
NIST Cybersecurity White Paper 
NIST CSWP 39 ipd 

Considerations for Achieving 
Crypto Agility 
Strategies and Practices 

Initial Public Draft

Elaine Barker* 
Lily Chen 
David Cooper 
Dustin Moody 
Andrew Regenscheid 
Murugiah Souppaya* 
Computer Security Division 
Information Technology Laboratory 

Bill Newhouse 
Applied Cybersecurity Division 
Information Technology Laboratory 

Russ Housley 
Vigil Security 

Sean Turner 
sn3rd 

*Former NIST employee; all work for this
publication was done while at NIST.

This publication is available free of charge from: 
https://doi.org/10.6028/NIST.CSWP.39.ipd 

March 5, 2025

https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.CSWP.39.ipd


NIST CSWP 39 ipd (Initial Public Draft) Considerations for Achieving Crypto Agility 
March 5, 2025  

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this 
paper in order to specify the experimental procedure adequately. Such identification does not imply 
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or 
equipment identified are necessarily the best available for the purpose. 

NIST Technical Series Policies 
Copyright, Use, and Licensing Statements 
NIST Technical Series Publication Identifier Syntax 

Publication History 
Approved by the NIST Editorial Review Board on YYYY-MM-DD [Will be added to final publication.] 

How to Cite this NIST Technical Series Publication:  
Barker E, Chen L, Moody D, Regenscheid A, Souppaya M, Newhouse B, Housley R, Turner S (2025) Considerations 
for Achieving Crypto Agility: Strategies and Practices. (National Institute of Standards and Technology, 
Gaithersburg, MD), NIST Cybersecurity White Paper (CSWP) NIST CSWP 39 ipd. 
https://doi.org/10.6028/NIST.CSWP.39.ipd 

Author ORCID iDs 
Elaine Barker: 0000-0003-0454-0461 
Lily Chen: 0000-0003-2726-4279 
David Cooper: 0000-0001-2410-5830 
Dustin Moody: 0000-0002-4868-6684 
Andrew Regenscheid: 0000-0002-3930-527x 
Murugiah Souppaya: 0000-0002-8055-8527 
Bill Newhouse: 0000-0002-4873-7648 

Public Comment Period 
March 5, 2025 - April 30, 2025 

Submit Comments 
crypto-agility@nist.gov 

National Institute of Standards and Technology 
Attn: Computer Security Division, Information Technology Laboratory 
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 

Additional Information 
Additional information about this publication is available at https://csrc.nist.gov/publications/cswp, including 
related content, potential updates, and document history.  

All comments are subject to release under the Freedom of Information Act (FOIA). 

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:crypto-agility@nist.gov
https://csrc.nist.gov/publications/cswp


NIST CSWP 39 ipd (Initial Public Draft)  Considerations for Achieving Crypto Agility 
March 5, 2025  
 

i 

1 

2 
3 
4 
5 
6 
7 
8 

9 

10 

11 

12 
13 
14 
15 

16 

17 
18 
19 
20 
21 
22 

23 

24 
25 
26 
27 
28 

29 

Abstract 

Cryptographic (crypto) agility refers to the capabilities needed to replace and adapt 
cryptographic algorithms in protocols, applications, software, hardware, and infrastructures 
without interrupting the flow of a running system in order to achieve resiliency. This white 
paper provides an in-depth survey of current approaches to achieving crypto agility. It discusses 
challenges and tradeoffs and identifies approaches for providing operational mechanisms to 
achieve crypto agility while maintaining interoperability. It also highlights critical working areas 
that require additional discussion. 

Keywords 

cryptographic agility; cryptographic transition; cryptography; interoperability; security protocol. 

Audience 

This white paper's intended audience includes protocol designers, IT administrators, software 
and standards developers, hardware designers, and policymakers. Achieving crypto agility 
includes proactively addressing upcoming transitions and ensuring that the issues highlighted 
will capture the attention of cryptographic researchers.  

Note to Reviewers 

The goal of this draft white paper is to establish a common understanding of challenges and 
identify existing approaches related to crypto agility, based on the discussions that NIST has 
conducted with various organizations and individuals. This paper serves as read-ahead material 
for an upcoming NIST-hosted virtual workshop where crypto agility considerations will be 
discussed with the cryptographic community to further identify future areas of work and inform 
the development of the final paper. 
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1. Introduction 

Advances in computing capabilities, cryptographic research, and cryptanalytic techniques 
periodically create the need to replace algorithms that no longer provide adequate security for 
their use cases with algorithms that are considered secure. For example, the threats posed by 
future cryptographically relevant quantum computers (CRQCs) to public-key cryptography 
demand an urgent migration to quantum-resistant cryptography. Such a transition is costly and 
takes time, raises interoperability issues, and disrupts operations. 

Cryptographic (crypto) agility describes the capabilities needed to replace and adapt 
cryptographic algorithms for protocols, applications, software, hardware, and infrastructures 
without interrupting the flow of a running system in order to achieve resiliency. Properly 
designed operational mechanisms that incorporate crypto agility considerations are needed to 
facilitate transition to newer algorithms in a fast and smooth way without introducing security 
breaches or operational disruptions. Many definitions and descriptions of crypto agility have 
been proposed. For example, a 2016 NIST presentation [1] described crypto agility as: 

• The ability for machines to select their security algorithms in real time and based on 
their combined security functions; 

• The ability to add new cryptographic features or algorithms to existing hardware or 
software, resulting in new, stronger security features; and 

• The ability to gracefully retire cryptographic systems that have become either 
vulnerable or obsolete. 

In the proposed definition, crypto agility is described as an algorithm-agnostic ability to support 
multiple cryptographic algorithms in systems, protocols, software, and hardware. Crypto agility 
facilitates migrations between cryptographic algorithms without significant changes to the 
application that is using the algorithms. Crypto agility must be considered for each specific 
implementation environment. In this white paper, we provide general considerations for crypto 
agility within the context of a computing platform, a protocol, and an enterprise IT system. 

Cryptographic algorithms are implemented in software and hardware to facilitate their use in 
applications. For example, replacing a cryptographic algorithm in applications will require 
changes to application programming interfaces (APIs) and software libraries. It may also 
necessitate the replacement of hardware to incorporate new hardware accelerators. In a 
system, crypto agility is the ability to adopt new cryptographic algorithms and stop the use of 
weak algorithms in applications without disruptions to the running system. 

In a communication protocol, parties must agree on a common cipher suite, a set of 
cryptographic algorithms used for key establishment, signature, hash function, encryption, 
and/or data authentication. Any update of algorithms must be reflected in the protocol 
specifications. In a protocol, crypto agility is the ability to maintain interoperability when 
introducing new cryptographic algorithms and preventing the use of weak algorithms. 
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Achieving crypto agility is not only a task for product designers or implementors but also for 
practitioners, security policy makers, and IT administrators. Organizations that practice crypto 
agility should be able to turn off the use of weak cryptographic algorithms quickly when a 
vulnerability is discovered and adopt new cryptographic algorithms without making significant 
changes to infrastructures and without suffering from unnecessary disruptions. 

