BUILDING MATERIALS
AND
STRUCTURES
REPORT BMS77
Properties and Performance of Fiber Tile Boards
by
DANIEL A. JESSUP,
HERMAN BOGATY, and
SAMUEL G. WEISSBERG

NATIONAL BUREAU OF STANDARDS
The program of research on building materials and structures carried on by the National Bureau of Standards was undertaken with the assistance of the Central Housing Committee, an informal organization of governmental agencies concerned with housing construction and finance, which is cooperating in the investigations through a committee of principal technicians.

CENTRAL HOUSING COMMITTEE
ON RESEARCH, DESIGN, AND CONSTRUCTION

Hugh L. Dryden, Chairman.
National Bureau of Standards.

Howard P. Vermilya, Vice Chairman.
Federal Housing Administration.

Sterling R. March, Secretary.

Mary F. Taylor, Assistant Secretary.

Pierre Blouke,
Federal Home Loan Bank Board.

A. C. Shire,
United States Housing Authority.

Warren G. Noll,
Public Buildings Administration.

Luther M. Leisenring,
Construction Division (War).

Edward A. Poynton,
Office of Indian Affairs.

John F. Donovan,
Farm Security Administration.

George W. Traver,
Forest Service (F. P. Laboratory).

Rollo H. Britten,
Public Health Service.

George E. Knox,
Yards and Docks (Navy).

William R. Talbott,
Veterans' Administration.

Wallace Ashby,
Bureau of Agricultural Chemistry and Engineering.

NATIONAL BUREAU OF STANDARDS
STAFF COMMITTEE ON ADMINISTRATION AND COORDINATION

Hugh L. Dryden, Chairman.
Mechanics and Sound.

Phaon H. Bates,
Clay and Silicate Products.

Hobart C. Dickinson,
Heat and Power.

Warren E. Emley,
Organic and Fibrous Materials.

Gustav E. F. Lundell,
Chemistry.

Addams S. McAllister,
Codes and Specifications.

Henry S. Rawdon,
Metallurgy.

The Forest Products Laboratory of the Forest Service is cooperating with both committees on investigations of wood constructions.

[For list of BMS publications and directions for purchasing, see cover page III.]
BUILDING MATERIALS and STRUCTURES

REPORT BMS77

Properties and Performance of Fiber Tile Boards

by

DANIEL A. JESSUP, HERMAN BOGATY and SAMUEL G. WEISSBERG

ISSUED AUGUST 8, 1941

The National Bureau of Standards is a fact-finding organization; it does not "approve" any particular material or method of construction. The technical findings in this series of reports are to be construed accordingly.
Foreword

Fiber tile board offers considerable promise as a finishing material for installations where much more costly materials are ordinarily used. Samples of this type of board were tested as a part of the research program on building materials and structures.

Lyman J. Briggs, Director.
Properties and Performance of Fiber Tile Boards

by DANIEL A. JESSUP, HERMAN BOGATY, and SAMUEL G. WEISSBERG

CONTENTS

Foreword ... 11
I. Introduction .. 1
II. Description of samples 1
III. Properties and testing 1
 1. Thickness and density 2
 2. Linear expansion with change in humidity 2
 3. Flexural properties 2
 III. Properties and Testing—Continued 3
 4. Thickness of coating 3
 5. Effect of steam 3
 6. Impact tests 1
 7. Resistance to abrasion 4
 8. Resistance to staining 5
IV. Summary and conclusions 5

ABSTRACT

Performance tests have been made on fiber tile boards by subjecting them to conditions which they might possibly meet in service. The properties examined were resistance to abrasive cleaning powders, resistance to staining by household chemicals, and stability of the boards when subjected to cycles of steaming and drying. In addition, data were obtained on the density, expansivity, and flexural properties of the boards, and on the thickness and impact resistance of the finish coatings.

The resistance of most of the boards to staining, to impact, and to abrasive cleaning powders was good. Most of the surface coatings were damaged by the changes of steaming and drying, especially at the edges, where moisture had direct access to the base material, and at the score marks, where the coatings in some of the boards were very thin. The density, expansivity, and flexural properties were satisfactory.

