U. S. DEPARTMENT OF COMMERCE

BUILDING MATERIALS
AND
STRUCTURES
REPORT BMS39

Structural Properties of a Wall Construction of "Pfeifer Units"
Sponsored by the Wisconsin Units Company

by
HERBERT L. WHITTEMORE,
AMBROSE H. STANG, and
DOUGLAS E. PARSONS

NATIONAL
BUREAU OF STANDARDS
The program of research on building materials and structures, carried on by the National Bureau of Standards, was undertaken with the assistance of the Central Housing Committee, an informal organization of Government agencies concerned with housing construction and finance, which is cooperating in the investigations through a subcommittee of principal technical assistants.

CENTRAL HOUSING COMMITTEE

SUBCOMMITTEE ON TECHNICAL RESEARCH

WALTER JUNGE, Chairman.
Federal Housing Administration.

A. C. SHIRE, Vice Chairman.
United States Housing Authority.

STERLING R. MARCH, Secretary.

ALBERT G. BEAR,
Veterans' Administration.

Pierre Blouke,
Federal Home Loan Bank Board (Federal Loan Agency).

CARROLL W. CHAMBERLAIN,
Public Buildings Administration (Federal Works Agency).

JOSEPH M. DALLAVALLE,
Public Health Service (Federal Security Agency).

JOHN DONOVAN,
Farm Security Administration (Agriculture).

GEORGE E. KNOX,
Yards and Docks (Navy).

VINCENT B. PHelan,
National Bureau of Standards (Commerce).

EDWARD A. POYNTON,
Office of Indian Affairs (Interior).

GEORGE W. TRAYER,
Forest Service (Agriculture).

ELSMERE J. WALTERS,
Construction Division (War).

CHAIRMEN OF SECTIONS

Specifications
CARROLL W. CHAMBERLAIN

Materials
ELSMERE J. WALTERS

Maintenance
JOHN H. SCHAEFER

Mechanical Equipment
ROBERT K. THULMAN

Methods and Practices

NATIONAL BUREAU OF STANDARDS

STAFF COMMITTEE ON ADMINISTRATION AND COORDINATION

HUGH L. DRYDEN, Chairman.

Mechanics and Sound.

PHAON H. BATES,
Clay and Silicate Products.

HOBART C. DICKINSON,
Heat and Power.

WARREN E. EMLEY,
Organic and Fibrous Materials.

GUSTAV E. F. LUNDELL,
Chemistry.

ADAMS S. MCALLISTER,
Codes and Specifications.

HENRY S. RAWDON,
Metallurgy.

The Forest Products Laboratory of the United States Department of Agriculture is cooperating with both committees on investigations of wood constructions.

[For list of BMS publications and how to purchase, see cover page III.]
BUILDING MATERIALS

and STRUCTURES

REPORT BMS39

Structural Properties of a Wall Construction of "Pfeifer Units" sponsored by the Wisconsin Units Company

by HERBERT L. WHITTEMORE, AMBROSE H. STANG,

and DOUGLAS E. PARSONS

ISSUED JANUARY 31, 1940

The National Bureau of Standards is a fact-finding organization; it does not "approve" any particular material or method of construction. The technical findings in this series of reports are to be construed accordingly.
Foreword

This report is one of a series issued by the National Bureau of Standards on the structural properties of constructions intended for low-cost houses and apartments. These constructions were sponsored by industrial organizations within the building industry advocating and promoting their use. The sponsor built and submitted the specimens described in this report for the program outlined in BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions. The sponsor, therefore, is responsible for the design of the constructions and for the description of the specimens and method of fabrication. The Bureau is responsible for the method of testing and the test results.

This report covers only the load-deformation relations and strength of the walls of a house when subjected to compressive, transverse, impact, concentrated, and racking loads by standardized methods simulating the loads to which the elements of a house would be subjected in actual service. Later it may be feasible to determine the heat transmission at ordinary temperatures and the fire resistance of this same construction and perhaps other properties.

The National Bureau of Standards does not “approve” a construction, nor does it express an opinion as to the merits of a construction for the reasons given in reports BMS1 and BMS2. The technical facts presented in this series provide the basic data from which architects and engineers can determine whether a construction meets desired performance requirements.

