Structural Properties of Prefabricated Wood-Frame Constructions for Walls, Partitions, and Floors

Sponsored by American Houses, Inc.

by

HERBERT L. WHITTEMORE

and AMBROSE H. STANG

with the collaboration of

THOMAS R. C. WILSON

Forest Products Laboratory

NATIONAL BUREAU OF STANDARDS
The program of research on building materials and structures, carried on by the National Bureau of Standards, was undertaken with the assistance of the Central Housing Committee, an informal organization of Government agencies concerned with housing construction and finance, which is cooperating in the investigations through a subcommittee of principal technical assistants.

CENTRAL HOUSING COMMITTEE
SUBCOMMITTEE ON TECHNICAL RESEARCH

WALTER JUNGE, Chairman.
Federal Housing Administration.

A. C. SHIRE, Vice Chairman.
United States Housing Authority.

STERLING R. MARCH, Secretary.

GEORGE E. KNOX,
Yards and Docks (Navy).

VINCENT B. PHelan,
National Bureau of Standards (Commerce).

EDWARD A. POYNTON,
Office of Indian Affairs (Interior).

GEORGE W. TRAYER,
Forest Service (Agriculture).

ELSHEREJ. WALTERS,
Construction Division (War).

CHAIRMEN OF SECTIONS

Specifications
Carroll W. Chamberlain

Maintenance
Charles Peters

Mechanical Equipment
Robert K. Thulman

NATIONAL BUREAU OF STANDARDS

STAFF COMMITTEE ON ADMINISTRATION AND COORDINATION

Hugh L. Dryden, Chairman.
Mechanics and Sound.

Phaon H. Bates,
Clay and Silicate Products.

Hobart C. Dickinson,
Heat and Power.

Warren E. Emley,
Organic and Fibrous Materials.

Gustav E. F. Lundell,
Chemistry.

Addams S. McAllister,
Codes and Specifications.

Henry S. Rawdon,
Metallurgy.

The Forest Products Laboratory of the United States Department of Agriculture is cooperating with both committees on investigations of wood constructions.

[For list of BMS publications and how to purchase, see cover page III]
BUILDING MATERIALS

and STRUCTURES

REPORT BMS47

Structural Properties of Prefabricated Wood-Frame Constructions for Walls, Partitions, and Floors
Sponsored by American Houses, Inc.

by HERBERT L. WHITTERMORE and AMBROSE H. STANG

with the collaboration of

Thomas R. C. Wilson,
Forest Products Laboratory,
Forest Service, United States Department of Agriculture

ISSUED JUNE 3, 1940

The National Bureau of Standards is a fact-finding organization; it does not "approve" any particular material or method of construction. The technical findings in this series of reports are to be construed accordingly.
Foreword

This report is one of a series issued by the National Bureau of Standards on the structural properties of constructions intended for low-cost houses and apartments. These constructions were sponsored by organizations within the building industry advocating and promoting their use. The sponsor built and submitted the specimens described in this report for participation in the program outlined in BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions. The sponsor, therefore, is responsible for the design of the constructions and the description of materials and methods used in their fabrication. The Bureau is responsible for the method of testing and for the test results.

This report covers only the load-deformation relations and strength of the structural elements of a house when subjected to compressive, transverse, concentrated, impact, and racking loads by standardized methods simulating the loads to which the element would be subjected in actual service. It may be feasible later to determine the heat transmission at ordinary temperatures and the fire resistance of these same constructions.

The Forest Products Laboratory, Forest Service, United States Department of Agriculture, collaborated in the tests of those constructions which had wood structural members.

The National Bureau of Standards does not "approve" a construction, nor does it express an opinion as to the merits of a construction, for the reasons given in reports BMS1 and BMS2. The technical facts presented in this series provide the basic data from which architects and engineers can determine whether a construction meets desired performance requirements.

Lyman J. Briggs, Director.
Structural Properties of Prefabricated Wood-Frame Constructions for Walls, Partitions, and Floors Sponsored by American Houses, Inc.

by Herbert L. Whittemore and Ambrose H. Stang

with the collaboration of

Thomas R. C. Wilson, Forest Products Laboratory, Forest Service, United States Department of Agriculture

CONTENTS

I. Introduction ... 11
 1. Sponsor's statement 14
 (a) Four-foot partition specimens 14
 (b) Eight-foot partition specimens 15
 (c) Comments 16
 2. Compressive load 16
 3. Transverse load 17
 4. Concentrated load 18
 5. Impact load .. 18
 6. Racking load 19
II. Sponsor and product 2
 1. Description of specimens 20
 (a) Sponsor's statement 20
 (b) Comments 21
 2. Concentrated load 21
 3. Impact load .. 21
III. Specimens and tests 2
 1. Sponsor's statement 6
 (a) Four-foot wall specimens 6
 (b) Eight-foot wall specimens 8
 (c) Comments 9
 2. Compressive load 10
 3. Transverse load 11
 4. Concentrated load 11
 5. Impact load .. 13
 6. Racking load 14
IV. Materials .. 4
 1. Wood .. 4
 2. Wallboard .. 6
 3. Nails ... 6
 4. Sheathing paper 6
 5. Staples .. 6
 6. Glue ... 6
 7. Joint filler .. 6
 8. Tape ... 6
V. Wall CI .. 6
 1. Sponsor's statement 6
 (a) Four-foot wall specimens 6
 (b) Eight-foot wall specimens 8
 (c) Comments 9
 2. Compressive load 10
 3. Transverse load 11
 4. Concentrated load 11
 5. Impact load .. 13
 6. Racking load 14
VI. Load-bearing partition CJ 14
 1. Sponsor's statement 14
 2. Compressive load 16
 3. Transverse load 17
 4. Concentrated load 18
 5. Impact load .. 18
 6. Racking load 19
VII. Non-load-bearing partition CK 19
 1. Sponsor's statement 19
 (a) Description of specimens 20
 (b) Comments 21
 2. Concentrated load 21
 3. Impact load .. 21
VIII. Floor CL .. 22
 1. Sponsor's statement 22
 (a) Description of specimens 22
 (b) Comments 22
 2. Transverse load 23
 3. Concentrated load 23
 4. Impact load .. 23
IX. Additional comments by sponsor 23

ABSTRACT

For the program on the determination of the structural properties of low-cost house constructions, American Houses, Inc., New York, N. Y., submitted 39 specimens representing wood-frame wall, partition, and floor constructions.

The wall and load-bearing partition specimens were subjected to compressive, transverse, concentrated, impact, and racking loads; the non-load-bearing partition specimens to concentrated and impact loads; the floor specimens to transverse, concentrated, and impact loads. For each of the loads, three like specimens were tested. The transverse, concentrated, and impact loads were applied to both faces of the wall specimens. The deformation under load and the set after the load was removed were measured for uniform increments of load. The results are presented in graphs and in tables.

I. INTRODUCTION

To provide technical facts on the performance of constructions which might be used in low-cost houses, to discover promising new con-

[1]
structions, and ultimately to determine the properties necessary for acceptable performance in actual service, the National Bureau of Standards has invited the cooperation of the building industry in a program of research on building materials and structures suitable for low-cost houses and apartments. The objectives of this program are described in report BMS1, Research on Building Materials and Structures for Use in Low-Cost Housing, and that part of the program relating to structural properties in report BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions.

Masonry constructions and wood constructions of types which have been extensively used in this country for houses were included in the program because their behavior under widely different service conditions is known to builders and the public. The reports on these constructions are BMS5, Structural Properties of Six Masonry Wall Constructions, and BMS25, Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs. The masonry specimens were built by the Masonry Construction Section of this Bureau, and the wood-frame specimens were built and tested by the Forest Products Laboratory at Madison, Wis.

The present report describes the structural properties of four elements of a house sponsored by one of the manufacturers in the building industry. The wall and load-bearing partition specimens were subjected to compressive, transverse, concentrated, impact, and racking loads, simulating loads to which the walls of a house are subjected. In actual service compressive loads on a wall or load-bearing partition are produced by the weight of the roof, by second floor and second-story walls or partitions, if any, by furniture and occupants, and by snow and wind loads on the roof. Transverse loads on a wall and load-bearing partition are produced by the wind, concentrated and impact loads by accidental contact with heavy objects, and racking loads by the action of the wind on adjoining walls. For non-load-bearing partitions, impact loads may be applied accidentally by furniture or by a person falling against a partition, and concentrated loads by a ladder or other object leaning against a partition. Transverse loads are applied to floors by furniture and by occupants; concentrated loads by furniture, for example, the legs of a piano; and impact loads by objects falling on the floor or by persons jumping on the floor.

