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STATICAL HYSTERESIS IN THE FLEXURE OF BARS

By G. H. Keulegan

Boltzmann's theory of elastic time effects ("elastische Nachwirkung ") does

not always account for the hysteresis observed in the deformation of an elastic

body during a closed load cycle. In fact, there are materials for which the com-
ponent of hysteresis which is due to the time effects constitutes only a small portion

of the observed hysteresis. Thus other supplementary theories are required to

account for that portion of the hysteresis which Boltzmann's theory does not

explain.

In this paper is presented an additional theory of hysteresis on the assumption
that the stress-strain relation of elastic bodies in a cyclic state for a stress cycle

ci to (ri+o-m and back to o-i, instead of being given by a straight line, is given

by a symmetrical loop when the time effects are negligible. Hysteresis arising

from this source is called statical hysteresis.

The theory is developed to show how the statical hysteresis of a rectangular

bar, one end of which is clamped and the other end loaded, depends on the length

of the bar and on the load.
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I. INTRODUCTION

It appears that Vicat was the first to note, in 1834, the phenomenon
of recovery in .the residual deformation of a stressed body, which is

generally observed subsequent to unloading. W. Weber discovered,

in 1835, what may be regarded as a converse property of the above;

that is, the phenomenon of drift in the deformation which is generally

observed in a body under constant load. 1 Boltzmann 2 brought the

i A. E. H. Love, Mathematical Theory of Elasticity, 3d ed., p. 114.

J L. Boltzmann, Wien. K. Akad. d. Wiss. Stiz., 70, 1874; or Wissenschaftliche Abhandlungen von L.

Boltzmann, 1, p. 616.

145
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two above-mentioned phenomena into genetic correlation for the first

time in 1874 by stating his well-known theory of "elastic afterwork-

ing," according to which drift and recovery are mutually dependent,

so that when one of them exists the other exists also, and hysteresis

will then necessarily be present in a deformation associated with a

closed load cycle, which lasts any finite length of time. This correla-

lation of drift, recovery, and hysteresis is effected by the introduction

of a heredity function. Once the heredity function for a given body
is known, let us say, from the study of drift, then the hysteresis can

Stress
Fig. 1.

—

Stress-strain diagram

be evaluated for any prescribed closed load cycle. For the purpose

of this present paper the author will refer to the hysteresis arising from

this source as hereditary hysteresis.

Ewing 3 in describing some experiments on steel wires in tension

gives an account of a type of hysteresis other than the hereditary

one and arising from a specific departure from Hooke's law at stresses

within the so-called proportional limit of bodies; that is, even though

the heredity function of a body may be zero, the body may still exhibit

hysteresis in a closed load cycle. In other words, the stress-strain

curve for increasing load differs from that for decreasing load and
forms with it a closed loop which is independent of the time occupied

» J. A. Ewing, Brit. Assn. Reports, p. 502; 1889.
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by the load cycle. In order that this loop may be closed, it is neces-

sary that a cyclic state be established between an upper and a lower

limit of stress. In the present paper the author will refer to the

hysteresis arising from this source as statical hysteresis. In the litera-

ture of the subject the commonly used term is "elastic hysteresis";

but this is rather an unfortunate use of the term.

Therefore, in general, hysteresis as observed will consist of two

parts—one the hereditary hysteresis and the other the statical

hysteresis. Hersey 4 states that for a particular heredity function

and for periodic deformations the hereditary hysteresis dies out

quickly; that is, by repeated application of load or by the establish-

ment of a cyclic state of regular period, the hereditary hysteresis will

be ehminated to a great degree. Now, the relative magnitudes of

these two types of hysteresis are not the same for all materials. If

one proposes to study the laws of statical hysteresis in a statical test,

and if the hereditary hysteresis is considerable, the latter can be

evaluated and subtracted from the observed hysteresis. Such a

procedure, of course, is not necessary when the observed hysteresis

consists mainly of statical hysteresis, and such is the case if the

residual deformation at zero load is small in comparison to the

maximum hysteresis observed in the closed load cycle. Warburg and

Heuse 5 have found that in a beam of hard German silver the statical

is ten times as great as the hereditary hysteresis.

