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Cryptographic (crypto) agility refers to the capabilities needed to replace and adapt 
cryptographic algorithms in protocols, applications, software, hardware, firmware, and 
infrastructures while preserving security and ongoing operations. This white paper provides an 
in-depth survey of current approaches to achieving crypto agility. It discusses challenges and 
trade-offs and identifies approaches for providing operational mechanisms to achieve crypto 
agility. It also highlights critical working areas that require additional consideration. 

Keywords 

cryptographic agility; cryptographic algorithm; cryptographic application programming interface 
(API); cryptographic risk management; cryptographic transition. 

Audience 

Crypto agility is a cross-disciplinary topic with many stakeholders, including protocol designers, 
implementers, and operators; IT and cybersecurity architects; software and standards 
developers; hardware designers; and executives and policymakers. Achieving crypto agility 
requires cryptographic researchers to proactively address upcoming transitions and capture the 
attention of cryptographic application communities. Therefore, the intended audience also 
includes cryptographic researchers.  

Note to Reviewers 

This is the second draft of this white paper. The first draft provided a common understanding of 
challenges and identified existing approaches related to crypto agility based on discussions that 
NIST conducted with various organizations and stakeholders. It was provided as read-ahead 
material for the virtual Crypto Agility workshop hosted by NIST in April 2025. This second draft 
reflects the findings from the workshop in addition to the feedback received during the first 
public comment period. 
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Cryptographic algorithms have been relied upon for decades to protect every communication 
link and digital device. Advances in computing capabilities, cryptographic research, and 
cryptanalytic techniques sometimes necessitate replacing algorithms that no longer provide 
adequate security. A typical algorithm transition is costly, takes time, raises interoperability 
issues, and disrupts operations. Cryptographic (crypto) agility refers to the capabilities needed 
to replace and adapt cryptographic algorithms in protocols, applications, software, hardware, 
firmware, and infrastructures while preserving security and ongoing operations.  

The threats posed by future cryptographically relevant quantum computers to public-key 
cryptography demand an urgent migration to quantum-resistant cryptographic algorithms. The 
impact of this transition will be much larger in scale than previous transitions because all public-
key algorithms will need to be replaced rather than just a single algorithm. Also, this transition 
will certainly not be the last one required. Future cryptographic uses will demand new 
strategies and mechanisms to enable smooth transitions. As a result, crypto agility is a key 
practice that should be adopted at all levels, from algorithms to enterprise architectures. 

This white paper provides an in-depth survey of current approaches for achieving crypto agility 
and discusses their challenges and trade-offs as an introduction for executives and 
policymakers. Sections 3, 4, and 6 present crypto agility considerations in technical detail and 
may be of interest to organizational protocol designers, implementers, operators, IT and 
cybersecurity architects, software and standards developers, and hardware designers. Section 5 
examines strategic planning for crypto agility, which should be beneficial for organizational risk 
management, governance, and policy professionals. 

Executives can leverage the insights in this paper to develop a comprehensive strategic and 
tactical plan that integrates crypto agility into the organization’s overall risk management 
framework, ensuring that employees, business partners, and technology suppliers involved in 
cryptographic design, implementation, acquisition, deployment, and use consider and adopt 
these practices. 
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Advances in computing capabilities, cryptographic research, and cryptanalytic techniques 
frequently create a critical need to replace algorithms that no longer provide adequate security 
for their use cases with algorithms that are considered secure. Historically, cryptographic 
transitions take place over several decades. For example, for block ciphers transitioned from 
single DES to Triple DES and then to AES due to rapidly increasing computing power and more 
sophisticated cryptanalysis techniques. Each transition is costly, takes time, raises 
interoperability issues, and disrupts operations. The threats posed by future cryptographically 
relevant quantum computers (CRQCs) to public-key cryptography demand an urgent migration 
to quantum-resistant cryptography. The impact of transitioning to post-quantum cryptography 
(PQC) will be much larger in scale than previous transitions because all public-key algorithms 
will need to be replaced rather than just a single algorithm. These algorithms have been used 
for decades to protect every communication link and digital device. With the rapid growth of 
computing power and cryptographic techniques, this PQC transition will certainly not be the 
last transition required. Future cryptographic applications will demand new strategies and 
mechanisms to enable smooth transitions. 

Cryptographic (crypto) agility describes the capabilities needed to replace and adapt 
cryptographic algorithms for protocols, applications, software, hardware, firmware, and 
infrastructures while preserving security and ongoing operations. Many definitions and 
descriptions for crypto agility have been proposed, some of which are listed in Appendix B.  

Crypto agility facilitates migrations between cryptographic algorithms without significant 
changes to the application that is using the algorithms. Its exact definition is highly dependent 
on specific organizational and technical contexts. For example:   

• Crypto Agility for a Computing System: Cryptographic algorithms are implemented in 
software, hardware, firmware, and infrastructures to facilitate their use in applications. 
For example, replacing a cryptographic algorithm in applications often requires changes 
to application programming interfaces (APIs) and software libraries [1]. It may also 
necessitate the replacement of hardware to incorporate new hardware accelerators. In 
a system, crypto agility is the ability to adopt new cryptographic algorithms and stop the 
use of weak algorithms in applications without disrupting the running system. 

• Crypto Agility for a Communication Protocol: In a communication protocol, parties 
must agree on a common cipher suite: a common set of cryptographic algorithms used 
for key establishment, signature generation, hash function computation, encryption, 
and/or data authentication. Any update of algorithms must be reflected in the protocol 
specifications. In a protocol, crypto agility is the ability to maintain interoperability when 
introducing new cryptographic algorithms and preventing the use of weak algorithms. 

• Crypto Agility for an Enterprise IT Architect: Achieving crypto agility is not only a task 
for product designers, implementors, and operators but also for IT and cybersecurity 
architects, software and standards developers, hardware designers, and executives. 
Organizations that practice crypto agility should be able to turn off the use of weak 
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cryptographic algorithms without making significant changes to infrastructures or 
suffering from unnecessary disruptions. 

Achieving crypto agility requires a systems approach to providing mechanisms that enable the 
transition to alternative algorithms and limit the use of vulnerable algorithms in a seamless way 
while maintaining security and acceptable operation. Significant effort has been made by the 
research and application community in approaching crypto agility. Some sector-specific 
guidance and strategies were developed and are referred to in Appendix B. This white paper 
surveys crypto agility approaches in different implementation environments and proposes 
strategies for achieving the agility needs of varied applications. This paper also discusses crypto 
agility in different contexts and highlights the coordination needed among stakeholders.  

The paper is structured as follows:  

• Section 2 discusses the challenges faced in past transitions.  

• Section 3 examines the challenges and existing practices in achieving crypto agility for 
security protocols.  

• Section 4 addresses strategies for supporting crypto agility for applications — from an 
API to software libraries or hardware. Some of the strategies have been implemented in 
today’s systems, and others will be considered in the future.  

• Section 5 presents the use of a crypto agility strategic plan for managing an 
organization’s cryptographic risks in an enterprise environment.  

• Section 6 identifies important areas for consideration and future actions.  

• Section 7 provides concluding thoughts. 
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Most early cryptographic applications were deployed using algorithms that were expected to 
be used throughout the lifetime of the application or systems. However, due to increases in 
computing power, advances in cryptanalytic techniques, and regulatory obsolescence, many 
algorithms require quick replacement within the lifetime of a system. As a result, cryptographic 
transitions to replace algorithms should be an important part of security practices within an 
organization-wide risk management program. 

In the past 50 years, applications involving cryptography have undergone multiple transitions. 
This section describes transition challenges and the lessons learned. In this historic review, the 
necessary background on cryptographic algorithms and transition triggers is provided to help 
readers understand the subsequent content. 

2.1. Long Period for a Transition 

In 1977, the Data Encryption Standard (DES) became the first published encryption standard. 
The DES algorithm [2] had a 64-bit block size and a 56-bit key. Motivated by the threat of a 
practical brute-force attack against DES’s 56-bit key, a variation of DES called Triple DES [3] (due 
to its capacity to use two or three 56-bit keys) was introduced as a temporary solution before a 
stronger algorithm could be standardized and made available for use. This new and stronger 
algorithm, called the Advanced Encryption Standard (AES) [3] (with options for 128-, 192-, or 
256-bit keys), was standardized in 2001. Both AES and Triple DES continued to be used for 
many years until Triple DES was finally disallowed in 2024. This 23-year transition from Triple 
DES to AES supports the existence of significant transition challenges. 