The deflection and set under each increment of load were measured because, considered as a structure, the suitability of a construction depends not only on its resistance to deformation when loads are applied, but also on whether it returns to its original size and shape when the loads are removed.

II. SPONSOR AND PRODUCT

The specimens were submitted by American Houses, Inc., New York, N. Y.

The constructions consisted of wood-frame wall, load-bearing partition, non-load-bearing partition, and floor sections, prefabricated in a shop and assembled at the building site to form the house.

III. SPECIMENS AND TESTS

The specimens represented four elements of a house which were assigned the following symbols: Wall, CI; load-bearing partition, CJ; non-load-bearing partition, CK; and floor, CL. The individual specimens were assigned the designations given in table 1.

Table 1.—Specimen designations, wall CI, load-bearing partition CJ, non-load-bearing partition CK, and floor CL

<table>
<thead>
<tr>
<th>Element</th>
<th>Specimen designation</th>
<th>Load</th>
<th>Load applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall</td>
<td>CI, C2, C3, T1, T2, T3</td>
<td>Compressive, Transverse</td>
<td>Upper end, Inside face, Outside face, Do.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>do</td>
<td>Do, Do</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impact</td>
<td>Inside face, Outside face, Do, Do</td>
</tr>
<tr>
<td>Load-bearing partition</td>
<td>CI, C2, C3, T1, T2, T3</td>
<td>Compressive, Transverse</td>
<td>Upper end, Do, Do, Do, Do</td>
</tr>
<tr>
<td></td>
<td></td>
<td>do</td>
<td>Do, Do, Do, Do</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impact</td>
<td>Inside face, Outside face, Do, Do, Do</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Racking</td>
<td>Top plate, Top plate, Top plate</td>
</tr>
<tr>
<td>Non-load-bearing par-</td>
<td>P1, P2, P3, P6, P8</td>
<td>Compressed, Transverse</td>
<td>Upper end, Do, Do, Do, Do</td>
</tr>
<tr>
<td>tition</td>
<td>H, I, E, B</td>
<td>do</td>
<td>Do, Do, Do, Do</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impact</td>
<td>Inside face, Inside face, Do, Do, Do</td>
</tr>
<tr>
<td>Floor</td>
<td>T1, T2, T3, P6, P8</td>
<td>Transverse</td>
<td>Upper end, Do, Do, Do, Do</td>
</tr>
<tr>
<td></td>
<td>H, I, E, B</td>
<td>Impact</td>
<td>Do, Do, Do, Do</td>
</tr>
</tbody>
</table>

* The concentrated and impact loads were applied to the same specimens. The concentrated load was applied first.

The specimens were tested in accordance with the procedure outlined in BMS2, Methods
of Determining the Structural Properties of Low-Cost House Constructions, which also gives the requirements for the specimens and describes the presentation of the results of the tests, particularly the load-deformation graphs.

Only three load-bearing partition specimens were tested under the transverse, concentrated, and impact loads, not six specimens, as required by BMS2. Inasmuch as the load-bearing partition construction was symmetrical about a plane midway between the faces, the results for these loads applied to one face of the specimens should be identical with those obtained by applying the loads to the other face.

For the compressive load the thickness of the wall was taken as the thickness of the structural portion, that is, the distance from the inside surface of the studs to the outside surface of the studs. The compressive load was applied along a line parallel to the inside face and at a distance from the inside surface of the studs of one-third the thickness of the wall. Also, the thickness of the load-bearing partition was taken as the thickness of the structural portion, that is, the distance from one surface of the studs to the other surface. The load was applied one-third this thickness from one surface of the studs.

Since the faces of the wall and partition specimens were not flush with the ends of the specimens, the steel-loading plates were not in contact with the faces, and therefore the compressive load was applied only to the top and floor plates. Wood-frame constructions under compressive load show considerable local shortening, caused by crushing of the floor plate and top plate at the ends of the studs. As a result, the shortening of the entire specimen is not proportional to the value obtained from compressometers attached to the specimen over only a portion of its height. Therefore, the shortenings and sets were measured with compressometers attached to the steel plates through which the load was applied, not attached to the specimen as described in BMS2.

The indentation under concentrated load and the set after the load was removed were measured, not the set only, as described in BMS2. The apparatus is shown in figure 1.

The load was applied to the steel disk, A, to which the crossbar, B, was rigidly attached.

The load was measured by means of the dynamometer, C. Two stands, D, rested on the face of the specimen, each supporting a dial micrometer, E, the spindle of which was in contact with the crossbar 8 in. from the disk. The micrometers were graduated to 0.001 in., and readings were recorded to the nearest division. The initial reading (average of the micrometer readings) was observed under the initial load, which included the weight of the disk and dynamometer. A load was applied to the disk and the average of the micrometer readings minus the initial reading was taken as the depth of the indentation under load.

The deformations under racking load were measured with a right-angle deformeter, consisting of a steel channel and a steel angle braced to form a rigid connection. In use the channel of the deformeter, supported by two steel plates, ½ in. thick, 4 in. square, rested along the top of the specimen, with the steel angle extending downward in the plane of the specimen. Two pins passed snugly through holes
in the channel and into the top of the specimen. A dial micrometer was attached to a steel block which was in contact with the floor plate of the specimen at the stop. The spindle of the micrometer was against the steel angle of the deformeter. The gage length (distance from the top of the specimen to the center of the steel block) was 8 ft ½ in. The micrometer was graduated to 0.001 in., and readings were recorded to the nearest division. This deformeter was used instead of the taut-wire mirror-scale device described in BMS2.

Thomas R. C. Wilson, of the Forest Products Laboratory, Madison, Wis., cooperated with the Bureau staff in this work by giving advice and making suggestions on the technique of testing wood structures.

The tests were begun April 10, 1939, and completed April 20, 1939. The sponsor’s representative witnessed the tests.

IV. MATERIALS

The information on materials was obtained from the sponsor and from inspection of the specimens, except that the Forest Products Laboratory assisted by identifying the species of wood in the framing, and the Engineering Mechanics Section of the National Bureau of Standards assisted by determining the moisture content of the wood and the weight and transverse strength of the gypsum wall board.

1. Wood

Framing.—The wood for the framing was identified as Douglas fir, Pseudotsuga taxifolia.
No. 1 common, S4S (surfaced four sides), in sizes \(\frac{3}{8} \) in. \(\frac{3}{8} \) by \(\frac{3}{8} \) in. (nominal \(\frac{3}{8} \) by 3 in), \(\frac{3}{8} \) by \(\frac{3}{8} \) in. (nominal 2 by 3 in), \(\frac{1}{8} \) by \(\frac{3}{8} \) in. (nominal 2 by 4 in), and \(\frac{1}{8} \) by \(\frac{3}{8} \) in. (nominal 2 by 8 in).

Ribbons.—Plywood, Douglas fir, \(\frac{3}{8} \) in. thick, five-ply bonded with water-resistant glue, Douglas Fir Plywood Association “Plyscord” grade. Washington Veneer Co., “Westboard.”

Sheathing.—Plywood, Douglas fir, \(\frac{3}{8} \) in. thick, three-ply, bonded with water-resistant glue. Douglas Fir Plywood Association “Plyscord” grade. Washington Veneer Co., “Westboard.”

Subflooring.—Plywood, Douglas fir, \(\frac{3}{8} \) in. thick, five-ply, bonded with water-resistant glue. Douglas Fir Plywood Association “Plyscord” grade. Washington Veneer Co., “Westboard.”

Flooring.—Red oak, \(\frac{3}{8} \) in. by \(\frac{3}{8} \) in., plain-sawn, select, tongue-and-grooved and end-matched.

Shingles.—Red cedar, 18 in. long, 5 butts in \(\frac{3}{8} \) in., No. 1 “Certigrade” of the Red Cedar Shingle Bureau.

After each specimen was tested, one face was removed to expose the framing, and a sample of the wood was taken from either a joist or a stud. Photographs were made showing the character of the wood in the framing, and also in the flooring on each floor specimen. Figures 2, 3, and 4 represent typical frames.

The moisture content of the wood (except bridging and spacers) is given in table 2.

