

 NIST CYBERSECURITY WHITE PAPER NIST CSWP 26

Ordered t-way Combinations for Testing
State-based Systems

D. Richard Kuhn
M S Raunak
Computer Security Division
Information Technology Laboratory

Raghu N. Kacker
Applied and Computational Mathematics Division
Information Technology Laboratory

June 13, 2022

This publication is available free of charge from:
https://doi.org/10.6028/NIST.CSWP.26

NIST CSWP 26 ORDERED T-WAY COMBINATIONS

2

Abstract

Fault detection often depends on the specific order of inputs that establish states which eventually lead
to a failure. However, beyond basic structural coverage metrics, it is often difficult to determine if code
has been exercised sufficiently to ensure confidence in its functions. Measures are needed to ensure
that relevant combinations of input values have been tested with adequate diversity of ordering to
ensure correct operation. Combinatorial testing and combinatorial coverage measures have been
applied to many types of applications but have some deficiencies for verifying and testing state-based
systems where the response depends on both input values and the current system state. In such systems,
internal states change as input values are processed. Examples include network protocols, which may
be in listening, partial connection, full connection, disconnected, and many other states depending on
the values of packet fields and the order of packets received. Similarly, merchant account balances in
credit card systems change continuously as transactions are processed. This publication introduces a
notion of ordered t-way combinations, proves a result regarding the construction of adequate blocks of
test inputs, and discusses the application of the results to verify and test state-based systems.

Keywords
combinatorial coverage; combinatorial methods; combinatorial testing; software testing; structural
coverage; test coverage.

Disclaimer
Any mention of commercial products or reference to commercial organizations is for information
only; it does not imply recommendation or endorsement by NIST, nor does it imply that the products
mentioned are necessarily the best available for the purpose.

Additional Information

For additional information on NIST’s Cybersecurity programs, projects and publications, visit the Computer
Security Resource Center. Information on other efforts at NIST and in the Information Technology Laboratory
(ITL) is also available.

Submit comments on this publication to: cfdwp@nist.gov
National Institute of Standards and Technology

Attn: Computer Security Division, Information Technology Laboratory
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930

https://csrc.nist.gov/
https://csrc.nist.gov/
https://www.nist.gov/
https://www.nist.gov/itl

NIST CSWP 26 ORDERED T-WAY COMBINATIONS

3

1 Introduction

Vulnerability and fault detection often depend on the
specific order of inputs that establish states which
eventually lead to a failure. That is, many software
processes are not deterministic functions where an
input produces the same output whenever the process
is invoked irrespective of previous invocations. This
is particularly true of real-time systems, which are
designed to run continuously, maintain states, and
respond to a changing series of inputs. Such systems
are typically driven by a loop function that accepts
input values, processes and responds to those inputs,
and updates its current state. Examples include
network protocols and data servers. The system state
may change, depending on input, and the system may
subsequently respond differently to the same input.
That is, the response of the process to a particular set
of input values may depend on its current state, such
as whether a communication protocol is in a listen or
connection-open state. The current state depends on
the order of input values that were contained in
previously received packets. The same sort of state-
dependent behavior occurs in many other types of
systems as well.

Ensuring that inputs and system states in testing are
sufficiently representative of what will be
encountered in practice is critical to any form of
effective software testing. The common practice for
evaluating how thoroughly software has been tested
is by using some sort of structural coverage metrics,
such as statement coverage, branch coverage, or
MC/DC coverage [13] . Test cases selected using
only structural coverage criteria are often not very
effective as they are not designed to include corner
cases with specific combinations of input values that
may cause a failure. Looking beyond these
commonly used metrics, it is often difficult to
determine if the code has been adequately tested and
even more difficult to ensure that a sufficient
diversity of inputs has been achieved. This is
particularly true of assertion-based testing or runtime
verification, where program states and properties are
monitored to verify correct processing. For runtime
assertions to discover bugs, the software needs to be
exercised with a set of values in a particular order that
leads to the failure. Consequently, for strong software
assurance, measures are needed to verify that
combinations of input values and combinations of
input orders in a test suite are sufficient.

