, and users under date of May 12, 1939, and following written acceptance by a satisfactory majority, announcement was issued on August 18, 1939, that the standard would become effective for new production on November 1, 1939, as recommended by the general conference.
ACCEPTANCE OF COMMERCIAL STANDARD

If acceptance has not previously been filed, this sheet properly filled in, signed, and returned will provide for the recording of your organization as an acceptor of this commercial standard.

Date __________________________

Division of Trade Standards,
National Bureau of Standards,
Washington, D. C.

Gentlemen:

Having considered the statements on the reverse side of this sheet, we accept the Commercial Standard CS75–39 as our standard of practice in the

Production ¹ Distribution ¹ Installation ¹ Use ¹

of automatic mechanical draft oil burners.

We will assist in securing its general recognition and use and will cooperate with the standing committee to effect revisions of the standard when necessary.

Signature of individual officer __________________________

(In ink)

(Kindly typewrite or print the following lines)

Name and title of above officer __________________________

Company __

(Fill in exactly as it should be listed)

Street address ___

City and State ___

¹ Please designate which group you represent by drawing lines through the other three. Please file separate acceptances for all subsidiary companies and affiliates which should be listed separately as acceptors. In the case of related interests, trade papers, colleges, etc., desiring to record their general approval, the words “In principle” should be added after the signature.
TO THE ACCEPTOR

The following statements answer the usual questions arising in connection with the acceptance and its significance:

1. Enforcement.—Commercial standards are commodity specifications voluntarily established by mutual consent of the industry. They present a common basis of understanding between the producer, distributor, and consumer and should not be confused with any plan of governmental regulation or control. The United States Department of Commerce has no regulatory power in the enforcement of their provisions; but, since they represent the will of the industry as a whole, their provisions, through usage, soon become established as trade customs, and are made effective through incorporation into sales contracts by means of labels, invoices, and the like.

2. The acceptor’s responsibility.—The purpose of commercial standards is to establish for specific commodities, nationally recognized grades or consumer criteria, and the benefits therefrom will be measurable in direct proportion to their general recognition and actual use. Instances will occur when it may be necessary to deviate from the standard and the signing of an acceptance does not preclude such departures; however, such signature indicates an intention to follow the commercial standard where practicable, in the production, distribution, or consumption of the article in question.

3. The Department’s responsibility.—The major function performed by the Department of Commerce in the voluntary establishment of commercial standards on a Nation-wide basis is fourfold: First, to act as an unbiased coordinator to bring all branches of the industry together for the mutually satisfactory adjustment of trade standards; second, to supply such assistance and advice as past experience with similar programs may suggest; third, to canvass and record the extent of acceptance and adherence to the standard on the part of producers, distributors, and users; and fourth, after acceptance, to publish and promulgate the standard for the information and guidance of buyers and sellers of the commodity.

4. Announcement and promulgation.—When the standard has been endorsed by companies representing a satisfactory majority of production, the success of the project is announced. If, however, in the opinion of the standing committee of the industry or the Department of Commerce, the support of any standard is inadequate, the right is reserved to withhold promulgation and publication.
The organizations and individuals listed below have accepted this commercial standard as their standard of practice in the production, distribution, installation, and use of automatic mechanical draft oil burners designed for domestic installations. Such endorsement does not signify that they may not find it necessary to deviate from the standard nor that producers so listed guarantee all of their products to conform with the requirements of this standard. Therefore, specific evidence of compliance should be obtained where required.

ACCEPTORS

ASSOCIATIONS

American Association of Engineers, Chicago, Ill.
American College of Surgeons, Chicago, Ill. (In principle.)
American Specification Institute, Chicago, Ill.
Boston Oil Burner Associates, Boston, Mass.
Burning Oil Distributors Association, Chicago, Ill. (In principle.)
Cincinnati Association of Heating, Piping & Air Conditioning Contractors, Cincinnati, Ohio.
Household Science Institute, Chicago, Ill.
Indianapolis, Building Owners & Managers Association of, Indianapolis, Ind.
Jacksonville, Building Owners & Managers Association of, Jacksonville, Fla.
National Association of Purchasing Agents, New York, N. Y. (In principle.)
Oil Burner Institute, Inc., New York, N. Y. (In principle.)
Overlook Hospital Association, Summit, N. J.
Stove Mounters International Union, St. Louis, Mo. (In principle.)
Wisconsin, Oil Heating Association of, Milwaukee, Wis.

