Plasticity and Water Retentivity of Hydrated Limes for Structural Purposes

United States Department of Commerce
National Bureau of Standards
Building Materials and Structures Report 146
BUILDING MATERIALS AND STRUCTURES REPORTS

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices.

If 100 copies or more of any report are ordered at one time, a discount of 25 percent is allowed. Send all orders and remittances to the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C.

The following publications in this series are available by purchase from the Superintendent of Documents at the prices indicated:

BMS1 Research on Building Materials and Structures for Use in Low-Cost Housing
BMS2 Methods of Determining the Structural Properties of Low-Cost House Constructions
BMS3 Suitability of Fiber Insulating Lath as a Plaster Base
BMS4 Accelerated Aging of Fiber Building Boards
BMS5 Structural Properties of Six Masonry Wall Constructions
BMS6 Survey of Roofing Materials in the Southeastern States
BMS7 Water Permeability of Masonry Walls
BMS8 Methods of Investigation of Surface Treatment for Corrosion Protection of Steel
BMS9 Structural Properties of the Insulated Steel Construction Co.'s "Frameless-Steel" Constructions for Walls, Partitions, Floors, and Roofs
BMS10 Structural Properties of One of the "Keystone Beam Steel Floor" Constructions Sponsored by the H. H. Robertson Co.
BMS11 Structural Properties of the Current Fabrihome Corporation's "Fabrihome" Constructions for Walls and Partitions
BMS12 Structural Properties of "Steelox" Constructions for Walls, Partitions, Floors, and Roofs Sponsored by Steel Buildings
BMS13 Properties of Some Fiber Building Boards of Current Manufacture
BMS14 Indentation and Recovery of Low-Cost Floor Coverings
BMS15 Structural Properties of "Wheeling Long-Span Steel Floor" Construction Sponsored by the Wheeling Corrugating Co.
BMS16 Structural Properties of a "Tilecrete" Floor Construction Sponsored by Tilecrete Floors, Inc.
BMS17 Sound Insulation of Wall and Floor Constructions
BMS18 Structural Properties of "Pre-fab" Constructions for Walls, Partitions, and Floors Sponsored by the Harnischfeger Corporation
BMS19 Preparation and Revision of Building Codes
BMS20 Structural Properties of "Tweataim" Constructions for Walls and Floors Sponsored by Connecticut Pre-Cast Buildings Corporation
BMS21 Structural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the National Concrete Masonry Association
BMS22 Structural Properties of "Dun-Ti-Stone" Wall Construction Sponsored by the W. E. Dunn Manufacturing Co.
BMS23 Structural Properties of a Brick Cavity-Wall Construction Sponsored by the Brick Manufacturers Association of New York, Inc.
BMS24 Structural Properties of a Reinforced-Brick Wall Construction and a Brick-Cavity-Wall Construction Sponsored by the Structural Clay Products Institute
BMS25 Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs
BMS26 Structural Properties of "Nelson Pre-Cast Concrete Foundation" Wall Construction Sponsored by the Nelson Cement Stone Co., Inc.
BMS27 Structural Properties of "Tender Stone Home" Wall Construction Sponsored by the Bender Body Co.
BMS28 Backflow Prevention in Over-Rim Water Supplies
BMS29 Survey of Roofing Materials in the Northeastern States
BMS30 Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas Fir Plywood Association
BMS31 Structural Properties of "Insulite" Wall and "Insulite" Partition Constructions Sponsored by the Insulite Co.
BMS32 Structural Properties of Two Brick-Concrete-Block Wall Constructions and a Concrete-Block Wall Construction Sponsored by the National Concrete Masonry Association
BMS33 Plastic Calking Materials
BMS34 Performance Test of Floor Coverings for Use in Low-Cost Housing: Part I
BMS35 Stability of Shingling Papers as Determined by Accelerated Aging
BMS36 Structural Properties of Wood-Frame Wall, Partition, Floor, and Roof Constructions With "Red Stripe" Lath Sponsored by The Weston Paper and Manufacturing Co.
BMS37 Structural Properties of "Palisade Homes" Constructions for Walls, Partitions, and Floors Sponsored by Palisade Homes

*Out of print.
†Superseded by BMS14.
‡Superseded by BMS16.

[List continued on cover page vii]
Plasticity and Water Retentivity of Hydrated Limes for Structural Purposes

Ernest M. Levin, Walter F. Clarke, and Lansing S. Wells

Building Materials and Structures Report 146
Issued February 20, 1956

Price 15 cents
Plasticity and Water Retentivity of Hydrated Limes for Structural Purposes

Ernest M. Levin, Walter F. Clarke, and Lansing S. Wells

Workability characteristics imparted to plasters and mortars by hydrated lime are of importance to the plasterer and to the mason. Emley plasticity values were determined for putties prepared from 65 hydrated limes of the various types, after soaking them for 30 minutes and for 1 day. Water-retentivity values, defined as the ratio of the flow after suction to the flow before suction, were obtained for lime-sand mortars prepared in the proportions of 1:3 by weight, 1:3 by volume, and 1:3 by volume using lime putty aged overnight. It was found that acceptable plasticity was associated with acceptable water retentivity, but that acceptable water retentivity did not necessarily imply acceptable plasticity. Results are discussed with relation to the improvement of specifications.

