
NIST Cybersecurity White Paper
NIST CSWP 39 ipd

Considerations for Achieving
Crypto Agility
Strategies and Practices

Initial Public Draft

Elaine Barker*
Lily Chen
David Cooper
Dustin Moody
Andrew Regenscheid
Murugiah Souppaya*
Computer Security Division
Information Technology Laboratory

Bill Newhouse
Applied Cybersecurity Division
Information Technology Laboratory

Russ Housley
Vigil Security

Sean Turner
sn3rd

*Former NIST employee; all work for this
publication was done while at NIST.

This publication is available free of charge from:
https://doi.org/10.6028/NIST.CSWP.39.ipd

March 5, 2025

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.CSWP.39.ipd

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this
paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

Publication History
Approved by the NIST Editorial Review Board on YYYY-MM-DD [Will be added to final publication.]

How to Cite this NIST Technical Series Publication:
Barker E, Chen L, Moody D, Regenscheid A, Souppaya M, Newhouse B, Housley R, Turner S (2025) Considerations
for Achieving Crypto Agility: Strategies and Practices. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Cybersecurity White Paper (CSWP) NIST CSWP 39 ipd.
https://doi.org/10.6028/NIST.CSWP.39.ipd

Author ORCID iDs
Elaine Barker: 0000-0003-0454-0461
Lily Chen: 0000-0003-2726-4279
David Cooper: 0000-0001-2410-5830
Dustin Moody: 0000-0002-4868-6684
Andrew Regenscheid: 0000-0002-3930-527x
Murugiah Souppaya: 0000-0002-8055-8527
Bill Newhouse: 0000-0002-4873-7648

Public Comment Period
March 5, 2025 - April 30, 2025

Submit Comments
crypto-agility@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/publications/cswp, including
related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:crypto-agility@nist.gov
https://csrc.nist.gov/publications/cswp

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

i

1

2
3
4
5
6
7
8

9

10

11

12
13
14
15

16

17
18
19
20
21
22

23

24
25
26
27
28

29

Abstract

Cryptographic (crypto) agility refers to the capabilities needed to replace and adapt
cryptographic algorithms in protocols, applications, software, hardware, and infrastructures
without interrupting the flow of a running system in order to achieve resiliency. This white
paper provides an in-depth survey of current approaches to achieving crypto agility. It discusses
challenges and tradeoffs and identifies approaches for providing operational mechanisms to
achieve crypto agility while maintaining interoperability. It also highlights critical working areas
that require additional discussion.

Keywords

cryptographic agility; cryptographic transition; cryptography; interoperability; security protocol.

Audience

This white paper's intended audience includes protocol designers, IT administrators, software
and standards developers, hardware designers, and policymakers. Achieving crypto agility
includes proactively addressing upcoming transitions and ensuring that the issues highlighted
will capture the attention of cryptographic researchers.

Note to Reviewers

The goal of this draft white paper is to establish a common understanding of challenges and
identify existing approaches related to crypto agility, based on the discussions that NIST has
conducted with various organizations and individuals. This paper serves as read-ahead material
for an upcoming NIST-hosted virtual workshop where crypto agility considerations will be
discussed with the cryptographic community to further identify future areas of work and inform
the development of the final paper.

Acknowledgments

NIST appreciates the input and contributions from the collaborators of the National
Cybersecurity Center of Excellence (NCCoE) Post-Quantum Cryptography (PQC) Migration
project, who commented on an initial version of this paper and provided comments that were
considered in the development of this draft white paper. A special note of thanks goes to Karen
Scarfone, Jim Foti, and Isabel Van Wyk for reviewing and editing this document.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

ii

30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Table of Contents

1. Introduction ...1
2. Historic Transitions and Challenges ...3

3. Crypto Agility for Security Protocols ..5

3.1.1. Mandatory-to-Implement Algorithms .. 6
3.1.2. Dependent Specifications ... 7

3.2.1. Preserving Interoperability ... 8
3.2.2. Providing Notices of Expected Changes ... 9
3.2.3. Integrity for Algorithm Negotiation.. 9
3.2.4. Hybrid Cryptographic Algorithms ... 10

3.4.1. Balancing the Security Strength of Algorithms in a Cipher Suite ... 12
3.4.2. Balancing Protocol Complexity ... 12

4. Crypto Agility for Applications .. 13

5. Discussions .. 17

5.6.1. Crypto Standards, Regulations, and Mandates .. 21
5.6.2. Crypto Security Policy Enforcement ... 22

6. Conclusion ... 23
References ... 24

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

iii

65

 66

67

68
69
70

 71

 72

Appendix A. List of Symbols, Abbreviations, and Acronyms ... 27

List of Figures

Fig. 1. Possible Second Transition from Hybrid Mode .. 10
Fig. 2. Applications Using Crypto APIs ... 14
Fig. 3. Crypto Agility Strategic Plan for Managing Organizations’ Crypto Risks 20

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

1

73

74
75
76
77
78
79

80
81
82
83
84
85
86

87
88

89
90

91
92

93
94
95
96
97
98

99
100
101
102
103
104

105
106
107
108
109

1. Introduction

Advances in computing capabilities, cryptographic research, and cryptanalytic techniques
periodically create the need to replace algorithms that no longer provide adequate security for
their use cases with algorithms that are considered secure. For example, the threats posed by
future cryptographically relevant quantum computers (CRQCs) to public-key cryptography
demand an urgent migration to quantum-resistant cryptography. Such a transition is costly and
takes time, raises interoperability issues, and disrupts operations.

Cryptographic (crypto) agility describes the capabilities needed to replace and adapt
cryptographic algorithms for protocols, applications, software, hardware, and infrastructures
without interrupting the flow of a running system in order to achieve resiliency. Properly
designed operational mechanisms that incorporate crypto agility considerations are needed to
facilitate transition to newer algorithms in a fast and smooth way without introducing security
breaches or operational disruptions. Many definitions and descriptions of crypto agility have
been proposed. For example, a 2016 NIST presentation [1] described crypto agility as:

• The ability for machines to select their security algorithms in real time and based on
their combined security functions;

• The ability to add new cryptographic features or algorithms to existing hardware or
software, resulting in new, stronger security features; and

• The ability to gracefully retire cryptographic systems that have become either
vulnerable or obsolete.

In the proposed definition, crypto agility is described as an algorithm-agnostic ability to support
multiple cryptographic algorithms in systems, protocols, software, and hardware. Crypto agility
facilitates migrations between cryptographic algorithms without significant changes to the
application that is using the algorithms. Crypto agility must be considered for each specific
implementation environment. In this white paper, we provide general considerations for crypto
agility within the context of a computing platform, a protocol, and an enterprise IT system.

Cryptographic algorithms are implemented in software and hardware to facilitate their use in
applications. For example, replacing a cryptographic algorithm in applications will require
changes to application programming interfaces (APIs) and software libraries. It may also
necessitate the replacement of hardware to incorporate new hardware accelerators. In a
system, crypto agility is the ability to adopt new cryptographic algorithms and stop the use of
weak algorithms in applications without disruptions to the running system.

In a communication protocol, parties must agree on a common cipher suite, a set of
cryptographic algorithms used for key establishment, signature, hash function, encryption,
and/or data authentication. Any update of algorithms must be reflected in the protocol
specifications. In a protocol, crypto agility is the ability to maintain interoperability when
introducing new cryptographic algorithms and preventing the use of weak algorithms.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

2

110
111
112
113
114

115
116
117
118
119
120
121
122

123
124
125
126
127
128
129

130

Achieving crypto agility is not only a task for product designers or implementors but also for
practitioners, security policy makers, and IT administrators. Organizations that practice crypto
agility should be able to turn off the use of weak cryptographic algorithms quickly when a
vulnerability is discovered and adopt new cryptographic algorithms without making significant
changes to infrastructures and without suffering from unnecessary disruptions.

Achieving crypto agility requires a systems approach to providing mechanisms that enable
transition to a new algorithm in a seamless way while maintaining security and acceptable
operation. This white paper surveys crypto agility approaches in different implementation
environments and proposes strategies for achieving the agility needs of varied applications. This
paper also discusses crypto agility in different contexts and highlights the coordination needed
among stakeholders. The purpose of the paper is to identify critical working areas that will be
discussed in an upcoming workshop to determine future work needed for achieving crypto
agility.

The paper is structured as follows. Section 2 discusses historical challenges faced in past
transitions. Section 3 provides an overview of an approach to achieving crypto agility for
security protocols to start the discussion. Section 4 addresses strategies for supporting crypto
agility in a system — from an API to software libraries or hardware. Some of them have been
implemented in today’s systems, and others are for future consideration. Section 5 discusses
tradeoffs with crypto agility and identifies some areas for future work. Section 6 provides
concluding thoughts.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

3

131

132
133
134

135
136
137
138

139

140
141
142
143
144
145
146
147

148
149
150
151
152

153

154
155
156
157
158
159
160
161
162
163
164

165
166
167
168

2. Historic Transitions and Challenges

The security of cryptographic algorithms is constantly challenged by increases in computing
power and the sophistication of cryptanalytic techniques. As a result, cryptographic transitions
to replacement algorithms have become an important part of security practice.

