
FIPS 197

Federal Information Processing Standards Publication

Advanced Encryption Standard (AES)

Category: Computer Security Subcategory: Cryptography

Information Technology Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899-8900

This publication is available free of charge from:
https://doi.org/10.6028/NIST.FIPS.197-upd1

Published November 26, 2001; Updated May 9, 2023

U.S. Department of Commerce
Donald L. Evans, Secretary

Technology Administration
Phillip J. Bond, Under Secretary for Technology

National Institute of Standards and Technology

Karen H. Brown, Acting Director

https://doi.org/10.6028/NIST.FIPS.197-upd1
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.FIPS.197-upd1

Foreword

The Federal Information Processing Standards Publication Series of the National Institute of Standards and
Technology is the offcial series of publications relating to standards and guidelines developed under 15
U.S.C. 278g-3, and issued by the Secretary of Commerce under 40 U.S.C. 11331.

Comments concerning this Federal Information Processing Standard publication are welcomed and should
be submitted using the contact information in the “Inquiries and comments” clause of the announcement
section.

James A. St. Pierre, Acting Director
Information Technology Laboratory

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Abstract
In 2000, NIST announced the selection of the Rijndael block cipher family as the winner of the
Advanced Encryption Standard (AES) competition. Block ciphers are the foundation for many
cryptographic services, especially those that provide assurance of the confdentiality of data.

Three members of the Rijndael family are specifed in this Standard: AES-128, AES-192, and
AES-256. Each of them transforms data in blocks of 128 bits, and the numerical suffx indicates
the bit length of the associated cryptographic keys.

Keywords: AES; block cipher; confdentiality; cryptography; encryption; Rijndael.

ii

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Federal Information

Processing Standards Publication 197

Published: November 26, 2001
Updated: May 9, 2023

Announcing the
ADVANCED ENCRYPTION STANDARD (AES)

Federal Information Processing Standards Publications (FIPS) are developed by NIST under 15
U.S.C. 278g-3 and issued by the Secretary of Commerce under 40 U.S.C. 11331.

1. Name of Standard. Advanced Encryption Standard (AES) (FIPS 197).

2. Category of Standard. Computer Security Standard, Cryptography.

3. Explanation. The Advanced Encryption Standard (AES) specifes a FIPS-approved cryp-
tographic algorithm that can be used to protect electronic data. The AES algorithm is a
symmetric block cipher that can encrypt (encipher) and decrypt (decipher) digital information.

The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt
and decrypt data in blocks of 128 bits.

4. Approving Authority. Secretary of Commerce.

5. Maintenance Agency. Department of Commerce, National Institute of Standards and Tech-
nology, Information Technology Laboratory (ITL).

6. Applicability. Federal Information Processing Standards apply to information systems used
or operated by federal agencies, a contractor of an agency, or other organization on behalf of
an agency. They do not apply to national security systems as defned in 44 U.S.C. 3552.

This Standard may be used by federal agencies to protect information when they have deter-
mined that encryption is appropriate, in accordance with applicable Offce of Management
and Budget and agency policies. Federal agencies may also use alternative methods that NIST
has indicated are appropriate for this purpose.

This Standard may be adopted and used by non-Federal Government organizations.

7. Specifcations. Federal Information Processing Standard (FIPS) 197, Advanced Encryption
Standard (AES) (affxed).

8. Implementations. The algorithm specifed in this Standard may be implemented in software,
frmware, hardware, or any combination thereof. The specifc implementation may depend
on several factors, such as the application, the environment, the technology used, etc. The
algorithm shall be used in conjunction with a FIPS-approved or NIST-recommended mode
of operation. Object Identifers (OIDs) and any associated parameters for AES used in

iii

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

these modes are available at the Computer Security Objects Register (CSOR), located at
https://csrc.nist.gov/projects/csor.

NIST has developed a validation program to test implementations for conformance to the
algorithms in this Standard. Information about the validation program is available at https:
//nist.gov/cmvp. Examples for each key size are available at https://csrc.nist.gov/projects/aes.

9. Implementation Schedule. This Standard became effective on May 26, 2002.

10. Patents. Implementations of the algorithm specifed in this Standard may be covered by U.S.
and foreign patents.

11. Export Control. Certain cryptographic devices and technical data regarding them are subject
to federal export controls. Exports of cryptographic modules implementing this Standard and
technical data regarding them must comply with all federal laws and regulations and must
be licensed by the Bureau of Industry and Security of the U.S. Department of Commerce.
Information about export regulations is available at https://www.bis.doc.gov.

12. Qualifcations. NIST will continue to follow developments in the analysis of the AES
algorithm. As with its other cryptographic algorithm standards, NIST will formally reevaluate
this Standard every fve years.

Both this Standard and possible threats reducing the security provided through the use of this
Standard will undergo review by NIST as appropriate, taking into account newly available
analysis and technology. In addition, the awareness of any breakthrough in technology or
any mathematical weakness of the algorithm will cause NIST to reevaluate this Standard and
provide necessary revisions.

13. Where to Obtain Copies. This publication is available by accessing https://csrc.nist.gov/
publications. Other computer security publications are available at the same website.

14. Inquiries and Comments. Inquiries and comments about this FIPS may be submitted to
fps-197-comments@nist.gov.

15. How to Cite This Publication. NIST has assigned NIST FIPS 197-upd1 as the publication
identifer for this FIPS, per the NIST Technical Series Publication Identifer Syntax. NIST
recommends that it be cited as follows:

National Institute of Standards and Technology (2001) Advanced Encryption
Standard (AES). (Department of Commerce, Washington, D.C.), Federal Infor-
mation Processing Standards Publication (FIPS) NIST FIPS 197-upd1, updated
May 9, 2023. https://doi.org/10.6028/NIST.FIPS.197-upd1

iv

https://csrc.nist.gov/projects/csor
https://nist.gov/cmvp
https://nist.gov/cmvp
https://csrc.nist.gov/projects/aes
https://www.bis.doc.gov
https://csrc.nist.gov/publications
https://csrc.nist.gov/publications
fips-197-comments@nist.gov
https://www.nist.gov/document/publication-identifier-syntax-nist-technical-series-publications
https://doi.org/10.6028/NIST.FIPS.197-upd1

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Federal Information

Processing Standards Publication 197

Specifcation for the

ADVANCED ENCRYPTION STANDARD (AES)

Table of Contents

1 Introduction 1

2 Defnitions 2

2.1 Terms and Acronyms . 2

2.2 List of Functions . 3

2.3 Algorithm Parameters and Symbols . 4

3 Notation and Conventions 5

3.1 Inputs and Outputs . 5

3.2 Bytes . 5

3.3 Indexing of Byte Sequences . 5

3.4 The State . 6

3.5 Arrays of Words . 7

4 Mathematical Preliminaries 8

4.1 Addition in GF(28) . 8

4.2 Multiplication in GF(28) . 8

4.3 Multiplication of Words by a Fixed Matrix 9

4.4 Multiplicative Inverses in GF(28) . 10

5 Algorithm Specifcations 11

5.1 CIPHER() . 12
5.1.1 SUBBYTES() . 13
5.1.2 SHIFTROWS() . 14
5.1.3 MIXCOLUMNS() . 15
5.1.4 ADDROUNDKEY() . 16

5.2 KEYEXPANSION() . 17

v

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

5.3 INVCIPHER() . 18
5.3.1 INVSHIFTROWS() . 22
5.3.2 INVSUBBYTES() . 23
5.3.3 INVMIXCOLUMNS() . 24
5.3.4 Inverse of ADDROUNDKEY() . 24
5.3.5 EQINVCIPHER() . 24

6 Implementation Considerations 26

6.1 Key Length Requirements . 26

6.2 Keying Restrictions . 26

6.3 Parameter Extensions . 26

6.4 Implementation Suggestions Regarding Various Platforms 26

6.5 Modes of Operation . 27

References 28

Appendix A — Key Expansion Examples 29

A.1 Expansion of a 128-bit Key . 29

A.2 Expansion of a 192-bit Key . 30

A.3 Expansion of a 256-bit Key . 32

Appendix B — Cipher Example 34

Appendix C — Example Vectors 36

Appendix D — Change Log (Informative) 37

vi

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

List of Tables

Table 1 Hexadecimal representation of 4-bit sequences 5
Table 2 Indices for bytes and bits . 6
Table 3 Key-Block-Round Combinations . 11
Table 4 SBOX(): substitution values for the byte xy (in hexadecimal format) . . . 14
Table 5 Round constants . 17
Table 6 INVSBOX(): substitution values for the byte xy (in hexadecimal format) 23

List of Figures

Figure 1 State array input and output . 7
Figure 2 Illustration of SUBBYTES() . 13
Figure 3 Illustration of SHIFTROWS() . 15
Figure 4 Illustration of MIXCOLUMNS() . 16
Figure 5 Illustration of ADDROUNDKEY() . 16
Figure 6 KEYEXPANSION() of AES-128 to generate the words w[i] for 4 ≤ i < 44,

where l ranges over the multiples of 4 between 0 and 36 19
Figure 7 KEYEXPANSION() of AES-192 to generate the words w[i] for 6 ≤ i < 52,

where l ranges over the multiples of 6 between 0 and 42 20
Figure 8 KEYEXPANSION() of AES-256 to generate the words w[i] for 8 ≤ i < 60,

where l ranges over the multiples of 8 between 0 and 48 21
Figure 9 Illustration of INVSHIFTROWS() . 23

List of Algorithms
Algorithm 1 Pseudocode for CIPHER() . 12
Algorithm 2 Pseudocode for KEYEXPANSION() 18
Algorithm 3 Pseudocode for INVCIPHER() . 22
Algorithm 4 Pseudocode for EQINVCIPHER() 25
Algorithm 5 Pseudocode for KEYEXPANSIONEIC() 25

vii

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

1. Introduction

A block is a sequence of bits of a given fxed length. A block cipher is a family of permutations
of blocks that is parameterized by a sequence of bits called the key.

