nal Bureau of Standards ··· 2 1 **1945**

lation iron one Library.

BUILDING MATERIALS AND STRUCTURES REPORTS

On request, the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C., will place your name on a special mailing list to receive notices of new reports in this series as soon as they are issued. There will be no charge for receiving such notices.

An alternative method is to deposit with the Superintendent of Documents the sum of \$5, with the request that the reports be sent to you as soon as issued, and that the cost thereof be charged against your deposit. This will provide for the mailing of the publications without delay. You will be notified when the amount of your deposit has become exhausted.

If 100 copies or more of any report are ordered at one time, a discount of 25 percent is allowed. Send all orders and remittances to the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C.

The following publications in this series are available by purchase from the Superintendent of Documents at the prices indicated :

BMS1	Research on Building Materials and Structures for Use in Low-Cost Housing	104
BMS2	Methods of Determining the Structural Properties of Low-Cost House Constructions.	104
BMS3	Suitability of Fiber Insulating Lath as a Plaster Base	104
BMS4	Accelerated Aging of Fiber Building Boards	104
BMS5	Structural Properties of Six Masonry Wall Constructions	154
BMS6	Survey of Roofing Materials in the Southeastern States	154
BMS7	Water Permeability of Masonry Walls	(*)
BMS8	Methods of Investigation of Surface Treatment for Corrosion Protection of Steel	104
BMS9	Structural Properties of the Insulated Steel Construction Co.'s "Frameless Steel" Con-	τυψ
	structions for Walls, Partitions, Floors, and Roofs	104
BMS10	Structural Properties of One of the "Keystone Beam Steel Floor" Constructions Spon-	τυψ
	sored by the H. H. Robertson Co	104
BMS11	Structural Properties of the Curren Fabrihome Corporation's "Fabrihome" Construc-	τοφ
	tions for Walls and Partitions	104
BMS12	Structural Properties of "Steelox" Constructions for Walls, Partitions Floors and	τυç
	Boofs Sponsored by Steel Buildings, Inc.	154
BMS13	Properties of Some Fiber Building Boards of Current Manufacture.	104
BMS14	Indentation and Recovery of Low-Cost Floor Coverings.	104
BMS15	Structural Properties of "Wheeling Long-Span Steel Floor" Construction Sponsored by	τοψ
2	the Wheeling Corrugating Co	104
BMS16	Structural Properties of a "Tilecrete" Floor Construction Sponsored by Tilecrete	τοψ
	Floors. Inc.	104
BMS17	Sound Insulation of Wall and Floor Constructions	204
Supplem	ent to BMS 17. Sound Insulation of Wall and Floor Constructions	50
BMS18	Structural Properties of "Pre-Fab" Constructions for Walls, Partitions, and Floors	υψ
DAIDIO	Sponsored by the Harnischfeger Corporation	104
BMS19	Preparation and Revision of Building Codes.	154
BMS20	Structural Properties of "Twachtman" Constructions for Walls and Floors Sponsored	Ψ
	by Connecticut Pre-Cast Buildings Corporation	100
BMS21	Structural Properties of a Concrete-Block Cavity-Wall Construction Sponsored by the	
	National Concrete Masonry Association	10¢
BMS22	Structural Properties of "Dun-Ti-Stone" Wall Construction Sponsored by the W. E.	v
	Dunn Manufacturing Co	10¢
BMS23	Structural Properties of a Brick Cavity-Wall Construction Sponsored by the Brick	
0140-0	Manufacturers Association of New York, Inc.	10¢
BMS24	Structural Properties of a Reinforced-Brick Wall Construction and a Brick-Tile Cavity-	
	Wall Construction Sponsored by the Structural Clay Products Institute	10¢
BMS25	Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions,	· ·
	Floors, and Roofs	15c
BMS26	Structural Properties of "Nelson Pre-Cast Concrete Foundation" Wall Construction	
	Sponsored by the Nelson Cement Stone Co., Inc	10c
BMS27	Structural Properties of "Bender Steel Home" Wall Construction Sponsored by the	
	Bender Body Co	10 ¢
BMS28	Backflow Prevention in Over-Rim Water Supplies	10ϕ
BMS29	Survey of Roofing Materials in the Northeastern States	10ϕ
BMS30	Structural Properties of a Wood-Frame Wall Construction Sponsored by the Douglas	
	Fir Plywood Association	10ϕ
BMS31	Structural Properties of "Insulite" Wall and "Insulite" Partition Constructions Spon-	
	sored by The Insulite Co	15¢

[List continued on cover page III]

UNITED STATES DEPARTMENT OF COMMERCE. Henry A. Wallace, Secretary

NATIONAL BUREAU OF STANDARDS . Lyman J. Briggs, Director

BUILDING MATERIALS and STRUCTURES

REPORT BMS104

Structural Properties of Prefabricated Plywood Lightweight Constructions for Walls, Partitions, Floors, and Roofs Sponsored by the Douglas Fir Plywood Association

by Arnold Wexler, Sanford B. Newman, and Vincent B. Phelan

with the collaboration of

R. F. LUXFORD Forest Products Laboratory Forest Service, United States Department of Agriculture

ISSUED NOVEMBER 1, 1945

The National Bureau of Standards is a fact-finding organization; it does not "approve" any particular material or method of construction. The technical findings in this series of reports are to be construed accordingly

UNITED STATES GOVERNMENT PRINTING OFFICE . WASHINGTON

1945

FOR SALE BY THE SUPERINTENDENT OF DOCUMENTS, U. S. GOVERNMENT PRINTING OFFICE WASHINGTON 25, D. C. . PRICE 25 CENTS

Foreword

This report is one of a series issued by the National Bureau of Standards on the structural properties of constructions intended for low-cost houses and apartments. These constructions were originally sponsored by an organization within the building industry advocating and promoting their use and subsequently by the National Housing Agency seeking improvements in house constructions. The sponsor built and submitted the specimens described in this report for participation in the program outlined in Building Materials and Structures Report BMS2, Methods of Determining the Structural Properties of Low-Cost House Constructions. The sponsor, therefore, is responsible for the design of the constructions and for the description of materials and method of fabrication. The Bureau is responsible for the testing of the specimens and preparation of the report.

This report covers the load-deformation relations and strength of the elements when subjected to compressive, transverse, concentrated, impact, and racking loads by standardized methods simulating the loads to which the elements would be subjected in actual service.

The National Bureau of Standards does not "approve" a construction nor does it express an opinion as to its merits for reasons given in reports BMS1 and BMS2. The technical facts presented in this series provide the basic data from which architects and engineers can determine whether a construction meets desired performance requirements.

LYMAN J. BRIGGS, Director.

Structural Properties of Prefabricated Plywood Lightweight Constructions for Walls, Partitions, Floors, and Roofs Sponsored by the Douglas Fir Plywood Association

by Arnold Wexler, Sanford B. Newman, and vincent B. Phelan

with the collaboration of

R. F. LUXFORD

Forest Products Laboratory, Forest Service, United States Department of Agriculture

	Page	Pag	;e
Foreword	11	IX. Roof <i>DZ</i> 3	0
Introduction	2	1. Sponsor's statement	0
Part 1 Lightweight construction	• •	(a) Description of specimens 3	ŏ
Fart I. Lightweight construction	~	2. Transverse load 3	ñ.
I. Sponsor and product	2	3 Concentrated load 3	ĩ
II. Specimens and tests	2	b. concentrated ford	~
III Materials	4	X. Roof DZa	2
1. Wood	4	1 Snonsor's statement 3	2
(a) Framing	-4	(a) Description of specimens 3	2
(b) Plywood, moisture-resistant		(h) Comments 3	5
type	5		5
(c) Plywood, exterior type	5	2. Transverse load	9
2 Nails	7	XI Additional comments by sponsor 3	4
3 (Hune	7	R. Runnan Commence of Sponsor	î
	7	Part 2. Commercial type construction 3	4
IV. Wall DV		I Snowen and product 9.	A
1. Sponsor's statement		i. sponsor and product	4
(a) Four-foot wall specimens.	10	11. Specimens and tests	4
(b) Alght-100t wan specimens.	10		~
(c) Comments	11	111. Materials 3	÷)
2. Compressive load	19	1. Wood 3	5
5. Transverse load	15	(a) Framing 3	5
4. Concentrated load	16	(b) Plywood	5
6. Deeking lead	16	(c) Furring	6
6. Racking load	10	(d) Bevel siding 3	6
V. Partition DW	17	2. Sheathing paper	6
1. Sponsor's statement	17	3. Nails	6
(a) Four-foot partition speci-		4. Staples	6
mens	17	5. Glue	8
(b) Eight-foot partition speci-		6. Paint 3	8
mens	18		
(c) Comments	18	IV. Wall <i>EA</i> 3	8
2. Compressive load	18	1. Sponsor's statement	8
3. Transverse load	20	(a) Four-foot wall specimens 3	8
4. Concentrated load	20	(b) Eight-foot wall specimens. 3	9
5. Impact load	21	9 Laboratory statement	0
6. Racking load	22	2. Compressive lead	ŏ
VI. Floor DX	22	4 Transverse load 4	1
1. Sponsor's statement	22	5 Concentrated load 4	5
(a) Description of specimens	- 23	6 Impact load	2
2. Transverse load	23	7 Racking load 4	1
3. Concentrated load	24	1. Maching forder to the terror to the	1
4. Impact load	24	V. Wall <i>EAa</i>	$\overline{5}$
VII. Floor DY	24	1 Sponsor's statement	5
1 Sponsor's statement	24	(a) Description of specimers 4	5
(a) Description of specimens	25	(a) Description of specimens , a	2
2. Transverse load	26	2. Racking load 4:	Э
3. Concentrated load	27	VI. Wall E4b	5
4. Impact load	27	1 Company determined	-
VIII Floor DVa	20	1. Sponsor's statement 4	a
YIII. FIOU DIU	20	(a) Description of specimens 43	0
(a) Description of specimens	50	(b) Comments 40	0
(b) Commonts		2. Racking load 47	4
9 Transverea load	50	VII Additional commonte by moreon	_
2. ITansverse load	20	vii. Additional comments by sponsor 4	1

$\mathbf{C} \ \mathbf{O} \ \mathbf{N} \ \mathbf{T} \ \mathbf{E} \ \mathbf{N} \ \mathbf{T} \ \mathbf{S}$

ABSTRACT

For the program on the determination of structural properties of low-cost house constructions, the Douglas Fir Plywood Association submitted 75 specimens representing prefabricated plywood building panels of both lightweight stress-skin and commercial design. Wall, partition, floor, and roof specimens were of lightweight stress-skin design. Specimens of commercial type panels (2- by 4-in, studs) were for wall construction only, and furnished a basis of comparison of strength and weight with the light weight constructions.

The wall specimens were subjected to compressive, transverse, 'concentrated, impact, and racking loads; and the wall specimens of commercial type included three different constructions for determining resistance to racking. The partition specimens were subjected to compressive, transverse, impact, and racking loads; the floor specimens to transverse, concentrated, and impact loads; and the roof specimens to transverse and concentrated loads. The floor and roof specimens included two different constructions for determining resistance to transverse loads. Transverse, concentrated, and impact loads were applied to both faces of wall specimens. The loads simulated the loads to which the elements are subjected in actual service.

The deflection under load and the sets after the load was removed were measured for uniform increments of load. The results are presented in graphs and tables.

INTRODUCTION

To provide technical facts on the performance of constructions for low-cost houses, to discover promising new constructions, and ultimately to determine the properties necessary for acceptable performance in actual service, the National Bureau of Standards has invited the cooperation of the building industry in a program of research on building materials and structures suitable for low-cost houses and apartments. The objectives of this program are described in Building Materials and Structures Report BMS1, Research on Building Materials and Structures for Use in Low-Cost Housing.

To determine the strength of house constructions in the laboratory, standardized methods were developed for applying loads to portions of a completed house. Included in this study were masonry and wood constructions of types that have been used extensively for houses in this country. The reaction of these constructions under widely different service conditions is well known to builders and to the public. The BMS Reports on these constructions are BMS5, Structural Properties of Six Masonry Wall Constructions, and BMS25, Structural Properties of Conventional Wood-Frame Constructions for Walls, Partitions, Floors, and Roofs. The masonry specimens were built by the Masonry Construction Section of this Bureau, and the wood-frame specimens were built and tested by the Forest Products Laboratory at Madison, Wis.

The present report describes the structural properties of wall, partition, floor, and roof constructions sponsored by an association of manufacturers in the building industry.

The wall specimens were tested for resistance to compressive, transverse, concentrated, impact, and racking loads simulating the loads to which the walls of a house are subjected. In actual service, compressive loads on a wall or load-bearing partition are produced by the weight of the roof, second floor and second story walls, if any, by furniture and occupants, and by snow and wind loads on the roof. Transverse loads are produced by wind: concentrated and impact loads by accidental contact with heavy objects; and racking loads by the action of the wind on adjoining walls.

Partition specimens were tested for resistance to compressive, transverse, impact, and racking loads. Canses of such loads on partitions are the same as for walls.

Floor specimens were tested for resistance to transverse, concentrated, and impact loads. Transverse loads are applied to floors by furniture and occupants; concentrated loads by furniture, for example the legs of a piano; and impact loads by objects falling on the floor or by persons jumping on the floor.

Roof specimens were tested for resistance to transverse and concentrated loads. Transverse loads are applied to roofs by wind and snow; concentrated loads by persons walking on the roof, and by tools and equipment laid on the roof while it is being constructed or repaired.

The deflection and set under each increment of load were measured, because the suitability of a construction depends not only on its resistance to deformation when loads are applied but also on its ability to return to its original size and shape when the loads are removed.

I. SPONSOR AND PRODUCT

The specimens were submitted by the Douglas Fir Plywood Association, Tacoma. Wash., and were built by the Evans Products Co., Marshfield, Ore., manufacturers of prefabricated houses employing Douglas fir plywood in their products. Each of the constructions consisted of a lightweight wood frame and faces of Douglas fir plywood. The faces were securely glued to the frames, so that each construction acted as a unit when resisting load. Buildings in which these constructions are need are designed to be erected on conventional masonry foundations, the panels joined by wood splines.