Historically, decisions about the cryptographic algorithms used for applications were made 
without considering any future transitions. Sometimes, the algorithms are implemented in a 
manner that is difficult to change, making maintenance and the addition of new algorithms 
hard to accomplish.  

2.2. Backward Compatibility and Interoperability Challenges 

The need for backward compatibility can also be a barrier to transition. For example, hash 
functions are used as a message digest in digital signatures, for the generation of message 
authentication codes (MACs), for key-derivation functions, and for random-number generation. 
Cryptographic hash functions have also been used as a basic component in hash-based 
signatures. Cryptographic hash function requirements include collision resistance, pre-image 
resistance, and second pre-image resistance. SHA-1, a hash function with a 160-bit output 
length [4], was expected to provide 80 bits of collision resistance and 160 bits of pre-image 
resistance. Many use cases relied on these security properties. However, in 2005, SHA-1 was 
found to provide fewer than 80 bits of collision resistance [5]. In 2006, NIST responded by 
urging federal agencies to “stop relying on digital signatures that are generated using SHA-1 by 
the end of 2010.”  
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protocols, interoperability and backwards compatibility had to be considered in the transition. 
In particular, using SHA-1 in digital signatures for entity authentication had to be allowed in 
certain circumstances for some protocols, such as Transport Layer Security (TLS) (Section 
4.4.2.2 of [6]). Since 2005, additional cryptanalyses have shown the weakness of SHA-1 with 
respect to collision resistance [7]. NIST has recommended a complete transition away from 
SHA-1 by the end of 2030 [8]. This example shows that when some applications do not have 
crypto agility and cannot make timely transitions, a longer transition period may need to be 
allowed in order to facilitate backward compatibility.  

2.3. Constant Needs of Transition 

For a public-key cryptographic algorithm, security strength is determined by parameter 
selection. For example, one of the parameters for the RSA algorithm is the modulus size. When 
the use of RSA was first approved for digital signatures in 2000 as specified in Federal 
Information Processing Standards (FIPS) publication 186-2 [9], a minimum modulus size of 1024 
bits was required to provide at least 80 bits of security strength. In 2013, the minimum modulus 
was increased to 2048 bits to provide a security strength of at least 112 bits due to the progress 
in integer factorization and the increase in computing power. 

For many devices, a key size (modulus) is fixed for the device. However, a transition to a larger 
key size (modulus) may need to happen during a device’s lifetime. If a device is not designed to 
transition to a larger key size (modulus) during its lifetime, the device will need to be replaced. 
Given the long-desired lifespan of many devices, it is generally more cost-effective to design the 
device for such transitions during its development. 

When one transition is planned, another transition can appear for a different reason. Since 
2005, NIST Special Publication (SP) 800-57 Part 1 [10] has projected the need to transition to 
128-bit security strength by 2031. Because of the emerging need to transition to post-quantum 
cryptography, NIST Internal Report (IR) 8547 [11] stated that the 112-bit security strength for 
the current public-key algorithms would be deprecated in 2031 rather than disallowed in order 
to facilitate a direct transition from the 112-bit security strength provided by current public-key 
schemes to post-quantum cryptography. 

2.4. Resource and Performance Challenges 

Transitions in general and transitions to post-quantum algorithms in particular present many 
challenges. Some quantum-resistant algorithms have larger sizes for public keys, signatures, 
and ciphertext than those for classic public-key algorithms. For example, an RSA modulus of 
3072 bits provides roughly 128 bits of classical security strength with its 3072-bit signature. The 
transition to the post-quantum Module-Lattice-Based Digital Signature Algorithm (ML-DSA) 
specified in FIPS 204 will result in a signature of 2420 bytes (i.e., 19,360 bits) to provide a 
roughly equivalent classical security strength of 128 bits [12]. This shows that transitioning to 
new algorithms can challenge the capacity of a communication network and increase the time 
to transmit the message with signatures or ciphertexts. 
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Many security protocols use cryptographic algorithms to provide confidentiality, integrity, 
authentication, and/or non-repudiation. Communicating peers must agree on a common set of 
cryptographic algorithms, referred to as a cipher suite, for security protocols to work properly. 
This aspect of a security protocol is called cipher suite negotiation. The cipher suite may include 
algorithms for integrity protection, authentication, key derivation, key establishment, 
encryption, and digital signatures to provide the needed security services. Crypto agility is 
achieved when an implementation of a security protocol can easily transition from one cipher 
suite to another, more desirable one. Each security protocol normally specifies a suite of 
mandatory-to-implement algorithms to ensure basic interoperability. However, a mandatory-
to-implement algorithm may need to be replaced if a flaw is found in it. 

To achieve crypto agility, security protocol implementations should be modular to easily 
accommodate the insertion of new algorithms or cipher suites. Implementations should also 
provide a way to determine when deployed implementations have shifted from the old 
algorithms to the more desirable ones. Expect the set of mandatory-to-implement algorithms 
to change over time; this mechanism needs to accommodate the identification of yet-to-be 
specified algorithms in the future.  

This section discusses challenges and existing practices in achieving crypto agility for security 
protocols. 

3.1. Algorithm Identification 

Security protocols include a mechanism to identify the algorithm or cipher suite in use. In some 
industries, regulation can mandate algorithm deprecation, but in other industries, algorithm 
deprecation is completely voluntary. 

Some security protocols explicitly carry algorithm identifiers or a cipher suite identifier to 
indicate the algorithms that are being used, while others rely on configuration settings to 
identify the algorithms or cipher suite. For example, an entry in a database of symmetric keys 
that includes both a key value and an algorithm identifier might be sufficient. If a security 
protocol does not carry an explicit algorithm identifier, a new protocol version number is 
needed to identify the use of a new algorithm or cipher suite. 

The version number of a protocol or an algorithm identifier is needed for an implementation to 
tell communicating peers which algorithm or cipher suite is being used. Changing the version 
number of a protocol usually requires significant effort by the standards developing 
organization (SDO). Thus, crypto agility is easier to achieve when security protocols include 
algorithm or cipher suite identifiers. 

In some security protocols, a combination of the protocol version number and explicit 
algorithm or cipher suite identifiers is defined. For example, in TLS Version 1.2 [13] and TLS 
version 1.3 (TLSv1.3) [6], the version number specifies the hash function that is used as a binder 
for external pre-shared keys (PSKs). 
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protocols carry one identifier for a cipher suite that specifies the use of multiple algorithms. For 
example, in the IPsec protocol suite, Internet Key Exchange Protocol version 2 (IKEv2) [14] most 
commonly negotiates algorithms with a separate identifier for each algorithm. In contrast, 
TLSv1.3 [6] negotiates algorithms with cipher suite identifiers. Both identification approaches 
are used successfully in security protocols, and both require the assignment of new identifiers 
to add support for new algorithms. 

Designers are encouraged to pick one of these approaches and use it consistently throughout 
the protocol or family of protocols. Cipher suite identifiers make it easier for the protocol 
designer to avoid incomplete specifications because each cipher suite selects the algorithms for 
all cryptographic services. However, cipher suite identifiers inherently face a combinatoric 
explosion when all useful combinations of algorithms are specified. On the other hand, using 
multiple algorithm identifiers rather than cipher suites imposes a burden on implementations 
to determine which algorithm combinations are acceptable during session establishment. This 
determination is often made through a negotiation that is built into session establishment, 
which is sometimes called security association establishment. Local policy can limit the 
allowable combinations. 

Regardless of the mechanism used, security protocols historically negotiate the symmetric 
cipher and cipher mode together to ensure that they are compatible. As a result, one algorithm 
identifier names both the symmetric cipher and the cipher mode. 

In some protocols, the length of the key to be used is not specified by the algorithm or cipher 
suite identifier, thus allowing the key length to be flexible. For example, TLSv1.2 cipher suites 
include Diffie-Hellman key exchange without specifying a particular public-key length. When 
the algorithm identifier or suite identifier specifies a particular public-key length, migration to 
longer lengths would require the specification, implementation, and deployment of a new 
algorithm or cipher suite identifier. In contrast, a flexible public-key length in a cipher suite 
would make it easier to migrate away from short key lengths when the computational 
resources available to an attacker dictate the need to do so. However, the flexibility of 
asymmetric key lengths has led to interoperability problems when the key length is not firmly 
established. To avoid these interoperability problems in the future, any aspect of the algorithm 
not specified by the algorithm identifiers needs to be negotiated, including the key size and 
other parameters. 

