
FORMULAS AND TABLES FOR THE CALCULATION
OF THE INDUCTANCE OF COILS OF POLYGONAL
FORM.

By Frederick W. Grover.

ABSTRACT.

Coils wound on forms such that each ttim incloses a regular polygon are findmg
frequent use in radio circuits. Not only are they easy to construct, but support

for the wires of the coil is necessary only at the vertices of the polygon. Thus, the

amoiuit of dielectric near the wires is small, making it easy to reduce energy losses

in the dielectric to a very small amoimt.

In this paper formulas are derived for the calculation of the inductance of such

coils. The cases treated are triangular, square, hexagonal, and octagonal coils. It

is fotmd that a circular coil inclosing the same area as the polygonal coil, the length

and the number of turns being the same in both cases, has nearly the same inductance

as the polygonal coil.

This suggests the presentation of the results in such a way as to enable the radius

of the circular coil having the same inductance as the given jxjlygonal coil to be
found. Knowing this, the inductance of the polygonal coil can be found by existing

formulas and tables applicable to circular coils.

The tables here given show what is the equivalent radius of the polygonal coils

which are likely to be met in practice. Other cases can be treated by a simple in-

terpolation.
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1. INTRODUCTION AND PRELIMINARY CONSIDERATIONS.

Single-layer coils find very common use in radio circuits on

account of the simplicity of their construction and their small

capacity. However, the presence of insulating material in con-

737
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tact with the wire, or close to it, is objectionable on account of

the danger of appreciable power loss in the insulating material

which is often a far from perfect dielectric. This difficulty is

avoided if the wire be wrapped around frames of such a shape that

each turn incloses a polygon, instead of a circle, as in the usual

helical coil. With such a construction the wire is in contact with the

insulating material, or near it, only at the vertices of the polygon.

This form of winding may be extended to multilayer coils by in-

serting small pieces of thin dielectric between successive layers

of the winding at the vertices of the polygon.

Such coils possess as small a capacity as the corresponding coils

of circular tm"ns with the added advantage of elimination of energy

losses in dielectric material, and have found an extensive use in

recent years. At the Bureau of Standards a set of single-layer

coils wound on bakelite forms of such a shape that each turn has

the shape of a 12-sided polygon has been used as standards of

inductance in radio measuring circuits. It is, accordingly, a

matter of importance to be able to calculate accurately the

inductance of coils of this type from their dimensions. Other

cases frequently arise where a calculation of the inductance is

required for a coil of polygonal shape, such as, for example, the

calculation of the leakage reactance of the coils of certain forms

of core-type transformer.

The present paper has for its object not only the derivation of

formulas for the calculation of the inductance of polygonal coils,

but also to furnish tables for simplifying the calculations. These

should prove useful for the case of both single-layer and multi-

layer coils, as will be shown below.

At the beginning of this work the author was cognizant of no

published work bearing on this problem, but after the com-

pletion of the mathematical work of the paper, his attention was

called to a valuable article by Niwa,^ in which is studied the mag-

netic field of a square solenoid or single-layer coil whose turns

inclose a square area. Niwa has derived a formula for the induc-

tance of such a solenoid which can be shown to be equivalent to

the independently derived formula given as equation (3) below.

A table given by Niwa for use with his formula has been found

very useful in checking the numerical constants here given,

' Yasujiro Niwa. "On the solenoid with rectangular cross section." Research Paper No. 73 of the

Electrotechnical Laboratory of the Japanese Department of Communications. (Published in English.)

Tokyo! November, 1918.
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although the plan of calculation here adopted differs from that

of Niwa.

It is at once evident that in the limiting case of an extremely

long polygonal coil the inductance must be equal to that of a cir-

cular solenoid of the same length, provided that the turns of the

two coils inclose the same area. On the other hand, in the case

of a single wire bent to form a polygon of large area, the magnetic

field is strong only in the vicinity of the w^ire, so that the induc-

tance is dependent on the length of the wire rather than on the

area inclosed. In the limiting case, the equivalent circle of wire

would be that of equal perimeter with the polygon. For conven-

ience we may speak of the equivalent circular coils in the two cases

as equal-perimeter coils and equal-area coils, the length and number
of turns being supposed the same. The inductances of these

two circular coils can be accurately calculated, and thus upper

and lower limits, respectively, can be obtained between which

the inductance of the actual polygonal coil must lie. It is obvious

that the greater the number of sides of the polygon, the more
closely these two limits approach one another. The measured

values of the inductances of the Bureau of Standards 12-sided

coils, while on the whole pointing to the equal area assumption

as the closer approximation of the two, were not sufficient to give

a conclusive judgment on this point, since the errors of measure-

ment in some cases were comparable with the difference between

the two limiting inductances. This suggests that, where high

acctu*acy is not required, it is sufficient to calculate these two
limiting inductances. It will be shown later that the true induc-

tance lies between these limits, but much nearer the lower than the

upper limit.

Besides their usefulness in thus fixing an approximate value for

the inductance, these considerations suggest, naturally, that the

more accurate calculation of the inductance be put into the form

of the calculation of the radius of a circular solenoid having the

same inductance as the actual coil, the length and number of turns

being assumed to be the same in both cases. This procedure has

the great advantage that formulas and tables are already at hand
for the very accurate calculation of the inductance of circular

solenoids of any form whatever. In systematizing the calculation

of the inductance of polygonal coils, then, the tables of this paper

give the means of obtaining the equivalent radius of the circular

solenoid of equal inductance, and the inductance of the coil is

then calculated by the usual formvila and table applicable to a
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circular solenoid. It is necessary, however, first to develop formu-

las for calculating the inductance of the polygonal coil, and,

naturally, different formulas apply according to the number of

sides of the polygon.

2. METHOD OF SOLUTION.

The most direct method of solution is to obtain a formula for the

mutual inductance of two equal, parallel, coaxial polygons of the

number of sides in question. On integrating this twice over the

length of the coil an expression results which gives the inductance

of a cylindrical current sheet having the given polygon as its base.