In 1997, NIST initiated the Advanced Encryption Standard (AES) development effort [1] and
called for the public to submit candidate algorithms for block ciphers. Block ciphers are the
foundation for many cryptographic services, especially those that provide assurance of the
confdentiality of data. In 2000, NIST announced the selection of Rijndael [2, 3] for the AES.

This Standard specifes three instantiations of Rijndael: AES-128, AES-192, and AES-256, where
the suffx indicates the bit length of the key. The block size (i.e., the length of the data inputs and
outputs) is 128 bits in each case. Rijndael supports additional block sizes and key lengths that are
not adopted in this Standard.

This Standard is organized as follows:

• Section 2 defnes the terms, acronyms, algorithm parameters, symbols, and functions in
this Standard.

• Section 3 describes the notation and conventions for the ordering and indexing of bits,
bytes, and words.

• Section 4 explains some mathematical components of the AES specifcations: fnite feld
arithmetic and multiplication by a fxed matrix of fnite feld elements.

• Section 5 specifes AES-128, AES-192, and AES-256.

• Section 6 provides implementation guidelines on key length requirements, keying restric-
tions, parameter extensions, and implementation suggestions regarding various platforms.

• Appendix A gives examples of the key expansion routines for AES-128, AES-192, and
AES-256.

• Appendix B gives a step-by-step example of an invocation of AES-128.

• Appendix C gives a reference to the NIST website for extensive example vectors for
AES-128, AES-192, and AES-256.

• Appendix D summarizes the updates to the original version of this publication.

1

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

2. Defnitions

2.1 Terms and Acronyms
The following defnitions are used in this Standard:

AES Advanced Encryption Standard.

Affne A transformation consisting of multiplication by a matrix, followed
transformation by the addition of a vector.

Array A fxed-size data structure that stores a collection of elements, where
each element is identifed by its integer index or indices.

Bit A binary digit: 0 or 1.

Block A sequence of bits of a given fxed length. In this Standard, blocks
consist of 128 bits, sometimes represented as arrays of bytes or words.

Block cipher A family of permutations of blocks that is parameterized by the key.

Byte A sequence of eight bits.

Equivalent inverse An alternative specifcation of the inverse of CIPHER() with a struc-
cipher ture similar to that of CIPHER() and with a modifed key schedule as

input.

Key The parameter of a block cipher that determines the selection of a
permutation from the block cipher family.

Key schedule The sequence of round keys that are generated from the key by
KEYEXPANSION().

Rijndael The block cipher that NIST selected as the winner of the AES com-
petition.

Round A sequence of transformations of the state that is iterated Nr times in
the specifcations of CIPHER(), INVCIPHER(), and EQINVCIPHER().
The sequence consists of four transformations, except for one itera-
tion, in which one of the transformations is omitted.

Round key One of the Nr + 1 arrays of four words that are derived from the
block cipher key using the key expansion routine; each round key
is an input to an instance of ADDROUNDKEY() in the AES block
cipher.

State Intermediate result of the AES block cipher that is represented as a
two-dimensional array of bytes with four rows and Nb columns.

S-box A non-linear substitution table used in SUBBYTES() and KEYEX-
PANSION() to perform a one-to-one substitution of a byte value.

Word A group of 32 bits that is treated either as a single entity or as an array
of 4 bytes.

2

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

2.2 List of Functions
The following functions are specifed in this Standard:

ADDROUNDKEY() The transformation of the state in which a round key is combined
with the state.

AES-128() The block cipher specifed in this Standard with 128-bit keys.

AES-192() The block cipher specifed in this Standard with 192-bit keys.

AES-256() The block cipher specifed in this Standard with 256-bit keys.

CIPHER() The transformation of blocks that underlies AES-128, AES-192,
and AES-256; the key schedule and the number of rounds are
parameters of the transformation.

EQINVCIPHER() The inverse of CIPHER() in which dw replaces w as the key schedule
parameter.

INVCIPHER() The inverse of CIPHER().

INVMIXCOLUMNS() The inverse of MIXCOLUMNS().

INVSBOX() The inverse of SBOX().

INVSHIFTROWS() The inverse of SHIFTROWS().

INVSUBBYTES() The inverse of SUBBYTES().

KEYEXPANSION() The routine that generates the round keys from the key.

KEYEXPANSIONEIC() The routine that generates the modifed round keys for the equiva-
lent inverse cipher.

MIXCOLUMNS() The transformation of the state that takes all of the columns of the
state and mixes their data (independently of one another) to produce
new columns.

ROTWORD() The transformation of words in which the four bytes of the word
are permuted cyclically.

SBOX() The transformation of bytes defned by the S-box.

SHIFTROWS() The transformation of the state in which the last three rows are
cyclically shifted by different offsets.

SUBBYTES() The transformation of the state that applies the S-box independently
to each byte of the state.

SUBWORD() The transformation of words in which the S-box is applied to each
of the four bytes of the word.

XTIMES() The transformation of bytes in which the polynomial representation
of the input byte is multiplied by x, modulo m(x), to produce the
polynomial representation of the output byte.

3

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

2.3 Algorithm Parameters and Symbols

b−1 The multiplicative inverse of the element b in GF(28).

b̃ The input to the affne transformation in the AES S-box.

dw Word array for the key schedule that is input to the equivalent
inverse cipher.

GF(2) Finite feld with two elements.

GF(28) Finite feld with 256 elements.

in The data input to CIPHER() or INVCIPHER(), represented as an
array of 16 bytes indexed from 0 to 15.

m(x) The modulus specifed in this standard for the polynomial represen-
tation of bytes as elements of GF(28).

key The array of Nk words that comprise the key for AES-128, AES-
192, or AES-256.

Nb The number of columns comprising the state, where each column
is a 32-bit word. For this Standard, Nb = 4.

Nk The number of 32-bit words comprising the key. Nk is assigned
to 4, 6, and 8 for AES-128, AES-192, and AES-256, respectively.
(see Section 6.3).

Nr The number of rounds. Nr is assigned to 10, 12, and 14 for AES-
128, AES-192, and AES-256, respectively.

out The data output of CIPHER() or INVCIPHER(), represented as an
array of 16 bytes indexed from 0 to 15.

Rcon Word array for the round constant.
state The state, represented as a two-dimensional array of 16 bytes, with

rows and columns indexed from 0 to 3.
u[i] For a one-dimensional array u of words or bytes, the element in the

array that is indexed by a non-negative integer i.

u[i..i + 3] For an array u of words, the sequence u[i],u[i + 1],u[i + 2],u[i + 3].

w Word array for the key schedule.

⊕ Either the exclusive-OR operation on bits, the bitwise exclusive-OR
operation on bytes, or the bitwise exclusive-OR operation on words.

• � �
Multiplication in GF 28 .

∗ Integer multiplication.
← Assignment of a variable in pseudocode.

{} Delimiters for a byte in hexadecimal or binary notation.

4

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

3. Notation and Conventions

3.1 Inputs and Outputs
A bit is a binary digit — 0 or 1. A block is a sequence of 128 bits; the data input and output for
the AES block ciphers are blocks. Another input to the AES block ciphers, called the key, is a bit
sequence that is typically established beforehand and maintained across many invocations of the
block cipher. The lengths of the keys for AES-128, AES-192, and AES-256 are 128 bits, 192 bits,
and 256 bits, respectively.

3.2 Bytes
The basic processing unit in the AES algorithms is the byte — a sequence of eight bits.� �
A byte value is denoted by the concatenation of the eight bits between braces e.g., {10100011} .
When the bits of a byte are denoted by an indexed variable, the convention in this Standard is for � �
the indices to decrease from left to right i.e., {b7 b6 b5 b4 b3 b2 b1 b0} .

It is also convenient to denote byte values using hexadecimal notation. The 16 hexadecimal
characters represent sequences of four bits, as listed in Table 1. A byte is represented by an
ordered pair of hexadecimal characters, where the left character in the pair represents the four
left-most bits(i.e., b7,b6,b5,b4), and the right character in the pair represents the four right-most
bits (i.e., b3,b2,b1,b0). For example, the hexadecimal form of the byte {10100011} is {a3}.

Table 1. Hexadecimal representation of 4-bit sequences

Sequence 0000 0001 0010 0011 0100 0101 0110 0111
Character 0 1 2 3 4 5 6 7

Sequence 1000 1001 1010 1011 1100 1101 1110 1111
Character 8 9 a b c d e f

3.3 Indexing of Byte Sequences
In order to unambiguously represent the data and key inputs as sequences of bytes, the following
indexing convention is adopted in this Standard. Given a sequence of 8k bits,

r0 r1 r2 . . . r(8k−3) r(8k−2) r(8k−1) (3.1)

(for some positive integer k), the bytes a j for 0 ≤ j ≤ k − 1 are defned as follows:

a j = {r8 j r(8 j+1) . . . r(8 j+7)}. (3.2)

Thus, for example, the data block

r0 r1 r2 . . . r125 r126 r127 (3.3)

5

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

is represented by the byte sequence

a0 a1 a2 . . . a13 a14 a15, (3.4)

where

a0 ={r0 r1 . . . r7};
a1 ={r8 r9 . . . r15};

. . .
a15 ={r120 r121 . . . r127}.

(3.5)

As described in Section 3.2, the bits within any individual byte are indexed in decreasing order
from left to right. This ordering is more natural for the fnite feld arithmetic on bytes that is
described in Section 4. The two types of bit indices for byte sequences are illustrated in Table 2.

Table 2. Indices for bytes and bits

Bit index in sequence 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .

Byte index 0 1 . . .

Bit index in byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 . . .

3.4 The State
Internally, the algorithms for the AES block ciphers are performed on a two-dimensional (four-
by-four) array of bytes called the state. In the state array, denoted by s, each individual byte has
two indices: a row index r in the range 0 ≤ r < 4 and a column index c in the range 0 ≤ c < 4.
An individual byte of the state is denoted by either sr,c or s[r,c].