I. INTRODUCTION

In connection with research at the National Bureau of Standards on building materials and structures relative to low-cost housing,\(^1\) it was considered desirable to include a study of the properties of fiber tile boards. This material is made of vegetable-fiber boards in large sheets, and has on one side a dense, hard coating, either white or colored. The coated surface is frequently scored to resemble the ceramic wall tile commonly used in more costly structures than those for which the fiber tiles are primarily intended.

II. DESCRIPTION OF SAMPLES

The samples were commercial products furnished by manufacturers. They consisted of compressed wood-fiber board, coated on one side with a synthetic plastic. Some of the coatings were homogeneous, and others had a top layer over a priming coat. Two of the products had a resinous binding material in the base boards. There was no added material in the other base boards.

III. PROPERTIES AND TESTING

The samples were tested in their normal condition for the physical properties commonly measured on fiberboards, and for resistance to impact, steam, abrasion, and various liquids since structural tile in use frequently encounters one or more such deteriorative influences. The data are contained in tables 1 and 2, respectively.
1. **Thickness and Density**

The density of the tile board is the weight per unit of volume. It was computed from measurements of dimensions and from determination of weight. In most cases specimens about 18 by 18 inches were used. The weight was determined on a torsion balance reading to 0.1 gram, and the thickness was determined by means of a micrometer caliper reading to 0.001 inch.

2. **Linear Expansion With Change in Humidity**

The change in dimensions with a change in the relative humidity of the surrounding atmosphere is an important characteristic of interior finishing materials. Low expansivity minimizes the difficulties encountered with waving, buckling, and opening of seams when extreme humidity conditions occur.

The linear-expansion tests were made in accordance with the Federal Specification for fiber insulating board. Test specimens measuring about 12 by 2 inches were conditioned in an atmosphere at 50-percent relative humidity and then conditioned for 48 hours in an atmosphere at 95-percent relative humidity. The changes of length were determined from the displacement of reference marks placed about 8 inches apart on the specimen.

3. **Flexural Properties**

Although tile boards are not naturally generally required to contribute to the strength of a structure, the boards must be of sufficient strength to withstand, without undue breakage, handling incidental to installation, and to resist damage after installation. The strength of fiber building boards is generally determined in terms of flexural properties. These were determined by placing a specimen 1 inch wide across two parallel supports 3 inches apart and loading at the midspan. The load is conveniently applied by means of a tensile testing machine with suitable fixtures. The rupturing load and the deflection at instant of rupture are recorded. This method is one developed at the Bureau for use with binders board.

1 Federal Specification LLI-F-321a Fiber Boards; Insulating.
3 Tensile Testing Machine with Suitable Fixtures.
4. Thickness of Coating

The thickness of the coating was determined by an adaptation of Mesle’s chord method. This method has been used successfully for the measurement of the thickness of plated metal coatings. A precision grinding wheel of known radius, \(R \), is lowered upon the surface of the tile board with the axis of the wheel parallel to the plane of the board, as illustrated in figure 1. The surface of thickness, \(T \), is ground through until the wheel reaches the base material along a line through \(P \). The width of the cut, \(C \), is related to the thickness, \(T \), and the radius of the grinder, \(R \), as follows:

\[
R^2 = (R - T)^2 + \left(\frac{C}{2} \right)^2 \quad \text{or} \quad 2RT = T^2 + C^2.
\]

As \(T \) is about 0.01 inch, \(R \) about 4 inches, and \(C \) about 0.5 inch, \(T^2 \) may be neglected, making \(T = (C^2/8R) \).

In practice the plane of the specimen is tilted so that it makes an angle of about 1° with the axis of the wheel. This gives a cut with a semielliptical plan (fig. 2). Tilting has the advantage that, when there is more than one layer of coating, all are exposed for measurement with but one grinding operation. Moreover, there is no uncertainty as to the endpoint of the grinding operation. The width of the cut, \(C \), for a particular coating is measured at the apex of the ellipse formed by the intersection of the wheel with the plane separating the coating under consideration from the next lower layer.

5. Effect of Steam

A test was devised whereby the surface of the fiber tile was exposed to the action of condensing steam for 7 hours and then allowed to dry for 17 hours. Changes in appearance and properties were determined after five such cycles of steaming and drying. The changes produced in some of the boards as a result of this treatment are shown in figures 3, 4, and 5.

Warping was determined by means of a cylinderometer. This device consists of two rigid feet fixed 12 inches apart and a movable foot attached to a dial micrometer at the center of the span. A zero reading is obtained by holding the instrument on a plate-glass surface. The difference between the micrometer reading on the warped board and the zero reading gives the degree of warping.

