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Abstract 

This NIST Trustworthy and Responsible AI report develops a taxonomy of concepts and defnes 
terminology in the feld of adversarial machine learning (AML). The taxonomy is built on surveying the 
AML literature and is arranged in a conceptual hierarchy that includes key types of ML methods and 
lifecycle stages of attack, attacker goals and objectives, and attacker capabilities and knowledge of the 
learning process. The report also provides corresponding methods for mitigating and managing the 
consequences of attacks and points out relevant open challenges to take into account in the lifecycle of 
AI systems. The terminology used in the report is consistent with the literature on AML and is 
complemented by a glossary that defnes key terms associated with the security of AI systems and is 
intended to assist non-expert readers. Taken together, the taxonomy and terminology are meant to 
inform other standards and future practice guides for assessing and managing the security of AI systems, 
by establishing a common language and understanding of the rapidly developing AML landscape. 

Keywords 

artifcial intelligence; machine learning; attack taxonomy; evasion; data poisoning; privacy breach; 
attack mitigation; data modality; trojan attack, backdoor attack; generative models; large language 
model; chatbot. 

NIST Trustworthy and Responsible AI Reports (NIST Trustworthy and Respon-
sible AI) 

The National Institute of Standards and Technology (NIST) promotes U.S. innovation and industrial 
competitiveness by advancing measurement science, standards, and technology in ways that enhance 
economic security and improve our quality of life. Among its broad range of activities, NIST contributes 
to the research, standards, evaluations, and data required to advance the development, use, and 
assurance of trustworthy artifcial intelligence (AI). 
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Audience 

The intended primary audience for this document includes individuals and groups who are 
responsible for designing, developing, deploying, evaluating, and governing AI systems. 

Background 

This document is a result of an extensive literature review, conversations with experts from 
the area of adversarial machine learning, and research performed by the authors in adver-
sarial machine learning. 

Trademark Information 

All trademarks and registered trademarks belong to their respective organizations. 

The Information Technology Laboratory (ITL) at NIST develops tests, test methods, ref-
erence data, proof of concept implementations, and technical analyses to advance the de-
velopment and productive use of information technology. ITL’s responsibilities include the 
development of management, administrative, technical, and physical standards and guide-
lines. 

This NIST Trustworthy and Responsible AI report focuses on identifying, addressing, and 
managing risks associated with adversarial machine learning. While practical guidance1 

1The term ’practice guide,’ ’guide,’ ’guidance’ or the like, in the context of this paper, is a consensus-created, 
informative reference intended for voluntary use; it should not be interpreted as equal to the use of the term 
’guidance’ in a legal or regulatory context. This document does not establish any legal standard or any other 
legal requirement or defense under any law, nor have the force or effect of law. 

published by NIST may serve as an informative reference, this guidance remains voluntary. 

The content of this document refects recommended practices. This document is not in-
tended to serve as or supersede existing regulations, laws, or other mandatory guidance. 
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How to read this document 

This document uses terms such as AI technology, AI system, and AI applications inter-
changeably. Terms related to the machine learning pipeline, such as ML model or algo-
rithm, are also used interchangeably in this document. Depending on context, the term 
“system” may refer to the broader organizational and/or social ecosystem within which the 
technology was designed, developed, deployed, and used instead of the more traditional 
use related to computational hardware or software. 

Important reading notes: 

• The document includes a series of blue callout boxes that highlight interesting nu-
ances and important takeaways. 

• Terms that are used but not defned/explained in the text are listed and defned in 
the Glossary. They are displayed in small caps in the text. Clicking on a word 
shown in small caps (e.g., ADVERSARIAL EXAMPLES) takes the reader directly to 
the defnition of that term in the Glossary. From there, one may click on the page 
number shown at the end of the defnition to return. 
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Executive Summary 

This NIST Trustworthy and Responsible AI report is intended to be a step toward develop-
ing a taxonomy and terminology of adversarial machine learning (AML), which in turn may 
aid in securing applications of artifcial intelligence (AI) against adversarial manipulations 
of AI systems. Broadly, there are two classes of AI systems: Predictive and Generative. The 
components of an AI system include – at a minimum – the data, model, and processes for 
training, testing, and deploying the machine learning (ML) models and the infrastructure 
required for using them. Generative AI systems may also be linked to corporate documents 
and databases when they are adapted to specifc domains and use cases. The data-driven 
approach of ML introduces additional security and privacy challenges in different phases 
of ML operations besides the classical security and privacy threats faced by most opera-
tional systems. These security and privacy challenges include the potential for adversarial 
manipulation of training data, adversarial exploitation of model vulnerabilities to adversely 
affect the performance of the AI system, and even malicious manipulations, modifcations 
or mere interaction with models to exfltrate sensitive information about people represented 
in the data, about the model itself, or proprietary enterprise data. Such attacks have been 
demonstrated under real-world conditions, and their sophistication and potential impact 
have been increasing steadily. AML is concerned with studying the capabilities of attack-
ers and their goals, as well as the design of attack methods that exploit the vulnerabilities 
of ML during the development, training, and deployment phase of the ML lifecycle. AML 
is also concerned with the design of ML algorithms that can withstand these security and 
privacy challenges. When attacks are launched with malevolent intent, the robustness of 
ML refers to mitigations intended to manage the consequences of such attacks. 

This report adopts the notions of security, resilience, and robustness of ML systems from 
the NIST AI Risk Management Framework [226]. Security, resilience, and robustness are 
gauged by risk, which is a measure of the extent to which an entity (e.g., a system) is threat-
ened by a potential circumstance or event (e.g., an attack) and the severity of the outcome 
should such an event occur. However, this report does not make recommendations on risk 
tolerance (the level of risk that is acceptable to organizations or society) because it is highly 
contextual and application/use-case specifc. This general notion of risk offers a useful ap-
proach for assessing and managing the security, resilience, and robustness of AI system 
components. Quantifying these likelihoods is beyond the scope of this document. Corre-
spondingly, the taxonomy of AML is defned with respect to the following fve dimensions 
of AML risk assessment: (i) AI system type (Predictive or Generative), (ii) learning method 
and stage of the ML lifecycle process when the attack is mounted, (iii) attacker goals and 
objectives, (iv) attacker capabilities, (v) and attacker knowledge of the learning process and 
beyond. 

The spectrum of effective attacks against ML is wide, rapidly evolving, and covers all 
phases of the ML lifecycle – from design and implementation to training, testing, and f-
nally, to deployment in the real world. The nature and power of these attacks are different 
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and can exploit not just vulnerabilities of the ML models but also weaknesses of the in-
frastructure in which the AI systems are deployed. Although AI system components may 
also be adversely affected by various unintentional factors, such as design and implemen-
tation faws and data or algorithm biases, these factors are not intentional attacks. Even 
though these factors might be exploited by an adversary, they are not within the scope of 
the literature on AML or this report. 

This document defnes a taxonomy of attacks and introduces terminology in the feld of 
AML. The taxonomy is built on a survey of the AML literature and is arranged in a con-
ceptual hierarchy that includes key types of ML methods and lifecycle stages of attack, 
attacker goals and objectives, and attacker capabilities and knowledge of the learning pro-
cess. The report also provides corresponding methods for mitigating and managing the 
consequences of attacks and points out relevant open challenges to take into account in the 
lifecycle of AI systems. The terminology used in the report is consistent with the litera-
ture on AML and is complemented by a glossary that defnes key terms associated with 
the security of AI systems in order to assist non-expert readers. Taken together, the tax-
onomy and terminology are meant to inform other standards and future practice guides for 
assessing and managing the security of AI systems by establishing a common language and 
understanding for the rapidly developing AML landscape. Like the taxonomy, the termi-
nology and defnitions are not intended to be exhaustive but rather to aid in understanding 
key concepts that have emerged in AML literature. 

2 
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1. Introduction 

Artifcial intelligence (AI) systems [220] are on a global multi-year accelerating expansion 
trajectory. These systems are being developed by and widely deployed into the economies 
of numerous countries, leading to the emergence of AI-based services for people to use in 
many spheres of their lives, both real and virtual [77]. There are two broad classes of AI 
systems, based on their capabilities: Predictive AI (PredAI) and Generative AI (GenAI). 
As these systems permeate the digital economy and become inextricably essential parts of 
daily life, the need for their secure, robust, and resilient operation grows. These opera-
tional attributes are critical elements of Trustworthy AI in the NIST AI Risk Management 
Framework [226] and in the taxonomy of AI Trustworthiness [223]. 

However, despite the signifcant progress that AI and machine learning (ML) have made in 
a number of different application domains, these technologies are also vulnerable to attacks 
that can cause spectacular failures with dire consequences. 

For example in PredAI computer vision applications for object detection and classifcation, 
well-known cases of adversarial perturbations of input images have caused autonomous 
vehicles to swerve into the opposite direction lane. The misclassifcation of stop signs as 
speed limit signs caused critical objects to disappear from images, and even to misiden-
tify people wearing glasses in high-security settings [99, 150, 260, 277]. Similarly, in the 
medical feld where more and more ML models are being deployed to assist doctors, there 
is the potential for medical record leaks from ML models that can expose deeply personal 
information [14, 135]. 

In GenAI, large language models (LLMs) [6, 38, 70, 83, 196, 209, 228, 276, 293, 294, 345] 
are also becoming an integral part of the Internet infrastructure and software applications. 
LLMs are being used to create more powerful online search, help software developers write 
code, and even power chatbots that help with customer service. LLMs are being integrated 
with corporate databases and documents to enable powerful RETRIEVAL AUGMENTED 

GENERATION (RAG) [173] scenarios when LLMs are adapted to specifc domains and use 
cases. These scenarios in effect expose a new attack surface to potentially confdential and 
proprietary enterprise data. 

With the exception of BLOOM [209] and LLaMA[293], most of the companies developing 
such models do not release detailed information about the data sets that have been used 
to build their language models, but these data sets inevitably include some sensitive per-
sonal information, such as addresses, phone numbers, and email addresses. This creates 
serious risks for user privacy online. The more often a piece of information appears in a 
dataset, the more likely a model is to leak it in response to random or specifcally designed 
queries or prompts. This could perpetuate wrong and harmful associations with damag-
ing consequences for the people involved and bring additional security and safety concerns 
[51, 201]. 

Attackers can also manipulate the training data for both PredAI and GenAI systems, thus 
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making the AI system trained on it vulnerable to attacks [256]. Scraping of training data 
from the Internet also opens up the possibility of DATA POISONING at scale [46] by hackers 
to create vulnerabilities that allow for security breaches down the pipeline. 

As ML models continue to grow in size, many organizations rely on pre-trained models 
that could either be used directly or be fne-tuned with new datasets to enable different 
tasks. This creates opportunities for malicious modifcations of pre-trained models by in-
serting TROJANS to enable attackers to compromise the model availability, force incorrect 
processing, or leak the data when instructed [118]. 

Historically, modality-specifc AI technology has emerged for each input modality (e.g., 
text, images, speech, tabular data) in PredAI and GenAI systems, each of which is suscep-
tible to domain-specifc attacks. For example, the attack approaches for image classifcation 
tasks do not directly translate to attacks against natural language processing (NLP) models. 
Recently, transformer architectures that are used extensively in NLP have showns to have 
applications in the computer vision domain [90]. In addition, multimodal ML has made ex-
citing progress in many tasks, including generative and classifcation tasks, and there have 
been attempts to use multimodal learning as a potential mitigation of single-modality at-
tacks [328]. However, powerful simultaneous attacks against all modalities in a multimodal 
model have also emerged [63, 261, 326]. 

Fundamentally, the machine learning methodology used in modern AI systems is suscepti-
ble to attacks through the public APIs that expose the model, and against the platforms on 
which they are deployed. This report focuses on the former and considers the latter to be 
the scope of traditional cybersecurity taxonomies. For attacks against models, attackers can 
breach the confdentiality and privacy protections of the data and model by simply exercis-
ing the public interfaces of the model and supplying data inputs that are within the accept-
able range. In this sense, the challenges facing AML are similar to those facing cryptogra-
phy. Modern cryptography relies on algorithms that are secure in an information-theoretic 
sense. Thus, people need to focus only on implementing them robustly and securely—no 
small task. Unlike cryptography, there are no information-theoretic security proofs for the 
widely used machine learning algorithms. Moreover, information-theoretic impossibility 
results have started to appear in the literature [102, 116] that set limits on the effectiveness 
of widely-used mitigation techniques. As a result, many of the advances in developing 
mitigations against different classes of attacks tend to be empirical and limited in nature. 

This report offers guidance for the development of the following: 

• Standardized terminology in AML to be used by the ML and cybersecurity commu-
nities; 

• A taxonomy of the most widely studied and effective attacks in AML, including 

– evasion, poisoning, and privacy attacks for PredAI systems, 

– evasion, poisoning, privacy, and abuse attacks for GenAI systems; 
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– attacks against all viable learning methods (e.g., supervised, unsupervised, semi-
supervised, federated learning, reinforcement learning) across multiple data 
modalities. 

• A discussion of potential mitigations in AML and limitations of some of the existing 
mitigation techniques. 

As ML is a fast evolving feld, we envision the need to update the report regularly as new 
developments emerge on both the attack and mitigation fronts. 

The goal of this report is not to provide an exhaustive survey of all literature on 
AML. In fact, this by itself is an almost impossible task as a search on arXiv for 
AML articles in 2021 and 2022 yielded more than 5000 references. Rather, this 
report provides a categorization of attacks and their mitigations for PredAI and 
GenAI systems, starting with the main types of attacks: 1) evasion, 2) data and 
model poisoning, 3) data and model privacy, and 4) abuse (GenAI only). 

This report is organized into three sections. In Section 2 we consider PredAI systems. 
Section 2.1 introduces the taxonomy of attacks for PredAI systems. The taxonomy is orga-
nized by frst defning the broad categories of attacker objectives/goals. Based on that, we 
defne the categories of capabilities the adversary must be able to leverage to achieve the 
corresponding objectives. Then, we introduce specifc attack classes for each type of capa-
bility. Sections 2.2, 2.3, and 2.4 discuss the major classes of attacks: evasion, poisoning, 
and privacy, respectively. A corresponding set of mitigations for each class of attacks is 
provided in the attack class sections. In Section 3 we consider GenAI systems. Section 3.1 
introduces the taxonomy of attacks for GenAI systems. Similary to the PredAI case, we 
defne the categories of capabilities the adversary must be able to leverage to achieve the 
corresponding objectives with GenAI systems. Then, we introduce specifc attack classes 
for each type of capability. Section 4 discusses the remaining challenges in the feld. 

5 
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2. Predictive AI Taxonomy 

2.1. Attack Classifcation 

Figure 1 introduces a taxonomy of attacks in adversarial machine learning for PredAI sys-
tems. The attacker’s objectives are shown as disjointed circles with the attacker’s goal at the 
center of each circle: Availability breakdown, Integrity violations, and Privacy compro-
mise. The capabilities that an adversary must leverage to achieve their objectives are shown 
in the outer layer of the objective circles. Attack classes are shown as callouts connected to 
the capabilities required to mount each attack. Multiple attack classes that requiring same 
capabilities for reaching the same objective are shown in a single callout. Related attack 
classes that require different capabilities for reaching the same objective are connected with 
dotted lines. 

6 
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Figure 1. Taxonomy of attacks on Predictive AI systems. 

These attacks are classifed according to the following dimensions: 1) learning method and 
stage of the learning process when the attack is mounted, 2) attacker goals and objectives, 3) 
attacker capabilities, and 4) attacker knowledge of the learning process. Several adversarial 
attack classifcation frameworks have been introduced in prior works [30, 283], and the goal 
here is to create a standard terminology for adversarial attacks on ML that unifes existing 
work. 
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2.1.1. Stages of Learning 

Machine learning involves a TRAINING STAGE, in which a model is learned, and a DEPLOY-
MENT STAGE, in which the model is deployed on new, unlabeled data samples to generate 
predictions. In the case of SUPERVISED LEARNING labeled training data is given as input 
to a training algorithm in the training stage and the ML model is optimized to minimize a 
specifc loss function. Validation and testing of the ML model is usually performed before 
the model is deployed in the real world. Common supervised learning techniques include 
CLASSIFICATION, in which the predicted labels or classes are discrete, and REGRESSION, 
in which the predicted labels or response variables are continuous. 

ML models may be GENERATIVE (i.e., learn the distribution of training data and gener-
ate similar examples, such as generative adversarial networks [GAN] and large language 
models [LLM]), cf. Section 3, or DISCRIMINATIVE (i.e., learn only a decision boundary, 
such as LOGISTIC REGRESSION, SUPPORT VECTOR MACHINES, and CONVOLUTIONAL 

NEURAL NETWORKS). Most PredAI models are DISCRIMINATIVE. 

Other learning paradigms in the ML literature are UNSUPERVISED LEARNING, which trains 
models using unlabeled data at training time; SEMI-SUPERVISED LEARNING, in which a 
small set of examples have labels, while the majority of samples are unlabeled; REIN-
FORCEMENT LEARNING, in which an agent interacts with an environment and learns an 
optimal policy to maximize its reward; FEDERATED LEARNING, in which a set of clients 
jointly train an ML model by communicating with a server, which performs an aggregation 
of model updates; ENSEMBLE LEARNING which is an approach in machine learning that 
seeks better predictive performance by combining the predictions from multiple models. 

Adversarial machine learning literature predominantly considers adversarial attacks against 
AI systems that could occur at either the training stage or the ML deployment stage. During 
the ML training stage, the attacker might control part of the training data, their labels, the 
model parameters, or the code of ML algorithms, resulting in different types of poisoning 
attacks. During the ML deployment stage, the ML model is already trained, and the adver-
sary could mount evasion attacks to create integrity violations and change the ML model’s 
predictions, as well as privacy attacks to infer sensitive information about the training data 
or the ML model. 

Training-time attacks. Attacks during the ML training stage are called POISONING AT-
TACKS [28]. In a DATA POISONING attack [28, 124], an adversary controls a subset of the 
training data by either inserting or modifying training samples. In a MODEL POISONING at-
tack [185], the adversary controls the model and its parameters. Data poisoning attacks are 
applicable to all learning paradigms, while model poisoning attacks are most prevalent in 
federated learning [152], where clients send local model updates to the aggregating server, 
and in supply-chain attacks where malicious code may be added to the model by suppliers 
of model technology. 

