Combustible Contents in Buildings

United States Department of Commerce
National Bureau of Standards
Building Materials and Structures Report 149

BUILDING MATERIALS AND STRUCTURES REPORTS

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices.
If 100 copies or more of any report are ordered at one time, a discount of 25 percent is allowed. Send all orders and remittances to the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C.

The following publications in this series are available by purchase from the Superintendent of Documents at the prices indicated:

BMS1 Research on Building Materials and Structures for Use in Low-Cost Housing-.-.-.-BMS2 Methods of Determining the Structural Properties of Low-Cost House Constructions_

BMS8 Methods of Investigation of Surface Treatment for Corrosion Protection of Steel
BMS9 Structural Properties of the Insulated Steel Construction Co.'s "Frameless-Steel" Constructions for Walls, Partitions, Floors, and Roofs
BMS10 Structural Properties of One of the "Keystone Beam Steel Floor" Constructions

BMS12 Structural Properties of "Steelox", Constructions for Walls, Partitions, Floors, and

BMS15 Structural Properties of "Wheeling Long-Span Steel Floor" Construction Sponsored

BMS16 Structural Properties of a "Tilecrete" Floor Construction Sponsored by Tilecrete
BMS16 Structural Properties of a "Tilecrete" Floor Construction Sponsored by Tilecrete
BMS17 Sound Insulation of Wall and Floor Constructions
BMS18 Structural Properties of "Pre-fab" Constructions for Walls, Partitions, and Floors Sponsored by Harnischfeger Corporation

BMS20 Structural Properties of "Twachtman" Constructions for Walls and Floors Sponsored by Connecticut Pre-Cast Buildings Corporation
BMS21 Structural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the National Concrete Masonry Association_
BMS22 Structural Properties of "Dun-Ti-Stone" Wall Construction Sponsored by the W. E. Dunn Manufacturing Co
BMS23 Structural Properties of a Brick Cavity-Wall Construction Sponsored by the Brick Manufacturers Association of New York, Inc.
BMS24 Structural Properties of a Reinforced-Brick Wall Construction and a Brick-Tile CavityWall Construction Sponsored by the Structural Clay Products Institute....-.-.-.
BMS25 Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs
BMS26 Structural Properties of "Nelson Pre-Cast Concrete Foundation" Wall Construction Sponsored by the Nelson Cement Stone Co., Inc
BMS27 Structural Properties of "Bender Steel Home" Wall Construction Sponsored by the Bender Body Co-

$\begin{array}{ll}\text { BMS29 } & \text { Survey of Roofing Materials in the Northeastern States } \\ \text { BMS30 } & \text { Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas }\end{array}$
Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas

BMS31 Structural Properties of "Insulite" Wall and" "Insulite", Partition Constructions
BMS32 Structural Properties of Two Brick-Concrete-Block Wall Constructions and a Con-crete-Block Wall Construction Sponsored by the National Concrete Masonry Association

BMS34 Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 1.-........BMS35 Stability of Sheathing Papers as Determined by Accelerated Aging BMS36 Structural Properties of Wood-Frame Wall, Partition, Floor, and Roof Constructions With "Red Stripe" Lath Sponsored by The Weston Paper and Manufacturing Co_-

UNITED STATES DEPARTMENT OF COMMERCE • Sinclair Weeks, Secretary NATIONAL BUREAU OF STANDARDS • A. V. Astin, Director

Combustible Contents in Buildings

S. H. Ingberg, John W. Dunham, and James P. Thompson

Building Materials and Structures Report 149

Issued July 25, 1957

Foreword

The prevalent large building areas and heights require adequate fire resistance of structural supports and of subdividing constructions to restrict the spread of fire. The degree of fire resistance for the purpose is dependent on the severity of fires that can occur from burning of combustibles in contents and interior finish, floor, and trim. The present surveys were undertaken to obtain information on the amounts of combustibles associated with typical building occupancies. The data herein presented should be of assistance in constructing and equipping buildings to resist and restrict the fires that can occur within them.

A. V. Astin, Director.

Contents Page

1. Introduction 1
2. Basis and method of surveys 1
3. Tabulated results 2
3.1. Apartments and residences 2
3.2. Hospitals 2
3.3. Schools 2
3.4. Mercantile establishments 4
3.5. Manufacturing establishments 7
a. Furniture factories 7
b. Mattress factories 7
c. Clothing factories 10
3.6. Printing plants 10
3.7. Warehouses 12
3.8. Offices 14
4. General notes and summary 15
4.1. Residential occupancies 15
4.2. Hospitals 15
4.3. Schools 15
4.4. Mercantile establishments 15
4.5. Manufacturing establishments 15
4.6. Printing establishments 16
4.7. Warehouses 16
4.8. Office occupancies 16
5. General objective and application 16
6. References 16

Combustible Contents in Buildings

S. H. Ingberg, * John W. Dunham, ** and James P. Thompson

Abstract

Information is presented on the combustible contents, including the flooring and the interior finish and trim, found in buildings housing various classes of occupancy. The data givell are based on surveys of specific builuings in which the weight and distribution of combustible contents were obtained area by area and floor by floor. The results indicate the range in the amounts of combustibles associated with different occupancies and show that, except for the areas used for filing and storage, the combustible load is uniformly light for residential buildings, schools, hospitals, and office buildings. The combustible load varies considerably in mercantile occupancies and even more so in industrial and storage buildings. In conjunction with fire severity tests, data from these surveys can be applied in developing requirements for minimum fire resistance of buildings.

1. Introduction

In 1939, the Subcommittee on Fire Resistance Classifications of the Central Housing Committee on Research, Design, and Construction had surreys made of residential buildings, schools, hospital buildings, and warehouses to determine the amounts of combustible contents associated with those occupancies. A similar survey of office buildings had previously been conducted by the National Bureau of Standards. Information based upon these survers was published in 1942 [1]. ${ }^{1}$

In 1947, the Office of Technical Services in the Department of Commerce sponsored a number of investigations to assist in the solution of various business and industrial problems. The investigation of the weights of combustible contents in mercantile, industrial, and storage occupancies was undertaken at that time to complement and extend the information previously presented in BMIS92. The National Bureau of Standards assumed responsibility for the program and arranged to have the work done by the Public Buildings Administration (now the Public Buildings Service). Reports of the results of these surveys constitute the principal part of this publication.
Although not all of the occupancies defined by building codes were included in the surveys, those included were extensive enough to give a good indication of what can be expected. For example, the shoe or paint department in a department store could very well serve as the criterion for buildings containing either of these particular occupancies alone.

Evaluation of the resistance of buildings to the fires that occur in them requires not only a knowledge of the fire resistance of the construction, but an estimate of the potential severity of such fires. In tests conducted to obtain information on this subject [2], it was indicated that there is a fairly definite relation between the amount of combustible contents and the resulting fire severity expressed in hours as periods of exposure to the standard fire test [3].
To obtain an estimate of the probable fire severity in the various types of occupancies, the amounts of combustibles associated with these

[^0]occupancies must be known or estimated. These combustibles include movable property such as furniture and goods, and combustible trim, finish, and flooring material.

This report presents a large volume of data on combustible loads found in a number of typical occupancies. The data are factual and should be helpful in designing buildings to resist fires involving prospective amounts of combustible contents.

2. Basis and Method of Surveys

Only the weights of combustible contents, finished flooring, interior finish, and trim are included in the weight totals. No combustible structural elements are included because they are a part of the building itself and not of the contents.

In general, the amounts of combustibles were obtained by weighing combustible furniture. equipment, goods, and other combustible contents in sufficient quantity to enable the total weight of such material within each area to be computed. The weight of any combustible flooring material, showcases, partitions, door and window trim, and built-in fixtures that could not be weighed was estimated from the thickness and area. All of the weights were converted to equivalent weights of combustibles haring a calorific value in the range of wood and paper. A table giving the calorific value of various compounds and materials can be found in references $[2,5,6]$.

Where it was desired to segregate within close limits the weights for individual rooms. such as in residences, schools, hospitals, and office buildings, one-half of the weight of common doors. door frames, and wood sash was allocated to the respective rooms on each side of them. 'The total weight of the combustible contents of metal lockers, filing cabinets, etc., was included. No weight was included for possible eseaping illuminating gas.

Small enclosures, such as closets. were foume to contain concentrations of combustible materials considerably higher than the arerage for the rest of the unit. Considering the small ares and the fact that wood eloset doors are generally of the type that will burn through in ashort time, the contents and area of closets wete areraged with those of the adjoming hall or room.

3. Tabulated Results

The data presented in the tables show that the weights of combustible contents vary over a wide range among the different occupancies and, in some cases, for occupancies of the same type. These tables indicate the weight of combustibles per square foot of floor area associated with the occupancy surveyed and the area over which they were found. For some occupancies, summary tables give the percentage of the total area over which the weight of the combustibles within certain ranges were found and the largest single area within these ranges.

Table 1. Survey data for apartments and residences
(Data taken from BMS92)

Occupancy or use	Num- ber of rooms sur- veyed	A verage ffoor area	Average combustible contents			Total		
			$\begin{gathered} \text { Mov- } \\ \text { able } \\ \text { prop- } \\ \text { erty } \end{gathered}$	Floor	Ex- posed woodwork other than floor	Average	Maximum	Minimum
		$f t^{2}$	$l b / f t^{2}$	lo/ft ${ }^{2}$	$l b / f t^{2}$	lofft ${ }^{2}$	$l b / f t^{2}$	$l b / f t^{2}$
Basement	1	783	0.8	0.0	0.2	1.0		
Bathroom	10	43	1.0	2.3	3.7	7.0	10.0	2.0
Bedroom (closets included)	18	132	5.0	2. 8	2.6	10.4	13.2	6.8
Dining room	3	164.5	3.2	2.0	2.0	7.2	7.8	6.5
Hallway ------	12	40.5	1.0	3.0	6.5	10.5	13.7	7.5
Kitehen-	11	119	1.2	2.5	3.1	6.8	10.7	2.9
Library-	1	146	10.6		2.4	13.0		
Living room--	12	203	3.9	2.4	1.8	8.1	10.4	5.7
Storeroom (apartment house) \qquad	6	727	6. 4	0.5	0.3	7.2	10.0	2.4
Vestibule	1	22.5	2.2	3.0	4.4	9.6		
Average for complete units	13	628.1	3.4	2.6	2.8	8.8	10.0	7.6
Summary for closets in residential buildings								
Closets:								
Clothes_	28	8.8	5.1	2.7	11.6	19.4	30.2	10. 2
Linen---	9	4.8	11.7	3.0	21.4	36.1	49.3	26.2
Kitchen.	1	5.0	4.0	3.0	23.2	39.2		

3.1. Apartments and Residences

The amounts of combustible contents found in apartments were so similar to those found in private residences that the two were grouped together. Table 1 gives the survey data for individual living and storage areas in a total of 13 apartments and residences, and the average combustible load for all the units taken as a whole. It is seen that the combustible load for a complete unit is relatively light, being not over $10 \mathrm{lb} / \mathrm{ft}^{2}$. Even in the storeroom areas this loading was not exceeded. To show the higher concentration of combustibles that exist in closets, table 1 also gives a summary for closets in residences, these concentrations being included with the adjoining rooms as given in the first part of the table.

