DIAMOND CORE DRILL FITTINGS

(THIRD EDITION)

COMMERCIAL STANDARD CS17-42

Effective Date for New Production from January 1, 1942

A RECORDED VOLUNTARY STANDARD
OF THE TRADE

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON: 1941

For sale by the Superintendent of Documents, Washington, D. C. - - - Price 10 cents
PROMULGATION

of

COMMERCIAL STANDARD CS17–42

for

DIAMOND CORE DRILL FITTINGS

(THIRD EDITION)

On May 27, 1929, at the instance of the Diamond Core Drill Manufacturers Association, a joint conference of representative manufacturers, drilling contractors, and general interests adopted a commercial standard for diamond core drill fittings which was accepted by the industry and published as Commercial Standard CS17–30. In 1932, upon recommendation of the standing committee to keep the standard abreast of progress, a revision was adopted and issued as CS17–32.

On March 25, 1941, with the endorsement of the standing committee, a revision of CS17–32, drafted by the Diamond Core Drill Manufacturers Association, was circulated for acceptance. Those concerned have since accepted and approved for promulgation by the United States Department of Commerce, through the National Bureau of Standards, the revised standard as shown herein.

The standard is effective for new production from January 1, 1942.

Promulgation recommended.

I. J. Fairchild,
Chief, Division of Trade Standards.

Promulgated.

Lyman J. Briggs,
Director, National Bureau of Standards.

Promulgation approved.

Jesse H. Jones,
Secretary of Commerce.
1. The purpose of this commercial standard is to provide dimensional interchangeability in essential diamond core drill fittings as made by American manufacturers. The difficulty of replacing parts in the field should therefore be minimized, since sizes and size designations are identical for all manufacturers.

SCOPE

2. This standard covers standard designs and tolerances with controlling dimensions for rod couplings, drill rods, core-barrel bits, reaming shells, core-barrel outer tubes, core-barrel inner tubes, casing couplings, flush-coupled casings, flush-joint casings, and casing bits. Dimensions of core-barrel bits and reaming shells apply to these items as machine-shop products prior to being set with drilling diamonds.

GENERAL

3. The following nomenclature, symbols, dimensions, tolerances, and types are recommended as standard for diamond core drill fittings.

4. The four sizes of diamond core drill casing shall be known as EX, AX, BX, and NX. The corresponding sizes of bits, core barrels, and core-barrel parts shall be known as EXT, AXT, BX, and NX. Rod and rod coupling sizes are known as E, A, B, and N. Nominal dimensions are given in table 1 and illustrated in figure 2.

Table 1.—Nominal dimensions

<table>
<thead>
<tr>
<th>Casing, casing coupling, casing bits</th>
<th>Casing, core barrel bits, reaming shells</th>
<th>Rod, rod couplings</th>
<th>O. D.</th>
<th>I. D.</th>
<th>Casing, core barrel bit, O. D.</th>
<th>Core-barrel bit, O. D.</th>
<th>Core-barrel bit, I. D.</th>
<th>Reaming shell, O. D.</th>
<th>Drill rod, O. D.</th>
<th>Approx. diam. of hole made by core-barrel bit and shell</th>
<th>Approx. diam. of core</th>
</tr>
</thead>
<tbody>
<tr>
<td>EX</td>
<td>EXT</td>
<td>E</td>
<td>1(\frac{3}{16})</td>
<td>(\frac{1}{2})</td>
<td>1(\frac{5}{32})</td>
<td>1(\frac{5}{64})</td>
<td>1(\frac{15}{64})</td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{15}{64})</td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{15}{64})</td>
</tr>
<tr>
<td>AX</td>
<td>AXT</td>
<td>A</td>
<td>2(\frac{1}{4})</td>
<td>12(\frac{1}{16})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
</tr>
<tr>
<td>BX</td>
<td>BX</td>
<td>B</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
<td>2(\frac{1}{64})</td>
</tr>
<tr>
<td>NX</td>
<td>NX</td>
<td>N</td>
<td>3(\frac{1}{8})</td>
<td>3 (\frac{1}{8})</td>
</tr>
</tbody>
</table>

1 Inside diameter of flush-joint casing, and of coupling of flush-coupled casing.
2 Assuming hole \(\frac{3}{16}\) inch larger than reaming shell and listing diameters to nearest \(\frac{1}{64}\) inch.
3 Assuming core \(\frac{3}{16}\) inch smaller than I. D. of bit and listing diameters to nearest \(\frac{1}{64}\) inch.
Figure 1.—Cross section through rigid-type double-tube core barrel assembly, EXT.
5. Casings made flush on the outside when connected with couplings shall be known as "flush-coupled casing"; when connected without couplings, shall be known as "flush-joint casing." The threads of both are identical. Unless otherwise specified by the purchaser, either type of EX and AX casing may be furnished by the manufacturer. BX and NX casing are furnished only in the flush-coupled type.

6. Core barrels shall be known as "single-tube core barrels", "rigid-type double-tube core barrels", or "swivel-type double-tube core barrels", as the case may be.

7. Single-tube and double-tube core-barrel bits shall be identical.

8. The term "reaming shell" shall be used in preference to "swell coupling." The bit thread of reaming shells and core shells shall conform to the standard bit thread.

9. Single-tube reaming shells are not standardized except that the lower threads and the external diameters shall be identical with those of the corresponding double-tube reaming shell.

10. The approximate sizes of standard cores are: NX, 2⅛ inches; BX, 1⅜ inches; AXT, 1⅝ inches; EXT, 1⅞ inch. Larger cores are obtainable with special fittings.