Table 2.—Moisture content of the wood

<table>
<thead>
<tr>
<th>Wood</th>
<th>Construction symbol</th>
<th>Moisture content *</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Percent</td>
<td>Percent</td>
<td>Percent</td>
<td></td>
</tr>
<tr>
<td>Framing, Douglas fir</td>
<td>CL</td>
<td>8</td>
<td>19</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CI</td>
<td>7</td>
<td>16</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CK</td>
<td>8</td>
<td>14</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL</td>
<td>9</td>
<td>19</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Sheathing, Douglas fir plywood</td>
<td>CI</td>
<td>6</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Subflooring, Douglas fir plywood</td>
<td>CL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shingles, red cedar</td>
<td>CL</td>
<td>(< 7)</td>
<td>(< 7)</td>
<td>(< 7)</td>
<td></td>
</tr>
<tr>
<td>Flooring, red oak</td>
<td>CL</td>
<td>6</td>
<td>13</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

* Based on weight when dry.
 * “Less than” (<) symbol.

An electric moisture meter was used for determining the moisture content. To calibrate the meter for Douglas fir and red oak, 39 samples from the wall, partition, and floor frames and 6 samples of the flooring were dried in an oven at 212°F until the weight was constant. The moisture content was the difference between the initial weight and the weight when ovendry, expressed as a percentage of the weight when ovendry. The average value for the Douglas fir (framing) samples was 0.8 less than the average of the meter readings on the same samples. The average value of the red-oak (flooring) samples was 0.6 less than the
average meter readings on the same samples. Therefore, the moisture content of the Douglas fir was obtained by subtracting 0.8 and the moisture content of the red oak by subtracting 0.6 from the average of the meter readings. The results were rounded to the nearest whole number. The moisture content was determined on each piece of framing and on six pieces of flooring from each specimen.

The average uncorrected meter reading on six shingles per specimen was taken as the moisture content of the shingles. On the plywood sheathing and subflooring the determination was made by drying one sample from each specimen in an oven until the weight was constant.

2. WALLBOARD

Gypsum wallboard, 12 ft 0 in. long, 4 ft 0 in. wide, ¼ in. thick, weight 2,000 lb/1,000 ft². The wallboard was gypsum plaster containing graded cork and reinforced on each face by a sheet of paper. The plaster was 93 percent of gypsum plaster and 7 percent of graded cork, by weight. On one face the paper was manila, buff, 0.021 in. thick, weight 85 lb/1,000 ft²; on the other face, gray, 0.021 in. thick, weight 75 lb/1,000 ft². The longitudinal edges of the buff face were rabbeted ⅛ in. wide and 0.025 in. deep.

The transverse strength of the wallboard, determined in accordance with Federal Specification SS–W–51a, Wallboard; Gypsum, was 180 lb loaded across the surface fibers of the paper, and 50 lb loaded parallel to the surface fibers. The wallboard complied with the requirements of the specification for weight and strength. Kelley Plasterboard Co., "Kelley Cork-Gypsum Wallboard."

3. NAILS

All the nails except the cut flooring nails were made from steel wire. The description is given in table 3.

4. SHEATHING PAPER

Asphalted paper.—Felt, asphalt-saturated, weight 15 lb/100 ft²; rolls, width 3 ft 0 in., area 432 ft². Lloyd A. Fry & Co.

Rosin paper.—Red paper, rosin-sized, weight 4 lb/100 ft²; rolls, width 3 ft 0 in., area 500 ft².

Sears, Roebuck & Co., Catalog No. 48 H M 3007.

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Length</th>
<th>Steel Wire Gage</th>
<th>Diameter</th>
<th>U. S. Std. Gage</th>
<th>Thickness</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common</td>
<td>No.</td>
<td>in.</td>
<td>No. in.</td>
<td>in.</td>
<td>6.095</td>
<td>11.00</td>
<td>Cement-coated</td>
</tr>
<tr>
<td>Fine</td>
<td>8</td>
<td>⅛</td>
<td>11</td>
<td>9</td>
<td>1.133</td>
<td>0.025</td>
<td>Do.</td>
</tr>
<tr>
<td>Fine</td>
<td>10</td>
<td>⅛</td>
<td>11</td>
<td>9</td>
<td>1.133</td>
<td>0.025</td>
<td>Do.</td>
</tr>
<tr>
<td>Fine</td>
<td>16</td>
<td>⅛</td>
<td>11</td>
<td>9</td>
<td>1.133</td>
<td>0.025</td>
<td>Do.</td>
</tr>
<tr>
<td>Floor</td>
<td>8</td>
<td>⅛</td>
<td>11</td>
<td>9</td>
<td>1.133</td>
<td>0.025</td>
<td>Do.</td>
</tr>
<tr>
<td>Plywaterboard</td>
<td>⅛</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>1.133</td>
<td>0.025</td>
<td>Do.</td>
</tr>
<tr>
<td>Shingle</td>
<td>⅛</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>1.133</td>
<td>0.025</td>
<td>Do.</td>
</tr>
</tbody>
</table>

* Head diameter ⅜ in.

5. STAPLES

Tacker staples, formed of sheet steel, No. 25 U. S. Std. Gage (0.0214 in. thick), 0.05 in. wide; staple, ⅛ in. wide, ⅛ in. long, tinned.

6. GLUE

Water-resistant glue, I. F. Laucks, Inc., No. 888.

7. JOINT FILLER

The filler was a mixture of casein glue, clay, and mica; casein, minimum 10 percent, by weight. Kelley Plasterboard Co., Inc., "Kelley Joint Filler."

8. TAPE

Cotton tape, 2 in. wide, approximately 0.006 in. thick, thread count 44 by 40. Kelley Plasterboard Co., Inc., "Kelley Cloth Tape."

V. WALL CI

1. Sponsor's Statement

Wall CI was a prefabricated wood frame having plywood sheathing, sheathing paper, and wood shingles as the outside face and gypsum wallboard as the inside face. The specimens were not painted.

The price of this construction in Washington, D. C., as of July 1937, was $0.335/ft².

(a) Four-Foot Wall Specimens

The 4-ft wall specimens shown in figure 5 were 8 ft 1½ in. high, 4 ft 0 in. wide, and 5¼ in. thick. Each specimen was a wood frame to which the faces were fastened. The frame consisted of three full-sized studs, A, and one half-sized stud, B, fastened to a floor plate, C, and
Figure 4.—Floor CL.
Typical specimen.

Figure 5.—Four-foot wall specimen CI.

A, full-sized stud; B, half-sized stud; C, floor plate; D, top plate; E, plywood ribbon; F, plywood sheathing; G, sheathing paper; H, wood shingles; I, wallboard; J, spacers.

A top plate, D, by nails. The joint between the center stud and the half-sized stud represented the joint between two adjacent prefabricated sections when erected in a house. A plywood ribbon, E, was fastened to the studs at midheight. The outside face consisted of plywood sheathing, F, sheathing paper, G, and wood shingles, H. The inside face consisted of two sheets of gypsum wallboard, I. The overhanging edges of the faces were supported by spacers, J.

Full-sized studs.—The full-sized studs, A, were Douglas fir, 1½ by 3½ in., 7 ft 10½ in. long, spaced 1 ft 4 in. on centers. The inside edges of the studs were dadoed (notched) ½ by 3½ in. at midheight.

Half-sized stud.—The half-sized stud, B, was Douglas fir, ¾ by 3½ in. 7 ft 11½ in. long, dadoed ¾ by 3½ in. at midheight, and fastened to the center stud by 8d common nails spaced about 1 ft 0 in.
Floor plate and top plate.—The floor plate, C, and the top plate, D, each consisted of two pieces of Douglas fir, 1% in. by 3% in., 2 ft 0 in. long, with a joint on the center full-sized stud. Each piece was fastened to an outer stud by two 20d common nails driven through the plate into the stud (not toenailed). One piece was notched % in. wide by ½ in. deep, fitting over the half-sized stud, to which it was fastened by two 10d common nails through the piece into the half-sized stud. The other piece was fastened to the center full-sized stud by two 16d common nails through the piece into the stud (not toenailed).

Plywood ribbon.—The plywood ribbon, E, consisted of two pieces of % in. Douglas fir plywood, 3% in. wide and 2 ft 0 in. long, with a joint on the center full-sized stud. The grain of the outer plies was longitudinal. The ribbon fitted flush into the dadoses in the studs and was fastened to each stud by two 6d common nails.