3.2. Hospitals

St. Elizabeths Hospital, in Washington, D. C., was the only institutional-type occupancy included. Three buildings were surveyed, each housing the facilities necessary for a different type of treatment. Although St. Elizabeths is a psychiatric hospital, the results obtained may very well be typical of the general hospital occupancies covered, namely, neuropsychiatric continued treatment, tuberculosis infirmary, and medical and surgical.

Table 2 gives the results for the three buildings, and table 3 gives a summary of distribution for each building within given ranges of combustible contents. The average combustible loads for the various occupancies did not exceed $10 \mathrm{lb} / \mathrm{ft}^{2}$, except in the laundries, where it did not exceed 15 $\mathrm{lb} / \mathrm{ft}^{2}$.

3.3. Schools

The maximum combustible contents in school buildings were found in storerooms and libraries, whereas other portions of the buildings had a relatively light combustible load. The pupils'

Table 2. Survey data for hospital buildings, St. Elizabeths Hospital
(Data taken from BMS92)

Occupancy or use	Medical and surgical building							A verage combustible contents	
	Number of rooms or units surveyed	Total floor area	Combustible contents					Neuropsychiatric continuedtreatment hospital	Tuberculosis infirmary
			Movable property	Woodwork and floor covering ${ }^{1}$	Total				
					Average	Maximum	Minimum		
Administrative									
		${ }^{f} t^{2}$	$2 b / f t^{2}$	lo/ft ${ }^{2}$	$\underline{\text { l }} / \mathrm{j} t^{2}$	lb/ft ${ }^{2}$	lo/ft ${ }^{2}$	lolft ${ }^{2}$	$l b / f t^{2}$ 3
Doctors' office -----	${ }_{3}^{6}$	${ }_{945}^{915}$	6.3	1.8 2.9	8.1 8.6	13.4 14.4	2.4	5.0	2.9
Waiting rooms	3	495	1. 4	1.8	3.2	4. 1	2.1	3.2	1.4
Nurses' offices and rooms Nurses' training school	13	1,728	3.1	1. 9	5. 0	12.5	3. 1		3.7
Nurses' training school	12	3,613 1,599	2. 2	1.8	4. 0	14.5 3.5	1. 1		
Nurses' infirmary	11	1,599	0.9 5.2	2.2	3.0 7.7	3.5	2.5	------------	---------

[^1]Table 2. Survey data for hospital buildings, St. Elizabeths Hospital-Continued

${ }^{1}$ Combustible floor finish where present was 14-in.-thick linoleum, assumed to give equivalent in combustible material of $1 \mathrm{lb} / \mathrm{ft}{ }^{3}$.

Table 3. Distribution of combustible contents, St. Elizabeths Hospital

Combustible contents for usable floor area	Medical and surgical building	Continued treatment building	Tuberculosis infirmary
$l b / f t^{2}$	Percent	Percent	Percent
0 to 4.9 -.--------	82.1	91.0	93.2
5 to 9.9.	15.4	7.6	0.3
10 to 14.9	1.6	0.7	1. 8
15 to 19.9.	0.5		4. 1
20 or more	. 4	. 7	0.3
Usable floor area.....-. ft^{2}.-	83, 819	36, 907	23,054

wearing apparel and the contents of the desks were not included in the survey.

Table 4 gives a summary of the combustible contents for 4 high schools and 2 elementary schools in Washington, D. C., and vicinity. Except where heavy filing cases, library stacks, and storage of textbooks or materials were involved, the combustible load was found to be less than $15 \mathrm{lb} / \mathrm{ft}^{2}$.

From table 5 it is seen that less than 5 percent of the entire floor area of each building contained combustible loads in excess of $15 \mathrm{lb} / \mathrm{ft}^{2}$. Usually the rooms or areas with heavy combustible loads were in the basement, ground, or first floors. One

Table 4. Survey data for rooms in six schnol buildings in the Washington, D. C., area
(Data taken from BMs92)

Occupancy	A veragefloorarea	A verage combustible contents			
		$\begin{aligned} & \text { Mov- } \\ & \text { able } \\ & \text { prop- } \\ & \text { erty } \end{aligned}$	Floor	Ex- posed wood- work other floor	Total
Auditorium, gymnasium, and lunchroom Typical classroom	$\begin{array}{r} 5,193 \\ { }_{752} \end{array}$	$\begin{gathered} l b / f t^{2} \\ 0.7 \\ 2 . \end{gathered}$	lb/ft $=$	lbift :	lbift :
			4.2	1.3	6. 4
			2.4	2.3	7.0
Laboratories: bioloy chemistry, physics, food, and clothing.	1,038	4.5	2.1	1.5	s. 1
Special classrooms: art, bookkeeping, mechanical drawing, typing, physics lecture, woodworking shop, library reading room .-	1,335	6.2	2.3	1. 9	10.4
Offices: home economies, publications, teachers.	$3+2$	8.0	3.1	3.1	14.2
Library stackroom.	264276	$\begin{aligned} & 2.4 \\ & 3.3 \end{aligned}$	$\begin{array}{r} 2.1 \\ 2.6 \end{array}$	$\begin{aligned} & \text { 5. }+ \\ & 0.1 \end{aligned}$	$\begin{aligned} & 35.9 \\ & 39.0 \end{aligned}$
Office and files-					
Storerooms:		$\begin{array}{r} 4.0 \\ 35.9 \\ 43 . \\ 9.9 \\ 9.9 .5 \\ 172.3 \end{array}$	2.60.91.30.0.9	$\begin{array}{r} 13.1 \\ 1.5 \\ 0.5 \\ \vdots \end{array}$	$\begin{array}{r} 19 . \\ 2.3 \\ 4 . \\ 10 . \\ 103 \\ 103.0 \end{array}$
Janitor.					
Lumber					
Paper-					
Textbook...					

Table 5. Data for six schools in the Washington, D. C., area showing the percentage of usable floor area having combustible contents within certain limits