Achieving crypto agility requires a systems approach to providing mechanisms that enable 
transition to a new algorithm in a seamless way while maintaining security and acceptable 
operation. This white paper surveys crypto agility approaches in different implementation 
environments and proposes strategies for achieving the agility needs of varied applications. This 
paper also discusses crypto agility in different contexts and highlights the coordination needed 
among stakeholders. The purpose of the paper is to identify critical working areas that will be 
discussed in an upcoming workshop to determine future work needed for achieving crypto 
agility. 

The paper is structured as follows. Section 2 discusses historical challenges faced in past 
transitions. Section 3 provides an overview of an approach to achieving crypto agility for 
security protocols to start the discussion. Section 4 addresses strategies for supporting crypto 
agility in a system — from an API to software libraries or hardware. Some of them have been 
implemented in today’s systems, and others are for future consideration. Section 5 discusses 
tradeoffs with crypto agility and identifies some areas for future work. Section 6 provides 
concluding thoughts. 
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2. Historic Transitions and Challenges 

The security of cryptographic algorithms is constantly challenged by increases in computing 
power and the sophistication of cryptanalytic techniques. As a result, cryptographic transitions 
to replacement algorithms have become an important part of security practice. 

In the past 50 years, applications involving cryptography have undergone multiple transitions. 
This section summarizes the transition challenges experienced and the lessons learned. In the 
historic review, necessary background on cryptographic algorithms and transition triggers is 
provided to help readers with subsequent content in this paper. 

2.1. Long Period for a Transition 

In 1977, Data Encryption Standard (DES) became the first published encryption standard. The 
DES algorithm [2] had a 64-bit block size and a 56-bit key. Motivated by the threat of a practical 
brute-force attack against DES’s 56-bit key, Triple DES [3] (due to its capacity to use two or 
three 56-bit keys) was introduced as a temporary solution before a stronger algorithm could be 
standardized and made available for use. Though this stronger algorithm, called Advanced 
Encryption Standard (AES) [3] (with options for 128-, 192-, or 256-bit keys), was standardized in 
2001, Triple DES only became disallowed in 2024. This 23-year transition from Triple DES to AES 
supports the existence of significant transition challenges.   

Historically, decisions on the choice of cryptographic algorithms used for applications were 
made without considering any future transitions. Sometimes, the algorithms are hard coded —  
that is, the cryptographic algorithm is directly written into the source code of the application. It 
is fixed and cannot be easily changed without modifying the code itself, and it is harder to 
maintain and update with new algorithms.  

2.2. Backward Compatibility and Interoperability Challenges 

The need for backward compatibility can also be a barrier to transition. For example, hash 
functions are used as a message digest in digital signatures, for the generation of message 
authentication codes (MACs), for key-derivation functions, and for random-number generation. 
Cryptographic hash functions have also been used as a basic component in hash-based 
signatures. Cryptographic hash function requirements include collision resistance, pre-image 
resistance, and second pre-image resistance. SHA-1, a hash function with a 160-bit output 
length [4], was expected to provide 80 bits of collision resistance and 160 bits of pre-image 
resistance. Many use cases relied on these security properties. However, in 2005, SHA-1 was 
found to provide fewer than 80 bits of collision resistance [5]. In 2006, NIST responded by 
urging federal agencies to “stop relying on digital signatures that are generated using SHA-1 by 
the end of 2010.”  

Because SHA-1 has been used in signatures for entity authentication in many existing secure 
protocols, interoperability and backwards compatibility must be considered in the transition. In 
particular, using SHA-1 in this way had to be allowed in certain circumstances for some 
protocols such as Transport Layer Security (TLS) (Section 4.4.2.2 of [6]). Since 2005, additional 
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cryptanalyses have shown the weakness of SHA-1 with respect to not only collision resistance 
but also pre-image and second pre-image resistance [7]. NIST has recommended a complete 
transition away from SHA-1 for any usage by the end of 2030 [8]. This example shows that 
when some applications do not have crypto agility and cannot make timely transitions, for 
backward compatibility a weak algorithm has to be allowed longer than it should be.  

2.3. Constant Needs of Transition 

For a public-key cryptographic algorithm, security strength is determined by parameter 
selection. For example, one of the parameters for the RSA algorithm is the modulus size. When 
the use of RSA was first approved for digital signatures in 2000 as specified in Federal 
Information Processing Standard (FIPS) 186-2 [9], a minimum modulus size of 1024 bits was 
required to provide at least 80 bits of security strength. In 2013, the minimum modulus was 
increased to 2048 bits to provide a security strength of at least 112 bits, due to the progress in 
integer factorization and the increase in computing power. The transition to a larger key size 
(modulus) may need to happen during a device’s lifetime. If a device is not designed to 
transition to a larger key size (modulus) during its lifetime, it will need to be replaced. Given the 
long lifespan of many devices, it is generally more cost-effective to design for such transitions 
from the start. 

Since 2005, NIST Special Publication (SP) 800-57 Part 1 [10] has projected the need to transition 
to 128-bit security strength by 2031. In 2024, NIST Internal Report (IR) 8547 [11] stated that the 
112-bit security strength for the current public-key algorithms would be deprecated in 2031 in 
order to facilitate a direct transition from the 112-bit security strength provided by current 
public-key schemes to post-quantum cryptography, without an intermediate transition to the 
128-bit security strength for the current cryptographic schemes. 

2.4. Resource and Performance Challenges 

Transitions in general and transitions to post-quantum algorithms in particular present many 
challenges. Some algorithm parameter sets will have larger sizes for public keys, signatures, and 
ciphertext than those used previously. For example, an RSA modulus of 3072 bits provides 128 
bits of security strength for its 3072-bit signature. The transition to the post-quantum Module-
Lattice-Based Digital Signature Algorithm (ML-DSA) specified in FIPS 204 will result in a 
signature of 2420 bytes (i.e., 19,360 bits) to provide a roughly equivalent classical security 
strength of 128 bits [12]. This shows that transition to new algorithms can challenge the 
capacity of a communication network and increase the time to transmit the message with 
signatures or ciphertexts.   

In summary, the many issues that arise during a cryptographic transition cause the transition 
period to be incredibly long, often longer than planned. This document intends to illustrate how 
crypto agility can provide a lens through which cryptographic transitions are planned and 
executed as part of a design and implementation plan. 
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3. Crypto Agility for Security Protocols  

Many security protocols use cryptographic algorithms to provide confidentiality, integrity, 
authentication, and/or non-repudiation. Communicating peers must agree on a common set of 
cryptographic algorithms, referred to as a cipher suite, for security protocols to work properly. 
This aspect of a security protocol is called cipher suite negotiation. The cipher suite may include 
algorithms for integrity protection, authentication, key derivation, key establishment, 
encryption, and digital signatures to provide the needed security services. Crypto agility is 
achieved when a security protocol can easily transition from one cipher suite to another, more 
desirable one. Each security protocol normally specifies a mandatory-to-implement algorithm 
to ensure that basic interoperability is supported. 

To achieve crypto agility, security protocol implementations should be modular to easily 
accommodate the insertion of new algorithms or cipher suites. Implementations should also 
provide a way to determine when deployed implementations have shifted from the old 
algorithms to the more desirable ones. Crypto agility means that a security protocol must 
support one or more algorithm or cipher suite identifiers, with the expectation that the set of 
mandatory-to-implement algorithms will change over time.  