Combinatorial coverage measures provide an
effective method for quantifying the thoroughness of
test input values [26] . A number of measures have
been defined for the coverage of (static) input value
combinations. For example, with four binary
variables, there are a total of 22 * C(4,2) = 24 possible
settings of the four variables taken two at a time. If a
test set includes tests that cover 19 of the 24, the
simple combinatorial coverage is 19/24 = 0.79. These
measures quantify the degree to which input values
cover the potential space of parameter value
combinations without regard for the order in which
these inputs occur in a test set or in normal
operations. However, if a system state is affected or
determined by the order of inputs, even thorough
coverage of the input space may not detect some
failure conditions. Thus, it is desirable to supplement
measures of input space coverage with measures of
the input value combination ordering.

2 Related Work

Combinatorial aspects of input ordering have been
studied in the context of event sequences. Sequence
covering arrays (SCAs) were introduced in [1] and
[2] and further developed in [3] , [4] , [5] , [7] , [8]
[9] , [10] , and [11] .

Definition. A sequence covering array [2] , SCA(N,
S, t) is an N x S matrix where entries are from a finite
set S of s symbols, such that every t-way permutation
of symbols from S occurs in at least one row. The t
symbols in the permutation are not required to be
adjacent.

For example, Fig. 1 shows an event sequence a *→ b
→ c in test 1 and an event sequence of d → c* →
a in test 3, where x *→ y denotes x is eventually
followed by y, with possible interleaving. Note that
the event sequence array has sequences of events in
each row. Event sequences are made up of a value in
a column followed by values in columns to the right.

Test p0 p1 p2 p3
1 a d b c
2 b a c d
3 b d c a
4 c a b d
5 c d b a
6 d a c b

Fig. 1. Event sequence

NIST CSWP 26 ORDERED T-WAY COMBINATIONS

4

Combinatorial testing with constraints on the order in
which values and combinations are applied in tests
was analyzed extensively in [5] . Extended covering
arrays that consider the sequence of values in each
test were defined in [6] . Combination sequences
were studied in [20] , combining configuration and
the order of combinations while also considering
constraints. Another structure defined as a sequence
covering array of t-way combinations has been
termed a multi-valued sequence covering array,
introduced in [25] .

3 Ordered Combination Covering

A combination order is different from an event
sequence. As noted in the previous section, an event
sequence is a possibly interleaved sequence of
symbols in a single row of a test array. A combination
order, as defined below, is across multiple rows,
given in the order in which tests will be executed. A
t-way permutation of symbols is referred to as a t-way
order, which will be called a t-order for brevity.
The t events in the order may be interleaved with
others (i.e., the order a→b→c covers three 2-event
orders: a followed by b and b followed by c, and a
followed by c). Denoting event a eventually followed
by event b, possibly with other events interleaved, is
written as a*→b.

Consider the notion of an s-order of t-way
combinations of the input parameters as a series of
rows of test data that contain a particular set of t-way
combinations in a specified order, with possibly
interleaved rows.

Definition 1. The notation a*→b denotes the
presence of combination a eventually followed by
combination b, possibly with other rows interleaved.
A combination order c1 *→ c2 *→ …*→cs of s
sequence of t-way combinations, abbreviated s-order,
is a set of t-way combinations in s rows. Each ci is a
t-way combination of parameter values.

Example. Fig. 2 shows combination order p0p1 = ad
*→ p0p3 = ba *→ p1p3 = ab, which is a 3-order of 2-
way combinations. Thus, the term ordered
combinations refers to combinations in a row
followed by combinations in rows below.

Test p0 p1 p2 p3
1 a d b c
2 b a c d
3 b d c a
4 c a b d
5 c d b a
6 d a c b

Fig. 2. Ordered combinations

When all s-orders of t-way combinations of the input
parameters have been covered, it is referred to as an
ordered combination cover (OCC). For the OCCs,
the combination orders are treated across rows (i.e.,
a combination in a row followed by combinations in
rows below). A t-way combination occurs in some
row and is eventually followed by other t-way
combinations in other rows. For three Boolean
parameters a, b, c in Fig. 3, ab=00 is followed by
ab=10 ab=00 ac=11 ac=01 bc=01 (ac=01 and bc=01
are also followed by this group).

a b c
0 0 1
1 0 1
0 0 1

Fig 3. Ordered combinations of parameter values

Combinations of parameter values such as this can be
significant in protocol verification and testing, such
as with combinations of values in each packet
affecting the state where later packets produce
different responses depending on the state that
resulted from previous packet orders.

