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Abstract 22 
This paper introduces a new method related to combinatorial testing and measurement, 23 
combination frequency differencing (CFD), and illustrates the use of CFD in machine learning 24 
applications.  Combinatorial coverage measures have been defined and applied to a wide range 25 
of problems, including fault location and for evaluating the adequacy of test inputs and input 26 
space models. More recently, methods applying coverage measures have been used in 27 
applications of artificial intelligence and machine learning, for explainability and for analyzing 28 
aspects of transfer learning. These methods have been developed using measures that depend on 29 
the inclusion or absence of t-tuples of values in inputs, training data, and test cases. In this paper, 30 
we extend these combinatorial coverage measures to include the frequency of occurrence of 31 
combinations.  Combination frequency differencing is particularly suited to AI/ML applications, 32 
where training data sets used in learning systems are dependent on the prevalence of various 33 
attributes of elements of class and non-class sets. We illustrate the use of this method by 34 
applying it to analyzing physically unclonable functions (PUFs) for bit combinations that 35 
disproportionately influences PUF response values, and in turn provides indication of the PUF 36 
potentially being more vulnerable to model-building attacks. Additionally, it is shown that 37 
combination frequency differences provide a simple but effective algorithm for classification 38 
problems. 39 
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function (PUF); unclonable.   42 
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1 Introduction 61 

Methods and tools for measuring combinatorial coverage were initially developed to analyze the degree to which 62 
test sets included t-way combinations of values (for some specified level of t) [1][2][4] and have since been 63 
studied extensively in the realm of system and software testing [7][8][9][10][11]. Combinatorial coverage 64 
measures have been defined and applied to a wide range of problems, specifically for fault location and for 65 
evaluating the adequacy of test inputs and input space models. More recently, coverage measures have been used 66 
for explainability in artificial intelligence and machine learning [24][28] and for analyzing aspects of transfer 67 
learning [27]. These methods have been developed using measures that depend on the inclusion or absence of t-68 
tuples of values in inputs and test cases. For software testing, primarily for deterministic systems where the 69 
presence of a particular combination always triggers a specified error, it is relevant whether a t-tuple of values 70 
is present in test inputs, but the number of occurrences of a particular t-tuple of values is generally not relevant 71 
to testing. Multiple occurrences are only redundant and do not add value. These measures can also be applied in 72 
artificial intelligence and machine learning (AI/ML) systems.  73 

For many aspects of assurance of autonomous systems and machine learning, this type combinatorial coverage 74 
measure is valuable and possibly essential, since the correct and safe behavior of many AI systems is dependent 75 
on the training inputs. Conventional structural coverage measures are not applicable to such black box behavior. 76 
Consequently, it is essential to evaluate the degree to which possible combinations of input attribute values have 77 
been included in training and test sets for AI and autonomy. (Attributes in a machine learning setting correspond 78 
to parameters in a test effort; they are the inputs to the system.) If the system has not been shown to function 79 
correctly for an input combination that may be encountered in use, then assurance is inadequate. However, for 80 
some questions in machine learning, consider the frequency (or rate) of occurrence of t-tuples of values in input 81 
and how two different sets may compare or differ in combinatorial coverage.  82 

This paper applies combinatorial coverage measures from [13], which include the frequency of occurrence of 83 
combinations, in an approach referred to as combination frequency differencing (CFD). This method is 84 
particularly suited to AI/ML applications, where training data sets used in learning systems are dependent on the 85 
prevalence of various attributes of elements of class and non-class sets. This paper illustrates the use of this 86 
method by applying it to analyzing physical unclonable functions (PUFs) for potential weaknesses in design and 87 
showing how it can be extended to develop a simple but effective classification algorithm.  88 

2 Combinatorial Coverage and Combination Frequency Differences 89 

This section reviews the basic measures of combinatorial coverage and applications of these measures 90 
in Section 2.1. This idea is extended to measures that include the frequency of occurrence of 91 
combinations in Section 2.2. These measures can then be applied to the analysis of PUFs.  92 

2.1 Basic Combinatorial Coverage and Coverage Difference Measures 93 

Combinatorial methods offer an approach to coverage measurement that provides a measure directly related to 94 
fault detection. A series of studies have shown that most software bugs and failures are caused by one or two 95 
parameters and progressively fewer by three or more [19][20][21][22][5][6]. This finding means that testing 96 
parameter combinations can provide more efficient fault detection than conventional methods. This section, 97 
derived from [13], reviews the concept of measuring the combinatorial coverage of an input space [1][2][4] for 98 
use in testing or in other applications where it is important to ensure the inclusion of combinations of input 99 
parameter values.  100 
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 a b c d 
1 0 0 0 0 
2 0 1 1 0 
3 1 0 0 1 
4 0 1 1 1 

Figure 1. Example test array for a system with four binary components 101 

Combinatorial coverage measurement concepts can be illustrated using the example in Figure 1, which shows a 102 
test array that contains 19 of a possible set of 24 2-tuples of values. To facilitate discussion, it is helpful to 103 
establish terminology for two related but distinct concepts: 104 

• t-way combination:  a set of t parameters or variables. For example, using the parameters in Figure 1, 105 
(b,d) is a 2-way combination, (a,c) is a different 2-way combination, and (a,c,d) is a 3-way combination.  106 

• t-tuple of values: a combination for which the parameters have specific values. (Note: in the original 107 
definition from [1], this is referred to as a variable-value combination.) For example, (b=0, d=0) is one 108 
t-tuple of values, and (b=1, d=0) is a different t-tuple of values for the same 2-way parameter 109 
combination.  110 

A simple combinatorial coverage of t-way combinations, 𝑆𝑆𝑡𝑡, is the fraction of possible t-tuples of values included 111 
in a test array from a domain 𝐷𝐷𝑡𝑡 that may include constraints. With no constraints, where v is the number of 112 
values and k is the number of parameters, the size of the domain is 𝑣𝑣𝑡𝑡 �𝑘𝑘𝑡𝑡� but may be smaller with constraints. 113 
For a set of t-tuples of values 𝐴𝐴𝑡𝑡  in a test array,  114 

