BUILDING
MATERIALS
AND
STRUCTURES
REPORT BMS69
Stability of Fiber Sheathing
Boards as Determined by
Accelerated Aging
by
DANIEL A. JESSUP,
CHARLES G. WEBER, and
SAMUEL G. WEISSBERG
NATIONAL
BUREAU OF STANDARDS
The program of research on building materials and structures, carried on by the National Bureau of Standards, was undertaken with the assistance of the Central Housing Committee, an informal organization of governmental agencies concerned with housing construction and finance, which is cooperating in the investigations through a committee of principal technicians.

CENTRAL HOUSING COMMITTEE
ON RESEARCH, DESIGN, AND CONSTRUCTION

A. C. SHIRE, Chairman.
United States Housing Authority.

HOWARD P. VERMILYA, Vice Chairman.
Federal Housing Administration.

STERLING R. MARCH, Secretary.

PIERRE BLOUKE,
Federal Home Loan Bank Board.

JOHN S. DONOVAN,
Farm Security Administration.

HUGH L. DRYDEN,
National Bureau of Standards.

GEORGE W. TRAYER,
Forest Service (F. P. Laboratory).

LOUIS A. SIMON,
Public Buildings Administration.

JOSEPH M. DALLAVALLE,
Public Health Service.

LUTHER M. LEISENRING,
Construction Division (War).

GEORGE E. KNOX,
Yards and Docks (Navy).

EDWARD A. POYNTON,
Office of Indian Affairs.

WILLIAM R. TALBOTT,
Veterans' Administration.

WALLACE ASHBY
Bureau of Agricultural Chemistry and Engineering

NATIONAL BUREAU OF STANDARDS
STAFF COMMITTEE ON ADMINISTRATION AND COORDINATION

HUGH L. DRYDEN, Chairman.
Mechanics and Sound

PHAON H. BATES,
Clay and Silicate Products.

GUSTAV E. F. LUNDELL,
Chemistry.

HOBART C. DICKINSON,
Heat and Power.

ADAMS S. McALLISTER,
Codes and Specifications.

WARREN E. EMLEY,
Organic and Fibrous Materials.

HENRY S. RAWDON,
Metallurgy.

The Forest Products Laboratory of the Forest Service is cooperating with both committees on investigations of wood constructions.

[For list of BMS publications and directions for purchasing, see cover page III.]
BUILDING MATERIALS

and STRUCTURES

REPORT BMS69

Stability of Fiber Sheathing Boards as Determined by Accelerated Aging

by

DANIEL A. JESSUP, CHARLES G. WEBER,

and SAMUEL G. WEISSBERG

ISSUED JANUARY 22, 1941

The National Bureau of Standards is a fact-finding organization; it does not "approve" any particular material or method of construction. The technical findings in this series of reports are to be construed accordingly.
Foreword

Fiber sheathing comprises fiberboards of a comparatively new type, and it gives considerable promise as a material for house construction. Samples of the boards were tested in connection with the research on building materials and structures for low-cost housing. Particular attention was given to tests of the lasting qualities of the boards, and this report contains data on their resistance to accelerated aging. The changes in the properties of the materials are used as a basis for judgment of stability.

Lyman J. Briggs, Director.
Stability of Fiber Sheathing Boards as Determined by Accelerated Aging

By Daniel A. Jessup, Charles G. Weber, and Samuel G. Weissberg

CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Foreword</td>
</tr>
<tr>
<td>1</td>
<td>I. Introduction</td>
</tr>
<tr>
<td>1</td>
<td>II. Description of samples</td>
</tr>
<tr>
<td>1</td>
<td>III. Properties and testing—Continued.</td>
</tr>
<tr>
<td>2</td>
<td>1. Thermal insulation</td>
</tr>
<tr>
<td>2</td>
<td>2. Flexural properties</td>
</tr>
<tr>
<td>2</td>
<td>3. Nail-holding strength</td>
</tr>
<tr>
<td>3</td>
<td>4. Water permeability</td>
</tr>
<tr>
<td>3</td>
<td>5. Air permeability</td>
</tr>
<tr>
<td>3</td>
<td>6. Outdoor weathering</td>
</tr>
<tr>
<td>4</td>
<td>7. Resistance to rot-producing fungi</td>
</tr>
<tr>
<td>4</td>
<td>IV. Summary and Conclusions</td>
</tr>
</tbody>
</table>

ABSTRACT

Fiber sheathing boards were aged by exposure to wetting, freezing, drying, and to outdoor weathering. Judgment of stability was based on changes produced in the properties of the boards. The properties tested were weight, thickness, expansivity, thermal conductivity, flexural properties, nail-holding strength, and permeability to air and water. Data were obtained on the resistance of the boards to rot-producing fungi.

