Module-Lattice-Based Digital Signature Standard

Category: Computer Security
Subcategory: Cryptography

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900
This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.204.ipd

Published August 24, 2023

U.S. Department of Commerce

Gina M. Raimondo, Secretary
National Institute of Standards and Technology
Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

Foreword

The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology is the official series of publications relating to standards and guidelines developed under 15 U.S.C. $278 \mathrm{~g}-3$, and issued by the Secretary of Commerce under 40 U.S.C. 11331.

Comments concerning this Federal Information Processing Standard publication are welcomed and should be submitted using the contact information in the "Inquiries and comments" clause of the announcement section.

James A. St. Pierre, Acting Director Information Technology Laboratory

Abstract

Digital signatures are used to detect unauthorized modifications to data and to authenticate the identity of the signatory. In addition, the recipient of signed data can use a digital signature as evidence in demonstrating to a third party that the signature was, in fact, generated by the claimed signatory. This is known as non-repudiation since the signatory cannot easily repudiate the signature at a later time.

This standard specifies ML-DSA, a set of algorithms that can be used to generate and verify digital signatures. ML-DSA is believed to be secure even against adversaries in possession of a large-scale quantum computer.

Keywords: cryptography; digital signatures; Federal Information Processing Standards; lattice; postquantum; public-key cryptography

Federal Information Processing Standards Publication 204

Published: August 24, 2023 Announcing the Module-Lattice-Based Digital Signature Standard

Federal Information Processing Standards Publications (FIPS PUBS) are developed by the National Institute of Standards and Technology (NIST) under 15 U.S.C. 278g-3, and issued by the Secretary of Commerce under 40 U.S.C. 11331.

1. Name of Standard. Module-Lattice-Based Digital Signature Standard (FIPS 204).
2. Category of Standard: Computer Security Standard. Subcategory: Cryptography.
3. Explanation. This standard specifies a lattice-based digital signature algorithm, ML-DSA, for applications that require a digital signature rather than a written signature. (Additional digital signature schemes are specified and approved in other NIST Special Publications and FIPS publications, e.g., FIPS 186-5 [1].) A digital signature is represented in a computer as a string of bits and computed using a set of rules and parameters that allow the identity of the signatory and the integrity of the data to be verified. Digital signatures may be generated on both stored and transmitted data.
Signature generation uses a private key to generate a digital signature. Signature verification uses a public key that corresponds to but is not the same as the private key. Each signatory possesses a key-pair composed of a private key and a corresponding public key. Public keys may be known by the public, but private keys must be kept secret. Anyone can verify the signature by employing the signatory's public key. Only the user who possesses the private key can perform the generation of a signature that can be verified by the corresponding public key.
The digital signature is provided to the intended verifier along with the signed data. The verifying entity verifies the signature by using the claimed signatory's public key. Similar procedures may be used to generate and verify signatures for both stored and transmitted data.
This standard specifies several parameter sets for ML-DSA that are approved for use. Additional parameter sets may be specified and approved in future NIST Special Publications.
4. Approving Authority. Secretary of Commerce.
5. Maintenance Agency. Department of Commerce, National Institute of Standards and Technology, Information Technology Laboratory (ITL).
6. Applicability. This standard is applicable to all federal departments and agencies for the protection of sensitive unclassified information that is not subject to section 2315 of Title 10, United States Code, or section 3502 (2) of Title 44, United States Code. Either this standard or Federal Information Processing Standard (FIPS) 205 or NIST Special Publication 800-208 shall be used in designing and implementing public-key-based signature systems that federal departments and agencies operate or that are operated for them under contract. In the future, additional digital signature schemes may be specified and approved in FIPS publications or in NIST Special Publications.

The adoption and use of this standard are available to private and commercial organizations.
7. Applications. A digital signature algorithm allows an entity to authenticate the integrity of signed data and the identity of the signatory. The recipient of a signed message can use a digital signature as evidence in demonstrating to a third party that the signature was, in fact, generated by the claimed signatory. This is known as non-repudiation since the signatory cannot easily repudiate the signature at a later time. A digital signature algorithm is intended for use in electronic mail, electronic funds transfer, electronic data interchange, software distribution, data storage, and other applications that require data integrity assurance and data origin authentication.
8. Implementations. A digital signature algorithm may be implemented in software, firmware, hardware, or any combination thereof. NIST will develop a validation program to test implementations for conformance to the algorithm in this standard. For every computational procedure that is specified in this standard, a conforming implementation may replace the given set of steps with any mathematically equivalent set of steps. In other words, different procedures that produce the correct output for every input are permitted. Information about validation programs is available at https://csrc.nist.gov/projects /cmvp. Examples for digital signature algorithms are available at https://csrc.nist.gov/projects/cryptog raphic-standards-and-guidelines/example-values.
Agencies are advised that digital signature key pairs shall not be used for other purposes.
9. Other Approved Security Functions. Digital signature implementations that comply with this standard shall employ cryptographic algorithms that have been approved for protecting Federal Government-sensitive information. Approved cryptographic algorithms and techniques include those that are either:
a. Specified in a Federal Information Processing Standards (FIPS) publication,
b. Adopted in a FIPS or NIST recommendation, or
c. Specified in the list of approved security functions for FIPS 140-3.
10. Export Control. Certain cryptographic devices and technical data regarding them are subject to federal export controls. Exports of cryptographic modules that implement this standard and technical data regarding them must comply with these federal regulations and be licensed by the Bureau of Industry and Security of the U.S. Department of Commerce. Information about export regulations is available at https://www.bis.doc.gov.
11. Patents. The algorithm in this standard may be covered by U.S. or foreign patents.
12. Implementation Schedule. This standard becomes effective immediately upon final publication.
13. Specifications. Federal Information Processing Standards (FIPS) 204, Module-Lattice-Based Digital Signature Standard (affixed).
14. Qualifications. The security of a digital signature system is dependent on maintaining the secrecy of the signatory's private keys. Signatories shall, therefore, guard against the disclosure of their private keys. While it is the intent of this standard to specify general security requirements for generating digital signatures, conformance to this standard does not ensure that a particular implementation is secure. It is the responsibility of an implementer to ensure that any module that implements a digital signature capability is designed and built in a secure manner.
Similarly, the use of a product containing an implementation that conforms to this standard does not guarantee the security of the overall system in which the product is used. The responsible authority in each agency or department shall ensure that an overall implementation provides an acceptable level of security.

Since a standard of this nature must be flexible enough to adapt to advancements and innovations in science and technology, this standard will be reviewed every five years in order to assess its adequacy.
15. Waiver Procedure. The Federal Information Security Management Act (FISMA) does not allow for waivers to Federal Information Processing Standards (FIPS) that are made mandatory by the Secretary of Commerce.
16. Where to Obtain Copies of the Standard. This publication is available by accessing https://csrc.nist. gov/publications. Other computer security publications are available at the same website.
17. How to Cite this Publication. NIST has assigned NIST FIPS 204 ipd as the publication identifier for this FIPS, per the NIST Technical Series Publication Identifier Syntax. NIST recommends that it be cited as follows:

National Institute of Standards and Technology (2023) Module-Lattice-Based Digital Signature Standard. (Department of Commerce, Washington, D.C.), Federal Information Processing Standards Publication (FIPS) NIST FIPS 204 ipd. https://doi.org/10.6028/NIST .FIPS.204.ipd
18. Inquiries and Comments. Inquiries and comments about this FIPS may be submitted to fips-204comments@ nist.gov.

Call for Patent Claims

This public review includes a call for information on essential patent claims (claims whose use would be required for compliance with the guidance or requirements in this Information Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be directly stated in this ITL Publication or by reference to another publication. This call also includes disclosure, where known, of the existence of pending U.S. or foreign patent applications relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents.

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in written or electronic form, either:
a) assurance in the form of a general disclaimer to the effect that such party does not hold and does not currently intend holding any essential patent claim(s); or
b) assurance that a license to such essential patent claim(s) will be made available to applicants desiring to utilize the license for the purpose of complying with the guidance or requirements in this ITL draft publication either:
(i) under reasonable terms and conditions that are demonstrably free of any unfair discrimination; or
(ii) without compensation and under reasonable terms and conditions that are demonstrably free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make assurances on its behalf) will include in any documents transferring ownership of patents subject to the assurance, provisions sufficient to ensure that the commitments in the assurance are binding on the transferee, and that the transferee will similarly include appropriate provisions in the event of future transfers with the goal of binding each successor-in-interest.

The assurance shall also indicate that it is intended to be binding on successors-in-interest regardless of whether such provisions are included in the relevant transfer documents.

Such statements should be addressed to: fips-204-comments@ nist.gov

Federal Information Processing Standards Publication 204

Specification for the Module-Lattice-Based Digital Signature Standard

Table of Contents

1 Introduction 1

1.1 Purpose and Scope 1
1.2 Context 1
1.3 Differences Between the ML-DSA Standard and CRYSTALS-Dilithium 2
1.3.1 Differences Between Version 3.1 and the Round 3 Version of CRYSTALS- Dilithium 2
1.3.2 Differences Between the ML-DSA Standard and Version 3.1 of CRYSTALS- Dilithium 2
2 Glossary of Terms, Acronyms, and Symbols 3
2.1 Terms and Definitions 3
2.2 Acronyms 5
2.3 Mathematical Symbols 6
2.4 Notation 7
2.5 NTT Representation 8
3 Overview of the ML-DSA Signature Scheme 9
3.1 Security Properties 9
3.2 Computational Assumptions 9
3.3 The ML-DSA Construction 9
3.4 Use of Digital Signatures 11
3.5 Additional Requirements 11
3.5.1 Randomness Generation 11
3.5.2 Public-Key Validity and Signature Length Checks 11
3.5.3 Intermediate Values 11
4 Parameter Sets 13
5 Key Generation 14
6 Signing 15
7 Verification 18
7.1 Prehash ML-DSA 19
8 Auxiliary Functions 20
8.1 Conversion Between Data Types 20
8.2 Encodings of ML-DSA Keys and Signatures 24
8.3 Hashing and Pseudorandom Sampling 29
8.4 High Order / Low Order Bits and Hints 33
8.5 NTT and NTT $^{-1}$ 36
References 38
Appendix A - Security Strength Categories 41
Appendix B - Montgomery Reduction 44
Table 1 ML-DSA Parameter sets 13
Table 2 Sizes (in bytes) of keys and signatures of ML-DSA. 14
Table 3 NIST Security Strength Categories 42
Table 4 Estimated gate counts for the optimal key recovery and collision attacks on AES and SHA-3 43
List of Algorithms
Algorithm 1 ML-DSA.KeyGen() 15
Algorithm 2 ML-DSA.Sign(sk,M) 17
Algorithm 3 ML-DSA.Verify $(p k, M, \sigma)$ 19
Algorithm 4 IntegerToBits (x, α) 20
Algorithm 5 BitsTolnteger (y) 20
Algorithm 6 BitsToBytes (y) 21
Algorithm 7 BytesToBits (z) 21
Algorithm 8 CoeffFromThreeBytes $\left(b_{0}, b_{1}, b_{2}\right)$ 21
Algorithm 9 CoeffFromHalfByte(b) 22
Algorithm 10 SimpleBitPack (w, b) 22
Algorithm $11 \quad \operatorname{BitPack}(w, a, b)$ 22
Algorithm 12 SimpleBitUnpack (v, b) 23
Algorithm 13 BitUnpack(v,a,b) 23
Algorithm 14 HintBitPack(h) 24
Algorithm 15 HintBitUnpack (y) 24
Algorithm 16 pkEncode $\left(\rho, \mathbf{t}_{1}\right)$ 25
Algorithm 17 pkDecode(pk) 25
Algorithm 18 skEncode $\left(\rho, K, t r, \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{t}_{0}\right)$ 26
Algorithm 19 skDecode(sk) 27
Algorithm 20 sigEncode $(\tilde{c}, \mathbf{z}, \mathbf{h})$ 28
Algorithm 21 sigDecode (σ) 28
Algorithm 22 w1Encode $\left(\mathbf{w}_{1}\right)$ 28
Algorithm 23 SamplelnBall (ρ) 30
Algorithm 24 RejNTTPoly (ρ) 30
Algorithm 25 RejBoundedPoly (ρ) 31
Algorithm 26 ExpandA (ρ) 31
Algorithm 27 ExpandS (ρ) 32
Algorithm 28 ExpandMask (ρ, μ) 32
Algorithm 29 Power2Round (r) 34
Algorithm 30 Decompose(r) 34
Algorithm 31 HighBits(r) 34
Algorithm 32 LowBits (r) 35
Algorithm 33 MakeHint (z, r) 35
Algorithm 34 UseHint (h, r) 35
Algorithm 35 NTT(w) 36
Algorithm $36 \mathrm{NTT}^{-1}(\hat{w})$ 37

Algorithm 37 Montgomery_Reduce (a) 44

1. Introduction

1.1 Purpose and Scope

This standard defines a digital signature scheme, which includes a method for digital signature generation that can be used for the protection of binary data (commonly called a message), and a method for the verification and validation of those digital signatures. (NIST SP 800-175B [2], Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms, includes a general discussion of digital signatures.)

This standard specifies the mathematical steps that need to be performed for key generation, signature generation, and signature verification. In order for digital signatures to be valid, additional assurances are required, such as assurance of identity and of private key possession. NIST SP 800-89, Recommendation for Obtaining Assurances for Digital Signature Applications [3], specifies the required assurances and methods for obtaining these assurances.

The digital signature scheme approved in this standard is ML-DSA (Module Lattice Digital Signature Algorithm). It is based on the Module Learning With Errors problem. ML-DSA is believed to be secure even against adversaries in possession of a large-scale quantum computer. In particular, ML-DSA is believed to be strongly-unforgeable, which implies that the scheme can be used to detect unauthorized modifications to data, and to authenticate the identity of the signatory (one bound to the possession of the private-key). In addition, a signature generated by this scheme can be used as evidence in demonstrating to a third party that the signature was, in fact, generated by the claimed signatory. The latter property is known as non-repudiation, since the signatory cannot easily repudiate the signature at a later time.

This standard gives algorithms for ML-DSA key generation (Section 5), signature (Section 6), and verification, (Section 7) and for supporting algorithms used by them (Section 8). ML-DSA is standardized with three possible parameter sets, each corresponding to a different security strength. Section 4 describes the global parameters used by these algorithms and enumerates the parameter sets for ML-DSA that are approved by this standard. ML-DSA can be used in place of other digital signature schemes specified in NIST FIPS and Special Publications (e.g., FIPS 186-5 Digital Signature Standard (DSS) [1]).

1.2 Context

Over the past several years, there has been steady progress toward building quantum computers. The security of many commonly used public-key cryptosystems will be at risk if large-scale quantum computers are ever realized. In particular, this would include key-establishment schemes and digital signatures that are based on integer factorization and discrete logarithms (both over finite fields and elliptic curves). As a result, in 2016, the National Institute of Standards and Technology (NIST) initiated a public process to select quantum-resistant public-key cryptographic algorithms for standardization. A total of 82 candidate algorithms were submitted to NIST for consideration for standardization.

After three rounds of evaluation and analysis, NIST selected the first four algorithms to standardize as a result of the Post-Quantum Cryptography (PQC) Standardization process. The algorithm in this standard, $M L-D S A$, is derived from one of the selected schemes: CRYSTALS-Dilithium $[4,5]$ and is intended to protect sensitive U.S. Government information well into the foreseeable future, including after the advent of large-scale fault-tolerant quantum computers.

1.3 Differences Between the ML-DSA Standard and CRYSTALSDilithium

ML-DSA is derived from Version 3.1 of CRYSTALS-Dilithium [5]. Version 3.1 differs slightly from the most recent version appearing on the NIST website (Version 3 CRYSTALS-DiLIthium [4].) Sections 1.3.1, and 1.3.2 document, respectively, the differences between Versions 3 and 3.1, and the differences between Version 3.1 and the ML-DSA standard as published in this document.

1.3.1 Differences Between Version 3.1 and the Round 3 Version of CRYSTALSDilithium

The lengths of the variables ρ^{\prime} (private random seed) and μ (message representative) in the signing algorithm were increased from 384 to 512 bits. The increase in the length of μ corrects a security flaw that appeared in the third-round submission, where a collision attack against SHAKE256 with a 384-bit output would make it so that parameters targeting NIST security strength category 5 could only meet category 4 .