DETAIL REQUIREMENTS

11. The dimensions and tolerances for rod couplings, drill rods, core-barrel bits, reaming shells, core-barrel outer tubes, core-barrel inner tubes, casing couplings, flush-coupled casings, flush-joint casings and casing bits are given in tables 2 to 12, inclusive, and in the drawings which accompany them.
Table 2.—Rod couplings

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Threads per inch</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>E</td>
<td>1(\frac{1}{16})</td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{7}{16})</td>
<td>3 in.</td>
<td>0.874</td>
</tr>
<tr>
<td>A</td>
<td>1(\frac{1}{8})</td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{4})</td>
<td>3(\frac{9}{16})</td>
<td>3</td>
<td>1.139</td>
</tr>
<tr>
<td>B</td>
<td>1(\frac{3}{16})</td>
<td>1(\frac{1}{2})</td>
<td>1(\frac{1}{4})</td>
<td>5(\frac{9}{16})</td>
<td>5</td>
<td>1.280</td>
</tr>
<tr>
<td>N</td>
<td>2(\frac{1}{8})</td>
<td>1(\frac{1}{2})</td>
<td>2(\frac{1}{8})</td>
<td>1</td>
<td>4</td>
<td>1.686</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>L</th>
<th>M</th>
<th>S</th>
<th>T</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>max</td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>E</td>
<td>4(\frac{1}{2})</td>
<td>1(\frac{3}{8})</td>
<td>0.1908</td>
<td>0.1563</td>
<td>0.0909</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>1(\frac{2}{8})</td>
<td>0.1908</td>
<td>0.1563</td>
<td>1.264</td>
</tr>
<tr>
<td>B</td>
<td>5(\frac{1}{4})</td>
<td>1(\frac{3}{16})</td>
<td>0.0941</td>
<td>0.0807</td>
<td>1.405</td>
</tr>
<tr>
<td>N</td>
<td>6(\frac{1}{4})</td>
<td>2(\frac{1}{8})</td>
<td>0.1164</td>
<td>0.1120</td>
<td>1.874</td>
</tr>
</tbody>
</table>
Table 3.—Drill rod

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D</th>
<th>H</th>
<th>K max</th>
<th>K min</th>
<th>M max</th>
<th>M min</th>
<th>S max</th>
<th>S min</th>
<th>T max</th>
<th>T min</th>
<th>Threads per inch</th>
<th>V max</th>
<th>V min</th>
<th>(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1(\frac{1}{8})</td>
<td>2(\frac{3}{4})</td>
<td>0.877</td>
<td>0.876</td>
<td>1(\frac{1}{8})</td>
<td>0.1608</td>
<td>0.1544</td>
<td>1.002</td>
<td>1.001</td>
<td>0.1680</td>
<td>0.1617</td>
<td>0.1544</td>
<td>0.1517</td>
<td>0.4</td>
</tr>
<tr>
<td>A</td>
<td>1(\frac{1}{4})</td>
<td>2(\frac{3}{4})</td>
<td>1.142</td>
<td>1.141</td>
<td>1(\frac{1}{4})</td>
<td>0.1608</td>
<td>0.1544</td>
<td>1.287</td>
<td>1.286</td>
<td>0.1680</td>
<td>0.1617</td>
<td>0.1544</td>
<td>0.1517</td>
<td>0.4</td>
</tr>
<tr>
<td>B</td>
<td>1(\frac{1}{2})</td>
<td>2(\frac{1}{2})</td>
<td>1.283</td>
<td>1.282</td>
<td>2</td>
<td>0.0941</td>
<td>0.0877</td>
<td>1.408</td>
<td>1.407</td>
<td>5</td>
<td>0.1041</td>
<td>0.0950</td>
<td>0.0877</td>
<td>0.0850</td>
</tr>
<tr>
<td>N</td>
<td>max. 2.385</td>
<td>min. 2.375</td>
<td>1.689</td>
<td>1.688</td>
<td>2(\frac{1}{2})</td>
<td>0.1163</td>
<td>0.1090</td>
<td>1.877</td>
<td>1.876</td>
<td>4</td>
<td>0.1236</td>
<td>0.1173</td>
<td>0.1100</td>
<td>0.1085</td>
</tr>
</tbody>
</table>
ON BEVEL BITS THE INCLUDED ANGLE OF BEVEL IS TO BE 10 DEGREES

TABLE 4.—Core-barrel bits, bevel wall
[8 threads per inch R. H.]

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D max</th>
<th>D min</th>
<th>G max</th>
<th>G min</th>
<th>K max</th>
<th>K min</th>
<th>M1 max</th>
<th>M1 min</th>
<th>S max</th>
<th>S min</th>
<th>T max</th>
<th>T min</th>
<th>V max</th>
<th>V min</th>
<th>W max</th>
<th>W min</th>
<th>Z max</th>
<th>Z min</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT...</td>
<td>1.423</td>
<td>1.419</td>
<td>1.186</td>
<td>1.181</td>
<td>0.0594</td>
<td>0.0550</td>
<td>1.249</td>
<td>1.248</td>
<td>0.0642</td>
<td>0.0602</td>
<td>0.9390</td>
<td>0.9350</td>
<td>1.130</td>
<td>1.120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXT...</td>
<td>1.830</td>
<td>1.826</td>
<td>1.592</td>
<td>1.587</td>
<td>0.0594</td>
<td>0.0550</td>
<td>1.653</td>
<td>1.651</td>
<td>0.0642</td>
<td>0.0602</td>
<td>1.314</td>
<td>1.310</td>
<td>1.536</td>
<td>1.530</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX</td>
<td>2.298</td>
<td>2.294</td>
<td>2.067</td>
<td>2.062</td>
<td>0.0594</td>
<td>0.0550</td>
<td>2.030</td>
<td>2.029</td>
<td>0.0642</td>
<td>0.0602</td>
<td>1.089</td>
<td>1.085</td>
<td>1.836</td>
<td>1.830</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NX</td>
<td>2.923</td>
<td>2.919</td>
<td>2.092</td>
<td>2.087</td>
<td>0.0594</td>
<td>0.0550</td>
<td>2.655</td>
<td>2.654</td>
<td>0.0642</td>
<td>0.0602</td>
<td>2.189</td>
<td>2.185</td>
<td>2.510</td>
<td>2.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Threads shall be full form to within 3/6 inch of shoulder.
8-SQUARE THREADS
PER INCH-R.H.

