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ABSTRACT

Records are presented of typical measured motions of a modified forced Stoker
column, including periodic motion around a stable fixed point, periodic snap-
through motion, and chaotic motion. Characterizations of the recorded chaotic
motion include: the autocorrelation function; the spectral density plot;
capacity dimensions; and the Lyapounov exponent. Two sets of numerical
simulations were performed, in which the same spring stiffnesses (measured under
static conditions) and the same dissipative forces (based on the viscous damping
model) were used. The first set, in which the device was modeled as a

multidegree of freedom system to account for the distributed mass and stiffness
of the springs, yielded chaotic motions qualitatively similar to those recorded
in the laboratory. No chaotic motions could be obtained from the second set,

which did not reflect the fact that the spring properties are distributed and
in which the device was therefore modeled as a one degree of freedom system. To
the writers' knowledge this is the first reported instance of an experimental
structural system with continuous members for which a qualitatively successful
simulation of the chaotic motion appears to necessitate the inclusion in the

model of additional degrees of freedom to account for the effects of continuity.

Keywords: buckling; chaotic motion; dynamical systems; nonlinear ity ; structural
dynamics; structural engineering; vibrations.
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PREFACE

The nonlinear dynamic behavior of structural systems can be of concern in the
design of both conventional and novel types of structures. For conventional
structures, nonlinearities are principally due to inelastic material behavior
in the vicinity of ultimate loads, and nonlinear dynamic analyses can be helpful
in efforts to achieve realistic estimates of actual safety margins. Novel types
of structures exhibiting nonlinear behavior include compliant offshore
platforms, structures designed to be compliant under the effect of strong
seismic loads, large orbiting structural networks, flexible robot arms, and
other novel flexible or long- span structures. (Some of these structures may
require passive or active controls.) In these cases nonlinearities are due to

one or more of the following factors: large deformations, materials and/or
joints with nonlinear behavior, and nonlinear loading.

The design of these new types of structures requires more than the ability to

perform nonlinear dynamic response calculations corresponding to specified
parameters and initial conditions. What is needed in addition is a qualitative
understanding of the nonlinear behavior for the system at hand. Features of
interest include:

(a) bifurcations, that is, changes in the character of the motion due to changes
in the values of the system parameters (such as mass, damping, stiffness, wind
or current speed, strength of ground motion, amplitudes and frequencies of
excitation induced by waves or by control system actuators)

;

(b) the possible existence for any given
stable oscillatory forms (attractors)

,

initial conditions (basin of attraction)

set of parameters of two or more steady
each with its corresponding set of

(c) jumps from one oscillatory form to another that can occur in bi- or multi-
stable systems;

(d) the possible existence of motions that are sensitive to initial conditions
and therefore cannot, in practice, be predicted numerically for sufficiently
long times, since this would require virtually error- free initial conditions and
computational algorithms (these motions are referred to as chaotic).

Examples of bifurcations in structural dynamics problems include: the onset of

the critical flutter speed (corresponding to a Hopf bifurcation, also referred
to by some mathematicians as the Poincare -Andronov bifurcation, i.e., a

bifurcation from a fixed point to periodic motion) ; and bifurcations from
periodic or quasiperiodic to chaotic motion for certain types of offshore
structures [1-3], for single forced or coupled autonomous galloping oscillators

[4] , or for forced circular cylinders excited by vortices shed in their wake

[5].

As pointed out in recent studies of nonlinear and chaotic motions of compliant
offshore structures reported in [1-3], the design of nonlinear structures can
be grossly inadequate or even disastrous if the analyst fails to account for the

diversity of possible types of responses that may correspond to (a) various sets

of system parameters, or (b) a given set of system parameters and various sets
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of initial conditions. Even before the advent of compliant platforms such
failures have occurred: the design of the old Tacoma Narrows bridge, which
collapsed in 1940, is one example. In this case the possibility of an
aeroelastic instability, that is, of a Hopf (Poincare -Andronov) bifurcation
apparently did not even occur to its designers.

The solution of nonlinear structural engineering problems such as those
mentioned earlier requires approaches that depend in a fundamental way upon the

quality of physical modeling. For example, in spite of the availability of the
requisite mathematical tools that had previously been developed for the analysis
of airfoil flutter, aeronautical experts -- including von Karman -- were unable
to calculate the critical flutter speed for the old Tacoma Narrows bridge until
it was recognized three decades later that aerodynamic lift forces and moments
derived for airfoils are inapplicable to bluff shapes [6]. However, intertwined
with questions of physical modeling are mathematical questions that can be of
great difficulty, so that the engineer needs whatever nonlinear mathematics
relevant to his problem is available (and usually more) . These questions become
more difficult when the nonlinearities are strong, as is the case when they are
induced by hydrodynamic -- as opposed to aerodynamic -- effects.