Lyman J. Briggs, Director.
Structural Properties of a Wall Construction of "Pfeifer Units" Sponsored by the Wisconsin Units Company

by Herbert L. Whittemore, Ambrose H. Stang, and Douglas E. Parsons

CONTENTS

Page

Foreword ... ii

I. Introduction .. 1

II. Sponsor and product .. 2

III. Specimens and tests .. 2

IV. Wall CH .. 3

1. Sponsor’s statement .. 3

(a) Materials ... 3

(b) Description .. 5

(1) Four-foot wall specimens 5

(2) Eight-foot wall specimens 6

IV. Wall CH—Continued.

1. Sponsor’s statement—Continued.

(c) Comments .. 7

2. Compressive load .. 7

3. Transverse load ... 10

4. Concentrated load .. 10

5. Impact load .. 12

6. Racking load .. 14

V. Selected reference .. 14

ABSTRACT

For the program on the determination of the structural properties of low-cost house constructions, the Wisconsin Units Co. submitted 18 specimens representing a wall construction of "Pfeifer Units."

The specimens were subjected to compressive, transverse, concentrated, impact, and racking loads. For each of these loads three like specimens were tested. The deformation under load and the set after the load was removed were measured for uniform increments of load. The results are presented in graphs and in tables.

I. INTRODUCTION

To provide technical facts on the performance of constructions which might be used in low-cost houses, to discover promising new constructions, and ultimately to determine the properties necessary for acceptable performance in actual service, the National Bureau of Standards has invited the cooperation of the building industry in a program of research on building materials and structures suitable for low-cost houses and apartments. The objectives of this program are described in report BMS1, Research on Building Materials and Structures for Use in Low-Cost Housing, and that part of the program relating to structural properties in report BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions.

Masonry constructions and wood constructions of types which have been extensively used in this country for houses were included in the program because their behavior under widely different service conditions is known to builders and the public. The reports on these constructions are BMS5, Structural Properties of Six Masonry Wall Constructions, and BMS25, Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs. The masonry specimens were built by the Masonry Construction Section of this Bureau, and the wood-frame specimens were built and tested by the Forest Products Laboratory at Madison, Wis.

The present report describes the structural properties of a wall construction sponsored by one of the manufacturers in the building industry. The specimens were subjected to compressive, transverse, concentrated, impact, and racking loads, simulating loads to which the walls of a house are subjected. In actual service, compressive loads on a wall are produced by the weight of the roof, second floor and second-story walls, if any, furniture and occupants, and by snow and wind loads on the roof. Transverse loads on a wall are produced by the wind, concentrated and impact loads by accidental contact with heavy objects, and racking loads by the action of the wind on adjoining walls.

[1]
The deformation and set under each increment of load were measured, because the suitability of a wall construction depends in part on its resistance to deformation under load and whether it returns to its original size and shape when the load is removed.

II. SPONSOR AND PRODUCT

The specimens were submitted by the Wisconsin Units Co., West Allis, Wis., and represented a wall construction made of reinforced-concrete units marketed under the trade name "Pfeifer Units." The units are bolted together with a steel reinforcing plate in each longitudinal joint, forming a masonry wall.

III. SPECIMENS AND TESTS

The wall construction was assigned the symbol CH, and the specimens were assigned the designations given in Table 1.

<table>
<thead>
<tr>
<th>Specimen designation</th>
<th>Load</th>
<th>Load applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3</td>
<td>Compressive</td>
<td>Upper end</td>
</tr>
<tr>
<td>T1, T2, T3</td>
<td>Transverse</td>
<td>Inside face</td>
</tr>
<tr>
<td>T4, T5, T6</td>
<td>do</td>
<td>Outside face</td>
</tr>
<tr>
<td>P1, P2, P3, P4, P5</td>
<td>do</td>
<td>Inside face</td>
</tr>
<tr>
<td>P6</td>
<td>do</td>
<td>Outside face</td>
</tr>
<tr>
<td>U1, U2, U3</td>
<td>Impact</td>
<td>Inside face</td>
</tr>
<tr>
<td>R1, R2, R3</td>
<td>Racking</td>
<td>Near upper end</td>
</tr>
</tbody>
</table>

* These specimens were undamaged portions of the transverse specimens.

Except as mentioned below, the specimens were tested in accordance with BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions, which gives the requirements for the specimens and describes the presentation of the results of the tests, particularly the load-deformation graphs.

The compressive loads were applied over the entire thickness of each specimen along a line distant from the inside face by one-third this thickness. The shortenings and sets were measured by means of compressometers attached to the steel loading plates through which the load was applied to the specimen, and not attached to the specimen as described in BMS2.