Deployment-time attacks. Two different types of attacks can be mounted at inference or 
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deployment time. First, evasion attacks modify testing samples to create ADVERSARIAL 

EXAMPLES [26, 120, 287], which are similar to the original sample (according to certain 
distance metrics) but alter the model predictions to the attacker’s choices. Second, privacy 
attacks, such as membership inference [269] and data reconstruction [89], are typically 
mounted by attackers with query access to an ML model. They could be further divided 
into data privacy attacks and model privacy attacks. 

2.1.2. Attacker Goals and Objectives 

The attacker’s objectives are classifed along three dimensions according to the three main 
types of security violations considered when analyzing the security of a system (i.e., avail-
ability, integrity, confdentiality): availability breakdown, integrity violations, and privacy 
compromise. Correspondingly, ADVERSARIAL SUCCESS indicates achieving one or more 
of these objectives. Figure 1 separates attacks into three disjointed circles according to 
their objective, and the attacker’s objective is shown at the center of each circle. 

Availability Breakdown. An AVAILABILITY ATTACK is an indiscriminate attack against 
ML in which the attacker attempts to break down the performance of the model at de-
ployment time. Availability attacks can be mounted via data poisoning, when the attacker 
controls a fraction of the training set; via model poisoning, when the attacker controls the 
model parameters; or as ENERGY-LATENCY ATTACKS via query access. Data poisoning 
availability attacks have been proposed for SUPPORT VECTOR MACHINES [28], linear re-
gression [143], and even neural networks [190, 215], while model poisoning attacks have 
been designed for neural networks [185] and federated learning [12]. Recently, ENERGY-
LATENCY ATTACKS that require only black-box access to the model have been developed 
for neural networks across many different tasks in computer vision and NLP [273]. 

Integrity Violations. An INTEGRITY ATTACK targets the integrity of an ML model’s out-
put, resulting in incorrect predictions performed by an ML model. An attacker can cause 
an integrity violation by mounting an evasion attack at deployment time or a poisoning at-
tack at training time. Evasion attacks require the modifcation of testing samples to create 
adversarial examples that are mis-classifed by the model to a different class, while remain-
ing stealthy and imperceptible to humans [26, 120, 287]. Integrity attacks via poisoning 
can be classifed as TARGETED POISONING ATTACKS [113, 258], BACKDOOR POISONING 

ATTACKS [124], and MODEL POISONING [12, 24, 101]. Targeted poisoning tries to vio-
late the integrity of a few targeted samples and assumes that the attacker has training data 
control to insert the poisoned samples. Backdoor poisoning attacks require the generation 
of a BACKDOOR PATTERN, which is added to both the poisoned samples and the testing 
samples to cause misclassifcation. Backdoor attacks are the only attacks in the literature 
that require both training and testing data control. Model poisoning attacks could result in 
either targeted or backdoor attacks, and the attacker modifes model parameters to cause an 
integrity violation. They have been designed for centralized learning [185] and federated 
learning [12, 24]. 
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Privacy Compromise. Attackers might be interested in learning information about the 
training data (resulting in DATA PRIVACY attacks) or about the ML model (resulting in 
MODEL PRIVACY attacks). The attacker could have different objectives for compromising 
the privacy of training data, such as DATA RECONSTRUCTION [89] (inferring content or 
features of training data), MEMBERSHIP-INFERENCE ATTACKS [130, 270] (inferring the 
presence of data in the training set), data EXTRACTION [48, 51] (ability to extract training 
data from generative models), and PROPERTY INFERENCE [110] (inferring properties about 
the training data distribution). MODEL EXTRACTION is a model privacy attack in which 
attackers aim to extract information about the model [141]. 

2.1.3. Attacker Capabilities 

An adversary might leverage six types of capabilities to achieve their objectives, as shown 
in the outer layer of the objective circles in Figure 1: 

• TRAINING DATA CONTROL: The attacker might take control of a subset of the train-
ing data by inserting or modifying training samples. This capability is used in data 
poisoning attacks (e.g., availability poisoning, targeted or backdoor poisoning). 

• MODEL CONTROL: The attacker might take control of the model parameters by either 
generating a Trojan trigger and inserting it in the model or by sending malicious local 
model updates in federated learning. 

• TESTING DATA CONTROL: The attacker may utilize this to add perturbations to test-
ing samples at model deployment time, as performed in evasion attacks to generate 
adversarial examples or in backdoor poisoning attacks. 

• LABEL LIMIT: This capability is relevant to restrict the adversarial control over the 
labels of training samples in supervised learning. Clean-label poisoning attacks as-
sume that the attacker does not control the label of the poisoned samples – a realistic 
poisoning scenario, while regular poisoning attacks assume label control over the 
poisoned samples. 

• SOURCE CODE CONTROL: The attacker might modify the source code of the ML 
algorithm, such as the random number generator or any third-party libraries, which 
are often open source. 

• QUERY ACCESS: When the ML model is managed by a cloud provider (using Ma-
chine Learning as a Service – MLaaS), the attacker might submit queries to the model 
and receive predictions (either labels or model confdences). This capability is used 
by black-box evasion attacks, ENERGY-LATENCY ATTACKS, and all privacy attacks. 

Note that even if an attacker does not have the ability to modify training/testing data, source 
code, or model parameters, access to these are still crucial for mounting white-box attacks. 
See Section 2.1.4 for more details on attacker knowledge. 
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Figure 1 connects each attack class with the capabilities required to mount the attack. For 
instance, backdoor attacks that cause integrity violations require control of training data and 
testing data to insert the backdoor pattern. Backdoor attacks can also be mounted via source 
code control, particularly when training is outsourced to a more powerful entity. Clean-
label backdoor attacks do not allow label control on the poisoned samples, in addition to 
the capabilities needed for backdoor attacks. 

2.1.4. Attacker Knowledge 

Another dimension for attack classifcation is how much knowledge the attacker has about 
the ML system. There are three main types of attacks: white-box, black-box, and gray-box. 

White-box attacks. These assume that the attacker operates with full knowledge about the 
ML system, including the training data, model architecture, and model hyper-parameters. 
While these attacks operate under very strong assumptions, the main reason for analyzing 
them is to test the vulnerability of a system against worst-case adversaries and to evaluate 
potential mitigations. Note that this defnition is more general and encompasses the notion 
of adaptive attacks where the knowledge of the mitigations applied to the model or the 
system is explicitly tracked. 

Black-box attacks. These attacks assume minimal knowledge about the ML system. An 
adversary might get query access to the model, but they have no other information about 
how the model is trained. These attacks are the most practical since they assume that the 
attacker has no knowledge of the AI system and utilize system interfaces readily available 
for normal use. 

Gray-box attacks. There are a range of gray-box attacks that capture adversarial knowl-
edge between black-box and white-box attacks. Suciu et al. [283] introduced a framework 
to classify gray-box attacks. An attacker might know the model architecture but not its pa-
rameters, or the attacker might know the model and its parameters but not the training data. 
Other common assumptions for gray-box attacks are that the attacker has access to data 
distributed identically to the training data and knows the feature representation. The latter 
assumption is important in applications where feature extraction is used before training an 
ML model, such as cybersecurity, fnance, and healthcare. 

2.1.5. Data Modality 

Adversarial attacks against ML have been discovered in a range of data modalities used in 
many application domains. Until recently, most attacks and defenses have operated under 
a single modality, but a new ML trend is to use multimodal data. The taxonomy of attacks 
defned in Figure 1 is independent of the modality of the data in specifc applications. 

The most common data modalities in the adversarial ML literature include: 

1. Image: Adversarial examples of image data modality [120, 287] have the advantage 
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of a continuous domain, and gradient-based methods can be applied directly for opti-
mization. Backdoor poisoning attacks were frst invented for images [124], and many 
privacy attacks are run on image datasets (e.g., [269]). The image modality includes 
other types of imaging (e.g., LIDAR, SAR, IR, ‘hyperspectral’). 

2. Text: Natural language processing (NLP) is a popular modality, and all classes of 
attacks have been proposed for NLP applications, including evasion [126], poison-
ing [68, 175], and privacy [337]. 

3. Audio: Audio systems and text generated from audio signals have also been at-
tacked [54]. 

4. Video: Video comprehension models have shown increasing capabilities on vision-
and-language tasks [339], but such models are also vulnerable to attacks [318]. 

5. Cybersecurity2

2Strictly speaking, cybersecurity data may not include a single modality, but rather multiple modalities such 
as network-level, host-level, or program-level data. 

: The frst poisoning attacks were discovered in cybersecurity for 
worm signature generation (2006) [236] and spam email classifcation (2008) [222]. 
Since then, poisoning attacks have been shown for malware classifcation, malicious 
PDF detection, and Android malicious app classifcation [257]. Evasion attacks 
against the same data modalities have been proposed as well: malware classifca-
tion [84, 282], PDF malware classifcation [279, 325], and Android malicious app 
detection [239]. Clements et al. [78] developed a mechanism for effective generation 
of evasion attacks on small, weak routers in network intrusion detection. Poison-
ing unsupervised learning models has been shown for clustering used in malware 
classifcation [29] and network traffc anomaly detection [249]. 

Industrial Control Systems (ICS) and Supervisory Control and Data Acquisition 
(SCADA) systems are part of modern Critical Infrastructure (CI) such as power grids, 
power plants (nuclear, fossil fuel, renewable energy), water treatment plants, oil re-
fneries, etc. ICS are an attractive target for adversaries because of the potential for 
highly consequential disruptions of CI [55, 167]. The existence of targeted stealth 
attacks has led to the development of defense-in-depth mechanisms for their detec-
tion and mitigation. Anomaly detection based on data-centric approaches allows 
automated feature learning through ML algorithms. However, the application of ML 
to such problems comes with specifc challenges related to the need for a very low 
false negative and low false positive rates, ability to catch zero-day attacks, account 
for plant operational drift, etc. This challenge is compounded by the fact that try-
ing to accommodate all these together makes ML models susceptible to adversarial 
attacks [161, 243, 353]. 

6. Tabular data: Numerous attacks against ML models working on tabular data in f-
nance, business, and healthcare applications have been demonstrated. For example, 
poisoning availability attacks have been shown against healthcare and business ap-
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plications [143]; privacy attacks have been shown against healthcare data [333]; and 
evasion attacks have been shown against fnancial applications [117]. 

Recently, the use of ML models trained on multimodal data has gained traction, particu-
larly the combination of image and text data modalities. Several papers have shown that 
multimodal models may provide some resilience against attacks [328], but other papers 
show that multimodal models themselves could be vulnerable to attacks mounted on all 
modalities at the same time [63, 261, 326]. See Section 4.6 for additional discussion. 

An interesting open challenge is to test and characterize the resilience of a variety 
of multimodal ML against evasion, poisoning, and privacy attacks. 

13 



NIST AI 100-2e2023 
January 2024 

2.2. Evasion Attacks and Mitigations 

The discovery of evasion attacks against machine learning models has generated increased 
interest in adversarial machine learning, leading to signifcant growth in this research space 
over the last decade. In an evasion attack, the adversary’s goal is to generate adversar-
ial examples, which are defned as testing samples whose classifcation can be changed at 
deployment time to an arbitrary class of the attacker’s choice with only minimal pertur-
bation [287]. Early known instances of evasion attacks date back to 1988 with the work 
of Kearns and Li [155], and to 2004, when Dalvi et al. [82], and Lowd and Meek [188] 
demonstrated the existence of adversarial examples for linear classifers used in spam fl-
ters. Adversarial examples became even more intriguing to the research community when 
Szedegy et al. [287] showed that deep neural networks used for image classifcation can 
be easily manipulated, and adversarial examples were visualized. In the context of image 
classifcation, the perturbation of the original sample must be small so that a human cannot 
observe the transformation of the input. Therefore, while the ML model can be tricked to 
classify the adversarial example in the target class selected by the attacker, humans still 
recognize it as part of the original class. 

In 2013, Szedegy et al. [287] and Biggio et al. [26] independently discovered an effective 
method for generating adversarial examples against linear models and neural networks by 
applying gradient optimization to an adversarial objective function. Both of these tech-
niques require white-box access to the model and were improved by subsequent methods 
that generated adversarial examples with even smaller perturbations [10, 53, 194]. Adver-
sarial examples are also applicable in more realistic black-box settings in which attackers 
only obtain query access capabilities to the trained model. Even in the more challeng-
ing black-box setting in which attackers obtain the model’s predicted labels or confdence 
scores, deep neural networks are still vulnerable to adversarial examples. Methods for cre-
ating adversarial examples in black-box settings include zeroth-order optimization [66], 
discrete optimization [210], and Bayesian optimization [271], as well as transferability, 
which involves the white-box generation of adversarial examples on a different model ar-
chitecture before transferring them to the target model [232, 233, 299]. Cybersecurity and 
image classifcations were the frst application domains that showcased evasion attacks. 
However, with the increasing interest in adversarial machine learning, ML technology used 
in many other application domains went under scrutiny, including speech recognition [54], 
natural language processing [149], and video classifcation [177, 317]. 

Mitigating adversarial examples is a well-known challenge in the community and deserves 
additional research and investigation. The feld has a history of publishing defenses evalu-
ated under relatively weak adversarial models that are subsequently broken by more power-
ful attacks, a process that appears to iterate in perpetuity. Mitigations need to be evaluated 
against strong adaptive attacks, and guidelines for the rigorous evaluation of newly pro-
posed mitigation techniques have been established [81, 297]. The most promising direc-
tions for mitigating the critical threat of evasion attacks are adversarial training [120, 194] 
(iteratively generating and inserting adversarial examples with their correct labels at train-
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ing time); certifed techniques, such as randomized smoothing [79] (evaluating ML predic-
tion under noise); and formal verifcation techniques [112, 154] (applying formal method 
techniques to verify the model’s output). Nevertheless, these methods come with different 
limitations, such as decreased accuracy for adversarial training and randomized smoothing, 
and computational complexity for formal methods. There is an inherent trade-off between 
robustness and accuracy [296, 301, 342]. Similarly, there are trade-offs between a model’s 
robustness and fairness guarantees [59]. 

This section discusses white-box and black-box evasion attack techniques, attack transfer-
ability, and the potential mitigation of adversarial examples in more detail. 

2.2.1. White-Box Evasion Attacks 

There are several optimization-based methods for designing evasion attacks that generate 
adversarial examples at small distances from the original testing samples. There are also 
several choices for distance metrics, universal evasion attacks, and physically realizable 
attacks, as well as examples of evasion attacks developed for multiple data modalities, 
including NLP, audio, video, and cybersecurity domains. 

Optimization-based methods. Szedegy et al. [287] and Biggio et al. [26] independently 
proposed the use of optimization techniques to generate adversarial examples. In their 
threat models, the adversary is allowed to inspect the entirety of the ML model and com-
pute gradients relative to the model’s loss function. These attacks can be targeted, in which 
the adversarial example’s class is selected by the attacker, or untargeted, in which the ad-
versarial examples are misclassifed to any other incorrect class. 

Szedegy et al. [287] coined the widely used term adversarial examples. They considered 
an objective that minimized the ℓ2 norm of the perturbation, subject to the model predic-
tion changing to the target class. The optimization is solved using the Limited-memory 
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method. Biggio et al. [26] considered the 
setting of a binary classifer with malicious and benign classes with continuous and dif-
ferentiable discriminant function. The objective of the optimization is to minimize the 
discriminant function in order to generate adversarial examples of maximum confdence. 

While Biggio et al. [26] apply their method to linear classifers, kernel SVM, and multi-
layer perceptrons, Szedegy et al. [287] show the existence of adversarial examples on deep 
learning models used for image classifcation. Goodfellow et al. [120] introduced an ef-
fcient method for generating adversarial examples for deep learning: the Fast Gradient 
Sign Method (FGSM), which performs a single iteration of gradient descent for solving the 
optimization. This method has been extended to an iterative FGSM attack by Kurakin et 
al. [163]. 

Subsequent work on generating adversarial examples have proposed new objectives and 
methods for optimizing the generation of adversarial examples with the goals of minimizing 
the perturbations and supporting multiple distance metrics. Some notable attacks include: 
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1. DeepFool is an untargeted evasion attack for ℓ2 norms, which uses a linear approxi-
mation of the neural network to construct the adversarial examples [212]. 

2. The Carlini-Wagner attack uses multiple objectives that minimize the loss or logits 
on the target class and the distance between the adversarial example and original 
sample. The attack is optimized via the penalty method [53] and considers three 
distance metrics to measure the perturbations of adversarial examples: ℓ0, ℓ2, and ℓ∞. 
The attack has been effective against the defensive distillation defense [234]. 

3. The Projected Gradient Descent (PGD) attack [194] minimizes the loss function and 
projects the adversarial examples to the space of allowed perturbations at each iter-
ation of gradient descent. PGD can be applied to the ℓ2 and ℓ∞ distance metrics for 
measuring the perturbation of adversarial examples. 

Universal evasion attacks. Moosavi-Dezfooli et al. [211] showed how to construct small 
universal perturbations (with respect to some norm), which can be added to most images 
and induce a misclassifcation. Their technique relies on successive optimization of the 
universal perturbation using a set of points sampled from the data distribution. This is a 
form of FUNCTIONAL ATTACKS. An interesting observation is that the universal pertur-
bations generalize across deep network architectures, suggesting similarity in the decision 
boundaries trained by different models for the same task. 

Physically realizable attacks. These are attacks against machine learning systems that 
become feasible in the physical world [11, 163, 189]. One of the frst physically realizable 
attacks in the literature is the attack on facial recognition systems by Sharif et al. [260]. 
The attack can be realized by printing a pair of eyeglass frames, which misleads facial 
recognition systems to either evade detection or impersonate another individual. Eykholt 
et al. [100] proposed an attack to generate robust perturbations under different conditions, 
resulting in adversarial examples that can evade vision classifers in various physical en-
vironments. The attack is applied to evade a road sign detection classifer by physically 
applying black and white stickers to the road signs. 

The ShapeShifter [67] attack is designed to evade object detectors, which is a more chal-
lenging problem than attacking image classifers since the attacker needs to evade the clas-
sifcation in multiple bounding boxes with different scales. In addition, this attack requires 
the perturbation to be robust enough to survive real-world distortions due to different view-
ing distances and angles, lighting conditions, and camera limitations. 