The warping was extreme in only two of the samples. The base material of these was compressed wood fiber with a resinous binder.

The resistance of the coating to change of gloss and color after steaming was rated as follows: Good, no change; fair, slight but not objectionable; poor, considerable change.

Most of the boards became less glossy on steaming and many of the colored boards faded (fig. 3). In general the color of the white boards was unaffected by steam.

The coatings of most of the boards underwent some surface change. Steaming caused wheels or blisters to form, generally at the edges, near score marks, or at places where the coating had
been scratched or broken (fig. 4). In two instances the coating loosened and tended to separate from the base (fig. 5).

6. Impact Tests

Impact tests on the coated surfaces of tile boards were used as a measure of the resistance to chipping by hard blows. Specimens were placed in a metal frame at an angle of 30° with the horizontal, to simulate glancing blows, and weights were allowed to fall on the surfaces. The shortest distance of fall required to break the surface was recorded. The weights were hardened steel cylinders, $\frac{3}{8}$ inch in diameter, with the edges rounded to a radius of 0.025 inch. The cylinder axis at the moment of impact was vertical. Tests were made with 1- and 2-ounce weights on both the original and the steam-treated boards.

The surface in most cases showed no deterioration after steaming with respect to resistance to impact. The coatings in many instances appeared to be toughened by steaming.

7. Resistance to Abrasion

The surface was tested for resistance to abrasion by mechanically scrubbing it with a cloth-faced pad moving with a reciprocating motion. A device was constructed whereby a number of specimens could be tested simultaneously. The scrubbing pads were composed of wood blocks 2½ inches square covered with a piece of wool blanket over which was fastened a piece of sturdy twill cloth. A load of 1½ pounds was applied to the pads. The stroke of the pads was 4 inches, and the rate of scrubbing was 2,500 cycles per hour. The specimens, fixed in place beneath the moving pads, were moistened from time to time with a 1-percent soap solution.
to which a mild household cleaning powder had been added.

Change in gloss could not be used as a measure of resistance to abrasion, because the polishing effect of the scrubbing prevented change of gloss. The best indication of resistance to abrasion appeared to be the number of cycles necessary to cause the coat to wear completely through to the base. This criterion was used since, in practice, the board tiles might not have to be replaced until this occurred. As might be expected, there is a fairly good correlation between the resistance to abrasion and the overall thickness of the coat.

8. RESISTANCE TO STAINING

The resistance of the coating to staining by common household materials was tested by placing ½ milliliter of the following liquids on the surfaces: a 5-percent solution of washing soda, 5-percent solution of acetic acid, commercial tincture of iodine, commercial writing ink, hot bacon grease. The drop was allowed to stand for ½ hour and then wiped with a clean cloth, using soap and water, if necessary, for thorough cleaning. Most of the boards were stained by dilute acid and iodine. The other compounds had no appreciable effect on the coatings.

IV. SUMMARY AND CONCLUSIONS

The tests of the fiber tile boards studied showed that they are very dense, have a moderate degree of expansion with change in moisture content, and are strong and rigid. The thickness of the coating varies considerably.

The resistance of the coatings of the boards to abrasion was excellent, particularly for those having double coatings.

Steam did not adversely affect the resistance

Figure 4.—Blistering at score marks, caused by swelling of base material when subjected to steam.
of the coatings to impact, but the gloss of most of the coatings was dulled and the colored ones faded. The steaming in general did not affect the color of the white coatings. All coatings treated with steam were blistered, this generally occurring at the edges of the board, near score marks, or where the coating had been scratched. Steam produced excessive warping of two of the boards. The coatings were resistant to staining by writing ink and hot grease, but most of them were stained by weak acetic acid and by tincture of iodine.

Washington, May 20, 1941.
BUILDING MATERIALS AND STRUCTURES REPORTS

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices. An alternative method is to deposit with the Superintendent of Documents the sum of $5, with the request that the reports be sent to you as soon as issued, and that the cost thereof be charged against your deposit. This will provide for the mailing of the publications without delay. You will be notified when the amount of your deposit has become exhausted.

If 100 copies or more of any report are ordered at one time, a discount of 25 percent is allowed. Send all orders and remittances to the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C.