This general expression may be compared with that for a circular

cylindrical current sheet, and the radius of the equivalent cir-

cular cylinder giving the same inductance may be obtained. In

an actual coil, of course, the current does not flow in a continuous

sheet but is concentrated in wires. The difference in inductance

of an actual coil and the equivalent ciurent sheet found as described

below is small and may be accurately taken into account as shown

in section lo. By carrying out this determination for coils of

different lengths, a table may be prepared from which the radius

of the equivalent circular cylinder may be taken for any desired

case. Of course, a different general formula must be derived for

each different number of polygon sides. However, by making a

study for a number of cases where the polygons have few sides,

it is possible to approximate with sufficient closeness the values

of the equivalent radius for polygons of a greater number of sides,

since we know that the limits of variation of the equivalent radius

are smaller the greater the number of sides.

The formula for the mutual inductance of two parallel squares

is well known. The integration of this expression, although long

and tedious, offers no especial difiiculties. Having derived the

general expression for the square solenoid, a study of the variation

of the equivalent radius was made, and showed that the deviations

from the radius of the equal-area circle are very small. Even for

very short square coils the equivalent radius lies much closer to

that of the equal-area circle than to that of the equal-perimeter

circle. This is true even for a single turn of wire of moderate

thickness bent into a square of, say, i foot on a side. This fact

was also noted by Niwa.

The cases of triangular, hexagonal, and octagonal coils were

also treated. Since the formulas for the mutual inductances of

equal, parallel polygons of these nimibers of sides were not

available, they had to be derived. This was done by making use of
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a basic, general formula, due to Martens,^ which gives the mutual

inductance of two straight filaments of any desired lengths, situated

in any desired relative position. The resulting expressions are all

exact, and in terms of elementary functions, but are long and

cumbrous. To integrate these expressions would in every case be

possible, but would be so arduous that it is very fortunate that a

simplification of the process suffices to give the accuracy demanded
in practice. This will be explained in a later section.

3. SINGLE-LAYER COIL OF SQUARE SECTION, SQUARE SOLENOID.

The formula for the mutual inductance of two equal, parallel,

coaxial rectangles was first given by F. E. Netunann in 1845.

For the special case of two squares it becomes

rM= 0.008 a log -^^-—^ + a log ^
a + ^,l2a^ + d^

+ -^2a^ + d' — 2^a^ + d^ + d microhenries (i)

in which a is the side of the square, and d is the distances between
their planes.

All logarithms here, and later, are Napierian unless otherwise

stated. Lengths are in centimeters and inductances in micro-

henries throughout.

Integrating this expression over the length of the coil, there is

obtained the mutual inductance between one square tvim and the

rest of the coil, and a second integration over the length of the coil

gives the self-inductance of the square solenoid. The integration

involves known integrals, or, at worst, integrals which may be

evaluated by usual devices. The work is, however, long and
tedious, and only the final result will be given. Placing n equal

to the number of tiums, and b for the length of the coil, the

inductance is

:

L=o.oo2,anH \og ^^^^ -h-log ^ ,—

_ !!^+ ,1 sin- .^^ + V^ggL + 2I tan- ^
b b ^/2{a + ^l2a'' + b^) b a

^y^^^'-%^^^^Tb^+~u~^-^)%

-\-—-
r-n
—- — -^^

—

T^ -\ microhenries. (2)
3 ab"" 3 a&2 3 aj

'Ann, der Phys., 384, p. 963; 1909.
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A more symmetrical form of writing gives:

L =0.008 anM log ^ ^ -log
, + r^ log —1=—

L b ^a + -yla' + b' b' ^ a + ^J2a'

.^logVZ+E+ ^taa-- '
h^ a b ^2a^ + b^

a I
a

I
I , ;— a'^

3 a&' 3 ab^ 3aJ

This expression was derived by the author in October, 191 7. The
formula published by Niwa in November, 191 8, may be shown to

be equivalent to formula (3) , but it appears in a less simple form-

Like all formulas for the inductance of circuits composed of

straight filaments, formula (3) is a closed expression, but in certain

cases it is poorly adapted to numerical calculations. In such cases,

series expansions give a satisfactory acctnacy with very much less

labor. Two series developments of formula (3) follow.

For short coils, where - is small, there may be used the very

convergent expression

:

L =0.008 an^ log T+ 0.72599 + --

;+•••] (4)

I b (3-2^^ b' (6^-5) b*

3 a 24 a^ 480 a*

. (23V2-14) 6" (37^2-28) b'

5376 a* 9216 a®

L =0.008 an^ log-T + o.72599H o. 007149 — — 0.007261 —^

b^ b^ 1 . .

+ 0.003446 3;^- 0.002640—3+ • • ' • microhenries,
a" ' a"

and for long coUs, where r is small,

TraWr 2f, , /-. (V2 — i)lo, I a^
L =0.004 -^i'-:,\^^s(^+r^)-'-'^\i+-^.

I tt^
,

_I_ 0^_ . "I

~i2^F* 28^6«~ • • •

"J

-. Ta^n^ r a ^ a^ ^ o,*

L=o.oo4—^1 I -0.473199^ + 0.15916^-0.02653^

+ o.oii37|s- . . •

.J.
(5)
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This last expression was also found by Niwa (p. 19 of his paper).

