
NIST Cybersecurity White Paper
NIST CSWP 39 2pd

Considerations for Achieving
Crypto Agility
Strategies and Practices

Second Public Draft

Elaine Barker*
Lily Chen
David Cooper*
Dustin Moody
Andrew Regenscheid
Murugiah Souppaya
Computer Security Division
Information Technology Laboratory

Bill Newhouse
Applied Cybersecurity Division
Information Technology Laboratory

Russ Housley
Vigil Security

Sean Turner
sn3rd

William Barker
Dakota Consulting

Karen Scarfone
Scarfone Cybersecurity

*Former NIST employee; all work for this
publication was done while at NIST.

This publication is available free of charge from:
https://doi.org/10.6028/NIST.CSWP.39.2pd

July 17, 2025

https://doi.org/10.6028/NIST.CSWP.39.2pd
https://crossmark.crossref.org/dialog/?doi=10.6028/NIST.CSWP.39.2pd

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this
paper in order to specify the experimental procedure adequately. Such identification does not imply
recommendation or endorsement of any product or service by NIST, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

NIST Technical Series Policies
Copyright, Use, and Licensing Statements
NIST Technical Series Publication Identifier Syntax

How to Cite this NIST Technical Series Publication:
Barker E, Chen L, Cooper D, Moody D, Regenscheid A, Souppaya M, Newhouse B, Housley R, Turner S, Barker W,
Scarfone K (2025) Considerations for Achieving Crypto Agility: Strategies and Practices. (National Institute of
Standards and Technology, Gaithersburg, MD), NIST Cybersecurity White Paper (CSWP) NIST CSWP 39 2pd.
https://doi.org/10.6028/NIST.CSWP.39.2pd

Author ORCID iDs
Elaine Barker: 0000-0003-0454-0461
Lily Chen: 0000-0003-2726-4279
David Cooper: 0000-0001-2410-5830
Dustin Moody: 0000-0002-4868-6684
Andrew Regenscheid: 0000-0002-3930-527x
Murugiah Souppaya: 0000-0002-8055-8527
Bill Newhouse: 0000-0002-4873-7648
William Barker: 0000-0002-4113-8861
Karen Scarfone: 0000-0001-6334-9486

Public Comment Period
July 17, 2025 - August 15, 2025

Submit Comments
crypto-agility@nist.gov

National Institute of Standards and Technology
Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

Additional Information
Additional information about this publication is available at https://csrc.nist.gov/publications/cswp, including
related content, potential updates, and document history.

All comments are subject to release under the Freedom of Information Act (FOIA).

https://doi.org/10.6028/NIST-TECHPUBS.CROSSMARK-POLICY
https://www.nist.gov/nist-research-library/nist-technical-series-publications-author-instructions#pubid
mailto:crypto-agility@nist.gov
https://csrc.nist.gov/publications/cswp

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

i

Abstract 1

2
3
4
5
6
7

8

9
10

11

12
13
14
15
16
17

18

19
20
21
22
23
24

25

26
27
28
29
30
31
32

Cryptographic (crypto) agility refers to the capabilities needed to replace and adapt
cryptographic algorithms in protocols, applications, software, hardware, firmware, and
infrastructures while preserving security and ongoing operations. This white paper provides an
in-depth survey of current approaches to achieving crypto agility. It discusses challenges and
trade-offs and identifies approaches for providing operational mechanisms to achieve crypto
agility. It also highlights critical working areas that require additional consideration.

Keywords

cryptographic agility; cryptographic algorithm; cryptographic application programming interface
(API); cryptographic risk management; cryptographic transition.

Audience

Crypto agility is a cross-disciplinary topic with many stakeholders, including protocol designers,
implementers, and operators; IT and cybersecurity architects; software and standards
developers; hardware designers; and executives and policymakers. Achieving crypto agility
requires cryptographic researchers to proactively address upcoming transitions and capture the
attention of cryptographic application communities. Therefore, the intended audience also
includes cryptographic researchers.

Note to Reviewers

This is the second draft of this white paper. The first draft provided a common understanding of
challenges and identified existing approaches related to crypto agility based on discussions that
NIST conducted with various organizations and stakeholders. It was provided as read-ahead
material for the virtual Crypto Agility workshop hosted by NIST in April 2025. This second draft
reflects the findings from the workshop in addition to the feedback received during the first
public comment period.

Acknowledgments

NIST appreciates the input and contributions from the collaborators of the National
Cybersecurity Center of Excellence (NCCoE) Post-Quantum Cryptography (PQC) Migration
project in the development of this white paper. The comments received during the public
comment period and the discussions at the NIST Crypto Agility Workshop have greatly helped
to improve the white paper. NIST sincerely acknowledges the commenters and workshop
participants for their valuable contributions. A special note of thanks goes to Jim Foti and Isabel
Van Wyk for reviewing and editing this document.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

ii

Table of Contents 33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

Executive Summary ..1
1. Introduction ...2
2. Historic Transitions and Challenges ...4

3. Crypto Agility for Security Protocols ..6

3.1.1. Mandatory-to-Implement Algorithms .. 7
3.1.2. Dependent Specifications ... 8

3.2.1. Preserving Protocol Interoperability .. 9
3.2.2. Providing Notices of Expected Changes ... 10
3.2.3. Integrity for Algorithm Negotiation.. 10
3.2.4. Hybrid Cryptographic Algorithms ... 11

3.4.1. Balancing the Security Strength of Algorithms in a Cipher Suite ... 13
3.4.2. Balancing Protocol Complexity ... 13

4. Crypto Agility for Applications .. 15

5. Crypto Agility Strategic Plan for Managing Organizations’ Crypto Risks .. 19

6. Considerations for Future Works .. 24

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

iii

68
69
70
71
72
73
74

75

76

77
78
79

80

7. Conclusion ... 29
References ... 30
Appendix A. List of Symbols, Abbreviations, and Acronyms ... 34
Appendix B. Definition of Crypto Agility in Other Literature .. 37

List of Figures

Figure 1. Possible second transition from hybrid mode ... 11
Figure 2. Functional diagram of applications using crypto APIs .. 15
Figure 3. Crypto agility strategic plan for managing an organization’s cryptographic risks 19

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

1

Executive Summary 81

82
83
84
85
86
87
88

89
90
91
92
93
94
95

96
97
98
99

100
101
102

103
104
105
106
107

108

Cryptographic algorithms have been relied upon for decades to protect every communication
link and digital device. Advances in computing capabilities, cryptographic research, and
cryptanalytic techniques sometimes necessitate replacing algorithms that no longer provide
adequate security. A typical algorithm transition is costly, takes time, raises interoperability
issues, and disrupts operations. Cryptographic (crypto) agility refers to the capabilities needed
to replace and adapt cryptographic algorithms in protocols, applications, software, hardware,
firmware, and infrastructures while preserving security and ongoing operations.

The threats posed by future cryptographically relevant quantum computers to public-key
cryptography demand an urgent migration to quantum-resistant cryptographic algorithms. The
impact of this transition will be much larger in scale than previous transitions because all public-
key algorithms will need to be replaced rather than just a single algorithm. Also, this transition
will certainly not be the last one required. Future cryptographic uses will demand new
strategies and mechanisms to enable smooth transitions. As a result, crypto agility is a key
practice that should be adopted at all levels, from algorithms to enterprise architectures.

This white paper provides an in-depth survey of current approaches for achieving crypto agility
and discusses their challenges and trade-offs as an introduction for executives and
policymakers. Sections 3, 4, and 6 present crypto agility considerations in technical detail and
may be of interest to organizational protocol designers, implementers, operators, IT and
cybersecurity architects, software and standards developers, and hardware designers. Section 5
examines strategic planning for crypto agility, which should be beneficial for organizational risk
management, governance, and policy professionals.

Executives can leverage the insights in this paper to develop a comprehensive strategic and
tactical plan that integrates crypto agility into the organization’s overall risk management
framework, ensuring that employees, business partners, and technology suppliers involved in
cryptographic design, implementation, acquisition, deployment, and use consider and adopt
these practices.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

2

1. Introduction 109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125
126
127
128

129
130
131

132
133
134
135
136
137
138

139
140
141
142
143
144

145
146
147
148

Advances in computing capabilities, cryptographic research, and cryptanalytic techniques
frequently create a critical need to replace algorithms that no longer provide adequate security
for their use cases with algorithms that are considered secure. Historically, cryptographic
transitions take place over several decades. For example, for block ciphers transitioned from
single DES to Triple DES and then to AES due to rapidly increasing computing power and more
sophisticated cryptanalysis techniques. Each transition is costly, takes time, raises
interoperability issues, and disrupts operations. The threats posed by future cryptographically
relevant quantum computers (CRQCs) to public-key cryptography demand an urgent migration
to quantum-resistant cryptography. The impact of transitioning to post-quantum cryptography
(PQC) will be much larger in scale than previous transitions because all public-key algorithms
will need to be replaced rather than just a single algorithm. These algorithms have been used
for decades to protect every communication link and digital device. With the rapid growth of
computing power and cryptographic techniques, this PQC transition will certainly not be the
last transition required. Future cryptographic applications will demand new strategies and
mechanisms to enable smooth transitions.

Cryptographic (crypto) agility describes the capabilities needed to replace and adapt
cryptographic algorithms for protocols, applications, software, hardware, firmware, and
infrastructures while preserving security and ongoing operations. Many definitions and
descriptions for crypto agility have been proposed, some of which are listed in Appendix B.

Crypto agility facilitates migrations between cryptographic algorithms without significant
changes to the application that is using the algorithms. Its exact definition is highly dependent
on specific organizational and technical contexts. For example:

• Crypto Agility for a Computing System: Cryptographic algorithms are implemented in
software, hardware, firmware, and infrastructures to facilitate their use in applications.
For example, replacing a cryptographic algorithm in applications often requires changes
to application programming interfaces (APIs) and software libraries [1]. It may also
necessitate the replacement of hardware to incorporate new hardware accelerators. In
a system, crypto agility is the ability to adopt new cryptographic algorithms and stop the
use of weak algorithms in applications without disrupting the running system.

• Crypto Agility for a Communication Protocol: In a communication protocol, parties
must agree on a common cipher suite: a common set of cryptographic algorithms used
for key establishment, signature generation, hash function computation, encryption,
and/or data authentication. Any update of algorithms must be reflected in the protocol
specifications. In a protocol, crypto agility is the ability to maintain interoperability when
introducing new cryptographic algorithms and preventing the use of weak algorithms.

• Crypto Agility for an Enterprise IT Architect: Achieving crypto agility is not only a task
for product designers, implementors, and operators but also for IT and cybersecurity
architects, software and standards developers, hardware designers, and executives.
Organizations that practice crypto agility should be able to turn off the use of weak

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

3

cryptographic algorithms quickly when a vulnerability is discovered and adopt new 149
150
151

152
153
154
155
156
157
158
159

160

161

162
163

164
165
166

167
168

169

170

171

cryptographic algorithms without making significant changes to infrastructures or
suffering from unnecessary disruptions.