II. SPECIMENS AND TESTS

The specimens represented four elements of a house and were assigned the following symbols: Wall, DV; partition, DW; floor, specimens of 8-ft 0-in. length, DX; floor, specimens of 12-ft 6-in. length and ceiling face buttjointed, DY; floor, specimens of 12-ft 6-in. length and ceiling face scarf-jointed, DYa; roof, specimens of 12-ft 6-in. length and ceiling face butt-jointed, DZ; roof, specimens of 12-ft 6-in. length and ceiling face scarf-jointed, DZa. The individual specimens were assigned the designations given in table 1.

TABLE 1.—Specimen designations

Element	Con- struction symbol	Specimen designation	Load	Load applied
Wall Do Do Do Do Do Do	DV DV DV DV DV DV DV DV	$\begin{array}{c} C1, C2, C3\\ T1, T2, T3\\ T4, T5, T6\\ P1, P2, P3\\ P4, P5, P6\\ 11, 12, 13\\ 14, 15, 16\\ R1, R2, R3 \end{array}$	Compressive_ Transversedo Concentrated_ Impacta Racking	Upper end. Inside face. Outside face. Inside face. Unside face. Outside face. Near upper end.
Partition Do Do Do Do	DW DW DW DW DW	C1, C2, C3 T1, T2, T3 P1, P2, P3 I1, I2, I3 R1, R2, R3	Compressive Transverse Concentrated _ Impacta Racking	Upper end. Either face. Do. Do. Near upper end.
Floor. Do. Do. Do. Do. Do. Do. Do.	DX DX DY DY DY DY DYa	T1, T2, T3 P1, P2, P3 I1, I2, I3 T1, T2, T3 P1, P2, P3 I1, I2, I3 T1, T2, T3	Transverse Concentrated _ Impacta Transverseb Concentrated _ Impact Transverse	Upper face. Do. Do. Do. Do. Do. Do.
Roof Do Do	DZ DZ DZa	T1, T2, T3 P1, P2, P3 T1, T2, T3	Transverse ^b Concentrated Transverse	Do. Do. Do.

^a The concentrated and impact loads were applied to the same specimens, impact loads first. ^b The transverse and concentrated loads were applied to the same specimens, transverse loads first.

Specimens were tested in accordance with BMS2 except where indicated to the contrary. That report also gives the requirements for the specimens and describes the results of tests by means of figures, particularly load-deformation graphs.

Because the shortening of the entire specimen under compressive load may not be proportional to the values obtained from compressometers attached to the specimen over only a portion of its height, the shortenings and the sets were measured with compressometers attached to the steel plate through which the load was applied, not attached to the specimen as described in BMS2.

The lateral deflections under compressive loads were measured with a deflectometer of fixed gage length, which consisted of a light (Duralumin) tubular frame having a leg at one end and a hinged plate at the other. The deflectometer in a vertical position was attached to the specimen by clamping the hinged plate near the upper end to one of the faces. The gage length (distance between the points of support) was 7 ft 6 in." A dial micrometer was mounted on the frame at midlength, with the spindle in contact with the wall or partition specimen. The dial was graduated to 0.001 in., and the readings were recorded to the nearest division. There were two deflectometers on the specimen, one near each outer stud. This method of measurement was used instead of the taut-wire mirror scale method described in BMS2.

The indentation under concentrated load and the set after the load was removed were measured, not the set only, as described in BMS2. The apparatus is shown in figure 1.

The load was applied to the steel disk, A, to which the cross bar, B, was rigidly attached. The load was measured by means of the dynamometer, C. Two stands, D, rested on the face of the specimen, each supporting a dial micrometer, E, the spindle of which was in contact with the cross bar 8 in. from the center of the disk. The micrometers were graduated to 0.001 in., and readings were recorded to The initial reading the nearest division. (average of the micrometer readings) was observed under the initial load, which included the weight of the disk and dynamometer. Λ load was applied to the disk, and the average of these micrometer readings minus the initial reading was taken as the depth of the indentation under load.

The deflections and the sets under the impact load were measured by means of two deflectometers and two set gages, not one of each, as described in BMS2. The deflectometers were placed in contact with the unloaded face of the specimen at midspan, one under each inner longitudinal member, and the set gages rested on the loaded face, one over each inner longitudinal member. The readings, therefore, were not affected by local deformations of the faces.

The deformations under racking loads were measured with a rigid angle deformeter consisting of a steel channel and a steel angle braced to form a rigid connection. The channel of the deformeter rested on two steel plates, 4 by 4 in., $\frac{1}{2}$ in. thick, and was fastened to the top of the specimen by two nails extending into the top plate, the steel angle extending downward in the plane of the specimen. The bottom plate was in contact with the stop, to which a dial micrometer spindle was attached. The micrometer spindle was in contact with the steel angle of the deformeter. The gage length (distance from the top of the specimen to the spindle) was 7 ft $11\frac{3}{4}$ in. The micrometer was graduated to 0.001 in., and the readings were recorded to the nearest division. The deformeter was used instead of the taut-wire mirrorscale device described in BMS2.

Only three of the load-bearing partition specimens, DW, were tested under the transverse, concentrated, and impact loads, not six specimens, as stated in BMS2. Inasmuch as the load-bearing partition construction was symmetrical about a plane midway between the faces, the results for these loads applied to one face of the specimens should be identical with those obtained by applying the loads to the other face.

The floor specimens, DX, were 8 ft long, the length of commercial panels, and not 12 ft 6 in. long as described in BMS2. The transverse and impact tests of the DX specimens were, therefore, made on a span of 7 ft 6 in.

The roof specimens, DZ, were 12 ft 6 in. long, the length of commercial panels, and not 14 ft. 6 in. long as described in BMS2. The transverse tests of the DZ specimens were, therefore, made on a span of 12 ft.

Because there was no reason to believe that the design of the splice in the lower plywood face would affect the concentrated load properties of the floor specimens, DY, and because

FIGURE 1.—Wall specimen EA-P4 under concentrated load. A, Steel loading disk; B, cross bar; C, dynamometer; D, stand; E, dial micrometer.

they had not failed in the impact load test for a height-of-drop of 10 ft, the DYa specimens were subjected only to transverse loads.

As it was improbable that the design of the splice in the lower plywood face would affect the concentrated load strength of the roof specimens DZ, the DZa specimens were subjected only to transverse loads.

The tests were begun May 24, 1943, and completed August 28, 1943. A staff member of the Forest Products Laboratory witnessed the tests, and the sponsor's representative witnessed some of the tests.

III. MATERIALS

Information on the materials was obtained from the sponsor and by inspection of the specimens. The Forest Products Laboratory assisted by identifying the species of wood and the Engineering Mechanics Section of the National Bureau of Standards assisted by determining the moisture content of the wood.

1. Wood

(a) Framing

Although the sponsor stated that the framing was Douglas fir, No. 1, common, when the faces were removed it was observed that in the walls having 1- by 3-in. studs there were knots only in a very few of the specimens. These studs, therefore, were clear stock.

$^{25}_{32}$ by $21/_{2}$ in.	(nominal 1 by 3 in.)
$^{25}_{32}$ by $^{31}_{2}$ in.	(nominal 1 by 4 in.)
$^{25}_{32}$ by 51_{2} in.	(nominal 1 by 6 in.)
$1\frac{1}{2}$ by $2\frac{1}{2}$ in.	(nominal 2 by 3 in.)
15% by 15% in.	(nominal 2 by 2 in.)

(b) Plywood, Moisture-Resistant Type

Douglas fir, 1/4-in., 3/8-in., and 1/2-in., bonded with water-resistant protein glue having a soya-bean and casein base. The 1/4-in. plywood was 3 ply, wallboard grade, sanded, and complied with the requirements of Douglas Fir Plywood Association "Plywall." The 3/8-in.

FIGURE 2.—Wall DV. Typical 4-foot specimen.

FIGURE 3.—Wall DV. Typical 8-foot specimen.

FIGURE 4.—Partition DW. Typical 4-foot specimen.

plywood was 3 ply sheathing grade, and comphed with Douglas Fir Plywood Association "Plyscord." The ½-in. plywood was 5 ply wallboard grade, sanded, and complied with Douglas Fir Plywood Association "Plywall." All plywood complied with Commercial Standard CS45-42.

(c) Plywood, Exterior Type

Douglas fir, $\frac{7}{16}$ -in, and $\frac{3}{8}$ -in, bonded with hot-press synthetic-resin adhesive, 3 ply, grade S2S (sound two sides). The plywood complied with Commercial Standard CS45-42 and was marked "Ext.-D.F.P.A."

After each specimen was tested, one face was removed to expose the framing, and samples of framing and plywood were cut for moisturecontent determination and for identification of the species. Figures 2 to 8, inclusive, are typical specimens.

Samples of plywood and framing were taken from each specimen on the day the specimen was tested; they were weighed and then dried to constant weight in an oven at 212° F. The moisture content, given in table 2, was calculated on the oven-dry weight.

TABLE 2.—Moisture content of the wood

[Determined on the day the wall, partition, floor, or roof specimen was tested]

		Moi	isture con	tent	
Wood	Con- struction symbol	Mini- mum	Maxi- mum	Average	
		Perent	Percent	Percent	
Half spline	DV DW DX DY DYa DZ DZa	10 10 10 9 9 10 9	12 12 12 11 11 11	11 11 10 19 11 10	
Framing	$\begin{cases} DV\\ DW\\ DX\\ DY\\ DY\\ DYa\\ DZ\\ DZa \end{cases}$	$9 \\ 10 \\ 9 \\ 9 \\ 10 \\ 8 \\ 10$	12 12 11 12 11 12 11 11 11 11	11 11 10 11 11 11 10 10	
Douglas fir plywood, ¼-in	$\begin{cases} DV\\ DW\\ DZ\\ DZa \end{cases}$	8 7 8	9 10 9 8	8 9 8 8	
Douglas fir plywood, ⁵ /16-in	$\begin{cases} DX \\ DY \\ DYa \end{cases}$	7 7 8	8 8 8	8 7 8	
Douglas fir plywood, ¾-in	$\begin{cases} DV\\ DZ\\ DZa \end{cases}$	7 8 7	9 9 8	7 8 8	
Douglas fir plywood, ½-in	$\begin{cases} DX\\DY\\DYa \end{cases}$	8 8 7	9 9 7	9 9 7	

FIGURE 5.—Partition DW. Typical 8-foot specimen.

FIGURE 6.—Floor DX. Typical specimen.

FIGURE 7.—Floor DY. Typical specimen.

FIGURE 8.—Roof DZ.

Typical specimen.

2. NAILS

All nails were steel wire nails and are described in table 3.

TABLE 3.—Description of nails

Туре	Size	Length	Steel wire gage	Diam- eter	Finish	Nails per pound
Box Do Common Finishing Do	Penny ^a 3 4 6 8 3 4	$in. \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 2\frac{1}{2} \\ 1\frac{1}{4} \\ 1\frac{1}{2} \\ 1$	No. $14\frac{1}{2}$ 15 $12\frac{1}{2}$ $10\frac{1}{4}$ $15\frac{1}{2}$ $15\frac{1}{2}$	<i>in.</i> 0.076 .072 .0985 .131 .0673 .072	Bright do do do do	635 554 233 106 807 584

^a Duckbill point.

3. GLUE

Casein glue, grade A, ground. Formula: casein, 65 percent; lime, 15 percent; and dispersing agents and undisclosed ingredients, 20 percent. Eleven parts of glue were mixed with 211/4 parts of water by weight. I. F. Laucks, Inc., "Lauxein 888."

IV. WALL DV

1. Sponsor's Statement

Wall DV was a lightweight wood frame with plywood as both faces, the faces being fastened by glue. The faces were subjected to a pressure of 86 lb/in.² on surfaces of the frame for a period of 35 minutes, while the glue hardened. To hasten the time of set, the temperature of air surrounding work in the presses was raised to 141° F by panels of infrared light. The specimens were not painted. The price of this construction in Washington, D. C., as of July 1937 was \$0.24/ft².

(a) Four-Foot Wall Specimens

The 4-ft wall specimens, shown in figure 9, were 8 ft 0 in. high, 3 ft 113/4 in. wide, and 31/8 in. thick. Each was a wood frame to which the faces were fastened. The frame consisted of four studs, A, fastened to transverse members, B, at top and bottom. There were two lines of blocks, C, extending between the studs. Outside face, D, and inside face, E, each consisted of one piece of plywood. Plates, F, extended across the top and bottom ends of the specimens, and half splines, G, were inserted between the faces at the sides.

Studs.—The studs, A, were Douglas fir, ${}^{25}_{32}$ by ${}^{21}_{2}$ in. (nominal 1 by 3 in.) 7 ft ${}^{71}_{2}$ in. long, spaced 1 ft 3 in. on centers.

Transverse members.—The transverse members, B, were Douglas fir, ${}^{25}\!\!\!/_{32}$ by ${}^{21}\!\!/_{2}$ in. (nominal 1 by 3 in.) 3 ft 10¹\!\!/_{4} in. long, extending across the ends of the studs. The transverse members were fastened to the studs by 6d box nails driven through the transverse members into the ends of the studs, two nails into each stud end.

Blocks.—Blocks, C, were Douglas fir, 25/32by 21/2 in. (nominal 1 by 3 in.) 1 ft 21/4 in. long, inserted between the studs in two lines about equidistant from the transverse members and each other. The blocks were fastened to the studs by 6d box nails. Two nails were

FIGURE 9.—Four-foot wall specimen DV.

driven through the outer studs into the ends of the outer blocks and one nail through the inner studs. The inner block was fastened by nails toenailed through the inner studs, one nail toenailed through each stud.

Outside face.—The outside face, D, was one piece of Douglas fir plywood, exterior type, $\frac{3}{48}$ in. thick, 8 ft 0 in. long, and 3 ft 11 $\frac{3}{44}$ in. wide. It was fastened by glue to all the frame members, which had been coated with the glue mixture.

Inside face.—The inside face, E, was one piece of Douglas fir plywood, moisture-resistant type, $\frac{1}{4}$ in. thick, 8 ft 0 in. long, and 3 ft $11\frac{3}{4}$ in. wide. It was fastened by glue to all the frame members, which had been coated with the glue mixture. Plates.—Both floor and top plates, F, were Douglas fir, $1\frac{1}{2}$ by $2\frac{1}{2}$ in. (nominal 2 by 3 in.) 3 ft. 11 $\frac{3}{4}$ in. long. The plates were inserted between the faces of the specimens after the faces had been attached to the frames and were fastened in place by 6d box nails driven through the faces and spaced approximately 6 in. apart. There were also three 8d common nails driven through each plate into the transverse member, spaced about halfway between the studs. In some specimens, glue had been partially applied to the sides of the plates, but in other cases this was omitted.