The following publications in this series are available by purchase from the Superintendent of Documents at the prices indicated:

BMS1 Research on Building Materials and Structures for Use in Low-Cost Housing 10¢
BMS2 Methods of Determining the Structural Properties of Low-Cost House Constructions 10¢
BMS3 Suitability of Fiber Insulating Lath as a Plaster Base 10¢
BMS4 Accelerated Aging of Fiber Building Boards 10¢
BMS5 Structural Properties of Six Masonry Wall Constructions 15¢
BMS6 Survey of Roofing Materials in the Southeastern States 15¢
BMS7 Water Permeability of Masonry Walls 10¢
BMS8 Methods of Investigation of Surface Treatment for Corrosion Protection of Steel 10¢
BMS9 Structural Properties of the Insulated Steel Construction Co.'s "Frameless-Steel" Constructions for Walls, Partitions, Floors, and Roofs 10¢
BMS10 Structural Properties of One of the "Keystone Beam Steel Floor" Constructions Sponsored by the H. H. Robertson Co. 10¢
BMS11 Structural Properties of the Curren Fabrihome Corporation's "Fabrihome" Constructions for Walls and Partitions 10¢
BMS12 Structural Properties of "Steelox" Constructions for Walls, Partitions, Floors, and Roofs Sponsored by Steel Buildings, Inc. 15¢
BMS13 Properties of Some Fiber Building Boards of Current Manufacture 10¢
BMS14 Indentation and Recovery of Low-Cost Floor Coverings 10¢
BMS15 Structural Properties of "Wheeling Long-Span Steel Floor" Construction Sponsored by the Wheeling Corrugating Co. 10¢
BMS16 Structural Properties of a "Tilecrete" Floor Construction Sponsored by Tilecrete Floors, Inc. 10¢
BMS17 Sound Insulation of Wall and Floor Constructions 10¢
BMS18 Structural Properties of "Pre-Fab" Constructions for Walls, Partitions, and Floors Sponsored by the Harnischfeger Corporation 10¢
BMS19 Preparation and Revision of Building Codes 15¢
BMS20 Structural Properties of "Twachtman" Constructions for Walls and Floors Sponsored by Connecticut Pre-Cast Buildings Corporation 10¢
BMS21 Structural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the National Concrete Masonry Association 10¢
BMS22 Structural Properties of a "Dun-Ti-Stone" Wall Construction Sponsored by the W. E. Dunn Manufacturing Co. 10¢
BMS23 Structural Properties of a Brick Cavity-Wall Construction Sponsored by the Brick Manufacturers Association of New York, Inc. 10¢
BMS24 Structural Properties of a Reinforced-Brick Wall Construction and a Brick-Tile Cavity-Wall Construction Sponsored by the Structural Clay Products Institute 10¢
BMS25 Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs 10¢
BMS26 Structural Properties of "Nelson Pre-Cast Concrete Foundation" Wall Construction Sponsored by the Nelson Cement Stone Co., Inc. 10¢
BMS27 Structural Properties of "Bender Steel Home" Wall Construction Sponsored by The Bender Body Co. 10¢
BMS28 Backflow Prevention in Over-Rim Water Supplies 10¢
BMS29 Survey of Roofing Materials in the Northeastern States 10¢
BMS30 Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas Fir Plywood Association 10¢
BMS31 Structural Properties of "Insulite" Wall and "Insulite" Partition Constructions Sponsored by The Insulite Co. 10¢
BMS32 Structural Properties of Two Brick-Concrete-Block Wall Constructions and a Concrete-Block Wall Construction Sponsored by the National Concrete Masonry Association 10¢

[List continued on cover page IV]
BUILDING MATERIALS AND STRUCTURES REPORTS

(Continued from cover page III)