The assimilation and stimulation by structural engineers of mathematical
developments applicable to previously unknown types of structures goes far back
in the history of structural engineering. The development by Euler of the theory
of elastic stability occurred in time to help designers of steel and cast iron
columns avoid the need for costly lessons through disastrous structural
failures. We have already mentioned the old Tacoma Narrows bridge, whose
designers were less fortunate, since no aeroelastic theory applicable to bridges
was available to them. .

In view of forthcoming developments in the design of structures with nonlinear
behavior, including structures with passive or active controls, it appears
reasonable to create a body of structural engineering knowledge drawing on

recent progress -- and with the potential for stimulating further progress --

in nonlinear dynamical systems theory. For this reason, the Center for Building
Technology and the Center for Computational and Applied Mathematics of the

National Engineering Laboratory, National Institute of Standards and Technology,
are engaged in a cooperative effort the ultimate goal of which is to facilitate
the application by structural engineers of methods developed within the

framework of nonlinear dynamical systems theory. The first phase of this effort
is aimed at studying the experimental, numerical and analytic behavior of two

structural systems chosen for their relative simplicity and for their capability
to exhibit chaotic motions for certain ranges of system parameters. The writers
believe that these systems offer a useful opportunity for familiarization with
existing tools used in dynamical systems theory, and the potential for gaining
useful insights into the behavior of real systems susceptible of experiencing
chaotic motion. One type of system, briefly described in [4], is fluidelastic
in nature and consists of galloping oscillators, either single and harmonically
forced, or coupled and autonomous. This system is of potential interest in power
line engineering and in ocean engineering applications involving cables with
marine growth. A second type of system, consisting of a structural member
buckled under compression and subjected to periodic forcing, is described in the
present report.
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LIST OF SYMBOLS

a = propagation velocity
A = amplitude of forcing arm motion
c = viscous damping coefficient
F = force
F-^, F2 = forces defined in figure 4.1

g. Si- &2' &92' Sli = dissipative forces

^li' ^2i ^ dissipative forces

k = spring constant

^1' ^2 stiffness of left and right horizontal spring, respectively
K^^ = total stiffness of torsional springs
K2 = total stiffness of vertical springs
2 = half of total column length
L = spring length
m = mass assumed to be concentrated at column midpoint (fig. 2.1)
M = sum of mass m and tributary masses of horizontal springs

^hl ' "'h2 total mass of left and right horizontal spring, respectively
m^ = total mass of vertical spring

"^1 ' "^2 ^ mass assumed to be concentrated at upper and lower column support
M]^ = sum of mass m-^ and tributary mass of vertical spring
M2 = sum of mass m2 and tributary mass of vertical spring
N = capacity dimension
n^ = number of segments into which horizontal springs are divided
n^ = number of segments into which vertical springs are divided
Pq = total tension in vertical springs corresponding to x = 0

^li' ^2i ^ vertical spring forces (figs. 4,1 and 4.2)

^lo' ^2o ^ tensions in left and right horizontal springs corresponding to zero
displacements of mass m and of the forcing arms

^li' ^2i ^ horizontal spring forces (figs. 4.1 and 4.3)
t = time

T = torsional moment (fig. 4.1)
tQ = ratio Z/t

tp = disturbance propagation time

^11' ^21 ^ forces defined in figure 4.1
w = nondimensional displacement in Duffing equation
X = displacement of mass m
Xq = ratio x/w

^li' ^2i ^ displacements of lumped masses of left and right horizontal spring
segments (fig. 4.2)

y-^^ = displacements of lumped masses of vertical spring (fig. 4.3)
Zj^ = auxiliary coordinates
-a, /3 = coefficients of linear and cubic term, respectively, in eq (4.34)

7 = Lyapounov exponent
5(x) = displacement of mass m]^ and of mass m2
£ = strain
d = angle defined by figure 4.1 and eq (4.12)

p = mass per unit length
r = nondimensionalized time
w = frequency forcing arms motion
Q = nondimensionalized frequency of forcing arms motion
' denotes differentiation with respect to time
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1. INTRODUCTION

The purpose of this report is twofold. First, it describes an experimental
device designed to demonstrate periodic and chaotic behavior of a buckled
column subjected to harmonic forcing. Second, it attempts to reproduce the
behavior of the system numerically using relatively simple analytical models
comparable to those that might be used in engineering practice. Comparisons
between models with various degrees of complexity are made, which provide some
insight into issues related to analytical modeling for structures that can
experience chaotic behavior. The work presented here can be viewed as the first
phase of a broader experimental, analytical, and numerical investigation into
the behavior of the forced buckled column, which would explore additional
issues of engineering interest. The conditions under which noise can change
dynamic behavior qualitatively are one such issue. Another issue is the
occurrence of chaotic behavior when the excitation, rather than being periodic,
is due to the superposition of two harmonics (a topic investigated theoretically
for certain simple systems in [7]), or to a relatively large number of harmonics
that mimic a stochastic process such as excitation by waves.