In general, the retention of the essential properties under the aging treatments was excellent. Practically no loss of insulating value was noted, and the strength and water resistance of most of the samples after aging were satisfactory. The boards were not readily subject to mold growth even at excessively high humidities.

I. INTRODUCTION

The properties and stability of the \(\frac{3}{4} \)-inch type of fiber building boards have been previously determined, the data being contained in previous publications.\(^1\) This article presents the results of tests on relatively rigid insulating boards of approximately the same thickness as the lumber usually employed for sheathing, 25/32 inch. These boards are treated with asphalt to improve their resistance to the infiltration of air and water. They are designed to contribute to the rigidity of a structure, to serve as barriers against the infiltration of water and air, and to provide thermal insulation.

Resistance to rot-producing fungi under con-

\(^1\) NBS Building Materials and Structures Report BMS43 (1939). 10c.
\(^2\) NBS Building Materials and Structures Report BMS40 (1940). 10c.

\(^3\) NBS Building Materials and Structures Report BMS35 (1939). 10c.

conditions of temperature and moisture. Accelerated aging was employed to obtain data on the resistance of the fiber sheathing boards to such variations. They were subjected to these influences with the conditions made more drastic in order to speed up their action, and the extreme conditions in much more rapid succession than normally occurs. The treatment consisted in the following cycle: Heating 3 hours at 65° C in dry air; immersing in water at room temperature for 3 hours; and freezing the wet boards at -12° C for 18 hours. This cyclic treatment was continued for a total of 600 hours, 25 cycles.

Although the fiber sheathing boards are not designed for use as exterior finish, they are often considered for such use, particularly on temporary or semitemporary structures. The Bureau receives numerous inquiries regarding the performance of the boards as outside finish. Hence, a number of weathering tests were made. The tests consisted in outdoor exposures, the effects of which were accelerated by spraying with water at regular intervals. The edges of the specimens were sealed against moisture with a coating of spar varnish containing powdered aluminum. Two specimens of each board selected were exposed. In each instance, the exposed surface of one specimen was painted with a linseed-oil-white-lead paint, and the exposed surface of the other specimen was left unpainted.

Data on the properties of the boards before and after accelerated aging are shown in table 1. Inasmuch as the methods of test are the same as those used in testing the ½-inch building boards, and described in detail in previous publications, they are described but briefly here.

1. Thermal Insulation

Insulating value is determined by measuring the rate at which heat is transferred through a board, and is expressed as the number of heat units (Btu), passing through a square foot of board, 1 inch thick, per hour, with a temperature difference of 1° F. Thermal conductivity was determined by the guarded hot-plate method previously described.

The values reported in this article were obtained by H. W. Woolley and J. G. Reid, Jr., in the Heat Transfer Section of the Bureau.

Accelerated aging of the fiber sheathing boards did not result in measurable losses of their insulating values.

Table 1: Properties of fiber sheathing boards and effects of accelerated aging

Laboratory designation	Thickness lb/ft²	Density lb/ft³	Linear expansion (for increase from 30% to 90% R.H.)	Thermal conductivity Initial	Thermal conductivity After aging	Initial	After aging										
	in.	lb/ft²	%	Btu/hr	Btu/hr	lb	lb										
1.	0.74	17.8	0.32	0.37	0.31	0.31	0.30	0.30	0.28	0.30	0.28	0.30	0.28	0.30	0.28	0.30	0.28
2.	0.74	17.8	0.33	0.35	0.32	0.32	0.31	0.31	0.29	0.31	0.29	0.31	0.29	0.31	0.29	0.31	0.29
3.	0.81	20.0	0.10	0.31	0.28	0.28	0.27	0.27	0.25	0.27	0.25	0.27	0.25	0.27	0.25	0.27	0.25
4.	0.81	20.0	0.30	0.38	0.34	0.34	0.33	0.33	0.31	0.33	0.31	0.33	0.31	0.33	0.31	0.33	0.31
5.	0.81	20.0	0.39	0.39	0.35	0.35	0.34	0.34	0.32	0.34	0.32	0.34	0.32	0.34	0.32	0.34	0.32
6.	0.81	20.0	0.40	0.40	0.36	0.36	0.35	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33
7.	0.81	20.0	0.40	0.40	0.36	0.36	0.35	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33
8.	0.81	20.0	0.40	0.40	0.36	0.36	0.35	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33
9.	0.81	20.0	0.40	0.40	0.36	0.36	0.35	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33
10.	0.81	20.0	0.40	0.40	0.36	0.36	0.35	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33	0.35	0.33

1. The thermal conductivity was not in any instance affected by aging.
2. For specimens 3 inches wide on supports 12 inches apart, loaded at center.
3. Kraft paper cemented to each surface with asphalt.
5. Determined on the individual plies of the specimens that had separated during aging.
2. Flexural Properties

The fiber sheathing must supply considerable stiffening and structural strength or the structure must be otherwise braced. Hence, reasonably high strength is important, and good retention of that strength with aging is essential.