Formula (5) is similar in form to the Webster-Havelock formula ^

for the inductance of a long cylindrical current sheet, which with

R to denote the radius of the cylinder may be written

T-Rw r 8 i? I i?v I i?« 1
(6)

Imposing the condition that the area of the square is the same
as that of the circle; that is, irR^ =0^ =A, the formulas for the

long, square coil and the long cylindrical coil may be written,

respectively, as:

ITAn' r ^ ^ R 1 R' ^ ^R* 1 , ,L,=o.oo4-y-l 1-0.83872 ^ + --^-0.2618-^+ • •

-J
(7)

TrAn'f ^ ^^ R I R' I R* 1
Lc=o.oo4-^— I 1-0.84882^ + --^--^+ • •

-J
(8)

which show clearly that, for the same area inclosed by the turns

(the number of turns and the lengths of the coils being the same)

the long, square coil will have a slightly larger inductance than

the circular coil. That is, for the same inductance the circular

coil must have a slightly larger radius than corresponds to an

area of section equal to that of the square. To a first approxima-

tion, the area of the circular coil must be increased in the ratio

of the inductance of the square coil, as compared with that of the

circular coil as derived from equations (7) and (8) . This relation

gives, however, only a first approximation, and accurate values

have to be derived by a method of successive approximations (see

sec. 9).

4. SIMPLIFIED METHOD FOR OTHER POLYGONS.

As has already been pointed out, the expressions for the mutual

inductance of parallel polygons are long and cumbrous, and their

integration to find the inductance of a polygonal coil is quite for-

midable. A considerable simplification is, however, afforded by
the use of geometric and arithmetic mean distances. This method
may, perhaps, be most readily illustrated by applying it to the

case of the square coil; the fact that we have the solution for this

case makes it possible to check the results.

•Bull. Am. Math. Soc., 14, no. i, p. i; 1907. Phil. Mag., 15, p. 332; 1908. B. S. Sci. Papers, No. 169,

p. 121; 1912 (B. S. Bulletiu, 8, p. 121).

11392°—23 2
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The series formula (4) for the short square coil was derived by
expanding the general solution (formula (2)). It may be equally

well obtained by first expanding formula (i) for the mutual induc-

tance of parallel squares in powers of -. and then by integrating this

expression twice, term by term, over the length of the coil.

The expanded form of (i) is readily found to be

M=o.oo8a log J -0.77401 +---!^2 v_^ :^jy ^^- +••
\_ d ' '^ a 4 a^ 32 a* J

(9)

Now the integration of the term log d is equivalent to finding the

average value, log D, of the logarithms of the distances between

all the possible pairs of the points of the straight line of length h.

The distance D is called the geometric mean distance of the

points of the line h from one another. Its value is known to be

logL> = log6-|-

Likewise the integration of any of the other terms d" is

equivalent to obtaining the average of the wth power of the dis-

tance between all the possible pairs of points of the line of length
7 7 2 74

6. Thus for d we obtain-; iord"^, -r', for d*, — ; and, in general, for

d^^ the value 7 —^-7

—

—; • Making these substitutions, equa-
(2W + 1) {n + i)

° ^

tion (9) goes over immediately into equation (4) . Thus we have

avoided the integration by making use of results which have been

obtained by carrying through the integrations once for all, in the

past.

This method gives us, then, an abbreviated process for finding

the inductance of a short polygonal coil. First, obtain the

formula for the mutual inductance of the two equal, parallel,

coaxial polygons; next, expand this in powers of the ratio of the

distance between their planes and the side of the polygon; and

finally, substitute in this series for log d, d, d', etc., the known
values of the geometric and arithmetic mean distances of the line

having a length equal to the length of the coil, as shown above.

This method can not be used for obtaining the inductance of a

long polygonal coil, since in the integration for this case, the mutual
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inductance of both near and distant polygons is involved, and no
series expansion can cover both cases. For short coils, however,

the method is very valuable, not only because the integration does

not have to be made, but because the result is obtained in a con-

venient series form without the necessity of making a further

expansion. It must not be forgotten, however, that even this

method requires that the formula for the mutual inductance of

the parallel polygons be found, and then this must be expanded
in series form, both processes being sufl&ciently arduous. As has

been pointed out, for long coils the equivalent radius of the solenoid

of equal inductance differs little from that of the equal-area sole-

noid, and it is found possible to interpolate with sufficient accuracy

the small deviations from this. This point is discussed more fully

in section 9.

The following sections give the formulas resulting from the

application of the abbreviated method to the cases of triangular,

hexagonal, and octagonal coils.

5. SHORT TRIANGULAR COIL.

To obtain the formula for the mutual inductance of two equal,

parallel, coaxial, equilateral triangles, Marten's general formula

has to be adapted to the case of two straight filaments making
an angle of 60° with each other. From the resulting formula

and the well-known expression for the mutual inductance of

two parallel, straight filaments, the solution for the triangles can

be built up. If s denote the length of the side of the triangle,

and d the distance between the planes, the mutual inductance of

the two equal, parallel, coaxial triangles is given by the exact

formula

:

M = 0.006 J-

/ c2 _|_ /72 r ^

log—^ log^

—

-^ + -

+-^~{B+D-A-C) microhenries (id)
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in which the angles A, B, C, and D are completely defined, so

far as concerns their combination, by the relations

:

A =sin'
2

which can also be written, fixing the quadrant of the angle,

_ „• -1 Vi d'+s{s + ^7Td') ^., I d
.B = sin"^ -^-^ ^^

f

—

,
= cos"

2
(s + ^s' +dAJd' + ^s'

^ Jd' + ^s'

2 2

.,(-^+|v^

(loa)

D = sm.^-^L^ = cos" . V

The series expansion of formula ( 10) in powers of - is

:

M = 0.006^1 log ^-1.405465 +-^ I +^j
II d^ 2030?* 1 •

-u •
r ^2+^7—7— •••• microhenries, (11)

1 2 j-' 864 -y J
' V /

and if the geometric and arithmetic mean distances be substituted

in this last formula, as described in the preceding section, the

inductance of a short triangular coil of length h proves to be

L =o.oo6^n=' log
I +0.094535 +0.73640- -0.15277 ^

+ 0.01566 ——••• microhenries. (12)

6. HEXAGONAL COIL.

To build up the solution for two equal, parallel, coaxial hexagons

the same method was employed as for the triangles. The work
is much more complicated, it is true, and the series expansion

of this expression much more laborious. Using the same nomen-
clature as before, the resulting formula is

•
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~'°S < ,. , .n -'°8 ; + l0g —

