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Standards and Technology is the offcial series of publications relating to standards and guidelines developed 
under 15 U.S.C. 278g-3, and issued by the Secretary of Commerce under 40 U.S.C. 11331. 

Comments concerning this Federal Information Processing Standard publication are welcomed and should 
be submitted using the contact information in the “Inquiries and comments” clause of the announcement 
section. 

James A. St Pierre, Acting Director 
Information Technology Laboratory 
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Abstract 
A key-encapsulation mechanism (or KEM) is a set of algorithms that, under certain conditions, 
can be used by two parties to establish a shared secret key over a public channel. A shared 
secret key that is securely established using a KEM can then be used with symmetric-key 
cryptographic algorithms to perform basic tasks in secure communications, such as encryption 
and authentication. 

This standard specifes a key-encapsulation mechanism called ML-KEM. The security of 
ML-KEM is related to the computational diffculty of the so-called Module Learning with Errors
problem. At present, ML-KEM is believed to be secure even against adversaries who possess a
quantum computer.

This standard specifes three parameter sets for ML-KEM. In order of increasing security strength 
(and decreasing performance), these parameter sets are ML-KEM-512, ML-KEM-768, and 
ML-KEM-1024.

Keywords: computer security; cryptography; encryption; Federal Information Processing 
Standards; lattice-based cryptography; key-encapsulation; post-quantum; public-key cryptography 
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Federal Information Processing Standards Publication 203 

Published: August 24, 2023 

Announcing the 

Module-Lattice-based Key-Encapsulation 
Mechanism Standard 

Federal Information Processing Standards Publications (FIPS) are issued by the National Institute 
of Standards and Technology (NIST) under 15 U.S.C. 278g-3 and issued by the Secretary of 
Commerce under 40 U.S.C. 11331. 

1. Name of Standard. Module-Lattice-based Key-Encapsulation Mechanism Standard (ML-
KEM) (FIPS PUB 203).

2. Category of Standard. Computer Security. Subcategory. Cryptography.

3. Explanation. This standard specifes a set of algorithms for applications that require a secret
cryptographic key that is shared by two parties who can only communicate over a public
channel. A cryptographic key (or simply "key") is represented in a computer as a string of bits.
A shared secret key is computed jointly by two parties (e.g., Party A and Party B) using a set
of rules and parameters. Under certain conditions, these rules and parameters ensure that both
parties will produce the same key and that this shared key is secret from adversaries. Such a
shared secret key can then be used with symmetric-key cryptographic algorithms (specifed
in other NIST standards) to perform tasks, such as encryption and authentication of digital
information.

While there are many methods for establishing a shared secret key, the particular method
described in this specifcation is a key-encapsulation mechanism (KEM). In a KEM, the
computation of the shared secret key begins with Party A generating a decapsulation key and
an encapsulation key. Party A keeps the decapsulation key private and makes the encapsulation
key available to Party B. Party B then uses Party A’s encapsulation key to generate one copy
of a shared secret key along with an associated ciphertext. Party B then sends the ciphertext
to Party A over the same channel. Finally, Party A uses the ciphertext from Party B along
with Party A’s private decapsulation key to compute another copy of the shared secret key.

The security of the particular KEM specifed here is related to the computational diffculty of
solving certain systems of noisy linear equations, specifcally the so-called Module Learning
With Errors (MLWE) problem. At present, it is believed that this particular method of
establishing a shared secret key is secure even against adversaries who possess a quantum
computer. In the future, additional KEMs may be specifed and approved in FIPS publications
or in NIST Special Publications.

4. Approving Authority. Secretary of Commerce.

5. Maintenance Agency. Department of Commerce, National Institute of Standards and Tech-
nology, Information Technology Laboratory (ITL).
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6. Applicability. Federal Information Processing Standards apply to information systems used
or operated by federal agencies or by a contractor of an agency or other organization on behalf
of an agency. They do not apply to national security systems as defned in 44 U.S.C. 3552.

This standard must be implemented wherever the establishment of a shared secret key is
required for federal applications, including the use of such a key with symmetric-key cryp-
tographic algorithms, in accordance with applicable Offce of Management and Budget and
agency policies. Federal agencies may also use alternative methods that NIST has indicated
are appropriate for this purpose.

The adoption and use of this standard are available to private and commercial organizations.

7. Implementations. A key-encapsulation mechanism may be implemented in software,
frmware, hardware, or any combination thereof. A conforming implementation may replace
the given sequence of steps in the top-level algorithms of ML-KEM (i.e., ML-KEM.KeyGen,
ML-KEM.Encaps, and ML-KEM.Decaps) with any equivalent process. In other words, dif-
ferent procedures that produce the correct output for every input are permitted. In particular,
conforming implementations are not required to use the same subroutines (of the aforemen-
tioned main algorithms) as are used in this specifcation.

NIST will develop a validation program to test implementations for conformance to the 
algorithms in this standard. Information about validation programs is available at https: 
//csrc.nist.gov/projects/cmvp. Example values for cryptographic algorithms are available at 
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values. 

8. Other Approved Security Functions. Implementations that comply with this standard shall
employ cryptographic algorithms that have been approved for protecting Federal Government-
sensitive information. Approved cryptographic algorithms and techniques include those that
are either:

(a) Specifed in a Federal Information Processing Standards (FIPS) publication,

(b) Adopted in a FIPS or NIST recommendation, or

(c) Specifed in the list of approved security functions for FIPS 140-3.

9. Export Control. Certain cryptographic devices and technical data regarding them are subject
to federal export controls. Exports of cryptographic modules that implement this standard
and technical data regarding them must comply with all federal laws and regulations and
be licensed by the Bureau of Industry and Security of the U.S. Department of Commerce.
Information about export regulations is available at https://www.bis.doc.gov.

10. Patents. NIST has entered into two patent license agreements to facilitate the adoption of
NIST’s announced selection of public-key encryption PQC algorithm CRYSTALS-KYBER.
NIST and the licensing parties share a desire, in the public interest, the licensed patents be
freely available to be practiced by any implementer of the ML-KEM algorithm as published by
NIST. ML-KEM is the name given to the algorithm in this standard derived from CRYSTALS-
KYBER. For a summary and extracts from the license, please see https://csrc.nist.gov/csrc/m
edia/Projects/post-quantum-cryptography/documents/selected-algos-2022/nist-pqc-license-
summary-and-excerpts.pdf. Implementation of the algorithm specifed in the standard may be
covered by U.S. and foreign patents of which NIST is not aware.
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11. Implementation Schedule. This standard becomes effective immediately upon fnal publica-
tion.

12. Specifcations. Federal Information Processing Standards (FIPS) 203, Module-Lattice-based
Key-Encapsulation Mechanism Standard (affxed).

13. Qualifcations. In applications, the security guarantees of a KEM only hold under certain
conditions (see NIST SP 800-227 [1]). One such condition is the secrecy of several values,
including the randomness used by the two parties, the decapsulation key, and the shared secret
key itself. Users shall, therefore, guard against the disclosure of these values.

While it is the intent of this standard to specify general requirements for implementing
ML-KEM algorithms, conformance to this standard does not ensure that a particular imple-
mentation is secure. It is the responsibility of the implementer to ensure that any module that
implements a key establishment capability is designed and built in a secure manner.

Similarly, the use of a product containing an implementation that conforms to this standard 
does not guarantee the security of the overall system in which the product is used. The 
responsible authority in each agency or department shall ensure that an overall implementation 
provides an acceptable level of security. 

NIST will continue to follow developments in the analysis of the ML-KEM algorithm. As 
with its other cryptographic algorithm standards, NIST will formally reevaluate this standard 
every fve years. 

Both this standard and possible threats that reduce the security provided through the use of 
this standard will undergo review by NIST as appropriate, taking into account newly available 
analysis and technology. In addition, the awareness of any breakthrough in technology or 
any mathematical weakness of the algorithm will cause NIST to reevaluate this standard and 
provide necessary revisions. 

14. Waiver Procedure. The Federal Information Security Management Act (FISMA) does
not allow for waivers to Federal Information Processing Standards (FIPS) that are made
mandatory by the Secretary of Commerce.

15. Where to Obtain Copies of the Standard. This publication is available by accessing
https://csrc.nist.gov/publications. Other computer security publications are available at the
same website.

16. How to Cite this Publication. NIST has assigned NIST FIPS 203 ipd as the publication
identifer for this FIPS, per the NIST Technical Series Publication Identifer Syntax. NIST
recommends that it be cited as follows:

National Institute of Standards and Technology (2023) Module-Lattice-based Key-
Encapsulation Mechanism Standard. (Department of Commerce, Washington, 
D.C.), Federal Information Processing Standards Publication (FIPS) NIST FIPS
203 ipd. https://doi.org/10.6028/NIST.FIPS.203.ipd

17. Inquiries and Comments. Inquiries and comments about this FIPS may be submitted to
fps-203-comments@nist.gov.
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Call for Patent Claims 

This public review includes a call for information on essential patent claims (claims whose 
use would be required for compliance with the guidance or requirements in this Information 
Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 
directly stated in this ITL Publication or by reference to another publication. This call also 
includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 
relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, in 
written or electronic form, either: 

a) assurance in the form of a general disclaimer to the effect that such party does not hold and
does not currently intend holding any essential patent claim(s); or

b) assurance that a license to such essential patent claim(s) will be made available to appli-
cants desiring to utilize the license for the purpose of complying with the guidance or
requirements in this ITL draft publication either:

(i) under reasonable terms and conditions that are demonstrably free of any unfair
discrimination; or

(ii) without compensation and under reasonable terms and conditions that are demonstra-
bly free of any unfair discrimination.

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 
on its behalf) will include in any documents transferring ownership of patents subject to the 
assurance, provisions suffcient to ensure that the commitments in the assurance are binding on 
the transferee, and that the transferee will similarly include appropriate provisions in the event of 
future transfers with the goal of binding each successor-in-interest. 

The assurance shall also indicate that it is intended to be binding on successors-in-interest 
regardless of whether such provisions are included in the relevant transfer documents. 

Such statements should be addressed to: fps-203-comments@nist.gov. 
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1. Introduction

1.1 Purpose and Scope 
This standard specifes the Module-Lattice-based Key-Encapsulation Mechanism, or ML-KEM. 
A key-encapsulation mechanism (or KEM) is a set of algorithms that can be used to establish 
a shared secret key between two parties communicating over a public channel. A KEM is a 
particular type of key establishment scheme. Current NIST-approved key establishment schemes 
are specifed in NIST SP-800-56A, Recommendation for Pair-Wise Key-Establishment Schemes 
Using Discrete Logarithm-Based Cryptography [2], and NIST SP-800-56B, Recommendation for 
Pair-Wise Key Establishment Schemes Using Integer Factorization Cryptography [3]. 

It is well-known that the key establishment schemes specifed in NIST SP-800-56A and NIST 
SP-800-56B are vulnerable to attacks using suffciently capable quantum computers. ML-KEM 
is an approved alternative that is presently believed to be secure even against adversaries 
in possession of a quantum computer. ML-KEM is derived from the round-three version 
of the CRYSTALS-KYBER KEM [4], a submission in the NIST post-quantum cryptography 
standardization project. For the differences between ML-KEM and CRYSTALS-KYBER, see 
Section 1.3. 

This standard specifes the algorithms and parameter sets of the ML-KEM scheme. It aims to 
provide suffcient information for implementing ML-KEM in a manner that can pass validation 
(see https://csrc.nist.gov/projects/cryptographic-module-validation-program). For general 
defnitions and properties of KEMs, including requirements for the secure use of KEMs in 
applications, see NIST SP 800-227 [1]. 

This standard specifes three parameter sets for ML-KEM. These parameter sets offer differ-
ent trade-offs in security strength versus performance. All three parameter sets of ML-KEM 
are approved to protect sensitive, non-classifed communication systems of the U.S. Federal 
Government. 