Sheathing.—The sheathing, F, was two pieces of % in. Douglas fir plywood, 1 ft 11% in. wide and 8 ft 0 in. long, the grain of the outer plies being longitudinal (vertical). There was a vertical joint on the center stud with % in. clearance between the edges. The plywood was fastened to the outer studs, the floor plate, and the top plate by 6d common nails spaced 6 in. One piece of sheathing was fastened to the center full-sized stud by 6d common nails spaced 4 in. and to the half-sized stud by 6d common nails spaced 6 in. The other piece was fastened to the center stud by 6d common nails spaced 6 in.

Sheathing paper.—The sheathing paper, G, consisted of three sheets of asphalted paper, 3 ft 0 in. by 4 ft 0 in. The sheets were laid transversely over the sheathing with two 6-in. laps and were fastened to the sheathing along the laps and at the ends of the specimen by staples, spaced about 8 in., which were driven through both sheets at the laps.

Shingles.—The shingles, H, were red cedar, 18 in. long, exposed 8 in. to the weather, and fastened at midlength to the sheathing by 1½-in. shingle nails, two nails through each shingle.

Wallboard.—The wallboard, I, was two sheets of gypsum wallboard, % in. thick, 4 ft 0 in. square, with a transverse joint between the rabbeted edges on the plywood ribbon. The wallboard was fastened to the ribbon by glue and by ½-in. plasterboard nails spaced 6 in., to the full-sized studs by 1½-in. plasterboard nails spaced 8 in., and to the top plate and floor plate by 1½-in. plasterboard nails % in. from the edge of the board, spaced 6 in. The wallboard was not fastened to the half-sized stud. The joint was caulked with filler, covered with 2-in. tape, and allowed to set. More filler was then applied over the tape, bringing the surface flush with the wallboard.

Spacers.—The spacers, J, along the overhanging edges of the faces, were Douglas fir, 1% in. by 3% in., 4 in. long, and each was fastened to the wallboard by two 1½-in. plasterboard nails and to the sheathing by two 6d common nails passing through the wallboard and sheathing into the spacer. Spacers are not used in a house.

(b) Eight-foot Wall Specimens

The 8-ft wall specimens shown in figure 6 were 8 ft 1½ in. high, 8 ft 0 in. face width, and 5½ in. thick. The specimens were similar to the 4-ft specimens, except there were seven full-sized studs spaced 1 ft 4 in. on centers, and two half-sized studs, one fastened to the center stud and one to an edge stud. A full-sized stud at each edge extended one-half its thickness beyond the faces. The width overall was 8 ft 1½ in.

Sheathing.—The sheathing was two pieces of plywood, 8 ft 0 in. by 4 ft 0 in., the grain of the outer plies being longitudinal (vertical). There was a vertical joint on the center stud. The plywood was fastened to the outer studs, the floor plate, and the top plate by 6d common nails spaced 6 in. One piece of sheathing was fastened to the center full-sized stud by 6d common nails spaced 4 in. and to the half-sized stud by 6d nails spaced 6 in.; and the other piece to the center stud by 6d nails spaced 6 in.

Wallboard.—The wallboard consisted of three sheets of gypsum wallboard: one piece, 8 ft 0 in. by 4 ft 0 in., extending over the entire width; and two pieces, 5 ft 4 in. by 4 ft 0 in. and 2 ft 8 in. by 4 ft 0 in., with a longitudinal (vertical) joint over a stud 2 ft 8 in. from the edge of the face. The full-width piece covered the upper half of one specimen and the lower half of the others.

[8]
There was a horizontal joint at midheight over the ribbon. The wallboard was fastened to the floor plate, the top plate, and the edge studs by 1/4-in. plasterboard, nails 1/2 in. from the edge of the boards, spaced 6 in. It was fastened to the ribbon by glue and by 1/4-in. plasterboard nails spaced 6 in., to the stud at the vertical joint by 1/8-in. nails spaced 6 in., and to the remaining full-sized studs by 1/8-in. nails spaced 8 in. It was not fastened to the half-sized studs. Both joints were caulked with filler and covered with tape.

(c) Comments

Wall sections are manufactured in widths which are multiples of 1 ft 4 in. The actual width depends on the size and location of openings and on the location of partitions. Usually the joints are at the edges of openings and at intersecting partitions. The sections are full story height, the usual ceiling height being 8 ft.

The prefabricated sections consist of the wood frame, plywood sheathing, and ribbon. They are assembled without the use of power equipment by raising into a vertical position on the subfloor and then sliding into place. They are fastened to the floor by two 16d nails between each pair of studs, driven through the floor plate into the headers in the floor. At a joint, the edge stud, the top plate, the ribbon, and the sheathing are nailed to the edge stud of the adjacent section. The wall sections are joined at corners by a special unit.

At the intersection of a wall and a partition a half-sized stud is nailed to a stud in the wall and the partition is fastened to the half-sized stud.

Openings are framed for conventional sizes of doors and windows, which are put in place after the sections are assembled.

Exterior and interior finishes are applied after the frames for the openings are in place. Exterior finishes may be wood siding, shingles,
2. Compressive Load

Wall specimen CI-Cl under compressive load is shown in figure 7. The results for specimens CI-C1, C2, and C3 are given in table 4 and in figures 8 and 9.

The speed of the movable head of the testing machine under no load was adjusted to 0.072 in./min. The lateral deflections shown in figure...
9 were plotted to the right of the vertical axis for deflections of the specimen toward the outside face.

Under a load of 4.0 kips/ft on specimen CI the studs crushed into the top plate at the inside surface of the wood frame. The studs crushed into the plate in specimen C2 under a load of 3.5 kips/ft, and in specimen C3 under a load of 5.5 kips/ft. Under loads of 4.0, 7.0, and 5.5 kips/ft, respectively, the gypsum wallboard separated at the top of the studs. Under the maximum load on each specimen the top plate split along the grain and crushed at the inside surface of the studs.

3. Transverse Load

The transverse-load test results are shown in table 4 and in figure 10 for wall specimens CI–T1, T2, and T3, loaded on the inside face, and in figure 11 for wall specimens CI–T4, T5, and T6, loaded on the outside face.

The speed of the movable head of the testing machine under no load was adjusted to 0.14 in./min.

As the load was increased the nails tilted under the shearing forces exerted by the gypsum wallboard, and small circular cracks appeared around the head of each nail. This was particularly pronounced near the ends of the specimen. These cracks were observed at a load of 300 lb/ft² on specimen T1, 200 lb/ft² on specimen T2, and 175 lb/ft² on specimen T3. The deflections of the specimens under these loads were 2.03, 1.25, and 1.04 in., respectively. Under the maximum load the center stud of specimen T1 ruptured at midspan, and as the deflection increased without an increase in load both outer studs ruptured. In specimens T2 and T3 under the maximum loads two studs ruptured near midspan and the top plate and floor plate separated from the studs and sheathing.

In specimen T4 under a load of 148 lb/ft², in T5 under 194 lb/ft², and in T6 under the maximum load, all the studs split along the grain, beginning at the dados at midheight. The force exerted by the split studs ruptured the gypsum wallboard at the transverse joint. Under the maximum load on each specimen all the studs ruptured either partially or completely. In each stud the rupture began at the dado.

4. Concentrated Load

Concentrated-load test results are presented in table 4 and in figure 12 for wall specimens CI–P1, P2, and P3, loaded on the inside face, and in figure 13 for specimens CI–P4, P5, and P6, loaded on the outside face.

Table 4. Structural properties of wall CI and load-bearing partition CJ.

<table>
<thead>
<tr>
<th>Load</th>
<th>Compressive *</th>
<th>Transverse *</th>
<th>Concentrated</th>
<th>Impact *</th>
<th>Raeking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimen</td>
<td>Maximum load</td>
<td>Specimen</td>
<td>Maximum load</td>
<td>Specimen</td>
</tr>
<tr>
<td></td>
<td>Symbol</td>
<td>Kips/ft</td>
<td>Symbol</td>
<td>lb/ft</td>
<td>Symbol</td>
</tr>
<tr>
<td>CI</td>
<td>CI</td>
<td>4.22</td>
<td>T1</td>
<td>345</td>
<td>P1</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>5.98</td>
<td>T2</td>
<td>342</td>
<td>P2</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>5.92</td>
<td>T3</td>
<td>320</td>
<td>P3</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>5.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>CI</td>
<td>4.20</td>
<td>T4</td>
<td>225</td>
<td>P4</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>6.99</td>
<td>T5</td>
<td>169</td>
<td>P5</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>5.66</td>
<td>T6</td>
<td>138</td>
<td>P6</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>5.52</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The compressive loads were applied 1.21 ft (one-third the thickness of the frame) from the inside surface of the studs.
* A kip is 1,000 lb.
* Test discontinued. Specimen did not fail. No studs broken.
* Test discontinued. One or more studs ruptured.
Figure 10.—Transverse load on wall CI, load applied to inside face.
Load-deflection (open circles) and load-set (solid circles) results for specimens CI-T1, T2, and T3 on the span 7 ft 6 in.