+-^{A-B+C-D-E

+F —G +H} microhenries (13)

in which

A=sin'

which can also be written, fixing the quadrant of the angle,

d(3s + ^3s' + d')

B =sin

C=sin-^:^ = cos-*('-i^

P ^sin"
2 y i\2j+V^^+<i-= cos

(i + ^s^+ d^^ V V£ + ^,-r^(-0:

2 V3-y' + ^'(-y + V4-^' + ^')

E= cos-' - ^(V4-y' + '^' - 2^)

F = sin- ^
2

2 ^|zs^-Vd\s + ^^s^^(P)

^^ d^ + 2s(^^s + -^^?Td^^

(13a)
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which can also be written, fixing the quadrant of the angle,

I d^/3s' + d'

F = cos"^ 2
^;^s'+d'(^^S + ^3s'+d'^

2

- d' + sf^+^s' + d")

^d^+^S^(^^ + ^I^^+d')

which can also be written, fixing the quadrant of the angle,

H = sm'^ -^^—
,

^ = cos^ ^

—

/ V

Jd' +^s' ^3s' + d' yld' + ^s'(^^3s' + J==)

Expanding this in Powersoft, we find, finally.

M

M

=o.o:..[logi -0.5:5.4.^. -'-^)<-^^)

= 0.012^ log ^-0.151524 +0.39540-

i* 1
+ 0.11603 ^-0.05167 -^ + -

-J

d' , d'
^—0.05167 ^11 / V

s^ ^ ^ s* J (14)

so that for a short, hexagonal coil of length b,

r s b b"
L =0.01 2 sn^\ log T + 1 .348476 + o. 13 180 - 4- 0.01934 p

)* "1

- + • • • microhenries. (15)
b

0.00344
s*

7. OCTAGONAL COIL.

For this the method is the same as for the two preceding cases.

The formula for the mutual inductance of two, equal, parallel,

coaxial octagons, derived from Marten's general formula, is:
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M =0.01 6 . kg £±^!^!^ - lo.^+i^^^2S - VZT?^^ ^
d

V^,- i{2+^2)+^d'+S^2+^2)
I-

^s' + d' +^S
Vf lop..^ Vf log

2

2 2

-7=r .y

^. , V^'+^' (4+272)+

J

-(I + v^) log V ^;^ ;_:
Va +>y (4 +2V2) -s

J- ^d' + s' (3+2V2) +^(2 + 7^)

-y/d'+s' (3 + 2V^ -^(^ 2 + V^J

. 2 + -v^ 1+ ^log

r ^ r\ V'^' + -y' (2 + V2)+— >y n; 7^ Tn
7— +

^|d' + s' {2 + ^2) ~^s

^d' + s\3+2^^

in which

A = sin

+^\e-F +G-H-A+B-C + d\\ microhenries (16)

iich

d'^ + (l + ^|2)s\s + ^J¥+71J+^7^\
iti-i^ ^^ 1—1= r'

which can also be written, fixing the quadrant of the angle,

d^-s+^^dn^?~u+Q^~\

^ =^°^"' V5TF^r+27SlSH^V?+7l4+27J7]

d'^ + (i + V^) ^f- (2 + V2) + -yld' +s' (3 +2V^'
1 2 \_2

^d' + s' (3 + 2^2) [j(2 + V^) + ^d' + s^3 + 2^2)

B=sin
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which can also be written, fixing the quadrant of the angle,

1V2 d5=COS"

C = sin'^

d^-j2 s,
,—^ +-(2 + .

2 2

[^(2 + V2)+V^=' + -^ (3 + 272)]

V^)[^ + V^^ + ^M2 + V2)]

^/d^ + ^\3 + 2V^)['-^ + Vo?^ + ^^ (2 + V2)]V -2

which can also be written, fixing the quadrant of the angle,

c= cos- Vf 4-^^+V^^+^M2 + V2)]

^0J^ + ^'(3 + 2V2)[^+V^^ + ^M2 + V2)]

D = sin-'

^+ |(2 + V2) Vrf^ + .M3 + 2V2)

^rf^ + ^\3 + 2V2)^rf^+ ^^(3 + 2Vi)

which can also be written, fixing the quadrant of the angle,

_^d {-S {2 + ^) + ^2^d' + s' (3+2V2)]

^
Y^'+^'(3+2V2)ycf='+^K3+2Vi)

D = cos"

E =sin"'

\j(2 + ^2)+^d'+ s'(2 + ^2)\

which can also be written, fixing the quadrant of the angle,,

3 ~_L J£ = cos

J^^+^^r^(2 + V2)+Vd^ + ^ (2+V2)]

F=sin-^--i—=—^-—- =cos-(-:^^-1V2 j^+^(^+V7+j^)
1 *

/ Y

G = sm--^^ = cos •
--'^

// = sin-»

V
(-4^) _

^V2 + V^'+^'

J

|V2+V^'+^'
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For the case that the octagons are near together, this gives the

series

:

M r s d
=o.oi6j log J + 0.211976 + 0.214602 -

. d^ . n d* 1 . , . ,+ 0.105167 —2 — 0.026487—^ -1-
. . . microhenries, (17J

O
I

which gives, finally, for the short octagonal coil of length b the

formula

:

L =o.oi6sn^\ log T+ 1.711976 + 0.071534-

&' b* "1

+0.017528-^ — 0.001766—1
4-' • • microhenries. (18)

w o
I

8. INDUCTANCE OF POLYGONS OF ROUND WIRE.

As a by-product of the developments of the preceding sections

should be given the formulas for the inductance of polygons of

round wire. Such formulas have not been previously published,

but they can be readily deduced from the mutual inductance

formulas which have had to be derived in obtaining the formulas

for the parallel polygons, and from the well-known formulas for

single wires and parallel filaments.* The inductance of the poly-

gon follows from the usual methods of summation for a circuit of

T"arious elements in series. A check is afforded by substituting

in formulas (10), (13), and (16) for the mutual inductance of parallel

equal polygons the geometric and arithmetic mean distances of

the circular cross section. This method is not such a good approxi-

mation as the preceding, since it amounts to the integration over

the circular cross section of the formula for eqtuil filaments instead

of the general formula, which is not available. The two methods

agree entirely as to the logarithm and the constant term.