1.2 Context 
Over the past several years, there has been steady progress toward building quantum computers. 
If large-scale quantum computers are realized, the security of many commonly used public-key 
cryptosystems will be at risk. This would include key-establishment schemes and digital signature 
schemes that are based on integer factorization and discrete logarithms (both over fnite felds and 
elliptic curves). As a result, in 2016, the National Institute of Standards and Technology (NIST) 
initiated a public process to select quantum-resistant public-key cryptographic algorithms for 
standardization. A total of 82 candidate algorithms were submitted to NIST for consideration for 
standardization. 

After three rounds of evaluation and analysis, NIST selected the frst four algorithms to stan-
dardize as a result of the Post-Quantum Cryptography (PQC) Standardization process. These 
algorithms are intended to protect sensitive U.S. Government information well into the foresee-
able future, including after the advent of quantum computers. This standard specifes a variant 
of the selected algorithm CRYSTALS-KYBER, a lattice-based key-encapsulation mechanism 
(KEM) [4]. Throughout this standard, the KEM specifed here will be referred to as ML-KEM, 
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as it is based on the so-called Module Learning With Errors assumption. 

1.3 Differences From the CRYSTALS-KYBER Submission 
Below is a list of all scheme differences between CRYSTALS-KYBER (as described in [4]) and 
the ML-KEM scheme specifed in this document. The list consists only of those differences that 
result in differing input-output behavior of the main algorithms (i.e., KeyGen, Encaps, Decaps) of 
CRYSTALS-KYBER and ML-KEM. Recall that a conforming implementation need only match 
the input-output behavior of these three algorithms (see “Implementations” above, and Section 3.3 
below). Consequently, the list below does not include any of the numerous differences in how 
the main algorithms actually produce outputs from inputs (e.g., via different computational steps 
or different subroutines). The list below also does not include any differences in presentation 
between this standard and [4]. 

• In the third-round specifcation [4], the shared secret key was treated as a variable-length 
value whose length depends on how this key would be used in the relevant application. In 
this specifcation, the length of the shared secret key is fxed to 256 bits. In this specifcation, 
this key can be used directly in applications as a symmetric key; alternatively, symmetric 
keys can be derived from this key, as specifed in Section 3.3. 

• The ML-KEM.Encaps and ML-KEM.Decaps algorithms in this specifcation use a dif-
ferent variant of the Fujisaki-Okamoto transform (see [5, 6]) than the third-round specif-
cation [4]. Specifcally, ML-KEM.Encaps no longer includes a hash of the ciphertext in 
the derivation of the shared secret, and ML-KEM.Decaps has been adjusted to match this 
change. 

• In the third-round specifcation [4], the initial randomness m in the ML-KEM.Encaps 
algorithm was frst hashed before being used. Specifcally, between lines 1 and 2 in 
Algorithm 16, there was an additional step that performed the operation m ← H(m). The 
purpose of this step was to safeguard against the use of fawed randomness generation 
processes. As this standard requires the use of NIST-approved randomness generation, this 
step is unnecessary and is not performed in ML-KEM. 

• This specifcation includes explicit input validation steps that were not part of the third-
round specifcation [4]. For example, ML-KEM.Encaps requires that the byte array 
containing the encapsulation key correctly decodes to an array of integers modulo q without 
any modular reductions. 

2 
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2. Glossary of Terms, Acronyms, and Mathematical Sym-
bols 

2.1 Terms and Defnitions 
approved FIPS-approved and/or NIST-recommended. An algorithm or technique 

that is either 1) specifed in a FIPS or NIST recommendation, 2) adopted 
in a FIPS or NIST recommendation, or 3) specifed in a list of NIST-
approved security functions. 

decapsulation The process of applying the Decaps algorithm of a KEM. This algo-
rithm accepts a KEM ciphertext and the decapsulation key as input and 
produces a shared secret key as output. 

decapsulation key A cryptographic key produced by a KEM during key generation and 
used during the decapsulation process. The decapsulation key must be 
kept private, and must be destroyed after it is no longer needed. 

decryption key A cryptographic key that is used with a PKE in order to decrypt cipher-
texts into plaintexts. The decryption key must be kept private, and must 
be destroyed after it is no longer needed. 

destroy An action applied to a key or other piece of secret data. After a piece of 
secret data is destroyed, no information about its value can be recovered. 

encapsulation The process of applying the Encaps algorithm of a KEM. This algorithm 
accepts private randomness and the encapsulation key as input and 
produces a shared secret key and an associated ciphertext as output. 

encapsulation key A cryptographic key produced by a KEM during key generation and 
used during the encapsulation process. The encapsulation key can be 
made public. 

encryption key A cryptographic key that is used with a PKE in order to encrypt plain-
texts into ciphertexts. The encryption key can be made public. 

equivalent process Two processes are equivalent if the same output is produced when the 
same values are input to each process (either as input parameters, as 
values made available during the process, or both). 

hash function A function on bit strings in which the length of the output is fxed. 
Approved hash functions relevant to this standard are specifed in FIPS 
202 [7]. 

KEM ciphertext A bit string that is produced by encapsulation and used as an input to 
decapsulation. 

key A bit string that is used in conjunction with a cryptographic algorithm. 
Examples applicable to this standard include: the encapsulation and 
decapsulation keys (of a KEM), the shared secret key (produced by a 
KEM), and the encryption and decryption keys (of a PKE). 
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key-encapsulation 
mechanism (KEM) 

A set of three cryptographic algorithms (KeyGen, Encaps, and Decaps) 
that can be used by two parties to establish a shared secret key over a 
public channel. 

key pair A set of two keys with the property that one key can be made public 
while the other key must be kept private. In this standard, this could 
refer to either the (encapsulation key, decapsulation key) key pair of a 
KEM, or the (encryption key, decryption key) key pair of a PKE. 

party An individual (person), organization, device, or process. In this specif-
cation, there are two parties (Party A and Party B, or Alice and Bob), 
and they jointly perform the key establishment process using a KEM. 

pseudorandom A process (or data produced by a process) is said to be pseudorandom 
when the outcome is deterministic yet also appears random as long 
as the internal action of the process is hidden from observation. For 
cryptographic purposes, “effectively random” means “computationally 
indistinguishable from random within the limits of the intended security 
strength.” 

public channel A communication channel between two parties; such a channel can be 
observed and possibly also corrupted by third parties. 

public-key 
encryption scheme 
(PKE) 

A set of three cryptographic algorithms (KeyGen, Encrypt, and Decrypt) 
that can be used by two parties to send secret data over a public channel. 
Also known as an asymmetric encryption scheme. 

shared secret key The fnal result of a KEM key establishment process. It is a crypto-
graphic key that can be used for symmetric-key cryptography. It must 
be kept private, and it must be destroyed when no longer needed. 

security category A number associated with the security strength of a post-quantum cryp-
tographic algorithm as specifed by NIST (see Appendix A, Table 4). 

security strength A number associated with the amount of work that is required to break 
a cryptographic algorithm or system. 

shall Used to indicate a requirement of this standard. 

should Used to indicate a strong recommendation but not a requirement of 
this standard. Ignoring the recommendation could lead to undesirable 
results. 

2.2 Acronyms 
AES Advanced Encryption Standard 

CBD Centered Binomial Distribution 

FIPS Federal Information Processing Standard 
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KEM Key-encapsulation Mechanism 

LWE Learning With Errors 

MLWE Module Learning with Errors 

NIST National Institute of Standards and Technology 

NISTIR NIST Interagency or Internal Report 

NTT Number-Theoretic Transform 

PKE Public-Key Encryption 

PQC Post-Quantum Cryptography 

PRF Pseudorandom Function 

RBG Random Bit Generator 

SHA Secure Hash Algorithm 

SHAKE Secure Hash Algorithm KECCAK 

SP Special Publication 

XOF 
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Extendable-Output Function 

S∗ If S is a set, this denotes the set of fnite-length tuples (or arrays) of elements 
from the set S, including the empty tuple (or empty array). 

Sk If S is a set, this denotes the set of k-tuples (or length-k arrays) of elements 
from the set S. 

BitRev7(r) Bit reversal of a seven-bit integer r. Specifcally, if r = r0 + 2r1 + 4r2 + · · · + 
64r6 with ri ∈ {0,1}, then BitRev7(r) = r6 + 2r5 + 4r4 + · · · + 64r0. 

f̂  The element of Tq that is equal to the NTT representation of a polynomial 
f ∈ Rq (see Section 4.3). 

Q The set of rational numbers. 

Zm The ring of integers modulo m, i.e., the set {0,1, . . . ,m − 1} equipped with 
the operations of addition and multiplication modulo m. 

Z The set of integers. 

vT , AT The transpose of a row or column v; also, the transpose of a matrix A. 

f j The coeffcient of X j of a polynomial f = f0 + f1X 255 + · · · + f255X ∈ Rq. 

r mod m The unique integer r ′ in {0,1, . . . ,m  − 1} such that m divides r − r ′. 
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r mod± m For m even (respectively, odd), this denotes the unique integer r ′ such that 
−m/2 < r ′ ≤ m/2 (respectively, −(m−1)/2 ≤ r ′ ≤ (m−1)/2) and m divides 
r − r ′ . 

|B| If B is a number, this denotes the absolute value of B. If B is an array, this 
denotes its length. 

⌈x⌉ The ceiling of x, i.e., the smallest integer greater than or equal to x. 

⌈x⌋ The rounding of x to the nearest integer; if x = y + 1/2 for some y ∈ Z, then 
⌈x⌋ = y + 1. 

⌊x⌋ The foor of x, i.e., the largest integer less than or equal to x. 

B The set {0,1, . . . ,255} of unsigned 8-bit integers (bytes). 

A∥B The concatenation of two arrays or bit strings A and B. 

B[i] The entry at index i in the array B. All arrays have indices that begin at zero. 

B[k : m] The subarray (B[k],B[k + 1], . . . ,B[m − 1]) of the array B. 

n Denotes the integer 256 throughout this document. 

q Denotes the prime integer 3329 = 28 · 13+ 1 throughout this document. 

Rq The ring Zq[X ]/(Xn + 1) consisting of polynomials of the form f = f0 + 
f1X 255 + · · · + f255X where f j ∈ Zq for all j, equipped with addition and 
multiplication modulo Xn + 1. 

s ← x In pseudocode, this notation means that the variable s is assigned the value 
of the expression x. 

s $ ←− Bℓ In pseudocode, this notation means that the variable s is assigned the value of 
an array of ℓ random bytes. The bytes must be generated using randomness 
from an approved RBG (see Section 3.3). 

Tq The image of Rq under the number-theoretic transform. Its elements are 
called “NTT representations” of polynomials in Rq (see Section 4.3). 

2.4 Interpreting the Pseudocode 
This section outlines the conventions of the pseudocode used to describe the algorithms in this 
standard. All algorithms are understood to have access to two global integer constants: n = 256 
and q = 3329. There are also fve global integer variables: k, η1, η2, du and dv. All other variables 
are local. The fve global variables are set to particular values when a parameter set is selected 
(see Section 7). 

When algorithms in this specifcation invoke other algorithms as subroutines, all arguments 
(inputs) are passed by value. In other words, a copy of the inputs is created, and the subroutine is 
invoked with the copie. There is no “passing by reference.” 

Data types. For variables that represent the input or output of an algorithm, the data type (e.g., 
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bit, byte, array of bits) will be explicitly described at the start of the algorithm. For most local 
variables in the pseudocode, the data type is easily deduced from context. For all other variables, 
the data type will be declared in a comment. In a single algorithm, the data type of a variable is 
determined the frst time that the variable is used and will not be changed. Variable names can 
and will be reused across different algorithms, including with different data types. 

In addition to standard atomic data types (e.g., bits, bytes) and data structures (e.g., arrays), 
integers modulo m (i.e., elements of Zm) will also be used as an abstract data type. It is implicit 
that reduction modulo m takes place whenever an assignment is made to a variable in Zm. For 
example, for z ∈ Zm and any integers x,y, the statement 

z ← x + y (2.1) 

means that z is assigned the value x + y mod m. The pseudocode is agnostic regarding how an 
integer modulo m is represented in actual implementations or how modular reduction is computed. 