Flexural strength was determined by the method used for insulating boards and previously described. It consists in loading at midspan a specimen 3 inches wide, supported by two parallel rods 12 inches apart, until the specimen breaks. With two exceptions, namely boards 1 and 2, the initial strength was considered high; the average for the two directions ranged from 23 pounds to 48 pounds. Boards 1 and 2 had much lower strengths.

Losses of flexural strength during aging were not large except for boards 8, 9, and 10. These were laminated boards and the plies separated under the accelerated aging treatment, owing to softening of the adhesive during the heating. This would possibly not occur under natural aging, as the maximum temperatures employed here are not encountered.

3. Nail-Holding Strength

The nail-holding strength of fiber sheathing is an essential property. The benefits of high physical strength and rigidity will be lost if the nailing fails, and strength tests at the Forest Products Laboratory of large panels have shown that many of the failures occurred at the point of nailing. Nail-holding strength was determined by measuring the force required to move a 6-penny common nail to the edge of the board from a position \(\frac{3}{4} \) inch from the edge.

Accelerated aging caused some drop in the nail-holding strengths of all of the boards. However, the losses do not appear to be indicative of serious deterioration except for the laminated boards 8 and 9. In these instances, the loss was caused by separation of the plies.

4. Water Permeability

It is generally recommended that where the fiber sheathing boards are used, sheathing paper is unnecessary except to cover the joints. Hence, the boards must be capable of functioning as a primary moisture barrier to prevent infiltration of water. The rate of penetration of water through the boards was determined by the dry-indicator method. An indicator consisting of a mixture of eosin dye, powdered sugar, and starch is sprinkled on one surface of the specimen; a glass cover is sealed over the indicator to prevent evaporation of the transuded moisture; and the edges of the specimen are sealed with wax to prevent water from reaching the indicator except by penetration through the board. The specimen thus prepared is floated on water, and the time of transudation of water in an amount sufficient to develop color in the indicator is a measure of the permeability.

With respect to water permeability, the boards were, in general, superior to most ordinary sheathing papers. The water resistance dropped somewhat under the treatment, but the losses were considered not serious, since all of the boards retained good resistance to the passage of water after aging.

5. Air Permeability

Leakage of air through the walls is a factor affecting heating, cooling, and the general comfort of a building. To function satisfactorily, fiber sheathing must prevent infiltration of air under conditions of wind pressure, because the boards are designed for use without the protection of sheathing paper. The fiber sheathing boards appear to be excellent in this respect. The initial permeabilities were low for most of the boards and were not increased appreciably during aging.

6. Outdoor Weathering

Table 2 contains data on the comparative results of tests after accelerated aging and after 15 months' exposure to outdoor weathering. The results of the outdoor exposures appear to be roughly comparable to those of accelerated aging. Outdoor aging did not cause boards 8 and 9 to split, and their flexural strength and nail-holding strength did not decrease as much as with accelerated aging. The boards which had been painted on the exposed surface were little affected by the exposure.

\(^{12}\) See footnote 11.

\(^{13}\) G. E. Heck, Rigidity and Strength of Framed Walls Sheathed with Fiberboard, U. S. Dept. Agr., Forest Products Laboratory.

\(^{14}\) NBS Building Materials and Structures Report BMSB (1939). 10c.
7. Resistance to Rot-Producing Fungi

There has been much interest in the susceptibility of the fiberboards to rotting. Tests were made on the sheathing boards in connection with similar work on fiber insulating boards to determine their susceptibility to attack by rot-producing fungi. The selection of fungi was based on a recommendation of the Division of Forest Pathology, United States Department of Agriculture, and the cultures were prepared in the Forest Pathology Laboratory.

Specimens of the sheathing boards were inoculated on the edges and on the protected surface with cultures of rot-producing fungi and stored over water at approximately 95-percent relative humidity and room temperature. The specimens supported fungus growth at the edges, but generally, where the coating produced a relatively impervious surface, there was no visible fungus growth. It was found that growth proceeded most favorably at humidities above 85 percent, and that the fiberboards supported fungus growth to about the same extent as did the woods commonly used in house construction.