FIRMS

Aahmes Burner Co., Washington, D. C.
Ace Engineering Co., Chicago, Ill.
Ace Oil Burner Co., Inc., Cedar Rapids, Iowa.
Aldrich Co., Peoria, Ill.
American Furnace Co., St. Louis, Mo.
American Mohawk Corporation, New York, N. Y.
American Radiator & Standard Sanitary Corporation, New York, N. Y.
Anchor Post Fence Co., Fluid Heat Division, Baltimore, Md.
Andrews, Jones, Bisoe & Whitmore, Boston, Mass.
Arkansas, Baptist State Hospital of, Little Rock, Ark.
Arrow Oil Burner Co., Oak Park, Ill.
Autooarat Oil Burner Corporation, Cedar Rapids, Iowa.
Auto-Heat Corporation, New York, N. Y.
Automatic Burner Corporation, Chicago, Ill.
Bacharach Industrial Instrument Co., Pittsburgh, Pa.
Baumer, Herbert, Columbus, Ohio.
Beeeson, Carroll O., Crawfordsville, Ind.
Bennett, Inc., Lawrence J., West Hempstead, N. Y.
Bennett Co., Omaha, Nebr.
Bial, George F., Hasbrouck Heights, N. J.
Bickford, Robert T., Elmira, N. Y.
Bird, Donald G., Minneapolis, Minn.
Bishop, Horatio W., Los Angeles, Calif.
Bogner, Harry, Milwaukee, Wis.
Braden-Everedy, Rock Island, Ill.
Braseth & Houkam, Fargo, N. Dak.
Braun Bros. Oil Co., Inc., Winnetka, Ill.
Brazier, Clarence W., New York, N. Y.
Brown, Floyd W., Minneapolis, Minn. (In principle.)
Brust, Peter A., Milwaukee, Wis.
Buechner & Orth, St. Paul, Minn. (In principle.)
Calesco Corporation, Lynn, Mass.
Caloril Burner Corporation, The, Hartford, Conn.
Candelia, Rosario, New York, N. Y.
Cannon & Mullen, Salt Lake City, Utah.
Carragher Bros., Lowell, Mass.
Carrier Corporation, Syracuse, N. Y.
Carroll, John, Atlantic City, N. J.
Century Engineering Corporation, Cedar Rapids, Iowa.
Child, Harry Charles, Sayre, Pa. (In principle.)
Children's Country Home, Westfield, N. J.
Citro Oil Burners Corporation, Pompton Lakes, N. J.
Cleveland Steel Products Corporation, Cleveland, Ohio.
Coit, Elisabeth, New York, N. Y. (In principle.)
Colonial Beacon Oil Co., New York, N. Y.
Combustioneer Corporation, Washington, D. C.
Conco Engineering Works, Mendota, Ill.
Conco-Sampsell Stoker Corporation, Mendota, Ill.
Concord Burner Co., Inc., Lawrence, Long Island, N. Y.
Conrad & Cummings, Binghamton, N. Y.
Conrow, H. S., Wichita, Kans. (In principle.)
Consumers Petroleum Co., Chicago, Ill.
Cornell Sales Co., New York, N. Y.
County Seat Plumbing Supply Co., Inc., White Plains, N. Y.
Crane Co., Chicago, Ill.
Crowell & Lancaster, Bangor, Maine.
Cuthbert & Cuthbert, Ann Arbor, Mich.
De Jarnette, Charles Wagner, Des Moines, Iowa.
D’Elia Oil Burner Co., Inc., Bridgeport, Conn.
Delta-Star Electric Co., Chicago, Ill.
DeSoto Oil Burner Corporation, York, Pa.
Dexter & Biethen, Dover-Foxcroft, Maine.
Diesel Oil Burner Corporation of New York, Jamaica, Long Island, N. Y.
Dietel & Wade, Buffalo, N. Y.
Dodge Corporation, F. W., Sweet's Catalogue Service Division, Chicago, Ill.
Dodge & Morrison, New York, N. Y.
Dome Oil Co., Inc., Washington, D. C.
Edwards, Inc., John (Berggren Oil Burners), Brooklyn, N. Y.
Electrical Testing Laboratories, New York, N. Y. (In principle.)
Electrol, Inc., Clifton, N. J.
Emery Industries, Inc., Cincinnati, Ohio.