In the past 50 years, applications involving cryptography have undergone multiple transitions.
This section summarizes the transition challenges experienced and the lessons learned. In the
historic review, necessary background on cryptographic algorithms and transition triggers is
provided to help readers with subsequent content in this paper.

2.1. Long Period for a Transition

In 1977, Data Encryption Standard (DES) became the first published encryption standard. The
DES algorithm [2] had a 64-bit block size and a 56-bit key. Motivated by the threat of a practical
brute-force attack against DES’s 56-bit key, Triple DES [3] (due to its capacity to use two or
three 56-bit keys) was introduced as a temporary solution before a stronger algorithm could be
standardized and made available for use. Though this stronger algorithm, called Advanced
Encryption Standard (AES) [3] (with options for 128-, 192-, or 256-bit keys), was standardized in
2001, Triple DES only became disallowed in 2024. This 23-year transition from Triple DES to AES
supports the existence of significant transition challenges.

Historically, decisions on the choice of cryptographic algorithms used for applications were
made without considering any future transitions. Sometimes, the algorithms are hard coded —
that is, the cryptographic algorithm is directly written into the source code of the application. It
is fixed and cannot be easily changed without modifying the code itself, and it is harder to
maintain and update with new algorithms.

2.2. Backward Compatibility and Interoperability Challenges

The need for backward compatibility can also be a barrier to transition. For example, hash
functions are used as a message digest in digital signatures, for the generation of message
authentication codes (MACs), for key-derivation functions, and for random-number generation.
Cryptographic hash functions have also been used as a basic component in hash-based
signatures. Cryptographic hash function requirements include collision resistance, pre-image
resistance, and second pre-image resistance. SHA-1, a hash function with a 160-bit output
length [4], was expected to provide 80 bits of collision resistance and 160 bits of pre-image
resistance. Many use cases relied on these security properties. However, in 2005, SHA-1 was
found to provide fewer than 80 bits of collision resistance [5]. In 2006, NIST responded by
urging federal agencies to “stop relying on digital signatures that are generated using SHA-1 by
the end of 2010.”

Because SHA-1 has been used in signatures for entity authentication in many existing secure
protocols, interoperability and backwards compatibility must be considered in the transition. In
particular, using SHA-1 in this way had to be allowed in certain circumstances for some
protocols such as Transport Layer Security (TLS) (Section 4.4.2.2 of [6]). Since 2005, additional

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

4

169
170
171
172
173

174

175
176
177
178
179
180
181
182
183
184
185

186
187
188
189
190
191

192

193
194
195
196
197
198
199
200
201

202
203
204
205

cryptanalyses have shown the weakness of SHA-1 with respect to not only collision resistance
but also pre-image and second pre-image resistance [7]. NIST has recommended a complete
transition away from SHA-1 for any usage by the end of 2030 [8]. This example shows that
when some applications do not have crypto agility and cannot make timely transitions, for
backward compatibility a weak algorithm has to be allowed longer than it should be.

2.3. Constant Needs of Transition

For a public-key cryptographic algorithm, security strength is determined by parameter
selection. For example, one of the parameters for the RSA algorithm is the modulus size. When
the use of RSA was first approved for digital signatures in 2000 as specified in Federal
Information Processing Standard (FIPS) 186-2 [9], a minimum modulus size of 1024 bits was
required to provide at least 80 bits of security strength. In 2013, the minimum modulus was
increased to 2048 bits to provide a security strength of at least 112 bits, due to the progress in
integer factorization and the increase in computing power. The transition to a larger key size
(modulus) may need to happen during a device’s lifetime. If a device is not designed to
transition to a larger key size (modulus) during its lifetime, it will need to be replaced. Given the
long lifespan of many devices, it is generally more cost-effective to design for such transitions
from the start.

Since 2005, NIST Special Publication (SP) 800-57 Part 1 [10] has projected the need to transition
to 128-bit security strength by 2031. In 2024, NIST Internal Report (IR) 8547 [11] stated that the
112-bit security strength for the current public-key algorithms would be deprecated in 2031 in
order to facilitate a direct transition from the 112-bit security strength provided by current
public-key schemes to post-quantum cryptography, without an intermediate transition to the
128-bit security strength for the current cryptographic schemes.

2.4. Resource and Performance Challenges

Transitions in general and transitions to post-quantum algorithms in particular present many
challenges. Some algorithm parameter sets will have larger sizes for public keys, signatures, and
ciphertext than those used previously. For example, an RSA modulus of 3072 bits provides 128
bits of security strength for its 3072-bit signature. The transition to the post-quantum Module-
Lattice-Based Digital Signature Algorithm (ML-DSA) specified in FIPS 204 will result in a
signature of 2420 bytes (i.e., 19,360 bits) to provide a roughly equivalent classical security
strength of 128 bits [12]. This shows that transition to new algorithms can challenge the
capacity of a communication network and increase the time to transmit the message with
signatures or ciphertexts.

In summary, the many issues that arise during a cryptographic transition cause the transition
period to be incredibly long, often longer than planned. This document intends to illustrate how
crypto agility can provide a lens through which cryptographic transitions are planned and
executed as part of a design and implementation plan.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

5

206

207
208
209
210
211
212
213
214
215

216
217
218
219
220
221

222
223

224

225
226
227
228
229
230
231

232
233
234

235
236
237
238

239
240
241
242
243

3. Crypto Agility for Security Protocols

Many security protocols use cryptographic algorithms to provide confidentiality, integrity,
authentication, and/or non-repudiation. Communicating peers must agree on a common set of
cryptographic algorithms, referred to as a cipher suite, for security protocols to work properly.
This aspect of a security protocol is called cipher suite negotiation. The cipher suite may include
algorithms for integrity protection, authentication, key derivation, key establishment,
encryption, and digital signatures to provide the needed security services. Crypto agility is
achieved when a security protocol can easily transition from one cipher suite to another, more
desirable one. Each security protocol normally specifies a mandatory-to-implement algorithm
to ensure that basic interoperability is supported.

To achieve crypto agility, security protocol implementations should be modular to easily
accommodate the insertion of new algorithms or cipher suites. Implementations should also
provide a way to determine when deployed implementations have shifted from the old
algorithms to the more desirable ones. Crypto agility means that a security protocol must
support one or more algorithm or cipher suite identifiers, with the expectation that the set of
mandatory-to-implement algorithms will change over time.

This section discusses challenges and existing practices in achieving crypto agility for security
protocols.

3.1. Algorithm Identification

Security protocols include a mechanism to identify the algorithm or cipher suite in use. Some
security protocols explicitly carry algorithm identifiers or a cipher suite identifier, while others
rely on configuration settings to identify the algorithms or cipher suite. For example, an entry in
a database of symmetric keys that includes a key value as well as an algorithm identifier might
be sufficient. If a security protocol does not carry an explicit algorithm identifier, a new protocol
version number or some other major change is needed to transition to a new algorithm or
cipher suite.

The version number of a protocol or an algorithm identifier is needed for an implementation to
tell communicating peers to use a different algorithm or cipher suite. Thus, crypto agility is
easier to achieve when security protocols include algorithm or cipher suite identifiers.

In some security protocols, a combination of the protocol version number and explicit
algorithm or cipher suite identifiers is defined. For example, in TLS version 1.2 (TLSv1.2) [13]
and TLS version 1.3 (TLSv1.3) [6], the version number specifies the default key derivation
function, and the cipher suite identifier specifies the other algorithms.

Some security protocols carry one identifier for each algorithm that is used, while other security
protocols carry one identifier for a cipher suite that specifies the use of multiple algorithms. For
example, in the IPsec protocol suite, Internet Key Exchange Protocol version 2 (IKEv2) [14] most
commonly negotiates algorithms with a separate identifier for each algorithm. In contrast,
TLSv1.3 [6] negotiates algorithms with cipher suite identifiers. Both identification approaches

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

6

244
245

246
247
248
249
250
251
252
253

254
255
256

257
258
259
260
261
262
263
264
265
266
267

268

269
270
271
272
273

274
275
276
277
278
279
280
281
282

are used successfully in security protocols, and both require the assignment of new identifiers
to add support for new algorithms.