Table 5.—Core-barrel bits, straight wall

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D max</th>
<th>D min</th>
<th>G max</th>
<th>G min</th>
<th>K max</th>
<th>K min</th>
<th>M max</th>
<th>M min</th>
<th>S max</th>
<th>S min</th>
<th>T max</th>
<th>T min</th>
<th>V max</th>
<th>V min</th>
<th>W max</th>
<th>W min</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>1.423</td>
<td>1.419</td>
<td>1(\frac{1}{2})</td>
<td>1.186</td>
<td>1.181</td>
<td>(\frac{3}{4})</td>
<td>0.0594</td>
<td>0.0550</td>
<td>1.249</td>
<td>1.248</td>
<td>0.0642</td>
<td>0.0602</td>
<td>0.939</td>
<td>0.935</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXST</td>
<td>1.830</td>
<td>1.826</td>
<td>1(\frac{1}{2})</td>
<td>1.592</td>
<td>1.587</td>
<td>(\frac{3}{4})</td>
<td>0.0594</td>
<td>0.0550</td>
<td>1.655</td>
<td>1.654</td>
<td>0.0642</td>
<td>0.0602</td>
<td>1.314</td>
<td>1.310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX</td>
<td>2.208</td>
<td>2.204</td>
<td>1(\frac{1}{2})</td>
<td>1.967</td>
<td>1.962</td>
<td>1</td>
<td>0.0594</td>
<td>0.0550</td>
<td>2.029</td>
<td>2.029</td>
<td>0.0642</td>
<td>0.0602</td>
<td>1.689</td>
<td>1.685</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NX</td>
<td>2.923</td>
<td>2.919</td>
<td>2(\frac{1}{2})</td>
<td>2.592</td>
<td>2.587</td>
<td>(\frac{3}{4})</td>
<td>0.0594</td>
<td>0.0550</td>
<td>2.655</td>
<td>2.654</td>
<td>0.0642</td>
<td>0.0602</td>
<td>2.189</td>
<td>2.185</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6.—Reaming shell, double tube
[8 threads per inch R.H.]

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D max</th>
<th>D min</th>
<th>F max</th>
<th>F min</th>
<th>G max</th>
<th>G min</th>
<th>H max</th>
<th>H min</th>
<th>J max</th>
<th>J min</th>
<th>K max</th>
<th>K min</th>
<th>K' max</th>
<th>K' min</th>
<th>M max</th>
<th>M min</th>
<th>P max</th>
<th>P min</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>1.455</td>
<td>1.451</td>
<td>1.000</td>
<td>0.992</td>
<td>1(\frac{1}{16})</td>
<td>1.083</td>
<td>1.073</td>
<td>1(\frac{1}{16})</td>
<td>1.190</td>
<td>1.188</td>
<td>1.249</td>
<td>1.244</td>
<td>1(\frac{1}{16})</td>
<td>1(\frac{3}{8})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXT</td>
<td>1.861</td>
<td>1.857</td>
<td>1.250</td>
<td>1.242</td>
<td>1(\frac{1}{16})</td>
<td>1.458</td>
<td>1.448</td>
<td>1(\frac{3}{16})</td>
<td>1.595</td>
<td>1.594</td>
<td>1.624</td>
<td>1.610</td>
<td>1(\frac{1}{16})</td>
<td>1(\frac{1}{8})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>Q max</th>
<th>R max</th>
<th>S max</th>
<th>S min</th>
<th>T max</th>
<th>T min</th>
<th>T' max</th>
<th>T' min</th>
<th>V max</th>
<th>V min</th>
<th>W max</th>
<th>W min</th>
<th>X max</th>
<th>X min</th>
<th>Y max</th>
<th>Y min</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>1.425</td>
<td>1.419</td>
<td>2(\frac{3}{32})</td>
<td>0.0594</td>
<td>0.0560</td>
<td>1.252</td>
<td>1(\frac{11}{32})</td>
<td>1.311</td>
<td>1.310</td>
<td>0.0642</td>
<td>0.0602</td>
<td>0.0563</td>
<td>0.0529</td>
<td>0.0007</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td>AXT</td>
<td>1.830</td>
<td>1.820</td>
<td>2(\frac{5}{32})</td>
<td>0.0594</td>
<td>0.0550</td>
<td>1.658</td>
<td>1.657</td>
<td>1.696</td>
<td>1.685</td>
<td>0.0642</td>
<td>0.0602</td>
<td>1(\frac{1}{16})</td>
<td>1(\frac{1}{16})</td>
<td>0.0593</td>
<td>0.0529</td>
<td>0.0007</td>
</tr>
</tbody>
</table>
Table 7. Core-barrel outer tube