Half splines.—Half splines, G, were Douglas fir, ${}^{25}\!\!_{32}$ by ${}^{21}\!\!_{2}$ in. (nominal 1 by 3 in.) 7 ft 9 in. long. The half splines were inserted between the faces of the specimens after the faces had been attached to the frames, and were fastened in place by 6d box nails driven through the faces and spaced approximately 6 in. apart. In some specimens, glue had been partially applied to the sides of the half splines, but in other cases this was omitted.

(b) Eight-Foot Wall Specimens

The 8-ft wall specimens, shown in figure 10, were 8 ft 0 in. high, 7 ft $11\frac{1}{2}$ in. wide, and $3\frac{1}{8}$ in. thick. The specimens consisted of two 4-ft panels like the 4-ft specimens, joined together and held in place by continuous plates, F, at top and bottom; and full size spline, II, between the specimens.

Plates.—Plates, F, were similar to those for the 4-ft specimens, but were 7 ft $11\frac{1}{2}$ in. long, and fastened in a similar manner.

Spline.—Spline, II, was Donglas fir, $1\frac{1}{2}$ by $2\frac{1}{2}$ in. (nominal 2 by 3 in.) 7 ft 9 in. long. The spline was inserted between the faces of the adjoining panels, and the panels fastened by 6d box nails driven through the faces into the spline along the adjacent edges, spaced approximately 6 in. apart.

(c) Comments

The outside walls of a house consist of panels similar to the 4-ft specimens. The panels rest on the floor, and are joined together and held in place by continuous plates at top and bottom and full-size wood splines between them as represented by the construction of the 8-ft specimens. Openings for doors and windows are provided by specially constructed panels. The outside and inside surfaces of this construction are usually finished with paint.

2. Compressive Load

Wall specimen DV-CI, under compressive load, is shown in figure 11. The test results for wall specimens DV-CI, C2, and C3, are shown in table 4 and figures 12 and 13. The compressive loads were applied 1.02 in. (one-third the thickness of the panel) from the inside face of the panel.

[11]

Compressive load ^a		Transverse load; span, 7 ft 6 in.		Concentrated load; disk, diam 1 in.		Impact load; span, 7 ft 6 in.; sandbag, 60 lb		Racking load	
Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load
C1 C2 C3	Kips/ftb 8.26 10.87 12.58	T1 T2 T3	lb/ft^2 257 284 309	P1 P2 P3	<i>lb</i> 700 655 500	11 12 13	ft 7.5 7.0 8.0	R1 R2 R3	Kips/ftb 1.83 2.35 1.43
Average	10.37	Average	283	Average	618	Average	7.5	Average	1.87
		<i>T</i> 4 <i>T</i> 5 <i>T</i> 6	$ \begin{array}{r} 309 \\ 268 \\ 329 \end{array} $	P4 P5 Tomorow	°1,000 885 900	I4 I5 I6	¢10.0 ¢10.0 ¢10.0		
		Lverage	30.2	Average		Average	10.0		

TABLE 4.—Structural properties of wall DV [Weight, based on face area: 2.96 lb/ft²]

a Load applied 1.02 in. (15 the thickness of the panel) from the inside face.
b A kip is 1,000 lb.
c Test discontinued. No failure.

FIGURE 11.-Wall specimen DV-C1 under compressive loud.

A, Compressometer; B. deflectometer.

FIGURE 12.—Compressive load on wall DV.

Load-shortening (open circles) and load-set (solid circles) results for specimens DV-C1, C2, C3. The load was applied 1.02 in. (one-third of the thickness of the panel) from the inside face. The loads are in kips per foot of actual width of specimen.

The shortenings and sets shown in figure 12 for a height of 8 ft were obtained from the compressometer readings. The compressometers were attached to the plates through which the load was applied; the gage length was 8 ft. The lateral deflections plotted in figure 13 are deflections toward the outside face of the panels. tively, the inside face separated from the spline. Under the maximum load, there was a compression failure of the inside face of specimen C2 and splitting of the spline near the top of the panel of specimen C3.

FIGURE 13.—Compressive load on wall DV.

Load-lateral deflection (open circles) and load-lateral set (solid circles) results for specimens *DV-C1*, *C2*, *C3*. The load was applied 1.02 in. (one-third of the thickness of the panel) from the hisde face. The loads are in kips per foot of actual width of specimen. The deflections and sets are for a gage length of 7 ft 6 in., the gage length of the deflectometers.

The speed of the movable head of the testing machine was adjusted to 0.072 in./min.

Specimen C2 under a compressive load of 5.0 kips/ft is shown in figure 14. The buckles between the stude are visible on the inside plywood face of the wall.

At a load of 4.25 and 6.48 kips/ft for specimens C1 and C3, respectively, loud noises were heard, probably caused by the failure of glue joints. At a load of 4.35, 6.92, and 6.48 kips/ft for specimens C1, C2, and C3, respectively, crushing occurred under the top plate at the end of the studs. At a load of 5.53, 3.50 and 6.49 kips/ft for specimens C1, C2, and C3, respectively, the inside face of the panel started to buckle. At a load of 7.92, 10.87, and 12.17 kips/ft for specimens C1, C2, and C3, respectively.

FIGURE 14.—Wall specimen DV-C2 under a compressive load of 5.0 kips/ft.

Note the buckles in the inside plywood face of the wall.

Figure 15 shows the separation of the plywood inside face of specimen C1 from the stude after the maximum load had been reached.

3. TRANSVERSE LOAD

The results of the transverse-load test are shown in table 4 and in figure 16 for wall specimens DV-T1, T2, and T3, loaded on the inside face, and in figure 17 for specimens DV-T4, T5, and T6, loaded on the outside face.

۴

FIGURE 15.—Wall specimen DV-C1 after the maximum compressive load had been reached.

The speed of the movable head of the testing machine was adjusted to 0.165 in./min.

The transverse loads were applied to the inside face of specimens DV-T1, T2, and T3. For specimens T1, T2, and T3, respectively, the inside face began to buckle between the loading rollers at a load of 140, 100, and 140 lb/ft^2 ; loud noises, probably caused by the failure of glue joints, were first heard at a load of 149, 183, and 205 lb/ft^2 ; and the inside face began to separate from the half splines at a load of 257, 253, and 308 lb/ft². On specimen T2, the plywood on the inside face split near the half splines at a load of 262 lb/ft^2 and one half spline broke in tension at a knot at a load of 274 lb/ft². Under the maximum load, a half spline in each specimen failed in tension. Examination of the specimens after test disclosed horizontal shear failures in an inner and an end stud of T1, compressive failures in two inner studs and one outer stud of T2, and compressive failures in four stude of T3.

FIGURE 16.—Transverse load on wall DV, load applied to inside face.

Load-deflection (open circles) and load-set (solid circles) results for specimens DV-T1, T2, and T3 on the span 7 ft 6 in. The load (pounds per square foot) is the total load divided by the product of the span and the width of the specimen.

The transverse loads were applied to the outside face of specimens DV-T4, T5, and T6. For specimen T_4 , loud noises were heard at a load of 135 lb/ft^2 , and continued to be heard until the test was discontinued, apparently indicating the failure of glue joints. At 157 lb/ft^2 the outside face began to buckle between rollers. At 271 lb/ft² the inside face failed in tension under one loading roller. The inside plywood buckled at 303 lb/ft². One spline failed in tension at 306 lb/ft². Examination after test showed that one inner stud had failed in compression. For specimen T5, the loud noises were first heard at a load of 157 lb/ft^2 . The outside plywood began to buckle at 180 lb/ft^2 , and the inside plywood began to buckle at 219 lb/ft². Tensile cracks appeared in the inside plywood at 246 lb/ft² and 251 lb/ft² near midspan. Examination after test disclosed a horizontal shear failure in one stud. On specimen T_{ℓ} , the outside plywood began to buckle at 160 lb/ft², and loud noises were first heard at 315 lb/ft². Under the maximum load, one

spline failed in horizontal shear and in tension. Examination after test disclosed compressive failures in three studs and horizontal shear failures in two studs.

FIGURE 17.—*Transverse load on wall DV*, load applied to outside face.

Load-deflection (open circles) and load-set (solid circles) results for specimens $DV-T_4$, T_5 , and T_6 on the span 7 ft 6 in. The load (pounds per square foot) is the total load divided by the product of the span and the width of the specimen.

4. Concentrated Load

The results of the concentrated-load test are shown in table 4 and in figure 18 for wall specimens DV-P1, P2, and P3, loaded on the inside face, and in figure 19 for wall specimens DV-P4, P5, and P6, loaded on the outside face.

The concentrated load was applied to specimens DV-P1, P2, and P3 midway between two of the stude and $15\frac{1}{2}$ in. from one end. Each of the specimens DV-P1, P2, and P3 failed by the disk punching through the plywood.

The concentrated load was applied to specimen DV-P4 midway between two of the studs and 15½ in. from one end and to specimens DV-P5 and P6 midway between two of the studs and 13½ in. from one end. The set, after a load of 1,000 lb had been applied to P4, was 0.068 in. Specimens P5 and P6 failed by punching through the plywood at the maximum load.

FIGURE 18.—Concentrated load on wall DV, load applied to inside face.

Load-indentation (open circles) and load-set (solid circles) results for specimens DV-P1, P2, and P3.

FIGURE 19.—Concentrated load on wall DV, load applied to outside face.

Load-indentation (open circles) and load-set (solid circles) results for specimens DV-P4, P5, and P6.

5. IMPACT LOAD

The results of the impact-load test are given in table 4 and in figure 20 for specimens DV-I1, I2, and I3 loaded on the inside face, and in figure 21 for specimens DV-I4, I5, and I6, loaded on the outside face.

A'IGURE 20.—Impact load on wall DV, load applied to inside face.

Height of drop-deflection (open circles) and height of dropset (solid circles) results for specimens DV-II, I2, and I3 on the span 7 ft 6 in.

The impact loads were applied to the inside face of specimens DV-II, I2, and I3, the sandbag striking the center of the specimen midway between two studs. The effects are given in table 5.

TABLE 5.—Effects of impact load on wall specimens DV-I1, I2, and I3, loaded on inside face

	Specir	me n 11	Specir	me n 12	Specimen 13	
Description of effects	Height of drop	De- flection	Height of drop	De- flection	Height of drop	De- flection
	ft	in.	ft	in.	ft	in.
Face loaded: Crack in plywood Face broke where sand- bace struck		1 09	2.5	0.90	3.5	0.96
Face not loaded: Crack in plywood		1.00	6.0	2.25	6.0	2.08
studs	6.0	2.50			6.5	2.23

FIGURE 21.—Impact load on wall DV, load applied to outside face.

Height of drop-deflection (open circles) and height of dropset (solid circles) results for specimens DV-I4, I5, and 16 on the span 7 ft 6 in.

The impact loads were applied to the outside of specimens $DV-I_4$, I_5 , and I_6 , the sandbag striking the center of the specimen midway between two studs. After a 4-ft drop, I_4 developed a long crack in the outside (loaded) face under the bag.

The deflection was 0.93 in. The inside face separated from the spline and stud on one side after a 7-ft drop. The deflection was 2.86 in. In 15, the 5½-ft drop produced a noise that apparently indicated a glue failure; the deflection was 1.01 in. In 16, the 6½-ft drop produced a noise that apparently indicated a glue failure. The deflection was 1.57 in.

After the 10-ft drop, the set in specimen I4 was 0.282 in.; in I5, 0.122 in.; and in I6, 0.121 in.

6. RACKING LOAD

Wall specimen DV-R1 under racking load is shown in figure 22. The results of the rackingload test for specimen DV-R1, R2, and R3 are given in table 4 and figure 23.

FIGURE 22.-Wall specimen DV-R1 under racking load.

FIGURE 23.-Racking load on wall DV.

The racking loads were applied to the top plate, and the stop was in contact with the bottom plate at the diagonally opposite corner of the specimen. Under a load of 1.50 kips/ft, the two 4- by 8-ft plywood sheets on each side of the specimen R1 exhibited relative vertical displacement. Crushing occurred at the front lower plate, and the top plate failed in compression under the maximum load. A noise, apparently glue failure, was heard at 0.8 kip/ft in specimen R2. At 2.2 kips/ft crushing occurred at the bottom plate and at 2.3 kips/ft the top plate sheared from the plywood.

Under maximum load, the top plate crushed. A loud noise, apparently glue failure, and crushing of the top plate occurred at 0.97 kip/ft in R3. The bottom plate at the stop began to fail in crushing at 1.27 kips/ft.

V. PARTITION DW .

1. Sponsor's Statement

Partition DW was like wall DV, except that both faces were like the inside face of the wall specimens. The partition specimens were assembled and fastened together in the same manner as the wall specimens.

The price of this construction in Washington, D. C., as of July 1937 was \$0.24/ft².

(a) Four-Foot Partition Specimens

The 4-ft partition specimens shown in figure 24 were 8 ft 0 in. high, 3 ft 113/4 in. wide, and 3 in. thick. Each was a wood frame to which the faces were fastened. The frame consisted of four studs, A, fastened to transverse members, B, at top and bottom. There were two lines of blocks, C, extending between the studs. Faces, D, each consisted of one piece of plywood. Plates, E, extended across the top and bottom ends of the specimens, and half splines, F, were inserted between the faces at the sides.

Studs.—The studs, A, were Douglas fir, ${}^{25}_{32}$ by ${}^{21}_{22}$ in. (nominal 1 by 3 in.) 7 ft ${}^{71}_{22}$ in. long, spaced 1 ft 3 in. on centers.

Transverse members.—The transverse members, B, were Douglas fir, ${}^{25}\!\!/_{32}$ by ${}^{21}\!\!/_{2}$ in. (nominal 1 by 3 in.) 3 ft 10¹/₄ in. long, extending across the ends of the studs. The transverse members were fastened to the studs by 6d box nails driven through the transverse members into the ends of the studs, two nails to each stud end.

Blocks.—Blocks, C, were Douglas fir, ${}^{25}\!\!/_{32}$ by 21_2 in. (nominal 1 by 3 in.) 1 ft 21_4 in.

FIGURE 24.—Four-foot partition specimen DW.
A, Stud; B, transverse member; C, block; D, face; E, plate; F, half spline.

long, inserted between the studs in two lines about equidistant from the transverse members and each other. The blocks were fastened to the studs by 6d box nails. Two nails were driven through the outer studs into the ends of the outer blocks and one nail through each stud.