In the specifcations for the AES block cipher algorithms in Section 5, the frst step is to copy the
input array of bytes in0, in1, . . . , in15 to the state array s as follows:

s[r,c] = in[r + 4c] for 0 ≤ r < 4 and 0 ≤ c < 4. (3.6)

A sequence of transformations is then applied to the state array, after which its fnal value is
copied to the output array of bytes out0, out1, . . . , out15 as follows:

out[r + 4c] = s[r,c] for 0 ≤ r < 4 and 0 ≤ c < 4. (3.7)

The correspondence between the indices of the input and output with the indices of the state array
is illustrated in Fig. 1.

6

input bytes state array output bytes

in0 in4 in8 in12 s0,0 s0,1 s0,2 s0,3 out0 out4 out8 out12
in1 in5 in9 in13 s1,0 s1,1 s1,2 s1,3 out1 out5 out9 out13→ →in2 in6 in10 in14 s2,0 s2,1 s2,2 s2,3 out2 out6 out10 out14
in3 in7 in11 in15 s3,0 s3,1 s3,2 s3,3 out3 out7 out11 out15

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Figure 1. State array input and output

3.5 Arrays of Words
A word is a sequence of four bytes; a block consists of four words. The four columns of state
array s are interpreted as an array v of four words as follows, in the notation of Fig. 1:

⎞⎛⎞⎛⎞⎛⎞⎛

v0 =
⎜⎜⎝

s0,0
s1,0
s2,0

⎟⎟⎠ , v1 =
⎜⎜⎝

s0,1
s1,1
s2,1

⎟⎟⎠ , v2 =
⎜⎜⎝

s0,2
s1,2
s2,2

⎟⎟⎠ , v3 =
⎜⎜⎝

s0,3
s1,3
s2,3

⎟⎟⎠ .

s3,0 s3,1 s3,2 s3,3

(3.8)

Thus, the column index c of s becomes the index for v, and the row index r of s becomes the
index for the four bytes in each word.

Given a one-dimensional array u of words, u[i] denotes the word that is indexed by i, and the
sequence of four words u[i],u[i + 1],u[i + 2],u[i + 3] is denoted by u[i..i + 3].

7

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

4. Mathematical Preliminaries

For some transformations of the AES algorithms specifed in Sec. 5, each byte in the state array
is interpreted as one of the 256 elements of a fnite feld, also known as a Galois Field, denoted
by GF(28). 1

In order to defne addition and multiplication in GF(28), each byte {b7 b6 b5 b4 b3 b2 b1 b0} is
interpreted as a polynomial, denoted by b(x), as follows:

7 6 5 4 3 2b(x) = b7 x + b6 x + b5 x + b4 x + b3 x + b2 x + b1 x + b0. (4.1)

For example, {01100011} is represented by the polynomial x6 + x5 + x + 1.

4.1 Addition in GF(28)

In order to add two elements in the fnite feld GF(28), the coeffcients of the polynomials that
represent the elements are added modulo 2 (i.e., with the exclusive-OR operation, denoted by ⊕),
so that 1⊕ 1 = 0, 1⊕ 0 = 1, and 0 ⊕ 0 = 0.

Equivalently, two bytes can be added by applying the exclusive-OR operation to each pair of corre-
sponding bits in the bytes. Thus, the sum of {a7 a6 a5 a4 a3 a2 a1 a0} and {b7 b6 b5 b4 b3 b2 b1 b0}
is {a7 ⊕ b7 a6 ⊕ b6 a5 ⊕ b5 a4 ⊕ b4 a3 ⊕ b3 a2 ⊕ b2 a1 ⊕ b1 a0 ⊕ b0}. (In Section 5.1.4, this
defnition is extended to words.)

For example, the following three representations of addition are equivalent:

6 4 2 7 7 6 4 2(x + x + x + x + 1)+(x + x + 1) = x + x + x + x (polynomial)
{01010111}⊕{10000011} = {11010100} (binary)
{57}⊕{83} = {d4} (hexadecimal).

(4.2)

Because the coeffcients of the polynomials are reduced modulo 2, the coeffcient 1 is equivalent
to the coeffcient –1, so addition is equivalent to subtraction. For example, x4 + x2 represents the

4 − x2 4 + x 4 − x2same fnite feld element as x , −x 2, and −x . Similarly, the sum of any element
with itself is the zero element.

4.2 Multiplication in GF(28) � �
The symbol • denotes multiplication in GF 28 . Conceptually, this multiplication is defned
on two bytes in two steps: 1) the two polynomials that represent the bytes are multiplied as
polynomials, and 2) the resulting polynomial is reduced modulo the following fxed polynomial:

8 4 3m(x) = x + x + x + x + 1. (4.3)

Within both steps, the individual coeffcients of the polynomials are reduced modulo 2.
1Information about the properties of fnite felds can be found in textbooks, such as Michael Artin’s Algebra [4].

8

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Thus, if b(x) and c(x) represent bytes b and c, then b • c is represented by the following modular
reduction of their product as polynomials:

b(x)c(x) mod m(x). (4.4)

The modular reduction by m(x) may be applied to intermediate steps in the calculation of b(x)c(x);
consequently, it is useful to consider the special case that c(x) = x (i.e., c = {02}). In particular,
the product b • {02} can be expressed as a function of b, denoted by XTIMES(b), as follows:

(
{b6 b5 b4 b3 b2 b1 b0 0} if b7 = 0

XTIMES(b) =
{b6 b5 b4 b3 b2 b1 b0 0}⊕{0 0 0 1 1 0 1 1} if b7 = 1.

(4.5)

Multiplication by higher powers of x (such as {04}, {08}, and {10}) can be implemented by the
repeated application of XTIMES(). For example, let b = {57}:

{57} •{01} = {57}
{57} •{02} = XTIMES({57}) = {ae}
{57} •{04} = XTIMES({ae}) = {47}
{57} •{08} = XTIMES({47}) = {8e}
{57} •{10} = XTIMES({8e}) = {07}
{57} •{20} = XTIMES({07}) = {0e}
{57} •{40} = XTIMES({0e}) = {1c}
{57} •{80} = XTIMES({1c}) = {38}.

(4.6)

These products facilitate the computation of any multiple of {57}. For example, because {13} =
{10}⊕{02}⊕{01}, it follows that

{57} •{13} = {57} • ({01}⊕{02}⊕{10})
= {57}⊕{ae}⊕{07}
= {fe}.

(4.7)

4.3 Multiplication of Words by a Fixed Matrix
Two transformations – MIXCOLUMNS() and INVMIXCOLUMNS() – in the algorithms for the
AES block ciphers can be expressed in terms of matrix multiplication. In particular, a distinct
fxed matrix is specifed for each transformation. For both matrices, each of the 16 entries of the
matrix is a byte of a single specifed word, denoted here by [a0,a1,a2,a3].

Given an input word [b0,b1,b2,b3] to the transformation, the output word [d0,d1,d2,d3] is
determined by fnite feld arithmetic as follows:

9

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

d0 = (a0 • b0) ⊕ (a3 • b1) ⊕ (a2 • b2) ⊕ (a1 • b3)

d1 = (a1 • b0) ⊕ (a0 • b1) ⊕ (a3 • b2) ⊕ (a2 • b3)

d2 = (a2 • b0) ⊕ (a1 • b1) ⊕ (a0 • b2) ⊕ (a3 • b3)

d3 = (a3 • b0) ⊕ (a2 • b1) ⊕ (a1 • b2) ⊕ (a0 • b3).

(4.8)

The matrix form of Eq. (4.8) is

⎤⎡⎤⎡⎤⎡
d0 a0 a3 a2 a1 b0 ⎢⎢⎣
d1
d2

⎥⎥⎦=
⎢⎢⎣

a1 a0 a3 a2
a2 a1 a0 a3

⎢⎢⎣
⎥⎥⎦

b1
b2

⎥⎥⎦ .

d3 a3 a2 a1 a0 b3

(4.9)

4.4 Multiplicative Inverses in GF(28)

For a byte b 6= {00}, its multiplicative inverse is the unique byte, denoted by b−1, such that

b • b−1 = {01}. (4.10)

The defnition of the SUBBYTES() transformation in the specifcations of the AES block cipher
involves multiplicative inverses in GF(28), which can be calculated as follows:

b−1 = b254 . (4.11)

Alternatively, let b(x) be the polynomial that represents b. The extended Euclidean algorithm [5]
can be applied to b(x) and m(x) to fnd polynomials a(x) and c(x) such that

b(x)a(x)+ m(x)c(x) = 1. (4.12)

It follows that a(x) is the polynomial that represents b−1.

10

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

5. Algorithm Specifcations

The general function for executing AES-128, AES-192, or AES-256 is denoted by CIPHER(); its
inverse is denoted by INVCIPHER().2

The core of the algorithms for CIPHER() and INVCIPHER() is a sequence of fxed transformations
of the state called a round. Each round requires an additional input called the round key; the round
key is a block that is usually represented as a sequence of four words (i.e., 16 bytes).

An expansion routine, denoted by KEYEXPANSION(), takes the block cipher key as input and
generates the round keys as output. In particular, the input to KEYEXPANSION() is represented as
an array of words, denoted by key, and the output is an expanded array of words, denoted by w,
called the key schedule.

The block ciphers AES-128, AES-192, and AES-256 differ in three respects: 1) the length of the
key; 2) the number of rounds, which determines the size of the required key schedule; and 3)
the specifcation of the recursion within KEYEXPANSION(). For each algorithm, the number of
rounds is denoted by Nr, and the number of words of the key is denoted by Nk. (The number of
words in the state is denoted by Nb for Rijndael in general; in this Standard, Nb = 4.) The specifc
values of Nk, Nb, and Nr are given in Table 3. No other confgurations of Rijndael conform to
this Standard.

