BUILDING MATERIALS AND STRUCTURES

REPORT BMS22

Structural Properties of "Dun-Ti-Stone" Wall Construction Sponsored by the W. E. Dunn Manufacturing Company

by

HERBERT L. WHITTEMORE
AMBROSE H. STANG, and
DOUGLAS E. PARSONS

NATIONAL BUREAU OF STANDARDS
The program of research on building materials and structures, carried on by the National Bureau of Standards, was undertaken with the assistance of the Central Housing Committee, an informal organization of governmental agencies concerned with housing construction and finance, which is cooperating in the investigations through a subcommittee of principal technical assistants.

CENTRAL HOUSING COMMITTEE
SUBCOMMITTEE ON TECHNICAL RESEARCH

Walter Junge, Federal Housing Administration, Chairman

Arthur C. Shire, United States Housing Authority, Vice Chairman

Sterling R. March, Secretary

Albert G. Bear,
Veterans’ Administration.

Pierre Blouke,
Federal Home Loan Bank Board.

Carroll W. Chamberlain,
Procurement Division (Treasury).

Joseph M. Dallavalle,
Public Health Service.

John Donovan,
Farm Security Administration (Agriculture).

George E. Knox,
Yards and Docks (Navy).

Vincent B. Phelan,
National Bureau of Standards (Commerce).

Edward A. Poynton,
Office of Indian Affairs (Interior).

George W. Trayer,
Forest Service (Agriculture).

Elsmere J. Walters,
Construction Division (War).

CHAIRMEN OF SECTIONS

Specifications
Carroll W. Chamberlain

Materials
Elsmere J. Walters

Maintenance
John H. Schaefer

Mechanical Equipment
Robert K. Thulman

Methods and Practices

NATIONAL BUREAU OF STANDARDS

STAFF COMMITTEE ON ADMINISTRATION AND COORDINATION

Hugh L. Dryden, Chairman.

Mechanics and Sound

Phaon H. Bates,
Clay and Silicate Products.

Hobart C. Dickinson,
Heat and Power.

Warren E. Emley,
Organic and Fibrous Materials.

Gustav E. F. Lundell,
Chemistry.

Addams S. McAllister,
Codes and Specifications.

Henry S. Rawdon,
Metallurgy.

The Forest Products Laboratory of the United States Department of Agriculture is cooperating with both committees on investigations of wood constructions.

[For list of BMS publications and how to purchase, see cover page III]
BUILDING MATERIALS
and STRUCTURES

REPORT BMS22

Structural Properties of "Dun-Ti-Stone" Wall
Construction Sponsored by the
W. E. Dunn Manufacturing Company

by HERBERT L. WHITTEMORE, AMBROSE H. STANG,
and DOUGLAS E. PARSONS

ISSUED AUGUST 14, 1939

The National Bureau of Standards is a fact-finding organization;
it does not "approve" any particular material or method of construction. The technical findings in this series of reports are to be construed accordingly.
Foreword

This report is one of a series issued by the National Bureau of Standards on the structural properties of constructions intended for low-cost houses and apartments. Practically all of these constructions were sponsored by groups within the building industry which advocate and promote the use of such constructions and which have built and submitted representative specimens, as outlined in report BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions. The sponsor is responsible for the representative character of the specimens and for the description given in each report. The Bureau is responsible for the test data.

This report covers only the load-deformation relations and strength of the wall of a house when subjected to compressive, transverse, concentrated, impact, and racking loads by standardized methods simulating the loads to which the wall would be subjected in actual service. It may be feasible later to determine the heat transmission at ordinary temperatures and the fire resistance of this construction and perhaps other properties.

The National Bureau of Standards does not "approve" a construction, nor does it express an opinion as to the merits of a construction for the reasons given in reports BMS1 and BMS2. The technical facts on this and other constructions provide the basic data from which architects and engineers can determine whether a construction meets desired performance requirements.