Designers are encouraged to pick one of these approaches and use it consistently throughout
the protocol or family of protocols. Cipher suite identifiers make it easier for the protocol
designer to avoid incomplete specifications. However, cipher suite identifiers inherently face a
combinatoric explosion as all useful combinations of algorithms are specified. On the other
hand, algorithm identifiers impose a burden on implementations to determine, during session
establishment, which algorithm combinations are acceptable. This determination is often a
negotiation that is built into session establishment, which is sometimes called security
association establishment.

Regardless of the mechanism used, security protocols historically negotiate the symmetric
cipher and cipher mode together to ensure that they are compatible. As a result, one algorithm
identifier names both the symmetric cipher and the cipher mode.

In some protocols, the length of the key to be used is not specified by the algorithm or cipher
suite identifier. For example, TLSv1.2 cipher suites include Diffie-Hellman key exchange without
specifying a particular public-key length. If the algorithm identifier or suite identifier specifies a
particular public-key length, migration to longer lengths would require the specification,
implementation, and deployment of a new algorithm or cipher suite identifier. On the other
hand, a flexible public-key length in a cipher suite would make it easier to migrate away from
short key lengths when the computational resources available to an attacker dictate the need
to do so. However, the flexibility of asymmetric key lengths has led to interoperability
problems. To avoid these interoperability problems in the future, any aspect of the algorithm
not specified by the algorithm identifiers needs to be negotiated, including the key size and
other parameters.

3.1.1. Mandatory-to-Implement Algorithms

For secure interoperability, communicating peers must agree on a common set of secure
cryptographic algorithms. While many algorithms are often specified for a security protocol, an
implementation may not support all of the possible algorithms. To ensure that interoperation is
possible for all implementations, a standards developing organization (SDO) will often select at
least one set of strong algorithms to be mandatory to implement.

However, SDOs need to change the set of mandatory-to-implement algorithms over time to
keep up with advances in computing and cryptanalysis. For example, NIST has withdrawn
approval for the DES encryption algorithm, the Triple DES encryption algorithm, and the SHA-1
hash function. Each of these was a mandatory-to-implement algorithm in various security
protocols at one time. It is highly desirable for SDOs to be able to revise mandatory-to-
implement algorithms without modifying the base security protocol specification. To achieve
this goal, some SDOs publish a base security protocol specification and a companion document
describing the supported algorithms, allowing the update of one document without necessarily
modifying the other.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

7

283
284
285
286
287
288
289

290

291
292
293
294
295
296
297

298
299
300
301

302

303
304
305
306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321

SDOs should specify the new algorithms before the current ones have weakened to the
breaking point. For example, support for the AES algorithm was introduced in S/MIME v3.1
[15], and the AES algorithm became mandatory-to-implement in S/MIME v3.2 [16]. This
approach allows a timely migration to the new algorithms while the old algorithms are still able
to meet their security expectations. However, a failure of implementers and administrators to
take prompt action will increase the period of time that an old algorithm is used, perhaps
dangerously so.

3.1.2. Dependent Specifications

Mandatory-to-implement algorithms are not specified for protocols embedded in other
protocols; in these cases, the higher-level protocol specification identifies the mandatory-to-
implement algorithms used in the embedded protocols. For example, S/MIME version 3.2 [16]
(a higher-level protocol) makes use of (embeds) the cryptographic message syntax (CMS) [17];
thus, S/MIME (not CMS) specifies the mandatory-to-implement algorithms. This approach
allows various security protocols to use CMS and make independent choices regarding which
algorithms are mandatory to implement.

To add a new algorithm, the conventions for using that new algorithm are specified for the
embedded security protocol (CMS in the example above), and then at some future time, the
higher-level protocol (S/MIME in the example above) might make that algorithm mandatory to
implement.

3.2. Algorithm Transitions

Transition from a weakening algorithm can be complicated. It is relatively straightforward to
specify how to use a new, better algorithm. However, the security protocol specification,
implementation development, and deployment often take years, especially if new or additional
infrastructure is required prior to deployment. The physical location of devices can add
challenges to upgrades, especially for remote sensors and space systems; overcoming these
challenges takes time and increases cost. Then, when the new algorithm is widely deployed, the
old algorithm should no longer be in use. However, knowledge about the actual use of the new
algorithm will always be imperfect, so one cannot be completely sure it is safe to remove the
old algorithm from an implementation.

Algorithm transition is naturally facilitated as part of an algorithm selection or negotiation
mechanism. During the negotiation phase, security protocols traditionally select the most
secure algorithm or cipher suite supported by all communicating peers and acceptable by their
policies. In addition, a mechanism to determine whether a new algorithm has been deployed is
often needed. For example, the SMIMECapabilities attribute [16] allows S/MIME mail user
agents to share the list of algorithms they are willing to use in order of preference. A secure
email sender can tell that it is possible to use a new algorithm when all recipients include it in
their SMIMECapabilities attribute. As another example, the Extension Mechanisms for DNS
(EDNS(0)) [18] can be used in Domain Name System Security Extensions (DNSSEC) to signal the
acceptance and use of new digital signature algorithms. In the Resource Public Key

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

8

322
323
324

325
326
327
328
329
330
331
332

333
334
335
336
337

338

339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355

356
357
358
359
360

Infrastructure (RPKI), all implementations must support the same digital signature algorithm. To
ensure global acceptance of a digital signature, an approach to transition has been specified
where a new signature algorithm is introduced long before the original one is phased out [19].

In the worst case, a deeply flawed algorithm may still be available and used in an
implementation, which could permit an attacker to download a simple script to compromise
the data that the algorithm is intended to protect. Sadly, flawed security can also occur when a
secure algorithm is used incorrectly or used with poor key management. In such situations, it is
not possible to provide notice to implementers as discussed in Sec. 3.2.2, and the protection
offered by the algorithm is severely compromised, perhaps to the point that administrators
want to stop using the weak cipher suite that includes the algorithm altogether, rejecting offers
to use the weak cipher suite well before the new cipher suite is widely deployed.

In any case, there comes a point in time when administrators configure their implementations
to refuse the old, weak crypto suite. This can happen by picking a date for a global switch to the
new algorithm, or each installation can select a date on their own. In either case,
interoperability will be sacrificed with any implementation that does not support the new
crypto suite.

3.2.1. Preserving Interoperability

Removing support for deprecated and obsolete cryptographic algorithms is very challenging.
Once an algorithm is determined to be weak, it is very difficult to eliminate all uses of that
algorithm because many applications and environments rely on it. Since algorithm transitions
can introduce interoperability problems, protocol designers and implementers may be inclined
to delay the removal of support for algorithms. As a result, flawed algorithms can be supported
for far too long. The security impact of using legacy software that includes the flawed algorithm
and having extended support periods can be reduced by making algorithm transitions easy.
Social pressure is often needed to cause the transition to happen. For example, the RC4 stream
cipher was supported in web browsers until Andrei Popov championed an effort to stop its use
[20].

Implementers are often reluctant to remove deprecated algorithms from server software, and
server administrators are often reluctant to disable them over concerns that some party will no
longer have the ability to connect to their server. Implementers and administrators want to
improve security by using the strongest supported algorithms, but their actions are tempered
by the desire to preserve interoperability. Some web browsers provide a visual warning when a
deprecated algorithm is selected for use. These visual warnings provide an incentive for website
operators to transition away from deprecated algorithms.

Transition in the internet infrastructure is particularly difficult. The digital signature on a
certification authority (CA) [21] certificate is often expected to last decades, which hinders
transition away from a weak signature algorithm. Once a long-lived certificate is issued with a
particular signature algorithm, that algorithm is used by many relying parties to verify
certificates signed by the CA, and none of the relying parties can stop supporting it without

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

9

361
362
363

364
365
366
367

368

369
370
371
372
373
374

375
376
377
378
379

380
381
382
383
384
385

386

387
388
389
390
391
392
393

394
395
396
397

invalidating all of the certificates signed by that CA. Many certificates can be impacted by the
decision to drop support for a weak signature algorithm or an associated hash function; all
subjects need to get new certificates.

Influential organizations such as NIST and the Internet Engineering Task Force (IETF) can assist
with overcoming the conflicting desire to preserve interoperability by coordinating the
deprecation of an algorithm or cipher suite, simplifying the transition for their own users as well
as others.

3.2.2. Providing Notices of Expected Changes

Fortunately, cryptographic algorithm failures without warning are rare. Algorithm transitions
are typically driven by advancements in computing capabilities, cryptographic research, and
cryptanalytic techniques rather than unexpected failures. For example, the transition from DES
to Triple DES to AES took place over decades, resulting in a shift in symmetric block cipher
security strength from 56 bits to 112 bits to at least 128 bits. Where possible, SDOs should
provide notice to security protocol implementers about expected algorithm transitions.

Monitoring cryptographic research results provides a way to assess impact and foresee needed
changes. The cryptographic research community might discover a new attack with practical
impact to existing security protocols. In the worst case, a breakthrough cryptanalytic technique
can indicate the need for an immediate algorithm transition. Crypto agility is needed to
smoothly implement such a transition.