Loop syntax. The pseudocode will make use of both “while” and “for” loops. The “while” syntax 
is self-explanatory. In the case of “for” loops, the syntax will be in the style of the programming 
language C. Two simple examples are given in Algorithm 1. 

Algorithm 1 ForExample 

Performs two simple “for” loops. 

1: for (i ← 0; i < 10; i++) 
2: A[i] ← i ▷ A is an integer array of length 10 
3: end for ▷ A now has the value (0,1,2,3,4,5,6,7,8,9) 
4: j ← 0 
5: for (k ← 256; k > 1; k ← k/2) 
6: B[ j] ← k ▷ B is an integer array of length 8 
7: j ← j + 1 
8: end for ▷ B now has the value (256,128,64,32,16,8,4,2) 

Arithmetic with arrays of integers. This standard makes extensive use of arrays of integers 
modulo m (i.e., elements of Zℓ 

m). In a typical case, the relevant values are m = q and ℓ = n = 256.
Arithmetic with arrays in Zℓ 

m will be done as follows. Let a ∈ Zm and X ,Y  Zℓ ∈ m. The statements 

Z ← a · X 

W ← X +Y 

will result in two arrays Z,W ∈ Zℓ 
m, with the property that Z[i] = a · X [i] and W [i] = X [i] +Y [i] 

for all i. Multiplication of arrays in Zℓ 
m will only be meaningful when m = q and ℓ = n = 256, in 

which case it corresponds to multiplication in a particular ring. This operation will be described 
in (2.2) below. 

Representations of algebraic objects. An essential operation in ML-KEM is the number-
7 
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theoretic transform (NTT), which maps a polynomial f in a certain ring Rq to its “NTT repre-
sentation” f̂  in a different ring Tq. The rings Rq and Tq and the NTT are discussed in detail in 
Section 4.3. This standard will represent elements of Rq and elements of Tq in pseudocode using 
arrays of integers modulo q, as follows. 

An element f of Rq is a polynomial of the form 

f = f0 + f1X + · · · + f255X255 ∈ Rq 

and will be represented in pseudocode by the array 

( f0, f1, . . . , f255) ∈ Z256 
q 

whose entries contain the coeffcients of f . Abusing notation somewhat, this array will also be 
denoted by f . The i-th entry of the array f will thus contain the i-th coeffcient of the polynomial 
f (i.e., f [i] = fi). 

An element (sometimes called “NTT representation”) ĝ of Tq is a tuple of 128 polynomials, each 
of degree at most one. Specifcally, 

ĝ = (ĝ0,0 + ĝ0,1X , ĝ1,0 + ĝ1,1X , . . . , ĝ127,0 + ĝ127,1X) ∈ Tq . 

Such an algebraic object will be represented in pseudocode by the array 

(ĝ0,0, ĝ0,1, ĝ1,0, ĝ1,1, . . . , ĝ127,0, ĝ127,1) ∈ Z256 .q 

Abusing notation somewhat, this array will also be denoted by ĝ. In this case, the mapping 
between array entries and coeffcients is ĝ[2i] = ĝi,0 and ĝ[2i + 1] = ĝi,1 for i ∈ {0,1, . . . ,127}. 

Converting between a polynomial f ∈ Rq and its NTT representation f̂  ∈ Tq will be done via the 
algorithms NTT (Algorithm 8) and NTT−1 (Algorithm 9). These algorithms act on arrays of 
coeffcients, as described above, and satisfy f̂  = NTT( f ) and f = NTT−1( f̂ ). 

Arithmetic with polynomials and NTT representations. The algebraic operations of addition 
and scalar multiplication in Rq and Tq are done coordinate-wise. For example, if a ∈ Zq and f ∈ Rq, 
the i-th coeffcient of the polynomial a · f ∈ Rq is equal to a · fi mod q. In pseudocode, elements 
of both Rq and Tq are represented by coeffcient arrays (i.e., elements of Z256), as described above. q 
The algebraic operations of addition and scalar multiplication are thus performed by addition and 
scalar multiplication of the corresponding coeffcient arrays. For example, the addition of two 
NTT representations in pseudocode is performed by a statement of the form ĥ ← f̂ + ĝ, where 

f̂ , ĝ ∈ Z256ĥ, are coeffcient arrays. q 

The algebraic operations of multiplication in Rq and Tq are treated as follows. For effciency 
reasons, multiplication in Rq will not be used. The algebraic meaning of multiplication in Tq is 
discussed in Section 4.3.1. In pseudocode, it will be performed by the algorithm MultiplyNTTs 
(Algorithm 10). Specifcally, if f̂ , ĝ ∈ Z256 are a pair of arrays (each representing the NTT of q 
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some polynomial), then 

ĥ ← f̂ ×Tq ĝ means ĥ ← MultiplyNTTs( f̂ , ĝ) . (2.2) 

h ∈ Z256The result is an array ˆ .q 

Matrices and vectors. In addition to arrays of integers modulo q, the pseudocode will also make 
use of arrays whose entries are themselves elements of Z256. For example, an element v ∈ (Z256)3 

q q 

will be a length-three array whose entries v[0], v[1] and v[2] are themselves elements of Z256 (i.e.,q 
arrays). One can think of each of these entries as representing a polynomial in Rq, so that v itself 
represents an element of the module R3 

q. 

When arrays are used to represent matrices and vectors whose entries are elements of Rq, they 
will be denoted with bold letters (e.g., v for vectors and A for matrices). When arrays are used 
to represent matrices and vectors whose entries are elements of Tq, they will be denoted with a 
“hat” (e.g., v̂ and Â ). Unless an explicit transpose operation is performed, it is understood that 
vectors are column vectors. One can then view vectors as the special case of matrices with only 
one column. 

Converting between matrices over Rq and matrices over Tq will be done coordinate-wise. Specif-
cally, if A ∈ (Z256)k×ℓ, then the statement q 

Â ← NTT(A) 

A ∈ (Z256will result in ˆ )k×ℓ such that Â [i, j] = NTT(A[i, j]) for all i, j. This involves runningq 
NTT a total of k · ℓ times. Note that the case of vectors corresponds to ℓ = 1. 

Arithmetic with matrices and vectors. The following describes how to perform arithmetic with 
matrices while continuing to view vectors as a special case of matrices. 

Addition and scalar multiplication is performed coordinate-wise. Addition of matrices over Rq 
and Tq is then straightforward. In the case of Tq, scalar multiplication is done via (2.2). For 

v ∈ (Z256example, if f̂  ∈ Zq 
256 and û, ̂  )k, then q 

ŵ ← f̂ · û 
ẑ ← û + v̂ 

will result in ŵ , ẑ ∈ (Z256)k satisfying ŵ [i] = f̂ ×Tq û[i] and ẑ[i] = û[i]+ v̂[i] for all i. Note that q 
the multiplication and addition of individual entries here is performed using the appropriate 
arithmetic for coeffcient arrays of elements of Tq. 

It will also be necessary to multiply matrices with entries in Tq. This is done using standard 
matrix multiplication with the base-case multiplication (i.e., multiplication of individual entries) 
being multiplication in Tq. If Â and B̂ are two matrices with entries in Tq, their matrix product 
will be denoted Â ◦ B̂ . Some example pseudocode statements involving matrix multiplication are 
given below. In these examples, Â is a k × k matrix, while û and v̂ are vectors of length k. All 
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three of these objects are represented in pseudocode by arrays: a k × k array for Â and length-k 
arrays for û and v̂. The entries of Â , û, and v̂ are elements of Z256. The frst two pseudocodeq 
statements below produce a new length-k vector whose entries are specifed on the right-hand 
side. The third pseudocode statement computes a dot product; the result is therefore in the base 

z of Z256ring (i.e., Tq), and is represented by an element ˆ q . 

k−1 
ŵ ← Â ◦ ˆ u Â [i, j] ×Tq∑ŵ [i] = û[ j]

j=0 

k−1 
Â [ j, i] ×Tq∑ŷ[i] = û[ j] 

j=0 
ŷ ← Â ⊺ ◦ û 

k 1− 

∑ẑ = û[ j] ×Tq v̂[ j] 
j=0 

ẑ ← û⊺ ◦ v̂ 

531 
532 

533 
534 
535 
536 
537 
538 

539 
540 

The multiplication ×Tq of individual entries above is performed using MultiplyNTTs, as described 
in (2.2) above. 

Applying algorithms to arrays. The conventions of coordinate-wise arithmetic described above 
will also be extended to algorithms that act on (and/or produce) an atomic data type. When 
the pseudocode invokes such an algorithm on an array input, it is implied that the algorithm is 
invoked repeatedly for each entry of the array. For example, the function Compressd : Zq → Z2d 

defned in Section 4 can be invoked on an array input F ∈ Z256 with the statement q 

K ← Compressd(F) . (2.3) 

The result will be that K ∈ Z256 and K[i] = Compressd(F [i]) for every i. This computation2d 

involves running the Compress algorithm 256 times. 
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3. Overview of the ML-KEM Scheme 

This section gives a high-level overview of the ML-KEM scheme. 

3.1 Key-Encapsulation Mechanisms 
The following is a brief and informal overview of key-encapsulation mechanisms (or KEMs). For 
more details, see NIST SP 800-227 [1]. 

A key-encapsulation mechanism (or KEM) is a set of algorithms that can be used, under certain 
conditions, to establish a shared secret key between two communicating parties. This shared 
secret key can then be used for symmetric-key cryptography. 

A KEM consists of three algorithms and a collection of parameter sets. The three algorithms are: 

• a key generation algorithm denoted by KeyGen; 

• an "encapsulation" algorithm denoted by Encaps; 

• a "decapsulation" algorithm denoted by Decaps. 

The collection of parameter sets is used to select a trade-off between security and effciency. 
Each parameter set in the collection is a list of specifc numerical values, one for each parameter 
required by the above algorithms. 

encapsulation key

Encaps ciphertext

Bob’s copy of the 
shared secret key

Decaps

Alice’s copy of the 
shared secret key

decapsulation key

KeyGen

Figure 1. A simple view of key establishment using a KEM 

A KEM can be used to establish a shared secret key between two parties (see Figure 1) referred 
to here as Alice and Bob. Alice begins by running KeyGen in order to generate a (public) 
encapsulation key and a (private) decapsulation key. Upon obtaining Alice’s encapsulation key, 
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Bob runs the Encaps algorithm; this produces Bob’s copy KB of the shared secret key along with 
an associated ciphertext. Bob sends the ciphertext to Alice, and Alice completes the process by 
running the Decaps algorithm using her decapsulation key and the ciphertext; this step produces 
Alice’s copy KA of the shared secret key. 

After completing the process above, Alice and Bob would like to conclude that their individual 
outputs satisfy KA = KB and that this value is a secure, random, shared secret key. However, these 
properties only hold under certain important assumptions, as discussed in NIST SP 800-227 [1]. 

3.2 The ML-KEM Scheme 
ML-KEM is a key-encapsulation mechanism based on CRYSTALS-KYBER [4], a scheme 
that was initially described in [8]. The following is a brief and informal description of the 
computational assumption underlying ML-KEM, and how the ML-KEM scheme is constructed. 

The computational assumption. The security of ML-KEM is based on the presumed diffculty 
of solving the so-called Module Learning with Errors (MLWE) problem [9], a generalization of 
the Learning with Errors (LWE) problem introduced by Regev in 2005 [10]. The hardness of the 
MLWE problem is itself based on the presumed hardness of certain computational problems in 
module lattices [9]. This motivates the name of the scheme ML-KEM. 