The experimental device was designed to exhibit clearly the physical mechanisms
underlying its excitation and response and -- to within unavoidable noise
effects -- the deterministic nature of those mechanisms. Its predecessors are

a pioneering magnetoelastic analog [8] and an electrical analog [9] of a buckled
column. However, our device is strictly mechanical and actually consists of a

physical column subjected to compressive loads that cause it to be buckled at

all times.

In view of the similarity of the device of [8], it was judged that the device
has the capability of exhibiting chaotic behavior, in spite of its structurally
more complex nature, which will be examined subsequently.

A Stoker column is an ideally frictionless buckled column with constant
compressive load and with mass and bending stiffness concentrated at its

midpoint [10, p. 54]. A Stoker column with energy dissipation, forced
periodically at its midpoint in a direction normal to the load, can exhibit
chaotic behavior for certain parameter ranges [8,11]. Practical difficulties
associated with the constancy of the compressive load appear to have prevented
so far the construction of such a device. The interesting motions associated
with the forced, dissipative Stoker column are due to the presence of a

homoclinic point at the origin of the phase plane diagram for the corresponding
unforced, Hamiltonian (nondissipative) system. However, the compressive load
need not be constant for such motions to occur. The dissipative forced Stoker
column was therefore modified as follows. The compression forces are supplied
by prestressed springs connected to the column ends. Since the elongations of

those springs vary during the forced motion of the column, so do the compression
forces. In addition, for reasons of construction, the modified column also has

concentrated masses at its ends. Finally, the springs have considerable mass,

so that the system being considered is continuous, i.e., it has an infinite
number of degrees of freedom. The device so constructed is referred to here as

the modified Stoker column.
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Section 2 of the report contains a description of the experimental device.
Section 3 presents descriptions of column motions, including time histories,
phase plane diagrams, Poincare plots, spectral density functions, and
autocorrelation functions. Estimates of fractal (capacity) dimensions and of
Lyapounov exponents characterizing the motion are also included. Section 4

briefly discusses analytical models used for the modified Stoker column and
includes the derivation of corresponding equations of motion. Section 5 includes
results of numerical simulations based on various analytical models and
discusses their adequacy in light of the experimental results. Section 6

consists of a summary and conclusions.

2. DESCRIPTION OF EXPERIMENTAL DEVICE

A schematic of the device is shown in figure 2.1. The column is assumed to have
three concentrated masses; a mass m at its midpoint, a mass m-^ at its top end,

and a mass m2 at its bottom end. Torsional springs at the midpoint supply the

total concentrated bending stiffness K-^. The column is tied at its ends by
vertical springs with total mass m^ and total stiffness K2 . The column ends and
the masses attached to them are free to slide vertically but are constrained in

the horizontal direction. The mass m is free to slide horizontally but is

constrained in the vertical direction. This ensures the symmetry of the column
motion with respect to the horizontal line passing through the column midpoint.
The mass m is tied by two springs, with masses m-^-^ and m|-^2 and stiffnesses k]^

and k2 , to two rigid arms forced by a motor to move harmonically (with
amplitude A and circular frequency w) and in phase in the horizontal direction.
A drawing and a photograph of the device are shown in figures 2.2 and 2.3.

Each column consists of a pair of identical members. Each member is equipped
with a vertical spring and with two torsional springs. This arrangement,
similar to that of a tied arch discussed in [12, p. 55], allows the occurrence
of snap- through oscillations. Friction between the moving mass ra and its

horizontal guides was reduced by providing the mass with roller bearing guide
wheels. The columns are connected at their ends to horizontal axles sliding
within vertical guides. To reduce friction the vertical guides are lined with
teflon, and the ends of the axles are provided with teflon pads. The connections
of the ends of the columns to the axles was done through roller bearings. The
vertical springs are connected to the bottom axles by S-hooks positioned onto
the axles by clip rings. The top ends of the vertical springs are suspended from
the lower eye of turnbuckles whose upper eye rests on the axles. The turnbuckles
allow the adjustment of the pretension in the springs. The rigid arm to which
mass m is connected by the horizontal springs is driven at the desired frequency
by a low inertia servomotor with tachometer feedback. Measurements indicated
that the frequency varies in time by as much as 1% of its mean value. The
amplitude of the forced rigid arm motion can also be adjusted as needed within
the range 0.02 to 0.035 m. Displacements of the mass m are measured using a

single turn precision potentiometer with a ball bearing mounted shaft and a

linearity of 0.05%.