3.1.1. Mandatory-to-Implement Algorithms 

For secure interoperability, communicating peers must agree on a common set of secure 
cryptographic algorithms. While many algorithms are often specified for a security protocol, an 
implementation may not support all possible algorithms. To ensure that interoperation is 
possible for all implementations, an SDO will often choose at least one set of algorithms with 
properly selected security strengths based on state-of-the-art cryptanalysis results as 
mandatory-to-implement (i.e., to be supported by all implementations). 
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keep up with advances in computing and cryptanalysis. For example, NIST has withdrawn 
approval for the DES encryption algorithm and the Triple DES encryption algorithm. Each was a 
mandatory-to-implement algorithm in various security protocols at one time. It is highly 
desirable for SDOs to be able to revise mandatory-to-implement algorithms without modifying 
the base security protocol specification. To achieve this goal, some SDOs publish a base security 
protocol specification and a companion document that describes the supported algorithms, 
which allows for one document to be updated without necessarily modifying the other. 

SDOs should specify the new algorithms before the current ones have weakened to the 
breaking point. For example, support for the AES algorithm was introduced in S/MIME v3.1 
[15], and the AES algorithm became mandatory to implement in S/MIME v3.2 [16]. This 
approach allows for a timely migration to the new algorithms while the old algorithms are still 
able to meet their security expectations. However, a failure of implementers and 
administrators to take prompt action to transition will increase the period of time that an old 
algorithm is used, perhaps dangerously so. 

3.1.2. Dependent Specifications 

Mandatory-to-implement algorithms are not specified for protocols that are embedded in other 
protocols. In these cases, the higher-level protocol specification identifies the mandatory-to-
implement algorithms used in the embedded protocols. For example, S/MIME version 3.2 [16] 
(a higher-level protocol) makes use of (i.e., embeds) the cryptographic message syntax (CMS) 
[17]. Thus, S/MIME (not CMS) specifies the mandatory-to-implement algorithms. This approach 
allows various security protocols to use the CMS and make independent choices regarding 
which algorithms are mandatory to implement. 

To add a new algorithm, the conventions for using that new algorithm are specified for the 
embedded security protocol (i.e., the CMS in the example above), and then at some future 
time, the higher-level protocol (i.e., S/MIME in the example above) might make that algorithm 
mandatory to implement. 

3.2. Algorithm Transitions 

Transitioning from a weakening algorithm can be complicated. It is relatively straightforward to 
specify how to use a new, better algorithm. However, the development of a security protocol 
specification and its implementation and deployment often take years, especially if a new or 
additional infrastructure is required prior to deployment. The physical location of devices can 
add challenges to upgrades, especially for remote sensors and space systems. Overcoming 
these challenges takes time and increases cost. When the new algorithm is widely deployed, it 
should be used in lieu of the old algorithm. However, knowledge about the actual use and 
security of the new algorithm will always be imperfect, so one cannot be completely sure that it 
is safe to remove the old algorithm from an implementation. 

A cryptographic key is associated with a particular algorithm, which means that key expiration 
and revocation are important tools for cryptographic algorithm transition. For example, the 
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used for authentication by a relying party beyond certificate expiration. Likewise, revoking the 
certificate indicates to a relying party that the public key should not be used, even if the 
certificate is not expired. 

Algorithm transition is naturally facilitated as part of an algorithm selection or negotiation 
mechanism. During the negotiation phase, security protocols traditionally select the most 
secure algorithm or cipher suite that is supported by all communicating peers and acceptable 
by their policies. In addition, a mechanism to determine whether a new algorithm has been 
deployed is often needed. For example, the SMIME Capabilities attribute [16] allows S/MIME 
mail user agents to share the list of algorithms that they are willing to use in order of 
preference. A secure email sender can tell that it is possible to use a new algorithm when all 
recipients include it in their SMIME Capabilities attribute. As another example, the Extension 
Mechanisms for DNS (EDNS(0)) [18] can be used in Domain Name System Security Extensions 
(DNSSEC) to signal the acceptance and use of new digital signature algorithms. In Resource 
Public Key Infrastructure (RPKI), all implementations must support the same digital signature 
algorithm. To ensure global acceptance of a digital signature, an approach to transition has 
been specified in which a new signature algorithm is introduced long before the original one is 
phased out [19]. 

In the worst case, a deeply flawed algorithm may still be available and used in an 
implementation, which could permit an attacker to download a simple script to compromise 
the data that the algorithm is intended to protect. Flawed security can also occur when a secure 
algorithm is used incorrectly or with poor key management. In such situations, it is not possible 
to provide notice to implementers (see Sec. 3.2.2), and the protection offered by the algorithm 
is severely compromised. Administrators may choose to stop using the weak cipher suite that 
includes the algorithm well before the new cipher suite is widely deployed. This can happen by 
picking a date for a global switch to the new algorithm, or each installation can select a date on 
their own. In either case, interoperability will be sacrificed with any implementation that does 
not support the new crypto suite. 

3.2.1. Preserving Protocol Interoperability  

Removing support for deprecated and obsolete cryptographic algorithms is challenging. Once 
an algorithm is determined to be weak, it is difficult to eliminate all uses of that algorithm 
because many applications and environments rely on it. Since algorithm transitions can 
introduce interoperability problems, protocol designers and implementers may be inclined to 
delay the removal of support for algorithms. As a result, flawed algorithms can be supported for 
far too long. The security impact of using legacy software that includes the flawed algorithm 
and having extended support periods can be reduced by making algorithm transitions easy. 
Social pressure is often needed to cause the transition to happen. For example, the RC4 stream 
cipher was supported in web browsers until Andrei Popov championed an effort to stop its use 
[20]. 
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server administrators are often reluctant to disable them over concerns that some party will no 
longer have the ability to connect to their server. Implementers and administrators want to 
improve security by using the strongest supported algorithms, but their actions are tempered 
by the desire to preserve backward compatibility. Some web browsers provide a visual warning 
when a deprecated algorithm is selected for use. These visual warnings provide an incentive for 
website operators to transition away from deprecated algorithms. 

Transitioning in the internet infrastructure is particularly difficult. The digital signature on a 
certification authority (CA) [21] certificate is often expected to last decades, which hinders 
transition away from a weak signature algorithm. Once a long-lived certificate is issued with a 
particular signature algorithm, that algorithm is used by many relying parties to verify 
certificates signed by the CA, and none of the relying parties can stop supporting it without 
invalidating all of the certificates signed by that CA. Many certificates can be impacted by the 
decision to drop support for a weak signature algorithm or an associated hash function since all 
certificates signed using that algorithm or hash function would need to be replaced. 

Influential organizations like NIST and the Internet Engineering Task Force (IETF) can assist with 
overcoming the conflicting desire to preserve interoperability by coordinating the deprecation 
of an algorithm or cipher suite and simplifying the transition for users. 

3.2.2. Providing Notices of Expected Changes 

Cryptographic algorithm failures without warning are rare. Algorithm transitions are typically 
driven by advancements in computing capabilities, cryptographic research, and cryptanalytic 
techniques rather than unexpected failures. For example, the transition from DES to Triple DES 
to AES took place over decades, resulting in a shift in symmetric block cipher security strength 
from 56 bits to 112 bits to at least 128 bits. When possible, SDOs should provide notice to 
security protocol implementers about expected algorithm transitions. 

Monitoring cryptographic research results provides a way to discover new attacks, assess 
impacts to existing security protocols, and foresee needed changes. In the worst case, a 
breakthrough cryptanalytic technique can indicate the need for an immediate algorithm 
transition. Crypto agility is needed to smoothly implement such a transition. 

As part of their crypto agility efforts in the transition to PQC, security protocol designers need 
to plan for public keys, signatures, and key-encapsulation ciphertext to be much larger than 
those currently used. Public-key sizes and signature sizes directly impact the size of the 
certificates that contain those keys and signatures. To be safe, security protocol designers 
should plan for the significant growth of key sizes. 

3.2.3. Integrity for Algorithm Negotiation 

The mechanism that a security protocol uses to perform cryptographic algorithm negotiation 
should include integrity protection. If the integrity of algorithm selection during negotiation is 
not protected, the protocol will be subject to a downgrade attack in which an attacker 
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specifies a single integrity algorithm to protect the negotiation without a way to negotiate an 
alternative integrity algorithm, that single algorithm will eventually be found to be weak. 