The formulas given below were obtained by the summation

method. They are not strictly accurate, since the mutual induc-

tance formulas used apply strictly only to filaments of negligible

cross section, instead of to finite wires of radius p. However, the

error is very small for the usual case where the dimensions of the

cross section are small compared with the side of the polygon.

*B. S. ScL Papers, No. 169, formulas 94 and 98, pp. 130-151; 1912. (B. S. Bulletin, 8, 150-isi.)
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Triangle:

L=o.oo6 ^flog ^^tV£L±£!_ Ji+^J_o_8486i2 + ^l

L =0.006 s\ log -- 1. 155465 + 7 -^7^+- •• microhenries. (19)
L P s ^ s J

Hexagon:

L = o.oi2 {log^-±^- ^/772+ o.405333 + '7]

L = 0,012 s\ log - + 0.098476-1 2+ •
' • microhenries. (20)

\_ P s /^ s J
Octagon:

L = o.oi6 .[logi±VZ±Z_^77^ + o.768829 +
f]

ts p 1 p' ~\

log - + 0.461976 H 2+" •
' microhenries. (21)

9. TABLES OF THE EQUIVALENT RADIUS OF POLYGONAL COILS.

In the preparation of the tables of the equivalent radius to be

used in the calculation of the inductance of polygonal coils, those

dimensions which are adopted as fundamental are the axial

length of the coil and the diameter of the circle circumscribed

about the polygon. The axial length h of the coil is taken as the

distance between centers of adjacent turns (pitch) multiplied by
the number of ttims. This gives the length of the equivalent

current sheet. The diameter of the circumscribed circle 2r

can readily be obtained by calipering over opposite vertices of

the polygonal coil and then by subtracting the diameter of the

wire. The rarer cases, where the polygon has an odd number of

sides, can be treated with little greater difl&culty.

Expressed in terms of these constants, the formulas (4), (12)^

(15), and (18), already given for short, polygonal coils, become:

Short triangular coil:

L = 0.006 n^s log -^ - 0.049307 +0.85032 (—)

—0.20369 (—) +0.02784 {—) microhenries. (22)
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Short sqtiare coil:

/:== 0.008 n-s
I

log ^+0.37942 +0.47140 (^-j -6.014298 f-

j

-0.02904 (^-j +0.02757 (^-) -0.04224
(^-J

+
--

J

microhenries. (23)

Short hexagonal coil:

L =0.012 n's
I

log y + 0.65533 +0.26960
(^—j +0.07736 \-\

—0.05504 (
~

)
-1 microhenries. (24)

Short octagonal coil:

L =0.016 w=.f flog ^ + 0.75143 +0.18693 (^\

+0. 1 1969 (
—

) —0.08234 (
~

)
"^ microhenries. (25)

These give very accurate values of the inductance for coils as

long as one-half the radius of the circumscribed circle, and may be

used for somewhat longer coils with a very satisfactory degree of

accuracy.

To calculate the equivalent radius of a given polygonal coil,

the inductance is obtained from one of the foregoing formulas

for the given value of — » and this is equated to the expression for

the inductance of a circular solenoid (see formula (27)) in which

everything is known except the equivalent radius and the factor

2{X
K, which is a function of the ratio -r- between the equivalent

radius a and the length of the coil. This quantity has been ac-

curately and fully tabulated in Table 21 of B. S. Sci. Papers,

No. 169. (B. S. Bulletin, 8, 224.) Assuming as a first approxi-

mation that the equivalent radius is that of the equal area circle

Co the value of K corresponding is taken from the table, and the

inductance equation may then be solved to obtain a second

approximation to the equivalent radius. A few repetitions of

this process give a very acciu-ate value of the equivalent radius.

If certain values of the equivalent radius are already known for

different values of the ratio — > a more accurate first approxi-

mation may be obtained in any further case, and the number of
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approximations very appreciably reduced. In most of the

calculations for Table i , three or fom* approximations sufficed.

The values of the equivalent radius of short coils given in

Table i were obtained by this method, and also the values for the

longer square coils. In Table i are also given the values of the

ratio — between the actual equivalent radius and the radius of the

inn
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equal area circle. A plot of these values as ordinates and -r-

as abscissas may be made to cover the region of long coils, since

we know that, for any number of sides, the value of this ratio

ir
is unity for "t- = o. Figure i shows that, from such a plot, it is

possible to interpolate values of this ratio for cases not covered

by formulas (22) to (25). (This figure is given merely to indicate

the form of the curves. Calculated values are shown by dots.)

By plotting the results in another way it is possible to obtain

by interpolation the equivalent radius ratio — for polygons for
On
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which formulas have not been derived. For this purpose it is

best to choose values of — as ordinates, and the reciprocal of the

number of sides -ry as abscissas, each curve being drawn for a con-

stant value of the ratio — Advantage is taken of the fact that

for an infinite number of sides, -^= 0, all the curves have the

ordinate unity, whatever the value of the ratio— Figure 2 gives

an idea of the form of the curves. By proper choice of the scales

accurate values may be interpolated, especially in the case of

polygons of a large number of sides. The values tabulated for a

twelve-sided polygon in Table i were thus obtained.

10. CORRECTION FOR INSULATION SPACE.

The values of the equivalent radius calculated by the preceding

formulas and given in Table i apply strictly only for a polygonal

current sheet; that is, only for a winding of infinitesimal thickness

whose ttUTis are separated one from the next by an insulating space

of negligible width. For a single-layer winding of round wire

the inductance has to be calculated by computing the correction for

the insulation space in exactly the same manner as for a single-

layer circular coil. Thus the correction formula (80) and the

constants in Tables 7 and 8 of B. S. Sci. Papers, No. 169 (B. S.