In the LWE problem, the input is a set of random “noisy" linear equations in some secret 
variables x ∈ Zn

q, and the task is to recover x. The noise in the equations is such that standard 
algorithms (e.g., Gaussian elimination) are intractable. The LWE problem lends itself naturally to 
cryptographic applications. For example, if x is interpreted as a secret key, then one can encrypt a 
one-bit value by sampling either an approximately correct linear equation (if the bit value is zero) 
or a far-from-correct linear equation (if the bit value is one). Plausibly, only a party in possession 
of x can then distinguish these two cases. Encryption can then be delegated to another party by 
publishing a large collection of noisy linear equations, which can be combined appropriately by 
the encrypting party. The result is an asymmetric encryption scheme. 

At a high level, the MLWE problem poses the same task as LWE but with Zn
q replaced with the 

module Rk constructed by taking the k-fold Cartesian product of a certain polynomial ring Rq forq 

some integer k > 1. In particular, the secret is now an element x of the module Rk
q. 

The ML-KEM construction. At a high level, the ML-KEM construction proceeds in two 
steps. First, the idea mentioned above is used to construct a public-key encryption scheme 
from the MLWE problem. Second, this public-key encryption scheme is converted into a 
key-encapsulation mechanism using the so-called Fujisaki-Okamoto (FO) transform [11, 12]. 
In addition to producing a KEM, the FO transform is also intended to provide security in a 
signifcantly more general adversarial attack model. As a result, ML-KEM is believed to satisfy 
so-called IND-CCA security [1, 4, 13]. 

The specifcation of the ML-KEM algorithms in this standard will follow the above pattern. 
Specifcally, this standard will frst describe a public-key encryption scheme called K-PKE and 
then use the algorithms of K-PKE as subroutines when describing the algorithms of ML-KEM. 
The cryptographic transformation from K-PKE to ML-KEM is crucial for achieving full security. 
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The scheme K-PKE is not suffciently secure and shall not be used as a stand-alone scheme (see 
Section 3.3). 

A notable feature of ML-KEM is the use of the number-theoretic transform (NTT). The NTT 
converts a polynomial f ∈ Rq to an alternative representation as a vector f̂  of linear polynomials. 
Although NTT representations enable fast multiplication, other operations such as rounding and 
sampling must be applied to standard polynomial representations. 

ML-KEM satisfes the key properties of KEM correctness, and a proof of asymptotic theoretical 
security (in a certain heuristic model) is known [4]. Each of the parameter sets of ML-KEM 
comes with an associated security strength, which was estimated based on current cryptanalysis 
(see Section 7 for details). 

Parameter sets and algorithms. Recall that a KEM consists of algorithms KeyGen, Encaps, 
and Decaps, together with a collection of parameter sets. In the case of ML-KEM, the three 
aforementioned algorithms are: 

• ML-KEM.KeyGen (Algorithm 15); 

• ML-KEM.Encaps (Algorithm 16); 

• ML-KEM.Decaps (Algorithm 17). 

These algorithms are described and discussed in detail in Section 6. 

ML-KEM comes equipped with three parameter sets: 

• ML-KEM-512 (security category 1); 

• ML-KEM-768 (security category 3); 

• ML-KEM-1024 (security category 5). 

These parameter sets are described and discussed in detail in Section 7; the security categories 
1-5 are defned in Appendix A. Each parameter set assigns a particular numerical value to fve 
integer variables: k, η1, η2, du, and dv. The values of these variables in each parameter set are 
given in Table 2 of Section 7. In addition to these fve variable parameters, there are also two 
constants: n = 256 and q = 3329. 

Decapsulation failures. Provided all inputs are well-formed, the key establishment procedure of 
ML-KEM will never explicitly fail. Specifcally, the ML-KEM.Encaps and ML-KEM.Decaps 
algorithms will always output a value with the same data type as a shared secret key, and will never 
output an error or failure symbol. However, it is possible (though extremely unlikely) that the 
process will fail in the sense that Alice (via ML-KEM.Decaps) and Bob (via ML-KEM.Encaps) 
will produce different outputs, even though both of them are behaving honestly and no adversarial 
interference is present. In this case, Alice and Bob clearly did not succeed in producing a shared 
secret key. This event is called a decapsulation failure. The decapsulation failure probability is 
defned to be the probability that the process 

1. (ek,dk) ← ML-KEM.KeyGen() 

13 
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2. (c,K) ← ML-KEM.Encaps(ek) 

3. K′ ← ML-KEM.Decaps(c,dk) 

results in K ̸= K′ (i.e., the encapsulated key is different from the decapsulated key). Estimates for 
the decapsulation failure probability (or rate) for each of the ML-KEM parameter sets are given 
in Table 1 (see [4]). 

Table 1. Decapsulation failure rates for ML-KEM 

Parameter set Decapsulation failure rate 
ML-KEM-512 2−139 

ML-KEM-768 2−164 

ML-KEM-1024 2−174 

A note on terminology for keys. A KEM involves three different types of keys: encapsulation 
keys, decapsulation keys, and shared secret keys. ML-KEM is built on top of the component 
public-key encryption scheme K-PKE, and K-PKE has two additional key types: encryption 
keys and decryption keys. In the literature, encapsulation keys and encryption keys are sometimes 
referred to as “public keys,” while decapsulation keys and decryption keys can sometimes be 
referred to as “private keys.” In order to reduce confusion, this standard will not use the terms 
“public key” and “private key.” Instead, keys will be referred to using the more specifc terms 
above (i.e., encapsulation key, decapsulation key, encryption key, decryption key, or shared secret 
key). 

3.3 Requirements for ML-KEM Implementations 
This section describes several requirements for implementing the algorithms of ML-KEM. 
Requirements for using ML-KEM in specifc applications are given in NIST SP 800-227 [1]. 

K-PKE is only a component. The public-key encryption scheme K-PKE described in Section 
5 shall not be used as a stand-alone cryptographic scheme. Instead, the algorithms that comprise 
K-PKE may only be used as subroutines in the algorithms of ML-KEM. In particular, the algo-
rithms K-PKE.KeyGen (Algorithm 12), K-PKE.Encrypt (Algorithm 13), and K-PKE.Decrypt 
(Algorithm 14) are not approved for use as a public-key encryption scheme. 

Equivalent implementations. Each of the three top-level algorithms (i.e., ML-KEM.KeyGen, 
ML-KEM.Encaps, and ML-KEM.Decaps) defnes a particular mathematical operation, mapping 
any given input to a corresponding output. For example, the operation defned by the algorithm 
ML-KEM.Encaps takes one byte array as input and produces two byte arrays as output. 

In this standard, the three operations defned by ML-KEM.KeyGen, ML-KEM.Encaps, and 
ML-KEM.Decaps are described using particular sequences of computational steps. A conform-
ing implementation can replace each of these sequences with a different sequence of steps, 
provided that the resulting operation is an equivalent process to the one specifed in this standard. 

14 
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For example, a conforming implementation of the encapsulation operation must have the property 
that, for any parameter set and any input byte array ek, the distribution of output byte arrays is 
identical to the distribution ML-KEM.Encaps(ek) as specifed in this standard. 

Approved usage of the shared secret key. The output of the encapsulation and decapsulation 
algorithms of ML-KEM is always a 256-bit value. Under appropriate conditions (see above; see 
also NIST SP 800-227 [1]), this output is a shared secret key K. This shared secret key K can 
be used directly as a key for symmetric cryptography. When key derivation is needed, the fnal 
symmetric key(s) shall be derived from this 256-bit shared secret key K in an approved manner, 
as specifed in NIST SP 800-108 [14]. 

Randomness generation. Three algorithms in this standard require the generation of randomness: 
K-PKE.KeyGen, ML-KEM.KeyGen, and ML-KEM.Encaps. In pseudocode, the step in which 

− B32this randomness is generated is denoted by a pseudocode statement of the form m ←$ . A fresh 
string of random bytes must be generated for every such invocation. These random bytes shall 
be generated using an approved RBG, as prescribed in NIST SP 800-90A, NIST SP 800-90B, 
and NIST SP 800-90C [15, 16, 17]. Moreover, the RBG used shall have a security strength of at 
least 128 bits for ML-KEM-512, at least 192 bits for ML-KEM-768, and at least 256 bits for 
ML-KEM-1024. 

Input validation. The algorithms ML-KEM.Encaps and ML-KEM.Decaps require input val-
idation. Implementers shall ensure that ML-KEM.Encaps and ML-KEM.Decaps are only 
executed on validated inputs, as described in Section 6. As discussed above, implementers can 
choose to implement the top-level algorithms (i.e., ML-KEM.Encaps, ML-KEM.Decaps, or 
ML-KEM.KeyGen) using any equivalent process; the validation of inputs is considered part of 
this process. A conforming implementation shall be equivalent to frst validating the input, and 
then running the appropriate algorithm. 

Destruction of intermediate values. Data used internally by KEM algorithms in intermediate 
computation steps could be used by an adversary to compromise security. Implementers shall, 
therefore, ensure that such intermediate data is destroyed as soon as it is no longer needed. 

No foating-point arithmetic. Implementations of ML-KEM should not use foating-point 
arithmetic. All division and rounding steps in the algorithms of ML-KEM can be performed 
within the set of rational numbers. 
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4. Auxiliary Algorithms 

4.1 Cryptographic Functions 
The algorithms specifed in this publication require the use of several cryptographic functions. 
Each function shall be instantiated by means of an approved hash function or an approved 
eXtendable-Output function (XOF), as prescribed below. The relevant hash functions and XOFs 
are described in detail in FIPS 202 [7]. They will be used as follows. 

SHA3-256 and SHA3-512 are hash functions with variable-length input and fxed-length output. 
In this standard, invocations of these functions on an input M will be denoted by SHA3-256(M) 
and SHA3-512(M), respectively. 

SHAKE128 and SHAKE256 are XOFs with variable-length input and variable-length output. 
Invocations of these functions on an input M will be denoted in two different ways, depending 
on whether the desired output length ℓ (in bytes) is known at invocation time. If ℓ is known at 
invocation time, the invocation will be denoted by SHAKE128(M, ℓ) or SHAKE256(M, ℓ). For 
SHAKE128, the output length will sometimes not be known at invocation time; in those cases, 
the invocation will be denoted by SHAKE128(M) and the hashing routine will behave like a byte 
stream that provides pseudorandom bytes (by performing additional “squeezing” rounds [7]) until 
no more bytes are needed. 

The above functions will play several different roles in the algorithms specifed in this standard. 
It will be convenient to assign a specifc notation to each of these roles, as follows. 

Pseudorandom function (PRF). The function PRF takes a parameter η ∈ {2,3}, one 32-byte 
input, and one 1-byte input. It produces one (64 · η)-byte output. It will be denoted by PRF : 
{2,3}× B32 × B → B64η , and it shall be instantiated as 

PRFη (s,b) := SHAKE256(s∥b,64 · η) , (4.1) 

where η ∈ {2,3}, s ∈ B32, and b ∈ B. Here, η is only used to specify the desired output length 
and not to perform domain separation. Note that the output length parameter for SHAKE256 is 
specifed in bytes. 

eXtendable-output function (XOF). The function XOF takes one 32-byte input and two 1-
byte inputs. It produces a variable-length output. This function will be denoted by XOF : 
B32 × B × B → B∗, and it shall be instantiated as 

XOF(ρ, i, j) := SHAKE128(ρ∥i∥ j) , (4.2) 

where ρ ∈ B32, i ∈ B, and j ∈ B. The function XOF will only be invoked to provide a stream 
of pseudorandom bytes for the sampling algorithm SampleNTT (Algorithm 6). As SampleNTT 
performs rejection sampling, the total number of needed bytes will not be known at the time that 
XOF is invoked. 
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Three hash functions. The specifcation will also make use of three hash function instantiations 
H, J, and G, as follows. 

The functions H and J each take one variable-length input and produce one 32-byte output. They 
will be denoted by H : B∗ → B32 and J : B∗ → B32, respectively, and shall be instantiated as 

H(s) := SHA3-256(s) and J(s) := SHAKE256(s,32) (4.3) 

where s ∈ B∗ . 