Extra care is needed when a mandatory-to-implement algorithm is used to provide integrity 
protection for the negotiation of other cryptographic algorithms. In this case, the integrity 
protection should be at least as strong as that provided by the next set of algorithms, which can 
result in the need for several mandatory-to-implement algorithms to cover the various security 
strength requirements. Otherwise, a flaw in the mandatory-to-implement integrity algorithm 
may allow an attacker to influence the choices of the other algorithms. 

Security protocols can negotiate a key-establishment mechanism, derive an initial cryptographic 
key, and then authenticate the negotiation. However, if the authentication fails, the only 
recourse is to start the negotiation over from the beginning. This is necessary for security but 
can lead to an awkward experience for the human user when authentication is unsuccessful. 

3.2.4. Hybrid Cryptographic Algorithms 

A hybrid cryptographic algorithm is a combination of two or more components that are 
themselves cryptographic algorithms. One early hybrid algorithm was a pseudorandom function 
(PRF) introduced in TLS 1.0 [22], which combined MD5 and SHA-1. A hybrid key-encapsulation 
mechanism (KEM) algorithm is a combination of two or more KEM algorithms and key-
establishment schemes. One use case for hybrid public-key algorithms is to continue using the 
well-tested, traditional public-key algorithms while study of the new PQC algorithms continues 
and implementations mature. Some SDOs are considering a hybrid of more than one PQC 
algorithm.1

1 Some of the hybrid algorithm specifications refer to “composite algorithms.” At the level of the discussion in this section, the distinctions 
between “hybrid” and “composite” algorithms are unimportant. Thus, this section uses “hybrid” throughout.  

 Choosing a hybrid algorithm may lead to a second transition when the traditional 
algorithm is deprecated, as shown in Fig. 1. 

 
Figure 1. Possible second transition from hybrid mode 

If the overhead associated with the traditional algorithm is small, some security protocol 
implementations will avoid the second transition by continuing to use the hybrid algorithm 
even when the traditional algorithm is no longer secure. 

A hybrid signature algorithm combines a traditional signature algorithm and a PQC signature 
algorithm (e.g., combining Elliptic Curve Digital Signature Algorithm [ECDSA] and ML-DSA [12]). 
It requires two public keys to be certified: a public key for the traditional algorithm and a PQC 
public key. One option is to include the two public keys in a single certificate, where the public 
keys would always be used together. However, the cost of deploying a PKI root of trust is 
significant, so the expense associated with a transition to the use of a hybrid root of trust 
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be considered. 

Another option is the deployment of a traditional root of trust and a PQC root of trust using 
separate certificates. In some cases, two certificates will be less expensive, but there are 
operational costs associated with validating two certification paths to establish a session key. A 
significant advantage of using separate roots of trust is that once the traditional PKI is no longer 
needed, one can simply stop issuing certificates under the traditional root of trust, while the 
PQC trust anchor continues to be used.  

A hybrid key-establishment algorithm establishes a shared secret by combining the outputs of a 
traditional key-establishment algorithm and a PQC KEM (e.g., Elliptic Curve Diffie-Hellman 
(ECDH) [23] and Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM) [24]). The 
assumption is that at least one of the algorithms will remain strong over time. Security analysis 
for a hybrid key-establishment algorithm can be more complicated than analysis of either of the 
algorithms that are used in the hybrid algorithm. 

In summary, hybrid signatures or key-establishment schemes can be a good strategy for 
preserving security in the face of uncertainty while transitioning from traditional public-key 
cryptography to PQC. However, hybrid schemes increase protocol complexity and the resources 
consumed. Hybrid signatures or key-establishment schemes exercise the capability to 
accommodate many cipher suites and stress the crypto agility of a security protocol design. 

3.3. Cryptographic Key Establishment 

Some environments restrict the key-establishment approaches by policy. Such policies tend to 
improve interoperability within a particular environment, but they cause problems for 
individuals who need to work in multiple incompatible environments. In addition, 
administrators need to be aware that multiple environments are being used, track the policies, 
and enable the algorithms or cipher suites for each of them. 

Support for many key-establishment mechanisms in a security protocol offers more 
opportunities for crypto agility. Key establishment can include key-agreement mechanisms, 
key-transport mechanisms, and KEMs. Security protocol designers perform security analysis to 
ensure that all security goals are achieved when each of the possible key-establishment 
mechanisms is used. 

Traditionally, security protocol designers have avoided support for more than one mechanism 
for exchanges that establish cryptographic keys because such support would make the security 
analysis of the overall protocol more difficult. When frameworks like the Extensible 
Authentication Protocol (EAP) [25] are employed, the authentication mechanism often provides 
a session key in addition to authentication. As a result, key establishment is very flexible, but 
many of the cryptographic details are hidden from the application, which makes security 
analysis more difficult. Furthermore, this flexibility results in protocols that support multiple 
key-establishment mechanisms. In fact, the key-establishment mechanism itself is negotiable, 
which creates a design challenge to protect the negotiation of the key-establishment 
mechanism before it is used to produce cryptographic keys. 
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framework is profiled to a single choice (e.g., EAP is used with a single authentication 
mechanism), the security analysis is much more straightforward. However, crypto agility is 
reduced. 

3.4. Balancing Security Strength and Protocol Complexity 

When specifying a cipher suite, the relative strength of each algorithm needs to be considered, 
and complexity in security protocols needs to be avoided. Each of these design goals is explored 
further in this section. 

3.4.1. Balancing the Security Strength of Algorithms in a Cipher Suite 

When selecting or negotiating a cipher suite, the relative strength of each algorithm needs to 
be considered. Generally, the algorithms in a cipher suite ought to provide roughly equal 
security strengths, where each of the algorithms meets or exceeds the minimum-security 
strength requirements. However, when the performance of a particular algorithm does not 
impact overall performance, using the strongest choice across all of the cipher suites can 
reduce complexity by reducing the number of algorithms that need to be supported. The 
security protections provided by each algorithm in a particular context need to be considered 
when making the selection. Algorithm strength needs to be considered when a security 
protocol is designed, implemented, deployed, and configured. Advice from experts about 
relative algorithm strengths is useful, but such advice is often unavailable to system 
administrators who are deploying a protocol implementation. For this reason, SDOs should 
provide clear guidance to implementers that lead to options with roughly equal security 
strengths being available at the time of deployment. 

Performance is always a factor in selecting cryptographic algorithms. Performance and security 
need to be balanced. Users will not employ security features if the application runs too slowly 
when they are used. Some algorithms offer flexibility in their strength by adjusting the key size, 
number of rounds, authentication tag size, parameter set, and so on. For example, AES-128 is 
more efficient than AES-256, but it also offers less security. 

3.4.2. Balancing Protocol Complexity 

Security protocol design complexity leads to implementation complexity, which in turn often 
makes vulnerabilities more likely. Thus, complexity should be avoided. Optional features can 
add complexity and lead to parts of an implementation rarely being exercised. A security 
protocol with fewer options means that there is a lower burden on implementation testing and 
a decreased attack surface, which provides fewer potential points of entry for attackers.  

Security protocol designs need to anticipate changes to the supported set of cryptographic 
algorithms over time. Security protocol implementations avoid complexity to reduce 
vulnerability to attacks. For example, complex algorithm or cipher suite negotiation provides 
opportunities for downgrade attacks. Support for many algorithm alternatives is also harmful 
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environment and maintaining that list of algorithms over time. 

Protocol complexity can lead to portions of the implementation that are rarely used, increasing 
the opportunity for undiscovered, exploitable implementation bugs. 
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A cryptographic application programming interface (crypto API) separates the implementation 
of applications that make use of the cryptographic algorithms (e.g., email and web apps) from 
the implementation of the cryptographic algorithms themselves. This separation allows the 
application to focus on high-level, application-specific details, while the cryptographic 
algorithms are implemented by a provider or a library to handle symmetric encryption and 
decryption, digital signature generation and verification, hashing, random number generation, 
and key establishment while also supporting the old and new algorithms during the transition. 

For example, crypto APIs can separate AES-CCM [26] and AES-GCM [27], which are both 
authenticated encryption with associated data (AEAD) algorithms, from application 
implementations by allowing an application to make the same crypto API calls to use either 
algorithm. Careful selection of default parameter values in the crypto API can make the 
interface to these two algorithms essentially identical, which facilitates future transition to a 
different AEAD algorithm. 