𝑆𝑆𝑡𝑡 =
|𝐴𝐴𝑡𝑡|
|𝐷𝐷𝑡𝑡|

 115 

Example: Figure 1 contains 19 different 2-way combinations out of a possible domain of 22 �4
2�,  = 24 t-tuples 116 

of values, so 𝑆𝑆𝑡𝑡 = 19/24 = 0.79. 117 

Combinatorial coverage differences have been applied to several problem domains. Initially, this approach was 118 
used in fault identification, specifically to determine the particular combination(s) of parameter values that would 119 
trigger a fault. Another example problem where there is a need to distinguish one class of elements from another 120 
is anomaly-based intrusion detection, which seeks to determine if a particular exchange of packets represents an 121 
attempted network intrusion. Thus, it is useful to generalize the approach to find combinations that are present 122 
in one class or set and absent or rare in another, as well as to distinguish one set from another.  123 

For fault location, if 𝐴𝐴𝑡𝑡 = the set of t-tuples of values from passing tests and 𝐵𝐵𝑡𝑡 = the set of t-tuples of values 124 
from failing tests, then the set difference 𝐵𝐵𝑡𝑡\𝐴𝐴𝑡𝑡 is of interest. These are the combinations in failing tests but not 125 
in passing tests, and thus, those that triggered a failure are contained in this set difference [26]. 126 

Example: If test #2 from Figure 1 is a failing test, then 𝐵𝐵𝑡𝑡\𝐴𝐴𝑡𝑡 = {bc = 10, cd = 10} is to be investigated to 127 
identify failing combinations because the four other 2-way t-tuples of values in test #2 are also contained in the 128 
passing tests #1, #3, #4, which are set 𝐴𝐴𝑡𝑡. 129 

For transfer learning, if 𝐴𝐴𝑡𝑡 = the set of t-way t-tuples of values from a source set of class instances and 𝐵𝐵𝑡𝑡 = the 130 
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set of t-tuples of values from a target set of instances, then the size of the set difference 𝐵𝐵𝑡𝑡\𝐴𝐴𝑡𝑡 as a fraction of 131 
the target set size is of interest as a metric of how similar the source is to the target set [27]. This set difference 132 
of t-tuples of values is:  

|𝐵𝐵𝑡𝑡\𝐴𝐴𝑡𝑡|
|𝐵𝐵𝑡𝑡|

 133 

2.2 Distinguishing Combinations 134 

For many machine learning applications, the goal is to develop a model that distinguishes members of one class 135 
from another using attributes that identify them, such as distinguishing dogs from cats using attributes like size, 136 
ear shape, or hair texture. This publication will refer to sets being distinguished as either Class or Non-class sets. 137 
The terms Class and Non-class are used as generic terms for sets of objects that can be distinguished based on 138 
some attributes or properties. In a machine learning context, these sets may refer to concepts that are to be 139 
learned, such as distinguishing one animal species from others. In earlier applications, set differences of t-tuples 140 
of values have been used to identify the causes of failures [4][5]. In both cases, the process is the same – set 141 
differencing is used to identify combinations that occur in the class set that do not occur, or are rare, in the non-142 
class set. If this difference is computed on t-tuples of values in failed tests versus passed tests, then the difference 143 
contains t-tuples of values that have triggered the failure (in a deterministic system). In machine learning, the 144 
difference represents properties or attributes that occur in the class (e.g., a particular animal species) that do not 145 
occur, or are rare, in the non-class examples (other species). Note that this is simply a generalized version of the 146 
original fault location problem, where the class whose distinguishing features are to be identified is the set of 147 
failing tests, and the features to be found are the combinations that lead to a test resulting in a failure.  148 

The combinatorial coverage measures described in the previous section – as applied in fault location, 149 
explainability, and transfer learning – are based on the presence or absence of t-tuples of values in input files for 150 
testing or machine learning training. That is, a combination is counted as covered if it occurs once or multiple 151 
times in the input file, and this measure is appropriate in the applications discussed. For these applications, it is 152 
important to determine if a t-tuple of values has been included, but the number of times it occurs is less important. 153 
For testing, multiple occurrences of a combination mean some duplication of effort but do not affect the 154 
requirement for ensuring that all t-way combinations have been covered. In transfer learning evaluation, the 155 
same type of requirement holds – assurance that states and environments, as represented by t-tuples of values of 156 
the input model, are handled correctly. If it can be shown that the ML model produces the right prediction or 157 
classification for a t-tuple of values, multiple occurrences of the combination are not needed. (This does not 158 
consider the effect of input sequences; other measures are appropriate for sequence coverage.) 159 

In other types of evaluations related to machine learning, it will be important to consider the number or frequency 160 
of occurrence of t-way t-tuples of values to determine the degree to which an attribute is associated with a 161 
particular class. If a particular combination of attribute values is seen in a high proportion of class members but 162 
not in non-class members, then it may be a reasonable indicator for distinguishing instances or at least for 163 
narrowing the range of possibilities for class identification. For example, many dog breeds may have a long tail, 164 
and many may have a curled tail, but a much smaller number of breeds have both attributes. Thus, it is important 165 
to have a measure that considers the quantity of instances with t-tuples of values in class and non-class instances.  166 