English, Harold T., Hutchinson, Kans.
Fair-Chester Oil Co., Inc., East Port Chester, Conn.
Faultless Distributing Co., Inc., Jamaica, Long Island, N. Y.
Fish Oven & Equipment Co., Beloit, Wis.
Fitzgibbons Oil Burner Corporation, Bronx, New York, N. Y.
Flannagan, Eric G., Henderson, N. C.
Foltz & Son, Herbert, Indianapolis, Ind.
Fuller Engineering Co., E. F., R. F. D., Nashotah, Wis.
Gaertner, Otto, New York, N. Y. (In principle.)
GasOrOyle Burner Co., The, Minneapolis, Minn.
General Electric Co., Bloomfield, N. J.
General Motors Corporation, Delco Appliance Division, Rochester, N. Y.
General Oil Burner Co., Baltimore, Md. (In principle.)
General Oil Burner Service Co., Inc., The, Washington, D. C.
General Oil Heating Corporation (Carter Oil Burners), West New York, N. J.
Goodrich Oil Burner Manufacturing Corporation, The, New Haven, Conn.
Green Foundry & Furnace Works, Des Moines, Iowa.
Greenwood Engineering Co., Inc., Glenside, Md.
Griffith Consumers Co., Washington, D. C.
Hahn, Stanley Worth, Silver Spring, Md.
Hallberg & Beersman, Chicago, Ill.
Hardinge Manufacturing & Oil Burner Co., Chicago, Ill.
Harris, Jay, New York, N. Y.
Harrison & Rouse Fuel Co., Baltimore, Md.
Hart Oil Burner Corporation, Peoria, Ill.
Harvard University, Cambridge, Mass.
Hayward Manufacturing Co., Inc., Brooklyn, N. Y.
Heating Service Co., Winnetka, Ill.
Heil Co., The, Milwaukee, Wis.
Helfensteller, Hirsch & Watson, St. Louis, Mo.
Hereo Oil Burner Corporation, Lancaster, Pa.
Higgins, Charles H., New York, N. Y.
Hoben Manufacturing Co., Waltham, Mass.
Hochschild, Kohn & Co., Baltimore, Md.
Hodgdon & Son, Charles, Chicago, Ill.
Hoffman Fuel Co., Michael, Bridgeport, Conn.
Holmes Burner Co., Oronoque, Conn.
Hopkins, Albert Hart, Buffalo, N. Y.
Hospital Bureau of Standards & Supplies, Inc., New York, N. Y.
Illinois, University of, Urbana, Ill. (In principle.)
Jamme, Bernard E., Summit, N. J.
Johns Hopkins Hospital, The, Baltimore, Md.
Johnson Oil Burner Sales Co., Chicago, Ill.
Jonas, Henry F., & Tabor, Houston, Tex.
Keich, Robert J., Warren, Ohio.
Kleen-Heet, Inc., Chicago, Ill.
Klom-Air Systems, Washington, D. C.
Knighton & Howell, Portland, Oreg.
Korth Oil Burner Corporation, Roselle Park, N. J.
Kruckemeyer & Strong, Cincinnati, Ohio.
Larrick, Tom, Lawrence, Kans.
Lattner Manufacturing Co., P. M., Cedar Rapids, Iowa.
Law, Law & Potter, Madison, Wis.
Lawrence, Holford & Allyn, Portland, Oreg.
Lennox Furnace Co., Inc., Marshalltown, Iowa, and Syracuse, N. Y.
Levy, Will, St. Louis, Mo.
Liberty Airfio Burns, Inc., Farmingdale, Long Island, N. Y.
Little Burner Co., Inc., H. C., San Rafael, Calif.
Loeb, Laurence M., White Plains, N. Y.
Long Beach, Ltd. Better Business Bureau of, Long Beach, Calif. (In principle.)
Loughborough Oil Co., Washington, D. C.
Luxor Oil Burner Corporation, West Englewood, N. J.
Lynn Products Co., Lynn, Mass.
Maek Air Cond. Corporation, Atlantic City, N. J.
Maerac, Inc., Brooklyn, N. Y.
Majestic Fuel Oil Corporation, (Alpine Oil Burner), Long Island City and New York, N. Y.
Marble Iron Fittings Co., Bransford, Conn.
Martin & Son, A. Oscar, Doylestown, Pa. (In principle.)
Mason & Co., George D., Detroit, Mich.
Mason & Co., Inc., W. C., Hartford, Conn.
Master Kraft Oil Burner of Queens, Inc., Jamaica, N. Y.
May Oil Burner Corporation, Baltimore, Md.
Mayflower Oil Burner Corporation, West New York, N. J.
McCormack, Walter R., Cleveland, Ohio.
McIlvaine Burner Corporation, Chicago, Ill.
Messer Co., Inc., The, Newark, N. J.
Metropolitan Petroleum Co., Inc., Bethesda, Md.
Miami University, Oxford, Ohio. (In principle.)
Michigan Tank & Furnace Corporation, Detroit, Mich.
Miller Co., The, Meriden, Conn.
Miller Oil Co., Waltham, Mass.
Miller & Yeager, Terre Haute, Ind.
Montag Stove & Furnace Works, Portland, Oreg.
Moore, David H., Atlantic City, N. J.
Mundie, Jensen, Bourke & Havens, Chicago, Ill.
Nash-Kelvinator Corporation, Kelvinator Division, Detroit, Mich.
National Radiator Co., The, Johnstown, Pa.
New York, Inc., The Real Estate Board of, New York, N. Y. (In principle.)
Northern Controlled Heat Co., Inc., Watertown, N. Y.
Nuway Corporation, The, Rock Island, Ill.
Ohio Electric Manufacturing Co., The, Cleveland, Ohio.
Ohio State University, The, Columbus, Ohio. (In principle.)
Oil Burning Engineers, Inc., Evanston, Ill.
Oil Equipment Laboratories, Inc., Elizabeth, N. J.
Oil Heat Magazine, New York, N. Y. (In principle.)
Oil Heating & Service, Inc., Baltimore, Md. (In principle.)
Orange Memorial Hospital, Orange, N. J. (In principle.)