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D (max)</th>
<th>G (max)</th>
<th>K (max)</th>
<th>K' (max)</th>
<th>L (ft and in.)</th>
<th>M (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>1 3/16 in.</td>
<td>1.008 in.</td>
<td>1.158 in.</td>
<td>1.292 in.</td>
<td>11 5/16"</td>
<td>1 5/16"</td>
</tr>
<tr>
<td>AXT</td>
<td>1 3/8 in.</td>
<td>1.250 in.</td>
<td>1.563 in.</td>
<td>1.626 in.</td>
<td>10 1/8"</td>
<td>11 5/16"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>P (max)</th>
<th>S (max)</th>
<th>T (max)</th>
<th>T' (max)</th>
<th>V (max)</th>
<th>W (max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>3/4 in.</td>
<td>0.0593 in.</td>
<td>1.220 in.</td>
<td>1.314 in.</td>
<td>0.0667 in.</td>
<td>1 3/4"</td>
</tr>
<tr>
<td>AXT</td>
<td>1 1/8 in.</td>
<td>0.0593 in.</td>
<td>1.627 in.</td>
<td>1.688 in.</td>
<td>0.0667 in.</td>
<td>1 1/8"</td>
</tr>
</tbody>
</table>
TABLE 8.—Core-barrel inner tube

[8 threads per inch R. H.]

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D</th>
<th>K max</th>
<th>K min</th>
<th>L max</th>
<th>L min</th>
<th>S max</th>
<th>S min</th>
<th>T max</th>
<th>T min</th>
<th>V max</th>
<th>V min</th>
<th>W max</th>
<th>W min</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT</td>
<td>1(\frac{1}{16}) in.</td>
<td>627</td>
<td>526</td>
<td>9(\frac{1}{2})−10(\frac{1}{2}) in.</td>
<td>0.0593</td>
<td>0.0529</td>
<td>0.689</td>
<td>0.688</td>
<td>0.0667</td>
<td>0.0602</td>
<td>11(\frac{1}{2}) in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AXT</td>
<td>1(\frac{1}{16}) in.</td>
<td>.039</td>
<td>.038</td>
<td>9(\frac{1}{2})−10(\frac{1}{2}) in.</td>
<td>0.0593</td>
<td>0.0529</td>
<td>1.002</td>
<td>1.001</td>
<td>0.0667</td>
<td>0.0602</td>
<td>11(\frac{1}{2}) in.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9.—Casing couplings

[8 threads per inch R. H.]

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>H max</th>
<th>H min</th>
<th>K max</th>
<th>K min</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
</tr>
<tr>
<td>EX</td>
<td>11(\frac{3}{4})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{3}{4})</td>
<td>1.500</td>
<td>1.490</td>
<td>1.655</td>
<td>1.650</td>
<td>5</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>AX</td>
<td>2(\frac{1}{4})</td>
<td>2</td>
<td>2</td>
<td>1.906</td>
<td>1.896</td>
<td>2.061</td>
<td>2.056</td>
<td>7</td>
<td>(\frac{1}{4})</td>
</tr>
<tr>
<td>BX</td>
<td>2(\frac{1}{2})</td>
<td>3(\frac{1}{2})</td>
<td>2(\frac{1}{4})</td>
<td>2.375</td>
<td>2.365</td>
<td>2.592</td>
<td>2.587</td>
<td>7(\frac{1}{4})</td>
<td>2</td>
</tr>
<tr>
<td>NX</td>
<td>3(\frac{1}{4})</td>
<td>3(\frac{1}{4})</td>
<td>2(\frac{1}{4})</td>
<td>3.000</td>
<td>2.990</td>
<td>3.217</td>
<td>3.212</td>
<td>8(\frac{1}{4})</td>
<td>2(\frac{1}{4})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>Q</th>
<th>S max</th>
<th>S min</th>
<th>T max</th>
<th>T min</th>
<th>V max</th>
<th>V min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
</tr>
<tr>
<td>EX</td>
<td>(\frac{1}{4})</td>
<td>0.0594</td>
<td>0.0550</td>
<td>1.717</td>
<td>1.716</td>
<td>0.0642</td>
<td>0.0602</td>
</tr>
<tr>
<td>AX</td>
<td>(\frac{5}{16})</td>
<td>0.0593</td>
<td>0.0549</td>
<td>2.124</td>
<td>2.123</td>
<td>0.0642</td>
<td>0.0602</td>
</tr>
<tr>
<td>BX</td>
<td>(\frac{1}{8})</td>
<td>0.0580</td>
<td>0.0536</td>
<td>2.686</td>
<td>2.685</td>
<td>0.0629</td>
<td>0.0588</td>
</tr>
<tr>
<td>NX</td>
<td>(\frac{3}{8})</td>
<td>0.0580</td>
<td>0.0536</td>
<td>3.311</td>
<td>3.310</td>
<td>0.0629</td>
<td>0.0588</td>
</tr>
</tbody>
</table>