Measurements of the lateral deflections under compressive loads and the deflections under transverse loads were made with a deflectometer of fixed gage length, which consisted of a light (duralumin) tubular frame having a leg at one end and a hinged plate at the other. The distance between the points of support was 7 ft. 6 in. A dial micrometer was attached to the frame at midlength. The micrometer was graduated to 0.001 in., and the readings were recorded to the nearest tenth of a division. The deflectometer was attached to the specimen in a vertical position by clamping the hinged plate to the upper end of either face. There were two deflectometers on each specimen, one near each edge. This method of measurement was used instead of the tautwire and mirror-scale method described in BMS2.

The indentation under concentrated load and the set after the load was removed were measured, not the set only, as described in BMS2. The apparatus is shown in figure 1. The load was applied to a steel disk, A, to which the crossbar, B, was rigidly attached. The load was measured by means of the dynamometer, C. There were two stands, D, resting on the face of the specimen, and each sup-
ported a dial micrometer, \(E \), the spindle of which was in contact with the crossbar 8 in. from the disk. The micrometers were graduated to 0.001 in., and the readings were recorded to the nearest division. The initial reading (average of the micrometer readings) was observed under the initial load, which included the weight of the disk and dynamometer. A load was applied to the disk, and the depth of the indentation under load was taken as the average of the micrometer readings minus the initial reading. The load was then removed, and the set was taken as the average of the micrometer readings minus the initial reading.

The deformations caused by racking loads were measured with a dial micrometer which was fastened to one end of a right-angle frame, consisting of a steel channel and a steel angle, braced to form a rigid connection. In use, this deformeter was attached to the specimen by resting the channel along the top of the specimen. Two pins driven through the channel into the top of the specimen prevented relative motion between them. The steel angle was then in a suspended vertical position in the plane of the specimen, with the micrometer at its lowest point and the spindle bearing directly on the specimen. The gage length (distance from the top of the specimen to the micrometer spindle) was 6 ft. 8 in. The micrometer was graduated to 0.001 in., and the readings were recorded to the nearest tenth of a division. This deformeter was used instead of the system of taut wires and mirror scales described in BMS2.

The tests were begun March 15, 1939, and completed March 23, 1939. The units were made on or about December 14, 1938. The sponsor’s representatives witnessed the tests.

IV. WALL CH

1. Sponsor’s Statement

The information for this statement was obtained from the sponsor and from inspection of the specimens. The Masonry Construction Section of this Bureau assisted the sponsor by determining the physical properties of the concrete units.

(a) Materials

Concrete units.—The units were thin reinforced-concrete slabs about 2 ft square having flanges along two opposite edges.

The materials for the concrete were Petoskey Cement Co.’s “High-Early” portland cement, Western Lime and Cement Co.’s “Pure-Cal” lime, and The Waylite Co.’s “Waylite” aggregate.

“Waylite” aggregate is a lightweight material of cellular structure produced by centrifuging and beating molten blast-furnace slag in an atmosphere of steam. The sieve analysis of the aggregate is given in Table 2 and the chemical composition in Table 3.

Table 2.—Sieve analysis of the “Waylite” aggregate

<table>
<thead>
<tr>
<th>U. S. Standard sieve number</th>
<th>Passing, by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>68</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.—Chemical composition of the “Waylite” aggregate

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Content, by weight</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica, SiO₂</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td>Alumina, Al₂O₃</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>Calcium oxide, CaO</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>Magnesia, MgO</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Iron oxide, Fe₂O₃</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>Manganese oxide, MnO</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Sulfur, as sulfitde</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

The reinforcement in the units was welded steel-wire mesh, openings 3-in. square, weight 0.25 lb/ft², manufactured by the American Steel & Wire Co. The wire was No. 12 Stl. W. G. (0.1055-in. diam), having a tensile strength ranging from 70,000 to 80,000 lb/in². The mesh for each unit was 1 ft 11 in. high and 2 ft 3 in. wide, having nine longitudinal and eight transverse wires. The ends of the longitudinal wires projected 1 in. beyond the top and bottom transverse wires, and the ends of the transverse wires projected 1 ½ in. beyond the edge of the longitudinal wires. There were chairs in the
three central longitudinal wires, formed by bending the wire into a V which projected about \(\frac{3}{4} \) in. from the mesh. The chairs were spaced 6 in. and those in adjacent wires were staggered.

A binder was embedded in the flange at each edge of the unit. It was hot-rolled, open-hearth, SAE 1010 sheet steel, No. 20 U. S. Std. Gage (0.037 in. thick), formed as shown in figures 2 and 3. The chemical composition of the sheet steel is given in table 4. Each binder was plated with cadmium, the thickness of the coat ranging from 0.0008 to 0.0010 in. The manufacturer was the Milwaukee Stamping Co.