1. Introduction

For the plasterer and for the mason, workability is a most important consideration with respect to hydrated lime to be used for structural purposes. Such workability concerns primarily the ease of troweling of the wet mix during its application to an absorbent base. The continuous removal of water by such a base causes a stiffening of the mix and complicates the measurement of workability, for which no direct method is available. The usual methods of measuring viscosity and plastic flow are so designed that these properties remain constant during the period of testing. Methods have been developed, however, for testing the plasticity and the water retentivity of hydrated lime, and the values so obtained are an indirect measure of the workability.

The Emley plasticimeter has been for many years the accepted instrument for measuring the relative plasticity of hydrated lime. Although the Emley plasticimeter shows that there are great differences in the plasticities and in the water-retaining capacities of lime putties, it is not well adapted to indicate these differences when the putties are incorporated with sand and other materials as mortars. The water-retaining capacity of mortars, however, can be determined with the apparatus developed by J. S. Rogers and described by L. A. Palmer and D. A. Parsons.

The objectives of the present investigation were fourfold: (1) to determine relative plasticities and water retentivities of different types of commercial hydrated lime; (2) to study the relation between plasticities of lime putties and water retentivities of lime-sand mortars; (3) to consider these properties in relation to plastering and to masonry construction; and (4) to relate these results to the possible improvement of specifications.

2. Materials

2.1. Hydrated Lime

The investigation included tests of 65 structural hydrated limes obtained from several widely separated lime-producing centers in the United States. The limes were part of the group used in previous studies [4, 5]. For convenience of identification and comparison, these lime samples have been assigned the same numbers in the present paper as in those publications.

The chemical analyses were made (as part of the previous studies) in accordance with Federal Specification SS-L-351 for hydrated lime [1], and the percentage of unhydrated oxide was calculated in accordance with Proposed Amendment 1 to that specification [6]. The analytical data are repeated herein in Table 1, columns 2 through 10.

On the basis of the chemical analyses, the hydrated limes were classified as high-calcium, dolomitic, and magnesian. Those containing less than 5 percent of total magnesia were arbitrarily classified as high-calcium, series A; those with more than 25 percent as dolomitic, series B and C; and four limes, having between 5 and 25 percent of magnesia, as magnesian, series D. The hydrated dolomitic limes were further subdivided into "regularly hydrated" (normal hydrated dolomitic), series B, in which the major portion of the magnesia had been left unhydrated, and "highly hydrated", series C, in which the major portion of the magnesia had been hydrated. The designation "highly hydrated" follows the terminology already used in previous publications [4, 5] and seems preferable to such terms as "auto-clayed" or "pressure hydrated limes." In each series the hydrated limes are arranged in Table 1 in the order of increasing percentage of calculated unhydrated oxides.

2.2. Sand

The sand used in preparing lime-sand mortars was natural silica sand from Ottawa, Ill., graded to pass a No. 20 sieve and to be retained on a No. 30 sieve [7].
TABLE 1. Chemical analysis and calculated percentage of unhydrated oxides for 65 hydrated limes, together with the plasticity of putties prepared from these limes after soaking the samples for 30 minutes and 1 day, and the water retentivity of sand-lime mortars prepared in the proportions of 1 lime : 3 sand by weight; 1 lime : 3 sand by volume; and 1 lime : 3 sand by volume using lime putty aged overnight.

<table>
<thead>
<tr>
<th>Lime number</th>
<th>H₂O</th>
<th>Chemical analysis (oxide composition)</th>
<th>Calculated unhydrated oxides</th>
<th>Plasticity of putties after—</th>
<th>Water retentivity of mortars proportioned—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Free Combined</td>
<td></td>
<td>30 min</td>
<td>1 day</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERIES A—HIGH-CALCULUM HYDRATED LIMES

SEROIES B—REGULARLY HYDRATED DOLOMITIC LIMES

SERIES C—HIGHLY HYDRATED DOLOMITIC LIMES
3. Apparatus and Procedure

3.1. Plasticity

As masonry materials, portland-cement mortars, in general, are harsh to work. For actual construction purposes, therefore, lime is often added to cement with the intention of improving plasticity and water-retaining capacity of the mortar mix.

With the Emley plasticimeter [1], measurement is made of the torque exerted on a steel disk bearing against a pat of lime putty as the pat is slowly raised and revolved. During the process the putty stiffens because of the removal of water by a standardized absorbent plate on which the pat rests. Plasticity is calculated from the empirical formula

\[
P = \sqrt{F^2 + (10T)^2},
\]

in which \(P\) is the plasticity value (to the nearest 10 units), \(F\) is the scale reading (torque) at the end of the test, and \(T\) is the time in minutes from the moment of initial contact of the paste with the absorbent plate to the end of the determination. The test is considered complete when (a) the scale reading \((F)\) is 100, (b) any reading becomes and remains less than the one before, or (c) the scale reading remains constant for three consecutive readings (2 min) and the specimen is visibly ruptured. Calculated according to the formula above, a plasticity value of 200 is the specification minimum for an acceptably plastic lime.