Achieving crypto agility requires a systems approach to providing mechanisms that enable the
transition to alternative algorithms and limit the use of vulnerable algorithms in a seamless way
while maintaining security and acceptable operation. Significant effort has been made by the
research and application community in approaching crypto agility. Some sector-specific
guidance and strategies were developed and are referred to in Appendix B. This white paper
surveys crypto agility approaches in different implementation environments and proposes
strategies for achieving the agility needs of varied applications. This paper also discusses crypto
agility in different contexts and highlights the coordination needed among stakeholders.

The paper is structured as follows:

• Section 2 discusses the challenges faced in past transitions.

• Section 3 examines the challenges and existing practices in achieving crypto agility for
security protocols.

• Section 4 addresses strategies for supporting crypto agility for applications — from an
API to software libraries or hardware. Some of the strategies have been implemented in
today’s systems, and others will be considered in the future.

• Section 5 presents the use of a crypto agility strategic plan for managing an
organization’s cryptographic risks in an enterprise environment.

• Section 6 identifies important areas for consideration and future actions.

• Section 7 provides concluding thoughts.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

4

2. Historic Transitions and Challenges 172

173
174
175
176
177
178

179
180
181
182

183

184
185
186
187
188
189
190
191
192

193
194
195
196

197

198
199
200
201
202
203
204
205
206
207
208

Most early cryptographic applications were deployed using algorithms that were expected to
be used throughout the lifetime of the application or systems. However, due to increases in
computing power, advances in cryptanalytic techniques, and regulatory obsolescence, many
algorithms require quick replacement within the lifetime of a system. As a result, cryptographic
transitions to replace algorithms should be an important part of security practices within an
organization-wide risk management program.

In the past 50 years, applications involving cryptography have undergone multiple transitions.
This section describes transition challenges and the lessons learned. In this historic review, the
necessary background on cryptographic algorithms and transition triggers is provided to help
readers understand the subsequent content.

2.1. Long Period for a Transition

In 1977, the Data Encryption Standard (DES) became the first published encryption standard.
The DES algorithm [2] had a 64-bit block size and a 56-bit key. Motivated by the threat of a
practical brute-force attack against DES’s 56-bit key, a variation of DES called Triple DES [3] (due
to its capacity to use two or three 56-bit keys) was introduced as a temporary solution before a
stronger algorithm could be standardized and made available for use. This new and stronger
algorithm, called the Advanced Encryption Standard (AES) [3] (with options for 128-, 192-, or
256-bit keys), was standardized in 2001. Both AES and Triple DES continued to be used for
many years until Triple DES was finally disallowed in 2024. This 23-year transition from Triple
DES to AES supports the existence of significant transition challenges.

Historically, decisions about the cryptographic algorithms used for applications were made
without considering any future transitions. Sometimes, the algorithms are implemented in a
manner that is difficult to change, making maintenance and the addition of new algorithms
hard to accomplish.

2.2. Backward Compatibility and Interoperability Challenges

The need for backward compatibility can also be a barrier to transition. For example, hash
functions are used as a message digest in digital signatures, for the generation of message
authentication codes (MACs), for key-derivation functions, and for random-number generation.
Cryptographic hash functions have also been used as a basic component in hash-based
signatures. Cryptographic hash function requirements include collision resistance, pre-image
resistance, and second pre-image resistance. SHA-1, a hash function with a 160-bit output
length [4], was expected to provide 80 bits of collision resistance and 160 bits of pre-image
resistance. Many use cases relied on these security properties. However, in 2005, SHA-1 was
found to provide fewer than 80 bits of collision resistance [5]. In 2006, NIST responded by
urging federal agencies to “stop relying on digital signatures that are generated using SHA-1 by
the end of 2010.”

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

5

Because SHA-1 had been used in signatures for entity authentication in many existing secure 209
210
211
212
213
214
215
216
217

218

219
220
221
222
223
224
225

226
227
228
229
230

231
232
233
234
235
236
237

238

239
240
241
242
243
244
245
246
247

protocols, interoperability and backwards compatibility had to be considered in the transition.
In particular, using SHA-1 in digital signatures for entity authentication had to be allowed in
certain circumstances for some protocols, such as Transport Layer Security (TLS) (Section
4.4.2.2 of [6]). Since 2005, additional cryptanalyses have shown the weakness of SHA-1 with
respect to collision resistance [7]. NIST has recommended a complete transition away from
SHA-1 by the end of 2030 [8]. This example shows that when some applications do not have
crypto agility and cannot make timely transitions, a longer transition period may need to be
allowed in order to facilitate backward compatibility.

2.3. Constant Needs of Transition

For a public-key cryptographic algorithm, security strength is determined by parameter
selection. For example, one of the parameters for the RSA algorithm is the modulus size. When
the use of RSA was first approved for digital signatures in 2000 as specified in Federal
Information Processing Standards (FIPS) publication 186-2 [9], a minimum modulus size of 1024
bits was required to provide at least 80 bits of security strength. In 2013, the minimum modulus
was increased to 2048 bits to provide a security strength of at least 112 bits due to the progress
in integer factorization and the increase in computing power.

For many devices, a key size (modulus) is fixed for the device. However, a transition to a larger
key size (modulus) may need to happen during a device’s lifetime. If a device is not designed to
transition to a larger key size (modulus) during its lifetime, the device will need to be replaced.
Given the long-desired lifespan of many devices, it is generally more cost-effective to design the
device for such transitions during its development.

When one transition is planned, another transition can appear for a different reason. Since
2005, NIST Special Publication (SP) 800-57 Part 1 [10] has projected the need to transition to
128-bit security strength by 2031. Because of the emerging need to transition to post-quantum
cryptography, NIST Internal Report (IR) 8547 [11] stated that the 112-bit security strength for
the current public-key algorithms would be deprecated in 2031 rather than disallowed in order
to facilitate a direct transition from the 112-bit security strength provided by current public-key
schemes to post-quantum cryptography.

2.4. Resource and Performance Challenges

Transitions in general and transitions to post-quantum algorithms in particular present many
challenges. Some quantum-resistant algorithms have larger sizes for public keys, signatures,
and ciphertext than those for classic public-key algorithms. For example, an RSA modulus of
3072 bits provides roughly 128 bits of classical security strength with its 3072-bit signature. The
transition to the post-quantum Module-Lattice-Based Digital Signature Algorithm (ML-DSA)
specified in FIPS 204 will result in a signature of 2420 bytes (i.e., 19,360 bits) to provide a
roughly equivalent classical security strength of 128 bits [12]. This shows that transitioning to
new algorithms can challenge the capacity of a communication network and increase the time
to transmit the message with signatures or ciphertexts.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

6

3. Crypto Agility for Security Protocols 248

249
250
251
252
253
254
255
256
257
258

259
260
261
262
263
264

265
266

267

268
269
270

271
272
273
274
275
276

277
278
279
280
281

282
283
284
285

Many security protocols use cryptographic algorithms to provide confidentiality, integrity,
authentication, and/or non-repudiation. Communicating peers must agree on a common set of
cryptographic algorithms, referred to as a cipher suite, for security protocols to work properly.
This aspect of a security protocol is called cipher suite negotiation. The cipher suite may include
algorithms for integrity protection, authentication, key derivation, key establishment,
encryption, and digital signatures to provide the needed security services. Crypto agility is
achieved when an implementation of a security protocol can easily transition from one cipher
suite to another, more desirable one. Each security protocol normally specifies a suite of
mandatory-to-implement algorithms to ensure basic interoperability. However, a mandatory-
to-implement algorithm may need to be replaced if a flaw is found in it.

To achieve crypto agility, security protocol implementations should be modular to easily
accommodate the insertion of new algorithms or cipher suites. Implementations should also
provide a way to determine when deployed implementations have shifted from the old
algorithms to the more desirable ones. Expect the set of mandatory-to-implement algorithms
to change over time; this mechanism needs to accommodate the identification of yet-to-be
specified algorithms in the future.

This section discusses challenges and existing practices in achieving crypto agility for security
protocols.

3.1. Algorithm Identification

Security protocols include a mechanism to identify the algorithm or cipher suite in use. In some
industries, regulation can mandate algorithm deprecation, but in other industries, algorithm
deprecation is completely voluntary.

Some security protocols explicitly carry algorithm identifiers or a cipher suite identifier to
indicate the algorithms that are being used, while others rely on configuration settings to
identify the algorithms or cipher suite. For example, an entry in a database of symmetric keys
that includes both a key value and an algorithm identifier might be sufficient. If a security
protocol does not carry an explicit algorithm identifier, a new protocol version number is
needed to identify the use of a new algorithm or cipher suite.

The version number of a protocol or an algorithm identifier is needed for an implementation to
tell communicating peers which algorithm or cipher suite is being used. Changing the version
number of a protocol usually requires significant effort by the standards developing
organization (SDO). Thus, crypto agility is easier to achieve when security protocols include
algorithm or cipher suite identifiers.

In some security protocols, a combination of the protocol version number and explicit
algorithm or cipher suite identifiers is defined. For example, in TLS Version 1.2 [13] and TLS
version 1.3 (TLSv1.3) [6], the version number specifies the hash function that is used as a binder
for external pre-shared keys (PSKs).

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

7

Some security protocols carry one identifier for each algorithm that is used, while other security 286
287
288
289
290
291
292

293
294
295
296
297
298
299
300
301
302

303
304
305

306
307
308
309
310
311
312
313
314
315
316
317

318

319
320
321
322
323
324

protocols carry one identifier for a cipher suite that specifies the use of multiple algorithms. For
example, in the IPsec protocol suite, Internet Key Exchange Protocol version 2 (IKEv2) [14] most
commonly negotiates algorithms with a separate identifier for each algorithm. In contrast,
TLSv1.3 [6] negotiates algorithms with cipher suite identifiers. Both identification approaches
are used successfully in security protocols, and both require the assignment of new identifiers
to add support for new algorithms.

Designers are encouraged to pick one of these approaches and use it consistently throughout
the protocol or family of protocols. Cipher suite identifiers make it easier for the protocol
designer to avoid incomplete specifications because each cipher suite selects the algorithms for
all cryptographic services. However, cipher suite identifiers inherently face a combinatoric
explosion when all useful combinations of algorithms are specified. On the other hand, using
multiple algorithm identifiers rather than cipher suites imposes a burden on implementations
to determine which algorithm combinations are acceptable during session establishment. This
determination is often made through a negotiation that is built into session establishment,
which is sometimes called security association establishment. Local policy can limit the
allowable combinations.

Regardless of the mechanism used, security protocols historically negotiate the symmetric
cipher and cipher mode together to ensure that they are compatible. As a result, one algorithm
identifier names both the symmetric cipher and the cipher mode.

In some protocols, the length of the key to be used is not specified by the algorithm or cipher
suite identifier, thus allowing the key length to be flexible. For example, TLSv1.2 cipher suites
include Diffie-Hellman key exchange without specifying a particular public-key length. When
the algorithm identifier or suite identifier specifies a particular public-key length, migration to
longer lengths would require the specification, implementation, and deployment of a new
algorithm or cipher suite identifier. In contrast, a flexible public-key length in a cipher suite
would make it easier to migrate away from short key lengths when the computational
resources available to an attacker dictate the need to do so. However, the flexibility of
asymmetric key lengths has led to interoperability problems when the key length is not firmly
established. To avoid these interoperability problems in the future, any aspect of the algorithm
not specified by the algorithm identifiers needs to be negotiated, including the key size and
other parameters.