Figure 12.—Concentrated load on wall CI, load applied to inside face.
Load-indentation (open circles) and load-set (solid circles) results for specimens CI-P1, P2, and P3.

Figure 11.—Transverse load on wall CI, load applied to outside face.
Load-deflection (open circles) and load-set (solid circles) results for specimens CI-T4, T5, and T6 on the span 7 ft 6 in.

Figure 13.—Concentrated load on wall CI, load applied to outside face.
Load-indentation (open circles) and load-set (solid circles) results for specimens CI-P4, P5, and P6.
The concentrated loads were applied to the inside face of specimens CI-P1, P2, and P3 on the gypsum wallboard midway between two studs and about 1 1/2 ft from one end of the specimen. Under the maximum load on each specimen the disk punched through the wallboard.

The concentrated loads were applied to the outside face of specimens CI-P4, P5, and P6 on a shingle about 1 1/2 ft from an end of the specimen. The load was applied midway between studs on specimens P4 and P6 and 1 1/2 in. from a stud on specimen P5. In specimen P4 the shingle split along the grain at one edge of the disk under a load of 800 lb, and in specimens P5 and P6 under a load of 750 lb. Under the maximum load on specimen P6 the disk punched through the shingle and the plywood sheathing. In specimens P4 and P5 the sets after a load of 1,000 lb were 0.39 and 0.23 in., respectively.

5. Impact Load

Impact-test results are shown in table 4 and in figure 14 for wall specimens CI-I1, I2, and I3, loaded on the inside face, and in figure 15 for wall specimens CI-I4, I5, and I6, loaded on the outside face.

The impact loads were applied to the center of the inside face of specimens CI-I1, I2, and I3, the sandbag striking the gypsum wallboard directly over the plywood ribbon and the center stud. The effects are given in table 5.

Table 5.—Effects of impact load on wall CI, load applied to the inside face

<table>
<thead>
<tr>
<th>Description of effects on loaded (gypsum wallboard) face</th>
<th>Specimen I1</th>
<th>Specimen I2</th>
<th>Specimen I3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height of drop</td>
<td>Height of deflection</td>
<td>Height of drop</td>
<td>Height of deflection</td>
</tr>
<tr>
<td>Nails began to pull from studs</td>
<td>2.0</td>
<td>0.82</td>
<td>1.0</td>
</tr>
<tr>
<td>Wallboard cracked where the sandbag struck</td>
<td>6.0</td>
<td>1.62</td>
<td>6.5</td>
</tr>
<tr>
<td>Wallboard ruptured longitudinally between studs</td>
<td>8.5</td>
<td>2.10</td>
<td>8.5</td>
</tr>
<tr>
<td>Wallboard ruptured transversely along the joint at midspan</td>
<td>8.5</td>
<td>2.07</td>
<td>8.5</td>
</tr>
</tbody>
</table>

After the 10-ft drop on specimens I1, I2, and I3 the sets were 0.16, 0.14, and 0.19 in., respectively. No studs were broken, and the face not loaded (shingles) was undamaged.

Figure 14.—Impact load on wall CI, load applied to inside face.

Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens CI-I1, I2, and I3 on the span 7 ft 6 in.

Figure 15.—Impact load on wall CI, load applied to outside face.

Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens CI-I4, I5, and I6 on the span 7 ft 6 in.
The impact loads were applied to the center of the outside face of specimens CI–I4, I5, and I6, the sandbag striking the shingles directly over the center stud. The effects are given in table 6.

<table>
<thead>
<tr>
<th>Description of effects</th>
<th>Specimen I4</th>
<th>Specimen I5</th>
<th>Specimen I6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face not loaded (gypsum wallboard):</td>
<td>ft</td>
<td>in.</td>
<td>ft</td>
</tr>
<tr>
<td>Longitudinal crack along center stud at midspan.</td>
<td>1.5</td>
<td>0.75</td>
<td>2.5</td>
</tr>
<tr>
<td>Nails began to pull from studs.</td>
<td>2.0</td>
<td>0.92</td>
<td>2.5</td>
</tr>
<tr>
<td>Wallboard ruptured longitudinally along center stud at midspan.</td>
<td>3.5</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Wallboard separated 3 in. or more from studs at midspan.</td>
<td>4.0</td>
<td>2.09</td>
<td>5.0</td>
</tr>
<tr>
<td>Face loaded: Shingles split longitudinally along a stud.</td>
<td>7.0</td>
<td>2.65</td>
<td>7.0</td>
</tr>
<tr>
<td>Studs:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center half-sized stud and half-sized stud split along the grain, beginning at the dado.</td>
<td>4.0</td>
<td>1.66</td>
<td>5.0</td>
</tr>
<tr>
<td>Rupture of other or two studs.</td>
<td>6.0</td>
<td>3.88</td>
<td>6.0</td>
</tr>
<tr>
<td>Rupture of all studs, sandbag passed through specimen.</td>
<td>9.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The maximum height of drop on specimen CI–I5 was 9.0 ft. After the 10-ft drop on specimens CI–I4 and I6 the sets were 2.50 and 0.62 in., respectively.

6. Racking Load

The racking-load test results for wall specimens CI–R1, R2, and R3 are shown in table 4 and in figure 16.

Racking loads were applied by means of a hand-driven pump, and the speed could not be closely controlled. The load was applied only to the top plate, and the stop was in contact only with the floor plate at the diagonally opposite corner of the specimen.

Under a load of 1.0 kip/ft on specimens CI–R1 and R2 there was noticeable tearing of the plasterboard nails through the edges of the gypsum wallboard along the top plate, along the upper portion of the stud at the unloaded edge, and along the lower portion of the stud at the loaded edge of the specimen. Under a load of 0.8 kip/ft on specimen R3 the nails began to tear through the edges of the wallboard along the top plate and the edge studs. Under the maximum loads the wallboard separated from the edge studs and the top plate, and the nails in the plywood sheathing bent, some pulling from the studs and the top plate. There was about ½-in. vertical displacement between the pieces of sheathing at the joints. The wallboard on specimens R2 and R3 cracked near the center of the specimen and the vertical joint ruptured, tearing the tape.

VI. LOAD-BEARING PARTITION CJ

1. Sponsor’s Statement

Load-bearing partition CJ was a wood frame with faces of gypsum wallboard. It was similar to wall CI except that both faces were wallboard, not one face. The specimens were not painted.

The price of this construction in Washington, D. C., as of July 1937, was $0.252/ft².

(a) Four-foot Partition Specimens

The 4-ft partition specimens shown in figure 17 were 8 ft 1¾ in. high, 4 ft 0 in. wide, and 4½ in. thick. Each specimen was a wood frame to
which faces were fastened. The frame consisted of three full-sized studs, A, and a half-sized stud, B, fastened to a floor plate, C, and a top plate, D, by nails. The joint between the center stud and the half-sized stud represented the joint between two adjacent prefabricated partition sections when erected in a house. Two plywood ribbons, E, were fastened to the studs at midheight. Each face consisted of two sheets of gypsum wallboard, F. The overhanging edges of the faces were supported by spacers, G.

Full-sized studs.—The full-sized studs, A, were Douglas fir, 1½ by 3½ in., 7 ft 10½ in. long, spaced 1 ft 4 in. on center. Both edges of the studs were dadoed 3½ in. at midheight.

Half-sized stud.—The half-sized stud, B, was Douglas fir, ¾ by 3½ in., 7 ft 11⅝ in. long, dadoed on both edges ¾ in. at midheight, and was fastened to the center stud by 8d common nails spaced about 1 ft 0 in.

Figure 17.—Four-foot load-bearing partition specimen CJ.

Floor plate and top plate.—The floor plate, C, and the top plate, D, each consisted of two pieces of Douglas fir, 1¾ by 3½ in., 2 ft 0 in. long, with a joint on the center full-sized stud. Each piece was fastened to an outer stud by two 20d common nails driven through the plate into the stud (not toenailed). One piece was notched ¾ in. wide by ¾ in. deep, fitting over the half-sized stud, to which it was fastened by two 10d common nails through the piece into the half-sized stud. The other piece was fastened to the center full-sized stud by two 16d common nails through the piece into the stud (not toenailed).