Range of combustible contents	Elementary sebools		Higb schoo!s			
$l b / f t^{2}$	Per- cent	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Per- cent	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$	Percent
0 to 4.9	38.2	50.8	54.6	50.3	66.4	32.6
5.0 to 9.9	58.5	47.1	34.4	31.0	25.4	64.1
10.0 to 14.9	2.5	2.1	6.2	16.2	5.3	3.0
15.0 to 24.9			1.0	0.3	0.2	-----
25.0 to 34.9 (general storage) \qquad	-.--	----	2.3	1.0	2.0	-----
35.0 to 49.9 (general storage)		----	1. 2	0.6	0.2	-----
50.0 to 74.5 (wood or paper storage)	. 8	----	0.2	---.	----	-----
```75.0 to }99.9\mathrm{ (paper storage)```	----	----		--.	. 3	-----
103.3 (paper storage) --	----		. 1	-..-	----	-----
167.6 (textbook storagc)				. 6	----	-----
255.7 (textbook storage) $\qquad$				----		3
288 (textbook storage)					. 2	
Number of floors......   Usable floor area $\mathrm{ft}^{2}$	$\begin{gathered} 2 \\ \times 31,309 \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{~b} 40,098 \end{gathered}$	$\begin{gathered} 4 \\ 130,973 \end{gathered}$	125, $\stackrel{4}{790}$	$\begin{gathered} 5 \\ 254,619 \end{gathered}$	$\stackrel{2}{c} 24,177$

a Exclusive of basement, wbich contains boiler room only
b Exclusive of temporary wooden corridor.
c Excludes attic and basement, which latter contains boiler room only.
small textbook-storage room and a large library stackroom were found on the second floor in these buildings. Janitors' and general storerooms with average combustible loads near $25 \mathrm{lb} / \mathrm{ft}^{2}$ were found on upper as well as lower floors in one or more of these buildings. Their individual and aggregate areas, however, were relatively small.

### 3.4. Mercantile Establishments

The department store is unique in that there are contained within its various departments practically all of the characteristics common to single mercantile occupancies handling similar merchandise. As a result, these data have a wide scope of usefulness.

The New York, N. Y., department store selected was of such size that a complete survey was not feasible; therefore, the survey was limited to the selling areas and small storage areas frequented by the clerks, but did not include workshops, packing rooms, tube rooms, offices, etc., associated with the selling areas. The tenth through the twentieth floors, which were used for storage and offices, were also omitted. The combustible load per square fooi for a whole department was determined by weighing the combustible contents in a representative area of the department.

The second-floor plan of a department store in Washington, D. C., figure $1,{ }^{2}$ shows a typical department arrangement and the combustible loads that were found to exist at the time of the survey. Although stores of this type are continually making minor changes in arrangement, the floor plan shown indicates the combustible-load differential of the various departments, the higher accumu-

[^2]lation of combustibles in storage areas as compared to sales areas, and the ready manner in which storage areas can be established anywhere throughout the area. The load is assumed to be uniformly distributed over each area, including the area of aisle spaces.

Tables 6 a and 6 b give a summary of combustible loads by floors. For 4 floors of the New York City store the average was below $10 \mathrm{lb} / \mathrm{ft}^{2}$, and for the 6 others the lighest average for any 1 floor was $13.4 \mathrm{lb} / \mathrm{ft}^{2}$. For the Washington, D. C., store the average was not over $10 \mathrm{lb} / \mathrm{ft}^{2}$ for 6 floors, and the highest individual average for the 2 other floors was $12.6 \mathrm{lb} / \mathrm{ft}^{2}$.

Table 6a. Survey data for a department store in New York City


Table 6a. Survey data for a department store in New York City-Continued

Department	Area	Combustible contents		
		Movable property and display trim	Floor	Total
Third floor				
Fur storage, cleaning, and repair-		$l b / f t^{2}$	$1 b / f t^{2}$	$l t / f t^{2}$
ing	6, 415	7.8	-	7.8
Women's dresses-------...-	22, 600	5. 2		5. 2
Budget furs--	4,917	2. 6		2.6
Women's suits and coats	49,382	5. 6	5.2	10.8
Better furs-------	5,451	6.2	5.2	11.4
W'omen's beach wear	10, 811	9.0	5.2	14.2
Total.	99,576	5.9	$3-4$	9.3
Fourth floor				
Children's shoes	9. 722	5. 1	5.2	10.3
Storage, children's shoes	2,968	20.5	5.2	25.7
Children's hose .	820	11.1	5.2	16.3
Girls' clothing	12,083	9.3	5.2	14.5
Children's clothing	6. 530	11.3	5.2	16.5
Girls' dresses.---.--	9,716	7.1	5.2	12.3
Infants' furnishings	12, 127	5. 6	5.2	10.8
Temporary bargain counter	766	6.7	5.2	11.9
Total. Average	54, 332	8.2	5.2	13.4
Fifth floor				
Boys', camp equipment	4, 080	9. 3	------	9.3
Boys' clothing.--	14,323	6. 8	------	6.8
Toys..---	12,089	3.2		3.2
Playground equipment	5, 054	2.4	5.2	7.6
Sporting goods.-	10,707	5.2	5.2	10.4
Radios and phonograph	4, 299	4.7	5.2	9.9
Crosley automobiles	720	2. 4	5.2	7.6
Airplanes.----	500	2.4	5.2	7.6
Pianos.-	3, 280	6. 1	5.2	11.3
Commercial stationery	1. 967	8.3	5.2	13.5
Cameras, etc	3. 194	9.1	5.2	14.3
Art supplies	2, 203	13.3	5.2	18.5
Phonograph records	6,400	29.2	5.2	34.4
Toys-.----	6,904	3.2	5.2	8.4
Total... A verage	75, 720	7.5	3.1	10.6
Sixth floor				
Women's shoes.-	21,358	3.5	------	3.5
Storage, women's shoes	12, 085	9.8		9.8
Towels.------	6,882	9.4	5.2	14.6
Blankets	6, 811	9.6	5.2	14.8
Sheets and linens	17,379	15. 1	5. 2	20.3
Votions.-	2, 238	8. 2	5.2	13.4
Patterns.	2, 525	13.0	5.2	18. 2
Yard goods	26, 904	11.3	5.2	16.5
Total A verage	96, 182	9.8	3.4	13. 2
Seventh floor				
Linoleum	3. 070	5.2	------	5.2
Rugs	27.651	8.0		8.0
Candles...	- 200	19.6	5.2	24.8
Lamps and shades.	7,868	6. 0	5.2	11.2
Curtains.--------	14,430	3. 4	5.2	8. 6
Closet shop.	8, 109	8.5	5.2	13. 7
Wallpaper.	1,190	8.4	5.2	13.6
Assorted yard goods.	23. 303	11.3	5.2	16.5
Total	85, 821			
A rerage		8.0	3.3	11.3

Table 6a. Survey data for a deparment store in New York City-Continued

Department	Area	Combustible contents		
		Mov-   able property and display trim	Floor	Total
Eighth floor				
Food	$f t^{2}$ 10,190	$t b / f t 2$ 7.0	$1 h_{1} / f t^{2}$ 5.2	$l b / f f 2$ 12.2
Glassware	9,438	5.2		5. 2
Chinaware	19,24.4	8.3	---	8.3
Pictures and frames	7,253	4. 6	-------	4.6
Luggage	8,149	5. 2		5. 2
Total A verage	54, 274	6.5	1.0	7.5
Ninth floor				
Bedroom furniture...-.........--	24,929	4.0	5.2	9.2
Dining room and occasional furniture	55, 847	3.4	5. 2	8.6
Modern furniture	12,513	9.3	5. 2	14.5
Total. A verage	43, 289	4.4	5. 2	9.6

Table 6b. Survey data for a department store in Washington, D. C.

Department	Area	Combustible contents		
		Movable property and display trim	Floor	Total
First floor				
	$f t^{2}$	$l b / f t=$	$l b / f t^{3}$	$l b^{\prime} \mathrm{ft}^{3}$
Dry cleaning counter	320	9.2		9.2
Books---------------	3,450	16.6		16.6
Candy	1,600	11.9		11. 9
Notions	9, 750	10.1		10. 1
Umbrellas	350	20.0		20.0
Cosmetics	150 6,350	11.0 5.6		11.0 5.0
Hand bags and leather goods	2,800	7.3	----	7. 3
Hat bar.	300	11.0		11.0
Stationery---	5,500	12. 1		12.1
Costume jewelry	2, 900	6. 1	---	ถ. 1
Jewelry.	3,350	7.6		-. 6
Total --	36,820	9.6	----	-
Second floor				
			-...	
Ladies' shoe stockroom..........--	-2000	32.	---	32
Shoe sale space .-....................	3. 244	3.1	-...	31
Storage, men's hats, shoes, tobacco, etc $\qquad$	S00	31. 7	-...	31.7
	$16,2{ }^{-2}$	12.0	....	12.0
Total A verage	3 2, 心-	12. 6	---	12.

Table 6b. Survey data for a department store in Washington, D. C.-Continued


Table 6b. Survey data for a department store in Washington, D. C.-Continued

Department	Area	Combustihle contents		
		Movable property and display trim	Floor	Total
Eighth floor				
	$f t^{2}$	$l b / j t^{2}$	$l b / f t^{2}$	$l b / f t^{2}$
Paint-----	1,749	35.2	5.2	40.4
Household goods	7,781	3.7	5.2	8.9
Groceries.--------	3, 500	1.5	--	1.5
Cold storage for grocer	400	3. 9	---	3.9
Refrigerators, etc.-	2, 307	2.3	----	2.3
Electrical	1,400	9.1	,	9. 1
Bathroom fittings	3, 205	8.5	5.2	13.7
Cafeteria	3,834	2.8	5.2	8.0
Central wrapping	2,556	8.0	5.2	13.2
Bakery ---------	3, 210	3.0		3.0
Paper storage	360	25.0	5.2	30.2
Fur fitting	2,000	3.1	5.2	8.3
Office.	7, 230	5.3	1.1	6.4
Total.   A verage	39, 532	6.2	2.8	9.0

Table 6c. Summary of combustible loads in department stores by occupancies
(Comhustible weight of flooring and covering not included)


Table 6d. Percentage of department-store floor area having combustible contents within certain limits

Range of comhustihle contents	Washington (Total floor area, $314,239 \mathrm{ft}^{2}$ )		New York   (Total floor area, $790,793 \mathrm{ft}^{2}$ )	
	Part of total floor area	Largest single area within range	Part of total floor area	Largest single area within range
0.0 to 4.9-lb/ft ${ }^{2}$	Percent 12.6	ft ${ }^{2}$ 14,022	Percent	$f t^{2}$ 21,358
5.0 to 9.9	46.7	16, 350	43.1	55, 875
10.0 to 14.9	29.9	18, 500	35. 3	49, 382
15.0 to 19.9	5.8	10,925	10.0	26, 904
20.0 to 29.9	3.4	2,870	2.8	17,379
30.0 to 39.9-	0.9	2,000	0.8	6, 400
40 and over	. 7	1, 749	. 2	966

Table 6c gives a summary of the combustible loads contributed by movable property and display trim in department stores as related to the type of goods sold or stored, based on tables 6a and 6 b . The majority of the sales areas had combustible loads of $10 \mathrm{lb} / \mathrm{ft}^{2}$ or less, some had loads between 10 and $20 \mathrm{lb} / \mathrm{ft}^{2}$, and a few, including sales areas for books and for paints, had higher loads. Storage of clothing, rugs, shoes, paper, and drapery material gave combustible loads in the range from 15 to $46.6 \mathrm{lb} / \mathrm{ft}^{2}$.

The percentage of department-store areas having combustible loads between given limits is shown in table 6d. It is seen that from 50 to 60 percent of the floor area had combustible loads not over $10 \mathrm{lb} / \mathrm{ft}^{2}$, from 30 to 35 percent had between 10 and $15 \mathrm{lb} / \mathrm{ft}^{2}$, 10 percent had between 15 and $20 \mathrm{lb} / \mathrm{ft}^{2}$, and no more than 5 percent of the area had more than $20 \mathrm{lb} / \mathrm{ft}^{2}$.