All springs were manufactured from chromium
for its superior fatigue performance. Both
behave linearly under static testing (i.e..

silicon steel, which was
vertical and horizontal

low loading rate) except

selected
springs

near the



origin of the force-displacement diagram. The undeformed length of the vertical
springs was 0.18 m; their outside diameter 0.01667 m; the wire diameter was
0.002324 m; and the inside diameter of the hooks was 0.0096 m. The total mass
of the two vertical springs, m^, was 0.234 kg. The undeformed length of the
horizontal springs was 0.1825 m; the outside diameter was 0.01429 m; the wire
diameter 0.0015875 m; and the inside diameter of the hook was 0.0873 m. The mass
of each horizontal spring, mj^]^ = m]-j2 was 0.07 kg. Within the linear range, the
spring stiffnesses were K2 = 2,640 N/m for the vertical springs and k]^ = k2 =

264 N/m for the horizontal springs.

The springs are pretensioned so as to be under tension and linear at all times.
The spring extensions corresponding to x = 0 were 30 mm for the vertical
springs. For the horizontal springs, when the displacements of the forcing rigid
arms were equal to zero, the spring extensions corresponding to x = 0 were 80

mm

.

The torsional springs, as mounted on the vertical shaft located at the midheight
of the columns, are linear under static testing over the range of angular
deformations 0 - 0.336 radians (|x| < 0.066 m) , their total stiffness within
this range being K]^ = 10.9 Nm/rad. For angular deformations larger than 0.336
radians (|x| > 0.066 m) the torsional springs behave nonlinearly, and
measurements under static testing yielded the approximate relation

Ki(x) = (27015.3 |x| - 1772.1) Nm/rad (|x| > 0.066 m) . (2.1)

The design of the experimental device makes it possible to change the springs,
the masses, and the amplitude and circular frequency of the horizontal forcing
motion. The total length of the column, however, is fixed (2-? = 0.4 m) .

3. EXPERIMENTAL RESULTS

The properties of the system for which the experimental results presented in

this section were obtained were:

Z = 0.200 m
m = 0.490 kg
m^^ = 0.155 kg
m2 = 0.128 kg
A = 0.02425 m

The forcing frequency was varied as described below. The spring properties were
those given in section 2. Mass m as given above includes, in addition to the

mass attached to the column midpoint, the tributary mass of the columns
themselves and the total mass of the torsional springs (0.084 kg). Masses m^^ and
m2 consist of the tributary mass of the columns themselves, the spring
attachments and the mass of the column axles.

We show in figures 3.1a, 3.1b, and 3.1c a 300 s time history (x, t) of steady
state motion corresponding to the properties just listed. For comparison with
subsequent figures we also show at an expanded scale in figure 3.2 the time
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history for the first 40 s of figure 3.1a. The forcing frequency for the motions
of figures 3.1 and 3.2 was to = 37.315 rad/s

.

Figure 3.3 shows the phase plane diagram (x, x') corresponding to figure 3.2.

Figure 3.4 shows the points obtained by intersecting the trajectory (x, x'
,

t)

with planes t = 27rn/cj (n = 1 , 2, . . .), where w is the nominal forcing frequency.
(The velocities x' were estimated from the recorded time series x.) This diagram
would be a stroboscopic Poincare plot if the nominal and actual forcing
frequency were the same. As indicated in section 2, however, the actual
frequency varies by as much as 1% of its mean value. The plot of figure 3.4 is

therefore affected by errors associated with this variation.

Figure 3.5 shows a different Poincare plot which is not susceptible of
experiencing such errrors . It was obtained by using the surface of section x'

= 0 and therefore represents the mapping of the local maxima of the
displacement, > versus their immediate antecedents, the local maxima x^ . If
the motion were periodic or quasiperiodic , this plot would consist,
respectively, of a finite number of points or of a dense set of points on a

closed curve. The plot of figure 3.5 appears, however, to be a fractal object.
This was confirmed by calculations of its capacity dimension [13, 14] , which was

estimated to be 1.25. The estimate was based on about 2000 points from figure
3.5 (corresponding to a record approximately 300 s long). It was performed by
Judith E. Devaney of the Center for Computational and Applied Mathematics, NIST,

using the procedure developed by Sullivan and Hunt in [15].

The spectral density of the displacement is represented in figure 3.6. The
broadband components of the spectrum are noted. To a broadband spectrum there
corresponds a decaying autocorrelation function, as seen in our case in figure
3.7. The decay and the vanishing (to within noise effects) of the

autocorrelation function reflects the unpredictability of future motions given
a known time history. Thus, the broadband character of the spectrum is an

indication that the motion is chaotic.

For the three-dimensional attractor of the system the capacity dimension was
estimated to be 2.3. This estimate was based on the three-dimensional time-

dependent vector obtained by embedding the time series of the response, x(t),

in a three-dimensional space as follows. The first coordinate of the vector was

x(t) itself. The second and the third coordinates were x(t -i- r) and x(t -i- 2t),

respectively, where the delay time t = 0.6425 s is the time lag corresponding
to the first zero of the autocorrelation function shown in figure 3.7 (see,

e.g., [13]). The estimate was performed for a first set of 65,000 points
obtained in this fashion, and corresponding to the first half of 300 s long
record. The estimated capacity dimension based on the second half of that record
was also 2.3. These estimates were also performed by J . E. Devaney using the

procedure of [15].