Pancoast, Russell T., Miami Beach, Fla.

Par Appliances, Inc., La Crosse, Wis. (In principle.)

Parker, Llewellyn A., Los Angeles, Calif. (In principle.)

Patchogue Oil Terminals Corporation, Brooklyn, N. Y.

Paterson General Hospital, Paterson, N. J.

Pennsylvania Hospital, Philadelphia, Pa.

Pennsylvania Petroleum Products Co., Providence, R. I.

Peoples Oil Burner Co., Chicago, Ill.

Perfect Air Conditioning & Heating Co., Washington, D. C.

Perfex Corporation, Milwaukee, Wis. (In principle.)

Perfex Corporation, New England Division, Boston, Mass. (In principle.)

Petro-Nokol Oil Heating Co., Inc., Washington, D. C.

Power Plant Engineering, Chicago, Ill. (In principle.)

Preferred Utilities Co., Inc., New York, N. Y.

Progressive Machinery Co., Minneapolis, Minn.

Proudfoot, Rawson, Brooks & Borg, Des Moines, Iowa.

Purdue, Albert G., New Haven, Conn.

Quiet Heet Oil Burner Co., Inc., Brooklyn, N. Y.

Reid, Jr., William H., Billings, Mont.

Reif-Rexoil, Inc., Buffalo, N. Y.

Rindge & Rindge, Grand Rapids, Mich.

Round Oak Co., Dowagiac, Mich.

S-K Co., Camden, N. J.

Sacramento, Better Business Bureau of, Sacramento, Calif. (In principle.)

Saint John’s Hospital, Brooklyn, N. Y.

Saint Luke’s Hospital, Bethlehem, Pa.

Schlendorf, M. A., Brooklyn, N. Y.

Schroeder, Inc., A. C., Newark, N. J.

Scott-Newcomb, Inc., St. Louis, Mo.