Bulletin, 8, 197), are immediately applicable, if the equivalent

radius of the polygonal coil be used in place of the radius a in this

formula. Usually this correction will be small and need not be

taken into account except for precise work.

Exactly similar considerations apply for coils woiind with wire

other than circular, and for multilayer coils. The methods and
formulas which have been developed for correcting for the actual

distribution of the current in the cross section of a multilayer

coil, as compared with a tmiform distribution of current over the

cross section in the case of a circular coil, is made by formula (93)

of B. S. Sci. Papers, No. 169. To apply this to the multilayer poly-

gonal coil, it is only necessary to find the equivalent radius of a

circular coil corresponding to the polygon which passes through

the center of the cross section. This is used for the mean radius

a in the fonnvda.
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0.4-

,

Fig. 2.

—

Variation of equivalent radius of polygonal coil with number of sides (N) of
polygon.
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In the next section are given the working formulas for polygonal

coils, and Table i, from which the equivalent radius may be

obtained. Examples are also given to illustrate the method of

making numerical calculations.

11. WORKING FORMULAS AND TABLE OF EQUIVALENT RADIL

[All dimensions are in centimeters.]

Let

N = number of sides of the polygon

;

r = radius of the circumscribed circle

;

s = length of side of the polygon

;

Di = the pitch of the winding in the layer

;

Z?2 = the distance between centers of corresponding wires in

successive layers;

n = niunber of tiums

;

Wj = number of turns in the layer;

Wj = number of layers

;

d = diameter of the bare wire

;

b = axial length of the coil

;

c = radial thickness of the coil

;

a = equivalent radius of the coil

;

Uq = radius of circle having same area as the polygon

;

Oj = radius of circle having the same perimeter as the polygon.

The following relations hold for any regular polygon

:

\r / 2 TT

2 TTsm^
a. N . IT—=— sm^.
r T N

2 r = -

ITsm^

> (26)

(o) SINGLE-LAYER POLYGONAL COIL.

Usually the diameter of the circumscribed circle will be obtained

by calipering over opposite vertices of the polygonal coil and

subtracting the diameter of the wire. Sometimes the length of

the side may be given or it may be easier to measure than 2r.

In this case 2r will be calculated from .y by equation (26)

.

The length of the equivalent polygonal current sheet is b =nDi.

With this the ratio — can at once be found, and the equivalent
2a

radius a of a cyliadrical current sheet obtained for this value by
interpolating in Table i

.
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The inductance of the equivalent cylindrical current sheet is

then found by the formula

:

Ls = 0.002 ir^n^ai-r-jK. microhenries, (27;

in which i^ is a function of the ratio -r-» and may be obtained from

the Table 21, B. S. Sci. Papers, No. 169 (B. S. Bulletin, 8, 224).

To correct for the insulation space, calculate

A L = o . 004 irna {A + B) microhenries, (28)

the constants A and B being obtained from Tables VII and VIII of

B. S. Sci. Papers, No. 169, for the given number of turns and

ratio
-jY'

The inductance of the single-layer coil is L = Ls— A L.

(i) MULTIPLE-LAYER POLYGONAL COIL.

The dimensions of the rectangular cross section of the equiva-

lent circular coil with the current uniformly distributed over the

cross section are b = niD^, c = nJD^. The mean of the radii of the

circles circumscribed around the polygons formed by the turns of

the inner and the outer layers of the coil is to be taken as r, the

radius of the circumscribed circle of the mean polygon. If the

dimensions of the cross section are not too large, in comparison

with r, the value of a obtained from Table i for the given value

of— gives very acctu-ately the mean radius of a circular coil of

rectangular cross section having the same inductance, the current

being tmiformly distributed over the rectangular cross section.

This inductance is given by either of the formulas

:

Ly, = 0.002 TT^w^a {-r-\{K —k) microhenries (29)

L„ = 0.001 n'^aP' (30)

in which the factorK is the same as in formula (2 7) , and tne quanti-

c be
ties P' and k are functions of— » and - or t» and may be taken from

2a c

the tables of B. S. Sci. Papers, No. 455 (18, p. 477). Formula (29)

is more convenient for relatively long coils, while formula 30 is

c
especially useful for short coils, vmless — is small.

2(«
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To correct for the insulation space, formula (93) of B. S. Sci.

Papers, No. 169, should be used, if the pitches in the layer and

between the layers are equal. If this is not so, sufficient acctuacy

is obtained by assuming equality of D^ and D^, and using the mean
of their values. This correction is small. This value added to

L„ gives the inductance of the multilayer coil.

(c) EXAMPLES.

ExAMPi^E I .—^To calculate the inductance of an octagonal coil of

50 turns of round wire, 0.2 cm in diameter, with a pitch of 0.4 cm.

The mean of measurements taken with calipers over opposite

vertices of the polygonal coil was 11.24 cm. Thus the diameter of

the circumscribed circle is 2r = 1 1 .04 cm.

The length of the equivalent current sheet is then h =50 X0.4 =

2 y
20 cm and accordingly -r- = 0.552. Interpolating in Table i for this

value of -r-» we find -= 0.9491, which gives for the equivalent

J. (11-04)
radms a =0.9491 = 5-24 cm.

The inductance of the polygonal current sheet is, accordingly,

the same as that of a cylindrical cmrent sheet having the same

length, same niunber of turns, and a radius of 5.24 cm. The ratio

-^ =—^ = 0.524. For this. Table 21, B. S. Sci. Papers, No. 169,

gives i^ =0.8108. Thus Li =0.002 x^ (50)^ (5.24) (0.524) (0.8108)

, • -i-v 1 • id 0.2= 109.86 microhenries. For the correction we have 7^ =— = o. s,^ D^ 0.4 ^'

and thus from Table 7, B. S. Sci. Papers, No. 169, the value

A= —0.136 is found. The value of B from Table 8, forw = 5o, is

0.319. Thus A L = o.oo47r (50) 5.24 (0.183) =0.60 microhenries.

So that, finally, the inductance of the octagonal coil is 109.26

microhenries.