The Lyapounov exponent was estimated using the procedure described in [16]. The

computer program for implementing the procedure was made available to the
writers by Professor A. Wolf. For embedding dimensions D = 2 and 3 we obtained
estimates of the Lyapounov exponents corresponding to input parameters
appropriate to our problem (SCALMIN = 0.002 m, SCALMAX = 0.01 m, EVOLV = 500,
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see [16, p. 313]). The estimated values were 7 - 2.99 bits/s for D = 2, and 7
= 3.14 bits/s for D = 3. For higher embedding dimensions noise effects appeared
to affect the results significantly, although the estimated Lyapounov
coefficients remained positive and of the same order of magnitude up to D = 7

.

The forcing frequency was then changed from w =- 37.315 rad/s to w = 22.702
rad/s , while all other parameters were left unchanged. A periodic snap- through
motion was recorded, as shown in figure 3.8. Figure 3.9 shows the corresponding
spectral density function. The presence of noise is clearly reflected in figure
3,9, but its level is considerably lower than that of the broadband components
of the chaotic motion shown in figure 3.6.

Finally, we show in figure 3.10 the time history of periodic motion about a

stable fixed point of the unforced column. This occurred for a forcing frequency
(j) = 22.800 rad/s, all other system parameters being unchanged. It is noteworthy
from an engineering standpoint that the behavior of the system is radically
different from that of figure 3.8 even though the respective frequencies differ
by less than 0.5%. The spectral density of the motion of figure 3.10 is shown
in figure 3.11.

4. ANALYTICAL MODELING

4 . 1 Modeling of Spring Masses and Stiffnesses

The system under consideration is continuous, i.e., it has an infinite number
of degrees of freedom. This is due to the relatively significant mass of the

horizontal and vertical springs.

For a linearly elastic member in tension the propagation velocity for a

disturbance is a =
[

( F/e )/p ]
'-/^

, where F = force acting on member, e = strain
induced by force F, and p = mass of member per unit length. For a linear spring
with total mass and length L to which there corresponds a spring constant k,

F = k, e = 1/L, p = mg/L, and a = (k/mg) •'/^L. The time required for the

propagation of a disturbance from one end of a spring to the other is tp = L/a

,

and the length, spring constant and mass are approximately 0.18 m, 2640 N/m, and
0.234 kg for the vertical springs, and 0.18 m, 265 N/ra, and 0.07 kg for each of

the horizontal springs. Therefore, the propagation times are about 0.01 s and
0.016 s, respectively. These times should be compared with a quarter of the

forcing period (i.e., the time required for the forcing arm displacement to go

from zero to its maximum value), which for the chaotic oscillations is 27r/37.315
= 0.042 s, that is, only a few times larger than the propagation times. This
suggests that the continuity of the system due to the masses of the horizontal
and vertical springs may be a significant factor in the modeling of the

experimental device.

An additional modeling issue is whether the spring stiffnesses as measured under
static conditions are applicable to dynamic conditions. Given the constraints
of the project dynamic testing could not be performed, and it was assumed in the

simulations that the spring stiffnesses under static and dynamic conditions are

the same. However, we believe that the modeling of the system might have been

5



improved if the spring stiffnesses had been carefully measured under dynamic
conditions, particularly for the as -mounted torsional springs.

4 . 2 Modeling of Dissipative Forces

Energy dissipation is due to both internal friction in the springs and to

friction between moving parts of the device, including in particular the
friction of the torsional springs against the shaft onto which they are mounted.
The measurement of the dissipative forces was beyond the scope of this work.
Some of these forces are nonlinear, and our observations indicated that this is

in particular the case for the dissipative forces associated with the torsional
spring forces |x| > 0.066 m. Nevertheless, in simulating the motions we used
the simplified assumption that the total damping is proportional to the velocity
x' of the column midpoint, the factor of proportionality being a constant
viscous damping coefficient. We also carried out simulations in which we
assumed that the viscous damping coefficient was constant for |x| < 0.066 m and
increased linearly for |x| > 0.066 m. The results of our simulations will be
commented upon in light of the limitations of these simplified models.