For implementation issues relating to the key length, block size, and number of rounds, see
Section 6.3.

Table 3. Key-Block-Round Combinations

Key length

Nk (in bits)

Block size

Nb (in bits)

Number of rounds

Nr

AES-128

AES-192

AES-256

4

6

8

128

192

256

4

4

4

128

128

128

10

12

14

The three inputs to CIPHER() are: 1) the data input in, which is a block represented as a linear
array of 16 bytes; 2) the number of rounds Nr for the instance; and 3) the round keys. Thus,

AES-128(in,key) = CIPHER(in,10, KEYEXPANSION(key))
AES-192(in,key) = CIPHER(in,12, KEYEXPANSION(key))
AES-256(in,key) = CIPHER(in,14, KEYEXPANSION(key))

.

(5.1)

The inverse permutations are defned by replacing CIPHER() with INVCIPHER() in Eq. 5.1.

2Informally, these functions are sometimes called “encryption” and “decryption,” but neutral terminology is appro
priate because there are other applications of block ciphers besides encryption.

-

11

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

The specifcations of CIPHER(), KEYEXPANSION(), and INVCIPHER() are given in Sections 5.1,
5.2, and 5.3, respectively.

5.1 CIPHER()
The rounds in the specifcation of CIPHER() are composed of the following four byte-oriented
transformations on the state:

• SUBBYTES() applies a substitution table (S-box) to each byte.

• SHIFTROWS() shifts rows of the state array by different offsets.

• MIXCOLUMNS() mixes the data within each column of the state array.

• ADDROUNDKEY() combines a round key with the state.

The four transformations are specifed in Sections 5.1.1–5.1.4. In those specifcations, the
transformed bit, byte, or block is denoted by appending the symbol 0 as a superscript on the� 0 0 0 0 �
original variable i.e., by bi, b , si, j, or s .

The round keys for ADDROUNDKEY() are generated by KEYEXPANSION(), which is specifed in
Section 5.2. In particular, the key schedule is represented as an array w of 4 ∗ (Nr + 1) words.

CIPHER() is specifed in the pseudocode in Alg. 1.

Algorithm 1 Pseudocode for CIPHER()
1: procedure CIPHER(in, Nr, w)
2: state ← in . See Sec. 3.4
3: state ← ADDROUNDKEY(state,w[0..3]) . See Sec. 5.1.4
4: for round from 1 to Nr − 1 do
5: state ← SUBBYTES(state) . See Sec. 5.1.1
6: state ← SHIFTROWS(state) . See Sec. 5.1.2
7: state ← MIXCOLUMNS(state) . See Sec. 5.1.3
8: state ← ADDROUNDKEY(state,w[4 ∗ round..4 ∗ round + 3])
9: end for

10: state ← SUBBYTES(state)
11: state ← SHIFTROWS(state)
12: state ← ADDROUNDKEY(state,w[4 ∗ Nr..4 ∗ Nr + 3])
13: return state . See Sec. 3.4
14: end procedure

The frst step (Line 2) is to copy the input into the state array using the conventions from Sec. 3.4.
After an initial round key addition (Line 3), the state array is transformed by Nr applications of
the round function (Lines 4–12); the fnal round (Lines 10–12) differs in that the MIXCOLUMNS()
transformation is omitted. The fnal state is then returned as the output (Line 13), as described in
Section 3.4.

12

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

5.1.1 SUBBYTES()

SUBBYTES() is an invertible, non-linear transformation of the state in which a substitution table,
called an S-box, is applied independently to each byte in the state. The AES S-box is denoted by
SBOX().

Let b denote an input byte to SBOX(), and let c denote the constant byte {01100011}. The
output byte b

0
= SBOX(b) is constructed by composing the following two transformations:

1. Defne an intermediate value b̃, as follows, where b−1 is the multiplicative inverse of b, as
described in Section 4.4: (

{00} if b = {00}
b−1 if b = {00}.

b̃ =
6

(5.2)

2. Apply the following affne transformation of the bits of b̃ to produce the bits of b
0
:

b0 ˜
i = bi ⊕ b̃

(i+4) mod 8 ⊕ b̃
(i+5) mod 8 ⊕ b̃

(i+6) mod 8 ⊕ b̃
(i+7) mod 8 ⊕ ci. (5.3)

The matrix form of Eq. (5.3) is given by Eq. (5.4) below:

⎡ ⎤⎡ ⎡⎤ ⎤ ⎡ ⎤b̃0b0 0 1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0

1 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b̃1
b̃2
b̃3
b̃4
b̃5
b̃6

b0 1
b0 2
b0 3
b0 4
b0 5
b0 6

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
0
0
0
1
1

+ .

b0 0 0 0 1 1 1 1 1 ˜ 07 b7

(5.4)

Figure 2 illustrates how SUBBYTES() transforms the state.

Figure 2. Illustration of SUBBYTES()

The AES S-box is presented in hexadecimal form in Table 4. For example, if sr,c = {53}, then
13

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Table 4. SBOX(): substitution values for the byte xy (in hexadecimal format)

y
0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

63
ca
b7
04
09
53
d0
51
cd
60
e0
e7
ba
70
e1
8c

7c
82
fd
c7
83
d1
ef
a3
0c
81
32
c8
78
3e
f8
a1

77
c9
93
23
2c
00
aa
40
13
4f
3a
37
25
b5
98
89

7b
7d
26
c3
1a
ed
fb
8f
ec
dc
0a
6d
2e
66
11
0d

f2
fa
36
18
1b
20
43
92
5f
22
49
8d
1c
48
69
bf

6b
59
3f
96
6e
fc
4d
9d
97
2a
06
d5
a6
03
d9
e6

6f
47
f7
05
5a
b1
33
38
44
90
24
4e
b4
f6
8e
42

c5
f0
cc
9a
a0
5b
85
f5
17
88
5c
a9
c6
0e
94
68

30
ad
34
07
52
6a
45
bc
c4
46
c2
6c
e8
61
9b
41

01
d4
a5
12
3b
cb
f9
b6
a7
ee
d3
56
dd
35
1e
99

67
a2
e5
80
d6
be
02
da
7e
b8
ac
f4
74
57
87
2d

2b
af
f1
e2
b3
39
7f
21
3d
14
62
ea
1f
b9
e9
0f

fe
9c
71
eb
29
4a
50
10
64
de
91
65
4b
86
ce
b0

d7
a4
d8
27
e3
4c
3c
ff
5d
5e
95
7a
bd
c1
55
54

ab
72
31
b2
2f
58
9f
f3
19
0b
e4
ae
8b
1d
28
bb

76
c0
15
75
84
cf
a8
d2
73
db
79
08
8a
9e
df
16

the substitution value would be determined by the intersection of the row with index ‘5’ and the
column with index ‘3’ in Table 4, so that s0 = {ed}.r,c

5.1.2 SHIFTROWS()

SHIFTROWS() is a transformation of the state in which the bytes in the last three rows of the state
are cyclically shifted. The number of positions by which the bytes are shifted depends on the row
index r, as follows:

0s = sr,(c+r) mod 4 for 0 ≤ r < 4 and 0 ≤ c < 4. r,c (5.5)

SHIFTROWS() is illustrated in Figure 3. In that representation of the state, the effect is to move
each byte by r positions to the left in the row, cycling the left-most r bytes around to the right end
of the row. The frst row, where r = 0, is unchanged.

14

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Figure 3. Illustration of SHIFTROWS()

5.1.3 MIXCOLUMNS()

MIXCOLUMNS() is a transformation of the state that multiplies each of the four columns of the
state by a single fxed matrix, as described in Section 4.3, with its entries taken from the following
word:

[a0,a1,a2,a3] = [{02},{01},{01},{03}]. (5.6)

Thus, ⎡ ⎤⎡⎤⎡⎤0
s0,c 02 03 01 01 s0,c⎢⎢⎢⎣

⎥⎥⎥⎦
=

0
s ⎢⎢⎣

01
01
03 01 01 02 s3,c

⎢⎢⎣
⎥⎥⎦

⎥⎥⎦
02 03 01 s1,c1,c

0 for 0 ≤ c < 4,
01 02 03 s2,cs2,c

0
s3,c

(5.7)

so that the individual output bytes are defned as follows:

0s = ({02} • s0,c) ⊕ ({03} • s1,c) ⊕ s2,c ⊕ s3,c0,c
0s = s0,c ⊕ ({02} • s1,c) ⊕ ({03} • s2,c) ⊕ s3,c1,c
0s = s0,c ⊕ s1,c ⊕ ({02} • s2,c) ⊕ ({03} • s3,c)2,c
0s = ({03} • s0,c) ⊕ s1,c ⊕ s2,c ⊕ ({02} • s3,c).3,c

(5.8)

Figure 4 illustrates MIXCOLUMNS().

15

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Figure 4. Illustration of MIXCOLUMNS()

5.1.4 ADDROUNDKEY()

ADDROUNDKEY() is a transformation of the state in which a round key is combined with the
state by applying the bitwise XOR operation. In particular, each round key consists of four words
from the key schedule (described in Section 5.2), each of which is combined with a column of the
state as follows:

0 0 0 0[s0,c,s1,c,s2,c,s3,c] = [s0,c,s1,c,s2,c,s3,c] ⊕ [w(4∗round+c)] for 0 ≤ c < 4 (5.9)

where round is a value in the range 0 ≤ round ≤ Nr, and w[i] is the array of key schedule words
described in Section 5.2. In the specifcation of CIPHER(), ADDROUNDKEY() is invoked Nr + 1
times — once prior to the frst application of the round function (see Alg. 1) and once within each
of the Nr rounds, when 1 ≤ round ≤ Nr.

The action of this transformation is illustrated in Fig. 5, where l = 4 ∗ round. The byte address
within words of the key schedule was described in Sec. 3.5.