From the viewpoint of Ewing it is of great importance to know
what the closed stress-strain curves are between the extremes of

stress a i and <t2 .

6 Of late some researches have been made in this

direction. Hopkinson and Williams 7 found, in subjecting a rod of

mild steel to alternating axial stresses and noting the temperature

fall along the rod, that the energy loss due to hysteresis in a closed

load cycle was proportional to the fourth power of the stress range

(<rm
4
). In making a comparison between the energy loss as obtained

from dynamic and static tests they assumed in the static tests

that the loop between+ -7? and—~ was of a lenticular shape and

therefore arrived at the energy value of the static loop by measuring

the hysteresis difference at zero stress and noting the extreme stresses.

In such a loop the maximum width is 1.5 times the average width of

the loop. Rowett, 8 by causing a steel tube to vibrate torsionally,

found that the energy loss per cycle was proportional to the third

power of the stress range. He found from a static test that in a

closed load cycle in which the maximum torsional loads were equal

* M. D. Hersey, J. Wash. Acad. Sci., 11, p. 149; 1921.

8 E. Warburg and W. Heuse, Verb., der Deut. Phy. Ges., 17; 1915.

8 o-'s being either axial or shearing stresses.

» B. Hopkinson and Q. T. Williams, London, Proc. R. Soc. 87, p. 502; 1912.

8 F. E. Rowett, London, Proc. Roy. Soc, 89, p. 528; 1913-14.
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and of opposite signs, the maximum width was twice the average

width of the hysteresis loop.

Guest and Lea 9 in their paper on the torsional deformation of mild

steel give considerable data on hysteresis. It appears from these

data that for very small loads and with closed cycles in which the

extreme loads are equal numerically but of opposite sign the maximum
hysteresis is 1.5 times the average hysteresis.

The above researches, although very illuminating, do not provide

a relation whereby, in torsion experiments, for example, the effect

on the magnitude of the hysteresis of changing the length of rod

can be predicted; or, if the hysteresis exhibited by a rod in compres-

sion is known, how the hysteresis which will be obtained with the

same rod when in flexure can be computed. The author of this

paper has made an attempt to formulate an approximate theory

of statical hysteresis, applicable to small ranges of stress within the

proportionality limit. For the experimental verification of the theory

he has chosen as an appropriate method the flexure of a rectangular

bar having one end free and the other end fixed. The limiting loads

of the cycle are thus and +Lm .

II. A THEORY OF STATICAL HYSTERESIS

Consider a cube of elastic material to be in a cyclic state between

the extremes o^ and a2 of the axial stress, the loads being applied on
any two opposite faces. The mechanism whereby the cyclic state is

established consists in the repeated variation of stress from o-x to a2 .

The criterion for the establishment of the cyclic state may be taken

as the constancy of e or strain at the extreme stresses of the cycle

(see fig. 1). Let the loop given there be the stress-strain diagram

of the material after the establishment of the cyclic state. The
lower and the upper limits of <j are ai = a c

— a & and <T2 = a c + <r& ; the

corresponding strains are ec — e a and e c + e a . a c and e c refer to the

middle point of the straight line joining the extremities of the loop.

Define am as the range of the stress variation; then 10

Cm =
I

°"l
—

°"2
I

= 2<7 a

Let ex be the value of e for increasing a and e2 for decreasing <r.

Define

and

Vl — el~~ € c>

*72
= €2

— € c>

S = cr— a c .

» J. J. Quest and F. C. Lea, London Proc. Roy. Soc, 93, p. 313; 1916-17.

i° <rm and o-a are positive quantities.
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Then if there is no hereditary hysteresis

Vi=fi(<rc, <?&, s)

and
l?2=\/2 0c, O-a, S).