 This paper will abbreviate Ct and Nt  as C and N, where interaction level t is clear or is not needed for discussion. 167 
The following discussion defines a t-way combination ct as a distinguishing combination for the class C if it is 168 
present in a class instance of class set C and absent in non-class instances N, or if it is more common in C than 169 
N as determined by a threshold value. Two ways to identify distinguishing combinations are suggested below, 170 
and others are clearly possible. The key point is to use combinations of attribute values that are strongly 171 
associated with one class but not with others based on the frequency or rate of occurrence in one class as 172 
compared with others.  173 
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At least two possible ways to define the strength of association of a t-tuple of values with a class can be 174 
considered. These are defined and presented below as CFD1 and CFD2. (In a previous publication, only CFD1 175 
was given as the definition of this strength of association [13].) The threshold T in definition CFD1 determines 176 
if a t-tuple of values ct is common in set Ct and rare in set Nt and, thus, distinguishes one set from the other. 177 
Specifically, the definition below identifies t-tuples of values for which one can say “x is T times more common 178 
in C than it is in N” – an intuitive way to identify t-tuples of values that are associated closely with the class C. 179 
Note that the phrase “T times more common” suggests that T will normally be 1 or greater. For definition CFD2, 180 
U designates the threshold value. T may be any positive number, and U ranges from 0.0 to 1.0. Notice that these 181 
definitions produce the same result for inclusion or exclusion in the set of distinguishing combinations when 182 
𝑇𝑇 =  1

1−𝑈𝑈
 , or 𝑈𝑈 =  𝑇𝑇−1

𝑇𝑇
. For example, if T = 4 or U = 0.75, then for pairs [(f(xt, Ct) ; f(xt, Nt)], [.81; .2], and [.79; 183 

.2], the first will be found to be distinguishing, and the second will not.   184 

CFD1 Definition: A combination xt  is distinguishing for a class 𝐶𝐶 ⇔ 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝐶𝐶𝑡𝑡) > 𝑇𝑇 ×  𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑁𝑁𝑡𝑡),  where 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑌𝑌𝑡𝑡) 185 
= frequency of t-tuple of values x in set of t-tuples of values Y. The frequency f is the number of times a t-tuple 186 
of values appears in rows of the class over the number of rows for the class.  187 

 CFD2 Definition: A combination xt is distinguishing for a class 𝐶𝐶 ⇔ 𝑓𝑓(𝑥𝑥𝑖𝑖,𝐶𝐶𝑡𝑡)− 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑁𝑁𝑡𝑡)
𝑓𝑓(𝑥𝑥𝑖𝑖,𝐶𝐶𝑡𝑡) > 𝑈𝑈, where 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑌𝑌𝑡𝑡) = 188 

frequency of t-tuple of values x in set of t-tuples of values Y. Note that, in this case, the threshold U ranges from 189 
0.0 to 1.0. The frequency f is the number of times a t-tuple of values appears in rows of the class over the number 190 
of rows for the class. 191 

The choice of CFD1 or CFD2 as a definition may depend on which is more intuitive for the application. 192 
Specifying T = 1 or U = 0 means that a combination is selected as distinguishing whenever it occurs at a higher 193 
frequency in C than N, no matter how small the difference in frequency.  194 

2.3 Combination Frequency Difference Measures 195 

The frequency (or rate) of occurrence refers to the number of times a t-tuple of values is present per number of 196 
rows in the file or array. Therefore, the combination frequency difference, for a t-tuple of values x in two arrays 197 
of instances of two different classes can be defined as the difference between the fraction of occurrences in one 198 
array and the second. That is, using the symbols defined below, CFD = FCx - FNx, where 199 

R     = number of rows of challenge-response file 200 
RC   = rows of class instances; for PUFs, RC = R1 (i.e., where challenges produce a 1 response) 201 
RN   = rows of non-class instances; for PUFs, RN = R0 202 
k     = number of columns or attributes, excluding class or response variable; for PUFs, k = 64 203 
v     = number of values for attributes; for PUFs, v = 2 as the attributes correspond to bits  204 
MCx = number of occurrences of a particular t-tuple of values x in C 205 
MNx = number of occurrences of a particular t-tuple of values x in N 206 
FCx  = MCx/RC = fraction of occurrences of a t-tuple of values in C  207 
FNx  = MNx/RN = fraction of occurrences of a t-tuple of values in N 208 

The frequency difference values can be graphed, where the height on the Y axis shows the difference FCx - FNx 209 
for every t-tuple of values x. The X axis is indexed by 𝑣𝑣𝑡𝑡 �𝑘𝑘𝑡𝑡�, points for t-way combinations. Thus, for each t-210 
way combination, there are vt possible values or settings of the t attributes or variables in the combination. For 211 
example, 2-way t-tuples of values are displayed in the order given by: i,j for i in 0 ≤  i < k-1 for j in i+1 ≤ j < k. 212 
Thus, there are k-1 iterations of the inner loop on j for each attribute i, and for each 2-way combination, the 213 
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graph displays the fraction of occurrences of each set of v2 t-tuples of values on the X axis at 214 
𝑣𝑣2�(𝑘𝑘 − 1)𝑖𝑖 + 𝑗𝑗 − 1� through 𝑣𝑣2�(𝑘𝑘 − 1)𝑖𝑖 + 𝑗𝑗 − 1� + 𝑣𝑣2-1. For each of these 2-way combinations x, FCx - 215 
FNx for four t-tuples of values are displayed for the four possible value settings 00, 01, 10, 11. Thus, in Figure 216 
2, the difference in coverage for C and N for  i =1, j = 4 will be found on the horizontal axis at  x = 32..35.  217 
 218 

 219 

Figure 2. Example combinatorial frequency difference for two classes of 6 binary variables 220 

For example, with n = 6 numbered 0..5, 2-way combinations will be indexed on the Y axis as (0,1,00), 221 
(0,1,01),…, (4,5,11), for a total of 22 �6

2�, = 60 X-axis points, numbered 0..59. For each of these, the Y-axis 222 
shows the difference in frequency of occurrence between C and N, normalized for the size of sets C and N. For 223 
example, if the value 01 for attribute combination i=1, j=4 occurs 40 times in a C file of 100 rows and 60 times 224 
in an N file of 120 rows, then the Y axis value for i,j = 1,4 for value 01 is (40/100) – (60/120) = -0.1. The analysis 225 
of PUFs described in this paper can use these quantities to identify bits related to internal structure. 226 