3.1.1. Mandatory-to-Implement Algorithms

For secure interoperability, communicating peers must agree on a common set of secure
cryptographic algorithms. While many algorithms are often specified for a security protocol, an
implementation may not support all possible algorithms. To ensure that interoperation is
possible for all implementations, an SDO will often choose at least one set of algorithms with
properly selected security strengths based on state-of-the-art cryptanalysis results as
mandatory-to-implement (i.e., to be supported by all implementations).

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

8

However, SDOs need to change the set of mandatory-to-implement algorithms over time to 325
326
327
328
329
330
331
332

333
334
335
336
337
338
339

340

341
342
343
344
345
346
347

348
349
350
351

352

353
354
355
356
357
358
359
360
361

362
363

keep up with advances in computing and cryptanalysis. For example, NIST has withdrawn
approval for the DES encryption algorithm and the Triple DES encryption algorithm. Each was a
mandatory-to-implement algorithm in various security protocols at one time. It is highly
desirable for SDOs to be able to revise mandatory-to-implement algorithms without modifying
the base security protocol specification. To achieve this goal, some SDOs publish a base security
protocol specification and a companion document that describes the supported algorithms,
which allows for one document to be updated without necessarily modifying the other.

SDOs should specify the new algorithms before the current ones have weakened to the
breaking point. For example, support for the AES algorithm was introduced in S/MIME v3.1
[15], and the AES algorithm became mandatory to implement in S/MIME v3.2 [16]. This
approach allows for a timely migration to the new algorithms while the old algorithms are still
able to meet their security expectations. However, a failure of implementers and
administrators to take prompt action to transition will increase the period of time that an old
algorithm is used, perhaps dangerously so.

3.1.2. Dependent Specifications

Mandatory-to-implement algorithms are not specified for protocols that are embedded in other
protocols. In these cases, the higher-level protocol specification identifies the mandatory-to-
implement algorithms used in the embedded protocols. For example, S/MIME version 3.2 [16]
(a higher-level protocol) makes use of (i.e., embeds) the cryptographic message syntax (CMS)
[17]. Thus, S/MIME (not CMS) specifies the mandatory-to-implement algorithms. This approach
allows various security protocols to use the CMS and make independent choices regarding
which algorithms are mandatory to implement.

To add a new algorithm, the conventions for using that new algorithm are specified for the
embedded security protocol (i.e., the CMS in the example above), and then at some future
time, the higher-level protocol (i.e., S/MIME in the example above) might make that algorithm
mandatory to implement.

3.2. Algorithm Transitions

Transitioning from a weakening algorithm can be complicated. It is relatively straightforward to
specify how to use a new, better algorithm. However, the development of a security protocol
specification and its implementation and deployment often take years, especially if a new or
additional infrastructure is required prior to deployment. The physical location of devices can
add challenges to upgrades, especially for remote sensors and space systems. Overcoming
these challenges takes time and increases cost. When the new algorithm is widely deployed, it
should be used in lieu of the old algorithm. However, knowledge about the actual use and
security of the new algorithm will always be imperfect, so one cannot be completely sure that it
is safe to remove the old algorithm from an implementation.

A cryptographic key is associated with a particular algorithm, which means that key expiration
and revocation are important tools for cryptographic algorithm transition. For example, the

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

9

validity period on a certificate will ensure that the public key contained in the certificate is not 364
365
366
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381

382
383
384
385
386
387
388
389
390
391

392

393
394
395
396
397
398
399
400
401
402

used for authentication by a relying party beyond certificate expiration. Likewise, revoking the
certificate indicates to a relying party that the public key should not be used, even if the
certificate is not expired.

Algorithm transition is naturally facilitated as part of an algorithm selection or negotiation
mechanism. During the negotiation phase, security protocols traditionally select the most
secure algorithm or cipher suite that is supported by all communicating peers and acceptable
by their policies. In addition, a mechanism to determine whether a new algorithm has been
deployed is often needed. For example, the SMIME Capabilities attribute [16] allows S/MIME
mail user agents to share the list of algorithms that they are willing to use in order of
preference. A secure email sender can tell that it is possible to use a new algorithm when all
recipients include it in their SMIME Capabilities attribute. As another example, the Extension
Mechanisms for DNS (EDNS(0)) [18] can be used in Domain Name System Security Extensions
(DNSSEC) to signal the acceptance and use of new digital signature algorithms. In Resource
Public Key Infrastructure (RPKI), all implementations must support the same digital signature
algorithm. To ensure global acceptance of a digital signature, an approach to transition has
been specified in which a new signature algorithm is introduced long before the original one is
phased out [19].

In the worst case, a deeply flawed algorithm may still be available and used in an
implementation, which could permit an attacker to download a simple script to compromise
the data that the algorithm is intended to protect. Flawed security can also occur when a secure
algorithm is used incorrectly or with poor key management. In such situations, it is not possible
to provide notice to implementers (see Sec. 3.2.2), and the protection offered by the algorithm
is severely compromised. Administrators may choose to stop using the weak cipher suite that
includes the algorithm well before the new cipher suite is widely deployed. This can happen by
picking a date for a global switch to the new algorithm, or each installation can select a date on
their own. In either case, interoperability will be sacrificed with any implementation that does
not support the new crypto suite.

3.2.1. Preserving Protocol Interoperability

Removing support for deprecated and obsolete cryptographic algorithms is challenging. Once
an algorithm is determined to be weak, it is difficult to eliminate all uses of that algorithm
because many applications and environments rely on it. Since algorithm transitions can
introduce interoperability problems, protocol designers and implementers may be inclined to
delay the removal of support for algorithms. As a result, flawed algorithms can be supported for
far too long. The security impact of using legacy software that includes the flawed algorithm
and having extended support periods can be reduced by making algorithm transitions easy.
Social pressure is often needed to cause the transition to happen. For example, the RC4 stream
cipher was supported in web browsers until Andrei Popov championed an effort to stop its use
[20].

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

10

Implementers are often reluctant to remove deprecated algorithms from server software, and 403
404
405
406
407
408
409

410
411
412
413
414
415
416
417

418
419
420

421

422
423
424
425
426
427

428
429
430
431

432
433
434
435
436

437

438
439
440

server administrators are often reluctant to disable them over concerns that some party will no
longer have the ability to connect to their server. Implementers and administrators want to
improve security by using the strongest supported algorithms, but their actions are tempered
by the desire to preserve backward compatibility. Some web browsers provide a visual warning
when a deprecated algorithm is selected for use. These visual warnings provide an incentive for
website operators to transition away from deprecated algorithms.

Transitioning in the internet infrastructure is particularly difficult. The digital signature on a
certification authority (CA) [21] certificate is often expected to last decades, which hinders
transition away from a weak signature algorithm. Once a long-lived certificate is issued with a
particular signature algorithm, that algorithm is used by many relying parties to verify
certificates signed by the CA, and none of the relying parties can stop supporting it without
invalidating all of the certificates signed by that CA. Many certificates can be impacted by the
decision to drop support for a weak signature algorithm or an associated hash function since all
certificates signed using that algorithm or hash function would need to be replaced.

Influential organizations like NIST and the Internet Engineering Task Force (IETF) can assist with
overcoming the conflicting desire to preserve interoperability by coordinating the deprecation
of an algorithm or cipher suite and simplifying the transition for users.

3.2.2. Providing Notices of Expected Changes

Cryptographic algorithm failures without warning are rare. Algorithm transitions are typically
driven by advancements in computing capabilities, cryptographic research, and cryptanalytic
techniques rather than unexpected failures. For example, the transition from DES to Triple DES
to AES took place over decades, resulting in a shift in symmetric block cipher security strength
from 56 bits to 112 bits to at least 128 bits. When possible, SDOs should provide notice to
security protocol implementers about expected algorithm transitions.

Monitoring cryptographic research results provides a way to discover new attacks, assess
impacts to existing security protocols, and foresee needed changes. In the worst case, a
breakthrough cryptanalytic technique can indicate the need for an immediate algorithm
transition. Crypto agility is needed to smoothly implement such a transition.

As part of their crypto agility efforts in the transition to PQC, security protocol designers need
to plan for public keys, signatures, and key-encapsulation ciphertext to be much larger than
those currently used. Public-key sizes and signature sizes directly impact the size of the
certificates that contain those keys and signatures. To be safe, security protocol designers
should plan for the significant growth of key sizes.

3.2.3. Integrity for Algorithm Negotiation

The mechanism that a security protocol uses to perform cryptographic algorithm negotiation
should include integrity protection. If the integrity of algorithm selection during negotiation is
not protected, the protocol will be subject to a downgrade attack in which an attacker

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

11

influences the choice of cipher suite, and one with weaker algorithms is chosen. If a protocol 441
442
443

444
445
446
447
448
449

450
451
452
453

454

455
456
457
458
459
460
461
462
463

464
465

466
467
468

469
470
471
472
473
474

specifies a single integrity algorithm to protect the negotiation without a way to negotiate an
alternative integrity algorithm, that single algorithm will eventually be found to be weak.

Extra care is needed when a mandatory-to-implement algorithm is used to provide integrity
protection for the negotiation of other cryptographic algorithms. In this case, the integrity
protection should be at least as strong as that provided by the next set of algorithms, which can
result in the need for several mandatory-to-implement algorithms to cover the various security
strength requirements. Otherwise, a flaw in the mandatory-to-implement integrity algorithm
may allow an attacker to influence the choices of the other algorithms.

Security protocols can negotiate a key-establishment mechanism, derive an initial cryptographic
key, and then authenticate the negotiation. However, if the authentication fails, the only
recourse is to start the negotiation over from the beginning. This is necessary for security but
can lead to an awkward experience for the human user when authentication is unsuccessful.

3.2.4. Hybrid Cryptographic Algorithms

A hybrid cryptographic algorithm is a combination of two or more components that are
themselves cryptographic algorithms. One early hybrid algorithm was a pseudorandom function
(PRF) introduced in TLS 1.0 [22], which combined MD5 and SHA-1. A hybrid key-encapsulation
mechanism (KEM) algorithm is a combination of two or more KEM algorithms and key-
establishment schemes. One use case for hybrid public-key algorithms is to continue using the
well-tested, traditional public-key algorithms while study of the new PQC algorithms continues
and implementations mature. Some SDOs are considering a hybrid of more than one PQC
algorithm.1

1 Some of the hybrid algorithm specifications refer to “composite algorithms.” At the level of the discussion in this section, the distinctions
between “hybrid” and “composite” algorithms are unimportant. Thus, this section uses “hybrid” throughout.

 Choosing a hybrid algorithm may lead to a second transition when the traditional
algorithm is deprecated, as shown in Fig. 1.

Figure 1. Possible second transition from hybrid mode

If the overhead associated with the traditional algorithm is small, some security protocol
implementations will avoid the second transition by continuing to use the hybrid algorithm
even when the traditional algorithm is no longer secure.