![Figure 2](image-url)

Figure 2. Sheet-steel binder.

![Figure 3](image-url)

Figure 3. Details of binder.

<table>
<thead>
<tr>
<th>Element</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>0.05 to 0.15</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.30 to 0.60</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.045 maximum</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.055 maximum</td>
</tr>
</tbody>
</table>

The units were made in horizontal cast-iron molds, the mold forming the flanged face of the units. After spraying the molds with a mixture of heavy lubricating grease and naphtha, the binders were placed at the sides of the mold over plugs which formed the bolt holes in the flanges. The mesh reinforcement was placed in the mold. The concrete mix was 1 part of cement, 0.21 part of hydrated lime, and 5.84 parts of “Waylite” aggregate, by volume; the lime being added to increase the workability. The concrete was mixed in a mixer having a capacity of 9 ft\(^3\). The aggregate was first mixed with water for at least 2 minutes to insure adequate surface moisture, the cement and lime were added, and the mixing continued for another 10 minutes. The amount of water was adjusted until no excess water appeared on the concrete when the mold was vibrated. The mix was delivered to the mold and vibrated by a jolt-vibrator, operated pneumatically at the rate of 85 strokes per minute. A sliding steel plate then struck off the excess concrete and the mold was removed to a curing chamber. The chamber was filled with steam at 5 lb/in.\(^2\) press-
sure for 3 hours and then at 50 lb/in.2 for 6 hours, after which time the pressure was reduced slowly and the units were ready for shipment.

The units, shown in figure 4, were 2 ft 6 in. high, 1 ft 11$\frac{3}{8}$ in. wide, and 1$\frac{3}{4}$ in. thick at midwidth. There was a flange, in which a sheet-steel binder was embedded, along each longitudinal edge. There were four holes, $\frac{3}{8}$-in. diam, in each flange 2$\frac{3}{4}$ in. from the outside face of the unit and spaced 6 in. on centers. Along each edge of the unit were semicircular grooves, 1$\frac{3}{8}$-in. diam. The distance from the outside face of the unit to the outer edges of the grooves was 1$\frac{3}{16}$ in. The outside face of the unit was rabbeted 1$\frac{1}{4}$ in. along each of the four edges.

The physical properties of the units were determined on two samples. The water absorption for 24-hr cold total immersion was 13.4 percent of the dry weight of the unit, or 13.0 lb of water per ft2 of concrete. Computed from the weight of 162 units, the average weight of one unit, when dry, was 57.6 lb.

Bonding plate.—Sheet-steel, SAE 1010, open-hearth, hot-rolled, No. 14 U. S. Std. Gage (0.077 in. thick), 8 ft 0 in. high, 2$\frac{1}{4}$ in. wide. The chemical composition of the sheet steel is given in table 4. There were holes, $\frac{3}{8}$-in. diam, at midwidth, spaced 6 in. on centers. Each plate was pickled in a 50-percent solution of muriatic acid and then completely covered by one coat of black asphaltum 0.001 in. thick. Milwaukee Stamping Co.

Bolts.

Machine, mild-steel, $\frac{3}{16}$-in. diam, 5$\frac{1}{2}$ in. long, 13 threads per inch, threaded for a length of 1$\frac{3}{4}$ in., heads and nuts square, unfinished.

Machine, mild-steel, $\frac{3}{8}$-in. diam, 2$\frac{1}{4}$ in. long, 13 threads per inch, threaded for a length of 1 in., heads and nuts square, unfinished.

Washers.—Sheet-steel, 1$\frac{3}{8}$-in. diam, No. 12 U. S. Std. Gage (0.1072 in. thick).

(b) Description

Wall CH consisted of "Pfeifer Units" and steel bonding plates bolted together at the

![Figure 4.—Concrete unit.](image)

![Figure 5.—Four-foot wall specimen CH.](image)

flanges of the units, forming a masonry wall with a flat outside face and a ribbed inside face.

The price of this construction in Washington, D. C., as of July 1937, was $0.44/ft2.

(i) Four-foot wall specimens.—The 4-ft specimens, shown in figure 5, were 8 ft 0 in. high, 4 ft 0 in. wide, and 4 in. thick at the ribs. Each specimen consisted of eight concrete
units, A, and three bonding plates, B. There were two units in each course and a bonding plate on each longitudinal (vertical) edge and one in the joint at midwidth. The units and bonding plates were fastened by bolts through the holes in the flanges and the plates. There were eight $2\frac{3}{4}$-in. bolts along each longitudinal edge and eight $5\frac{3}{4}$-in. bolts along the joint at midwidth. The bolts were in the top and bottom holes in each unit. There were two washers on each bolt, one under the head and the other under the nut. Each nut was tightened until the torque was about 11 lb-ft.