Figure 5. Illustration of ADDROUNDKEY()

16

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

5.2 KEYEXPANSION()
KEYEXPANSION() is a routine that is applied to the key to generate 4 ∗ (Nr + 1) words. Thus,
four words are generated for each of the Nr + 1 applications of ADDROUNDKEY() within the
specifcation of CIPHER(), as described in Section 5.1.4. The output of the routine consists of a
linear array of words, denoted by w[i], where i is in the range 0 ≤ i < 4 ∗ (Nr + 1).

KEYEXPANSION() invokes 10 fxed words denoted by Rcon[j] for 1 ≤ j ≤ 10. These 10 words
are called the round constants. For AES-128, a distinct round constant is called in the generation
of each of the 10 round keys. For AES-192 and AES-256, the key expansion routine calls the
frst eight and seven of these same constants, respectively. The values of Rcon[j] are given in
hexadecimal notation in Table 5:

Table 5. Round constants

j Rcon[j] j Rcon[j]

1 [01,00,00,00] 6 [20,00,00,00]
2 [02,00,00,00] 7 [40,00,00,00]
3 [04,00,00,00] 8 [80,00,00,00]
4 [08,00,00,00] 9 [1b,00,00,00]
5 [10,00,00,00] 10 [36,00,00,00]

j−1The value of the left-most byte of Rcon[j] in polynomial form is x . Note that for j > 0, these
bytes may be generated by successively applying XTIMES() to the byte represented by x j−1 (see
Eq. 4.5).

Two transformations on words are called within KEYEXPANSION(): ROTWORD() and SUB-
WORD(). Given an input word represented as a sequence [a0,a1,a2,a3] of four bytes,

ROTWORD([a0,a1,a2,a3]) = [a1,a2,a3,a0], (5.10)

and

SUBWORD([a0, . . . ,a3]) = [SBOX(a0), SBOX(a1), SBOX(a2), SBOX(a3)]. (5.11)

The expansion of the key proceeds according to the pseudocode in Alg. 2. The frst Nk words of
the expanded key are the key itself. Every subsequent word w[i] is generated recursively from the
preceding word, w[i − 1], and the word Nk positions earlier, w[i − Nk], as follows:

• If i is a multiple of Nk, then w[i] = w[i − Nk] ⊕ SUBWORD(ROTWORD(w[i − 1])) ⊕
Rcon[i/Nk].

• For AES-256, if i + 4 is a multiple of 8, then w[i] = w[i − Nk] ⊕ SUBWORD(w[i − 1]).

• For all other cases, w[i] = w[i − Nk] ⊕ w[i − 1].

17

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Algorithm 2 Pseudocode for KEYEXPANSION()
1: procedure KEYEXPANSION(key)
2: i ← 0
3: while i ≤ Nk − 1 do
4: w[i] ← key[4 ∗ i..4 ∗ i + 3]
5: i ← i + 1
6: end while . When the loop concludes, i = Nk.
7: while i ≤ 4 ∗ Nr + 3 do
8: temp ← w[i − 1]
9: if i mod Nk = 0 then

10: temp ← SUBWORD(ROTWORD(temp)) ⊕ Rcon[i/Nk]
11: else if Nk > 6 and i mod Nk = 4 then
12: temp ← SUBWORD(temp)
13: end if
14: w[i] ← w[i − Nk] ⊕ temp
15: i ← i + 1
16: end while
17: return w
18: end procedure

Figures 6, 7, and 8 illustrate KEYEXPANSION() for AES-128, AES-192, and AES-256.

5.3 INVCIPHER()
To implement INVCIPHER(), the transformations in the specifcation of CIPHER() (Section 5.1)
are inverted and executed in reverse order. The inverted transformations of the state — denoted
by INVSHIFTROWS(), INVSUBBYTES(), INVMIXCOLUMNS(), and ADDROUNDKEY() — are
described in Sections 5.3.1–5.3.4.

INVCIPHER() is described in the pseudocode in Alg. 3, where the array w denotes the key
schedule, as described in Section 5.2.

18

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Figure 6. KEYEXPANSION() of AES-128 to generate the words w[i] for 4 ≤ i < 44, where l
ranges over the multiples of 4 between 0 and 36

19

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Figure 7. KEYEXPANSION() of AES-192 to generate the words w[i] for 6 ≤ i < 52, where l
ranges over the multiples of 6 between 0 and 42

20

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Figure 8. KEYEXPANSION() of AES-256 to generate the words w[i] for 8 ≤ i < 60, where l
ranges over the multiples of 8 between 0 and 48

21

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Algorithm 3 Pseudocode for INVCIPHER()
1: procedure INVCIPHER(in, Nr, w)
2: state ← in . See Sec. 3.4
3: state ← ADDROUNDKEY(state,w[4 ∗ Nr..4 ∗ Nr + 3]) . See Sec. 5.1.4
4: for round from Nr − 1 downto 1 do
5: state ← INVSHIFTROWS(state) . See Sec. 5.3.1
6: state ← INVSUBBYTES(state) . See Sec. 5.3.2
7: state ← ADDROUNDKEY(state,w[4 ∗ round..4 ∗ round + 3])
8: state ← INVMIXCOLUMNS(state) . See Sec. 5.3.3
9: end for

10: state ← INVSHIFTROWS(state)
11: state ← INVSUBBYTES(state)
12: state ← ADDROUNDKEY(state,w[0..3])
13: return state
14: end procedure

5.3.1 INVSHIFTROWS()

INVSHIFTROWS() is the inverse of the SHIFTROWS(). In particular, the bytes in the last three
rows of the state are cyclically shifted as follows:

0sr,c = sr,(c−r) mod 4 for 0 ≤ r < 4 and 0 ≤ c < 4. (5.12)

INVSHIFTROWS() is illustrated in Figure 9. In that representation of the state, the effect is to
move each byte by r positions to the right in the row, cycling the right-most r bytes around to the
left end of the row. The frst row, where r = 0, is unchanged.

22

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Figure 9. Illustration of INVSHIFTROWS()

5.3.2 INVSUBBYTES()

INVSUBBYTES() is the inverse of SUBBYTES(), in which the inverse of SBOX(), denoted by
INVSBOX(), is applied to each byte of the state. INVSBOX() is derived from Table 4 by switching
the roles of inputs and outputs, as presented in Table 6:

Table 6. INVSBOX(): substitution values for the byte xy (in hexadecimal format)

y

0 1 2 3 4 5 6 7 8 9 a b c d e f

x

0
1
2
3
4
5
6
7
8
9
a
b
c
d
e
f

52
7c
54
08
72
6c
90
d0
3a
96
47
fc
1f
60
a0
17

09
e3
7b
2e
f8
70
d8
2c
91
ac
f1
56
dd
51
e0
2b

6a
39
94
a1
f6
48
ab
1e
11
74
1a
3e
a8
7f
3b
04

d5
82
32
66
64
50
00
8f
41
22
71
4b
33
a9
4d
7e

30
9b
a6
28
86
fd
8c
ca
4f
e7
1d
c6
88
19
ae
ba

36
2f
c2
d9
68
ed
bc
3f
67
ad
29
d2
07
b5
2a
77

a5
ff
23
24
98
b9
d3
0f
dc
35
c5
79
c7
4a
f5
d6

38
87
3d
b2
16
da
0a
02
ea
85
89
20
31
0d
b0
26

bf
34
ee
76
d4
5e
f7
c1
97
e2
6f
9a
b1
2d
c8
e1

40
8e
4c
5b
a4
15
e4
af
f2
f9
b7
db
12
e5
eb
69

a3
43
95
a2
5c
46
58
bd
cf
37
62
c0
10
7a
bb
14

9e
44
0b
49
cc
57
05
03
ce
e8
0e
fe
59
9f
3c
63

81
c4
42
6d
5d
a7
b8
01
f0
1c
aa
78
27
93
83
55

f3
de
fa
8b
65
8d
b3
13
b4
75
18
cd
80
c9
53
21

d7
e9
c3
d1
b6
9d
45
8a
e6
df
be
5a
ec
9c
99
0c

fb
cb
4e
25
92
84
06
6b
73
6e
1b
f4
5f
ef
61
7d

23

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

5.3.3 INVMIXCOLUMNS()

INVMIXCOLUMNS() is the inverse of MIXCOLUMNS(). In particular, INVMIXCOLUMNS()
multiplies each of the four columns of the state by a single fxed matrix, as described in Section 4.3,
with its entries taken from the following word:

[a0,a1,a2,a3] = [{0e},{09},{0d},{0b}]. (5.13)

Thus,

s0 1,c

⎡ ⎢⎢⎣

⎤⎡⎤⎡⎤
s0 0,c 0e 0b 0d 09 ⎢⎢⎣

⎥⎥⎦

s0,c
s1,c
s2,c

⎥⎥⎦
⎥⎥⎦=

⎢⎢⎣
09 0e 0b 0d
0d 09 0e 0b

for 0 ≤ c < 4. s0 2,c
s0 3,c 0b 0d 09 0e s3,c

(5.14)

As a result of this matrix multiplication, the four bytes in a column are replaced by the following:

0s = ({0e} • s0,c) ⊕ ({0b} • s1,c) ⊕ ({0d} • s2,c) ⊕ ({09} • s3,c)0,c
0s = ({09} • s0,c) ⊕ ({0e} • s1,c) ⊕ ({0b} • s2,c) ⊕ ({0d} • s3,c)1,c
0s = ({0d} • s0,c) ⊕ ({09} • s1,c) ⊕ ({0e} • s2,c) ⊕ ({0b} • s3,c)2,c
0s = ({0b} • s0,c) ⊕ ({0d} • s1,c) ⊕ ({09} • s2,c) ⊕ ({0e} • s3,c).3,c

(5.15)

5.3.4 Inverse of ADDROUNDKEY()

ADDROUNDKEY(), described in Section 5.1.4, is its own inverse.