Two series of plasticity determinations were made on putties prepared from each of the limes. One series was made on stiff putties soaked overnight \((20 \pm 4\ \text{hr})\), according to the time requirement in Federal Specification SS-L-351 [1]. For the purpose of obtaining a measure of early plasticity, the other series was made on stiff putties soaked for only 30 min. Immediately prior to testing, the stiff putties were stirred for 5 min. and then with vigorous stirring were brought to standard consistency [1] by the addition of water in small amounts. This procedure gave reproducible results.

3.2. Water Retentivity

 Whereas the Emley plasticimeter removes water from a pat of lime putty by capillary absorption into a base plate, the Rogers apparatus removes water from a sand mix by means of suction. In the latter case, the flow of a mortar is determined before and after suction. The ratio of the flow after suction to the flow before suction, expressed as a percentage, defines the so-called water retentivity.

In the present study, the procedure for determining water retentivity was essentially that described in detail in Federal Specification SS–C–181b [8]. The apparatus for applying suction consists basically of a perforated dish resting on a funnel connected to a mercury-column relief valve and to a water aspirator.

Three sets of mortars were prepared; in these the proportions of hydrated lime to standard Ottawa sand \((20\ to\ 30)\) were, respectively, as follows:

1. \(1:3\) by weight; specifically, 500 g of dry hydrated lime to 1,500 g of dry sand.
2. \(1:3\) by volume; on the practical basis, one bag of dry hydrated lime to 3 ft\(^3\) of loose damp sand. Proportioning was, actually, on a weight basis. One bag of dry hydrated lime \((\text{approximately } 1\ \text{ft}^3)\) weighs 50 lbs, and 1 ft\(^3\) of loose damp sand contains approximately 80 lbs of dry sand; so the proportion by weight of hydrated lime to sand in this series was 50 to 240 (i.e., 1 to 4.8 by weight). For test purposes, 350 g of lime was mixed with 1,680 g of Ottawa sand.
3. \(1:3\) by volume with aged putty, using hydrated lime which had been soaked overnight as

\[\text{Since completion of the work, this specification has been superseded by SS–C–153e.}\]
a stiff putty. The weight proportion on a dried-putty basis was the same as for (2).

For preparing and testing the water retentivity of the 1:3 by volume aged-putty mortars, the procedure was modified as follows: 350 g of dry hydrated lime was weighed into a porcelain caserole, and sufficient water was added, with stirring, to produce a stiff putty. The putty was aged overnight (16 to 24 hr) in a moist closet maintained at a temperature of 70°±3° F and at a relative humidity not less than 90 percent. At the end of that aging period, the putty was stirred for 5 mins. The contents of the caserole were then transferred to a mixing bowl, and 1,680 g of sand in 2 portions were mixed into the putty, as prescribed in Federal Specification SS-C-181b (F-3 g(3)). In almost every instance it was necessary to add more water in order to obtain the desired initial flow of 100 to 115; however, neither the rate nor the manner of addition of the water was found to be critical. If in the event of misjudgment too low a flow value was obtained, more water was added to the mortar. It was quickly remixed for a period of 30 sec, and another flow determination was made. When the flow value obtained was too high, water was removed with an absorbent plate. The remainder of the procedure followed that used for the other sets of mortars.

4. Results and Discussion

4.1. Plasticity of Lime Putties

For the two sets of hydrated-lime putties tested after soaking the specimens for 30 min and overnight, respectively, plasticity values are given in table 1 and are plotted in figure 1. In most cases, each value represents a single measurement. From previous experience it is known that, for putties having plasticity values close to 200, duplicate measurements generally agree to within 10 units. The limes in figure 1, within each class, are arranged according to increasing values of the overnight plasticity. The level of the 200 plasticity value is specially denoted in the figure, for it is the accepted minimum for a finishing lime [1].

Regarding overnight plasticities, all of the highly hydrated and most of the regularly hydrated dolomitic limes showed values of 200 or higher; about half of the high-calcium and magnesian limes showed such high values.

As regards 30-min plasticities, not one of the 16 highly hydrated dolomitic limes tested gave a value of less than 200. Of a total of 49 limes of the other three types, however, 43 gave values of less than 200; whereas only 6, one or more of each type, gave values ranging from 200 to 250.

Figure 1. Emley plasticity values of 65 hydrated limes of various types after aging for two time periods.
○, 30 min; ●, 20 ± 4 hr.
Comparison of the 30-min with the overnight plasticities fails to show good correlation, but in nearly all cases the overnight plasticities were greater than the 30-min values. The highly hydrated dolomitic limes having comparatively high 30-min plasticity values gave the least increases in plasticity after overnight soaking. In contrast, the majority of the regularly hydrated dolomitic limes gave greatly increased plasticity values for putties soaked overnight.

Two points of special interest might be emphasized. The first is that as a result of the special manufacturing processes involved, the highly hydrated dolomitic limes yielded putties that were plastic after only 30 min of soaking. The second is that some of the hydrated high-calcium limes were found to yield plastic putties after overnight soaking.

4.2. Water Retentivity of Lime-Sand Mortars

The water-retentivity values for the mortars are given in table 1 and are plotted in figure 2, by classes of limes. Most of the water-retentivity values for mortars proportioned 1 lime to 3 sand by volume are the averages of at least two values obtained by two operators. The standard deviation measuring the spread of replicate determinations was found to be 2 units for mortars proportioned either on a weight or a volume basis. Reproducibility for mortars prepared from the putty aged overnight, as determined in a few instances, appears to be of the same order of magnitude.