1 Threads shall be full form to within \(\frac{3}{4}\) inch of shoulder.
Table 10.—Casing, flush-coupled

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D</th>
<th>H</th>
<th>K</th>
<th>M¹</th>
<th>S</th>
<th>T</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
</tr>
<tr>
<td>EX</td>
<td>1(\frac{3}{4})</td>
<td>1(\frac{1}{4})</td>
<td>1.658</td>
<td>1.65</td>
<td>1(\frac{3}{4})</td>
<td>0.053</td>
<td>0.170</td>
</tr>
<tr>
<td>AX</td>
<td>2\frac{1}{4}</td>
<td>2</td>
<td>2.064</td>
<td>2.06</td>
<td>2(\frac{3}{4})</td>
<td>0.053</td>
<td>0.069</td>
</tr>
<tr>
<td>BX</td>
<td>2\frac{3}{4}</td>
<td>2\frac{1}{2}</td>
<td>2.595</td>
<td>2.59</td>
<td>2(\frac{3}{4})</td>
<td>0.059</td>
<td>0.065</td>
</tr>
<tr>
<td>NX</td>
<td>3\frac{1}{4}</td>
<td>3\frac{1}{2}</td>
<td>3.220</td>
<td>3.21</td>
<td>2(\frac{3}{4})</td>
<td>0.079</td>
<td>0.079</td>
</tr>
</tbody>
</table>

¹ Threads shall be recessed \(\frac{1}{4}\) inch.
Table 11.—Casing, flush-joint (EX and AX)

[8 threads per inch R.H.]

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>K</th>
<th>K'</th>
<th>M</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max</td>
<td>min</td>
<td>max</td>
<td>min</td>
<td>max</td>
<td>min</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>EX</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
</tr>
<tr>
<td>EX</td>
<td>$1^\frac{1}{4}$</td>
<td>1.817</td>
<td>1.812</td>
<td>$1^\frac{1}{4}$</td>
<td>1.500</td>
<td>1.490</td>
<td>1.655</td>
<td>1.650</td>
</tr>
<tr>
<td>AX</td>
<td>2 1/4</td>
<td>2.067</td>
<td>2.062</td>
<td>2</td>
<td>1.906</td>
<td>1.896</td>
<td>2.061</td>
<td>2.056</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>S</th>
<th>T</th>
<th>T'</th>
<th>V</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max</td>
<td>min</td>
<td>max</td>
<td>min</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>EX</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
</tr>
<tr>
<td>EX</td>
<td>0.0593</td>
<td>0.0529</td>
<td>1.717</td>
<td>1.716</td>
<td>1.720</td>
<td>1.719</td>
</tr>
<tr>
<td>AX</td>
<td>0.0563</td>
<td>0.0529</td>
<td>2.124</td>
<td>2.123</td>
<td>2.127</td>
<td>2.125</td>
</tr>
</tbody>
</table>

Flush joint casing is not made in BX and NX sizes.
TABLE 12. — Casing bit

[8 threads per inch R. H.]

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>D max</th>
<th>D min</th>
<th>F</th>
<th>G max</th>
<th>G min</th>
<th>H (approximate) max</th>
<th>H (approximate) min</th>
<th>K max</th>
<th>K min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
</tr>
<tr>
<td>EX</td>
<td>1.861</td>
<td>1.857</td>
<td>1 1/4</td>
<td>1 9/16</td>
<td>1 9/16</td>
<td>1.655</td>
<td>1.650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AX</td>
<td>2.330</td>
<td>2.326</td>
<td>1 1/2</td>
<td>1 13/16</td>
<td>1 13/16</td>
<td>2.061</td>
<td>2.056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BX</td>
<td>2.965</td>
<td>2.951</td>
<td>1 3/4</td>
<td>1 15/16</td>
<td>2 1/4</td>
<td>2.592</td>
<td>2.587</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Designating symbol</th>
<th>M</th>
<th>S max</th>
<th>S min</th>
<th>T max</th>
<th>T min</th>
<th>V max</th>
<th>V min</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
</tr>
<tr>
<td>EX</td>
<td>1 7/16</td>
<td>0.0594</td>
<td>0.0550</td>
<td>1.717</td>
<td>1.716</td>
<td>0.0642</td>
<td>0.0602</td>
</tr>
<tr>
<td>AX</td>
<td>1 7/16</td>
<td>0.0593</td>
<td>0.0549</td>
<td>2.124</td>
<td>2.123</td>
<td>0.0642</td>
<td>0.0602</td>
</tr>
<tr>
<td>BX</td>
<td>1 7/16</td>
<td>0.0580</td>
<td>0.0536</td>
<td>2.686</td>
<td>2.685</td>
<td>0.0629</td>
<td>0.0588</td>
</tr>
<tr>
<td>NX</td>
<td>1 7/16</td>
<td>0.0580</td>
<td>0.0536</td>
<td>3.311</td>
<td>3.310</td>
<td>0.0629</td>
<td>0.0588</td>
</tr>
</tbody>
</table>

1 Threads shall be full form to within 1/6 inch of shoulder.
MARKING

12. The following symbol or seal is used in trade literature and advertisements by members of the Diamond Core Drill Manufacturers' Association to indicate equipment manufactured according to this commercial standard.

![Figure 3.—Seal.](image)

13. Figure 4 illustrates insignia adopted by the Diamond Core Drill Manufacturers' Association for marking items of diamond core drill equipment conforming to this standard. The significance of the insignia as marked on the equipment is explained in the certificate of compliance below, which should accompany each contract and shipment.

![Figure 4.—Insignia.](image)

CERTIFICATE OF COMPLIANCE

Date

The diamond core drill equipment marked with the above insignia has been manufactured by a member of the DIAMOND CORE DRILL MANUFACTURERS' ASSOCIATION and is guaranteed by the undersigned to conform to COMMERCIAL STANDARD CS17-42 issued by the NATIONAL BUREAU OF STANDARDS, UNITED STATES DEPARTMENT OF COMMERCE.