Other data modalities. In computer vision applications, adversarial examples must be im-
perceptible to humans. Therefore, the perturbations introduced by attackers need to be so 
small that a human correctly recognizes the images, while the ML classifer is tricked into 
changing its prediction. Alternatively, there may be a trigger object in the image that is still 
imperceptible to humans but causes the model to misclassify. The concept of adversarial 
examples has been extended to other domains, such as audio, video, natural language pro-
cessing (NLP), and cybersecurity. In some of these settings, there are additional constraints 
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that need to be respected by adversarial examples, such as text semantics in NLP and the 
application constraints in cybersecurity. Several representative works are discussed below: 

• Audio: Carlini and Wagner [54] showed a targeted attack on models that generate 
text from speech. They can generate an audio waveform that is very similar to an 
existing one but that can be transcribed to any text of the attacker’s choice. 

• Video: Adversarial evasion attacks against video classifcation models can be split 
into sparse attacks that perturb a small number of video frames [317] and dense 
attacks that perturb all of the frames in a video [177]. The goal of the attacker is to 
change the classifcation label of the video. 

• NLP: Jia and Liang [149] developed a methodology for generating adversarial NLP 
examples. This pioneering work was followed by many advances in developing ad-
versarial attacks on NLP models (see a comprehensive survey on the topic [347]). 
Recently, La Malfa and Kwiatkowska [164] proposed a method for formalizing per-
turbation defnitions in NLP by introducing the concept of semantic robustness. The 
main challenges in NLP are that the domain is discrete rather than continuous (e.g., 
image, audio, and video classifcation), and adversarial examples need to respect text 
semantics. 

• Cybersecurity: In cybersecurity applications, adversarial examples must respect the 
constraints imposed by the application semantics and feature representation of cyber 
data, such as network traffc or program binaries. FENCE is a general framework for 
crafting white-box evasion attacks using gradient optimization in discrete domains 
and supports a range of linear and statistical feature dependencies [73]. FENCE 
has been applied to two network security applications: malicious domain detection 
and malicious network traffc classifcation. Sheatsley et al. [262] propose a method 
that learns the constraints in feature space using formal logic and crafts adversar-
ial examples by projecting them onto a constraint-compliant space. They apply the 
technique to network intrusion detection and phishing classifers. Both papers ob-
serve that attacks from continuous domains cannot be readily applied in constrained 
environments, as they result in infeasible adversarial examples. Pierazzi et al. [239] 
discuss the diffculty of mounting feasible evasion attacks in cyber security due to 
constraints in feature space and the challenge of mapping attacks from feature space 
to problem space. They formalize evasion attacks in problem space and construct 
feasible adversarial examples for Android malware. 

2.2.2. Black-Box Evasion Attacks 

Black-box evasion attacks are designed under a realistic adversarial model, in which the 
attacker has no prior knowledge of the model architecture or training data. Instead, the 
adversary can interact with a trained ML model by querying it on various data samples and 
obtaining the model’s predictions. Similar APIs are provided by machine learning as a ser-
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vice (MLaaS) offered by public cloud providers, in which users can obtain the model’s pre-
dictions on selected queries without information about how the model was trained. There 
are two main classes of black-box evasion attacks in the literature: 

• Score-based attacks: In this setting, attackers obtain the model’s confdence scores 
or logits and can use various optimization techniques to create the adversarial exam-
ples. A popular method is zeroth-order optimization, which estimates the model’s 
gradients without explicitly computing derivatives [66, 137]. Other optimization 
techniques include discrete optimization [210], natural evolution strategies [136], 
and random walks [216]. 

• Decision-based attacks: In this more restrictive setting, attackers obtain only the 
fnal predicted labels of the model. The frst method for generating evasion attacks 
was the Boundary Attack based on random walks along the decision boundary and 
rejection sampling [35], which was extended with an improved gradient estimation to 
reduce the number of queries in the HopSkipJumpAttack [65]. More recently, several 
optimization methods search for the direction of the nearest decision boundary (the 
OPT attack [71]), use sign SGD instead of binary searches (the Sign-OPT attack 
[72]), or use Bayesian optimization [271]. 

The main challenge in creating adversarial examples in black-box settings is re-
ducing the number of queries to the ML models. Recent techniques can success-
fully evade the ML classifers with a relatively small number of queries, typically 
less than 1000 [271]. 

2.2.3. Transferability of Attacks 

Another method for generating adversarial attacks under restrictive threat models is via 
transferability of an attack crafted on a different ML model. Typically, an attacker trains 
a substitute ML model, generates white-box adversarial attacks on the substitute model, 
and transfers the attacks to the target model. Various methods differ in how the substitute 
models are trained. For example, Papernot et al. [232, 233] train the substitute model with 
score-based queries to the target model, while several papers train an ensemble of models 
without explicitly querying the target model [181, 299, 315]. 

Attack transferability is an intriguing phenomenon, and existing literature attempts to un-
derstand the fundamental reasons why adversarial examples transfer across models. Several 
papers have observed that different models learn intersecting decision boundaries in both 
benign and adversarial dimensions, which leads to better transferability [120, 211, 299]. 
Demontis et al. [85] identifed two main factors that contribute to attack transferability for 
both evasion and poisoning: the intrinsic adversarial vulnerability of the target model and 
the complexity of the surrogate model used to optimize the attack. 

EXPECTATION OVER TRANSFORMATION aims to make adversarial examples sustain im-
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age transformations that occur in the real world, such as angle and viewpoint changes [11]. 

2.2.4. Mitigations 

Mitigating evasion attacks is challenging because adversarial examples are widespread in 
a variety of ML model architectures and application domains, as discussed above. Pos-
sible explanations for the existence of adversarial examples are that ML models rely on 
non-robust features that are not aligned with human perception in the computer vision do-
main [138]. In the last few years, many of the proposed mitigations against adversarial 
examples have been ineffective against stronger attacks. Furthermore, several papers have 
performed extensive evaluations and defeated a large number of proposed mitigations: 

• Carlini and Wagner showed how to bypass 10 methods for detecting adversarial ex-
amples and described several guidelines for evaluating defenses [52]. Recent work 
shows that detecting adversarial examples is as diffcult as building a defense [295]. 
Therefore, this direction for mitigating adversarial examples is similarly challenging 
when designing defenses. 

• The Obfuscated Gradients attack [10] was specifcally designed to defeat several pro-
posed defenses that mask the gradients using the ℓ0 and ℓ∞ distance metrics. It relies 
on a new technique, Backward Pass Differentiable Approximation, which approxi-
mates the gradient during the backward pass of backpropagation. It bypasses seven 
proposed defenses. 

• Tramer` et al. [297] described a methodology for designing adaptive attacks against 
proposed defenses and circumvented 13 existing defenses. They advocate design-
ing adaptive attacks to test newly proposed defenses rather than merely testing the 
defenses against well-known attacks. 

From the wide range of proposed defenses against adversarial evasion attacks, three main 
classes have proved resilient and have the potential to provide mitigation against evasion 
attacks: 

1. Adversarial training: Introduced by Goodfellow et al. [120] and further developed 
by Madry et al. [194], adversarial training is a general method that augments the 
training data with adversarial examples generated iteratively during training using 
their correct labels. The stronger the adversarial attacks for generating adversarial 
examples are, the more resilient the trained model becomes. Interestingly, adversarial 
training results in models with more semantic meaning than standard models [301], 
but this beneft usually comes at the cost of decreased model accuracy on clean data. 
Additionally, adversarial training is expensive due to the iterative generation of ad-
versarial examples during training. 

2. Randomized smoothing: Proposed by Lecuyer et al. [169] and further improved by 
Cohen et al. [79], randomized smoothing is a method that transforms any classifer 
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into a certifable robust smooth classifer by producing the most likely predictions 
under Gaussian noise perturbations. This method results in provable robustness for ℓ2 
evasion attacks, even for classifers trained on large-scale datasets, such as ImageNet. 
Randomized smoothing typically provides certifed prediction to a subset of testing 
samples (the exact number depends on the radius of the ℓ2 ball and the characteristics 
of the training data and model). Recent results have extended the notion of certifed 
adversarial robustness to ℓ2-norm bounded perturbations by combining a pretrained 
denoising diffusion probabilistic model and a standard high-accuracy classifer [50]. 

3. Formal verifcation: Another method for certifying the adversarial robustness of 
a neural network is based on techniques from FORMAL METHODS. Reluplex uses 
satisfability modulo theories (SMT) solvers to verify the robustness of small feed-
forward neural networks [154]. AI2 is the frst verifcation method applicable to 
convolutional neural networks using abstract interpretation techniques [112]. These 
methods have been extended and scaled up to larger networks in follow-up verifca-
tion systems, such as DeepPoly [274], ReluVal [313], and Fast Geometric Projections 
(FGP) [108]. Formal verifcation techniques have signifcant potential for certifying 
neural network robustness, but their main limitations are their lack of scalability, 
computational cost, and restriction in the type of supported operations. 

All of these proposed mitigations exhibit inherent trade-offs between robustness and accu-
racy, and they come with additional computational costs during training. Therefore, design-
ing ML models that resist evasion while maintaining accuracy remains an open problem. 
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2.3. Poisoning Attacks and Mitigations 

Another relevant threat against machine learning systems is the risk of adversaries mount-
ing poisoning attacks, which are broadly defned as adversarial attacks during the training 
stage of the ML algorithm. Poisoning attacks have a long history in cybersecurity, as the 
frst known poisoning attack was developed for worm signature generation in 2006 [236]. 
Since then, poisoning attacks have been studied extensively in several application domains: 
computer security (for spam detection [222]), network intrusion detection [305], vulnera-
bility prediction [251], malware classifcation [257, 323]), computer vision [113, 124, 258], 
natural language processing [68, 175, 309], and tabular data in healthcare and fnancial do-
mains [143]. Recently, poisoning attacks have gained more attention in industrial applica-
tions as well. A Microsoft report revealed that they are considered to be the most critical 
vulnerability of machine learning systems deployed in production [162]. Recently. it has 
been shown how poisoning could be orchestrated at scale so that an adversary with limited 
fnancial resources can control a fraction of public datasets used for model training [46]. 

Poisoning attacks are very powerful and can cause either an availability violation or an 
integrity violation. In particular, availability poisoning attacks cause indiscriminate degra-
dation of the machine learning model on all samples, while targeted and backdoor poison-
ing attacks are stealthier and induce integrity violations on a small set of target samples. 
Poisoning attacks leverage a wide range of adversarial capabilities, such as data poisoning, 
model poisoning, label control, source code control, and test data control, resulting in sev-
eral subcategories of poisoning attacks. They have been developed in white-box adversarial 
scenarios [28, 143, 323], gray-box settings [143], and black-box models [27]. This section 
discusses the threat of availability poisoning, targeted poisoning, backdoor poisoning, and 
model poisoning attacks classifed according to their adversarial objective. For each poi-
soning attack category, techniques for mounting the attacks as well as existing mitigations 
and their limitations are also discussed. Our classifcation of poisoning attacks is inspired 
by the framework developed by Cinà et al. [76], which includes additional references to 
poisoning attacks and mitigations. 

2.3.1. Availability Poisoning 

The frst poisoning attacks discovered in cybersecurity applications were availability at-
tacks against worm signature generation and spam classifers, which indiscriminately im-
pact the entire machine learning model and, in essence, cause a denial-of-service attack 
on users of the AI system. Perdisci et al. [236] generated suspicious fows with fake in-
variants that mislead the worm signature generation algorithm in Polygraph [224]. Nelson 
et al. [222] designed poisoning attacks against Bayes-based spam classifers, which gen-
erate spam emails that contain long sequences of words appearing in legitimate emails to 
induce the misclassifcation of spam emails. Both of these attacks were conducted under 
the white-box setting in which adversaries are aware of the ML training algorithm, feature 
representations, training datasets, and ML models. ML-based methods have been proposed 
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for the detection of cybersecurity attacks targeting ICS. Such detectors are often retrained 
using data collected during system operation to account for plant operational drift of the 
monitored signals. This retraining procedure creates opportunities for an attacker to mimic 
the signals of corrupted sensors at training time and poison the learning process of the 
detector such that attacks remain undetected at deployment time [161]. 

A simple black-box poisoning attack strategy is LABEL FLIPPING, which generates train-
ing examples with a victim label selected by the adversary [27]. This method requires a 
large percentage of poisoning samples for mounting an availability attack, and it has been 
improved via optimization-based poisoning attacks introduced for the frst time against 
SUPPORT VECTOR MACHINES (SVM) [28]. In this approach, the attacker solves a bilevel 
optimization problem to determine the optimal poisoning samples that will achieve the 
adversarial objective (i.e., maximize the hinge loss for SVM [28] or maximize the mean 
square error [MSE] for regression [143]). These optimization-based poisoning attacks have 
been subsequently designed against linear regression [143] and neural networks [215], and 
they require white-box access to the model and training data. In gray-box adversarial set-
tings, the most popular method for generating availability poisoning attacks is transferabil-
ity, in which poisoning samples are generated for a surrogate model and transferred to the 
target model [85, 283]. 

A realistic threat model for supervised learning is that of clean-label poisoning attacks in 
which adversaries can only control the training examples but not their labels. This case 
models scenarios in which the labeling process is external to the training algorithm, as 
in malware classifcation where binary fles can be submitted by attackers to threat intel-
ligence platforms, and labeling is performed using anti-virus signatures or other external 
methods. Clean-label availability attacks have been introduced for neural network clas-
sifers by training a generative model and adding noise to training samples to maximize 
the adversarial objective [105]. A different approach for clean-label poisoning is to use 
gradient alignment and minimally modify the training data [106]. 

Availability poisoning attacks have also been designed for unsupervised learning against 
centroid-based anomaly detection [159] and behavioral clustering for malware [29]. In 
federated learning, an adversary can mount a model poisoning attack to induce availability 
violations in the globally trained model [101, 263, 264]. More details on model poisoning 
attacks are provided in Section 2.3.4. 

Mitigations. Availability poisoning attacks are usually detectable by monitoring the stan-
dard performance metrics of ML models – such as precision, recall, accuracy, F1 scores, 
and area under the curve – as they cause a large degradation in the classifer metrics. Nev-
ertheless, detecting these attacks during the testing or deployment stages of ML is less 
desirable, and existing mitigations aim to proactively prevent these attacks during the train-
ing stage to generate robust ML models. Among the existing mitigations, some generally 
promising techniques include: 

• Training data sanitization: These methods leverage the insight that poisoned sam-
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ples are typically different than regular training samples not controlled by adver-
saries. As such, data sanitization techniques are designed to clean the training set 
and remove the poisoned samples before the machine learning training is performed. 
Nelson et al. [222] propose the Region of Non-Interest (RONI) method, which ex-
amines each sample and excludes it from training if the accuracy of the model de-
creases when the sample is added. Subsequently proposed sanitization methods im-
proved upon this early approach by reducing its computational complexity. Paudice 
et al. [235] introduced a method for label cleaning that was specifcally designed 
for label fipping attacks. Steinhardt et al. [280] propose the use of outlier detection 
methods for identifying poisoned samples. Clustering methods have also been used 
for detecting poisoned samples [165, 288]. In the context of network intrusion de-
tection, computing the variance of predictions made by an ensemble of multiple ML 
models has proven to be an effective data sanitization method [305]. Once sanitized, 
the datasets should be protected by cybersecurity mechanisms for provenance and 
integrity attestation [220]. 

• Robust training: An alternative approach to mitigating availability poisoning at-
tacks is to modify the ML training algorithm and perform robust training instead of 
regular training. The defender can train an ensemble of multiple models and generate 
predictions via model voting [25, 172, 314]. Several papers apply techniques from 
robust optimization, such as using a trimmed loss function [88, 143]. Rosenfeld et 
al. [248] proposed the use of randomized smoothing for adding noise during training 
and obtaining certifcation against label fipping attacks. 

2.3.2. Targeted Poisoning 

In contrast to availability attacks, targeted poisoning attacks induce a change in the ML 
model’s prediction on a small number of targeted samples. If the adversary can control the 
labeling function of the training data, then label fipping is an effective targeted poisoning 
attack. The adversary simply inserts several poisoned samples with the target label, and the 
model will learn the wrong label. Therefore, targeted poisoning attacks are mostly studied 
in the clean-label setting in which the attacker does not have access to the labeling function. 

Several techniques for mounting clean-label targeted attacks have been proposed. Koh and 
Liang [160] showed how infuence functions – a statistical method that determines the most 
infuential training samples for a prediction – can be leveraged for creating poisoned sam-
ples in the fne-tuning setting in which a pre-trained model is fne-tuned on new data. Suciu 
et al. [283] designed StingRay, a targeted poisoning attack that modifes samples in feature 
space and adds poisoned samples to each mini batch of training. An optimization proce-
dure based on feature collision was crafted by Shafahi et al. [258] to generate clean-label 
targeted poisoning for fne-tuning and end-to-end learning. ConvexPolytope [352] and 
BullseyePolytope [2] optimized the poisoning samples against ensemble models, which 
offers better advantages for attack transferability. MetaPoison [133] uses a meta-learning 
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algorithm to optimize the poisoned samples, while Witches’ Brew [113] performs opti-
mization by gradient alignment, resulting in a state-of-the-art targeted poisoning attack. 

All of the above attacks impact a small set of targeted samples that are selected by the 
attacker during training, and they have only been tested for continuous image datasets 
(with the exception of StingRay, which requires adversarial control of a large fraction of the 
training set). Subpopulation poisoning attacks [144] were designed to poison samples from 
an entire subpopulation, defned by matching on a subset of features or creating clusters 
in representation space. Poisoned samples are generated using label fipping (for NLP 
and tabular modalities) or a frst-order optimization method (for continuous data, such as 
images). The attack generalizes to all samples in a subpopulation and requires minimal 
knowledge about the ML model and a small number of poisoned samples (proportional to 
the subpopulation size). 

Targeted poisoning attacks have also been introduced for semi-supervised learning algo-
rithms [42], such as MixMatch [22], FixMatch [275], and Unsupervised Data Augmenta-
tion (UDA) [324] in which the adversary poisons a small fraction of the unlabeled training 
dataset to change the prediction on targeted samples at deployment time. 