This section discusses challenges and existing practices in achieving crypto agility for security 
protocols. 

3.1. Algorithm Identification 

Security protocols include a mechanism to identify the algorithm or cipher suite in use. Some 
security protocols explicitly carry algorithm identifiers or a cipher suite identifier, while others 
rely on configuration settings to identify the algorithms or cipher suite. For example, an entry in 
a database of symmetric keys that includes a key value as well as an algorithm identifier might 
be sufficient. If a security protocol does not carry an explicit algorithm identifier, a new protocol 
version number or some other major change is needed to transition to a new algorithm or 
cipher suite. 

The version number of a protocol or an algorithm identifier is needed for an implementation to 
tell communicating peers to use a different algorithm or cipher suite. Thus, crypto agility is 
easier to achieve when security protocols include algorithm or cipher suite identifiers. 

In some security protocols, a combination of the protocol version number and explicit 
algorithm or cipher suite identifiers is defined. For example, in TLS version 1.2 (TLSv1.2) [13] 
and TLS version 1.3 (TLSv1.3) [6], the version number specifies the default key derivation 
function, and the cipher suite identifier specifies the other algorithms. 

Some security protocols carry one identifier for each algorithm that is used, while other security 
protocols carry one identifier for a cipher suite that specifies the use of multiple algorithms. For 
example, in the IPsec protocol suite, Internet Key Exchange Protocol version 2 (IKEv2) [14] most 
commonly negotiates algorithms with a separate identifier for each algorithm. In contrast, 
TLSv1.3 [6] negotiates algorithms with cipher suite identifiers. Both identification approaches 
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are used successfully in security protocols, and both require the assignment of new identifiers 
to add support for new algorithms.  

Designers are encouraged to pick one of these approaches and use it consistently throughout 
the protocol or family of protocols. Cipher suite identifiers make it easier for the protocol 
designer to avoid incomplete specifications. However, cipher suite identifiers inherently face a 
combinatoric explosion as all useful combinations of algorithms are specified. On the other 
hand, algorithm identifiers impose a burden on implementations to determine, during session 
establishment, which algorithm combinations are acceptable. This determination is often a 
negotiation that is built into session establishment, which is sometimes called security 
association establishment. 

Regardless of the mechanism used, security protocols historically negotiate the symmetric 
cipher and cipher mode together to ensure that they are compatible. As a result, one algorithm 
identifier names both the symmetric cipher and the cipher mode. 

In some protocols, the length of the key to be used is not specified by the algorithm or cipher 
suite identifier. For example, TLSv1.2 cipher suites include Diffie-Hellman key exchange without 
specifying a particular public-key length. If the algorithm identifier or suite identifier specifies a 
particular public-key length, migration to longer lengths would require the specification, 
implementation, and deployment of a new algorithm or cipher suite identifier. On the other 
hand, a flexible public-key length in a cipher suite would make it easier to migrate away from 
short key lengths when the computational resources available to an attacker dictate the need 
to do so. However, the flexibility of asymmetric key lengths has led to interoperability 
problems. To avoid these interoperability problems in the future, any aspect of the algorithm 
not specified by the algorithm identifiers needs to be negotiated, including the key size and 
other parameters. 

3.1.1. Mandatory-to-Implement Algorithms 

For secure interoperability, communicating peers must agree on a common set of secure 
cryptographic algorithms. While many algorithms are often specified for a security protocol, an 
implementation may not support all of the possible algorithms. To ensure that interoperation is 
possible for all implementations, a standards developing organization (SDO) will often select at 
least one set of strong algorithms to be mandatory to implement. 

However, SDOs need to change the set of mandatory-to-implement algorithms over time to 
keep up with advances in computing and cryptanalysis. For example, NIST has withdrawn 
approval for the DES encryption algorithm, the Triple DES encryption algorithm, and the SHA-1 
hash function. Each of these was a mandatory-to-implement algorithm in various security 
protocols at one time. It is highly desirable for SDOs to be able to revise mandatory-to-
implement algorithms without modifying the base security protocol specification. To achieve 
this goal, some SDOs publish a base security protocol specification and a companion document 
describing the supported algorithms, allowing the update of one document without necessarily 
modifying the other. 
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SDOs should specify the new algorithms before the current ones have weakened to the 
breaking point. For example, support for the AES algorithm was introduced in S/MIME v3.1 
[15], and the AES algorithm became mandatory-to-implement in S/MIME v3.2 [16]. This 
approach allows a timely migration to the new algorithms while the old algorithms are still able 
to meet their security expectations. However, a failure of implementers and administrators to 
take prompt action will increase the period of time that an old algorithm is used, perhaps 
dangerously so. 

3.1.2. Dependent Specifications 

Mandatory-to-implement algorithms are not specified for protocols embedded in other 
protocols; in these cases, the higher-level protocol specification identifies the mandatory-to-
implement algorithms used in the embedded protocols. For example, S/MIME version 3.2 [16] 
(a higher-level protocol) makes use of (embeds) the cryptographic message syntax (CMS) [17]; 
thus, S/MIME (not CMS) specifies the mandatory-to-implement algorithms. This approach 
allows various security protocols to use CMS and make independent choices regarding which 
algorithms are mandatory to implement. 

To add a new algorithm, the conventions for using that new algorithm are specified for the 
embedded security protocol (CMS in the example above), and then at some future time, the 
higher-level protocol (S/MIME in the example above) might make that algorithm mandatory to 
implement. 

3.2. Algorithm Transitions 

Transition from a weakening algorithm can be complicated. It is relatively straightforward to 
specify how to use a new, better algorithm. However, the security protocol specification, 
implementation development, and deployment often take years, especially if new or additional 
infrastructure is required prior to deployment. The physical location of devices can add 
challenges to upgrades, especially for remote sensors and space systems; overcoming these 
challenges takes time and increases cost. Then, when the new algorithm is widely deployed, the 
old algorithm should no longer be in use. However, knowledge about the actual use of the new 
algorithm will always be imperfect, so one cannot be completely sure it is safe to remove the 
old algorithm from an implementation. 

Algorithm transition is naturally facilitated as part of an algorithm selection or negotiation 
mechanism. During the negotiation phase, security protocols traditionally select the most 
secure algorithm or cipher suite supported by all communicating peers and acceptable by their 
policies. In addition, a mechanism to determine whether a new algorithm has been deployed is 
often needed. For example, the SMIMECapabilities attribute [16] allows S/MIME mail user 
agents to share the list of algorithms they are willing to use in order of preference. A secure 
email sender can tell that it is possible to use a new algorithm when all recipients include it in 
their SMIMECapabilities attribute. As another example, the Extension Mechanisms for DNS 
(EDNS(0)) [18] can be used in Domain Name System Security Extensions (DNSSEC) to signal the 
acceptance and use of new digital signature algorithms. In the Resource Public Key 
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Infrastructure (RPKI), all implementations must support the same digital signature algorithm. To 
ensure global acceptance of a digital signature, an approach to transition has been specified 
where a new signature algorithm is introduced long before the original one is phased out [19]. 

