BUILDING MATERIALS
AND
STRUCTURES
REPORT BMS31
Structural Properties of
"Insulite" Wall and "Insulite"
Partition Constructions
Sponsored by The Insulite Co.

HERBERT L. WHITTEMORE
and AMBROSE H. STANG
with the collaboration of
THOMAS R. C. WILSON
Forest Products Laboratory

NATIONAL
BUREAU OF STANDARDS
The program of research on building materials and structures, carried on by the National Bureau of Standards, was undertaken with the assistance of the Central Housing Committee, an informal organization of Government agencies concerned with housing construction and finance, which is cooperating in the investigations through a subcommittee of principal technical assistants.

CENTRAL HOUSING COMMITTEE
SUBCOMMITTEE ON TECHNICAL RESEARCH

WALTER JUNGE, Chairman.
Federal Housing Administration.

ARTHUR C. SHIRE, Vice-Chairman.
United States Housing Authority.

STERLING R. MARCH, Secretary.

GEORGE E. KNOX,
Yards and Docks (Navy).

VINCENT B. PHELAN,
National Bureau of Standards (Commerce).

EDWARD A. POYNTON,
Office of Indian Affairs (Interior).

GEORGE W. TRAYER,
Forest Service (Agriculture).

ELSMERE J. WALTERS,
Construction Division (War).

CHAIRMEN OF SECTIONS

Specifications
Carroll W. Chamberlain

Materials
Elsmere J. Walters

Maintenance
John H. Schaefer

Mechanical Equipment
Robert K. Thulman

Methods and Practices

NATIONAL BUREAU OF STANDARDS

STAFF COMMITTEE ON ADMINISTRATION AND COORDINATION

HUGH L. DRYDEN, Chairman.

Mechanics and Sound.

Phaon H. Bates,
Clay and Silicate Products.

Gustav E. F. Lundell,
Chemistry.

Hobart C. Dickinson,
Heat and Power.

Addams S. McAllister,
Codes and Specifications.

Warren E. Emley,
Organic and Fibrous Materials.

Henry S. Rawdon,
Metallurgy.

The Forest Products Laboratory of the United States Department of Agriculture is cooperating with both committees on investigations of wood constructions.

[For list of BMS publications and how to purchase, see cover page III.]
BUILDING MATERIALS
and STRUCTURES

REPORT BMS31

Structural Properties of
"Insulite" Wall and "Insulite" Partition Constructions
Sponsored by The Insulite Co.

by HERBERT L. WHITTEMORE and AMBROSE H. STANG

with the collaboration of
THOMAS R. C. WILSON
Forest Products Laboratory
Forest Service, United States Department of Agriculture

ISSUED OCTOBER 26, 1939

The National Bureau of Standards is a fact-finding organization; it does not "approve" any particular material or method of construction. The technical findings in this series of reports are to be construed accordingly.

UNITED STATES GOVERNMENT PRINTING OFFICE • WASHINGTON • 1939
FOR SALE BY THE SUPERINTENDENT OF DOCUMENTS, WASHINGTON, D. C. • PRICE 15 CENTS
Foreword

This report is one of a series issued by the National Bureau of Standards on the structural properties of constructions intended for low-cost houses and apartments. These constructions were sponsored by industrial organizations advocating and promoting their use. The sponsor built and submitted specimens described in this report for the program outlined in BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions. The sponsor, therefore, is responsible for the description of the specimens and the method of fabrication. The Bureau is responsible for the method of testing and the test results.

This report covers only the load-deformation relations and strength of the structural elements when subjected to compressive, transverse, impact, concentrated, and racking loads by standardized methods simulating the loads to which the element would be subjected in actual service. Later it may be feasible to determine the heat transmission at ordinary temperatures and the fire resistance of these same constructions and perhaps other properties.

The National Bureau of Standards does not “approve” a construction, nor does it express an opinion as to the merits of a construction for the reasons given in reports BMS1 and BMS2. The technical facts on these and other constructions provide the basic data from which architects and engineers can determine whether a construction meets desired performance requirements.

Lyman J. Briggs, Director.
Structural Properties of "Insulite" Wall and "Insulite" Partition Constructions Sponsored by The Insulite Co.

by HERBERT L. WHITTEMORE and AMBROSE H. STANG

with the collaboration of THOMAS R. C. WILSON, Forest Products Laboratory, Forest Service, United States Department of Agriculture

CONTENTS

Foreword .. 11
I. Introduction 2
II. Sponsor and product 2
III. Specimens and tests 3
IV. Materials 3
1. Sources of information 3
2. Wood .. 4
 (a) Framing 4
 (b) Bevel siding 4
 (c) Nailing strips 4
 (d) Furring strips 4
 (e) Shingles 4
3. Insulating board 5
 (a) General 5
 (b) "Bildrite" sheathing 6
 (c) "Graylite" interior board 6
 (d) "Lok-Joint" lath 6
4. Nails .. 8
5. Plaster 8
6. Stucco finish 9
 (a) Stucco 9
 (b) Sheathing paper 10
 (c) Metal lath 10
 (d) Staples 10
 (e) Wire 10
7. Brick veneer 10
 (a) Brick 10
 (b) Mortar 10
 (c) Wall ties 11
V. Wall BG 11
1. Description, sponsor's statement 11
 (a) Four-foot wall specimens 11
 (b) Eight-foot wall specimens 12
2. Compressive load 12
3. Transverse load 14
4. Concentrated load 15
5. Impact load 17
6. Racking load 18
VI. Wall BH 18
1. Description, sponsor's statement 18
 (a) Four-foot wall specimens 18
 (b) Eight-foot wall specimens 19
2. Compressive load 20
3. Transverse load 20
4. Concentrated load 21
5. Impact load 21
6. Racking load 23

VII. Wall BL 21
1. Description, sponsor's statement 21
 (a) Four-foot wall specimens 21
 (b) Eight-foot wall specimens 25
2. Compressive load 25
3. Transverse load 26
4. Concentrated load 27
5. Impact load 28
6. Racking load 29

VIII. Wall BI 29
1. Description, sponsor's statement 29
 (a) Four-foot wall specimens 29
 (b) Eight-foot wall specimens 30
2. Compressive load 30
3. Transverse load 31
4. Concentrated load 32
5. Impact load 33
6. Racking load 34

IX. Wall BK 35
1. Description, sponsor's statement 35
 (a) Four-foot wall specimens 35
 (b) Eight-foot wall specimens 36
2. Compressive load 36
3. Transverse load 37
4. Concentrated load 38
5. Impact load 40
6. Racking load 41

X. Wall BL 41
1. Description, sponsor's statement 41
 (a) Four-foot wall specimens 41
 (b) Eight-foot wall specimens 42
2. Compressive load 42
3. Transverse load 43
4. Concentrated load 43
5. Impact load 45
6. Racking load 46

XI. Partition BM 47
1. Description, sponsor's statement 47
 (a) Four-foot wall specimens 47
 (b) Eight-foot wall specimens 48
2. Impact load 49
3. Concentrated load 48

XII. Partition BN 49
1. Description, sponsor's statement 49
2. Impact load 50
3. Concentrated load 50

XIII. Sponsor's comments 52

XIV. Selected references 52
ABSTRACT

For the program on the determination of the structural properties of low-cost house constructions, The Insulite Co. submitted 114 specimens representing 6 wall and 2 partition constructions having wood framing with "Bildrite" sheathing, "Graylite" interior board, and "Lok-Joint" lath.

The wall specimens were subjected to compressive, transverse, concentrated, impact, and racking loads and the partition specimens to impact and concentrated loads. The transverse, concentrated, and impact loads were applied to both faces of wall specimens. For each of these loads three like specimens were tested. The deformation under load and the set after the load was removed were measured for uniform increments of load, except for concentrated loads, for which the set only was determined. The results are presented in graphs and in tables.

I. INTRODUCTION

In order to provide technical facts on the performance of constructions which might be used in low-cost houses, to discover promising constructions, and ultimately to determine the properties necessary for acceptable performance, the National Bureau of Standards has invited the building industry to cooperate in a program of research on building materials and structures for use in low-cost houses and apartments. The objectives of this program are described in report BMS1, Research on Building Materials and Structures for Use in Low-Cost Housing, and that part of the program relating to structural properties in report BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions.

Masonry constructions and wood constructions which have been extensively used in this country for houses were included in the program for the determination of the structural properties by the standardized laboratory methods described in BMS2 because their behavior under widely different service conditions is known to both builders and the public. The reports on these constructions are BMS5, Structural Properties of Six Masonry Wall Constructions, and BMS25, Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs. These wood-frame constructions were built and tested by the Forest Products Laboratory at Madison, Wis.

This report describes the structural properties of constructions sponsored by one of the manufacturers in the building industry. The specimens were subjected to compressive, transverse, concentrated, impact, and racking loads, simulating loads to which the elements of a house are subjected. In actual service, compressive loads on a wall are produced by the weight of the roof, second floor and second-story walls, if any, furniture and occupants, and snow and wind loads on the roof. Transverse loads on a wall are produced by the wind, concentrated and impact loads by furniture or accidental contact with heavy objects, and racking loads by the action of the wind on adjoining walls. For nonload-bearing partitions, impact loads may be applied accidentally by furniture or by a person falling against a partition, and concentrated loads by furniture or by a ladder or other object leaning against the partition.

The deformation and set under each increment of load were measured because, considered as a structure, the suitability of a wall or partition construction depends not only on its resistance to deformation when loads are applied but also on whether it returns to its original size and shape when the loads are removed.

II. SPONSOR AND PRODUCT

The specimens were submitted by The Insulite Co., Minneapolis, Minn., and represented wood-frame wall and partition constructions with "Bildrite" sheathing, "Graylite" interior board, and "Lok-Joint" lath. The wood-fiber insulating board was manufactured by The Insulite Co. and marketed under the trade names "Bildrite" sheathing, "Graylite" interior board, and "Lok-Joint" lath.

The wood framing was red pine, No. 1 common. The wall constructions had nominal 2-by 4-in. studs spaced 1 ft. 4 in. on centers, fastened to a single floor plate and a double top plate. The framing of the partition constructions was similar to that of the wall constructions, with the exception that the top plate was single, not double.

The outside face of the wall constructions was "Bildrite" sheathing covered with wood bevel siding, stucco, brick veneer, or wood shingles. The inside face of the wall constructions and both faces of the partition construc-
tions were either "Graylite" interior board or "Lok-Joint" lath and gypsum plaster.

III. SPECIMENS AND TESTS

The six wall constructions and the two partition constructions were assigned the symbols given in table 1. The specimens were assigned the designations given in table 2.

Table 1.—Construction symbols

<table>
<thead>
<tr>
<th>Element</th>
<th>Construction symbol</th>
<th>Outside face</th>
<th>Inside face</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall...</td>
<td>BG</td>
<td>"Bildrite" sheathing and wood bevel siding.</td>
<td>"Lok-Joint" lath and plaster.</td>
</tr>
<tr>
<td>Do...</td>
<td>BH</td>
<td>do</td>
<td>"Graylite" interior board, 0.3 in. thick.</td>
</tr>
<tr>
<td>Do...</td>
<td>BI</td>
<td>do</td>
<td>"Graylite" interior board, 0.4 in. thick.</td>
</tr>
<tr>
<td>Do...</td>
<td>BJ</td>
<td>"Bildrite" sheathing, sheathing paper, metal lath, and stucco.</td>
<td>"Lok-Joint" lath and plaster.</td>
</tr>
<tr>
<td>Do...</td>
<td>BK</td>
<td>"Bildrite" sheathing and brick veneer.</td>
<td>Do.</td>
</tr>
<tr>
<td>Do...</td>
<td>BL</td>
<td>"Bildrite" sheathing, wood lathing strips, and wood shingles.</td>
<td>Do.</td>
</tr>
<tr>
<td>Partition Do...</td>
<td>BM</td>
<td>"Lok-Joint" lath and plaster.</td>
<td>Do.</td>
</tr>
<tr>
<td>Do...</td>
<td>BN</td>
<td>"Graylite" interior board, 0.1 in. thick.</td>
<td>Do.</td>
</tr>
</tbody>
</table>

Table 2.—Specimen designations

<table>
<thead>
<tr>
<th>Element</th>
<th>Specimen designation</th>
<th>Load</th>
<th>Load applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall...</td>
<td>C1, C2, C3</td>
<td>Compressive</td>
<td>Upper end.</td>
</tr>
<tr>
<td>Do...</td>
<td>T1, T2, T3</td>
<td>Transverse</td>
<td>Inside face.</td>
</tr>
<tr>
<td>Do...</td>
<td>P1, P2, P3, P4</td>
<td>Concentrated</td>
<td>Outside face.</td>
</tr>
<tr>
<td>Do...</td>
<td>T1, B1, B2</td>
<td>Impact</td>
<td>Inside face.</td>
</tr>
<tr>
<td>Do...</td>
<td>R1, R2, R3</td>
<td>Racking</td>
<td>Outside face.</td>
</tr>
<tr>
<td>Partition Do...</td>
<td>P1, P2, P3</td>
<td>Concentrated</td>
<td>Either face.</td>
</tr>
</tbody>
</table>

* These specimens were undamaged portions of either the transverse or the impact specimens.

The specimens were tested in accordance with BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions, which also gives the requirements for the specimens and describes the presentation of the results of the tests, particularly the load-deformation graphs. Thomas R. C. Wilson of the Forest Products Laboratory, Madison, Wis., cooperated with the Bureau staff in this work by giving advice and suggestions on the technique of testing wood structures.

For the compressive test the thickness of the wall was taken as the thickness of the structural portion, that is, the distance from the inside surface of the studs to the outside surface of the studs. The compressive load was applied one-third this thickness from the inside surface of the studs. The shortenings and sets were measured by means of compressometers attached to the steel loading plates through which the load was applied to the specimen, not to the specimen as described in BMS2. For wood-frame constructions under compressive load there is considerable local shortening caused by crushing of the floor plate and the top plate at the ends of the studs. Therefore, the shortening of the entire specimen is not proportional to the value obtained from compressometers attached near each end of the specimen.

Before applying the loads, the speed of the movable head of the testing machine was measured under no load. For compressive loading the speed was 0.3 in./min. For transverse loading the speed was 0.44 in./min, except for the BK specimens. The transverse load was applied to the BK specimens by means of a jack operated manually, and the speed could not be closely regulated.

Each BG, BL, and BM specimen was tested on the 28th day following the application of the finish coat of plaster. Each BJ specimen was tested on the 28th day after completion of the stucco and the application of the finish coat of plaster. Each BK specimen was tested on the 28th day after completion of the brick veneer and the application of the base coat of plaster. For these BK specimens the age of the base coat when the finish coat of plaster was applied ranged from 6 to 14 days.

The tests were begun July 23, 1938, and completed October 25, 1938. The sponsor's representative witnessed the tests.

IV. MATERIALS

1. SOURCES OF INFORMATION

Sponsor's statement.—Unless otherwise stated, the information on materials was obtained from the sponsor and from inspection of the specimens.