These specimens did not comply fully with BMS2, V-1 (c) Width. They were of the type shown in figure 2, BMS2; and, if the bonding plates are considered to be load-carrying members, the plates on the edges of the specimen should have been half-sized plates, thickness 0.0385 in. Each specimen therefore had the equivalent of one excess bonding plate. It did not appear practicable to machine half-sized plates from full-sized plates; and, if they had been made from sheet steel of the required thickness, there was no assurance that the properties would have any relation to the properties of the full-sized plates.

Full-sized plates were therefore used on the edges of the specimens. Furthermore, it appeared probable that, being restrained laterally on only one side, their strength would be much less than that of plates in a vertical joint between units. Observations during the tests indicated that the edge plates might be considered half-sized plates as regards the properties of this construction. Through a misunderstanding on the part of the sponsor the vertical and horizontal joints in the specimens were not sealed with asphalt-saturated cotton fabric tubing, as in a house, and the rabbets in the units were not calked. It appears probable that the seals and calking would have had little effect on the structural properties.

(2) Eight-foot wall specimens.—The 8-ft specimens, shown in figure 6, were 8 ft 0 in. high, 8 ft 0 in. wide, and 4 in. thick. The construc-

![Figure 6](image)

Figure 6.—Eight-foot wall specimen CH.
A, concrete unit; B, bonding plate.
tion was similar to the 4-ft specimens except for
that there were four units in each course and
five bonding plates.

\((c) \) Comments

"Pfeifer Units" are designed for walls, par-
titions, floors, and roofs. Walls and parti-
tions are erected on a masonry foundation wall or a
concrete slab. The walls are anchored by clip
angles fastened by bolts to the flanges of the
units, and to the foundation by anchor bolts.
At each corner of the house there is a special
4-by-4-in. corner unit having wing nuts embed-
bed in two adjacent edges, to receive bolts
passing through the flanges of the adjoining
units. The units are made in half and quarter
sizes to provide greater flexibility in the di-
mensons of walls and openings. Door and window
frames are of conventional wood or metal con-
struction. Lintels are supported on steel
angles which are fastened to the flanges of the
wall units by clip angles. Jambs are fitted with
oak strips bolted to the flanges of the units at
the opening.

If the flat surface of the units forms the out-
side face of the wall, the inside face may be
finished either by nailing wallboard directly to
the ribs or by nailing lath to the ribs and cover-
ing it with plaster. The spaces between the
ribs may be filled with thermal insulation or
serve as chases for pipes, ducts, and conduits.
In actual house construction the vertical and
horizontal joints between the units are sealed
by placing asphalt-saturated cotton fabric tub-
ing, manufactured by the Anaconda Wire &
Cable Co. under the trade name "Duraduct," in
the grooves in the sides and edges of each
unit. The joints are then caulked by filling the
\(\frac{3}{8} \)-in. rabbets along the edges of the units with
a plastic asbestos caulk compound.

The flanged surface of the units may be
turned outward and brick veneer applied as the
outside face of the wall. Metal ties for the
brickwork are fastened to the bolts in the
flanges of the units. The flat inside face may
be painted or plastered.

For floor and roof constructions the units
are bolted, with the flanges down, to light-
weight steel joists. The ends of the joists are
secured by bolting the webs of the joists to
the flanges of the wall units. If the floor is of
wood-frame construction, a wood header is
bolted to the flanges of the wall units by clip
angles. The floor joists are nailed to the
header. If the roof is of wood-frame construc-
tion, a 2-by-4-in. wood wall plate is fastened
to the top of the wall units by narrow clip
angles. The clip angles extend through holes
in the plate and are bolted to the flanges. In
addition, 12d nails are driven through the
plate into the ends of the flanges. The roof
joists are nailed to the wall plate.

2. Compressive Load

Wall specimen CH-C1 under compressive
load is shown in figure 7. The results for wall
specimens CH-C1, C2, and C3 are shown in
table 5 and in figures 8 and 9.

<table>
<thead>
<tr>
<th>Table 5.—Structural properties, wall CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Weight, 130 lb/ft²)</td>
</tr>
<tr>
<td>Specimen</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Specimen</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Load applied 1.33 in. (one-third the thickness of the specimen) from the inside surface of the ribs.