Lyman J. Briggs, Director.
Structural Properties of “Dun-Ti-Stone” Wall Construction
Sponsored by the W. E. Dunn Manufacturing Company

by HERBERT L. WHITTEMORE, AMBROSE H. STANG, and DOUGLAS E. PARSONS

CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>IV. Wall BE—Continued.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Sponsor’s statement—Continued.</td>
</tr>
<tr>
<td></td>
<td>(c) Fabrication data. 4</td>
</tr>
<tr>
<td></td>
<td>(d) Comments. 4</td>
</tr>
<tr>
<td></td>
<td>2. Compressive load. 5</td>
</tr>
<tr>
<td></td>
<td>3. Transverse load. 7</td>
</tr>
<tr>
<td></td>
<td>4. Concentrated load. 9</td>
</tr>
<tr>
<td></td>
<td>5. Impact load. 9</td>
</tr>
<tr>
<td></td>
<td>6. Racking load. 11</td>
</tr>
</tbody>
</table>

I. Introduction

For the program on the determination of the structural properties of low-cost house constructions, the W. E. Dunn Manufacturing Co. submitted 18 specimens representing their “Dun-Ti-Stone” construction for walls.

The specimens were subjected to compressive, transverse, concentrated, impact, and racking loads. The transverse, concentrated, and impact loads were applied to both faces of the specimens. For each of these loads, three like specimens were tested. The deformation under load and the set after the load was removed were measured for uniform increments of load, except for concentrated loads, for which the set only was determined. The results are presented in graphs and in a table.

I. INTRODUCTION

In order to provide technical facts on the performance of constructions which might be used in low-cost houses, to discover promising constructions, and ultimately to determine the properties necessary for acceptable performance, the National Bureau of Standards has invited the building industry to cooperate in a program of research on building materials and structures for use in low-cost houses and apartments. The objectives of this program are described in report BMS1, Research on Building Materials and Structures for Use in Low-Cost Housing, and that part of the program relating to the structural properties in report BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions.

As a part of the research on structural properties, six masonry wall constructions have been subjected to a series of standardized laboratory tests to provide data on the properties of some constructions for which the behavior in service is generally known. These data are given in report BMS5, Structural Properties of Six Masonry Wall Constructions. Similar tests have been made on wood-frame constructions by the Forest Products Laboratory of the United States Department of Agriculture, the results of which will be given in a subsequent report in this series.

This report describes the structural properties of a wall construction sponsored by one of the manufacturers in the building industry. The specimens were subjected to compressive, transverse, concentrated, impact, and racking loads, simulating loads to which the walls of a house are subjected. In actual service, compressive loads on a wall are produced by the weight of the roof, second floor and second-story walls if any, furniture and occupants, wind load on adjoining second-story walls, and snow and wind loads on the roof. Transverse loads on a wall are produced by the wind, concentrated and impact loads by furniture or accidental contact with heavy objects, and racking loads by the action of the wind on adjoining walls.
The deformation and set under each increment of load were measured because the suitability of a wall construction depends in part on its resistance to deformation under load and whether it returns to its original size and shape when the load is removed.

II. SPONSOR AND PRODUCT

The specimens were submitted by the W. E. Dunn Manufacturing Co., Holland, Mich., and represented a wall construction sponsored by this company and marketed under the trade name "Dun-Ti-Stone." The "Dun-Ti-Stone" concrete units were made under franchise by the Silver Hill Brick Corporation, Washington, D. C. Each unit consisted of a facing slab and a backing slab connected by a steel tie bar. When laid the units formed a hollow wall. The specimens were built with cement-lime mortar.

III. SPECIMENS AND TESTS

The wall construction was assigned the symbol BE and the specimens were assigned the designations given in table 1.

<table>
<thead>
<tr>
<th>Specimen designation</th>
<th>Load</th>
<th>Load applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3</td>
<td>Compressive</td>
<td>Upper end.</td>
</tr>
<tr>
<td>T1, T5, T9</td>
<td>do</td>
<td>Inside face.</td>
</tr>
<tr>
<td>T2, T3, T7</td>
<td>do</td>
<td>Outside face.</td>
</tr>
<tr>
<td>P1, P2, P10</td>
<td>Concentrated</td>
<td>do.</td>
</tr>
<tr>
<td>P4, P6, P10</td>
<td>do</td>
<td>Outside face.</td>
</tr>
<tr>
<td>R1, R2, R3</td>
<td>Impact</td>
<td>Inside face.</td>
</tr>
<tr>
<td>R3, R2, R3</td>
<td>do</td>
<td>Outside face.</td>
</tr>
</tbody>
</table>

* These specimens were undamaged portions of the transverse specimens.