Forest Products Laboratory.—The species of all the woods and also the grade of the wood
framing were determined by the Forest Products Laboratory. The Laboratory also supervised the determination of the moisture content of the wood.

Paper Section.—The physical properties of the sheathing, interior board, and lath were determined by the Paper Section of the Bureau.

Lime and Gypsum Section.—The properties of the plaster were determined by the Lime and Gypsum Section of the Bureau.

Masonry Construction Section.—The properties of the stucco, brick, and mortar were determined by the Masonry Construction Section of the Bureau.

2. Wood

(a) Framing

Studs, floor plates, and top plates, red pine (Pinus resinosa, usually designated Norway pine), No. 1 common, S4S (surfaced four sides), 1½ by 3½ in. (nominal 2 by 4 in.).

(b) Bevel Siding

Northern white pine, select, grade B or better, ¾ by ½ by 5½ in., 4 ft 0 in. long.

(c) Nailing Strips

Red pine (Pinus resinosa), No. 2 common, S2S (surfaced two sides), ¾ by ¾ in.

(d) Furring Strips

Red pine (Pinus resinosa), No. 2 common, S2S1E (surfaced two sides, one edge), ¾ by 1½ in., 4 ft 0 in. long.

(e) Shingles

Western red cedar, grade No. 1 (100 percent edge grain, 100 percent heart, 100 percent clear), 16 in. long, five butts to 2 in., dried by air. Brand “Highland.”

Forest Products Laboratory.—After each specimen was tested, one face was removed to expose the studs and photographs were taken showing the knots and failures. The grade of the wood framing was determined from these photographs. The studs ranged from almost straight grain with few knots, as shown in figure 1, to many knots, as shown in figure 2. A typical frame is shown in figure 3.

The moisture content of all the wood (except the nailing strips) is given in table 3.

![Figure 1. Frame of wall specimen BK-14.](image)

Almost straight grain with few knots.
Table 3.—Moisture content of the wood

<table>
<thead>
<tr>
<th>Wood</th>
<th>Construction symbol</th>
<th>Moisture content *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
</tr>
<tr>
<td></td>
<td>Percent</td>
<td>Percent</td>
</tr>
<tr>
<td>Framing, red pine</td>
<td>BG</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>BJ</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>BI</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>BL</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>BM</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>BN</td>
<td>11</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Bevel siding, northern white pine</td>
<td>BG</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>BJ</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>BI</td>
<td>8</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furring strips, red pine, shingles, western red cedar</td>
<td>BL</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

* Based on the weight when dry.

The moisture content was the difference between the initial weight and the weight when dry, divided by the weight when dry. The average value for these samples was 0.7 greater than the average of the meter readings; therefore, the moisture content of the red pine was obtained by adding 0.7 to the meter readings and rounding the result to the nearest whole number.

The moisture content of the wood in each specimen was determined on each stud. If the construction included these materials, it was determined on about one-half of the pieces of bevel siding and on 4 furring strips and about 10 shingles.

3. Insulating Board

(a) General

All the insulating boards were made from wood fibers produced by a cold-grinding process and felted into a board. The fibers were chemically treated to increase the water resistance and to resist rot and termites. One surface of the boards had the appearance of closely woven fabric, designated "linen tex-
ture”; the other surface had the appearance of loosely woven fabric, designated “burlap texture.”

(b) “Bildrite” Sheathing

Rigid insulating board, 25/32 in. thick, made as described under (a), with the exception that the wood fibers were intimately mixed with finely divided asphalt before felting. The asphalt was added to increase the strength and water resistance. Color, grayish brown. The recommended location for nails was marked on the linen-textured surface.

(c) “Graylite” Interior Board

Rigid insulating board, 1/2 and 3/4 in. thick, made as described under (a), with the exception that asphalt was added as for “Bildrite” sheathing. Color, grayish brown.

(d) “Lok-Joint” Lath

Rigid insulation board made as described under (a), 1/2 in. thick, 1 ft 6 in. by 4 ft 0 in., shiplapped along each of the longer edges as shown at A, figure 4. There were three “Loks,” spaced about 1 ft 4 in. on one shiplapped edge of each lath. The “Lok,” B, was a loop of galvanized steel wire, No. 12 (0.1055-in. diam before galvanizing), reinforced by a staple, C, of steel wire No. 19 (0.041-in. diam). The “Loks” were attached to the lath to prevent lateral displacement with respect to the adjacent lath, particularly when the plaster was applied.

Paper Section.—The physical properties of the sheathing, interior board, and lath are given in table 4.

The samples of the boards were taken from the specimens after they had been tested. Probably the properties of the lath were affected by the removal of the plaster.
The transverse strength and deflection at ultimate load, tensile strength, water absorption, and linear expansion were determined in accordance with Federal Specification LLL-F-321a, Fiber-Board; Insulating. For these properties the sheathing and the building board complied with the requirements for class A. For these properties, except for the deflection at ultimate load of the crosswise specimen, the lath complied with the requirements for class B. In the crosswise specimen the deflection exceeded the specified maximum of 0.85 in.

The air permeability given in table 4 was determined with the apparatus developed by F. T. Carson.\(^1\) The nail-holding strength was measured by the method described in BMS4, Accelerated Aging of Fiber Building Boards, with the exception that the nails, common, 6d, 2 in. long, No. 11½ steel wire (0.113-in. diam), were ½ in., not ¾ in., from the edge of the board. A distance of ½ in. was used because this was approximately the distance in the wall and partition specimens.

The moisture content of the sheathing, interior board, and lath, determined by oven-
drying at 212° F to constant weight, is given in Table 5.

Table 5.—Moisture content of the sheathing, interior board, and lath

<table>
<thead>
<tr>
<th>Board</th>
<th>Specimen</th>
<th>Moisture content</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>Bildrite sheathing</td>
<td>25/32</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graylite interior board</td>
<td>3/4</td>
<td>6</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Do</td>
<td>1/2</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lok-Joint lath</td>
<td>1/2</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Based on the weight when dry.

4. Nails

The nails were made from steel wire, and the description is given in Table 6.

Table 6.—Description of nails

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Length</th>
<th>Steel wire gauge</th>
<th>Head diam</th>
<th>Finish</th>
</tr>
</thead>
</table>
| Box | 6 | 1/4 | 134 | 0.063 | Cement coated, galvanized,
| Do | 10 | 21/4 | 134 | 0.063 | |
| Common | 8 | 15/4 | 104 | 0.115 | |
| Do | 10 | 3 | 15/4 | 0.115 | |
| Finishing | 16 | 3 | 8 | 0.115 | |
| Plasterboard | 14 | 13 | 6915 | 0.115 | Blued,
| Roofing | 15/4 | 13 | 9515 | 0.115 | Zinc coated, galvanized,

5. Plaster

The plaster was applied in two coats. The base coat was 1 part of neat gypsum plaster and 2 parts of Potomac River building sand, by weight. The finish coat was 1 part of gaging plaster and 3 parts of hydrated finishing lime, by volume. The neat gypsum plaster, the gaging plaster, and the finishing lime were United States Gypsum Co.'s "Red Top." The plastering contractor was instructed to apply the plaster to the specimens as he would to the walls and partitions of a house.

Time and Gypsum Section.—The properties of the plaster were determined in accordance with Federal Specification SS-P-401, Plaster; Gypsum. The time of set of the neat gypsum plaster for batches 1 to 20, inclusive, was 5½ hr, and the tensile strength was 250 lb/in². The time of set of the neat gypsum plaster for batches 21, 22, and 23 was 15 hr, and the tensile strength was 270 lb/in². Accelerator was added to batches 21, 22, and 23 to decrease the time of set to about 5½ hr. The neat gypsum plaster complied with the requirements for time of set and tensile strength in the Federal specification.

The tensile strength of the sanded plaster for the base coat was determined on samples of each batch of the wet plaster taken from the job. The plaster was cast in briquet molds and cured in accordance with paragraph F-2f (1) of Federal Specification SS-P-401, Plaster; Gypsum. The tensile strength of the sanded plaster is given in Table 7.

Table 7.—Tensile strength of the sanded plaster

<table>
<thead>
<tr>
<th>Batch number</th>
<th>Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specimens</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BG-C1, T1, T2, R1</td>
</tr>
<tr>
<td>2</td>
<td>BG-T2, (P1), (P2), R2</td>
</tr>
<tr>
<td>3</td>
<td>BG-T2, (P1), R1, R5</td>
</tr>
<tr>
<td>4</td>
<td>BG-C5, T2, E</td>
</tr>
<tr>
<td>5</td>
<td>BG-C5, T2, BL-T1</td>
</tr>
<tr>
<td>6</td>
<td>BG-E, BL-R1, R2</td>
</tr>
<tr>
<td>7</td>
<td>BL-T5, T3, (P1), (P2)</td>
</tr>
<tr>
<td>8</td>
<td>BL-C5, T1, (P1), R1</td>
</tr>
<tr>
<td>9</td>
<td>BL-T5, T5, R3</td>
</tr>
<tr>
<td>10</td>
<td>BL-C5, T2, R5</td>
</tr>
<tr>
<td>11</td>
<td>BL-E, (P1), (P2), (P3)</td>
</tr>
<tr>
<td>12</td>
<td>BL-C1, T1, T2</td>
</tr>
<tr>
<td>13</td>
<td>BL-C5, C5, T3, T5, (P1), (P2), (P3)</td>
</tr>
<tr>
<td>14</td>
<td>BL-T6, T5, (P5), (P6)</td>
</tr>
<tr>
<td>15</td>
<td>BL-R2</td>
</tr>
<tr>
<td>16</td>
<td>BL-E, E, R1</td>
</tr>
<tr>
<td>17</td>
<td>BL-C1, (P1), T5, (P5)</td>
</tr>
<tr>
<td>18</td>
<td>BL-C5, T5, T6</td>
</tr>
<tr>
<td>19</td>
<td>BL-C5, T2, T5</td>
</tr>
<tr>
<td>20</td>
<td>BL-E, E, R1</td>
</tr>
<tr>
<td>21</td>
<td>BK-J, E</td>
</tr>
<tr>
<td>22</td>
<td>BK-J, R1</td>
</tr>
<tr>
<td>23</td>
<td>BK-R2, R3</td>
</tr>
</tbody>
</table>

* The concentrated load specimens shown in parentheses were undamaged portions of either the transverse or the impact specimens immediately preceding.

The tensile strength of different batches of the sanded plaster varied principally with the quantity of water in the plaster mix, as indicated by the differences between batch 20 and batch 21. For batch 20 the slump was 1/4 in. and the tensile strength 90 lb/in². For batch 21 the slump was 3 1/2 in. (less water) and the tensile strength 190 lb/in².
There are no requirements in the Federal specification for the tensile strength of sanded plaster which has been sanded on the job. The tensile strength of each batch exceeded the specified minimum tensile strength for ready-sanded, scratch-coat plaster.

The proportions of plaster and sand in the set plaster were determined for two batches in accordance with the proposed revision, 1938, of Methods of Testing Gypsum and Gypsum Products, American Society for Testing Materials, Designation C26–33. The ratio was 1 part of plaster to 2 parts of sand, by weight.

The time of set, the proportions of plaster and sand in the base coat, and the thickness of the plaster complied with the recommendations for two-coat plastering in BMS3, Suitability of Fiber Insulating Lath as a Plaster Base. No buckles or cracks were observed in any of the specimens.

6. STUCCO FINISH

(a) Stucco

The materials for the stucco were Standard Lime and Stone Co.’s “Capitol” portland cement, lime putty made by slaking Standard Lime and Stone Co.’s “Washington” powdered quicklime, and coarse Potomac River building sand (maximum size 7/8 in.).

The stucco was 1 part of Portland cement, 0.11 part of hydrated lime, and 2.72 parts of dry sand, by weight. The proportions by volume were 1 part of cement, 0.25 part of hydrated lime, and 3.2 parts of loose damp sand, assuming that Portland cement weighs 94 lb/ft², dry hydrated lime 40 lb/ft², and 80 lb of dry sand are equivalent to 1 ft² of loose damp sand. The materials for each batch were measured by weight, corrections being made for the moisture content of the lime putty and the sand. The stucco was hand-mixed in a mortar box, using either one or two bags of cement to the batch.

The stucco was applied in three coats, each coat being at least 1/8 in. thick, giving a total thickness of about 1 in. The second coat was applied 1 day after the first coat, and the third, 3 days after the second. The first two coats were scratched thoroughly. The third coat was rubbed down with a wood-shingle float about 1/2 hr after being screeded. The specimens were covered with wet burlap for 1 day after the application of each coat, and the finish coat was sprinkled with water daily for about 7 days.

Masonry Construction Section.—The cement complied with the requirements of Federal Specification SS–C–191a, Cement; Portland, for fineness, soundness, time of setting, and tensile strength. The lime putty contained about 40 percent of dry hydrate, by weight, and had a plasticity of over 600, measured in accordance with Federal Specification SS–L–351, Lime; Hydrated (for) Structural Purposes. The sieve analysis of the sand is given in table 8.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One or more samples were taken from each batch of stucco, the flow was determined in accordance with Federal Specification SS–C–181b, Cement; Masonry, and six 2-in. cubes were made. Three cubes were stored in water at 70° F and three in air near the wall specimens. The physical properties of the stucco are given in table 9.

<table>
<thead>
<tr>
<th>Batch</th>
<th>Specimens</th>
<th>Compressive strength *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st coat</td>
<td>2nd coat</td>
</tr>
<tr>
<td>1</td>
<td>C1, T1, T3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C2, T2, T3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S3, T2, B, H</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C2, C3, T3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>T6, B, B(P6),</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>T6, T6, B(P6),</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1/4 of R1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1/4 of R2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1/4 of R3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>R1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>R2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>B(P6)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>B(P6), R6</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>R1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>R2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>R3</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>B(P6), R6</td>
<td></td>
</tr>
</tbody>
</table>

* Determined on the day the specimen was tested.
The average water content of the stucco mix was 17.5 percent by weight of the dry materials.

(b) Sheathing Paper

Felted-paper base, saturated with tar; weight, 60 lb/432 ft²; width of roll, 2 ft 8 in. The Barrett Co.'s "Black Diamond," No. 14.

(c) Metal Lath

Self-furring, expanded metal, ½- by ½-in. diamond mesh, formed from sheet steel, No. 24 U. S. Std. Gage (0.0245 in. thick), zinc coated; weight, 3.4 lb/yd²; width of sheets, 3 ft 4 in. Milecor Steel Co.'s "Smalmesh."

(d) Staples

Fence staples, 1½ in. long, made from steel wire, No. 9 gage (0.148-in. diam), zinc coated.

(e) Wire

Steel, No. 18 gage (0.0475-in. diam before galvanizing), zinc coated.

7. Brick Veneer

(a) Brick

The brick were No. 1 common red, selected, made by West Bros. Brick Co., Arlington, Va. The brick were of clay formed by the stiff-mud, side-cut process. The average dimensions were 8.37 by 3.80 by 2.28 in. (about 8½ by 3½ by 2½ in). There were three ½-in. holes through each brick, spaced 1½ in. on centers symmetrically along the lengthwise center line.