The function G takes a variable-length input and produces two 32-byte outputs. It will be denoted 
by G : B∗ → B32 × B32. The two outputs of G will be denoted by, e.g., (a,b) ← G(c), where 
a,b ∈ B32, c ∈ B∗, and G(c) = a∥b. The function G shall be instantiated as 

G(c) := SHA3-512(c) . (4.4) 

4.2 General Algorithms 
This section specifes a number of algorithms that will be used as subroutines in the main 
ML-KEM algorithms. For a discussion of how to interpret the pseudocode of these algorithms, 
see Section 2.4. 

4.2.1 Conversion and Compression Algorithms 

This section specifes several algorithms for converting between bit arrays, byte arrays, and arrays 
of integers modulo m. it also specifes a certain compression operation for integers modulo q, as 
well as the corresponding decompression operation. 

Converting between bits and bytes. Algorithms 2 and 3 convert between bit arrays and byte 
arrays. The inputs to BitsToBytes and the outputs of BytesToBits are bit arrays, with each 
segment of 8 bits representing a byte in little-endian order. 

Algorithm 2 BitsToBytes(b) 
Converts a bit string (of length a multiple of eight) into an array of bytes. 

Input: bit array b ∈ {0,1}8·ℓ . 
Output: byte array B ∈ Bℓ . 

1: B ← (0, . . . ,0) 
2: for (i ← 0; i < 8ℓ; i++) 

2i mod 8 3: B [⌊i/8⌋] ← B [⌊i/8⌋]+ b[i] · 
4: end for 
5: return B 

17 
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Algorithm 3 BytesToBits(B) 
Performs the inverse of BitsToBytes, converting a byte array into a bit array. 

Input: byte array B ∈ Bℓ . 
Output: bit array b ∈ {0,1}8·ℓ . 

1: for (i ← 0; i < ℓ; i++) 
2: for ( j ← 0; j < 8; j ++) 
3: b[8i + j] ← B[i] mod 2 
4: B[i] ← ⌊B[i]/2⌋ 
5: end for 
6: end for 
7: return b 

Compression and decompression. Recall that q = 3329, and note that the bit length of q is 12. 
For d < 12, defne 

Compressd : Zq −→ Z2d 

x 7−→ ⌈(2d/q) · x⌋ . 
(4.5) 

Decompressd : Z2d −→ Zq 

y 7−→ ⌈(q/2d) · y⌋ . 
(4.6) 
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Note that the input and output types of these functions are integers modulo m (see discussion 
of types in Section 2.4). Division and rounding in the computation of the above functions are 
performed in the set of rational numbers. Floating-point computations should not be used. 

Informally, Compress discards low-order bits of the input, and Decompress adds low-order bits 
set to zero. These algorithms satisfy two important properties. First, decompression followed 
by compression preserves the input, that is, Compressd(Decompressd(y)) = y for all y ∈ Zq and 
all d < 12. Second, if d is large (i.e., close to 12) — meaning that the number of discarded 
bits is small — compression followed by decompression does not signifcantly alter the value. 
Specifcally, 

[Decompressd (Compressd(x)) − x] mod± q ≤ ⌈q/2d+1⌋ (4.7) 

for all x ∈ Zq and all d < 12. 

Encoding and decoding. The algorithms ByteEncode (Algorithm 4) and ByteDecode (Algorithm 
5) will be used for serialization and deserialization of arrays of integers modulo m. All serialized 
arrays will be of length n = 256. ByteEncoded serializes an array of d-bit integers into an array 
of 32 · d bytes. ByteDecoded performs the corresponding deserialization operation, converting an 
array of 32 · d bytes into an array of d-bit integers. 

For the following discussion, it is convenient to view ByteDecode and ByteEncode as converting 
between integers and bits. (The conversion between bits and bytes is straightforward and done 
using BitsToBytes and BytesToBits.) 
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The valid range of values for the parameter d is 1 ≤ d ≤ 12. Bit arrays are divided into d-bit 
segments. In the case where 1 ≤ d ≤ 11, ByteDecoded converts each d-bit segment of the input 
into one integer modulo 2d , and ByteEncoded performs the inverse operation. In this case, the 
conversion is one-to-one. 

The case d = 12 is treated differently. In this case, ByteEncode12 receives integers modulo q 
as input, and ByteDecode12 produces integers modulo q as output. ByteDecode12 converts each 
12-bit segment of the input into an integer modulo 212 = 4096, and then reduces the result modulo 
q. This is no longer a one-to-one operation. Indeed, some 12-bit segments could correspond to an 
integer greater than q = 3329 but less than 4096; however, this cannot occur for arrays produced 
by ByteEncode12. These aspects of ByteDecode12 and ByteEncode12 will be important when 
considering validation of the ML-KEM encapsulation key in Section 6. 

Algorithm 4 ByteEncoded (F) 

Encodes an array of d-bit integers into a byte array, for 1 ≤ d ≤ 12. 

Input: integer array F ∈ Z256, where m = 2d if d < 12 and m = q if d = 12.m 
Output: byte array B ∈ B32d . 

1: for (i ← 0; i < 256; i++) 
2: a ← F [i] ▷ a ∈ Z2d 

3: for ( j ← 0; j < d; j ++) 
4: b[i · d + j] ← a mod 2 ▷ b ∈ {0,1}256·d 

5: a ← (a − b[i · d + j])/2 ▷ note a − b[i · d + j] is always even. 
6: end for 
7: end for 
8: B ← BitsToBytes(b) 
9: return B 

Algorithm 5 ByteDecoded(B) 

Decodes a byte array into an array of d-bit integers, for 1 ≤ d ≤ 12. 

Input: byte array B ∈ B32d . 
Output: integer array F ∈ Z256, where m = 2d if d < 12 and m = q if d = 12.m 

1: b ← BytesToBits(B) 
2: for (i ← 0; i < 256; i++) 
3: F [i] ← ∑d

j= 
− 

0
1 b[i · d + j] · 2 j mod m 

4: end for 
5: return F 

4.2.2 Sampling Algorithms 

The algorithms of ML-KEM require two sampling subroutines that are specifed in Algorithms 6 
and 7. Both of these algorithms can be used to convert a stream of uniformly random bytes into a 
sample from some desired distribution. In this standard, these algorithms will be invoked with a 
stream of pseudorandom bytes as the input. It follows that the output will then be a sample from 
a distribution that is computationally indistinguishable from the desired distribution. 
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Uniform sampling of NTT representations. The algorithm SampleNTT (Algorithm 6) converts 
a stream of bytes into a polynomial in the NTT domain. If the input stream consists of uniformly 
random bytes, then the result will be drawn uniformly at random from Tq. The output is an array 
in Z256

q that contains the coeffcients of the sampled element of Tq (see Section 2.4). 

Algorithm 6 SampleNTT(B) 

If the input is a stream of uniformly random bytes, the output is a uniformly random element of Tq. 

Input: byte stream B ∈ B∗ . 
a ∈ Z256Output: array ˆ q . ▷ the coeffcients of the NTT of a polynomial 

1: i ← 0 
2: j ← 0 
3: while j < 256 do 
4: d1 ← B[i]+ 256 · (B[i + 1] mod 16) 
5: d2 ← ⌊B[i + 1]/16⌋ + 16 · B[i + 2] 
6: if d1 < q then 

a ∈ Z2567: â[ j] ← d1 ▷ ˆ q 
8: j ← j + 1 
9: end if 

10: if d2 < q and j < 256 then 
11: â[ j] ← d2 
12: j ← j + 1 
13: end if 
14: i ← i + 3 
15: end while 
16: return â 

Algorithm 7 SamplePolyCBDη (B) 

If the input is a stream of uniformly random bytes, outputs a sample from the distribution Dη (Rq). 

Input: byte array B ∈ B64η . 
Output: array f ∈ Z256. ▷ the coeffcients of the sampled polynomial q 

1: b ← BytesToBits(B) 
2: for (i ← 0; i < 256; i++) 
3: x ← ∑

η 
j= 
− 
0
1 b[2iη + j] 

4: y ← ∑
η 
j= 
− 
0
1 b[2iη + η + j] 

▷ f ∈ Z2565: f [i] ← x − y mod q q 
6: end for 
7: return f 

Sampling from the centered binomial distribution. ML-KEM makes use of a special distri-
bution Dη (Rq) of polynomials in Rq with small coeffcients. Such polynomials will sometimes 
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be referred to as “errors” or “noise.” The distribution is parameterized by an integer η ∈ {2,3}. 
To sample a polynomial from Dη (Rq), each of its coeffcients is independently sampled from a 
certain centered binomial distribution (CBD) on Zq. The algorithm SamplePolyCBD (Algorithm 
7) samples the coeffcient array of a polynomial f ∈ Rq according to the distribution Dη (Rq), 
provided that its input is a stream of uniformly random bytes. 

4.3 The Number-Theoretic Transform 
The number-theoretic transform (or NTT) can be viewed as a specialized, exact version of the 
discrete Fourier transform. In the case of ML-KEM, the NTT is used to improve the effciency of 
multiplication in the ring Rq. Recall that Rq is the ring Zq[X ]/(Xn + 1) consisting of polynomials 
of the form f = f0 + f1X + · · · + f255X255 where f j ∈ Zq for all j, equipped with arithmetic 
modulo Xn + 1. 

The ring Rq is naturally isomorphic to another ring, denoted Tq, which is a direct sum of 128 
quadratic extensions of Zq. The NTT is a computationally effcient isomorphism between these 
two rings. On input a polynomial f ∈ Rq, the NTT outputs an element f̂ := NTT( f ) of the ring 
Tq, where f̂  is called the “NTT representation” of f . The isomorphism property implies that 

f ×Rq g = NTT−1( f̂ ×Tq ĝ), (4.8) 

where ×Rq and ×Tq denote multiplication in Rq and Tq, respectively. Moreover, since Tq is a 
product of 128 rings, each consisting of degree-one polynomials, the operation ×Tq is much more 
effcient than the operation ×Rq . For these reasons, the NTT is considered to be an integral part 
of ML-KEM and not merely an optimization. 

As the rings Rq and Tq have a vector space structure over Zq, the most natural abstract data type 
to represent elements from either of these rings is Zn

q. For this reason, the choice of data structure 
for the inputs and outputs of NTT and NTT−1 are length-n arrays of integers modulo q; these 
arrays are understood to represent elements of Tq or Rq, respectively (see Section 2.4). Both NTT 
and NTT−1 can be computed in-place. In fact, Algorithms 8 and 9 demonstrate an effcient means 
of computing NTT and NTT−1 in-place. However, for clarity in understanding the distinction 
of the algebraic objects before and after the conversion, the algorithms are written with explicit 
inputs and outputs. 

The mathematical structure of a simple NTT. Recall that, in ML-KEM, q is the prime 
3329 = 28 · 13 + 1 and n = 256. There are 128 primitive 256-th roots of unity and no primitive 
512-th roots of unity in Zq. Note that ζ = 17 ∈ Zq is a primitive 256-th root of unity modulo q. 
Thus ζ 128 ≡−1. 

Defne BitRev7(i) to be the integer represented by bit-reversing the unsigned 7-bit value that 
corresponds to the input integer i ∈ {0, . . . ,127}. 

The polynomial X256 + 1 factors into 128 polynomials of degree 2 modulo q as follows: 

127 � � 
X256 X2 − ζ 2BitRev7(k)+1+ 1 = ∏ . (4.9) 

k=0 
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Therefore, Rq := Zq[X ]/(X256 + 1) is isomorphic to a direct sum of 128 quadratic extension felds 
of Zq, denoted Tq. Specifcally, this ring has the structure 

127 � �M 
X2 − ζ 2BitRev7(k)+1Tq := Zq[X ]/ . (4.10) 

k=0 

Thus, the NTT representation f̂  ∈ Tq of a polynomial f ∈ Rq is the vector that consists of the 
corresponding degree one residues: � � 

f mod (X2 − ζ 2BitRev7(0)+1), . . . , f mod (X2 − ζ 2BitRev7(127)+1)f̂ := . (4.11) 

In the algorithms below, f̂  is stored as an array of 256 integers modulo q. Specifcally, 

f mod (X2 − ζ 2BitRev7(i)+1) = f̂ [2i]+ f̂ [2i + 1]X . 

for i from 0 to 127. 