Mitigations. Targeted poisoning attacks are notoriously challenging to defend against. 
Jagielski et al. [144] showed an impossibility result for subpopulation poisoning attacks. 
To mitigate some of the risks associated with such attacks, cybersecurity mechanisms 
for dataset provenance and integrity attestation [220] should be used judiciously. Ma et 
al. [192] proposed the use of differential privacy (DP) as a defense (which follows directly 
from the defnition of differential privacy), but it is well known that differentially private 
ML models have lower accuracy than standard models. The trade-off between robustness 
and accuracy needs to be considered in each application. If the application has strong data 
privacy requirements, and differentially private training is used for privacy, then an ad-
ditional beneft is protection against targeted poisoning attacks. However, the robustness 
offered by DP starts to fade once the targeted attack requires multiple poisoning samples 
(as in subpopulation poisoning attacks) because the group privacy bound will not provide 
meaningful guarantees for large poisoned sets. 

2.3.3. Backdoor Poisoning 

In 2017, Gu et al. [124] proposed BadNets, the frst backdoor poisoning attack. They 
observed that image classifers can be poisoned by adding a small patch trigger in a subset 
of images at training time and changing their label to a target class. The classifer learns to 
associate the trigger with the target class, and any image – including the trigger or backdoor 
pattern – will be misclassifed to the target class at testing time. Concurrently, Chen et 
al. [69] introduced backdoor attacks in which the trigger is blended into the training data. 
Follow-up work introduced the concept of clean-label backdoor attacks [302] in which 
the adversary is restricted in preserving the label of the poisoned examples. Clean-label 
attacks typically require more poisoning samples to be effective, but the attack model is 
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more realistic. 

In the last few years, backdoor attacks have become more sophisticated and stealthy, mak-
ing them harder to detect and mitigate. Latent backdoor attacks were designed to survive 
even upon model fne-tuning of the last few layers using clean data [331]. Backdoor Gener-
ating Network (BaN) [253] is a dynamic backdoor attack in which the location of the trigger 
changes in the poisoned samples so that the model learns the trigger in a location-invariant 
manner. Functional triggers, a.k.a. FUNCTIONAL ATTACKS, are embedded throughout the 
image or change according to the input. For instance, Li et al. [176] used steganography 
algorithms to hide the trigger in the training data. Liu et al. [186] introduced a clean-label 
attack that uses natural refection on images as a backdoor trigger. Wenger et al. [320] poi-
soned facial recognition systems by using physical objects as triggers, such as sunglasses 
and earrings. 

Other data modalities. While the majority of backdoor poisoning attacks are designed 
for computer vision applications, this attack vector has been effective in other application 
domains with different data modalities, such as audio, NLP, and cybersecurity settings. 

• Audio: In audio domains, Shi et al. [268] showed how an adversary can inject an 
unnoticeable audio trigger into live speech, which is jointly optimized with the target 
model during training. 

• NLP: In natural language processing, the construction of meaningful poisoning sam-
ples is more challenging as the text data is discrete, and the semantic meaning of 
sentences would ideally be preserved for the attack to remain unnoticeable. Recent 
work has shown that backdoor attacks in NLP domains are becoming feasible. For 
instance, Chen et al. [68] introduced semantic-preserving backdoors at the charac-
ter, word, and sentence level for sentiment analysis and neural machine translation 
applications. Li et al. [175] generated hidden backdoors against transformer mod-
els using generative language models in three NLP tasks: toxic comment detection, 
neural machine translation, and question answering. 

• Cybersecurity: Early poisoning attacks in cybersecurity were designed against worm 
signature generation in 2006 [236] and spam detectors in 2008 [222], well before 
rising interest in adversarial machine learning. More recently, Severi et al. [257] 
showed how AI explainability techniques can be leveraged to generate clean-label 
poisoning attacks with small triggers against malware classifers. They attacked mul-
tiple models (i.e., neural networks, gradient boosting, random forests, and SVMs), 
using three malware datasets: Ember for Windows PE fle classifcation, Contagio 
for PDF fle classifcation, and DREBIN for Android app classifcation. Jigsaw Puz-
zle [329] designed a backdoor poisoning attack for Android malware classifers that 
uses realizable software triggers harvested from benign code. 

Mitigations. The literature on backdoor attack mitigation is vast compared to other poi-
soning attacks. Below we discuss several classes of defenses, including data sanitization, 
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trigger reconstruction, model inspection and sanitization, and also their limitations. 

• Training Data Sanitization: Similar to poisoning availability attacks, training data 
sanitization can be applied to detecting backdoor poisoning attacks. For instance, 
outlier detection in the latent feature space [129, 238, 300] has been effective for con-
volutional neural networks used for computer vision applications. Activation Clus-
tering [62] performs clustering of training data in representation space with the goal 
of isolating the backdoored samples in a separate cluster. Data sanitization achieves 
better results when the poisoning attack controls a relatively large fraction of training 
data, but is not that effective against stealthy poisoning attacks. Overall, this leads to 
a trade-off between attack success and detectability of malicious samples. 

• Trigger reconstruction: This class of mitigations aims to reconstruct the backdoor 
trigger, assuming that it is at a fxed location in the poisoned training samples. Neu-
ralCleanse by Wang et al. [310] developed the frst trigger reconstruction approach 
and used optimization to determine the most likely backdoor pattern that reliably 
misclassifes the test samples. The initial technique has been improved to reduce 
performance time on several classes and simultaneously support multiple triggers in-
serted into the model [131, 322]. A representative system in this class is Artifcial 
Brain Simulation (ABS) by Liu et al. [184], which stimulates multiple neurons and 
measures the activations to reconstruct the trigger patterns. Khaddaj et al. [156] de-
veloped a new primitive for detecting backdoor attacks and a corresponding effective 
detection algorithm with theoretical guarantees. 

• Model inspection and sanitization: Model inspection analyzes the trained ML 
model before its deployment to determine whether it was poisoned. An early work in 
this space is NeuronInspect [134], which is based on explainability methods to deter-
mine different features between clean and backdoored models that are subsequently 
used for outlier detection. DeepInspect [64] uses a conditional generative model to 
learn the probability distribution of trigger patterns and performs model patching 
to remove the trigger. Xu et al. [327] proposed the Meta Neural Trojan Detection 
(MNTD) framework, which trains a meta-classifer to predict whether a given ML 
model is backdoored (or Trojaned, in the authors’ terminology). This technique is 
general and can be applied to multiple data modalities, such as vision, speech, tabular 
data, and NLP. Once a backdoor is detected, model sanitization can be performed via 
pruning [321], retraining [340], or fne-tuning [180] to restore the model’s accuracy. 

Most of these mitigations have been designed against computer vision classifers based 
on convolutional neural networks using backdoors with fxed trigger patterns. Severi et 
al. [257] showed that some of the data sanitization techniques (e.g., spectral signatures [300] 
and Activation Clustering [62]) are ineffective against clean-label backdoor poisoning on 
malware classifers. Most recent semantic and functional backdoor triggers would also 
pose challenges to approaches based on trigger reconstruction or model inspection, which 
generally assume fxed backdoor patterns. The limitation of using meta classifers for pre-
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dicting a Trojaned model [327] is the high computational complexity of the training stage 
of the meta classifer, which requires training thousands of SHADOW MODELS. Additional 
research is required to design strong backdoor mitigation strategies that can protect ML 
models against this important attack vector without suffering from these limitations. 

In cybersecurity, Rubinstein et al. [249] proposed a principal component analysis (PCA)-
based approach to mitigate poisoning attacks against PCA subspace anomaly detection 
method in backbone networks. It maximized Median Absolute Deviation (MAD) instead 
of variance to compute principal components, and used a threshold value based on Laplace 
distribution instead of Gaussian. Madani and Vlajic [193] built an autoencoder-based in-
trusion detection system, assuming malicious poisoning attack instances were under 2%. 

A recent paper [156] provides a different perspective on backdoor mitigation, by showing 
that backdoors are indistinguishable from naturally occurring features in the data, if no 
additional assumptions are made about the attack. However, assuming that the backdoor 
creates the strongest feature in the data, the paper proposes an optimization technique to 
identify and remove the training samples corresponding to the backdoor. 

To complement existing mitigations that are not always resilient in face of evolving attacks, 
poison forensics [259] is a technique for root cause analysis that identifes the malicious 
training samples. Poison forensics adds another layer of defense in an ML system: Once a 
poisoning attack is detected at deployment time, poison forensics can trace back the source 
of attack in the training set. 

2.3.4. Model Poisoning 

Model poisoning attacks attempt to directly modify the trained ML model to inject mali-
cious functionality into the model. In centralized learning, TrojNN [185] reverse engineers 
the trigger from a trained neural network and then retrains the model by embedding the 
trigger in external data to poison it. Most model poisoning attacks have been designed in 
the federated learning setting in which clients send local model updates to a server that 
aggregates them into a global model. Compromised clients can send malicious updates to 
poison the global model. Model poisoning attacks can cause both availability and integrity 
violation in federated models: 

• Poisoning availability attacks that degrade the global model’s accuracy have been 
effective, but they usually require a large percentage of clients to be under the control 
of the adversary [101, 263]. 

• Targeted model poisoning attacks induce integrity violations on a small set of sam-
ples at testing time. They can be mounted by a model replacement or model boosting 
attack in which the compromised client replaces the local model update according to 
the targeted objective [13, 23, 285]. 

• Backdoor model poisoning attacks introduce a trigger via malicious client updates 
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to induce the misclassifcation of all samples with the trigger at testing time [13, 23, 
285, 312]. Most of these backdoors are forgotten if the compromised clients do not 
regularly participate in training, but the backdoor becomes more durable if injected 
in the lowest utilized model parameters [349]. 

Model poisoning attacks are also possible in supply-chain scenarios where models or com-
ponents of the model provided by suppliers are poisoned with malicious code. A recent 
supply-chain attack, Dropout Attack [336], shows how an adversary who manipulates the 
randomness used in neural network training (in particular in dropout regularization), might 
poison the model to decrease accuracy, precision, or recall on a set of targeted classes. 

Mitigations. To defend federated learning from model poisoning attacks, a variety of 
Byzantine-resilient aggregation rules have been designed and evaluated. Most of them 
attempt to identify and exclude the malicious updates when performing the aggregation at 
the server [3, 31, 40, 125, 203–205, 284, 334]. However, motivated adversaries can bypass 
these defenses by adding constraints in the attack generation optimization problem [13, 
101, 263]. Gradient clipping and differential privacy have the potential to mitigate model 
poisoning attacks to some extent [13, 225, 285], but they usually decrease accuracy and do 
not provide complete mitigation. 

For specifc model poisoning vulnerabilities, such as backdoor attacks, there are some tech-
niques for model inspection and sanitization, as discussed in Section 2.3.3. However, miti-
gating supply-chain attacks in which adversaries might control the source code of the train-
ing algorithm or the ML hyperparameters, remains challenging. Program verifcation tech-
niques used in other domains (such as cryptographic protocol verifcation [241]) might be 
adapted to this setting, but ML algorithms have intrinsic randomness and non-deterministic 
behavior, which enhances the diffculty of verifcation. 

Designing ML models robust in face of supply-chain vulnerabilities is a critical 
open problem that needs to be addressed by the community. 
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2.4. Privacy Attacks 

Although privacy issues have long been a concern, privacy attacks against aggregate infor-
mation collected from user records started with the seminal work of Dinur and Nissim [89] 
on DATA RECONSTRUCTION attacks. The goal of reconstruction attacks is to reverse engi-
neer private information about an individual user record or sensitive critical infrastructure 
data from access to aggregate information. More recently, data reconstruction attacks have 
been designed for binary and multi-class neural network classifers [39, 128]. Another 
privacy attack is that of MEMBERSHIP-INFERENCE ATTACKS in which an adversary can 
determine whether a particular record was included in the dataset used for computing sta-
tistical information or training a machine learning model. Membership inference attacks 
were frst introduced by Homer et al. [130] for genomic data. Recent literature focuses on 
membership attacks against ML models in mostly black-box settings in which adversaries 
have query access to a trained ML model [43, 269, 333]. A different privacy violation 
for MLaaS is model extraction attacks, which are designed to extract information about an 
ML model such as its architecture or model parameters [47, 58, 141, 298]. Property infer-
ence attacks [9, 61, 110, 195, 286, 346] aim to extract global information about a training 
dataset, such as the fraction of training examples with a certain sensitive attribute. 

This section discusses privacy attacks related to data reconstruction, the memorization of 
training data, membership inference, model extraction, and property inference, as well as 
mitigations for some of these attacks and open problems in designing general mitigation 
strategies. 

2.4.1. Data Reconstruction 

Data reconstruction attacks are the most concerning privacy attacks as they have the ability 
to recover an individual’s data from released aggregate information. Dinur and Nissim [89] 
were the frst to introduce reconstruction attacks that recover user data from linear statis-
tics. Their original attack requires an exponential number of queries for reconstruction, 
but subsequent work has shown how to perform reconstruction with a polynomial number 
of queries [96]. A survey of privacy attacks, including reconstruction attacks, is given by 
Dwork et al. [94]. More recently, the U.S. Census Bureau performed a large-scale study 
on the risk of data reconstruction attacks on census data [111], which motivated the use of 
differential privacy in the decennial release of the U.S. Census in 2020. 

In the context of ML classifers, Fredrickson et al. [107] introduced model inversion attacks 
that reconstruct class representatives from the training data of an ML model. While model 
inversion generates semantically similar images with those in the training set, it cannot 
directly reconstruct the training data of the model. Recently, Balle et al. [15] trained a re-
constructor network that can recover a data sample from a neural network model, assuming 
a powerful adversary with information about all other training samples. Haim et al. [128] 
showed how the training data of a binary neural network classifer can be reconstructed 
from access to the model parameters by leveraging theoretical insights about implicit bias 
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in neural networks. This work has been recently extended to reconstruct training samples 
of multi-class multi-layer perceptron classifers [39]. In another relevant privacy attack, 
attribute inference, the attacker extracts a sensitive attribute of the training set, assuming 
partial knowledge about other features in the training data [147]. 

The ability to reconstruct training samples is partially explained by the tendency of neural 
networks to memorize their training data. Zhang et al. [341] discussed how neural networks 
can memorize randomly selected datasets. Feldman [103] showed that the memorization of 
training labels is necessary to achieving almost optimal generalization error in ML. Brown 
et al. [36] constructed two learning tasks based on next-symbol prediction and cluster la-
beling in which memorization is required for high-accuracy learning. Feldman and Zhang 
empirically evaluated the beneft of memorization for generalization using an infuence es-
timation method [104]. We will discuss data reconstruction attacks and their connection to 
memorization for generative AI in Section 3.3.1. 

2.4.2. Membership Inference 

Membership inference attacks also expose private information about an individual, like 
reconstruction or memorization attacks, and are still of great concern when releasing ag-
gregate information or ML models trained on user data. In certain situations, determining 
that an individual is part of the training set already has privacy implications, such as in a 
medical study of patients with a rare disease. Moreover, membership inference can be used 
as a building block for mounting data extraction attacks [48, 51]. 

In membership inference, the attacker’s goal is to determine whether a particular record or 
data sample was part of the training dataset used for the statistical or ML algorithm. These 
attacks were introduced by Homer et al. [130] for statistical computations on genomic 
data under the name tracing attacks. Robust tracing attacks have been analyzed when an 
adversary gains access to noisy statistical information about the dataset [95]. In the last fve 
years, the literature has used the terminology membership inference for attacks against ML 
models. Most of the attacks in the literature are performed against deep neural networks 
used for classifcation [43, 74, 171, 269, 332, 333]. Similar to other attacks in adversarial 
machine learning, membership inference can be performed in white-box settings [171, 218, 
250] in which attackers have knowledge of the model’s architecture and parameters, but 
most of the attacks have been developed for black-box settings in which the adversary 
generates queries to the trained ML model [43, 74, 269, 332, 333]. 

The attacker’s success in membership inference has been formally defned using a cryp-
tographically inspired privacy game in which the attacker interacts with a challenger and 
needs to determine whether a target sample was used in training the queried ML model [146, 
252, 333]. In terms of techniques for mounting membership inference attacks, the loss-
based attack by Yeom et al. [333] is one of the most effcient and widely used method. 
Using the knowledge that the ML model minimizes the loss on training samples, the attack 
determines that a target sample is part of training if its loss is lower than a fxed threshold 
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(selected as the average loss of training examples). Sablayrolles et al. [250] refned the loss-
based attack by scaling the loss using a per-example threshold. Another popular technique 
introduced by Shokri et al. [269] is that of shadow models, which trains a meta-classifer 
on examples in and out of the training set obtained from training thousands of shadow ML 
models on the same task as the original model. This technique is generally expensive, and 
while it might improve upon the simple loss-based attack, its computational cost is high and 
requires access to many samples from the distribution to train the shadow models. These 
two techniques are at opposite ends of the spectrum in terms of their complexity, but they 
perform similarly in terms of precision at low false positive rates [43]. 

An intermediary method that is obtains good performance in terms of the AREA UNDER 

THE CURVE (AUC) metric is the LiRA attack by Carlini et al. [43], which trains a smaller 
number of shadow models to learn the distribution of model logits on examples in and out 
of the training set. Using the assumption that the model logit distributions are Gaussian, 
LiRA performs a hypothesis test for membership inference by estimating the mean and 
standard deviation of the Gaussian distributions. Ye et al. [332] designed a similar attack 
that performs a one-sided hypothesis test, which does not make any assumptions on the 
loss distribution but achieves slightly lower performance than LiRA. Recently, Lopez et 
al. [187] propose a more effcient membership inference attack that requires training a 
single model to predict the quantiles of the confdence score distribution of the model under 
attack. Membership inference attacks have also been designed under the stricter label-only 
threat model in which the adversary only has access to the predicted labels of the queried 
samples [74]. 

There are several public privacy libraries that offer implementations of membership infer-
ence attacks: the TensorFlow Privacy library [278] and the ML Privacy Meter [214]. 