Faces.—Faces, D, were each one piece of Douglas fir plywood, moisture-resistant type, $\frac{1}{4}$ in. thick, 8 ft 0 in. long, and 3 ft 113 $\frac{4}{4}$ in. wide. Each face was fastened by glue to all the frame members, which had been coated with the glue mixture.

Plates.—Both floor and top plates, E, were Douglas fir, 1½ by 2½ in. (nominal 2 by 3 in.) 3 ft 11¾ in. long. The plates were inserted between the faces of the specimens after the faces had been attached to the frames, and were fastened in place by 6d box nails driven through the faces and spaced approximately 6 in. apart. There were also three 8d common nails driven through each plate into the transverse member, spaced about halfway between the studs. In some specimens, glue had been partially applied to the sides of the plates, but in other cases this was omitted.

Half splines.—Half splines, F, were Douglas fir, $^{25}/_{32}$ by $^{21}/_{2}$ in. (nominal 1 by 3 in.) 7 ft 9 in. long. The half splines were inserted between the faces of the specimens after the faces had been attached to the frames, and were fastened in place by 6d box nails driven through the faces and spaced approximately 6 in. apart. In some specimens, glue had been partially applied to the sides of the half splines, but in other cases, this was omitted.

(b) Eight-Foot Partition Specimens

The 8-ft partition specimens, shown in figure 25, were 8 ft 0 in. high, 7 ft $11\frac{1}{2}$ in. wide, and 3 in. thick. The specimens consisted of two 4-ft panels like the 4-ft specimens, joined together and held in place by continuous plates, E, at top and bottom; and full size spline, G, between the specimens.

Plates.—Plates, E, were similar to those for the 4-ft specimens, and were fastened in the .same way but were 7 ft 11½ in. long.

Spline.—Spline, G, was Douglas fir, $1\frac{1}{2}$ by $2\frac{1}{2}$ in. (nominal 2 by 3 in.) 7 ft 9 in. long. The spline was inserted between the faces of the adjoining panels, and the panels were fastened by 6d box nails driven through the faces into the spline along the adjacent edges. The spacing was about 6 in.

(c) Comments

The partitions of a house consist of panels similar to the 4-ft specimens, joined together and held in place by continuous plates at top and bottom, and wood splines as represented by the construction of the 8-ft specimens. Openings for doors are provided by specially constructed panels. The surfaces of this construction are usually finished with paint.

2. Compressive Load

The results of the compressive-load test for partition specimens DW-C1, C2, and C3 are given in table 6 and in figures 26 and 27.

A, Stud; B, transverse member; C, block; D, face; E, plate; F, half spline; G, spline.

CABLE	6.—Str	\cdot uctural	propertie	es of	partition	DW
	[Weight,	based on	face area	2.61	lb/ft ²]	

Compressive load ^a		Transverse load; span, 7 ft 6 in.		Concentrated load; disk, diam 1 in.		Impact load; span, 7 ft 6 in.; sandbag, 60 lb		Racking load	
Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load
C1 C2 C3 Average	Kips/ft ^b 8.55 8.71 9.47 8.91	T1 T2 T3 Average	<i>lb/ft</i> ² 233 278 296 269	P1 P2 P3 Average		11 12 13 Average		R1 R2 R3 Average	$\frac{Kips/ft^{\rm b}}{1.80}\\ -\frac{1.91}{1.79}\\ -\frac{1.83}{1.83}$

 \ast Load applied 0.98 in. (1/3 thickness of the panel) from 1 face. \flat A kip is 1,000 lb.

The shortenings and sets were obtained from the compressometer readings for a height of 8 ft. The compressometers were attached to the plates through which the load was applied; the gage length was 8 ft. The lateral deflections plotted in figure 27 were deflections toward the outside face of the panel. The speed of the movable head of the testing machine was adjusted to 0.072 in./min.

For specimens C1, C2, and C3, respectively, the compressive face buckled at a load of 3.00, 4.00, and 3.50 kips/ft. Loud noises indicating glue failure were heard at a load of 4.00, 6.00, and 4.50 kips/ft.

The studs began to crush into the top plate at 4.67, 5.50, and 5.00 kips/ft. The plywood on the inside face started separating from the panel at 7.16, 4.45, and 6.67 kips/ft. The outside face of C3 began separating and buckled at 6.67 kips/ft.

FIGURE 26.—Compressive load on partition DW.

3. TRANSVERSE LOAD

The results under transverse load are given in table 6 and in figure 28 for specimens DW-T1, T2, and T3. The speed of the movable head

0

FIGURE 27.—Compressive load on partition DW. Load-lateral deflection (open circles) and load-lateral set (solid circles) results for specimens DW-CI, C2 and C3. The load was applied 0.98 in. (one-third the thickness of the panel) from one face of the panel. The loads are in kips per foot of actual width of specimen.

FIGURE 28.—Transverse load on partition DW. Load-deflection (open circles) and load-set (solid circles) results for specimens DW-TI, T2 and T3, on the span 7 ft 6 in. The load (lb per sq ft) is the total load divided by the product of the span and the width of the specimen.

of the testing machine was adjusted to 0.172 in./min.

For specimens T1, T2, and T3, respectively, the top plywood started to buckle at a load of 100, 120, and 160 lb/ft². Noises were heard, apparently due to glue failure, at 182, 239, and 259 lb/ft². At 140 lb/ft² the upper plywood of T1 separated from the splines. At 219 lb/ft^2 one spline broke, and at 228 lb/ft^2 the other spline of T1 failed in tension. The upper plywood of T2 separated from the half splines at 262 lb/ft². Under maximum load the lower plywood of T1 failed in tension. Examination after test disclosed that in T1 three inner studs failed in compression and two outer studs failed in tension; in T2 three stude failed in compression; and in T3 two studes failed in compression.

4. CONCENTRATED LOAD

The results of the concentrated-load tests are given in table 6 and in figure 29 for specimens DW-P1, P2, and P3.

The concentrated load was applied to the face of specimens DW-P1, P2, and P3, midway between two studs and $15\frac{1}{2}$ in. from one end. Under this maximum load on each specimen the disk punched through the plywood.

5. Impact Load

The results of the impact-load tests are given in table 6 and in figure 30 for specimens DW_{-}

11, 12, and 13. The sandbag struck the center of the face, midway between two studs. The effects are given in table 7.

TABLE 7.—Effects of impact	load on partition	specimens
DW-I1, I	2, and 13	

	Specir	ne n 1 1	Specir	nen 12	Specimen 13	
Description of effects	Height of drop	De- flection	Height of drop	De- flection	Height of drop	De- flection
	ft	in.	ft	in.	ft	in.
Face loaded: Crack in plywood			4.5	1.14		
Face broke where sand- bag struck	4.5	1.33	5.0	1.14	6.0	1.53
Face not loaded: Crack in plywood Face broke where sand-			7.0	2.75		
bag struck	5.5		7.5		,-	

6. RACKING LOAD

The results under racking load for specimens DW-R1, R2, and R3 are shown in table 6 and figure 31.

The racking loads were applied to the top plate, and the stop was in contact with the bottom plate at the diagonally opposite corner of the specimen. Noises, apparently glue failure, were heard from specimens R1 and R3, respectively, and at a load of 0.90 and 1.12 kips/ft. The top plate started crushing in specimens R1, R2, and R3 at a load of 1.78, 1.56, and 1.20 kips/ft, respectively. The bottom plate started crushing at a load of 1.78, 1.75, and 1.60 kips/ft. Under maximum load, the top plate of each specimen failed completely.

VI. FLOOR DX

1. Sponsor's Statement

Floor DX was designed as a short-span floor panel and consisted of lightweight wood joists and solid bridging with plywood as both faces, the faces being fastened by glue. The faces were subjected to a pressure of 86 lb/in.² on the joist, header, and bridging surfaces for a period of 35 minutes while the glue hardened.

Load-deformation (open circles) and load-set (solid circles) results for specimens DW-R1, R2, R3. The loads are in kips per foot of actual width of specimen.

FIGURE 32.—Floor DX. A, joist; B, header; C, bridging; D, flooring; E, ceiling; F, half splines.

To hasten the time of set, the temperature of air surrounding work in the presses was raised to 141° F by panels of infrared light. The specimens were not painted.

The price of this construction in Washington, D. C. as of July 1937 was \$0.38/ft².

(a) Description of Specimens

The floor specimens DX, shown in figure 32, were 8 ft 0 in. long, 3 ft 11³/₄ in. wide, and 3⁵/₁₆ in. deep. Each specimen had five joists, A, fastened to headers, B. There were two lines of solid bridging, C, extending between the joists. Flooring, D, and ceiling, E, each consisted of one piece of plywood. Half splines, F, were inserted between the faces at the sides.

Joists.—The joists, A, were Douglas fir, ${}^{25}_{32}$ by ${}^{21}_{22}$ in. (nominal 1 by 3 in.) 7 ft. ${}^{101}_{22}$ in. long, spaced ${}^{111}_{8}$ in. and ${}^{113}_{8}$ in. apart, as shown in figure 32.

Headers.—Headers, B, were Douglas fir, ²⁵/₃₂ by 2¹/₂ in. (nominal 1 by 3 in.) 3 ft. 10¹/₄ in. long, extending across the ends of the joists. The headers were fastened to the joists by 6d box nails driven through the headers into the ends of the joists, two nails into each joist end.

Bridging.—The solid bridging, C, was Douglas fir, ${}^{2}5_{32}$ by ${}^{2}1_{2}$ in. (nominal 1 by 3 in.) 103% and 105% in. long, inserted between the joists in two lines about equidistant from the headers and each other. The bridging was fastened to the joists by 6d box nails. Two nails were driven through the outer joists into the ends of the bridging. Fastenings at the inner joists were made by one nail toenailed through the joists alternating with two nails driven through the joist into the ends of the bridging.

Flooring.—The flooring, D, was one piece of Douglas fir plywood, moisture-resistant type, $\frac{1}{2}$ in. thick, 8 ft 0 in. long, and 3 ft 113/4 in. wide. It was fastened by glue to the joists, headers, and bridging, which had been coated with the glue mixture. There were also three 4d finishing nails driven through the flooring into each header, spaced approximately 1 ft 9 in. apart.

Ceiling.—The ceiling, E, was one piece of Douglas fir plywood, exterior type, $\frac{5}{16}$ in. thick, 8 ft 0 in. long, and 3 ft 11³/₄ in. wide. It was fastened by glue to the joists, headers, and bridging, which had been coated with the glue mixture. There were also three 4d finishing nails driven through the ceiling into each header, spaced approximately 1 ft 9 in. apart.

0 in. long. The half splines were inserted between the flooring and ceiling after the flooring and ceiling were attached to the joists, headers, and bridging. The half splines were fastened in place by 6d box nails driven through the flooring and ceiling and spaced approximately 6 in. apart.

2. TRANSVERSE LOAD

The results of the transverse load on floor specimens DX-T1, T2, and T3 are given in table 8 and in figure 33. The transverse loads were applied to the upper face.

TABLE 8.—Structural properties of floor DX [Weight, based on face area: 3.31 lb/ft²]

Transverse load; span, 7 ft 6 in.		Concentra disk, dia	ited load; im 1 in.	Impact load; span, 7 ft 6 in.; sandbag, 60 lb		
Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load	
	lb/ft^2		lb		ft	
T1 T2 T3	323 320 320	P1 P2 P3	a1,000 a1,000 a1,000	11 12 13	b10,0 b10.0 b10.0	
Average	321	Average_	1,000	Average.	10.0	

^a Specimen undamaged. Test discontinued. ^b No visible failure. Test discontinued.

FIGURE 33.—Transverse load on floor DX.

Load-deflection (open circles) and load-set (solid circles) results for specimens DX-T1, T2, and T3 on the span 7 ft 6 in. The load (pounds per square foot) is the total load divided by the product of the span and width of the specimeu.

The speed of the movable head of the testing machine was adjusted to 0.15 in./min.

Loud noises, apparently due to glue failure, were first heard in specimens T1, T2, and T3, at a load of 277, 255, and 293 lb/ft², respectively. Under maximum load, T1 failed in the glue joint between top face and one end plate; the bottom face of T2 buckled; and one half spline broke in tension under a loading roller in T3. Examination after tests showed a tensile failure in one spline, a compressive failure in the other spline and in two joists, and horizontal shear in one joist of T1.

The middle joist of $T\mathcal{Z}$ failed both in tension and in horizontal shear. One spline failed in tension under a loading roller; two joists had horizontal shear failures; and the plywood had separated from the joists in $T\mathcal{Z}$.

3. CONCENTRATED LOAD

The results of the concentrated load on specimens DX-P1, P2, and P3 are given in table 8 and in figure 34.

The concentrated load was applied to specimens DX-P1, P2, and P3 18¹/₂ in. from one edge and 18 in. from one end.

After the concentrated load had been applied and removed, the set in specimen DX-P1 was 0.034 in.; in P2, 0.043 in.; and in P3, 0.050 in. No other effects were observed.

4. IMPACT LOAD

The results of the impact-load test on specimens DX-I1, I2, and I3 are shown in table 8 and in figure 35.

FIGURE 35.—Impact load on floor DX. Height of drop-deflection (open circles) and height of dropset (solid circles) results for specimens DX-11, 12, and 13, on the span 7 ft 6 in.

After a drop of 4.0 ft on I1, 2.5 ft on I2, and 3.5 ft on I3, a noise was heard, apparently due to glue failure. No other effects were observed. After a drop of 10 ft, the set in I1 was 0.013 in.; in I2, 0.078 in.; and in I3, 0.075 in.

VII. FLOOR DY

1. Sponsor's Statement

Floor DY was designed as a long-span floor panel and consisted of lightweight wood joists and solid bridging with plywood as both faces, the faces being fastened by glue. The faces were subjected to a pressure of 86 lb/in.² on the joist, header, and bridging surfaces for a period of 35 minutes while the glue hardened. To hasten the time of set, the temperature of air surrounding work in the presses was raised to 141° F by panels of infrared light. The specimens were not painted. The price of this construction in Washington, D. C. as of July 1937 was $0.38/\text{ft}^2$.