### 3.5. Manufacturing Establishments

The surveys of manufacturing occupancies included 2 furniture factories, 2 mattress factories, a women's clothing factory, and a men's clothing factory. Where more than one area is used for the same purpose, separate entries are made in the tables for each area.

## a. Furniture Factories

All of the buildings or portions of buildings used in the production, shipping, storage, and display of furniture were surveyed. Outside lumber storage and service buildings were not included.

The Gettysburg, Pa., factory surveyed had 20 buildings, of 1 story, 1 story and basement, or 2 stories, nearly all contiguous with structural separations. The floor and roof constructions of all buildings were of wood, but all except buildings 11 and 12 had masonry exterior and interior walls. Figure 2 shows the building layout. In determining the combustible content of the first floor of the shipping and storage building, it was assumed that the contents of a car of furniture loaded just prior to the survey were in the shipping-room area.

The Grand Rapids, Mich., factory was housed in 18 buildings, all but 3 of which were contiguous. Most of them had 3 or 4 stories, with or without basements. They were largely of heavy-timber construction. A 3 -story building used in part for exhibition purposes was of reinforced-concrete construction.

Tables 7a and 7b give the survey data for the two furniture factories, and table 7 c gives the percentage of the total area with combustibles within a given range and the largest single area over which combustibles within these ranges were found.

In the lower range of combustible contents, there was a marked difference found for the two plants. For the Gettysburg plant, only $1 \frac{1}{2}$ percent of the floor area had combustibles in an

Table 7a. Survey data for furviture foctory in Gettyshurg, Pu.

See figure 2 for bullding layout

Building	Area	Occupancy or use	Floor area	Combustible contents		
				Other than floor	Flionr	Total
1	$\left\{\begin{array}{l}a \\ b \\ c \\ d \\ e \\ \text { d }\end{array}\right.$		$f t^{2}$	$3 b^{\prime} / i^{3}$	$V_{1} / / t^{2}$	$b / f t 2$
		Millwor	5, 450	15.8	5. 2	21.
		-.-.do.	3,100	12.0	5. 2	17.2
		do	760	22.1	5. 2	27.3
		Glue room	1.030	8.0	5. 2	13.2
		Office	130)	4.5	5.2	9.7
		Pattern room	130	9.8	5.2	15.0
$\begin{aligned} & 3 \\ & 4- \\ & 5 \end{aligned}$		Staining	3,900	6.3	5.2	11.5
		Spraying	10, 200	7.9	5. 2	13.1
		Finishing	5,920	7.1	5. 2	12.3
	l a	Paint sbop	, 216	99.3	5.2	104.5
6.....		Dry kilns	5,660	68.9	--	68.9
	¢ Basement--	Millwork	5,600	15.6		15. 6
8.-. --	\{ First floor - -	--.do.	5,600	13.3	3.2	19.5
	a	Storage ${ }^{\text {a }}$......	- 598	95.9	5.2	101.1
	( Basement -	Cabinet work and storage b	7,450	48.7	--	48.7
	$\{$ First floor..	Cabinet manufacture.	7,100	13.2	5.2	18.4
9....		---do.	4, 650	15.9	5.2	21.1
	$\left\{\begin{array}{l}\text { Basement } \\ \text { First }\end{array}\right.$	Storagec	2,800	62.9		$62.9$
	[ First floor .-	Spraying	2,750	6.5	5.2	11.7
11..--		Storage d	2,750	30.8	5.2	36.0
12----		--.do ${ }^{\text {c }}$	2,360	83.0	5.2	83.0
13-..-		Varnish vault	600	16.5	(i)	16.5
	----------	Lumber shed	(i)	(i)	(1)	(i)
$\begin{aligned} & 15 \ldots \\ & 16 \ldots- \end{aligned}$	----------	Pump house.				
	----------	Rubbing and polishing.	6,200	5.1	5.2	10.3
$\begin{aligned} & 17 \ldots \\ & 18 . . \end{aligned}$	$\left\{\begin{array}{l}\text { First floor } \\ \text { Second } \\ \text { floor. }\end{array}\right.$	Storage e ---	5,850	12.0	5.2	17.2
		--- do	7, 400	15.6	5.2	$20.8$
		do	7,400	12.0	5.2	17. 2
$19$$20$	$\left\{\begin{array}{l}\text { First floor } \\ \text { Second } \\ \text { floor. }\end{array}\right.$		$\text { 1, } 750$	4. 7	5.2	9.9
		Shipping and storage E .	$9.675$	11.4	5.2	16.6
		Storage b--..	10,625	13.6	5. 2	15.8
Total		127.654				
	erage			19.3	4. 6	23.9

a Lumber being transferred from dry kilns,
Plywood panels loaded on trucks.
c Plywood (3-ply).
d Veneer and packing material.

- Furniture
${ }^{f}$ Furniture and packing material.
g Furniture (some crated ready to ship).
h Furniture (chairs).
i Not surveyed.
amount less than $10 \mathrm{lb} / \mathrm{ft}^{2}$; whereas for Grand Rapids, over one-half of the area was thus relatively lightly loaded. 'This was due in part to a somewhat lighter wood flooring in the Grand Rapids plant.

A generally lighter combustible loading for the latter plant is also indicated by a relatively small percentage of the floor area having combustible loads in the higher ranges. Eight percent of the area for the Grand Rapids plant and abont 17 percent of that at Gettrsburg had combustibles of $30 \mathrm{lb} / \mathrm{ft}^{2}$ or over. These areas were confined to spaces used for storage, air and kiln drying, and paint and lacquer shops and raults.

## b. Mattress Factories

Two establishments manufacturing mattresses were surveyed, one in Atlanta, Ga., and the other

Table 7b. Survey data for furniture factory in Grand Rapids, Mich.

Occupancr or use	Numher of units surveyed	Total floor area	Average combustible contents			a Max-   imum	a Minimum
			Other than floor	Floor	Total		
		$f t^{2}$	$l b / f t^{2}$				
Photo studio	1	4,970	1.8	0.0	1.8	-	
Exhibition.	1	9,940	3.4	. 0	3.4	--	
Trucking area	1	2, 670	0.0	4.0	4.0	--	---
Smoking room	1	720	5. 7	0.0	5.7	--	
Kitchen	1	750	7.1	. 0	7.1	--	---
Cabinct and assembly work	7	71,365	3.4	4.0	7.4	14.2	6.4
Shipment makeup.-	4	34,900	3.9	4.0	7.9	10. 7	7. 0
Finishing ------	8	80, 320	4. 7	4. 0	8.7	13.0	5. 9
Maintenance slop.	3	19, 230	5.8	5.2	11.0	13.2	5. 5
Office and sales .-	2	1,404	7.3	4.0	11.3	11.6	9.5
Banquet and bar	1	1,900	11. 4	0.0	11.4		
Storageforshipment	2	8,380	14.3	. 0	14.3	30.0	8. 0
Storage--..-	11	80,575	15. 1	2.1	17.2	30.1	2.5
Sawing	2	12,800	12.6	4.8	17.4	23.0	9.3
Drafting	1	860	13.9	4.0	17.9	--	---
Woodworking	7	53, 186	13.9	4. 1	18.0	28.5	11.3
Glue room.	2	15, 600	14.3	5. 0	19.3	21.7	16.9
Leather room	1	500	27. 3	0.0	27.3		
Lacquer vault	2	1,660	53.3	. 0	53.3	73.0	33.6
Air-drying building-	1	10, 200	59.4	4.0	63.4	--	---
Dry kilns_	1	8,100	97.2	0.0	97.2	--	---
Vencer storage	1	2, 100	117.3	. 0	117.3	--	---

a No entry indicates that only one area was used for tbat occupancy.
Table 7c. Percentage of furniture-factory floor having combustible contents within certain limits

Range of combustible contents	Gettysburg, Pa. (Total floor area, $127,654 \mathrm{ft}^{2}$ )		Grand Rapids, Mich.   (Total floor area, $421,164 \mathrm{ft}^{2}$ )	
	Part of total floor area	Largest single area within range	Part of total floor area	Largest single area within range
0.0 to 4.9.lb/ft ${ }^{2}$	Percent	$f t^{2}$	Percent 6.4	ft $t^{2}$ 9.940
5.0 to 9.9..	1.5	1,750	48.3	15,300
10.0 to 14.9 .	23.5	10,200	14.3	10,932
15.0 to 19.9	43. 6	10, 625	10.7	11, 500
20.0 to 29.9	14.3	7, 400	12.3	15, 400
30.0 to 39.9	2.2	2,750	3.0	9,280
40.0 to 65.0	8.0	7,450	2.4	10, 200
Over 65.0.	6.9	5,660	2.6	8, 100

in Chicago, Ill. The Atlanta plant had 7 buildings of 1 or 2 stories. One of these, used for the assembly and storage of springs, was of reinforcedconcrete construction and the others were of masonry-wall, wood-joist, or all-metal construction. Temporary wood partitions and woodplank flooring covering parts of the area are included in the combustible contents.

The Chicago plant was housed in what was structurally one building with masonry exterior and subdividing walls, and interior wood or steel construction. The height for the different parts of the building ranged from 1 to 5 stories, with a basement under all but the 1 - and 2 -story portions. There was maple flooring in all except basement, shop, and garnetting areas.
Table 8c gives a summary of combustibles within given ranges of concentration and the
largest single area over which they were found, based upon the survey data given in tables 8a and 8 b .

Table 8a. Survey data for mattress factory in Atlanta, Ga.

Occupancy or use	Arca	Combustible contents		
		Movable propcrty and trim	Floor	Total
Second floor, building 1				
	$f t^{2}$	$l b / f t^{2}$	lb/ft 2	$7 b / f f^{2}$
Spring assembly	805	1.5	0.0	1.5
Spring storage	900	0.0	. 0	0.0
Spring assembly	1,124	1.1	. 0	1.1
Do...------	453	3.5	. 0	3.5
Lockers	207	6. 2	. 0	6.2
Total Average	3,489	1.5	0.0	1.5
Second floor, building 2				
Temporary storage	1,743	5.4	3.9	9.3
Cotton felt mattress.	1. 312	2.4	3.9	6.3
Mattress stapling.	635	2.7	3.9	6.6
Mattress make-up.	635	1.7	3.9	5. 6
Mattress tape edging	942	3.9	3.9	7.8
Mattress button tufting	1,243	2.9	3.9	6.8
Mattress reginning	440	18.0	3.9	21.9
Spring receiving	472	8.3	3. 9	12.2
Stapling--.-.--	472	5. 2	3.9	9.1
Cotton felt mattress	864	4. 9	3.9	8.8
Cotton tufting	1,115	2.3	3.9	6.2
Roll edging.-	950	7.7	3.9	11.6
Temporarily unused	800	0.0	3.9	3.9
Total	11,623			
A verage		4.1	3.9	8.0
Second floor, building 2A				
Box spring assembly	816	11.1	3.9	15.0
Box spring make-up.	900	9.4	4. 7	14.1
Do--------.-.--	648	2.5	3. 9	6.4
Box spring storage	1,263	2. 9	3.9	6.8
Quilting tops .-.-.	1,450	3.3	4. 4	7.7
Temporary storage	990	9.6	3.9	13.5
Packaging----	2,115	4.2	5.4	9.6
Total.. Average	8,182	5.7	4.4	10.1
Second floor, huilding 2B				
Stock room	1,556	56.3	3.9	60.2
Sewing room.	2, 160	2.1	3.9	6.0
Total A verage	3,716	24.8	3.9	28.7

First floor, building 3

Cotton cleaner, picker	561	4.2	0.0	4.2
Cotton mixers	1,080	0.6	. 0	0.6
Cotton stores.	825	12.0	. 0	12.0
Cotton batting, etc., store	6,170	15.4	. 0	15.4
Total_-	8,636	12.5	0.0	12.5

Second floor, building 3

Garnetting	1,750	2.5	5. 2	7.7
Do.	2, 816	2.6	5.2	7.8
Do	1,540	1.3	5.2	6.5
Fales	1,853	3.1	5.2	8. 3
Total	7,959			
A verage		2.5	5. 2	7.7

Table 8a．Survey data for mattress factory in Atlanta，Ga．－ Continued

