BUILDING MATERIALS
AND
STRUCTURES
REPORT BMS85
Dimensional Changes of Floor Coverings with Changes in Relative Humidity and Temperature
by
PERCY A. SIGLER
ROBERT I. MARTENS, and
ELMER A. KOERNER

NATIONAL
BUREAU OF STANDARDS
BUILDING MATERIALS AND STRUCTURES REPORTS

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices.

An alternative method is to deposit with the Superintendent of Documents the sum of $5.00, with the request that the reports be sent to you as soon as issued, and that the cost thereof be charged against your deposit. This will provide for the mailing of the publications without delay. You will be notified when the amount of your deposit has become exhausted.

If 100 copies or more of any report are ordered at one time, a discount of 25 percent is allowed.

The following publications in this series are available by purchase from the Superintendent of Documents at the prices indicated:

BMS1 Research on Building Materials and Structures for Use in Low-Cost Housing 10¢
BMS2 Methods of Determining the Structural Properties of Low-Cost House Constructions 10¢
BMS3 Suitability of Fiber Insulating Lath as a Plaster Base 10¢
BMS4 Accelerated Aging of Fiber Building Boards 10¢
BMS5 Structural Properties of Six Masonry Wall Constructions 15¢
BMS6 Survey of Roofing Materials in the Northeastern States 10¢
BMS7 Water Permeability of Masonry Walls 10¢
BMS8 Methods of Investigation of Surface Treatment for Corrosion Protection of Steel 10¢
BMS9 Structural Properties of the Insulated Steel Construction Co.'s "Frameless-Steel" Constructions for Walls, Partitions, Floors, and Roofs 10¢
BMS10 Structural Properties of One of the "Keystone Beam-Steel Floor" Constructions Sponsored by the H. H. Robertson Co. 10¢
BMS11 Structural Properties of the Current Fabrihome Corporation's "Fabrihome" Constructions for Walls and Partitions 10¢
BMS12 Structural Properties of "Steelox" Constructions for Walls, Partitions, Floors, and Roofs Sponsored by Steel Buildings, Inc. 15¢
BMS13 Properties of Some Fiber Building Boards of Current Manufacture 10¢
BMS14 Indentation and Recovery of Low-Cost Floor Coverings 10¢
BMS15 Structural Properties of "Wheeling Long-Span Steel Floor" Construction Sponsored by Wheeling Corrugating Co. 10¢
BMS16 Structural Properties of a "Tilecrete" Floor Construction Sponsored by Tilecrete Floors, Inc. 10¢
BMS17 Sound Insulation of Wall and Floor Constructions 10¢
BMS18 Structural Properties of "Pre-Fab" Constructions for Walls, Partitions, and Floors Sponsored by the Harnischfeger Corporation 10¢
BMS19 Preparation and Revision of Building Codes 10¢
BMS20 Structural Properties of "Twachtman" Constructions for Walls and Floors Sponsored by Connecticut Pre-Cast Buildings Corporation 10¢
BMS21 Structural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the National Concrete Masonry Association 10¢
BMS22 Structural Properties of "Dun-Ti-Stone" Wall Construction Sponsored by the W. E. Dunn Manufacturing Co. 10¢
BMS23 Structural Properties of a Brick-Cavity-Wall Construction Sponsored by the Brick Manufacturers Association of New York, Inc. 10¢
BMS24 Structural Properties of a Reinforced-Brick Wall Construction and a Brick-Tile Cavity-Wall Construction Sponsored by the Structural Clay Products Institute 10¢
BMS25 Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs 10¢
BMS26 Structural Properties of "Nelson Pre-Cast Concrete Foundation" Wall Construction Sponsored by the Nelson Cement Stone Co., Inc. 10¢
BMS27 Structural Properties of "Bender Steel Home" Wall Construction Sponsored by The Bender Body Co. 10¢
BMS28 Backflow Prevention in Over-Rim Water Supplies 10¢
BMS29 Survey of Roofing Materials in the Northeastern States 10¢
BMS30 Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas Fir Plywood Association 10¢
BMS31 Structural Properties of "Insulite" Wall and "Insulite" Partition Constructions Sponsored by The Insulte Co. 15¢
BMS32 Structural Properties of Two Brick-Concrete-Block Wall Constructions and a Concrete-Block Wall Construction Sponsored by the National Concrete Masonry Association 10¢