Algorithm 8 NTT( f ) 

Computes the NTT representation f̂  of the given polynomial f ∈ Rq. 

Input: array f ∈ Z256. ▷ the coeffcients of the input polynomial q 

Output: array f̂  ∈ Z256. ▷ the coeffcients of the NTT of the input polynomial q 

1: f̂  ← f ▷ will compute NTT in-place on a copy of input array 
2: k ← 1 
3: for (len ← 128; len ≥ 2; len ← len/2) 
4: for (start ← 0; start < 256; start ← start + 2 · len) 

zeta ← ζ BitRev7(k) mod q5: 
6: k ← k + 1 
7: for ( j ← start; j < start + len; j ++) 
8: t ← zeta · f̂ [ j + len] ▷ steps 8-10 done modulo q 
9: f̂ [ j + len] ← f̂ [ j] − t 

10: f̂ [ j] ← f̂ [ j]+ t 
11: end for 
12: end for 
13: end for 
14: return f̂  

The ML-KEM NTT algorithms. An algorithm for the NTT is described in Algorithm 8. An 
algorithm for the Inverse-NTT is described in Algorithm 9. These two algorithms are overloaded 
in this standard. First, they represent the transformation used to map elements of Rq to elements 
of Tq (using NTT) and vice versa (using NTT−1). Second, they represent the coordinate-wise 
transformation of structures over those rings; specifcally, they map matrices/vectors with entries 
in Rq to matrices/vectors with entries in Tq (using NTT) and vice versa (using NTT−1). 
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Algorithm 9 NTT−1( f̂ ) 

Computes the polynomial f ∈ Rq corresponding to the given NTT representation f̂  ∈ Tq. 

Input: array f̂  ∈ Z256. ▷ the coeffcients of input NTT representation q 

Output: array f ∈ Z256. ▷ the coeffcients of the inverse-NTT of the input q 

1: f ← f̂  ▷ will compute in-place on a copy of input array 
2: k ← 127 
3: for (len ← 2; len ≤ 128; len ← 2 · len) 
4: for (start ← 0; start < 256; start ← start + 2 · len) 

zeta ← ζ BitRev7(k) mod q5: 
6: k ← k − 1 
7: for ( j ← start; j < start + len; j ++) 
8: t ← f [ j] 
9: f [ j] ← t + f [ j + len] ▷ steps 9-10 done modulo q 

10: f [ j + len] ← zeta · ( f [ j + len] − t) 
11: end for 
12: end for 
13: end for 
14: f ← f · 3303 mod q ▷ multiply every entry by 3303 ≡ 128−1 mod q 
15: return f 
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4.3.1 Multiplication in the NTT Domain 

As discussed in Section 2.4, addition and scalar multiplication of elements of Tq is straightforward: 
it can be done using the corresponding coordinate-wise arithmetic operations on the coeffcient 
arrays. This section describes how to do the remaining ring operation (i.e., multiplication in Tq). 

Recall from (4.11) that f̂  ∈ Tq is a vector of 128 degree one residues modulo quadratic polynomials. 
Algebraically, multiplication in the ring Tq consists of independent multiplication in each of the 
128 coordinates with respect to the quadratic modulus of that coordinate. Specifcally, the i-th 
coordinate in Tq of the product ĥ = f̂ ×Tq ĝ is determined by the calculation 

ˆ h[2i + 1]X = ( f̂ [2i]+ f̂ [2i + 1]X)(ĝ[2i]+ ĝ[2i + 1]X) mod (X2 − ζ 2BitRev7(i)+1).h[2i]+ ˆ (4.12) 

Thus, one can compute the product of two elements of Tq using the algorithm MultiplyNTTs 
(Algorithm 10). Note that MultiplyNTTs uses BaseCaseMultiply (Algorithm 11) as a subroutine. 
As discussed in Section 2.4, MultiplyNTTs enables one to perform linear-algebraic arithmetic 
operations with matrices and vectors with entries in Tq. 
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Algorithm 10 MultiplyNTTs( f̂ , ĝ) 

Computes the product (in the ring Tq) of two NTT representations. 

Input: Two arrays f̂  ∈ Z256 and ĝ ∈ Z256. ▷ the coeffcients of two NTT representations q q 

h ∈ Z256Output: An array ˆ . ▷ the coeffcients of the product of the inputs q 

1: for (i ← 0; i < 128; i++) 
f̂ [2i + 1], ĝ[2i], ĝ[2i + 1],ζ 2BitRev7(i)+1)2: (ĥ[2i], ĥ[2i + 1]) ← BaseCaseMultiply( f̂ [2i], 

3: end for 
4: return ĥ 

Algorithm 11 BaseCaseMultiply(a0,a1,b0,b1,γ) 

Computes the product of two degree-one polynomials with respect to a quadratic modulus. 

Input: a0,a1,b0,b1 ∈ Zq. ▷ the coeffcients of a0 + a1X and b0 + b1X 
Input: γ ∈ Zq. ▷ the modulus is X2 − γ 
Output: c0,c1 ∈ Zq. ▷ the coeffcients of the product of the two polynomials 

1: c0 ← a0 · b0 + a1 · b1 · γ ▷ steps 1-2 done modulo q 
2: c1 ← a0 · b1 + a1 · b0 
3: return c0, c1 
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5. The K-PKE Component Scheme 

This section describes the component scheme K-PKE. As discussed in Section 3.3, K-PKE is 
not approved for use in a stand-alone fashion. It serves only as a collection of subroutines for 
use in the algorithms of the approved scheme ML-KEM, as described in Section 6. 

K-PKE consists of three algorithms: 

1. Key generation (K-PKE.KeyGen); 

2. Encryption (K-PKE.Encrypt); 

3. Decryption (K-PKE.Decrypt). 

When K-PKE is instantiated as part of ML-KEM, K-PKE inherits the parameter set selected 
for ML-KEM. Each parameter set specifes numerical values for each parameter. While n is 
always 256 and q is always 3329, the values of the remaining parameters k, η1, η2, du, and dv vary 
among the three parameter sets. The individual parameters and the parameter sets are described 
in Section 7. 

The algorithms in this section do not perform any input validation. This is because they are 
only invoked as subroutines of the main ML-KEM algorithms. The algorithms of ML-KEM 
do perform input validation as needed; they also ensure that all inputs to K-PKE algorithms 
(invoked as subroutines) will be valid. 

Each of the algorithms of K-PKE below is accompanied by a brief, informal description in text. 
For simplicity, this description is written in terms of vectors and matrices whose entries are 
elements of Rq. In the actual algorithm, most of the computations occur in the NTT domain in 
order to improve the effciency of multiplication. The relevant vectors and matrices will then 
have entries in Tq. Linear-algebraic arithmetic with such vectors and matrices (see, e.g., line 19 
of K-PKE.KeyGen) is performed as described in Sections 2.4 and 4.3.1. The encryption and 
decryption key of K-PKE are also stored in the NTT form. 

5.1 K-PKE Key Generation 
The key generation algorithm K-PKE.KeyGen of K-PKE (Algorithm 12) takes no input, requires 
randomness, and outputs an encryption key ekPKE and a decryption key dkPKE. From the typical 
point of view of public-key encryption, the encryption key can be made public, while the 
decryption key and the randomness must remain private. This will be the case in the context 
of this standard as well. Indeed, the encryption key of K-PKE will serve as the encapsulation 
key of ML-KEM (see ML-KEM.KeyGen below) and can thus be made public; meanwhile, the 
decryption key and randomness of K-PKE.KeyGen must remain private as they can be used to 
perform decapsulation in ML-KEM. 

Informal description. The decryption key of K-PKE.KeyGen is a length-k vector s of elements 
of Rq, i.e., s ∈ Rk

q. Roughly speaking, s is a set of secret variables, while the encryption key is a 
collection of “noisy” linear equations (A,As+ e) in the secret variables s. The rows of the matrix 
A form the equation coeffcients. This matrix is generated pseudorandomly using XOF, with 
only the seed stored in the encryption key. The secret s and the “noise” e are sampled from the 
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Algorithm 12 K-PKE.KeyGen() 

Generates an encryption key and a corresponding decryption key. 

Output: encryption key ekPKE ∈ B384k+32. 
Output: decryption key dkPKE ∈ B384k . 

− B321: d ←$ ▷ d is 32 random bytes (see Section 3.3) 
2: (ρ,σ) ← G(d) ▷ expand to two pseudorandom 32-byte seeds 
3: N ← 0 

A∈ (Z256)k×k4: for (i ← 0; i < k; i++) ▷ generate matrix ˆ 
q 

5: for ( j ← 0; j < k; j ++) 
6: Â [i, j] ← SampleNTT(XOF(ρ, i, j)) ▷ each entry of Â uniform in NTT domain 
7: end for 
8: end for 
9: for (i ← 0; i < k; i++) ▷ generate s ∈ (Z256)k 

q 

▷ s[i] ∈ Z25610: s[i] ← SamplePolyCBDη1 
(PRFη1 (σ ,N)) sampled from CBD q 

11: N ← N + 1 
12: end for 
13: for (i ← 0; i < k; i++) ▷ generate e ∈ (Z256)k 

q 

▷ e[i] ∈ Z25614: e[i] ← SamplePolyCBDη1 
(PRFη1 (σ ,N)) sampled from CBD q 

15: N ← N + 1 
16: end for 
17: ŝ ← NTT(s) ▷ NTT is run k times (once for each coordinate of s) 
18: ê ← NTT(e) ▷ NTT is run k times 
19: t̂ ← Â ◦ ŝ + ê ▷ noisy linear system in NTT domain 
20: ekPKE ← ByteEncode12(t̂)∥ρ ▷ ByteEncode12 is run k times; include seed for Â 
21: dkPKE ← ByteEncode12(ŝ) ▷ ByteEncode12 is run k times 
22: return (ekPKE,dkPKE) 
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915 
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918 

centered binomial distribution using randomness expanded from a seed via PRF. Once A and s 
and e are generated, the computation of the fnal part t = As + e of the encryption key takes place. 

In K-PKE.KeyGen, the choice of parameter set affects the length of the secret s (via the parameter 
k) and, as a consequence, the sizes of the noise vector e and the pseudorandom matrix A. The 
choice of parameter set also affects the noise distribution (via the parameter η1) used to sample 
the entries of s and e. 

5.2 K-PKE Encryption 
The encryption algorithm K-PKE.Encrypt of K-PKE (Algorithm 13) takes an encryption key 
ekPKE and a plaintext m as input, requires randomness r, and outputs a ciphertext c. While many al-
gorithms specifed in this document require randomness, only the description of K-PKE.Encrypt 
interprets this randomness as part of the input. This is because ML-KEM will need to invoke 
K-PKE.Encrypt with a specifc choice of randomness (see Algorithm 16 for details). 
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Informal description. The algorithm K-PKE.Encrypt begins by extracting the vector t and 
the seed from the encryption key. The seed is then expanded to re-generate the matrix A, in 
the same manner as was done in K-PKE.KeyGen. If t and A are derived correctly from an 
encryption key produced by K-PKE.KeyGen, then they are equal to their corresponding values 
in K-PKE.KeyGen. 

Algorithm 13 K-PKE.Encrypt(ekPKE,m,r) 

Uses the encryption key to encrypt a plaintext message using the randomness r. 

Input: encryption key ekPKE ∈ B384k+32. 
Input: message m ∈ B32. 
Input: encryption randomness r ∈ B32. 
Output: ciphertext c ∈ B32(duk+dv). 