Scranton Better Business Bureau, Scranton, Pa. (In principle.)

Sears, Roebuck & Co., Chicago, Ill.

Shawmut Oil Burner Co., Waltham, Mass.

Sigwald Engineering Corporation, Minneapolis, Minn.

Silent Flame Oil Burner Co., Bronx, New York, N. Y.

Silent Glow Oil Burner Corporation, The, Hartford, Conn.

Silent-Heet Oil Burner Co., Inc., Bronx, New York, N. Y.

Sleep, Harold R., New York, N. Y.

Standard Oil Co. of New Jersey, New York, N. Y.

Standard Oil Co. of New Jersey, Oil Heating Division, Washington, D. C.

Standard Oil Co. of Pennsylvania, New York, N. Y.

Standard Utilities Corporation (Challenger Oil Burner), Newark, N. J.

State Island Home Utilities Co., Inc., Port Richmond, S. I., N. Y.

Stepnoki & Son, F. J., Fond du Lac, Wis.

Stoetzle, Ralph E., Chicago, Ill.

Stravs, Carl B., Minneapolis, Minn.

Sundstrand Engineering Co., Rockford, III.

Sundstrand Machine Tool Co., Rockford, Ill.

Sunland Refining Corporation, Fresno, Calif.

Sylvestre Oil Co., Inc., Mt. Vernon, N. Y.

Taylor, Henry L., St. Petersburg, Fla.

Taylor, Edward Gray & Ellis Wing

Taylor, Los Angeles, Calif.

Thorne, Henry Calder, Ithaca, N. Y.

Timken Detroit Axle Co., Timken

Silent Automatic Division, Detroit, Mich.

Tomlinson, Webster, Joliet, Ill.

Town & Country Oil Burner Co., Inc., Mt. Vernon, N. Y.

Underwriters’ Laboratories, Inc., Chicago, Ill. (In principle.)

United Equipment & Supply Co., Washington, D. C.

United States Burner Corporation, Hartford, Conn.

Universal Manufacturers, Inc., Midland Park, N. J.

Urdahl, T. H., Washington, D. C.

Virginia Polytechnic Institute, Blacksburg, Va.

Vogel, Willis A., Toledo, Ohio.

Volcano Burner Corporation, New York, N. Y.

Walsh, Louis A., Waterbury, Conn. (In principle.)

Walsh, W. H., Chicago, Ill.

Wayne Oil Burner Corporation, Fort Wayne, Ind.

Weaver, Rudolph H., Gainesville, Fla.
Webster Oil Burner Co., Bronx, New York, N. Y.
Weinberg, Joseph L., Cleveland, Ohio.
Welch, Carroll E., Huntington, N. Y.
Westchester Home Equipment Co., Inc., New York, N. Y.
Willatsen, Andrew, Seattle, Wash.
Williams Oil-O-Matic Heating Corporation, Bloomington, Ill.
Winold Reiss Studios, New York, N. Y. (In principle.)
Wischmeyer, Wm. F., St. Louis, Mo.
Wright, Frank H., Detroit, Mich. (In principle.)

York Ice Machinery Corporation, York, Pa.

U. S. GOVERNMENT

Agriculture, U. S. Department of, Washington, D. C.
Federal Loan Agency, Federal Housing Administration, Washington, D. C.
Federal Works Agency, United States Housing Authority, Washington, D. C.
Treasury Department, Washington, D. C.
War Department, Washington, D. C.
COMMERCIAL STANDARDS