Occupancy or use	Area	Combustible contents		
		Mov－ able prop－ erty and trim	Floor	Total
Garnett annex，building 4				
Garnett annex．	$f t^{2}$ 4,810	$l b / f t^{2}$ 5.4	$l b / f t^{2}$ 0.0	$l b / f t^{2}$ 5.4
Cotton warehouse，building 5				
Cotton warehouse	8， 010	101.3	0.0	101.3
Shipping，building 6				
Shipping－	15． 640	20.7	0.0	20.7
Garnett parts stores				
Garnett parts stores	740	15.8	0.0	15.8

The difference found for the two plants was not great．Combustibles in amounts less than 10 $\mathrm{lb} / \mathrm{ft}^{2}$ were found in 48 percent of the area of one plant and in 66 percent of the area of the other， with the load uniformly distributed over areas as large as $7,310 \mathrm{ft}^{2}$ ．The combustible loads within the range of 10 to $20 \mathrm{lb} / \mathrm{ft}^{2}$ were 16.3 and 17.8 percent of the respective plant areas．Higher concentrations were largely in storage areas，with a baled－cotton－storage area having about 100 $\mathrm{lb} / \mathrm{ft}^{2}$ ．The progress of fire in such baled materials is relatively slow．

Table 8b．Survey data for mattress factory in Chicago，Ill．


Table 8b．Survey data for matress factory in Chicago， Ill．－Continued


Table 8 b shows that the higher concentrations were found in basement areas，the highest arerage for floors above the basement being $12.2 \mathrm{lb} \mathrm{ft}^{2}$ ． with the highest concentration for an individual area on these floors being $25.3 \mathrm{lb} / \mathrm{ft}^{2}$ ．

Table 8c．Percentage of mattress factory floor area having combustible contents within certain limits

Range in combustible contents	Chicaso（Total floor area， $\mathrm{St}, \mathrm{St} 4 \mathrm{ft}^{2}$ ）		Atlanta（Total flow are：3，$\because=, 05 \mathrm{ft}^{\text {d }}$	
	Part of total floor are：	Largest single ares with－ ith range	Part of total floer ant：	Larmast single ลスM with it ratiz
$\begin{array}{r} 75 / f t^{2} \\ 0.0 \text { to } 4.9 \end{array}$	Percent 10．s	$\begin{gathered} f f^{2} \\ -0(0 ; i \end{gathered}$	$\begin{gathered} \text { Percent } \\ -.9 \end{gathered}$	$\begin{aligned} & f 0 \\ & 1,1 \because t \end{aligned}$
5.0 to 9.9.	55.3	$\therefore 310$	40． 8	4．slo
10.0 to 14.9	11.9	1， $2 \times$	ふ：	2（1）
15.0 to 19.9	5.9	3，144	10 \％	（17）
20.0 to 29.9	12．s	3． 315	ざ， 1	13：（i）t
30.0 to 49.9.	3.1	$\sim$－ 915		
50.0 to 69．9．			$\because 1$	1．55\％
Over 100．		－	11.0	$\therefore 010$


a Included in the total combustinle content is $3 \mathrm{lh} / \mathrm{ft}^{2}$ for flooring material.

Table 9b. Percentage of clothing factory floor area having combustible contents within certain limits

Range of combustible con-tents	New York, N. Y. (Total floor area, $66,961 \mathrm{ft}{ }^{2}$ )		Philadelphia, Pa. (Total floor area, $24,740 \mathrm{ft}^{2}$ )	
	Part of total floor area	Largest single area within range	Part of total floor area	Largest single area within range
0.0 to 4.9 ${ }^{\text {l }}$. $/ f t^{2}$	Percent	$f t^{2}$	Percent 23.5	ft ${ }^{2}$ 2,915
5.0 to 9.9	35.3	5,135	62.2	5,415
10.0 to 14.9	53.6	16,285	5. 7	1, 085
15.0 to 19.9	10.6	7,085	4.1	515
20.0 to 29.9	0.5	315	0.3	80
30.0 to 39.9			4.2	850

## c. Clothing Factories

The factory making women's clothing occupied the second and third floors of a building 100 by 142 ft in outside dimensions. The men's clothing factory covered the fifth floor and part of the sixth floor in one building and part of the third floor in another building. The premises surveyed contained all operations from the receiving of the original bolt of cloth to the shipping of the finished goods.

The more detailed data of the two surveys are given in table 9a, and the summary of results is given in table 9 b .

In the establishment making women's dresses, over 85 percent of the floor area had combustibles of no more than $10 \mathrm{lb} / \mathrm{ft}^{2}$. For the men's clothing factory, about 90 percent of the floor area had combustibles in the range 5 to $15 \mathrm{lb} / \mathrm{ft}^{2}$. For both establishments, heavier loadings were confined largely to storage areas, aggregating an average of nearly 10 percent of the floor area for the two plants. In all areas of both factories there was wood flooring with a computed weight of $3 \mathrm{lb} / \mathrm{ft}^{2}$.

### 3.6. Printing Plants

Of the two establishments surveyed, the one doing job printing exclusively was in five connected buildings built at different times as the plant expanded. They had two or three stories and basement and were of reinforced-concrete construction with floors designed for live load of 250 $\mathrm{lb} / \mathrm{ft}^{2}$.

The building for the newspaper plant, erected in 1922, had nine stories and basement, the in-
terior construction being protected structural steel. It housed the printing plant and newspaper offices.

A summary of results grouped by ranges in combustible load is given in table 10c, and the data for individual areas are given in tables $10 a$ and 10 b .

Table 10a. Survey data for printing plant in Washington, D. C.


Table 10b. Survey data for newspaper plant in Washington, D. C.-Continued

Occupancy or use	Area	Combustible contents			
		Movable property	Floor	Ex-   posed   wood-   work   other   than   floor	Total
Fifth floor					
Telephonc switchboard and equipment	$f t^{2}$ 520	$l o / f t^{2}$ 1.8	$l b / f t^{2}$ 2.5	$l b / f t^{2}$ 2.3	$l b / f t^{2}$ 6.6
Storeroom..---------------	194	39.1	2.6	2. 6	6.6 44.3
Offices- -	447	11.2	2.6	2.0	15.8
Do	1, 290	10.3	2.6	3.4	16.3
Conference room, Board of Trade. $\qquad$	1,294	1.1	2.6	1.0	4. 7
	2, 041	5.4	3.0	3.0	11.4
Corridors	1,348	5.	-.--	3.1	3.1
Total... A verage	7,134	6.1	2.2	2.0	10.3
Sixth floor					
Offices--	1,786	7.0	2.1	5.5	14.6
Corridor	740	2.8	----	3.1	5.9
Lobby	371	0.0		1.6	1.6
Office.	324	4.8	3.6	5.1	13.5
counting-	3,890	7.4	6.6	0.3	14.3
Total A veragc	7,111	6.3	4.3	2.2	12.8
Seventh floor					
Office.	1,900	6.3	2.6	4.0	12.9
Do.	140	31.2	2.6	2.4	36.2
Art room	496	14.3	4.8	1.1	20.2
Photographers.	439	6.2		2.1	8.3
Dental laboratory	126	10.0	2.6	1. 2	13.8
City room.	3,446	3.6	6.6	0.7	10.9
Corridor.	692	0.1	----	3.5	3.6
Lobby .	371	----	----	1.6	1.6
Total A cerage	7,610	5. 2	4.1	1.9	11.2
Eighth floor					
Stereotype room	1,296	0.7	3. 2	0.5	4.4
Composing room	6, 300	1. 7	3.2	. 3	5.2
Office.	54	7.6		5.2	12.8
Lobby	176	----	3.2	1.6	4.8
Total.. Average	7,826	1.5	3.2	0.4	5.1
Ninth floor					
Picture file room.	914	13.2	3.2	0.4	16.8
Monotype room	390	0.9	3.2	1. 0	5.1
Composing room A	1,600	1.5	3. 2	0.1	4.8
Composing room B	990	0.9	3. 2	1.5	5.6
Office.-	232	5.1	3.2	1.7	10.0
Storeroom.	165	11.1	3. 2	1.3	15.6
Office	54	2. 5	3.2	5.1	10.8
Lobby	300	0.0	4.0	3.0	7.0
Locker room.	1,494	1.0	0.2	----	1.2
Total... A verage	6,139	4.2	1.6	0.6	6.4

For both buildings, combustibles of 10 to 20 $\mathrm{lb} / \mathrm{ft}^{2}$ covered about 40 percent of the floor area. A comparatively greater area in the newspaper plant had combustible contents of less than 10 $\mathrm{lb} / \mathrm{ft}^{2}$ because of the floor area occupied by equipment of incombustible type and the larger corridor areas. The higher loads in both plants were due to storage of paper before or after printing.

Table 10c. Percentage of printing plant floor areas having combustible contents within certain limits

Range of combustible contents	Printing plant (Total floor area, $107,143 \mathrm{ft}^{2}$ )		Newspaper plant (Total floor area, $84,612 \mathrm{ft}^{2}$ )	
	Part of total floor area	Largest single area within range	Part of total floor arca	Largest single area within range
0.0 to $4.9{ }^{\text {lb/ft }}{ }^{2}$	Percent	${ }^{\text {f }}{ }^{2}$	Percent	$f t^{2}$
5.0 to 9.9	5.5	4,477	21.7	6,300
10.0 to 14.9	28.1	5,624	24.9	3,446
15.0 to 19.9	12.5	5, 233	14.3	7,177
20.0 to 29.9.	6.1	4, 834	1.4	496
30.0 to 39.9	6.2	3, 348	14.0	11, 740
40.0 to 49.9	3.0	3,200	0.5	194
50.0 to 59.9	12.4	9, 250	1.2	764
60.0 to 79.9	4.3	2, 145	0.8	363
80.0 to 100.0	1. 5	1,591	. 2	190
Over 100.	17.3	9.700		

### 3.7. Warehouses

The five warehouses surveyed were of protectedsteel or reinforced-concrete construction and were from three to nine stories in height. Three of the buildings had basements. While five warehouses were surveved, the more detailed survey data for only two, $W-4$ and $W-5$, are given in tables 11a and 11 b . The percentage of the floor area, with combustible contents within a given range, and the largest single area over which the combustibles within these ranges were found for these two warehouses, are given in table 11c. Table 11d gives a complete summary of the combustible contents found in all five warehouses.

Table 11a. Survey data for warehouse W-4 in Washington, D. C.

Occupancy or use	Arca	Combustible contents		
		Movable   prop-   erty	Exposed Woodwork other than floor	Total ${ }^{\text {a }}$
Basement				
	$f t^{2}$	$10 / f t^{2}$	lb/ft ${ }^{2}$	(b)/ft ${ }^{2}$
Switchboard room	358	2.0	3.6	5.6
Locker room..	600	2.2	2.0	4.2
Bascment storage.	4. 569	16.7	0.3	17.0
Total A verage	5, 527	14. 2	0.7	14.9
First floor				
Private office.	192	5.8	7.4	13.2
Gencral office	1,167	6.3	1. 5	7.8
Vestibule.-	236		2.9	2.9
Sales office..	653	7.6	3.0	10.6
Storage room A .-.-.-.-.----.-.--	95	15.8	-.--	15.8
Warchouse, panels A to G, inclusive.	4,697	7.4	1.6	11.2
Total	7,040			
A verage		8.6	1.9	10.5

See footnote at end of table.

Table 11a. Survey data for warehouse W-4, in Washington, D. C.-Continued

Occupancy or use	Area	Combustible contents		
		Movable   property	Exposed Woodwork other than floor	Total ${ }^{\text {a }}$
Second floor				
Warehouse, panels A-1, A-2, B, C , and D .	$\begin{gathered} f t^{2} \\ 8,916 \end{gathered}$	$l b / f t^{2}$ 6.4	$7 b / f t t^{2}$ 0.5	$\begin{array}{r} l b / f t^{2} \\ 6.9 \end{array}$
Total   A verage	8,916	6.4	0.5	6.9
Third floor				
	95	6.6	--	6.6
sive	8. 599	24.5	0.5	25.0
Total.-A verage	$8.694$	24.6	---5	25.1