If it is assumed that the hysteresis loop has central symmetry about

(o- , e c ) as a center when o-i and <r2 are far within the so-called propor-

tional limit of the material, then

/l(*c, O-a, "S)+/2(<7c, (T &,-S)=0 (1)

We Know that approximately

Vl=0=V2=0=KS

where k is a constant. Hence, it is permissible to expand 77* in an

ascending power series, as follows

:

>?i=/i(o-c, * & , s) = c + as + l3s
2 + ys3 +-- (2)

and according to (1)

M^o <r a >
— «)= -C-aS-fis2— ys 3

-\

Hence

rj2=M<*c> <r & , s)=-c +aS-Ps2+ ys3 +'— (3)

It will be further assumed that when <jx and a2 are far within the

so-called proportional limit of the material powers of s higher than

the second are negligible. 11 Now, when s = <r a , m ==
V2 = ^&', this re-

quires that

c=-^ a
2

(4)

Therefore, finally,

in = as + ^(s2-a &
2
)

and (5)

7)2 = aS-&{s2-G 2
)

Denote by e ff the difference e2— e
1 ;

hence

e. = 2/3(<7 a
2-s2

) (6)

The energy loss per unit volume 8E<?
f
due to the statical hysteresis

for the load variation from 0- to o-c+ ora and back to <r, is

eada= I e ffd(s + a c)= I e„
u Js+<r c J

3
2^ U 3a a^J

da

(7)

11 It is conceivable that there may be materials for which £ vanishes or 7s 3 is far more predominant than

|SsJ . Such materials are not considered here.
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The energy loss per unit volume for the load variation from

<T\ = <rc — (7 a to (72 = crc -f- o" a and back to <?i
= crc

— o- a is

3 3 3
(o)

Accordingly, energy loss per unit volume due to statical hysteresis

depends merely on the range of the stress variation. To illustrate,

the energy loss in the two cycles, one from to + <7m and back to

and the other from to — am and back to 0, are the same.

It is evident that the determination of fi, which we shall call the

statical hysteresis modulus, must be made experimentally. This

done, the hysteresis can be evaluated for any closed load cycle for

any form of body if the stress distribution is known.

Every uniform axial stress can be considered as a superposition

of a uniform shearing stress plus a proportionate hydrostatic pressure.

Since no hysteresis phenomena are known to be associated with

hydrostatic pressure within the stresses corresponding to the limits

of axial and shearing stresses which the material can withstand

without severe deformation, the laws of this hysteresis loss must be

the same whether the stresses are expressed as axial stresses or

shearing stresses, neglecting the compensating hydrostatic pressure.

However, for the actual value of the constant /? it is necessary to

specify whether the stress is axial or shearing. These constants

will necessarily have the following relation12

/3shear = -Spaxial

where K is a universal constant.

III. APPLICATION OF THE THEORY TO THE FLEXURE OF
BARS

We next consider a bar of rectangular cross section, of width b,

of thickness 2a, and of length Z. One end of the bar is fixed ; the other

end carries a load L. We adopt a system of rectangular axes (x-z),

wherein the x axis coincides with the central axis of the bar, the z

axis is in the plane of flexure, and the origin is at the fixed end of the

bar. (See fig. 2.)

For a point P (x, z) the stress a at the point corresponding to a

load L is
13

<r=^ (9)

« This was indicated to the author by Dr. L. B. Tuckerman.
m Applied Mechanics, Fuller and Johnston, 2, p. 183.



Keulegan] Hysteresis in the Flexure of Bars 151

provided the bar is sufficiently long and thin, so that we can apply

the simplification of the Euler-Bernoulli theory (that is, neglect local

concentrations of stress and anticlastic curvature). The expression

for / in (5) is

If the maximum load of the load cycle is Lm , the maximum stress

Cm is

0"m :

XZJbm
(10)

P(*,0

L*

Fig. 2.

—

Method of deflecting bar

To calculate according to equation (7) the energy loss per unit

volume, bE^, at P when the load is increased from L to Lm and then

brought back to Lmj we shall first note that in the present case

and (ID

as o- c
— c a = 0. Thus from (9), (10), and (11) the expression for 52?L

becomes after performing the necessary substitutions in equation (7)

1 73 ?3 7 3 7-3?3 7- 3T T2 T3 -|

MS1.-3P p *P p [_2im
2 3im3j

Hence, the energy loss in the whole bar EL is

(12)

EL= fjy^-m¥[&-i?]nw^ (i3>
9 T 3

9634°—26
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xz
z
zdxdz

Eo=B- 6H L2W-3Lj}
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(14)

(15)

When we put Z = in (15), we get the energy loss H due to the

hysteresis in the whole bar for the load cycle to Lm and back to 0.