(a) Description of Specimens

The floor specimens DY, shown in figure 36, were 12 ft 6 in. long, 3 ft 11³/₄ in. wide, and $6\frac{5}{16}$ in. deep. Each specimen had five joists, .1, fastened to headers, *B*. There were five lines of solid bridging, *C*, extending between the joists. Flooring, *D*, and ceiling, *E*, each consisted of two pieces of plywood. Joints in the plywood were butt joints, placed over the centers of lines of bridging. Splice strips, *F*, overlapped the joint on the flooring, and splice strips, *G*, the joint in the ceiling. Half splines, *H*, were inserted between the faces at the sides. *Joists.*—The joists, *A*, were Douglas fir, $^{2\frac{5}{32}}$ by $5\frac{1}{2}$ in. (nominal 1 by 6 in.) 12 ft $4\frac{1}{2}$ in. long, spaced 111/₈ and 113/₈ in. apart, as shown in figure 36.

Bridging.—The solid bridging, C, was Douglas fir, ${}^{2}5_{32}$ by 5½ in. (nominal 1 by 6 in.) 10% and 10% in. long, inserted between the joists in five lines, spaced as shown in figure 36. The bridging was fastened to the joists by 6d box nails. Three nails were driven through the outer joists into the ends of the bridging. Fastenings at the inner joists were made by one nail toenailed through the joists alternating with two nails driven through the joists into the ends of the bridging.

Flooring.—The flooring, D, was two pieces of Douglas fir plywood, moisture-resistant type, $\frac{1}{2}$ in. thick and 3 ft 11 $\frac{3}{4}$ in. wide. One piece was 8 ft 0 in. long and the other 4 ft 6 in. long. They were fastened by glue to the joists, headers, and bridging, which had been coated with the glue mixture. Three 4d finishing nails, spaced approximately 1 ft 9 in. apart, were driven through the flooring into each header.

Ceiling.—The ceiling, E, was two pieces of Douglas fir plywood, exterior type, $\frac{5}{16}$ in. thick and 3 ft 11³/₄ in. wide. One piece was 8 ft 0 in. long and the other 4 ft 6 in. long. They were fastened by glue to the joists, headers, and bridging, which had been coated with the glue mixture. Three 4d finishing nails, spaced approximately 1 ft 9 in. apart, were driven through the ceiling into each header. The joint was over the center of a line of bridging, and was placed at the oppo-

FIGURE 36.—Floor DY. A, joist; B, header; C, bridging; D, flooring; E, ceiling; F, splice strip; G, splice strip; H, half splines.

[25]

site end of the specimen from the joint in the flooring.

Splice strips.—Splice strips, F and G, were Douglas fir plywood, moisture-resistant type, $\frac{3}{8}$ in. thick, 4 in. wide, and $10\frac{3}{8}$ and $10\frac{5}{8}$ in. long. The strips were placed symmetrically over a line of bridging, which had been cut back $\frac{3}{8}$ in. Each splice strip was fastened by three 3d box nails, driven through the strip into the bridging. Overlapping edges of flooring and ceiling were fastened by glue. Splice strips, F, joined the flooring pieces and splice strips, G, the ceiling.

Half splines.—Half splines, H, were Douglas fir, 2 / ${}^{3}_{2}$ by 5 ${}^{1}/_{2}$ in. (nominal 1 by 6 in.) 12 ft 6 in. long. The half splines were inserted between the flooring and ceiling after the flooring and ceiling were attached to joists, headers, and bridging. The half splines were fastened in place by 6d box nails driven through the flooring and ceiling and spaced approximately 6 in. apart.

2. TRANSVERSE LOAD

Floor specimen DY-T1 during the transverse-load test is shown in figure 37. The

results of the transverse-load test on floor specimens DY-T1, T2, and T3 are given in table 9, and in figure 38.

 TABLE 9.—Structural properties of floors DY and DYa

 [Weight, based on face area: 4.55 lb/ft²]

Construc- tion symbol	Trans load; 12 ft	sverse span, 0 in.	Concer load; diam,	ntrated disk 1 in.	Impact load; weight of sandbag, 60 lb		
	Speci- men	Maxi- mum load	Speci- men	Maxi- mum load	Speci- men	Maxi- mum load	
		lb/ft ²		lb		ft	
	T_1	329	P1	₽ 1,000	11	» 10.0	
DY	T_2	348	P2	₽ 1,000	12	a 10.0	
	T 3	377	P 3	800	13	a 10.0	
Average.		351				10.0	
	(T1	440					
DYa	T_2	521					
	ТЗ	375			·		
Average.		445					

* Test discontinued. No failure.

FIGURE 37.—Floor specimen DY-T1 during transverse load test.

FIGURE 3S.—Transverse load on floor DY.

Load-deflection (open circles) and load-set (solid circles) results for specimens DY-T1, T2, and T3, on the span 12 ft 0 in. The load (pounds per square foot) is the total load divided by the product of the span and the width of the specimen.

The speed of the movable head of the testing machine was adjusted to 0.21 in./min.

Under the maximum load, specimens T1, T2, and T3 failed in tension at the transverse butt splice in the ceiling plywood as shown in figure 39. Examination after test disclosed a failure in one half spline, horizontal shear failure in four joists, and tensile failure in two joists of T1. Three joists failed by horizontal shear in T2. One half spline and one joist broke in tension, and three joists failed in horizontal shear in T3.

3. Concentrated Load

The results of the concentrated load on specimens DY-P1, P2, and P3 are given in table 9 and in figure 40.

The concentrated load was applied 18 in. from one edge and 18 in. from one end of specimens DY-P1, P2, and P3. Under a load of 800 lb, the plywood cracked in specimen P3. After a load of 1,000 lb had been applied, the set in P1 was 0.033 in.; and in P2, 0.035 in. No other effects were observed.

4. IMPACT LOAD

The results of the impact-load test on specimens DY-I1, I2, and I3 are shown in table 9 and in figure 41.

FIGURE 39.-Failure in butt joint of plywood ceiling of floor specimen DY-T1.

Load-indentation (open circles) and load-set (solid circles) results for specimens DY-P1, P2, and P3.

FIGURE 41.—Impact load on floor DY. Height of drop-deflection (open circles) and height of dropset (solid circles) results for specimens DY-11, 12, and 13, on the span 12 ft 0 in.

FIGURE 42.—Floor DYa.
A, joist; B, header, C, bridging; D, flooring; E, ceiling; F, splice strip; H, half splines; I, blocks;
J, scarf joint of ceiling pieces.

After the 10-ft drop on each specimen, the set in I1 was 0.032 in.; in I2, 0.019 in.; and in I3, 0.019 in. No other effects were observed.

VIII. FLOOR DYa

1. Sponsor's Statement

(a) Description of Specimens

The floor specimens DYa, shown in figure 42, were like floor specimens DY, except that the ceiling pieces were joined with a scarf joint, J, slope 1 in 15, instead of a butt joint, and splice strips, G, were omitted. The joint between the ceiling pieces was made before the ceiling was applied to the framing members. The overlapping surfaces were coated with glue, and subjected to heat and pressure while the glue hardened. Triangular blocks, I, were fastened in the four corners of the frame to strengthen the fastenings at these points.

Blocks.—Blocks, *I*, were Douglas fir, $1\frac{5}{8}$ in. by $1\frac{5}{8}$ in., beveled face, $5\frac{1}{2}$ in. long, fastened with glue and two 3d box nails to each block.

(b) Comments

The floors of a house consist of panels, designed to rest on wood sills or plates, and are joined together by full size wood splines. The flooring may be finished with stain and varnish, or overlaid with hardwood flooring or other suitable flooring material. The ceiling is usually finished with paint.

After the transverse-load tests of the DY specimens had been made, it was pointed out that if there had been scarf joints in the ceiling, the transverse strength would have been greater. The sponsor furnished the DYa specimens having scarf joints to enable the difference in strength to be determined.

2. TRANSVERSE LOAD

The results of the transverse-load test on floor specimens DYa-T1, T2, and T3 are given in table 9 and in figure 43.

The speed of the movable head of the testing machine was adjusted to 0.21 in./min.

Loud noises, probably caused by the failure of the glue joints, were first heard at a load of 360, 240, and 319 lb/ft² for specimens T1, T2, and T3, respectively. Under the maximum load, the bottom faces of specimens T1 and T3 buckled. One spline of specimen T2 failed in tension and one spline of specimen T2 failed in horizontal shear. Examination after test

FIGURE 43.—Transverse load on floor DYa.

Load-deflection (open circles) and load-set (solid circles) results for specimens DYa-T1, T2, and T3, on the span 12 ft 0 in. The load (pounds per square foot) is the total load divided by the product of the span and the width of the specimen.

disclosed separation of top face from the joists in specimens T1, T2, and T3. Three joists failed in compression and the two joists and the other spline failed in tension in T1. The other spline and two joists failed in horizontal shear; two joists failed in tension; and two joists failed in compression in T2. One spline and two joists broke in tension; two joists failed in compression; and one joist failed in horizontal shear in T3.

The scarf joints in the ceiling of T1 and T3 did not fail although the deflection at midspan was 7.9 and 6.0 in. at the time the test was stopped after the maximum load had been reached. When the deflection at midspan was 5 in. in T2 and some time after the maximum load had been reached, the scarf joint failed. There was no failure in the scarf joint for any of these three specimens at the maximum transverse load.

The data of table 9 show that the floor specimens subjected to transverse load that had scarf joints were more than 26 percent stronger than those that had butt joints in the ceiling.

IX ROOF DZ

1. Sponsor's Statement

Roof DZ consisted of lightweight wood joists and solid bridging with plywood as both faces, the faces being fastened by glue. The faces were subjected to a pressure of 86 lb/in.² on the joists, header, and bridging surfaces for a period of 35 minutes, while the glue hardened. To hasten the time of set, the temperature of air surrounding work in the presses was raised to 141° F by panels of infrared light. The specimens were without roofing material and were not painted.

The price of this construction in Washington, D. C. as of July 1937 was \$0.41/ft².

(a) Description of Specimens

The roof specimens DZ, shown in figure 44, were 12 ft 6 in. long, 3 ft 11³/₄ in. wide, and 4¹/₈ in. deep. Each specimen had five joists, A, fastened to headers, B. There were five lines of solid bridging, C, extending between the joists. Sheathing, D, and ceiling, E, each consisted of two pieces of plywood. Joints in the plywood were butt joints, placed over the centers of lines of bridging. Splice strips, F, overlapped the joint in sheathing. Splice strips, G, overlapped the joint in the ceiling. Half splines, II, were inserted between the faces at the sides.

Joists.—The joists, A, were Douglas fir, ${}^{25}_{32}$ by ${}^{31}_{2}$ in. (nominal 1 by 4 in.) 12 ft ${}^{41}_{2}$ in. long, spaced 111% and 113% in. apart as shown in figure 44.

Bridging.—The solid bridging, C, was Douglas fir, ${}^{2}5_{32}$ by ${}^{3}1_{2}$ in. (nominal 1 by 4 in.) 103% and 105% in. long, inserted between the joists in five lines, spaced as shown in figure 44. The bridging was fastened to the joists by 6d box nails. Two nails were driven through the outer joists into the ends of the bridging. Fastenings at the inner joists were made by one nail toenailed through the joists alternating with two nails driven through the joists into the ends of the bridging.

Sheathing.—The sheathing, D, was two pieces of Douglas fir plywood, moisture-resistant type, $\frac{3}{5}$ in. thick and 3 ft 11 $\frac{3}{4}$ in. wide. One piece was 8 ft 0 in. long and the other 4 ft 6 in. long. They were fastened by glue to the joists, headers, and bridging, which had been coated with the glue mixture. There were

FIGURE 44.—Roof DZ. A, joist; B, header; C, bridging; D, sheathing; E, ceiling; F, sheating splice strip; G. ceiling splice strip; H, half spline.

also three 4d finishing nails driven through the sheathing into each header, spaced 1 ft 9 in. apart. The joint was over the center of a line of bridging.

of bridging. *Cciling.*—The ceiling, E, was two pieces of Douglas fir plywood, moisture-resistant type, 1_4 in. thick and 3 ft 113/4 in. wide. One piece was 8 ft 0 in. long and the other 4 ft 6 in. long. They were fastened by glue to the joists, headers, and bridging, which had been coated with the glue mixture. There were also three 4d finishing nails driven through the ceiling into each header, spaced 1 ft 9 in. apart. The joint was over the center of a line of bridging and was placed at the opposite end of the specimen from the joint in the sheathing.

Splice strips.—Splice strips, E, and G, were Douglas fir plywood, moisture-resistant type, $\frac{3}{8}$ in. thick, 4 in. wide, and $10\frac{5}{8}$ in. long. The strips were placed symmetrically over a line of bridging, which had been cut back $\frac{3}{8}$ in. Each splice strip was fastened by three 3d box nails, driven through the block into the bridging. The overlapping edges of sheathing and ceiling were fastened by glue. Splice strips, F, joined the sheathing pieces and splice strips, G, the ceiling.

Half splines.—Half splines. *H*, were Douglas fir, ${}^{25}\!\!/_{32}$ by ${}^{31}\!/_{2}$ in. (nominal 1 by 4 in.) 12 ft 6 in. long. The half splines were inserted between the sheathing and ceiling after the sheathing and ceiling were attached to the joists, headers, and bridging. The half splines were fastened in place by 6d box nails driven through the sheathing and ceiling and spaced 6 in. apart.

2. TRANSVERSE LOAD

The results for the transverse load on roof specimens DZ-T1, T2 and T3, are given in table 10 and in figure 45.

TABLE 10.—Structural properties of roofs DZ and DZa [Weight, based on face area: 3.22 lb/ft²]

Construction symbol	Transverse 12 f	load; sp an , 0 in.	Concentrated load; disk, diam 1 in.			
	Specimen	Maximum load	Specimen	Maximum load		
DZ	$\left\{\begin{array}{c}T1\\T2\\T3\end{array}\right.$	$ \begin{array}{c c} 1b^{-}ft^{2} \\ 155 \\ 173 \\ 140 \end{array} $	P1 P2 P3	10 800 940 800		
Average		156		84.		
DZa	$\left\{\begin{array}{c}T1\\T2\\T3\end{array}\right.$	180 227 220				
Average		209				

FIGURE 45.—Transverse load on roof DZ.

Load-deflection (open circles) and load-set (solid circles) results for specimens DZ-TI, T2, and T3, on the span 12 ft 0 in. The load (pounds per square foot) is the total load divided by the product of the span and the width of the specimen.