Masonry Construction Section.—The physical properties of the brick are given in table 10.

Table 10.—Physical properties of the brick, wall BK

<table>
<thead>
<tr>
<th>Compressive Strength</th>
<th>Water absorption by total immersion</th>
<th>Water absorption by partial immersion,a</th>
<th>Weight, dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus of rupture</td>
<td>5-hr cold</td>
<td>24-hr cold, C</td>
<td>5-hr boil, B</td>
</tr>
<tr>
<td></td>
<td>8 ½ in.</td>
<td>8 in.</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>1 min</td>
<td></td>
<td>48.0</td>
</tr>
</tbody>
</table>

a Immersed on that side in 1½ in. of water.

The physical properties were determined in accordance with the ASTM Standard C67-37, so far as this standard applied. The brick complied with the requirements of grade II, Federal Specification SS–B–656, Brick; Building (Common), Clay.

When the laying of the brick veneer was started, the water absorption for partial immersion for 1 min was between 10 and 20 grams/brick. The mason complained that the brick were too wet; and that the excess mortar from the bed joints dropped into the cavity behind the veneer and pushed the brick away from the sheathing. The brick were dried until the absorption was between 20 and 30 grams/brick.

(b) Mortar

The materials for the mortar were Standard Lime and Stone Co.'s “Capitol” portland cement, lime putty made by slaking Standard Lime and Stone Co.'s “Washington” powdered quicklime, and Potomac River building sand.

The mortar was 1 part of portland cement, 0.11 part of hydrated lime, and 2.6 parts of dry sand, by weight. The proportions by volume were 1 part of cement, 0.25 part of hydrated lime, and 3.2 parts of loose damp sand, assuming that portland cement weighs 94 lb/ft³, dry hydrated lime 40 lb/ft³, and 80 lb of dry sand are equivalent to 1 ft³ of loose damp sand. The materials for each batch were measured by weight and mixed in a batch mixer having a capacity of ½ ft³.

Masonry Construction Section.—The cement complied with the requirements of Federal Specification SS–C–191a for fineness, soundness, time of setting, and tensile strength. The lime putty contained about 40 percent of dry hydrate, by weight, and had a plasticity of over 600, measured in accordance with Federal Specification SS–L–351, Quicklime; (for) Structural Purposes. The sieve analysis of the sand is given in table 11.

Table 11.—Sieve analysis of the sand for the mortar, wall BK

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Percent 100</td>
<td>50</td>
<td>Percent 21</td>
</tr>
<tr>
<td>16</td>
<td>Percent 100</td>
<td>82</td>
<td>Percent 3</td>
</tr>
</tbody>
</table>

Samples were taken from at least one batch of mortar for each wall specimen, the flow determined in accordance with Federal Specification SS-C-181b, and six 2-in. cubes were made. Three cubes were stored in water at 70°F and three stored in air near each specimen. The physical properties of the mortar are given in Table 12.

Table 12.—Physical properties of mortar, wall BK

<table>
<thead>
<tr>
<th>Batch</th>
<th>Specimens</th>
<th>Flow</th>
<th>Compressive strength *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Air storage</td>
</tr>
<tr>
<td>1</td>
<td>C1, T1, T2</td>
<td>111</td>
<td>2.880</td>
</tr>
<tr>
<td>2</td>
<td>C2, T2</td>
<td>112</td>
<td>2.465</td>
</tr>
<tr>
<td>3</td>
<td>T3</td>
<td>99</td>
<td>2.145</td>
</tr>
<tr>
<td>4</td>
<td>C3, T3, T8</td>
<td>128</td>
<td>1.920</td>
</tr>
<tr>
<td>5</td>
<td>B, B, D</td>
<td>125</td>
<td>2.600</td>
</tr>
<tr>
<td>6</td>
<td>B, D</td>
<td>119</td>
<td>2.590</td>
</tr>
<tr>
<td>7</td>
<td>B, B</td>
<td>128</td>
<td>2.550</td>
</tr>
<tr>
<td>8</td>
<td>B, B</td>
<td>126</td>
<td>2.600</td>
</tr>
<tr>
<td>9</td>
<td>B, B</td>
<td>126</td>
<td>2.460</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>118</td>
<td>2.460</td>
</tr>
</tbody>
</table>

* Determined on the day the specimen was tested.

(c) Wall Ties

Corrugated sheet steel, 7 by ¾ in., No. 26 U. S. Std. Gage (0.0184 in. thick), galvanized, Milcor Steel Co.

V. WALL BG

1. Description, Sponsor’s Statement

This construction was a wood frame with “Bildrite” sheathing and wood bevel siding on the outside face; “Lok-Joint” lath and plaster on the inside face.

The price in Washington, D. C., as of July 1937, was $0.33/ft².

(a) Four-Foot Wall Specimens

The 4-ft wall specimens were 8 ft 0 in. high, 4 ft 0 in. wide, and 6½ in. thick. Each specimen consisted of a wood frame to which the faces were fastened. The frame consisted of three studs, A, shown in figure 5, fastened to a floor plate, B, and a top plate, C, by nails. The outside face consisted of insulating-board sheathing, D, and wood bevel siding, E. The inside face consisted of wood nailing strips, F, insulating-board lath, G, and plaster, H. The specimens were not painted.

Studs.—The studs, A, were red pine, 1½ by 3½ in. (nominal 2 by 4 in.), 7 ft 7½ in. long, spaced 1 ft 4 in. on centers. The lower end of each stud was fastened to the floor plate by two 16d common nails driven from the bottom of the plate (not toenailed), and the upper end of each stud was fastened to the top plate by two 16d common nails driven from the top of the lower member of the plate.

Floor plate.—The floor plate, B, was red pine, 1½ by 3½ in. (nominal 2 by 4 in.), 4 ft 0 in. long.

Top plate.—The top plate, C, consisted of two pieces of red pine, 1½ by 3½ in. (nominal 2 by 4 in.), 4 ft 0 in. long, fastened by ten 10d common nails uniformly spaced and driven from the top of the upper member of the plate.

Sheathing.—The sheathing, D, was two “Bildrite” sheathing boards, 2½ in. by 1 ft 11½ in., 8 ft 0 in. long, with the linen-textured surface
outward. There was a vertical joint on the center stud with \(\frac{3}{8} \)-in. clearance between the edges of the boards. The boards were fastened to the center stud, the floor plate, and the top plate by \(8d \) common nails spaced 3 in., about \(\frac{3}{8} \) in. from the edges of the boards, and to the two outer studs by \(8d \) common nails spaced 6 in.

Bevel siding.—The bevel siding, \(E \), was 21 pieces of northern white pine, \(\frac{3}{4} \) by \(\frac{3}{8} \) by 5\(\frac{1}{2} \) in., 4 ft 0 in. long, exposed 4\(\frac{1}{2} \) in. to the weather, and fastened through the overlapping edges by 10d box nails, one at each stud.

Nailing strips.—The nailing strips, \(F \), were red pine, \(\frac{3}{4} \) by \(\frac{3}{8} \) in., 7 ft 7 in. long. In the specimen they supported the outer edge of the lath to facilitate plastering, but they are not used in a house.

Lath.—The lath, \(G \), consisted of "Lok-Joint" lath, five full courses and one course cut to a height of 7\% in., as shown in figure 6. The plaster was on the burlap-textured sur-

face. There was a vertical joint in each course, centered on a stud, with \(\frac{3}{8} \)-in. clearance between the edges of the lath. The horizontal joints (shiplapped) were reinforced by "Loks," three at each joint. The lath was fastened to the studs, floor plate, top plate, and nailing strips by plasterboard nails, spaced 4 in., about \(\frac{3}{8} \) in. from the edges of the lath.

Plaster.—The plaster, \(H \), was \(\frac{3}{4} \) in. thick and consisted of a base coat and a finish coat. The lath was dry when the plaster was applied.

(b) Eight-Foot Wall Specimens

The 8-ft wall specimens were 8 ft 0 in. high, 8 ft 0 in. face width, and 6\% in. thick. The specimens were similar to the 4-ft specimens, with the exception that there were seven studs, spaced 1 ft 4 in. on centers and no nailing strips. There was a stud at each edge extending one-half its thickness beyond the faces, width over-all 8 ft 1\% in. The two members of the top plate were fastened by twenty 10d common nails, uniformly spaced.

Sheathing.—The sheathing consisted of two boards, 3 ft 11\% in. wide, having a vertical joint on the center stud with \(\frac{3}{8} \)-in. clearance between the edges of the boards. The boards were fastened to the edge studs, center stud, floor plate, and top plate by \(8d \) common nails spaced 3 in., about \(\frac{3}{8} \) in. from the edges of the boards, and to the other four studs by \(8d \) common nails spaced 6 in.

2. Compressive Load

The results for wall specimens \(BG-C1 \), \(C2 \), and \(C3 \) are shown in table 13 and in figures 7 and 8.

The lateral deflections shown in figure 8 were plotted to the right of the vertical axis for deflections of the specimens toward the outside face (positive deflection) and to the left for deflections toward the inside face (negative deflection).

Although the load was eccentric toward the inside face, each of the specimens deflected initially toward the inside face, probably because the stiffness of the plaster counteracted the effect of the eccentric load. As the maximum load was approached, the deflections toward the inside face decreased. At
<table>
<thead>
<tr>
<th>Construction symbol</th>
<th>Weight</th>
<th>Load</th>
<th>Compressive *</th>
<th>Concentrated</th>
<th>Transverse *</th>
<th>Impact *</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/lb</td>
<td>Specimen</td>
<td>Maximal load</td>
<td>Specimen</td>
<td>Maximal load</td>
<td>Specimen</td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>8.80</td>
<td>C_1</td>
<td>10.00</td>
<td>T_1</td>
<td>373</td>
<td>P_1</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_2</td>
<td>9.74</td>
<td>T_5</td>
<td>215</td>
<td>P_5</td>
<td>519</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_3</td>
<td>10.00</td>
<td>T_6</td>
<td>422</td>
<td>P_6</td>
<td>650</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>329</td>
<td>P_6</td>
<td>506</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>BG</td>
<td>5.92</td>
<td>C_1</td>
<td>6.81</td>
<td>T_3</td>
<td>327</td>
<td>P_1</td>
<td>285</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_2</td>
<td>3.32</td>
<td>P_6</td>
<td>259</td>
<td>I_6</td>
<td>9.5 (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_3</td>
<td>5.92</td>
<td>T_5</td>
<td>245</td>
<td>P_6</td>
<td>259</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>286</td>
<td>P_6</td>
<td>715</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>II</td>
<td>4.51</td>
<td>C_1</td>
<td>6.97</td>
<td>T_1</td>
<td>319</td>
<td>P_1</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_2</td>
<td>6.06</td>
<td>T_5</td>
<td>310</td>
<td>P_5</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_3</td>
<td>5.50</td>
<td>T_6</td>
<td>290</td>
<td>P_6</td>
<td>119</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>285</td>
<td>P_6</td>
<td>633</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>BI</td>
<td>20.0</td>
<td>C_1</td>
<td>8.00</td>
<td>T_1</td>
<td>350</td>
<td>P_1</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_2</td>
<td>9.25</td>
<td>P_2</td>
<td>400</td>
<td>I_2</td>
<td>4.5 (4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_3</td>
<td>8.00</td>
<td>T_6</td>
<td>350</td>
<td>P_6</td>
<td>277</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>367</td>
<td>P_6</td>
<td>236</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>BJ</td>
<td>10.6</td>
<td>C_1</td>
<td>8.14</td>
<td>T_1</td>
<td>350</td>
<td>P_1</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_2</td>
<td>5.50</td>
<td>T_2</td>
<td>348</td>
<td>P_2</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_3</td>
<td>5.50</td>
<td>T_6</td>
<td>318</td>
<td>P_6</td>
<td>250</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>318</td>
<td>P_6</td>
<td>251</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>BK</td>
<td>30.5</td>
<td>C_1</td>
<td>6.17</td>
<td>T_5</td>
<td>319</td>
<td>P_1</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_2</td>
<td>6.17</td>
<td>T_6</td>
<td>318</td>
<td>P_6</td>
<td>1,000</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>318</td>
<td>P_6</td>
<td>1,000</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>BL</td>
<td>10.6</td>
<td>C_1</td>
<td>6.19</td>
<td>T_1</td>
<td>350</td>
<td>P_1</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_2</td>
<td>9.32</td>
<td>T_2</td>
<td>350</td>
<td>P_2</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_3</td>
<td>7.82</td>
<td>T_6</td>
<td>350</td>
<td>P_6</td>
<td>250</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>350</td>
<td>P_6</td>
<td>299</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>BL</td>
<td>10.6</td>
<td>C_1</td>
<td>6.19</td>
<td>T_1</td>
<td>350</td>
<td>P_1</td>
<td>735</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_2</td>
<td>9.32</td>
<td>T_2</td>
<td>350</td>
<td>P_2</td>
<td>735</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C_3</td>
<td>7.82</td>
<td>T_6</td>
<td>350</td>
<td>P_6</td>
<td>735</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>350</td>
<td>P_6</td>
<td>733</td>
<td></td>
<td>(4)</td>
</tr>
</tbody>
</table>

* The compressive loads were applied one-third the thickness of the studs (1.21 in.) from the inside surface of the studs (see section III).
* Span 7 ft 6 in.
* A kip is 1,000 lb.
* Face did not fail.
* Face discontinuous. Specimen damaged.
* Test discontinued. Specimen did not fail.
the maximum load the deflection of specimen C1 was zero and the deflection of specimens C2 and C3 was toward the outside face. These deflections are not shown in figure 8. The change in the direction of the deflection curve probably indicates progressive local failure of the inside face.

Each of the specimens failed by crushing of the edges of the plaster at one or both ends of the specimen and local crushing of the lower member of the top plate at the inside edge of the studs. The top plate rotated and the specimens pushed out under load without breaking the studs.

3. Transverse Load

The results are shown in table 13 and in figure 9 for wall specimens BG–T1, T2, and T3, loaded on the inside face, and in figure 10 for wall specimens BG–T4, T5, and T6, loaded on the outside face.

In each of the specimens T1, T2, and T3, loaded on the inside (plastered) face, the plaster cracked longitudinally along each outer stud and transversely across the specimen in several
places. The first longitudinal cracks occurred at loads of 225, 150, and 75 lb/ft\(^2\) and deflections of 1.43, 0.75, and 0.28 in. in specimens T1, T2, and T3, respectively. The first transverse cracks occurred at lath joints near midspan and were observed after loads of 225, 225, and 275 lb/ft\(^2\) and deflections of 1.43, 1.28, and 1.55 in. for specimens T1, T2, and T3, respectively. At the maximum load, specimen T1 failed by rupture of one outer stud near a loading roller, rupture of the sheathing transversely across the specimen where the stud ruptured, and splitting of the siding on one edge at the same place. Specimen T2 failed by rupture of all three studs near midspan, rupture of the sheathing, and splitting of two pieces of siding at the same place. Specimen T3 failed by rupture of one outer stud near midspan, rupture of the sheathing, and splitting of the siding near the same place.