5.3.5 EQINVCIPHER()

Several properties of the AES algorithm allow for an alternative specifcation of the inverse of
CIPHER(), called the equivalent inverse cipher, denoted by EQINVCIPHER(). In the specifcation
of EQINVCIPHER(), the transformations of the round function of the cipher in Alg. 1 are directly
replaced by their inverses in EQINVCIPHER(), in the same order. The effciency of this structure
in comparison to the specifcation of INVCIPHER() in Alg. 3 is explained in the Rijndael proposal
document [2].

The pseudocode for the equivalent inverse cipher, given in Alg. 4, uses a modifed key schedule,
denoted by the word array dw. The routine to generate dw is an extension of KEYEXPANSION(),
denoted by KEYEXPANSIONEIC(), whose pseudocode is given in Alg. 5.

24

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Algorithm 4 Pseudocode for EQINVCIPHER()
1: procedure EQINVCIPHER(in, Nr, dw)
2: state ← in
3: state ← ADDROUNDKEY(state,dw[4 ∗ Nr..4 ∗ Nr + 3])
4: for round from Nr − 1 downto 1 do
5: state ← INVSUBBYTES(state)
6: state ← INVSHIFTROWS(state)
7: state ← INVMIXCOLUMNS(state)
8: state ← ADDROUNDKEY(state,dw[4 ∗ round..4 ∗ round + 3])
9: end for

10: state ← INVSUBBYTES(state)
11: state ← INVSHIFTROWS(state)
12: state ← ADDROUNDKEY(state,dw[0..3])
13: return state
14: end procedure

Algorithm 5 Pseudocode for KEYEXPANSIONEIC()
1: procedure KEYEXPANSIONEIC(key)
2: i ← 0
3: while i ≤ Nk − 1 do
4: w[i] ← key[4i..4i + 3]
5: dw[i] ← w[i]
6: i ← i + 1
7: end while . When the loop concludes, i = Nk.
8: while i ≤ 4 ∗ Nr + 3 do
9: temp ← w[i − 1]

10: if i mod Nk = 0 then
11: temp ← SUBWORD(ROTWORD(temp)) ⊕ Rcon[i/Nk]
12: else if Nk > 6 and i mod Nk = 4 then
13: temp ← SUBWORD(temp)
14: end if
15: w[i] ← w[i − Nk] ⊕ temp
16: dw[i] ← w[i]
17: i ← i + 1
18: end while
19: for round from 1 to Nr − 1 do
20: i ← 4 ∗ round
21: dw[i..i + 3] ← INVMIXCOLUMNS(dw[i..i + 3]) . Note change of type.
22: end for
23: return dw
24: end procedure

The frst and last round keys in dw are the same as in w; the modifcation of the other round keys
is described in Lines 19–22. The comment in Line 21 refers to the input to INVMIXCOLUMNS():
the one-dimensional array of words is converted to a two-dimensional array of bytes, as in Fig. 1.

25

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

6. Implementation Considerations

6.1 Key Length Requirements
An implementation of the AES algorithm shall support at least one of the three key lengths
specifed in Sec. 5: 128, 192, or 256 bits (i.e., Nk = 4, 6, or 8, respectively). Implementations
may optionally support two or three key lengths, which may promote the interoperability of
algorithm implementations.

6.2 Keying Restrictions
When a cryptographic key has been generated appropriately (see NIST Special Publication 800-
133, Rev. 2 [6] for guidelines), no restriction is imposed when the resulting key is used for the
AES algorithm.

6.3 Parameter Extensions
In Table 3, this Standard explicitly defnes the allowed values for the key length (Nk), block
size (Nb), and number of rounds (Nr). However, future revisions of this Standard could include
changes or additions to the allowed values for those parameters. Therefore, implementers may
choose to design their AES implementations with future fexibility in mind.

6.4 Implementation Suggestions Regarding Various Platforms
Implementation variations are possible that may, in many cases, offer performance or other
advantages. Given the same input key and data (plaintext or ciphertext), any implementation that
produces the same output (ciphertext or plaintext) as the algorithm specifed in this Standard is an
equivalent implementation of the AES algorithm.

The AES proposal document [2] and other resources located on the AES page [7] include
suggestions on how to effciently implement the AES algorithm on a variety of platforms.
Suggested implementations are intended to explain the inner workings of the AES algorithm but
do not provide protection against various implementation attacks.

A physical implementation may leak key-dependent information through side channels, such
as the time taken to perform a computation, or when faults are injected into the computation.
When such attacks are non-invasive, they can be effective even when there are mechanisms to
detect physical tampering of the device. For example, cache-timing attacks may affect AES
implementations on software platforms that use a cache to accelerate the access to data from main
memory.

Protecting implementations of the AES algorithm against implementation attacks where applicable
should be considered. Such considerations are outside of the scope of this document but are taken
into account when testing for conformance to the algorithm in this Standard according to the
validation program developed by NIST (see https://nist.gov/cmvp).

26

https://nist.gov/cmvp

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

6.5 Modes of Operation
Block cipher modes of operation are cryptographic functions that feature a block cipher to provide
information services, such as confdentiality and authentication. NIST-recommended modes of
operation are specifed in the 800-38 series of NIST Special Publications. Further information is
available at https://csrc.nist.gov/Projects/block-cipher-techniques/BCM.

27

https://csrc.nist.gov/Projects/block-cipher-techniques/BCM

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

References

[1] James Nechvatal, Elaine Barker, Lawrence Bassham, William Burr, Morris Dworkin, James
Foti, and Edward Roback. Report on the Development of the Advanced Encryption Standard
(AES). Journal of Research of NIST (NIST JRES), May 2001. https://doi.org/10.6028/jres.
106.023.

[2] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael Document
Version 2. AES Algorithm Submission, September 1999. Available at
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/
documents/aes-development/rijndael-ammended.pdf.

[3] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The Advanced Encryption
Standard (AES), Second Edition. Information Security and Cryptography. Springer, 2020.
https://doi.org/10.1007/978-3-662-60769-5.

[4] Michael Artin. Algebra. Pearson Modern Classic. Pearson, second edition, 2017.

[5] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryp-
tography. CRC Press, Inc., USA, 1st edition, 1997. https://doi.org/10.1201/9780429466335.

[6] Elaine Barker, Allen Roginsky, and Richard Davis. Recommendation for Cryptographic
Key Generation. (National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-133, Rev. 2, June 2020. https://doi.org/10.6028/NIST.SP.
800-133r2.

[7] National Institute of Standards and Technology. AES Development, 2022. Available at
https://csrc.nist.gov/projects/aes.

[8] National Institute of Standards and Technology. Cryptographic Standards and Guide-
lines: Examples with Intermediate Values, 2022. Available at https://csrc.nist.gov/projects/
cryptographic-standards-and-guidelines/example-values.

[9] National Institute of Standards and Technology. Crypto Publications Review Board, 2022.
Available at https://csrc.nist.gov/projects/crypto-publication-review-project.

[10] Nicky Mouha. Review of the Advanced Encryption Standard. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Interagency Report (IR) 8319. https:
//doi.org/10.6028/NIST.IR.8319.

28

https://doi.org/10.6028/jres.106.023
https://doi.org/10.6028/jres.106.023
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
https://doi.org/10.1007/978-3-662-60769-5
https://doi.org/10.1201/9780429466335
https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-133r2
https://csrc.nist.gov/projects/aes
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values
https://csrc.nist.gov/projects/crypto-publication-review-project
https://doi.org/10.6028/NIST.IR.8319
https://doi.org/10.6028/NIST.IR.8319

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Appendix A — Key Expansion Examples

This appendix shows the development of the key schedule for each key size. Note that multi-byte
values are presented using the notation described in Sec. 3. The intermediate values produced
during the development of the key schedule (see Sec. 5.2) are given in the following table (all
values are in hexadecimal format with the exception of the index column (i)).

A.1 Expansion of a 128-bit Key
This section contains the key expansion of the following key:

Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

for Nk = 4, which results in

w0 = 2b7e1516 w1 = 28aed2a6 w2 = abf71588 w3 = 09cf4f3c

i
(dec)

temp After
ROTWORD()

 After
SUBWORD()

 Rcon[i/Nk] After XOR
with Rcon

w[i − Nk]

4 09cf4f3c cf4f3c09 8a84eb01 01000000 8b84eb01 2b7e1516 a0fafe17

5 a0fafe17 28aed2a6 88542cb1

6 88542cb1 abf71588 23a33939

7 23a33939 09cf4f3c 2a6c7605

8 2a6c7605 6c76052a 50386be5 02000000 52386be5 a0fafe17 f2c295f2

9 f2c295f2 88542cb1 7a96b943

10 7a96b943 23a33939 5935807a

w[i] =
temp ⊕

w[i − Nk]