Plywood ribbons.—Each plywood ribbon, E, consisted of two pieces of ¾-in. Douglas fir plywood 3½ in. wide and 2 ft 0 in. long, with a joint on the center full-sized stud. The grain of the outer plies was longitudinal. The ribbons fitted flush into the dadoes in the studs and were fastened to each stud by two 6d common nails.

Wallboard.—The wallboard, F, on each face, was made up of two sheets of gypsum wallboard, ½ in. thick, 4 ft 0 in. square, with a transverse joint between the rabbed edges on the plywood ribbon. The wallboard was fastened to the ribbon by glue and by 1½-in. plasterboard nails spaced 6 in., and to the full-sized studs by 1½-in. plasterboard nails spaced 8 in. It was fastened to the floor plate and top plate by 1½-in. plasterboard nails spaced 6 in., and ½ to ¾ in. from the edge of the board. It was not fastened to the half-sized studs.

The joint was calked with filler, covered with 2-in. tape, and allowed to set. More filler was then applied over the tape, bringing the surface flush with the wallboard.

Spacers.—The spacers, G, along the overhanging edges of the faces, were Douglas fir, 1½ by 3½ in., 4 in. long, fastened at each side to the wallboard by two ½-in. plasterboard nails. Spacers are not used in a house.

(b) Eight-Foot Partition Specimens

The 8-ft partition specimens shown in figure 18 were 8 ft 1¼ in. high, 8 ft 0 in. face width, and 4½ in. thick. The specimens were similar to the 4-ft specimens, except that there were seven full-sized studs 1 ft 4 in. on centers and two half-sized studs, one fastened to the center stud and one to an edge stud. A full-sized stud at each edge extended one-half its thick-
ness beyond the faces. The width overall was 8 ft 1\% in.

Wallboard.—The wallboard on each face consisted of three sheets of gypsum wallboard: one piece, 8 ft 0 in. by 4 ft 0 in., extending over the entire width; and two pieces, 5 ft 4 in. by 4 ft 0 in. and 2 ft 8 in. by 4 ft 0 in., with a longitudinal (vertical) joint over a stud 2 ft 8 in. from the edge of the face. The full-width pieces covered the upper half of one specimen and the lower half of the others. There was a horizontal joint at midheight over the ribbon. The wallboard was fastened to the floor plate, the top plate, and the edge studs by 1\% in. plasterboard nails \(\frac{1}{8}\) in. from the edge of the board, spaced 6 in. It was fastened to the ribbon by glue and by 1\%-inch plasterboard nails spaced 6 in., to the stud at the vertical joint by 1\%-in. nails spaced 6 in., and to the remaining full-sized studs by 1\%-in. nails spaced 8 in. It was not fastened to the half-sized studs. Both joints were caulked with filler and covered with tape.

(c) Comments

In a house of this construction the load-bearing partitions are assembled at the same time as the wall sections and in like manner. Adjacent partitions are joined by nailing through the edge studs, the overlapping top plate, and plywood ribbons. The frames for doors are placed and the interior finish is applied after the sections are assembled.

2. Compressive Load

The results of compressive tests for load-bearing partition specimens CJ-C1, C2, and C3 are shown in table 4 and in figures 19 and 20.

The speed of the movable head of the testing machine under no load was adjusted to 0.072
Figure 19.—Compressive load on load-bearing partition CJ.

Load-shortening (open circles) and load-set (solid circles) results for specimens CJ-C1, C2, and C3. Load was applied 1.21 in. (one-third the thickness of the frame) from the edge of the stud nearer the load line. The loads are in kips per foot of actual width of specimen.

in./min. The lateral deflections shown in figure 20 were plotted to the right of the vertical axis for deflections of the specimen toward the “outside” face (the face which is the farther from the load line).

Under a load of 4.5 kips/ft on specimen CJ-C1 the studs crushed into the top plate at the “inside” surface of the wood frame. The studs in specimen C2 crushed into the top plate under a load of 5.0 kips/ft, and in specimen C3 under a load of 5.5 kips/ft. Under the maximum load on each specimen there was further local crushing of the top plate at the “inside” edges of the studs, causing the plate to rotate. The gypsum wallboard and the studs were undamaged.

3. Transverse Load

The results of the transverse-load tests are shown in tables 4 and 7 and in figure 21 for load-bearing partition specimens CJ-T1, T2, and T3.

The speed of the movable head of the testing machine under no load was adjusted to 0.14 in./min.

Figure 20.—Compressive load on load-bearing partition CJ.

Load-lateral deflection (open circles) and load-lateral set (solid circles) results for specimens CJ-C1, C2, and C3. Load was applied 1.21 in. (one-third the thickness of the frame) from the edge of the stud nearer the load line. The loads are in kips per foot of actual width of specimen. The deflections and sets are for a gage length of 8 ft 6 in., the gage length of the deflectometers.

Figure 21.—Transverse load on load-bearing partition CJ.

Load-deflection (open circles) and load-set (solid circles) results for specimens CJ-T1, T2, and T3 on the span 7 ft 6 in.
4. Concentrated Load

The concentrated-load test results are shown in Table 4 and in Figure 22 for load-bearing partition specimens CJ-P1, P2, and P3.

The concentrated loads were applied to one face of the specimens on the gypsum wallboard midway between studs and about 1 1/2 ft. from one end. Under the maximum load on each specimen the disk punched through the wallboard.

5. Impact Load

The impact-test results are shown in Table 8 and in Figure 23 for load-bearing partition specimens CJ-I1, I2, and I3.

The impact loads were applied to the center of one face, the sandbag striking the gypsum
Figure 24.—Load-bearing partition specimen CJ-R2 under racking load.

The effects are given in table 8.

6. Racking Load

Load-bearing partition specimen CJ-R2 under racking load is shown in figure 24. The results for specimens CJ-R1, R2, and R3 are presented in table 4 and in figure 25.

The racking loads were applied by means of a hand-driven pump, and the speed could not be closely controlled. The load was applied only to the top plate, and the stop was in contact only with the floor plate at the diagonally opposite corner of the specimen.

Under a load of 0.60 kip/ft on specimen CJ-R1 the plasterboard nails tore noticeably through the edges of the gypsum wallboard on both faces along the top plate and along the upper portion of the stud at the unloaded edge. In specimen R2 under a load of 0.70 kip/ft the nails began to tear through the edges of the wallboard along the upper portion of the stud at the unloaded edge and along the lower portion of the stud at the loaded edge. In specimen R3 under a load of 0.70 kip/ft the nails began to tear through the wallboard along the stud at the unloaded edge.

Under the maximum load on each specimen the nails in the edge studs and top plate tore further through the edges of the wallboard, and the frame had moved 1 to 2 in. relative to the faces.

VII. NON-LOAD-BEARING PARTITION CK

1. Sponsor’s Statement

Non-load-bearing partition CK was a wood frame with gypsum wallboard as both faces. It was similar to load-bearing partition CJ, except that there were four 2- by 3-in. studs, not three 2- by 4-in. studs and one half-sized stud. The specimens were not painted.
The price of this construction in Washington, D. C., as of July 1937, was $0.242/ft².

These specimens did not represent portions of the partitions from a completed house because, in a representative specimen with studs spaced 16 in., there should be but three studs or the equivalent, as shown in figures 1 and 2 of BMS2.

(a) Description of Specimens

The partition specimens shown in figure 26 were 8 ft 1½ in. high, 4 ft 1½ in. wide, and 3½ in. thick. Each was a wood frame to which the faces were fastened. The frame consisted of four studs, A, a floor plate, B, and a top plate, C. Two plywood ribbons, D, were fastened to the studs at midheight. Each face consisted of two sheets of gypsum wallboard, E.

Studs.—The studs, A, were Douglas fir, 1¾ by 2½ in., 7 ft 10¾ in. long, spaced 1 ft 4 in. on centers. Both edges of the studs were dadoed % by 3½ in. at midheight.

Floor plate and top plate.—The floor plate, B, and the top plate, C, were Douglas fir, 1¾ by 2½ in., 4 ft 1½ in. long. The plates were fastened to the studs by two 6d common nails driven through the plates into each stud (not toenailed).

Plywood ribbons.—The plywood ribbons, D, were ¾-in. Douglas fir plywood, 3½ in. wide, 4 ft 1½ in. long, fitting flush into the dadoes in the studs and fastened to each stud by two 6d common nails.