2.4.3. Model Extraction 

In MLaaS scenarios, cloud providers typically train large ML models using proprietary data 
and would like to keep the model architecture and parameters confdential. The goal of an 
attacker performing a model extraction attack is to extract information about the model 
architecture and parameters by submitting queries to the ML model trained by an MLaaS 
provider. The frst model stealing attacks were shown by Tramer at al. [298] on several 
online ML services for different ML models, including logistic regression, decision trees, 
and neural networks. However, Jagielski et al. [141] have shown the exact extraction of 
ML models to be impossible. Instead, a functionally equivalent model can be reconstructed 
that is different than the original model but achieves similar performance at the prediction 
task. Jagielski et al. [141] have shown that even the weaker task of extracting functionally 
equivalent models is NP-hard. 

Several techniques for mounting model extraction attacks have been introduced in the lit-
erature. The frst method is that of direct extraction based on the mathematical formulation 
of the operations performed in deep neural networks, which allows the adversary to com-

31 



NIST AI 100-2e2023 
January 2024 

pute model weights algebraically [47, 141, 298]. A second technique explored in a series 
of papers is to use learning methods for extraction. For instance, active learning [58] can 
guide the queries to the ML model for more effcient extraction of model weights, and rein-
forcement learning can train an adaptive strategy that reduces the number of queries [231]. 
A third technique is the use of SIDE CHANNEL information for model extraction. Batina et 
al. [18] used electromagnetic side channels to recover simple neural network models, while 
Rakin et al. [245] showed how ROWHAMMER ATTACKS can be used for model extraction 
of more complex convolutional neural network architectures. 

Note that model extraction is often not an end goal but a step towards other attacks. As the 
model weights and architecture become known, attackers can launch more powerful attacks 
typical for the white-box or gray-box settings. Therefore, preventing model extraction can 
mitigate downstream attacks that depend on the attacker having knowledge of the model 
architecture and weights. 

2.4.4. Property Inference 

In property inference attacks, the attacker tries to learn global information about the training 
data distribution by interacting with an ML model. For instance, an attacker can determine 
the fraction of the training set with a certain sensitive attribute, such as demographic infor-
mation, that might reveal potentially confdential information about the training set that is 
not intended to be released. 

Property inference attacks were introduced by Ateniese et al. [9] and formalized as a distin-
guishing game between the attacker and the challenger training two models with different 
fractions of the sensitive data [286]. Property inference attacks were designed in white-box 
settings in which the attacker has access to the full ML model [9, 110, 286] and black-box 
settings in which the attacker issues queries to the model and learns either the predicted 
labels [195] or the class probabilities [61, 346]. These attacks have been demonstrated for 
HIDDEN MARKOV MODELS, SUPPORT VECTOR MACHINES [9], FEED-FORWARD NEU-
RAL NETWORKS [110, 195, 346], CONVOLUTIONAL NEURAL NETWORKS [286], FED-
ERATED LEARNING MODELS [200], GENERATIVE ADVERSARIAL NETWORKS [351], and 
GRAPH NEURAL NETWORKS [350]. Mahloujifar et al. [195] and Chaudhauri et al. [61] 
showed that poisoning the property of interest can help design a more effective distin-
guishing test for property inference. Moreover, Chaudhauri et al. [61] designed an effcient 
property size estimation attack that recovers the exact fraction of the population of interest. 

2.4.5. Mitigations 

The discovery of reconstruction attacks against aggregate information motivated the rig-
orous defnition of differential privacy (DP) [92, 93]. Differential privacy is an extremely 
strong defnition of privacy that guarantees a bound on how much an attacker with access 
to the algorithm output can learn about each individual record in the dataset. The original 
pure defnition of DP has a privacy parameter ε (i.e., privacy budget), which bounds the 
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probability that the attacker with access to the algorithm’s output can determine whether 
a particular record was included in the dataset. DP has been extended to the notions of 
approximate DP, which includes a second parameter δ that is interpreted as the probability 
of information accidentally being leaked in addition to ε and Rènyi DP [208]. 

DP has been widely adopted due to several useful properties: group privacy (i.e., the exten-
sion of the defnition to two datasets differing in k records), post-processing (i.e., privacy 
is preserved even after processing the output), and composition (i.e., privacy is composed 
if multiple computations that are performed on the dataset). DP mechanisms for statisti-
cal computations include the Gaussian mechanism [93], the Laplace mechanism [93], and 
the Exponential mechanism [198]. The most widely used DP algorithm for training ML 
models is DP-SGD [1], with recent improvements such as DP-FTRL [151] and DP matrix 
factorization [86]. 

By defnition, DP provides mitigation against data reconstruction and membership infer-
ence attacks. In fact, the defnition of DP immediately implies an upper bound on the 
success of an adversary in mounting a membership inference attack. Tight bounds on the 
success of membership inference have been derived by Thudi et al. [291]. However, DP 
does not provide guarantees against model extraction attacks, as this method is designed 
to protect the training data, not the model. Several papers reported negative results on us-
ing differential privacy to protect against property inference attacks which aim to extract 
properties of subpopulations in the training set [61, 195]. 

One of the main challenges of using DP in practice is setting up the privacy parameters to 
achieve a trade-off between the level of privacy and the achieved utility, which is typically 
measured in terms of accuracy for ML models. Analysis of privacy-preserving algorithms, 
such as DP-SGD, is often worst case and not tight, and selecting privacy parameters based 
purely on theoretical analysis results in utility loss. Therefore, large privacy parameters are 
often used in practice (e.g., the 2020 U.S. Census release used ε = 19.61), and the exact 
privacy obtained in practice is diffcult to estimate. Recently, a promising line of work is 
that of privacy auditing introduced by Jagielski et al. [145] with the goal of empirically 
measuring the actual privacy guarantees of an algorithm and determining privacy lower 
bounds by mounting privacy attacks. Auditing can be performed with membership infer-
ence attacks [146, 338], but poisoning attacks are much more effective and result in better 
estimates of the privacy leakage [145, 219]. Recent advances in privacy auditing include 
tighter bounds for the Gaussian mechanism [217], as well as rigorous statistical methods 
that allow the use of multiple canaries to reduce the sample complexity of auditing [240]. 
Additionally, two effcient methods for privacy auditing with training a single model have 
been proposed: Steinke et al. [281] use multiple random data canaries without incurring 
the cost of group privacy; and Andrew et al. [4] use multiple random client canaries and a 
cosine similarity test statistics to audit user-level private federated learning. 
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Differential privacy provides a rigorous notion of privacy, protecting against mem-
bership inference and data reconstruction attacks. To achieve the best balance 
between privacy and utility, empirical privacy auditing is recommended to com-
plement the theoretical analysis of private training algorithms. 

Other mitigation techniques against model extraction, such as limiting user queries to the 
model, detecting suspicious queries to the model, or creating more robust architectures to 
prevent side channel attacks exist in the literature. However, these techniques can be cir-
cumvented by motivated and well-resourced attackers and should be used with caution. 
We refer the reader to available practice guides for securing machine learning deploy-
ments [57, 226]. A completely different approach to potentially mitigating privacy leakage 
of a user’s data is to perform MACHINE UNLEARNING, a technique that enables a user to 
request removal of their data from a trained ML model. Existing techniques for machine 
unlearning are either exact (e.g., retraining the model from scratch or from a certain check-
point) [34, 41] or approximate (updating the model parameters to remove the infuence of 
the unlearned records) [115, 139, 221]. 
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3. Generative AI Taxonomy 

Generative AI is a branch of AI that develops generative models with the capability of 
learning to generate content such as images, text, and other media with similar proper-
ties as their training data. Generative AI includes several different types of AI technolo-
gies with distinct origins, modeling approaches and related properties: GENERATIVE AD-
VERSARIAL NETWORKS, GENERATIVE PRE-TRAINED TRANSFORMER, and DIFFUSION 

MODEL. Recently, multi-modal AI systems have started to combine two or more technolo-
gies to enable multi-modal content generation capabilities [289]. 

3.1. Attack Classifcation 

While many attack types in the PredAI taxonomy apply to GenAI (e.g., model poisoning, 
data poisoning, evasion, model extraction, etc.), a substantial body of recent work on the 
security of GenAI merits particular focus on novel security violations. 

Figure 2 introduces a taxonomy of attacks in adversarial machine learning for GenAI sys-
tems. Similar to the PredAI taxonomy in Figure 1, this taxonomy is frst categorized by 
the attacker’s objectives, which include availability breakdowns, integrity violations, and 
privacy compromise. For GenAI systems, violations of abuse are also especially relevant. 
The capabilities that an adversary must leverage to achieve their objectives are shown in 
the outer layer of the objective circles. Attack classes are shown as callouts connected to 
the capabilities required to mount each attack. Multiple attack classes that require the same 
capabilities to reach the same objective are shown in a single callout. 
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Figure 2. Taxonomy of attacks on Generative AI systems 

An attack can be further categorized by the learning stage to which it applies and, sub-
sequently, by the attacker’s knowledge and access. These are reviewed in the following 
sections. Where possible, the discussion broadly applies to GenAI with some specifc 
areas that apply to LLMs (e.g., RETRIEVAL AUGMENTED GENERATION [RAG], which 
dominates many of the deployment stage attacks described below). 

3.1.1. GenAI Stages of Learning 

Due to the size of the models and training sets, predominant patterns in GenAI model 
development have departed from historical processes in which the entire process of data 
collection, labeling, model training, model validation, and model deployment are accom-
plished in a single pipeline by a single organization. Instead, foundation models are created 
during a pre-training stage that makes heavy use of unsupervised learning. The foundation 
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model encodes patterns (e.g., in text, images, etc.) that are useful for downstream tasks. 
The foundation models themselves are then the basis for creating task-specifc applications 
via fne-tuning. In many cases, application developers begin with a foundation model devel-
oped by a third party and fne-tune it for their specifc application. Attacks that correspond 
to the stages of GenAI application development are described in more detail below. 

Training-time attacks. The TRAINING STAGE for GenAI often consists of two distinct 
stages: foundation model PRE-TRAINING and model FINE-TUNING. This pattern exists 
for generative image models, text models, audio models, and multimodal models, among 
others. Since foundation models are most effective when trained on large datasets, it has 
become common to scrape data from a wide range of public sources. This makes founda-
tion models especially susceptible to POISONING ATTACKS, in which an adversary controls 
a subset of the training data. Researchers have demonstrated that an attacker can induce 
targeted failures in models by arbitrarily poisoning only 0.001% of uncurated web-scale 
training datasets [42]. Executing web-scale dataset poisoning can be as simple as purchas-
ing a small fraction of expired domains from known data sources [46]. Model fne-tuning 
may also be susceptible to poisoning attacks under the more common attacker knowledge 
and capabilities outlined in Section 2.1. 

Inference-time attacks. The DEPLOYMENT STAGE for GenAI also differs from PredAI. 
How a model is used during deployment is application-specifc. However, underlying many 
of the security vulnerabilities in LLMs and RAG applications is the fact that data and 
instructions are not provided in separate channels to the LLM, which allows attackers to 
use data channels to conduct inference-time attacks that are similar to decades-old SQL 
injection. Acknowledging a particular emphasis on LLMs, specifcally for question-and-
answering and text-summarization tasks, many of the attacks in this stage are due to the 
following practices that are common to applications of text-based generative models: 

1. Alignment via model instructions: LLM behaviors are aligned at inference time 
through instructions that are pre-pended to the model’s input and context. These in-
structions comprise a natural language description of the model’s application-specifc 
use case (e.g., “You are a helpful fnancial assistant that responds gracefully and 
concisely....”). A JAILBREAK overrides this explicit alignment and other safeguards. 
Since these prompts have been carefully crafted through prompt engineering, a PROMPT 

EXTRACTION attack may attempt to steal these system instructions. These attacks are 
also relevant to multimodal and text-to-image models. 

2. Contextual few-shot learning: Since LLMs are autoregressive predictors, their per-
formance in applications can be improved by providing examples of the inputs and 
outputs expected for the application in the model’s context that is prepended to the 
user query before evaluation by the LLM. This allows the model to more naturally 
complete the autoregressive tasks [37]. 

3. Runtime data ingestion from third-party sources: As is typical in RETRIEVAL 

AUGMENTED GENERATION applications, context is crafted at runtime in a query-
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dependent way and populated from external data sources (e.g., documents, web 
pages, etc.) that are to be summarized as part of the application. INDIRECT PROMPT 

INJECTION attacks depend on the attacker’s ability to modify the context using out-
side sources of information that are ingested by the system, even if not directly by 
the user. 

4. Output handling: The output of an LLM may be used to populate an element on a 
web-page or to construct a command. 

5. Agents: Plugins, functions, agents, and other concepts all rely on processing the 
output of the LLM (item 4) to perform some additional task and provide additional 
context to its input (item 3). In some cases, the LLM selects from among an ap-
propriate set of these external dependencies based on a confguration provided in 
natural language and invokes that code with templates flled out by the LLM using 
information in the context. 

Figure 3. Retrieval-augmented generation relies on system instructions, context, and 
data from third-party sources, often through a vector database, to produce relevant 
responses for users 
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3.1.2. Attacker Goals and Objectives 

As with PredAI, attacker objectives can be classifed broadly along the dimensions of avail-
ability, integrity, and privacy, as described in Section 2.1.2. However, there is a fourth 
attacker objective of abuse that is specifc to GenAI: 

Abuse violations. Abuse violations occur when an attacker repurposes a GenAI system’s 
intended use to achieve their own objectives. Attackers can use the capabilities of GenAI 
models to promote hate speech or discrimination, generate media that incites violence 
against specifc groups, or scale offensive cybersecurity operations by creating images, 
text, or malicious code that enable a cyber attack. 
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3.1.3. Attacker Capabilities 

Novel attacker capabilities that enable GenAI attacker objectives include: 

• TRAINING DATA CONTROL: The attacker might take control of a subset of the train-
ing data by inserting or modifying training samples. This capability is used in data 
poisoning attacks. 

• QUERY ACCESS: Many GenAI models and their applications (e.g., RETRIEVAL 

AUGMENTED GENERATION) are deployed as cloud-hosted services with access con-
trolled through API keys. In this case, the attacker can submit queries to the model 
to receive an output. In GenAI, the purpose of submitting attacker-tuned inputs is 
to elicit a specifc behavior from the model. This capability is used for PROMPT 

INJECTION, PROMPT EXTRACTION, and model stealing attacks. 

• SOURCE CODE CONTROL: The attacker might modify the source code of the ML al-
gorithm, such as the random number generator or any third-party libraries, which are 
often open source. The advent of open-source model repositories, like HuggingFace, 
allows attackers to create malicious models or wrap benign models with malicious 
code embedded in the deserialization format. 

• RESOURCE CONTROL: The attacker might modify resources (e.g., documents, web 
pages) that will be ingested by the GenAI model at runtime. This capability is used 
for INDIRECT PROMPT INJECTION attacks. 

3.2. AI Supply Chain Attacks and Mitigations 

Studies on real-world security vulnerabilities against ML show that security is best ad-
dressed comprehensively, including software, data and model supply chains, and network 
and storage systems [7, 292]. Since AI is software, it inherits many of the vulnerabilities 
of the traditional software supply chain. However, many practical GenAI tasks begin with 
open-source models or data that have typically been out of scope for traditional cybersecu-
rity. For example, ML repositories with the largest software vulnerability exposure include 
TensorFlow and OpenCV [292]. 

3.2.1. Deserialization Vulnerability 

Many ML projects begin by downloading an open-source GenAI model for use in a down-
stream application. Most often, these models exist as artifacts persisted in pickle, pytorch, 
joblib, numpy, or tensorflow formats. Each of these formats allow for serialiazation 
persistence mechanisms that, in turn, allow for arbitrary code execution (ACE) when de-
serialized. ACE via deserialization is typically categorized as a critical vulnerability (e.g., 
CVE-2022-29216 for tensorfow, or CVE-2019-6446 for pickle in neural network tools) 
[292]. 
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3.2.2. Poisoning Attacks 

The performance of GenAI text-to-image and language models scales with model size and 
dataset size and quality. For example, scaling laws indicate that training a 500 billion 
parameter models would require 11 trillion tokens of training data [46]. Thus, it has become 
common for GenAI foundation model developers to scrape data from a wider range of 
uncurated sources. Dataset publishers only provide a list of URLs to constitute the dataset, 
and the domains serving those URLs can expire or be purchased, and the resources can 
be replaced by an attacker. As with PredAI models (discussed in Section 2.1), this could 
lead to TARGETED POISONING ATTACKS, BACKDOOR POISONING ATTACKS, and MODEL 

POISONING. A simple mitigation is for datasets to list both the URL and a cryptographic 
hash of the content that can be verifed by the downloader. However, this technique may 
not scale up well for some of the large distributed datasets on the Internet - see Section 4.1 
for further information. 

3.2.3. Mitigations 

AI supply chain attacks can be mitigated by supply chain assurance practices. For model 
fle dependencies, this includes regular vulnerability scanning of the model artifacts used in 
the ML pipeline [292], and by adopting safe model persistence formats like safetensors. 
For webscale data dependencies, this includes verifying web downloads by publishing (by 
the provider) cryptographic hashes and verifying (by the downloader) training data as a ba-
sic integrity check to ensure that domain hijacking has not injected new sources of data into 
the training dataset [46]. Another approach to mitigating risks associated with malicious 
image editing by large diffusion models is immunizing images to make them resistant to 
manipulation by these models [254]. However, this approach requires an additional policy 
component to make it effective and practical. 

3.3. Direct Prompt Injection Attacks and Mitigations 

A direct prompt injection occurs when a user injects text that is intended to alter the behav-
ior of the LLM. 

Attacker goals. An attacker may have a variety of goals with a prompt injection [182, 183, 
265], such as: 

• Abuse. Attackers use direct prompt injections to bypass safeguards in order to cre-
ate misinformation, propaganda, hurtful content, sexual content, malware (code), or 
phishing content. Often, the list of prohibited scenarios is explicitly safeguarded by 
the model creator [5, 121, 230]. A direct prompt injection for the purpose of model 
abuse is also called a JAILBREAK. 