COMMERCIAL STANDARD CS17-42

Name of manufacturer

EFFECTIVE DATE

The standard is effective for new production from January 1, 1942.
STANDING COMMITTEE

The following individuals comprise the membership of the standing committee, which is to review, prior to circulation for acceptance, revisions proposed to keep the standard abreast of progress. Each organization nominated its own representative. Comment concerning the standard and suggestions for revision may be addressed to any member of the committee or to the Division of Trade Standards, National Bureau of Standards, which acts as secretary for the committee.

Manufacturers:
H. C. Johansen (chairman), Sullivan Machinery Co., Michigan City, Ind.
R. D. Longyear, E. J. Longyear Manufacturing Co., 1701 Foshay Tower, Minneapolis, Minn.
R. H. Mott, Mott Core Drilling Co., 8th Ave. & 9th St., Huntington, W. Va.
Wm. J. Schank, Sprague & Henwood, Inc., 221 Olive St., Scranton, Pa.

Users:
E. L. Derby, Jr., Cleveland Cliffs Iron Co., Ishpeming, Mich.

HISTORY OF PROJECT

On May 27, 1929, at the request of the Diamond Core Drill Manufacturers’ Association a general conference of manufacturers, drilling contractors, and general interests was held at Chicago, Ill., to which approximately 1,100 interested organizations had been invited. Following acceptance by a satisfactory majority, the recommended standard was issued as Commercial Standard CS17–30, being effective for new production on January 1, 1930, and for clearance of existing stocks on July 1, 1930.

FIRST REVISION

On the recommendation of the standing committee, a revised draft was circulated to the industry for written acceptance on March 5, 1932. The revised draft included the new tolerances adopted by the Diamond Core Drill Manufacturers’ Association. In general, the changes constitute minor refinements which have developed as a result of experience with the standards and which do not change the important nominal dimensions as set forth in the first edition of the pamphlet. As announced to the trade under date of May 14, 1932, the revised standard was accepted and authorized by the industry for publication as Commercial Standard CS17–32. It was effective for new production and clearance of existing stocks from August 15, 1932.

SECOND REVISION

Pursuant to a request of the Diamond Core Drill Manufacturers’ Association dated December 18, 1940, and following approval by the Standing Committee, the second revision was circulated on March 25, 1941, to all concerned for written acceptance. Its chief purpose is to reduce the area of the kerf cut by the two smaller sizes of core-barrel bits, thereby decreasing drill costs and recovering a slightly larger core. The revision provides new, thin-wall core barrels, core-barrel bits and reaming shells designated EXT and AXT, as well as new flush-joint casings in these two sizes. Following acceptance by a preponderant majority, the second revision was announced and promulgated on May 23, 1941, as Commercial Standard CS17–42.
ACCEPTANCE OF COMMERCIAL STANDARD

If acceptance has not previously been filed, this sheet properly filled in, signed, and returned will provide for the recording of your organization as an acceptor of this commercial standard.

Date

Division of Trade Standards,
National Bureau of Standards,
Washington, D. C.

Gentlemen:

Having considered the statements on the reverse side of this sheet, we accept the Commercial Standard CS17–42 as our standard of practice in the

Production
Inspection
Use

of diamond core drill fittings.

We will assist in securing its general recognition and use, and will cooperate with the standing committee to effect revisions of the standard when necessary.

Signature of individual officer __

(In ink)

(Kindly typewrite or print the following lines)

Name and title of above officer __

Organization __

(Fill in exactly as it should be listed)

Street address ___

City and State ___

1 Please designate which group you represent by drawing lines through the other two. Please file separate acceptances for all subsidiary companies and affiliates which should be listed separately as acceptors. In the case of related interests, trade papers, colleges, etc., desiring to record their general approval, the words “in principle” should be added after the signature.
TO THE ACCEPTOR

The following statements answer the usual questions arising in connection with the acceptance and its significance:

1. Enforcement.—Commercial standards are commodity specifications voluntarily established by mutual consent of those concerned. They present a common basis of understanding between the producer, distributor, and consumer and should not be confused with any plan of governmental regulation or control. The United States Department of Commerce has no regulatory power in the enforcement of their provisions, but since they represent the will of the interested groups as a whole, their provisions through usage soon become established as trade customs, and are made effective through incorporation into sales contracts by means of labels, invoices and the like.

2. The acceptor’s responsibility.—The purpose of commercial standards is to establish for specific commodities, nationally recognized grades or consumer criteria and the benefits therefrom will be measurable in direct proportion to their general recognition and actual use. Instances will occur when it may be necessary to deviate from the standard and the signing of an acceptance does not preclude such departures; however, such signature indicates an intention to follow the commercial standards where practicable, in the production, distribution, or consumption of the article in question.

3. The Department’s responsibility.—The major function performed by the Department of Commerce in the voluntary establishment of commercial standards on a Nation-wide basis is fourfold; first, to act as an unbiased coordinator to bring all interested parties together for the mutually satisfactory adjustment of trade standards; second, to supply such assistance and advice as past experience with similar programs may suggest; third, to canvass and record the extent of acceptance and adherence to the standard on the part of producers, distributors, and users; and fourth, after acceptance, to publish and promulgate the standard for the information and guidance of buyers and sellers of the commodity.

4. Announcement and promulgation.—When the standard has been endorsed by a satisfactory majority of production or consumption in the absence of active, valid opposition, the success of the project is announced. If, however, in the opinion of the standing committee or the Department of Commerce, the support of any standard is inadequate, the right is reserved to withhold promulgation and publication.
ACCEPTORS

The organizations and individuals listed below have accepted this standard as their standard of practice in the production and use of diamond core drill fittings. Such endorsement does not signify that they may not find it necessary to deviate from the standard, nor that producers so listed guarantee all of their products in this field to conform with the requirements of this standard. Therefore specific evidence of conformity should be obtained where required.