A hybrid signature algorithm combines a traditional signature algorithm and a PQC signature
algorithm (e.g., combining Elliptic Curve Digital Signature Algorithm [ECDSA] and ML-DSA [12]).
It requires two public keys to be certified: a public key for the traditional algorithm and a PQC
public key. One option is to include the two public keys in a single certificate, where the public
keys would always be used together. However, the cost of deploying a PKI root of trust is
significant, so the expense associated with a transition to the use of a hybrid root of trust

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

12

followed by a potential second transition to using only a PQC algorithm for a root of trust must 475
476

477
478
479
480
481
482

483
484
485
486
487
488

489
490
491
492
493

494

495
496
497
498
499

500
501
502
503
504

505
506
507
508
509
510
511
512
513
514

be considered.

Another option is the deployment of a traditional root of trust and a PQC root of trust using
separate certificates. In some cases, two certificates will be less expensive, but there are
operational costs associated with validating two certification paths to establish a session key. A
significant advantage of using separate roots of trust is that once the traditional PKI is no longer
needed, one can simply stop issuing certificates under the traditional root of trust, while the
PQC trust anchor continues to be used.

A hybrid key-establishment algorithm establishes a shared secret by combining the outputs of a
traditional key-establishment algorithm and a PQC KEM (e.g., Elliptic Curve Diffie-Hellman
(ECDH) [23] and Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM) [24]). The
assumption is that at least one of the algorithms will remain strong over time. Security analysis
for a hybrid key-establishment algorithm can be more complicated than analysis of either of the
algorithms that are used in the hybrid algorithm.

In summary, hybrid signatures or key-establishment schemes can be a good strategy for
preserving security in the face of uncertainty while transitioning from traditional public-key
cryptography to PQC. However, hybrid schemes increase protocol complexity and the resources
consumed. Hybrid signatures or key-establishment schemes exercise the capability to
accommodate many cipher suites and stress the crypto agility of a security protocol design.

3.3. Cryptographic Key Establishment

Some environments restrict the key-establishment approaches by policy. Such policies tend to
improve interoperability within a particular environment, but they cause problems for
individuals who need to work in multiple incompatible environments. In addition,
administrators need to be aware that multiple environments are being used, track the policies,
and enable the algorithms or cipher suites for each of them.

Support for many key-establishment mechanisms in a security protocol offers more
opportunities for crypto agility. Key establishment can include key-agreement mechanisms,
key-transport mechanisms, and KEMs. Security protocol designers perform security analysis to
ensure that all security goals are achieved when each of the possible key-establishment
mechanisms is used.

Traditionally, security protocol designers have avoided support for more than one mechanism
for exchanges that establish cryptographic keys because such support would make the security
analysis of the overall protocol more difficult. When frameworks like the Extensible
Authentication Protocol (EAP) [25] are employed, the authentication mechanism often provides
a session key in addition to authentication. As a result, key establishment is very flexible, but
many of the cryptographic details are hidden from the application, which makes security
analysis more difficult. Furthermore, this flexibility results in protocols that support multiple
key-establishment mechanisms. In fact, the key-establishment mechanism itself is negotiable,
which creates a design challenge to protect the negotiation of the key-establishment
mechanism before it is used to produce cryptographic keys.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

13

When security protocols support a single key-establishment mechanism, or a flexible 515
516
517
518

519

520
521
522

523

524
525
526
527
528
529
530
531
532
533
534
535
536

537
538
539
540
541

542

543
544
545
546
547

548
549
550
551

framework is profiled to a single choice (e.g., EAP is used with a single authentication
mechanism), the security analysis is much more straightforward. However, crypto agility is
reduced.

3.4. Balancing Security Strength and Protocol Complexity

When specifying a cipher suite, the relative strength of each algorithm needs to be considered,
and complexity in security protocols needs to be avoided. Each of these design goals is explored
further in this section.

3.4.1. Balancing the Security Strength of Algorithms in a Cipher Suite

When selecting or negotiating a cipher suite, the relative strength of each algorithm needs to
be considered. Generally, the algorithms in a cipher suite ought to provide roughly equal
security strengths, where each of the algorithms meets or exceeds the minimum-security
strength requirements. However, when the performance of a particular algorithm does not
impact overall performance, using the strongest choice across all of the cipher suites can
reduce complexity by reducing the number of algorithms that need to be supported. The
security protections provided by each algorithm in a particular context need to be considered
when making the selection. Algorithm strength needs to be considered when a security
protocol is designed, implemented, deployed, and configured. Advice from experts about
relative algorithm strengths is useful, but such advice is often unavailable to system
administrators who are deploying a protocol implementation. For this reason, SDOs should
provide clear guidance to implementers that lead to options with roughly equal security
strengths being available at the time of deployment.

Performance is always a factor in selecting cryptographic algorithms. Performance and security
need to be balanced. Users will not employ security features if the application runs too slowly
when they are used. Some algorithms offer flexibility in their strength by adjusting the key size,
number of rounds, authentication tag size, parameter set, and so on. For example, AES-128 is
more efficient than AES-256, but it also offers less security.

3.4.2. Balancing Protocol Complexity

Security protocol design complexity leads to implementation complexity, which in turn often
makes vulnerabilities more likely. Thus, complexity should be avoided. Optional features can
add complexity and lead to parts of an implementation rarely being exercised. A security
protocol with fewer options means that there is a lower burden on implementation testing and
a decreased attack surface, which provides fewer potential points of entry for attackers.

Security protocol designs need to anticipate changes to the supported set of cryptographic
algorithms over time. Security protocol implementations avoid complexity to reduce
vulnerability to attacks. For example, complex algorithm or cipher suite negotiation provides
opportunities for downgrade attacks. Support for many algorithm alternatives is also harmful

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

14

because of the challenges in deciding which algorithms are acceptable in a particular 552
553

554
555

environment and maintaining that list of algorithms over time.

Protocol complexity can lead to portions of the implementation that are rarely used, increasing
the opportunity for undiscovered, exploitable implementation bugs.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

15

4. Crypto Agility for Applications 556

557
558
559
560
561
562
563

564
565
566
567
568
569

570
571
572
573
574

575
576
577
578
579

580

581
582

583
584

585

A cryptographic application programming interface (crypto API) separates the implementation
of applications that make use of the cryptographic algorithms (e.g., email and web apps) from
the implementation of the cryptographic algorithms themselves. This separation allows the
application to focus on high-level, application-specific details, while the cryptographic
algorithms are implemented by a provider or a library to handle symmetric encryption and
decryption, digital signature generation and verification, hashing, random number generation,
and key establishment while also supporting the old and new algorithms during the transition.

For example, crypto APIs can separate AES-CCM [26] and AES-GCM [27], which are both
authenticated encryption with associated data (AEAD) algorithms, from application
implementations by allowing an application to make the same crypto API calls to use either
algorithm. Careful selection of default parameter values in the crypto API can make the
interface to these two algorithms essentially identical, which facilitates future transition to a
different AEAD algorithm.

Some crypto APIs offer implementations of security protocols like TLS or IPsec to further
unburden the application. These protocol implementations depend on other crypto APIs for
cryptographic operations. The application provides the list of algorithms or cipher suites that
are available and acceptable, and the algorithm negotiation capabilities for the protocol
determine the algorithms that are used in the protocol.

To achieve crypto agility, system designers must introduce mechanisms that simplify the
replacement of cryptographic algorithms in software, hardware, firmware, and infrastructures.
These mechanisms will, at the same time, increase complexity. Therefore, system designers
must make sure that the cryptographic interface is easy to use and well-documented to reduce
the risk of errors. Additionally, clear guidance must be provided for practitioners to follow.

4.1. Using an API in a Crypto Library Application

A cryptographic service provider (CSP) is an implementation of one or more cryptographic
algorithms that is accessible by applications through a crypto API (see Fig. 2).

Figure 2. Functional diagram of applications using crypto APIs

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

16

CSPs are sometimes associated with protected key storage. For example, a CSP associated with 586
587
588

589
590
591
592
593

594
595
596
597
598
599
600
601

602
603

604

605
606
607
608
609

610
611
612
613
614

615
616
617

618

619
620
621
622

a Trusted Platform Module (TPM) will also provide access to the asymmetric private keys that
are stored on the TPM.

The cryptographic algorithm policy is set by the system administrator, which might be done to
implement a policy set by the Chief Information Security Officer (CISO). The policy will indicate
whether a particular algorithm is allowed. For example, if there is a provider for Triple DES, calls
to encrypt with it will fail if the policy does not allow Triple DES. However, calls for Triple DES
decryption might still be allowed so that stored files or email messages can be decrypted.

Some protocols are implemented in user space, which is an area in memory where applications
are executed that is distinct from kernel space. Kernel space is a part of a computer memory
that can only be accessed by the operating system. For example, application-chosen TLS crypto
library applications operate in user space. In fact, most libraries run in user space, such as
OpenSSL, BoringSSL, Bouncy Castle, Network Security Services (NSS), and OpenSSH. Application
developers need to consider whether the API is provided via the command line interface (CLI)
or by incorporating the cryptographic algorithm’s source code into the application (i.e.,
“compiling in” support).

For software libraries, it is important to facilitate efficient updates. Some standard mechanisms
must be in place to avoid security pitfalls in library updates.

4.2. Using APIs in the Operating System Kernel

Some security protocols run in the operating system kernel, which is a computer program that
is generally first loaded when the system is turned on and has complete control over all system
resources accessible to all application programs in the system. For example, in the case of IPsec
Encapsulating Security Payload (ESP), datagram encryption and authentication operate in the
kernel. Similarly, disk encryption needs to run in the kernel.

To provide crypto agility in this case, the crypto API must also be accessible within the kernel. In
some operating systems, only a subset of the crypto API’s overall capabilities is available from
within the kernel. This subset is determined by the cryptographic operations required in the
kernel. In many operating systems, the supported algorithms are established when the kernel is
built, meaning that plugins to add algorithms are not available.

Some systems perform self-tests of the cryptographic functions as part of the operating system
startup process. These tests ensure that the cryptographic operations are working as expected
before the system is available to applications or users.

4.3. Embedded Systems

Some security protocols in embedded systems must run within the real-time operating system
(RTOS) kernel or privileged system tasks. An RTOS is typically initialized during device startup
and manages critical hardware resources, task scheduling, and inter-process communication for
the entire embedded application. For example, secure communication protocols (e.g., TLS)

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

17

offload encryption, authentication, and key management operations into system-level services 623
624

625
626
627
628
629
630
631
632

633
634
635
636
637
638

639

640
641
642
643
644
645
646
647
648
649

650
651
652
653
654
655
656
657
658
659

660
661
662

within the RTOS to meet strict timing and security requirements.

To support cryptographic flexibility in this environment, the cryptographic API must be
accessible to privileged code within the RTOS. However, in many embedded systems, only a
minimal set of cryptographic primitives is included in the RTOS, selected based on the system’s
memory, real-time constraints, and security profile. In these cases, available algorithms are
typically fixed at compile time, and the dynamic loading of new cryptographic modules after
deployment is often not supported due to reliability and certification concerns. Designers
should consider the need to update the cryptographic implementation together or separately
from the rest of the system.

Similarly, secure boot mechanisms (i.e., starting a computer and loading its operating system)
and firmware authentication routines operate as part of the system startup sequence before
the main application tasks begin. Some embedded platforms also include cryptographic self-
tests during the startup process to validate the integrity and correct functioning of the
cryptographic operations, ensuring that any malfunction or tampering is detected before
normal system execution.