• Invade privacy. Attackers may wish to extract the system prompt or reveal private 
information provided to the model in the context but not intended for unfltered ac-
cess by the user. This is discussed further in Section 3.3.1. 
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Attacker techniques. Attacker techniques for launching direct prompt injection attacks 
are numerous but tend to fall into several broad categories [319]: 

• Gradient-based attacks are white-box optimization-based methods for designing 
jailbreaks that are very similar to the PredAI attacks discussed in Section 2.2.1. A 
gradient-based distributional attack uses an approximation to make the adversarial 
loss for generative transformer models differentiable, which aims to minimize lex-
ical changes by enforcing perceptibility and fuency via BERTScore and perplexity 
[127]. HotFlip encodes modifcations of text into a binary vector and gradient steps 
to minimize adversarial loss [97]. Originally designed to create adversarial examples 
for PredAI language classifers (e.g., sentiment analysis), subsequent works have 
leveraged HotFlip for GenAI using the following trick: since these autoregressive 
tokens generate a single token at a time, optimizing the frst generated token to pro-
duce an affrmative response is often suffcient to prime the autoregressive generative 
process to complete a fully affrmative utterance [49]. Universal adversarial triggers 
are a special class of these gradient-based attacks against generative models that seek 
to fnd input-agnostic prefxes (or suffxes) that, when included, produce the desired 
affrmative response regardless of the remainder of the input [308, 354]. That these 
universal triggers transfer to other models makes open-source models — for which 
there is ready white-box access — feasible attack vectors for transferability attacks 
to closed systems where only API access is available [354]. 

• Manual methods for jailbreaking an LLM generally fall into two categories: com-
peting objectives and mismatched generalization [316]. These methods often exploit 
the model’s susceptibility to certain linguistic manipulations and extend beyond con-
ventional adversarial inputs. In the category of competing objectives, additional in-
structions are provided that compete with the instructions originally provided by the 
author. 

1. Prefx injection: This method involves prompting the model to commence re-
sponses with an affrmative confrmation. By conditioning the model to begin 
its output in a predetermined manner, adversaries attempt to infuence its subse-
quent language generation toward specifc, predetermined patterns or behaviors. 

2. Refusal suppression: Adversaries provide explicit instructions to the model, 
compelling it to avoid generating refusals or denials in its output. By limiting 
or prohibiting the generation of negative responses, this tactic aims to ensure the 
model’s compliance with the provided instructions, potentially compromising 
safety measures. 

3. Style injection: In this approach, adversaries instruct the model not to use long 
words or adopt a particular style. By constraining the model’s language to sim-
plistic or non-professional tones, it aims to limit the sophistication or accuracy 
of the model’s responses, thereby potentially compromising its overall perfor-
mance. 
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4. Role-play: Utilizing role-play strategies, such as “Do Anything Now” (DAN) 
or “Always Intelligent and Machiavellian” (AIM), adversaries guide the model 
to adopt specifc personas or behavioral patterns that confict with the original 
intent. This manipulation aims to exploit the model’s adaptability to varied roles 
or characteristics, potentially compromising its adherence to safety protocols. 

Techniques in the mismatched generalization category diverge signifcantly from any 
safety training or guardrails, positioning inputs to be out of distribution from the 
model’s standard training data. Approaches include: 

1. Special encoding: Adversarial inputs often employ encoding techniques like 
base64 encoding. This method alters the representation of input data and ren-
ders it unrecognizable to standard recognition algorithms. By encoding infor-
mation, adversaries aim to deceive the model’s understanding of the input and 
bypass its safety mechanisms. 

2. Character transformation: Techniques like ROT13 cipher, symbol replacement 
(e.g., l33tspeak), and Morse code manipulate the characters of the input text. 
These transformations aim to obscure the original meaning of the text, poten-
tially confusing the model’s interpretation and enabling adversarial inputs to 
evade detection. 

3. Word transformation: Strategies that aim to alter the linguistic structure may 
include Pig Latin, synonym swapping (e.g., using “pilfer” for “steal”), and pay-
load splitting (or “token smuggling”) to break down sensitive words into sub-
strings. These manipulations intend to deceive the model’s safeguards in a way 
that is still comprehended by the LLM. 

4. Prompt-level obfuscation: Adversaries employ methods like translation to other 
languages to make the model obfuscate or summarize content in a manner that 
it may not fully comprehend. These obfuscations introduce ambiguity or al-
tered linguistic contexts and create input scenarios in which the model’s safety 
mechanisms are less effective due to a lack of clarity or misinterpretation. 

• Automated model-based red teaming employs three models: an attacker model, a 
target model, and a judge [60, 199, 237]. When the attacker has access to a high 
quality classifer to judge whether model output is harmful, it may be used as a re-
ward function to train a generative model to generate jailbreaks of another generative 
model. Only query access is required for each of the models, and no human inter-
vention is required to update or refne a candidate jailbreak. Empirically, these al-
gorithms may be orders of magnitude more query-effcient than existing algorithms, 
requiring only dozens of queries per successful jailbreak. The prompts have also 
been shown to be transferable from the target model to other closed-source LLMs 
[60]. 
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3.3.1. Data Extraction 

GenAI models are trained on data that may include proprietary or sensitive information. 
GenAI applications may also be instrumented with carefully crafted prompts or — as with 
RAG — be supplied with sensitive information in their context for summarization or other 
task completion. Attacker techniques for extracting this information are the subject of 
ongoing research for both LLMs [174, 348] and text-to-image models [266]. 

Leaking sensitive information. Carlini et al. [48] were the frst to practically demonstrate 
data extraction attacks in generative language models. By inserting synthetic canaries in 
the training data, they developed a methodology for extracting the canaries and introduced 
a metric called exposure to measure memorization. Subsequent work demonstrated the risk 
of data extraction in large language models based on transformers, such as GPT-2 [51], by 
prompting the model with different prefxes and mounting a membership inference attack 
to determine which generated content was part of the training set. Since these decoder 
stack transformers are autoregressive models, a verbatim textual prefx about personal in-
formation can result in the model completing the text input with sensitive information that 
includes email addresses, phone numbers, and locations [191]. This behavior of verbatim 
memorization of sensitive information in GenAI language models has also been observed 
in more recent transformer models with the additional characterization of extraction meth-
ods [132]. Unlike PredAI models, in which carefully crafted tools like Text Revealer are 
created to reconstruct text from transformer-based text classifers [343], GenAI models 
can simply be asked to repeat private information that exists in the context as part of the 
conversation. Results show that information like email addresses can be revealed at rates 
exceeding 8%. However, their responses may wrongly assign the owner of the informa-
tion. In general, extraction attacks are more successful when the model is seeded with 
more specifc and complete information — the more the attacker knows, the more they 
can extract. Intuitively, larger models with more capacity are more susceptible to exact 
reconstruction [45]. 

Prompt and context stealing. Prompts are vital to align LLMs to a specifc use case and 
are a key ingredient to their utility in following human instructions. Well-crafted prompts 
enable LLMs to be smart assistants with external applications and provide instructions for 
human alignment. These prompts are of high value and are usually regarded as commer-
cial secrets. Successful prompt-stealing attacks may violate the intellectual property and 
privacy of prompt engineers or jeopardize the business model of prompt trading market-
places. PromptStealer is a learning-based method that reconstructs prompts from text-to-
image models using an image captioning model and a multi-label classifer to steal both 
the subject and the prompt modifers [266]. For LLMs, researchers have found that a small 
set of fxed attack queries (e.g., Repeat all sentences in our conversation) were 
suffcient to extract more than 60% of prompts across all model and dataset pairs [348]. 
In RAG applications (see Figure 3), the same techniques can be used to extract sensitive 
information provided in the LLMs context. For example, rows from a database or text 
from a PDF document that are intended to be summarized generically by the LLM can be 
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verbosely extracted by simply asking for them via direct prompt injection. 

3.3.2. Mitigations 

Various defense strategies have been proposed for prompt injection that provide a measure 
of protection but not full immunity to all attacker techniques. These broadly fall into the 
following categories: 

1. Training for alignment. Model providers continue to create built-in mechanisms 
by training with stricter forward alignment [148]. For example, model alignment 
can be tuned by training on carefully curated and prealigned datasets. It can then be 
iteratively improved through reinforcement learning with human feedback [123]. 

2. Prompt instruction and formatting techniques. LLM instructions can cue the 
model to treat user input carefully [168, 182]. For example, by appending specifc 
instructions to the prompt, the model can be informed about subsequent content that 
may constitute a jailbreak. Positioning the user input before the prompt takes advan-
tage of recency bias in following instructions. Encapsulating the prompt in random 
characters or special HTML tags provides cues to the model about what constitutes 
system instructions versus user prompts. 

3. Detection techniques. Model providers continue to create built-in mechanisms by 
training with stricter backward alignment via evaluation on specially crafted bench-
mark datasets or flters that monitor the input to and output of a protected LLM 
[148]. One proposed method is to evaluate a distinctly prompted LLM that can 
aid in distinguishing potentially adversarial prompts [168, 182]. Several commer-
cial products have begun offering tools to detect prompt injection, both by detecting 
potentially malicious user input and by moderating the output of the frewall for jail-
break behavior [8, 166, 247]. These may provide supplementary assurance through 
a defense-in-depth philosophy. 

Similarly, defenses for prompt stealing have yet to be proven rigorous. A commonality in 
the methods is that they compare the model utterance to the prompt, which is known by 
the system provider. Defenses differ in how this comparison is made, which might include 
looking for a specifc token, word, or phrase, as popularized by [48], or comparing the 
n-grams of the output to the input [348]. 

3.4. Indirect Prompt Injection Attacks and Mitigations 

A dominant use case for LLMs is RETRIEVAL AUGMENTED GENERATION, depicted in 
Figure 3. Using LLMs in retrieval tasks has blurred the data and instruction channels 
to an LLM. This allows for attacker techniques that leverage the data channel to affect 
system operation, similar to decades-old SQL injection attacks. However, the attacker 
need not directly manipulate the LLM. INDIRECT PROMPT INJECTION attacks are enabled 
by RESOURCE CONTROL so that an attacker can indirectly (or remotely) inject system 
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prompts without directly interacting with the RAG application [122]. As with direct prompt 
injection, indirect prompt injection attacks can result in violations across the four categories 
of attacker goals: 1) availability violations, 2) integrity violations, 3) privacy compromises, 
and 4) abuse violations. 

3.4.1. Availability Violations 

Model availability violations are a disruption in service that can be caused by an attacker 
prompting a model with maliciously crafted inputs that cause increased computation or 
by overwhelming the system with a number of inputs that causes a denial of service to 
users. As noted in [122], these attack vectors are particularly interesting when executed 
via indirect prompt injection so that a resource rather than a registered user is the source of 
the availability violation. Availability attacks that increase computation make the model or 
service perform unusually slow [122]. In PredAI, this has most commonly been done by 
optimizing sponge examples — an energy latency attack on neural networks [33]. However, 
with recent LLMs, this could be done by simply instructing the model to complete a time-
sensitive task in the background, slowing the model down [122]. Denial-of-service attacks 
can indiscriminately render a model unusable (e.g., failure to generate helpful outputs) or 
specifcally block certain capabilities (e.g., specifc APIs) [122]. 

Attacker Techniques. Researchers have demonstrated the following attacks on a commer-
cial RAG service [122] via indirect prompt injection, in which a resource to be searched or 
summarized contained instructions with certain characteristics: 

• Time-consuming background tasks. The prompt instructs the model to perform a 
time-consuming task prior to answering the request. The prompt itself can be brief 
and request looping behavior in evaluating models [122]. 

• Muting. This attack exploits the fact that a model cannot fnish sentences when an 
<|endoftext|> token appears in the middle of a user’s request. By including a 
request to begin a sentence with this token, a search agent, for example, will return 
without any generated text [122]. 

• Inhibiting capabilities. In this attack, an embedded prompt instructs the model that 
it is not permitted to use certain APIs (e.g., the search functionality for Bing Chat). 
This selectively disarms key components of the service [122]. 

• Disrupting input or output. In this attack, an indirect prompt injection instructs the 
model to replace characters in retrieved text with homoglyph equivalents, disrupting 
calls to APIs that depend on the text. Alternatively, the prompt can instruct the model 
to corrupt the results of a query to result in a useless retrieval or summary [122]. 
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3.4.2. Integrity Violations 

Integrity violations are threats that cause GenAI systems to become untrustworthy. AI 
chatbots have exacerbated online misinformation, as demonstrated by the tendencies of 
Microsoft’s Bing and Google’s Bard to perpetuate each other’s sources of misinformation 
[307]. LLMs’ inability to gauge reliable sources of news and information can be exploited 
to produce factually unsound outputs. 

Attacker Techniques. Researchers have demonstrated integrity attacks by manipulating 
the primary task of the LLM. This is different than the more common indirect prompt 
injection attacks that perform a malicious side task. 

• Manipulation. The model is prompted to provide incorrect summaries of the search 
result (i.e., arbitrarily wrong summaries) when the wrong output is not chosen in ad-
vance [122]. The manipulation attack instructs the model to provide wrong answers 
and causes the model’s answer to make claims that contradict the cited sources [122]. 
Below are two examples of manipulation attacks: 

1. Wrong summaries. A model can be prompted to produce adversarially chosen 
or arbitrarily wrong summaries of documents, emails, or search queries [122]. 

2. Propagate disinformation. Search chatbots can be prompted to propagate dis-
information by relying on or perpetuating untrustworthy news sources or the 
outputs of other search chatbots [307]. 

3.4.3. Privacy Compromises 

Indirect prompt injections introduce a host of new privacy compromises and concerns. 
From the beginning, LLMs raised concerns about privacy. Italy was early to ban the use of 
ChatGPT due to these very concerns, and there have been many reported cases of chatbots 
leaking sensitive information or chat histories [87, 197]. Attacker goals are divided into 
two key categories: 

1. Information gathering. Specifc attacks can heighten these risks. For example, human-
in-the-loop indirect prompting can be used to extract user data (e.g., personal infor-
mation, credentials) or leak their chat histories by interacting in chat sessions and 
persuading users to divulge information or through side channels [122]. An attack 
example that does not involve a human-in-the-loop is an attack against a personal as-
sistant that can access a user’s data (e.g., real emails), which similarly causes privacy 
concerns [122]. 

2. Unauthorized disclosure. Models are commonly integrated into system infrastruc-
tures, giving way to unauthorized disclosures or privileges to private user data. Mali-
cious actors can leverage backdoor attacks to gain access to LLMs or systems using a 
variety of methods (e.g., issuing API calls, malicious code auto-completions) [122]. 
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Attacker Techniques. To highlight privacy concerns, researchers have demonstrated a 
data-stealing attack by designing an injection that instructs the LLM to persuade the end 
user to divulge their real name [122]. Below are some attack techniques that researchers 
have used to achieve this data-stealing attack: 

• Human-in-the-loop indirect prompting. Read operations (e.g., triggering a search 
query that then makes a request to the attacker, or retrieving URLs directly) are ex-
ploited to send information to the attacker [122]. 

• Interacting in chat sessions. The model persuades a user to follow a URL into 
which the attacker inserts the user’s name [122]. 

• Invisible markdown image. A prompt injection is performed on a chatbot by mod-
ifying the chatbot answer with an invisible single-pixel markdown image that with-
draws the user’s chat data to a malicious third party [255]. 

3.4.4. Abuse Violations 

As previously discussed, GenAI introduces a new category of attacker goal: abuse viola-
tions. This broadly refers to when an attacker repurposes a system’s intended use to achieve 
their own objectives by way of indirect prompt injection. This attacker goal can be divided 
into the following primary categories: 

1. Fraud. Recent advances in instruction-following LLMs have caused simultaneous 
advances in dual-use risks. 

2. Malware. LLMs can prominently facilitate the spread of malware by suggesting 
malicious links to the user. Additionally, the proliferation of LLM-integrated ap-
plications has led to new malware threats by forcing the prompts themselves to act 
as malware [122]. For example, LLM-augmented email clients that read emails are 
likely to deliver malicious prompts and then send emails proliferating those prompts 
[122]. 

3. Manipulation. Models currently act as vulnerable intermediary layers between users 
and information outputs that are easy to manipulate. LLMs are now commonly part 
of a larger system and integrate with applications. This intermediary state can ex-
pose the model to a host of vulnerabilities. For example, a) search chatbots can be 
prompted to generate disinformation b) and prompted to hide specifc information, 
sources, or search queries; and c) models can be prompted to provide adversari-
ally chosen or arbitrarily wrong summaries of information sources (e.g., documents, 
emails, search queries) [122]. While users are already prone to trusting untrustwor-
thy sources on the web, the authoritative tone of LLMs and users’ over-reliance on 
their impartiality have the potential to cause users to succumb to these manipulation 
attempts more often [122]. 
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Attacker Techniques. Researchers have demonstrated examples of different abuse attack 
techniques by conducting experiments with chatbots (e.g., Microsoft’s Bing chatbot). 

• Phishing. Previously, it had been demonstrated that LLMs could produce convincing 
scams, such as phishing emails [153]. Now that LLMs can more easily integrate 
with applications, they can not only enable the creation of scams but also widely 
disseminate such attacks [122]. Users are likely to be more susceptible to these new 
attacks, unlike phishing emails, because they lack experience and awareness of this 
new threat technique. 

• Masquerading. LLMs can pretending to be an offcial request from a service provider 
or recommend a fraudulent website as trusted [122]. 

• Spreading injections. The LLM itself acts as a computer running and spreading 
harmful code. For example, an automatic message processing tool that can read and 
compose emails and look at users’ personal data can spread an injection to other 
models that may be reading those inbound messages [122]. 

• Spreading malware. Similar to phishing, LLMs can be exploited to persuade users 
to visit malicious web pages that lead to “drive-by downloads.” This is further en-
abled by markdown links that could be seamlessly generated as part of the answer 
[122]. 

• Historical distortion. An attacker can prompt the model to output adversarially cho-
sen disinformation. Researchers have demonstrated this by successfully prompting 
Bing Chat to deny that Albert Einstein won a Nobel Prize [122]. 

• Marginally related context prompting. Steering search results toward specifc ori-
entations instead of neutral stances can create an attack to achieve bias amplifcation. 
Researchers have demonstrated this by prompting an LLM with biographies of per-
sonas that are either “conservative” or “liberal” and instructing the model to generate 
answers that agree with the views of the described users without explicitly mention-
ing topics [122]. 