The specimens were tested in accordance with BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions, which also gives the requirements for the specimens and describes the presentation of the results of the tests, particularly the load-deformation graphs.

The tests were begun August 17, 1938 and completed September 29, 1938. The specimens were tested 28 days after they were built. The sponsor’s representative witnessed the tests.

IV. WALL BE

(a) Materials

Concrete units.—The materials for the units were portland cement, washed bank sand (passed 1/2-in. sieve), and steel tie bars made by the Rosslyn Steel and Cement Co.

The units were made by the Silver Hill Brick Corporation. The slabs were 1 part of portland cement and 8 parts of sand, by volume. The slabs were made on a standard "Dunbrik" machine made by the W. E. Dunn Manufacturing Co., Holland, Mich. After curing, the slabs were placed in a spacing mold and the tie bar fastened in place by mortar, 1 part of cement and 3 parts of sand, by volume.

Each unit consisted of two concrete slabs, 2½ by 11⅛ by 8 in., connected by a tie bar, as shown in figure 1. The top of the facing slab, A, was inclined ½ in. toward the backing slab, B. The inner face of each slab had three recesses, C, 5 by 1⅜ in., 1½ in. deep, spaced 4⅕ in. on centers. The slabs were fastened by a Z-shaped tie bar, D, made from a ⅝-in. diam round deformed reinforcement bar.

The physical properties of the concrete units, determined by the Masonry Construction Section of the National Bureau of Standards in accordance with the American Society
The average water content of the mortar was 22.5 percent, by weight of dry materials. Samples were taken from at least one batch of mortar for each wall specimen, the flow determined in accordance with Federal Specification SS-C-181b, and six 2-in. cubes made. Three cubes were stored in water at 70°F and three stored in air near the wall specimen. The compressive strength of each cube was determined on the day the corresponding wall specimen was tested. The physical properties of the mortar are given in table 4.

Table 4. Physical properties of mortar, wall BE

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Flow</th>
<th>Compressive strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air storage</td>
<td>Water storage</td>
</tr>
<tr>
<td></td>
<td>Percent</td>
<td>lb/in.²</td>
</tr>
<tr>
<td>C1</td>
<td>108</td>
<td>758</td>
</tr>
<tr>
<td>C2</td>
<td>163</td>
<td>888</td>
</tr>
<tr>
<td>C3</td>
<td>102</td>
<td>672</td>
</tr>
<tr>
<td>T1</td>
<td>107</td>
<td>615</td>
</tr>
<tr>
<td>T2</td>
<td>103</td>
<td>581</td>
</tr>
<tr>
<td>T3</td>
<td>91</td>
<td>692</td>
</tr>
<tr>
<td>T4</td>
<td>85</td>
<td>665</td>
</tr>
<tr>
<td>T5</td>
<td>85</td>
<td>665</td>
</tr>
<tr>
<td>T6</td>
<td>106</td>
<td>726</td>
</tr>
<tr>
<td>R1</td>
<td>106</td>
<td>777</td>
</tr>
<tr>
<td>R2</td>
<td>102</td>
<td>775</td>
</tr>
<tr>
<td>R3</td>
<td>102</td>
<td>775</td>
</tr>
<tr>
<td>R4</td>
<td>100</td>
<td>771</td>
</tr>
<tr>
<td>R5</td>
<td>94</td>
<td>692</td>
</tr>
<tr>
<td>Average</td>
<td>101</td>
<td>691</td>
</tr>
</tbody>
</table>

Concrete.—The materials for the concrete fill in the top course of the wall were North American Portland Cement Corporation’s portland cement, Potomac River concrete sand, and Potomac River gravel (maximum size 3/8 in). The concrete was 1 part of cement, 2.75 parts of dry sand, and 3.65 parts of dry gravel, by weight. The proportions by volume were 1 part of cement, 2 parts of loose damp sand, and 4 parts of gravel.

A 6- by 12-in. cylinder was made by the Masonry Construction Section from the concrete for each wall specimen and stored in air near the specimen. The compressive strength of each cylinder was determined on the day the corresponding wall specimen was tested. The average compressive strength of the concrete was 2,400 lb/in.².