** Span 7 ft 6 in.

A kip is 1,000 lb.

Test discontinued. Specimen did not fail.

Test discontinued. Specimen damaged.
The shortenings and sets shown in figure 8 for a height of 8 ft were computed from the values obtained from the compressometer readings. The gage length of the compressometers was 8 ft \(\frac{1}{2} \) in.

The lateral deflections shown in figure 9 were plotted to the right of the vertical axis for deflections of the specimen toward the outside...
face (positive deflection) and to the left for deflections toward the inside face (negative deflection).

Although the load was eccentric toward the inside face, the specimens deflected initially toward the inside face. Under loads less than about 4 kips/ft on specimens C1 and C2 the sets were numerically little less than the deflections, but under greater loads the sets were numerically greater than the deflections and the values were nearly constant.

Under loads less than 7 kips/ft on specimen C3 the deflections were small and the sets were numerically greater. Under greater loads this specimen deflected increasingly toward the outside face, but the sets (toward the inside face) were nearly constant. Because the thickness of the bonding plates was small (0.077 in), they probably did not have a pronounced effect on the compressive properties of the specimens, but functioned principally to join and align the concrete units. Inspection of the specimens before they were tested showed that at the horizontal joints the units were in contact only at the flanges (which faced toward the inside of the wall). As regards the lateral deflections and sets under compressive loads, these specimens did not behave like elastic engineering structures, and no reasonable explanation for their behavior was found.

Figure 10.—Wall specimen CH-T4 under transverse load.
3. Transverse Load

Wall specimen $CH-T_4$ under transverse load is shown in figure 10. The results are shown in table 5 and in figure 11 for wall specimens $CH-T_1$, T_2, and T_3, loaded on the inside face, and in figure 12 for wall specimens $CH-T_4$, T_5, and T_6, loaded on the outside face.

![Figure 11](image1)

Figure 11. Transverse load on wall CH, load applied to inside face.

Load-deflection (open circles) and load-set (solid circles) results for specimens $CH-T_1$, T_2, and T_3 on the span 7 ft 6 in.

The transverse load was applied to specimen T_1 in a horizontal position. The load due to the weight of the loading apparatus and the specimen was 23.3 lb/ft2, and the deflection caused by this load was 0.77 in. The results for specimen T_1 are shown in figure 11 for loads of 25, 30, 35, and 40 lb/ft2. The transverse loads were applied to specimens T_2, T_3, T_4, T_5, and T_6 in a vertical position, as shown in figure 10; hence there was neither initial load nor deflection.

Under a load of 35 lb/ft2 on specimen T_1, the bonding plates at the longitudinal edges buckled at midspan, and under a load of 40 lb/ft2 the edges of the flanges of the units crushed along the joint at midspan. Under a load of 32.5 lb/ft2 on specimen T_2, one unit cracked along the base of the flange at midwidth, and under a load of 45 lb/ft2 one outer bonding plate buckled noticeably. Under the maximum load on each of the specimens T_1, T_2, and T_3, the flanges of the units at midspan crushed and the bonding plates on the longitudinal edges buckled. The deflection increased without an increase in the load.

Under a load of 70 lb/ft2 on specimen T_4 and of 65 lb/ft2 on specimen T_6 (applied to the outside face) the edges of one unit crushed. Under the maximum load on each of specimens T_4, T_5, and T_6, the units crushed along the transverse joints and the deflection increased continuously without an increase in the load.

![Figure 12](image2)

Figure 12. Transverse load on wall CH, load applied to outside face.

Load-deflection (open circles) and load-set (solid circles) results for specimens $CH-T_4$, T_5, and T_6 on the span 7 ft 6 in.

4. Concentrated Load

Wall specimen $CH-P_2$ under concentrated load is shown in figure 13. The results are shown in table 5 and in figure 14 for wall specimens $CH-P_1$, P_2, and P_3, loaded on the inside face, and in figure 15 for wall specimens $CH-P_4$, P_5, and P_6, loaded on the outside face.

The concentrated loads were applied to the inside face of specimens P_1, P_2, and P_3 between the flanges of a unit, the outside (flat) face resting on a steel plate. After a load of 1,000 lb had been applied, the set in speci-
Figure 13.—Wall specimen CH-P2 under concentrated load.

Figure 14.—Concentrated load on wall CH, load applied to inside face.
Load-indentation (open circles) and load set (solid circles) results for specimens CH-P1, P2, and P3.