We have from (14)
Q R

(16)
77— __E_74r 3_/nr74T 3

64 b
2a5

~

Thus, according to (16), the hysteresis loss in a closed load cycle is

proportional to the third power of the maximum load of the cycle

and to the fourth power of the length of the bar. The experimental

test of this deduction is described later in this paper.

Fig. 3.

Load on Bar

Load-deflection curve of bar

Next, let us consider the width h of the hysteresis loop of the bar

at load L. h is the difference in deflection of the free end of the bar

for a given load L for increasing and decreasing loads. Then i£L ,

the shaded area in Figure 3, will be given by the expression

E^= C"'hdL (17)

Now, Eh can be also written after (15) as an integral of the form

E^^H[hS\ dL (18)
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Equating (17) and (18) we have the equation

J>H>fe-:£> (19)

As equation (19) holds for any value of L

then, necessarily

that is, the variation of hysteresis width is parabolic. If h & is the

average width of the hysteresis loop, then

= H (21)

so that instead of (16) we may write

Now, according to equation (22), the law of variation of width in

hysteresis loops is independent of the length of the bar and of the

maximum load of the cycle, where by the law of variation of width

in hysteresis loops we understand the relation between the ratios

j- and y~ * This deduction will be also tested by experiment.
"'a -Lira.

IV. EXPERIMENTS AND DATA

1. DESCRIPTION OF BAR AND EXPERIMENTS (see fig. 4)

The straight portion of one of the prongs of a tuning fork made of

Armco iron was used as a bar. The thickness and the width of the

prong used were 0.830 and 1.395 cm, respectively. The chemical

composition and the past history of the material are not known.
The prong P was clamped near its base in a holder E firmly

attached to a heavy base plate B. On the free end E of the prong

was mounted a rectangular collar R, which carries the load L. The
deflection of the free end E was measured by a micrometer screw M.
The cradle of the screw was fixed with respect to the base B by a

heavy rigid arm A and the vertical support S. The micrometer was
insulated from the remaining parts of the apparatus, so that the

contact between the micrometer and the bar could be determined

electrically. The contact points consisted of a gold-plated spherical

cup soldered to the collar and a gold-plated cylindrical cup soldered

to the micrometer head. The graduated drum D mounted on the
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head was subdivided into 500 divisions, tenths of which could be

estimated without difficulty. Since a complete revolution of the

drum was equivalent to a vertical motion of the micrometer head of

0.5 mm, a motion of 0.0001 mm could be detected.

To study the possibility of errors arising from hysteresis in the

measuring device tests were carried out in the following manner.

Contact was established in the undisturbed state of the bar and five

readings were taken. Next, the micrometer head was separated from

the bar by a distance of 0.1 mm, was brought back to contact, and

five more readings were taken. The difference of the averages of

the contact readings before and after the separation did not exceed

0.0002 mm. The same procedure was carried out for separations

amounting to 0.2, 0.3, 0.5, 1.0, and 1.5 mm. The average differ-

ence for two consecutive readings was never more than 0.0002 mm;
that is, the measuring device had no hysteresis which was measurable.

BE
I"

i i i i i i
tin*

CJ

C?PE

I

n

.a.

Fig. 4.

—

Apparatus for measuring deflection

Since in measuring the width of hysteresis loop only very small

portions of the thread of the micrometer screw were involved for any
one point, the micrometer was not calibrated.

Care was taken to insure that the material of the bar was in the

cyclic state before hysteresis observations were made during the

load cycles. To achieve this, the maximum load for a specified cycle

was repeatedly applied to the bar until the residual deflection at

zero load became constant or vanished. In the rested state of the

bar the initial residual deflection is a measurable quantity,. but it

soon becomes reduced in value or becomes nil.

The cycle starts from zero, and the load is increased in equal steps

(generally) to the maximum load Lm , and is then decreased by the

same increments, but in the reverse order, to zero load. Each time

an increment of load was applied or removed three separate readings

were taken. Each load cycle was run four times, generally in suc-

cession. Apparently the rate at which the load cycles were carried

out had no definite effect on the results. On the average, the time
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that transpired between changes of load was two minutes. Experi-

ments were conducted at room temperature (21 to 29° C.) in a base-

ment laboratory. The temperature change during each test was
nevermore than 0.2° C. and quite frequently it was 0.1° C. or less.