3 Application to Physical Unclonable Functions 227 

A physical unclonable function, or PUF, may be regarded as a physical implementation of a black box function 228 
that produces a response r for a given challenge string of bits c, that is, r = f(c). The unit response is binary and 229 
can be represented as 0 or 1. A series of PUFs can be put together to produce a larger response sequence. As the 230 
name suggests, PUFs are designed using physical hardware devices. These functions utilize unique properties of 231 
the physical elements within the hardware, such as the small variation in propagation delays between identical 232 
circuit gates or small threshold mismatches in a transistor feedback loop due to process variation. These physical 233 
characteristics are difficult to reproduce in the hardware, which is what makes them physically unclonable. Using 234 
such physical characteristics, PUFs can be utilized to combat insecure storage, hardware counterfeiting, and 235 
other security problems. 236 

An ideal PUF should be stable over time, unique in its existence, easy to evaluate, and difficult or impossible to 237 
predict. Thus, it should not be possible to generate a function that has the same behavior or produces the same 238 
output as the PUF for challenge inputs. In this sense, the PUF function is “unclonable.” It should also be 239 
infeasible to determine components of the PUF that influence the output of the PUF, such that a 0 or 1 value in 240 
some positions of the input string makes a 0 or 1 output more likely for the output r.  241 

The primary use of PUFs is related to authentication. In a simple use case, the physical system is subjected to 242 
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one or more challenges during manufacturing, and the responses to these challenges are recorded. Later, if one 243 
of those recorded challenges is repeated and if the expected response is received, then the device is authenticated.  244 

Depending on the strength of their implementation and consequent scalability, PUFs are categorized into two 245 
levels – weak and strong. Weak PUFs have a limited number of challenge-response pairs (CRPs) that can be 246 
generated from a single device, while strong PUFs can generate a much larger set of CRPs. One of the key 247 
requirements for a strong PUF design is that it should not be possible to infer information about the internal 248 
structure by observing inputs and outputs [16]. Many authors have shown that machine learning models can be 249 
constructed to predict the output of PUFs for a given input string (i.e., “breaking” the PUF by defeating its 250 
authentication function). Vulnerability to breaking through machine learning attacks can vary significantly with 251 
PUF design, and one of the challenges in developing PUFs is to identify potential weaknesses before constructing 252 
the PUF.  253 

Table 1 shows ML prediction results for the five PUF designs discussed in this paper and for 10 ML algorithms 254 
available through the Weka machine learning tool package [17]. Note that ZeroR is a baseline, where predictions 255 
are simply the proportion of 0 or 1 results for the challenge/response pairs in the training set. The other algorithms 256 
were selected to provide a representative sample of popular ML algorithms of different types. AdaBoost is an 257 
adaptive ensemble algorithm that uses a phased sequence of basic decision tree algorithms, improving on 258 
prediction results with each phase. Bayes Net and Naïve Bayes are based on Bayesian statistical concepts. 259 
Decision Table is a majority classifier based on a nearest neighbor algorithm. J48 and Random Forest are based 260 
on decision trees. Stochastic gradient descent minimizes a loss function that is a weighted linear combination of 261 
the attributes, and logistic regression uses weighted attributes in a regression function. JRip is a propositional 262 
logic-based rule learning algorithm. Although there is a wide range of results for different algorithms, it is clear 263 
that DB1 – the arbiter design – is much more vulnerable to ML attacks, where two algorithms are able to predict 264 
the response to challenges with near perfect accuracy. Even the best two PUF implementations (DB3 and DB4) 265 
are not fully resistant to revealing some bias in their responses. Note that their averages are all considerably 266 
above the baseline ZeroR, which simply guesses in proportion to 0 or 1 responses in challenge-response pairs.  267 

Table 1. ML Prediction results for five PUF designs 268 
 

Ada 
Boost 

BayesNet Decision 
Table 

J48/C45 JRip Logistic Naïve 
Bayes 

Random 
Forest 

Stoc Grad 
Descent 

ZeroR Average 
accuracy 

combined 
diff 2-way 

DB1 77.1 96.2 75.6 72.1 77.2 99.7 96.2 87.2 99.3 55.0 86.7 0.489 

DB2 54.8 54.9 76.7 68.1 75.2 54.9 54.9 71.9 52.4 55.6 62.6 0.309 

DB3 50.7 50.1 71.0 63.9 67.2 50.3 50.1 62.6 50.2 50.1 57.3 0.248 

DB4 57.5 56.5 58.8 54.6 60.7 56.4 56.5 55.3 54.6 50.6 56.8 0.216 

NN00 64.1 64.8 62.1 59.1 64.8 64.8 64.8 65.4 62.6 50.5 63.6 0.383 

This section shows how combination frequency differences of PUF input data can be used to determine a good 269 
deal of information about the design and internal structure of a PUF. This is achieved by measuring the difference 270 
between occurrences of t-way combinations associated with a 0 response as compared with a 1 response. Ideally, 271 
there should be little difference, except for random variances. As shown below, however, these differences vary 272 
considerably and align with the differences in predictability using machine learning. Although this work is only 273 
preliminary, this information may be useful in identifying design deficiencies and making PUFs more resistant 274 
to breakthrough machine learning. 275 

Comparing the accuracy of ML predictions in Table 1 with the graphs in Figures 3 through 7, it is immediately 276 
apparent that there is a relationship between the “noisiness” of the graphs and the success of ML algorithms in 277 
predicting or breaking the PUF. The arbiter PUF, DB1 (Figure 3), response has a very noisy graph with 278 
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differences for nearly every 2-way combination of bits ranging from about 0.10 to 0.25. For this PUF, ML 279 
algorithms predict the response with up to 99.7 % accuracy.  For the PUF most resistant to ML predictions, DB4 280 
(Figure 6), the graph shows small frequency differences with nearly all under 0.05 and up to a few around 0.10.  281 
The others fall within the range between DB1 and DB4 for both frequency differences and prediction accuracy, 282 
which is a metric for the potential of breaking the PUF. Maximum frequency differences for DB3 are around 283 
0.12, for DB2 about 0.15, and for the neural net PUF around 0.19 – roughly consistent with the rankings of best, 284 
worst, and average for prediction accuracy and, hence, vulnerability to ML attacks. See the last column of Table 285 
1, which shows the range for 2-way frequency differences above and below the center line, or max(|𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝐶𝐶𝑡𝑡) −286 
 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑁𝑁𝑡𝑡)|) + max(|𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑁𝑁𝑡𝑡) −  𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝐶𝐶𝑡𝑡)|). 287 