The speed of the movable head of the testing machine was adjusted to 0.32 in./min.

Under the maximum load, the transverse joint in the ceiling plywood failed in tension in specimens T1, T2, and T3, as shown in figure 46. In T1, one half spline failed at a knot under the maximum load. After test, examination disclosed horizontal shear failures in all joists of T1. In T2, one half spline failed in tension and in horizontal shear, and three joists failed in horizontal shear. Three joists of T3failed in horizontal shear.

3. Concentrated Load

The results of the concentrated loads on specimens DZ-P1, P3, and P3 are shown in table 10 and in figure 47.

The concentrated load was applied to specimens DZ-P1, P3, and P3, 18 in. from one end and 18 in. from one side. Under the maximum load, the disk punched through the plywood of each specimen. No other effects were observed.

[31]

FIGURE 46.—Failure in butt joint of plywood ceiling of roof specimen DZ-T1.

FIGURE 41.—Concentrated toda on rooj D2. Load-indentation (open circles) and load-set (solid circles) results for specimens DZ-P1, P2, and P3.

X. ROOF DZa

1. Sponsor's Statement

(a) Description of Specimens

The roof specimens DZa, shown in figure 48, were like roof specimens DZ, except that the ceiling pieces were joined with a scarf joint, 1 in 15, instead of a butt joint, and splice strips, G, were omitted. The joint between the ceiling pieces was made before the ceiling was applied to the framing members. The overlapping surfaces were coated with glue and subjected to heat and pressure while the glue hardened.

(b) Comments

For flat-roof construction, the roof panels are similar to the specimens submitted for test. For pitched-roof construction, the ceiling face is omitted. In either case, the panels are joined by continuous plates along the eaves and fullsize wood splines between. The sheathing may be covered by any suitable type of roofing. The ceiling is usually finished with paint.

After the transverse tests of the DZ specimens had been made, it was pointed out that

A, joist; B, header; C, bridging; D, sheathing; E, ceiling; F, sheathing splice strip; H, half splines.

if there had been scarf joints in the inside face of the roof, the transverse strength would have been greater. The sponsor furnished the DZaspecimens having scarf joints to enable the difference in strength to be determined.

2. TRANSVERSE LOAD

The results of the transverse load on roof specimens DZa-T1, T2, and T3 are given in table 10 and in figure 49.

The speed of the movable head of the testing machine was adjusted to 0.032 in./min.

Loud noises, probably caused by the failure of the glue joints, were first heard at a load of 146, 92, and 169 lb/ft^2 for specimens T1a, T2a, and T3a, respectively. Upon release of load of 180 lb/ft², the scarf joint failed and the bottom plywood near the joint buckled in specimen T1a. The bottom plywood of specimen T2a failed in tension at the third point at a load of 217 lb/ft². Under the maximum load, the scarf joint of specimens T2a and T3afailed. Examination after test disclosed a tensile failure in four joists of T1a. One joist failed in horizontal shear and four joists failed in tension in T2a. Four joists and one half spline failed in horizontal shear and one joist and the other half spline broke in tension in T3a.

The average transverse strength of the roof specimens DZa, having scarf plywood ceiling

FIGURE 49.—Transverse load on floor DZa.

Load-deflection (open circles) and load-set (solid circles) results for specimens DZa-T1, T2, and T3, on the span 12 ft 0 in. The load (pounds per square feet) is the total load divided by the product of the span and the width of the specimen.

joints, was 34 percent greater than that of the roof specimens DZ, which had butt plywood ceiling joints.

XI. ADDITIONAL COMMENTS BY SPONSOR

It is estimated that over ten thousand houses have been built from prefabricated panels similar to these specimens as produced by six different manufacturers. The location of these houses extends from coast to coast and is usually within a trucking range of 300 miles from factory. These constructions are designed to be erected on any conventional type of masonry foundation. For pitched roof construction, ceiling panels are similar to floor panels, except that if attic space is not to be used for storage, the flooring face is omitted. Outside walls and roofs or ceilings are usually provided with thermal insulation in the form of a fiber blanket having a vapor-proof paper covering the inside face. A typical section is shown in figure 50.

FIGURE 56.—Typical details of a house assembly having lightweight plywood construction.

PART 2. COMMERCIAL TYPE CONSTRUCTION

I. SPONSOR AND PRODUCT

The specimens were submitted by the Douglas Fir Plywood Association, Tacoma, Wash., and were built by the Pease Woodworking Co., Cincinnati, Ohio, manufacturers of prefabricated houses employing Douglas fir plywood in their products. The constructions consisted of conventional frames with faces of Douglas fir plywood. The outside face was fastened by nails, the inside face by nails and glue. Buildings were designed to be erected on conventional masonry foundations, the wall panels joined by plywood splines.

II. SPECIMENS AND TESTS

The specimens represented walls, and were assigned the following symbols: 4-ft and 8-ft specimens with commercial type construction, EA; 8-ft specimens with blocking between studs, EAa; and 8-ft specimens with diagonal braces, EAb. The individual specimens were assigned the designations listed in table 11.

TABLE 11.—Specimen designations

Element	Con- struc- tion symbol	Specimen designation	Load	Load applied
Wall Do Do Do Do Do Do Do Do Do	EA EA EA EA EA EA EA EA EA EA EA A	C1, C2, C3 T1, T2, T3 P1, P2, P3 P4, P5, F6 T4, T5, F6 T4, T5, T6 T1, 12, T3 T4, 15, 16 R1, R2, R3 R1, R2, R3 R1, R2, K3	Compressive. Transverse. Concentrated Transverse Impacta do. Racking dodo.	Upper end Inside face. Do. Outsid: face. Do. Inside face. Near upper end. Do. Do.

The concentrated and impact loads were applied to the same specimen, impact loads first.

Because there was no reason to believe that the continuous girts, blocks, or diagonal braces between the stude affected the compressive, transverse, concentrated, or impact strength of the wall specimens, the specimens EAa and EAb were subjected only to racking load.

The specimens were tested in accordance with BMS2 with the same exceptions mentioned in Part 1.

III. MATERIALS

Information on the materials was obtained from the sponsor and by inspection of the specimens, except that the Forest Products Laboratory assisted by identifying the species of wood, and the Engineering Mechanics Section of the National Bureau of Standards assisted by determining the moisture content of the wood.

1. Wood

(a) Framing

The wood for the framing was Douglas fir, except in compressive specimen, C2, and racking specimens EA-R1, R2, and R3, where the species of wood was hemlock, common No. 1 or better, S4S, (surfaced four sides), in the following sizes:

 2 ₃₂ by 2½ in. (nominal 1 by 3 in.) 1½ by 3½ in. (nominal 2 by 4 in.)

(b) Plywood

Douglas fir, $\frac{1}{4}$ and $\frac{5}{16}$ in., bonded with water-resistant protein glue having a soya-bean and casein base. The $\frac{1}{4}$ -in. plywood was 3-ply, wallboard grade, sanded, and complied with Douglas Fir Plywood Association "Plywall." The $\frac{5}{16}$ -in. plywood was 3-ply, sheathing grade, and complied with Douglas Fir Plywood Association "Plyscord." All Plywood complied with Commercial Standard CS45-42.

After each specimen was tested, the inside face was removed to expose the framing, and samples of framing and plywood were cut for identification of species. Figures 51 to 54 are typical specimens.

FIGURE 51.—Wall EA. Typical 4-foot specimen. [35]

Samples of plywood and framing were taken from each specimen on the day the specimen was tested; they were weighed and then dried to constant weight in an oven at 212° F. The moisture content, given in table 12, was calculated on the oven-dry weight.

TABLE 12.—Moisture content of the wood [Determined on the day wall specimen was tested]

	Moisture content					
Wood	Minimum	Maximum	Average			
Framing Bevel siding Douglas fir plywood, ¼-in. Douglas fir plywood, 5/16-in.	10 8 7 7	13 10 10 10	11 9 9 8			

(c) Furring

Furring was wood lath, $\frac{3}{8}$ by $1\frac{1}{2}$ in., in 4-ft 0-in. lengths, true fir, rough.

(d) Bevel Siding

Bevel siding was hemlock, except for compressive specimen, C2, and racking specimen, *EAa-R1*, where the species of wood was true fir, select, grade C or better, $\frac{7}{16}$ by $\frac{3}{16}$ by $7\frac{1}{4}$ in.

2. Sheathing Paper

Sheathing paper was "Slaters Felt," bituminous-saturated felt-paper base, weight 25 lb/ 500 ft^2 , width 30-in.

3. NAILS

All the nails were steel wire nails and are described in table 13.

TABLE 13.—Description of nails

Туре	Size	Length	Steel wire gage	Di- ameter	Finish	Nails per pound
Box Do Do	Penny 5 6 8	in. 134 2 23/8	No. 14 12 ¹ /2 12 ¹ /2	$in. \\ 0.080 \\ .0985 \\ .0985$	Bright Cement	406 236 186
Common Finishing Lath	12 3 3	$3\frac{1}{4}$ $1\frac{1}{4}$ $1\frac{1}{4}$	$9 \\ 15\frac{1}{12} \\ 14$	$.1483 \\ .0673 \\ .080$	Bright_ do	63 807 568

FIGURE 52.—Wall EA. Typical 8-foot specimen.

[36]

FIGURE 53.—Wall EAa. Typical 8-foot specimen.

FIGURE 54.—Wall EAb. Typical S-foot specimen.

[37]

4. Staples

Tacker staples, formed of sheet steel, No. 25 U. S. Standard Gage (0.0214 in. thick), 0.05 in. wide; staple $\frac{7}{6}$ in. wide, $\frac{5}{16}$ in. long, coated with copper film.

Tacker staples, formed of sheet steel, No. 26 U. S. Standard Gage (0.0187 in. thick), 0.05 in. wide; staple $\frac{7}{16}$ in. wide, $\frac{1}{2}$ in. long, coated with copper film.

5. GLUE

Casein glue, grade A, ground. Formula: Casein, 65 percent; lime, 15 percent; and dispersing agents and undisclosed ingredients, 20 percent. I. P. Laucks, Inc., "Lauxein 888."

6. PAINT

The formula for the interior primer is given in table 14.

TABLE 14.—Formula for interior primer [Pigment 59 percent, vehicle 41 percent, by weight]

Pigment		Vehicle		
Ingredient	Content, by weight	Ingredient	Content, by weight	
Lithopone Calcium carbonate	Percent 90 10	Spar varnish ^a Bodied oil Mineral spirits	Percent 39 4 57	

* Nonvolatile 50 percent.

IV. WALL EA

1. Sponsor's Statement

Wall *E.1* was a conventional wood frame with plywood on both faces. The outside face was covered with bevel siding over furring strips, so that enclosed air spaces were formed, providing thermal insulation. The outside face was fastened with nails, and the inside face with nails and glue. The inside face was coated with a paint primer to provide a vapor barrier.

FIGURE 56.—Details of outer stud of wall specimen EA.
A, Stud; K, dimension lumber; L, spline; M, block.

[38]

The price of this construction in Washington, D. C. as of July 1937 was 0.26/ft².

(a) Four-Foot Wall Specimens

The 4-ft wall specimens shown in figure 55 were 8 ft 0 in. high, 4 ft 0 in. wide, and 5¹/₄ in. thick. Each was a wood frame to which the faces were fastened. The frame consisted of four studs; two prefabricated outer studs, A, and two inner studs, B, fastened to a floor plate, C, and a top plate, D, by nails. There were two lines of continuous girts, E, extending between the outer studs along the inside face, and let into the inner studs. The outside face consisted of one piece of plywood sheathing, F, sheathing paper, G, furring, H, and bevel siding, I. The inside face, J, was one piece of plywood, coated with paint.

Studs.—The outer studs, A, shown in figure 56, were prefabricated members placed at the sides of the specimens, each consisting of two pieces of dimension lumber, K, 15% by 35% in. (nominal 2 by 4 in.) 7 ft 71% in. long, two plywood splines, L, and three plywood strips, M.

Plywood splines, L, were each one piece of Douglas fir plywood, moisture-resistant type, $\frac{5}{16}$ in. thick, 3 ft 0 in. long, and 5 in. wide, fastened by glue and nails between the two pieces of dimension lumber.

Plywood strips, M, were each one piece of Douglas fir plywood, moisture-resistant type, $\frac{5}{16}$ in. thick, 3 in. long, and $\frac{11}{2}$ in. wide, fastened by glue and nails between the two pieces of dimension lumber.

The two pieces of dimension lumber with the splines and strips between were fastened together by glue and twelve 12d common nails driven through the pieces of dimension lumber, splines and strips, three nails to each spline and two to each strip.

Each stud was fastened to the floor and top plates by four 12d common nails driven through the plates into the stud ends.

Inner studs, B, were dimension lumber, 15% by 35% in. (nominal 2 by 4 in.) 7 ft 74% in. long, spaced 1 ft 4 in. on centers. Each stud was fastened to the floor and top plates by two 12d common nails driven through the plates into the stud ends.

Plates.—The floor plate, C, was dimension lumber, 15% by 35% in. (nominal 2 by 4 in.) 4 ft 0 in. long.

The top plate, D, was two pieces of dimension lumber, 15/8 by 35/8 in. (nominal 2 by 4 in.) 4 ft 0 in. long, fastened by 12d common nails driven through the plates into the stud ends. There were two nails driven into the inner studs. The number of nails in the outer studs varied from two to four.

Sheathing.—The sheathing, F, was one piece of Douglas fir plywood, moisture-resistant type, 5_{16} in. thick, 8 ft 0 in. long, and 4 ft 0 in. wide, fastened by 8d box nails to the framing members. The nails were spaced approximately $4\frac{1}{2}$ in. apart along the plates, 6 in. along the outer studs, and $9\frac{1}{2}$ in. along the inner studs.

Sheathing paper.—Sheathing paper, G, was laid longitudinally over the sheathing, and consisted of two sheets 30 in. wide, lapped 12 in. The paper was fastened by a few scattered tacker staples near the corners of the sheets.

Furring.—Furring, H, was strips of wood lath, $\frac{3}{8}$ by $\frac{1}{2}$ in., laid along the plates and studs, fastened by 3d lath nails, spaced 12 in. apart.