ASSOCIATIONS

American Association of Engineers, Chicago, Ill.
Nevada Mine Operators Association, Reno, Nev.

FIRMS

Acker Drill Co., Scranton, Pa.
Alabama, Geological Survey of, University, Ala. (In principle.)
Alaska-Pacific Consolidated Mining Co., Wasilla, Alaska.
American Metal Co., Ltd., The, New York, N. Y.
American Potash & Chemical Corporation, Trona, Calif.
American Zinc Co. of Tennessee, Mascot, Tenn.
Arizona, University of, Tucson, Ariz.
Baltimore, Bureau of Water Supply of, Baltimore, Md.
Bennett, Russell H., Minneapolis, Minn.
Bicknell Manufacturing Co., Roekland, Maine.
Buhl Co., The, Chicago, Ill.
California, State Bureau of Purchases of, Sacramento, Calif.
Canadian Collieries (Dunsmuir), Ltd., Cumberland, B. C., Canada.
Canadian Longyear, Ltd., North Bay, Ont., Canada.
Chicago Pneumatic Tool Co., New York, N. Y.
Cia. Minera de Penoles S. A., Avalos, Zacatecas, Mexico.
Clinchfield Coal Corporation, Dante, Va.

Cohen, A. Burton, New York, N. Y.
Cole & McDonald Exploration Co., Virginia, Minn.
Consolidated Coppermines Corporation, Kimberly, Nev.
Cornell University, Ithaca, N. Y. (In principle.)
Dawson Daylight Coal Co., Dawson Springs, Ky.
Denver Machine Shop, Denver, Colo.
Denver Municipal Water Works, Board of Water Commissioners, Denver, Colo.
Diamond Drill Contracting Co., Spokane, Wash.
El Potosi Mining Co., Chihauhua, Chih., Mexico.
Enterprise Coal Mining Co., Inc., Garrett, Pa.
Eureka Coal Co., Athens, Ohio.
Ford Collieries Co., Curtisville, Pa.
France Stone Co., The, Toledo, Ohio.
Goleonda Diamond Products Corporation, Chicago, Ill.
Hawley Engineering Corporation, Charles B., Washington, D. C.
Heath & Sherwood, Kirkland Lake, Ont., Canada.
Homestake Mining Co., Lead, S. Dak.
Howard-Needles-Tammen & Bergendoff, Kansas City, Mo.
Hudson Coal Co., Scranton, Pa.
Hydraulic-Press Brick Co., St. Louis, Mo.
Idaho Maryland Mines Corporation, Grass Valley, Calif.
Idaho, University of, School of Mines, Moscow, Idaho.
Illinois Division of Highways, Springfield, Ill.
Ingersoll-Rand Co., New York, N. Y.
Inland Steel Co., Ishpeming, Mich.
Iowa State College, Department of Chemical & Mining Engr., Ames, Iowa. (In principle.)
Isaacson Iron Works, Seattle, Wash.
Island Creek Coal Co., Holden, W. Va.
Kansas, University of, Lawrence, Kans.
Karelsen, Inc., E., New York, N. Y.
Lafayette College, Easton, Pa. (In principle.)
Lauks Laboratories, Inc., Seattle, Wash.
Lehigh University, Bethlehem, Pa. (In principle.)
Liberty Fuel Co., Salt Lake City, Utah.
Longtin, Daniel G., San Francisco, Calif.
Longyear Co., E. J., Minneapolis, Minn.
Los Angeles Testing Laboratory, Los Angeles, Calif.
Massachusetts Institute of Technology, Cambridge, Mass.
McClintock, R. S., Spokane, Wash.
Michigan, Geological Survey Division of, Department of Conservation, Lansing Mich. (In principle.)
Middle Rio Grande Conservancy District, Albuquerque, N. Mex.
Minas de Matahambre, S. A., Matahambre, Pinar del Rio, Cuba.
Mississippi Lime Co., Alton, Ill.
 Moffat Coal Co., Denver, Colo.
Montana State College, Bozeman, Mont.
Mott Core Drilling Co., Huntington, W. Va.
Mutual Coal Co., Gallup, N. Mex.
Nebraska, University of, Lincoln, Nebr. (In principle.)
New York, Board of Water Supply of the City of, New York, N. Y.
New York (State Museum), University of State of, Albany, N. Y.
North Dakota, University of, School of Mines, Grand Forks, N. Dak. (In principle.)
Northwestern Improvement Co., Seattle, Wash.
Notre Dame, University of, Notre Dame, Ind.
Nova Scotia, Department of Mines of, Halifax, Nova Scotia.
Odgers, Ira, Crystal Falls, Mich.
Ohio Seamless Tube Co., The, Shelby, Ohio.
Peeh Foundry & Manufacturing Co., Gus, LeMars, Iowa.
Penn Anthracite Collieries Co., Scranton, Pa.
Pursglove Coal Mining Co., Cleveland, Ohio.
Reed Roller Bit Co., Houston, Tex.
Roberts, Hugh M., Duluth, Minn.
St. Louis, City of, St. Louis, Mo.
Service Steel Co., Los Angeles, Calif.
Sheffield Corporation, The, Dayton, Ohio.
Smit & Co., Inc., Anton, New York, N. Y.
Smit & Sons, Inc., J. K., New York, N. Y.
Smith & Travers Co., Ltd., Sudbury, Ont., Canada.
South Carolina Electric & Gas Co., Columbia, S. C.
South Carolina Geological Survey, Columbia, S. C. (In principle.)
Southern Pacific Co., San Francisco, Calif.
Stanford University, Stanford University, Calif. (In principle.)
Sullivan Machinery Co., Michigan City, Ind.
Tennessee Copper Co., Ducktown, Tenn.
Tennessee Division of Geology, Nashville, Tenn. (In principle.)
Thompson & Lichtner Co., Inc., The, Boston, Mass.
Truax-Traer Coal Co., Chicago, Ill.
Twining Laboratories, The, Fresno, Calif.
Utah, University of, Salt Lake City, Utah.
West Virginia, School of Mines of, Morgantown, W. Va. (In principle.)
Whiteside, Fred W., Denver, Colo.
Wisconsin, Department of Mining & Metallurgy of, Madison, Wis.
Wisconsin Institute of Technology, Platteville, Wis.
Wright-Hargreaves Mines, Ltd., Kirkland Lake, Ont., Canada.