<table>
<thead>
<tr>
<th>CS No.</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-30.</td>
<td>Mopsticks.</td>
</tr>
<tr>
<td>4-29.</td>
<td>Steatite porcelain (all-clay) plumbing fixtures.</td>
</tr>
<tr>
<td>5-29.</td>
<td>Steel pipe nipples.</td>
</tr>
<tr>
<td>7-39.</td>
<td>Standard weight malacable iron or steel screwed unions.</td>
</tr>
<tr>
<td>10-29.</td>
<td>Brass pipe nipples.</td>
</tr>
<tr>
<td>11-29.</td>
<td>Regain of mercerized cotton yarns.</td>
</tr>
<tr>
<td>15-29.</td>
<td>Men's pajamas.</td>
</tr>
<tr>
<td>16-29.</td>
<td>Wall paper.</td>
</tr>
<tr>
<td>18-25.</td>
<td>Hickory golf shafts.</td>
</tr>
<tr>
<td>22-30.</td>
<td>Builders' hardware (nontemplate).</td>
</tr>
<tr>
<td>23-30.</td>
<td>Feldspar.</td>
</tr>
<tr>
<td>25-36.</td>
<td>Special screw threads.</td>
</tr>
<tr>
<td>33-32.</td>
<td>Knit underwear (exclusive of rayon).</td>
</tr>
<tr>
<td>35-31.</td>
<td>Flywood (hardwood and eastern red cedar).</td>
</tr>
<tr>
<td>37-31.</td>
<td>Steel bone plates and screws.</td>
</tr>
<tr>
<td>38-32.</td>
<td>Hospital rubber sheeting.</td>
</tr>
<tr>
<td>40-32.</td>
<td>Surgeons' rubber gloves.</td>
</tr>
<tr>
<td>41-32.</td>
<td>Surgeons' latex gloves.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CS No.</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>44-32.</td>
<td>Apple wraps.</td>
</tr>
<tr>
<td>47-34.</td>
<td>Marking or gold-filled and rolled-gold-plate articles other than watch cases.</td>
</tr>
<tr>
<td>48-34.</td>
<td>Domestic burners for Pennsylvanias anhtracite (underfeed type).</td>
</tr>
<tr>
<td>49-34.</td>
<td>Chip board, laminated chip board, and miscellaneous boards for bookbinding purposes.</td>
</tr>
<tr>
<td>50-34.</td>
<td>Binders board for bookbinding and other purposes.</td>
</tr>
<tr>
<td>51-35.</td>
<td>Marking articles made of silver in combination with gold.</td>
</tr>
<tr>
<td>52-35.</td>
<td>Mohair pile fabrics (100-percent mohair plain velvet, 100-percent mohair plain frieze, and 50-percent mohair plain frieze).</td>
</tr>
<tr>
<td>53-35.</td>
<td>Colors and finishes for cast stone.</td>
</tr>
<tr>
<td>54-35.</td>
<td>Mattresses for hospitals.</td>
</tr>
<tr>
<td>55-35.</td>
<td>Mattresses for institutions.</td>
</tr>
<tr>
<td>56-36.</td>
<td>Oak flooring.</td>
</tr>
<tr>
<td>57-36.</td>
<td>Book cloths, buckrams, and impregnated fabrics for bookbinding purposes except library bindings.</td>
</tr>
<tr>
<td>60-36.</td>
<td>Hardwood flooring.</td>
</tr>
<tr>
<td>61-37.</td>
<td>Wood-slat venetian blinds.</td>
</tr>
<tr>
<td>63-38.</td>
<td>Colors for bathroom accessories.</td>
</tr>
<tr>
<td>64-37.</td>
<td>Walnut veneers.</td>
</tr>
<tr>
<td>65-38.</td>
<td>Wool and part-wool fabrics.</td>
</tr>
<tr>
<td>66-38.</td>
<td>Marking of articles made wholly or in part of paperboard.</td>
</tr>
<tr>
<td>67-38.</td>
<td>Marking articles made of kast gold.</td>
</tr>
<tr>
<td>68-38.</td>
<td>Liquid hypochlorite disinfectant.</td>
</tr>
<tr>
<td>70-38.</td>
<td>Coal tar disinfectant (emulsifying type).</td>
</tr>
<tr>
<td>71-38.</td>
<td>Cresylic disinfectants.</td>
</tr>
<tr>
<td>72-38.</td>
<td>Household insecticide (liquid spray type).</td>
</tr>
<tr>
<td>75-39.</td>
<td>Automatic mechanical draft oil burners.</td>
</tr>
<tr>
<td>77-39.</td>
<td>Sanitary cast iron enameled ware.</td>
</tr>
</tbody>
</table>

Notice.—Those interested in commercial standards with a view toward accepting them as a basis of everyday practice in their industry may secure copies of the above standards, while the supply lasts, by addressing the Division of Trade Standards, National Bureau of Standards, Washington, D. C.