Example 2 .—^The results of similar calculations, made for certain

of the 12-sided, single-layer, standard coils of the Bureau of

Standards, are given in the following tabulation. The nomen-

clature is the same as in the preceding example. In the last

column are given the results of measurements on these coils. In

general, the measured values are somewhat larger than the cal-
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culated values, but the differences are by no means regular.

Undoubtedly difficulties in obtaining the dimensions are respon-

sible for part of the difference, and for the smaller coils errors of

measvuement of the inductance are appreciable.

Coil. n 6 d Di T
b

a K i. i(calc.) i(obs.>

A 23
28
52
34
62

117

7.3
9.0
11.0
10.8
13.1
18.5

0.12
.15
.12
.15
.12
.05

0.32
.32
.212
.318
.211
.158

6.35
8.25
11.43
11.43
13.97
19.05

0.575
.546
.481
.472
.469
.486

6.21
8.07
11.17
11.17
13.66
18.62

0. 5650
.5522
.5219
.5173
.5154
.5239

62.2
123.5
632.2
272.9
1113.2
5316.

6

62.4
123.2
630.0
272.3
1109.8
5323

61.7
B 126.3
C 630.5
D 274.6
E 1115.5
F 5387

Note.—The values of he, L (calculated), and L (observed) are all in microhenries.

Example 3.—Suppose a square coil, wound in 10 layers of 10

turns each, the turn at the center of the cross section forming a
square 4 feet on a side. The wire is supposed to have a bare

diameter of i mm, and the pitch, both in the layer and between

the layers, is 5 mm. Thus the cross section of an equivalent coil,

having a uniform current distribution over the cross section, would

have the dimensions 6 = c = 5 cm.

The diameter of the circle circumscribed about the mean turn

IS 2r = 4(30-48)

sm
TT

•4^2(^0.48) =172.4 cm. Thus— =—^

—

tv vo t y / -h 2y 172.4
= 0.0290.

Table i gives, for a square coil having this value of — t the value

- = 0.8341, so that the mean radius of the circular coil of rectan-

gular cross section, having the same dimensions of cross section,

the same number of ttuns, and the same inductance, assuming

the current to be imiformly distributed over the cross section, is

a = 0.8341 (86.2) =71.9 cm.

For this case formula (29) is the more favorable. We have.

- = I and— = 2a— = 0.03477 =— » so that -7- = 28.76. Interpolat-

ing in Tables i and 2 of B. S. Sci. Papers No. 455, we find k = 0.01554

and K' = 0.09400, so that from formula (29),

L^ = o.oo27r^ (100)^ 71.9(28.76) 0.07846 = 32,026 microhenries.

By graphical interpolation from the data of Table i, B. S. Sci.

Papers, No. 455, P' is found to be about 44.58, which, sub-
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stituted in formula (30), gives Lj = 32,050 microhenries. This is

not so accurate as the preceding value but is useful as a check.

For calculating the correction for the insulation space we have

lege -^ = 1 .609 and from page 141, B. S. Sci. Papers, No. 169,

£ = 0.017. Substituting in formula (93) on page 140, same

reference, AL = o.oo47r(7i.9) 100 (1.764) = 159 microhenries. Thus

the inductance of the square coil is L = 32,026 + 159 = 32,185

microhenries.

((?) TABLE OF EQUIVALENT RADIUS.

TABLE 1.—Constants for Obtaining the Equivalent Radius of Polygonal Coils.

Triangulai coll. Square coil.

h

It 00

a

r
logioy

i

2f

a a

t

a
loglor-

1. 2861
1.1341
1.1168
1. 1052
1.0964

1.0892
1.0831
1.0779
1. 0732
1.0691

1.0654
1.0576
1. 0512
1.M60
1.0416

1.0345
1. 0292
1.0251
1.0219
1.0191

1.0169
1.0139
1.0118
1.0103
1.0090

1.0080

1.0072
1.0064
1.0056
1.0048
1.0040

1.0032
1.0024
1.0016
1.0008
1.0000

0. 8270
0. 7294
.7181
.7107
.7050

0.7004
.6965
.6931
.6901
.6875

0. 6851
.6801
.6760
.6726
.6698

0.6652
.6618
. 65915
.6571
.6553

0.6539
.6520
.6506
.6497
.6488

0.6482

0.6477
.6472
.6466
.6461
.6456

0.6451
.6446
.6440
.6435

0.6430

1.91750
.86299
. 85620
. 85169
. 84820

1.84534
.84291
. 84080
.83893
.83726

1.83575
. 83254
.82993
. 82776
.82592

1. 82298
. 82075
.81899
. 81764
.81645

1.81551
. 81423
.81333
.81269
.81213

1.81170

1.81136
.81101
. 81067
.81032
.80997

1. 80963
.80928
. 80893
. 80859
1.80824

1.1284
1. 0578
1.0500
1.0449
1.0410

1. 0378
1. 0351
1.0328
1. 0308
1.0290

1. 0274
1. 0241
1.0214
1.0191
1.0173

1.0143
1.0121
1.0104
1.0090
1.0079

1.0070
1. 0056
1.0046
1.0039
1.0034

1.0030

1.0026
1. 00225
1.0019
1.0016
1.0013

1.0010
1.0007
1.0004
1.0002
1.0000

0. 9003
.8440
.8378
.8337
.8306

0.8280
.8259
.8241
.8224
.82105

0.8198
.8171
.8149
.81315
.8117

0.8093
.8075
.8062
.8051
.8042

0. 8035
. 80235
. 80155
.8008
.8006

0.8003

0.8000
.7997
.7994
.7992
.7989

0. 7987
.7984
.7982
.7980

0. 7979

1.95440
0.01 0.01 .92636
.02 .02 . 92315
.03 .03 . 92101
.04 .04 .91937

0.05... 0.05 1. 91805
.06 .06 . 91693
.07 .07 . 91597
.08 .08 .91512
.09 .09 . 91437

0.10 0.10 I. 91370
.125 .125 .91227
.15 ,15 .91112
.175 .175 .91017
.20 .20 .90938

0.25 0.25 1. 90811
.30... .30 . 90716
,35 .35 .90642
.40 .40 .90584
.45... .45 .90536

0.50 0.50 1. 90497
.6.. .6 . 90436
.7 .7 . 90393
.8 .8 .90353
.9.. .9 .90341

1.0.. 1.0 1. 90324

2r

b

2,

b

O.9.. 0.9 1.90307

.8 .8 .90292

.7 .7 .90278

.6.. .6 .90263

.5 .5 .90250

0.4.