In the figure the limes of each class are arranged according to the increasing water-retentivity values of the 1:3 by volume mortars. The figure

Figure 2. Water-retentivity values for three different sets of lime-sand mortars prepared from 65 hydrated limes of the four types.

- •, 1 lime:3 sand, by volume;
- ○, 1 lime:3 sand, by weight;
- ●, 1 lime:3 sand, by volume using lime putty aged overnight.
shows a wide over-all range in values (from 63 to 96 percent). In general, for any one lime the 1:3 by volume mortar had the lowest retentivity; the 1:3 by weight mortar, an intermediate value; and the 1:3 by volume aged-putty mortar, the highest value. As a class, the magnesian limes, of which there were only four, were in one respect an exception; two of them showed slightly higher water-retentivity values for the 1:3 by weight mortars than for the 1:3 by volume aged-putty mortars. The figure shows that every 1:3 by weight mortar had a water-retentivity value of 75 percent or greater. It should be emphasized that, regardless of the class of lime tested, the water-retentivity values for aged-putty mortars, with only two exceptions, were greater than 85 percent.

The highly hydrated dolomitic limes differed notably from the others in having relatively high water-retentivity values for the three sets of mortars: for the 1:3 by volume mortar, no value was below 83 percent; for the 1:3 by weight mortar, none was below 89 percent; and for the 1:3 by volume aged-putty mortar, none was below 92 percent. The regularly hydrated dolomitic limes, as a class, showed, over all, the widest and the most distinct separations for the three sets of retentivity values.

In summary, for each class of lime two variables are represented in the figure: (1) change of lime-sand ratio and (2) aging of the lime putty. As to the first, it is seen that on nonaged putty, for any one class, the 1:3 by volume mortar shows, in general, lower water retentivity, with greater spread in values, than does the 1:3 by weight mortar. The lower values are attributed to the fact that a 1:3 by volume mortar has a lower lime-sand ratio than a 1:3 by weight mortar. As to the second variable, that of aging, it is seen that the 1:3 by volume aged-putty mortar shows higher water retentivity, with lesser spread in values, than does the 1:3 by volume mortar made from nonaged putty. It is even true that, with the exception of three magnesian limes, the 1:3 by volume aged-putty mortar, in spite of a lower lime ratio, shows a higher value than does the 1:3 by weight mortar.

4.3. Relation of Plasticity of Lime Putties to Water Retentivity of Lime-Sand Mortars

For masonry-construction purposes, hydrated lime is used, in many cases, immediately after being mixed. Its "immediate" workability, therefore, is of importance. As regards finishing lime, also, the question of immediate use needs to be considered. Pertinent to the subject of immediate workability, figure 3 shows the relation between the water retentivities of the 1:3 by volume (non-aged) mortars and the 30-min (immediate) plasticities of putties made from the corresponding limes. It can be seen that the limes that showed acceptable (200 or greater) plasticities had, with one exception, water retentivities of 83 percent or greater, and that those which showed low water retentivities had low plasticities; but some of the limes that gave low plasticities had high water retenties. The highly hydrated dolomitic limes gave 30-min plasticities of 200 or more and water retentivities of 83 percent or greater. The other types of limes showed a wide distribution of water retentivities (63 to 89 percent), but only six showed plasticities of 200 or greater.

A plot of the water retentivities of the 1:3 by weight mortars versus the 30-min plasticities of putties made from the corresponding limes is shown in figure 4. The relations between them are similar to those shown in the plot of the 30-min plasticities versus the water retentivities on the 1:3 by volume basis (fig. 3). It may be noted that
It should be noted that here the treatments of the lime prior to the plasticity and to water-retentivity determinations were not comparable; the lime was soaked overnight in the former case but not in the latter. Doubtless for this reason, no over-all trend was found; however, as contrasted to the regularly hydrated dolomitic and to the high-calcium limes, the highly hydrated dolomitic limes showed acceptable plasticity and water retentivity greater than 82 percent.

A comparison of the plasticities for lime putties soaked overnight with the water retentivities of the 1:3 by weight (nonaged) mortars is not shown because this case is essentially the same as for the data shown in figure 6, except that the spread in water retentivities is less.

For the procedures involved in figures 3, 4, and 5, the results indicated that acceptable plasticity was associated with acceptably high water retentivity, but that acceptable water retentivity did not necessarily imply acceptable plasticity. In figure 6, the first relation holds only for highly hydrated dolomitic lime.

5. Application of Results to Formulation of Specifications

5.1. Present Specifications

Hydrated lime for structural purposes is classified broadly as finishing lime and as masons' lime. Specifications (table 2) of the American Society for Testing Materials and of the National Lime Association further classify both kinds of lime as type N (normal) and type S (special). Type S lime, both finishing and masons, is characterized chemically by a limitation of 8 percent on unhydrated oxides [9, 10, 11, see also 6]. Type N lime and types meeting present Federal Specifications are not subject to an unhydrated oxide limitation; but for white-coat (finish) plaster there is serious objection [12] to the use of limes containing more than 8 percent of unhydrated oxides. Some doubt exists, however, as to whether the same objection is valid with respect to limes intended for masonry purposes. As an alternative to the 8-percent-unhydrated-oxides requirement, an accelerated performance test has been suggested [4]. In this connection, it is interesting to note that a tentative anteclene expansion test for hydraulic lime is given in the 1953 Supplement to Book of ASTM Standards [13]. Tentatively specified is an expansion limit of 1 percent for a blend of 1 of portland cement to 3 of hydraulic lime.