IV. SUMMARY AND CONCLUSIONS

The stability of fiber sheathing, a relatively new product in the field of house construction, was determined by measuring the resistance of fiber sheathing boards to accelerated aging and to attack by rot-producing fungi.

The boards had, in general, excellent stability under the aging treatments. Losses of flexural strength were, with few exceptions, not serious, and the nail-holding strength was equally satisfactory.

The materials were excellent with respect to resistance to the passage of water and air and maintained these properties well under aging. They appear to be sufficiently impervious to serve as primary barriers against the infiltration of both water and air when used in a wall without sheathing paper, provided that all joints are covered with waterproofed paper or otherwise sealed.

The fiberboards are apparently no more susceptible to damage from the growth of rot-producing fungi than are the woods commonly used in house construction.

Washington, October 10, 1940.
BUILDING MATERIALS AND STRUCTURES REPORTS

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices.

An alternative method is to deposit with the Superintendent of Documents the sum of $5.00, with the request that the reports be sent to you as soon as issued, and that the cost thereof be charged against your deposit. This will provide for the mailing of the publications without delay. You will be notified when the amount of your deposit has become exhausted.

If 100 copies or more of any paper are ordered at one time, a discount of 25 percent is allowed. Send all orders and remittances to the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C.

The following publications in this series are available by purchase from the Superintendent of Documents at the prices indicated:

BMS1 Research on Building Materials and Structures for Use in Low-Cost Housing 10¢
BMS2 Methods of Determining the Structural Properties of Low-Cost House Constructions ... 10¢
BMS3 Suitability of Fiber Insulating Lath as a Plaster Base .. 10¢
BMS4 Accelerated Aging of Fiber Building Boards .. 10¢
BMS5 Structural Properties of Six Masonry Wall Constructions 15¢
BMS6 Survey of Roofing Materials in the Southeastern States 15¢
BMS7 Water Permeability of Masonry Walls ... 10¢
BMS8 Methods of Investigation of Surface Treatment for Corrosion Protection of Steel 10¢
BMS9 Structural Properties of the Insulated Steel Construction Company’s “Frameless-Steel” Constructions for Walls, Partitions, Floors, and Roofs .. 10¢
BMS10 Structural Properties of One of the “Keystone Beam Steel Floor” Constructions Sponsered by the H. H. Robertson Co ... 10¢
BMS11 Structural Properties of the Curren Fabrihome Corporation’s “Fabrihome” Constructions for Walls and Partitions ... 10¢
BMS12 Structural Properties of “Steelox” Constructions for Walls, Partitions, Floors, and Roofs Sponsored by Steel Buildings, Inc ... 10¢
BMS13 Properties of Some Fiber Building Boards of Current Manufacture 10¢
BMS14 Indentation and Recovery of Low-Cost Floor Coverings 10¢
BMS15 Structural Properties of “Wheeling Long-Span Steel Floor” Construction Sponsored by Wheeling Corrugating Co ... 10¢
BMS16 Structural Properties of a “Tilecrete” Floor Construction Sponsored by Tilecrete Floors, Inc ... 10¢
BMS17 Sound Insulation of Wall and Floor Constructions .. 10¢
BMS18 Structural Properties of “Pre-Fab” Constructions for Walls, Partitions, and Floors Sponsored by Harrison & Officers Construction .. 10¢
BMS19 Preparation and Revision of Building Codes .. 10¢
BMS20 Structural Properties of “Twachtman” Constructions for Walls and Floors Sponsored by Connecticute Pre-Cast Buildings Corporation .. 10¢
BMS21 Structural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the National Concrete Masonry Association .. 10¢
BMS22 Structural Properties of “Dun-Ti-Stone” Wall Construction Sponsored by the W. E. Dunn Manufacturing Co ... 10¢
BMS23 Structural Properties of a Brick Cavity-Wall Construction Sponsored by the Brick Manufacturers Association of New York, Inc .. 10¢
BMS24 Structural Properties of a Reinforced-Brick Wall Construction and a Brick-Tile Cavity-Wall Construction Sponsored by the Structural Clay Products Institute .. 10¢
BMS25 Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs ... 15¢
BMS26 Structural Properties of “Nelson Pre-Cast Concrete Foundation” Wall Construction Sponsored by the Nelson Cement Stone Co., Inc .. 10¢
BMS27 Structural Properties of “Bender Steel Home” Wall Construction Sponsored by The Bender Body Co ... 10¢
BMS28 Backflow Prevention in Over-Rim Water Supplies .. 10¢
BMS29 Survey of Roofing Materials in the Northeastern States 10¢
BMS30 Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas Fir Plywood Association ... 10¢
BMS31 Structural Properties of “Insulite” Wall and “Insulite” Partition Constructions Sponsered by The Insulite Co ... 15¢
BMS32 Structural Properties of Two Brick-Concrete-Block Wall Constructions and a Concrete-Block Wall Construction Sponsored by the National Concrete Masonry Association 10¢