Definition 2. An ordered combination cover,
OCC(N,s,t,p,v), covers all s-orders of t-way
combinations of the v values of p parameters, where
t is the number of parameters in combinations and s
is the number of combinations in an ordered series.
Permutations of parameter value combinations may
appear multiple times in a combination order. For
example, a particular 2-order of 2-way combinations
may be (p1p2 = 01) *→ (p2p4 = 11).

The utility of combination order covering can be
illustrated with an example. Consider the covering
array in Fig. 4, which includes all 2-way
combinations of four Boolean variables.

NIST CSWP 26 ORDERED T-WAY COMBINATIONS

5

Test p1 p2 p3 p4
1 0 0 1 0
2 0 1 0 1
3 1 0 0 1
4 1 1 1 0
5 0 1 0 0
6 0 0 1 1

Fig. 4. 2-way covering array of Boolean variables.

Suppose these six tests are applied to the system
modeled with a finite state machine diagram in Fig.
5, and tests are run in the order 1..6. If condition A =
“p1 ∧ p2” and condition B = “p1 ∧ ~p2”, then the error
in state 2 will not be discovered. The system returns
to state 0 for tests 1 through 3, then enters state 1 with
test 4 and moves to state 3 with test 5. Because the
test array does not include the ordered combinations
p1, p2 = 11 *→ p1, p2 = 10, the error is not exposed.
However, if the tests are run in the order [1, 2, 4, 3,
5, 6], then the error in state 2 will be discovered
because the third test (row 4 in Fig. 4) leads to state
1, the fourth test (row 3) causes condition B to
evaluate to true, and the system enters state 2,
exposing the error.

Fig. 5. Example Finite State Machine.

Note that the definition includes the repetition of a
value combination in the OCC. The possibility of
repeated occurrences of a value combination in an
order is allowed based on the assumption that a
particular combination may occur in multiple tests,
and this sequence may be relevant to the system or
software under test (SUT). For example, a function
call to create a new file ‘f1’ followed by a duplicate
call to create ‘f1’ may trigger some behavior other
than an expected error message. So the 3-way
combination (create, f1, 256) may be desirable
to include more than once in a series of test inputs.

Returning to the example in Fig. 4 and Fig. 5,
suppose that a file system is being tested, where p1 is
function with values {0 = read, 1 = write}, and p2 is
rewind, which indicates if the pointer to the starting
block is reset to 0 {0 = start from last position, 1 =
start from block 0}. A read or write test processes
from the starting block indicated by p2 and continues
to the end of the file. So tests 1 to 4 represent ‘read
from last read position,’ ‘read from start,’ ‘write from
last write position,’ and ‘write from start.’ State 1 is
entered when the file is filled by writing to the end
after rewinding to start. The failure represented by
state 2 is only exposed when a write is attempted on
a file starting from the end. Then, as noted
previously, running tests in the order 1..6 will not
detect the error. However, when test 4 is run before
test 3, the error will be detected because a write is
attempted from the last position (end of file), as
indicated by the value of p2.

When tests are executed in sequence with each
individual t-way combination considered an event, an
order of t-way combinations containing s
combinations input in sequence with possible
interleaving is an s-sequence of t-way combinations.
For example, a 2-sequence of 3-way combinations
could be

abd = 001 *→ bcd = 100,

and a 3-sequence of 2-way combinations could be

bc = 01 *→ ad = 11 *→ bc = 10.

An OCC covers all s-sequences of t-way
combinations of the v values of the p parameters.
Because a t-tuple is included s times in an s-sequence,
and the number of t-way combinations of p
parameters is 𝐶𝐶(𝑝𝑝, 𝑡𝑡), for vt settings of each
combination, the total number of combination
sequence tuples to be covered is

(𝑣𝑣𝑡𝑡𝐶𝐶(𝑝𝑝, 𝑡𝑡))𝑠𝑠. (1)

The number of combination sequences to be covered
grows rapidly with s and t, so methods for the
efficient construction of OCCs are of interest.

Example. Fig. 6 shows a test array that covers all 2-
way combinations of values for four parameters, as
well as all 2-sequences of 2-way parameter
combinations.