Metal lath.—Expanded metal lath, galvanized.

Reinforcement bars.—Steel, deformed, 3/8-in. round.

(b) Description

(1) Four-foot wall specimens.—The 4-ft wall specimens were 8 ft 6 1/2 in. high, 4 ft 1 in. wide, and 9 in. thick, and had 12 courses of units, except for specimens C1, C2, and C3, which were 7 ft 10 1/2 in. high and had 11 courses of units. The units formed a hollow wall with facing, A, and backing, B, as shown in figure 2, connected by the tie bars, C, cast in the slabs. The head joints were staggered by using half slabs at the ends of alternate courses. The half slabs had no tie bars. The lower edges of the slabs in the facing extended 1/2 in. beyond the upper edges of the slabs in the course below. The slabs in the backing were flush. The bed joints were furrowed and the head joints were filled solidly by applying mortar freely to the edges of each unit before it was laid. The joints were pointed. Metal lath, D, was placed in the joint below the top course and the top course was filled with concrete, E, reinforced by three reinforcement bars, F, one bar placed 1 in. from the top of the concrete and two bars placed 1 1/2 in. from the bottom.

The price of this construction in Washington, D. C., as of July 1937 was $0.40/ft².

(2) Eight-foot wall specimens.—The 8-ft wall specimens were 7 ft 10 in. high, 8 ft 3 in. wide, and 9 in. thick, and had 11 courses of units. The specimens were similar to the 4-ft wall specimens.

(c) Fabrication Data

The fabrication data, determined by the Masonry Construction Section, are given in table 5.

Table 5.—Fabrication data, wall BE

<table>
<thead>
<tr>
<th>Thickness of joints</th>
<th>Masonry units</th>
<th>Mortar materials</th>
<th>Mason’s time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed</td>
<td>Head</td>
<td>Number/ft²</td>
<td>Cement</td>
</tr>
<tr>
<td>in.</td>
<td>in.</td>
<td></td>
<td>lb/ft²</td>
</tr>
<tr>
<td>0.51</td>
<td>0.65</td>
<td>1.37</td>
<td>1.01</td>
</tr>
</tbody>
</table>

* The thickness of the joints in the facing varied considerably because of differences in alignment between the facing and backing slabs of the units. For adjacent units, the variation in joint thickness was as much as 0.1 in.

(d) Comments

Reinforced-concrete pilasters or columns are formed in the space between the facing and the backing by inserting stops at the desired location and placing reinforcement steel and concrete in the enclosed space. Beams and lintels are also reinforced concrete, formed in the same manner.

The outside of the wall is usually finished with cement paint and the inside with plaster, consisting of a 1/8-in. base coat applied directly to the units and covered by the usual white finish coat.
Different outside effects, resembling clapboards or shingles, may be obtained by changing the angle of the facing slab when the slabs are connected.

2. Compressive Load

Wall specimen BE-C1 under compressive load is shown in figure 3. The results for wall specimens BE-C1, C2, and C3 are shown in table 6 and in figures 4 and 5.

The compressive loads were applied to both the facing and the backing, 2.81 in. (one-third the thickness at the top of the units) from the inside face. The shortenings and sets shown in figure 4 for a height of 8 ft were computed from the values obtained from the compressometer readings. The gage length of the compressometers was 6 ft 5½ in. The lateral deflections shown in figure 5 are the averages of the deflection of the facing and the backing, measured independently. The facing deflected the same amount as the backing within 0.01 in., the estimated error of measurement.