Additionally, the length of the variable $t r$ (the hash of the public key) was reduced from 384 to 256 bits. In key generation, the variable ς was relabeled as ρ^{\prime} and increased in size from 256 bits to 512 bits.

1.3.2 Differences Between the ML-DSA Standard and Version 3.1 of CRYSTALSDilithium

In order to ensure the properties noted in [6], ML-DSA increases the length of $t r$ to 512 bits, and increases the length of \tilde{c} to 384 and 512 bits, respectively, for the parameter sets ML-DSA-65 and ML-DSA-87.

In Version 3.1 of the CRYSTALS-Dilithium submission, the default version of the signing algorithm is deterministic with ρ^{\prime} being generated pseudorandomly from the signer's private key and the message, and an optional version of the signing algorithm has ρ^{\prime} sampled instead as a 512 -bit random string. In ML-DSA, ρ^{\prime} is generated by a "hedged" procedure, where ρ^{\prime} is pseudorandomly derived from the signer's private key, the message, and a 256 -bit string, rnd, which by default should be generated by an Approved RBG. The ML-DSAstandard also allows for an optional deterministic version, where rnd is instead a 256-bit constant string.

2. Glossary of Terms, Acronyms, and Symbols

2.1 Terms and Definitions

Abstract

approved assurance of possession bit string byte byte string certificate digital signature The result of a cryptographic transformation of data that, when properly im- plemented, provides a mechanism for verifying origin authenticity and data integrity, and enforcing signatory non-repudiation. entity An individual (person), organization, device, or process. Used interchangeably with "party." hash function FIPS-approved and/or NIST-recommended. An algorithm or technique that is either 1) specified in a FIPS or NIST recommendation, 2) adopted in a FIPS or NIST recommendation, or 3) specified in a list of NIST-approved security functions.

Confidence that an entity possesses a private key and any associated keying material.

An ordered sequence of zeros and ones. An integer from the set $\{0,1,2, \ldots, 255\}$. A sequence of bytes. A set of data that uniquely identifies a public key (which has a corresponding private key) and an owner that is authorized to use the key pair. The certificate contains the owner's public key and possibly other information and is digitally signed by a Certification Authority (i.e., a trusted party), thereby binding the public key to the owner. certification authority (CA) claimed signatory destroy extendable-output function (XOF) certification authority (CA) claimed signatory destroy digital signature entity extendable-output function (XOF)

The entity in a public key infrastructure (PKI) that is responsible for issuing certificates and exacting compliance with a PKI policy.

From the verifier's perspective, the claimed signatory is the entity that purportedly generated a digital signature.

An action applied to a key or a piece of secret data. After a key or a piece of secret data is destroyed, no information about its value can be recovered.

The result of a cryptographic transformation of data that, when properly implemented, provides a mechanism for verifying origin authenticity and data integrity, and enforcing signatory non-repudiation.

An individual (person), organization, device, or process. Used interchangeably with "party."

A function on bit strings in which the output can be extended to any desired length. Approved XOFs (such as those specified in FIPS 202 [7]) are designed to satisfy the following properties as long as the specified output length is sufficiently long to prevent trivial attacks: 1. (One-way) It is computationally infeasible to find any input that maps to any new pre-specified output. 2. (Collision-resistant) It is computationally infeasible to find any two distinct inputs that map to the same output.

A function on bit strings in which the length of the output is fixed. Approved hash functions (such as those specified in FIPS 180 [8] and FIPS 202 [7]) are designed to satisfy the following properties:

1. (One-way) It is computationally infeasible to find any input that maps to any new pre-specified output.
2. (Collision-resistant) It is computationally infeasible to find any two distinct inputs that map to the same output.
hash value See "message digest."
key
key pair
message
message digest
non-repudiation
owner
party
public key
infrastructure (PKI)
private key
pseudorandom
public key
curity category

A parameter used in conjunction with a cryptographic algorithm that determines its operation. Examples of cryptographic algorithms applicable to this standard include:

1. The computation of a digital signature from data and
2. The verification of a digital signature.

A public key and its corresponding private key.
The data that is signed. Also known as "signed data" during the signature verification and validation process.

The result of applying a hash function to a message. Also known as a "hash value."

A service that is used to provide assurance of the integrity and origin of data in such a way that the integrity and origin can be verified and validated by a third party as having originated from a specific entity in possession of the private key (i.e., the signatory).

A key pair owner is the entity authorized to use the private key of a key pair.
An individual (person), organization, device, or process. Used interchangeably with "entity."

A framework that is established to issue, maintain, and revoke public key certificates.

A cryptographic key that is used with an asymmetric (public key) cryptographic algorithm. The private key is uniquely associated with the owner and is not made public. The private key is used to compute a digital signature that may be verified using the corresponding public key.

A process or data produced by a process is said to be pseudorandom when the outcome is deterministic yet also effectively random as long as the internal action of the process is hidden from observation. For cryptographic purposes, "effectively random" means "computationally indistinguishable from random within the limits of the intended security strength."

A cryptographic key that is used with an asymmetric (public-key) cryptographic algorithm and is associated with a private key. The public key is associated with an owner and may be made public. In the case of digital signatures, the public key is used to verify a digital signature that was generated using the corresponding private key.

A number associated with the security strength of a post-quantum cryptographic algorithm as specified by NIST (see Appendix A, Table 3).

security strength	A number associated with the amount of work (i.e., the number of operations) that is required to break a cryptographic algorithm or system.
seed	A bit string used as input to a pseudorandom process.
shall	Used to indicate a requirement of this standard.
should	Used to indicate a strong recommendation but not a requirement of this standard. Ignoring the recommendation could lead to undesirable results.
signatory	The entity that generates a digital signature on data, using a private key.
signature generation	The process of using a digital signature algorithm and a private key to generate a digital signature on data.
signature validation	The (mathematical) verification of the digital signature along with obtaining the appropriate assurances (e.g., public-key validity, private-key possession, etc.).
signature verification	The process of using a digital signature algorithm and a public key to verify a digital signature on data.
signed data	The data or message upon which a digital signature has been computed. Also see "message."
trusted third party (TTP)	An entity (other than the key pair owner and the verifier) that is trusted by the owner, the verifier, or both. Sometimes shortened to "trusted party."
verifier	The entity that verifies the authenticity of a digital signature, using the public key of the signatory.

2.2 Acronyms

AES	Advanced Encryption Standard
FIPS	Federal Information Processing Standard
ML-DSA	Module-Lattice-Based Digital Signature Algorithm
MLWE	Module Learning With Errors
NIST	National Institute of Standards and Technology
NISTIR	NIST Interagency or Internal Report
NTT	Number Theoretic Transform
PQC	Post-Quantum Cryptography
RBG	Random Bit Generator
SHA	Secure Hash Algorithm
SHAKE	Secure Hash Algorithm KECCAK
SP	Special Publication
XOF	eXtendable-Output Function

2.3 Mathematical Symbols

The following symbols and mathematical expressions are used in this standard.
\mathbb{B}
\mathbb{N}
\mathbb{Z}
$[a, b]$
\mathbb{Z}_{m}
R
R_{m}
q
B_{τ}

П
T_{q}
T
\log
bitlen a
$\lfloor x\rfloor$
$\lceil x\rceil$
mod
$\bmod ^{ \pm}$
a !
$\binom{a}{b}$
$\operatorname{brv}(r)$

The set $\{0,1, \ldots, 255\}$.
The set of natural numbers $\{1,2,3, \ldots\}$.
The ring of integers.
For two integers $a \leq b,[a, b]$ denotes the set of integers $\{a, a+1, \ldots, b\}$.
The ring of integers modulo m, also denoted by $\mathbb{Z} / m \mathbb{Z}$.
The ring of single-variable polynomials over \mathbb{Z} modulo $X^{256}+1$, also denoted by $\mathbb{Z}[X] /\left(X^{256}+1\right)$.

The ring of single-variable polynomials over \mathbb{Z}_{m} modulo $X^{256}+1$, also denoted by $\mathbb{Z}_{m}[X] /\left(X^{256}+1\right)$.

The prime number $q=2^{23}-2^{13}+1=8380417$.
The set of all polynomials $p=\sum_{i=0}^{255} p_{i} X^{i}$ in R_{q} that are such that exactly τ of the coefficients of p_{i} are from the set $\{-1,1\}$, and all other coefficients are zero. (See subsection 8.3.)

Used to denote a direct product of two or more rings, where addition and multiplication are performed componentwise.
The ring $\Pi_{j=0}^{255} \mathbb{Z}_{q}$.
If A is a matrix, then A^{\top} denotes the transpose of A.
The base- 2 logarithm. For example, $\log 256=8$.
For a positive integer a, the minimum number of binary digits required to represent a. For example, bitlen $32=6$ and bitlen $31=5$.

The largest integer less than or equal to the real number x, called the floor of x.
The least integer greater than or equal to the real number x, called the ceiling of x.
If α is a positive integer and $m \in \mathbb{Z}$ or $m \in \mathbb{Z}_{\alpha}$, then $m \bmod \alpha$ denotes the unique element $m^{\prime} \in \mathbb{Z}$ in the range $0 \leq m^{\prime}<\alpha$ such that m and m^{\prime} are congruent modulo α.

If α is a positive integer and $m \in \mathbb{Z}$ or $m \in \mathbb{Z}_{\alpha}$, then $m \bmod ^{ \pm} \alpha$ denotes the unique element $m^{\prime} \in \mathbb{Z}$ in the range $-\alpha / 2<m^{\prime} \leq \alpha / 2$ such that m and m^{\prime} are congruent modulo α.

The factorial quantity $1 \cdot 2 \cdot 3 \cdot \ldots \cdot a$.
The quantity $a!/(b!(a-b)!)$.
Bit reversal. If $r=r_{0}+2 r_{1}+4 r_{2}+\ldots+128 r_{7}$ is a byte, with $r_{i} \in\{0,1\}$, then $\operatorname{brv}(r)=r_{7}+2 r_{6}+4 r_{5}+\ldots+128 r_{0}$.

$$
w[8 i]+2 \cdot w[8 i+1]+4 \cdot w[8 i+2]+\cdots+128 \cdot w[8 i+7]
$$

2.4 Notation

Elements of the rings $\mathbb{Z}, \mathbb{Z}_{q}, \mathbb{Z}_{2}, R, R_{q}$, are denoted by italicized lowercase letters (e.g., w). Elements of the ring T_{q} are length- 256 arrays of elements of \mathbb{Z}_{q}, and they are denoted by italicized letters with a hat symbol (e.g., \hat{w}). Addition and multiplication of elements of T_{q} are performed entry-wise. (Thus, the i th entry of the product of two elements \hat{u} and \hat{v} of T_{q} is $\hat{u}[i] \cdot \hat{v}[i] \in \mathbb{Z}_{q}$.) As noted in subsection 2.3, the multiplication operation in T_{q} is denoted by the symbol \circ.

When a product $a \cdot b$ or a sum $a+b$ is written and either a or b is a congruence class modulo m (i.e., if either is an element of \mathbb{Z}_{m} or R_{m}), then the product is also understood to be a congruence class modulo m. Likewise when an element of R or \mathbb{Z} may be used as the input of a function specified to act on an element of R_{m} or \mathbb{Z}_{m}, respectively. In both cases, the element itself or its coefficients are mapped from \mathbb{Z} to \mathbb{Z}_{m} by taking the unique congruence class containing the integer.

The coefficients of an element w of R or R_{m} are denoted by w_{i} so that $w=w_{0}+w_{1} X+\ldots+w_{255} X^{255}$. If w is in R (respectively, R_{m}) and t is in \mathbb{Z} (respectively, \mathbb{Z}_{d}), then $w(t)$ denotes the polynomial $w=$ $w_{0}+w_{1} X+\ldots+w_{255} X^{255}$ evaluated at $X=t$.

Vectors with elements in R or R_{m} are denoted by bold lowercase letters, such as, \mathbf{v}. Matrices with elements in R or R_{m} are denoted by bold uppercase letters, such as, \mathbf{A}.

If S is a ring and \mathbf{v} is a length- L vector over S, then the entries in the vector \mathbf{v} are expressed as

$$
v[0], v[1], \ldots, v[L-1] .
$$

The entries of a $K \times L$ matrix \mathbf{A} over S are denoted as $\mathbf{A}[i, j]$, where $0 \leq i<K$ and $0 \leq j<L$. The set of all length- L vectors over S is denoted by S^{L}. The set of all $K \times L$ matrices over S is denoted by $S^{K \times L}$. A length- L vector can also be treated as an $L \times 1$ matrix.

2.5 NTT Representation

The Number Theoretic Transform (NTT) is a specific isomorphism between the rings R_{q} and T_{q}. Let $\zeta=1753 \in \mathbb{Z}_{q}$, which is a 512 th root of unity. If $w \in R_{q}$, then

$$
\begin{equation*}
\operatorname{NTT}(w)=\left(w\left(\zeta_{0}\right), w\left(-\zeta_{0}\right), \ldots w\left(\zeta_{127}\right), w\left(-\zeta_{127}\right)\right) \in T_{q} \tag{2.1}
\end{equation*}
$$

where $\zeta_{i}=\zeta^{\text {brv }(128+i)}$. See section 8.5 for a discussion of the implementation of NTT and NTT $^{-1}$.
The motivation for using NTT is that multiplication is considerably faster in the ring T_{q}. Since NTT is an isomorphism, for any $a, b \in R_{q}$,

$$
\begin{equation*}
\operatorname{NTT}(a b)=\operatorname{NTT}(a) \circ \operatorname{NTT}(b) . \tag{2.2}
\end{equation*}
$$

If \mathbf{A} is a matrix with entries from R_{q}, then $\operatorname{NTT}(\mathbf{A})$ denotes the matrix computed via the entry-wise application of NTT to \mathbf{A}. The symbol \circ is also used to denote matrix multiplication of matrices with entries in T_{q}. Thus, $\operatorname{NTT}(\mathbf{A B})=\operatorname{NTT}(\mathbf{A}) \circ \operatorname{NTT}(\mathbf{B})$.

3. Overview of the ML-DSA Signature Scheme

ML-DSA is a digital signature scheme based on CRYSTALS-Dilithium [5]. It consists of three main algorithms: ML-DSA.KeyGen (Algorithm 1), ML-DSA.Sign (Algorithm 2), and ML-DSA.Verify (Algorithm 3). The ML-DSA scheme uses the "Fiat-Shamir with Aborts" construction [9, 10] and bears the most resemblance to the schemes proposed in [11, 12].

3.1 Security Properties

ML-DSA is designed to be strongly existentially unforgeable under chosen message attack (i.e. it is expected that even if an adversary can get the honest party to sign arbitrary messages, the adversary cannot create any additional valid signatures based on the signer's public key, including on messages for which the signer has already provided a signature).

ML-DSA is also designed to satisfy additional security properties beyond unforgeability, which are described in [6].

3.2 Computational Assumptions

Security for lattice-based digital signature schemes is typically related to two central problems: the Learning With Errors (LWE) problem and the Short Integer Solution (SIS) problem. The LWE problem [13] is to recover a vector $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ given a set of random noisy linear equations satisfied by \mathbf{s}. The SIS problem is to find, for a given linear system over \mathbb{Z}_{q} of the form $\mathbf{A t}=\mathbf{0}$, a solution $\mathbf{t} \in \mathbb{Z}_{q}^{n}$ such that $\|\mathbf{t}\|_{\infty}$ is small. For appropriate choices of parameters, these problems are intractable for the best known techniques (including Gaussian elimination).

When the module \mathbb{Z}_{q}^{n} in LWE and SIS is replaced by a module over a ring larger than \mathbb{Z}_{q} (such as R_{q}), the resulting problems are called MLWE (Module Learning With Errors [14]) and MSIS (Module Short Integer Solution). The security of ML-DSA is based on the MLWE problem over R_{q} and a nonstandard variant of MSIS called SelfTargetMSIS [15].

3.3 The ML-DSA Construction

ML-DSA is a Schnorr-like signature with several optimizations. The Schnorr signature scheme applies the Fiat-Shamir heuristic to an interactive protocol between a verifier who knows g (the generator of a group in which discrete logs are believed to be difficult) and the value $y=g^{x}$, and a prover who knows g and x. The interactive protocol, where the prover demonstrates knowledge of x to the verifier, consists of three steps:

1. Commitment: The prover generates a random positive integer r less than the order of g and commits to its value by sending g^{r} to the verifier
2. Challenge: The verifier sends a random positive integer c less than the order of g to the prover.
3. Response: The prover returns $s=r-c x$, and the verifier checks whether $g^{s} \cdot y^{c}=g^{r}$.