11 5935807a 2a6c7605 7359f67f

12 7359f67f 59f67f73 cb42d28f 04000000 cf42d28f f2c295f2 3d80477d

13 3d80477d 7a96b943 4716fe3e

14 4716fe3e 5935807a 1e237e44

15 1e237e44 7359f67f 6d7a883b

16 6d7a883b 7a883b6d dac4e23c 08000000 d2c4e23c 3d80477d ef44a541

17 ef44a541 4716fe3e a8525b7f

18 a8525b7f 1e237e44 b671253b

19 b671253b 6d7a883b db0bad00

20 db0bad00 0bad00db 2b9563b9 10000000 3b9563b9 ef44a541 d4d1c6f8

21 d4d1c6f8 a8525b7f 7c839d87

22 7c839d87 b671253b caf2b8bc

23 caf2b8bc db0bad00 11f915bc

29

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

24 11f915bc f915bc11 99596582 20000000 b9596582 d4d1c6f8 6d88a37a

25 6d88a37a 7c839d87 110b3efd

26 110b3efd caf2b8bc dbf98641

27 dbf98641 11f915bc ca0093fd

28 ca0093fd 0093fdca 63dc5474 40000000 23dc5474 6d88a37a 4e54f70e

29 4e54f70e 110b3efd 5f5fc9f3

30 5f5fc9f3 dbf98641 84a64fb2

31 84a64fb2 ca0093fd 4ea6dc4f

32 4ea6dc4f a6dc4f4e 2486842f 80000000 a486842f 4e54f70e ead27321

33 ead27321 5f5fc9f3 b58dbad2

34 b58dbad2 84a64fb2 312bf560

35 312bf560 4ea6dc4f 7f8d292f

36 7f8d292f 8d292f7f 5da515d2 1b000000 46a515d2 ead27321 ac7766f3

37 ac7766f3 b58dbad2 19fadc21

38 19fadc21 312bf560 28d12941

39 28d12941 7f8d292f 575c006e

40 575c006e 5c006e57 4a639f5b 36000000 7c639f5b ac7766f3 d014f9a8

41 d014f9a8 19fadc21 c9ee2589

42 c9ee2589 28d12941 e13f0cc8

43 e13f0cc8 575c006e b6630ca6

A.2 Expansion of a 192-bit Key
This section contains the key expansion of the following key:

Key = 8e
80

73
90

b0
79

f7
e5

da
62

0e
f8

64
ea

52
d2

c8
52

10
2c

f3
6b

2b
7b

for Nk = 6, which results in

w0

w3

=

=

8e73b0f7

809079e5

w1

w4

=

=

da0e6452

62f8ead2

w2

w5

=

=

c810f32b

522c6b7b

i
(dec) temp After

ROTWORD()
After

SUBWORD() Rcon[i/Nk] After
with

XOR
Rcon w[i − Nk]

w[i] =
temp ⊕

w[i − Nk]

6 522c6b7b 2c6b7b52 717f2100 01000000 707f2100 8e73b0f7 fe0c91f7

7 fe0c91f7 da0e6452 2402f5a5

8 2402f5a5 c810f32b ec12068e

30

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

ec12068e

6c827f6b

809079e5

62f8ead2

6c827f6b

0e7a95b9

0e7a95b9

5c56fec2

4db7b4bd

69b54118

85a74796

e92538fd

e75fad44

bb095386

485af057

21efb14f

56fec25c

095386bb

b1bb254a

01ed44ea

02000000

04000000

b3bb254a

05ed44ea

522c6b7b

fe0c91f7

2402f5a5

ec12068e

6c827f6b

0e7a95b9

5c56fec2

4db7b4bd

69b54118

85a74796

5c56fec2

4db7b4bd

69b54118

85a74796

e92538fd

e75fad44

bb095386

485af057

21efb14f

a448f6d9

a448f6d9

4d6dce24

aa326360

113b30e6

a25e7ed5

83b1cf9a

27f93943

6a94f767

c0a69407

d19da4e1

3b30e611

9da4e1d1

e2048e82

5e49f83e

08000000

10000000

ea048e82

4e49f83e

e92538fd

e75fad44

bb095386

485af057

21efb14f

a448f6d9

4d6dce24

aa326360

113b30e6

a25e7ed5

4d6dce24

aa326360

113b30e6

a25e7ed5

83b1cf9a

27f93943

6a94f767

c0a69407

d19da4e1

ec1786eb

ec1786eb

6fa64971

485f7032

22cb8755

e26d1352

33f0b7b3

40beeb28

2f18a259

6747d26b

458c553e

f0b7b333 8ca96dc3 20000000 aca96dc3

83b1cf9a

27f93943

6a94f767

c0a69407

d19da4e1

ec1786eb

6fa64971

485f7032

22cb8755

e26d1352

6fa64971

485f7032

22cb8755

e26d1352

33f0b7b3

40beeb28

2f18a259

6747d26b

458c553e

a7e1466c

a7e1466c

9411f1df

821f750a

11f1df94 82a19e22 40000000 c2a19e22

33f0b7b3

40beeb28

2f18a259

9411f1df

821f750a

ad07d753

31

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

44

45

46

47

48

49

50

ad07d753

ca400538

8fcc5006

282d166a

bc3ce7b5

e98ba06f

448c773c

3ce7b5bc eb94d565 80000000 6b94d565

6747d26b

458c553e

a7e1466c

9411f1df

821f750a

ad07d753

ca400538

ca400538

8fcc5006

282d166a

bc3ce7b5

e98ba06f

448c773c

8ecc7204

51 8ecc7204 8fcc5006 01002202

A.3 Expansion of a 256-bit Key
This section contains the key expansion of the following key:

Key = 60 3d eb 10 15 ca 71 be 2b 73 ae f0 85 7d 77 81

1f 35 2c 07 3b 61 08 d7 2d 98 10 a3 09 14 df f4

for Nk = 8, which results in

w0 = 603deb10 w1 = 15ca71be w2 = 2b73aef0 w3 = 857d7781

w4 = 1f352c07 w5 = 3b6108d7 w6 = 2d9810a3 w7 = 0914dff4

i
(dec) temp After

RO TWO R D()
After

SU BWO R D() Rcon[i/Nk] After XOR
with Rcon w[i − Nk]

w[i] =
temp ⊕

w[i − Nk]

8 0914dff4 14dff409 fa9ebf01 01000000 fb9ebf01 603deb10 9ba35411

9 9ba35411 15ca71be 8e6925af

10 8e6925af 2b73aef0 a51a8b5f

11 a51a8b5f 857d7781 2067fcde

12 2067fcde b785b01d 1f352c07 a8b09c1a

13 a8b09c1a 3b6108d7 93d194cd

14 93d194cd 2d9810a3 be49846e

15 be49846e 0914dff4 b75d5b9a

16 b75d5b9a 5d5b9ab7 4c39b8a9 02000000 4e39b8a9 9ba35411 d59aecb8

17 d59aecb8 8e6925af 5bf3c917

18 5bf3c917 a51a8b5f fee94248

19 fee94248 2067fcde de8ebe96

20 de8ebe96 1d19ae90 a8b09c1a b5a9328a

21 b5a9328a 93d194cd 2678a647

22 2678a647 be49846e 98312229

32

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

98312229 b75d5b9a 2f6c79b3

2f6c79b3 6c79b32f 50b66d15 04000000 54b66d15 d59aecb8 812c81ad

812c81ad 5bf3c917 dadf48ba

dadf48ba fee94248 24360af2

24360af2 de8ebe96 fab8b464

fab8b464 2d6c8d43 b5a9328a 98c5bfc9

98c5bfc9 2678a647 bebd198e

bebd198e 98312229 268c3ba7

268c3ba7 2f6c79b3 09e04214

09e04214 e0421409 e12cfa01 08000000 e92cfa01 812c81ad 68007bac

68007bac dadf48ba b2df3316

b2df3316 24360af2 96e939e4

96e939e4 fab8b464 6c518d80

6c518d80 50d15dcd 98c5bfc9 c814e204

c814e204 bebd198e 76a9fb8a

76a9fb8a 268c3ba7 5025c02d

5025c02d 09e04214 59c58239

59c58239 c5823959 a61312cb 10000000 b61312cb 68007bac de136967

de136967 b2df3316 6ccc5a71

6ccc5a71 96e939e4 fa256395

fa256395 6c518d80 9674ee15

9674ee15 90922859 c814e204 5886ca5d

5886ca5d 76a9fb8a 2e2f31d7

2e2f31d7 5025c02d 7e0af1fa

7e0af1fa 59c58239 27cf73c3

27cf73c3 cf73c327 8a8f2ecc 20000000 aa8f2ecc de136967 749c47ab

749c47ab 6ccc5a71 18501dda

18501dda fa256395 e2757e4f

e2757e4f 9674ee15 7401905a

7401905a 927c60be 5886ca5d cafaaae3

cafaaae3 2e2f31d7 e4d59b34

e4d59b34 7e0af1fa 9adf6ace

9adf6ace 27cf73c3 bd10190d

bd10190d 10190dbd cad4d77a 40000000 8ad4d77a 749c47ab fe4890d1

fe4890d1 18501dda e6188d0b

e6188d0b e2757e4f 046df344

046df344 7401905a 706c631e

33

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Appendix B — Cipher Example

The following diagram shows the values in the state array as the cipher progresses for a block
length and a key length of 16 bytes each (i.e., Nb = 4 and Nk = 4).

Input = 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34

Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c

The Round Key values are taken from the Key Expansion example in Appendix A.1.