Figure 15.—Concentrated load on wall CH, load applied to outside face.
Load-indentation (open circles) and load set (solid circles) results for specimens CH-P4, P5, and P6.
men P1 was 0.003 in., in specimen P2, 0.014 in., and in specimen P3, 0.004 in., and no other effect was observed.

The concentrated loads were applied to the outside faces of specimens P4, P5, and P6 between the flanges of a unit, the ribs of the inside face resting on a steel plate. After a load of 600 lb had been applied to each specimen, a longitudinal crack (parallel to the flanges) was visible in the inside face of the units. Under the maximum load, specimen P4 failed by widening of this crack and specimens P5 and P6 by punching of the disk through the unit. The deformations were greater than those for the inside face, because they included the deflections of the web of the unit under the transverse load.

5. Impact Load

Wall specimen CH-I3 during the impact test is shown in figure 16. The results are given in table 5 and in figure 17 for wall specimens CH-II, I2, and I3, loaded on the inside face, and in figure 18 for wall specimens CH-I4, I5, and I6, loaded on the outside face.

The impact loads were applied to the center of the inside face of specimens I1, I2, and I3, the sandbag striking the ribs at a vertical and a horizontal joint. The effects of the impact load on specimens I1, I2 and I3 are shown in table 6.

Table 6.—Effects of impact load applied to the inside face of wall CH

<table>
<thead>
<tr>
<th>Description of effects</th>
<th>Height of drop for specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>First cracks in concrete at base of ribs of either one or two units near midspan...</td>
<td>II</td>
</tr>
<tr>
<td>Failure of specimen by opening of the transverse joint at midspan...</td>
<td>2.5</td>
</tr>
<tr>
<td>Noticeable buckling of either one or two outer bonding plates...</td>
<td>2.5</td>
</tr>
<tr>
<td>Maximum height of drop; under load, specimen came in contact with floor; deflection about 2 ft...</td>
<td>3.0</td>
</tr>
<tr>
<td>Maximum height of drop; under load, specimen came in contact with floor; deflection about 2 ft...</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Figure 16.—Wall specimen CH-I3 during the impact test.
Figure 17.—Impact load on wall CH, load applied to inside face.
Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens CH-I, II, and III on the span 7 ft 6 in.

Figure 18.—Impact load on wall CH, load applied to outside face.
Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens CH-I, II, and III on the span 7 ft 6 in.

Figure 19.—Wall specimen CH-R1 under carring load.
The impact loads were applied to the center of the outside face of specimens I4, I5, and I6, the sandbag striking at a vertical and a horizontal joint. The effects of the impact load on specimens I4, I5, and I6 are shown in Table 7.

Table 7: Effects of impact load applied to the outside face of wall CH

<table>
<thead>
<tr>
<th>Description of effects</th>
<th>Height of drop for specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>First crack along base of rib of from one to four units</td>
<td>8.0 ft 8.0 ft 8.0 ft</td>
</tr>
<tr>
<td>Failure of specimen by crushing at the transverse joint at midspan and further cracking of units</td>
<td>3.5 4.0 4.5</td>
</tr>
<tr>
<td>All units cracked</td>
<td>5.5 5.5 5.5</td>
</tr>
<tr>
<td>Buckling of either one or two outer bonding plates</td>
<td>6.5 6.5 7.0</td>
</tr>
<tr>
<td>Rupture of central bonding plate near midspan</td>
<td>8.5 9.0 10.0</td>
</tr>
<tr>
<td>Maximum height of drop; under load, specimen came in contact with floor; deflection about 2 ft</td>
<td>9.0 9.0 10.0</td>
</tr>
</tbody>
</table>

*Test discontinued. Specimen badly damaged, but did not come in contact with the floor.

The description and drawings of the specimens were prepared by E. J. Schell, G. W. Shaw, and T. J. Hanley, of the Bureau’s Building Practice and Specifications Section, under the supervision of V. B. Phelan.

The tests for determining the structural properties were made by the Engineering Mechanics Section, under the supervision of H. L. Whittenmore and A. H. Stang, and by the Masonry Construction Section, under the supervision of D. E. Parsons, with the assistance of the following members of the professional staff: C. C. Fishburn, F. Cardile, H. Dollar, M. Dubin, A. H. Easton, A. S. Endler, C. D. Johnson, A. B. Lanham, P. H. Petersen, A. J. Sussman, and L. R. Sweetman.

V. SELECTED REFERENCE

Rock Products **IV**, No. 9, 59-61 (1938).

WASHINGTON, August 9, 1939.
BUILDING MATERIALS AND STRUCTURES REPORTS

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices.