1: N ← 0 
2: t̂ ← ByteDecode12(ekPKE[0 : 384k]) 
3: ρ ← ekPKE[384k : 384k + 32] ▷ extract 32-byte seed from ekPKE 

A∈ (Z2564: for (i ← 0; i < k; i++) ▷ re-generate matrix ˆ )k×k 
q 

5: for ( j ← 0; j < k; j ++) 
6: Â [i, j] ← SampleNTT(XOF(ρ, i, j)) 
7: end for 
8: end for 
9: for (i ← 0; i < k; i++) ▷ generate r ∈ (Z256)k 

q 

▷ r[i] ∈ Z25610: r[i] ← SamplePolyCBDη1 
(PRFη1 (r,N)) sampled from CBD q 

11: N ← N + 1 
12: end for 
13: for (i ← 0; i < k; i++) ▷ generate e1 ∈ (Z256)k 

q 

▷ e1[i] ∈ Z25614: e1[i] ← SamplePolyCBDη2 
(PRFη2 (r,N)) sampled from CBD q 

15: N ← N + 1 
16: end for 
17: e2 ← SamplePolyCBDη2 

(PRFη2 (r,N)) ▷ sample e2 ∈ Z256 from CBD q 
18: r̂ ← NTT(r) ▷ NTT is run k times 
19: u ← NTT−1(Â ⊺ ◦ r̂)+ e1 ▷ NTT−1 is run k times 
20: µ ← Decompress1(ByteDecode1(m))) 
21: v ← NTT−1(t̂⊺ ◦ r̂)+ e2 + µ ▷ encode plaintext m into polynomial v. 
22: c1 ← ByteEncodedu 

(Compressdu 
(u)) ▷ ByteEncodedu 

is run k times 
23: c2 ← ByteEncodedv 

(Compressdv 
(v)) 

24: return c ← (c1∥c2) 

Recall from the description of key generation that the pair (A, t = As + e) can be thought of as a 
system of noisy linear equations in the secret variables s. One can generate an additional noisy 
linear equation in the same secret variables — without knowing s — by picking a random linear 
combination of the noisy equations in the system (A, t). One can then encode information in the 
“constant term” (i.e., the entry which is a linear combination of entries of t) of such a combined 
equation. This information can then be deciphered by a party in possession of s. For example, 
one could encode a single bit by deciding whether or not to signifcantly alter the constant term, 
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thus making either a nearly correct equation (corresponding to the decrypted bit value of 0) or a 
far-from-correct equation (corresponding to the decrypted bit value of 1). In the case of K-PKE, 
the constant term is a polynomial with 256 coeffcients, so one can encode more information: one 
bit in each coeffcient. 

To this end, K-PKE.Encrypt proceeds by generating a vector r ∈ Rk and noise terms e1 ∈ Rk andq q 
e2 ∈ Rq, all of which are sampled from the centered binomial distribution using pseudorandomness 
expanded (via PRF) from the input randomness r. One then computes the “new noisy equation” 
which is (up to some details) computed by (u,v) ← (A⊺r+ e1, t⊺r+ e2). An appropriate encoding 
µ of the input message m is then added to the term t⊺r + e2. Finally, the pair (u,v) is compressed, 
serialized into a byte array, and output as the ciphertext. 

5.3 K-PKE Decryption 
The decryption algorithm K-PKE.Decrypt of K-PKE (Algorithm 14) takes a decryption key 
dkPKE and a ciphertext c as input, requires no randomness, and outputs a plaintext m. 

Informal description. The algorithm K-PKE.Decrypt begins by computing the “noisy equation” 
(u,v) underlying the ciphertext c, as discussed in the description of K-PKE.Encrypt. Here, one 
can think of u as the coeffcients of the equation and v as the constant term. Recall that the 
decryption key dkPKE contains the vector of secret variables s. The decryption algorithm can thus 
use the decryption key to compute the true constant term v ′ = s⊺u and then calculate v − v ′ . The 
decryption algorithm ends by decoding the plaintext message m from v − v ′ and outputting m. 

Algorithm 14 K-PKE.Decrypt(dkPKE,c) 

Uses the decryption key to decrypt a ciphertext. 

Input: decryption key dkPKE ∈ B384k . 
Input: ciphertext c ∈ B32(duk+dv). 
Output: message m ∈ B32. 

1: c1 ← c[0 : 32duk] 
2: c2 ← c[32duk : 32(duk + dv)] 
3: u ← Decompressdu 

(ByteDecodedu 
(c1)) ▷ ByteDecodedu 

invoked k times 
4: v ← Decompressdv 

(ByteDecodedv 
(c2)) 

5: ŝ ← ByteDecode12(dkPKE) 
6: w ← v − NTT−1(ŝ⊺ ◦ NTT(u)) ▷ NTT−1 and NTT invoked k times 
7: m ← ByteEncode1(Compress1(w)) ▷ decode plaintext m from polynomial v 
8: return m 
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6. The ML-KEM Key-Encapsulation Mechanism 

The ML-KEM scheme consists of three algorithms: 

1. Key generation (ML-KEM.KeyGen) 

2. Encapsulation (ML-KEM.Encaps) 

3. Decapsulation (ML-KEM.Decaps) 

To instantiate ML-KEM, one must select a parameter set, each of which is associated with a 
particular trade-off between security and performance. The three possible parameter sets are called 
ML-KEM-512, ML-KEM-768, and ML-KEM-1024 and are described in detail in Table 2 of 
Section 7. Each parameter set assigns specifc numerical values to the individual parameters n, 
q, k, η1, η2, du, and dv. While n is always 256 and q is always 3329, the remaining parameters 
vary among the three parameter sets. Implementers shall ensure that the three algorithms of 
ML-KEM listed above are only invoked with a valid parameter set, and that this parameter set is 
selected appropriately for the desired application. In addition, the algorithms ML-KEM.Encaps 
and ML-KEM.Decaps require validation of inputs, as discussed below. 

6.1 ML-KEM Key Generation 
The key generation algorithm ML-KEM.KeyGen for ML-KEM (Algorithm 15) accepts no input, 
requires randomness, and produces an encapsulation key and a decapsulation key. While the 
encapsulation key can be made public, the decapsulation key must remain private. 

Informal description. The core subroutine of ML-KEM.KeyGen is the key generation algorithm 
of K-PKE (Algorithm 12). The ML-KEM encapsulation key is simply the encryption key of 
K-PKE. The ML-KEM decapsulation key is comprised of the decryption key of K-PKE, the 
encapsulation key, a hash of the encapsulation key, and a pseudorandom 32-byte value. This 
random value will be used in the "implicit rejection" mechanism of the decapsulation algorithm 
(Algorithm 17). 

Algorithm 15 ML-KEM.KeyGen() 

Generates an encapsulation key and a corresponding decapsulation key. 

Output: Encapsulation key ek ∈ B384k+32. 
Output: Decapsulation key dk ∈ B768k+96. 

− B321: z ←$ ▷ z is 32 random bytes (see Section 3.3) 
2: (ekPKE,dkPKE) ← K-PKE.KeyGen() ▷ run key generation for K-PKE 
3: ek ← ekPKE ▷ KEM encaps key is just the PKE encryption key 
4: dk ← (dkPKE∥ek∥H(ek)∥z) ▷ KEM decaps key includes PKE decryption key 
5: return (ek,dk) 
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6.2 ML-KEM Encapsulation 
The encapsulation algorithm ML-KEM.Encaps of ML-KEM (Algorithm 16) accepts an encap-
sulation key as input, requires randomness, and outputs a ciphertext and a shared key. 

Input validation. To validate a given input1 eke  to ML-KEM.Encaps, perform the following 
checks. 

In discussions of input validation, the tilde in the notation indicates that the input might not be properly formed, 
e.g., eke for a candidate encapsulation key input, as opposed to ek for a valid input. 

1. (Type check.) If eke is not an array of bytes of length 384k + 32 for the value of k specifed 
by the relevant parameter set, the input is invalid. 

2. (Modulus check.) Perform the computation ek ← ByteEncode12(ByteDecode12(eke )). If 
ek ≠ eke , the input is invalid. (See Section 4.2.1.) 

If either of the above checks declare the input to be invalid, then ML-KEM.Encaps shall not be 
performed with input eke . Instead, application-appropriate steps shall be taken to abort. If both 
of the above checks pass (i.e., none of them declare the input to be invalid), then the input is 
considered valid and ML-KEM.Encaps can be performed with input ek = eke . 

It is important to note that the above input validation process does not ensure that eke is an actual 
output of ML-KEM.KeyGen. In fact, the ability to ensure that (without using the decapsulation 
key) would violate the security assumption. 

Recall that, as discussed in Section 3.3, implementations are only required to correctly reproduce 
the input-output behavior of the top-level algorithms. In the case of ML-KEM.Encaps, this 
means that an implementation can perform any process that is equivalent to executing checks 1 
and 2 above and then running Algorithm 16. (For example, the second check could be performed 
during the execution of ByteDecode12 in line 2 of K-PKE.Encrypt.) 

Algorithm 16 ML-KEM.Encaps(ek) 

Uses the encapsulation key to generate a shared key and an associated ciphertext. 

Validated input: encapsulation key ek ∈ B384k+32. 
Output: shared key K ∈ B32. 
Output: ciphertext c ∈ B32(duk+dv). 

− B321: m ←$ ▷ m is 32 random bytes (see Section 3.3) 
2: (K,r) ← G(m∥H(ek)) ▷ derive shared secret key K and randomness r 
3: c ← K-PKE.Encrypt(ek,m,r) ▷ encrypt m using K-PKE with randomness r 
4: return (K,c) 

Informal description. The core subroutine of ML-KEM.Encaps is the encryption algorithm of 
K-PKE, which is used to encrypt a random value m into a ciphertext c. A copy of the shared 
secret K and the randomness used during encryption are derived from m and the encapsulation 
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key ek via hashing. Specifcally, H is applied to ek, and the result is concatenated with m and then 
hashed using G. The algorithm completes by outputting the ciphertext c and the shared secret K. 

6.3 ML-KEM Decapsulation 
The decapsulation algorithm ML-KEM.Decaps of ML-KEM (Algorithm 16) accepts a decap-
sulation key and a ML-KEM ciphertext as input, does not use any randomness, and outputs a 
shared secret. 

Input validation. To validate a given pair of inputs ce (candidate ciphertext) and dke (candidate 
decapsulation key) to ML-KEM.Decaps, perform the following checks. 

1. (Ciphertext type check.) If ce is not a byte array of length 32(duk + dv) for the values of du, 
dv, and k specifed by the relevant parameter set, the input is invalid. 

2. (Decapsulation key type check.) If dke is not a byte array of length 768k + 96 for the value 
of k specifed by the relevant parameter set, the input is invalid. 

If either of the above checks declares the input to be invalid, then ML-KEM.Decaps shall not 
be performed with input (ce,dke ). Instead, application-appropriate steps shall be taken to abort. 
If both of the checks pass (i.e., neither one declares the input to be invalid), then the input is 
considered valid and ML-KEM.Decaps can be performed with input (c,dk) = (ce,dke ). 

For some applications, further validation of the decapsulation key dke may be appropriate. For 
instance, in cases where dke was generated by a third party, users may want to ensure that the four 
components of dke have the correct relationship with each other, as in line 4 of ML-KEM.KeyGen. 
In all cases, implementers shall validate the inputs to ML-KEM.Decaps in a manner that is 
appropriate for their application. 

Informal description. The algorithm ML-KEM.Decaps begins by parsing out the components 
of the decapsulation key dk of ML-KEM. These components are an (encryption key, decryption 
key) pair for K-PKE, a hash value h, and a random value z. The decryption key of K-PKE is 

′ then used to decrypt the input ciphertext c to get a plaintext m . The decapsulation algorithm then 
re-encrypts m ′ and computes a candidate shared secret key K′ in the same manner as should have 
been done in encapsulation. Specifcally, K′ and the encryption randomness r ′ are computed by 
hashing m ′ and the encryption key of K-PKE, and a ciphertext c ′ is generated by encrypting m ′ 

′ ′ using randomness r . Finally, decapsulation checks whether the resulting ciphertext c matches 
the provided ciphertext c. If it does not, the algorithm performs an “implicit rejection”: the value 
of K′ is changed to a hash of c together with the random value z stored in the ML-KEM secret 
key (see the discussion on decapsulation failures in Section 3.2). In either case, decapsulation 
outputs the resulting shared secret key K′ . 
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Algorithm 17 ML-KEM.Decaps(c,dk) 

Uses the decapsulation key to produce a shared key from a ciphertext. 