In the worst case, a deeply flawed algorithm may still be available and used in an 
implementation, which could permit an attacker to download a simple script to compromise 
the data that the algorithm is intended to protect. Sadly, flawed security can also occur when a 
secure algorithm is used incorrectly or used with poor key management. In such situations, it is 
not possible to provide notice to implementers as discussed in Sec. 3.2.2, and the protection 
offered by the algorithm is severely compromised, perhaps to the point that administrators 
want to stop using the weak cipher suite that includes the algorithm altogether, rejecting offers 
to use the weak cipher suite well before the new cipher suite is widely deployed. 

In any case, there comes a point in time when administrators configure their implementations 
to refuse the old, weak crypto suite. This can happen by picking a date for a global switch to the 
new algorithm, or each installation can select a date on their own. In either case, 
interoperability will be sacrificed with any implementation that does not support the new 
crypto suite. 

3.2.1. Preserving Interoperability 

Removing support for deprecated and obsolete cryptographic algorithms is very challenging. 
Once an algorithm is determined to be weak, it is very difficult to eliminate all uses of that 
algorithm because many applications and environments rely on it. Since algorithm transitions 
can introduce interoperability problems, protocol designers and implementers may be inclined 
to delay the removal of support for algorithms. As a result, flawed algorithms can be supported 
for far too long. The security impact of using legacy software that includes the flawed algorithm 
and having extended support periods can be reduced by making algorithm transitions easy. 
Social pressure is often needed to cause the transition to happen. For example, the RC4 stream 
cipher was supported in web browsers until Andrei Popov championed an effort to stop its use 
[20]. 

Implementers are often reluctant to remove deprecated algorithms from server software, and 
server administrators are often reluctant to disable them over concerns that some party will no 
longer have the ability to connect to their server. Implementers and administrators want to 
improve security by using the strongest supported algorithms, but their actions are tempered 
by the desire to preserve interoperability. Some web browsers provide a visual warning when a 
deprecated algorithm is selected for use. These visual warnings provide an incentive for website 
operators to transition away from deprecated algorithms. 

Transition in the internet infrastructure is particularly difficult. The digital signature on a 
certification authority (CA) [21] certificate is often expected to last decades, which hinders 
transition away from a weak signature algorithm. Once a long-lived certificate is issued with a 
particular signature algorithm, that algorithm is used by many relying parties to verify 
certificates signed by the CA, and none of the relying parties can stop supporting it without 
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invalidating all of the certificates signed by that CA. Many certificates can be impacted by the 
decision to drop support for a weak signature algorithm or an associated hash function; all 
subjects need to get new certificates. 

Influential organizations such as NIST and the Internet Engineering Task Force (IETF) can assist 
with overcoming the conflicting desire to preserve interoperability by coordinating the 
deprecation of an algorithm or cipher suite, simplifying the transition for their own users as well 
as others. 

3.2.2. Providing Notices of Expected Changes 

Fortunately, cryptographic algorithm failures without warning are rare. Algorithm transitions 
are typically driven by advancements in computing capabilities, cryptographic research, and 
cryptanalytic techniques rather than unexpected failures. For example, the transition from DES 
to Triple DES to AES took place over decades, resulting in a shift in symmetric block cipher 
security strength from 56 bits to 112 bits to at least 128 bits. Where possible, SDOs should 
provide notice to security protocol implementers about expected algorithm transitions. 

Monitoring cryptographic research results provides a way to assess impact and foresee needed 
changes. The cryptographic research community might discover a new attack with practical 
impact to existing security protocols. In the worst case, a breakthrough cryptanalytic technique 
can indicate the need for an immediate algorithm transition. Crypto agility is needed to 
smoothly implement such a transition. 

Looking forward to the transition to post-quantum cryptography (PQC), security protocol 
designers need to plan, as part of their crypto agility efforts, for public keys, signatures, and 
key-encapsulation ciphertext to be much larger than those currently used. Of course, public-key 
sizes and signature sizes directly impact the size of certificates containing those keys and 
signatures. To be safe, security protocol designers should plan for a growth of at least ten-fold 
based on the key sizes for classical algorithms and PQC algorithms. 

3.2.3. Integrity for Algorithm Negotiation 

Cryptographic algorithm selection or negotiation should have its integrity protected. If the 
integrity of algorithm selection during negotiation is not protected, the protocol will be subject 
to a downgrade attack, where an attacker influences the choice of cipher suite and one with 
weaker algorithms is chosen. Transition mechanisms need to consider the algorithm that is 
used to provide integrity protection for algorithm negotiation. If a protocol specifies a single 
integrity algorithm to protect the negotiation without a way to negotiate an alternative 
integrity algorithm, eventually that single algorithm will be found to be weak. 

Extra care is needed when a mandatory-to-implement algorithm is used to provide integrity 
protection for the negotiation of other cryptographic algorithms. In this case, the integrity 
protection should be at least as strong as that provided by the next set of algorithms, which can 
result in the need for several mandatory-to-implement algorithms to cover the various security 
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strength requirements. Otherwise, a flaw in the mandatory-to-implement integrity algorithm 
may allow an attacker to influence the choices of the other algorithms. 

Security protocols can negotiate a key-establishment mechanism, derive an initial cryptographic 
key, and then authenticate the negotiation. However, if the authentication fails, the only 
recourse is to start the negotiation over from the beginning. This is necessary for security but 
can lead to an awkward experience for the human user when authentication is unsuccessful. 

3.2.4. Hybrid Cryptographic Algorithms 

The transition from traditional to quantum-resistant public-key cryptographic algorithms is 
underway, and some SDOs are considering a combination of the two types of public-key 
algorithms to create a hybrid algorithm.1

1 Some of the hybrid algorithm specifications refer to “composite algorithms.” At the level of the discussion in this section, the distinctions 
between “hybrid” and “composite” algorithms are unimportant.  Thus, this section uses “hybrid” throughout.  

 The idea is to continue using the well-tested 
traditional algorithms while study of the new PQC continues and the implementations are 
maturing. In most cases, choosing a hybrid algorithm leads to a second transition when the 
traditional algorithm is deprecated, as shown in Fig. 1. 

Fig. 1. Possible second transition from hybrid mode 

 
Traditional Hybrid Pure PQC 

Some people believe that the overhead associated with the traditional algorithm is small 
enough that they will avoid the second transition. That is, these people will continue to use the 
hybrid algorithm even when the traditional algorithm is no longer secure. 

A hybrid signature algorithm combines a traditional signature algorithm, like Elliptic Curve 
Digital Signature Algorithm (ECDSA), and a PQC signature algorithm, like ML-DSA [12]. A hybrid 
signature algorithm requires that two public keys be certified: a public key for the traditional 
algorithm and a PQC public key. One option is to include the two public keys in a single 
certificate, where the public keys would always be used together. However, the cost of 
deploying a PKI root of trust is significant, so the expense associated with a transition to the use 
of a hybrid root of trust followed by a second transition to using only a PQC algorithm for a root 
of trust must be considered. 

Another option is the deployment of a traditional root of trust and a PQC root of trust using 
separate certificates. In some cases, two certificates will be less expensive, but there are 
operational costs associated with validating two certification paths for security-association 
establishment. A significant advantage of using separate roots of trust is that once the 
traditional PKI is no longer needed, one can simply stop issuing certificates under the traditional 
root of trust, while the PQC trust anchor continues to be used. Simply let it wither. Of course, 
the PQC root of trust continues to be used. 