This protocol is made noninteractive and turned into a signature scheme by replacing the verifier's random choice of c in step 2 with a deterministic process that pseudorandomly derives c from a hash of the commitment, g^{r}, concatenated with the message to be signed. For this signature scheme, y is the public key and x is the private key.

The basic idea of ML-DSA and similar lattice signature schemes is to build a signature scheme from an analogous interactive protocol, where a prover who knows matrices $\mathbf{A} \in \mathbb{Z}_{q}^{K \times L}, \mathbf{S}_{1} \in \mathbb{Z}_{q}^{L \times n}$, and $\mathbf{S}_{2} \in \mathbb{Z}_{q}^{K \times n}$ with short coefficients, demonstrates knowledge of these matrices to a verifier who knows \mathbf{A} and $\mathbf{T} \in$ $\mathbb{Z}_{q}^{K \times n}=\mathbf{A S}_{1}+\mathbf{S}_{2}$. Such an interactive protocol would proceed as follows:

1. Commitment: The prover generates $\mathbf{y} \in \mathbb{Z}_{q}^{L}$ with short coefficients and commits to its value by sending $\mathbf{A y}$ to the verifier.
2. Challenge: The verifier sends a vector $\mathbf{c} \in \mathbb{Z}_{q}^{n}$ with short coefficients to the prover.
3. Response: The prover returns $\mathbf{z}=\mathbf{y}+\mathbf{S}_{1} \mathbf{c}$, and the verifier checks that z has small coefficients and that $\mathbf{A z}-\mathbf{T c} \approx \mathbf{A y}$.

As written the above protocol has a security flaw: The response \mathbf{z} will be biased in a direction related to the private value \mathbf{S}_{1}. However, this flaw can be corrected when converting the interactive protocol into a signature scheme: As with Schnorr signatures, the signer derives the challenge by a pseudorandom process from a hash of the commitment concatenated with the message. However, to correct the bias, the signer applies rejection sampling to \mathbf{z} : if coefficients of \mathbf{z} fall outside a specified range, the signing process is aborted, and the signer starts over from a new value of \mathbf{y}. In the resulting "Fiat-Shamir with Aborts" signature, the public key is (\mathbf{A}, \mathbf{T}) and the private key is $\left(\mathbf{S}_{1}, \mathbf{S}_{2}\right)$

In the ML-DSA standard, a number of tweaks and modifications are added to this basic framework for security or efficiency reasons:

- To reduce key and signature size and to use fast NTT-based polynomial multiplication, ML-DSA uses module-structured matrices. That is to say, relative to the basic scheme described above, it replaces dimension- $n \times n$ blocks of matrices and dimension- n blocks of vectors with polynomials in the ring R_{q}. Thus, instead of $\mathbf{A} \in \mathbb{Z}_{q}^{K \times L}, \mathbf{T} \in \mathbb{Z}_{q}^{K \times n}, \mathbf{S}_{1} \in \mathbb{Z}_{q}^{L \times n}, \mathbf{S}_{\mathbf{2}} \in \mathbb{Z}_{q}^{K \times n}, \mathbf{y} \in \mathbb{Z}_{q}^{L}, \mathbf{c} \in \mathbb{Z}_{q}^{n}$, ML-DSA has $\mathbf{A} \in R_{q}^{k \times \ell}, \mathbf{t} \in R_{q}^{k}, \mathbf{s}_{1} \in R_{q}^{\ell}, \mathbf{s}_{2} \in R_{q}^{k}, \mathbf{y} \in R_{q}^{\ell}, c \in R_{q}$.
- To further reduce the size of the public key, the matrix \mathbf{A} is pseudorandomly derived from a 256 -bit public seed, ρ which is included in the ML-DSA public key in place of \mathbf{A}.
- For a still further reduction in public key size, the ML-DSA public key substitutes for $\mathbf{t a}$ compressed value \mathbf{t}_{0}, which drops the d low order bits of each coefficient.
- To obtain beyond unforgeability (BUFF) properties noted in [6], ML-DSA does not sign the message M directly, but rather signs a message representative μ obtained by hashing the concatenation of a hash $t r$ of the public key and M.
- To reduce signature size, rather than including the commitment $\mathbf{w}=\mathbf{A y}$ in the signature, the MLDSA signature uses a rounded version \mathbf{w}_{1} as a commitment, and includes only the hash, \tilde{c}, of \mathbf{w}_{1} concatenated with μ.
To ensure that \mathbf{w}_{1} can be reconstructed by the verifier from \mathbf{z} and the compressed value \mathbf{t}_{0}, the signature must also include a hint $\mathbf{h} \in R_{2}^{k}$ computed by the signer using the signer's private key.

In this document, we use the abbreviations ML-DSA-44, ML-DSA-65, and ML-DSA-87 to refer to ML-DSA with the parameter choices given in Table 1. (In these abbreviations, the numerical suffix refers to the dimension of the matrix \mathbf{A}. For example, in ML-DSA-65, the matrix \mathbf{A} is a 6×5 matrix over R_{q}.)

3.4 Use of Digital Signatures

Secure key management is an essential requirement for the use of digital signatures. This is contextdependent and involves more than the key generation, signing, and signature verification algorithms in this document. Guidance for key management is provided in the NIST SP $800-57$ series [16, 17, 18].

Digital signatures are most useful when bound to an identity. Binding a public key to an identity requires proof of possession of the private key. In the PKI context, issuing certificates involves assurances of identity and proof of possession. When a public-key certificate is not available, users of digital signatures should determine whether a public key needs to be bound to an identity. Methods for obtaining assurances of identity and proof of possession are provided in [3].

3.5 Additional Requirements

This section describes several required assurances when implementing ML-DSA. These are in addition to the considerations in Section 3.4.

3.5.1 Randomness Generation

Algorithm 1, implementing key generation for ML-DSA, uses an RBG to generate the 256-bit random value ξ. The seed ξ shall be freshly generated using an approved RBG, as prescribed in NIST SP 800-90A, SP 800-90B, and SP 800-90C [19, 20, 21]. Moreover, the RBG used shall have a security strength of at least 192 bits for ML-DSA-65 and 256 bits for ML-DSA-87. For ML-DSA-44, the RBG should have a security strength of at least 192 bits and shall have a security strength of at least 128 bits. (If an approved RBG with at least 128 bits of security but less than 192 bits of security is used, then the claimed security strength of ML-DSA-44 is reduced from category 2 to category 1 .)

Additionally, in the default "hedged" variant of Algorithm 2, implementing signing for ML-DSA, the value r rnd is generated using an RBG. While this value should ideally be generated by an approved RBG, other methods for generating fresh randomness may be used. The primary purpose of $r n d$ is to facilitate countermeasures to side-channel attacks and fault attacks on deterministic signatures, such as [22, 23, 24]. ${ }^{1}$ For this purpose, even a weak RBG may be preferable to the fully deterministic variant of Algorithm 2.

3.5.2 Public-Key Validity and Signature Length Checks

Algorithm 3, implementing verification for ML-DSA, specifies the length of the signature σ and the public key $p k$ in terms of the parameters described in Table 1. If an implementation of ML-DSA can accept inputs for σ or $p k$ of any other length, it shall return false whenever the lengths of either of these inputs differs from its specified length. Checking the length of $p k$ serves as a partial public-key validity check, and failing to do so may interfere with the security properties that ML-DSA is designed to have, like strong unforgeability. ML-DSA is not designed to require any additional public-key validity checks.

3.5.3 Intermediate Values

Data used internally by the key generation and signing algorithms in intermediate computation steps could be used by an adversary to gain information about the private key, and thereby compromise security. For some applications, including the verification of signatures that are used as bearer tokens (i.e., authentication

[^0]secrets) or the verification of signatures on plaintext messages that are intended to be confidential, data used internally by verification algorithms is similarly sensitive. (Intermediate values of the verification algorithm may reveal information about its inputs, i.e., the message, signature, and public key, and in some applications security or privacy requires one or more of these inputs to be confidential.) Implementations of ML-DSA shall, therefore, ensure that any potentially sensitive intermediate data is destroyed as soon as it is no longer needed.

In certain situations, such as deterministic signing (described above), and the verification of confidential messages and signatures (described above), additional care must be taken to protect implementations against side-channel attacks or fault attacks. A cryptographic device may leak critical information through side-channels that allows internal data or keying material to be extracted without breaking the cryptographic primitives.

4. Parameter Sets

Table 1. ML-DSA Parameter sets

Parameters	Values assigned by each parameter set		
(see sections 5 and 6 of this document)	ML-DSA-44	ML-DSA-65	ML-DSA-87
q - modulus [see $\S 5]$	8380417	8380417	8380417
d - \# of dropped bits from \mathbf{t} [see §5]	13	13	13
τ - \# of ± 1 's in polynomial c [see §6]	39	49	60
λ - collision strength of \tilde{c} [see §6]	128	192	256
γ_{1} - coefficient range of \mathbf{y} [see §6]	2^{17}	2^{19}	2^{19}
γ_{2} - low-order rounding range [see $\left.\S 6\right]$	$(q-1) / 88$	$(q-1) / 32$	$(q-1) / 32$
(k, ℓ) - dimensions of A [see §5]	$(4,4)$	$(6,5)$	$(8,7)$
η - private key range [see $\S 5]$	2	4	2
$\beta=\tau \cdot \eta$ [see $\S 6]$	78	196	120
ω - max \# of 1’s in the hint \mathbf{h} [see §6]	80	55	75
Challenge entropy log $\left({ }_{\tau}^{256}\right)+\tau$ [see $\left.\S 6\right]$	192	225	257
Repetitions (see explanation below)	4.25	5.1	3.85
Claimed security strength	Category 2	Category 3	Category 5

Three ML-DSA parameter sets are included in Table 1. Each parameter set assigns values for all of the parameters used in the ML-DSA algorithms for key generation, signing, and verification. For informational purposes, some parameters used in the analysis of these algorithms are also included in the table. In particular, "repetitions" refers to the expected number of repetitions of the main loop in the signing algorithm, from eq. 5 in [4]. The names of the parameter sets are of the form "ML-DSA-kl," where (k, ℓ) are the dimensions of the matrix \mathbf{A}.

These parameter sets were designed to meet certain security strength categories defined by NIST in its original Call for Proposals [25]. These security strength categories are explained further in Appendix A.

Using this approach, security strength is not described by a single number, such as "128 bits of security." Instead, each ML-DSA parameter set is claimed to be at least as secure as a generic block cipher with a prescribed key size or a generic hash function with a prescribed output length. More precisely, it is claimed that the computational resources needed to break ML-DSA are greater than or equal to the computational resources needed to break the block cipher or hash function when these computational resources are estimated using any realistic model of computation. Different models of computation can be more or less realistic and, accordingly, lead to more or less accurate estimates of security strength. Some commonly studied models are discussed in [26].

Concretely, the parameter set ML-DSA-44 is claimed to be in security strength category 2, ML-DSA-65 is claimed to be in category 3, and ML-DSA-87 is claimed to be in category 5 [5]. For additional discussion of the security strength of MLWE-based cryptosystems, see [27].

The sizes of keys and signatures corresponding to each parameter set are given in Table 2. Note that certain optimizations are possible, when storing ML-DSA public and private keys. If additional space is available, one can pre-compute and store $\hat{\mathbf{A}}$, to speed up signing and verifying. Alternatively, if one wants to reduce the space needed for the private key, one can only store the 32 -byte seed ξ, which is sufficient to generate the other parts of the private key. For additional details, see Section 3.1 in [5].

	Private Key	Public Key	Signature Size
ML-DSA-44	2528	1312	2420
ML-DSA-65	4000	1952	3293
ML-DSA-87	4864	2592	4595

Table 2. Sizes (in bytes) of keys and signatures of ML-DSA.

5. Key Generation

The key generation algorithm ML-DSA.KeyGen takes no input and outputs a public key and a private key, which are both encoded as byte strings.

The algorithm begins by using an approved RBG to generate a 256 -bit random seed ξ, which is expanded as needed using an XOF (namely, SHAKE-256) to produce other random values. In particular:

- A public random seed ρ. Using this seed, a polynomial matrix, $\mathbf{A} \in R_{q}^{k \times \ell}$ is pseudorandomly sampled ${ }^{2}$ from $R_{q}^{k \times \ell}$.
- A private random seed ρ^{\prime}. Using this seed, the polynomial vectors $\mathbf{s}_{1} \in R_{q}^{\ell}$ and $\mathbf{s}_{2} \in R_{q}^{k}$ are pseudorandomly sampled from the subset of polynomial vectors whose coefficients are short, (i.e. in the range $[-\eta, \eta]$).
- A private random seed K for use during signing.

The core cryptographic operation computes the public value,

$$
\mathbf{t}=\mathbf{A} \mathbf{s}_{1}+\mathbf{s}_{2} .
$$

The vector \mathbf{t} together with the matrix \mathbf{A} may be thought of as an expanded form of the public key. The vector \mathbf{t} is compressed in the actual public key by dropping the d least significant bits from each coefficient, thus producing the polynomial vector \mathbf{t}_{1}. This compression is an optimization for performance, not security. The low order bits of t can be reconstructed from a small number of signatures and, therefore, need not be regarded as secret.

The ML-DSA public key $p k$ is a byte encoding of the public random seed ρ and the compressed polynomial vector \mathbf{t}_{1}.

The ML-DSA private key $s k$ is a byte encoding of the public random seed ρ; a 256 -bit private random seed K for use during signing; a 512-bit hash of the public key, tr, for use during signing; the secret polynomial vectors \mathbf{s}_{1} and \mathbf{s}_{2}; and a polynomial vector \mathbf{t}_{0} encoding the d least significant bits of each coefficient of the uncompressed public-key polynomial \mathbf{t}.