Plasticity and water-retentivity requirements in the various specifications are given in table 2. Type F, type N-normal finishing hydrate, and both type S limes must meet a minimum plasticity requirement of 200, although there is some variation between the different specifications in the length of time the lime putty must be soaked.

![Figure 5. Relation between water retentivity of lime-sand mortar proportioned on a volume basis and plasticity of corresponding hydrated-lime putty after aging for 20 ±4 hours.](image)

![Figure 6. Relation between water retentivity of lime-sand mortar proportioned on a volume basis and plasticity of corresponding hydrated-lime putty after aging 20 ±4 hours.](image)

every lime with a plasticity (30-min) figure of 200 or greater had a water-retentivity value (1:3 by weight) of 85 percent or greater.

Figure 5 shows the relation between the plasticities of aged-lime putties and the water retentions of the 1:3 by volume aged-putty mortars. For the relatively wide plasticity range of 200 to 600, the limes had, with one exception (an 88-percent value), the comparatively narrow retentivity range of 91 to 96 percent. For the narrow plasticity range of 110 to 200, they had the wide retentivity spread of 75 to 94 percent.

Figure 6 shows the relation of the plasticities for lime putties soaked overnight to the water retentivities of the 1:3 by volume (nonaged) mortars.
Comparison

Consequently, finishing aged plasticity and water-retentivity requirements in various specifications for hydrated lime for structural purposes

<table>
<thead>
<tr>
<th>Specification</th>
<th>Designation</th>
<th>Plasticity</th>
<th>Water retentivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aging (of lime putty)</td>
<td>Proportions (lime:standard sand)</td>
</tr>
<tr>
<td>American Society for Testing Materials [1,9,11]</td>
<td>Type N-normal finishing hydrate</td>
<td>20</td>
<td>1:3 by dry weight, or from putty aged 16 to 24 hr.</td>
</tr>
<tr>
<td></td>
<td>Type S-normal hydrated lime for masonry purposes</td>
<td>20</td>
<td>1:3 by dry weight.</td>
</tr>
<tr>
<td></td>
<td>Type S-special finishing hydrate</td>
<td>20</td>
<td>1:3 by dry weight.</td>
</tr>
<tr>
<td></td>
<td>Type S-special finishing hydrate</td>
<td>20</td>
<td>1:3 by dry weight.</td>
</tr>
<tr>
<td></td>
<td>Type N-masons hydrated lime</td>
<td>20</td>
<td>1:3 by dry weight.</td>
</tr>
<tr>
<td></td>
<td>Type S-masons hydrated lime</td>
<td>20</td>
<td>1:3 by dry weight.</td>
</tr>
<tr>
<td></td>
<td>Type M: Masons</td>
<td>20</td>
<td>1:3 by dry weight.</td>
</tr>
</tbody>
</table>

* The lime putty proportioned on a dry-weight basis.
* If 200 plasticity is not developed in 6 to 8 hr.

Prior to test. The plasticity requirement for type S special finishing hydrated lime provides that the lime may be tested or retested after mixing with water and after aging for any period not exceeding 24 hr. Type F and type N-normal finishing hydrates, however, must be aged for 16 to 24 hr before testing. Type S hydrated lime for masonry purposes must be tested within 15 min [10] or 30 min [11] after mixing with water. In addition, type S lime for masonry purposes must meet a minimum water-retentivity requirement of 85 percent, when tested as a mortar made from the dry hydrated lime in the proportion, by weight, of 1 of lime to 3 of standard Ottawa sand (20 to 30). Type N lime for masonry purposes must meet only a 75-percent water-retentivity requirement and may be tested either as a dry hydrate or as an aged (16 to 24 hr) putty. In the present Federal Specifications, lime for masonry purposes, whether type M or type F, is not subject to a water-retentivity requirement. Existing requirements for plasticity and water retentivity of hydrated limes will now be considered with relation to the results of the present investigation.

5.2. Finishing Lime

For a finishing hydrated lime, the accepted minimum (Emley) value of 200 for plasticity is well established in the construction industry and appears to be a satisfactory limit. As hydrated limes that need no special soaking period are available, requirements for type F, as well as for type S finishing lime (similar to the case of type S masons lime), should provide for the option in which the purchaser desires to use the lime without aging overnight as a putty. For type S finishing hydrated lime, current specifications permit immediate testing but provide for soaking of the putty overnight in the event that the lime fails to pass. At the present time, some commercial limes require aging overnight as putties prior to use. Even though all of the highly hydrated dolomitic limes tested in this study had plasticity values of 200 or greater at 30 min (fig. 1), many of the manufacturers of these limes recommend overnight aging as a putty in order to develop optimum plasticity and working properties. An overnight plasticity requirement, therefore, should be retained for those finishing limes that require aging.