[List continued on cover page iii]
BUILDING MATERIALS

and STRUCTURES

REPORT BMS85

Dimensional Changes of Floor Coverings with Changes in Relative Humidity and Temperature

by

PERCY A. SIGLER, ROBERT I. MARTENS, and ELMER A. KOERNER

ISSUED JULY 15, 1942

The National Bureau of Standards is a fact-finding organization; it does not "approve" any particular material or method of construction. The technical findings in this series of reports are to be construed accordingly.
Foreword

Investigations of important properties of floor coverings have been made at the National Bureau of Standards as part of a research program on building materials suitable for low-cost house construction. This report contains information and data on the effects of changes in relative humidity and temperature on the dimensions of floor coverings.

Lyman J. Briggs, Director.
Dimensional Changes of Floor Coverings With Changes in Relative Humidity and Temperature

by PERCY A. SIGLER, ROBERT I. MARTENS, and ELMER A. KOERNER

CONTENTS

Page
Foreword .. 11
I. Introduction 1
II. Test procedure and equipment 2
 1. Specimens exposed to different relative humidities 2
 2. Specimens exposed to different temperatures 3
III. Description of materials tested 4
IV. Results 5
 1. Effect of relative humidity on dimensions 5
 2. Effect of temperature on dimensions 6
V. Summary and conclusions 7

ABSTRACT

The effects of changes in atmospheric conditions on the dimensions of floor coverings were investigated. The floor coverings tested included such general types as linoleum, cork, rubber, felt base, asphalt, strip wood, plywood, fiberboard, and several monolithic compositions, such as cement mortar and magnesium oxychloride. Dimensional changes due to a variation in relative humidity from 8 to 86 percent and those due to a variation in temperature from 32° to 90° F were determined. The floor coverings, testing equipment, and procedure are described, and the results are presented in graphic form.

Changes in relative humidity affect the dimensions of many floor coverings to a much greater extent than do changes in temperature within the range usually encountered in structures. Such floor coverings as strip wood, linoleum, and felt base show a much greater dimensional change in the across-grain or across-machine direction than in the grain or machine direction. The several monolithic compositions showed relatively small changes in dimensions.

I. INTRODUCTION

The tendency of floor coverings to expand or contract with changes in moisture content and temperature is an objectionable characteristic. These changes are most commonly dependent upon the relative humidity and temperature of the surrounding air and thus have a limited range in many locations. However, in some locations extreme conditions are often encountered, such as large temperature changes near heating equipment or prolonged exposure to water in basements.

Excessive expansion or contraction of floor coverings after being installed is likely to result in one or more of the following objectionable conditions: loosening of bond to subfloor, separation within floor covering, buckling, curling, separation at joints, or splitting. Small dimensional changes may cause appreciable buckling or curling, and therefore these conditions are frequently encountered in many floor coverings. This can be readily understood if one considers the small difference which exists between the lengths of an arc typical of a distortion, and its subtended chord. Unequal dimensional changes of the top and bottom surfaces due to difference of exposure are contributing factors, especially with floor coverings installed in small units.

The dimensional changes of subfloors, especially those of strip wood, due to seasonal changes in indoor relative humidity are undoubtedly often the principal cause of a premature failure or unsatisfactory performance of a floor covering. The expansion or contraction of strip wood in the across-grain direction with change in moisture content is considerable. A felt underlay is frequently used with thin floor cover-
The results of studies of other properties of floor coverings and adhesives have been published in Building Materials and Structures Reports BMS14, BMS34, BMS43, BMS59, BMS68, BMS73, and BMS80. (See cover pp. II and III.)