3.4.5. Mitigations 

Various mitigation techniques have been proposed for indirect prompt injection attacks that 
help eliminate model risk but — like the suggestions made for direct prompt injections — 
do not offer full immunity to all attacker techniques. These mitigation strategies fall into 
the following categories: 

1. Reinforcement learning from human feedback (RLHF). RLHF is a type of AI model 
training whereby human involvement is indirectly used to fne-tune a model. This 
can be leveraged to better align LLMs with human values and prevent unwanted 
behaviors [122]. OpenAI’s GPT-4 was fne-tuned using RLHF and has shown a 
lesser tendency to produce harmful content or hallucinate [229]. 
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2. Filtering retrieved inputs. A further defense mechanism proposed by Greshake et al. 
suggests processing the retrieved inputs to flter out instructions [122]. 

3. An LLM moderator. An LLM can be leveraged to detect attacks beyond just fltering 
clearly harmful outputs. This could be benefcial in detecting attacks that do not 
depend on retrieved sources but could fail at detecting disinformation or other kinds 
of manipulation attacks [122]. 

4. Interpretability-based solutions. These solutions perform outlier detection of predic-
tion trajectories [122]. Researchers have demonstrated that the prediction trajectory 
of the tuned lens on anomalous inputs could be used to detect anomalous inputs [20]. 

Unfortunately, there is no comprehensive or foolproof solution for protecting models against 
adversarial prompting, and future work will need to be dedicated to investigating suggested 
defenses for their effcacy. 
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4. Discussion and Remaining Challenges 

4.1. The Scale Challenge 

Data is fundamentally important for training models. As models grow, the amount of train-
ing data grows proportionally. This trend is clearly visible in the evolution of LLM’s. Very 
few of the LLM’s in use today publish a detailed list of the data sources used in training but 
those who do [209, 293] show the scale of the footprint and the massive amounts of data 
consumed in training. The most recent multi-modal GenAI systems exacerbate the demand 
further by requiring large amounts of data for each modality. 

There is no single organization, even nation, that contains the full data used for training a 
given LLM. Data repositories are not monolithic data containers but a list of labels and data 
links to other servers that actually contain the corresponding data samples. This renders the 
classic defnition of the corporate cybersecurity perimeter obsolete and creates new hard-to-
mitigate risks [46]. Recently published open source data poisoning tools [202] increase the 
risk of large scale attacks on image training data. Although created with noble intentions, 
to allow artists to protect the copyright of their work, these tools become harmful if they 
fall in the hands of people with malicious intent. 

Another scale-related problem is the ability to generate synthetic content at scale on the in-
ternet. Although WATERMARKING [158] may alleviate the situation, the existence of pow-
erful open or other ungoverned models creates opportunities to generate massive amounts 
of unmarked synthetic content that can have a negative impact on the capabilities of subse-
quently trained LLMs [272], leading to model collapse. 

Finding ways to tackle these challenges of scale is critically important for evolving the 
capabilities of foundation models in the future, especially if we want them aligned with 
human values. 

4.2. Theoretical Limitations on Adversarial Robustness 

Given the multitude of powerful attacks, designing appropriate mitigations is a challenge 
that needs to be addressed before deploying AI systems in critical domains. This challenge 
is exacerbated by the lack of information-theoretically secure machine learning algorithms 
for many tasks in the feld, as we discussed in Section 1. This implies that presently de-
signing mitigations is an inherently ad hoc and fallible process. We refer the readers to 
available practice guides for securing machine learning deployments [57, 226], as well as 
existing guidelines for mitigating AML attacks [98]. 

One of the ongoing challenges facing the AML feld is the ability to detect when the model 
is under attack. Knowing this would provide an opportunity to counter the attack before 
any information is lost or an adverse behaviour is triggered in the model. Tramèr [295] 
has shown that designing techniques to detect adversarial examples is equivalent to robust 
classifcation, which is inherently hard to construct, up to computational complexity and a 
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factor of 2 in the robustness radius. 

Adversarial examples may be from the same data distribution on which the model is trained 
and to which it expects the inputs to belong or may be OUT-OF-DISTRIBUTION (OOD) in-
puts. Thus, the ability to detect OOD inputs is also an important challenge in AML. Fang et 
al. [102] established useful theoretical bounds on detectability, particularly an impossibility 
result when there is an overlap between the in-distribution and OOD data. 

The data and model sanitization techniques discussed in Section 2.3 reduce the impact of a 
range of poisoning attacks and should be widely used. However, they should be combined 
with cryptographic techniques for origin and integrity attestation to provide assurances 
downstream, as recommended in the fnal report of the National Security Commission on 
AI [220]. 

As pointed out in the Introduction, chatbots [70, 83, 206, 227] enabled by recent advances 
in deep learning have emerged as a powerful technology with great potential for numerous 
business applications, from entertainment to more critical felds. Recently, specifc attacks 
using ”PROMPT INJECTIONS” have emerged as effective ways to trigger bad behaviour in 
the bot [306] and imposing guardrails has been the widely used approach to mitigating 
these risks. However, recent research has discovered theoretical limits on rigorous LLM 
censorship [116] that require employing other means of risk mitigation, e.g., setting up 
controlled model gateways and other cybersecurity mechanisms. 

Despite progress in the ability of chatbots to perform well on certain tasks [227], 
this technology is still emerging and should only be deployed in applications that 
require a high degree of trust in the information they generate with abundance of 
caution and continuous monitoring. 

As the development of AI-enabled chatbots continues and their deployment becomes more 
prevalent online and in business applications, these concerns will come to the forefront 
and be pursued by adversaries to discover and exploit vulnerabilities and by companies 
developing the technology to improve their design and implementation to protect against 
such attacks [354]. The identifcation and mitigation of a variety of risk factors, such as 
vulnerabilities, include RED TEAMING [56, 109] as part of pre-deployment testing and 
evaluation of LLM’s. These processes vary and have included testing for traditional cy-
bersecurity vulnerabilities, bias, and discrimination, generation of harmful content, privacy 
violations, and novel or emergent characteristics of large-scale models, as well as evalua-
tions of larger societal impacts such as economic impacts, the perpetuation of stereotypes, 
long-term over-reliance, and erosion of democratic norms [157, 267]. 

Realistic risk management throughout the entire life cycle of the technology is critically 
important to identify risks and plan early corresponding mitigation approaches [226]. For 
example, incorporating human adversarial input in the process of training the system (i.e., 
RED TEAMING) or employing reinforcement learning from human feedback appear to of-
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fer benefts in terms of making the chatbot more resilient against toxic input or prompt 
injections [83]. However, adapting chatbots to downstream use cases often involves the 
customization of the pre-trained LLM through further fne-tuning, which introduces new 
safety risks that may degrade the safety alignment of the LLM [242]. Barrett et al. [17] 
have developed detailed risk profles for cutting-edge generative AI systems that map well 
to the NIST AI RMF [226] and should be used for assessing and mitigating potentially 
catastrophic risks to society that may arise from this technology. There are also useful 
industry resources for managing foundation model risks [32]. 

The robust training techniques discussed in Section 2.3 offer different approaches to pro-
viding theoretically certifed defenses against data poisoning attacks with the intention of 
providing much-needed information-theoretic guarantees for security. The results are en-
couraging, but more research is needed to extend this methodology to more general as-
sumptions about the data distributions, the ability to handle OOD inputs, more complex 
models, multiple data modalities, and better performance. Another challenge is applying 
these techniques to very large models like LLMs and generative diffusion models, which 
are quickly becoming targets of attacks [44, 75]. 

Another general problem of AML mitigations for both evasion and poisoning attacks is 
the lack of reliable benchmarks which causes results from AML papers to be routinely 
incomparable, as they do not rely on the same assumptions and methods. While there 
have been some promising developments into this direction [81, 256], more research and 
encouragement is needed to foster the creation of standardized benchmarks to allow gaining 
reliable insights into the actual performance of proposed mitigations. 

Formal methods verifcation has a long history in other felds where high assurance is re-
quired, such as avionics and cryptography. The lessons learned there teach us that although 
the results from applying this methodology are excellent in terms of security and safety 
assurances, they come at a very high cost, which has prevented formal methods from being 
widely adopted. Currently, formal methods in these felds are primarily used in applications 
mandated by regulations. Applying formal methods to neural networks has signifcant po-
tential to provide much-needed security guarantees, especially in high-risk applications. 
However, the viability of this technology will be determined by a combination of techni-
cal and business criteria – namely, the ability to handle today’s complex machine learning 
models of interest at acceptable costs. More research is needed to extend this technology 
to all algebraic operations used in machine learning algorithms, to scale it up to the large 
models used today, and to accommodate rapid changes in the code of AI systems while 
limiting the costs of applying formal verifcation. 

There is an imbalance between the large number of privacy attacks listed in Section 2.4 
(i.e., memorization, membership inference, model extraction, and property inference) and 
available reliable mitigation techniques. In some sense, this is a normal state of affairs: a 
rapidly evolving technology gaining widespread adoption – even “hype” – which attracts 
the attention of adversaries, who try to expose and exploit its weaknesses before the tech-
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nology has matured enough for society to assess and manage it effectively. To be sure, not 
all adversaries have malevolent intent. Some simply want to warn the public of potential 
breakdowns that can cause harm and erode trust in the technology. Additionally, not all 
attacks are as practical as they need to be to pose real threats to AI system deployments 
of interest. Yet the race between developers and adversaries has begun, and both sides 
are making great progress. This poses many diffcult questions for the AI community of 
stakeholders, such as: 

• What is the best way to mitigate the potential exploits of memorized data from Sec-
tion 3.3.1 as models grow and ingest larger amounts of data? 

• What is the best way to prevent attackers from inferring membership in the training 
set or other properties of the training data using the attacks listed in Sections 2.4.2 
and 2.4.4? 

• How can developers protect their ML models with the secret weights and associated 
intellectual property from the emerging threats in the PredAI and GenAI spaces? 
Especially, attacks that utilize the public API of the ML model to query and exploit 
its secret weights or the side-channel leakage attacks from Section 2.4.3? The known 
mechanisms of preventing large numbers of queries through the API are ineffective 
in confgurations with anonymous or unauthenticated access to the model. 

As answers to these questions become available, it is important for the community of stake-
holders to develop specifc guidelines to complement the NIST AI RMF [226] for use cases 
where privacy is of utmost importance. 

4.3. The Open vs. Closed Model Dilemma 

Open source has established itself as an indispensable methodology for developing soft-
ware today. There are many benefts to open source development that have been widely 
analysed [170]. 

Following this model and adding valid arguments related to democratizing access, leveling 
the playing feld, enabling reproducibility of scientifc results that in turn enables measuring 
progress in AI, powerful open access models have become available to the public [209, 293, 
294]. In many use cases they help to bridge the performance gaps with closed/proprietary 
models [178, 303]. 

However, there are other use cases where putting powerful AI technology in the hands 
of people with malicious intent would be very concerning [290]. Researchers have already 
demonstrated the ease with which open models can be subverted to perform tasks outside of 
the original intent of the developers [330]. This brings up the question about open models: 
should they be allowed? 

This question has been approached in other felds of science and engineering. For example, 
society has accepted the risks of cryptography falling in the wrong hands and we have 
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strong cryptographic algorithms publicly available and widely used. In another example, 
in bio engineering, society has determined that the risks of uncontrolled genetic engineering 
are too great to allow open access to the technology. 

The open vs. closed model dilemma in AI is being actively debated in the community of 
stakeholders and should be resolved before models become too powerful and make it moot. 

4.4. Supply chain challenges 

The literature on AML shows a trend of designing new attacks with higher power and 
stealthier behavior. The advent of powerful open models [293] and the reported attacks 
against them [330] can induce a behaviour of a model with TROJANS. This illustrates the 
challenges for applications using open models downstream the supply chain. To be clear, 
backdoor attacks on models is not limited to open models. 

DARPA jointly with NIST have created a program TrojAI that is researching the defense of 
AI systems from intentional, malicious Trojan attacks by developing technology to detect 
these attacks and by investigating what makes the Trojan detection problem challenging. 

Goldwasser et al. [118] recently introduced a new class of attacks: information-theoretically 
undetectable Trojans that can be planted in ML models. If proven practical, such attacks 
may only be prevented or detected and mitigated by procedures that restrict and control 
who in the organization has access to the model throughout the life cycle and by thor-
oughly vetting third-party components coming through the supply chain. The NIST AI 
Risk Management Framework [226] offers more information on this. 

4.5. Tradeofs Between the Attributes of Trustworthy AI 

The trustworthiness of an AI system depends on all of the attributes that characterize 
it [226]. For example, an AI system that is accurate but easily susceptible to adversarial 
exploits is unlikely to be trusted. Similarly, an AI system that produces harmfully biased 
or unfair outcomes is unlikely to be trusted even if it is robust. There are also trade-offs 
between explainability and adversarial robustness [140, 207]. In cases where fairness is 
important and privacy is necessary to maintain, the trade-off between privacy and fairness 
needs to be considered [142]. Unfortunately, it is not possible to simultaneously maximize 
the performance of the AI system with respect to these attributes. For instance, AI sys-
tems optimized for accuracy alone tend to underperform in terms of adversarial robustness 
and fairness [59, 91, 244, 301, 342]. Conversely, an AI system optimized for adversarial 
robustness may exhibit lower accuracy and deteriorated fairness outcomes [21, 311, 342]. 

The full characterization of the trade-offs between the different attributes of trust-
worthy AI is still an open research problem that is gaining increasing importance 
with the adoption of AI technology in many areas of modern life. 
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In most cases, organizations will need to accept trade-offs between these properties and 
decide which of them to prioritize depending on the AI system, the use case, and potentially 
many other considerations about the economic, environmental, social, cultural, political, 
and global implications of the AI technology [226]. 

4.6. Multimodal Models: Are They More Robust? 

MULTIMODAL MODELS have shown great potential for achieving high performance on 
many machine learning tasks [16, 19, 213, 246, 344]. It is natural to assume that because 
there is redundancy of information across the different modalities, the model should be 
more robust against adversarial perturbations of a single modality. However, emerging ev-
idence from practice shows that this is not necessarily the case. Combining modalities and 
training the model on clean data alone does not seem to improve adversarial robustness. 
In addition, one of the most effective defenses against evasion attacks based on adversarial 
training, which is widely used in single modality applications, is prohibitively expensive 
in practical applications of multimodal learning. Additional effort is required to beneft 
from the redundant information in order to improve robustness against single modality 
attacks [328]. Without such an effort, single modality attacks can be effective and compro-
mise multimodal models across a wide range of multimodal tasks despite the information 
contained in the remaining unperturbed modalities [328, 335]. Moreover, researchers have 
devised effcient mechanisms for constructing simultaneous attacks on multiple modali-
ties, which suggests that multimodal models might not be more robust against adversarial 
attacks despite improved performance [63, 261, 326]. 

The existence of simultaneous attacks on multimodal models suggests that miti-
gation techniques that only rely on single modality perturbations are not likely to 
be robust. Attackers in real life do not constrain themselves to attacks within a 
given security model but employ any attack that is available to them. 

4.7. Quantized models 

Quantization is a technique that allows effciently deploying models to edge platforms such 
as smart phones and IoT devices [114]. It reduces the computational and memory costs of 
running inference on a given platform by representing the model weights and activations 
with low-precision data types. For example, quantized models typically use 8-bit integers 
(int8) instead of the usual 32-bit foating point (foat32) numbers for the original non-
quantized model. 

This technique has been widely used with PredAI and increasingly with GenAI models. 
However, quantized models do inherit the vulnerabilities of the original models and bring 
in additional weaknesses making such models vulnerable to adversarial attacks. Error am-
plifcation resulting from the reduced computational precision affects adversely the adver-
sarial robustness of the quantized models. Some pointers to useful mitigation techniques 
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for PredAI models exist in the literature [179]. The effects of quantization on GenAI mod-
els has been studies lees and organizations deploying such models should be careful to 
continuously monitor their behavior. 
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[19] Khaled Bayoudh, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa. A survey 
on deep multimodal learning for computer vision: Advances, trends, applications, 
and datasets. Vis. Comput., 38(8):2939–2970, August 2022. 

[20] Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev 
McKinney, Stella Biderman, and Jacob Steinhardt. Eliciting latent predictions from 
transformers with the tuned lens. arXiv preprint arXiv:2303.08112, 2023. 

[21] Philipp Benz, Chaoning Zhang, Soomin Ham, Gyusang Karjauv, Adil Cho, and 
In So Kweon. The triangular trade-off between accuracy, robustness, and fairness. 
Workshop on Adversarial Machine Learning in Real-World Computer Vision Sys-
tems and Online Challenges (AML-CV) at CVPR, 2021. 

[22] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, 
and Colin A Raffel. Mixmatch: A holistic approach to semi-supervised learning. In 
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, 
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chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 
2018, volume 80 of Proceedings of Machine Learning Research, pages 2142–2151. 
PMLR, 2018. 

[137] Andrew Ilyas, Logan Engstrom, and Aleksander Madry. Prior convictions: Black-
box adversarial attacks with bandits and priors. In International Conference on 
Learning Representations, 2019. 

[138] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, 
and Aleksander Madry. Adversarial examples are not bugs, they are features. In 
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, 
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Lê-Nguyên Hoang, and Sébastien Rouault. Collaborative learning in the jungle (de-
centralized, byzantine, heterogeneous, asynchronous and nonconvex learning). In 
NeurIPS, 2021. 

[204] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. The Hidden Vul-
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Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza 

75 

https://arxiv.org/abs/2101.04535
https://arxiv.org/abs/2101.04535
https://www.nscai.gov/2021-final-report/
https://www.nscai.gov/2021-final-report/
https://cltc.berkeley.edu/wp-content/uploads/2023/01/Taxonomy_of_AI_Trustworthiness.pdf
https://cltc.berkeley.edu/wp-content/uploads/2023/01/Taxonomy_of_AI_Trustworthiness.pdf


NIST AI 100-2e2023 
January 2024 

Zeitouni, Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider. 
FLAME: Taming backdoors in federated learning. In 31st USENIX Security Sympo-
sium (USENIX Security 22), pages 1415–1432, Boston, MA, August 2022. USENIX 
Association. 

[226] National Institute of Standards and Technology. Artifcial Intelligence Risk Man-
agement Framework (AI RMF 1.0). https://doi.org/10.6028/NIST.AI.100-1, 2023. 
Online. 

[227] OpenAI. ChatGPT: Optimizing Language Models for Dialogue. https://openai.com 
/blog/chatgpt/, 2022. Online. 