Fourth floor				
Storeroom A.	$\begin{array}{r} 95 \\ 8,663 \end{array}$	$\begin{aligned} & 41.1 \\ & 39.8 \end{aligned}$	0.5	41.1 40.3
Total   Arerage	$\text { 8, } 758$	39.8	0.5	40.3
Fifth floor				
Wareroom B .-.-.------------	$\begin{array}{r} 650 \\ 8,349 \end{array}$	$\begin{array}{r} 42.3 \\ 5.2 \end{array}$	$\begin{array}{r} 0.8 \\ .4 \end{array}$	43.1 8.0
Total   A verage	$\text { 8. } 999$	7.9	0.5	10.6

Table 11a. Survey data for warehouse W-4 in Washington, D. C.-Continued

Occupancy or use	Area	Combustible contents		
		Mov. able property	Exposed   Wood-   work   other   than   floor	Total 3
Sixth floor				
Storeroom A   Storeroom B   Storeroom C   Warehouse, panels A, B, and C.-   Total   Average	$f t^{2}$	$l t / f t^{3}$	$\psi_{i f t^{2}}$	$\underline{L} /{ }^{\prime} t^{2}$
	95	20.2		20.2
	25.5	31.7	1.0	35.3
	518	43.1	0.8	43.9
	8. 437	13.0	. 5	13.5
	9,305	15.3	0.5	159
Seventh floor				
Storeroom A   Storeroom B   Storeroom C   Warehonse, panels A and B   Total   A verage	95	70.7		70.7
	184	6.6	2.8	12.0
	589	11.7	0.9	12. 6
	8,437	27.0	. 6	27.6
	9,305	26.1	0.6	26.8
Eighth floor				
Storeroom A   Panel B   Panels A-1, A-2, C, and D   Total_   Average.	95	18.8		18.8
	4, 287	18.4	0.4	18.8
	3, 680	5.7	.4	6.1
	8, 062			
		12.6	0.4	13.0

a Where the total content is larger than the sum of the movable property and exposed woodwork, there was combustible flooring in that area that is included in the total.

Table 11b. Percentage of floor area of warehouse $W-5$, New York, N. Y., having combustible contents within certain limits


The contents of warehouse $\mathrm{W}-1$, for a large printing establishment, were largely stored paper in rolls, paper cartons, or wooden crates. The flooring over most of the area was either 2 -in. asphalt paving blocks, assumed to have (in terms of wood) equivalent combustible weight of 6.2 $\mathrm{lb} / \mathrm{ft}^{2}$, or $2 \frac{1}{2}$-in. end-grain hard pine blocks weighing $10 \mathrm{lb} / \mathrm{ft}^{2}$. Part of the area of the third floor ( $10,225 \mathrm{ft}^{2}$ ) was depressed for railroad tracks on which there were 14 freight cars with paper contents aggregating $630,000 \mathrm{lb}$.

Warehouses W-2 and W-3 served elepartment stores, with a large part of the storage consisting of clothing, furniture, floor coverings. paint, tors. wrapping paper, and cartons. The first floor of warehouse $\mathrm{W}-3$ was used only for merchandise in transit and there was none on the thoor at the time of the surver.

Warehouse $W^{-4}$, near railroad terminals, carried incoming stocks of merchantise for lowa dealems. A percentage of the aren, varing from thoor to floor, was without load at the time of the surver.

Table 11c. Percentage of storage-building floor areas having combustible contents within certain limits

Range of combustible contents	Washington, W-4 (Total floor area, $74,606 \mathrm{ft}^{2}$ )		New York, W-5 (Total floor area, $117,170 \mathrm{ft}^{2}$ )	
	Part of total floor area	Largest single area within range	Part of total floor area	Largest single area within range
$\begin{gathered} \quad l b / f t^{2} \\ 0.0 \text { to } 4.9 \end{gathered}$	Percent 1.1	$\begin{gathered} f t^{2} \\ 600 \end{gathered}$	Percent 3.7	$f t^{2}$
5.0 to 9.9-	30.3	8,916	2. 9	
10.0 to 14.9 -	19.8	8, 437	2. 7	
15.0 to 19.9	12. 1	4, 569	2. 2	
20.0 to 29.9	23.0	8, 599	6.6	Survey units
30.0 to 39.9	0.3	255	8.0	bays with
40.0 to 49.9 -	13.3	8,663	12.7	areas from
50.0 to 59.9. 60.0 to 70.7	0.1	95	------	396 to 560 $\mathrm{ft}^{2}$.
50.0 to 74.9-			30.2	
75.0 to 99.9		------	15.7	
100.0 to $149.9-$			8.3	
150.0 to 199.9----------			5. 0 2.0	

and the difference in the average load for the individual floors is as much attributable to this condition as to differences in concentrations for areas carrying load. Even for those floors carrying loads over nearly the whole area (4th, 5th, and 7 th), a considerable range in average load was found.

Warehouse $W-5$ carried storage for a number of clients, and the types of goods stored covered a wide range. A plan of the sixth floor, which carried a load near the average for the warehouse, is shown in figure 3 . The combustibles present were almost wholly in the goods stored and, hence, only the total combustibles represented thereby are given in table 11d for each floor. The averageload variation between floors, as also between panels on a floor, was large.

For warehouse W-4, about one-half of the floor area had combustible concentrations no higher than $15 \mathrm{lb} / \mathrm{ft}^{2}$ and for almost all of the remaining area they were not over $50 \mathrm{lb} / \mathrm{ft}^{2}$. For warehouse W-5, nearly 18 percent of the floor area had combustible load of less than $30 \mathrm{lb} / \mathrm{ft}^{2}$, about 50 percent carried between 30 and $75 \mathrm{lb} / \mathrm{ft}^{2}, 24$ percent carried 75 to $150 \mathrm{lb} / \mathrm{ft}^{2}$, and 7 percent had greater combustible load.

### 3.8. Offices

The office surveys include areas in buildings that house offices, or spaces directly associated therewith, and office spaces found in the surveys of other occupancies. The survey data for all office areas is given in table 12a.

The range of combustibles found in offices in the various other occupancies, with the exception of the newspaper plant, was about the same as that of the offices, office and reception rooms, and office and light-file areas in buildings housing office occupancies. The former ranged from 4.5 to $15.9 \mathrm{lb} / \mathrm{ft}^{2}$, as compared to 3.8 to $16.7 \mathrm{lb} / \mathrm{ft}^{2}$ for the latter. Law offices and law libraries gave

Table 11d. Summary data for warehouses

Portion of building	Floor area	Combustible contents			
		Movable $\begin{aligned} & \text { Moperty } \\ & \text { proper }\end{aligned}$	Floor	Exposed wood- work other than floor	Total
Survey W-1					
	$f t^{2}$	$l b / f t 2$			
Basement.	33, 890	172.9	6.2	0.0	179.1
1st floor.	34, 900	223.7	9.7	. 0	233.4
2 d floor	32, 592	105. 8	10.0	. 4	116.2
3d floor	23, 448	204.0	6.2	. 0	210.2
3d floor---1.	10, 225	61.6	0.0	. 0	61.6
3d-floor total	33, 673	160.8	4.3	. 0	165.1
Entire building.	135, 055	166.8	7.5	0.1	174.4
Survey W-2					
1st floor	46, 158	6.8	0.0	0.0	6.8
2d floor	44, 957	13.6	. 0	1.0	14.6
3d floor	45,677	4.0	. 0	1.2	5. 2
4th floor-	45, 677	12.7	. 0	2.2	14.9
5 th floor	45, 677	8.4	. 0	1. 9	10.3
6 th floor	45,677	12.2	. 0	3.8	16.0
Entire building	273, 823	9.6	0.0	1.5	11.1
Survey W-3					
1st floor	17, 442	0.0	0.0	0.0	0.0
2d floor.	17, 442	16.2	. 0	. 8	17.0
3d floor	17, 442	16.0	. 0	2.3	18.3
4th floor	17, 442	10.6	. 0	2.1	12.7
Entire building	- 52,326	14.3	0.0	1.7	16.0
Survey W-4					
Basement	5, 527	14.2	0.0	0.7	14.9
1st floor-	7,040	8.6	. 0	1. 9	10.5
2 d floor	8,916	6.4	. 0	0.5	6. 9
3 d floor.	8,694	24.6	. 0	. 5	25. 1
4th floor-	8,758	39.8	. 0	. 5	40.3
5 th floor	8, 999	7.9	2.2	. 5	10.6
6 th floor	9, 305	15. 3	0.1	. 5	15.9
7 th floor	9, 305	26.1	. 1	. 6	26.8
8th floor	8, 062	12.6	. 0	. 4	13.0
Entire building	74,606	17.2	0.2	0.7	18.1
Survey W-5					
Basement.	10, 806	------	----	------	50.0
1st floor.	11, 848	------	----		27.8
2 d floor-	11, 848		-----		62.5
3 d floor-	11, 848		----		65.9
4th floor	11, 848	------	----	------	54.0
5 5th floor	11, 848	------	----		80.6
6 th floor-	11, 848	-----	---		62.2
7 7th floor-	11, 848	------	----	------	133.3
8th floor-	11, 848		----		52.9
9 9th floor	11,848	-.----	----	------	70.3
Entire building	117, 438	------	----	------	65.9

a Not including the first floor, which was used only for merchandise in transit.
loads in the range 17.9 to $35.3 \mathrm{lb} / \mathrm{ft}^{2}$. For heavy filing, the range was from 28.1 to $85.9 \mathrm{lb} / \mathrm{ft}^{2}$.

In table 12 b are given the total area, percent of total area, and largest single area, having combustible load within given ranges. It is seen that a little less than 70 percent of the total office area surveyed had combustible load of less than 20 $\mathrm{lb} / \mathrm{ft}^{2}$, about 28 percent had 20 to $40 \mathrm{lb} / \mathrm{ft}^{2}$, and in only a relatively small part was the load over $40 \mathrm{lb} / \mathrm{ft}^{2}$.

Table 12a. Survey data of offices and offices associated with other occupancies

Occupancy or use	Num. ber of offices surresed	Total floor area	Average combustible contents				
			Mov. able prop erty and trim	Floor	Total		
					Arerage	Maximum	$\begin{aligned} & \text { Mini- } \\ & \text { mum } \end{aligned}$
Office building:		$f t^{2}$	lb/ft ${ }^{2}$	$\tau b / f t^{2}$	$l o / f t^{2}$	lb/ft 2	$u_{i / f t^{2}}$
Office only	2	407	5.9	2.3	8.2	8.8	7.0
Office and reception room	-	581	4.9	1.7	6.6	8.8	4. 3
Office and light files	20	11,860	8.0	0.8	8.8	16.7	3.8
Heary files	9	27, 431	35.7	. 2	35.9	85.9	28. 1
Law office.	2	556	18.5		18.5	19.6	17.9
Law library	2	2. 992	17.2	0.1	17.3	35.3	19.7
Offices in:							
Department stores	2	11, 230	5.9	. 7	6.6	6.9	6.4
Furniture factories.	3	1,534	7.1	4.1	11.2	11.6	9.7
Printing plant --.	9	3, 668	8.6	2.6	11.2	15.9	4.5
Vewspaper plant.-	22	19,479	9.7	3.5	13.2	36.2	8.9
Dress factory-....-	4	3,990	4. 8	3.0	7.8	10.1	6.8
Men's clothing fac- tory - --------	2	3, 335	7.9	3.0	10.9	10.9	10.6
Warehouse-----------	3	2,012	10.5	--.-	10.5	13.2	7.8

Table 12b. Percentage of the floor areas of offices and offices associated with other occupancies having combustible contents within certain limits

Range of combustible contents	Area within range	Total area within range	Largest single area within range
0.0 to 9.9---------	$\begin{gathered} f t^{2} \\ 27,242 \end{gathered}$	$\begin{gathered} \text { Percent } \\ 31.0 \end{gathered}$	$\begin{gathered} f t^{2} \\ 7,230 \end{gathered}$
10.0 to 14.9	24,844	28.2	3,890
15.0 to 19.9	7,961	9.0	2,533
20.0 to 29.9	9, 031	10.2	7, 742
30.0 to 39.9	15,877	18.0	9,550
40.0 to 85.9	3,122	3.6	2,041