II. TEST PROCEDURE AND EQUIPMENT

1. Specimens Exposed to Different Relative Humidities

For determining the dimensional changes of floor coverings with changes in the relative humidity of the surrounding air and thus changes in the moisture content of the floor coverings, specimens were conditioned and measured first at 65-percent, then at 8-percent, again at 65-percent, and finally at 86-percent relative humidity. The temperature was maintained at approximately 72° F throughout these determinations. With the exception of the strip-wood flooring, the specimens were 9 by 9 in. The strip-wood specimens were 1⅛ by 9 in. The specimens were weighed from time to time under each of the atmospheric conditions as an indication of the approach to and attainment of moisture equilibrium. An exposure of at least 2 weeks was found necessary for most of the floor coverings to reach equilibrium. Some required a much longer time.

A conditioning room at the Bureau provided an atmosphere maintained at 65-percent relative humidity and 72° F. Atmospheres of 8±3 percent and 86±2 percent relative humidity were obtained in a small cabinet especially constructed for the purpose. (See fig. 1.) The size of the cabinet was sufficient to hold several specimens, with one specimen at a time suspended by a wire from the weighing pan of an analytical balance. By means of bailles and a motor-driven fan, air was circulated around the specimens and over a tray containing the conditioning medium. Anhydrous calcium chloride was used to obtain 8-percent relative humidity and a saturated solution of zinc sulfate to obtain 86 percent. The atmospheric conditions in the cabinet were determined from the readings of wet- and dry-bulb thermometers placed directly below the fan. In order to measure a specimen con-

![Figure 1: Conditioning cabinet and balance.](image-url)
ditioned in the small cabinet, it was necessary to move it into an atmosphere of 65-per-cent relative humidity. Measurements of a specimen were started immediately and were completed within half an hour. The dimensions remained practically unchanged for that length of time, inasmuch as check measurements made at the end of the period were the same as those obtained at the beginning of the period.

The dimensional changes of the 9 by 9-in. specimens were determined from measurements made with a micrometer comparator. (See fig. 2.) The instrument consisted essentially of an Invar-steel bar on which were mounted two low-powered microscopes equipped with filar micrometers. The microscopes were clamped on the bar so that corresponding graduations of the two micrometers were 8 in. apart. The distances between reference marks, approximately 8 in., were measured to the nearest 0.001 in. Twelve separate measurements were made on each specimen—three in the machine or grain direction and three in the across-machine or across-grain direction on both the face and the back of the specimen. In order to be certain that a specimen was flat when being measured, it was placed on a glass plate and weighted down with a steel plate 7 in. square and ½ in. thick.

The dimensional changes of the strip-wood flooring in the across-grain direction were determined from measurements made with a micrometer caliper having a range of 1 to 2 in.

2. Specimens Exposed to Different Temperatures

For determining the dimensional changes of floor coverings with changes in temperature, specimens were conditioned and measured first at 72°, then at 32°, again at 72°, and finally at 90° F. The relative humidity of the surrounding air was maintained at approximately 65 percent throughout these determinations. The variation in relative humidity at 72° and 90° F was ±2 percent; the variation at 32° F was ±4 percent. Various conditioning rooms at the Bureau provided the above atmospheres. The specimens were weighed under each of their various conditions as a check on their moisture content remaining constant. Even though the relative humidity was maintained approximately constant, the weights, and thus the moisture contents, of the materials varied somewhat. In general, the specimens weighed slightly more at 32° than at 72° F and slightly less at 90° than at 72° F. The size of the

Figure 2.—Micrometer comparator.
specimens and the manner of measuring were similar to those used in the exposures to different relative humidities.

III. DESCRIPTION OF MATERIALS TESTED

The floor coverings tested included such general types as linoleum, cork, rubber, felt base, asphalt, strip wood, plywood, fiberboard, and several monolithic compositions. They are listed in Table 1, along with their changes in weight in conditioning from 65- to 8-percent relative humidity and from 65- to 86-percent relative humidity at 72° F. The generous cooperation of various manufacturers in furnishing materials for test is gratefully acknowledged.