5.3. Masons Lime

Workability of a mortar is of primary concern to the mason because it is a direct measure of the ease with which he can apply the mortar. Workability is important, furthermore, because it has a bearing on such properties as strength, water resistance, and workmanship of masonry construction. In preparing masonry mortar from hydrated lime, the usual procedure is to mix the proper proportions of dry hydrated lime, cement, and sand with water shortly before use. Some masons, however, still prefer to use an aged (overnight) hydrated lime putty in preparing a mortar. For type S lime for masonry purposes, the present specifications require that the lime develop an early plasticity value of 200 after mixing with water but do not provide for overnight aging. For type M and for type N limes for masonry purposes, a plasticity requirement is not specified (table 2). Consequently, if a plasticity requirement be designated for type S masons hydrated lime, two alternative time periods are indicated, as for the case of finishing hydrated lime, the choice to depend on the option of the purchaser.

A water-retentivity test is the standard method of determining water-retaining capacity of mortars in which hydrated lime or lime putty is incorporated with sand and other materials. Wells,
Bishop, and Watstein [13] found that flow after suction of cement-lime mortars depends far more on the properties of the lime than on the cement-lime ratio. As mentioned under 5.1, the specifications of the ASTM and of the National Lime Association require that type S-masons hydrated lime shall have a minimum water-retentivity figure of 85, when the dry hydrated lime is tested as a mortar in the proportions of one part dry lime to three parts standard sand by weight. Inspection of figure 4 reveals the interesting fact that, of a total of 65 limes tested, every one which had a plasticity (30-min) value of at least 200 had, also, a water-retentivity (1:3 by weight) value of at least 85 percent. Figure 3 shows that even when the water-retentivity test was made on a 1:3 by volume mortar (from nonaged putty), only one lime with a plasticity (30-min) figure of at least 200 had a water-retentivity figure of less than 85. On the basis of the limes tested, it is evident that acceptable plasticity (30-min) is associated with acceptable water retentivity and that a water-retentivity requirement is unnecessary if a plasticity requirement is specified.

At the present time, the Federal Specification for mortars hydrated lime (type M) does not include plasticity nor water-retentivity requirements. From the previous discussion it would follow that a plasticity (30-min) requirement of 200 would obviate a water-retentivity requirement. Such a plasticity requirement, however, would eliminate some limes, in particular, many of the high-calcium hydrated limes, which have been used extensively and satisfactorily in mortars. A water-retentivity requirement could be specified in place of a 30-min plasticity test, although not considered so desirable by the authors with respect to all workability properties. The present water-retentivity requirement of 75 percent for type N lime is too low, inasmuch as mortars prepared from such limes tend to bleed and are harsh to work with coarse sand. A minimum value of 80 on a 1:3 by weight basis would not exclude any limes of adequate (30-min) plasticity, and yet is not so strict as the 85-percent requirement for type S lime. A minimum value of 70, on a 1:3 by volume basis would be equivalent, and the limes are better differentiated at this proportion.

6. Summary

A study has been made of the plasticity and the water retentivity of 65 hydrated limes, comprising 21 high-calcium, 24 regularly hydrated dolomitic, 16 highly hydrated dolomitic, and 4 magnesian limes.

Emley plasticity values were determined for two sets of putties prepared from these limes, after soaking, respectively, for 30 min and for 1 day. Water-retentivity values were obtained for three sets of lime-sand mortars prepared in the proportions of 1 lime:3 sand by weight; 1 lime:3 sand by volume; and 1 lime:3 sand by volume using lime putty aged overnight.

For most of the limes, the overnight plasticity values were greater than the corresponding 30-min values; the greatest differences were exhibited by regularly hydrated dolomitic limes, and the least differences, by the highly hydrated dolomitic limes. All of the highly hydrated dolomitic limes showed plasticity values of 200 or greater when tested at both time intervals. A number of the high-calcium hydrated limes also showed overnight plasticities greater than 200.

Except for 3 of the 4 magnesian limes, for any one lime, the 1:3 by volume mortar gave the lowest retentivity; the 1:3 by weight, mortar an intermediate value; and the 1:3 by volume, aged-putty mortar the highest value. The highly hydrated dolomitic limes, as a group, gave the highest water-retentivity values for the three different sets of mortars, and the lowest spread in values. The regularly hydrated dolomitic limes gave the widest spread in values for each of the three different sets of mortars.

Plots of 30-min plasticity values versus water-retentivity values of nonaged mortars tested on a 1:3 by weight and a 1:3 by volume basis, respectively, showed that acceptable plasticity (30-min) was associated with acceptable water retentivity, but that the converse showed numerous exceptions. No lime with a plasticity (30-min) figure of 200 or greater had a water-retentivity value of less than 85 when tested on a weight basis, nor (with one exception) less than 83 on a volume basis. Regardless of the class of lime, the water-retentivity value for the aged-putty mortar was in almost every case greater than 85 percent.

Recommendations are given for improving the present specifications for hydrated lime for building purposes.

7. References

Proposed amendment 1 to Federal Specification SS-L-351 for lime; hydrated (for) structural purposes. (Date of amendment, February 2, 1940.)

Federal Specification SS-C-158c for cements, hydraulic; methods for sampling, inspection, and testing, paragraph 4.4.9.2.

Federal Specification SS-C-181b for cement; masonry, F-3 (1938).