A hybrid key-establishment algorithm combines the use of a traditional key-establishment 
algorithm, like Diffie-Hellman key exchange specified in SP 800-56A [22], and the use of a PQC 
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key-encapsulation mechanism (KEM), like the Module-Lattice-Based Key Encapsulation 
Mechanism (ML-KEM) [23], to establish a pairwise shared secret under the assumption that at 
least one of the algorithms will remain strong over time. Security analysis for a hybrid key-
establishment algorithm can be more complicated than the analysis of either of the algorithms 
that are used in the hybrid algorithm. In addition, the use of hybrid key-establishment 
algorithms increases bandwidth usage because more data needs to be exchanged, which can be 
a problem for some implementation environments. 

In summary, hybrid signatures or key-establishment schemes can be a good strategy for 
preserving security in the face of uncertainty while transitioning from traditional public-key 
cryptography to post-quantum cryptography, but the use of hybrid schemes increases protocol 
complexity and the amount of resources consumed. Hybrid signatures or key-establishment 
schemes exercise the capability to accommodate many cipher suites and stress the crypto 
agility of a security protocol design. 

3.3. Cryptographic Key Establishment 

Some environments will restrict the key-establishment approaches by policy. Such policies tend 
to improve interoperability within a particular environment, but they cause problems for 
individuals who need to work in multiple incompatible environments. In addition, 
administrators need to be aware that multiple environments are being used, track the policies, 
and enable the algorithms or cipher suites for each one of them. 

Support for many key-establishment mechanisms in a security protocol offers more opportunity 
for crypto agility. Key establishment includes key-agreement mechanisms, key-transport 
mechanisms, and KEMs. Security protocol designers perform security analysis to ensure that all 
security goals are achieved when each of the possible key-establishment mechanisms is used. 

Traditionally, security protocol designers have avoided support for more than one mechanism 
for exchanges that establish cryptographic keys because such support would make the security 
analysis of the overall protocol more difficult. When frameworks such as the Extensible 
Authentication Protocol (EAP) [24] are employed, the authentication mechanism often provides 
a session key in addition to providing authentication. As a result, key establishment is very 
flexible, but many of the cryptographic details are hidden from the application, which makes 
security analysis more difficult. Furthermore, this flexibility results in protocols that support 
multiple key-establishment mechanisms. In fact, the key-establishment mechanism itself is 
negotiable, which creates a design challenge to protect the negotiation of the key-
establishment mechanism before it is used to produce cryptographic keys. 

When security protocols support a single key-establishment mechanism, the security analysis is 
much more straightforward; however, crypto agility is reduced. 
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3.4. Balancing Security Strength and Protocol Complexity 

When specifying a cipher suite, the relative strength of each algorithm should be roughly equal.  
Complexity in security protocols needs to be avoided. Each of these design goals is explored 
further in this section. 

3.4.1. Balancing the Security Strength of Algorithms in a Cipher Suite 

When selecting or negotiating a cipher suite, the relative strength of each algorithm needs to 
be considered. The algorithms in a cipher suite ought to provide roughly equal security 
strengths. The security protections provided by each algorithm in a particular context need to 
be considered when making the selection. Algorithm strength needs to be considered at the 
time a security protocol is designed, implemented, deployed, and configured. Advice from 
experts about relative algorithm strengths is useful, but in reality, such advice is often 
unavailable to system administrators who are deploying a protocol implementation. For this 
reason, SDOs should provide clear guidance to implementers, leading to balanced options being 
available at the time of deployment. 

Performance is always a factor in selecting cryptographic algorithms. Performance and security 
need to be balanced. Users will not employ security features if the application runs too slowly 
when they are used. Some algorithms offer flexibility in their strength by adjusting the key size, 
number of rounds, authentication tag size, prime group size, and so on. For example, AES-128 is 
more efficient than AES-256, but it also offers less security. 

3.4.2. Balancing Protocol Complexity 

Security protocol design complexity leads to implementation complexity, which in turn makes 
vulnerabilities more likely. Thus, complexity should be avoided. Optional features can add 
complexity. Streamlining security protocols reduces less-used parts of the implementation. A 
security protocol with fewer options means there is a lower burden on implementation testing 
and a decreased attack surface, which makes it harder for attackers to discover vulnerabilities. 

Security protocol designs need to anticipate changes to the supported set of cryptographic 
algorithms over time. Security protocol implementations avoid complexity to reduce 
vulnerability to attacks. For example, complex algorithm or cipher suite negotiation provides 
opportunities for downgrade attacks. Support for many algorithm alternatives is also harmful 
because of the challenges in deciding which algorithms are acceptable in a particular 
environment and maintaining that list of algorithms over time.  

Protocol complexity can lead to portions of the implementation that are rarely used, increasing 
the opportunity for undiscovered, exploitable implementation bugs. 
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4. Crypto Agility for Applications 

A cryptographic application programming interface (crypto API) separates the implementation 
of applications that make use of the cryptographic algorithms (e.g., email and web apps) from 
the implementation of the cryptographic algorithms themselves. This separation allows the 
application to focus on the high-level, application-specific details, while the cryptographic 
algorithms are implemented by a provider or a library to handle symmetric encryption, digital 
signature generation and verification, hashing, random number generation, key establishment, 
and so on. 

For example, crypto APIs separate AES-CCM [25] and AES-GCM [26], which are both 
authenticated encryption with associated data (AEAD) algorithms, from application  
implementations by allowing an application to make the same crypto API calls to use either 
algorithm. Careful selection of default parameter values in the crypto API can make the 
interface to these two algorithms essentially identical, which facilitates future transition to a 
new AEAD algorithm. 

Some crypto APIs offer implementations of security protocols like TLS or IPsec to further 
unburden the application. These protocol implementations depend on the crypto API for 
cryptographic operations. The application provides the list of algorithms or cipher suites that 
are available and acceptable, and then the algorithm negotiation capabilities for the protocol 
determine the algorithms that are actually used in the protocol. 

To achieve crypto agility, system designers must introduce mechanisms that streamline the 
replacement of cryptographic algorithms in software, hardware, and infrastructures. These 
mechanisms will, at the same time, increase complexity. Therefore, system designers must 
make sure that the cryptographic interface is easy to use and well documented in order to 
reduce the risk of errors. Additionally, clear guidance must be provided for practitioners to 
follow. 

4.1. Using an API in a Crypto Library Application  

A cryptographic service provider (CSP) is an implementation of one or more cryptographic 
algorithms that is accessible by applications through a crypto API; see Fig. 2. CSPs are 
sometimes associated with protected key storage. For example, a CSP associated with a Trusted 
Platform Module (TPM) will also provide access to the asymmetric private keys that are stored 
on the TPM. 
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Fig. 2. Applications using crypto APIs 

Cryptographic algorithm policy is set by the system administrator, which might be done to 
implement policy set by the enterprise Chief Information Security Officer (CISO). The policy will 
indicate whether a particular algorithm is allowed. For example, if there is a provider for Triple 
DES, calls to encrypt with it will fail if policy does not allow Triple DES. However, calls for Triple 
DES decryption might still be allowed so that stored files or email messages can be decrypted. 