Table 1.—Floor coverings tested and the effect of change in relative humidity on their weight—Continued

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Type and description</th>
<th>Nominal thickness</th>
<th>% Change in weight from 65-per % relative humidity at 72° F to</th>
<th>8-per % relative humidity</th>
<th>86-per % relative humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Felt-base; printed pattern, red; wearing surface, canvas</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>23</td>
<td>Sheet rubber; marbleized pattern, brown.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>24</td>
<td>Rubber tile; marbleized pattern, gray.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>25</td>
<td>Rubber tile; black; contained aluminum oxide aggregate</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>26</td>
<td>Asphalt tile; plain pattern, black; 1-minute indentation, 0.096 in.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>27</td>
<td>Asphalt tile; marbleized pattern, white; 1-minute indentation, 0.066 in.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>28</td>
<td>Asphalt tile; plain pattern, mahogany; 1-minute indentation, 0.010 in.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>29</td>
<td>Asphalt tile; plain pattern, white; 1-minute indentation, 0.008 in.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>30</td>
<td>Rubber tile; plain pattern, white; 1-minute indentation, 0.006 in.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>31</td>
<td>Rubber tile; plain pattern, white; 1-minute indentation, 0.004 in.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>32</td>
<td>Rubber tile; plain pattern, red; 1-minute indentation, 0.004 in.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>33</td>
<td>Rubber tile; plain pattern, brown; 1-minute indentation, 0.004 in.</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>34</td>
<td>1/2 cement-mortar topping; aggregate, Potomac River sand; density 57 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>35</td>
<td>Magnesium-oxychloride composition; plain pattern, red; aggregate, caliche dust; density 108 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>36</td>
<td>Magnesium-oxychloride composition; plain pattern, green; aggregate, granite dust; density 118 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>37</td>
<td>Magnesium-oxychloride composition; plain pattern, green; aggregate, marble dust, cotton fiber, and copper powder; density 108 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>38</td>
<td>Aluminum cement-rubber latex composition; terrazo pattern, green; aggregate, marble chips; density 131 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>39</td>
<td>Coal-tar mastic composition; plain pattern, gray; aggregate, gravel, sand, and gypsum; density 128 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>40</td>
<td>Asphalt-impregnated fiberboard tile; plain pattern, dull black; density 35 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>41</td>
<td>Asphalt-impregnated fiberboard tile; plain pattern, green; density 54 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>42</td>
<td>Pressed fiberboard tile; brown; density, 40 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>43</td>
<td>Rock-elm plywood tile; 3-ply</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>44</td>
<td>Douglas-fir plywood; 5-ply</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>45</td>
<td>Short-strip maple; flat-grained; density, 14 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>46</td>
<td>Short-stripe maple; flat-grained; density, 14 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>47</td>
<td>Strip white oak; flat-grained; density, 14 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>48</td>
<td>Strip white oak; flat-grained; density, 14 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>49</td>
<td>Strip white oak; flat-grained; density, 14 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>50</td>
<td>Strip Douglas fir; edge-grained; density, 35 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>51</td>
<td>Strip Douglas fir; edge-grained; density, 35 lb/ft.²</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
<tr>
<td>52</td>
<td>Plywood underlay; 3 plies of hardwood veneer with saturated paper on both faces</td>
<td>1/8</td>
<td>+1.88</td>
<td>+2.18</td>
<td>+5.88</td>
</tr>
</tbody>
</table>

*Color listed in the predominating color.
*Factory-applied finishing material on surface.
*At 65-percent relative humidity and 72° F.
*No finishing material on surface.
IV. RESULTS

1. Effect of Relative Humidity on Dimensions

The effects of changes in relative humidity from 65 to 8 percent and from 65 to 86 percent on the dimensions of the floor coverings listed in table 1 are shown graphically in figures 3 to 7, inclusive. The dimensional changes are reported as the percentage change from the dimensions at 65-percent relative humidity and 72° F. The unshaded blocks show the dimensional changes in the machine or grain direction on all samples where the direction could be ascertained. The shaded blocks show the dimensional changes in the across-machine or across-grain direction or at right angles to the first direction. The values reported represent the average of the several separate measurements made on both the face and the back of the specimens.