Looking forward to the transition to post-quantum cryptography (PQC), security protocol
designers need to plan, as part of their crypto agility efforts, for public keys, signatures, and
key-encapsulation ciphertext to be much larger than those currently used. Of course, public-key
sizes and signature sizes directly impact the size of certificates containing those keys and
signatures. To be safe, security protocol designers should plan for a growth of at least ten-fold
based on the key sizes for classical algorithms and PQC algorithms.

3.2.3. Integrity for Algorithm Negotiation

Cryptographic algorithm selection or negotiation should have its integrity protected. If the
integrity of algorithm selection during negotiation is not protected, the protocol will be subject
to a downgrade attack, where an attacker influences the choice of cipher suite and one with
weaker algorithms is chosen. Transition mechanisms need to consider the algorithm that is
used to provide integrity protection for algorithm negotiation. If a protocol specifies a single
integrity algorithm to protect the negotiation without a way to negotiate an alternative
integrity algorithm, eventually that single algorithm will be found to be weak.

Extra care is needed when a mandatory-to-implement algorithm is used to provide integrity
protection for the negotiation of other cryptographic algorithms. In this case, the integrity
protection should be at least as strong as that provided by the next set of algorithms, which can
result in the need for several mandatory-to-implement algorithms to cover the various security

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

10

398
399

400
401
402
403

404

405
406
407
408
409
410

411
412

413
414
415

416
417
418
419
420
421
422
423

424
425
426
427
428
429
430

431
432

strength requirements. Otherwise, a flaw in the mandatory-to-implement integrity algorithm
may allow an attacker to influence the choices of the other algorithms.

Security protocols can negotiate a key-establishment mechanism, derive an initial cryptographic
key, and then authenticate the negotiation. However, if the authentication fails, the only
recourse is to start the negotiation over from the beginning. This is necessary for security but
can lead to an awkward experience for the human user when authentication is unsuccessful.

3.2.4. Hybrid Cryptographic Algorithms

The transition from traditional to quantum-resistant public-key cryptographic algorithms is
underway, and some SDOs are considering a combination of the two types of public-key
algorithms to create a hybrid algorithm.1

1 Some of the hybrid algorithm specifications refer to “composite algorithms.” At the level of the discussion in this section, the distinctions
between “hybrid” and “composite” algorithms are unimportant. Thus, this section uses “hybrid” throughout.

 The idea is to continue using the well-tested
traditional algorithms while study of the new PQC continues and the implementations are
maturing. In most cases, choosing a hybrid algorithm leads to a second transition when the
traditional algorithm is deprecated, as shown in Fig. 1.

Fig. 1. Possible second transition from hybrid mode

Traditional Hybrid Pure PQC

Some people believe that the overhead associated with the traditional algorithm is small
enough that they will avoid the second transition. That is, these people will continue to use the
hybrid algorithm even when the traditional algorithm is no longer secure.

A hybrid signature algorithm combines a traditional signature algorithm, like Elliptic Curve
Digital Signature Algorithm (ECDSA), and a PQC signature algorithm, like ML-DSA [12]. A hybrid
signature algorithm requires that two public keys be certified: a public key for the traditional
algorithm and a PQC public key. One option is to include the two public keys in a single
certificate, where the public keys would always be used together. However, the cost of
deploying a PKI root of trust is significant, so the expense associated with a transition to the use
of a hybrid root of trust followed by a second transition to using only a PQC algorithm for a root
of trust must be considered.

Another option is the deployment of a traditional root of trust and a PQC root of trust using
separate certificates. In some cases, two certificates will be less expensive, but there are
operational costs associated with validating two certification paths for security-association
establishment. A significant advantage of using separate roots of trust is that once the
traditional PKI is no longer needed, one can simply stop issuing certificates under the traditional
root of trust, while the PQC trust anchor continues to be used. Simply let it wither. Of course,
the PQC root of trust continues to be used.

A hybrid key-establishment algorithm combines the use of a traditional key-establishment
algorithm, like Diffie-Hellman key exchange specified in SP 800-56A [22], and the use of a PQC

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

11

433
434
435
436
437
438
439

440
441
442
443
444
445

446

447
448
449
450
451

452
453
454
455

456
457
458
459
460
461
462
463
464
465

466
467

key-encapsulation mechanism (KEM), like the Module-Lattice-Based Key Encapsulation
Mechanism (ML-KEM) [23], to establish a pairwise shared secret under the assumption that at
least one of the algorithms will remain strong over time. Security analysis for a hybrid key-
establishment algorithm can be more complicated than the analysis of either of the algorithms
that are used in the hybrid algorithm. In addition, the use of hybrid key-establishment
algorithms increases bandwidth usage because more data needs to be exchanged, which can be
a problem for some implementation environments.

In summary, hybrid signatures or key-establishment schemes can be a good strategy for
preserving security in the face of uncertainty while transitioning from traditional public-key
cryptography to post-quantum cryptography, but the use of hybrid schemes increases protocol
complexity and the amount of resources consumed. Hybrid signatures or key-establishment
schemes exercise the capability to accommodate many cipher suites and stress the crypto
agility of a security protocol design.

3.3. Cryptographic Key Establishment

Some environments will restrict the key-establishment approaches by policy. Such policies tend
to improve interoperability within a particular environment, but they cause problems for
individuals who need to work in multiple incompatible environments. In addition,
administrators need to be aware that multiple environments are being used, track the policies,
and enable the algorithms or cipher suites for each one of them.

Support for many key-establishment mechanisms in a security protocol offers more opportunity
for crypto agility. Key establishment includes key-agreement mechanisms, key-transport
mechanisms, and KEMs. Security protocol designers perform security analysis to ensure that all
security goals are achieved when each of the possible key-establishment mechanisms is used.

Traditionally, security protocol designers have avoided support for more than one mechanism
for exchanges that establish cryptographic keys because such support would make the security
analysis of the overall protocol more difficult. When frameworks such as the Extensible
Authentication Protocol (EAP) [24] are employed, the authentication mechanism often provides
a session key in addition to providing authentication. As a result, key establishment is very
flexible, but many of the cryptographic details are hidden from the application, which makes
security analysis more difficult. Furthermore, this flexibility results in protocols that support
multiple key-establishment mechanisms. In fact, the key-establishment mechanism itself is
negotiable, which creates a design challenge to protect the negotiation of the key-
establishment mechanism before it is used to produce cryptographic keys.

When security protocols support a single key-establishment mechanism, the security analysis is
much more straightforward; however, crypto agility is reduced.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

12

468

469
470
471

472

473
474
475
476
477
478
479
480
481

482
483
484
485
486

487

488
489
490
491
492

493
494
495
496
497
498

499
500

3.4. Balancing Security Strength and Protocol Complexity

When specifying a cipher suite, the relative strength of each algorithm should be roughly equal.
Complexity in security protocols needs to be avoided. Each of these design goals is explored
further in this section.

3.4.1. Balancing the Security Strength of Algorithms in a Cipher Suite

When selecting or negotiating a cipher suite, the relative strength of each algorithm needs to
be considered. The algorithms in a cipher suite ought to provide roughly equal security
strengths. The security protections provided by each algorithm in a particular context need to
be considered when making the selection. Algorithm strength needs to be considered at the
time a security protocol is designed, implemented, deployed, and configured. Advice from
experts about relative algorithm strengths is useful, but in reality, such advice is often
unavailable to system administrators who are deploying a protocol implementation. For this
reason, SDOs should provide clear guidance to implementers, leading to balanced options being
available at the time of deployment.

Performance is always a factor in selecting cryptographic algorithms. Performance and security
need to be balanced. Users will not employ security features if the application runs too slowly
when they are used. Some algorithms offer flexibility in their strength by adjusting the key size,
number of rounds, authentication tag size, prime group size, and so on. For example, AES-128 is
more efficient than AES-256, but it also offers less security.

3.4.2. Balancing Protocol Complexity

Security protocol design complexity leads to implementation complexity, which in turn makes
vulnerabilities more likely. Thus, complexity should be avoided. Optional features can add
complexity. Streamlining security protocols reduces less-used parts of the implementation. A
security protocol with fewer options means there is a lower burden on implementation testing
and a decreased attack surface, which makes it harder for attackers to discover vulnerabilities.

Security protocol designs need to anticipate changes to the supported set of cryptographic
algorithms over time. Security protocol implementations avoid complexity to reduce
vulnerability to attacks. For example, complex algorithm or cipher suite negotiation provides
opportunities for downgrade attacks. Support for many algorithm alternatives is also harmful
because of the challenges in deciding which algorithms are acceptable in a particular
environment and maintaining that list of algorithms over time.