NIST CSWP 26 ORDERED T-WAY COMBINATIONS

6

 p1 p2 p3 p4

1 1 1 1 0
2 0 0 0 0
3 1 1 0 1
4 0 0 1 1
5 1 1 0 0
6 1 1 1 1
7 0 1 1 0
8 0 1 1 0
9 0 1 0 1

10 1 1 1 1
11 1 0 1 0
12 1 1 0 1
13 0 1 1 1
14 0 0 0 0
15 0 0 0 1
16 0 0 1 0
17 1 1 1 0
18 0 1 0 1
19 1 1 1 0
20 1 0 1 1

Fig.6. Tests for four parameters, OCC(20,2,4,2)

That is, the test array includes every solution of (pwpx
= v1v2) *→ (pypz = v1v2), of which there are
(𝐶𝐶(4,2)𝑥𝑥 22)2= 576 instances. For example, each of
the four possible settings of p1p2 is followed by each
of the four possible settings of p3p4 somewhere in the
table (distinguished by color). That is, (p1p2 = 11) in
line 1 is followed by (p3p4 = 01), (p3p4 = 01), (p3p4 =
11), (p3p4 = 00), (p3p4 = 10) in lines 3, 4, 5, and 7,
respectively, highlighted in yellow (also for (p1p2 =
00)). Sequences for (p1p2 = 01) are shown in green,
plus line 14, which provides a (p3p4 = 00) for both
(p1p2 = 01) and (p1p2 = 10). Sequences for (p1p2 = 10)
are highlighted in blue.

3.1 Combination Sequence Covering
Arrays in Testing

As seen in Fig. 6, the numbers of combination
sequences to be covered will become very large with
realistic testing problems as a result of the exponents
in expression (1). Consequently, measuring
combination sequence coverage can be inefficient
and resource intensive. Fortunately, the problem of
ensuring combination sequence coverage can be
reduced to ensuring coverage of t-way covering
arrays, as shown in the following proof. Checking
that a test array is a covering array can be done
efficiently, making it practical to ensure s-sequences
of t-way combinations in large-scale testing.

Theorem: A test set covers s-orders of t-way
combinations if and only if it includes an ordered
series containing a total of s covering arrays, each of
strength t.

Proof: From Definition 2, a sufficient process for
generating an s-order t-way OCC is to concatenate s
covering arrays of strength t, as shown below in Fig.
7. Because a covering array includes every t-way
combination, any order of at least s combinations will
occur by taking the rows of s covering arrays from
CA1, CA2, …, CAs., where CAi are t-way covering
arrays. Clearly, for any s-order of s combinations, c1
*→ c2 *→ …*→cs , c1 must be present in CA1, c2 in
CA2, etc. because they cover all t-way value
combinations by definition, giving the required
order.

CA1

 A1 … A2 … Ak row i
 row i+1

CA2

 B1 … B2 … Bl row x
…

CAs

Fig.7. OCC constructed from covering arrays.

To show necessity, consider a series of rows in a test
array. There must be at least one combination order
that can only exist if the test array can be divided into
subarrays, each of which is a covering array. Each
row covers some number of t-way combinations. For
each row, add the combinations covered to a set, and
continue adding non-covered combinations from
each successive row. Eventually, a row will be
reached that covers the last remaining previously
uncovered combinations. Label these previously
uncovered combinations A1 … A2 … Ak and the row
containing these combinations as row i. A1 … A2 … Ak
do not occur in any row prior to row i. The subarray
of rows from the first row to and including row i
forms a covering array that will be labeled CA1. With
the inclusion of row i, CA1 includes all t-way
combinations, so it is a t-way covering array.

NIST CSWP 26 ORDERED T-WAY COMBINATIONS

7

At row i+1, start a new set of combinations covered
in rows i+1 and following rows. Continue adding
combinations covered in each successive row until a
row is reached that covers the last remaining
previously uncovered combinations after row i+1.
Label these previously uncovered combinations B1 …
B2 … Bl and the row containing these combinations
as row x. B1 … B2 … Bl do not occur in any row after
row i and prior to row x. The subarray beginning with
row i+1 and ending with row x forms a covering array
that will be labeled CA2. CA2 includes all t-way
combinations, with the inclusion of row x, so it is a t-
way covering array. Any combination in A1 … A2 … Ak

must be followed by any t-way combination in some
row of CA2.

Note that any 2-order c1 *→ c2 where c1 is one of Ai

and c2 is one of Bi could not have been covered until
row x of CA2 because the Bi tuples are those that had
not been covered in CA2 before row x (and after row
i). Assume that c1 *→ c2 is covered before row x in
the combined array CA1 || CA2. Since c2 is not in
subarray CA2 before row x, it must be in subarray
CA1. However, c1 is in the last row of CA1, so c2 must
be in a row of CA1 following the last row of CA1,
which is a contradiction.