There are two major types of hardware implementation of PUFs: memory-based and delay-based. A typical 288 
memory-based PUF is the SRAM PUF. Delay-based PUFs include arbiter PUFs, the pseudo-linear feedback 289 
shift register PUF, and the ring oscillator (RO) PUF.  290 

3.1 Arbiter PUF (DB1) 291 

The main idea of an arbiter PUF is to create a digital race for signals through two paths within a chip and to have 292 
an arbiter circuit that decides which signal has won the race. The two paths are designed identically. However, 293 
the manufacturing process usually introduces a very slight longer delay in one of the paths from the other. Given 294 
a particular challenge, the arbiter PUF will therefore produce an output dictated by the physical characteristics 295 
of that unique hardware implementation. During an arbiter PUF design, one has to make sure that the delays 296 
between the two paths are not too close to each other. Otherwise, the output will be dictated by noise in the signal 297 
rather than the delay uniquely introduced through the manufacturing variation. 298 

 299 

Figure 3. Basic operations of an arbiter PUF 300 

As Figure 3 shows, each gate or switch-block introduces a delay for one of the outputs, which accumulates over 301 
the blocks. This gives rise to the opportunity of building what is typically known as model-based attacks (also 302 
known as model building attacks or model learning attacks). The idea is that one can build a mathematical model 303 
of the PUF which, after observing several CRP queries, will be able to predict the response for a given challenge 304 
with a high level of accuracy. With the proliferation of machine learning algorithms, this type of model building 305 
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or model learning has become easier to implement. To make model building attacks more difficult on basic 306 
arbiter PUFs, non-linearity is introduced into the delay lines of the designed circuit. For example, in case of feed-307 
forward arbiter PUFs, some challenge bits are not set by the user. Rather, they are connected to the outputs of 308 
the intermediate arbiters evaluating the race at some intermediate point the circuit. This technique, however, 309 
increases the noise in the output of the arbiter PUF. Although initial results with feed-forward arbiter PUFs were 310 
shown to be resistant to model-building or model-learning attacks, more sophisticated learning models were able 311 
to break them [17]. 312 

By simply analyzing combination frequency differences (CFD) within a subset of the challenge-response pairs 313 
(CRPs) and without knowing anything about the type or design of the circuitry, one can predict which arbiter 314 
PUF design is likely to be more vulnerable to model-building attacks.  315 

Figure 3(a) shows 2-way frequency differences for a 64-bit PUF, DB1, an early arbiter design with delays placed 316 
randomly in the hardware. With 64 bits, there are 22 �64

2 � = 8064 2-way differences indexed. Differences range 317 
from a low of -0.23881 to a high of 0.25108 for a range of 0.48990. Note that differences are given as difference 318 
FCx - FNx., so negative values are cases where non-class t-tuples of values exceed class t-tuples of values.  319 

 320 

Figure 3(a). 2-way frequency differences for a 64 bit arbiter PUF 321 

Figure 3(b) shows 3-way frequency differences for the same PUF. Note that variance, minimum, and 322 
maximum differences are smaller than those for 2-way combinations. The X axis indexes 23 �64

3 �, = 333,312 323 
combinations.  324 

 325 

Figure 3(b). 3-way frequency differences for a 64 bit arbiter PUF 326 

3.2 8-bit Shift Register PUF (DB2) 327 

Shift register PUF is another delay-based PUF implementation, where a series of linear feedback shift registers 328 
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(LFSR) are put together to capture the unique delays associated with a physical implementation. Researchers 329 
have proposed pseudo-LFSR-based physically unclonable functions, known as PL-PUF, which are usually small 330 
in size, efficient in producing authentication ID for devices, and easy to modify to adjust the challenge-response 331 
pairs when needed [29].  332 

This section examines the security of a shift register-based PUF against a model-based attack using combinatorial 333 
frequency difference analysis. Frequency differences for an 8-bit shift register type of PUF are shown in Figure 334 
4(a) (2-way) and Figure 4(b) (3-way). Note that the variance is much smaller – 0.00017 compared to 0.0521 for 335 
2-way combinations of DB1 inputs. There is much more uniformity in the response of DB2 to 2-way and 3-way 336 
combinations of input bits, and as expected, this makes it much more difficult for ML to derive a model for the 337 
PUF that can successfully reproduce its response to inputs.  338 

 339 

Figure 4(a). 2-way frequency differences for an 8-bit shift register PUF 340 

 341 

Figure 4(b). 3-way frequency differences for an 8-bit shift register PUF 342 

However, Figure 3(a) also shows a small number of spikes in the combination frequency chart. Combinations 343 
producing these spikes are shown in Table 2, which shows 2-way bit combinations where the frequency 344 
difference exceeds 3σ. Combinations of almost all bits with bit 56 result in a spike that exceeds 3σ (others have 345 
spikes that are slightly below this value but still clearly different from the other combinations). The appearance 346 
of spikes compresses towards the right end of the graph because combinations are indexed in a loop computation:  347 
i,j,b: for i in 0 ≤ i <63  for j in i+1 ≤ j < 64  for b in {00,01,10,11}, similarly for 3-way combination indexes.  348 

 349 

 350 
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Table 2. 2-way combinations with greatest frequency differences in Figure 4(a) 351 

bits = values bits = values bits = values bits = values 

( 0,56) = (1,0) (11,56) = (0,0) (26,56) = (1,1) (41,56) = (0,1) 