Some crypto APIs offer implementations of security protocols like TLS or IPsec to further 
unburden the application. These protocol implementations depend on other crypto APIs for 
cryptographic operations. The application provides the list of algorithms or cipher suites that 
are available and acceptable, and the algorithm negotiation capabilities for the protocol 
determine the algorithms that are used in the protocol. 

To achieve crypto agility, system designers must introduce mechanisms that simplify the 
replacement of cryptographic algorithms in software, hardware, firmware, and infrastructures. 
These mechanisms will, at the same time, increase complexity. Therefore, system designers 
must make sure that the cryptographic interface is easy to use and well-documented to reduce 
the risk of errors. Additionally, clear guidance must be provided for practitioners to follow. 

4.1. Using an API in a Crypto Library Application  

A cryptographic service provider (CSP) is an implementation of one or more cryptographic 
algorithms that is accessible by applications through a crypto API (see Fig. 2).  

 
Figure 2. Functional diagram of applications using crypto APIs 
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a Trusted Platform Module (TPM) will also provide access to the asymmetric private keys that 
are stored on the TPM. 

The cryptographic algorithm policy is set by the system administrator, which might be done to 
implement a policy set by the Chief Information Security Officer (CISO). The policy will indicate 
whether a particular algorithm is allowed. For example, if there is a provider for Triple DES, calls 
to encrypt with it will fail if the policy does not allow Triple DES. However, calls for Triple DES 
decryption might still be allowed so that stored files or email messages can be decrypted. 

Some protocols are implemented in user space, which is an area in memory where applications 
are executed that is distinct from kernel space. Kernel space is a part of a computer memory 
that can only be accessed by the operating system. For example, application-chosen TLS crypto 
library applications operate in user space. In fact, most libraries run in user space, such as 
OpenSSL, BoringSSL, Bouncy Castle, Network Security Services (NSS), and OpenSSH. Application 
developers need to consider whether the API is provided via the command line interface (CLI) 
or by incorporating the cryptographic algorithm’s source code into the application (i.e., 
“compiling in” support). 

For software libraries, it is important to facilitate efficient updates. Some standard mechanisms 
must be in place to avoid security pitfalls in library updates. 

4.2. Using APIs in the Operating System Kernel 

Some security protocols run in the operating system kernel, which is a computer program that 
is generally first loaded when the system is turned on and has complete control over all system 
resources accessible to all application programs in the system. For example, in the case of IPsec 
Encapsulating Security Payload (ESP), datagram encryption and authentication operate in the 
kernel. Similarly, disk encryption needs to run in the kernel. 

To provide crypto agility in this case, the crypto API must also be accessible within the kernel. In 
some operating systems, only a subset of the crypto API’s overall capabilities is available from 
within the kernel. This subset is determined by the cryptographic operations required in the 
kernel. In many operating systems, the supported algorithms are established when the kernel is 
built, meaning that plugins to add algorithms are not available. 

Some systems perform self-tests of the cryptographic functions as part of the operating system 
startup process. These tests ensure that the cryptographic operations are working as expected 
before the system is available to applications or users. 

4.3. Embedded Systems 

Some security protocols in embedded systems must run within the real-time operating system 
(RTOS) kernel or privileged system tasks. An RTOS is typically initialized during device startup 
and manages critical hardware resources, task scheduling, and inter-process communication for 
the entire embedded application. For example, secure communication protocols (e.g., TLS) 
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within the RTOS to meet strict timing and security requirements. 

To support cryptographic flexibility in this environment, the cryptographic API must be 
accessible to privileged code within the RTOS. However, in many embedded systems, only a 
minimal set of cryptographic primitives is included in the RTOS, selected based on the system’s 
memory, real-time constraints, and security profile. In these cases, available algorithms are 
typically fixed at compile time, and the dynamic loading of new cryptographic modules after 
deployment is often not supported due to reliability and certification concerns. Designers 
should consider the need to update the cryptographic implementation together or separately 
from the rest of the system. 

Similarly, secure boot mechanisms (i.e., starting a computer and loading its operating system) 
and firmware authentication routines operate as part of the system startup sequence before 
the main application tasks begin. Some embedded platforms also include cryptographic self-
tests during the startup process to validate the integrity and correct functioning of the 
cryptographic operations, ensuring that any malfunction or tampering is detected before 
normal system execution. 

4.4. Hardware 

There are several aspects of the hardware implementation of cryptographic algorithms to 
consider with regard to crypto agility. For example, an entire integrated circuit chip might be 
dedicated to the implementation of one cryptographic algorithm, or a small portion of a chip 
might implement a particular building-block function in support of a single cryptographic 
algorithm. In either case, a low-level interface is needed that works well in a particular 
hardware environment. Firmware is often needed to manage memory and invoke various low-
level functions in the proper order. The functions that are implemented in the integrated circuit 
cannot be changed. This makes them well-protected from attackers, but it also means that the 
chip will need to be replaced if it has design errors or if changes are needed for the algorithms 
to be used. 

Some chips are dedicated to supporting cryptographic operations, such as universal integrated 
circuit cards (UICCs) and TPMs. These chips are part of a larger computer system like a mobile 
phone, laptop computer, or server. The chips store private keys and support functionality to 
perform cryptographic operations that use the keys. For removable UICCs, the private keying 
material is never expected to leave the chip, except at the time of manufacture. These chips 
support a limited set of defined cryptographic algorithms, and changing supported algorithms is 
often accomplished by replacing the removable UICC or upgrading the device because non-
removable UICCs and TPMs are purposefully difficult to replace. There are some cases in which 
changing the supported algorithms by upgrading the functionality running on the device is 
possible. In fact, some devices offer a slot to do so without opening the device. 

Hardware security modules (HSMs) are special-purpose hardware devices that store private 
keys and perform cryptographic operations using those keys. An HSM might be a rack-mounted 
device for an organization, a high-value application, or a portable device that is easily locked in 
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2 HSMs provide cryptographic services, but some also consume cryptographic services (e.g., leveraging APIs for cryptographic operations but 
still providing hardware-based protection for key storage). 

 HSMs offer 
tamper-detection capabilities to protect the private keying material stored in them. They often 
include a microprocessor and one or more chips that are designed to accelerate different 
cryptographic algorithms or parts of the algorithms invoked by software cryptographic 
implementations. 

A personal portable cryptographic token (e.g., Personal Identity Verification [PIV] card, USB 
token) is a device that stores the private keys for an individual. The human user inserts the 
portable device into the computer they are currently using. These devices are essentially tiny 
HSMs that are intended to be used by one person, and the keying material never leaves the 
portable device.  

Some central processing units (CPUs) have instructions that are designed to accelerate specific 
algorithms. A cryptographic algorithm implementation might detect whether such instructions 
are available and then take advantage of them if they are. For example, the Intel SHA 
Extensions paper [28] states that Intel-based CPUs offer features to make SHA hash 
computations faster. Scalable Vector Extension (SVE) and RISC-V Vector Extension (RVV) are 
also available that speed up SHA-3 [29][30][31][32].  

Some hardware offers a good source of random numbers, which are vital to the generation of 
quality keying material. However, it is easier to provide multiple cryptographic algorithms to 
facilitate agility in library and application software than in hardware. Once a chip leaves the 
factory, additional algorithms may not be easily added to the chip. Other layers in an 
architecture fall on a spectrum between these two cases. The crypto API needs to be designed 
so that all points on this spectrum are accommodated. In some environments, especially HSMs 
and other cryptographic tokens, the data needs to move to the device where the key is stored 
for the data to be protected using that key. 

For environments in which the update of cryptographic functions in hardware is not possible, it 
state-of-the-art cryptography can be used to include implementations of the best and most 
conservative variants for each cryptographic function. A key element is the communication 
between cryptographers and developers to decide on a long-term plan based on the best 
estimate of the security needs during the lifetime of a specific hardware device. For example, 
secure booting requires the use of digital signature schemes. The public key and the program 
for verifying the signatures are included in the boot code and cannot be updated. In this case, 
to make sure that the platform is trustable during its lifetime, the signature schemes must be 
able to provide the required security during the lifetime of the device. 
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Organizations need to transition or migrate their cryptographic use multiple times throughout 
their lifetimes. By incorporating crypto agility into their cryptographic policies during the design 
and development of the systems and technology acquisitions or scheduled replacements, 
updates, or modernization efforts, organizations can proactively address emerging threats, 
technological advances, system weaknesses, and evolving business requirements, standards, 
regulations, and mandates. A crypto agility strategic plan combines key functions to inform the 
migration/transition of cryptography at different technology levels, including governance [30], 
cryptographic and data assets, risk management, and automated tooling (see Fig. 3). 