Therefore c1 *→ c2 can be covered only if CA1 and
CA2 are covering arrays. Continuing in this manner
shows that orders of s combinations of strength t can
be covered only if the subarrays of the set of test rows
form s covering arrays (end proof).

Example. Fig. 8 shows the concatenation of two 2-
way covering arrays for four binary parameters. Any
2-order of 2-way combinations occurs somewhere in
the rows of Fig. 6. For example, (p1p2 = 10) (row 3)
is followed by p1p3 = 00, 01, 10, 11 in rows 5, 6, 9,
and 4, respectively. If row 12 is removed, there must
be at least one combination order c1 *→ c2 where c2

= (p3p4 = 11) that is not covered because (p3p4 = 11)
is covered only in the last row of CA1 and CA2 (row
12). Removing row 12 would result in losing (p3p4 =
11) *→ (p3p4 = 11). Similarly, (p1p4 = 10) is covered
only in the third-to-last row (row 10) of CA1 and CA2,
so there must be at least one combination order c1 *→
c2 where c2= (p1p4 = 10) that is not covered if row 10
is removed. Removing row 10 would result in losing
(p1p3 = 11) *→ (p1p4 = 10), (p3p4 = 00) *→ (p1p4 =
10), and others.

The practical utility of this result is that it shows one
can efficiently produce tests that cover all orders of t-
way combinations up to any necessary order length
by concatenating t-way covering arrays. It also shows
that the minimum size of the OCC is determined by
the minimum size of the relevant t-way covering
arrays. From a testing perspective, producing full
coverage of t-way combinations in s length orders
makes it possible to detect faults that are only
detectable when a system is in a particular state that
can only be reached by an order of input
combinations.

 p1 p2 p3 p4
1 0 0 1 0
2 0 1 0 1
3 1 0 0 1
4 1 1 1 0
5 0 1 0 0
6 0 0 1 1
7 0 0 1 0
8 0 1 0 1
9 1 0 0 1

10 1 1 1 0
11 0 1 0 0
12 0 0 1 1

Fig. 8. Two concatenated covering arrays.

This result can also be useful for runtime verification,
assertion monitoring, and other methods that rely on
checking program properties and states as code is
executed. If inputs are monitored and recorded, then
it is possible to verify whether a covering array series
of desired length has been applied in testing. The
system should run long enough to enter all major
states and allow detection of errors that occur only in
particular states. The use of covering arrays gives
stronger assurance that relevant states have been
reached, as program states depend on the order of
inputs, and the coverage of input value combinations
can be measured.

3.2 Combination Order Coverage

Measurement

A combination order tool for OCCs, Corder, has been
developed, allowing for the order coverage of any
test set to be measured. It may also be used in
generating OCCs using random test generation,
measuring coverage, and extending the test array
until sufficient coverage is achieved.

NIST CSWP 26 ORDERED T-WAY COMBINATIONS

8

In its current form, the tool assumes that all single
values of input variables have been included in the
input test array and computes t-way coverage for t =
2..4 in the same manner as the CCM tool for
combination coverage [26] . This is referred to in the
output report as static coverage and measures the
coverage of combinations in each row of the array
where any t-way covering array will have 100 %
coverage of t-way combinations. A second output
provides coverage, referred to as dynamic, of s-orders
of t-way combinations in the test array.

For example, the test array in Fig. 9 (a) shows 12 tests
with four binary parameters or variables. If these are
executed in order, the first test includes C(4,2) = 6
events defined as 2-way combinations: ab = 00, ac =
01, ad = 00, bc = 01, bd = 00, and cd = 10. For 2-
orders containing ab, there are four possible settings
of ab. Each of these may followed by value
combinations of ab, ac, ad, bc, bd, and cd.
Completely covering all 2-way 2-orders (i.e., orders
of length 2 of 2-way combinations) would produce 4
* C(4,2) * 4 * C(4,2) orders. One can measure the
degree to which these orders are covered and output
any missing orders, as shown in Fig. 4(b). Note that
ab = 11 is followed by cd = 01 and cd = 10, but cd =
00 and cd = 11 do not follow ab = 11 in the test series,
as shown in Fig 5(c), which shows <parameter
numbers> : <order> → <parameter numbers> :