( 0,56) = (0,1) (12,56) = (1,0) (26,56) = (0,0) (42,56) = (1,1) 

( 1,56) = (1,0) (12,56) = (0,1) (31,56) = (1,1) (42,56) = (0,0) 

( 1,56) = (0,1) (14,56) = (1,1) (31,56) = (0,0) (51,56) = (1,1) 

( 3,56) = (1,1) (14,56) = (0,0) (32,56) = (1,1) (51,56) = (0,0) 

( 3,56) = (0,0) (15,56) = (1,0) (37,56) = (1,1) (52,56) = (1,0) 

( 4,56) = (1,0) (15,56) = (0,1) (37,56) = (0,0) (52,56) = (0,1) 

( 6,56) = (1,0) (16,56) = (0,1) (38,56) = (1,1) (53,56) = (1,1) 

( 6,56) = (0,1) (17,56) = (1,0) (38,56) = (0,0) (53,56) = (0,0) 

( 8,56) = (1,1) (17,56) = (0,1) (40,56) = (1,0) (54,56) = (1,1) 

( 8,56) = (0,0) (25,56) = (1,1) (40,56) = (0,1) (54,56) = (0,0) 

(11,56) = (1,1) (25,56) = (0,0) (41,56) = (1,0)  

A potential explanation can be developed for the pattern of spikes in combinations that include bit 56 by noting 352 
that 8 is an even divisor of 56. PUFs accumulate differences as steps progress, so bit 56 occurs at the final stage 353 
before the last 8-bit shift register. In a design situation, the next step would be to analyze the hardware 354 
components to determine why this irregularity was occurring.  355 

3.3 32-bit Shift Register PUF (DB3) 356 

This section shows the results of the analysis performed on a 32-bit shift register PUF. As the name suggests, a 357 
32-bit shift register PUF is designed the same as an 8-bit shift register, where the circuitry is four times longer. 358 
The added circuitry increases the complexity of the PUF and, thus, likely makes it a little less susceptible to 359 
model-building attacks.   360 

 The results of applying the analyses are shown in Figures 5(a) and 5(b).   361 

 362 

Figure 5(a). 2-way frequency differences for a 32-bit shift register PUF 363 
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 364 

Figure 5(b). 3-way frequency differences for a 32-bit shift register PUF 365 

3.4 Uniform distribution PUF (DB4) 366 

Figure 6 shows results for a PUF with the most uniform distribution of all studied here. This PUF has the greatest 367 
resistance to machine learning attacks, which are able to predict responses only somewhat better than chance 368 
(see Table 1). In this case, the variations used in producing PUF responses accumulate uniformly with slight 369 
frequency differences for t-tuples of bits that include either bit 61 or 62. (Compression of the spikes towards the 370 
right side of the graph occurs because of the loop computation, as explained in Section 3.2.) 371 

 372 

Figure 6(a). 2-way frequency differences for a uniform distribution PUF 373 

 374 

 375 

Figure 6(b). 3-way frequency differences for a uniform distribution PUF 376 

 377 
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3.5 Neural Net PUF 378 

Researchers have pointed out the vulnerabilities of arbiter and other types of PUFs, especially against model-379 
building attacks [30]. To thwart the model-learning attack, researchers proposed both a simple neural network 380 
(NN) [31] as well as recurrent neural network (RNN)-based PUFs [32]. These new models are specifically 381 
designed for high resistance to model-building attacks achieved by introducing non-linearity between the 382 
challenge-response pairs. The physical implementation uses current-mirrors to construct the PUF. The basic idea 383 
is to propagate a current through two identical chains of non-linear current mirrors. In the case of RNN-based 384 
PUF, the circuitry feeds back the challenge bits into the PUF. [32]  385 

 386 

Figure 7(a). 2-way frequency differences for a neural net PUF 387 

 388 

 389 

Figure 7(b). 3-way frequency differences for a neural net PUF 390 

4 Extension to Machine Learning 391 

A distinguishing combination has been defined as one present in a class instance of class set C and absent in 392 
non-class instances N, or if it is more strongly associated with C than N, as determined by a threshold value. As 393 
the name suggests, a distinguishing combination is one that differentiates one type or class of instance from 394 
others. Thus, it is natural to consider if these combinations can be used directly in machine learning problems 395 
for predicting class membership from instance attributes. If an instance contains many t-tuples of values that are 396 
associated with a particular class but not with other classes, then it is likely to be a member of the class with 397 
which the t-tuples of values are strongly associated. This section shows that initial results suggest this approach 398 
works quite well in many cases. No ML algorithm is best for all problems, and the CFD approach to classification 399 
performs better than other ML algorithms for some problems and less well for others. This section reviews some 400 
of these empirical results and suggests future work to characterize the conditions under which CFD machine 401 
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learning will be advantageous.  402 

Given a set of distinguishing combinations, a simple algorithm for classification seems natural: if an instance 403 
has more attribute combinations that are associated with a class C than another class, then assign it to C, and if 404 
there are fewer combinations associated with C than another class, then assign it to the other class. (For 405 
simplicity, only two classes are considered here, but the method can be extended to multiple classes by 406 
considering each one as “C” in turn). If the C and N combinations are equally present, then the result is 407 
undermined. As the saying goes, “if it looks like a duck and walks like a duck and quacks like a duck (a 3-way 408 
combination), it’s probably a duck!” 409 

CFD algorithm: 410 

dist_c = {distinguishing combinations for instances in class C} 411 
dist_n = {distinguishing combinations for instances not in class C} 412 
   413 

dc = sum(1 for t-way combinations xi in row if xi in dist_c) 414 
dn = sum(1 for t-way combinations xi in row if xi in dist_n) 415 
if dc > dn:  predict C 416 
if dn > dc:  predict N 417 
if dc == dn: indeterminate 418 