4.4. Hardware

There are several aspects of the hardware implementation of cryptographic algorithms to
consider with regard to crypto agility. For example, an entire integrated circuit chip might be
dedicated to the implementation of one cryptographic algorithm, or a small portion of a chip
might implement a particular building-block function in support of a single cryptographic
algorithm. In either case, a low-level interface is needed that works well in a particular
hardware environment. Firmware is often needed to manage memory and invoke various low-
level functions in the proper order. The functions that are implemented in the integrated circuit
cannot be changed. This makes them well-protected from attackers, but it also means that the
chip will need to be replaced if it has design errors or if changes are needed for the algorithms
to be used.

Some chips are dedicated to supporting cryptographic operations, such as universal integrated
circuit cards (UICCs) and TPMs. These chips are part of a larger computer system like a mobile
phone, laptop computer, or server. The chips store private keys and support functionality to
perform cryptographic operations that use the keys. For removable UICCs, the private keying
material is never expected to leave the chip, except at the time of manufacture. These chips
support a limited set of defined cryptographic algorithms, and changing supported algorithms is
often accomplished by replacing the removable UICC or upgrading the device because non-
removable UICCs and TPMs are purposefully difficult to replace. There are some cases in which
changing the supported algorithms by upgrading the functionality running on the device is
possible. In fact, some devices offer a slot to do so without opening the device.

Hardware security modules (HSMs) are special-purpose hardware devices that store private
keys and perform cryptographic operations using those keys. An HSM might be a rack-mounted
device for an organization, a high-value application, or a portable device that is easily locked in

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

18

a safe when not in use. The private keying material never leaves the HSM, but there are
operations to securely back up the private keying material to another HSM.

663
664
665
666
667
668

669
670
671
672
673

674
675
676
677
678
679

680
681
682
683
684
685
686
687

688
689
690
691
692
693
694
695
696

2

2 HSMs provide cryptographic services, but some also consume cryptographic services (e.g., leveraging APIs for cryptographic operations but
still providing hardware-based protection for key storage).

 HSMs offer
tamper-detection capabilities to protect the private keying material stored in them. They often
include a microprocessor and one or more chips that are designed to accelerate different
cryptographic algorithms or parts of the algorithms invoked by software cryptographic
implementations.

A personal portable cryptographic token (e.g., Personal Identity Verification [PIV] card, USB
token) is a device that stores the private keys for an individual. The human user inserts the
portable device into the computer they are currently using. These devices are essentially tiny
HSMs that are intended to be used by one person, and the keying material never leaves the
portable device.

Some central processing units (CPUs) have instructions that are designed to accelerate specific
algorithms. A cryptographic algorithm implementation might detect whether such instructions
are available and then take advantage of them if they are. For example, the Intel SHA
Extensions paper [28] states that Intel-based CPUs offer features to make SHA hash
computations faster. Scalable Vector Extension (SVE) and RISC-V Vector Extension (RVV) are
also available that speed up SHA-3 [29][30][31][32].

Some hardware offers a good source of random numbers, which are vital to the generation of
quality keying material. However, it is easier to provide multiple cryptographic algorithms to
facilitate agility in library and application software than in hardware. Once a chip leaves the
factory, additional algorithms may not be easily added to the chip. Other layers in an
architecture fall on a spectrum between these two cases. The crypto API needs to be designed
so that all points on this spectrum are accommodated. In some environments, especially HSMs
and other cryptographic tokens, the data needs to move to the device where the key is stored
for the data to be protected using that key.

For environments in which the update of cryptographic functions in hardware is not possible, it
state-of-the-art cryptography can be used to include implementations of the best and most
conservative variants for each cryptographic function. A key element is the communication
between cryptographers and developers to decide on a long-term plan based on the best
estimate of the security needs during the lifetime of a specific hardware device. For example,
secure booting requires the use of digital signature schemes. The public key and the program
for verifying the signatures are included in the boot code and cannot be updated. In this case,
to make sure that the platform is trustable during its lifetime, the signature schemes must be
able to provide the required security during the lifetime of the device.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

19

5. Crypto Agility Strategic Plan for Managing Organizations’ Crypto Risks 697

698
699
700
701
702
703
704
705

706
707

708

709
710
711
712
713
714

715
716
717
718
719

Organizations need to transition or migrate their cryptographic use multiple times throughout
their lifetimes. By incorporating crypto agility into their cryptographic policies during the design
and development of the systems and technology acquisitions or scheduled replacements,
updates, or modernization efforts, organizations can proactively address emerging threats,
technological advances, system weaknesses, and evolving business requirements, standards,
regulations, and mandates. A crypto agility strategic plan combines key functions to inform the
migration/transition of cryptography at different technology levels, including governance [30],
cryptographic and data assets, risk management, and automated tooling (see Fig. 3).

Figure 3. Crypto agility strategic plan for managing an organization’s cryptographic risks

The plan may include several key activities, including:

• Integrate crypto agility into the organization’s existing governance function to establish,
communicate, and monitor the cybersecurity risk management strategy, expectations,
and policies related to cryptography. This includes understanding cryptographic
standards, regulations, and mandates and communicating these requirements to data
owners, IT and development teams, business partners, and technology supply chain
vendors prioritized by the criticality of the data for the primary use cases.

• Inventory the use of cryptography for data protection across the organization by
adopting an assets-centric approach informed by the criticality of the data to identify
the organization’s use cases and most valuable assets, such as application codes,
libraries, software, hardware, firmware, user-generated content, communication
protocols, enterprise services, and systems.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

20

• Identify gaps in enterprise management tools for managing assets, configurations, 720
721
722
723
724
725
726
727
728

729
730
731
732
733
734
735

736
737
738
739
740
741
742
743

744
745

746
747
748
749
750

751

752
753
754
755
756
757
758
759

vulnerabilities, and logs. These tools should support cryptographic risk management and
data protection functions by automating the identification, assessment,
characterization, enforcement, and monitoring of cryptography across assets. If
necessary, enhance the tools with automated data and cryptographic discovery
capabilities, including algorithms and key lengths. For instance, vulnerability
management and software/hardware development tools can help ensure
comprehensive visibility and an inventory of assets, such as code, libraries, applications,
and associated cryptographic algorithms.

• Develop a prioritization list of assets to be mitigated first based on the data collected in
the previous steps. A cryptographic policy-informed risk assessment engine should be
used to analyze this data, form an implementation strategy, and recommend actions to
reduce risks. Based on the organization’s defined cryptographic policy, the engine will
continuously measure, monitor, and report on the state of cryptography within the
enterprise and focus on crypto agility key performance indicators (KPIs) for the level of
effort needed to effectively and efficiently adapt and migrate.

• Implement the strategy and actions based on the prioritization list. The technology’s
level of crypto agility will determine whether assets can be smoothly migrated or
compensatory mitigation measures must be implemented to reduce risks. Organizations
can use existing automated enterprise management tools when feasible to inventory,
assess, and migrate assets (e.g., code, applications, software, hardware, and
communication protocols) or implement compensating security controls as part of a
zero-trust approach [33] if the assets are not agile enough to support the cryptographic
policy.

These steps are continuously repeated to mitigate evolving cryptographic risks and mature the
crypto agility posture within organizations over time.

Cryptography governance is an important function of a crypto agility strategic plan. The
following subsections discuss some components of governance that are crucial for
organizations to drive cryptographic practices and compliance in support of managing the
cryptographic risks among all stakeholders, from the organization’s board to system
implementers.

5.1. Cryptographic Standards, Regulations, and Mandates

Any crypto agility effort must consider the effects of standards, regulations, and mandates on
transition requirements for cryptographic algorithms. Movements to achieve crypto agility
involve coordination between protocol designers, software and hardware vendors, application
and standards developers, policymakers, and IT administrators. Government standards and
regulations can mandate transition when an algorithm is found to be vulnerable. SP 800-131A
guides algorithm and security strength transitions by setting transition schedules for
implementers to terminate certain algorithms or security strengths based on a common
understanding of the computing power available to attackers and the latest research results.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

21

For example, SP 800-131Ar2 (Revision 2) [34] set the end of 2023 as the date to disallow three-
key Triple DES for applying cryptographic protection. These transition guidelines are informed
by various stakeholders, including cryptographic researchers and designers, cryptanalysts,
policymakers, regulators, SDOs, and technology providers.

760
761
762
763

764
765
766
767
768

769
770
771
772

773
774
775
776
777
778
779
780

781

782
783
784
785
786
787
788
789

790
791
792
793
794
795

Industry standards play an important role in compliance with security requirements for
cryptographic algorithm use in different application environments. The standards for internet
protocols, communications, and applications update the supported cipher suites to eliminate
vulnerable algorithms and ciphers. Security protocols often define mandatory-to-implement
cipher suites to reflect state-of-the-art cryptography and support interoperability.

The NIST Cryptographic Algorithm Validation Program (CAVP) provides validation testing for
FIPS-approved and NIST-recommended cryptographic algorithms. Cryptographic algorithm
validation is a prerequisite for cryptographic module validation. The approved algorithms and
relevant parameter sets are updated based on transition requirements [34].

From a practitioner’s perspective, certain policies, laws, and mechanisms must be established
to enhance crypto agility practices, facilitate transitions, and provide proper security during the
transition. These laws and policies are coupled with industry-specific requirements. It is very
important to handle assets in a secure way during a transition. For example, for the encrypted
storage of data at rest, a mechanism must be established to handle encrypted user data when
the encryption algorithm is to be replaced by a stronger one. Similarly, when a digital signature
algorithm must be replaced, a mechanism to handle already-signed documents using the
algorithm to be replaced is required.

5.2. Crypto Security Policy Enforcement

The crypto agility assessment must consider cryptographic security policy establishment and
enforcement for each protocol, system, and application. One of the most challenging aspects of
crypto agility is replacing vulnerable algorithms in a timely manner without interrupting the
system. For security protocols, a cryptographic security policy can be enforced by specifying
mandatory-to-implement algorithms and disallowing the use of weak algorithms in a timely
fashion. For a system, a security policy can be enforced by using an API. Security practitioners
enforce security policy through decisions for using cryptographic algorithms with required
security strengths.

Enforcing a cryptographic security policy requires communication among cryptographers,
developers, practitioners, implementers, and policymakers. Each decision on deprecating a
cryptographic algorithm must be synchronized among all of the stakeholders so that the
security policy can be updated quickly and translated into a technology-specific, machine-
consumable configuration profile that represents a crypto policy that can be deployed with
automated tools.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

22

5.3. Technology Supply Chains 796

797
798
799
800
801

802
803
804
805

806
807
808
809

810
811
812
813
814
815

816

817
818
819
820

821
822
823
824
825
826
827
828
829
830
831

832
833
834

Technology supply chains play a critical role in the governance function of a crypto agility
strategic plan. They guide decisions about whether to migrate to new cryptographic systems or
employ mitigation techniques when cryptographic changes are necessary. This involves
examining the impacts of the supply chain on the entire cryptographic architecture, including
hardware, firmware, software modules, and communication protocols.