Hysteresis measurements were made with four different lengths of

the bar, denoted later by the letters l1} Z2 , Z3 , and Z4 . The results of

the tests are given in Tables 1 to 4. In column 3 are given the averages

of the deflections for the four separate load cycles corresponding to the

loads in column 2 for increasing loads. In column 4 are given the

averages of the differences between the readings for ascending and

descending loads for the four load cycles. On the whole, the corre-

spondence of the observed individual maximum measurement with

the average values given in column 4 is within 10 per cent of the

averages.

2. DETERMINATION OF LENGTHS OF BAR IN FLEXURE

On account of the uncertainty of the clamping, the following for-

mula u was used for determining the equivalent lengths of the bar

in flexure:

l
z =3dEI (23)

where Z is the length of the bar, d is the deflection at the free end of

the bar under unit load, E is Young's modulus of elasticity, and / is

the moment of inertia of the cross section. In order to determine

I accurately, it was necessary to measure E experimentally.

To determine E, the prong used in the deflection measurements

was placed on two knife-edges, separated by a distance Z', and the

deflection d' of the midpoint of the bar between the knife-edges was
observed under unit load. Three different values of V chosen were

V = 28.0, 26.0, and 24.0 cm. The corresponding deflections d' under

1 kg. load were <Z' = 0.0153, 0.0122, and 0.0096 mm. The formula 14

for determining E is

1 7'3

which gives for the modulus

£"=20.04 X 10 11 dynes per square centimeter

It appears from Tables 1, 2, 3, and 4 that the deflection d of the

bar for the lengths, Z= Zi, Z2 , Z3 , and Z4 under 1 kg load are d = 0.487,

0.300, 0.109, and 0.073 mm. We find from equation (23) for the

equivalent lengths of the bar in flexure the following values: Zx =• 27.09

cm, Z2 = 23.05 cm, Z3 = 16.45 cm, Z4 = 14.39 cm.

" See footnote 13, p. 150.
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V. DISCUSSION OF DATA

1. ENERGY LOSS DUE TO HYSTERESIS

The data in Tables 1, 2, 3, and 4 indicate that the residual deflec-

tions at zero load in the various cycles considered there are small in

comparison with the maximum hysteresis observed ; consequently the

data give mainly the statical hysteresis. Hence the data as they

stand can be used to test the various deductions made in connection

with equations (16) and (22).

To start with equation (16), we first evaluate from the data the

energy lost, H. In Figure 5 are plotted, for example, the hysteresis

too

p.
o
o

o

1 2

Load in Kilograms, L

Fig. 5.

—

Width of hysteresis loop in closed load cycles

(Drawn for 1 = 27.09 cm)

values against the load from Table 1. The areas under the curves

in Figure 5 are proportional to the energy lost in the cycles corre-

sponding to the curves. Table 5 is prepared from such plots. In

it are given the lengths of the bar in flexure, the maximum loads of

the cycles, the energy lost owing to hysteresis, the average values of

hysteresis in a cycle, the ratio 7^-3 » and the values of the maximum

stress in the bar.
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where (16a)

New, write equation (16) as follows:

H=CLJ, (1)

C= CZK (2)j

Table 5 shows that the average values of C, obtained from the

observations, are

(7=38.6 ergs per kg3 when Zj = 27.09 cm
0=22.0 ergs per kg3 when Zg = 23.05 cm
C= 5.4 ergs per kg3 when ^ = 16.45 cm
G= 3.7 ergs per kg3 when Z4 = 14.39 cm

Substituting these values in (16a 2), the following values of Ci are

obtained

:

Ci = 0.73 X 10"4 ergs per cm 4 per kg 3 when Zx = 27.09 cm
d = .78 X 10"4 ergs per cm 4 per kg 3 when k = 23.05 cm
Ci = .74 X 10"4 ergs per cm 4 per kg 3 when Z3 =16.45 cm
Ci = .86 X 10"4 ergs per cm 4 per kg 3 when Z4= 14.39 cm

Thus, Ci appears to be a constant having the average value

0.78 X 10~4
. In Figure 6 curves are plotted from the equation

#=0.78XlO- 4 Zm3
Z
4 (16b)

In this figure the observed values of H are represented by circles.