<table>
<thead>
<tr>
<th>Report No.</th>
<th>Title</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMS33</td>
<td>Plastic Calking Materials</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS34</td>
<td>Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 1</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS35</td>
<td>Stability of Sheathing Papers as Determined by Accelerated Aging</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS36</td>
<td>Structural Properties of Wood-Frame Wall, Partition, Floor, and Roof Constructions with "Red Stripe" Lath Sponsored by The Weston Paper and Manufacturing Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS37</td>
<td>Structural Properties of "Palisade Homes" Constructions for Walls, Partitions, and Floors, Sponsored by Palisade Homes</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS38</td>
<td>Structural Properties of Two "Dunstone" Wall Constructions Sponsored by the W. E. Dunn Manufacturing Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS39</td>
<td>Structural Properties of a Wall Construction of "Pfeifer Units" Sponsored by the Wisconsin Units Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS40</td>
<td>Structural Properties of a Wall Construction of "Knap Concrete Wall Units" Sponsored by Knap America, Inc.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS41</td>
<td>Structural Properties of Wood-Frame Wall and Partition Constructions Sponsored by the Celotex Corporation</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS42</td>
<td>Effect of Heating and Cooling on the Permeability of Masonry Walls</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS43</td>
<td>Performance of Steel Prior to Painting</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS44</td>
<td>Air Infiltration Through Windows</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS45</td>
<td>Structural Properties of "Scott-Bilt" Prefabricated Sheet-Steel Constructions for Walls, Floors, and Roofs Sponsored by The Globe-Wernicke Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS46</td>
<td>Structural Properties of Prefabricated Wood-Frame Constructions for Walls, Partitions, and Floors Sponsored by American Houses, Inc.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS47</td>
<td>Structural Properties of "Precision-Built" Frame Wall and Partition Constructions Sponsored by the Homasote Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS48</td>
<td>Metallic Roofing for Low-Cost House Construction</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS49</td>
<td>Stability of Fiber Building Boards as Determined by Accelerated Aging</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS50</td>
<td>Structural Properties of "Tilecrete Type A" Floor Construction Sponsored by the Tilecrete Corporation</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS51</td>
<td>Effect of Ceiling Insulation on Summer Comfort</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS52</td>
<td>Structural Properties of a Masonry Wall Construction of "Munlock Dry Wall Brick" Sponsored by the Munlock Engineering Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS53</td>
<td>Effect of Heat on the Rating of an Oil-Fired Heating Boiler</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS54</td>
<td>A Survey of Humidities in Residences</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS55</td>
<td>Roofing in the United States: Results of a Questionnaire</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS56</td>
<td>Strength of Soft-Soldered Joints in Copper Tubing</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS57</td>
<td>Properties of Adhesives for Floor Coverings</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS58</td>
<td>Strength, Absorption, and Resistance to Laboratory Freezing and Thawing of Building Bricks Produced in the United States</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS59</td>
<td>Structural Properties of Two Nonreinforced Monolithic Concrete Wall Constructions Sponsored by the Portland Cement Association</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS60</td>
<td>Structural Properties of a Precast Joint Concrete Floor Construction Sponsored by the Portland Cement Association</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS61</td>
<td>Moisture Condensation in Building Walls</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS62</td>
<td>Solar Heating of Various Surfaces</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS63</td>
<td>Methods of Estimating Loads in Plumbing Systems</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS64</td>
<td>Plumbing Manual</td>
<td>20¢</td>
</tr>
<tr>
<td>BMS65</td>
<td>Structural Properties of "Mu-Steel" Prefabricated Sheet-Steel Constructions for Walls, Partitions, Floors, and Roofs Sponsored by Herman A. Mugler</td>
<td>15¢</td>
</tr>
<tr>
<td>BMS66</td>
<td>Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 3</td>
<td>15¢</td>
</tr>
<tr>
<td>BMS67</td>
<td>Stability of Fiber Sheathing Boards as Determined by Accelerated Aging</td>
<td>15¢</td>
</tr>
<tr>
<td>BMS68</td>
<td>Asphalt-Prepared Roll Roofings and Shingles</td>
<td>15¢</td>
</tr>
<tr>
<td>BMS69</td>
<td>Fire Tests of Wood- and Metal-Frame Partitions</td>
<td>15¢</td>
</tr>
<tr>
<td>BMS70</td>
<td>Structural Properties of "Precision-Bilt, Jr." Prefabricated Wood-Frame Wall Construction Sponsored by the Homasote Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS71</td>
<td>Indentation Characteristics of Floor Coverings</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS72</td>
<td>Structural and Heat-Transfer Properties of "U.S.S. Panelbilt" Prefabricated Sheet-Steel Constructions for Walls, Partitions, and Roofs Sponsored by the Tennessee Coal, Iron & Railroad Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS73</td>
<td>Survey of Roofing Materials in the North Central States</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS74</td>
<td>Properties and Performance of Fiber Tile Boards</td>
<td>15¢</td>
</tr>
</tbody>
</table>