L Lansing S. Wells, Dana L. Bishop, and David Weinstein, Differences in limes as reflected in certain properties of masonry mortars, J. Research NBS 17, 895 (1936) RP952.

WASHINGTON, July 29, 1955.
BMS88 Structural Properties of Two “Dunstone” Wall Constructions Sponsored by the W. E. Dunn Manufacturing Co. ... 10¢
BMS89 Structural Properties of a Wall Construction of “Pfeifer Units” Sponsored by the Wisconsin Units Co. ... 10¢
BMS90 Structural Properties of a Wall Construction of “Knap Concrete Wall Units” Sponsored by Knap America, Inc. ... *
BMS91 Effect of Heating and Cooling on the Permeability of Masonry Walls. ..*
BMS92 Structural Wood-Frame Walls and Partition Constructions—“Cashton” Insulating Boards Sponsored by The Celotex Corporation ... *
BMS93 Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 2. ..*
BMS94 Surface Treatment of Steel Prior to Painting ... 20¢
BMS95 Air Infiltration Through Windows ... 20¢
BMS96 Structural Properties of “Scott-Bilt” Prefabricated Sheet-Steel Construction for Walls, Partitions, and Floors Sponsored by The Globe-Wernicke Co. ... *
BMS97 Structural Properties of Prefabricated Wood-Frame Constructions for Walls, Partitions, and Floors Sponsored by American Houses, Inc. ... *
BMS98 Structural Properties of “Precision-Built” Frame Wall and Partition Constructions Sponsored by the Homasote Co. ... *
BMS99 Metallic Roofing for Low-Cost House Construction ... 25¢
BMS100 Stability of Fiber Building Boards as Determined by Accelerated Aging *
BMS101 Structural Properties of “Tilecrete Type A” Floor Construction Sponsored by the Tilecrete Co. .. *
BMS102 Effect of Ceiling Insulation Upon Summer Comfort ... 15¢
BMS103 Structural Properties of a Masonry Wall Construction of “Munlock Dry Wall Brick” Sponsored by the Munlock Engineering Co. ... 10¢
BMS104 Effect of Heating and Cooling on the Permeability of an Oil-Fired Heating Boiler ..*
BMS105 Effects of Wetting and Drying on the Permeability of Masonry Walls *
BMS106 A Survey of Humidities in Residences.. 10¢
BMS107 Roofing in the United States—Results of a Questionnaire ... *
BMS108 Strength of Soft-Soldered Joints in Copper Tubing ... 15¢
BMS109 Properties of Adhesives for Floor Coverings ... 15¢
BMS110 Strength, Absorption, and Resistance to Laboratory Thawing of Building Bricks Produced in the United States .. 30¢
BMS111 Structural Properties of Two Nonreinforced Monolithic Concrete Wall Constructions ... *
BMS112 Structural Properties of a Precast Joint Concrete Floor Construction Sponsored by the Portland Cement Association ... *
BMS113 Moisture Condensation in Building Walls ... 10¢
BMS114 Solar Heating of Various Surfaces .. 10¢
BMS115 Methods of Estimating Loads in Plumbing Systems ... 20¢
BMS116 Plumbing Manual ... 40¢
BMS117 Structural Properties of “Mu-Steel” Prefabricated Sheet-Steel Constructions for Walls, Partitions, Floors, and Roofs, Sponsored by Herman A. Mugler ... 20¢
BMS118 Performance Test for Floor Coverings for Use in Low-Cost Housing: Part 3 ..*
BMS119 Stability of Fiber Sheathing Boards as Determined by Accelerated Aging 10¢
BMS120 Asphalt-Prepared Roll Roofings and Shingles .. 20¢
BMS121 Fire Tests of Wood- and Metal-Frame Partitions .. 30¢
BMS122 Structural Properties of “Precision-Built, Jr.” Prefabricated Wood-Frame Wall Construction Sponsored by the Homasote Co. ... *
BMS123 Indentation Characteristics of Floor Coverings ... 10¢
BMS124 Structural, Heat-Transfer, and Water-Permeability Properties of “U. S. Panelbilt” Prefabricated Steel Constructions for Walls, Partitions, and Roofs Sponsored by the Tennessee Coal, Iron & Railroad Co. ... 20¢
BMS125 Survey of Roofing Materials in the North Central States .. *
BMS126 Effect of Outdoor Exposure on the Water Permeability of Masonry Walls *
BMS127 Properties and Performance of Fiber Tile Boards ... *
BMS128 Structural, Heat-Transfer, and Water-Permeability Properties of Five Earth-Wall Constructions .. 35¢
BMS129 Water-Distributing Systems for Buildings ... 20¢
BMS130 Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 4 25¢
BMS131 Field Inspectors’ Check List for Building Constructions (cloth cover, 5 x 7½ inches) .. 40¢
BMS132 Water Permeability of Walls Built of Masonry Units ... 25¢
BMS133 Strength of Sleeve Joints in Copper Tubing Made With Copper Lead Base solder 15¢
BMS134 Survey of Roofing Materials in the South Central States .. *
BMS135 Dimensional Changes of Floor Coverings With Changes in Relative Humidity and Temperature ...*