In each of the specimens T4, T5, and T6, loaded on the outside (bevel siding) face, the plaster cracked transversely across the specimen at several places and longitudinally over the studs at each end. In specimens T4 and T6 most of the transverse cracks were at lath joints, whereas in specimen T5 most of the cracks were between lath joints. The first transverse cracks occurred near midspan at loads of 93, 75, and 87 lb/ft\(^2\) and deflections of 0.44, 0.41, and 0.35 in. in specimens T4, T5, and T6, respectively. At the maximum load specimen T4 failed by rupture of the center stud and one outer stud near a loading roller and separation of the siding from the sheathing between the loading rollers. Specimen T5 failed by rupture of the center stud at midspan and one outer stud at a loading roller. Specimen T6 failed by rupture of one outer stud between the loading rollers and rupture of the sheathing transversely across the specimen at a loading roller.

4. Concentrated Load

The results are shown in table 13 and in figure 11 for wall specimens BG P1, P2, and

![Figure 10 — Transverse load on wall BG, load applied to outside face.](image)

Load-deflection (open circles) and load-set (solid circles) results for specimens BG-T2, T5, and T6 on the span 7 ft 6 in.

![Figure 11 — Concentrated load on wall BG, load applied to inside face.](image)

Load-indentation results for specimens BG-P1, P2, and P3.
P_3, loaded on the inside face, and in figure 12 for wall specimens $BG-P_4$, P_5, and P_6, loaded on the outside face.

The concentrated loads were applied to the inside face of specimens P_1, P_2, and P_3 on the plaster midway between two studs and about 1 ft 8 in. from the upper end of the specimen. On P_1 the load was applied over a lath joint. Each of the specimens failed by punching of the disk through the plaster and into the lath.

The concentrated loads were applied to the outside face of specimens P_4, P_5, and P_6 on the wood bevel siding $3\frac{1}{2}$, $2\frac{1}{2}$, and $1\frac{1}{2}$ in., respectively, from the edge of a strip of siding midway between two studs and about 2 ft 2 in. from the upper end of the specimen. In specimen P_4, at a load of 435 lb, and in specimen P_5, at a load of 210 lb, the siding split along the grain at one edge of the disk. At the maximum loads each of the specimens failed by splitting of the siding along the grain at opposite edges of the disk and rupture across the grain under the disk.

Figure 12. Concentrated load on wall BG, load applied to outside face.

Load-indentation results for specimens $BG-P_4$, P_5, and P_6.

Figure 13. Impact load on wall BG, load applied to inside face.

Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens $BG-I_1$, I_5, and I_6 on the span 7 ft 6 in.

Figure 14. Impact load on wall BG, load applied to outside face.

Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens $BG-I_4$, I_5, and I_6 on the span 7 ft 6 in.
5. **Impact Load**

The results are shown in table 13 and in figure 13 for wall specimens $BG-I_1$, I_2, and I_3, loaded on the inside face, and in figure 14 for wall specimens $BG-I_4$, I_5, and I_6, loaded on the outside face.

The impact loads were applied to the center of the inside face of specimens I_1, I_2, and I_3, the sandbag striking the plaster directly over the center stud. In each of the specimens I_1, I_2, and I_3 at drops of 1, 1.5, and 1.5 ft, and deflections of 0.50, 0.53, and 0.51 in., respectively, the plaster cracked longitudinally along the two outer studs. Also, in specimen I_1, the plaster cracked longitudinally at the center stud where the sandbag struck. At drops of 1.5, 2.5, and 2.5 ft for specimens I_1, I_2, and I_3, respectively, the inside face of each specimen failed by rupture of the plaster at the outer studs. After a drop of 10 ft the sets were 0.49, 0.83, and 0.59 in., respectively; the plaster and lath were broken where the sandbag struck, but the outside face and the studs did not fail.

The impact loads were applied to the center of the outside face of specimens I_4, I_5, and I_6, the sandbag striking the bevel siding directly over the center stud. In each of the specimens I_4, I_5, and I_6 at drops of 2.5, 1, and 1 ft and deflections of 0.85, 0.50, and 0.49 in., respectively, the plaster cracked transversely across each specimen at a lath joint near midspan. At drops of 4, 3, and 3 ft for specimens I_4,

Figure 15.—Wall specimen $BG-R1$, under racking load.
I5, and I6, respectively, the inside face of each specimen failed by further cracking of the plaster. In specimen I4 the set after a drop of 10 ft was 0.15 in.; several pieces of plaster and lath had fallen from one edge of the specimen, and the lath was separated from both outer studs at midspan, but the outside face and the studs did not fail. In specimen I5 the center stud broke about 2 ft from midspan at a drop of 6 ft. The set after a drop of 10 ft was 0.41 in.; several pieces of plaster and one section of lath had fallen from the center of the specimen, but the outside face did not fail. In specimen I6 the center stud broke at midspan at a drop of 8.5 ft, one outer stud broke at midspan at a drop of 9 ft, and the outside face failed at a drop of 9.5 ft by splitting of the siding at midspan. The set after a drop of 10 ft was 2.49 in.; several pieces of plaster and one course of lath had fallen, and the sheathing was ruptured at the center of the specimen.

6. Racking Load

Wall specimen BG R1 under racking load is shown in figure 15. The results for wall specimens BG R1, R2, and R3 are shown in table 13 and in figure 16.

The racking loads were applied to the top plate only, and the stop at the diagonally opposite corner of the specimen was in contact with the floor plate only. In each of the specimens the plaster cracked in several places. Most of the cracks were parallel to a diagonal from the point of application of load to the stop. The first significant cracks occurred at loads of 1.125, 1.285, and 1.500 kips/ft and deformations of 0.48, 0.72, and 1.21 in./8 ft in specimens R1, R2, and R3, respectively. At the maximum loads each of the specimens failed by shearing of the plaster from the lath, pulling of some of the nails through the edge of the sheathing, and displacement of the top plate horizontally with respect to the studs—the nails pulling from the studs.

VI. WALL BH

1. Description, Sponsor's Statement

This construction was a wood frame with "Bildrite" sheathing and wood bevel siding on the outside face and 3/4-in. "Graylite" interior board on the inside face. It was similar to construction BG, with the exception that the inside face was interior board, not lath and plaster.

The price in Washington, D. C., as of July 1937, was $0.28/ft².

(a) Four-Foot Wall Specimens

The 4-ft wall specimens were 8 ft 0 in. high, 4 ft 0 in. wide, and 5½ in. thick. Each specimen consisted of a wood frame to which the faces were fastened. The frame consisted of three studs, A, shown in figure 17, fastened to a floor plate, B, and a top plate, C, by nails. The outside face consisted of insulating-board sheathing, D, and wood bevel siding, E. The inside face was interior board, F, with a vertical joint at midwidth covered by a batten strip, G. The specimens were not painted.

Studs.—The studs, A, were red pine, 1½ by 3½ in. (nominal 2 by 4 in), 7 ft 7½ in. long, spaced 1 ft 4 in. on centers. The lower end of each stud was fastened to the floor plate by
two 16d common nails driven from the bottom of the plate (not toenailed), and the upper end of each stud was fastened to the top plate by two 16d common nails driven from the top of the lower member of the plate.

Floor plate.—The floor plate, B, was red pine, 1% by 3% in. (nominal 2 by 4 in), 4 ft 0 in. long.

Top plate.—The top plate, C, consisted of two pieces of red pine, 1% by 3% in. (nominal 2 by 4 in), 4 ft 0 in. long, fastened by ten 10d common nails driven from the top of the lower member of the plate.

Sheathing.—The sheathing, D, was two “Bildrite” sheathing boards, 2% in. by 1 ft 11 1/8 in., 8 ft 0 in. long, with the linen-textured surface outward. There was a vertical joint on the center stud with 3/8-in. clearance between the edges of the boards. The boards were fastened to the center stud, floor plate, and top plate by 8d common nails spaced 3 in., about 3/8 in. from the edges of the boards, and to the two outer studs by 8d common nails spaced 6 in.

Bevel siding.—The bevel siding, E, was 21 pieces of northern white pine, 1/2 by 1/4 by 5 1/2 in., 4 ft 0 in. long, exposed 4 1/2 in. to the weather, and fastened through the overlapping edges by 10d box nails, one at each stud.

Interior board.—The interior board, F, was two “Graylite” interior boards, 1/4 in. by 1 ft 11 1/8 in., 8 ft 0 in. long, with the linen-textured surface exposed. There was a vertical joint on the center stud with 3/8-in. clearance between the edges of the boards. The boards were fastened to the center stud, floor plate, and top plate by 8d common nails spaced 3 in., about 3/8 in. from the edges of the boards, and to the two outer studs by 6d finishing nails spaced 6 in., driven at an angle, adjacent nails being inclined in opposite directions.

Batten strip.—The batten strip, G, was “Graylite” interior board, 1/4 by 2 1/2 in., 8 ft 0 in. long, with beveled outer edges. The batten strip covered the vertical joint at midwidth and was fastened to the center stud by two rows of 6d finishing nails spaced 3 in., driven through the beveled edges, through the interior board, and into the center stud.

(b) Eight-Foot Wall Specimens

The 8-ft wall specimens were 8 ft 0 in. high, 8 ft 0 in. face width, and 5% in. thick. The specimens were similar to the 4-ft specimens, with the exception that there were seven studs spaced 1 ft 4 in. on centers. There was a stud at each edge extending one-half its thickness beyond the faces, over-all width 8 ft 1% in. The two members of the top plate were fastened by twenty 10d common nails.

Sheathing and interior board.—The sheathing and the interior board each consisted of two boards, 3 ft 11 1/8 in. wide, having a vertical joint on the center stud, with 3/8-in. clearance between the edges of the boards. The sheathing boards were fastened to the edge studs, center stud, floor plate, and top plate by 8d common nails spaced 3 in., about 3/8 in. from the edges of the boards, and to the other four studs by 8d common nails spaced 6 in. The interior boards were fastened to the edge studs, center stud, floor plate, and top plate by 8d common nails spaced 3 in., about 3/8 in. from the edges of the boards.
and to the other four studs by 6d finishing nails spaced 6 in., driven at an angle, adjacent nails being inclined in opposite directions. The batten strip was similar to that on the 4-ft specimen.

2. Compressive Load

The results for wall specimens BH-C2 and C3 are shown in table 13 and in figures 18 and 19. The results for specimen C1 are not reported because the compressometers were attached to the studs and did not measure the local crushing of the floor plate and the top plate. The maximum load for this specimen is not given in table 13 because the clearance for eccentric loading was not sufficient and the loading plates came into contact with the platen of the testing machine before the maximum load could be definitely ascertained. With the loading plate in contact with the platen, the load was increased to a maximum of 11.0 kips/ft. At this load one outer stud broke at midheight.

The lateral deflections shown in figure 19 were plotted to the right of the vertical axis for deflections of the specimens toward the outside face and to the left for deflections toward the inside face. No explanation was found for the deflection of the specimens toward the inside face under loads less than 2 kips/ft.

In specimen C2 at a load of 5 kips/ft the interior board started to separate from the two outer studs. In specimen C3 at a load of 3 kips/ft the interior board started to separate from one end of the top plate. At the maximum load on each specimen the top plate crushed locally at the inside edge of the studs and separated at the outside edge. This rotation of the plate pulled the nails from the studs, ruptured the sheathing transversely across the specimen just below the plate, and allowed the specimens to push out under load without breaking the studs.

3. Transverse Load

The results are shown in table 13 and in figure 20 for wall specimens BH-T1, T2, and T3, loaded on the inside face, and in figure 21 for wall specimens BH-T3, T5, and T6, loaded on the outside face.
In each of the specimens $T1$, $T2$, and $T3$ the interior board started to separate from the studs near one or both ends at loads of 240, 150, and 150 lb/ft2 and deflections of 1.57, 0.82, and 0.90 in., respectively. At the maximum load specimen $T1$ failed by rupture of all three studs and the sheathing at a loading roller. Specimens $T2$ and $T3$ failed by rupture of the center stud, one outer stud, and also the sheathing at a loading roller.

Specimen $T4$ failed by rupture of one outer stud and the interior board under a loading roller. Specimens $T5$ and $T6$ failed by rupture of the center stud, one outer stud, and also the interior board at a loading roller.

4. **Concentrated Load**

Wall specimen $BH-P4$ under concentrated load is shown in figure 22. The results are shown in table 13 and in figure 23 for wall specimens $BH-P1$, $P2$, and $P3$, loaded on the inside face, and in figure 24 for wall specimens $BH-P4$, $P5$, and $P6$, loaded on the outside face.

The concentrated loads were applied to the inside face of specimens $P1$, $P2$, and $P3$, on the interior board midway between two studs and 3 to 4 ft from one end. Each of the specimens $P1$, $P2$, and $P3$ failed by punching of the disk through the interior board.

The concentrated loads were applied to the outside face of specimens $P4$, $P5$, and $P6$ on the bevel siding 1½ in. from the edge of a strip of siding midway between two studs and 3 to 3½ ft from one end. Each of the specimens failed by splitting of the siding for about 6 in. along the grain on opposite edges of the disk.

5. **Impact Load**

The results are shown in table 13 and in figure 25 for wall specimens $BH-I1$, $I2$, and $I3$, loaded on the inside face, and in figure 26 for wall specimens $BH-I4$, $I5$, and $I6$, loaded on the outside face.

The impact loads were applied to the center of the inside face of specimens $I1$, $I2$, and $I3$, the sandbag striking the batten strip and interior board directly over the center stud. In specimen $I1$ the center stud broke at midspan at a drop of 9.5 ft. The set after a drop of 10 ft was 0.49 in., the interior board was dented.
Figure 22.—Wall specimen BH-P4 under concentrated load.

This specimen was an undamaged portion of specimen BH-P4.

Figure 23.—Concentrated load on wall BH, load applied to inside face.

Load-indentation results for specimens BH-P1, P2, and P3.

Figure 24.—Concentrated load on wall BH, load applied to outside face.

Load-indentation results for specimens BH-P4, P5, and P6.
where the edge of the sandbag struck, and the sheathing on the opposite face was ruptured transversely across the specimen at midspan. In specimen I2 the inside face failed at a drop of 9.5 ft by rupture of the interior board where the edge of the sandbag struck. The set after a drop of 10 ft was 0.16 in.; the studs and outside face were undamaged. In specimen I3 the center stud broke at midspan at a drop of 5.5 ft. At a drop of 7.5 ft one outer stud broke at midspan and the outside face failed by splitting of the siding and rupture of the sheathing transversely across the specimen at midspan. The set after a drop of 10 ft was 1.95 in., and the interior board was cracked but not ruptured where the edge of the sandbag struck.