<order> for 2-way orders.

a b c d
0 0 1 0
0 1 0 1
1 0 0 1
0 0 1 1
1 1 0 0
1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1
0 1 0 1
0 0 1 0

(a)

a b c d
0 0 1 0
0 1 0 1
1 0 0 1
0 0 1 1
1 1 0 0
1 1 1 0
1 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1
0 1 0 1
0 0 1 0

 (b)

(c)

Fig. 9 Missing combination orders

Fig. 8 illustrates the output of the Corder tool for the
matrix shown in Fig. 4. Basic static coverage
measures are shown in the top half of the results to
provide an overview of input space coverage. For
more detailed data on input space coverage, the CCM

tool measuring combination coverage can be used
[26] . An example is shown in Fig. 11 for a larger,
more realistic array of 10 parameters with 6 values
each in a file of 263 tests.

file = t9.csv Nvars: 4 Nrows: 12

Static - input space coverage
 t| covered | max possible |coverage|
 1| 8| 8| 1.0000|
 2| 24| 24| 1.0000|
 3| 22| 32| 0.6875|
 4| 6| 16| 0.3750|

Dynamic - order coverage
 | covered | max possible |coverage|
 1-way | 2-seq | 64 | 64 | 1.0000|
 1-way | 3-seq | 512 | 512 | 1.0000|
 2-way | 2-seq | 553 | 576 | 0.9601|
 2-way | 3-seq | 11,069 | 13,824 | 0.8007|
__

Fig. 9. Output of Corder tool for matrix shown in Fig. 4

The Corder tool provides the following output:
• file = input file name containing the test vectors

to be analyzed
• Nvars = number of variables; each column of the

input .csv file corresponds to a single variable
• Nrows = number of rows of input file
• Static-input space coverage: coverage statistics

for t-way combination coverage of the input file
for levels of t specified in first column

• Dynamic-order coverage: coverage statistics for
orders of combinations as described in this
section

file = g10.6.263.csv Nvars: 10 Nrows: 263

Static - input space coverage
 t| covered | max possible |coverage|
 1| 60| 60| 1.0000|
 2| 1,618| 1,620| 0.9988|
 3| 18,268| 25,920| 0.7048|
 4| 50,044| 272,160| 0.1839|

Dynamic - order coverage
 | covered | max possible |coverage|
 1-way | 2-seq | 3,600 | 3,600 | 1.0000|
 1-way | 3-seq | 216,000 | 216,000 | 1.0000|
 2-way | 2-seq | 2,606,616 | 2,617,924 | 0.9957|
 2-way | 3-seq | 4,143,537,228 | 4,235,801,032 | 0.9782|

Fig. 11. 10-parameter combination order cover measurement

It is important to understand the difference between
static and dynamic coverage as defined here.
Essentially, static coverage is based on the presence
or absence of t-way settings of the input variables,
and dynamic coverage refers to the coverage of
possible orders of these combinations.

NIST CSWP 26 ORDERED T-WAY COMBINATIONS

9

Static coverage corresponds to combination coverage
measures defined in [26] and other publications. In
this case, there are four variables with two values
each, so for single-variable coverage (t=1), there are
4x2 = 8 possible settings. The tool assumes that all
single values of variables are included in the input
file. For 2-way combinations, there are C(4,2) = 6
possible combinations, each of which has 2x2 = 4
possible settings, so the number of combinations to
be covered is 24, all of which are covered at least
once. Similarly, for 3-way combinations there are
C(4,3) = 4 combinations, which may have 2x2x2 = 8
settings for a total of 32 possible settings to be
covered. Of the possible settings, there are 22
covered (for example, abc = 000 is missing, as is acd
= 000) for a coverage figure of .6875.

For dynamic coverage, the interaction strength (level
of t) for the combinations included in orders and the
number of combinations in an order need to be
specified.

4 Conclusions

This report considers practical methods for testing
complex orders of all t-way combinations up to some
specified level of t. It is shown that the test set covers
s-orders of t-way combinations if and only if it
includes an ordered series of s covering arrays of
strength t. This result can efficiently produce tests
that cover all orders of t-way combinations up to any
necessary order length by concatenating t-way
covering arrays. The notion of ordered combination
covers may be applied in runtime verification,
assertion monitoring, and other verification and test
methods that rely on checking program properties
and states as code is executed.