Wallboard.—The wallboard, E, on each face, was two sheets of gypsum wallboard, ½ in. thick, 4 ft 0 in. square, with a transverse joint between the rabbeted edges on the plywood ribbon. The wallboard was fastened to the ribbon by glue and by 1¾-in. plasterboard nails spaced 6 in., and to the two inner studs by 1¾-in. plasterboard nails ½ in. from the edge of the board, spaced 6 in. It was fastened to the floor plate, top plate, and outer studs by 1¾-in. plasterboard nails ½ in. from the edge of the board, spaced 6 in. The joint was calked with filler, covered with 2-in. tape, and allowed to set. More filler was then applied over the tape, bringing the surface flush with the wallboard.
(b) Comments

Non-load-bearing partition sections are made in one piece. They are placed after the floor, wall, load-bearing partition, and ceiling sections have been assembled and are fastened by nailing through the plates and edge studs.

2. Concentrated Load

The results of the concentrated loads for specimens CK-P1, P2, and P3 are shown in table 9 and in figure 27.

Table 9—Structural properties of non-load-bearing partition CK

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Maximum load</th>
<th>Specimen</th>
<th>Maximum load</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>191 lb</td>
<td>P2</td>
<td>193 lb</td>
</tr>
<tr>
<td>P3</td>
<td>197 lb</td>
<td>Average</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
</tr>
</tbody>
</table>

The concentrated loads were applied to one face of each specimen on the gypsum wallboard midway between studs and 1½ to 2 ft from one end of the specimen. Under the maximum load the disk punched through the wallboard.

The properties of this construction under concentrated load were not affected by the fact that there were four, not three, studs in the specimen.

3. Impact Load

Impact test results for non-load-bearing partition specimens CK-I1, I2, and I3 are shown in table 9 and in figure 28.

The impact load was applied to the center of one face of each specimen, the sandbag striking the gypsum wallboard directly over the plywood ribbon and midway between studs.

To prevent misleading results due to local effects on the loaded face of this type of specimen, the deflections and sets were measured with two deflectometers and two set gages, not one, as described in BMS2. The deflectometers were placed in contact with the unloaded face of the specimen at midheight, one at each inner stud; and the set gages rested on the loaded face, one over each of these studs.
The effects of the impact load are given in table 10.

<table>
<thead>
<tr>
<th>Description of effects</th>
<th>Specimen B</th>
<th>Specimen C</th>
<th>Specimen E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Face not loaded: Gypsum wallboard cracked transversely</td>
<td>ft</td>
<td>in.</td>
<td>ft</td>
</tr>
<tr>
<td>near midspan</td>
<td>2.5</td>
<td>1.65</td>
<td>3.0</td>
</tr>
<tr>
<td>Wallboard ruptured transversely</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face loaded: Wallboard cracked where sandbar struck</td>
<td>3.0</td>
<td>2.17</td>
<td>3.5</td>
</tr>
<tr>
<td>Wallboard ruptured where sandbar struck</td>
<td>3.0</td>
<td>2.11</td>
<td>2.00</td>
</tr>
<tr>
<td>Wallboard ruptured</td>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studs: One or more studs either split or ruptured at the</td>
<td>3.0</td>
<td>2.17</td>
<td>3.5</td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>Specimen came into contact with the floor</td>
<td>6.0</td>
<td>5.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Maximum height of drop</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Because there were too many studs in these specimens, the maximum heights of drop were greater and the deflections and sets were less than those of representative specimens.

VIII. FLOOR CL

1. Sponsor's Statement

Floor CL was a wood frame with plywood subflooring, sheathing paper, and finish flooring on the upper face. The lower face was unfinished, and the specimens were not painted.

The price of this construction in Washington, D. C., as of July 1937, was $0.313/ft².

(a) Description of Specimens

The floor specimens shown in figure 29 were 12 ft 7½ in. long, 4 ft 0 in. wide, and 8½ in. thick. Each was a wood frame to which the upper face was fastened. The frame consisted of three joists, A, two headers, B, and bridging, C. The upper face was plywood subflooring, D, sheathing paper, E, and flooring, F.

Joists.—The joists, A, were Douglas fir, 1½ by 7½ in., 12 ft 4 in. long, spaced 1 ft 4 in. on centers. The ends of each joist were fastened to the headers by two 20d common nails through the header into the joist (not toenailed).

Headers.—The headers, B, were Douglas fir, 1¼ by 7½ in., 4 ft 0 in. long.

Bridging.—The bridging, C, was Douglas fir, 1¼ by 2½ in., 1 ft 3½ in. long. Two bridging pieces were placed crosswise between the top and bottom edges of adjacent joists at midlength and were fastened to the joists by two 8d common nails, toenailed through each end into the joists.

Subflooring.—The subflooring, D, was four pieces of five-ply Douglas fir plywood, ¾ in. thick. Two pieces were 1 ft 11½ in. by 4 ft 7¼ in. and two were 1 ft 11½ in. by 8 ft 0 in. The grain of the outer plies was longitudinal. There was a longitudinal joint along the center joist, with ¾-in. clearance, and a transverse joint on each side of the center joist, one joint being 4 ft 7½ in. from one end of the specimen and the other being 4 ft 7¼ in. from the other end. The subflooring was fastened to the joists and headers by 8d common nails spaced 6 in., and the nails in the two lines along the center joist were staggered.

Sheathing paper.—The sheathing paper, E, consisted of two sheets of rosin paper 3 ft 0 in. wide, laid lengthwise over the sheathing with a 2 ft 0 in. longitudinal lap. It was fastened to the subflooring at each end of the specimen by 12 staples.

Flooring.—The flooring was red oak, 1¾ in. by 2½ in., blind-fastened to each joist by one 8d eut flooring nail through each strip of flooring. The last flooring strip at one end was also fastened by three 8d eut flooring nails driven through the face of the strip into the header.

(b) Comments

Floor sections are made in widths which are multiples of 1 ft 4 in. Lengths are equal to the distance from the outer sill to the center girder. The ends of the floor joists rest on a 2- by 6-in. wood sill and on a ledger strip on the center girder. The joists are toenailed to the sill and girder with two 16d nails at each end. A 2- by 8-in. header is fastened to the outer ends of the joists by two 16d nails at each joist.

The edge of the plywood subflooring of one section overlaps half of the upper surface of the edge joist of the adjacent section. The sections are joined by 8d nails through the edge of
2. Transverse Load

Floor specimen CL–T1 under transverse load is shown in figure 30. The results for floor specimens CL–T1, T2, and T3 are given in table 11 and in figure 31.

Table 11.—Structural properties of floor CL
[Weight, 7.15 lb/ft²]

<table>
<thead>
<tr>
<th>Transverse load *</th>
<th>Concentrated load</th>
<th>Impact load *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Maxi-</td>
<td>Specimen</td>
</tr>
<tr>
<td></td>
<td>mum load</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>470 lb/ft²</td>
<td>P1</td>
</tr>
<tr>
<td>T2</td>
<td>538 lb/ft²</td>
<td>P2</td>
</tr>
<tr>
<td>T3</td>
<td>520 lb/ft²</td>
<td>P3</td>
</tr>
<tr>
<td>Average</td>
<td>499 lb/ft²</td>
<td>Average</td>
</tr>
</tbody>
</table>

* Span 12 ft 6 in. * Test discontinued. * Specimen did not fail.

The speed of the movable head of the testing machine under no load was adjusted to 0.17 in./min.

Under loads of 350 and 267 lb/ft² on specimens T2 and T3, respectively, one outer joist split at a knot near midspan. Under the maximum load two or three joists in each specimen either ruptured or split between the loading rollers.

The speed of the movable head of the testing machine under no load was adjusted to 0.17 in./min.

Under loads of 350 and 267 lb/ft² on specimens T2 and T3, respectively, one outer joist split at a knot near midspan. Under the maximum load two or three joists in each specimen either ruptured or split between the loading rollers.

3. Concentrated Load

The concentrated-load test results for floor specimens CL–P1, P2, and P3 are shown in table 11 and in figure 32.

The concentrated loads were applied to the upper face between joists over an end-matched joint in the finish flooring 3 to 4 ½ ft from one end. The sets after a load of 1,000 lb had been applied to specimens P1, P2, and P3 were 0.015, 0.036, and 0.027 in., respectively, and no other effects were observed.

4. Impact Load

Floor specimen CL–II during the impact test is shown in figure 33. The results for floor specimens CL–II, I2, and I3 are presented in table 11 and in figure 34.