The impact loads were applied to the center of the outside face of specimens I4, I5, and I6, the sandbag striking the bevel siding directly over the center stud. At drops of 6, 6, and 5 ft for specimens I4, I5, and I6, respectively, the interior board of each specimen started to separate from the outer studs at midspan. In each of the specimens I4 and I6 the center stud broke at midspan and the inside face failed by rupture of the interior board transversely across the specimen at midspan at a drop of 7 ft. The sets after a drop of 10 ft were 0.50 and 0.60 in. in specimens I4 and I6, respectively, the interior board was separated from the studs, and the siding was split where the sandbag struck, but the outside face did not fail. In specimen I5 the set after a drop of 10 ft was 0.20 in.; the interior board was separated from the studs but not broken, and the studs and outside face were undamaged.

6. Racking Load

The results for wall specimens BH-R1, R2, and R3 are shown in table 13 and in figure 27. The racking loads were applied to the top plate only, and the stop was in contact with the floor plate only. At loads of 1.625, 1.726 (maximum load), and 1.375 kips/ft there was noticeable vertical displacement between the two sheathing boards at the joint. At the maximum load each of the specimens failed by the top plate pulling the nails from the studs and through the edges of the sheathing and interior board.
VII. WALL BH

1. Description, Sponsor’s Statement

This construction was a wood frame with “Bildrite” sheathing and wood bevel siding on the outside face and \(\frac{1}{2} \) in. “Graylite” interior board on the inside face. It was similar to construction BH, with the exception that the inside face was interior board, not lath and plaster. It was similar to construction BH, with the exception that the interior board was \(\frac{1}{2} \) in. thick, not \(\frac{3}{4} \) in.

The price in Washington, D. C., as of July 1937, was $0.26/ft\(^2\).

(a) Four-Foot Wall Specimens

The 4-ft wall specimens were 8 ft 0 in. high, 4 ft 0 in. wide, and 5% in. thick. Each specimen consisted of a wood frame to which the faces were fastened. The frame consisted of three studs, \(A \), shown in figure 17, fastened to a floor plate, \(B \), and a top plate, \(C \), by nails. The outside face consisted of insulating-board sheathing, \(D \), and wood bevel siding, \(E \). The inside face was interior board, \(F \), with a vertical joint at midwidth covered by a batten strip, \(G \). The specimens were not painted.

Studs.—The studs, \(A \), were red pine, 1\% by 3\% in. (nominal 2 by 4 in.), 7 ft 7\% in. long, spaced 1 ft 4 in. on centers. The lower end of each stud was fastened to the floor plate by two 16d common nails driven from the bottom of the floor plate (not toenailed), and the upper end of each stud was fastened to the top plate by two 16d common nails driven from the top of the lower member of the plate.

Floor plate.—The floor plate, \(B \), was red pine, 1\% by 3\% in. (nominal 2 by 4 in.), 4 ft 0 in. long.

Top plate.—The top plate, \(C \), consisted of two pieces of red pine, 1\% by 3\% in. (nominal 2 by 4 in.), 4 ft 0 in. long, fastened by ten 10d common nails driven from the top of the plate.

Sheathing.—The sheathing, \(D \), was two “Bildrite” sheathing boards, \(\frac{3}{4} \) in. by 1 ft 11\% in., 8 ft 0 in. long, with the linen-textured surface outward. There was a vertical joint on the center stud, with \(\frac{1}{8} \)-in. clearance between the edges of the boards. The boards were fastened to the center stud, floor plate, and top plate by 8d common nails spaced 3 in., about \(\frac{1}{8} \) in. from the edges of the boards, and to the two outer studs by 8d common nails spaced 6 in.

Bevel siding.—The bevel siding, \(E \), was 21 pieces of northern white pine, 1\% by 1 in. by 4 ft 0 in. long, exposed 4\% in. to the weather, and fastened through the overlapping edges by 10d box nails, one at each stud.

Interior board.—The interior board, \(F \), was two “Graylite” building boards, \(\frac{1}{8} \) in. by 1 ft 11\% in., 8 ft 0 in. long, with the linen-textured surface exposed. There was a vertical joint on the center stud with \(\frac{1}{8} \)-in. clearance between the edges of the boards. The boards were fastened to the center stud, floor plate, and top plate by 4d galvanized roofing nails spaced 3 in., about \(\frac{1}{8} \) in. from the edges of the boards, and to the outer studs by 4d finishing nails spaced 6 in., driven at an angle, adjacent nails being inclined in opposite directions.

Batten strip.—The batten strip, \(G \), was “Graylite” building board, \(\frac{1}{4} \) by 2\% in., 8 ft 0 in. long, with beveled outer edges. The batten strip
covered the vertical joint at midwidth and was fastened to the center stud by two rows of 4d finishing nails spaced 3 in., driven through the beveled edges, through the interior board, and into the center stud.

(b) Eight-Foot Wall Specimens

The 8-ft wall specimens were 8 ft 0 in. high, 8 ft 0 in. face width, and 5½ in. thick. The specimens were similar to the 4-ft specimens, with the exception that there were seven studs, spaced 1 ft 4 in. on centers. There was a stud at each edge extending one-half its thickness beyond the faces; over-all width 8 ft 1½ in. The two members of the top plate were fastened by twenty 10d common nails.

Sheathing and interior board.—The sheathing and interior board each consisted of two boards, 3 ft 11½ in. wide. There was a vertical joint on the center stud, with ⅛-in. clearance between the edges of the boards. The sheathing boards were fastened to the edge studs, center stud, floor plate, and top plate by 8d common nails spaced 3 in., about ½ in. from the edges of the boards, and to the other four studs by 8d common nails spaced 6 in.

The interior boards were fastened to the edge studs, center stud, floor plate, and top plate by 4d galvanized roofing nails spaced 3 in., about 5 in. from the edges of the boards, and to the other four studs by 4d finishing nails spaced 6 in. driven at an angle, adjacent nails being inclined in opposite directions. The batten strip was the same as that on the 4-ft specimen.

2. Compressive Load

The results for wall specimens BI-C1, C2, and C3 are shown in table 13 and in figures 28 and 29.

The lateral deflections shown in figure 29 are plotted to the right of the vertical axis for deflections of the specimens toward the outside face and to the left for deflections toward the inside face. No explanation was found for the deflection of the specimens toward the inside face under loads less than 4 kips/ft.

At loads of 3.5 and 2.5 kips/ft on specimens C1 and C2, respectively, the interior board started to separate from the upper end of one
of the outer studs. At loads of 5, 4.25, and 4.5 kips/ft for specimens C1, C2, and C3, respectively, the heads of some of the nails fastening the interior board to the outer studs pulled through the board and the board bowed away from the studs from midheight to the upper end. At the maximum load on each specimen the top plate crushed locally at the inside edge of the studs and separated at the outside edge. This rotation of the top plate pulled the nails from the studs, ruptured the sheathing transversely across the specimen just below the plate, and allowed the specimen to push out under load without breaking the studs.

3. Transverse Load

Wall specimen BI-T6 under transverse load is shown in figure 30. The results are shown in table 13 and in figure 31 for wall specimens BI-T1, T2, and T3, loaded on the inside face, and in figure 32 for wall specimens BI-T4, T5, and T6, loaded on the outside face.

Specimen T1 failed by rupture of the center stud and one outer stud at a loading roller and rupture of both the interior board and the sheathing halfway across the specimen at the same place. Specimen T3 failed by rupture of the center stud and one outer stud at a loading roller and rupture of the sheathing and siding transversely across the specimen at the same place. Specimen T5 failed by rupture of the center stud and one outer stud at a loading roller and rupture of the sheathing and siding transversely across the specimen at the same place.

Figure 30.—Wall specimen BI-T6 under transverse load.

Figure 31.—Transverse load on wall BI, load applied to inside face.

Load-deflection (open circles) and load-set (solid circles) results for specimens BI-T1, T2, and T3 on the span 7 ft 6 in.
Specimens T4 and T5 failed by rupture of the center stud, one outer stud, and the interior board between the loading rollers. Specimen T6 failed by rupture of one outer stud at mid-span, splitting of the center stud along the grain from midspan to the top plate, and rupture of the interior board at midspan.

4. Concentrated Load

The results are shown in table 13 and in figure 33 for wall specimens BI-P1, P2, and P3, loaded on the inside face, and in figure 34 for wall specimens BI-P4, P5, and P6, loaded on the outside face.

The concentrated loads were applied to the inside face of specimens P1, P2, and P3 on the interior board midway between two studs and 3 to 3½ ft from one end. Each of the specimens failed by punching of the disk through the interior board.

The concentrated loads were applied to the outside face of specimens P4, P5, and P6 on the bevel siding 1½ in. from the edge of a strip of siding midway between two studs and 2½ to
3 1/2 ft from one end. Each of the specimens failed by splitting of the siding for about 8 in. along the grain on opposite edges of the disk.

5. Impact Load

The results are shown in table 13 and in figure 35 for wall specimens BI–I1, I2, and I3, loaded on the inside face, and in figure 36 for wall specimens BI–I4, I5, and I6, loaded on the outside face.

The impact loads were applied to the center of the inside face of specimens I1, I2, and I3, the sandbag striking the batten strip and interior board directly over the center stud. In specimen I1 at a drop of 5.5 ft the interior board started to separate from the studs at midspan; at 7 ft one outer stud broke and both faces failed, the inside face by breaking of the interior board where the sandbag struck, the outside face by rupture of the sheathing. At 7.5 ft all three studs were broken, and at 9 ft the specimen broke in two pieces at midspan. In specimen I3 at a drop of 6.5 ft the interior board separated from the outer studs near midspan, and at 9 ft the interior board cracked where the edge of the sandbag struck. At 10 ft the inside face failed by rupture of the interior board where the sandbag struck; the center stud broke at midspan, but the outside face did not fail.

![Figure 35. Impact load on wall BI, load applied to inside face.](image1)

Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens BI–I1, I2, and I3 on the span 7 ft 6 in.

In specimen I2 at a drop of 5.5 ft the interior board separated from the outer studs at midspan; at 8.5 ft the siding on the opposite face cracked at midspan; at 9 ft both faces failed, the inside face by rupture of the interior board where the sandbag struck, the outside face by cracking of both the siding and sheathing at midspan. At 9.5 ft one outer stud broke at midspan. At 10 ft the set was 1.19 in. and the center stud was broken. In specimen I4 at a drop of 5.5 ft the interior board started to separate from the studs at midspan; at 7 ft one outer stud broke and both faces failed, the inside face by breaking of the interior board where the sandbag struck, the outside face by rupture of the sheathing. At 7.5 ft all three studs were broken, and at 9 ft the specimen broke in two pieces at midspan. In specimen I6 at a drop of 4 ft the interior board on the opposite face separated from the studs at midspan, at 5.5 ft the center stud broke at midspan, and at 6 ft the inside face failed by rupture of the interior board transversely across the specimen. At 6.5 ft one outer stud broke at mid-
span and at 7 ft the outside face failed by opening of the siding at midspan. After a drop of 10 ft the set was 2.98 in., three siding strips were cracked, and the sheathing was ruptured halfway across the specimen. In specimen I5 at a drop of 3 ft the interior board separated from one outer stud at midspan and at 9.5 ft the siding cracked where the sandbag struck. After a drop of 10 ft the set was 0.16 in. and neither the face nor the studs had failed. In specimen I6 at a drop of 2.5 ft the interior board separated from the studs at midspan, at 8.5 ft the center stud failed at midspan, and at 9 ft the inside face failed by rupture of the interior board transversely across the specimen at midspan. The set after a drop of 10 ft was 0.38 in., and the outside face was undamaged.

6. Racking Load

The results for wall specimens BI-R1, R2, and R3 are shown in table 13 and in figure 37.

The racking loads were applied to the top plate only, and the stop was in contact with the floor plate only. In specimen R1 at a load of 1.25 kips/ft there was noticeable vertical dis-

placement between the interior boards at the joint and one interior board was cracked at the upper end near the loaded edge. In specimens R2 and R3 at a load of 1.375 kips/ft there was noticeable vertical displacement at the joint between the interior boards, some nails in the top plate pulling through the edge of the interior boards. At the maximum loads each of the specimens failed by the top plate pulling the nails from the studs and through the edges of the sheathing and interior board.

VIII. WALL BI

1. Description, Sponsor’s Statement

This construction was a wood frame with “Bildrite” sheathing, sheathing paper, metal lath, and stucco on the outside face, and “Lok-Joint” lath and plaster on the inside face. It was similar to construction BG, with the exception that the sheathing on the outside face was covered by stucco, not bevel siding.

The price of this construction in Washington, D. C., as of July 1937, was $0.40/ft².

(a) Four-Foot Wall Specimens

The 4-ft wall specimens were 8 ft 0 in. high, 4 ft 0 in. wide, and 6½ in. thick. Each specimen consisted of a wood frame to which the faces were fastened. The frame consisted of three studs, A, shown in figure 38, fastened to a floor plate, B, and a top plate, C, by nails. The outside face consisted of wood nailing strips, D, insulating-board sheathing, E, sheathing paper, F, metal lath, G, and stucco, H. The inside face consisted of wood nailing strips, D, insulating-board lath, I, and plaster, J. The specimens were not painted.

Studs.—The studs, A, were red pine, 1½ by 3½ in. (nominal 2 by 4 in), 7 ft 7½ in. long, spaced 1 ft 4 in. on centers. The lower end of each stud was fastened to the floor plate by two 16d common nails driven from the bottom of the plate (not toenailed), and the upper end of each stud was fastened to the top plate by two 16d common nails driven from the top of the lower member of the plate.
Floor plate.—The floor plate, B, was red pine, 1 1/8 in. thick, by 3 5/8 in. (nominal 2 by 4 in.), 4 ft 0 in. long.

Top plate.—The top plate, C, consisted of two pieces of red pine, 1 1/8 in. thick, by 3 5/8 in. (nominal 2 by 4 in.), 4 ft 0 in. long, fastened by ten 10d common nails driven from the top of the plate.

Nailing strips.—The nailing strips, D, were red pine, 3 5/8 in. thick, by 3 5/8 in., 7 ft 7 in. long. In the specimen they supported the outer edges of the sheathing and the lath to facilitate stuccoing and plastering, but they are not used in a house.

Sheathing.—The sheathing, E, was two "Bildrite" sheathing boards, 3 5/8 in. by 1 ft 11 5/8 in., 8 ft 0 in. long, with the linen-textured surface outward. There was a vertical joint on the center stud with 3/8-in. clearance between the vertical edges of the boards. The boards were fastened to the center stud, floor plate, and top plate by 8d common nails spaced 3 in., about 3/8 in. from the edges of the boards, and to the two outer studs by 8d common nails spaced 6 in.

Sheathing paper.—The sheathing paper, F, was laid horizontally across the sheathing and consisted of four sheets, 2 ft 8 in. wide, having three laps with the upper sheets lapping 10% in. over the lower sheets. The paper was fastened with galvanized roofing nails, 1 1/8 in. long, spaced 12 in. along the floor plate, 10 in. along the top plate, and with one nail at each stud through each lapped edge.