Dimensional changes occurred in some floor coverings opposite to that which might be expected; the amounts are shown by broken lines in the charts. These reversals occurred only as contractions in the machine direction when the specimens were expanding in the across-machine direction and, to any appreciable extent, only with materials having a fabric backing. Stresses of an opposite nature and of greater magnitude than those due to moisture were probably created in the machine direction

Figure 3.—Effect of relative humidity on dimensions of linoleums, cork-composition tile, and cork tiles.

Samples 1 to 8, linoleum; 9, cork-composition tile; 10 and 11, cork tile.

Figure 4.—Effect of relative humidity on dimensions of felt-base floor coverings having various wearing surfaces.

Wearing surface of samples 12 and 13, linoleum composition; 14 and 15, cellulose nitrate composition; 16, resin and drying oil composition; 17 and 18, resin-treated cotton-linters sheet; 19 and 20, asphalt and pitch composition; 21 and 22, enamel.

Figure 5.—Effect of relative humidity on dimensions of sheet rubber, rubber tiles, and asphalt tiles.

Sample 23, sheet rubber; 24 and 25, rubber tile; 26 to 33, asphalt tile.
of the specimens by the considerable expansion in the across-machine direction. A backing fabric might be expected to aggravate such a condition.

2. Effect of Temperature on Dimensions

After a number of samples had been tested, it became apparent that the effect of temperature on the dimensions of floor coverings was small in comparison with the effect of relative humidity and from a practical viewpoint was relatively of little importance. In view of this and the difficulty of maintaining the moisture content of the specimens absolutely constant at different temperatures, this phase of the investigation was somewhat curtailed. In order to give a conception of the magnitude of the changes involved, the effects of changes in temperature from 72° to 32° F and from 72° to 90° F on the dimensions of several different floor coverings are shown graphically in figure 8. The dimensional changes are reported as percentage changes from the dimensions at 72° F and 65-percent relative humidity. Dimensional changes in the machine direction for the linoleums and felt-base materials were extremely small and frequently opposite to the changes in the across-machine direction. The amounts were about the same in magnitude as the uncertainty of the measurements—that is, about 0.001 in., or 0.01 percent.
V. SUMMARY AND CONCLUSIONS

The magnitude of the expansion or contraction of many floor coverings is much greater for changes in moisture content than for changes in temperature within the limits of ordinary atmospheric conditions. The dimensions of asphalt-tile and rubber floor coverings are not appreciably affected by changes in either relative humidity or temperature.

In many floor coverings there is a pronounced difference in the dimensional change for different directions. For normal changes in moisture content, the dimension in the across-grain or across-machine direction of such floor coverings as strip wood, linoleum, and felt base is affected to an appreciable extent, whereas in the grain or machine direction the change in dimension is negligible. The cork tiles and cork-composition tile did not have distinguishable machine or grain directions. Both of their principal dimensions showed appreciable change.

The dimensional changes of the various monolithic compositions as a whole were small. The fiberboards and plywoods showed much less expansion and contraction in both principal dimensions than the strip-wood floorings in the across-grain direction. Of the strip-wood floors, maple showed the greatest change and edge-grained Douglas fir the least. Among floor coverings in general, dimensional changes of the strip-wood floors in the across-grain direction were by far the greatest.

In order to prevent a large over-all dimensional change from occurring in one direction of a room, some floor coverings are installed in small units, such as tile or unit-block, with the machine or grain direction of alternate units at right angles to each other.

WASHINGTON, May 1, 1942.