[^1]```
Algorithm 1 ML-DSA.KeyGen()
Generates a public-private key pair.
Output: Public key, \(p k \in \mathbb{B}^{32+32 k(\text { bitlen }(q-1)-d)}\),
 and private key, \(s k \in \mathbb{B}^{32+32+64+32 \cdot((\ell+k) \cdot \text { bitlen }(2 \eta)+d k)}\).
 \(\xi \leftarrow\{0,1\}^{256} \quad \triangleright\) Choose random seed
 \(\left(\rho, \rho^{\prime}, K\right) \in\{0,1\}^{256} \times\{0,1\}^{512} \times\{0,1\}^{256} \leftarrow \mathrm{H}(\xi, 1024) \quad \triangleright\) Expand seed
 \(\hat{\mathbf{A}} \leftarrow \operatorname{ExpandA}(\rho) \quad \triangleright \mathbf{A}\) is generated and stored in NTT representation as \(\hat{\mathbf{A}}\)
 \(\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right) \leftarrow \operatorname{ExpandS}\left(\rho^{\prime}\right)\)
 \(\mathbf{t} \leftarrow \operatorname{NTT}^{-1}\left(\hat{\mathbf{A}} \circ \mathrm{NTT}\left(\mathbf{s}_{1}\right)\right)+\mathbf{s}_{2} \quad \triangleright\) Compute \(\mathbf{t}=\mathbf{A} \mathbf{s}_{1}+\mathbf{s}_{2}\)
 \(\left(\mathbf{t}_{1}, \mathbf{t}_{0}\right) \leftarrow \operatorname{Power2Round}(\mathbf{t}, d) \quad \triangleright\) Compress \(\mathbf{t}\)
 \(p k \leftarrow \operatorname{pkEncode}\left(\rho, \mathbf{t}_{1}\right)\)
 \(t r \leftarrow \mathrm{H}(\operatorname{Bytes} \operatorname{ToBits}(p k), 512)\)
 \(s k \leftarrow \operatorname{skEncode}\left(\rho, K, t r, \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{t}_{0}\right) \quad \triangleright K\) and \(t r\) are for use in signing
 return \((p k, s k)\)
```


## 6. Signing

ML-DSA.Sign (Algorithm 2) takes as input a private key $s k$, encoded as a byte string, and a message, $M$, encoded as a bit string, and it outputs a signature encoded as a byte string. There are two versions of the algorithm: "hedged" and "deterministic." The default "hedged" version of ML-DSA.Sign uses fresh randomness. In addition, for platforms where a random number generator is unavailable, an optional deterministic variant is specified. However, the lack of randomness in the deterministic variant makes the risk of side-channel attacks more difficult to mitigate. Therefore, this variant should not be used on platforms where side-channel attacks are a concern and where they cannot be otherwise mitigated. (See the discussion in Section 3 for more details.)

Note that implementing the hedged variant only (without the deterministic variant) is sufficient to guarantee interoperability. The same verification algorithm will work to verify signatures produced by either variant, so implementing the deterministic variant in addition to the hedged variant does not enhance interoperability.

In both variants, the signer first extracts the following from the private key: the public random seed $\rho$; the 256 -bit private random seed $K$; the 512 -bit hash of the public key, $t r$; the secret polynomial vectors $\mathbf{s}_{1}$ and $\mathbf{s}_{2}$; and the polynomial vector $\mathbf{t}_{0}$ encoding the $d$ least significant bits of each coefficient of the uncompressed public key polynomial $\mathbf{t}$. $\rho$ is then expanded to the same matrix $\mathbf{A}$ as in key generation.

Before the message, $M$, is signed, it is concatenated with the public-key hash $t r$ and hashed down to a 512-bit message representative, $\mu$, using the hash function H (see section 8.3).

The signer produces an additional 512-bit seed $\rho^{\prime}$, for private randomness during each signing operation. $\rho^{\prime}$ is computed as $\rho^{\prime} \leftarrow \mathrm{H}(K\|r n d\| \mu, 512)$. In the default "hedged" variant, $r n d$ is the output of an RBG, while in the deterministic variant $r$ nd is a 256 -bit string consisting entirely of zeroes. This is the only difference between the deterministic and hedged variant of ML-DSA.Sign.

The main part of the signing algorithm consists of a rejection sampling loop, where each iteration of the loop either produces a valid signature or an invalid signature whose release would leak information about the private key. The loop is repeated until a valid signature is produced, which can then be encoded as a byte string and output. The rejection sampling loop follows the Fiat-Shamir with aborts paradigm [9] and
(aside from the rejection step) is similar in structure to Schnorr signatures [28] (e.g., EdDSA [29]). The signer first produces a "commitment" $\mathbf{w}_{1}$. Then the signer pseudorandomly derives a "challenge" $c$ from $\mathbf{w}_{1}$ and the message representative $\mu$. Finally, the signer computes a response $\mathbf{z}$.

In more detail, the main computations involved in the rejection sampling loop are as follows:

- Using the ExpandMask function (Algorithm 28), the seed $\rho^{\prime}$ and a counter $\kappa$, a polynomial vector $\mathbf{y} \in R_{q}^{\ell}$ is pseudorandomly sampled from the subset of polynomial vectors whose coefficients are moderately short (i.e. in the range $\left[-\gamma_{1}+1, \gamma_{1}\right]$ ).
- From $\mathbf{y}$, the signer computes the commitment $\mathbf{w}_{1}$ by computing $\mathbf{w}=\mathbf{A y}$ and then rounding to a nearby multiple of $2 \gamma_{2}$, using HighBits (Algorithm 31).
- $\mathbf{w}_{1}$ and $\mu$ are concatenated and hashed to produce the commitment hash $\tilde{c}$. This uses the function w1Encode (Algorithm 22). Let $\tilde{c}_{1}$ denote the first 256 bits of $\tilde{c}$. The bit string $\tilde{c}_{1}$ is used to pseudorandomly sample a polynomial $c \in R_{q}$ that has coefficients in $\{-1,0,1\}$ and Hamming weight $\tau$. The sampling is done with the function SamplelnBall (Algorithm 23). ${ }^{3}$
- The signer computes the response $\mathbf{z}=\mathbf{y}+c \mathbf{s}_{1}$ and performs various validity checks. If any of the checks fail, the signer will continue the rejection sampling loop.
- If the checks pass, the signer can compute a hint polynomial, $\mathbf{h}$, which will allow the verifier to reconstruct $\mathbf{w}_{1}$ using the compressed public key (along with the other components of the signature). This uses the function MakeHint (Algorithm 33). The signer will then output the final signature, which is a byte encoding of the commitment hash $\tilde{c}$, the response $\mathbf{z}$, and the hint $\mathbf{h}$.

In addition, there is an alternative way of implementing the validity checks on $\mathbf{z}$, and the computation of $\mathbf{h}$, which is described in section 5.1 of [5]. This method may also be used in implementations of ML-DSA.

In Algorithm 2, variables are sometimes used to store products to avoid recomputing them later in the signing algorithm. These precomputed products are denoted in the pseudocode by a pair of double angle brackets enclosing the variables being multiplied (e.g., $\left.\left\langle\left\langle c \mathbf{s}_{1}\right\rangle\right\rangle\right)$.

[^2]```
Algorithm 2 ML-DSA.Sign \((s k, M)\)
Generates a signature for a message M.
Input: Private key, \(s k \in \mathbb{B}^{32+32+64+32 \cdot((\ell+k) \cdot \text { bitlen }(2 \eta)+d k)}\) and the message \(M \in\{0,1\}^{*}\).
Output: Signature, \(\sigma \in \mathbb{B}^{32+\ell \cdot 32 \cdot\left(1+\text { bitlen }\left(\gamma_{1}-1\right)\right)+\omega+k}\).
    \(\left(\rho, K, t r, \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{t}_{0}\right) \leftarrow \operatorname{skDecode}(s k)\)
    \(\hat{\mathbf{s}}_{1} \leftarrow \operatorname{NTT}\left(\mathbf{s}_{1}\right)\)
    \(\hat{\mathbf{s}}_{2} \leftarrow \mathrm{NTT}\left(\mathbf{s}_{2}\right)\)
    \(\hat{\mathbf{t}}_{0} \leftarrow \mathrm{NTT}\left(\mathbf{t}_{0}\right)\)
    \(\hat{\mathbf{A}} \leftarrow \operatorname{ExpandA}(\rho)\)
    \(\mu \leftarrow \mathrm{H}(t r|\mid M, 512)\)
    \(r n d \leftarrow\{0,1\}^{256} \quad \triangleright\) For the optional deterministic variant, substitute \(r n d \leftarrow\{0\}^{256}\)
    \(\rho^{\prime} \leftarrow \mathrm{H}(K| | r n d| | \mu, 512) \quad \triangleright\) Compute private random seed
    \(\kappa \leftarrow 0 \quad \triangleright\) Initialize counter \(\kappa\)
    \((\mathbf{z}, \mathbf{h}) \leftarrow \perp\)
    while \((\mathbf{z}, \mathbf{h})=\perp\) do \(\quad \triangleright\) Rejection sampling loop
        \(\mathbf{y} \leftarrow \operatorname{ExpandMask}\left(\rho^{\prime}, \boldsymbol{\kappa}\right)\)
        \(\mathbf{w} \leftarrow \operatorname{NTT}^{-1}(\hat{\mathbf{A}} \circ \operatorname{NTT}(\mathbf{y}))\)
        \(\mathbf{w}_{1} \leftarrow \operatorname{HighBits}(\mathbf{w}) \quad \triangleright\) Signer's commitment
        \(\tilde{c} \in\{0,1\}^{2 \lambda} \leftarrow \mathrm{H}\left(\mu \|\right.\) w1Encode \(\left.\left(\mathbf{w}_{1}\right), 2 \lambda\right) \quad \triangleright\) Commitment hash
        \(\left(\tilde{c}_{1}, \tilde{c}_{2}\right) \in\{0,1\}^{256} \times\{0,1\}^{2 \lambda-256} \leftarrow \tilde{c} \quad \triangleright\) First 256 bits of commitment hash
        \(c \leftarrow\) SamplelnBall \(\left(\tilde{c}_{1}\right) \quad \triangleright\) Verifier's challenge
        \(\hat{c} \leftarrow \mathrm{NTT}(c)\)
        \(\left\langle\left\langle c \mathbf{s}_{1}\right\rangle\right\rangle \leftarrow \operatorname{NTT}^{-1}\left(\hat{c} \circ \hat{\mathbf{s}}_{1}\right)\)
        \(\left\langle\left\langle c \mathbf{s}_{2}\right\rangle\right\rangle \leftarrow \mathrm{NTT}^{-1}\left(\hat{c} \circ \hat{\mathbf{s}}_{2}\right)\)
        \(\left.\mathbf{z} \leftarrow \mathbf{y}+\left\langle\left\langle c \mathbf{s}_{1}\right\rangle\right\rangle\right\rangle \quad \triangleright\) Signer's response
        \(\mathbf{r}_{0} \leftarrow \operatorname{LowBits}\left(\mathbf{w}-\left\langle\left\langle c \mathbf{s}_{2}\right\rangle\right\rangle\right)\)
        if \(\|\mathbf{z}\|_{\infty} \geq \gamma_{1}-\beta\) or \(\left\|\mathbf{r}_{0}\right\|_{\infty} \geq \gamma_{2}-\beta\) then \((\mathbf{z}, \mathbf{h}) \leftarrow \perp \quad \triangleright\) Validity checks
        else
            \(\left\langle\left\langle c \mathbf{t}_{0}\right\rangle\right\rangle \leftarrow \mathrm{NTT}^{-1}\left(\hat{c} \circ \hat{\mathbf{t}}_{0}\right)\)
            \(\mathbf{h} \leftarrow\) MakeHint \(\left(-\left\langle\left\langle c \mathbf{t}_{0}\right\rangle\right\rangle, \mathbf{w}-\left\langle\left\langle\mathbf{s}_{2}\right\rangle\right\rangle+\left\langle\left\langle c \mathbf{t}_{0}\right\rangle\right\rangle\right) \quad \triangleright\) Signer's hint
            if \(\left\|\left\langle\left\langle c \mathbf{t}_{0}\right\rangle\right\rangle\right\|_{\infty} \geq \gamma_{2}\) or the number of 1 's in \(\mathbf{h}\) is greater than \(\omega\), then \((\mathbf{z}, \mathbf{h}) \leftarrow \perp\)
            end if
        end if
        \(\kappa \leftarrow \kappa+\ell \quad \triangleright\) Increment counter
    end while
    \(\sigma \leftarrow \operatorname{sigEncode}\left(\tilde{c}, \mathbf{z} \bmod ^{ \pm} q, \mathbf{h}\right)\)
    return \(\sigma\)
```


7. Verification

The algorithm ML-DSA.Verify (Algorithm 3) takes as input a public key $p k$ encoded as a byte string, a message M encoded as a bit string, and a signature σ encoded as a byte string. ML-DSA.Verify requires no randomness. It produces as output a Boolean value (i.e., a value that is true if the signature is valid with respect to the message and public key, and false if the signature is invalid). Algorithm 3 specifies the length of the signature σ and the public key $p k$ in terms of the parameters described in section 1 . If an implementation of ML-DSA.Verify can accept inputs for σ or $p k$ of any other length, it shall return false whenever the length of either of these inputs differs from its specified length.

The verifier first extracts the public random seed ρ and the compressed polynomial vector \mathbf{t}_{1} from the public key $p k$; and extracts the signer's commitment hash \tilde{c}, response \mathbf{z}, and hint \mathbf{h} from the signature σ. The verifier may find that the hint was not properly byte encoded, denoted by the symbol " \perp," in which case the verification algorithm will immediately return false, indicating that the signature is invalid.

Assuming that the signature is successfully extracted from its byte encoding, the verifier pseudorandomly derives \mathbf{A} from ρ, as is done in key generation and signing, and creates a message representative μ, by hashing the concatenation of tr (the hash of the public key $p k$) and the message M.

The verifier then attempts to reconstruct the signer's commitment (the polynomial vector \mathbf{w}_{1}) from the public key $p k$ and the signature σ. In ML-DSA.Sign, \mathbf{w}_{1} is computed by rounding $\mathbf{w}=\mathbf{A y}$. In ML-DSA.Verify, the reconstructed value of \mathbf{w}_{1} is called \mathbf{w}_{1}^{\prime}, since it may have been computed in a different way, in the case where the signature is invalid. This \mathbf{w}_{1}^{\prime} is computed through the following process:

- Derive the challenge polynomial c from the signer's commitment hash \tilde{c}, as done in ML-DSA.Sign.
- Use the signer's response \mathbf{z} to compute

$$
\mathbf{w}_{\text {Approx }}^{\prime}=\mathbf{A z}-c \mathbf{t}_{1} \cdot 2^{d} .
$$

Note that assuming the signature was computed correctly, as in ML-DSA.Sign, it follows that

$$
\mathbf{w}=\mathbf{A} \mathbf{y}=\mathbf{A} \mathbf{z}-c \mathbf{t}+c \mathbf{s}_{2} \approx \mathbf{w}_{\text {Approx }}^{\prime}=\mathbf{A z}-c \mathbf{t}_{1} \cdot 2^{d},
$$

because c and \mathbf{s}_{2} have small coefficients, and $\mathbf{t}_{1} \cdot 2^{d} \approx \mathbf{t}$.

- Use the signer's hint \mathbf{h} to obtain \mathbf{w}_{1}^{\prime} from $\mathbf{w}_{\text {Approx }}^{\prime}$.

Finally, the verifier checks that the signer's response \mathbf{z} and the signer's hint \mathbf{h} are valid, and that the reconstructed \mathbf{w}_{1}^{\prime} is consistent with the signer's commitment hash \tilde{c}. More precisely, the verifier checks that all of the coefficients of \mathbf{z} are sufficiently small (i.e., in the range $\left[-\left(\gamma_{1}-\beta\right), \gamma_{1}-\beta\right]$); that \mathbf{h} contains no more than ω nonzero coefficients; and that \tilde{c} matches the hash \tilde{c}^{\prime} of the message representative μ concatenated with \mathbf{w}_{1}^{\prime} (represented as a bit string). If all of these checks succeed, then ML-DSA.Verify returns true. Otherwise it returns false.

```
Algorithm 3 ML-DSA.Verify \((p k, M, \sigma\) )
Verifies a signature \(\sigma\) for a message \(M\).
Input: Public key, \(p k \in \mathbb{B}^{32+32 k(\text { bitlen }(q-1)-d)}\) and message \(M \in\{0,1\}^{*}\).
Input: Signature, \(\sigma \in \mathbb{B}^{32+\ell \cdot 32 \cdot\left(1+\text { bitlen }\left(\gamma_{1}-1\right)\right)+\omega+k}\).
Output: Boolean
    \(\left(\rho, \mathbf{t}_{1}\right) \leftarrow \operatorname{pkDecode}(p k)\)
    \((\tilde{c}, \mathbf{z}, \mathbf{h}) \leftarrow \operatorname{sig} \operatorname{Decode}(\sigma) \quad \triangleright\) Signer's commitment hash \(\tilde{c}\), response \(\mathbf{z}\) and hint \(\mathbf{h}\)
    if \(\mathbf{h}=\perp\) then return false \(\quad \triangleright\) Hint was not properly encoded
    end if
    \(\hat{\mathbf{A}} \leftarrow \operatorname{ExpandA}(\rho) \quad \triangleright \mathbf{A}\) is generated and stored in NTT representation as \(\hat{\mathbf{A}}\)
    \(t r \leftarrow \mathrm{H}(\) BytesToBits \((p k), 512)\)
    \(\mu \leftarrow \mathrm{H}(t r|\mid M, 512) \quad \triangleright\) Compute message representative \(\mu\)
    \(\left(\tilde{c}_{1}, \tilde{c}_{2}\right) \in\{0,1\}^{256} \times\{0,1\}^{2 \lambda-256} \leftarrow \tilde{c}\)
    \(c \leftarrow\) SamplelnBall \(\left(\tilde{c}_{1}\right) \quad \triangleright\) Compute verifier's challenge from \(\tilde{c}\)
    \(\mathbf{w}_{\text {Approx }}^{\prime} \leftarrow \operatorname{NTT}^{-1}\left(\hat{\mathbf{A}} \circ \mathrm{NTT}(\mathbf{z})-\operatorname{NTT}(c) \circ \operatorname{NTT}\left(\mathbf{t}_{1} \cdot 2^{d}\right)\right) \quad \triangleright \mathbf{w}_{\text {Approx }}^{\prime}=\mathbf{A z}-c \mathbf{t}_{1} \cdot 2^{d}\)
    \(\mathbf{w}_{1}^{\prime} \leftarrow\) UseHint \(\left(\mathbf{h}, \mathbf{w}_{\text {Approx }}^{\prime}\right) \quad \triangleright\) Reconstruction of signer's commitment
    \(\tilde{c}^{\prime} \leftarrow \mathrm{H}\left(\mu \|\right.\) w1Encode \(\left.\left(\mathbf{w}_{1}^{\prime}\right), 2 \lambda\right) \quad \triangleright\) Hash it; this should match \(\tilde{c}\)
    return \(\left[\left[\|\mathbf{z}\|_{\infty}<\gamma_{1}-\beta\right]\right]\) and \(\left[\left[\tilde{c}=\tilde{c}^{\prime}\right]\right]\) and [[number of 1 's in \(\mathbf{h}\) is \(\left.\leq \omega\right]\) ]
```


7.1 Prehash ML-DSA

For some cryptographic modules that generate ML-DSA signatures, hashing the message in ML-DSA.Sign (step 6 of Algorithm 2) may have unacceptable performance when the message M is large. For example, the platform may require hardware support for hashing to achieve acceptable performance, but lack hardware support for SHAKE256 specifically. For some use cases, this may be addressed by signing a digest of the message rather than signing the message directly.