Some protocols are implemented in user space, an area in memory where applications execute 
that is distinct from kernel space. Kernel space is a part of a computer’s memory where the 
operating system runs. For example, application-chosen TLS crypto library applications operate 
in user space; in fact, most libraries like OpenSSL, BoringSSL, Bouncy Castle, Network Security 
Services (NSS), and OpenSSH run in user space. Application developers need to consider 
whether the API is provided via the command line interface (CLI) or by “compiling in” support. 

For software libraries, it is important to facilitate efficient updates. Some standard mechanisms 
must be in place to avoid security pitfalls in library updates. 

4.2. Using APIs in the Operating System Kernel 

Some security protocols run in the operating system kernel, a computer program that generally 
is loaded first when the system is turned on and has complete control over all system resources 
accessible to all application programs in the system. For example, in the case of IPsec, the 
datagram encryption and authentication provided by IPsec need to operate in the kernel. 
Similarly, disk encryption needs to run in the kernel. 

To provide crypto agility in this case, the crypto API must also be accessible within the kernel. In 
some operating systems, only a subset of the crypto API’s overall capabilities is available in the 
kernel. This subset is determined by the cryptographic operations required in the kernel. In 
many operating systems, the supported algorithms in the kernel are established when the 
kernel is built, meaning that plugins to add algorithms are not available in the kernel. 
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Some systems perform self-tests of the cryptographic functions as part of the operating system 
boot process. These tests ensure that the cryptographic operations are working as expected 
before the system is available to applications or users. 

4.3. Hardware 

There are several aspects of the hardware implementation of cryptographic algorithms to 
consider that are related to crypto agility. 

A whole chip might be dedicated to the implementation of one cryptographic algorithm, or a 
small portion of a chip might implement a particular building-block function in support of a 
single cryptographic algorithm. In either case, a low-level interface is needed that works well in 
a particular hardware environment. In most cases, firmware is needed to manage memory and 
invoke the various low-level functions in the proper order. The functions that are implemented 
in the integrated circuit cannot be changed; this makes them well protected from attackers, but 
it also means that the chip will need to be replaced if it has design errors or changes are needed 
for the algorithms to be used. 

Some chips, like Subscriber Identity Module (SIM) cards and TPMs, are dedicated to 
cryptographic operations. These chips are part of a larger computer system like a mobile phone 
or a laptop computer. These chips store the private keys and perform cryptographic operations 
that depend on the keys. At no time does the private keying material leave the chip. These 
chips support very few cryptographic algorithms, and changing algorithms is accomplished by 
replacing the chip. In fact, some devices offer a slot to do so without opening the device. 

Hardware security modules (HSMs) are special-purpose hardware devices that store the private 
keys and perform cryptographic operations using those keys. An HSM might be a rack-mounted 
device for an organization or high-value application, or it might be a portable device that is 
easily locked in a safe when not in use. At no time does the private keying material leave the 
HSM, but there are operations to securely back up the private keying material to another HSM. 
Note that HSMs provide cryptographic services, but they also consume cryptographic services. 
HSMs offer tamper-detection capabilities to protect the private keying material stored in them. 
HSMs often include a microprocessor as well as one or more chips that are designed to 
accelerate different cryptographic algorithms or parts of the algorithms invoked by software 
cryptographic implementations. 

A personal portable cryptographic token, such as a Personal Identity Verification (PIV) card or a 
USB token, is a device that stores the private keys for an individual. The human user plugs the 
portable device into whatever computer they are using. At no time does the keying material 
leave the portable device. These devices are essentially tiny HSMs intended to be used by one 
person. 

Some central processing units (CPUs) have instructions that were designed to accelerate 
specific algorithms. A cryptographic algorithm implementation might detect whether such 
instructions are available and then take advantage of them if they are. For example, the Intel 
SHA Extensions paper [27] states that the CPUs offer features to make SHA hash computations 
faster.  



NIST CSWP 39 ipd (Initial Public Draft)  Considerations for Achieving Crypto Agility 
March 5, 2025  
 

16 

598 
599 
600 
601 

602 
603 
604 
605 
606 
607 
608 

609 
610 
611 
612 
613 
614 
615 
616 
617 
618 

619 

From this discussion, it should be clear that there are many reasons an application might use 
hardware to support cryptographic operations, including performance, the protection of 
private keys, and portability. An additional reason is that some hardware offers a good source 
of random numbers, which are vital to the generation of quality keying material. 

On the other hand, it is easier to provide multiple cryptographic algorithms to facilitate agility in 
library and application software than in hardware. Once a chip leaves the factory, additional 
algorithms may not be added easily. Other layers in an architecture fall on a spectrum between 
these two cases. The crypto API needs to be designed so that all points on this spectrum are 
accommodated. In some environments, especially HSMs and other cryptographic tokens, the 
data needs to move to the device where the key is stored for the data to be protected using 
that key. 

For the environments where the update of cryptographic functions in hardware is not possible 
in the field, it is important to consider the use of state-of-the-art cryptography to include 
implementations of the best and most conservative variants for each cryptographic function. A 
key element is the communication between cryptographers and developers to decide on a 
long-term plan based on the best estimate of the security needs during the lifetime of a specific 
hardware device. For example, secure booting (i.e., starting a computer and loading its 
operating system) requires using digital signature schemes. The public key and the program for 
verifying the signatures are included in the boot code and cannot be updated. In this case, to 
make sure that the platform is trustable during its lifetime, the signature schemes must be able 
to provide the required security during the lifetime of the device. 
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5. Discussions 

Achieving crypto agility demands collaborations and communications among cryptographers, 
developers, implementers, and practitioners to manage the risk of using cryptography to secure 
the data. To be actionable, crypto agility requirements must be specific for each 
implementation and application environment. This section discusses tradeoffs and identifies 
some areas for future work. Each subsection highlights important areas for consideration and 
associated stakeholders. 

5.1. Resource Considerations 

Resource limitation is the most difficult challenge to deal with for achieving crypto agility. This 
section discusses resource considerations for protocol designers, hardware implementers, and 
cryptographers. 

Crypto agility requires support for multiple cryptographic algorithms in a protocol. Some 
algorithms have much larger public keys, signatures, or ciphertext than the algorithms being 
replaced. Experience has shown that large sizes challenge the limits of existing protocols. It is 
important for protocol designers to consider resource demands in order to plan for future 
transitions and to distinguish intrinsic limitations from shortsighted design decisions. 

Hardware implementation is limited by capacity. It may not be possible to implement many 
algorithms in one hardware platform. Some optimization efforts such as accelerator reuse have 
been considered. Further research is needed in this area to deal with the transition from 
traditional public-key cryptography to post-quantum cryptography. 

Future cryptographic algorithm design must consider resource limitations. Usually, each design 
has focused on the resource requirements of a single algorithm for an application without 
considering other applications. For example, the design may use a specific primitive or a 
subroutine (such as a hash function) that is not commonly used by other algorithms. To save 
hardware resources, it is desirable for different algorithms to share the same subroutines. 
Cryptographers have considered algorithms based on diversified assumptions so that when one 
assumption is determined to be incorrect, an alternative based on a different assumption is in 
place. Achieving crypto agility within resource limitations requires cryptographers to prioritize 
security-related diversities. This is a new area of research that must take a different approach 
from that of traditional approaches using a single algorithm design. 