The impact loads were applied to the center of the upper face, the sandbag striking the finish flooring over the center joist. After a drop of 10 ft the set in specimen II was 0.051 in., in I2 was 0.078 in., and in I3 was 0.100 in. No other effect was observed.

IX. ADDITIONAL COMMENTS

BY SPONSOR

In structures built of "American Houses" prefabricated sections, the horizontal dimensions are based on multiples of 1 ft 4 in. A section of a typical house is shown in figure 35. Foundations are of various types of conven-
tional masonry construction. Wood sills, 2 by 6 in., are placed on the foundation walls, leveled by means of shims, and secured by anchor bolts, ½ by 8 in., spaced about 8 ft 0 in. The center girder consists of three 2-by 12-in. planks fastened together by 16d nails and supported by the foundation walls and

by one column. The upper surface of the girder is leveled to the top of the sills.

The type of framing is similar to the conventional platform or western type of wood-frame construction. Floor sections are placed first, followed by the load-bearing partition and wall sections. The ceiling joists, 2 by
Figure 33.—Floor specimen CL-II during the impact test.

Figure 34.—Impact load on floor CL.
Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens CL-II, II, and I on the span 12ft 0in.

Figure 35.—Section of typical house.
"American Homes" construction.
8 in., spaced 1 ft 4 in. on centers, are then placed on the top plates of the wall and partition sections, to each of which they are toenailed with two 16d nails. A second plate, 2 by 4 in., is applied to the top plate of the load-bearing partition sections. This plate is dadoed halfway to space and secure the ceiling joists, the bottom edges of which are dadoed to correspond. Ceiling finish is the same as that applied to walls and partitions.

Rafter plates, 2 by 4 in., are fastened to each ceiling joist by two 16d nails. Headers, 2 by 8 in., are attached to the end of each ceiling joist by two 16d nails. Roof sections consist of rafters, 2 by 6 in., spaced 1 ft 4 in. on centers, and plywood sheathing. The sections are assembled in pairs, starting at one end of the house, the ridge rafter (2 by 8 in.) being placed at the same time. The sections are joined by 6d nails passing through the overlapping edges of the sheathing into the rafters, spaced 6 in. The end of each rafter is fastened to the rafter plates by four 10d nails and to the ridge rafter by two 10d nails. Any conventional roofing material, such as shingles, may be applied to the plywood sheathing. Gable end sections are similar in construction to the walls, and the ceiling joists and rafters are fastened to the studs of the end sections by two 16d nails at each stud.

In a two-story house, the floor sections for the second story rest upon the top plates of the first-story wall and partition sections. The bridging is applied to the floor and ceiling joists after the sections are in place.

The description and drawings of the specimens were prepared by E. J. Schell, G. W. Shaw, and T. J. Hanley, of the Bureau's Building Practice and Specifications Section, under the supervision of V. B. Phelan. That section also cooperated in the preparation of the report.

The experimental data were obtained by the Engineering Mechanics Section under the supervision of H. L. Whittemore and A. H. Stang, with the assistance of the following members of the professional staff: F. Cardile, H. Dollar, M. Dubin, A. H. Easton, A. S. Endler, C. D. Johnson, A. B. Lanham, A. J. Sussman, and L. R. Sweetman.

WASHINGTON, October 24, 1939.
The following publications in this series are available by purchase from the Superintendent of Documents at the prices indicated:

BMS1	Research on Building Materials and Structures for Use in Low-Cost Housing	$0.10
BMS2	Methods of Determining the Structural Properties of Low-Cost House Constructions	$0.10
BMS3	Suitability of Fiber Insulating Lath as a Plaster Base	$0.10
BMS4	Accelerated Aging of Fiber Building Boards	$0.10
BMS5	Structural Properties of Six Masonry Wall Constructions	$0.15
BMS6	Survey of Roofing Materials in the Southeastern States	$0.15
BMS7	Water Permeability of Masonry Walls	$0.10
BMS8	Methods of Investigation of Surface Treatment for Corrosion Protection of Steel	$0.10
BMS9	Structural Properties of the Insulated Steel Construction Company's "Frameless-Steel" Constructions for Walls, Partitions, Floors, and Roofs	$0.10
BMS10	Structural Properties of One of the "Keystone Beam Steel Floor" Constructions Sponsored by the H. H. Robertson Co.	$0.10
BMS11	Structural Properties of the Current Fabrihome Corporation's "Fabrihome" Constructions for Walls and Partitions	$0.10
BMS12	Structural Properties of "Steelox" Constructions for Walls, Partitions, Floors, and Roofs Sponsored by Steel Buildings, Inc	$0.15
BMS13	Properties of Some Fiber Building Boards of Current Manufacture	$0.10
BMS14	Indentation and Recovery of Low-Cost Floor Coverings	$0.10
BMS15	Structural Properties of "Wheeling Long-Span Steel Floor" Construction Sponsored by the Wheeling Corrugating Co.	$0.10
BMS16	Structural Properties of a "Tilecrete" Floor Construction Sponsored by Tilecrete Floors, Inc.	$0.10
BMS17	Sound Insulation of Wall and Floor Constructions	$0.10
BMS18	Structural Properties of "Pre-Fab" Constructions for Walls, Partitions, and Floors Sponsored by the Harnischfeger Corporation	$0.10
BMS19	Preparation and Revision of Building Codes	$0.15
BMS20	Structural Properties of "Twachtman" Constructions for Walls and Floors Sponsored by Connecticut Pre-Cast Buildings Corporation	$0.10
BMS21	Structural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the National Concrete Masonry Association	$0.10
BMS22	Structural Properties of "Dun-Ti-Stone" Wall Construction Sponsored by the W. E. Dunn Manufacturing Co.	$0.10
BMS23	Structural Properties of a Brick Cavity-Wall Construction Sponsored by the Brick Manufacturers Association of New York, Inc.	$0.10
BMS24	Structural Properties of a Reinforced-Brick Wall Construction and a Brick-Tile Cavity-Wall Construction Sponsored by the Structural Clay Products Institute	$0.10
BMS25	Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs	$0.10
BMS26	Structural Properties of "Nelson Pre-Cast Concrete Foundation" Wall Construction Sponsored by the Nelson Cement Stone Co., Inc.	$0.10
BMS27	Structural Properties of "Bender Steel Home" Wall Construction Sponsored by The Bender Body Co.	$0.10
BMS28	Backflow Prevention in Over-Rim Water Supplies	$0.10
BMS29	Survey of Roofing Materials in the Northeastern States	$0.10
BMS30	Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas Fir Plywood Association	$0.10
BMS31	Structural Properties of "Insulite" Wall and "Insulite" Partition Constructions Sponsored by The Insulite Co.	$0.15
BMS32	Structural Properties of Two Brick-Concrete-Block Wall Constructions and a Concrete-Block Wall Construction Sponsored by the National Concrete Masonry Association	$0.10
BMS33	Plastic Coating Materials	$0.10
BMS34	Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 1	$0.10
BMS35	Stability of Sheathing Papers as Determined by Accelerated Aging	$0.10

[List continued on cover page IV]
BMS36	Structural Properties of Wood-Frame Wall, Partition, Floor, and Roof Constructions With “Red Stripe” Lath Sponsored by The Weston Paper & Manufacturing Co.	$0.10
BMS37	Structural Properties of “Palisade Homes” Constructions for Walls, Partitions, and Floors Sponsored by Palisade Homes	$0.10
BMS38	Structural Properties of Two “Dunstone” Wall Constructions Sponsored by the W. E. Dunn Manufacturing Co.	$0.10
BMS39	Structural Properties of a Wall Construction of “Pfeller Units” Sponsored by the Wisconsin Units Co.	$0.10
BMS40	Structural Properties of a Wall Construction of “Knap Concrete Wall Units” Sponsored by Knap America Inc.	$0.10
BMS41	Effect of Heating and Cooling on the Permeability of Masonry Walls	$0.10
BMS42	Structural Properties of Wood-Frame Wall and Partition Constructions With “Celotex” Insulating Boards Sponsored by The Celotex Corporation	$0.10
BMS43	Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 2	$0.10
BMS44	Surface Treatment of Steel Prior to Painting	$0.10
BMS45	Air Infiltration Through Windows	$0.10
BMS46	Structural Properties of “Scot-Bilt” Prefabricated Sheet-Steel Constructions for Walls, Floors, and Roofs Sponsored by The Globe-Wernicke Co.	$0.10
BMS47	Structural Properties of Prefabricated Wood-Frame Constructions for Walls, Partitions, and Floors Sponsored by American Houses, Inc.	$0.10