In order to maintain the same level of security strength, the digest that is signed needs to be generated using an approved hash function or extendable-output function (XOF) (e.g., from FIPS 180 [8] or FIPS 202 [7]) that provides at least λ bits of classical security strength against both collision and second preimage attacks $\left[7\right.$, Table 4]. ${ }^{4}$ Note that verification of a signature created in this way will require the verify function to generate a digest from the message in the same way to be used as input for the verification function.

[^3]
8. Auxiliary Functions

This section provides pseudocode for subroutines utilized by ML-DSA, including functions for data-type conversions, arithmetic, and sampling.

8.1 Conversion Between Data Types

All keys and signatures in ML-DSA are communicated as byte strings. The goal in this subsection is to construct procedures for translating between byte strings and the various other algebraic objects defined in subsection 2.3.

Algorithms 4-7 are simple intermediate procedures for converting between bit strings, byte strings, and integers.

```
Algorithm 4 IntegerToBits \((x, \alpha)\)
Computes the base-2 representation of \(x \bmod 2^{\alpha}\) (using in little-endian order).
Input: A nonnegative integer \(x\) and a positive integer \(\alpha\).
Output: A bit string \(y\) of length \(\alpha\).
    for \(i\) from 0 to \(\alpha-1\) do
        \(y[i] \leftarrow x \bmod 2\)
        \(x \leftarrow\lfloor x / 2\rfloor\)
    end for
    return \(y\)
```

```
Algorithm 5 BitsToInteger (y)
Computes the integer value expressed by a bit string (using little-endian order).
Input: A bit string \(y\) of length \(\alpha\).
Output: A nonnegative integer \(x\).
    \(x \leftarrow 0\)
    for \(i\) from 1 to \(\alpha\) do
    \(x \leftarrow 2 x+y[\alpha-i]\)
    end for
    return \(x\)
```

```
Algorithm 6 BitsToBytes (y)
Converts a string of bits of length \(c\) into a string of bytes of length \(\lceil c / 8\rceil\).
Input: A bit string \(y\) of length \(c\).
Output: A byte string \(z\).
    \(z \leftarrow 0^{\lceil c / 8\rceil}\)
    for \(\boldsymbol{i}\) from 0 to \(c-1\) do
    \(z[\lfloor i / 8\rfloor] \leftarrow z[\lfloor i / 8]]+y[i] \cdot 2^{i \bmod 8}\)
    end for
    return \(z\)
```

```
Algorithm 7 BytesToBits(z)
Converts a byte string into a bit string.
Input: A byte string \(z\) of length \(d\).
Output: A bit string \(y\).
    for \(i\) from 0 to \(d-1\) do
        for \(j\) from 0 to 7 do
            \(y[8 i+j] \leftarrow z[i] \bmod 2\)
            \(z[i] \leftarrow\lfloor z[i] / 2\rfloor\)
        end for
    end for
    return \(y\)
```

Algorithms 8-9 translate byte strings into coefficients of polynomials in R_{q}. CoeffFromThreeBytes uses a three-byte string to either generate an element of $\{0,1, \ldots, q-1\}$ or return the blank symbol \perp. CoeffFromHalfByte uses an element of $\{0,1, \ldots, 15\}$ to either generate an element of $\{-\eta,-\eta+1, \ldots, \eta\}$ or return \perp. These two procedures will be used in the uniform sampling algorithms, RejNTTPoly and RejBoundedPoly, discussed in subsection 8.3.

```
Algorithm 8 CoeffFromThreeBytes \(\left(b_{0}, b_{1}, b_{2}\right)\)
Generates an element of \(\{0,1,2, \ldots, q-1\} \cup\{\perp\}\).
Input: Bytes \(b_{0}, b_{1}, b_{2}\).
Output: An integer modulo \(q\) or \(\perp\).
    if \(b_{2}>127\) then
    \(b_{2} \leftarrow b_{2}-128 \quad \triangleright\) Set the top bit of \(b_{2}\) to zero
    end if
    \(z \leftarrow 2^{16} \cdot b_{2}+2^{8} \cdot b_{1}+b_{0}\)
    if \(z<q\) then return \(z\)
    else return \(\perp\)
    end if
```

```
```

Algorithm 9 CoeffFromHalfByte(b)

```
```

Algorithm 9 CoeffFromHalfByte(b)
Generates an element of $\{-\eta,-\eta+1, \ldots, \eta\} \cup\{\perp\}$.
Generates an element of $\{-\eta,-\eta+1, \ldots, \eta\} \cup\{\perp\}$.
Input: Integer $b \in\{0,1, \ldots, 15\}$.
Input: Integer $b \in\{0,1, \ldots, 15\}$.
Output: An integer between $-\eta$ and η, or \perp.
Output: An integer between $-\eta$ and η, or \perp.
if $\eta=2$ and $b<15$ then return $2-(b \bmod 5)$
if $\eta=2$ and $b<15$ then return $2-(b \bmod 5)$
else
else
if $\eta=4$ and $b<9$ then return $4-b$
if $\eta=4$ and $b<9$ then return $4-b$
else return \perp
else return \perp
end if
end if
end if

```
```

 end if
    ```
```

Algorithms 10-13 efficiently translate an element $w \in R$ into a byte string and vice versa under the assumption that the coefficients of w are in a restricted range. SimpleBitPack assumes that $w_{i} \in[0, b]$ for some positive integer b and packs w into a byte string of length $32 \cdot$ bitlen b. BitPack allows for the more general restriction $w_{i} \in[-a, b]$. The BitPack algorithm works by merely subtracting w from the polynomial $\sum_{i=0}^{255} b X^{i}$ and then applying SimpleBitPack.

```
Algorithm 10 SimpleBitPack \((w, b)\)
Encodes a polynomial \(w\) into a byte string.
Input: \(b \in \mathbb{N}\) and \(w \in R\) such that the coefficients of \(w\) are all in \([0, b]\).
Output: A byte string of length \(32 \cdot\) bitlen \(b\).
    \(z \leftarrow() \quad \triangleright\) set \(z\) to the empty string
    for \(i\) from 0 to 255 do
        \(z \leftarrow z\left|\mid \operatorname{IntegerToBits}\left(w_{i}\right.\right.\), bitlen \(\left.b\right)\)
    end for
    return \(\operatorname{BitsToBytes}(z)\)
```

```
Algorithm 11 BitPack ( \(w, a, b\) )
```

Algorithm 11 BitPack (w, a, b)
Encodes a polynomial w into a byte string.
Encodes a polynomial w into a byte string.
Input: $a, b \in \mathbb{N}$ and $w \in R$ such that the coefficients of w are all in $[-a, b]$.
Input: $a, b \in \mathbb{N}$ and $w \in R$ such that the coefficients of w are all in $[-a, b]$.
Output: A byte string of length $32 \cdot$ bitlen $(a+b)$.
Output: A byte string of length $32 \cdot$ bitlen $(a+b)$.
$z \leftarrow() \quad \triangleright$ set z to the empty string
$z \leftarrow() \quad \triangleright$ set z to the empty string
for i from 0 to 255 do
for i from 0 to 255 do
$z \leftarrow z\left|\mid \operatorname{IntegerToBits}\left(b-w_{i}\right.\right.$, bitlen $\left.(a+b)\right)$
$z \leftarrow z\left|\mid \operatorname{IntegerToBits}\left(b-w_{i}\right.\right.$, bitlen $\left.(a+b)\right)$
end for
end for
return $\operatorname{BitsToBytes}(z)$

```
    return \(\operatorname{BitsToBytes}(z)\)
```

SimpleBitUnpack and BitUnpack are used to decode the byte strings produced by the above functions. Note that for some choices of a and b, there exist malformed byte strings that will cause SimpleBitUnpack and BitUnpack to output polynomials whose coefficients do not lie in the ranges $[0, b]$ and $[-a, b]$, respectively. This can be a concern, when running SimpleBitUnpack and BitUnpack on inputs that may come from an untrusted source.

```
Algorithm 12 SimpleBitUnpack ( \(v, b\) )
Reverses the procedure SimpleBitPack.
Input: \(b \in \mathbb{N}\) and a byte string \(v\) of length \(32 \cdot\) bitlen \(b\).
Output: A polynomial \(w \in R\), with coefficients in \(\left[0,2^{c}-1\right]\), where \(c=\) bitlen \(b\).
When \(b+1\) is a power of 2 , the coefficients are in \([0, b]\).
    \(c \leftarrow\) bitlen \(b\)
\(z \leftarrow \operatorname{Bytes} T o B i t s(v)\)
for \(i\) from 0 to 255 do
    \(w_{i} \leftarrow \operatorname{BitsToInteger}((z[i c], z[i c+1], \ldots z[i c+c-1]), c)\)
end for
return \(w\)
```


Algorithm 13 BitUnpack (v, a, b)

Reverses the procedure BitPack.
Input: $a, b \in \mathbb{N}$ and a byte string v of length $32 \cdot$ bitlen $(a+b)$.
Output: A polynomial $w \in R$, with coefficients in $\left[b-2^{c}+1, b\right]$, where $c=\operatorname{bitlen}(a+b)$.
When $a+b+1$ is a power of 2 , the coefficients are in $[-a, b]$.
$c \leftarrow$ bitlen $(a+b)$
$z \leftarrow \operatorname{Bytes} T o B i t s(v)$
for i from 0 to 255 do
$w_{i} \leftarrow b$ - BitsToInteger $((z[i c], z[i c+1], \ldots z[i c+c-1]), c)$
end for
return w

Algorithms 14-15 carry out byte-string-to-polynomial conversions for polynomials with sparse binary coefficients. In particular, the signing and verification algorithms (sections 6 and 7) make use of a "hint," which is a vector of polynomials $\mathbf{h} \in R_{2}^{k}$ such that the total number of coefficients in $\mathbf{h}[0], \mathbf{h}[1], \ldots, \mathbf{h}[k-1]$ that are equal to 1 is no more than ω. This constraint enables encoding and decoding procedures that are more efficient (although more complex) than BitPack and BitUnpack.

HintBitPack (h) outputs a byte string y of length $\omega+k$. The last k bytes of y contain information about how many nonzero coefficients are present in each of the polynomials $\mathbf{h}[0], \mathbf{h}[1], \ldots, \mathbf{h}[k-1]$, and the first ω bytes of y contain information about exactly where those nonzero terms occur. HintBitUnpack reverses the procedure performed by HintBitPack and recovers the vector \mathbf{h}.

```
Algorithm 14 HintBitPack(h)
Encodes a polynomial vector \(\mathbf{h}\) with binary coefficients into a byte string.
Input: A polynomial vector \(\mathbf{h} \in R_{2}^{k}\) such that at most \(\omega\) of the coefficients in \(\mathbf{h}\) are equal to 1 .
Output: A byte string \(y\) of length \(\omega+k\).
    \(y \in \mathbb{B}^{\omega+k} \leftarrow 0^{\omega+k}\)
    Index \(\leftarrow 0\)
    for \(i\) from 0 to \(k-1\) do
        for \(j\) from 0 to 255 do
            if \(h[i]_{j} \neq 0\) then
            \(y[\) Index \(] \leftarrow j \quad \triangleright\) Store the locations of the nonzero coefficients in \(\mathbf{h}[i]\)
            Index \(\leftarrow\) Index +1
        end if
    end for
    \(y[\omega+i] \leftarrow\) Index \(\quad \triangleright\) Store the value of Index after processing \(\mathbf{h}[i]\)
end for
return \(y\)
```

```
Algorithm 15 HintBitUnpack(y)
Reverses the procedure HintBitPack.
Input: A byte string \(y\) of length \(\omega+k\).
Output: A polynomial vector \(\mathbf{h} \in R_{2}^{k}\) or \(\perp\).
    \(\mathbf{h} \in R_{2}^{k} \leftarrow 0^{k}\)
    Index \(\leftarrow 0\)
    for \(i\) from 0 to \(k-1\) do
    if \(y[\omega+i]<\) Index or \(y[\omega+i]>\omega\) then return \(\perp\)
    end if
    while Index \(<y[\omega+i]\) do
        \(\mathbf{h}[i]_{y[\text { Index }]} \leftarrow 1\)
        Index \(\leftarrow\) Index +1
    end while
    end for
    while Index \(<\omega\) do
    if \(y[\) Index \(] \neq 0\) then return \(\perp\)
    end if
    Index \(\leftarrow\) Index +1
    end while
    return \(h\)
```


8.2 Encodings of ML-DSA Keys and Signatures

Algorithms 16-21 translate keys and signatures for ML-DSA into byte strings. These procedures take certain sequences of algebraic objects, encode them (consecutively) into byte strings, and perform the respective decoding procedures.

First, pkEncode and pkDecode translate ML-DSA public keys into byte strings, and vice versa. Note that, when verifying a signature, pkDecode might be run on an input that comes from an untrusted source. Thus, care is required when using SimpleBitUnpack. As used here, SimpleBitUnpack always returns values in the correct range.

```
Algorithm 16 pkEncode \(\left(\rho, \mathbf{t}_{1}\right)\)
Encodes a public key for ML-DSA into a byte string.
Input: \(\rho \in\{0,1\}^{256}, \mathbf{t}_{1} \in R^{k}\) with coefficients in \(\left.\left[0,2^{\text {bitlen }(q-1)-d}-1\right]\right)\).
Output: Public key \(p k \in \mathbb{B}^{32+32 k(\text { bitlen }(q-1)-d)}\).
    \(p k \leftarrow \operatorname{BitsToBytes}(\rho)\)
    for \(i\) from 0 to \(k-1\) do
        \(p k \leftarrow p k \|\) SimpleBitPack \(\left(\mathbf{t}_{1}[i], 2^{\text {bitlen }(q-1)-d}-1\right)\)
    end for
    return \(p k\)
```

```
Algorithm 17 pkDecode(pk)
Reverses the procedure pkEncode .
Input: Public key \(p k \in \mathbb{B}^{32+32 k(\text { bitlen }(q-1)-d)}\).
Output: \(\rho \in\{0,1\}^{256}, \mathbf{t}_{1} \in R^{k}\) with coefficients in \(\left.\left[0,2^{\text {bitlen }(q-1)-d}-1\right]\right)\).
    \(\left(y, z_{0}, \ldots, z_{k-1}\right) \in \mathbb{B}^{32} \times\left(\mathbb{B}^{32(\text { bitlen }(q-1)-d)}\right)^{k} \leftarrow p k\)
    \(\rho \leftarrow \operatorname{BytesToBits}(y)\)
    for \(i\) from 0 to \(k-1\) do
        \(\mathbf{t}_{1}[i] \leftarrow\) SimpleBitUnpack \(\left.\left(z_{i}, 2^{\text {bitlen }(q-1)-d}-1\right)\right) \quad \triangleright\) This is always in the correct range
    end for
    return \(\left(\rho, \mathbf{t}_{1}\right)\)
```

812 Next, skEncode and skDecode translate ML-DSA secret keys into byte strings, and vice versa. Note that there exist malformed inputs that can cause skDecode to return values that are not in the correct range. Hence skDecode should only be run on input that comes from trusted sources.