Metal lath.—The metal lath, G, was fastened over the sheathing paper and consisted of three sheets 4 ft 0 in. by 2 ft 3 in. and one sheet 4 ft 0 in. by 1 ft 7 1/2 in. The lath was applied horizontally with three laps, the upper sheets lapping 1 1/8 in. over the lower sheets. The lath was fastened to the studs, floor plate, and top plate by galvanized staples spaced 5 in., and to the nailing strips by galvanized roofing nails, 1 1/8 in. long, spaced 4 1/8 in. The overlapping edges of the lath were fastened together midway between studs with 18-gage galvanized steel wire.

Stucco.—The stucco, H, was about 1 in. thick and applied in three coats, two scratch coats and a sand-float finish.

Lath.—The lath, I, was "Lok-Joint" lath, five full courses and one course cut to a height of 7 1/4 in., as shown in figure 6. The plaster was applied to the burlap-textured surface. There was a vertical joint in each course, centered on a stud, with 3/8-in. clearance between the ends of the lath. The horizontal joints (ship-lapped) were reinforced by "Loks", three at each joint. The lath was fastened to the studs, floor plates, top plate, and nailing strips by plaster board nails spaced 4 in., about 3/8 in. from the edges of the lath.

Plaster.—The plaster, J, was 3/8 in. thick and consisted of a base coat and a finish coat. The lath was dry when the plaster was applied.

(b) Eight-Foot Wall Specimens

The 8-ft wall specimens were 8 ft 0 in. high, 8 ft 0 in. face width, and 6 3/4 in. thick. The specimens were similar to the 4-ft specimens, with the exception that there were seven studs spaced 1 ft 4 in. on centers and no nailing strips. There was a stud at each edge extending one-half its thickness beyond the faces; over-all width 8 ft 1 3/8 in. The two members of the top
plate were fastened by twenty 10d common nails.

The sheathing consisted of two boards 3 ft 11\(\frac{3}{4} \) in. wide. There was a vertical joint over the center stud, with \(\frac{5}{8} \) in. clearance between the edges of the boards. The boards were fastened to the edge studs, center stud, floor plate, and top plate by 8d common nails spaced 3 in., about \(\frac{1}{8} \) in. from the edges of the boards, and to the other four studs by 8d common nails spaced 6 in.

2. Compressive Load

Wall specimen \(BJ-C2 \) under compressive load is shown in figure 39. The results for wall specimens \(BJ-C1, C2, \) and \(C3 \) are shown in table 13 and in figures 40 and 41.

The lateral deflections shown in figure 41 are plotted to the right of the vertical axis for deflections of the specimens toward the outside face and to the left for deflections toward the inside face. No explanation was found for the deflections of the specimens toward the inside face under loads less than 6 kips/ft.

At loads of 6.5, 3.5, and 6 kips/ft on specimens \(C1, C2, \) and \(C3 \), respectively, the plaster spalled at one end of the specimen. At a load of 7.5 kips/ft on specimen \(C3 \) the stucco cracked transversely across the specimen about 6 in. from the upper end. At the maximum loads specimens \(C1 \) and \(C3 \) failed by crushing of the lower member of the top plate locally at the inside edge of the studs. Specimen \(C2 \) failed by the top plate crushing locally at the inside edge of the studs and separating at the outside edge. In specimen \(C2 \) this rotation pulled the nails from the studs, ruptured the sheathing transversely across the specimen, and allowed the specimen to push out under load without breaking the studs.
3. Transverse Load

The results are shown in table 13 and in figure 42 for wall specimens BJ–T1, T2, and T3, loaded on the inside (plastered) face, and in figure 43 for wall specimens BJ–T4, T5, and T6, loaded on the outside (stuccoed) face.

In each of the specimens T1, T2, and T3 the stucco cracked transversely across the specimen in several places either near or between the loading rollers. The first cracks occurred at loads of 97 lb/ft² on each specimen and deflections of 0.30, 0.28, and 0.30 in. in specimens T1, T2, and T3, respectively. In each of the specimens the plaster cracked longitudinally along the studs at the loading rollers and transversely across the specimen in several places. The first longitudinal cracks occurred at loads of 250, 275, and 150 lb/ft² and deflections of 1.50, 1.63, and 0.69 in. in specimens T1, T2, and T3, respectively. The first transverse cracks occurred at loads of 300, 275, and 300 lb/ft² and deflections of 1.95, 1.63,
and 1.87 in. in specimens T_1, T_2, and T_3, respectively. About one-half of the transverse cracks in the plaster occurred at lath joints. At the maximum loads specimens T_1 and T_3 failed by rupture of the center stud, one outer stud, and the sheathing at a loading roller. Specimen T_2 failed by rupture of all three studs and the sheathing at a loading roller.

In each of the specimens T_4, T_5, and T_6 (loaded on the stuccoed face) the plaster cracked transversely across the specimen at each of the lath joints and also between some of the lath joints. The first cracks occurred at loads of 100, 70, and 100 lb/ft2, and deflections of 0.24, 0.15, and 0.31 in. in specimens T_4, T_5, and T_6, respectively. For each of the specimens the stucco cracked transversely across the specimen at one or both loading rollers. The first cracks occurred at loads of 375, 250, and 200 lb/ft2 and deflections of 2.43, 1.45, and 1.00 in. in specimens T_4, T_5, and T_6, respectively. At the maximum load, specimen T_4 failed by rupture of all three studs at a loading roller. Specimen T_5 failed by rupture of the center stud and one outer stud between the loading rollers. Specimen T_6 failed by rupture of both outer studs between the loading rollers.

4. Concentrated Load

The results are shown in table 13 and in figure 44 for specimens $B.J. P_1$, P_2, and P_3, loaded on the inside (plastered) face, and in figure 45 for specimens $B.J-P_4$, P_5, and P_6, loaded on the outside (stuccoed) face.

The concentrated loads were applied to the inside face of specimens P_1, P_2, and P_3 on the plaster midway between two studs and about 4 ft from one end. Each of the specimens failed by punching of the disk through the plaster and into the lath.

The concentrated loads were applied to the outside face of specimens P_4, P_5, and P_6 on the stucco midway between two studs and about 4 ft from the lower end. The indentations after a load of 1,000 lb had been applied were 0.005, 0.006, and 0.011 in. in specimens P_4, P_5, and P_6, respectively, and no other effect was observed.
5. Impact Load

The results are shown in table 13 and in figure 46 for wall specimens BJ-I1, I2, and I3, loaded on the inside face, and in figure 47 for wall specimens BJ-I4, I5, and I6, loaded on the outside face.

The impact loads were applied to the center of the inside face of specimens I1, I2, and I3, the sandbag striking the plaster directly over the center stud. In each of the specimens I1, I2, and I3 at drops of 2.5, 2, and 2.5 ft and deflections of 0.49, 0.40, and 0.47 in., respectively, the stucco cracked either along or diagonally across the center stud. At drops of 3, 4.5, and 4 ft, respectively, the inside face of each specimen failed by rupture of the plaster where the sandbag struck. At drops of 4, 8, and 6 ft and deflections of 0.88, 1.61, and 1.22 in., respectively, the stucco cracked transversely across each specimen near midspan. In specimens I1 and I3 at a drop of 8 ft the outside face of each specimen failed by opening of the cracks in the stucco. In specimen I1 the center stud broke at midspan at a drop of 9.5 ft. The sets after a drop of 10 ft were 0.85, 0.34, and 0.71 in. in specimens I1, I2, and I3, respectively.

The impact loads were applied to the center of the outside face of specimens I4, I5, and I6, the sandbag striking the stucco directly over the center stud. In each of the specimens I4, I5, and I6 at drops of 3.5, 1, and 3.5 ft and deflections of 0.58, 0.20, and 0.54 in., respectively, the plaster cracked transversely across each specimen at a lath joint near midspan. At drops of 6.5, 5.5, and 5 ft for specimens I4, I5, and I6, respectively, the inside face of each specimen failed by opening of the cracks in the plaster. In each of the specimens the stucco cracked longitudinally at drops of 6.0, 6.5, and 6.5 ft and deflections of 0.78, 0.75, and 0.79 in., respectively, and transversely at drops of 7.5, 8.5, and 10 ft and deflections of 0.90, 0.95, and 1.23 in., respectively. In specimen I4 the outside face failed by opening of a longitudinal crack over the center stud. The sets after a drop of 10 ft were 0.18, 0.22, and 0.22 in. in specimens I4, I5, and I6, respectively, and the studs and sheathing and lath were undamaged.
6. Racking Load

The results for wall specimens BJ-R1, R2, and R3 are shown in table 13 and in figure 48.

The racking loads were applied to the top plate only, and the stop was in contact with the floor plate only. In each of the specimens the plaster cracked in several places approximately parallel to a diagonal from the point of application of load to the stop. The first cracks occurred at loads of 1.625, 1.750, and 1.750 kips/ft and deformations of 0.50, 0.46, and 0.56 in./8 ft in specimens R1, R2, and R3, respectively. At the maximum load each of the specimens failed by shearing of the plaster from the lath, pulling of some of the nails through the edges of the sheathing, and pulling the top plate from the studs. The stucco was undamaged.

IX. WALL BK

1. Description, Sponsor's Statement

This construction was a wood frame with "Bildrite" sheathing and brick veneer on the outside face and "Lok-Joint" lath and plaster on the inside face. It was similar to construction BG, with the exception that the sheathing on the outside face was covered by brick veneer, not bevel siding. It was similar to construction BJ, with the exception that the sheathing on the outside face was covered by brick veneer, not stucco.

The price in Washington, D. C., as of July 1937, was $0.53/ft².

(a) Four-Foot Wall Specimens

The 4-ft wall specimens were 8 ft 0 in. high, 4 ft 0 in. wide, and 10¾ in. thick. Each speci-
of wood nailing strips, F, insulating-board lath, G, and plaster, H. The specimens were not painted.

Studs.—The studs, A, were red pine, 1½ by 3¾ in. (nominal 2 by 4 in.), 7 ft 7½ in. long, spaced 1 ft 4 in. on centers. The lower end of each stud was fastened to the floor plate by two 16d common nails driven from the bottom of the plate (not toenailed), and the upper end of each stud was fastened to the top plate by two 16d common nails driven from the top of the lower member of the plate.

Floor plate.—The floor plate, B, was red pine, 1½ by 3¾ in. (nominal 2 by 4 in.), 4 ft 0 in. long.

Top plate.—The top plate, C, consisted of two pieces of red pine, 1½ by 3¾ in. (nominal 2 by 4 in.), 4 ft 0 in. long, fastened by ten 10d common nails driven from the top of the plate.

Sheathing.—The sheathing, D, was two “Bildrite” sheathing boards, ⅝ in. by 1 ft 11¾ in., 8 ft 0 in. long, with the linen-textured surface outward. There was a vertical joint on the center stud, with ⅛-in. clearance between the edges of the boards. The boards were fastened to the center stud, floor plate, and top plate by 8d common nails spaced 3 in., about ⅛ in. from the edges of the boards, and to the two outer studs by 8d common nails spaced 6 in.

Brick veneer.—The brick veneer, E, was laid with No. 1 common red brick in running bond with ⅛-in. mortar joints. The brick veneer was fastened to the studs by corrugated sheet-steel wall ties. Three ties were laid in every third course, one at each stud, fastened by either one or two 6d box nails. The design for the wall provided a 1-in. cavity between the brick and sheathing. In the specimens this cavity was not clear because mortar accumulated in irregular patches.

Nailing strips.—The nailing strips, F, were red pine, ¾ by ¾ in., 7 ft 7½ in. long. In the specimen they supported the outer edge of the lath to facilitate plastering, but they are not used in a house.

Lath.—The lath, G, consisted of “Lok-Joint” lath, five full courses and one course cut to a height of 7½ in., as shown in figure 6. The plaster was on the burlap-textured surface. There was a vertical joint in each course, centered on a stud, with ⅛-in. clearance between the ends of the lath. The horizontal joints (shiplapped) were reinforced by “Loks,” three at each joint. The lath was fastened to the studs, floor plate, top plate, and nailing strips by plasterboard nails spaced 4 in. on centers and about ¾ in. from the edges of the lath.

Plaster.—The plaster, H, was ½ in. thick and consisted of a base coat and a finish coat. The lath was dry when the plaster was applied.

b) Eight-Foot Wall Specimens

The 8-ft wall specimens were 8 ft 0 in. high, 8 ft 0 in. face width, by 10½ in. thick. The specimens were similar to the 4-ft specimens, with the exception that there were seven studs spaced 1 ft 4 in. on centers and no nailing strips. There was a stud at each edge extending one-half its thickness beyond the faces; over-all width 8 ft 1½ in. The two members of the top plate were fastened by twenty 10d common nails.

Sheathing.—The sheathing consisted of two boards 3 ft 11½ in. wide. There was a vertical joint on the center stud, with ⅛-in. clearance between the edges of the boards.

The boards were fastened to the edge studs, center stud, floor plate, and top plate by 8d common nails spaced 3 in., about ⅛ in. from the edges of the boards, and to the other four studs by 8d common nails spaced 6 in.

2. Compressive Load

The results for wall specimens BK–$C1$, $C2$, and $C3$ are shown in table 13 and in figures 50 and 51.

The upper loading plate was not in contact with the brick veneer. The lateral deflections shown in figure 51 are plotted to the right of the vertical axis for deflections of the specimens toward the outside face and to the left for deflections toward the inside face. Specimens $C1$ and $C3$ deflected toward the inside face for all loads up to and including the maximum load. Specimen $C2$ deflected toward the outside face for almost all loads. The lateral deflections of specimens $C1$ and $C3$ toward the inside face were probably due either to the stiffness of the inside face counteracting the effect of the eccentric loads or to the little resistance afforded by the brick veneer to deflection in this direction.
Each of the specimens failed by the top plate crushing locally at the inside edge of the studs and separating at the outside edge. This rotation of the top plate pulled the nails from the studs, ruptured the sheathing transversely across most of the width of the specimen, and either ruptured the lath or separated it from the upper ends of the studs. No failure of the brick veneer was observed.

3. Transverse Load

Wall specimen BK-73 under transverse load is shown in figure 52. The results are shown in table 13 and in figure 53 for wall specimens BK-71, 72, and 73, loaded on the inside (plastered) face, and in figure 54 for wall specimens BK-74, 75, and 76, loaded on the outside (brick-veneer) face.

The deflections of the studs and of the brick veneer were each measured. The lateral deflections shown in figures 53 and 54 are the average of these values.

In each of the specimens 71, 72, and 73 the brick veneer cracked at three or four bed joints owing to rupture of the bond between the brick and the mortar. The first cracks occurred at or between the loading rollers at loads of 75, 50, and 50 lb/ft² and deflections of 0.38, 0.19, and 0.17 in. in specimens 71, 72, and 73, respectively. In each of the specimens the plaster cracked longitudinally along either one or both outer studs and transversely across the specimen at each lath joint. The first longitudinal cracks occurred at loads of 200, 150, and 150 lb/ft² and deflections of 1.41, 0.97, and 1.01 in. in specimens 71, 72, and 73, respectively. The first transverse cracks occurred at or between loading rollers at loads of 150, 175, and 225 lb/ft² and deflections of 0.96, 1.23, and 1.80 in. in specimens 71, 72, and 73, respectively. At the maximum loads each of the specimens 71, 72, and 73 failed by rupture of one outer stud at the upper loading roller and lateral displacement of the lower portion of the brick veneer with respect to the upper portion at a ruptured bed joint.