Protocol complexity can lead to portions of the implementation that are rarely used, increasing
the opportunity for undiscovered, exploitable implementation bugs.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

13

501

502
503
504
505
506
507
508

509
510
511
512
513
514

515
516
517
518
519

520
521
522
523
524
525

526

527
528
529
530
531

4. Crypto Agility for Applications

A cryptographic application programming interface (crypto API) separates the implementation
of applications that make use of the cryptographic algorithms (e.g., email and web apps) from
the implementation of the cryptographic algorithms themselves. This separation allows the
application to focus on the high-level, application-specific details, while the cryptographic
algorithms are implemented by a provider or a library to handle symmetric encryption, digital
signature generation and verification, hashing, random number generation, key establishment,
and so on.

For example, crypto APIs separate AES-CCM [25] and AES-GCM [26], which are both
authenticated encryption with associated data (AEAD) algorithms, from application
implementations by allowing an application to make the same crypto API calls to use either
algorithm. Careful selection of default parameter values in the crypto API can make the
interface to these two algorithms essentially identical, which facilitates future transition to a
new AEAD algorithm.

Some crypto APIs offer implementations of security protocols like TLS or IPsec to further
unburden the application. These protocol implementations depend on the crypto API for
cryptographic operations. The application provides the list of algorithms or cipher suites that
are available and acceptable, and then the algorithm negotiation capabilities for the protocol
determine the algorithms that are actually used in the protocol.

To achieve crypto agility, system designers must introduce mechanisms that streamline the
replacement of cryptographic algorithms in software, hardware, and infrastructures. These
mechanisms will, at the same time, increase complexity. Therefore, system designers must
make sure that the cryptographic interface is easy to use and well documented in order to
reduce the risk of errors. Additionally, clear guidance must be provided for practitioners to
follow.

4.1. Using an API in a Crypto Library Application

A cryptographic service provider (CSP) is an implementation of one or more cryptographic
algorithms that is accessible by applications through a crypto API; see Fig. 2. CSPs are
sometimes associated with protected key storage. For example, a CSP associated with a Trusted
Platform Module (TPM) will also provide access to the asymmetric private keys that are stored
on the TPM.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

14

532
533

534
535
536
537
538

539
540
541
542
543
544

545
546

547

548
549
550
551
552

553
554
555
556
557

Fig. 2. Applications using crypto APIs

Cryptographic algorithm policy is set by the system administrator, which might be done to
implement policy set by the enterprise Chief Information Security Officer (CISO). The policy will
indicate whether a particular algorithm is allowed. For example, if there is a provider for Triple
DES, calls to encrypt with it will fail if policy does not allow Triple DES. However, calls for Triple
DES decryption might still be allowed so that stored files or email messages can be decrypted.

Some protocols are implemented in user space, an area in memory where applications execute
that is distinct from kernel space. Kernel space is a part of a computer’s memory where the
operating system runs. For example, application-chosen TLS crypto library applications operate
in user space; in fact, most libraries like OpenSSL, BoringSSL, Bouncy Castle, Network Security
Services (NSS), and OpenSSH run in user space. Application developers need to consider
whether the API is provided via the command line interface (CLI) or by “compiling in” support.

For software libraries, it is important to facilitate efficient updates. Some standard mechanisms
must be in place to avoid security pitfalls in library updates.

4.2. Using APIs in the Operating System Kernel

Some security protocols run in the operating system kernel, a computer program that generally
is loaded first when the system is turned on and has complete control over all system resources
accessible to all application programs in the system. For example, in the case of IPsec, the
datagram encryption and authentication provided by IPsec need to operate in the kernel.
Similarly, disk encryption needs to run in the kernel.

To provide crypto agility in this case, the crypto API must also be accessible within the kernel. In
some operating systems, only a subset of the crypto API’s overall capabilities is available in the
kernel. This subset is determined by the cryptographic operations required in the kernel. In
many operating systems, the supported algorithms in the kernel are established when the
kernel is built, meaning that plugins to add algorithms are not available in the kernel.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

15

558
559
560

561

562
563

564
565
566
567
568
569
570
571

572
573
574
575
576
577

578
579
580
581
582
583
584
585
586
587

588
589
590
591
592

593
594
595
596
597

Some systems perform self-tests of the cryptographic functions as part of the operating system
boot process. These tests ensure that the cryptographic operations are working as expected
before the system is available to applications or users.

4.3. Hardware

There are several aspects of the hardware implementation of cryptographic algorithms to
consider that are related to crypto agility.

A whole chip might be dedicated to the implementation of one cryptographic algorithm, or a
small portion of a chip might implement a particular building-block function in support of a
single cryptographic algorithm. In either case, a low-level interface is needed that works well in
a particular hardware environment. In most cases, firmware is needed to manage memory and
invoke the various low-level functions in the proper order. The functions that are implemented
in the integrated circuit cannot be changed; this makes them well protected from attackers, but
it also means that the chip will need to be replaced if it has design errors or changes are needed
for the algorithms to be used.

Some chips, like Subscriber Identity Module (SIM) cards and TPMs, are dedicated to
cryptographic operations. These chips are part of a larger computer system like a mobile phone
or a laptop computer. These chips store the private keys and perform cryptographic operations
that depend on the keys. At no time does the private keying material leave the chip. These
chips support very few cryptographic algorithms, and changing algorithms is accomplished by
replacing the chip. In fact, some devices offer a slot to do so without opening the device.

Hardware security modules (HSMs) are special-purpose hardware devices that store the private
keys and perform cryptographic operations using those keys. An HSM might be a rack-mounted
device for an organization or high-value application, or it might be a portable device that is
easily locked in a safe when not in use. At no time does the private keying material leave the
HSM, but there are operations to securely back up the private keying material to another HSM.
Note that HSMs provide cryptographic services, but they also consume cryptographic services.
HSMs offer tamper-detection capabilities to protect the private keying material stored in them.
HSMs often include a microprocessor as well as one or more chips that are designed to
accelerate different cryptographic algorithms or parts of the algorithms invoked by software
cryptographic implementations.

A personal portable cryptographic token, such as a Personal Identity Verification (PIV) card or a
USB token, is a device that stores the private keys for an individual. The human user plugs the
portable device into whatever computer they are using. At no time does the keying material
leave the portable device. These devices are essentially tiny HSMs intended to be used by one
person.

Some central processing units (CPUs) have instructions that were designed to accelerate
specific algorithms. A cryptographic algorithm implementation might detect whether such
instructions are available and then take advantage of them if they are. For example, the Intel
SHA Extensions paper [27] states that the CPUs offer features to make SHA hash computations
faster.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

16

598
599
600
601

602
603
604
605
606
607
608

609
610
611
612
613
614
615
616
617
618

619

From this discussion, it should be clear that there are many reasons an application might use
hardware to support cryptographic operations, including performance, the protection of
private keys, and portability. An additional reason is that some hardware offers a good source
of random numbers, which are vital to the generation of quality keying material.

On the other hand, it is easier to provide multiple cryptographic algorithms to facilitate agility in
library and application software than in hardware. Once a chip leaves the factory, additional
algorithms may not be added easily. Other layers in an architecture fall on a spectrum between
these two cases. The crypto API needs to be designed so that all points on this spectrum are
accommodated. In some environments, especially HSMs and other cryptographic tokens, the
data needs to move to the device where the key is stored for the data to be protected using
that key.

For the environments where the update of cryptographic functions in hardware is not possible
in the field, it is important to consider the use of state-of-the-art cryptography to include
implementations of the best and most conservative variants for each cryptographic function. A
key element is the communication between cryptographers and developers to decide on a
long-term plan based on the best estimate of the security needs during the lifetime of a specific
hardware device. For example, secure booting (i.e., starting a computer and loading its
operating system) requires using digital signature schemes. The public key and the program for
verifying the signatures are included in the boot code and cannot be updated. In this case, to
make sure that the platform is trustable during its lifetime, the signature schemes must be able
to provide the required security during the lifetime of the device.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

17

620

621
622
623
624
625
626

627

628
629
630

631
632
633
634
635

636
637
638
639

640
641
642
643
644
645
646
647
648
649

650

651
652

653
654
655
656

5. Discussions

Achieving crypto agility demands collaborations and communications among cryptographers,
developers, implementers, and practitioners to manage the risk of using cryptography to secure
the data. To be actionable, crypto agility requirements must be specific for each
implementation and application environment. This section discusses tradeoffs and identifies
some areas for future work. Each subsection highlights important areas for consideration and
associated stakeholders.

5.1. Resource Considerations

Resource limitation is the most difficult challenge to deal with for achieving crypto agility. This
section discusses resource considerations for protocol designers, hardware implementers, and
cryptographers.