```
Algorithm 18 skEncode \(\left(\rho, K, t r, \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{t}_{0}\right)\)
Encodes a secret key for ML-DSA into a byte string.
Input: \(\rho \in\{0,1\}^{256}, K \in\{0,1\}^{256}, \operatorname{tr} \in\{0,1\}^{512}, \mathbf{s}_{1} \in R^{\ell}\) with coefficients in \([-\eta, \eta]\),
\(\mathbf{s}_{2} \in R^{k}\) with coefficients in \([-\eta, \eta], \mathbf{t}_{0} \in R^{k}\) with coefficients in \(\left[-2^{d-1}+1,2^{d-1}\right]\).
```



```
\(s k \leftarrow \operatorname{BitsToBytes}(\rho)||\operatorname{BitsToBytes}(K)|| \operatorname{BitsToBytes}(t r)\)
```

$s k \leftarrow \operatorname{BitsToBytes}(\rho)||\operatorname{BitsToBytes}(K)|| \operatorname{BitsToBytes}(t r)$
for \boldsymbol{i} from 0 to $\ell-1$ do
for \boldsymbol{i} from 0 to $\ell-1$ do
$s k \leftarrow s k \| \operatorname{BitPack}\left(\mathbf{s}_{1}[i], \eta, \eta\right)$
$s k \leftarrow s k \| \operatorname{BitPack}\left(\mathbf{s}_{1}[i], \eta, \eta\right)$
end for
end for
for i from 0 to $k-1$ do
for i from 0 to $k-1$ do
$s k \leftarrow s k \| \operatorname{BitPack}\left(\mathbf{s}_{2}[i], \eta, \eta\right)$
$s k \leftarrow s k \| \operatorname{BitPack}\left(\mathbf{s}_{2}[i], \eta, \eta\right)$
end for
end for
for i from 0 to $k-1$ do
for i from 0 to $k-1$ do
$s k \leftarrow s k \| \operatorname{BitPack}\left(\mathbf{t}_{0}[i], 2^{d-1}-1,2^{d-1}\right)$
$s k \leftarrow s k \| \operatorname{BitPack}\left(\mathbf{t}_{0}[i], 2^{d-1}-1,2^{d-1}\right)$
end for
end for
return $s k$

```
return \(s k\)
```

```
Algorithm 19 skDecode(sk)
Reverses the procedure skEncode.
Input: Private key, \(s k \in \mathbb{B}^{32+32+64+32 \cdot((\ell+k) \cdot \text { bitlen }(2 \eta)+d k)}\).
Output: \(\rho \in\{0,1\}^{256}, K \in\{0,1\}^{256}, \operatorname{tr} \in\{0,1\}^{512}\),
\(\mathbf{s}_{1} \in R^{\ell}, \mathbf{s}_{2} \in R^{k}, \mathbf{t}_{0} \in R^{k}\) with coefficients in \(\left[-2^{d-1}+1,2^{d-1}\right]\).
    \(\left(f, g, h, y_{0}, \ldots, y_{\ell-1}, z_{0}, \ldots, z_{k-1}, w_{0}, \ldots, w_{k-1}\right) \in \mathbb{B}^{32} \times \mathbb{B}^{32} \times \mathbb{B}^{64} \times\left(\mathbb{B}^{32 \cdot \text { bitlen }(2 \eta)}\right)^{\ell} \times\)
    \(\left(\mathbb{B}^{32 \text {-bitlen (2 } 2 \eta)}\right)^{k} \times\left(\mathbb{B}^{32 d}\right)^{k} \leftarrow s k\)
2: \(\rho \leftarrow \operatorname{BytesToBits}(f)\)
\(: K \leftarrow\) BytesToBits \((g)\)
\(t r \leftarrow\) BytesToBits \((h)\)
for \(\boldsymbol{i}\) from 0 to \(\ell-1\) do
    \(\mathbf{s}_{1}[i] \leftarrow \operatorname{BitUnpack}\left(y_{i}, \eta, \eta\right) \quad \triangleright\) This may lie outside \([-\eta, \eta]\), if input is malformed
end for
for \(i\) from 0 to \(k-1\) do
    \(\mathbf{s}_{2}[i] \leftarrow \operatorname{BitUnpack}\left(z_{i}, \eta, \eta\right) \quad \triangleright\) This may lie outside \([-\eta, \eta]\), if input is malformed
end for
for \(i\) from 0 to \(k-1\) do
    \(\mathbf{t}_{0}[i] \leftarrow \operatorname{BitUnpack}\left(w_{i}, 2^{d-1}-1,2^{d-1}\right) \quad \triangleright\) This is always in the correct range
end for
return \(\left(\rho, K, t r, \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{t}_{0}\right)\)
```

Next, sigEncode and sigDecode translate ML-DSA signatures into byte strings, and vice versa. Note that, when verifying a signature, sigDecode might be run on input that comes from an untrusted source. Thus care is required when using BitUnpack. As used here, BitUnpack always returns values in the correct range.

```
Algorithm 20 sigEncode \((\tilde{c}, \mathbf{z}, \mathbf{h})\)
Encodes a signature into a byte string.
Input: \(\tilde{c} \in\{0,1\}^{2 \lambda}, \mathbf{z} \in R^{\ell}\) with coefficients in \(\left[-\gamma_{1}+1, \gamma_{1}\right], \mathbf{h} \in R_{2}^{k}\).
Output: Signature, \(\sigma \in \mathbb{B}^{\lambda / 4+\ell \cdot 32 \cdot\left(1+\text { bitlen }\left(\gamma_{1}-1\right)\right)+\omega+k}\).
    \(\sigma \leftarrow \operatorname{BitsToBytes}(\tilde{c})\)
    for \(i\) from 0 to \(\ell-1\) do
        \(\sigma \leftarrow \sigma \| \operatorname{BitPack}\left(\mathbf{z}[i], \gamma_{1}-1, \gamma_{1}\right)\)
    end for
    \(\sigma \leftarrow \sigma \|\) HintBitPack (h)
    return \(\sigma\)
```

```
Algorithm 21 sigDecode \((\sigma)\)
Reverses the procedure sigEncode.
Input: Signature, \(\sigma \in \mathbb{B}^{\lambda / 4+\ell \cdot 32 \cdot\left(1+\operatorname{bitlen}\left(\gamma_{1}-1\right)\right)+\omega+k}\).
Output: \(\tilde{c} \in\{0,1\}^{2 \lambda}, \mathbf{z} \in R_{q}^{\ell}\) with coefficients in \(\left[-\gamma_{1}+1, \gamma_{1}\right], \mathbf{h} \in R_{2}^{k}\) or \(\perp\).
    \(\left(w, x_{0}, \ldots, x_{\ell-1}, y\right) \in \mathbb{B}^{\lambda / 4} \times \mathbb{B}^{\ell \cdot 32 \cdot\left(1+\text { bitlen }\left(\gamma_{1}-1\right)\right)} \times \mathbb{B}^{\omega+k} \leftarrow \sigma\)
    \(\tilde{c} \leftarrow\) BytesToBits \((w)\)
    for \(\boldsymbol{i}\) from 0 to \(\ell-1\) do
        \(\mathbf{z}[i] \leftarrow \operatorname{BitUnpack}\left(x_{i}, \gamma_{1}-1, \gamma_{1}\right) \triangleright\) This is always in the correct range, as \(\gamma_{1}\) is a power of 2
    end for
    \(\mathbf{h} \leftarrow \operatorname{HintBitUnpack}(y)\)
    return \((\tilde{c}, \mathbf{z}, \mathbf{h})\)
```

Lastly, w1Encode (Algorithm 22) is a specific subroutine that is used in ML-DSA.Sign (Algorithm 2). Algorithm 22 encodes a polynomial vector \mathbf{w}_{1} into a string of bits, so that it can be processed by the hash function, H .

```
Algorithm 22 w1Encode \(\left(\mathbf{w}_{1}\right)\)
Encodes a polynomial vector \(\mathbf{w}_{1}\) into a bit string.
Input: \(\mathbf{w}_{1} \in R^{k}\) with coefficients in \(\left[0,(q-1) /\left(2 \gamma_{2}\right)-1\right]\).
Output: A bit string representation, \(\tilde{\mathbf{w}}_{1} \in\{0,1\}^{32 k \text { bitlen }\left((q-1) /\left(2 \gamma_{2}\right)-1\right)}\).
    \(\tilde{\mathbf{w}}_{1} \leftarrow()\)
    for \(i\) from 0 to \(k-1\) do
        \(\tilde{\mathbf{w}}_{1} \leftarrow \tilde{\mathbf{w}}_{1}| |\) BytesToBits (SimpleBitPack \(\left(\mathbf{w}_{1}[i],(q-1) /\left(2 \gamma_{2}\right)-1\right)\) )
    end for
    return \(\tilde{\mathbf{w}}_{1}\)
```


8.3 Hashing and Pseudorandom Sampling

The ML-DSA scheme makes use of two extendable-output functions (XOFs) that will be denoted by H and H_{128}, each of which accepts a bit string v and a positive integer d and returns a length- d bit string. The functions H and H_{128} shall be computed from the procedures in FIPS 202 [7] as follows:

$$
\begin{align*}
\mathrm{H}(v, d) & \leftarrow \mathrm{SHAKE} 256(v, d), \tag{8.1}\\
\mathrm{H}_{128}(v, d) & \leftarrow \operatorname{SHAKE} 28(v, d) \tag{8.2}
\end{align*}
$$

The algorithm SHAKE256 is such that if $c<d$ are positive integers and $\rho \in\{0,1\}^{*}$, then $\mathrm{H}(\rho, c)$ is exactly equal to the first c bits of $\mathrm{H}(\rho, d)$. The same is true of SHAKE128. For convenience, the expression $\mathrm{H}(\rho)[k]$ may be used to denote the bit $\mathrm{H}(\rho, k+1)[k]$ for any nonnegative integer k. Similarly, $\mathrm{H}(\rho) \llbracket j \rrbracket$ denotes the byte expressed by the bit string

$$
\begin{equation*}
\mathrm{H}(\rho, 8(j+1))[8 j], \mathrm{H}(\rho, 8(j+1))[8 j+1], \ldots, \mathrm{H}(\rho, 8(j+1))[8 j+7] \tag{8.3}
\end{equation*}
$$

(in little endian-order). The expressions $\mathrm{H}_{128}(\rho)[k]$ and $\mathrm{H}_{128}(\rho) \llbracket j \rrbracket$ are similarly defined.
The notation $\mathrm{H}(\rho)[k]$ is used in loops where an unknown number of bits of the form $\mathrm{H}(\rho)[k]$ will be needed to compute a pseudorandom value (for the same ρ and consecutive, increasing values of k). It is expected that implementations will avoid recomputation by keeping track of the internal state of the SHAKE256 computation throughout the loop, and will only completely destroy that information once the the loop ends. Similar implementation considerations apply when the XOF is H_{128} and when the output is parsed in bytes.

When H is used with a fixed length output, this standard sometimes refers to H as a hash function. Note that, while H used with a fixed output length is a hash function, it is not an approved hash function for general use. This standard only approves the use of H as a hash function where it is explicitly specified as part of the algorithms herein, or as part of a mathematically equivalent set of steps being performed in place of the steps of these algorithms. In other contexts, the fact that $\mathrm{H}(\rho, c)$ is a prefix of $\mathrm{H}(\rho, d)$ for any $d>c$, may interfere with desired security properties, but it is believed that when H is used as described in this standard, it is overwhelmingly unlikely that H will be used with the same input string but a different output length.

In addition, this subsection specifies various algorithms for generating algebraic objects pseudorandomly from a seed ρ. The length of the bit string ρ varies depending on the algorithm.

The first procedure to be defined is SamplelnBall in Algorithm 23. Let B_{τ} denote the set of all polynomials $c \in R_{q}$ such that

- Each coefficient of c is either $-1,0$, or 1 , and
- Exactly τ of the coefficients of c are nonzero.

SamplelnBall generates an element of B_{τ} pseudorandomly using the XOF of a seed ρ. The procedure is based on the Fisher-Yates shuffle. The first 8 bytes of $\mathrm{H}(\rho)$ are used to choose the signs of the nonzero entries of $c,{ }^{5}$ and subsequent bytes of $\mathrm{H}(\rho)$ are used to choose the positions of those nonzero entries.

[^4]```
Algorithm 23 SamplelnBall \((\rho)\)
Samples a polynomial \(c \in R_{q}\) with coefficients from \(\{-1,0,1\}\) and Hamming weight \(\tau\).
Input: A seed \(\rho \in\{0,1\}^{256}\)
Output: A polynomial \(c\) in \(R_{q}\).
 \(c \leftarrow 0\)
 \(k \leftarrow 8\)
 for \(i\) from \(256-\tau\) to 255 do
 while \(\mathrm{H}(\rho) \llbracket k \rrbracket>i\) do
 \(k \leftarrow k+1\)
 end while
 \(j \leftarrow \mathrm{H}(\rho) \llbracket k \rrbracket \quad \triangleright j\) is a pseudorandom byte that is \(\leq i\)
 \(c_{i} \leftarrow c_{j}\)
 \(c_{j} \leftarrow(-1)^{\mathrm{H}(\rho)[i+\tau-256]}\)
 \(k \leftarrow k+1\)
 end for
 return \(c\)
```

Algorithms 24-28 are the pseudorandom procedures RejNTTPoly, RejBoundedPoly, ExpandA, ExpandS, and ExpandMask. Each generates elements of $R_{q}$ or $T_{q}$ under different input and output conditions. RejNTTPoly and ExpandA make use of the more efficient XOF $\mathrm{H}_{128}$, whereas the other three procedures use the XOF H .

The procedure ExpandMask (Algorithm 28) generates a polynomial vector $\mathbf{s}$ in $R_{q}^{k}$ that disguises the secret key in the Sign procedure (Algorithm 2). In addition to the seed $\rho$, ExpandMask also accepts an integer input $\mu$ that is incorporated into the pseudorandom procedure that generates $\mathbf{s}$.

```
Algorithm 24 RejNTTPoly \((\rho)\)
Samples a polynomial \(\in T_{q}\).
Input: A seed \(\rho \in\{0,1\}^{272}\).
Output: An element \(\hat{a} \in T_{q}\).
 \(j \leftarrow 0\)
 \(c \leftarrow 0\)
 while \(j<256\) do
 \(\hat{a}[j] \leftarrow\) CoeffFromThreeBytes \(\left(\mathrm{H}_{128}(\rho) \llbracket c \rrbracket, \mathrm{H}_{128}(\rho) \llbracket c+1 \rrbracket, \mathrm{H}_{128}(\rho) \llbracket c+2 \rrbracket\right)\)
 \(c \leftarrow c+3\)
 if \(\hat{a}[j] \neq \perp\) then
 \(j \leftarrow j+1\)
 end if
 end while
 return \(\hat{a}\)
```

```
Algorithm 25 RejBoundedPoly \((\rho)\)
Samples an element \(a \in R_{q}\) with coefficients in \([-\eta, \eta]\) computed via rejection sampling from \(\rho\).
Input: A seed \(\rho \in\{0,1\}^{528}\).
Output: A polynomial \(a \in R_{q}\).
 \(j \leftarrow 0\)
 \(c \leftarrow 0\)
 while \(j<256\) do
 \(z \leftarrow \mathrm{H}(\rho) \llbracket c \rrbracket\)
 \(z_{0} \leftarrow\) CoeffFromHalfByte \((z \bmod 16, \eta)\)
 \(z_{1} \leftarrow\) CoeffFromHalfByte \((\lfloor z / 16\rfloor, \eta)\)
 if \(z_{0} \neq \perp\) then
 \(a_{j} \leftarrow z_{0}\)
 \(j \leftarrow j+1\)
 end if
 if \(z_{1} \neq \perp\) and \(j<256\) then
 \(a_{j} \leftarrow z_{1}\)
 \(j \leftarrow j+1\)
 end if
 \(c \leftarrow c+1\)
 end while
 return \(a\)
```

```
Algorithm 26 ExpandA \((\rho)\)
Samples a \(k \times \ell\) matrix \(\hat{\mathbf{A}}\) of elements of \(T_{q}\).
Input: \(\rho \in\{0,1\}^{256}\).
Output: Matrix \(\hat{\mathbf{A}}\).
 for \(r\) from 0 to \(k-1\) do
 for \(s\) from 0 to \(\ell-1\) do
 \(\hat{\mathbf{A}}[r, s] \leftarrow \operatorname{RejNTTPoly}(\rho\|\operatorname{IntegerToBits}(s, 8)\| \operatorname{IntegerToBits}(r, 8))\)
 end for
 end for
 return Â
```

```
Algorithm 27 ExpandS(\(\rho\))
Samples vectors \(\mathbf{s}_{1} \in R_{q}^{\ell}\) and \(\mathbf{s}_{2} \in R_{q}^{k}\), each with coefficients in the interval \([-\eta, \eta]\).
Input: \(\boldsymbol{\rho} \in\{0,1\}^{512}\)
Output: Vectors \(\mathbf{s}_{1}, \mathbf{s}_{2}\) of polynomials in \(R_{q}\).
 for \(r\) from 0 to \(\ell-1\) do
 \(\mathbf{s}_{\mathbf{1}}[r] \leftarrow \operatorname{RejBoundedPoly}(\rho| | \operatorname{IntegerToBits}(r, 16))\)
 end for
 for \(r\) from 0 to \(k-1\) do
 \(\mathbf{s}_{\mathbf{2}}[r] \leftarrow \operatorname{RejBoundedPoly}(\rho| | \operatorname{IntegerToBits}(r+\ell, 16))\)
 end for
 return \(\left(\mathbf{s}_{1}, \mathbf{s}_{2}\right)\)
```

```
Algorithm 28 ExpandMask \((\rho, \mu)\)
Samples a vector \(\mathbf{s} \in R_{q}^{\ell}\) such that each polynomial \(\mathbf{s}_{j}\) has coefficients between \(-\gamma_{1}+1\) and \(\gamma_{1}\).
Input: A bit string \(\rho \in\{0,1\}^{512}\) and a nonnegative integer \(\mu\).
Output: Vector \(\mathbf{s} \in R_{q}^{\ell}\).
```

```
 \(c \leftarrow 1+\) bitlen \(\left(\gamma_{1}-1\right)\)
```