[List continued on cover page IV]
<table>
<thead>
<tr>
<th>BMS33</th>
<th>Plastic Calking Materials</th>
<th>10¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMS34</td>
<td>Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 1</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS35</td>
<td>Stability of Sheathing Papers as Determined by Accelerated Aging</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS36</td>
<td>Structural Properties of Wood-Frame Wall, Partition, Floor, and Roof Constructions with “Red Stripe” Lath Sponsored by The Weston Paper and Manufacturing Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS37</td>
<td>Structural Properties of “Palisade Homes” Constructions for Walls, Partitions, and Floors, Sponsored by Palisade Homes.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS38</td>
<td>Structural Properties of Two “Dunstone” Wall Constructions, Sponsored by the W. E. Dunn Manufacturing Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS39</td>
<td>Structural Properties of a Wall Construction of “Heifer Units,” Sponsored by the Wisconsin Units Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS40</td>
<td>Structural Properties of a Wall Construction of “Knap Concrete Wall Units,” Sponsored by Knap America, Inc.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS41</td>
<td>Effect of Heating and Cooling on the Permeability of Masonry Walls</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS42</td>
<td>Structural Properties of Wood-Frame Wall and Partition Constructions With “Celotex” Insulating Boards, Sponsored by The Celotex Corporation</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS43</td>
<td>Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 2</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS44</td>
<td>Surface Treatment of Steel Prior to Painting</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS45</td>
<td>Air Infiltration Through Windows</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS46</td>
<td>Structural Properties of “Scot-Bilt” Prefabricated Sheet-Steel Constructions for Walls, Floors, and Roofs, Sponsored by The Globe-Wernicke Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS47</td>
<td>Structural Properties of Prefabricated Wood-Frame Constructions for Walls, Partitions, and Floors Sponsored by American Houses, Inc.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS48</td>
<td>Structural Properties of “Precision-Built” Frame Wall and Partition Constructions, Sponsored by the Homasote Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS49</td>
<td>Metallic Roofing for Low-Cost House Construction</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS50</td>
<td>Stability of Fiber Building Boards as Determined by Accelerated Aging</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS51</td>
<td>Structural Properties of “Tilecrete Type A” Floor Construction, Sponsored by the Tilecrete Corporation</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS52</td>
<td>Effect of Ceiling Insulation on Summer Comfort</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS53</td>
<td>Structural Properties of a Masonry Wall Construction of “Munlock Dry Wall Brick,” Sponsored by the Munlock Engineering Co.</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS54</td>
<td>Effect of Soot on the Rating of an Oil-Fired Heating Boiler</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS55</td>
<td>Effects of Wetting and Drying on the Permeability of Masonry Walls</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS56</td>
<td>A Survey of Humidities in Residences</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS57</td>
<td>Roofing in the United States: Results of a Questionnaire</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS58</td>
<td>Strength of Soft-Soldered Joints in Copper Tubing</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS59</td>
<td>Properties of Adhesives for Floor Coverings</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS60</td>
<td>Strength, Absorption, and Resistance to Laboratory Freezing and Thawing of Building Bricks Produced in the United States.</td>
<td>15¢</td>
</tr>
<tr>
<td>BMS61</td>
<td>Structural Properties of Two Nonreinforced Monolithic Concrete Wall Constructions</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS62</td>
<td>Structural Properties of a Premix Jot Concrete Floor Construction, Sponsored by the Portland Cement Association</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS63</td>
<td>Moisture Condensation in Building Walls</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS64</td>
<td>Solar Heating of Various Surfaces</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS65</td>
<td>Methods of Estimating Loads in Plumbing Systems</td>
<td>10¢</td>
</tr>
<tr>
<td>BMS66</td>
<td>Plumbing Manual</td>
<td>20¢</td>
</tr>
<tr>
<td>BMS69</td>
<td>Stability of Fiber Sheathing Boards as Determined by Accelerated Aging</td>
<td>10¢</td>
</tr>
</tbody>
</table>