[228] OpenAI. Gpt-4 technical report, 2023. 
[229] OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. 
[230] OpenAI. Openai moderation platform documentation, 2023. 
[231] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing 

functionality of black-box models. In 2019 IEEE/CVF Conference on Computer 
Vision and Pattern Recognition (CVPR), pages 4949–4958, 2019. 

[232] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine 
learning: from phenomena to black-box attacks using adversarial samples. https: 
//arxiv.org/abs/1605.07277, 2016. 

[233] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, 
and Ananthram Swami. Practical black-box attacks against machine learning. In 
Proceedings of the 2017 ACM on Asia Conference on Computer and Communica-
tions Security, ASIA CCS ’17, page 506–519, New York, NY, USA, 2017. Associa-
tion for Computing Machinery. 

[234] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. 
Distillation as a defense to adversarial perturbations against deep neural networks. 
In 2016 IEEE Symposium on Security and Privacy (S&P), pages 582–597, 2016. 

[235] Andrea Paudice, Luis Mu˜ alez, and Emil C. Lupu.noz-Gonz´ Label sanitiza-
tion against label fipping poisoning attacks. In Carlos Alzate, Anna Mon-
reale, Haytham Assem, Albert Bifet, Teodora Sandra Buda, Bora Caglayan, Brett 
Drury, Eva Garcı́a-Martı́n, Ricard Gavaldà, Stefan Kramer, Niklas Lavesson, 
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Ross McIlroy, Mario Luciˇ ć, Guodong Zhang, Wael Farhan, Michael Sharman, Paul 
Natsev, Paul Michel, Yong Cheng, Yamini Bansal, Siyuan Qiao, Kris Cao, Sia-
mak Shakeri, Christina Butterfeld, Justin Chung, Paul Kishan Rubenstein, Shiv-
ani Agrawal, Arthur Mensch, Kedar Soparkar, Karel Lenc, Timothy Chung, Aedan 
Pope, Loren Maggiore, Jackie Kay, Priya Jhakra, Shibo Wang, Joshua Maynez, 
Mary Phuong, Taylor Tobin, Andrea Tacchetti, Maja Trebacz, Kevin Robinson, Yash 
Katariya, Sebastian Riedel, Paige Bailey, Kefan Xiao, Nimesh Ghelani, Lora Aroyo, 
Ambrose Slone, Neil Houlsby, Xuehan Xiong, Zhen Yang, Elena Gribovskaya, 
Jonas Adler, Mateo Wirth, Lisa Lee, Music Li, Thais Kagohara, Jay Pavagadhi, 
Sophie Bridgers, Anna Bortsova, Sanjay Ghemawat, Zafarali Ahmed, Tianqi Liu, 
Richard Powell, Vijay Bolina, Mariko Iinuma, Polina Zablotskaia, James Besley, 
Da-Woon Chung, Timothy Dozat, Ramona Comanescu, Xiance Si, Jeremy Greer, 
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Appendix: Glossary 

Note: one may click on the page number shown at the end of the defnition of each 
glossary entry to go to the page where the term is used. 

A 

adversarial examples (adversarial examples) Modifed testing samples which induce mis-
classifcation of a machine learning model at deployment time v, 9 

adversarial success (adversarial success) Indicates reaching an availability breakdown, 
integrity violations, privacy compromise, or abuse trigger (for GenAI models only) 
in response to attempted adversarial attacks on the model 9 

Area Under the Curve (Area Under the Curve) In ML the Area Under the Curve (AUC) 
is a measure of the ability of a classifer to distinguish between classes. The higher 
the AUC, the better the performance of the model at distinguishing between the two 
classes. AUC measures the entire two-dimensional area underneath the RECEIVER 

OPERATING CHARACTERISTICS (ROC) curve 31 
availability attack (availability attack) Adversarial attacks against machine learning which 

degrade the overall model performance 9 

B 

backdoor pattern (backdoor pattern) A trigger pattern inserted into a data sample to induce 
mis-classifcation of a poisoned model. For example, in computer vision it may be 
constructed from a set of neighboring pixels, e.g., a white square, and added to 
a specifc target label. To mount a backdoor attack, the adversary frst poisons 
the data by adding the trigger to a subset of the clean data and changing their 
corresponding labels to the target label 9 

backdoor poisoning attacks (backdoor poisoning attacks) Poisoning attacks against ma-
chine learning which change the prediction on samples including a backdoor pat-
tern 9, 40 

classifcation (classifcation) Type of supervised learning in which data labels are discrete 
8 

convolutional neural networks (convolutional neural networks) A Convolutional Neural 
Network (CNN) is a class of artifcial neural networks whose architecture connects 
neurons from one layer to the next layer and includes at least one layer performing 
convolution operations. CNNs are typically applied to image analysis and classif-
cation. See [119] for further details 8, 32 

D 

data poisoning (data poisoning) Poisoning attacks in which a part of the training data is 
under the control of the adversary 4, 8 
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data privacy (data privacy) Attacks against machine learning models to extract sensitive 
information about training data 10 

data reconstruction (data reconstruction) Data privacy attacks which reconstruct sensitive 
information about training data records 10, 29 

deployment stage (deployment stage) Stage of ML pipeline in which the model is deployed 
on new data 8, 37 

Diffusion Model (Diffusion Model) A class of latent variable generative models con-
sisting of three major components: a forward process, a reverse process, and a 
sampling procedure. The goal of the diffusion model is to learn a diffusion pro-
cess that generates the probability distribution of a given dataset. It is widely used 
in computer vision on a variety of tasks, including image denoising, inpainting, 
super-resolution, and image generation 35 

discriminative (discriminative) Type of machine learning methods which learn to discrim-
inate between classes 8 

E 

energy-latency attacks (energy-latency attacks) Attacks that exploit the performance de-
pendency on hardware and model optimizations to negate the effects of hardware 
optimizations, increase computation latency, increase hardware temperature and 
massively increase the amount of energy consumed 9, 10 

ensemble learning (ensemble learning) Type of a meta machine learning approach that 
combines the predictions of several models to improve the performance of the 
combination 8 

Expectation Over Transformation (Expectation Over Transformation) Expectation Over 
Transformation (EOT) helps to strengthen adversarial examples to remain adver-
sarial under image transformations that occur in the real world, such as angle and 
viewpoint changes. EOT models such perturbations within the optimization pro-
cedure. Rather than optimizing the log-likelihood of a single example, EOT uses 
a chosen distribution of transformation functions taking an input controlled by the 
adversary to the “true” input perceived by the classifer 18 

extraction (extraction) The ability of an attacker to extract training data of a generative 
model by prompting the model on specifc inputs 10 

F 

federated learning (federated learning) Type of collaborative machine learning, in which 
multiple users train jointly a machine learning model 8 

federated learning models (federated learning models) Federated learning is a method-
ology to train a decentralized machine learning model (e.g., deep neural networks 
or a pre-trained large language model) across multiple end-devices without shar-
ing the data residing on each device. Thus, the end-devices collaboratively train 
a global model by exchanging model updates with a server that aggregates the 
updates. Compared to traditional centralized learning where the data are pooled, 

93 



NIST AI 100-2e2023 
January 2024 

federated learning has advantages in terms of data privacy and security but these 
may come as tradeoffs to the capabilities of the models learned through federated 
data. Other potential problems one needs to contend with here concern the trust-
worthiness of the end-devices and the impact of malicious actors on the learned 
model 32 

feed-forward neural networks (feed-forward neural networks) A Feed Forward Neural 
Network is an artifcial neural network in which the connections between nodes is 
from one layer to the next and do not form a cycle. See [119] for further details 32 

fne-tuning (fne-tuning) Refers to the process of adapting a pre-trained model to perform 
specifc tasks or to specialize in a particular domain. This phase follows the initial 
pre-training phase and involves training the model further on task-specifc data. 
This is often a supervised learning task 37 

formal methods (formal methods) Formal methods are mathematically rigorous techniques 
for the specifcation, development, and verifcation of software systems 20 

Functional Attacks (Functional Attacks) Adversarial attacks that are optimized for a set 
of data in a domain rather than per data point 16, 25 

G 

generative (generative) Type of machine learning methods which learn the data distribution 
and can generate new examples from distribution 8 

generative adversarial networks (generative adversarial networks) A generative adver-
sarial network (GAN) is a class of machine learning frameworks in which two 
neural networks contest with each other in the form of a zero-sum game, where 
one agent’s gain is another agent’s loss. GAN’s learn to generate new data with the 
same statistics as the training set. See [119] for further details 32, 35 

Generative Pre-Trained Transformer (Generative Pre-Trained Transformer) An artifcial 
neural network based on the transformer architecture [304], pre-trained on large 
data sets of unlabelled text, and able to generate novel human-like content. Today, 
this is the predominant architecture for natural language processing tasks 35 

graph neural networks (graph neural networks) A Graph Neural Network (GNN) is an 
optimizable transformation on all attributes of the graph (nodes, edges, global-
context) that preserves the graph symmetries (permutation invariances). GNNs 
utilize a “graph-in, graph-out” architecture that takes an input graph with informa-
tion loaded into its nodes, edges and global-context, and progressively transform 
these embeddings into an output graph with the same connectivity as that of the 
input graph 32 

H 

hidden Markov models (hidden Markov models) A hidden Markov model (HMM) is a 
statistical Markov model in which the system being modeled is assumed to be a 
Markov process with unobservable states. In addition, the model provides an ob-
servable process whose outcomes are ”infuenced” by the outcomes of Markov 
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model in a known way. HMM can be used to describe the evolution of observable 
events that depend on internal factors, which are not directly observable. In ma-
chine learning it is assumed that the internal state of a model is hidden but not the 
hyperparameters 32 

I 

indirect prompt injection (indirect prompt injection) Attacker technique in which a hacker 
relies on an LLM ingesting a prompt injection attack indirectly, e.g., by visiting a 
web page or document. Unlike its direct prompt injection sibling, the attacker in 
this scenario does not directly supply a prompt, but attempts to inject instructions 
indirectly by having the text ingested by some other mechanism, e.g., a plugin 38, 
39, 44 

integrity attack (integrity attack) Adversarial attacks against machine learning which change 
the output prediction of the machine learning model 9 

J 

jailbreak (jailbreak) An attack that employs prompt injection to specifcally circumvent 
the safety and moderation features placed on LLMs by their creators. 37, 40 

L 

label fipping (label fipping) a type of data poisoning attack where the adversary is re-
stricted to changing the training labels 22 

label limit (label limit) Capability in which the attacker in some scenarios does not control 
the labels of training samples in supervised learning 10 

logistic regression (logistic regression) Type of linear classifer that predicts the probability 
of an observation to be part of a class 8 

M 

machine unlearning (machine unlearning) Technique that enables a user to request re-
moval of their records from a trained ML model. Effcient approximate unlearning 
techniques do not require retraining the ML model from scratch 34 

membership-inference attacks (membership-inference attacks) Data privacy attacks to 
determine if a data sample was part of the training set of a machine learning model 
10, 29 

model control (model control) Capability in which the attacker has control over machine 
learning model parameters 10 

model extraction (model extraction) Type of privacy attack to extract model architecture 
and parameters 10 

model poisoning (model poisoning) Poisoning attacks in which the model parameters are 
under the control of the adversary 8, 9, 40 
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model privacy (model privacy) Attacks against machine learning models to extract sensi-
tive information about the model 10 

multimodal models (multimodal models) Modality is associated with the sensory modal-
ities which represent primary human channels of communication and sensation, 
such as vision or touch. Multimodal models process and relate information from 
multiple modalities 55 

O 

out-of-distribution (out-of-distribution) This term refers to data that was collected at a dif-
ferent time, and possibly under different conditions or in a different environment, 
than the data collected to train the model 51 

P 

poisoning attacks (poisoning attacks) Adversarial attacks against machine learning at 
training time 8, 37 

pre-training (pre-training) Refers to the initial phase of model training where the model 
learns general patterns, features, and relationships from vast amounts of unlabeled 
data. This is typically unsupervised or self-supervised learning, and aims to equip 
the model with commonly occurring patterns prior to a fne-tuning stage that spe-
cializes the model for a specifc downstream task. Foundation models (text or 
images) are pre-trained models 37 

prompt extraction (prompt extraction) An attack in which the objective is to divulge the 
system prompt or other information in an LLMs context that would nominally be 
hidden from a user 37, 39 

prompt injection (prompt injection) Attacker technique in which a hacker enters a text 
prompt into an LLM or chatbot designed to enable the user to perform unintended 
or unauthorized actions 39 

prompt injections (prompt injections) Malicious plain text instructions to a generative AI 
system that uses textual instructions (a “prompt”) to accomplish a task causing the 
AI system to generate text on a topic prohibited by the designers of the system 51 

property inference (property inference) Data privacy attacks which infer global property 
about the training data of a machine learning model 10 

Q 

query access (query access) Capability in which the attacker can issue queries to a trained 
machine learning model and obtain predictions 10, 39 

R 

Receiver Operating Characteristics (ROC) (Receiver Operating Characteristics (ROC)) 
In ML the Receiver Operating Characteristics (ROC) curve plots true positive rate 
versus false positive rate for a classifer 92 
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Red Teaming (Red Teaming) NIST defnes cybersecurity red-teaming as “A group of peo-
ple authorized and organized to emulate a potential adversary’s attack or exploita-
tion capabilities against an enterprise’s security posture. The Red Team’s objective 
is to improve enterprise cybersecurity by demonstrating the impacts of successful 
attacks and by demonstrating what works for the defenders (i.e., the Blue Team) 
in an operational environment.” (CNSS 2015 [80]) Traditional red-teaming might 
combine physical and cyber attack elements, attack multiple systems, and aims to 
evaluate the overall security posture of an organization. Penetration testing (pen 
testing), in contrast, tests the security of a specifc application or system. In AI 
discourse, red-teaming has come to mean something closer to pen testing, where 
the model may be rapidly or continuously tested by a set of evaluators and under 
conditions other than normal operation 51 

regression (regression) Type of supervised ML model that is trained on data including 
numerical labels (called response variables). Types of regression algorithms in-
clude linear regression, polynomial regression, and various non-linear regression 
methods 8 

reinforcement learning (reinforcement learning) Type of machine learning in which an 
agent interacts with the environment and learns to take actions which optimize a 
reward function 8 

resource control (resource control) Capability in which the attacker has control over the 
resources consumed by a ML model, particularly for LLMs and RAG applications 
39, 44 

Retrieval Augmented Generation (Retrieval Augmented Generation) This term refers 
to retrieving data from outside a foundation model and augmenting prompts by 
adding the relevant retrieved data in context. RAG allows fne-tuning and modif-
cation of the internal knowledge of the model in an effcient manner and without 
needing to retrain the entire model. First, the documents and user prompts are 
converted into a compatible format to perform relevancy search. Typically this is 
accomplished by converting the document collection and user prompts into numer-
ical representations using embedding language models. RAG model architectures 
compare the embeddings of user prompts within the vector of the knowledge li-
brary. The original user prompt is then appended with relevant context from sim-
ilar documents within the knowledge library. This augmented prompt is then sent 
to the foundation model. For RAG to work well, the augmented prompt must ft 
into the context window of the model 3, 36, 37, 39, 44 

rowhammer attacks (rowhammer attacks) Rowhammer is a software-based fault-injection 
attack that exploits DRAM disturbance errors via user-space applications and al-
lows the attacker to infer information about certain victim secrets stored in memory 
cells. Mounting this attack requires attacker’s control of a user-space unprivileged 
process that runs on the same machine as the victim’s ML model 32 

S 
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semi-supervised learning (semi-supervised learning) Type of machine learning in which 
a small number of training samples are labeled, while the majority are unlabeled 8 

shadow models (shadow models) Shadow models imitate the behavior of the target model. 
The training datasets and thus the ground truth about membership in these datasets 
are known for these models. Typically, the attack model is trained on the labeled 
inputs and outputs of the shadow models 27 

side channel (side channel) side channels allow an attacker to infer information about a 
secret by observing nonfunctional characteristics of a program, such as execution 
time or memory or by measuring or exploiting indirect coincidental effects of the 
system or its hardware, like power consumption variation, electromagnetic em-
anations, while the program is executing. Most commonly, such attacks aim to 
exfltrate sensitive information, including cryptographic keys 32 

source code control (source code control) Capability in which the attacker has control over 
the source code of the machine learning algorithm 10, 39 

supervised learning (supervised learning) Type of machine learning methods based on 
labeled data 8 

Support Vector Machines (Support Vector Machines) A Support Vector Machine imple-
ments a decision function in the form of a hyperplane that serves to separate (i.e., 
classify) observations belonging to one class from another based on patterns of 
information about those observations (i.e., features). 8, 9, 22, 32 

T 

targeted poisoning attacks (targeted poisoning attacks) Poisoning attacks against machine 
learning which change the prediction on a small number of targeted samples 9, 40 

testing data control (testing data control) Capability in which the attacker has control over 
the testing data input to the machine learning model 10 

training data control (training data control) Capability in which the attacker has control 
over a part of the training data of a machine learning model 10, 39 

training stage (training stage) Stage of machine learning pipeline in which the model is 
trained using training data 8, 37 

trojans (trojans) A malicious code/logic inserted into the code of a software or hard-
ware system, typically without the knowledge and consent of the organization that 
owns/develops the system, that is diffcult to detect and may appear harmless, but 
can alter the intended function of the system upon a signal from an attacker to cause 
a malicious behavior desired by the attacker. For Trojan attacks to be effective, the 
trigger must be rare in the normal operating environment so that it does not affect 
the normal effectiveness of the AI and raise the suspicions of human users 4, 54 

U 

unsupervised learning (unsupervised learning) Type of machine learning methods based 
on unlabeled data 8 
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W 

watermarking (watermarking) a technique which embeds a hidden signal in a piece of 
text, image, or video to identify it as AI-generated. The signal can later be retrieved 
even if the content has been modifed. Generally, the watermark must be accessible 
and reliable. The watermark is accessible if it is possible to test whether the content 
is AI-generated. There are two types of accessibility: public and private. Public 
access means everyone can access and verify it. Private access means that only 
the parties authorized by the organization controlling the generating model have 
the ability to access and verify the watermark. The watermark must be reliable in 
the sense that malicious actors should not be able to remove the watermark easily. 
However, in cases of public access to the watermark the attacker may be allowed to 
test for the presence of watermarks, which increases the technical challenges with 
watermarking 50 
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