 
Figure 3. Crypto agility strategic plan for managing an organization’s cryptographic risks 

The plan may include several key activities, including: 

• Integrate crypto agility into the organization’s existing governance function to establish, 
communicate, and monitor the cybersecurity risk management strategy, expectations, 
and policies related to cryptography. This includes understanding cryptographic 
standards, regulations, and mandates and communicating these requirements to data 
owners, IT and development teams, business partners, and technology supply chain 
vendors prioritized by the criticality of the data for the primary use cases. 

• Inventory the use of cryptography for data protection across the organization by 
adopting an assets-centric approach informed by the criticality of the data to identify 
the organization’s use cases and most valuable assets, such as application codes, 
libraries, software, hardware, firmware, user-generated content, communication 
protocols, enterprise services, and systems. 
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• Identify gaps in enterprise management tools for managing assets, configurations, 720 
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vulnerabilities, and logs. These tools should support cryptographic risk management and 
data protection functions by automating the identification, assessment, 
characterization, enforcement, and monitoring of cryptography across assets. If 
necessary, enhance the tools with automated data and cryptographic discovery 
capabilities, including algorithms and key lengths. For instance, vulnerability 
management and software/hardware development tools can help ensure 
comprehensive visibility and an inventory of assets, such as code, libraries, applications, 
and associated cryptographic algorithms. 

• Develop a prioritization list of assets to be mitigated first based on the data collected in 
the previous steps. A cryptographic policy-informed risk assessment engine should be 
used to analyze this data, form an implementation strategy, and recommend actions to 
reduce risks. Based on the organization’s defined cryptographic policy, the engine will 
continuously measure, monitor, and report on the state of cryptography within the 
enterprise and focus on crypto agility key performance indicators (KPIs) for the level of 
effort needed to effectively and efficiently adapt and migrate. 

• Implement the strategy and actions based on the prioritization list. The technology’s 
level of crypto agility will determine whether assets can be smoothly migrated or 
compensatory mitigation measures must be implemented to reduce risks. Organizations 
can use existing automated enterprise management tools when feasible to inventory, 
assess, and migrate assets (e.g., code, applications, software, hardware, and 
communication protocols) or implement compensating security controls as part of a 
zero-trust approach [33] if the assets are not agile enough to support the cryptographic 
policy. 

These steps are continuously repeated to mitigate evolving cryptographic risks and mature the 
crypto agility posture within organizations over time.  

Cryptography governance is an important function of a crypto agility strategic plan. The 
following subsections discuss some components of governance that are crucial for 
organizations to drive cryptographic practices and compliance in support of managing the 
cryptographic risks among all stakeholders, from the organization’s board to system 
implementers. 

5.1. Cryptographic Standards, Regulations, and Mandates 

Any crypto agility effort must consider the effects of standards, regulations, and mandates on 
transition requirements for cryptographic algorithms. Movements to achieve crypto agility 
involve coordination between protocol designers, software and hardware vendors, application 
and standards developers, policymakers, and IT administrators. Government standards and 
regulations can mandate transition when an algorithm is found to be vulnerable. SP 800-131A 
guides algorithm and security strength transitions by setting transition schedules for 
implementers to terminate certain algorithms or security strengths based on a common 
understanding of the computing power available to attackers and the latest research results. 
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For example, SP 800-131Ar2 (Revision 2) [34] set the end of 2023 as the date to disallow three-
key Triple DES for applying cryptographic protection. These transition guidelines are informed 
by various stakeholders, including cryptographic researchers and designers, cryptanalysts, 
policymakers, regulators, SDOs, and technology providers. 
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Industry standards play an important role in compliance with security requirements for 
cryptographic algorithm use in different application environments. The standards for internet 
protocols, communications, and applications update the supported cipher suites to eliminate 
vulnerable algorithms and ciphers. Security protocols often define mandatory-to-implement 
cipher suites to reflect state-of-the-art cryptography and support interoperability. 

The NIST Cryptographic Algorithm Validation Program (CAVP) provides validation testing for 
FIPS-approved and NIST-recommended cryptographic algorithms. Cryptographic algorithm 
validation is a prerequisite for cryptographic module validation. The approved algorithms and 
relevant parameter sets are updated based on transition requirements [34]. 

From a practitioner’s perspective, certain policies, laws, and mechanisms must be established 
to enhance crypto agility practices, facilitate transitions, and provide proper security during the 
transition. These laws and policies are coupled with industry-specific requirements. It is very 
important to handle assets in a secure way during a transition. For example, for the encrypted 
storage of data at rest, a mechanism must be established to handle encrypted user data when 
the encryption algorithm is to be replaced by a stronger one. Similarly, when a digital signature 
algorithm must be replaced, a mechanism to handle already-signed documents using the 
algorithm to be replaced is required. 

5.2. Crypto Security Policy Enforcement 

The crypto agility assessment must consider cryptographic security policy establishment and 
enforcement for each protocol, system, and application. One of the most challenging aspects of 
crypto agility is replacing vulnerable algorithms in a timely manner without interrupting the 
system. For security protocols, a cryptographic security policy can be enforced by specifying 
mandatory-to-implement algorithms and disallowing the use of weak algorithms in a timely 
fashion. For a system, a security policy can be enforced by using an API. Security practitioners 
enforce security policy through decisions for using cryptographic algorithms with required 
security strengths. 

Enforcing a cryptographic security policy requires communication among cryptographers, 
developers, practitioners, implementers, and policymakers. Each decision on deprecating a 
cryptographic algorithm must be synchronized among all of the stakeholders so that the 
security policy can be updated quickly and translated into a technology-specific, machine-
consumable configuration profile that represents a crypto policy that can be deployed with 
automated tools. 
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Technology supply chains play a critical role in the governance function of a crypto agility 
strategic plan. They guide decisions about whether to migrate to new cryptographic systems or 
employ mitigation techniques when cryptographic changes are necessary. This involves 
examining the impacts of the supply chain on the entire cryptographic architecture, including 
hardware, firmware, software modules, and communication protocols. 

A resilient technology supply chain enables modular updates that allow cryptographic 
algorithms to be replaced or upgraded seamlessly — whether due to emerging vulnerabilities 
or a weakness of the crypto algorithms — without overhauling the entire system. This approach 
minimizes disruptions and ensures continuous security. 

Crypto agility requires all system components in a supply chain to work in harmony during 
updates. The supply chains have dependencies on the maturity of standards, protocols, and the 
cryptographic validation program before the products and services can be delivered to the 
implementer. 

Technology producers can help an organization by providing automated mechanisms that have 
visibility into products, services, and protocols to include a comprehensive list of cryptographic 
components, such as algorithms, protocols, libraries, applications, certificates, and related 
crypto materials. This will inform whether the cryptographic components can be updated 
without a complete system overhaul or need to be replaced if vulnerabilities are discovered or 
new cryptographic algorithms are introduced due to emerging threats. 

5.4. Cryptographic Architecture 

Network architecture deals with data flows across the interfaces, protocols, and physical and 
logical communication components of an enterprise architecture. Another critical element is 
the cryptographic layer, which focuses on how assets (including data) are protected and 
ensures data integrity and authentication for data at rest, in transit, and in use. 

The cryptographic architecture in a crypto agility strategic plan provides the technical 
foundation upon which governance functions are built. The cryptographic architecture creates 
a structured framework by defining standardized processes, protocols, and key management 
practices that govern how cryptographic updates are implemented and maintained throughout 
an organization. In essence, a cryptographic architecture is part of the organization governance 
function for capturing how an organization integrates and manages cryptographic functions to 
secure its assets and communications. The architecture establishes the design principles, 
standards, and processes for implementing and maintaining cryptographic services, key 
management, and related security mechanisms in software, hardware, and firmware. It 
captures how cryptographic components interact with each other and with other parts of the 
network architecture. 

Organizations can include crypto agility characteristics as part of the cryptographic architecture 
to capture cryptographic standards, policies, algorithms, protocols, key management practices, 
and security components. This helps an organization decide whether to replace or upgrade 
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cryptographic algorithms in a timely manner when new vulnerabilities or threats emerge or in 835 
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support of an organization-defined cryptographic policy. 