5 References

[1] Kuhn DR, Higdon JM. Combinatorial Testing for
Event Sequences.
http://csrc.nist.gov/groups/SNS/acts/sequence_covar rays.html,
Feb 1, 2010.
[2] Kuhn DR, Higdon JM, Lawrence JF, Kacker RN, Lei
Y. Combinatorial methods for event sequence testing. 2012 IEEE
Fifth International Conference on Software Testing, Verification
and Validation 2012 Apr 17 (pp. 601-609). IEEE.
[3] Kuhn, D. R., Kacker, R. N., & Lei, Y. (2013).
Introduction to combinatorial testing. CRC press.

[4] Chee YM, Colbourn CJ, Horsley D, Zhou J. Sequence
covering arrays. SIAM Journal on Discrete Mathematics.
2013;27(4):1844-61.
[5] Farchi E, Segall I, Tzoref-Brill R, Zlotnick A.
Combinatorial testing with order requirements. In2014 IEEE
Seventh International Conference on Software Testing,
Verification and Validation Workshops 2014 Mar 31 (pp. 118-
127). IEEE.
[6] Sheng, Y., Sun, C., Jiang, S., & Wei, C. A. (2018).
Extended covering arrays for sequence
coverage. Symmetry, 10(5), 146.
[7] Margalit O. Better bounds for event sequencing
testing. In2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops 2013 Mar 18
(pp. 281-284). IEEE.
[8] Murray PC, Colbourn CJ. Sequence covering arrays
and linear extensions. International Workshop on Combinatorial
Algorithms 2014 Oct 15 (pp. 274-285). Springer, Cham.
[9] Yang CP, Dhadyalla G, Marco J, Jennings P. The
effect of time-between-events for sequence interaction testing of
a real-time system. In2018 IEEE International Conference on
Software Testing, Verification and Validation Workshops
(ICSTW) 2018 Apr 9 (pp. 332-340). IEEE.
[10] Binder RV. Optimal scheduling for combinatorial
software testing and design of experiments. In2018 IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW) 2018 Apr 9 (pp. 295-301).
IEEE.
[11] Z. Ratliff, CSCM Manual. NIST. (Note: this coverage
measurement tool was originally named CSCM. It has been
renamed Eseq to more easily distinguish between the two forms
of sequence coverage.)
[12] Kuhn, D.R., Wallace, D.R. and Gallo Jr, A.M., 2004.
Software fault interactions and implications for software
testing. IEEE Trans Soft Eng,30(6), pp.418-421.
[13] Chilenski, J. J., & Miller, S. P. (1994). Applicability of
modified condition/decision coverage to software
testing. Software Engineering Journal, 9(5), 193-200.
[14] Rahman M, Sultana D, Khatun S, Jusof MF, Shaharum
SM, Yusof NA, Qaiduzzaman KM, Hasan MH, Rahman MM,
Hossen MA, Begum A. T-Way Strategy for Sequence Input
Interaction Test Case Generation Adopting Fish Swarm
Algorithm. InInECCE2019 2020 (pp. 87-99). Springer,
Singapore.
[15] Erdem E, Inoue K, Oetsch J, Pührer J, Tompits H,
Yılmaz C. Answer-set programming as a new approach to event-
sequence testing.
[16] Brain M, Erdem E, Inoue K, Oetsch J, Pührer J,
Tompits H, Yilmaz C. Event-sequence testing using answer-set
programming. International Journal on Advances in Software
Volume. 2012;5.
[17] Rahman M, Othman RR, Ahmad RB, Rahman MM.
Event driven input sequence t-way test strategy using simulated
annealing. In2014 5th International Conference on Intelligent
Systems, Modelling and Simulation 2014 Jan 27 (pp. 663-667).
IEEE.
[18] Nasser AB, Zamli KZ, Alsewari AA, Ahmed BS. An
elitist-flower pollination-based strategy for constructing
sequence and sequence-less t-way test suite. International Journal
of Bio-Inspired Computation. 2018;12(2):115-27.
[19] Rabbi K, Mamun Q, Islam MR. A Novel Swarm
Intelligence Based Sequence Generator. Intl Conference on