Crypto agility requires support for multiple cryptographic algorithms in a protocol. Some
algorithms have much larger public keys, signatures, or ciphertext than the algorithms being
replaced. Experience has shown that large sizes challenge the limits of existing protocols. It is
important for protocol designers to consider resource demands in order to plan for future
transitions and to distinguish intrinsic limitations from shortsighted design decisions.

Hardware implementation is limited by capacity. It may not be possible to implement many
algorithms in one hardware platform. Some optimization efforts such as accelerator reuse have
been considered. Further research is needed in this area to deal with the transition from
traditional public-key cryptography to post-quantum cryptography.

Future cryptographic algorithm design must consider resource limitations. Usually, each design
has focused on the resource requirements of a single algorithm for an application without
considering other applications. For example, the design may use a specific primitive or a
subroutine (such as a hash function) that is not commonly used by other algorithms. To save
hardware resources, it is desirable for different algorithms to share the same subroutines.
Cryptographers have considered algorithms based on diversified assumptions so that when one
assumption is determined to be incorrect, an alternative based on a different assumption is in
place. Achieving crypto agility within resource limitations requires cryptographers to prioritize
security-related diversities. This is a new area of research that must take a different approach
from that of traditional approaches using a single algorithm design.

5.2. Agility-Aware Design

This section discusses agility design considerations for application, platform, and protocol
designers.

Current practice has made it possible for applications to access cryptographic services through
APIs. This significantly eases a cryptographic transition from one algorithm to another. When an
algorithm is found vulnerable and must no longer be used, the use of an API can enable the
transition by providing a flexible and efficient way to manage cryptographic operations.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

18

657
658
659
660
661

662
663
664
665
666
667

668
669
670
671
672
673

674

675
676
677
678
679
680
681

682
683
684
685

686

687
688

689
690
691
692
693

However, for some operating systems, cryptographic operations are determined at the time
when the kernels are built. In this case, it is not possible to update the cryptographic operations
in the kernel when a transition is needed because they are an integral part of the kernel. A
working area to be considered is to improve API usage in kernels to support update and
transition.

Agility-aware design could be reflected in the product or system configuration. It would ensure
that the user interface (UI) and API can support new algorithms with different key and
parameter sizes in order to use the underlying cryptographic software libraries and hardware
accelerators. The design would not make assumptions based on one algorithm or a family of
algorithms when coding cryptographic implementations. That is, the design would ensure that
buffers, memory locations, storage, etc. could handle large keys and parameters.

Some well-deployed security protocols, such as TLS, facilitate authenticated cipher-suite
negotiation to allow adding new algorithms to and discontinuing the use of weak algorithms
from the available cipher suites. This should be a common practice in any protocol design. For
example, in most of the IETF Requests for Comment (RFCs), there is a section called “Security
considerations.” It may be beneficial to include a section about “Crypto agility considerations”
in the standards to provide rationales for the design choices to allow crypto agility.

5.3. Complexity and Security

Accommodating crypto agility introduces complexity to protocols and systems that protocol
designers and system architects and implementers should take into consideration. It can also
increase attack surfaces. For example, if cipher suite negotiation integrity is not properly
protected, a downgrade attack can lead to a weaker cipher suite than otherwise agreed upon.
For software libraries and APIs, a larger number of options may increase the chance to
introduce security bugs. For enterprise IT administrators, it is important to make sure that the
configuration is updated to reflect new security requirements.

Crypto agility requires sound mechanisms to assure a secure and smooth transition. Currently,
most security analysis and evaluations focus on a protocol or a system configuration without
considering transition mechanisms. Cryptographic transition mechanisms should be included in
a security assessment for a protocol or a system configuration.

5.4. Crypto Agility in the Cloud

This section discusses agility consideration for cloud computing service architects, developers,
operators, and cryptographers.

The cloud refers to many remote servers accessible over the internet where users can store
data, run applications, and access services. Cloud service providers need crypto agility to meet
the diverse requirements of various customers. Some applications use a cloud to support
cryptographic operations. A cloud environment is advantageous for several reasons, including
scalability.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

19

694
695
696
697
698

699
700
701
702
703
704
705
706

707

708
709
710
711

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

727
728
729
730
731

732
733

However, use of a cloud environment tends to lock developers into a particular crypto API. For
example, a cloud environment might provide benefits of secure backup and affordable cloud-
hosting services using container technology to ensure that a software package and all its
dependencies run quickly and reliably. Based on the choices made by the cloud provider, the
developers are also locked into the hardware, potentially including HSM support.

In contrast, some cloud providers offer the ability to access an application-specific HSM that is
external to the cloud environment. This avoids provider lock-in, but it comes with many
operational requirements for the application provider to ensure availability. Additional choices,
such as selecting the confidential computing architecture to protect data that is processed, can
prevent the cloud provider from accessing keying material, but ultimately the cloud provider
can remove the entire application. In some cloud environments, the cloud provider may be able
to administratively delete keys from an HSM, even if they are not able to otherwise access
those keys.

5.5. Maturity Assessment for Crypto Agility

This section introduces the consideration for all stakeholders in the organization to have a
crypto agility maturity model to measure and track the maturity of the state of crypto agility
against industry standards and best practices in order to be resilient against the evolving
changes in crypto requirements.

A maturity model is needed for a given software or IT landscape to assess the readiness of a
software or system for cryptographic algorithm transition. Hohm, Heinemann, and Wiesmaier
[28] proposed a Crypto Agility Maturity Model (CAMM), which identifies five maturity levels
from level 0 to level 4. These five levels are described as not possible, possible, prepared,
practiced, and sophisticated. The requirements associated with each of the five levels make it
possible to evaluate a given system according to its ability to implement crypto-agility
requirements. The requirements in [28] are categorized as knowledge, process, and system
properties. These requirements are valuable references in considering the maturity of crypto
agility. For example, at Level 2-Prepared, Requirement 2.0 Cryptographic Modularity “is
understood as a system design that enables changes to the cryptographic components without
affecting the functionality of the other system components. In the event of a vulnerability, the
implementation of cryptographic functions, their parameters and primitives can be replaced
without affecting the system logic.” This requirement is noted as system properties. However,
most of the requirements are descriptive, not quantitative. Some of the requirements apply to
a system, while the others may apply to an organization or a set of protocols.

This work could be adapted to create a concrete assessment model that is applicable to every
system. If this happens, the government can create incentives for the adoption of such a
maturity model. Maturity assessment for crypto agility is a new area to explore. FIPS 140
validation does not currently assess crypto agility, but the feasibility of adapting FIPS 140
testing to encompass crypto agility is being studied.

Current FIPS 140 validation tests the implementations of NIST-approved cryptographic
algorithms. The resulting certification includes a list of NIST-approved algorithms implemented

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

20

734
735
736
737
738

739

740
741
742
743
744
745
746
747

748
749

750

751
752
753
754
755
756

in a cryptographic module. If a module implements multiple algorithms at multiple security
strengths for the same function (for example, the SHA-2 and SHA-3 hash functions), then the
module supports crypto agility for hash functions. However, if the only implemented algorithm
will be deprecated in the next few years (ECDSA, for example, with only elliptic curve P-224),
this raises an issue about a module’s support for crypto agility.

5.6. Crypto Agility Strategic Plan for Managing Organizations’ Crypto Risks

A crypto agility strategic plan as presented in Fig. 3 brings together key functions such as
governance, crypto and data assets, risk management, and automated tooling to inform the
migration/transition of crypto at different technology levels. Organizations need to transition or
migrate their cryptographic use multiple times throughout the systems’ lifetimes. By
incorporating crypto agility into their crypto policies during technology refreshes, updates, or
modernization efforts, organizations can proactively address emerging threats, technological
advances, system weaknesses, and evolving business requirements, standards, regulations, and
mandates.

Fig. 3. Crypto agility strategic plan for managing organizations’ crypto risks

The plan may include several key activities, including:

• Integrate crypto agility into the organization’s existing governance function to establish,
communicate, and monitor the cybersecurity risk management strategy, expectations,
and policies related to cryptography. This includes understanding crypto standards,
regulations, and mandates, and communicating these requirements to data owners, IT
and development teams, business partners, and technology supply chain vendors
prioritized by the criticality of the data.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

21

757
758
759
760
761

762
763
764
765
766
767
768
769
770

771
772
773
774
775
776
777

778
779
780
781
782
783
784

785
786
787

788
789
790
791

792

793
794
795

• Inventory the use of cryptography for data protection across the organization by
adopting a data-centric approach informed by the criticality of the data to identify the
organization’s most valuable assets, such as application codes, libraries, software,
hardware, user-generated content, communication protocols, enterprise services, and
systems.