 



NIST CSWP 39 2pd (Second Public Draft)  Considerations for Achieving Crypto Agility 
July 17, 2025  
 

24 
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Achieving crypto agility demands collaboration and communication among cryptographic 
researchers, software and standards developers, protocol designers and implementers, 
hardware designers, and practitioners to manage the risks of using cryptography to secure data. 
To be actionable, crypto agility requirements must be specific for each implementation and 
application environment. This section discusses some trade-offs, and each subsection highlights 
important areas for consideration by the relevant stakeholders. 

6.1. Resource Considerations 

Resource limitation is the most difficult challenge for achieving crypto agility. This section 
discusses resource considerations for protocol designers, hardware implementers, and 
cryptographers. 

Crypto agility requires support for multiple cryptographic algorithms in a protocol. Some 
algorithms have much larger public keys, signatures, or ciphertext than the algorithms being 
replaced. Experience has shown that large sizes challenge the limits of existing protocols. It is 
important for protocol designers to consider resource demands to plan for future transitions 
and to distinguish intrinsic limitations from shortsighted design decisions. 

Hardware implementation is limited by capacity. It may not be possible to implement many 
algorithms in one hardware platform. Some optimization efforts (e.g., accelerator reuse) have 
been considered. At present, further research is needed in this area to address the transition 
from traditional public-key cryptography to PQC. 

Future cryptographic algorithm designs must consider resource limitations. Historically, each 
design has focused on the resource requirements of a single algorithm for an application 
without considering the other algorithms used by the application. For example, the design may 
use a specific primitive or a subroutine (e.g., a hash function) that is not commonly used by 
other applications. To save hardware resources, it is desirable for different algorithms to share 
the same primitive or subroutine. 

Cryptographers have considered algorithms based on diversified assumptions so that when one 
assumption is determined to be incorrect, an alternative algorithm based on a different 
assumption is in place for the same purpose. Achieving crypto agility within resource limitations 
requires cryptographers to prioritize security-related diversities. 

Considering the combination of algorithms used by different applications in a device is a new 
area of research to optimize resource use. It must take a different approach from that of 
traditional approaches where the resource needed for an algorithm is viewed in isolation from 
the need for other algorithms to be used by applications. 

6.2. Agility-Aware Design 

This section discusses crypto agility design considerations for applications, platforms, and 
protocol designers. 
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Agility-aware design could be reflected in a product or system configuration. The design would 875 
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need to ensure that the user interface (UI) and API can support new algorithms with different 
key and parameter sizes to use the underlying cryptographic software libraries and hardware 
accelerators. The design would not make assumptions based on one algorithm or a family of 
algorithms when coding cryptographic implementations. That is, the design would ensure that 
buffers, memory locations, and storage could handle large keys and parameters. 

Some well-deployed security protocols (e.g., TLS) facilitate authenticated cipher-suite 
negotiation to allow adding new algorithms to and discontinuing the use of weak algorithms 
from the available cipher suites. It should be a common practice in any protocol design to 
facilitate secure transition.  

It is also important to include crypto agility as an evaluation perspective for project proposals, 
security architects, protection profiles, protocol specifications, and application designs. For 
example, in most of the IETF Requests for Comment (RFCs), there is a section called “Security 
Considerations.” It may be beneficial to include a section about “Crypto Agility Considerations” 
in the standards to provide a rationale for the design choices to allow crypto agility. 

6.3. Complexity and Security 

Accommodating crypto agility introduces complexity into protocols and systems that protocol 
designers and system architects and implementers should take into consideration. It can also 
increase attack surfaces. For example, if cipher suite negotiation integrity is not properly 
protected, a downgrade attack can lead to a weaker cipher suite than would otherwise be 
agreed upon. For software libraries and APIs, a larger number of options may increase the 
chance to introduce security vulnerabilities or attack vectors. For enterprise IT administrators, it 
is important to make sure that the configuration is updated to reflect new security 
requirements. 

Crypto agility requires sound mechanisms to ensure a secure and smooth transition. Currently, 
most security analyses and evaluations of a protocol or system configuration are based on 
selected cryptographic algorithms without considering transition mechanisms. For a protocol, a 
cryptographic transition mechanism will facilitate the communication parties securely agreeing 
upon a cipher suite that satisfies updated security requirements. For a system configuration, a 
cryptographic transition mechanism enables applications to securely switch from a weak 
algorithm to a secure algorithm.  

6.4. Crypto Agility in the Cloud 

This section discusses crypto agility considerations for cloud computing service architects, 
developers, operators, and cryptographers. 

The main security model used in the cloud is the shared responsibility model, which clearly 
divides security duties between the cloud provider and the customer. The cloud provider 
secures the underlying infrastructure, including physical facilities, hardware, networking, and 
virtualization. The customer manages the security of their data, applications, and 
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configurations. To ensure comprehensive and compliant cloud security, the shared 913 
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responsibilities vary by service model, such as infrastructure as a service (IaaS), platform as a 
service (PaaS), and software as a service (SaaS). 

Cloud providers are responsible for ensuring the agility of the cryptographic hardware (e.g., 
HSM, hardware root of trust, hardware-enabled security functions like encrypted memory) and 
services (e.g., secure runtime environment, attestation service, crypto library, container 
services and images, secure communication, data protection, authentication, key management) 
they offer in PaaS and SaaS to facilitate customer use through robust APIs. Customers, in turn, 
can leverage this crypto agility within cloud platforms to enhance application resiliency and 
potentially lower maintenance and support costs by decoupling cryptographic functions from 
their core application logic. Cloud providers offer APIs to make their cryptographic functions 
and configurations transparent to customers.  

While the range of cryptographic hardware, features, and services that a provider supports may 
limit application portability across different platforms, customers still maintain complete 
control over keys that are managed within cloud-based HSMs or secure runtime environments. 
Although cloud providers cannot access customers’ keys, they can manage cryptographic 
resource use by controlling the underlying infrastructure. Cloud providers bear the capital and 
operational costs of these services, balancing them with diverse and often conflicting national 
or industry-specific compliance cryptographic policies. In the IaaS model, customers have more 
control, but they are responsible for the agility of their cryptographic functions when they 
choose to manage their own hardware (e.g., HSMs) or cryptographic applications within the 
cloud or when integrating cloud-based applications and services that employ on-premises 
cryptographic services. 

6.5. Maturity Assessment for Crypto Agility 

This section introduces the concept of a crypto agility maturity model to help organizations 
continuously measure their progress in adopting crypto agility across their environments and 
achieve resilience against evolving changes in crypto requirements.  

Since organizations vary significantly in their mission, size, sector, country, regulatory regime, 
and risk tolerance, there is not a single crypto maturity model that effectively serves all needs. 
Instead, organizations should adapt their existing, mature risk management frameworks to 
include crypto agility. Enterprise risk management frameworks often incorporate a maturity 
model concept, and these can be adapted to assess and report on crypto agility. This approach 
utilizes a shared vocabulary for effective communication within the organization, with external 
partners, and with suppliers. It integrates directly with the organization’s current enterprise risk 
management processes and streamlines the evaluation of cryptographic agility readiness. 

The maturity model described in this paper is derived from the NIST Cybersecurity Framework 
(CSF) [35], which is a voluntary set of guidelines based on standards and best practices designed 
for managing and reducing cybersecurity risks. The CSF’s four tiers show increasing 
sophistication in cybersecurity risk management: 

• Tier 1 – Partial: An initial, informal, and reactive approach 
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• Tier 2 – Risk-Informed: Management-approved but not fully integrated practices 953 
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• Tier 3 – Repeatable: Standardized and consistently updated processes 

• Tier 4 – Adaptive: Proactive, continuously improved, and dynamic approach to 
cybersecurity based on evolving risks 

Adapting the CSF tiers and drawing upon insights from various industry initiatives 
[36][37][38][39], a crypto agility maturity model might include:  

• Tier 1 – Partial 

o Crypto agility practices are unstructured and unplanned. 

o Each group or team within the organization implements its own cryptography on 
a case-by-case basis. 

o The selection of crypto algorithms, schemes, libraries, and cryptographic 
products and services is not informed by current crypto-based exploits and 
evolving threat landscapes. 

o The organization is unaware of potential crypto risks from partners, suppliers, 
and acquired products and services. 

o Organizational and external awareness (including partners and suppliers) of 
cryptography usage is limited. 

o A formal crypto policy or architecture is lacking, hindering internal and external 
communication. 

o Discussions about the organization’s crypto agility are infrequent and 
inconsistent. 