Evidently the experimental data conform with the theoretical

deductions as to the dependence of energy loss of hysteresis (statical)

upon the maximum load and the length of bar.

Fig. 6.-

2 3 4 5 6 7 8

Maximum Loaa of Cycle in Kilograms, Lm

-Energy loss in closed load cycles for various lengths of bar
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2. LAW OF VARIATION OF WIDTH IN HYSTERESIS LOOPS

In order to see how closely the observed values of hysteresis

width conform with the theoretical law of

the ratios r- were determined for certain values of y- in all the load

cycles for the length of bar 1 = 27.09 cm. For a given f- and Lm , h

is read from Figure 5, h & are given in Table 5. The values of the

ratio j- as observed and as calculated by the expression (22a)

are given in Table 6. Considering the errors inherent in the

experiments, the correspondence between the observed and cal-

culated values of t- as shown by Table 6 is quite satisfactory. The

expression (22a) also states that the maximum width of the hysteresis

loop is 1.5 times as great as the average width.

VI. DETERMINATION OF THE STATICAL HYSTERESIS
MODULUS

Introducing the constants of the bars, b = 1.395 cm and 2a = 0.830

cm into the formula

ft =
64 6V (16)

we find that

= 0. 171 d cm 7

The experimental determination of d gave

Ci = 0.78 X 10~4 ergs per cm 4 per kg 3

Therefore

(3 = 1 .33 X 10"5 ergs cm 3 per kg 3

In the tneory it was found that the loss of energy in a cube, the

two opposite faces of which are subjected to a stress difference, is

given by the expression

tf = l/3/W (8a)

In the bar used in these tests, therefore, the energy loss is, if am is

expressed in kilograms per square centimeter,

#0=1/3 X 1.33 X 10"5 <rj ergs per cm 3
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Table 1.

—

Deflection and width of hysteresis loop of Armco iron bar length= h= 27 .09
cm {calculated)

Maximum Width of Maximum Width of

load in Load Deflection hysteresis load in Load Deflection hysteresis

kilograms loop kilograms loop

kg mm mm ig mm mm
( 0.000 0.0000 0.0000 ( 0.000 0.0000 0.0000

.227 .1092 .0006 .454 .2204 .0020

.454 .2202 .0009 .907 .4423 .0029

1.361 .680
.907

.3317

.4423
.0011
.0009

2.268 1.137
1.361

.5522

.6640
.0031
.0030

1.137 .5520 .0005 1.814 .8865 .0017

I 1. 361 .6634 .0000 [ 2.268 1.1084 .0000

f .000 .0000 .0000 { .000 .0000 .0000
.227 .1096 .0009 .454 .2204 .0027
.454 .2207 .0014 .907 .4424 .0041
680 3323 .0017 2.722 _ 1.361 6636 0045

1.814 .907
1.137

.4429

.5527
.0016
.0017

1.814
2.268

.8870
1.1090

.0039

.0025
1.361 .6640 .0013 2.722 1. 3346 .0000
1.588 .7757 .0009

[ 1. 814 .8867 .0000 f .000
.454

.0000

.2209
.0003
.0039

t .000 .0000 .0002 .907 .4427 .0061
.454 .2209 .0031 1.361 .6644 .0077
907 .4427 .0047 3.629 ._. 1.814 .8872 .0079

3.175
1.361 .6645

.8874
.0059
.0055

2.268
2.722

1.1084
1.3326

.0073
1. 814 . 0058
2.268 1.1096 .0046 3.175 1.5558 .0031
2.722 1. 3325 .0028 3.629 1.7808 .0000

I
3. 175 1.5543 .0000

Table 2.- Deflection and width of hysteresis loop of Armco iron bar length «=Z2= 23.05
cm (calculated)

Maximum Width of Maximum Width of

load in Load Deflection hysteresis load in Load Deflection hysteresis
kilograms loop kilograms loop

kg mm mm kg 771771 771771

f 0.000 0.0000 0.0000 ( 0.000 0.0000 0.0002
.427 .1284 .0009 .427 .1294 .0016

2.241
.880 .2621 .0014 .880 .2630 .0024

1.334 .3957 .0014 2.695 1. 334 .3963 .0028
1.728 .5324 .0008 1.728 .5330 .0026
2.241 .6688 .0000 2.241