• Identify gaps in enterprise management tools for managing assets, configurations,
vulnerabilities, and logs. These tools should support crypto risk management and data
protection functions by automating the identification, assessment, characterization,
enforcement, and monitoring of crypto use across the assets in an automated way. If
necessary, enhance the tools with automated data and cryptographic discovery
capabilities, including algorithms and key lengths. For instance, vulnerability
management and software/hardware development tools can help ensure
comprehensive visibility and an inventory of assets such as code, libraries, applications,
and associated cryptographic algorithms.

• Develop a prioritization list of assets to be mitigated first due to the use of weak
cryptography, based on the disparate data collected from the initial steps. A crypto
policy-informed risk assessment engine analyzes this data to form a strategy and
recommend actions to reduce risks. The engine continuously measures, monitors, and
reports on the state of crypto, particularly focusing on crypto agility key performance
indicators (KPIs) for the level of efforts to adapt and migrate effectively and efficiently,
based on the organization’s defined crypto policy.

• Implement the strategy and actions based on the prioritization list. Crypto agility is
crucial for deciding whether to migrate assets smoothly or deploy mitigation techniques
to reduce risks. Organizations can use enterprise management tools to migrate assets,
such as code, applications, software, hardware, and communication protocols, or
implement additional security controls as part of a zero-trust approach [29] to mitigate
crypto risks for networks, devices, and applications if the assets are not agile enough to
support the crypto policy.

These steps are continuously repeated to mitigate evolving crypto risks and enhance the crypto
agility posture within organizations. Crypto agility is a key principle that organizations should
consider throughout the data-centric cryptographic risk management process.

Crypto governance is an important part of a crypto agility strategic plan. The following
subsections discuss some components of governance that are crucial for organizations to drive
cryptographic practices and compliance in support of managing the crypto risks among all
stakeholders, from the organization’s board to the implementers.

5.6.1. Crypto Standards, Regulations, and Mandates

Any crypto agility effort must consider the effects of standards, regulations, and mandates on
transition requirements for cryptographic algorithms. Movements to achieve crypto agility
involve coordination between protocol designers, software and hardware vendors, application

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

22

796
797
798
799
800
801
802

803
804
805
806
807
808

809
810
811
812

813
814
815
816
817
818
819
820

821

822
823
824
825
826
827
828
829

830
831
832
833

834

and standards developers, policy makers, and IT administrators. Government standards and
regulations can mandate the transition when an algorithm is found vulnerable. NIST SP 800-
131A guides algorithm and security strength transitions by setting transition schedules for
implementers to sunset certain algorithms or security strengths based on a common
understanding of the computing power available for attackers and the latest research results.
For example, SP 800-131A rev. 2 [30], published in 2019, set the end of 2023 as the date to
disallow three-key Triple DES for applying cryptographic protection.

Industry standards play an important role in compliance with security requirements for
cryptographic algorithm usage in different application environments. The standards for
different applications such as internet protocols, communications, and applications update the
supported cipher suites to eliminate algorithms and ciphers that are vulnerable. Security
protocols often define mandatory-to-implement cipher suites to reflect the state-of-the-art of
cryptography and support interoperability.

The NIST Cryptographic Algorithm Validation Program (CAVP) provides validation testing for
FIPS-approved and NIST-recommended cryptographic algorithms. Cryptographic algorithm
validation is a prerequisite of cryptographic module validation. The approved algorithms and
relevant parameter sets are updated based on transition requirements.

From a practitioner’s perspective, certain policies, laws, and mechanisms must be established
to enhance crypto agility practice to facilitate the transition and provide proper security during
the transition. These laws and policies are coupled with industry-specific requirements. It is
very important to handle the data in a secure way during a transition. For example, for the
encrypted storage of data-at-rest, a mechanism must be established to handle encrypted user
data when the encryption algorithm is to be replaced by a stronger one. Similarly, when a
digital signature algorithm must be replaced, a mechanism to handle already-signed documents
is required.

5.6.2. Crypto Security Policy Enforcement

Crypto security policy enforcement must be considered as an important factor in the crypto
agility assessment for each protocol, system, and application. One of the most challenging
aspects of crypto agility is replacing vulnerable algorithms in a timely manner and at the same
time keeping the system running without interruption. For security protocols, a crypto security
policy can be enforced through specifying mandatory-to-implement algorithms and disallowing
the use of weak algorithms in a timely fashion. For a system, a security policy can be enforced
through the use of an API. Security practitioners enforce security policy through decisions for
using cryptographic algorithms with required security strengths.

Enforcing crypto security policy requires communications among cryptographers, developers,
practitioners, IT administrators, and policy makers. Each decision on deprecating a
cryptographic algorithm must be synchronized among all the stakeholders so the security policy
can be updated quickly.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

23

835

836
837
838
839
840
841

6. Conclusion

Crypto agility is a future-proofing strategy to deal with changes. It demands communications
among cryptographers, developers, implementers, and practitioners to accommodate evolving
security, performance, and interoperability challenges. The pursuit of crypto agility capabilities
involves exploration of new technologies and management schemes. New crypto agility
requirements must be developed for each environment. The security analysis and evaluation
for protocols, systems, and applications must include mechanisms for transitions.

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

24

842

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

References

[1] National Academies of Sciences, Engineering, and Medicine (2016) Cryptographic Agility
and Interoperability: Proceedings of a Workshop. Forum on Cyber Resilience Workshop
Series. (The National Academies Press, Washington, DC). https://doi.org/10.17226/24636

[2] National Institute of Standards and Technology (1999) Data Encryption Standard (DES).
(U.S. Department of Commerce, Washington, DC), Federal Information Processing
Standards Publication (FIPS) 46-3. Withdrawn May 19, 2005. Available at
https://csrc.nist.gov/pubs/fips/46-3/final

[3] National Institute of Standards and Technology (2001) Advanced Encryption Standard
(AES). (U.S. Department of Commerce, Washington, DC), Federal Information Processing
Standards Publication (FIPS) 197-upd1, updated May 9, 2023.
https://doi.org/10.6028/NIST.FIPS.197-upd1

[4] National Institute of Standards and Technology (2015) Secure Hash Standard (SHS). (U.S.
Department of Commerce, Washington, DC), Federal Information Processing Standards
Publication (FIPS) 180-4. https://doi.org/10.6028/NIST.FIPS.180-4

[5] Wang X, Yin YL, Yu H (2005) Finding Collisions in the Full SHA-1. Advances in Cryptology —
CRYPTO 2005. Lecture Notes in Computer Science, vol. 3621. (Springer, Berlin, Heidelberg).
https://doi.org/10.1007/11535218_2

[6] Rescorla E (2018) The Transport Layer Security (TLS) Protocol Version 1.3. (Internet
Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8446.
https://doi.org/10.17487/RFC8446

[7] Leurent G, Peyrin T (2020). SHA-1 is a Shambles - First Chosen-Prefix Collision on SHA-1 and
Application to the PGP Web of Trust. SEC'20: Proceedings of the 29th USENIX Conference
on Security Symposium. Available at https://eprint.iacr.org/2020/014

[8] National Institute of Standards and Technology (2022) NIST Transitioning Away from SHA-1
for All Applications. Available at https://csrc.nist.gov/news/2022/nist-transitioning-away-
from-sha-1-for-all-apps

[9] National Institute of Standards and Technology (2000) Digital Signature Standard (DSS).
(U.S. Department of Commerce, Washington, DC), Federal Information Processing
Standards Publication (FIPS) 186-2. Withdrawn October 5, 2001. Available at
https://csrc.nist.gov/pubs/fips/186-2/final

[10] Barker E (2020) Recommendation for Key Management: Part 1 – General. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
800-57 Part 1, Revision 5. https://doi.org/10.6028/NIST.SP.800-57pt1r5

[11] Moody D, Perlner R, Regenscheid A, Robinson A, Cooper D (2024) Transition to Post-
Quantum Cryptography Standards. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Internal Report (IR) 8547.
https://doi.org/10.6028/NIST.IR.8547.ipd

[12] National Institute of Standards and Technology (2024) Module-Lattice-Based Digital
Signature Standard. (U.S. Department of Commerce, Washington, DC), Federal Information
Processing Standards Publication (FIPS) 204. https://doi.org/10.6028/NIST.FIPS.204

https://doi.org/10.17226/24636
https://csrc.nist.gov/pubs/fips/46-3/final
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1007/11535218_2
https://doi.org/10.17487/RFC8446
https://eprint.iacr.org/2020/014
https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://csrc.nist.gov/pubs/fips/186-2/final
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.IR.8547.ipd
https://doi.org/10.6028/NIST.FIPS.204

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

25

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926

[13] Dierks T, Rescorla E (2008) The Transport Layer Security (TLS) Protocol Version 1.2.
(Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC) 5246.
https://doi.org/10.17487/RFC5246

[14] Kaufman C, Hoffman P, Nir Y, Eronen P, Kivinen T (2014) Internet Key Exchange Protocol
Version 2 (IKEv2). Internet Engineering Task Force (IETF). Request for Comments (RFC)
72966. https://doi.org/10.17487/RFC7296