• Tier 2 – Risk Informed 

o The crypto agility strategy and plan include a crypto policy that has been defined 
and approved by management but has not been adopted consistently as an 
organization-wide policy. 

o The crypto policy is shaped by established standards, approved or validated 
technologies, business requirements, existing processes and procedures, and 
stakeholder input. 

o Crypto agility prioritization is determined and refined through risk assessments. 

o A cryptographic architecture is being developed and informed by inventories of 
cryptographic assets, data, and external dependencies. 

• Tier 3 – Repeatable 

o Crypto agility is formally integrated into the organization’s risk management plan 
and guided by a well-defined crypto policy. 

o The crypto policy, processes, procedures, roles, and responsibilities are defined, 
implemented, reviewed, and assessed. 
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o Crypto agility practices and cryptographic architectures are regularly updated 989 
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based on changes in business and mission requirements, threats, and 
technological evolution. 

o Crypto agility is part of the organization’s awareness and training curriculum to 
ensure that personnel have the appropriate knowledge and skills. 

o Integrated and automated crypto discovery and remediation tools are used to 
prioritize and continuously mitigate crypto risks. 

• Tier 4 – Adaptive 

o Crypto agility is a fundamental element of organizational risk management with 
defined objectives. 

o Crypto agility is monitored, measured, and reported to executives as part of the 
risk register and linked to financial, business, and mission objectives. 

o Crypto agility is considered in all changes to business objectives at the executive 
level and in every line of code by developers. 

o Crypto agility policies, processes, and procedures are continuously adapted, 
monitored, and communicated in near real-time in response to changes in the 
environment, such as standards, regulations, supply chains, partners’ 
ecosystems, mission and business requirements, and threat and technological 
landscape. 

6.6. Common Crypto API 

One of the needs identified during the NIST Crypto Agility Workshop was a standardized 
cryptographic API — a universal interface that bridges established crypto API frameworks by 
abstracting complex cryptographic operations to support crypto agility. An effective solution 
must balance generality with specificity by including the essential functions required for 
operational use, interoperability, and smooth transitions to different algorithms without being 
hindered by the specific characteristics of individual cryptographic implementations.  

NIST’s role is to collaborate with the crypto community to develop standards and guidelines 
while industry-led SDOs define mechanisms for supporting the crypto standards (e.g., for 
software, hardware, firmware, protocols). Industry partners — in collaboration with 
government experts, SDOs, and academic researchers — are in the best position to research 
and initiate the development of a common crypto API. This can be done by a consortium of 
practitioners through a series of iterative discussions, workshops, and prototype 
implementations to define operational use cases and the associated minimum set of 
requirements for a common API that can be backward compatible with existing widely 
deployed crypto APIs and support emerging cryptographic functions and algorithms. 



NIST CSWP 39 2pd (Second Public Draft)  Considerations for Achieving Crypto Agility 
July 17, 2025  
 

29 

7. Conclusion 1024 
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Crypto agility is a future-proofing strategy to address changes. It demands communication 
among cryptographers, developers, implementers, and practitioners to accommodate evolving 
security, performance, and interoperability challenges. The pursuit of crypto agility capabilities 
involves the exploration of new technologies and management schemes, and new crypto agility 
requirements must be developed for each environment. The security analysis and evaluation of 
protocols, systems, and applications must include mechanisms for transitions. When transition 
mechanisms are not available, organizations should have a plan to implement compensating 
controls to mitigate cryptographic vulnerabilities and evolving threats. Although crypto agility is 
now being considered in security practices to facilitate transitions, achieving measurable 
maturity in this area requires ongoing and significant effort. 
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Appendix A. List of Symbols, Abbreviations, and Acronyms 1168 

1169 
1170 

1171 
1172 

1173 
1174 

1175 
1176 

1177 
1178 

1179 
1180 

1181 
1182 

1183 
1184 

1185 
1186 

1187 
1188 

1189 
1190 

1191 
1192 

1193 
1194 

1195 
1196 

1197 
1198 

1199 
1200 

1201 
1202 

1203 
1204 

AEAD 
Authenticated Encryption with Associated Data 

AES 
Advanced Encryption Standard 

AES-CCM 
Advanced Encryption Standard – Counter with CBC-MAC 

AES-GCM 
Advanced Encryption Standard – Galois/Counter Mode  

API 
Application Programming Interface 

CA 
Certification Authority 

CAVP 
Cryptographic Algorithm Validation Program 

CISO 
Chief Information Security Officer 

CLI 
Command Line Interface 

CMS 
Cryptographic Message Syntax 

CPU 
Central Processing Unit 

CRQC 
Cryptographically Relevant Quantum Computer 

CSF 
Cybersecurity Framework 

CSP 
Cryptographic Service Provider 

DES 
Data Encryption Standard 

DNSSEC 
Domain Name System Security Extensions 

EAP 
Extensible Authentication Protocol 

ECDH 
Elliptic Curve Diffie-Hellman 
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ECDSA 1205 
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1209 
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1220 

1221 
1222 

1223 
1224 

1225 
1226 

1227 
1228 

1229 
1230 

1231 
1232 

1233 
1234 

1235 
1236 

1237 
1238 

1239 
1240 

1241 
1242 

Elliptic Curve Digital Signature Algorithm 

EDNS 
Extension Mechanisms for Domain Name System 

ESP 
Encapsulating Security Payload 

FIPS 
Federal Information Processing Standards  

HSM 
Hardware Security Module 

IaaS 
Infrastructure as a Service 

IETF 
Internet Engineering Task Force 

IKE 
Internet Key Exchange 

IPsec 
Internet Protocol Security 

IR 
Internal Report 

KEM 
Key-Encapsulation Mechanism 

KPI 
Key Performance Indicator 

MAC 
Message Authentication Code 

ML-DSA 
Module-Lattice-Based Digital Signature Algorithm 

ML-KEM 
Module-Lattice-Based Key Encapsulation Mechanism 

PaaS 
Platform as a Service 

PIV 
Personal Identity Verification 

PKI 
Public Key Infrastructure 

PQC 
Post-Quantum Cryptography 
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PRF 1243 
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1245 
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1247 
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1250 

1251 
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1253 
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1259 
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1261 
1262 
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1271 
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1276 

1277 
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Pseudorandom Function 

PSK 
Pre-Shared Key 

RFC 
Request for Comment 

RPKI 
Resource Public Key Infrastructure 

RSA 
Rivest-Shamir-Adelman 

RTOS 
Real-Time Operating System 

RVV 
RISC-V Vector Extension 

SaaS 
Software as a Service 

SDO 
Standards Developing Organization 

SHA 
Secure Hash Algorithm 

SIM 
Subscriber Identity Module 

S/MIME 
Secure Multipurpose Internet Mail Extensions 

SP 
Special Publication 

SVE 
Scalable Vector Extension 

TLS 
Transport Layer Security 

TPM 
Trusted Platform Module 

UI 
User Interface 

UICC 
Universal Integrated Circuit Card 

USB 
Universal Serial Bus 
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Appendix B. Definition of Crypto Agility in Other Literature 1282 

1283 

1284 
1285 

1286 
1287 

1288 
1289 

1290 

1291 
1292 
1293 
1294 
1295 
1296 
1297 
1298 

1299 
1300 
1301 
1302 

1303 

A 2016 NIST presentation [40] described crypto agility as: 

• The ability for implementations to select from the available security algorithms in real 
time and based on their combined security functions; 

• The ability to add new cryptographic features or algorithms to existing hardware or 
software, resulting in new, stronger security features; and 

• The ability to gracefully retire cryptographic systems that have become either 
vulnerable or obsolete. 

In [30], cryptographic agility for the financial sector is defined as:  

…a measure of an organization’s ability to adapt cryptographic solutions 
or algorithms (including their parameters and keys) quickly and 
efficiently in response to developments in cryptanalysis, emerging 
threats, technological advances, and/or vulnerabilities...a design 
principle for implementing, updating, replacing, running, and adapting 
cryptography and related business processes and policies with no 
significant architectural changes, minimal disruption to business 
operations, and short transition time. 

In [38], the Alliance for Telecommunications Industry Solutions (ATIS) described crypto agility as 
“the ability of a system or organization to adapt and switch to different cryptographic 
primitives, algorithms, or protocols easily and efficiently with limited impact on operations and 
with low overhead.” 
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