## 4. General Notes and Summary

The results of the surveys show that there is a correlation between some of the occupancies and combustible loading. In other occupancies, such as manufacturing and storage, there is much variation, depending on the classes of materials involved and the operational plans of the establishments.

In large areas within fire walls or fire partitions, the fire exposure to the floor construction above from a fire in the contents would vary to an extent with the concentrations of combustibles on the floor beneath.

### 4.1. Residential Occupancies

Combustible loadings of 13 to $14 \mathrm{lb} / \mathrm{ft}^{2}$ were found in limited areas in dwellings and a concentration of $49.3 \mathrm{lb} / \mathrm{ft}^{2}$ was found in a linen closet. However, the greatest average for a whole dwelling unit did not exceed $10 \mathrm{lb} / \mathrm{ft}^{2}$, and in view of the fact that there were no subdividing fire walls, the average combustible load ( $10 \mathrm{lb} / \mathrm{ft}^{2}$ ) appears to be a reasonable value. The six apartmenthouse storage rooms, at the time surveyed, had
no greater combustible load than the highest average for dwelling units as a whole.

### 4.2. Hospitals

Three buildings, each housing a different hospital activity, were surveyed at a large institution. A total of 469 rooms or units having an aggregate area of $143,780 \mathrm{ft}^{2}$ was surveyed.
The group averages of combustible contents for patients' rooms, dormitories, waiting rooms, corridors, kitchens, and dining rooms ranged from 0.8 to $3.9 \mathrm{lb} / \mathrm{ft}^{2}$, with no single area or unit exceeding $5.2 \mathrm{lb} / \mathrm{ft}^{2}$. The range of the group averages for administrative, doctors', attendants', and nurses' offices and rooms was from 2.9 to $8.6 \mathrm{lb}^{\prime} / \mathrm{ft}^{2}$, with a maximum for an individual area of 14.4 $\mathrm{lb} / \mathrm{ft}^{2}$. In service areas, including storerooms, laundries, and janitors' closets, the averages ranged from 0.5 to $13.1 \mathrm{lb} / \mathrm{ft}^{2}$, with an individual maximum of $23 \mathrm{lb} / \mathrm{ft}^{2}$. Loadings in the range of 0.2 to $21.6 \mathrm{lb} / \mathrm{ft}^{2}$ were found in individual areas used for treatment, surgery, and clinics.
The lower combustible loads were found in the comparatively large ward, dormitory, and patientroom areas rather than in office, service, and operational areas.

### 4.3. Schools

The surveys indicate that in classrooms, laboratories, library reading rooms, and similar areas the combustible contents did not exceed $15 \mathrm{lb} / \mathrm{ft}^{2}$. Library stackrooms, storerooms, and offices, representing a small percentage of the total area, had higher combustible loads.

### 4.4. Mercantile Establishments

Combustible loads below $20 \mathrm{lb} / \mathrm{ft}^{2}$ were found in all but 3.8 percent of the area surveyed in the New York department store, and in all but 3.0 percent of the area in the Washington department store. The higher combustible loads were, generally, from sales stocks and stock storage not effectively segregated from the other areas. In view of the large open areas and the small proportion containing the higher combustible loads, it appears that the effect of these loads on the general fire severity would be minor.

### 4.5. Manufacturing Establishments

The range of combustible contents in manufacturing plants is large, depending to a great extent on the goods made. The results of the present surveys should be helpful in giving information on the combustible loads to be expected in the types of plants surveced or in those that are similar.

The buildings housing the higher combustible loads were seldom of heights of areas requirine so-called "fully firc-resistive" construction, although such construction might be justified from
the standpoint of the owncr and the decrease in hazard to nearby property.

The combustible contents in the clothing factories surveyed were less than $20 \mathrm{lb} / \mathrm{ft}^{2}$ for all but a small percentage of the area. Such occupancy does not represent an excessive potential fire severity for buildings of fire-resistive construction.

### 4.6. Printing Establishments

The newspaper plant surveyed contained a combustible load of $30 \mathrm{lb} / \mathrm{ft}^{2}$ or over on only 16.7 percent of the area. The printing plant carried a combustible load of $30 \mathrm{lb} / \mathrm{ft}^{2}$ or more on 44.7 percent of the floor arca. The higher load in cach case was caused by storage of paper and combustible supplies.

### 4.7. Warehouses

The contents of storage buildings surveyed covered a wide range in type and distribution of the combustible materials housed.

For the two department store warehouses and the one carrying incoming stocks for local dealers, the combustible loads were within the range where structural protection for the possible fire severity can be provided without resort to unusual building details.

The high combustible loads in the warehouse for a big printing establishment were largely of paper in tight rolls or packages. After the initial stage of a fire in such contents, the intensity decreases, allowing more ready approach for extinguishment. In the absence of extinguishment, such storages will be fully consumed, and the required structural protection against the resulting fire severity is beyond presently defined means of attainment.

The general-storage warehouse, W-5, carried combustible loads up to $75 \mathrm{lb} / \mathrm{ft}^{2}$ on nearly 70 percent of its area. Combustibles on the remaining area ranged up to $256.5 \mathrm{lb} / \mathrm{ft}^{2}$ for an individual floor bay and to $133.3 \mathrm{lb} / \mathrm{ft}^{2}$ for an entire floor. Combustible loads below $30 \mathrm{lb} / \mathrm{ft}^{2}$ occupied only 18.1 percent of the building, and only 1 floor of the 10 had such a low average.

### 4.8. Office Occupancies

No surveys were made covering all parts of office buildings; however, surveys were made of typical areas in six such buildings, and of office areas in a number of other occupancies. In office areas, including light files, the combustibles exceeded $20 \mathrm{lb} / \mathrm{ft}^{2}$ only in a small office of the newspaper plant where it amounted to 36.2
$\mathrm{lb} / \mathrm{ft}^{2}$ on an area of $140 \mathrm{ft}^{2}$. The fire severity resulting from this concentration would be reduced by the lower combustible load in large adjacent areas averaging less than $15 \mathrm{lb} / \mathrm{ft}^{2}$.

In areas used for heavy files, the combustible contents ranged from 28.1 to $85.9 \mathrm{lb} / \mathrm{ft}^{2}$. In law libraries, combustible loads as high as 35.3 $\mathrm{lb} / \mathrm{ft}^{2}$ were found.

## 5. General Objective and Application

The data from the present surveys present a general view of the combustible contents associated with typical buildings and occupancies. In conjunction with information from fire-severity tests and fires in buildings, data from these surveys can be applied in connection with requirements for minimum fire resistance of buildings, such as in building codes. Beyond such minimum requirements, building designers and owners can apply the data to provide a degree of structural protection that will prevent collapse of the structure from fires in contents. Where such structural protection cannot be fully attained, it can be supplemented with built-in fire-extinguishing equipment.

Although buildings may be seriously damaged by a fire of severity approaching that for which their structural protection is designed, prevention of major collapse is important in decreasing the possibility of spread of fire to adjacent construction and in affording a safcr approach for fire extinguishment. Conflagrations have been stopped on a line of such fire-resistive buildings and, although fire was communicated to those immediately exposed, such buildings gave the needed protection to buildings beyond them.

## 6. References

[1] Fire-rcsistance classifications of building constructions, NBS Building Materials and Structures Report (1942), BMS92.
[2] S. H. Ingberg, The severity of building fires, Proc. 14th Annual Meeting Building Officials Conference of America, 87-97 (1928) ; Safety Eng. 56, 57-61 and 103-106 (1928) ; Quart. Nat. Fire Protect. Assoc. 22, 43-61 (1928); Arch. Forum 50, 775 (1929).
[3] Standard methods of fire tests of building construction and materials, American Society for Testing Materials, Designation E119-54.
[4] Post war building studies No. 20 (1946), Fire grading of buildings, part 1, General principles and structural precautions, by a Joint Committee of the Building Research Board of the Department of Scientific and Industrial Research and the Fire Offices Committee; published for the Ministry of Public Works, H. M. Stationery Office, London.
[5] International Critical Tables 5, 162-169 (1929).
[6] Handbook of fire protection of the National Fire Protection Association, 11th Ed., 1460-1461 (1954).


Figure 1. Second-floor plan, department store, Washington, D. C.



Figure 3. Sixth-floor plan, warehouse, New York, N. Y.

Washington, December 5, 1956.

BMS37 BMS38 BMS39 BMS40

BMS41 BMS42

BMS43
BMS44
BMS45
B．MS46
BMS47
BMS48
BMS49
BMS50
BMS51
B MS52
BMS53
BMS54

## BMS55

BMS56
BMS57
BMS58
BMS59
BMS60
BMS61
BMS62
BMS63
BMS64
BMS65
BMS66
BMS67
BMS68
BMS69
BMS70
BMS71
BMS72
BMS73
BMS74

BMS75
BMS76
BMS77
BMS78
BMS79
BMS80
BMS81
BMS82
BMS83
BMS84
BMS85
BMS86
BMS87
Structural Properties of＂Palisade Homes＂Constructions for Walls，Partitions，and Floors Sponsored by Palisade Homes．
Structural Properties of Two＂Dunstone＂Wall Constructions Sponsored by the W．E．Dunn Manufacturing Co$10 \phi$
Structural Properties of a Wall Construction of＂Pfeifer Units＂Sponsored by the Wisconsin Units Co ..... $10 ¢$