4 . 3 Equations of Motion

The equations of motion can be derived by considering the free body diagram for

masses M, M]_ and M2 , where M is the sum of mass m and the tributary masses of
the horizontal springs, and M;|^ (M2) is the sum of mass m]^ (m2) and the tributary
mass of the vertical spring. The motion of masses m-^ and m2 is constrained;
denoting their displacements by 5(x) we have (fig. 2.1):

5(x) = i - (^2 . x2)l/2
. (4.1)

Let the differentiation with respect to the time t be denoted by '
. It follows

from figure 4.1 that

= Pll(x) + Ml 5" (x) + gi (4.2)

V21 = P2i(x) + M2 5"(x) + g2 (4.3)

T
+ I sin^ - F]^ i cos^ - = ^ (^•^)

2

T
- + V21 i sin^ - F2 a cose - = ^ (^-5)

2

M x' ' + g - F]^ - F2 - Rii + R21 = 0 (4.6)

where g, g-^ , g2 , g^2 denote the dissipative forces (moments). For the

reader's convenience we note that

5'(x) = xx'/('2^ - x2)l/2 (4.7)

5"(x) = [1/(^2 - x2)l/2] [xx" + x'2 + x2x'2/(i2 . ^2)] . (4.8)

6



4.3.1 Equations of Motion of Multidegree of Freedom System

To account for the forces of inertia associated with the mass of the springs,
we divide the springs into segments, each having a lumped mass and stiffness.
If we divide the vertical springs into equal segments, the mass and the
stiffness of each segment will be m^/n^ and n^K2

,
respectively, where m^ and

K2 are, respectively, the mass and the stiffness of the original undivided
spring. A tributary mass m^/ (2u^) will be added to the top mass mi as well as

to the bottom mass m2 . Similar statements hold for the horizontal springs, which
are each divided into n^ segments. We will assume for convenience that n^ and
n^ are even.

The system of eqs (4.1) through (4.6) must then be complemented by the equations
of motion of the spring segments. Owing to symmetry, ?2X (^) = Pii(x). and we
need to write only the equations of motion of the upper n^/2 - 1 lumped masses
of the vertical springs (fig. 4.2):

yii" + gli - Pli + Pli+1 = 0 (i = 1, 2, ..,n^/2 - 1) . (4.9)

For the horizontal spring segments (fig. 4.3):

""hi

"h

™h2

"h

^li"' + hii + Rii - Rii+i = 0 (i = 1, 2, • • -% 1) (4

^2i"' + h2i - R2i + R2i+1 = 0 (i = 1, 2, •
• 1) (A

Sli' ^li' ^2i denote the dissipative forces . The forces in the springs

Pll = Po - n^K2 [Six) + Yii] (4

Pli = Po + i^vK2 (y2i-i - yii) (i = 2 3 • ,nv/2 1) (4

Rll = + n^ki(x;Ll - ^) (4

Rii = Rio + n^ki(xii - xi^.i) (i = 2,3, . • ,nh - 1) (4

Rii = + n^k]^(Asin(wt) - xn.i) (i = (4

R21 = R20 - nhk2(x2i - x) (4

R2i = R20 - nhk2(x2i - X2i.i) (i = 2,3,. • '"h
- 1) (4

R2i = R20 - n^k2(Asin(wt) - ^21-1^ (i =
"h

- 1) (4

where is the total initial tension in the vertical springs (corresponding to

X = 0) and R^o' P-2o initial tensions in the left and right horizontal



spring, respectively (corresponding to zero displacements of mass m and of the

forcing arms) . Finally we have

T(t) = 2 Ki e(t) (4.20)

6 = sin-l(x/i) . (4.21)

We consider, as an example, the particular case k]^ = k2
,

m^^.
''"h2 > ^lo ^ ^2o

(to which there correspond antisymmetric motions of the two horizontal springs)
and n^ = 4, n^ = 4 . Denoting x = Z]^, x^^ = Z3, X2 = Z5

,
X3 = zy, Yi = zg, and

assuming that the dissipative force g = c x' while the other dissipative forces
are zero (i.e., assuming that the dissipation is entirely concentrated in the
term c x' ) , the equations of motion can be written as

zi' = Z2 (4.22)

m + %i/4 + {mi + m2 + ni^/4) 7.-^/ - zi^)

n n

(mi + m2 + nVy,/4) 2^ z^ zi

^ ^
- zi^)2

2Po zi - 2 (i + Z9) (4K2) zi - 2Ki sin-l(zi/^)]

' ~~~2":";^2;i72

- 2[4ki - 2(4K2)] zi + 2 (4ki) Z3 ) (4.23)

Z3' = Z4 (^-24)

Z4' = 4ki (zi + Z5 - 2z3)/(mh/4) (4.25)

Z5' = zg (4.26)

Z6' = 4ki (Z3 + Z7 - 2z5)/(mh/4) (4.27)

Z7'= zg (4.28)

zg' = 4k]^ [Z5 + A sin (wt) - 2z7]/(m|^/4) (4.29)

zg' = zio (4.30)

zio' = - 4K2{[^ - (^2 . 2^2)1/2] + 2 Z9}/(m^/4) . (4.31)

4.3.2 Single Degree of Freedom System

If instead of n.^. = n^ = 4 we have n.^ = nj^ = 1, then

8



1

x' ' +
m + + (mi + m2 + m^/2)x2/(i2 . ^2)

{cx' +
(mi + m2 + xx'2

(^2 . x2)2

- 2

(Pq - 2iK2)x - Ki sin'l(x/i)