5.2. Agility-Aware Design 

This section discusses agility design considerations for application, platform, and protocol 
designers. 

Current practice has made it possible for applications to access cryptographic services through 
APIs. This significantly eases a cryptographic transition from one algorithm to another. When an 
algorithm is found vulnerable and must no longer be used, the use of an API can enable the 
transition by providing a flexible and efficient way to manage cryptographic operations. 
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However, for some operating systems, cryptographic operations are determined at the time 
when the kernels are built. In this case, it is not possible to update the cryptographic operations 
in the kernel when a transition is needed because they are an integral part of the kernel. A 
working area to be considered is to improve API usage in kernels to support update and 
transition. 

Agility-aware design could be reflected in the product or system configuration. It would ensure 
that the user interface (UI) and API can support new algorithms with different key and 
parameter sizes in order to use the underlying cryptographic software libraries and hardware 
accelerators. The design would not make assumptions based on one algorithm or a family of 
algorithms when coding cryptographic implementations. That is, the design would ensure that 
buffers, memory locations, storage, etc. could handle large keys and parameters.  

Some well-deployed security protocols, such as TLS, facilitate authenticated cipher-suite 
negotiation to allow adding new algorithms to and discontinuing the use of weak algorithms 
from the available cipher suites. This should be a common practice in any protocol design. For 
example, in most of the IETF Requests for Comment (RFCs), there is a section called “Security 
considerations.” It may be beneficial to include a section about “Crypto agility considerations” 
in the standards to provide rationales for the design choices to allow crypto agility. 

5.3. Complexity and Security 

Accommodating crypto agility introduces complexity to protocols and systems that protocol 
designers and system architects and implementers should take into consideration. It can also 
increase attack surfaces. For example, if cipher suite negotiation integrity is not properly 
protected, a downgrade attack can lead to a weaker cipher suite than otherwise agreed upon. 
For software libraries and APIs, a larger number of options may increase the chance to 
introduce security bugs. For enterprise IT administrators, it is important to make sure that the 
configuration is updated to reflect new security requirements. 

Crypto agility requires sound mechanisms to assure a secure and smooth transition. Currently, 
most security analysis and evaluations focus on a protocol or a system configuration without 
considering transition mechanisms. Cryptographic transition mechanisms should be included in 
a security assessment for a protocol or a system configuration. 

5.4. Crypto Agility in the Cloud 

This section discusses agility consideration for cloud computing service architects, developers, 
operators, and cryptographers. 

The cloud refers to many remote servers accessible over the internet where users can store 
data, run applications, and access services. Cloud service providers need crypto agility to meet 
the diverse requirements of various customers. Some applications use a cloud to support 
cryptographic operations. A cloud environment is advantageous for several reasons, including 
scalability.  
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However, use of a cloud environment tends to lock developers into a particular crypto API. For 
example, a cloud environment might provide benefits of secure backup and affordable cloud-
hosting services using container technology to ensure that a software package and all its 
dependencies run quickly and reliably. Based on the choices made by the cloud provider, the 
developers are also locked into the hardware, potentially including HSM support.  

In contrast, some cloud providers offer the ability to access an application-specific HSM that is 
external to the cloud environment. This avoids provider lock-in, but it comes with many 
operational requirements for the application provider to ensure availability. Additional choices, 
such as selecting the confidential computing architecture to protect data that is processed, can 
prevent the cloud provider from accessing keying material, but ultimately the cloud provider 
can remove the entire application. In some cloud environments, the cloud provider may be able 
to administratively delete keys from an HSM, even if they are not able to otherwise access 
those keys. 

5.5. Maturity Assessment for Crypto Agility 

This section introduces the consideration for all stakeholders in the organization to have a 
crypto agility maturity model to measure and track the maturity of the state of crypto agility 
against industry standards and best practices in order to be resilient against the evolving 
changes in crypto requirements. 

A maturity model is needed for a given software or IT landscape to assess the readiness of a 
software or system for cryptographic algorithm transition. Hohm, Heinemann, and Wiesmaier 
[28] proposed a Crypto Agility Maturity Model (CAMM), which identifies five maturity levels 
from level 0 to level 4. These five levels are described as not possible, possible, prepared, 
practiced, and sophisticated. The requirements associated with each of the five levels make it 
possible to evaluate a given system according to its ability to implement crypto-agility 
requirements. The requirements in [28] are categorized as knowledge, process, and system 
properties. These requirements are valuable references in considering the maturity of crypto 
agility. For example, at Level 2-Prepared, Requirement 2.0 Cryptographic Modularity “is 
understood as a system design that enables changes to the cryptographic components without 
affecting the functionality of the other system components. In the event of a vulnerability, the 
implementation of cryptographic functions, their parameters and primitives can be replaced 
without affecting the system logic.” This requirement is noted as system properties. However, 
most of the requirements are descriptive, not quantitative. Some of the requirements apply to 
a system, while the others may apply to an organization or a set of protocols. 

This work could be adapted to create a concrete assessment model that is applicable to every 
system. If this happens, the government can create incentives for the adoption of such a 
maturity model. Maturity assessment for crypto agility is a new area to explore. FIPS 140 
validation does not currently assess crypto agility, but the feasibility of adapting FIPS 140 
testing to encompass crypto agility is being studied. 

Current FIPS 140 validation tests the implementations of NIST-approved cryptographic 
algorithms. The resulting certification includes a list of NIST-approved algorithms implemented 
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in a cryptographic module. If a module implements multiple algorithms at multiple security 
strengths for the same function (for example, the SHA-2 and SHA-3 hash functions), then the 
module supports crypto agility for hash functions. However, if the only implemented algorithm 
will be deprecated in the next few years (ECDSA, for example, with only elliptic curve P-224), 
this raises an issue about a module’s support for crypto agility.  

5.6. Crypto Agility Strategic Plan for Managing Organizations’ Crypto Risks 

A crypto agility strategic plan as presented in Fig. 3 brings together key functions such as 
governance, crypto and data assets, risk management, and automated tooling to inform the 
migration/transition of crypto at different technology levels. Organizations need to transition or 
migrate their cryptographic use multiple times throughout the systems’ lifetimes. By 
incorporating crypto agility into their crypto policies during technology refreshes, updates, or 
modernization efforts, organizations can proactively address emerging threats, technological 
advances, system weaknesses, and evolving business requirements, standards, regulations, and 
mandates.  

 
Fig. 3. Crypto agility strategic plan for managing organizations’ crypto risks 

The plan may include several key activities, including: 

• Integrate crypto agility into the organization’s existing governance function to establish, 
communicate, and monitor the cybersecurity risk management strategy, expectations, 
and policies related to cryptography. This includes understanding crypto standards, 
regulations, and mandates, and communicating these requirements to data owners, IT 
and development teams, business partners, and technology supply chain vendors 
prioritized by the criticality of the data. 
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• Inventory the use of cryptography for data protection across the organization by 
adopting a data-centric approach informed by the criticality of the data to identify the 
organization’s most valuable assets, such as application codes, libraries, software, 
hardware, user-generated content, communication protocols, enterprise services, and 
systems. 