Figure 3.—Wall specimen BE-C1 under compressive load.
Table 6.—Structural properties, wall BE

<table>
<thead>
<tr>
<th>Load</th>
<th>Load applied</th>
<th>Specimen designation</th>
<th>Failure of loaded face, height of drop</th>
<th>Failure of opposite face, height of drop</th>
<th>Maximum height of drop</th>
<th>Maximum load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive</td>
<td>Upper end, 2.81 in. from the inside face.</td>
<td>C1</td>
<td>ft</td>
<td>ft</td>
<td>7lb/ft²</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44.6</td>
</tr>
<tr>
<td>Transverse</td>
<td>Inside face; span, 7 ft 6 in.</td>
<td>T1</td>
<td></td>
<td></td>
<td></td>
<td>22.4</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.2</td>
</tr>
<tr>
<td>Do............</td>
<td>Outside face; span, 7 ft 6 in.</td>
<td>T5</td>
<td></td>
<td></td>
<td></td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.3</td>
</tr>
<tr>
<td>Concentrated</td>
<td>Inside face..</td>
<td>P2</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Do............</td>
<td>Outside face...</td>
<td>P7</td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Impact........</td>
<td>Inside face; span, 7 ft 6 in.</td>
<td>R1</td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.2</td>
</tr>
<tr>
<td>Do............</td>
<td>Outside face; span, 7 ft 6 in.</td>
<td>R5</td>
<td></td>
<td></td>
<td></td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.7</td>
</tr>
<tr>
<td>Racking.......</td>
<td>Near upper end</td>
<td>R1</td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

* A kip is 1,000 lb.
* Specimen did not fail. Test discontinued.

Each of the specimens failed by crushing of units in the backing in two courses either at midheight or near the upper end, cracking of the backing vertically through about four courses, and rupture of the bond between the units and the mortar at one or two bed joints in the facing at the height at which the units in the backing crushed.

3. **Transverse Load**

Wall specimen BE-T1 under transverse load is shown in figure 6. The results are shown in table 6 and in figure 7 for wall specimens.

Figure 4.—Compressive load on wall BE.

Load-shortening (open circles) and load-set (solid circles) results for specimens BE-C1, C2, and C3. The load was applied 2.81 in. from the inside face. The loads are in kips per foot of actual width of specimen.

Figure 5.—Compressive load on wall BE.

Load-lateral deflection (open circles) and load-lateral set (solid circles) results for specimens BE-C1, C2, and C3. The load was applied 2.81 in. from the inside face. The loads are in kips per foot of actual width of specimen. The deflections and sets are for a gage length of 6 ft 5 in., the gage length of the deflectometers.
BE-T1, T2, and T3, loaded on the inside face, and in figure 8 for wall specimens BE-T4, T5, and T6, loaded on the outside face.

The deflections shown in figures 7 and 8 are the averages of the deflection of the facing and the backing, measured independently. The facing deflected the same amount as the backing within 0.01 in., the estimated error of measurement.

Each of the specimens failed by rupture of the bond between the mortar and the units at a bed joint at or between the loading rollers. The cracks usually appeared first in the face opposite the load and then in the loaded face.
Figure 9.—Wall specimen BE-P1 under concentrated load.

A, loading disk.

Figure 10.—Concentrated load on wall BE, load applied to inside face.

Load-indentation results for specimens BE-P1, P3, and P5.

Figure 11.—Concentrated load on wall BE, load applied to outside face.

Load-indentation results for specimens BE-P1, P3, and P5.
4. Concentrated Load

Wall specimen BE-P1 under concentrated load is shown in figure 9. The results are shown in table 6 and in figure 10 for wall specimens BE-P1, P2, and P3, loaded on the inside face, and in figure 11 for wall specimens BE-P4, P5, and P6, loaded on the outside face.

The concentrated loads were applied to the mortar bed and head joints at midwidth for all specimens except P6, to which the load was applied on a concrete unit. The indentations after a load of 1,000 lb had been applied were 0.004, 0.007, 0.017, 0.005, 0.004, and 0.003 in. for specimens P1, P2, P3, P4, P5, and P6, respectively, and no other effect was observed.

5. Impact Load

Wall specimen BE-II during the impact test is shown in figure 12. The results are shown in table 6 and in figure 13 for wall specimens BE-I1, I2, and I3, loaded on the inside face, and in figure 14 for wall specimens BE-I4, I5, and I6, loaded on the outside face.

At the drops given in table 6 the faces of each specimen failed by rupture of the bond between the units and the mortar at bed joints near
Figure 13.—Impact load on wall BE, load applied to inside face.
Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens BE-11, 13, and 15 on the span 7 ft 6 in.