2.695
.6694
.8018

.0016

.0000

f
.000 .0000 .0000
.427 .1292 .0015 [ .000 .0000 .0004
.880 .2628 .0022 .427 .1297 .0020

3.145 _
1.334 .3959 .0030 .880 .2623 .0038
1. 728 .5325 .0031 1.334 .3972 .0041
2.241
2.695

.6691

.8021
.0025
.0016

3.602 1.728
2.241

.5336

.6701
.0048
.0041

I 3. 145 .9366 .0000 2.695
3.145

.8035

.9380
.0031
.0018

.000 .0000 .0006 3.602 1. 0751 .0000

.880 .2632 .0047

4.509
1.728 .5344 .0064
2.695 . 8041 .0063
3.602 1. 0761 .0043

I 4.509 1.3451 .0000
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Table 3.

—

Deflection and width of hysteresis loop of Armco iron bar length= lz*

16.45 cm (calculated)

Maximum Width of Maximum Width of

load in Load Deflection hysteresis load in Load Deflection hysteresis
kilograms loop kilograms loop

kg mm mm kg mm mm
0.000 0.0000 0.0001 ( 0.000 0.0000 0.0001
.880 .0943 .0012 .880 .0944 .0014

4.509 1.728
2.695

.1923

.2913
.0019
.0019 5.416

1.728
2.695

.1919

.2911
.0024
.0028

3.602 .3907 .0012 3.602 .3906 .0022

I 4.509 .4895 .0000 4.509
5. 416

.4887

.5861
.0014
.0000

( .000 .0000 .0002
.880 .0944 .0018 f .000 .0000 .0003
1.728 .1922 .0028 .880 .0944 .0019

6.323
1 2. 695 .2914 .0034 1.728 .1922 .0032

3.602 . 3907 .0032 2. 695 . 2913 .0041
4.509 .4886 .0028 7.231 - 3.602 .3905 .0043
5.416 .5860 .0018 4.509 .4885 .0040

{ 6.323 .6844 .0000 5.416
6.323

.5858

.6841
.0032
.0019

( .000 .0000 .0005 7.231 .7820 .0000
1.334 .1430 .0029

8.138
2. 695 .2916 .0046
4.055 .4398 .0053
5.416 .5866 .0045
6.877 .7335 .0028

I 8.138 .8826 .0000

Table 4.

—

Deflection and width of hysteresis loop of Armco iron bar length— U-

14-39 cm (calculated)

Maximum Width of Maximum Width of
load in Load Deflection hysteresis load in Load Deflection hysteresis

kilograms loop kilograms loop

kg mm mm kg mm mm
( 0.000 0.0000 0.0000 ( 0.000 0.0000 0.0000

.880 .0636 .0008 .880 .0640 .0011
1.728 .1290 .0013 1.728 .1300 .0019

5.416 ._ 2.695 .1935 .0014 6.323 2.695 .1946 .0021
3.602 .2587 .0014 3.602 .2593 .0022
4.509 .3246 .0009 4.509 .3255 .0017

[ 5. 416 .3908 .0000 5.416
6.323

.3908

.4570
.0011
.0000

.000 .0000 .0001

.880 .0644 .0016 .000 .0000 .0002
1.728 .1306 .0029 1.334 .0982 .0024
2.695 .1961 .0033 2.695 .1972 .0038

7.231 3.602
4.509

.2617

.3267
.0034
.0031

9 499 4.055
5.416

.2953
3930

.0044

.0046
5.416 .3924 .0025 6.877 .4924 .0042
6.323 .4589 .0014 8.138 .5932 .0022

{ 7.231 .5251 .0000 I 9.499 .6925 .0000

f .000 .0000 .0000
1.334 .0984 .0022
2.695 .1968 .0034

8.138 „ 4.055
5.416

.2953

.3933
.0037
.0033

6.877 .4929 .0022

I 8.138 .5934 .0000
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Table 5.

