
Curing Those Uncontrollable Fits
of Interaction

Expect: Curing Those Uncontrollable Fits of Interac-
tion [1] was the seminal paper on Expect, a software
tool for automation of other software. The Expect soft-
ware itself was a solution to a long-standing problem:
how to automate software designed to be operated by a
human. There are very good reasons for automating
software. An obvious one is testing— if a piece of soft-
ware only works when a human is interacting with it,
testing it is very expensive. Another problem is that
humans are rather “ unreliable.” Repeating an interaction
for the 10th time, people won’t be paying nearly as
much attention as they might have on the first and
second times.

Many software applications have control languages,
preferences, settings, and other mechanisms for provid-
ing automated control. Macros are just one modern ex-
ample of such programmability. However, before Expect
each application used a different such language, if any.
This meant that users had to learn lots of languages, one
for each application. And in many cases, languages
were quite limited or totally nonexistent.

Passwords were just one example. Many programs
had all sorts of similarly useless requirements for
manual operation. Part of the problem arose from
software reuse, often in unexpected ways. One of the
hallmarks of any long-lived software is its application in

Expect combined several ideas. The first was a
general purpose control language. No more would
people have to learn a new language for every applica-
tion. The second idea was providing an effective
simulation of a human pressing keys at a keyboard.
Surprisingly, many programs are quite sensitive to
whether a human is there or not— and understandably.
For instance, a program intended to accept passwords
doesn’t want people scripting them since there is a loss
in security because embedded passwords are readable
by others. Such programs go out of their way to prevent
automation. Not surprisingly, many programs could
be entirely automated— except for their passwords.
But even if the programs were used in secure settings,
the programs offered no way of bypassing this manual
step.

Perhaps entering a single password doesn’t sound
time consuming. But imagine creating passwords each
semester for fifty thousand students. Or logging in
(including entering passwords) to configure several
hundred network routers. Or test them. And so on.

all sorts of ways unenvisioned by its authors. A good
example of this was Expect’s earliest application— in the
construction at NBS of a semi-automated factory [2].
This factory was constructed of dozens of one-of-a-kind
pieces of hardware and lots of software. Much of the

353



associated software had been written in the context of
separate projects, which made perfect sense at the time.
It was hard enough to design and develop a robot at all,
much less to design and develop a robot that worked in
a complex factory. Expect was used as a kind of glue
that integrated many of the pieces together. It wasn’t a
network or a communications protocol, but merely
plugged the many assorted holes that the Automated
Manufacturing Research Facility software designers
had written in for themselves.

At the prestigious 1990 Summer Usenix conference
in Anaheim, California, this paper announced the devel-
opment of the Expect software to a world that was ripe
for such automation software. The paper not only
described how Expect solved the general problem but it
included a dozen classes of software problems that were
solved by Expect in order to make sure that readers
could walk away with ideas for immediate application to
their own environment.

Publication of the paper spurred use of Expect
dramatically; NBS saw downloads of Expect hit 4000 in
its first year. The bulk of these downloads were .com
and .edu sites, but also included 90 U. S. military sites
and 170 U. S. federal sites. Two years later, downloads
were in the hundreds of thousands of sites, aided
by other users making Expect available on network

gateways in Australia, Netherlands, Germany, Japan and
other countries. Now Expect is bundled with many CD
and DVD software distributions and vendor-supplied
operating system releases.

Ultimately, the Curing paper [1] became a base upon
which further exploration and development occurred.
Hundreds of other papers, as well as textbooks, graduate
theses, technical courses, and other writings followed,
each describing Expect as an essential element of
various research projects as well as crucial in day-to-day
operations. A sampling of Expect’s published uses
include quality assurance, network measurements,
automated file transfers and updates, tape backups,
automated queries to multiple heterogenous online
databases, computer security sweeps, network router/
bridge/repeater/server configurations, test instrument
simulation, account administration, stock price retrieval,
500-user simulation, control of unreliable processes,
and library management.

Subsequent to the original development of Expect,
additional work at NIST continued, including innovative
ideas such as automatically generating control systems
by watching real interactions (Autoexpect) and wrap-
ping legacy line-oriented systems with modern GUIs
without any change to the underlying application
(Expectk).

354



As the figure suggests, the Autoexpect paper had a
strange but accurate title. The full title was How to
Avoid Learning Expect�or—Automating Automating
Interactive Programs [3]. As with the Curing title,

Because of its odd typography, the Writing a Tcl
Extension paper was almost impossible to cite correctly,
but nonetheless was given the Best Paper Award at the
conference where it was presented.

The final development of the Curing paper was the
publication of the book Exploring Expect [4]. Not sur-
prisingly, the book contains significant novel material

many of the Expect papers and topics used humor as a
very effective writing technique. Perhaps the most
amusing title was applied to a retrospective paper on
Expect titled:

in its 602 pages. Yet despite being a comprehensive
tome, its origins can clearly be traced back to the
Curing paper. The book appeared in numerous
Best Books of the Year lists and has now become
the normative reference, superseding the Curing
paper as the standard citation for the Expect tech-
nology.

355



The paper and book were written by Don Libes, a
computer scientist at NBS/NIST. He has written
approximately 100 computer science papers and articles
plus several textbooks. Besides Exploring Expect, he
also wrote two classics in the UNIX literature: Life With
UNIX [5] and Obfuscated C and Other Mysteries [6].

Recognition of Expect and the related papers is also
demonstrated by various non-government awards that
Don earned, including the Award for Excellence in
Technology Transfer, Federal Laboratory Consortium
(1998), two Best Presentation Awards, USENIX Associ-
ation (1996, 1997), Best Paper Award, USENIX Associ-
ation (1997), Federal 100 Award, FOSE & FCW (1993),
Innovation Award, International Communications
Association (1992), and Tcl Achievement Award, Tcl
Consortium (2000).

Prepared by Don Libes.

Bibliography

[1] D. Libes, expect: Curing Those Uncontrollable Fits of Interaction,
in Proceedings of the Summer 1990 USENIX Conference,
Anaheim, CA, June 11-15, 1990, (http://expect.nist.gov/doc
/seminal.pdf).

[2] C. Furlani, E. Kent, H. Bloom, and C. Mclean, Automated
Manufacturing Research Facility of the National Bureau of
Standards, in Proceedings of the 1983 Summer Computer
Simulation Conference, Vancouver, BC, Canada, July 11-13,
1983.

[3] Don Libes, How to Avoid Learning Expect— or— Automating
Automating Interactive Programs, in Proceedings of the Tenth
USENIX System Administration Conference (LISA X), Chicago,
IL, September 30— October 4, 1996, (http://expect.nist.gov/doc/
autoexpect.pdf).

[4] Don Libes, Exploring Expect: A Tcl-Based Toolkit for Automat-
ing Interactive Programs, O’Reilly & Associates, Inc., Sebastopol,
CA (1995), (http://www.oreilly.com/catalog/expect).

[5] Don Libes and Sandy Ressler, Life With UNIX: A Guide for
Everyone, Prentice Hall, Englewood Cliffs, NJ (1989).

[6] Don Libes, Obfuscated C and Other Mysteries, John Wiley and
Sons, New York (1993).

356