(i2 . x2)l/2

+ 2(k]^ - 2K2) X - 2kxA sin(wt)} = 0 . (4.32)

Equation 4.32 was verified by deriving it independently from the Lagrangian of

the system. The potential from which the restoring force of eq (4.32) is derived
is represented as a function of the absolute value of the displacement x in

figure 4.4. This double-well potential is similar to that characterizing the

Duffing equation [17, p. 82]. It may therefore be expected that to eq (4.32)
there can correspond forced motions similar qualitatively to those typical of
the Duffing equation with forcing [17, p. 84], that is (1) periodic motions
around one of the stable fixed points of the unforced Hamiltonian counterpart
of the system, as shown (to within effects of noise) in figure 3.10, (2)

periodic motions around the unstable fixed point, as in figure 3.8 (periodic
snap-through motions), and (3) motions that are neither periodic nor
quasiperiodic (chaotic motions) , characterized by successions of irregular
oscillations around the three fixed points, as in figure 3.1.

We note that the potential function corresponding to the multidegree of freedom
system cannot be conveniently plotted, owing to its dependence upon a large
number of generalized coordinates.

4.3.3 Duffing Equation

If in eq (4.32) the masses mj^
,
m2 , and m^ are zero, then

c (Pq - 2K2i) X - Ki sin"^(x/i) ki - 2K2

X" + x' - 2 + 2 X
M M(^2 . x2)l/2 M

2ki
= A sin(cjt) (4.33)

M

where M = m + m-^i/1. If, as has been done for the classical Stoker column [10,

p. 54], eq (4.33) is expanded in a Taylor series and terms of order five and

higher are neglected, we obtain

9



c 1

x" + x'+ (2ki + 2MM ^2

= A sin(wt) . (4. 34)

M

In eq (4.34) we denote the coefficient of x' by r, the coefficient of x by -a,

the coefficient of x"^ by ^, and the coefficient of sin(wt) by Fq . The parameters
k]^

,
K^^

,
K2

,
Pq , and Jl are chosen so that a > 0 and ^ > 0. By

nondimensionalizing eq (4.34) so that x = x^w, t = t^r , where t^ and Xq satisfy
the relations at^^ = 1/2, ^x^^t^^ = 1/2, and by using the notations rt^ = 7,

F^t^^/xQ = f, and wt^ = Q, we obtain the standard form of the Duffing equation

1 1

w' ' + 7w' w + w^ = f sin(Q7-) . (4.35)
2 2

Useful explorations of the motions corresponding to various regions of the

parameter space for the Duffing equation are reported in [11]. For this reason
the Duffing equation was used as a guide in preliminary attempts to obtain
chaotic motions of the one-degree of freedom system represented by eq (4.32).
We note, however, that unlike eq (4.32), eq (4.35) cannot be viewed as an

approximation to the experimental device since masses m2^
,

m2 , and m^^ are

negligibly small.

4Ki
_ . 2 ) X + ( + 2 ) X-

M 3r

5. NUMERICAL SIMULATIONS

Numerical simulations were performed for two purposes. First, an attempt was
made to reproduce by numerical simulation the chaotic motion obtained
experimentally. Second, for a given set of system parameters, simulations were
performed with a view to ascertaining whether two models, one representing a

simplified version of the other, yielded motions that belonged to the same of

the three types of response listed at the end of section 4.3.2. Motions
belonging to the same type of response will be referred to here as qualitatively
similar

.

5 . 1 Numerical Simulation of Observed Chaotic Motion

It was suggested in section 4.1 that the mass of the springs appears to be a

significant modeling factor. For this reason we modeled the motion of the

experimental device by dividing the vertical and each of the horizontal springs
into several segments having the respective masses lumped at their centers. We
used eqs (4.22) through (4.31), which correspond to the division of each of the

tension springs into four segments, and in which the dissipative force was
asssumed to be proportional to x' , the factor of proportionality being a

constant c. The torsional stiffness was modeled by eq (2.1), and the various
parameters of the system had the values given in sections 2 and 3. Although we

did not attempt to perform exhaustive numerical studies, we ascertained that
chaotic motions were obtained for a fairly broad range of values c. For c = 3.0,

10



which would correspond in a linear system with unit mass and stiffness 2k-^ to
a damping ratio of about 7%, we obtained the time history of figure 5.1. While
the motions of figures 3.2 and 5.1 are similar qualitatively, they are clearly
different quantitatively. We note that quantitative differences between
experimental and numerically simulated motions were also pointed out for a

similar oscillator in [17, p. 84]. Changing the constant c, or assuming that c

was constant for |x| < 0.066 and increased linearly for |x| > 0.066 until it

reached at |x| = 0.075 a value n times larger than for small |x| (n = 2,

3,..., 10), did not result in a substantially improved reproduction of the
experimental motion. The stroboscopic Poincare plot and the spectral density
function corresponding to figure 5.1 are shown in figures 5.2 and 5.3,
respectively. Note that the maximum velocities are considerably higher for the
simulated than for the observed motion (fig. 5.2 versus fig. 3.4).