Bevel siding.—The bevel siding, I, was 15 pieces of wood siding, 7_{16} by $3'_{16}$ by $7'_{14}$ in., 4 ft 0 in. long, laid $63_{\%}$ in. to the weather, except in the case of one specimen, where there were three courses with vertical joints, the joints centered over inner studs. The siding was fastened by 8d box nails driven through the overlapping edges, one nail at each stud, except at vertical joints, where there was a nail at each side of the joint.

Inside face.—The inside face, J, was one piece of Douglas fir plywood, moisture-resistant type, $\frac{1}{4}$ in. thick, 8 ft 0 in. long, and 4 ft 0 in. wide, fastened by glue and 3d finishing nails to the framing members. The glue mixture was applied to the outer studs, top plate, and girts. The nails were spaced $\frac{41}{2}$ in. apart along the plates and girts and 6 in. along the studs.

(b) Eight-Foot Wall Specimens

The 8-ft wall specimens, shown in figure 57, were 8 ft 0 in. high, 7 ft $113/_4$ in. wide, and $51/_4$ in. thick. The specimens were similar to the 4-ft specimens except for the following: There were five inner studs; the plates were 7 ft $113/_4$ in. long; the girts 7 ft $41/_2$ in. long; the sheathing was two pieces 3 ft $117/_8$ in. wide with a vertical joint over the center stud; the sheathing paper was four sheets, lapped 8 in.; bevel siding was 7 ft $113/_4$ in. long, the inside face three pieces, the middle piece 4 ft 0 in. wide, the outer pieces 1 ft 117_8 in. wide; vertical joints were butted joints lapped by splice strips, N.

Splice strips.—Splice strips, N, were Douglas fir plywood, moisture-resistant type, $\frac{1}{4}$ in. thick, $2\frac{1}{4}$ in. wide, back of vertical joints in inside face between girts and between girts and plates. Strips were fastened by glue and tacker staples. Staples were spaced irregularly, approximately twenty along each joint.

2. LABORATORY STATEMENT

In previously published Building Materials and Structures Reports on the structural properties of wall construction, the 4-ft and the 8-ft specimens have been of identical construction except as to specimen width. For these EAwalls, however, the 8-ft specimens do not have the prefabricated outer studs spaced 4 ft apart to correspond to the 4-ft specimens. It is, therefore, probable that the compressive and transverse strengths of walls built in 8-ft or longer widths will be smaller than the reported strengths of the 4-ft wall specimens EA.

3. Compressive Load

The results of compressive load on wall specimens EA-C1, C2, and C3, are shown in table 15 and figures 58 and 59.

FIGURE 57.—Eight-foot wall specimen EA.

A, Prefabricated outer stud; B, inner stud; C, floor plate; D, top plate; E, girt; F, plywood sheathing; G, sheathing paper; II, furring; I, bevel siding; J, inside face; N, splice strip.

TABLE 15.—Structural properties of walls EA, EAa, and EAb

Construction symbol	Compres	sive load ^a	Transve span, 7	erse load; ft 6 in.	Concentr disk, d	ated load; iam 1 in.	1mpact l 7 ft 6 in. 60	oad; span. ; sandbag, lb	Rackin	ing load	
	Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load	Specimen	Maximum load	
EA	$\left\{\begin{array}{c} C1\\ C2\\ C3\end{array}\right.$	<i>Kips/ft</i> ^b 9.50 7.87 9.00	T1 T2 T3	$\begin{array}{c} lb/ft^2 \\ 300 \\ 361 \\ 393 \end{array}$	P1 P2 P3	$lb \\ 600 \\ 489 \\ 470$	I1 I2 I3	ft °10.0 °10.0 d10.0	R1 R2 R3	Kips/ft ^b 2.54 2.52 2.14	
Average		8.79		351		520		10.0		e2.40	
EA	·		$\left\{\begin{array}{c} T4\\ T5\\ T6\end{array}\right.$	$ \begin{array}{r} 294 \\ 217 \\ 326 \end{array} $	P4 P5 P6	$766 \\ 489 \\ 595$	14 15 16	c10.0 c10.0 c10.0			
Average				279		617		10.0			
EAa									$\left\{\begin{array}{c} R1\\ R2\\ R3\end{array}\right.$	1.78 1.77 1.88	
Average					-					e1.81	
EAb									$\left\{\begin{array}{c} R1\\ R2\\ R3\end{array}\right.$	1.60 1.81 1.82	
Average										°1.74	

[Weight, based on face area: EA, 5.23 lb/ft²; EAa, 4.94 lb/ft²; EAb, 5.04 lb/ft²]

Load applied 1.37 in. (13 the effective thickness of the panel) from the inside face.
A kip is 1,000 lb.
Test discontinued. Specimen damaged.
d Test discontinued. No visible damage.
Each group of racking specimens, EA, EAa, and EAb, differed greatly from the other groups in the extent and distribution of the glued surfaces of the inner plywood face.

The compressive loads were applied 1.37 in. (one-third the effective thickness of the panel) from the inside face of the panel.

The shortenings and sets shown in figure 58 for a height of 8 ft were obtained from the compressometer readings. The compressometers were attached to the plates through which the load was applied. The gage length was 8 ft. The lateral deflections plotted in figure 59 are deflections toward the outside face of the wall.

The speed of the movable head of the testing machine was adjusted to 0.072 in./min.

Under the maximum load, the top plate crushed locally at the inside edges of the studs.

Under the maximum load, the inside plywood separated from the studs near the top of specimen C1. The inside face buckled. At a load of 7.0 kips/ft, the inside plywood of C2 buckled and separated from the stude at the top. Under the maximum load, the top plate split. The inside plywood of C3 separated from the top plate at a load of 7.0 kips/ft and buckled at a load of 8.41 kips/ft. The top plates crushed at a load of 8.0 kips/ft. Examination after test disclosed a horizontal shear failure in one stud of C2.

4. TRANSVERSE LOAD

The results of the transverse-load test are shown in table 15 and in figure 60 for wall specimens EA-T1, T2, and T3, loaded on the inside face, and in figure 61 for specimens EA-T4, T5, and T6, loaded on the outside face.

The speed of the movable head of the testing machine was adjusted to 0.12 in./min.

The transverse loads were applied to the inside face of specimens EA-T1, T2, and T3. For specimens T1, T2, and T3, respectively, the inside face began to buckle between the loading rollers at a load of 160, 100, and 200 lb/ft², and loud noises, probably caused by the failure of the glue joints, were first heard at a load of 95, 140, and 373 lb/ft². At a load of 341 lb/ft², one outer stud failed in tension, and the inside plywood crushed near the tensile failure of the stud in specimen T2. Under the maximum load, the inside face of T1 separated from the top and bottom plates, and one outer stud of $T\hat{3}$ failed both in tension and horizontal shear. Examination of the specimens after test disclosed tensile failures in three studs and horizontal shear failures in two studs of T1. Four studs broke in tension, two studs failed in compression, and two studs had horizontal shear

[41]

failures in specimen T2. Two studs failed in tension, and three studs developed horizontal shear failures in T3.

The transverse loads were applied to the outside face of specimens EA-T4, T5, and T6. For specimens T4, T5, and T6, respectively, loud noises, probably caused by the failure of glue joints, were first heard at a load of 128, 180, and 247 lb/ft^2 and the inside face began to buckle at a load of 233, 200, and 287 lb/ft^2 . In specimen T_4 , one outer stud failed in horizontal shear under a loading roller at a load of 283 lb/ft². In T6, the inside face broke in tension at a load of 271 lb/ft². Under the maximum load, another outer stud failed in tension in T_4 . Examination after test disclosed three studs broken in tension and two studs with horizontal shear failures in specimen T4. Three studs failed in tension and one stud failed by horizontal shear in T5. Horizontal shear failures were present in four studs, and tensile failures occurred in two studes of T6.

5. Concentrated Load

Wall specimen EA-P4 under concentrated load is shown in figure 1.

The results of the concentrated-load test are shown in table 15 and in figure 62 for wall specimens EA-P1, P2, and P3, loaded on the inside face, and in figure 63 for wall specimens EA-P4, P5, and P6, loaded on the outside face.

The concentrated load was applied to specimens EA-P1, P2, and P3 midway between two of the studs and 1 ft 4 in. from one end. Each of the specimens EA-P1, P2, and P3 failed by the disk punching through the plywood.

The concentrated load was applied to specimens EA-P4, P5, and P6 midway between two of the studs and 1 ft 4 in. from one end. Specimens EA-P4, P5, and P6, respectively, developed a transverse crack under the loading disk at a load of 354, 281, and 400 lb. Each of the specimens failed by the disk punching through the siding.

FIGURE 59.—Compressive load on wall EA.

Load-lateral deflection (open circles) and load-lateral set (solid circles) results for specimens EA-CI, C2, and C3. The load was applied 1.37 in. (one-third of the effective thickness of the panel) from the inside face. The loads are in kips per foot of actual width of specimen. The deflections and sets are for a gage length of 7 ft 6 in., the gage length of the deflectometer.

[42]

6. IMPACT LOAD

The results of the impact-load test are given in table 15 and in figure 64 for specimens EA-II, I2, and I3, loaded on the inside face, and in figure 65 for specimens EA-I4, I5, and I6, loaded on the outside face.

The impact loads were applied to the inside face of specimens 11, 12, and 13, the sandbag striking the center of the specimen midway between two studs. After a 21/2-ft drop, the plywood of the inside (loaded) face of 11 developed a longitudinal crack from the point of impact of the sandbag to the top of the panel. A longitudinal split in the inside (loaded) face over a stud at midspan developed in specimens I1 and I2, respectively, at a height-of-drop of 51/2 ft and 61/2 ft. The deflection was 1.20 and 1.35 in. The sandbag broke through the inside face of I1 at a height-ofdrop of 6 ft and broke through the inside face of I2 at a height-of-drop of 7 ft. The deflection of I1 was 1.21 in. and of I2, 1.35 in. At a height-of-drop of 7½ ft, the outside plywood

separated from the stude of I_1 near the point of impact. The deflection was 2.07 in.

After the 10-ft drop, the set in I3 was 0.076 in. The set readings of I1 and I2 were discontinued after the 6-ft drop because the failure of the inside face released the plywood from the studs.

The impact loads were applied to the outside face of specimens I_4 , I_5 , and I_6 , the sandbag striking the siding at the center of the specimen midway between two studs. After a 6-ft drop, the siding of I4 under the sandbag developed a crack. The deflection was 1.59 in. The siding of I4 adjacent to the sandbag broke under a drop of 9 ft. The deflection was 2.05 in. In specimen I5, the siding above the impact area developed a crack at a 4-ft drop; the siding struck by the bag broke at a 6-ft drop; and the siding below the impact area (toward the bottom of the wall) failed at a 7-ft drop. The deflections were, respectively, 1.26 in., 1.53 in., and 1.70 in. In specimen 16, the siding struck by the bag developed a crack at a $2\frac{1}{2}$ -ft drop;

FIGURE 60.—Transverse load on wall EA, load applied to inside face.

Load-deflection (open circles) and load-set (solid circles) results for specimens EA-T1, T2, and T3 on the span 7 ft 6 in. The load (pounds per square foot) is the total load divided by the product of the span and the width of the specimen.

FIGURE 61.—Transverse load on wall EA, load applied to outside face.

Load-deflection (open circles) and load-set (solid circles) results for specimens EA-T4, T5, and T6 on the span 7 ft 6 in. The load (pounds per square foot) is the total load divided by the product of the span and the width of the specimen.

the siding above the bag broke at a $3\frac{1}{2}$ -ft drop; and after the 10-ft drop, the three pieces of siding at midheight of the specimen were badly broken. The deflection after the $2\frac{1}{2}$ -ft drop

FIGURE 62.—Concentrated load on wall EA, load applied to inside face.

FIGURE 63.—Concentrated load on wall EA, load applied to the outside face.

Load-indentation (open circles) and load-set (solid circles) results for specimens EA-P4, P5, and P6. was 0.78 in.; after the 3½-ft drop, 0.98 in.; and after the 10-ft drop, 2.00 in.

After the 10-ft drop, the set in I5 was 0.513 in. The set readings of I4 and I6 were discontinued at height-of-drops of 9 ft and $4\frac{1}{2}$ ft. respectively, because of failure of the siding.

7. RACKING LOAD

The results of the racking-load test are given in table 15 and in figure 66 for specimens EA-R1, R2, and R3.

The racking loads were applied to the top plate, and the stop was in contact with the bottom plate at the diagonally opposite corner of the specimen. The inside plywood broke from the lower plate near the stop at a load of 1.40 kips/ft for specimen R3 and of 1.60 kips/ft for specimens R1 and R2. There was a gradual relative vertical displacement of the edges of the two pieces of plywood on the outside face as the load increased. At the maximum load, the inside plywood was nearly entirely separated from the framing and the angular displacement of the joints between the plates, and the studs became so great that the joints were broken and the specimen failed.

FIGURE 64.—Impact load on wall EA, load applied to inside face.

Height of drop-deflection (open circles) and height of dropset (solid circles) results for specimens EA-II, I2, and I3 on the span 7 ft 6 in.

[44]

FIGURE 65.—Impact load on wall EA, load applied to outside face.

Height of drop-deflection (open circles) and height of dropset (solid circles) results for specimens EA-I4, I5, and I6on the span 7 ft 6 in.

V. WALL EAa

1. Sponsor's Statement

(a) Description of Specimens

The 8-ft wall specimens, shown in figure 67, were 8 ft 0 in. high, 7 ft 113/4 in. wide, and 51/4 in. thick. The specimens were like the 8-ft wall specimens, EA, except for the following: girts, E, were omitted; one line of blocks, O, was extended between the studs at midheight; and glue was applied only to the blocks and to the top plate.

Blocks.—Blocks, O, were dimension lumber, 15% by 35% in. (nominal 2 by 4 in.) 1 ft 23% in. long, inserted between the studs in a line at midheight of the specimen. The blocks were fastened to the studs by 12d common nails. Two nails were toenailed into the studs alternating with two nails driven through the studs into the ends of the blocks.

2. RACKING LOAD

The results of the racking-load tests are given in table 15 and in figure 68 for specimens EAa-R1, R2, and R3.

FIGURE 66.—Racking load on wall EA.

Load-deformation (open circles) and load-set (solid circles) results for specimens EA-R1, R2, and R3. The loads are in kips per foot of actual width of specimen.

The racking loads were applied to the top plate, and the stop was in contact with the bottom plate at the diagonally opposite corner of the specimen. The inside plywood broke from the lower plate near the stop at a load of 0.80 kips/ft for specimen R1, and of 1.40 kips/ft for specimens R2 and R3. The final failure was similar to that of the 8-ft specimens, EA.