[15] Ramsdell B (2004) Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1
Message Specification. (Internet Engineering Task Force (IETF)), IETF Request for
Comments (RFC) 3851. https://doi.org/10.17487/RFC3851

[16] Ramsdell B, Turner S (2010) Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.2. (Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC)
5751. https://doi.org/10.17487/RFC5751

[17] Housley R (2009) Cryptographic Message Syntax (CMS). (Internet Engineering Task Force
(IETF)), IETF Request for Comments (RFC) 5652. https://doi.org/10.17487/RFC5652

[18] Crocker S, Rose S (2013) Signaling Cryptographic Algorithm Understanding in DNS Security
Extensions (DNSSEC). (Internet Engineering Task Force (IETF)), IETF Request for Comments
(RFC) 6975. https://doi.org/10.17487/RFC6975

[19] Gagliano R, Kent S, Turner S (2013) Algorithm Agility Procedure for the Resource Public Key
Infrastructure (RPKI). (Internet Engineering Task Force (IETF)), IETF Request for Comments
(RFC) 6916. https://doi.org/10.17487/RFC6916

[20] Popov A (2015) Prohibiting RC4 Cipher Suites. (Internet Engineering Task Force (IETF)), IETF
Request for Comments (RFC) 7465. https://doi.org/10.17487/RFC7465

[21] Cooper D, Santesson S, Farrell S, Boeyen S, Housley R, Polk W (2008) Internet X.509 Public
Key Infrastructure Certification and Certificate Revocation List (CRL) Profile. (Internet
Engineering Task Force (IETF)), IETF Request for Comments (RFC) 5280.
https://doi.org/10.17487/RFC5280

[22] Barker EB, Chen L, Roginsky AL, Vassilev A, Davis R (2018) Recommendation for Pair-Wise
Key-Establishment Schemes Using Discrete Logarithm Cryptography. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-56A, Rev.
3. https://doi.org/10.6028/NIST.SP.800-56Ar3

[23] National Institute of Standards and Technology (2024) Module-Lattice-Based Key-
Encapsulation Mechanism Standard. (U.S. Department of Commerce, Washington, DC),
Federal Information Processing Standards Publication (FIPS) 203.
https://doi.org/10.6028/NIST.FIPS.203

[24] Aboba B, Blunk L, Vollbrecht J, Carlson J, Levkowetz H (2004) Extensible Authentication
Protocol (EAP). (Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC)
3748. https://doi.org/10.17487/RFC3748

[25] Dworkin MJ (2004) Recommendation for Block Cipher Modes of Operation: the CCM Mode
for Authentication and Confidentiality. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Special Publication (SP) 800-38C, Includes updates as of July 20,
2007. https://doi.org/10.6028/NIST.SP.800-38C

[26] Dworkin MJ (2007) Recommendation for Block Cipher Modes of Operation: Galois/Counter
Mode (GCM) and GMAC. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Special Publication (SP) 800-38D. https://doi.org/10.6028/NIST.SP.800-38D

https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC3851
https://doi.org/10.17487/RFC5751
https://doi.org/10.17487/RFC5652
https://doi.org/10.17487/RFC6975
https://doi.org/10.17487/RFC6916
https://doi.org/10.17487/RFC7465
https://doi.org/10.17487/RFC5280
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.17487/RFC3748
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.6028/NIST.SP.800-38D

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

26

[27] Gulley S, Gopal V, Yap K, Feghali W, Guilford J, Wolrich G (2013) Intel SHA Extensions: New
Instructions Supporting the Secure Hash Algorithm on Intel Architecture Processors. (Intel
Corporation.) Available at

927
928
929
930
931
932
933
934
935
936
937
938
939
940

https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sha-
extensions-white-paper-402097.pdf

[28] Hohm J, Heinemann A, Wiesmaier A (2022) Towards a Maturity Model for Crypto-Agility
Assessment. Available at https://arxiv.org/abs/2202.07645

[29] Rose SW, Borchert O, Mitchell S, Connelly S (2020) Zero Trust Architecture. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
800-207. https://doi.org/10.6028/NIST.SP.800-207

[30] Barker EB, Roginsky AL (2019) Transitioning the Use of Cryptographic Algorithms and Key
Lengths. (National Institute of Standards and Technology, Gaithersburg, MD), NIST Special
Publication (SP) 800-131A, Rev. 2. https://doi.org/10.6028/NIST.SP.800-131Ar2

https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sha-extensions-white-paper-402097.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sha-extensions-white-paper-402097.pdf
https://arxiv.org/abs/2202.07645
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.6028/NIST.SP.800-131Ar2

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

27

941

942
943

944
945

946
947

948
949

950
951

952
953

954
955

956
957

958
959

960
961

962
963

964
965

966
967

968
969

970
971

972
973

974
975

976
977

Appendix A. List of Symbols, Abbreviations, and Acronyms

AEAD
Authenticated Encryption with Associated Data

AES
Advanced Encryption Standard

AES-CCM
Advanced Encryption Standard – Counter with CBC-MAC

AES-GCM
Advanced Encryption Standard – Galois/Counter Mode

API
Application Programming Interface

CA
Certification Authority

CAMM
Crypto Agility Maturity Model

CAVP
Cryptographic Algorithm Validation Program

CISO
Chief Information Security Officer

CLI
Command Line Interface

CMS
Cryptographic Message Syntax

CPU
Central Processing Unit

CRQC
Cryptographically Relevant Quantum Computer

CSP
Cryptographic Service Provider

DES
Data Encryption Standard

DNSSEC
Domain Name System Security Extensions

EAP
Extensible Authentication Protocol

ECDSA
Elliptic Curve Digital Signature Algorithm

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

28

978
979

980
981

982
983

984
985

986
987

988
989

990
991

992
993

994
995

996
997

998
999

1000
1001

1002
1003

1004
1005

1006
1007

1008
1009

1010
1011

1012
1013

1014
1015

EDNS
Extension Mechanisms for Domain Name System

FIPS
Federal Information Processing Standard

HSM
Hardware Security Module

IETF
Internet Engineering Task Force

IKE
Internet Key Exchange

IPsec
Internet Protocol Security

IR
Internal Report

KEM
Key Encapsulation Mechanism

KPI
Key Performance Indicator

MAC
Message Authentication Code

ML-DSA
Module-Lattice-Based Digital Signature Algorithm

ML-KEM
Module-Lattice-Based Key Encapsulation Mechanism

PIV
Personal Identity Verification

PKI
Public Key Infrastructure

PQC
Post-Quantum Cryptography

RFC
Request for Comment

RPKI
Resource Public Key Infrastructure

RSA
Rivest-Shamir-Adelman

SDO
Standards Developing Organization

NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility
March 5, 2025

29

1016
1017

1018
1019

1020
1021

1022
1023

1024
1025

1026
1027

1028
1029

1030
1031
1032

SHA
Secure Hash Algorithm

SIM
Subscriber Identity Module

S/MIME
Secure Multipurpose Internet Mail Extensions

SP
Special Publication

TLS
Transport Layer Security

TPM
Trusted Platform Module

UI
User Interface

USB
Universal Serial Bus

	1. Introduction
	2. Historic Transitions and Challenges
	2.1. Long Period for a Transition
	2.2. Backward Compatibility and Interoperability Challenges
	2.3. Constant Needs of Transition
	2.4. Resource and Performance Challenges

	3. Crypto Agility for Security Protocols
	3.1. Algorithm Identification
	3.1.1. Mandatory-to-Implement Algorithms
	3.1.2. Dependent Specifications

	3.2. Algorithm Transitions
	3.2.1. Preserving Interoperability
	3.2.2. Providing Notices of Expected Changes
	3.2.3. Integrity for Algorithm Negotiation
	3.2.4. Hybrid Cryptographic Algorithms

	3.3. Cryptographic Key Establishment
	3.4. Balancing Security Strength and Protocol Complexity
	3.4.1. Balancing the Security Strength of Algorithms in a Cipher Suite
	3.4.2. Balancing Protocol Complexity

	4. Crypto Agility for Applications
	4.1. Using an API in a Crypto Library Application
	4.2. Using APIs in the Operating System Kernel
	4.3. Hardware

	5. Discussions
	5.1. Resource Considerations
	5.2. Agility-Aware Design
	5.3. Complexity and Security
	5.4. Crypto Agility in the Cloud
	5.5. Maturity Assessment for Crypto Agility
	5.6. Crypto Agility Strategic Plan for Managing Organizations’ Crypto Risks
	5.6.1. Crypto Standards, Regulations, and Mandates
	5.6.2. Crypto Security Policy Enforcement

	6. Conclusion
	References
	Appendix A. List of Symbols, Abbreviations, and Acronyms