Validated input: ciphertext c  B32(d k∈ u +dv). 
Validated input: decapsulation key   B768k+96dk ∈ . 
Output: shared key K ∈ B32 . 

1: dkPKE ← dk[0 : 384k] ▷ extract (from KEM decaps key) the PKE decryption key 
2: ekPKE ← dk[384k : 768k + 32] ▷ extract PKE encryption key 
3: h ← dk[768k + 32 : 768k + 64] ▷ extract hash of PKE encryption key 
4: z ← dk[768k + 64 : 768k + 96] ▷ extract implicit rejection value 
5: m ′ ← K-PKE.Decrypt(dkPKE,c) ▷ decrypt ciphertext 

K′  6: ( ,r ′) ← G(m ′∥h) 
7: K̄ ← J(z∥c,32) 
8: c′ ← K-PKE.Encrypt(ekPKE,m ′ ,r ′ )  ▷ re-encrypt using the derived randomness r ′

9: if c = c ′ then 
10: K′ ← K̄ ▷ if ciphertexts do not match, “implicitly reject” 
11: end if 
12: return K′ 
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7. Parameter Sets 

ML-KEM is equipped with three parameter sets. Each of the three parameter sets is comprised 
of fve individual parameters: k, η1, η2, du, and dv. There are also two constants: n = 256 and 
q = 3329. The following is a brief and informal description of the roles played by the variable 
parameters in the algorithms of K-PKE (and hence in ML-KEM). See Section 5 for details. 

• The parameter k determines the dimensions of the vectors s and e in K-PKE.KeyGen, as 
well as the dimensions of the matrix Â and the vectors r, e1, and e2 in K-PKE.Encrypt. 

• The parameter η1 is required for specifying the distribution for generating the vectors s and 
e in K-PKE.KeyGen and the vector r in K-PKE.Encrypt. 

• The parameter η2 is required for specifying the distribution for generating the vectors e1 
and e2 in K-PKE.Encrypt. 

• The parameters du and dv serve as parameters and inputs for the functions Compress, 
Decompress, ByteEncode, and ByteDecode in K-PKE.Encrypt and K-PKE.Decrypt. 

This standard approves the parameter sets given in Table 2. Each parameter set is associated 
with a required security strength for randomness generation (see Section 3.3). The sizes of the 
ML-KEM keys and ciphertexts for each parameter set are summarized in Table 3. 

n q k η1 η2 du dv required RBG strength (bits) 
ML-KEM-512 256 3329 2 3 2 10 4 128 
ML-KEM-768 256 3329 3 2 2 10 4 192 

ML-KEM-1024 256 3329 4 2 2 11 5 256 

Table 2. Approved parameter sets for ML-KEM 

encapsulation key decapsulation key ciphertext shared secret key 
ML-KEM-512 800 1632 768 32 
ML-KEM-768 1184 2400 1088 32 

ML-KEM-1024 1568 3168 1568 32 

Table 3. Sizes (in bytes) of keys and ciphertexts of ML-KEM 

A parameter set name can also be said to denote a (parameter-free) KEM. Specifcally, ML-KEM-x 
can be used to denote the parameter-free KEM that results from instantiating the scheme 
ML-KEM with the parameter set ML-KEM-x. 

The three parameter sets included in Table 2 were designed to meet certain security strength 
categories defned by NIST in its original Call for Proposals [4, 18]. These security strength 
categories are explained further in Appendix A. 

Using this approach, security strength is not described by a single number, such as “128 bits of 
security.” Instead, each ML-KEM parameter set is claimed to be at least as secure as a generic 

33 



1065
1066
1067
1068
1069
1070
1071

1072
1073
1074

1075
1076
1077
1078
1079
1080

1081
1082
1083

FIPS 203 (DRAFT) MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM 

block cipher with a prescribed key size or a generic hash function with a prescribed output 
length. More precisely, it is claimed that the computational resources needed to break ML-KEM 
are greater than or equal to the computational resources needed to break the block cipher or 
hash function, when these computational resources are estimated using any realistic model of 
computation. Different models of computation can be more or less realistic and, accordingly, 
lead to more or less accurate estimates of security strength. Some commonly studied models are 
discussed in [19]. 

Concretely, ML-KEM-512 is claimed to be in security category 1, ML-KEM-768 is claimed 
to be in security category 3, and ML-KEM-1024 is claimed to be in security category 5. For 
additional discussion of the security strength of MLWE-based cryptosystems, see [4]. 

Selecting an appropriate parameter set. When initially establishing cryptographic protections 
for data, the strongest possible parameter set should be used. This has a number of advantages, 
including reducing the likelihood of costly transitions to higher-security parameter sets in the 
future. At the same time, it should be noted that some parameter sets might have adverse 
performance effects for the relevant application (e.g., the algorithm may be unacceptably slow). 

NIST recommends using ML-KEM-768 as the default parameter set, as it provides a large 
security margin at a reasonable performance cost. In cases where this is impractical or where 
even higher security is required, other parameter sets may be used. 
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Appendix A — Security Strength Categories 

NIST understands that there are signifcant uncertainties in estimating the security strengths of 
post-quantum cryptosystems. These uncertainties come from two sources: frst, the possibility 
that new quantum algorithms will be discovered, leading to new cryptanalytic attacks; and second, 
our limited ability to predict the performance characteristics of future quantum computers, such 
as their cost, speed, and memory size. 

In order to address these uncertainties, NIST proposed the following approach in its original Call 
for Proposals [18]. Instead of defning the strength of an algorithm using precise estimates of 
the number of “bits of security,” NIST defned a collection of broad security strength categories. 
Each category is defned by a comparatively easy-to-analyze reference primitive, whose security 
will serve as a foor for a wide variety of metrics that NIST deems potentially relevant to practical 
security. A given cryptosystem may be instantiated using different parameter sets in order to ft 
into different categories. The goals of this classifcation are: 

• To facilitate meaningful performance comparisons between various post-quantum algo-
rithms by ensuring – insofar as possible – that the parameter sets being compared provide 
comparable security 

• To allow NIST to make prudent future decisions regarding when to transition to longer keys 

• To help submitters make consistent and sensible choices regarding what symmetric prim-
itives to use in padding mechanisms or other components of their schemes that require 
symmetric cryptography 

• To better understand the security/performance trade-offs involved in a given design approach 

In accordance with the second and third goals above, NIST based its classifcation on the range 
of security strengths offered by the existing NIST standards in symmetric cryptography, which 
NIST expects to offer signifcant resistance to quantum cryptanalysis. In particular, NIST defned 
a separate category for each of the following security requirements (listed in order of increasing 
strength): 

1. Any attack that breaks the relevant security defnition must require computational resources 
comparable to or greater than those required for key search on a block cipher with a 128-bit 
key (e.g., AES-128) . 

2. Any attack that breaks the relevant security defnition must require computational resources 
comparable to or greater than those required for collision search on a 256-bit hash function 
(e.g., SHA-256/ SHA3-256). 

3. Any attack that breaks the relevant security defnition must require computational resources 
comparable to or greater than those required for key search on a block cipher with a 192-bit 
key (e.g., AES-192). 

4. Any attack that breaks the relevant security defnition must require computational resources 
comparable to or greater than those required for collision search on a 384-bit hash function 
(e.g., SHA-384/ SHA3-384). 

5. Any attack that breaks the relevant security defnition must require computational resources 
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comparable to or greater than those required for key search on a block cipher with a 256-bit 
key (e.g., AES-256). 

Table 4. NIST Security Strength Categories 

Security Category Corresponding Attack Type Example 

1 Key search on block cipher with 128-bit key AES-128 

2 Collision search on 256-bit hash function SHA3-256 

3 Key search on block cipher with 192-bit key AES-192 

4 Collision search on 384-bit hash function SHA3-384 

5 Key search on block cipher with 256-bit key AES-256 

Here, computational resources may be measured using a variety of different metrics (e.g., number 
of classical elementary operations, quantum circuit size). In order for a cryptosystem to satisfy one 
of the above security requirements, any attack must require computational resources comparable 
to or greater than the stated threshold, with respect to all metrics that NIST deems to be potentially 
relevant to practical security. 

NIST intends to consider a variety of possible metrics, refecting different predictions about the 
future development of quantum and classical computing technology, and the cost of different 
computing resources (such as the cost of accessing extremely large amounts of memory).2 

See the discussion in [19, Appendix B]. 

NIST 
will also consider input from the cryptographic community regarding this question. 

In an example metric provided to submitters, NIST suggested an approach where quantum attacks 
are restricted to a fxed running time or circuit depth. Call this parameter MAXDEPTH. This 
restriction is motivated by the diffculty of running extremely long serial computations. Plausible 
values for MAXDEPTH range from 240 logical gates (the approximate number of gates that 
presently envisioned quantum computing architectures are expected to serially perform in a year) 
through 264 logical gates (the approximate number of gates that current classical computing 
architectures can perform serially in a decade), to no more than 296 logical gates (the approximate 
number of gates that atomic scale qubits with speed of light propagation times could perform in a 
millennium). The most basic version of this cost metric ignores costs associated with physically 
moving bits or qubits so they are physically close enough to perform gate operations. This 
simplifcation may result in an underestimate of the cost of implementing memory-intensive 
computations on real hardware. 

The complexity of quantum attacks can then be measured in terms of circuit size. These numbers 
can be compared to the resources required to break AES and SHA-3. During the post-quantum 
standardization process, NIST gave the following estimates for the classical and quantum gate 
counts3 

Quantum circuit sizes are based on the work in [20]. 

for the optimal key recovery and collision attacks on AES and SHA-3, respectively, where 

2

3

38 



FIPS 203 (DRAFT) MODULE-LATTICE-BASED KEY-ENCAPSULATION MECHANISM

1225 

1226 
1227 
1228 
1229 
1230 
1231 

1232 
1233 
1234 
1235 
1236 
1237 
1238 

circuit depth is limited to MAXDEPTH] . 4

NIST believes the above estimates are accurate for the majority of values of MAXDEPTH that are relevant to its 
security analysis, but the above estimates may understate the security of SHA for very small values of MAXDEPTH 
and may understate the quantum security of AES for very large values of MAXDEPTH. 

Table 5. Estimates for classical and quantum gate counts for the optimal key recovery and 
collision attacks on AES and SHA-3 

AES-128 2157/MAXDEPTH quantum gates or 2143 classical gates 

SHA3-256 2146 classical gates 

AES-192 2221/MAXDEPTH quantum gates or 2207 classical gates 

SHA3-384 2210 classical gates 

AES-256 2285/MAXDEPTH quantum gates or 2272 classical gates 

SHA3-512 2274 classical gates 

It is worth noting that the security categories based on these reference primitives provide substan-
tially more quantum security than a naïve analysis might suggest. For example, categories 1, 3, 
and 5 are defned in terms of block ciphers, which can be broken using Grover’s algorithm [21], 
with a quadratic quantum speedup. However, Grover’s algorithm requires a long-running serial 
computation, which is diffcult to implement in practice. In a realistic attack, one has to run many 
smaller instances of the algorithm in parallel, which makes the quantum speedup less dramatic. 

Finally, for attacks that use a combination of classical and quantum computation, one may 
use a cost metric that rates logical quantum gates as being several orders of magnitude more 
expensive than classical gates. Presently envisioned quantum computing architectures typically 
indicate that the cost per quantum gate could be billions or trillions of times the cost per classical 
gate. However, especially when considering algorithms claiming a high security strength (e.g., 
equivalent to AES-256 or SHA-384), it is likely prudent to consider the possibility that this 
disparity will narrow signifcantly or even be eliminated. 
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