VI. WALL EAb

1. Sponsor's Statement

(a) Description of Specimens

The 8-ft wall specimens, shown in figure 69, were 8 ft 0 in. high, 7 ft $113/_4$ in. wide, and $51/_4$ in. thick. The specimens were like the 8-ft wall specimens, EA, except for the following: girts, E, were omitted; two diagonal braces, P, were let into the studs on half the width of the specimen; and glue was applied only to the top plate.

Braces.—Diagonal braces, P, were dimension lumber, 15/8 by 35/8 in. (nominal 2 by 4 in.) 5 ft 7 in. long, let into the studs and plates at the outside face, and extending from the center of the plates to midheight of one outer stud. The braces were fastened by 12d common nails, driven through the braces into the studs and plates, two nails at each bearing.

(b) Comments

The outside walls of a house consist of panels similar to the specimens. except that the width of panels usually corresponds to the side of a room, and joints are at intersections with partition panels. Wall and partition panels rest on the floor, and are joined together by means of full-size plywood splines, which extend from the outer stud of one panel into the open slot in the outer stud of the adjacent panel. The spline is fastened by nails through the stud.

Sheathing paper, furring, and siding are applied in the field, after the panels are in place. Openings for doors and windows are provided when fabricating the panels. Frames,

FIGURE 67.-Eight-foot wall specimen EAa.

A, Prefabricated outer stud; B, inner stud; C, floor plate; D, top plate; F, plywood sheathing; G, sheathing paper; H, furring; I, bevel siding; J, inside face; N, splice strip; O, block.

sash, and doors are applied in the field. The outside and inside surfaces of this construction are usually finished with paint.

2. RACKING LOAD

The results of the racking-load tests are given in table 15 and in figure 70 for specimens EAb-R1, R2, and R3.

The racking loads were applied to the top plate, and the stop was in contact with the bottom plate at the diagonally opposite corner of the specimen. The inside plywood broke from the lower plate near the stop at the load of 1.20 kips/ft for specimen R2, of 1.40 kips/ft for specimen R1, and of 1.60 kips/ft for specimen R3. The final failure was similar to that of the 8-ft specimens, EA.

VII. ADDITIONAL COMMENTS BY SPONSOR

It is estimated that over five thousand houses have been assembled from prefabricated panels similar to these specimens, as produced by twelve different manufacturers. The location of these houses is largely in the middle west.

These constructions are designed to be erected on any conventional type of masonry

foundation. Floors are designed to rest on wood sills or plates, and consist of precut joists and prefabricated floor panels overlaid with sheathing paper, plywood subflooring, and finished floor. The floor panels are usually room length (10, 12, 14, 16, and 18 ft) by 4 ft 0 in. wide, and are fastened to the joists by means of nailing strips resting against the sides of the joists.

Partition panels are similar to wall panels except that both faces are like the inside face of the wall panels.

Ceilings consist of precut joists and prefabricated ceiling panels of plywood. The ceiling panels are usually 8 ft 0 in. wide and are fastened to the joists by nailing strips.

Roofs consist of precut rafters, plywood sheathing, and any suitable type of roofing. A typical section, having EA walls, is shown in figure 71.

FIGURE 69.—Eight-foot wall specimen EAb. P, Diagonal brace.

FIGURE 71.—Typical details of a two-story house assembly having EA walls.

The descriptions and drawings were prepared by E. J. Schell and G. W. Shaw, of the Building Practices and Specifications Section, under the supervision of V. B. Phelan.

The structural properties were determined by the Engineering Mechanics Section, under the supervision of A. H. Stang, with the assistance of the following members of the professional staff: M. Greenspan, Richard W. Smith, and L. R. Sweetman.

WASHINGTON, June 6, 1944.

☆ U. S. Government Printing Office : 1945—659430

·

BUILDING MATERIALS AND STRUCTURES REPORTS

[Continued from cover page π]

BMS32	Structural Properties of Two Brick-Concrete-Block Wall Constructions and a Concrete-	
	Block Wall Construction Sponsored by the National Congrate Masonry Association	104
PROMO	Biastic Colline Material	100
BM 222	Plastic Calking Materials	_19¢
BMS34	Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 1	10¢
BMS35	Stability of Sheathing Papers as Determined by Accelerated Aging	10%
DMS26	Structural Properties of Wood Promo Wall Dertition Floor and Poof Constructions	Τ Οψ
DIGOU	Structural Troperties of Wood-Frame wan, Tartition, Floor, and Root Constructions	
	with "Red Stripe" Lath Sponsored by The Weston Paper and Manufacturing Co.	-10¢
BMS37	Structural Properties of "Palisade Homes" Constructions for Walls, Partitions, and	
	Floors Sponsored by Palisade Homes	104
D1/000	There is a point of the state in the state of the state o	10¢
BW 238	Structural Properties of Two "Dunstone" wall Constructions Sponsored by the W. E.	
	Dunn Manufacturing Co	10¢
BMS39	Structural Properties of a Wall Construction of "Pfoifer Units" Sponsored by the Wis-	¥
DALOU	Structure in Sperice of a man construction of Frence onits Sponsored by the wis-	
	constin Units Co	10¢
BMS40	Structural Properties of a Wall Construction of "Knap Concrete Wall Units" Sponsored	
	hy Knap America Inc	104
DMS41	Effect of Heating and Cooling on the Dermonbility of Maconyr Wells	1 = 1
DMGH	Effect of freating and Cooling on the Fermeability of Masonry Walls	(*)
BMS42	Structural Properties of Wood-Frame Wall and Partition Constructions with "Celotex"	
	Insulating Boards Sponsored by The Celotex Corporation	154
RMS43	Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 2	104
DMDH	Terformance fest of Floor Coverings for Ose in Dow-Cost Housing, Fait 2	100
BMS44	Surface Treatment of Steel Prior to Painting	_10¢
BMS45	Air Infiltration Through Windows	15¢
BMS46	Structural Properties of "Scot-Bilt" Prefabricated Sheet-Steel Constructions for Walls	r
1011010	Floor and Doof Spongard by The Clobe Wernielte Co	104
	Floors, and Roots Sponsored by The Globe-Wernicke Co	TUĆ
BMS47	Structural Properties of Prefabricated Wood-Frame Constructions for Walls, Parti-	
	tions, and Floors Sponsored by American Houses, Inc	10¢
BMS48	Structural Properties of "Precision-Built" Frame Wall and Partition Constructions	
DILIDIO	Surgeonal by the Imagente On	101
	Sponsored by the Homasote Co	10¢
BMS49	Metallic Roofing for Low-Cost House Construction	-10¢
BMS50	Stability of Fiber Building Boards as Determined by Accelerated Aging	100
DMS51	Structural Properties of "Tilgerate Type A" Floor Construction Spansored by the	
DWODT	Structural Properties of Theorete Type A Floor Construction Sponsored by the	10.
	Theorete Co.	TOĜ
BMS52	Effect of Ceiling Insulation Upon Summer Comfort	10¢
BMS53	Structural Properties of a Masonry Wall Construction of "Munlock Dry Wall Brick"	
DIALOOD	Structure respectives of a fundation of the state of the	104
	sponsored by the Mullock Engineering Co	100
BMS54	Effect of Soot on the Rating of an Oil-Fired Heating Boiler	10¢
BMS55	Effects of Wetting and Drying on the Permeability of Masonry Walls	10¢
BMS56	A Survey of Humidities in Residences	104
DMS57	Positing in the United States Decults of a Ausstionnaire	(*)
DMS91	Rooming in the United States—Results of a Questionnante	10
BWS28	Strength of Soft-Soldered Joints in Copper Tubing	10¢
BMS59	Properties of Adhesives for Floor Coverings	10¢
BMS60	Strength Absorption and Resistance to Laboratory Freezing and Thawing of Building	•
10000	Brieks Drodueed in the United States	154
-	Differs i founded in the Onited States.	100
BMS61	Structural Properties of Two Nonreinforced Monolithic Concrete wall Constructions.	10¢
BMS62	Structural Properties of a Precast Joist Concrete Floor Construction Sponsored by the	
	Portland Cement Association	104
DMSCO	Mainture Condengation in Building Walls	104
BM305	Molsture Condensation in Dunding wans.	100
BMS64	Solar Heating of various Surfaces	10¢
BMS65	Methods of Estimating Loads in Plumbing Systems	10¢
BMS66	Plumbing Manual	200
BMS67	Structural Properties of "Mu-Steel" Prefabricated Sheet-Steel Constructions for Walls	Ŷ
DUISOI	bututural repetites of musicer recard tated between constructions for wans,	15.
	Partitions, Floors, and Roors Sponsored by Herman A. Mugler	196
BMS68	Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 3	15 c
BMS69	Stability of Fiber Sheathing Boards as Determined by Accelerated Aging	10¢
DMS70	Achielt Bronorod Boll Boofings and Shingles	154
DMSTU	Asphalt'i repared for a set Matel Barmed Dopt'	200
BWSU	Fire Tests of wood- and Metal-Framed Partitions.	20¢.
BMS72	Structural Properties of "Precision-Built, Jr." Prefabricated Wood-Frame Wall Con-	
	struction Sponsored by the Homasote Co	10¢
DMS79	Indeptation Characteristics of Floor Coverings	104
BMS13	Indentation Characteristics of Plot Coverings	1 0ų.
BMS74	structural and Heat-Transfer Properties of "U. S. S. Panelont" Pretaoricated Sneet-	
	Steel Constructions for Walls, Partitions, and Roofs Sponsored by the Tennessee	
		151
DMORE	Coal Iron & Bailroad Co.	TOG
	Coal, Iron & Railroad Co	15¢
DMSID	Coal, Iron & Railroad Co Survey of Roofing Materials in the North Central States.	15¢
BMS76	Coal, Iron & Railroad Co Survey of Roofing Materials in the North Central States Effect of Outdoor Exposure on the Water Permeability of Masonry Walls	15ϕ 15ϕ 15ϕ
BMS76 BMS77	Coal, Iron & Railroad Co Survey of Roofing Materials in the North Central States Effect of Outdoor Exposure on the Water Permeability of Masonry Walls Pronerties and Performance of Fiber Tile Boards	15c 15c 15c 15c 10c
BMS76 BMS77 BMS78	Coal, Iron & Railroad Co Survey of Roofing Materials in the North Central States Effect of Outdoor Exposure on the Water Permeability of Masonry Walls Properties and Performance of Fiber Tile Boards Structural Heat-Transfer, and Water-Permeability Properties of Five Earth-Wall	$15\phi \\ 15\phi \\ 15\phi \\ 10\phi$
BMS76 BMS77 BMS78	Coal, Iron & Railroad Co Survey of Roofing Materials in the North Central States Effect of Outdoor Exposure on the Water Permeability of Masonry Walls Properties and Performance of Fiber Tile Boards Structural, Heat-Transfer, and Water-Permeability Properties of Five Earth-Wall	15¢ 15¢ 15¢ 10¢
BMS75 BMS76 BMS77 BMS78	Coal, Iron & Railroad Co. Survey of Roofing Materials in the North Central States. Effect of Outdoor Exposure on the Water Permeability of Masonry Walls Properties and Performance of Fiber Tile Boards Structural, Heat-Transfer, and Water-Permeability Properties of Five Earth-Wall Constructions	15ϕ 15ϕ 15ϕ 10ϕ 20ϕ

[List continued on cover page IV]

* Out of print.

BUILDING MATERIALS AND STRUCTURES REPORTS

[Continued from cover page III]

BMS80	Performance Test of Floor Coverings for Use in Low-Cost Housing: Part 4	15¢
BMS81	Field Inspectors' Check List for Building Construction (cloth cover, 5 by 7½ inches)	20¢
BMS82	Water Permeability of Walls Built of Masonry Units	20¢
BMS83	Strength of Sleeve Joints in Copper Tubing Made With Various Lead-Base Solders	10¢
BMS84	Survey of Roofing Materials in the South Central States	15¢
BMS85	Dimensional Changes of Floor Coverings with Changes in Relative Humidity and	
	Temperature	10¢
BMS86	Structural, Heat-Transfer, and Water-Permeability Properties of "Speedbrik" Wall	
	Construction Sponsored by the General Shale Products Corporation	15¢
BMS87	A Method for Developing Specifications for Building Construction-Report of Subcom-	
	mittee on Specifications of the Central Housing Committee on Research, Design,	
	and Construction	10¢
BMS88	Recommended Building Code Requirements for New Dwelling Construction with Special	· · ·
	Reference to War Housing	20¢
BMS89	Structural Properties of "Precision-Built, Jr." (Second Construction) Prefabricated	
	Wood-Frame Wall Construction Sponsored by the Homasote Co	15¢
BMS90	Structural Properties of "PHC" Prefabricated Wood-Frame Constructions for Walls.	- 4
	Floors, and Roofs Sponsored by the PHC Housing Corporation	15¢
BMS91	A Glossary of Housing Terms	15¢
BMS92	Fire-Resistance Classifications of Building Constructions	25¢
BMS93	Accumulation of Moisture in Walls of Frame Construction During Winter Exposure	10¢
BMS94	Water Permeability and Weathering Resistance of Stucco-Faced, Gunite-Faced, and	
	"Knap Concrete-Unit" Walls	10¢
BMS95	Tests of Cement-Water Paints and Other Waterproofings for Unit-Masonry Walls	15¢
BMS96	Properties of a Porous Concrete of Cement and Uniform-Sized Gravel	100
BMS97	Experimental Dry-Wall Construction With Fiber Insulating Board	100
BMS98	Physical Properties of Terrazzo Aggregates	15¢
BMS99	Structural and Heat-Transfer Properties of "Multiple Box-Girder Plywood Panels"	
	for Walls, Floors, and Roofs	15¢
BMS100	Relative Slipperiness of Floor and Deck Surfaces	100
BMS101	Strength and Resistance to Corrosion of Ties for Cavity Walls	100
BMS102	Painting Steel	10¢
BMS103	Measurements of Heat Losses From Slab Floors	100
BMS104	Structural Properties of Prefabricated Plywood Lightweight Constructions for Walls,	
	Partitions, Floors, and Roofs Sponsored by the Douglas Fir Plywood Association	25¢
BMS105	Paint Manual: With Particular Reference to Federal Specifications (5 by 7½ inches,	
	buckram bound)\$	1.00