Figure 14.—Impact load on wall BE, load applied to outside face.
Height of drop-deflection (open circles) and height of drop-set (solid circles) results for specimens BE-11, 15, and 16 on the span 7 ft 6 in.

Figure 15.—Wall specimen BE-R1 under racking load.
midspan. At the maximum drops, each specimen failed by opening of these joints.

The racking loads were applied to the top course and the stop was in contact with the first and second courses from the lower end. For specimen R3 at a load of 1.188 kips/ft, a head joint at the end of a unit near the loaded corner cracked. At the maximum load, each of the specimens failed by rupture of the bed and head joints in stepwise cracks approximately along a diagonal between the point of application of load and the stop. In addition, for specimens R1 and R2 the two top courses sheared off by rupture of the bond between the units and the mortar in the bed joint, and for specimen R3 the bond between the units and the mortar ruptured in a bed joint between the sixth and seventh courses.

The sponsor supplied the information contained in the sponsor's statement. The drawings of the specimens were prepared by E. J. Schell, G. W. Shaw, and T. J. Hankey of the Bureau's Building Practice and Specifications Section, under the supervision of V. B. Phelan. The structural properties were determined by the Engineering Mechanics Section, under the supervision of H. L. Whittemore and A. H. Stang, and the Masonry Construction Section, under the supervision of D. E. Parsons, with the assistance of the following members of the professional staff: C. C. Fishburn, F. Cardile, R. C. Carter, H. Dollar, M. Dubin, A. H. Easton, A. S. Endler, C. D. Johnson, L. M. Karpeles, P. H. Petersen, A. J. Sussman, and L. R. Sweetman.

Washington, April 14, 1939.

[11]
BUILDING MATERIALS AND STRUCTURES REPORTS

The following publications in this series are now available by purchase from the Superintendent of Documents at the prices indicated:

Number	Title	Price
BMS1	Research on Building Materials and Structures for Use in Low-Cost Housing	10¢
BMS2	Methods of Determining the Structural Properties of Low-Cost House Constructions	10¢
BMS3	Suitability of Fiber Insulating Lath as a Plaster Base	10¢
BMS4	Accelerated Aging of Fiber Building Boards	10¢
BMS5	Structural Properties of Six Masonry Wall Constructions	15¢
BMS6	Survey of Roofing Materials in the Southeastern States	15¢
BMS7	Water Permeability of Masonry Walls	10¢
BMS8	Methods of Investigation of Surface Treatment for Corrosion Protection of Steel	10¢
BMS9	Structural Properties of the Insulated Steel Construction Company's “Frameless-Steel” Constructions for Walls, Partitions, Floors, and Roofs	10¢
BMS10	Structural Properties of One of the “Keystone Beam Steel Floor” Constructions Sponsored by the H. H. Robertson Company	10¢
BMS11	Structural Properties of the Current Fabrihome Corporation’s “Fabrihome” Constructions for Walls and Partitions	10¢
BMS12	Structural Properties of “Steelox” Constructions for Walls, Partitions, Floors, and Roofs Sponsored by Steel Buildings, Inc.	15¢
BMS13	Properties of Some Fiber Building Boards of Current Manufacture	10¢
BMS14	Indentation and Recovery of Low-Cost Floor Coverings	15¢
BMS15	Structural Properties of “Wheeling Long-Span Steel Floor” Construction Sponsored by the Wheeling Corrugating Company	10¢
BMS16	Structural Properties of a “Tilecrete” Floor Construction Sponsored by Tilecrete Floors, Inc.	10¢
BMS17	Sound Insulation of Wall and Floor Constructions	10¢
BMS18	Structural Properties of “Pre-Fab” Constructions for Walls, Partitions, and Floors Sponsored by the Harnischfeger Corporation	10¢
BMS19	Preparation and Revision of Building Codes	15¢

How To Purchase

BUILDING MATERIALS AND STRUCTURES REPORTS

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices.

An alternative method is to deposit with the Superintendent of Documents the sum of $5.00, with the request that the reports be sent to you as soon as issued, and that the cost thereof be charged against your deposit. This will provide for the mailing of the publications without delay. You will be notified when the amount of your deposit has become exhausted.

If 100 copies or more of any report are ordered at one time, a discount of 25 percent is allowed. Send all orders and remittances to the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C.