U. S. GOVERNMENT

Geological Survey, Washington, D. C.
Treasury Department, Washington, D. C.
War Department, Washington, D. C.
October 22, 1942

To Manufacturers, Inspectors, and Users of Diamond Core Drill Fittings.

Subject: Diamond Core Drill Fittings, CS17-42 - Second Extension of Effective Date

Gentlemen:

Under date of September 15, 1942, the Diamond Core Drill Manufacturers Association requested a second extension of the effective date for new production of diamond core drill fittings in accordance with the new parts of Commercial Standard CS17-42 for the following reasons:

"The new standards do not so much result in the simplification of the present standards as specified in CS17-32 as to set up new standards of thinner wall bits. These thin wall bits are not greatly used in the United States at the present time, although they have come into extensive use in Canada, where they have already been standardized.

"It is expected that eventually CS17-42 will completely replace CS17-32, but from the nature of the art, it will take months to effect this replacement."

Agreeable to the above request in the war emergency, and with the approval of the Standing Committee, the effective date for new production of diamond core drill fittings, according to Commercial Standard CS17-42, is hereby extended from January 1, 1943, to six months after official announcement of cessation of actual hostilities, or to such earlier date as may be recommended by the Standing Committee.

In the meantime, the existing Commercial Standard CS17-32 will remain in effect.

Cordially yours,

J. J. Fairchild,
Chief, Division of Trade Standards
COMMERICAL STANDARDS

CS No. Item
2-30. Mopsticks.
4-29. Staple porcelain (all-clay) plumbing fixtures.
5-40. Pipe nipples; brass, copper, steel, and wrought iron.
7-29. Standard weight malleable iron or steel screwed unions.
15-29. Men's pajamas.
16-29. Wall paper.
18-29. Hickory hardwood and eastern red cedar.
23-30. Felt lapar.
25-30. Special screw threads.
26-30. Aromatic red cedar closet lining.
32-32. Cotton cloth for rubber and pyroxylon coating.
33-32. Knit underwear (exclusive of rayon).
35-31. Plywood (hardwood and eastern red cedar).
37-31. Steel bone plates and screws.
38-32. Hospital rubber sheathing.
40-32. Surgeons' rubber gloves.
41-31. Surgeons' latex gloves.
44-32. Apple wraps.
47-34. Marking of gold-filled and rolled-gold-plate articles other than watch cases.
49-34. Chip board, laminated chip board, and miscellaneous boards for bookbinding purposes.
50-34. Binders board for bookbinding and other purposes.

CS No. Item
51-35. Marking articles made of silver in combination with gold.
52-35. Mohair pile fabrics (100-percent mohair plain velvet, 100-percent mohair plain frieze, and 50-percent mohair plain frieze).
53-35. Colors and finishes for cast stone.
54-35. Mattresses for hospitals.
55-35. Mattresses for institutions.
60-36. Hardwood dimension lumber.
63-38. Colors for bathroom accessories.
64-37. Walnut veneers.
65-38. Wood and part-wool fabrics.
66-41. Marking of articles made wholly or in part of platinum.
67-38. Marking articles made of karat gold.
68-38. Liquid hypochlorite disinfectant, deodorant, and germicide.
72-38. Household insecticide (liquid spray type).
75-39. Automatic mechanical draft oil burners.
77-40. Sanitary cast-iron enameled ware.
80-41. Electric direction signal systems other than semaphore type for commercial and other vehicles subject to special motor vehicle laws (after market).
81-41. Adverse-weather lamps for vehicles (after market).
82-41. Inclined and inclined spotlight lamps for vehicles (after market).
83-41. Clearance, marker, and identification lamps for vehicles (after market).
84-41. Electric tail lamps for vehicles (after market).
85-41. Electric license-plate lamps for vehicles (after market).
86-41. Electric stop lamps for vehicles (after market).
87-41. Red electric warning lanterns.
88-41. Liquid-burning flares.
89-40. Hardwood stair treads and risers.
90- . (Reserved for power shovels and cranes).
91-41. Factory-fitted Douglas fir entrance doors.
92-41. Cedar, cypress, and redwood tank stock lumber.
93-41. Portable electric drills (exclusive of high frequency).
94-41. Calking lead.
95-41. Lead pipe.
96-41. Lead traps and beads.

Notice.—Those interested in commercial standards with a view toward accepting them as a basis of everyday practice may secure copies of the above standards, while the supply lasts, by addressing the Division of Trade Standards, National Bureau of Standards, Washington, D. C.