Round Start of After After After Round Key

Number Round SubBytes ShiftRows MixColumns Value

32 88 31 e0

43 5a 31 37

f6 30 98 07

a8 8d a2 34

2b 28 ab 09

7e ae f7 cf

15 d2 15 4f

16 a6 88 3c

input

1

2

3

4

19 a0 9a e9

3d f4 c6 f8

e3 e2 8d 48

be 2b 2a 08

d4 e0 b8 1e

27 bf b4 41

11 98 5d 52

ae f1 e5 30

d4 e0 b8 1e

bf b4 41 27

5d 52 11 98

30 ae f1 e5

04 e0 48 28

66 cb f8 06

81 19 d3 26

e5 9a 7a 4c

a0 88 23 2a

fa 54 a3 6c

fe 2c 39 76

17 b1 39 05

a4 68 6b 02

9c 9f 5b 6a

7f 35 ea 50

f2 2b 43 49

49 45 7f 77

de db 39 02

d2 96 87 53

89 f1 1a 3b

49 45 7f 77

db 39 02 de

87 53 d2 96

3b 89 f1 1a

58 1b db 1b

4d 4b e7 6b

ca 5a ca b0

f1 ac a8 e5

f2 7a 59 73

c2 96 35 59

95 b9 80 f6

f2 43 7a 7f

aa 61 82 68

8f dd d2 32

5f e3 4a 46

03 ef d2 9a

ac ef 13 45

73 c1 b5 23

cf 11 d6 5a

7b df b5 b8

ac ef 13 45

c1 b5 23 73

d6 5a cf 11

b8 7b df b5

75 20 53 bb

ec 0b c0 25

09 63 cf d0

93 33 7c dc

3d 47 1e 6d

80 16 23 7a

47 fe 7e 88

7d 3e 44 3b

48 67 4d d6

6c 1d e3 5f

4e 9d b1 58

ee 0d 38 e7

52 85 e3 f6

50 a4 11 cf

2f 5e c8 6a

28 d7 07 94

52 85 e3 f6

a4 11 cf 50

c8 6a 2f 5e

94 28 d7 07

0f 60 6f 5e

d6 31 c0 b3

da 38 10 13

a9 bf 6b 01

ef a8 b6 db

44 52 71 0b

a5 5b 25 ad

41 7f 3b 00

e0 c8 d9 85

92 63 b1 b8

7f 63 35 be

e8 c0 50 01

e1 e8 35 97

4f fb c8 6c

d2 fb 96 ae

9b ba 53 7c

e1 e8 35 97

fb c8 6c 4f

96 ae d2 fb

7c 9b ba 53

25 bd b6 4c

d1 11 3a 4c

a9 d1 33 c0

ad 68 8e b0

d4 7c ca 11

d1 83 f2 f9

c6 9d b8 15

f8 87 bc bc

34

5

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

f1 c1 7c 5d

00 92 c8 b5

6f 4c 8b d5

55 ef 32 0c

a1 78 10 4c

63 4f e8 d5

a8 29 3d 03

fc df 23 fe

a1 78 10 4c

4f e8 d5 63

3d 03 a8 29

fe fc df 23

4b 2c 33 37

86 4a 9d d2

8d 89 f4 18

6d 80 e8 d8

6d 11 db ca

88 0b f9 00

a3 3e 86 93

7a fd 41 fd

6

7

8

9

10

output

26 3d e8 fd

0e 41 64 d2

2e b7 72 8b

17 7d a9 25

f7 27 9b 54

ab 83 43 b5

31 a9 40 3d

f0 ff d3 3f

f7 27 9b 54

83 43 b5 ab

40 3d 31 a9

3f f0 ff d3

14 46 27 34

15 16 46 2a

b5 15 56 d8

bf ec d7 43

4e 5f 84 4e

54 5f a6 a6

f7 c9 4f dc

0e f3 b2 4f

5a 19 a3 7a

41 49 e0 8c

42 dc 19 04

b1 1f 65 0c

be d4 0a da

83 3b e1 64

2c 86 d4 f2

c8 c0 4d fe

be d4 0a da

3b e1 64 83

d4 f2 2c 86

fe c8 c0 4d

00 b1 54 fa

51 c8 76 1b

2f 89 6d 99

d1 ff cd ea

ea b5 31 7f

d2 8d 2b 8d

73 ba f5 29

21 d2 60 2f

ea 04 65 85

83 45 5d 96

5c 33 98 b0

f0 2d ad c5

87 f2 4d 97

ec 6e 4c 90

4a c3 46 e7

8c d8 95 a6

87 f2 4d 97

6e 4c 90 ec

46 e7 4a c3

a6 8c d8 95

47 40 a3 4c

37 d4 70 9f

94 e4 3a 42

ed a5 a6 bc

ac 19 28 57

77 fa d1 5c

66 dc 29 00

f3 21 41 6e

eb 59 8b 1b

40 2e a1 c3

f2 38 13 42

1e 84 e7 d2

e9 cb 3d af

09 31 32 2e

89 07 7d 2c

72 5f 94 b5

e9 cb 3d af

31 32 2e 09

7d 2c 89 07

b5 72 5f 94

d0 c9 e1 b6

14 ee 3f 63

f9 25 0c 0c

a8 89 c8 a6

39 02 dc 19

25 dc 11 6a

84 09 85 0b

1d fb 97 32

35

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Appendix C — Example Vectors

The NIST Computer Security Resource Center provides a website with “examples with interme-
diate values” for AES [8].

36

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

Appendix D — Change Log (Informative)

The original FIPS 197 (November 26, 2001) was reviewed and updated under the auspices of
NIST’s Crypto Publication Review Board [9]. Public comments and analyses of the security of
the AES that are described in NIST IR 8319 [10] were the basis for the decision to maintain the
technical specifcations of the Standard.

The following is a summary of the editorial changes to the original FIPS 197 in the May 9, 2023
update, NIST FIPS 197-upd1:

1. The formatting of many elements of the publication was improved, and the text was revised
for clarity.

2. The following items were added to the front matter: title page, foreword, abstract, and
keywords. Offcials’ names and affliations on the title page refect the original publication.

3. The announcement sections were updated to refect current statutes, regulations, standards,
guidelines, and validation programs.

4. Section 1 was revised to 1) add and update references to the AES development effort and 2)
explicitly name AES-128, AES-192, and AES-256.

5. The material in the previous Section 2.2 (Algorithm Parameters, Symbols and Functions)
was split into two new sections: 2.2 (List of Functions) and 2.3 (Algorithm Parameters and
Symbols).

6. The terms, functions, and symbols from the specifcations are comprehensively included in
the lists in Sections 2.1–2.3.

7. The description of the indexing convention was removed from Section 3.1.

8. Table 1 was revised, and the text in the previous Section 3.2 on the polynomial interpretation
of bytes was revised and moved to Section 4.

9. A general defnition of the indexing of byte sequences was added to Section 3.3 before
specializing to the example of a block, and Table 2 was revised.

10. The heading for Section 3.5 was changed to focus on word arrays, and notation for them
was included in the text. The column words of the state were presented in a vertical format,
with an improved description of the indices.

11. A reference for additional information on fnite felds [4] was included in a footnote within
Section 4, and the headings for Sections 4.1 and 4.2 were revised to explicitly mention
GF(28).

12. Section 4.2 was revised to provide an explicit, general description of fnite feld multiplica-
tion. The previous Section 4.2.1 was incorporated into the revised Section 4.2 by replacing
the original example of modular polynomial reduction with an illustration of fnite feld
multiplication using xtime.

13. The heading of Section 4.3 was revised to focus on multiplication by a fxed matrix, and the
text of the section was simplifed by removing the secondary interpretation as polynomial

37

FIPS 197 ADVANCED ENCRYPTION STANDARD (AES)

reduction. The descriptions of MIXCOLUMNS() and INVMIXCOLUMNS() in Sections 5.1.3
and 5.3.3 were revised accordingly, to refer back to this construction.

14. The text on multiplicative inverses in GF(28) from the previous Section 4.2 was revised
and moved to the new Section 4.4.

15. The discussion of the algorithm specifcations in Section 5 was expanded to elaborate on the
relationships among its components. A new brief explanation of Nb as a Rijndael parameter
enabled the replacement of Nb with its constant value 4 in the rest of the Standard.

16. The pseudocode for the cipher, the key expansion routine, and the inverse cipher in Sections
5.1, 5.2, and 5.3 was reformatted, and some of the text in these sections was revised for
clarity.

17. The descriptions of SHIFTROWS() in Section 5.1.2 and INVSHIFTROWS() in Section 5.3.2
were improved, and a mistake in the latter was corrected.

18. Illustrations of the three instances of KEYEXPANSION() in the new Figs. 6, 7, and 8 were
added to Section 5.2. The text in the section was also revised, including an explicit display
of the round constants in the new Fig. 5.

19. A separate algorithm for the modifed key expansion routine for the equivalent inverse
cipher was added to Section 5.3.5 instead of only the supplementary lines. The description
of the equivalent inverse cipher was simplifed in favor of the citation of an updated
reference [3].

20. Section 6.2 was revised to include a reference to NIST Special Publication 800-133,
Rev. 2 [6].

21. Section 6.4 was revised to expand the discussion of implementation attacks.

22. The References section is no longer labeled as an appendix. The references were updated
to replace withdrawn publications and correct citation information and URLs.

23. The examples in Appendix C were removed in favor of a reference to the detailed example
vectors that are now maintained at [8].

24. Appendix D was created to summarize the changes in this update to FIPS 197.

38

	Advanced Encryption Standard (AES)
	Preamble
	Foreword
	Abstract
	Keywords

	Announcement
	Contents
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms

	1 Introduction
	2 Definitions
	2.1 Terms and Acronyms
	2.2 List of Functions
	2.3 Algorithm Parameters and Symbols

	3 Notation and Conventions
	3.1 Inputs and Outputs
	3.2 Bytes
	3.3 Indexing of Byte Sequences
	3.4 The State
	3.5 Arrays of Words

	4 Mathematical Preliminaries
	4.1 Addition in GF(28̂)
	4.2 Multiplication in GF(28̂)
	4.3 Multiplication of Words by a Fixed Matrix
	4.4 Multiplicative Inverses in GF(28̂)

	5 Algorithm Specifications
	5.1 Cipher()
	5.1.1 SubBytes()
	5.1.2 ShiftRows()
	5.1.3 MixColumns()
	5.1.4 AddRoundKey()

	5.2 KeyExpansion()
	5.3 InvCipher()
	5.3.1 InvShiftRows()
	5.3.2 InvSubBytes()
	5.3.3 InvMixColumns()
	5.3.4 Inverse of AddRoundKey()
	5.3.5 EqInvCipher()

	6 Implementation Considerations
	6.1 Key Length Requirements
	6.2 Keying Restrictions
	6.3 Parameter Extensions
	6.4 Implementation Suggestions Regarding Various Platforms
	6.5 Modes of Operation

	References
	Appendix A — Key Expansion Examples
	A.1 Expansion of a 128-bit Key
	A.2 Expansion of a 192-bit Key
	A.3 Expansion of a 256-bit Key

	Appendix B — Cipher Example
	Appendix C — Example Vectors
	Appendix D — Change Log (Informative)