A resilient technology supply chain enables modular updates that allow cryptographic
algorithms to be replaced or upgraded seamlessly — whether due to emerging vulnerabilities
or a weakness of the crypto algorithms — without overhauling the entire system. This approach
minimizes disruptions and ensures continuous security.

Crypto agility requires all system components in a supply chain to work in harmony during
updates. The supply chains have dependencies on the maturity of standards, protocols, and the
cryptographic validation program before the products and services can be delivered to the
implementer.

Technology producers can help an organization by providing automated mechanisms that have
visibility into products, services, and protocols to include a comprehensive list of cryptographic
components, such as algorithms, protocols, libraries, applications, certificates, and related
crypto materials. This will inform whether the cryptographic components can be updated
without a complete system overhaul or need to be replaced if vulnerabilities are discovered or
new cryptographic algorithms are introduced due to emerging threats.

5.4. Cryptographic Architecture

Network architecture deals with data flows across the interfaces, protocols, and physical and
logical communication components of an enterprise architecture. Another critical element is
the cryptographic layer, which focuses on how assets (including data) are protected and
ensures data integrity and authentication for data at rest, in transit, and in use.

The cryptographic architecture in a crypto agility strategic plan provides the technical
foundation upon which governance functions are built. The cryptographic architecture creates
a structured framework by defining standardized processes, protocols, and key management
practices that govern how cryptographic updates are implemented and maintained throughout
an organization. In essence, a cryptographic architecture is part of the organization governance
function for capturing how an organization integrates and manages cryptographic functions to
secure its assets and communications. The architecture establishes the design principles,
standards, and processes for implementing and maintaining cryptographic services, key
management, and related security mechanisms in software, hardware, and firmware. It
captures how cryptographic components interact with each other and with other parts of the
network architecture.

Organizations can include crypto agility characteristics as part of the cryptographic architecture
to capture cryptographic standards, policies, algorithms, protocols, key management practices,
and security components. This helps an organization decide whether to replace or upgrade

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

23

cryptographic algorithms in a timely manner when new vulnerabilities or threats emerge or in 835
836

837

support of an organization-defined cryptographic policy.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

24

6. Considerations for Future Works 838

839
840
841
842
843
844

845

846
847
848

849
850
851
852
853

854
855
856
857

858
859
860
861
862
863

864
865
866
867

868
869
870
871

872

873
874

Achieving crypto agility demands collaboration and communication among cryptographic
researchers, software and standards developers, protocol designers and implementers,
hardware designers, and practitioners to manage the risks of using cryptography to secure data.
To be actionable, crypto agility requirements must be specific for each implementation and
application environment. This section discusses some trade-offs, and each subsection highlights
important areas for consideration by the relevant stakeholders.

6.1. Resource Considerations

Resource limitation is the most difficult challenge for achieving crypto agility. This section
discusses resource considerations for protocol designers, hardware implementers, and
cryptographers.

Crypto agility requires support for multiple cryptographic algorithms in a protocol. Some
algorithms have much larger public keys, signatures, or ciphertext than the algorithms being
replaced. Experience has shown that large sizes challenge the limits of existing protocols. It is
important for protocol designers to consider resource demands to plan for future transitions
and to distinguish intrinsic limitations from shortsighted design decisions.

Hardware implementation is limited by capacity. It may not be possible to implement many
algorithms in one hardware platform. Some optimization efforts (e.g., accelerator reuse) have
been considered. At present, further research is needed in this area to address the transition
from traditional public-key cryptography to PQC.

Future cryptographic algorithm designs must consider resource limitations. Historically, each
design has focused on the resource requirements of a single algorithm for an application
without considering the other algorithms used by the application. For example, the design may
use a specific primitive or a subroutine (e.g., a hash function) that is not commonly used by
other applications. To save hardware resources, it is desirable for different algorithms to share
the same primitive or subroutine.

Cryptographers have considered algorithms based on diversified assumptions so that when one
assumption is determined to be incorrect, an alternative algorithm based on a different
assumption is in place for the same purpose. Achieving crypto agility within resource limitations
requires cryptographers to prioritize security-related diversities.

Considering the combination of algorithms used by different applications in a device is a new
area of research to optimize resource use. It must take a different approach from that of
traditional approaches where the resource needed for an algorithm is viewed in isolation from
the need for other algorithms to be used by applications.

6.2. Agility-Aware Design

This section discusses crypto agility design considerations for applications, platforms, and
protocol designers.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

25

Agility-aware design could be reflected in a product or system configuration. The design would 875
876
877
878
879
880

881
882
883
884

885
886
887
888
889

890

891
892
893
894
895
896
897
898

899
900
901
902
903
904
905

906

907
908

909
910
911
912

need to ensure that the user interface (UI) and API can support new algorithms with different
key and parameter sizes to use the underlying cryptographic software libraries and hardware
accelerators. The design would not make assumptions based on one algorithm or a family of
algorithms when coding cryptographic implementations. That is, the design would ensure that
buffers, memory locations, and storage could handle large keys and parameters.

Some well-deployed security protocols (e.g., TLS) facilitate authenticated cipher-suite
negotiation to allow adding new algorithms to and discontinuing the use of weak algorithms
from the available cipher suites. It should be a common practice in any protocol design to
facilitate secure transition.

It is also important to include crypto agility as an evaluation perspective for project proposals,
security architects, protection profiles, protocol specifications, and application designs. For
example, in most of the IETF Requests for Comment (RFCs), there is a section called “Security
Considerations.” It may be beneficial to include a section about “Crypto Agility Considerations”
in the standards to provide a rationale for the design choices to allow crypto agility.

6.3. Complexity and Security

Accommodating crypto agility introduces complexity into protocols and systems that protocol
designers and system architects and implementers should take into consideration. It can also
increase attack surfaces. For example, if cipher suite negotiation integrity is not properly
protected, a downgrade attack can lead to a weaker cipher suite than would otherwise be
agreed upon. For software libraries and APIs, a larger number of options may increase the
chance to introduce security vulnerabilities or attack vectors. For enterprise IT administrators, it
is important to make sure that the configuration is updated to reflect new security
requirements.

Crypto agility requires sound mechanisms to ensure a secure and smooth transition. Currently,
most security analyses and evaluations of a protocol or system configuration are based on
selected cryptographic algorithms without considering transition mechanisms. For a protocol, a
cryptographic transition mechanism will facilitate the communication parties securely agreeing
upon a cipher suite that satisfies updated security requirements. For a system configuration, a
cryptographic transition mechanism enables applications to securely switch from a weak
algorithm to a secure algorithm.

6.4. Crypto Agility in the Cloud

This section discusses crypto agility considerations for cloud computing service architects,
developers, operators, and cryptographers.

The main security model used in the cloud is the shared responsibility model, which clearly
divides security duties between the cloud provider and the customer. The cloud provider
secures the underlying infrastructure, including physical facilities, hardware, networking, and
virtualization. The customer manages the security of their data, applications, and

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

26

configurations. To ensure comprehensive and compliant cloud security, the shared 913
914
915

916
917
918
919
920
921
922
923
924

925
926
927
928
929
930
931
932
933
934
935

936

937
938
939

940
941
942
943
944
945
946
947

948
949
950
951

952

responsibilities vary by service model, such as infrastructure as a service (IaaS), platform as a
service (PaaS), and software as a service (SaaS).

Cloud providers are responsible for ensuring the agility of the cryptographic hardware (e.g.,
HSM, hardware root of trust, hardware-enabled security functions like encrypted memory) and
services (e.g., secure runtime environment, attestation service, crypto library, container
services and images, secure communication, data protection, authentication, key management)
they offer in PaaS and SaaS to facilitate customer use through robust APIs. Customers, in turn,
can leverage this crypto agility within cloud platforms to enhance application resiliency and
potentially lower maintenance and support costs by decoupling cryptographic functions from
their core application logic. Cloud providers offer APIs to make their cryptographic functions
and configurations transparent to customers.

While the range of cryptographic hardware, features, and services that a provider supports may
limit application portability across different platforms, customers still maintain complete
control over keys that are managed within cloud-based HSMs or secure runtime environments.
Although cloud providers cannot access customers’ keys, they can manage cryptographic
resource use by controlling the underlying infrastructure. Cloud providers bear the capital and
operational costs of these services, balancing them with diverse and often conflicting national
or industry-specific compliance cryptographic policies. In the IaaS model, customers have more
control, but they are responsible for the agility of their cryptographic functions when they
choose to manage their own hardware (e.g., HSMs) or cryptographic applications within the
cloud or when integrating cloud-based applications and services that employ on-premises
cryptographic services.

6.5. Maturity Assessment for Crypto Agility

This section introduces the concept of a crypto agility maturity model to help organizations
continuously measure their progress in adopting crypto agility across their environments and
achieve resilience against evolving changes in crypto requirements.

Since organizations vary significantly in their mission, size, sector, country, regulatory regime,
and risk tolerance, there is not a single crypto maturity model that effectively serves all needs.
Instead, organizations should adapt their existing, mature risk management frameworks to
include crypto agility. Enterprise risk management frameworks often incorporate a maturity
model concept, and these can be adapted to assess and report on crypto agility. This approach
utilizes a shared vocabulary for effective communication within the organization, with external
partners, and with suppliers. It integrates directly with the organization’s current enterprise risk
management processes and streamlines the evaluation of cryptographic agility readiness.

The maturity model described in this paper is derived from the NIST Cybersecurity Framework
(CSF) [35], which is a voluntary set of guidelines based on standards and best practices designed
for managing and reducing cybersecurity risks. The CSF’s four tiers show increasing
sophistication in cybersecurity risk management:

• Tier 1 – Partial: An initial, informal, and reactive approach

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

27

• Tier 2 – Risk-Informed: Management-approved but not fully integrated practices 953

954

955
956

957
958

959

960

961
962

963
964
965

966
967

968
969

970
971

972
973

974

975
976
977

978
979
980

981

982
983

984

985
986

987
988

• Tier 3 – Repeatable: Standardized and consistently updated processes

• Tier 4 – Adaptive: Proactive, continuously improved, and dynamic approach to
cybersecurity based on evolving risks

Adapting the CSF tiers and drawing upon insights from various industry initiatives
[36][37][38][39], a crypto agility maturity model might include:

• Tier 1 – Partial

o Crypto agility practices are unstructured and unplanned.

o Each group or team within the organization implements its own cryptography on
a case-by-case basis.

o The selection of crypto algorithms, schemes, libraries, and cryptographic
products and services is not informed by current crypto-based exploits and
evolving threat landscapes.

o The organization is unaware of potential crypto risks from partners, suppliers,
and acquired products and services.

o Organizational and external awareness (including partners and suppliers) of
cryptography usage is limited.

o A formal crypto policy or architecture is lacking, hindering internal and external
communication.

o Discussions about the organization’s crypto agility are infrequent and
inconsistent.

• Tier 2 – Risk Informed

o The crypto agility strategy and plan include a crypto policy that has been defined
and approved by management but has not been adopted consistently as an
organization-wide policy.

o The crypto policy is shaped by established standards, approved or validated
technologies, business requirements, existing processes and procedures, and
stakeholder input.

o Crypto agility prioritization is determined and refined through risk assessments.

o A cryptographic architecture is being developed and informed by inventories of
cryptographic assets, data, and external dependencies.