NIST CSWP 26 ORDERED T-WAY COMBINATIONS

10

Applications and Techniques in Cyber Security and Intelligence
2017 Jun 16 (pp. 238-246). Edizioni della Normale, Cham.
Extensions
[20] James M. Higdon, Gerald Oveson, Efficient Test of
Configurations and Orders of Complex Operating Procedures
Tech. Rpt., COLSA North Florida Ops, 96th Cyberspace Test
Group, AFMC, Eglin AFB, FL, 4 Apr 2018.
[21] Duan F, Lei Y, Kacker RN, Kuhn DR. An Approach to
T-Way Test Sequence Generation With Constraints. 2019 IEEE
Intl Conference on Software Testing, Verification and Validation
Workshops (ICSTW) 2019 Apr 22 (pp. 241-250). IEEE.
[22] Garn B, Simos DE, Duan F, Lei Y, Bozic J, Wotawa F.
Weighted Combinatorial Sequence Testing for the TLS Protocol.
In2019 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW) 2019 Apr 22
(pp. 46-51). IEEE.
[23] Oetsch J, Nieves JC. Stable-Ordered Models for
Propositional Theories with Order Operators. InEuropean
Conference on Logics in Artificial Intelligence 2019 May 7 (pp.
794-802). Springer, Cham.
[24] Yuster R. Perfect sequence covering arrays. Designs,
Codes and Cryptography. 2020 Mar;88(3):585-93.
[25] Younis MI. MVSCA: Multi-Valued Sequence
Covering Array. Journal of Engineering. 2019 Oct 29;25(11):82-
91.
[26] D.R. Kuhn, I. Dominguez, R.N. Kacker and Y. Lei.
"Combinatorial Coverage Measurement Concepts and
Applications", 2nd Intl Workshop on Combinatorial Testing,
Luxembourg, IWCT2013, IEEE, Mar. 2013.
[27] Zamli KZ, Othman RR, Zabil MH. On sequence based
interaction testing. In2011 IEEE Symposium on Computers &
Informatics 2011 Mar 20 (pp. 662-667). IEEE.
[28] Kuhn DR, Higdon JM, Lawrence JF, Kacker RN, Lei
Y. Efficient methods for interoperability testing using event
sequences. FLIGHT TEST SQUADRON (46TH) EGLIN AFB
FL; 2012 Aug 1.
[29] Yilmaz C, Fouche S, Cohen MB, Porter A, Demiroz G,
Koc U. Moving forward with combinatorial interaction testing.
Computer. 2013 Dec 11;47(2):37-45.
[30] Garn B, Simos DE, Zauner S, Kuhn R, Kacker R.
Browser fingerprinting using combinatorial sequence testing. In
Proceedings of the 6th Annual Symposium on Hot Topics in the
Science of Security 2019 Apr 1 (pp. 1-9).
[31] Ozcan M. An Industrial Study on Applications of
Combinatorial Testing in Modern Web Development. In2019
IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW) 2019 Apr 22 (pp. 210-213).
[32] Ratliff, Z. B. (2018). Black-box Testing Mobile
Applications Using Sequence Covering Arrays. undergraduate
thesis, Texas A&M University.
[33] Ratliff ZB, Kuhn DR, Ragsdale DJ. Detecting
Vulnerabilities in Android Applications using Event Sequences.
In2019 IEEE 19th International Conference on Software Quality,
Reliability and Security (QRS) 2019 Jul 22 (pp. 159-166). IEEE.
[34] Elks DC, Deloglos C, Jayakumar A, Tantawy DA, Hite
R, Gautham S. Realization Of An Automated T-Way
Combinatorial Testing Approach For A Software Based
Embedded Digital Device. Idaho National Lab.(INL), Idaho
Falls, ID (United States); 2019 Jun 17.
[35] Becci G, Dhadyalla G, Mouzakitis A, Marco J, Moore
AD. Robustness testing of real-time automotive systems using
sequence covering arrays. SAE International Journal of

Passenger Cars-Electronic and Electrical Systems. 2013 Apr
8;6(2013-01-1228):287-93.

Disclaimer: Products may be identified in this document, but
identification does not imply recommendation or endorsement by
NIST, nor that the products identified are necessarily the best
available for the purpose.

	1 Introduction
	2 Related Work
	3 Ordered Combination Covering
	3.1 Combination Sequence Covering Arrays in Testing
	3.2 Combination Order Coverage Measurement

	4 Conclusions
	5 References
	Extensions