• Identify gaps in enterprise management tools for managing assets, configurations, 
vulnerabilities, and logs. These tools should support crypto risk management and data 
protection functions by automating the identification, assessment, characterization, 
enforcement, and monitoring of crypto use across the assets in an automated way. If 
necessary, enhance the tools with automated data and cryptographic discovery 
capabilities, including algorithms and key lengths. For instance, vulnerability 
management and software/hardware development tools can help ensure 
comprehensive visibility and an inventory of assets such as code, libraries, applications, 
and associated cryptographic algorithms. 

• Develop a prioritization list of assets to be mitigated first due to the use of weak 
cryptography, based on the disparate data collected from the initial steps. A crypto 
policy-informed risk assessment engine analyzes this data to form a strategy and 
recommend actions to reduce risks. The engine continuously measures, monitors, and 
reports on the state of crypto, particularly focusing on crypto agility key performance 
indicators (KPIs) for the level of efforts to adapt and migrate effectively and efficiently, 
based on the organization’s defined crypto policy. 

• Implement the strategy and actions based on the prioritization list. Crypto agility is 
crucial for deciding whether to migrate assets smoothly or deploy mitigation techniques 
to reduce risks. Organizations can use enterprise management tools to migrate assets, 
such as code, applications, software, hardware, and communication protocols, or 
implement additional security controls as part of a zero-trust approach [29] to mitigate 
crypto risks for networks, devices, and applications if the assets are not agile enough to 
support the crypto policy. 

These steps are continuously repeated to mitigate evolving crypto risks and enhance the crypto 
agility posture within organizations. Crypto agility is a key principle that organizations should 
consider throughout the data-centric cryptographic risk management process. 

Crypto governance is an important part of a crypto agility strategic plan. The following 
subsections discuss some components of governance that are crucial for organizations to drive 
cryptographic practices and compliance in support of managing the crypto risks among all 
stakeholders, from the organization’s board to the implementers. 

5.6.1. Crypto Standards, Regulations, and Mandates 

Any crypto agility effort must consider the effects of standards, regulations, and mandates on 
transition requirements for cryptographic algorithms. Movements to achieve crypto agility 
involve coordination between protocol designers, software and hardware vendors, application 
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and standards developers, policy makers, and IT administrators. Government standards and 
regulations can mandate the transition when an algorithm is found vulnerable. NIST SP 800-
131A guides algorithm and security strength transitions by setting transition schedules for 
implementers to sunset certain algorithms or security strengths based on a common 
understanding of the computing power available for attackers and the latest research results. 
For example, SP 800-131A rev. 2 [30], published in 2019, set the end of 2023 as the date to 
disallow three-key Triple DES for applying cryptographic protection. 

Industry standards play an important role in compliance with security requirements for 
cryptographic algorithm usage in different application environments. The standards for 
different applications such as internet protocols, communications, and applications update the 
supported cipher suites to eliminate algorithms and ciphers that are vulnerable. Security 
protocols often define mandatory-to-implement cipher suites to reflect the state-of-the-art of 
cryptography and support interoperability. 

The NIST Cryptographic Algorithm Validation Program (CAVP) provides validation testing for 
FIPS-approved and NIST-recommended cryptographic algorithms. Cryptographic algorithm 
validation is a prerequisite of cryptographic module validation. The approved algorithms and 
relevant parameter sets are updated based on transition requirements. 

From a practitioner’s perspective, certain policies, laws, and mechanisms must be established 
to enhance crypto agility practice to facilitate the transition and provide proper security during 
the transition. These laws and policies are coupled with industry-specific requirements. It is 
very important to handle the data in a secure way during a transition. For example, for the 
encrypted storage of data-at-rest, a mechanism must be established to handle encrypted user 
data when the encryption algorithm is to be replaced by a stronger one. Similarly, when a 
digital signature algorithm must be replaced, a mechanism to handle already-signed documents 
is required. 

5.6.2. Crypto Security Policy Enforcement 

Crypto security policy enforcement must be considered as an important factor in the crypto 
agility assessment for each protocol, system, and application. One of the most challenging 
aspects of crypto agility is replacing vulnerable algorithms in a timely manner and at the same 
time keeping the system running without interruption. For security protocols, a crypto security 
policy can be enforced through specifying mandatory-to-implement algorithms and disallowing 
the use of weak algorithms in a timely fashion. For a system, a security policy can be enforced 
through the use of an API. Security practitioners enforce security policy through decisions for 
using cryptographic algorithms with required security strengths. 

Enforcing crypto security policy requires communications among cryptographers, developers, 
practitioners, IT administrators, and policy makers. Each decision on deprecating a 
cryptographic algorithm must be synchronized among all the stakeholders so the security policy 
can be updated quickly. 
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6. Conclusion 

Crypto agility is a future-proofing strategy to deal with changes. It demands communications 
among cryptographers, developers, implementers, and practitioners to accommodate evolving 
security, performance, and interoperability challenges. The pursuit of crypto agility capabilities 
involves exploration of new technologies and management schemes. New crypto agility 
requirements must be developed for each environment. The security analysis and evaluation 
for protocols, systems, and applications must include mechanisms for transitions. 
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Appendix A. List of Symbols, Abbreviations, and Acronyms 

AEAD 
Authenticated Encryption with Associated Data 

AES 
Advanced Encryption Standard 

AES-CCM 
Advanced Encryption Standard – Counter with CBC-MAC 

AES-GCM 
Advanced Encryption Standard – Galois/Counter Mode  

API 
Application Programming Interface 

CA 
Certification Authority 

CAMM 
Crypto Agility Maturity Model 

CAVP 
Cryptographic Algorithm Validation Program 

CISO 
Chief Information Security Officer 

CLI 
Command Line Interface 

CMS 
Cryptographic Message Syntax 

CPU 
Central Processing Unit 

CRQC 
Cryptographically Relevant Quantum Computer 

CSP 
Cryptographic Service Provider 

DES 
Data Encryption Standard 

DNSSEC 
Domain Name System Security Extensions 

EAP 
Extensible Authentication Protocol 

ECDSA 
Elliptic Curve Digital Signature Algorithm 
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1009 

1010 
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1012 
1013 
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EDNS 
Extension Mechanisms for Domain Name System 

FIPS 
Federal Information Processing Standard 

HSM 
Hardware Security Module 

IETF 
Internet Engineering Task Force 

IKE 
Internet Key Exchange 

IPsec 
Internet Protocol Security 

IR 
Internal Report 

KEM 
Key Encapsulation Mechanism 

KPI 
Key Performance Indicator 

MAC 
Message Authentication Code 

ML-DSA 
Module-Lattice-Based Digital Signature Algorithm 

ML-KEM 
Module-Lattice-Based Key Encapsulation Mechanism 

PIV 
Personal Identity Verification 

PKI 
Public Key Infrastructure 

PQC 
Post-Quantum Cryptography 

RFC 
Request for Comment 

RPKI 
Resource Public Key Infrastructure 

RSA 
Rivest-Shamir-Adelman 

SDO 
Standards Developing Organization 
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SHA 
Secure Hash Algorithm 

SIM 
Subscriber Identity Module 

S/MIME 
Secure Multipurpose Internet Mail Extensions 

SP 
Special Publication 

TLS 
Transport Layer Security 

TPM 
Trusted Platform Module 

UI 
User Interface 

USB 
Universal Serial Bus 
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