Structural Properties of a Wall Construction of＂Knap Concrete Wall Units＂Sponsored by Knap America，Inc
Effect of Heating and Cooling on the Permeability of Masonry Walls
Structural Properties of Wood－Frame Wall and Partition Construction with＂Celotex＂ Insulating Boards Sponsored by The Celotex Corporation ..... ＊
Performance Test of Floor Coverings for Use in Low－Cost Housing：Part 2
Surface Treatment of Steel Prior to Painting ..... ＊ ..... ＊
Struc
Struc Structural Properties of＂Scott－Bilt＂Prefabricated Sheet－Steel Construction for Walls， Floors，and Roofs Sponsored by The Globe－Wernicke Co ..... ＊
Structural Properties of Prefabricated Wood－Frame Constructions for Walls，Parti－
tions，and Floors Sponsored by American Houses，Inc
Structural Properties of＂Precision－Built＂Frame Wall and Partition Constructions Sponsored by the Homasote Co ..... ＊
Metallic Roofing for Low－Cost House Construction
Stability of Fiber Building Boards as Determined by Accelerated Aging ..... 25
Structural Properties of＂Tilecrete Type A＂Floor Construction Sponsored by the Tilecrete Co ..... ＊
Effect of Ceiling Insulation Upon Summer Comfort ..... 15
Structural Properties of a Masonry Wall Construction of＂Munlock Dry Wall Brick＂ Sponsored by the Munlock Engineering Co ..... ＊
Effect of Soot on the Rating of an Oil－Fired Heating Boiler ..... ＊
Effects of Wetting and Drying on the Permeability of Masonry Walls ..... ＊
A Survey of Humidities in Residences ..... 106
Roofing in the United States－Results of a Questionnaire
15
Strength of Soft－Soldered Joints in Copper Tubing
Properties of Adhesives for Floor Coverings ..... ＊
Strength，Absorption，and Resistance to Laboratory Freezing and Thawing of Building
Strength，Absorption，and Resistance to Laboratory Freezing and Thawing of Building Bricks Produced in the United States ..... $*$
$*$
Structural Properties of Two Nonreinforced Monolithic Concrete Wall Constructions＿ Structural Properties of a Precast Joist Concrete Floor Construction Sponsored by the Portland Cement Association ..... ＊
Moisture Condensation in Building Walls ..... ＊
Solar Heating of Various Surfaces ..... 10 ¢
Methods of Estimating Loads in Plumbing Systems
$40 \dot{\text { é }}$
Structural Properties of＂Mu－Steel＂Prefabricated Sheet－Steel Constructions for Walls， Partitions，Floors，and Roofs，Sponsored by Herman A．Mugler ..... $20 \phi$
Performance Test for Floor Coverings for Use in Low－Cost Housing：Part 3
$10 \phi$
Stability of Fiber Sheathing Boards as Determined by Accelerated Aging
20 多
20 多
Asphalt－Prepared Roll Roofings and Shingles－－－
Fire Tests of Wood－and Metal－Framed Partitions ..... 30 ¢
Structural Properties of＂Precision－Built，Jr．＂Prefabricated Wood－Frame Wall Con－ struction Sponsored by the Homasote Co
10
Indentation Characteristics of Floor Coverings
Structural and Heat－Transfer Properties of＂U．S．S．Panelbilt＂Prefabricated Sheet－ Steel Constructions for Walls，Partitions，and Roofs Sponsored by the Tennessee Coal，Iron \＆Railroad Co ..... 20 ．
Survey of Roofing Materials in the North Central States ..... ＊
Effect of Outdoor Exposure on the Water Permeability of Masonry Walls ..... ＊
Properties and Performance of Fiber Tile Boards ..... ＊ ..... ＊
Structural，Heat－Transfer，and Water－Permeability Properties of Five Earth－Wall Constructions ..... 35 e
Water－Distributing Systems for Buildings ..... 20 c
Performance Test of Floor Coverings for Use in Low－Cost Housing：Part 4 ..... 25．
Field Inspectors＇Check List for Building Constructions（cloth cover $5 \times 71 / 2$ inches） ..... 40 غStrength of Sleeve Joints in Copper Tubing Made With Various Lead－Base Solders．－－25 e
Survey of Roofing Materials in the South Central States ..... ＊Dimensional Changes of Floor Coverings With Changes in Relative Humidity andTemperature
Structural，Heat－Transfer，and Water－Permeability Properties of＂Speedbrik＂WalConstruction Sponsored by the General Shale Products Corporation＊
A Method for Developing Specifications for Building Construction－Report of Sub－committee on Specifications of the Central Housing Committee on Research，Design，and Construction＊＊＊
$\qquad$ ．
 ＊

$\square$
$\square$埗 －

# BUILDING MATERIALS AND STRUCTURES REPORTS 

## [Continued from cover page rir]

BMS88 Recommended Building Code Requirements for New Dwelling Construction WithSpecial Reference to War Housing
BMS89 Structural Properties of "Precision-Built, Jr." (Second Construction) Prefabricated Wood-Frame Wall Construction Sponsored by the Homasote Co
Structural Properties of "PHC" Prefabricated Wood-Frame Constr BMS90 Floors, and Roofs Sponsored by the PHC Housing Corporation.**
BMS91*BMS92
A Glossary of Housing Terms Fire-Resistance Classifications of Building Constructions35
Accumulation of Moisture in Walls of Frame Construction During Winter ExposureWater Permeability and Weathering Resistance of Stucco-Faced, Gunite-Faced, and"Knap Concrete-Unit" Walls
Tests of Cement-Water Paints and Other Waterproofings for Unit-Masonry Walls ..... $30 \phi$
BMS96 Properties of a Porous Concrete of Cement and Uniform-Sized Gravel ..... *
Experimental Dry-Wall Construction With Fiber Insulating Board ..... *
Physical Properties of Terrazzo Aggregates. ..... *
BMS97
Structural and Heat-Transfer Properties of "Multiple Box-Girder Plywood Panels" for Walls, Floors, and Roofs ..... *
Relative Slipperiness of Floor and Deck Surface ..... *
BMS100
Strength and Resistance to Corrosion of Ties for Cavity Walls
Strength and Resistance to Corrosion of Ties for Cavity Walls ..... * ..... *
BMS102 Painting Steel ..... $15 \phi$
BMS103 Measurements of Heat Losses From Slab FloorsStructural Properties of Prefabricated Plywood Lightweight Constructions for Walls,Partitions, Floors, and Roofs Sponsored by the Douglas Fir Plywood Association_
Paint Manual with particular reference to Federal Specifications ..... \$1. 50
BMS105 Laboratory Observations of Condensation in Wall Specimens ..... 15 $\phi$
BMS106
BMS106 Building Code Requirements for New Dwelling Construction ..... *
BMS108 Temperature Distribution in a Test Bungalow With Various Heating Devices ..... $70 \phi$
BMS109
BMS109 Strength of Houses: Application of Engineering Principles to Structural Design. Strength of Houses: Application of Engineering Principles to Structural Design. ..... $20 \phi$
BMS10
BMS10 Paints for Exterior Masonry Walls Paints for Exterior Masonry Walls ..... $15 \phi$
BMS112 Properties of Some Lightweight-Aggregate Concretes With and Without an Air- Entraining Admixture ..... $15 \dot{1}$
BMS113 Fire Resistance of Structural Clay Tile Partitions ..... $15 \phi$
BMS114 Temperature in a Test Bungalow With Some Radiant and Jacketed Space Heaters ..... $25 \phi$
BMS115 A Study of a Baseboard Convector Heating System in a Test Bungalow ..... $20 \phi$
BMS116 Preparation and Revision of Building Codes ..... $20 \phi$ Fire Resistance of Walls of Lightweight Aggregate Concrete Masonry Units ..... $25 \phi$
BMS117
BMS117
BMS118 Stack Venting of Plumbing Fixtures ..... $25 \phi$
BMS119
BMS119 Wet Venting of Plumbing Fixtures ..... $25 \dot{\text { b }}$
BMS120 Fire Resistance of Walls of Gravel-Aggregate Concrete Masonry Units ..... $15 \phi$
BMS121 Investigation of Failures of White-Coat Plasters ..... $30 \phi$
BMS122 Physical Properties of Some Samples of Asbestos-Cement Siding ..... 20.
BMS123 Fire Tests of Wood-Framed Walls and Partitions With Asbestos-Cement Facings ..... *
BMS124 Fire Tests of Steel Columns Protected With Siliceous Aggregate Concrete ..... 15ф
BMS125 Stone Exposure Test Wall ..... $30 \phi$
BMS126 The Self-Siphonage of Fixture Traps ..... $20 \phi$
BMS127 Effect of Aging on the Soundness of Regularly Hydrated Dolomitic Lime Putties ..... $15 \phi$ Atmospheric Exposure Tests of Nailed Sheet Metal Building Materials. ..... 20
BMS128
BMS128
BMS129 Fire Endurance of Shutters for Moving-Stairway Openings ..... $10 \phi$
BMS130 Methods and Equipment for Testing Printed-Enamel Felt-Base Floor Covering ..... 15ф
BMS131 Fire Tests of Gunite Slabs and Partitions ..... 15
BMS132 Capacities of Plumbing Stacks in Buildings ..... $25 \phi$
BMS133 Live Loads on Floors in Buildings ..... $25 \phi$
BMS134 Fire Resistance of Concrete Floors
$15 \phi$
BMS135 Fire Tests of Steel Columns Encased With Gypsum Lath and Plaster.
BMS136
BMS136 Properties of Cavity Walls ..... 15ф
BMS137 Influence of the Wash From Bronze on the Weathering of Marble ..... $15 \phi$
BMS138 Effect of Edge Insulation Upon Temperature and Condensation on Concrete-Slab Floors ..... $20 \phi$
BMS139 Studies of Stone-Setting Mortars ..... 25 $\phi$
BMS140 Second Edition, Selected Bibliography on Building Construction and Maintenance-.... ..... $30 \phi$
BMS141 Fire Endurance of Open-Web Steel Joist Floors With Concrete Slabs and Gypsum ..... $20 \phi$
BMS142 Frost Closure of Roof Vents ..... $25 \phi$
BMS143 Fire Tests of Brick Walls ..... 35 $\phi$
BMS144
BMS144 ..... 406 ..... 406
Supplement to BMS144, Sound Insulation of Wall, Floor, and Door Constructions ..... $5 \phi$
BMS145 Fire Effects and Fire Control in Nitrocellulose Photographic-Film Storage ..... $20 \phi$
BMS146 Plasticity and Water Retentivity of Hydrated Limes for Structural Purposes ..... $15 \phi$ Effects of Mineral Additives on the Durability of Coating-Grade Roofing Asphalts ..... $20 \phi$
BMS147
BMS147
BMS148 Fifteen-Year Exposure Test of Porcelain Enamels ..... $15 \phi$
BMS149 Combustible Contents in Buildings ..... 20ф
*Out of print


[^0]:    *Guest worker. Formerly Chief, NBS Firc Protection Section (now retired).
    ${ }^{*}$ Chief Structural Engineer, Public Buildings Service, General Services Administration.

    I Figures in brackets indicate the literature references at the end of this report.

[^1]:    See footnote at end of table.

[^2]:    ${ }^{2}$ Figures are given at the end of this report