—

Energy loss of hysteresis in Armco iron bar

Length of bar in centimeters

Maximum
load of

load cycles
or Lm

Energy
loss of

hysteresis
or-ff

H
Lm*

Average
value of

Llj
C

Average
width of

hysteresis
loop or

Maximum
stress

l\ or 27.09___.

leg

f
1.36
1.81
2.27
2.72
3.18
3.63

f 2.24
2.70

\ 3.14
3.60

{ 4.51

f 4.51
5.42

\ 6.32
7.23

[ 8.14

f 5.42
6.32

\ 7.23
8.14

1 9.50

ergs

91
216
466
831

1,218
1,908

207
511
653

1,035
2,050

596
963

1,461
2,062
2,810

532
922

1,630
2,090
3,000

36.2
36.5
39.7
41.4
37.9
39.8

18.4
26.0
21.1
22.2
22.3

6.50
6.05
5.80
5.47
5.20

3.34
3.65
4.34
3.87
3.50

38.6

22.0

I 5.4

I 3.7

mm
[ 7X10-4

12X10-4
21X10-4
31X10-4
39X10-4

, 53X10-4

f 9X10-4
19X10-4

\ 21X10-4
29X10-4

I 46X10-4

f 13X10-4
18X10-4

{ 24X10-4
29X10-4

{ 35X10-4

10X10-4
15X10-4

• 23X10-4
26X10-4
32X10-4

kg/mm*
2.40
3.06
3.84

h or 2305 _.

4.60
5.38
6.14

3.22
3.89
4.52

lt or 16.45

5.18
6.50

4.63
5.56
6.48

U or 14.39 —

7.43
8.35

4.97
5.68
6.50
7.33
8.55

Table 6.- -Ratio of width of hysteresis loop to average width for Armco iron bar,

1=27.09 cm

_i

h

.Lm =1.36 kg jLm=1.81 kg im=2.27 kg £m =2.72 kg £m =3.18 kg im =3.63 kg Theoretical

0.0 0.00
.57

1.00

. 1.27
• 1.40

1.43

1.40
1.26
.84
.63
.00

0.00
.62
1.00
1.25
1.37
1.42

1.37
1.23
.96
.58
.00

0.00
.57
.95

1.22
1.38
1.44

1.39
1.21
.97
.59
.00

0.00
.61
.97

1.24
1.39
1.44

L39
1.23
.98
.61
.00

0.05
.56
.99
1.24
1.43
1.49

1.42
1.26
.91
.54
.00

0.06
.55
.98

1.29
1.44
1.49

1.41
1.25
.96
.52
.00

0.00
.] .54
.2 .96
.3 1.26
.4. 1.44
.5 1.50

.6 1.44

.7 1.26

.8 .96

.9 .54
1.0 .00
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VII. SUMMARY

1. When an elastic body is subjected to cyclic variations of axial

stress a between the extremes u = <ji and c=o-2 , o"i <<r2i the difference

eff of the magnitudes of the strain for increasing and decreasing a is

given by
ea = 2(3(a &

2-s2
)

where <r a =l/2 (<r2
— <ri), s=(t—(t 1

— a & and /3 is the statical hysteresis

modulus.

2. Loss of energy E per unit volume due to statical hysteresis

during a cyclic variation of load from di to <j2 and back to <ri is given

by

E =1(3<tJ

where am = 2a a = a2 — a x .

3. Loss of energy due to statical hysteresis in the flexure of a bar

of length Z, one end of which is clamped and the other end deflected

under a load L, during the load variation from to Lm and back to

0, is proportional to Lmz and Z
4

.

4. The ratio of the width of hysteresis loop to the average width is

independent of the length of the bar and is given by the expression

£-(
_L\ J,

where h is the difference in the deflection of the bar for increasing and
decreasing Z, h& is the average value of h in the hysteresis loop, and
Lm is the maximum value of the load in the load cycle.

5. Deductions (2), (3), and (4) are derived from (1). Deductions

(3) and (4) have been verified for a rectangular bar of Armco iron.

6. If <rm is measured in kilograms per square centimeters and
centimeter is taken as a unit of length the value of /3, for Armco iron

is found to be
/3= 1.33 X 10"5 ergs cm3 per kg3

In conclusion the author wishes to thank Drs. L. J. Briggs and
L. B. Tuckerman for their valuable criticisms and suggestions.

Washington January 13, 1926.