    \(c \leftarrow 1+\) bitlen \(\left(\gamma_{1}-1\right)\)
    \(\triangleright \gamma_{1}\) is always a power of 2
    \(\triangleright \gamma_{1}\) is always a power of 2
    for \(r\) from 0 to \(\ell-1\) do
    for \(r\) from 0 to \(\ell-1\) do
        \(n \leftarrow \operatorname{IntegerToBits}(\mu+r, 16)\)
        \(n \leftarrow \operatorname{IntegerToBits}(\mu+r, 16)\)
        \(v \leftarrow(\mathrm{H}(\rho \| n) \llbracket 32 r c \rrbracket, \mathrm{H}(\rho \| n) \llbracket 32 r c+1 \rrbracket, \ldots, \mathrm{H}(\rho \| n) \llbracket 32 r c+32 c-1 \rrbracket)\)
        \(v \leftarrow(\mathrm{H}(\rho \| n) \llbracket 32 r c \rrbracket, \mathrm{H}(\rho \| n) \llbracket 32 r c+1 \rrbracket, \ldots, \mathrm{H}(\rho \| n) \llbracket 32 r c+32 c-1 \rrbracket)\)
        \(\mathbf{s}[r] \leftarrow \operatorname{Bit} U n p a c k\left(v, \gamma_{1}-1, \gamma_{1}\right)\)
        \(\mathbf{s}[r] \leftarrow \operatorname{Bit} U n p a c k\left(v, \gamma_{1}-1, \gamma_{1}\right)\)
    end for
    end for
    return \(s\)
    ```
 return \(s\)
```


### 8.4 High Order / Low Order Bits and Hints

This specification uses the auxiliary functions Power2Round, Decompose, HighBits, LowBits, MakeHint, and UseHint. This document explicitly defines these functions where $r \in \mathbb{Z}_{q}, r_{1}, r_{0} \in \mathbb{Z}$ and $h$ is a boolean (or equivalently an element of $\mathbb{Z}_{2}$ ). However, the specification also uses these functions where $\mathbf{r}, \mathbf{z} \in R_{q}^{k}$, $\mathbf{r}_{1}, \mathbf{r}_{0} \in R^{k}$ and $\mathbf{h} \in R_{2}^{k}$. In this case, the functions are applied coefficientwise.

That is:

- For $\mathbf{r} \in R_{q}^{k}$ and $d \in \mathbb{Z}$, define $\left(\mathbf{r}_{1}, \mathbf{r}_{0}\right) \in\left(R^{k}\right)^{2}=\operatorname{Power} 2 \operatorname{Round}(\mathbf{r}, d)$, so that:

$$
\left(\left(\mathbf{r}_{1}[i]\right)_{j},\left(\mathbf{r}_{0}[i]\right)_{j}\right)=\operatorname{Power2Round}\left((\mathbf{r}[i])_{j}, d\right) .
$$

- For $\mathbf{r} \in R_{q}^{k}$ define $\left(\mathbf{r}_{1}, \mathbf{r}_{0}\right) \in\left(R^{k}\right)^{2}=$ Decompose $(\mathbf{r})$, so that:

$$
\left(\left(\mathbf{r}_{1}[i]\right)_{j},\left(\mathbf{r}_{0}[i]\right)_{j}\right)=\operatorname{Decompose}\left((\mathbf{r}[i])_{j}\right) .
$$

- For $\mathbf{r} \in R_{q}^{k}$ define $\mathbf{r}_{1}=\operatorname{HighBits}(\mathbf{r})$, so that:

$$
\left(\mathbf{r}_{1}[i]\right)_{j}=\operatorname{HighBits}\left((\mathbf{r}[i])_{j}\right) .
$$

- For $\mathbf{r} \in R_{q}^{k}$ define $\mathbf{r}_{0}=\operatorname{LowBits}(\mathbf{r})$, so that:

$$
\left(\mathbf{r}_{0}[i]\right)_{j}=\operatorname{LowBits}\left((\mathbf{r}[i])_{j}\right) .
$$

- For $\mathbf{z}, \mathbf{r} \in R_{q}^{k}$ define $\mathbf{h} \in R_{2}^{k}=\operatorname{MakeHint}(\mathbf{z}, \mathbf{r})$, so that:

$$
\left.\left.(\mathbf{h}[i])_{j}=\operatorname{MakeHint}\left((\mathbf{z}[i])_{j}\right),(\mathbf{r}[i])_{j}\right)\right)
$$

- For $\mathbf{h} \in R_{2}^{k}$ and $\mathbf{r} \in R_{q}^{k}$, define $\mathbf{r}_{1} \in R^{k}=U \operatorname{seHint}(\mathbf{h}, \mathbf{r})$, so that:

$$
\left.\left.\mathbf{r}_{1}[i]_{j}=\operatorname{UseHint}\left((\mathbf{h}[i])_{j}\right),(\mathbf{r}[i])_{j}\right)\right)
$$

These algorithms are used to support the key compression optimization of ML-DSA. The basic idea is to drop the $d$ low-order bits of each coefficient of the polynomial vector $\mathbf{t}$ from the public key using the function Power2Round. However, in order to make this optimization work, additional information, called a "hint", needs to be provided in the signature to allow the verifier to reconstruct enough of the information in the dropped public key bits to verify the signature. Hints are created during signing and used during verification by the functions MakeHint and UseHint, respectively. In the verification of a valid signature, the hint allows the verifier to recover $\mathbf{w}_{1} \in R^{k}$, which represents $\mathbf{w} \in R_{q}^{k}$ rounded to a nearby multiple of $\alpha=2 \gamma_{2}$. The signer obtains $\mathbf{w}_{1}$ directly using the function HighBits, and the part rounded off, $\mathbf{r}_{0}$, is obtained by LowBits. $\mathbf{r}_{0}$ is used by the signer in the rejection sampling procedure.

Power2Round decomposes an input $r \in \mathbb{Z}_{q}$ into integers that represent the high- and low-order bits of $r \bmod q$ in the straightforward bitwise way, $r \bmod q=r_{1} \cdot 2^{d}+r_{0}$, where $r_{0}=(r \bmod q) \bmod ^{ \pm} 2^{d}$ and $r_{1}=\left(r \bmod q-r_{0}\right) / 2^{d}$.

However, for the purpose of computations related to hints, this method of decomposing $r$ has the undesirable property that when $r$ is close to $q-1$ or 0 , a small rounding error in $r$ can cause $r_{1}$ to change by more than 1 (even accounting for wrap-around). This is because unlike for other unequal pairs of values of $r_{1} \cdot 2^{d}$ and $r_{1}^{\prime} \cdot 2^{d}$, the distance between $\left\lfloor q / 2^{d}\right\rfloor \cdot 2^{d}$ and 0 may be very small.

To avoid this problem, this specification defines Decompose, which is similar to Power2Round except:

- $r$ is generally decomposed as $r \bmod q=r_{1} \cdot \alpha+r_{0}$, where $\alpha=2 \gamma_{2}$ is a divisor of $q-1$.
- If the straightforward rounding procedure would return $\left(r_{1}=(q-1) / \alpha, r_{0} \in[-(\alpha / 2)+1, \alpha / 2]\right)$, Decompose instead returns $\left(r_{1}=0, r_{0}-1\right)$.

The functions HighBits and LowBits- which only return $r_{1}$ and $r_{0}$, respectively - and MakeHint and UseHint use Decompose. For additional discussion of the mathematical properties of these functions that are relevant to the correctness and security of ML-DSA, see Section 2.4 in [5].

```
Algorithm 29 Power2Round(\(r\))
Decomposes \(r\) into \(\left(r_{1}, r_{0}\right)\) such that \(r \equiv r_{1} 2^{d}+r_{0} \bmod q\).
Input: \(r \in \mathbb{Z}_{q}\).
Output: Integers \(\left(r_{1}, r_{0}\right)\).
 \(r^{+} \leftarrow r \bmod q\)
 \(r_{0} \leftarrow r^{+} \bmod ^{ \pm} 2^{d}\)
 return \(\left(\left(r^{+}-r_{0}\right) / 2^{d}, r_{0}\right)\)
```

```
Algorithm 30 Decompose \((r)\)
Decomposes \(r\) into \(\left(r_{1}, r_{0}\right)\) such that \(r \equiv r_{1}\left(2 \gamma_{2}\right)+r_{0} \bmod q\).
Input: \(r \in \mathbb{Z}_{q}\)
Output: Integers \(\left(r_{1}, r_{0}\right)\).
 \(r^{+} \leftarrow r \bmod q\)
 \(r_{0} \leftarrow r^{+} \bmod ^{ \pm}\left(2 \gamma_{2}\right)\)
 if \(r^{+}-r_{0}=q-1\) then
 \(r_{1} \leftarrow 0\)
 \(r_{0} \leftarrow r_{0}-1\)
 else \(r_{1} \leftarrow\left(r^{+}-r_{0}\right) /\left(2 \gamma_{2}\right)\)
 end if
 return \(\left(r_{1}, r_{0}\right)\)
```

```
Algorithm 31 HighBits \((r)\)
Returns \(r_{1}\) from the output of Decompose (\(r\))
Input: \(r \in \mathbb{Z}_{q}\)
Output: Integer \(r_{1}\).
 \(\left(r_{1}, r_{0}\right) \leftarrow\) Decompose \((r)\)
 return \(r_{1}\)
```

```
Algorithm 32 LowBits(\(r\))
Returns \(r_{0}\) from the output of Decompose (\(r\))
Input: \(r \in \mathbb{Z}_{q}\)
Output: Integer \(r_{0}\).
 \(\left(r_{1}, r_{0}\right) \leftarrow\) Decompose \((r)\)
 return \(r_{0}\)
```

```
Algorithm 33 MakeHint \((z, r)\)
Compute hint bit indicating whether adding \(z\) to \(r\) alters the high bits of \(r\).
Input: \(z, r \in \mathbb{Z}_{q}\)
Output: Boolean
 \(r_{1} \leftarrow \operatorname{HighBits}(r)\)
 \(v_{1} \leftarrow \operatorname{HighBits}(r+z)\)
 return \(\left[\left[r_{1} \neq v_{1}\right]\right]\)
```

```
Algorithm 34 UseHint \((h, r)\)
Returns the high bits of r adjusted according to hint \(h\)
Input:boolean \(h, r \in \mathbb{Z}_{q}\)
Output: \(r_{1} \in \mathbb{Z}\) with \(0 \leq r_{1} \leq \frac{q-1}{2 \gamma_{2}}\)
 \(m \leftarrow(q-1) /\left(2 \gamma_{2}\right)\)
 \(\left(r_{1}, r_{0}\right) \leftarrow\) Decompose \((r)\)
 if \(h=1\) and \(r_{0}>0\) return \(\left(r_{1}+1\right) \bmod m\)
 if \(h=1\) and \(r_{0} \leq 0\) return \(\left(r_{1}-1\right) \bmod m\)
 return \(r_{1}\)
```


### 8.5 NTT and NTT ${ }^{-1}$

The following algorithms implement the NTT and its inverse ( $\mathrm{NTT}^{-1}$ ). Using the NTT is important for efficiency. There are other important optimizations that are not included in this standard. In particular, mod and $\bmod ^{ \pm}$are expensive operations whose use can be minimized by using Montgomery reduction (see Appendix B).

The NTT algorithm takes a polynomial $w \in R_{q}$ as input and returns $\hat{w} \in T_{q}$. NTT $^{-1}$ takes $\hat{w} \in T_{q}$ as input and returns $w$ such that $\hat{w}=\operatorname{NTT}(w)$.

This document always distinguishes between elements of $R_{q}$ and elements of $T_{q}$. However, the natural data structure for both of these sets is as an integer array of size 256 . This would allow for the NTT and NTT ${ }^{-1}$ algorithms to perform computation in place on an integer array passed by reference. That optimization is not included in this document.

Recall that $\zeta=1753 \in \mathbb{Z}_{q}$, which is a 512th root of unity modulo $q$. On input $w \in R_{q}$, the algorithm outputs

$$
\begin{equation*}
\operatorname{NTT}(w)=\left(w\left(\zeta_{0}\right), w\left(-\zeta_{0}\right), \ldots w\left(\zeta_{127}\right), w\left(-\zeta_{127}\right)\right) \in T_{q}, \tag{8.4}
\end{equation*}
$$

where $\zeta_{i}=\zeta^{\operatorname{brv}(128+i)} \bmod q$. The values $\zeta^{\operatorname{brv}(k)} \bmod q$ for $k=1, \ldots, 255$ used in line 10 of Algorithm 35 and line 10 of Algorithm 36 are typically pre-computed. That optimization is not included in this document.