In each of the specimens 74, 75, and 76 (loaded on the brick veneer) the brick veneer cracked at four or five bed joints owing to rupture of the bond between the brick and the mortar. The first cracks occurred at or near
the upper loading roller at loads of 64, 85, and 75 lb/ft² and deflections of 0.16, 0.17, and 0.21 in. in specimens T4, T5, and T6, respectively. In each of the specimens the plaster cracked transversely across the specimen in several places. About one-half of the cracks were at lath joints. The first cracks occurred near the upper loading roller at loads of 124, 100, and 132 lb/ft² and deflections of 0.76, 0.32, and 0.66 in. in specimens T4, T5, and T6, respectively. At the maximum load specimens T4 and T6 failed by rupture of one outer stud at a loading roller and lateral displacement of the brick veneer at a ruptured bed joint. Specimen T5 failed by rupture of the center stud and one outer stud at midspan.

4. Concentrated Load

The results are shown in table 13 and in figure 55 for wall specimens BK–P1, P2, and P3, loaded on the inside face, and in figure 56 for wall specimens BK–P4, P5, and P6, loaded on the outside face.

The concentrated loads were applied to the inside face of specimens P1, P2, and P3 on the plaster midway between two studs and about 3 ft from the lower end. Each of the specimens failed by punching of the disk through the plaster and into the lath.

The concentrated loads were applied to the outside face of specimens P4, P5, and P6 on a brick at midwidth in a course midway between
Figure 53.—Transverse load on wall BK, load applied to inside face.

Load-deflection (open circles) and load-set (solid circles) results for specimens BK-T1, T2, and T3 on the span 7 ft 6 in.

Figure 55.—Concentrated load on wall BK, load applied to inside face.

Load-indentation results for specimens BK-P1, P2, and P3.

Figure 54.—Transverse load on wall BK, load applied to outside face.

Load-deflection (open circles) and load-set (solid circles) results for specimens BK-T4, T5, and T6 on the span 7 ft 6 in.

Figure 56.—Concentrated load on wall BK, load applied to outside face.

Load-indentation results for specimens BK-P4, P5, and P6.
wall ties, about 3½ ft from the lower end. The indentations after a load of 1,000 lb had been applied were 0.001, 0.012, and 0.003 in. in specimens P4, P5, and P6, respectively, and no further effect was observed.

5. Impact Load

The results are shown in table 13 and in figure 57 for wall specimens BK-11, I2, and I3, loaded on the inside face, and in figure 58 for wall specimens BK-I4, I5, and I6, loaded on the outside face.

![Figure 57 - Impact load on wall BK, load applied to inside face.](image)

Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens BK-11, I2, and I3 on the span 7 ft 6 in.

![Figure 58 - Impact load on wall BK, load applied to outside face.](image)

Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens BK-I4, I5, and I6 on the span 7 ft 6 in.

The specimens were vertical when tested. The impact loads were applied to the center of the inside face of specimens I1, I2, and I3, the sandbag striking the plaster directly over the center stud. At drops of 3.5, 3.5, and 2.5 ft on specimens I1, I2, and I3, respectively, the inside face failed by rupture of the lath and plaster where the bag struck. At drops of 3, 2.5, and 3.5 ft, and deflections of 0.38, 0.32, and 0.25 in., respectively, the brick veneer of each specimen cracked by rupture of the bond between the brick and mortar at a bed joint near midspan. At drops of 6, 6, and 7.5 ft on specimens I1, I2, and I3, respectively, the outside face of each specimen failed by lateral displacement of the brick veneer at a ruptured bed joint. The sets after a drop of 10 ft were 0.58, 0.37, and 0.05 in., respectively, and the studs were undamaged.

The impact loads were applied to the center of the outside face of specimens I4, I5, and I6, the sandbag striking the brick veneer directly over the center stud. In specimens I4 and I5 at drops of 7 and 9 ft and deflections of 0.42 and 0.42 in., respectively, the brick veneer of each specimen cracked owing to rupture of the bond between the brick and the mortar at a bed joint near midspan. In specimen I6 at a drop of 10 ft and a deflection of 0.52 in., the plaster cracked transversely across the specimen near midspan. The sets after a drop of 10 ft were 0.08, 0.07, and 0.05 in. in specimens I4, I5, and I6, respectively, and neither the faces nor the studs failed.
6. Racking Load

The results for wall specimens BK–R1, R2, and R3 are shown in table 13 and in figure 59.

The racking loads were applied near the upper end of each specimen to a bearing plate covering the total thickness of the specimen, including the brick veneer. On specimen R1 the center of the load was at midthickness of the specimen and on specimens R2 and R3 at 2.5 in. from the outside face. The stop was in contact over the total thickness of the specimens. The deformations and sets shown in figure 59 for a height of 8 ft were computed from the values obtained from the measuring-device readings. The gage length of the vertical measuring device was 6 ft 9 in. The gage length of the horizontal measuring device was 5 ft. The deformations and sets are the averages of the deformations and sets for the wood frame and for the brick veneer measured independently by two sets of deformation-measuring devices.

In specimen R1 at a load of 6 kips/ft and a deformation of 0.46 in./8 ft, the plaster cracked diagonally in several places, approximately parallel to a diagonal from the point of application of load to the stop. There was also noticeable vertical displacement between the sheathing boards at the joint. During the application of the next increment of load the wood frame deformed so much more than the brick veneer that the ring dynamometer slipped out of the frame. The ringodynamometer was then centered 2.5 in. from the outside face, a load of 6.25 kips/ft was applied, and no further effect was observed.

Specimen R2 failed by rupture of the brick veneer in a stepwise crack approximately along a diagonal from the point of application of load to the stop. The crack usually followed the bed and head joints but went through the brick in a few places. No other failure of the specimen was observed. In specimen R3 the set after a load of 6.25 kips/ft had been applied was 0.026 in./8 ft, and no further effect was observed.

X. WALL BL

1. Description, Sponsor’s Statement

This construction was a wood frame with “Bildrite” sheathing, wood furring strips, and wood shingles on the outside face and “Lok-Joint” lath and plaster on the inside face. It was similar to construction BG, with the exception that the sheathing on the outside face was covered by shingles, not bevel siding.

The price in Washington, D. C., as of July 1937, was $0.36/ft².

(a) Four-Foot Wall Specimens

The 4-ft wall specimens were 8 ft 0 in. high, 4 ft 0 in. wide, and 7 in. thick. Each specimen consisted of a wood frame to which the faces were fastened. The frame consisted of three studs, A, shown in figure 60, fastened to a floor plate, B, and a top plate, C, by nails. The outside face consisted of insulating-board sheathing, D, wood furring strips, E, and wood shingles, F. The inside face consisted of wood nailing strips, G, insulating-board lath, H, and plaster, I. The specimens were not painted.

Studs.—The studs, A, were red pine, 1½ by 3¾ in. (nominal 2 by 4 in), 7 ft 7½ in. long,
spaced 1 ft 4 in. on centers. The lower end of each stud was fastened to the floor plate by two 16d common nails driven from the bottom of the plate (not toenailed), and the upper end of each stud was fastened to the top plate by two 16d common nails driven from the top of the lower member of the plate.

Floor plate.—The floor plate, B, was red pine, 1% by 3% in. (nominal 2 by 4 in), 4 ft 0 in. long.

Top plate.—The top plate, C, consisted of two pieces of red pine, 1% by 3% in. (nominal 2 by 4 in), 4 ft 0 in. long.

Figure 60.—Four-foot wall specimen BL.

2 by 4 in), 4 ft 0 in. long, fastened by ten 10d common nails driven from the top of the plate.

Sheathing.—The sheathing, D, was two "Bildrite" sheathing boards, 2 1/6 in. by 1 ft 11 1/6 in., 8 ft 0 in. long, with the linen-textured surface outward. There was a vertical joint on the center stud with 1/4-in. clearance between the edges of the boards. The boards were fastened to the center stud, floor plate, and top plate by 8d common nails spaced 3 in., about 1/2 in. from the edges of the boards, and to the two outer studs by 8d common nails spaced 6 in.

Furring strips.—The furring strips, E, were 20 pieces of red pine, 1/2 by 1% in., 4 ft 0 in. long, spaced 5 in., and fastened to the studs by 10d box nails, one at each stud.

Shingles.—The shingles, F, were western red cedar, 16 in. long, exposed 5 in. to the weather, and fastened to the furring strips by 3d galvanized common nails, either two or three nails in each shingle.

Nailing strips.—The nailing strips, G, were red pine, 1/2 by 3% in., 7 ft 7 in. long. In the specimen they supported the outer edge of the lath to facilitate plastering, but they are not used in a house.

Lath.—The lath, H, consisted of "Lok-Joint" lath, five full courses and one course cut to a height of 7% in., as shown in figure 6. The plaster was applied to the burlap-textured surface. There was a vertical joint in each course, centered on a stud, with 1/8-in. clearance between the ends of the lath. The horizontal joints (shiplapped) were reinforced by "Loks," three at each joint. The lath was fastened to the studs, floor plate, top plate, and nailing strips by plasterboard nails spaced 4 in., about 1/2 in. from the edges of the lath.

Plaster.—The plaster, I, was 3/4 in. thick and consisted of a base coat and a finish coat. The lath was dry when the plaster was applied.

(b) Eight-Foot Wall Specimens

The 8-ft wall specimens were 8 ft 0 in. high, 8 ft 0 in. face width, and 7 in. thick. The specimens were similar to the 4-ft specimens, with the exception that there were seven studs spaced 1 ft 4 in. on centers and no nailing strips. There was a stud at each edge extending one-half its thickness beyond the faces; over-all width 8 ft 1% in. The two members of the top plate were fastened by twenty 10d common nails. The sheathing consisted of two boards, 3 ft 11 1/8 in. wide. There was a vertical joint over the center stud, with 1/4-in. clearance between the edges of the boards. The sheathing was fastened to the edge studs, center stud, floor plate, and top plate by 8d common nails spaced 3 in., about 1/2 in. from the edges of the boards, and to the other four studs by 8d common nails spaced 6 in.

[42]
2. Compressive Load

The results for wall specimens *BL-C1*, *C2*, and *C3* are shown in table 13 and in figures 61 and 62.

The lateral deflections shown in figure 62 were plotted to the right of the vertical axis for deflections of the specimens toward the outside face and to the left for deflections toward the inside face. Specimen *C3* deflected toward the inside face for loads up to 4.5 kips/ft, probably owing to the stiffness of the inside face counteracting the effect of the eccentric load.

Each of the specimens failed by crushing of the lower member of the top plate, locally, at the inside edge of the studs, causing the plate to rotate and allowing the specimens to push out under load without breaking the studs.

3. Transverse Load

The results are shown in table 13 and in figure 63 for wall specimens *BL-T1*, *T2*, and *T3*, loaded on the inside (plastered) face, and in figure 64 for wall specimens *T4*, *T5*, and *T6*, loaded on the outside (shingled) face.
In each of the specimens T_1, T_2, and T_3, the plaster cracked longitudinally along one or both outer studs and transversely across the specimen in several places. The first longitudinal cracks occurred at loads of 225, 75, and 75 lb/ft2 and deflections of 1.14, 0.26, and 0.29 in. in specimens T_1, T_2, and T_3, respectively. Some of the transverse cracks occurred at lath joints. The first cracks occurred at loads of 75, 60, and 75 lb/ft2 and deflections of 0.34, 0.24, and 0.23 in. in specimens T_4, T_5, and T_6, respectively. At the maximum load specimen T_4 failed by rupture of one outer stud at mid-span. Specimens T_5 and T_6 failed by rupture of all three studs at or between the loading rollers.

4. Concentrated Load

The results are shown in table 13 and in figure 65 for wall specimens $BL-P_1$, P_2, and P_3, loaded on the inside (plastered) faces, and in figure 66 for wall specimens $BL-P_4$, P_5, and P_6, loaded on the outside (shingled) face. The concentrated loads were applied to the inside face of specimens P_1, P_2, and P_3 on the plaster midway between two studs and 1½ to 2 ft from one end. On specimens P_2 and P_3 the load was applied over a lath joint. Each of the specimens failed by punching of the disk through the plaster and into the lath.

The concentrated loads were applied to the outside face of specimens P_4, P_5, and P_6 on a
shingle 2¾ in. from the lower edge and about 2½ ft from one end of the specimen, midway between two furring strips and two studs. In specimen P_4 at a load of 650 lb and in specimen P_6 at a load of 700 lb the shingle split along the grain at one edge of the disk. At the maximum loads each of the specimens failed by punching of the disk through the shingles.

5. Impact Load

The results are shown in table 13 and in figure 67 for wall specimens $BL-11$, 12, and 13, loaded on the inside face, and in figure 68 for wall specimens $BL-14$, 15, and 16, loaded on the outside face.

The impact loads were applied to the center of the inside face of specimens 11, 12, and 13, the sandbag striking the plaster directly over the center stud. In each of the specimens 11, 12, and 13 the plaster cracked longitudinally over either one or both outer studs at a drop of 1 ft, and at drops of 2.5, 3, and 2.5, respectively, the inside face of each specimen failed by sagging of the overhanging plaster edges. At drops of 3.5, 2, and 3 ft and deflections of

![Figure 66](image1.png)

Figure 66. Concentrated load on wall BL, load applied to outside face.

Load-indentation results for specimens $BL-P_4$, P_5, and P_6.

![Figure 67](image2.png)

Figure 67. Impact load on wall BL, load applied to inside face.

Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens $BL-11$, 12, and 13 on the span 7 ft 6 in.

![Figure 68](image3.png)

Figure 68. Impact load on wall BL, load applied to outside face.

Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens $BL-14$, 15, and 16 on the span 7 ft 6 in.
0.79, 0.69, and 0.72 in. in specimens II, I2, and I3, respectively, the plaster cracked transversely across each specimen at a lath joint near midspan. The sets after a drop of 10 ft were 0.66, 0.71, and 0.68 in. in specimens II, I2, and I3, respectively. Some of the furring strips were separated from the sheathing near midspan, but the outside face and the studs did not fail.

The impact loads were applied to the center of the outside face of specimens I4, I5, and I6, the sandbag striking the shingles directly over the center stud. In each of the specimens the plaster cracked transversely across each specimen at several places. The first cracks occurred at lath joints near midspan at drops of 3, 2.5, and 2.5 ft and deflections of 0.79, 0.69, and 0.65 in. in specimens I4, I5, and I6, respectively. At drops of 4, 4.5, and 4 ft, respectively, the inside (plastered) face of each specimen failed by opening of the cracks in the plaster. The sets after a drop of 10 ft were 0.12, 0.08, and 0.08 in. in specimens I4, I5, and I6, respectively. Most of the plaster had fallen, but the outside face and studs were undamaged.

6. Racking Load

Wall specimen BL-R1 under racking load is shown in figure 69. The results for wall specimens BL-R1, R2, and R3 are shown in table 13 and in figure 70.