BMS136 Structural, Heat-Transfer, and Water-Permeability Properties of “Speedbrik” Wall Construction Sponsored by the General Shale Products Corporation ..*
BMS138 Recommended Building Code Requirements for New Dwelling Construction With Special Reference to War Housing ... *
BMS139 Structural Properties of “Precision-Built, Jr.” (Second Construction) Prefabricated Wood-Frame Wall Construction Sponsored by the Homasote Co. ... *
BMS90	Structural Properties of “PHC” Prefabricated Wood-Frame Constructions for Walls, Floors, and Roofs Sponsored by the PHC Housing Corporation	15¢
BMS91	A Glossary of Housing Terms	*
BMS92	Fire-Resistance Classifications of Building Constructions	*
BMS93	Accumulation of Moisture in Walls of Frame Construction During Winter Exposure	35¢
BMS94	Water Permeability and Weathering Resistance of Stucco-Faced, Gunite-Faced, and “Knap Concrete-Unit” Walls	*
BMS95	Test of Cement-Water Paints and Other Waterproofings for Unit-Masonry Walls	30¢
BMS96	Properties of a Porous Concrete of Cement and Uniform-Sized Gravel	*
BMS97	Experimental Dry-Wall Construction With Fiber Insulating Board	*
BMS98	Physical Properties of Terrazzo Aggregates	*
BMS99	Structural and Heat-Transfer Properties of “Multiple Box-Girder Plywood Panels” for Walls, Floors, and Roofs	*
BMS100	Relative Slipperiness of Floor and Deck Surfaces	*
BMS101	Strength and Resistance to Corrosion of Ties for Cavity Walls	*
BMS102	Painting Steel	15¢
BMS103	Measurements of Heat Losses from Slab Floors	*
BMS104	Structural Properties of Prefabricated Plywood Lightweight Constructions for Walls, Partitions, Floors, and Roofs Sponsored by the Douglas Fir Plywood Association	*
BMS105	Paint Manual with particular reference to Federal Specifications	$1.50
BMS106	Laboratory Observations of Condensation in Wall Specimens	15¢
BMS107	Building Code Requirements for New-Dwelling Construction	*
BMS108	Temperature Distribution in a Test Bungalow with Various Heating Devices	15¢
BMS109	Strength of Houses: Application of Engineering Principles to Structural Design	70¢
BMS110	Paints for Exterior Masonry Walls	20¢
BMS111	Performance of a Coal-Fired Boiler Converted to Oil	15¢
BMS112	Properties of Some Lightweight-Aggregate Concretes with and without an Air-Entrained Admixture	15¢
BMS113	Fire Resistance of Structural Clay Tile Partitions	15¢
BMS114	Temperature in a Test Bungalow with Some Radiant and Jacketed Space Heaters	25¢
BMS115	A Study of a Baseboard Convector Heating System in a Test Bungalow	20¢
BMS116	Preparation and Revision of Building Codes	20¢
BMS117	Fire Resistance of Walls of Lightweight Aggregate Concrete Masonry Units	25¢
BMS118	Stack Venting of Plumbing Fixtures	25¢
BMS119	Wet Venting of Plumbing Fixtures	25¢
BMS120	Fire Resistance of Walls of Gravel Aggregate Concrete Masonry Units	15¢
BMS121	Investigation of Failures of White-Coat Plasters	30¢
BMS122	Physical Properties of Some Samples of Asbestos-Cement Siding	20¢
BMS123	Fire Tests of Wood-Framed Walls and Partitions with Asbestos-Cement Facings	*
BMS124	Fire Tests of Steel Columns Protected with Siliceous Aggregate Concrete	15¢
BMS125	Stone Exposure Test Wall	30¢
BMS126	The Self-Siphonage of Fixture Traps	20¢
BMS127	Effect of Aging on the Soundness of Regularly Hydrated Dolomitic Lime Putties	15¢
BMS128	Atmospheric Exposure Tests of Nailed Sheet Metal Building Materials	20¢
BMS129	Fire Endurance of Shutters for Moving-Stairway Openings	10¢
BMS130	Methods and Equipment for Testing Printed-Enamel Felt-Base Floor Covering	15¢
BMS131	Fire Tests of Unite Slabs and Partitions	15¢
BMS132	Capacities of Plumbing Stacks in Buildings	35¢
BMS133	Live Loads on Floors in Buildings	25¢
BMS134	Fire Resistance of Concrete Floors	*
BMS135	Fire Tests of Steel Columns Encased with Gypsum Lath and Plaster	15¢
BMS136	Properties of Cavity Walls	15¢
BMS137	Influence of the Wash from Bronze on the Weathering of Marble	15¢
BMS138	Effect of Edge Insulation Upon Temperature and Condensation on Concrete-Slab Floors	20¢
BMS139	Studies of Stone-Setting Mortars	25¢
BMS140	Selected Bibliography on Building Construction and Maintenance	30¢
BMS141	Fire Endurance of Open-Web Steel Joist Floors with Concrete Slabs and Gypsum Ceilings	30¢
BMS142	Frost Closure of Roof Vents	25¢
BMS143	Fire Tests of Brick Walls	35¢
BMS144	Sound Insulation of Wall and Floor Constructions	40¢
BMS146	Plasticity and Water Retentivity of Hydrated Limes for Structural Purposes	15¢

*Out of print.