```
Algorithm 35 NTT(\(w\))
Computes the Number-Theoretic Transform.
Input: polynomial \(w(X)=\sum_{j=0}^{255} w_{j} X^{j} \in R_{q}\).
Output: \(\hat{w}=(\hat{w}[0], \ldots, \hat{w}[255]) \in T_{q}\).
 for \(j\) from 0 to 255 do
 \(\hat{w}[j] \leftarrow w_{j}\)
 end for
 \(k \leftarrow 0\)
 len \(\leftarrow 128\)
 while len \(\geq 1\) do
 start \(\leftarrow 0\)
 while start \(<256\) do
 \(k \leftarrow k+1\)
 zeta \(\leftarrow \zeta^{\operatorname{brv}(k)} \bmod q\)
 for \(j\) from start to start + len -1 do
 \(t \leftarrow\) zet \(a \cdot \hat{w}[j+l e n]\)
 \(\hat{w}[j+l e n] \leftarrow \hat{w}[j]-t\)
 \(\hat{w}[j] \leftarrow \hat{w}[j]+t\)
 end for
 start \(\leftarrow\) start \(+2 \cdot\) len
 end while
 len \(\leftarrow\lfloor\) len \(/ 2\rfloor\)
 end while
 return \(\hat{w}\)
```

```
Algorithm 36 NTT \(^{-1}(\hat{w})\)
Computes the inverse of the Number-Theoretic Transform.
Input: \(\hat{w}=(\hat{w}[0], \ldots, \hat{w}[255]) \in T_{q}\).
Output: polynomial \(w(X)=\sum_{j=0}^{255} w_{j} X^{j} \in R_{q}\).
 for \(j\) from 0 to 255 do
 \(w_{j} \leftarrow \hat{w}[j]\)
 end for
 \(k \leftarrow 256\)
 len \(\leftarrow 1\)
 while len \(<256\) do
 start \(\leftarrow 0\)
 while start \(<256\) do
 \(k \leftarrow k-1\)
 \(z e t a \leftarrow-\zeta^{\mathrm{brv}(k)} \bmod q\)
 for \(j\) from start to start + len -1 do
 \(t \leftarrow w_{j}\)
 \(w_{j} \leftarrow t+w_{j+l e n}\)
 \(w_{j+l e n} \leftarrow t-w_{j+l e n}\)
 \(w_{j+l e n} \leftarrow z e t a \cdot w_{j+l e n}\)
 end for
 start \(\leftarrow\) start \(+2 \cdot\) len
 end while
 len \(\leftarrow 2 \cdot\) len
 end while
 \(f \leftarrow 8347681\)
 \(\triangleright f=256^{-1} \bmod q\)
 for \(j\) from 0 to 255 do
 \(w_{j} \leftarrow f \cdot w_{j}\)
 end for
 return \(w\)
```


## References

[1] National Institute of Standards and Technology. Digital signature standard (DSS). (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 186-5, February 2023. https://doi.org/10.6028/NIST.FIPS.186-5.
[2] Elaine Barker. Guideline for using cryptographic standards in the federal government: Cryptographic mechanisms. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-175B, Rev. 1, March 2020. https://doi.org/10.6028/NIST.SP.800-175Br1.
[3] Elaine B. Barker. Recommendation for obtaining assurances for digital signature applications. National Institute of Standards and Technology, Gaithersburg, MD. NIST Special Publication (SP) 800-89, November 2006. https://doi.org/10.6028/NIST.SP.800-89.
[4] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: Algorithm specifications and supporting documentation. Submission to the NIST's post-quantum cryptography standardization process, 2020. https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.
[5] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: Algorithm specifications and supporting documentation (Version 3.1), 2021. https://pq-crystals.org/dilithium/data/dilithium-specification-round3 -20210208.pdf.
[6] C. Cremers, S. Düzlü, R. Fiedler, C. Janson, and M. Fischlin. BUFFing signature schemes beyond unforgeability and the case of post-quantum signatures. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1696-1714, Los Alamitos, CA, USA, may 2021. IEEE Computer Society.
[7] National Institute of Standards and Technology. SHA-3 standard: Permutation-based hash and extendable-output functions. (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 202, August 2015. https://doi.org/10.6028/NIST.FIPS.202.
[8] National Institute of Standards and Technology. Secure hash standard (SHS). (U.S. Department of Commerce, Washington, DC), Federal Information Processing Standards Publication (FIPS) 180-4, August 2015. https://doi.org/10.6028/NIST.FIPS.180-4.
[9] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In Mitsuru Matsui, editor, Advances in Cryptology - ASIACRYPT 2009, pages 598-616, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
[10] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 738-755. Springer, 2012.
[11] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography: A signature scheme for embedded systems. In CHES, volume 7428, pages 530-547. Springer, 2012.
[12] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on learning with errors. In Josh Benaloh, editor, Topics in Cryptology - CT-RSA 2014, pages 28-47, Cham, 2014. Springer International Publishing.
[13] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC '05, page 84-93, New York, NY, USA, 2005. Association for Computing Machinery.
[14] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Designs, Codes and Cryptography, 75(3):565-599, 2015.
[15] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018, pages 552-586, Cham, 2018. Springer International Publishing.
[16] Elaine B. Barker. Recommendation for key management:part 1 - general. National Institute of Standards and Technology, Gaithersburg, MD. NIST Special Publication (SP) 800-57 Part 1 Revision 5, May 2020. https://doi.org/10.6028/NIST.SP.800-57pt1r5.
[17] Elaine B. Barker and William C. Barker. Recommendation for key management: Part 2 - best practices for key management organizations. National Institute of Standards and Technology, Gaithersburg, MD. NIST Special Publication (SP) 800-57 Part 2 Revision 1, May 2019. https: //doi.org/10.6028/NIST.SP.800-57pt2r1.
[18] Elaine B. Barker and Quynh Dang. Recommendation for key management: Part 3-applicationspecific key management guidance. National Institute of Standards and Technology, Gaithersburg, MD. NIST Special Publication (SP) 800-57 Part 3 Revision 1, May 2019. http://dx.doi.org/10.6028 /NIST.SP.800-57pt3r1.
[19] Elaine B. Barker and John M. Kelsey. Recommendation for random number generation using deterministic random bit generators. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90A, Rev. 1, June 2015. https://doi.org/10.6028/NIST.SP. 800-90Ar1.
[20] Meltem Sönmez Turan, Elaine B. Barker, John M. Kelsey, Kerry A. McKay, Mary L. Baish, and Mike Boyle. Recommendation for the entropy sources used for random bit generation. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90B, January 2018. https://doi.org/10.6028/NIST.SP.800-90B.
[21] Elaine B. Barker, John M. Kelsey, Kerry McKay, Allen Roginsky, and Meltem Sönmez Turan. Recommendation for random bit generator (RBG) constructions. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-90C (Third Public Draft), September 2022. https://csrc.nist.gov/publications/detail/sp/800-90c/draft.
[22] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on deterministic lattice signatures. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 21-43, 2018.
[23] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter, and Paul Rösler. Attacking deterministic signature schemes using fault attacks. In 2018 IEEE European Symposium on Security and Privacy (EuroS\&P), pages 338-352. IEEE, 2018.
[24] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Ruggero Susella. Breaking ed25519 in wolfssl. In Topics in Cryptology-CT-RSA 2018: The Cryptographers' Track at the RSA Conference 2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 1-20. Springer, 2018.
[25] National Institute of Standards and Technology. Submission requirements and evaluation criteria for the post-quantum cryptography standardization process, 2016. https://csrc.nist.gov/CSRC/media/Pro jects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf.
[26] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status report on the third round of the NIST post-quantum cryptography standardization process. Technical Report NIST Interagency or Internal Report (IR) 8413, National Institute of Standards and Technology, Gaithersburg, MD, July 2022. https://doi.org/10.6028/NIST.IR.8413-upd 1.
[27] Robert Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber algorithm specifications and supporting documentation. 3rd Round submission to the NIST's post-quantum cryptography standardization process, 2020. https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-sub missions.
[28] C. P. Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor, Advances in Cryptology - CRYPTO’ 89 Proceedings, pages 239-252, New York, NY, 1990. Springer New York.
[29] Simon Josefsson and Ilari Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA). RFC 8032, January 2017.
[30] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Implementing Grover oracles for quantum key search on AES and LowMC. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020, pages 280-310, Cham, 2020. Springer International Publishing.
[31] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC '96, page 212-219, New York, NY, USA, 1996. Association for Computing Machinery.

## 1014

## Appendix A - Security Strength Categories

NIST understands that there are significant uncertainties in estimating the security strengths of postquantum cryptosystems. These uncertainties come from two sources: first, the possibility that new cryptanalytic attacks are discovered, based on classical or quantum computation; and second, our limited ability to predict the performance characteristics of future quantum computers, such as their cost, speed, and memory size.

In order to address these uncertainties, NIST proposed the following approach in its original Call for Proposals [25]. Instead of defining the strength of an algorithm using precise estimates of the number of "bits of security," NIST defined a collection of broad security strength categories. Each category is defined by a comparatively easy-to-analyze reference primitive whose security serves as a floor for a wide variety of metrics that NIST deems potentially relevant to practical security. A given cryptosystem may be instantiated using different parameter sets in order to fit into different categories. The goals of this classification are:

- To facilitate meaningful performance comparisons between various post-quantum algorithms by ensuring - insofar as possible - that the parameter sets being compared provide comparable security
- To allow NIST to make prudent future decisions regarding when to transition to longer keys
- To help submitters make consistent and sensible choices regarding what symmetric primitives to use in padding mechanisms or other components of their schemes that require symmetric cryptography
- To better understand the security/performance trade-offs involved in a given design approach

In accordance with the second and third goals above, NIST based its classification on the range of security strengths offered by the existing NIST standards in symmetric cryptography, which NIST expects to offer significant resistance to quantum cryptanalysis. In particular, NIST defined a separate category for each of the following security requirements (listed in order of increasing strength):

1. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 128-bit key (e.g., AES-128).
2. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 256 -bit hash function (e.g., SHA-256/ SHA3-256).
3. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 192-bit key (e.g., AES-192).
4. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for collision search on a 384 -bit hash function (e.g., SHA-384/ SHA3-384).
5. Any attack that breaks the relevant security definition must require computational resources comparable to or greater than those required for key search on a block cipher with a 256 -bit key (e.g., AES-256).

Table 3. NIST Security Strength Categories

| Security Category | Corresponding Attack Type | Example |
| :---: | :--- | :--- |
| 1 | Key search on block cipher with 128-bit key | AES-128 |
| 2 | Collision search on 256-bit hash function | SHA3-256 |
| 3 | Key search on block cipher with 192-bit key | AES-192 |
| 4 | Collision search on 384-bit hash function | SHA3-384 |
| 5 | Key search on block cipher with 256-bit key | AES-256 |

When considering the five categories, computational resources may be measured using a variety of different metrics (e.g., number of classical elementary operations, quantum circuit size). In order for a cryptosystem to satisfy one of the above security requirements, any attack must require computational resources comparable to or greater than the stated threshold with respect to all metrics that NIST deems to be potentially relevant to practical security.

NIST intends to consider a variety of possible metrics that reflect different predictions about the future development of quantum and classical computing technology and the cost of different computing resources (such as the cost of accessing extremely large amounts of memory). ${ }^{6}$ NIST will also consider input from the cryptographic community regarding this question.

In an example metric provided to submitters, NIST suggested an approach where quantum attacks are restricted to a fixed running time or circuit depth. Call this parameter MAXDEPTH. This restriction is motivated by the difficulty of running extremely long serial computations. Plausible values for MAXDEPTH range from $2^{40}$ logical gates (the approximate number of gates that presently envisioned quantum computing architectures are expected to serially perform in a year) through $2^{64}$ logical gates (the approximate number of gates that current classical computing architectures can perform serially in a decade), to no more than $2^{96}$ logical gates (the approximate number of gates that atomic scale qubits with speed-of-light propagation times could perform in a millennium). The most basic version of this cost metric ignores costs associated with physically moving bits or qubits so that they are physically close enough to perform gate operations. This simplification may result in an underestimate of the cost of implementing memory-intensive computations on real hardware.

The complexity of quantum attacks can then be measured in terms of circuit size. These numbers can be compared to the resources required to break AES and SHA-3. During the post-quantum standardization process, NIST gave the following estimates for the classical and quantum gate counts ${ }^{7}$ for the optimal key recovery and collision attacks on AES and SHA-3, respectively, where circuit depth is limited to MAXDEPTH. ${ }^{8}$

[^5]
## Table 4. Estimated gate counts for the optimal key recovery and collision attacks on AES and SHA-3

| Algorithm | Estimated number of gates |
| :--- | :--- |
| AES-128 | $2^{157} /$ MAXDEPTH quantum gates or $2^{143}$ classical gates |
| SHA3-256 | $2^{146}$ classical gates |
| AES-192 | $2^{221} /$ MAXDEPTH quantum gates or $2^{207}$ classical gates |
| SHA3-384 | $2^{210}$ classical gates |
| AES-256 | $2^{285} /$ MAXDEPTH quantum gates or $2^{272}$ classical gates |
| SHA3-512 | $2^{274}$ classical gates |

It is worth noting that the security categories based on these reference primitives provide substantially more quantum security than a naïve analysis might suggest. For example, categories 1,3 , and 5 are defined in terms of block ciphers, which can be broken using Grover's algorithm [31] with a quadratic quantum speedup. However, Grover's algorithm requires a long-running serial computation, which is difficult to implement in practice. In a realistic attack, one has to run many smaller instances of the algorithm in parallel, which makes the quantum speedup less dramatic.

Finally, for attacks that use a combination of classical and quantum computation, one may use a cost metric that rates logical quantum gates as being several orders of magnitude more expensive than classical gates. Presently envisioned quantum computing architectures typically indicate that the cost per quantum gate could be billions or trillions of times the cost per classical gate. However, especially when considering algorithms that claim a high security strength (e.g., equivalent to AES-256 or SHA-384), it is likely prudent to consider the possibility that this disparity will narrow significantly or even be eliminated.

## Appendix B - Montgomery Reduction

This document uses modular multiplication. This is an expensive operation that is, in practice, often avoided. One way of achieving this is through the use of Montgomery multiplication. If $a$ is an integer modulo $q$, then its Montgomery form with multiplier $2^{32}$ is $r \equiv a \cdot 2^{32} \bmod q$.

Suppose two integers $a$ and $b$ modulo $q$ are in Montgomery form. Their product modulo $q$ is $c=a \cdot b \cdot 2^{-32}$, also in Montgomery form. If $a$ and $b$ have absolute value less than $q$, one can compute $c$ by first performing the integer multiplication $a \cdot b$ and then "reducing" the product by multiplying by $2^{-32}$ modulo $q$. This last operation can be done efficiently as follows.

The Montgomery_Reduce function takes as input an integer $a$ with absolute value at most $2^{31} q$. It returns an integer $r$ with absolute value strictly less than $q$ and such that $r=a \cdot 2^{-32} \bmod q$. The output is in Montgomery form with multiplier $2^{32} \bmod q$. An implementation would typically use a 64 -bit input and return a 32 -bit output. The "modulo $2^{32}$ " operation simply extracts the 32 least significant bits of a 64 -bit value. The value $(a-t \cdot q)$ on line 3 is an integer divisible by $2^{32}$. Therefore, the division consists simply of taking the most significant 32 bits of a 64 -bit value.

```
Algorithm 37 Montgomery_Reduce (a)
Converts from Montgomery form to regular form.
Input: integer \(a\) with \(-2{ }^{31} q \leq a \leq 2{ }^{31} q\).
Output: \(r \equiv a \cdot 2^{-32} \bmod q\) such that \(-q<r<q\).
 QINV \(\leftarrow 58728449 \quad \triangleright\) the inverse of \(q\) modulo \(2^{32}\)
 \(t \leftarrow\left(\left(a \bmod 2^{32}\right) \cdot Q I N V\right) \bmod 2^{32}\)
 \(r \leftarrow(a-t \cdot q) / 2^{32}\)
 return \(r\)
```

With this algorithm, the modular product of $a$ and $b$ is Montgomery_Reduce $(a \cdot b)$.
Converting an integer modulo $q$ to Montgomery form by multiplying by $2^{32}$ modulo $q$ is an expensive operation. When a sequence of modular operations is to be performed, as in Algorithms 35 and 36, the operands are converted once to Montgomery form, the operations are performed, and the factor $2^{32}$ is extracted from the final results.


[^0]:    ${ }^{1}$ In addition, when signing is deterministic, there is leakage through timing side-channels of information about the message (but not the private key). In cases where the signer does not want to reveal the message being signed, hedged signatures should be used; see section 3.2 in [5].

[^1]:    ${ }^{2}$ More precisely, since only the NTT form of $\mathbf{A}, \hat{\mathbf{A}} \in T_{q}^{k \times \ell}=\operatorname{NTT}(\mathbf{A})$ is needed in subsequent calculations, the code actually computes $\hat{\mathbf{A}}$ as a pseudorandom sample over $T_{q}^{k \times \ell}$, and the sampling of $\mathbf{A}=\operatorname{NTT}^{-1}(\hat{\mathbf{A}})$ is only implicit (it could be computed but is not).

[^2]:    ${ }^{3}$ The length of $\tilde{c}_{1}$ is determined by the targeted security strength against signature forgery attacks, and the required length is only 256 bits for 256 bits of classical security. The length of $\tilde{c}$ is determined by the desired security with respect to the "message-bound signatures" property described in [6]. Here, a length of $2 \lambda$ bits is required for $\lambda$ bits of classical security.

[^3]:    ${ }^{4}$ Obtaining at least $\lambda$ bits of classical security strength against collision attacks requires that the digest to be signed be at least $2 \lambda$ bits in length.

[^4]:    ${ }^{5}$ The parameter $\tau$ is always less than or equal to 64, and thus 8 bytes are sufficient to choose the signs for all $\tau$ nonzero entries of $\mathbf{c}$.

[^5]:    ${ }^{6}$ See the discussion in [26, Appendix B].
    ${ }^{7}$ Quantum circuit sizes are based on the work in [30].
    ${ }^{8}$ NIST believes that the above estimates are accurate for the majority of values of MAXDEPTH that are relevant to its security analysis, but the above estimates may understate the security of SHA for very small values of MAXDEPTH and may understate the quantum security of AES for very large values of MAXDEPTH.