An alternative method is to deposit with the Superintendent of Documents the sum of $5.00, with the request that the reports be sent to you as soon as issued, and that the cost thereof be charged against your deposit. This will provide for the mailing of the publications without delay. You will be notified when the amount of your deposit has become exhausted.

If 100 copies or more of any report are ordered at one time, a discount of 25 percent is allowed. Send all orders and remittances to the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C.

The following publications in this series are available by purchase from the Superintendent of Documents at the prices indicated:

BMS1 Research on Building Materials and Structures for Use in Low-Cost Housing 10¢
BMS2 Methods of Determining the Structural Properties of Low-Cost House Constructions 10¢
BMS3 Suitability of Fiber Insulating Lath as a Plaster Base 10¢
BMS4 Accelerated Aging of Fiber Building Boards 10¢
BMS5 Structural Properties of Six Masonry Wall Constructions 15¢
BMS6 Survey of Roofing Materials in the Southeastern States 15¢
BMS7 Water Permeability of Masonry Walls 10¢
BMS8 Methods of Investigation of Surface Treatment for Corrosion Protection of Steel 10¢
BMS9 Structural Properties of the Insulated Steel Construction Company's "Frameless-Steel" Constructions for Walls, Partitions, Floors, and Roofs 10¢
BMS10 Structural Properties of One of the "Keystone Beam Steel Floor" Constructions Spon- sored by the H. H. Robertson Company 10¢
BMS11 Structural Properties of the Curren Fabrihome Corporation's "Fabrihome" Constructions for Walls and Partitions 10¢
BMS12 Structural Properties of "Steelox" Constructions for Walls, Partitions, Floors, and Roofs Sponsored by Steel Buildings, Inc 15¢
BMS13 Properties of Some Fiber Building Boards of Current Manufacture 10¢
BMS14 Indentation and Recovery of Low-Cost Floor Coverings 10¢
BMS15 Structural Properties of "Wheeling Long-Span Steel Floor" Construction Sponsored by the Wheeling Corrugating Company 10¢
BMS16 Structural Properties of a "Tilecrete" Floor Construction Sponsored by Tilecrete Floors, Inc 10¢
BMS17 Sound Insulation of Wall and Floor Constructions 10¢
BMS18 Structural Properties of "Pre-Fab" Constructions for Walls, Partitions, and Floors Sponsored by the Harnischfeger Corporation 10¢
BMS19 Preparation and Revision of Building Codes 15¢
BMS20 Structural Properties of "Twachtman" Constructions for Walls and Floors Sponsored by Connecticut Pre-Cast Buildings Corporation 10¢
BMS21 Structural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the National Concrete Masonry Association 10¢
BMS22 Structural Properties of "Dun-Ti-Stone" Wall Construction Sponsored by the W. E. Dunn Manufacturing Company 10¢
BMS23 Structural Properties of a Brick Cavity-Wall Construction Sponsored by the Brick Manufacturers Association of New York, Inc 10¢
BMS24 Structural Properties of a Reinforced-Brick Wall Construction and a Brick-Tile Cavity- Wall Construction Sponsored by the Structural Clay Products Institute 10¢
BMS25 Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs 15¢
BMS26 Structural Properties of "Nelson Pre-Cast Concrete Foundation" Wall Construction Sponsored by the Nelson Cement Stone Company, Inc 10¢

(List continued on cover page IV)
BMS27 Structural Properties of “Bender Steel Home” Wall Construction Sponsored by The Bender Body Company. .. 10¢
BMS28 Backflow Prevention in Over-Rim Water Supplies ... 10¢
BMS29 Survey of Roofing Materials in the Northeastern States .. 10¢
BMS30 Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas Fir Plywood Association .. 10¢
BMS31 Structural Properties of “Insulite” Wall and “Insulite” Partition Constructions Sponsored by The Insulite Company .. 15¢
BMS32 Structural Properties of Two Brick-Concrete-Block Wall Constructions and a Concrete-Block Wall Construction Sponsored by the National Concrete Masonry Association 10¢
BMS33 Plastic Calking Materials .. 10¢
BMS34 Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 1 ... 10¢
BMS35 Stability of Sheathing Papers as Determined by Accelerated Aging .. 10¢
BMS36 Structural Properties of Wood-Frame Wall, Partition, Floor, and Roof Constructions with “Red Stripe” Lath Sponsored by The Weston Paper and Manufacturing Company 10¢
BMS39 Structural Properties of a Wall Construction of “Pfeifer Units” Sponsored by the Wisconsin Units Company .. 10¢