A number of possible alternatives to the basic algorithm can be conceived. Perhaps the most obvious is to weigh 419 
the presence of distinguishing combinations in instances, shown below as CFDw. Using a weight of |FCx – FNx|, 420 
the CFDw algorithm has been compared with the basic CFD for several examples. Comparisons of the weighted 421 
method with the basic method are shown in the following sections along with frequency difference graphs. 422 
Accuracy scores for CFD and CFDw are relatively close, and there is no clear winner between these two 423 
variations.  424 

CFDw algorithm: 425 

dc = sum(weight(xi) for t-way combinations xi in row if xi in dist_c) 426 
dn = sum(weight(xi) for t-way combinations xi in row if xi in dist_n) 427 
if dc > dn:  predict C 428 
if dn > dc:  predict N 429 
if dc == dn: indeterminate 430 

Using this approach on the PUF data presented in the previous section produces results that are relatively 431 
comparable to the ML algorithms shown in Table 1 for 10,000 rows using 4-way combinations shown in Table 432 
3.  433 

Table 3. Comparison of CFD accuracy with average, best, worst from Table 1 434 
 

CFD Avg, Table 1 Best, Table 1 Worst, Table 1 

DB1 .953 86.7 .997 (logistic) .721  (J48) 

DB2 .547 62.6 .767 (dec tbl) .524 (SGD) 

DB3 .520 57.3 .710 (dec tbl) .501 (Bayesnet) 

DB4 .546 56.8 .607 (JRip) .546 (SGD) 

NN00 .621 63.6 .654 (Rand Forest) .591 (J48) 
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As previously discussed, PUFs are designed to be “unclonable” (i.e., difficult to replicate, including through 435 
strategies such as machine learning). In most ML applications, the classes of interest are in nature or may be 436 
industrial products not designed to be resistant to modeling. This difference is also immediately apparent in the 437 
graphs in Appendix A, which show much wider variation for these “natural” or practical datasets.  An example 438 
is shown in Figure 8 below (mushroom data set from Appendix): 439 

 440 

 441 

Figure 8. Frequency difference graph for 2-way and 3-way differences, mushroom example 442 

As shown in this graph and others in Appendix A, there is a much wider variation in frequency differences – up 443 
to roughly 75 % or more. The much smaller variation for PUFs is likely due to the fact that they are designed to 444 
be difficult to clone or replicate. The wider range of frequency differences in these natural examples make the 445 
CFD approach more effective, using the differences to distinguish between classes. On these applications, CFD 446 
class prediction does quite well, as shown in Table 4. Accuracy scores in the column labeled “CFD4 @ T” are 447 
the average of 10 random assignments of the total number of rows given by “n rows” split into 66 % training 448 
and 34 % test for the threshold of T shown using 4-way combinations.  449 

Table 4. Comparison of CFD accuracy with other ML algorithms 450 

Dataset n row n col n class n non CFD4 @ T Ada Baye DecTbl J48 JRip Log NB Rand SGD ZR 

Bcanc 286 9 68 218 .970@1.0 .759 .766 .745 .769 .720 .752 .752 .745 .766 .762 

Coupon 12684 25 7210 5474 .730@5.0 .644 .663 .688 .718 .725 .693 .663 .757 .684 .569 

Credit 1000 20 37 963 .991 @ 5.1 .963 .950 .962 .963 .957 .958 .949 .963 .963 .963 

Diab 768 8 367 401 .992@1.0 .698 .723 .709 .694 .692 .728 .723 .674 .715 .522 

Heart2 47786 21 23893 23893 .755@5.0  .745 .741 .745 .757 .754 .767 .741 .753 .762 .500 

Mush 5644 22 2156 3488 1.00 @ 1.0 .963 .985 1.00 1.00 1.00 1.00 .974 1.00 1.00 .618 

Soyb 684 31 133 551 .986 @ 15.0 .991 .968 .988 .981 .972 .975 .929 .983  .845 
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It is important to note that a small number of threshold values have been tried. Further experimentation with 451 
threshold values and characterization of their applicability will be the subject of future research. An additional 452 
issue to be investigated is the possibility of overfitting. Two of the sample machine learning data sets have less 453 
than 10 attributes. Using 4-way combinations to test for membership in class or non-class sets may have a 454 
potential for overfitting because a 4-way combination could include roughly half of the attributes available for 455 
classifying an instance. The other data sets were chosen with more than 20 attributes to reduce the possibility of 456 
overfitting. A detailed investigation of this issue will be the subject of future research. 457 

5 Conclusions 458 

This paper presents a method for measuring and visualizing differences in the frequency or rate of occurrence of 459 
t-way combinations for two data sets. This measure, combination frequency differencing (CFD), has potential 460 
use in a variety of applications. Initially applied to challenge-response pairs for physical unclonable functions of 461 
PUFs, CFD was shown to provide the ability to identify combinations of bits in the challenge that are more or 462 
less strongly associated with particular output values of 0 or 1. The level of difference appears to correlate with 463 
the effectiveness of machine learning attacks on PUFs. In future research, the authors hope to develop ways to 464 
trace these strongly non-uniform bit combination associations to the hardware components that produce them. 465 
This ability might be useful in the design and development of PUFs to identify design weaknesses and correct 466 
them before production.  467 

It was also shown that the basic idea behind CFD can be extended to produce a new type of machine learning 468 
algorithm. CFD identifies and measures differences between two data sets using attribute value combinations, 469 
and this approach lends itself naturally to identifying instances in classification problems. An instance that is 470 
very similar to others of a particular class is likely to be a member of that class. This paper shows that the 471 
accuracy of this CFD approach to classification problems is comparable to the accuracy of well-known 472 
algorithms across a variety of problem types. Further research is planned to investigate developing this method 473 
into a practical approach for classification problems. In previous work, the authors have used the concept of 474 
unique or distinguishing combinations for explainability in AI/ML systems [23][28], so there may be effective 475 
methods for combining the CFD method for classification with explainability.  476 
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Appendix A—Difference Graphs of Classification Problems 561 