.

0.4 1. 90237

.3 .3 . 90225

.2.. .2 . 90214
.1 .90203

0.0.

.

0.0 . .. 1.90194
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TABLE 1.—Constants for Obtaining the Equivalent Radius of Polygonal Coils—Con.

Hexagonal coll. Octagonal coll.

b

2r

a a

r

a
log 10—

b

2,

a

00

a

T

a
log 10—

1. 0501
1. 0203
1.01715
1.0151
1.0136

1.01235
1.0113
1.0104
1.00975
1. 00905

1.0085
1.0073
1. 0064
1.0056
1.0050

1.0C40
1. 0034
1. 00285
1. 0025
1.0022

1.0020
1. 00165
1.0014
1.00125
1.0011

1.0010
1.0009
1.0008
1.0007
1.0006
1. 0005

1.0004
1. 0003
1. 0002
1.0001
1.0000

0. 9549
. 92785
.9250
.9231
.9218

0. 9206
.9197
. 91885
.9133
.9176

0.9171
.9160
.9152
.9145
.9139

0. 9131
.91245
. 9120
.9117
.9114

0.9112
.9109
.9107
.9105
.9104

0. 9103
.9102
.9101
.9100
.9099
. 90985

0.9098
.9097
.9096
.9095

0.9094

I. 97997
. 96748
.96614
.96526
. 95462

1.96408
.95363
. 96324
. 96296
.96266

J. 95243
.96191
.96151
.96118
. 96092

1.96051
. 96021
. 95999
. 95984
. 95970

I. 95962
.95947
. 95936
. 95929
. 95923

1.95918
. 95914
.95910
.95906
. 95901
. 95897

I. 95892
. 95887
.95884
. 95879

I. 95875

0. 1. 0270
1. 0100
1. 0082
1.0071
1.0063

1. 0056
1. 0051
1. 00465
1.0043
1. 0040

1. 0037
1. 0031
1. 00265
1. 0023
1. 0020

1. 0016
1.0013
1.0011
1.0009
1. 0008

1.0008
1. 00065
1. 00055
1. 00045
1.0004

1.0004
1. 00035
1. 0003
1.0003
1. 00025
1. 0002

1.00015
1.0001
1. 0001
1. 00005
1. 0000

0. 9745
.9583
. 95665
.9556
.9548

0. 9542
.9537
.9533
.9529
.9526

0. 9523
.9518
.9514
.9510
.9508

0. 9504
.9501
.9499
.9497
.9496

0.9496
.9495
.9494
.9493
.9492

0.9492
.9492
.9491
.9491
.9491
.9490

0. 9490
.9489
.9489
.9489

0. 94885

1. 98878
0.01 0.01 .98151
.02 .02 . 98075
.03 .03 . 98027
.04 .04 .97992

0.05 0.05 1.97954
.06.. .... .06 . 97941
.07 .07 .97921
.08... .03 97906
.09 .09 . 97892

0.10 0.10 I. 97879
.125.. .125 ... . 97854
.15 .15 . 97835
.175.. .175.. . 97820
.20 .20 . 97808

0.25 0.25 . . I. 97790
.30 .30 .97777
.35 .35 .97768
.40 .40 . 97759
.45.... .45 . 97754

0.50 0.50 1.97752
.6 .6 .97748
.7.. .7 .97744
.8 .8 . 97739
.9...; .9 . 97737

2r

b

2r

b

1.0... 1.0 I. 97735
0.9.

.

0.9 . 97735
.8... .8 . 97733
.7.. .7 .97733
.6.. .6 . 97731
.5. .5 . 97728

0.4 0.4 1. 97726

.3 .3 . 97724

.2 .2 .97724

1 .1 .97724

0.0 0.0 1. 97722

Twelve-sided coll. Twelve-Sided coil.

b

2r

a a

r

a
log 10

— h

2r

a

an

a

T

, a
log 10--

1.0117
1. 0039
1. 0033S
1. 0029
1. 0025

1. 0022
1. 00195
1. 0017
1.0015
1. 00135

1. 0012
1. 0010
1. 0008
1.0007
1.0006

1. 0005
1.0004
1. 00035
1.0003
1. 00025

0. 9886
.9810
.9805
.9800
. 97965

0. 9794
.9791
.9789
.9787
.9785

0. 9784
.9782
.9780
.9779
.9778

0. 9777
.9776
. 97755
.9775
. 97745

I. 99503
.99168
. 93144
.99124
. 99107

I. 99094
.99083
. 99072
.99064
. 99057

I. 99051
.99042
.99033
. 99029
. 99024

I. 99020
.99016
. 99014
. 99012
. 99010

0.50 1. 0002
1. 00015
1. 00015
1.0001
1.0001

1.0001

1. 00005
1.0000

0. 9774
. 97735
. 97735
.9773
.9773

0. 9773

0. 97725
.9772

1. 99007

0.01 .6 . 99005

.02 .7 . 99005

.03 .8 . 99003

.04 .9 . 99003

0.05

2r

b

.06

.07

.08

.09

0.10 1.0 I. 99003

.125
0.5.15 T. 99001

.175 0.0 1.98999

.20.

0.25

.30

.35

.40

.45

Washington, August 10, 1922.