Detailed modeling and measurements of the dissipative forces and of the spring
stiffnesses under dynamic conditions -- particularly for the torsional springs
-- were beyond the scope of this project. Had such modeling and measurements
been performed, and had the springs been divided for simulation purposes into
more that four segments, it is likely that the observed chaotic motion would
have been reproduced more closely. Nevertheless, we note that in spite of the
imperfect modeling of the dissipative forces and possibly of spring stiffnesses
as well, the modeling of the device by a system with 10 degrees of freedom
(reduced owing to symmetries and antisymmetries to a system with 5 degrees of
freedom) was capable of reproducing qualitatively the observed chaotic motion.

5 . 2 Effect of Simplified Representation of the Device as a One Degree of Freedom
System

We also attempted to reproduce qualitatively the observed chaotic motion by
modeling the device as a system with three masses. As shown in section 4, owing
to the geometrical constraints of the device, if the spring masses are

neglected, the system with masses m, m]^ and m2 (to which tributary spring masses
are added) has one degree of freedom. We therefore simulated the motion of the

device by using eq (4.32), with the same dissipative forces and stiffnesses as

in the simulations of the corresponding multidegree of freedom system (sec.

5.1). In none of the tens of cases for which chaotic motion was obtained for the

multidegree of freedom system did the corresponding one degree of freedom system
result in chaotic motion. Additional tens of simulations for the one degree of

freedom system, in which the parameters defining the assumed dissipative forces
were varied from simulation to simulation while all other parameters were kept
equal to their counterparts in the experimental device, also failed in all cases
to yield chaotic motion.

It may be that, had we used a model that reproduced more closely the actual
dissipative forces (and possibly also the dynamic spring forces), chaotic motion
could have been obtained even by modeling the device as a one degree of freedom

system. Nevertheless, our results allow us to draw the interesting conclusion

that motions of the multidegree of freedom systems represented by the

simulations of section 5.1 cannot be reproduced even qualitatively if those

systems are modeled as one degree of freedom systems. This result differs from

that obtained for the oscillator discussed in [17, p. 84], for which the

approximation of a continuous beam by a one degree of freedom mass did not alter

11



the observed behavior qualitatively. The effect of the additional degrees of
freedom of the system is significant in our case owing to the relative
magnitudes of relevant parameters, in particular the spring masses and
stiffnesses, masses m, m-^ and m2 , and the forcing frequency u>

.

6. SUMMARY AND CONCLUSIONS

Following a description of the modified Stoker column as constructed at the

Center for Building Technology, National Institute of Standards and Technology,
we presented records of typical motions of that device as measured in the
laboratory, including periodic motion around a stable fixed point, periodic
snap-through motion, and chaotic motion. Characterizations of the recorded
chaotic motion included: the autocorrelation function, which decays and then
vanishes (to within noise effects) after a 0.74 s lag, thus indicating that
knowledge of past history of the motion cannot be used to make deterministic
inferences on future behavior; the spectral density plot, which exhibits
relatively substantial broadband components, as is expected for a time history
with decaying autocorrelation; the capacity dimensions of a Poincare plot of the

strange attractor of the motion (N = 1.25) and of the attractor constructed by
embedding the time history in a three-dimensional phase space (N = 2.3); and the

Lyapounov exponent, whose estimated value was approximately 3.00.

The stiffness measurements for the springs used in the construction of the

device were performed under static conditions, and no measurements were
performed of the dissipative forces occurring during the motion. Nevertheless,
numerical simulations based on an analytical model in which the spring
stiffnesses measured under static conditions were used and the damping was
assumed to be viscous yielded chaotic motions qualitatively similar to those
recorded in the laboratory. That model entailed the representation of the device
as a multidegree of freedom system to account for the fact that, owing to the

spring properties, times required for disturbances to travel from one end of a

spring to the other are significant in relation to the forcing period of the

system. On the other hand, we were unsuccessful in our attempts to simulate the

chaotic motion when representing the device as a one degree of freedom system
(i.e., by assuming that disturbances are propagated through the springs
instantaneously) . To our knowledge this is the first instance of an experimental
structural system with continuous members for which a qualitatively successful
simulation of the chaotic motion appears to require the inclusion in the model
of additional degrees of freedom to account for the effects of continuity.

A videotape of the chaotic motions of the device is available upon request from
the authors

.
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Fig. 2.1 Schematic of Forced Modified Stoker Column.
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F^g-
2.2 Drawing of Forced Modified Sto.^iied Stoker Column.
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Fig. 4.1 Free Body Diagrams.
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Fig. 4.2 Lumped Masses Representing Vertical Springs (n„ = 4)
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Fig. 4.3 Lumped Masses Representing Horizontal Springs (n^ = 4)
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