• Tier 3 – Repeatable

o Crypto agility is formally integrated into the organization’s risk management plan
and guided by a well-defined crypto policy.

o The crypto policy, processes, procedures, roles, and responsibilities are defined,
implemented, reviewed, and assessed.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

28

o Crypto agility practices and cryptographic architectures are regularly updated 989
990
991

992
993

994
995

996

997
998

999
1000

1001
1002

1003
1004
1005
1006
1007

1008

1009
1010
1011
1012
1013
1014

1015
1016
1017
1018
1019
1020
1021
1022
1023

based on changes in business and mission requirements, threats, and
technological evolution.

o Crypto agility is part of the organization’s awareness and training curriculum to
ensure that personnel have the appropriate knowledge and skills.

o Integrated and automated crypto discovery and remediation tools are used to
prioritize and continuously mitigate crypto risks.

• Tier 4 – Adaptive

o Crypto agility is a fundamental element of organizational risk management with
defined objectives.

o Crypto agility is monitored, measured, and reported to executives as part of the
risk register and linked to financial, business, and mission objectives.

o Crypto agility is considered in all changes to business objectives at the executive
level and in every line of code by developers.

o Crypto agility policies, processes, and procedures are continuously adapted,
monitored, and communicated in near real-time in response to changes in the
environment, such as standards, regulations, supply chains, partners’
ecosystems, mission and business requirements, and threat and technological
landscape.

6.6. Common Crypto API

One of the needs identified during the NIST Crypto Agility Workshop was a standardized
cryptographic API — a universal interface that bridges established crypto API frameworks by
abstracting complex cryptographic operations to support crypto agility. An effective solution
must balance generality with specificity by including the essential functions required for
operational use, interoperability, and smooth transitions to different algorithms without being
hindered by the specific characteristics of individual cryptographic implementations.

NIST’s role is to collaborate with the crypto community to develop standards and guidelines
while industry-led SDOs define mechanisms for supporting the crypto standards (e.g., for
software, hardware, firmware, protocols). Industry partners — in collaboration with
government experts, SDOs, and academic researchers — are in the best position to research
and initiate the development of a common crypto API. This can be done by a consortium of
practitioners through a series of iterative discussions, workshops, and prototype
implementations to define operational use cases and the associated minimum set of
requirements for a common API that can be backward compatible with existing widely
deployed crypto APIs and support emerging cryptographic functions and algorithms.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

29

7. Conclusion 1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

Crypto agility is a future-proofing strategy to address changes. It demands communication
among cryptographers, developers, implementers, and practitioners to accommodate evolving
security, performance, and interoperability challenges. The pursuit of crypto agility capabilities
involves the exploration of new technologies and management schemes, and new crypto agility
requirements must be developed for each environment. The security analysis and evaluation of
protocols, systems, and applications must include mechanisms for transitions. When transition
mechanisms are not available, organizations should have a plan to implement compensating
controls to mitigate cryptographic vulnerabilities and evolving threats. Although crypto agility is
now being considered in security practices to facilitate transitions, achieving measurable
maturity in this area requires ongoing and significant effort.

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

30

References 1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075

[1] OpenSSL 3.5.0-alpha1. Available at
https://github.com/openssl/openssl/releases/tag/openssl-3.5.0-alpha1

[2] National Institute of Standards and Technology (1999) Data Encryption Standard (DES).
(U.S. Department of Commerce, Washington, DC), Federal Information Processing
Standards Publication (FIPS) 46-3. Withdrawn May 19, 2005. Available at
https://csrc.nist.gov/pubs/fips/46-3/final

[3] National Institute of Standards and Technology (2001) Advanced Encryption Standard
(AES). (U.S. Department of Commerce, Washington, DC), Federal Information Processing
Standards Publication (FIPS) 197-upd1, updated May 9, 2023.
https://doi.org/10.6028/NIST.FIPS.197-upd1

[4] National Institute of Standards and Technology (2015) Secure Hash Standard (SHS). (U.S.
Department of Commerce, Washington, DC), Federal Information Processing Standards
Publication (FIPS) 180-4. https://doi.org/10.6028/NIST.FIPS.180-4

[5] Wang X, Yin YL, Yu H (2005) Finding Collisions in the Full SHA-1. Advances in Cryptology
— CRYPTO 2005. Lecture Notes in Computer Science, vol. 3621. (Springer, Berlin,
Heidelberg). https://doi.org/10.1007/11535218_2

[6] Rescorla E (2018) The Transport Layer Security (TLS) Protocol Version 1.3. (Internet
Engineering Task Force (IETF)), IETF Request for Comments (RFC) 8446.
https://doi.org/10.17487/RFC8446

[7] Leurent G, Peyrin T (2020). SHA-1 is a Shambles - First Chosen-Prefix Collision on SHA-1
and Application to the PGP Web of Trust. SEC'20: Proceedings of the 29th USENIX
Conference on Security Symposium. Available at https://eprint.iacr.org/2020/014

[8] National Institute of Standards and Technology (2022) NIST Transitioning Away from
SHA-1 for All Applications. Available at https://csrc.nist.gov/news/2022/nist-
transitioning-away-from-sha-1-for-all-apps

[9] National Institute of Standards and Technology (2000) Digital Signature Standard (DSS).
(U.S. Department of Commerce, Washington, DC), Federal Information Processing
Standards Publication (FIPS) 186-2. Withdrawn October 5, 2001. Available at
https://csrc.nist.gov/pubs/fips/186-2/final

[10] Barker E (2020) Recommendation for Key Management: Part 1 – General. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
800-57 Part 1, Revision 5. https://doi.org/10.6028/NIST.SP.800-57pt1r5

[11] Moody D, Perlner R, Regenscheid A, Robinson A, Cooper D (2024) Transition to Post-
Quantum Cryptography Standards. (National Institute of Standards and Technology,
Gaithersburg, MD), NIST Internal Report (IR) 8547.
https://doi.org/10.6028/NIST.IR.8547.ipd

[12] National Institute of Standards and Technology (2024) Module-Lattice-Based Digital
Signature Standard. (U.S. Department of Commerce, Washington, DC), Federal
Information Processing Standards Publication (FIPS) 204.
https://doi.org/10.6028/NIST.FIPS.204

https://github.com/openssl/openssl/releases/tag/openssl-3.5.0-alpha1
https://csrc.nist.gov/pubs/fips/46-3/final
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1007/11535218_2
https://doi.org/10.17487/RFC8446
https://eprint.iacr.org/2020/014
https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://csrc.nist.gov/news/2022/nist-transitioning-away-from-sha-1-for-all-apps
https://csrc.nist.gov/pubs/fips/186-2/final
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.IR.8547.ipd
https://doi.org/10.6028/NIST.FIPS.204

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

31

[13] Dierks T, Rescorla E (2008) The Transport Layer Security (TLS) Protocol Version 1.2. 1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

(Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC) 5246.
https://doi.org/10.17487/RFC5246

[14] Kaufman C, Hoffman P, Nir Y, Eronen P, Kivinen T (2014) Internet Key Exchange Protocol
Version 2 (IKEv2). Internet Engineering Task Force (IETF). Request for Comments (RFC)
7296. https://doi.org/10.17487/RFC7296

[15] Ramsdell B (2004) Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1
Message Specification. (Internet Engineering Task Force (IETF)), IETF Request for
Comments (RFC) 3851. https://doi.org/10.17487/RFC3851

[16] Ramsdell B, Turner S (2010) Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.2. (Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC)
5751. https://doi.org/10.17487/RFC5751

[17] Housley R (2009) Cryptographic Message Syntax (CMS). (Internet Engineering Task Force
(IETF)), IETF Request for Comments (RFC) 5652. https://doi.org/10.17487/RFC5652

[18] Crocker S, Rose S (2013) Signaling Cryptographic Algorithm Understanding in DNS
Security Extensions (DNSSEC). (Internet Engineering Task Force (IETF)), IETF Request for
Comments (RFC) 6975. https://doi.org/10.17487/RFC6975

[19] Gagliano R, Kent S, Turner S (2013) Algorithm Agility Procedure for the Resource Public
Key Infrastructure (RPKI). (Internet Engineering Task Force (IETF)), IETF Request for
Comments (RFC) 6916. https://doi.org/10.17487/RFC6916

[20] Popov A (2015) Prohibiting RC4 Cipher Suites. (Internet Engineering Task Force (IETF)),
IETF Request for Comments (RFC) 7465. https://doi.org/10.17487/RFC7465

[21] Cooper D, Santesson S, Farrell S, Boeyen S, Housley R, Polk W (2008) Internet X.509
Public Key Infrastructure Certification and Certificate Revocation List (CRL) Profile.
(Internet Engineering Task Force (IETF)), IETF Request for Comments (RFC) 5280.
https://doi.org/10.17487/RFC5280

[22] Dierks T, Allen C (1999) The TLS Protocol Version 1.0. (Internet Engineering Task Force
(IETF)), IETF Request for Comments (RFC) 2246. https://doi.org/10.17487/RFC2246

[23] Barker EB, Chen L, Roginsky AL, Vassilev A, Davis R (2018) Recommendation for Pair-
Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
800-56A, Rev. 3. https://doi.org/10.6028/NIST.SP.800-56Ar3

[24] National Institute of Standards and Technology (2024) Module-Lattice-Based Key-
Encapsulation Mechanism Standard. (U.S. Department of Commerce, Washington, DC),
Federal Information Processing Standards Publication (FIPS) 203.
https://doi.org/10.6028/NIST.FIPS.203

[25] Aboba B, Blunk L, Vollbrecht J, Carlson J, Levkowetz H (2004) Extensible Authentication
Protocol (EAP). (Internet Engineering Task Force (IETF)), IETF Request for Comments
(RFC) 3748. https://doi.org/10.17487/RFC3748

[26] Dworkin MJ (2004) Recommendation for Block Cipher Modes of Operation: the CCM
Mode for Authentication and Confidentiality. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-38C, Includes updates
as of July 20, 2007. https://doi.org/10.6028/NIST.SP.800-38C

https://doi.org/10.17487/RFC5246
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC3851
https://doi.org/10.17487/RFC5751
https://doi.org/10.17487/RFC5652
https://doi.org/10.17487/RFC6975
https://doi.org/10.17487/RFC6916
https://doi.org/10.17487/RFC7465
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC2246
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.17487/RFC3748
https://doi.org/10.6028/NIST.SP.800-38C

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

32

[1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

27] Dworkin MJ (2007) Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. (National Institute of Standards and
Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-38D.
https://doi.org/10.6028/NIST.SP.800-38D

[28] Gulley S, Gopal V, Yap K, Feghali W, Guilford J, Wolrich G (2013) Intel SHA Extensions:
New Instructions Supporting the Secure Hash Algorithm on Intel Architecture
Processors. (Intel Corporation.) Available at
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sha-
extensions-white-paper-402097.pdf

[29] Rott JK (2012) Intel Advanced Encryption Standard Instructions (AES-NI). Available at
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-
encryption-standard-instructions-aes-ni.html

[30] Arm (2025) Crypto plug-in. Available at
https://developer.arm.com/documentation/100964/1129/Plug-ins-for-Fast-
Models/Crypto