This section presents examples of typical machine learning classification problems taken from the UCI 562 
Machine Learning Repository (https://archive.ics.uci.edu/ml) or from Kaggle (https://www.kaggle.com). Each 563 
example includes the data source, associated publication, and results from the tools described in this paper.  564 

Bcanc - https://archive.ics.uci.edu/ml/datasets/Breast+Cancer  565 

Michalski,R.S., Mozetic,I., Hong,J., & Lavrac,N. (1986). The Multi-Purpose Incremental Learning System 566 
AQ15 and its Testing Application to Three Medical Domains. Proceedings of the Fifth National Conference 567 
on Artificial Intelligence, 1041-1045, Philadelphia, PA: Morgan Kaufmann. 568 

 569 

Figure 9. Breast cancer data frequency differences. 570 

CFD results: 571 
== confusion matrix 4-way == 572 
  |      C   |       N    <- predicted 573 
C |     75   |       0 574 
N |      3   |      21 575 
===================== 576 
Accuracy:  0.970 577 
 578 

CFDw results: 579 
== confusion matrix 4-way == 580 
  |      C   |       N    <- predicted 581 
C |     24   |       0 582 
N |      2   |      73 583 
===================== 584 
Accuracy:  0.980 585 
============================ 586 

 587 

https://archive.ics.uci.edu/ml
https://www.kaggle.com/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer
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Wang, Tong, Cynthia Rudin, Finale Doshi-Velez, Yimin Liu, Erica Klampfl, and Perry MacNeille. 'A 589 
Bayesian framework for learning rule sets for interpretable classification.' The Journal of Machine Learning 590 
Research 18, no. 1 (2017): 2357-2393. 591 

 592 

Figure 10. Coupon data frequency differences. 593 

== confusion matrix 4-way == 594 
  |      C   |       N    <- predicted 595 
C |   1931   |     521 596 
N |    661   |    1201 597 
===================== 598 
Accuracy:  0.726 599 
============================ 600 

 601 

  602 

https://www.kaggle.com/mathurinache/invehicle-coupon-recommendation
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Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of 604 
California, School of Information and Computer Science. 605 
 606 
 607 

 608 

Figure 11. German credit check data frequency differences. 609 

== confusion matrix 4-way == 610 
  |      C   |       N    <- predicted 611 
C |     10   |       3 612 
N |      0   |     328 613 
===================== 614 
Accuracy:  0.991 615 
============================ 616 
 617 
 618 
CFDw results: 619 
== confusion matrix 4-way == 620 
  |      C   |       N    <- predicted 621 
C |    293   |      35 622 
N |      0   |      13 623 
===================== 624 
Accuracy:  0.897 625 
============================ 626 

  627 
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and Medical Care (pp. 261--265). IEEE. 631 

 632 

Figure 12. Diabetes data frequency differences. 633 

CFD results: 634 
== confusion matrix 4-way == 635 
  |      C   |       N    <- predicted 636 
C |    124   |       1 637 
N |      1   |     136 638 
===================== 639 
Accuracy:  0.992 640 
 641 
CFDw results: 642 
== confusion matrix 4-way == 643 
  |      C   |       N    <- predicted 644 
C |    125   |       0 645 
N |      1   |     136 646 
===================== 647 
Accuracy:  0.996 648 
============================ 649 

  650 

https://archive.ics.uci.edu/ml/datasets/diabetes
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 654 

Figure 13. Heart disease data frequency differences. 655 

== confusion matrix 2-way == 656 
  |      C   |       N    <- predicted 657 
C |   6254   |    1870 658 
N |   2472   |    5652 659 
===================== 660 
Accuracy 2-way = 0.733, SD_2 = 0.08709, dt = 1.046 661 
  662 
== confusion matrix 3-way == 663 
  |      C   |       N    <- predicted 664 
C |   6017   |    2107 665 
N |   1950   |    6174 666 
===================== 667 
Accuracy 3-way = 0.750, SD_3 = 0.04643, dt = 1.046 668 
== confusion matrix 4-way == 669 
  |      C   |       N    <- predicted 670 
C |   5905   |    2219 671 
N |   1764   |    6360 672 
===================== 673 
Accuracy 4-way = 0.755, dt = 1.046 674 
 675 
== confusion matrix 5-way == 676 
  |      C   |       N    <- predicted 677 
C |   5859   |    2265 678 
N |   1991   |    6133 679 
===================== 680 
Accuracy 5-way = 0.738, dt = 1.046 681 
===================== 682 

  683 

https://github.com/doguilmak/Heart-Diseaseor-Attack-Classification
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 687 

Figure 14. Edible mushroom data frequency differences. 688 

CFD results: 689 
== confusion matrix 4-way == 690 
  |      C   |       N    <- predicted 691 
C |    725   |       9 692 
N |     58   |    1128 693 
===================== 694 
Accuracy:  0.965 695 
 696 

CFDw results: 697 
== confusion matrix 4-way == 698 
  |      C   |       N    <- predicted 699 
C |    553   |     181 700 
N |      0   |    1186 701 
===================== 702 
Accuracy:  0.906 703 
============================ 704 

 705 

  706 

https://archive.ics.uci.edu/ml/datasets/Mushroom
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No. 2, 1980. 711 

 712 

Figure 15. Soybean disease data frequency differences. 713 

CFD results: 714 
== confusion matrix 4-way == 715 
  |      C   |       N    <- predicted 716 
C |     42   |       4 717 
N |      0   |     188 718 
===================== 719 
Accuracy:  0.983 720 
 721 

CFDw results: 722 
== confusion matrix 4-way == 723 
  |      C   |       N    <- predicted 724 
C |     41   |       5 725 
N |      0   |     188 726 
===================== 727 
Accuracy:  0.979 728 
============================ 729 

 730 

https://archive.ics.uci.edu/ml/datasets/Soybean+%28Large%29
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