The racking loads were applied to the top plate only and the stop was in contact with the floor plate only. In each of the specimens the plaster cracked in several places. Most of the
cracks were parallel to a diagonal from the point of application of load to the stop. The first cracks occurred at loads of 1.125, 1.125, and 1.375 kips/ft and deformations of 0.49, 0.47, and 0.67 in./8 ft in specimens R1, R2, and R3, respectively. At a load of 1.50 kips/ft on specimens R1 and R2 some of the nails fastening the sheathing to the top plate pulled through the edges of the sheathing. At loads of 1.625, 1.375, and 1.592 (maximum) kips/ft on specimens R1, R2, and R3, respectively, there was noticeable vertical displacement between the two sheathing boards at the joint. At the maximum loads each of the specimens failed by the top plate pulling the nails from the studs and through the sheathing and lath.

XI. PARTITION BM

1. Description, Sponsor's Statement

This construction was a wood frame with "Lok-Joint" lath and plaster on both faces. It was similar to wall constructions BG, BJ, and BK, with the exception that the top plate was single, not double, and both faces were lath and plaster, not one face.

The price in Washington, D. C., as of July 1937, was $0.31/ft².

The partition specimens were 8 ft 0 in. high, 4 ft 0 in. wide, and 5% in. thick. Each specimen consisted of a wood frame to which two like faces were fastened. The frame consisted of three studs, A, in figure 71, fastened to a floor plate, B, and a top plate, C, by nails. Both faces consisted of wood nailing strips, D, insulating-board lath, E, and plaster, F. The specimens were not painted.

Studs.—The studs, A, were red pine, 1½ by 3½ in. (nominal 2 by 4 in), 7 ft 8½ in. long, spaced 1 ft 4 in. on centers. The studs were fastened to both plates by 16d common nails driven through the plates. There were two nails at each end of each stud.

Floor plate and top plate.—The plates, B and C, were red pine, 1½ by 3½ in. (nominal 2 by 4 in), 4 ft 0 in. long.
Nailing strips.—The nailing strips, \(D \), were red pine, \(\frac{3}{4} \) by \(\frac{3}{4} \) in., 7 ft 8\(\frac{1}{2} \) in. long. In the specimen they supported the outer edges of the lath to facilitate plastering, but they are not used in a house.

Lath.—The lath, \(E \), consisted of “Lok-Joint” lath, five full courses and one course cut to a height of \(7\frac{7}{8} \) in., as shown in figure 6. The plaster was applied to the burlap-textured surface. There was a vertical joint in each course, centered on a stud, with \(\frac{3}{16} \)-in. clearance between the ends of the lath. The horizontal joints (shiplapped) were reinforced by “Loks,” three at each joint. The lath was fastened to the studs, floor plate, top plate, and nailing strips by plasterboard nails spaced 4 in., about \(\frac{1}{2} \) in. from the edges of the lath.

Plaster.—The plaster, \(F \), was \(\frac{3}{8} \) in. thick and consisted of a base coat and a finish coat. The lath was dry when the plaster was applied.

2. Impact Load

The results for partition specimens \(BM-I1, \) \(I2, \) and \(I3 \) are shown in table 14 and in figure 72.

![Figure 72.—Impact load on partition BM.](image)

Table 14.—Structural properties, partitions BM and BN

<table>
<thead>
<tr>
<th>Construction symbol</th>
<th>Weight</th>
<th>Concentrated Load</th>
<th>Impact *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Specimen</td>
<td>Load</td>
<td>Load</td>
</tr>
<tr>
<td>BM</td>
<td>P1</td>
<td>167</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>273</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>211</td>
<td>3</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>210</td>
<td>4.5</td>
</tr>
<tr>
<td>BN</td>
<td>P1</td>
<td>149</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>165</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>157</td>
<td>3</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>155</td>
<td>5.5</td>
</tr>
</tbody>
</table>

* Span 7 ft 6 in.

The impact loads were applied to the center of one face of each specimen, the sandbag striking the plaster directly over the center stud. In each of the specimens the plaster on both faces cracked longitudinally along the studs and transversely across each specimen in several places. The first transverse cracks in the face opposite the face struck occurred at lath joints near midspan at drops of 2, 1, and 1.5 ft and deflections of 0.70, 0.50, and 0.70 in. in specimens \(I1, I2, \) and \(I3 \), respectively. The first transverse cracks in the face struck occurred at lath joints near midspan at a drop of 3 ft and deflections of 0.90, 1.08, and 1.18 in. in specimens \(I1, I2, \) and \(I3 \), respectively. At drops of 4, 5, and 4.5 ft, on specimens \(I1, I2, \) and \(I3 \), respectively, the face struck by the sandbag failed owing to rupture of the plaster at midspan, especially at the point of impact. At drops of 5.5, 6.5, and 6 ft on specimens \(I1, I2, \) and \(I3 \), respectively, the face opposite that struck by the sandbag failed by falling of some of the plaster. In each of the specimens the center stud broke at midspan at drops of 10, 9, and 10 ft, respectively. Specimen \(I2 \) failed structurally at a drop of 10 ft by the sandbag passing through the specimen.

3. Concentrated Load

Partition specimen \(BM-P2 \) under concentrated load is shown in figure 73. The results for partition specimens \(BM-P1, P2, \) and \(P3 \) are shown in table 14 and in figure 74.
The concentrated loads were applied to one face of each specimen on the plaster midway between two studs over a lath joint 1 1/2 to 2 ft from one end of the specimen. Each of the specimens failed by punching of the disk through the plaster and by the spreading of the lath at the joint.

XII. PARTITION BN

1. Description, Sponsor's Statement

This construction was a wood frame with 1/4-in. "Graylite" interior board on both faces. It was similar to wall construction BI, with the exception that the top plate was single, not double, and both faces were interior board, not one face. It was similar to wall construction BH, with the exception that the top plate was single, not double, both faces were interior board, not one face, and the interior board was 1/2 in. thick, not 3/4 in.

The price of this construction in Washington, D. C., as of July 1937, was $0.18/ft².

The partition specimens were 8 ft 0 in. high, 4 ft 0 in. wide, and 4 1/2 in. thick. Each specimen consisted of a wood frame to which two like interior board faces were fastened.

The frame consisted of three studs, A, shown in figure 75, fastened to a floor plate, B, and a top plate, C, by nails. Both faces consisted of
interior board, \(D \), with a vertical joint at midwidth covered by a batten strip, \(E \). The specimens were not painted.

\textit{Studs.}—The studs, \(A \), were red pine, 1\(\frac{1}{2} \) by 3\(\frac{3}{8} \) in. (nominal 2 by 4 in.), 7 ft 8\(\frac{3}{4} \) in. long, spaced 1 ft 4 in. on centers. The studs were fastened to both plates by 16d common nails driven through the plates. There were two nails at each end of each stud.

\textit{Floor plate and top plate.}—The plates, \(B \) and \(C \), were red pine, 1\(\frac{1}{2} \) by 3\(\frac{3}{8} \) in. (nominal 2 by 4 in.), 4 ft 0 in. long.

\textit{Interior board.}—The interior board, \(D \), was four “Graylite” boards, 1 ft 11\(\frac{3}{8} \) in. by \(\frac{1}{2} \) in., 8 ft 0 in. long, with the linen-textured surface exposed. There was a vertical joint on the center stud with \(\frac{1}{8} \)-in. clearance between the edges of the boards on each face. The interior board was fastened to the center stud, floor plate, and top plate by 4d galvanized roofing nails spaced 3 in., about \(\frac{1}{8} \) in. from the edges of the board, and to the outer studs by 4d finishing nails spaced 6 in., driven at an angle, adjacent nails being inclined in opposite directions.

\textit{Batten strips.}—The batten strips, \(E \), were two pieces of “Graylite” interior board, \(\frac{1}{2} \) by 2\(\frac{3}{4} \) in., 8 ft 0 in. long, with beveled outer edges. The batten strips covered the vertical joints at midwidth on each face of the specimen and were each fastened to the center stud by two rows of 4d finishing nails spaced 3 in., driven through the bevel edges, through the interior board and into the center stud.

2. \textbf{Impact Load}

Partition specimen \(BN-I2 \), during the impact test, is shown in figure 76. The results for partition specimens \(BN-I1 \), \(I2 \), and \(I3 \) are shown in table 14 and in figure 77.

The impact loads were applied to the center of one face of each specimen, the sandbag striking the batten strip and the interior board directly over the center stud. In each of the specimens the interior board on the face opposite the face struck separated from the studs at drops of 4, 7, and 6 ft on specimens \(I1 \), \(I2 \), and \(I3 \), respectively, and these faces failed by rupture of the interior board at midspan transversely across each specimen at drops of 4.5, 8, and 6 ft, respectively. At drops of 5, 8, and 3.5 ft, respectively, the face struck failed by rupture of the interior board where the sandbag struck. At drops of 4.5, 7.5, and 6 ft, respectively, the center stud of each specimen ruptured at midspan. At the maximum height of drop, each specimen failed by the sandbag passing through the specimen.

3. \textbf{Concentrated Load}

The results for partition specimens \(BN-P1 \), \(P2 \), and \(P3 \) are shown in table 14 and in figure 78.

The concentrated loads were applied to one face of each specimen on the interior board midway between two studs and about 1\(\frac{1}{2} \) ft from one end of the specimen. Each of the specimens failed by punching of the disk through the interior board.
Impact load on partition BN.

Concentrated load on partition BN.

Load-indentation results for specimens BN-P1, P2, and P3.
XIII. SPONSOR'S COMMENTS

Basically, an "Insulite" wall consists of a wood frame with "Bildrite" sheathing on the outside and either "Graylite" interior board or "Lok-Joint" lath and plaster on the inside.

These Insulite products are the results of more than 25 years' experience with structural wood-fiber insulating board, including research in the laboratory and studies of its use in buildings. These may be combined in different ways with many outside finishing materials to meet the requirements of different codes, purposes, and geographic locations.

The application of these building materials is simple and rapid.

Many dealers in building materials in both the United States and Canada stock these materials in well-protected packages. Each package contains complete directions for the application of the material.

The physical properties of the insulating board were determined by the Paper Section, under the supervision of B. W. Scribner, with the assistance of S. G. Weissberg. The physical properties of the plaster were determined by the Lime and Gypsum Section, under the supervision of L. S. Wells, with the assistance of W. F. Clarke. The physical properties of the materials for the stucco and the brick veneer were determined by the Masonry Construction Section, under the supervision of D. E. Parsons, with the assistance of C. C. Fishburn and P. H. Petersen.

The description and drawings of the specimens were prepared by E. J. Schell and G. W. Shaw of the Building Practice and Specifications Section, under the supervision of V. B. Phelan, from the information supplied by the sponsor and from the specimens.

The structural properties were determined by the Engineering Mechanics Section, under the supervision of H. L. Whittemore and A. H. Stungs, with the assistance of the following members of the professional staff: F. Cardile, R. C. Carter, H. Dollar, M. Dubin, A. H. Easton, A. S. Endler, M. Greenspan, C. D. Johnson, L. Karpeles, A. J. Sussman, and L. R. Sweetman.

XIV. SELECTED REFERENCES

Conservation through insulation, Quartermaster Review 15, No. 6, 15–20, 66–67 (1936).
Low-cost house design with insulation throughout, Practical Builder 1, No. 1, 8 (1936).
G. E. Heck, Rigidity and strength of frame walls sheathed with fiberboard, Forest Products Laboratory Mimeograph Publication R1151 (1937).
A. S. Ball, New developments in sheathing performance data, American Builder (Dealer Distribution Section) 61, No. 5, 149–158 (1939).

WASHINGTON, May 2, 1939.
BUILDING MATERIALS AND STRUCTURES REPORTS

The following publications in this series are now available by purchase from the Superintendent of Documents at the prices indicated:

- BMS1 Research on Building Materials and Structures for Use in Low-Cost Housing
- BMS2 Methods of Determining the Structural Properties of Low-Cost House Constructions
- BMS3 Suitability of Fiber Insulating Lath as a Plaster Base
- BMS4 Accelerated Aging of Fiber Building Boards
- BMS5 Structural Properties of Six Masonry Wall Constructions
- BMS6 Survey of Reeding Materials in the Southeastern States
- BMS7 Water Permeability of Masonry Walls
- BMS8 Methods of Investigation of Surface Treatment for Corrosion Protection of Steel
- BMS9 Structural Properties of the Insulated Steel Construction Co.'s "Frameless-Steel" Constructions for Walls, Partitions, Floors, and Roofs
- BMS10 Structural Properties of the "Kerman Beam Steel Floor" Constructions Sponsored by the H. H. Robertson Company
- BMS11 Structural Properties of the Curren Fabrihome Corporation's "Fabrihome" Constructions for Walls and Partitions
- BMS12 Structural Properties of "Steelox" Constructions for Walls, Partitions, Floors, and Roofs
- BMS13 Properties of Some Fiber Building Boards of Current Manufacture
- BMS14 Indentation and Recovery of Low-Cost Floor Coverings
- BMS15 Structural Properties of "Wheeling Long-Span Steel Floor" Construction Sponsored by the Wheeling Corrugating Co.
- BMS16 Structural Properties of a "Ciecrete" Floor Construction Sponsored by Ciecrete Floors, Inc.
- BMS17 Sound Insulation of Wall and Floor Constructions
- BMS18 Structural Properties of "Pre-Fab" Constructions for Walls, Partitions, and Floors
- BMS19 Preparation and Revision of Building Codes
- BMS20 Structural Properties of "Twachtman" Constructions for Walls and Floors Sponsored by the Connecticut Pre-Cast Buildings Corporation
- BMS21 Structural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the National Concrete Masonry Association
- BMS22 Structural Properties of "Dun-Ti-Stone" Wall Construction Sponsored by the W. E. Dunn Manufacturing Co.
- BMS23 Structural Properties of a Brick Cavity-Wall Construction Sponsored by the Brick Manufacturers Association of New York, Inc.
- BMS24 Structural Properties of the "Kerman Beam" Wall Construction and a Brick-Type Cavity-Wall Construction Sponsored by the Structural Clay Products Institute
- BMS25 Structural Properties of Conventional Wood-Framed Constructions for Walls, Partitions, Floors, and Roofs
- BMS26 Structural Properties of "Nelson Pre-Cast Concrete Foundation" Wall Construction Sponsored by the Nelson Cement Stone Co., Inc.
- BMS27 Structural Properties of "Bender Steel Home" Wall Construction Sponsored by The Bender Body Co.
- BMS28 Backflow Prevention in Over-Rim Water Supplies
- BMS29 Survey of Roofing Materials in the Northeastern States
- BMS30 Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas Fir Plywood Association

How To Purchase

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices.

An alternative method is to deposit with the Superintendent of Documents the sum of $5, with the request that the reports be sent to you as soon as issued, and that the cost thereof be charged against your deposit. This will provide for the mailing of the publications without delay. You will be notified when the amount of your deposit has become exhausted.

If 100 copies or more of any report are ordered at one time, a discount of 25 percent is allowed.