[31] Arm (2025) Cryptographic extensions. Available at
https://developer.arm.com/documentation/101754/0624/armclang-Reference/Other-
Compiler-specific-Features/Supported-architecture-features/Cryptographic-extensions

[32] RISC-V (2021) RISC-V Cryptography Extensions Task Group Announces Public Review of
the Scalar Cryptography Extensions. Available at https://riscv.org/blog/2021/09/risc-v-
cryptography-extensions-task-group-announces-public-review-of-the-scalar-
cryptography-extensions/

[33] Rose SW, Borchert O, Mitchell S, Connelly S (2020) Zero Trust Architecture. (National
Institute of Standards and Technology, Gaithersburg, MD), NIST Special Publication (SP)
800-207. https://doi.org/10.6028/NIST.SP.800-207

[34] Barker EB, Roginsky AL (2019) Transitioning the Use of Cryptographic Algorithms and
Key Lengths. (National Institute of Standards and Technology, Gaithersburg, MD), NIST
Special Publication (SP) 800-131A, Rev. 2. https://doi.org/10.6028/NIST.SP.800-131Ar2

[35] National Institute of Standards and Technology (2024) The NIST Cybersecurity
Framework (CSF) 2.0. (National Institute of Standards and Technology, Gaithersburg,
MD), NIST Cybersecurity White Paper (CSWP) NIST CSWP 29.
https://doi.org/10.6028/NIST.CSWP.29

[36] FS-ISAC (2024) Building Cryptographic Agility in the Financial Sector. Available at
https://www.fsisac.com/hubfs/Knowledge/PQC/BuildingCryptographicAgilityInTheFinan
cialSector.pdf

[37] Hohm J, Heinemann A, Wiesmaier A (2022) Towards a Maturity Model for Crypto-Agility
Assessment. Available at https://arxiv.org/abs/2202.07645

[38] ATIS (2024) Strategic Framework for Crypto Agility and Quantum Risk Assessment.
Available at https://atis.org/resources/strategic-framework-for-crypto-agility-and-
quantum-risk-assessment/

[39] Deloitte (2025) Cryptographic Resilience: A Cyber Security Framework (CSF) 2.0
Community Profile. Available at https://www.deloitte.com/content/dam/assets-
shared/docs/services/consulting/2025/deloitte-cryptographic-resilience-community-
profile-april-2025.pdf

https://doi.org/10.6028/NIST.SP.800-38D
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sha-extensions-white-paper-402097.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-sha-extensions-white-paper-402097.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-encryption-standard-instructions-aes-ni.html
https://developer.arm.com/documentation/100964/1129/Plug-ins-for-Fast-Models/Crypto
https://developer.arm.com/documentation/100964/1129/Plug-ins-for-Fast-Models/Crypto
https://developer.arm.com/documentation/101754/0624/armclang-Reference/Other-Compiler-specific-Features/Supported-architecture-features/Cryptographic-extensions
https://developer.arm.com/documentation/101754/0624/armclang-Reference/Other-Compiler-specific-Features/Supported-architecture-features/Cryptographic-extensions
https://riscv.org/blog/2021/09/risc-v-cryptography-extensions-task-group-announces-public-review-of-the-scalar-cryptography-extensions/
https://riscv.org/blog/2021/09/risc-v-cryptography-extensions-task-group-announces-public-review-of-the-scalar-cryptography-extensions/
https://riscv.org/blog/2021/09/risc-v-cryptography-extensions-task-group-announces-public-review-of-the-scalar-cryptography-extensions/
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.6028/NIST.SP.800-131Ar2
https://doi.org/10.6028/NIST.CSWP.29
https://www.fsisac.com/hubfs/Knowledge/PQC/BuildingCryptographicAgilityInTheFinancialSector.pdf
https://www.fsisac.com/hubfs/Knowledge/PQC/BuildingCryptographicAgilityInTheFinancialSector.pdf
https://arxiv.org/abs/2202.07645
https://atis.org/resources/strategic-framework-for-crypto-agility-and-quantum-risk-assessment/
https://atis.org/resources/strategic-framework-for-crypto-agility-and-quantum-risk-assessment/
https://www.deloitte.com/content/dam/assets-shared/docs/services/consulting/2025/deloitte-cryptographic-resilience-community-profile-april-2025.pdf
https://www.deloitte.com/content/dam/assets-shared/docs/services/consulting/2025/deloitte-cryptographic-resilience-community-profile-april-2025.pdf
https://www.deloitte.com/content/dam/assets-shared/docs/services/consulting/2025/deloitte-cryptographic-resilience-community-profile-april-2025.pdf

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

33

[40] National Academies of Sciences, Engineering, and Medicine (2016) Cryptographic Agility
and Interoperability: Proceedings of a Workshop. Forum on Cyber Resilience Workshop
Series. (The National Academies Press, Washington, DC).

1163
1164
1165
1166
1167

https://doi.org/10.17226/24636

https://doi.org/10.17226/24636

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

34

Appendix A. List of Symbols, Abbreviations, and Acronyms 1168

1169
1170

1171
1172

1173
1174

1175
1176

1177
1178

1179
1180

1181
1182

1183
1184

1185
1186

1187
1188

1189
1190

1191
1192

1193
1194

1195
1196

1197
1198

1199
1200

1201
1202

1203
1204

AEAD
Authenticated Encryption with Associated Data

AES
Advanced Encryption Standard

AES-CCM
Advanced Encryption Standard – Counter with CBC-MAC

AES-GCM
Advanced Encryption Standard – Galois/Counter Mode

API
Application Programming Interface

CA
Certification Authority

CAVP
Cryptographic Algorithm Validation Program

CISO
Chief Information Security Officer

CLI
Command Line Interface

CMS
Cryptographic Message Syntax

CPU
Central Processing Unit

CRQC
Cryptographically Relevant Quantum Computer

CSF
Cybersecurity Framework

CSP
Cryptographic Service Provider

DES
Data Encryption Standard

DNSSEC
Domain Name System Security Extensions

EAP
Extensible Authentication Protocol

ECDH
Elliptic Curve Diffie-Hellman

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

35

ECDSA 1205
1206

1207
1208

1209
1210

1211
1212

1213
1214

1215
1216

1217
1218

1219
1220

1221
1222

1223
1224

1225
1226

1227
1228

1229
1230

1231
1232

1233
1234

1235
1236

1237
1238

1239
1240

1241
1242

Elliptic Curve Digital Signature Algorithm

EDNS
Extension Mechanisms for Domain Name System

ESP
Encapsulating Security Payload

FIPS
Federal Information Processing Standards

HSM
Hardware Security Module

IaaS
Infrastructure as a Service

IETF
Internet Engineering Task Force

IKE
Internet Key Exchange

IPsec
Internet Protocol Security

IR
Internal Report

KEM
Key-Encapsulation Mechanism

KPI
Key Performance Indicator

MAC
Message Authentication Code

ML-DSA
Module-Lattice-Based Digital Signature Algorithm

ML-KEM
Module-Lattice-Based Key Encapsulation Mechanism

PaaS
Platform as a Service

PIV
Personal Identity Verification

PKI
Public Key Infrastructure

PQC
Post-Quantum Cryptography

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

36

PRF 1243
1244

1245
1246

1247
1248

1249
1250

1251
1252

1253
1254

1255
1256

1257
1258

1259
1260

1261
1262

1263
1264

1265
1266

1267
1268

1269
1270

1271
1272

1273
1274

1275
1276

1277
1278

1279
1280
1281

Pseudorandom Function

PSK
Pre-Shared Key

RFC
Request for Comment

RPKI
Resource Public Key Infrastructure

RSA
Rivest-Shamir-Adelman

RTOS
Real-Time Operating System

RVV
RISC-V Vector Extension

SaaS
Software as a Service

SDO
Standards Developing Organization

SHA
Secure Hash Algorithm

SIM
Subscriber Identity Module

S/MIME
Secure Multipurpose Internet Mail Extensions

SP
Special Publication

SVE
Scalable Vector Extension

TLS
Transport Layer Security

TPM
Trusted Platform Module

UI
User Interface

UICC
Universal Integrated Circuit Card

USB
Universal Serial Bus

NIST CSWP 39 2pd (Second Public Draft) Considerations for Achieving Crypto Agility
July 17, 2025

37

Appendix B. Definition of Crypto Agility in Other Literature 1282

1283

1284
1285

1286
1287

1288
1289

1290

1291
1292
1293
1294
1295
1296
1297
1298

1299
1300
1301
1302

1303

A 2016 NIST presentation [40] described crypto agility as:

• The ability for implementations to select from the available security algorithms in real
time and based on their combined security functions;

• The ability to add new cryptographic features or algorithms to existing hardware or
software, resulting in new, stronger security features; and

• The ability to gracefully retire cryptographic systems that have become either
vulnerable or obsolete.

In [30], cryptographic agility for the financial sector is defined as:

…a measure of an organization’s ability to adapt cryptographic solutions
or algorithms (including their parameters and keys) quickly and
efficiently in response to developments in cryptanalysis, emerging
threats, technological advances, and/or vulnerabilities...a design
principle for implementing, updating, replacing, running, and adapting
cryptography and related business processes and policies with no
significant architectural changes, minimal disruption to business
operations, and short transition time.

In [38], the Alliance for Telecommunications Industry Solutions (ATIS) described crypto agility as
“the ability of a system or organization to adapt and switch to different cryptographic
primitives, algorithms, or protocols easily and efficiently with limited impact on operations and
with low overhead.”

	Executive Summary
	1. Introduction
	2. Historic Transitions and Challenges
	2.1. Long Period for a Transition
	2.2. Backward Compatibility and Interoperability Challenges
	2.3. Constant Needs of Transition
	2.4. Resource and Performance Challenges

	3. Crypto Agility for Security Protocols
	3.1. Algorithm Identification
	3.1.1. Mandatory-to-Implement Algorithms
	3.1.2. Dependent Specifications

	3.2. Algorithm Transitions
	3.2.1. Preserving Protocol Interoperability
	3.2.2. Providing Notices of Expected Changes
	3.2.3. Integrity for Algorithm Negotiation
	3.2.4. Hybrid Cryptographic Algorithms

	3.3. Cryptographic Key Establishment
	3.4. Balancing Security Strength and Protocol Complexity
	3.4.1. Balancing the Security Strength of Algorithms in a Cipher Suite
	3.4.2. Balancing Protocol Complexity

	4. Crypto Agility for Applications
	4.1. Using an API in a Crypto Library Application
	4.2. Using APIs in the Operating System Kernel
	4.3. Embedded Systems
	4.4. Hardware

	5. Crypto Agility Strategic Plan for Managing Organizations’ Crypto Risks
	5.1. Cryptographic Standards, Regulations, and Mandates
	5.2. Crypto Security Policy Enforcement
	5.3. Technology Supply Chains
	5.4. Cryptographic Architecture

	6. Considerations for Future Works
	6.1. Resource Considerations
	6.2. Agility-Aware Design
	6.3. Complexity and Security
	6.4. Crypto Agility in the Cloud
	6.5. Maturity Assessment for Crypto Agility
	6.6. Common Crypto API

	7. Conclusion
	References
	Appendix A. List of Symbols, Abbreviations, and Acronyms
	Appendix B. Definition of Crypto Agility in Other Literature

