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A FABRIC TENSION METER FOR USE ON AIRCRAFT

By L. B. Tuckerman, G. H. Keulegan, and H. N. Eaton

ABSTRACT

If the fabric coverings of airplane wings or of airships do not have the proper

tautness, the operation of the craft will not be satisfactory. In the case of

airplane wings the fabric cover must be tight enough to prevent flapping but

can exceed this minimum by considerable amounts without affecting the opera-

tion of the airplane. The cover of a rigid airship must also be tight enough to

prevent excessive flapping, but it is not safe to tighten it too much because of the

strain thus placed upon the metal framework.

Because of the importance of the proper adjustment of the tautness of the

fabric cover of the airships Shenandoah and Los Angeles, the Bureau of Standards

has constructed for the Bureau of Aeronautics of the Navy Department a con-

venient instrument for measuring the tautness of fabrics. The instrument con-

sists of an open chamber having an elliptical cross section and provided with a

pressure gauge and deflection meter. Around its perimeter is a hollow rim

perforated with small holes, by means of which the production of a partial vacuum
in the rim causes the instrument to adhere firmly to the fabric and so isolates

the portion of the fabric lying within the suction rim.

Once isolated, the fabric is deflected inward by means of a small suction until

its deflection reaches a certain fixed value, when the operator holds the suction

constant and reads the suction gauge. Several such readings are taken with the

instrument placed at the same point on the fabric, but with its major axis

rotated through successive 45 or 90° angles, as the case may require. A nomo-
gram is used to convert the suction readings into tensions.

The theory of the instrument is developed for the various cases which may
arise in use, including the measurement of tensions in single-ply fabric, in which

the directions of the principal stresses are known, and in multiple-ply fabric, the

directions of the principal stresses being unknown initially. A method is developed

for measuring the tensions when the "modulus" of the fabric is not known.
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I. INTRODUCTION

The fabric tension meter described in this paper was developed at

the Bureau of Standards in 1923 for the Bureau of Aeronautics of

the United States Navy Department. The instrument (see figs. 1

and 2) was designed to measure the stresses existing in the cover

fabrics of rigid airships and in the envelopes of nonrigid and semi-

rigid airships. The fundamental principle on which this instrument

is based is this: If a portion of the fabric is deflected by a hydro-

static pressure, a relation exists between this pressure, the tensions

in the fabric, and the principal radii of curvature at the center of

the deflected portion of the fabric. A single relation of this kind is

not sufficient to determine the unknown stresses in two given per-

pendicular directions. However, if the boundary conditions are

changed, a sufficient number of these relations can be obtained and

the stresses can be determined. The theory developed here shows

how this can be done by applying hydrostatic pressure to a portion

of the fabric having an elliptical contour, provided the changes in

strain when the fabric is deflected are so small that they may be

assumed to be either negligible or proportional to the change in

stress. It will be shown that where, as in a single-ply fabric, the

directions of the principal stresses are known, four pressure' deter-

minations are, in general, necessary to determine the stresses at any
point. If, in addition, the change of stress produced by the pressure

applied is negligible or if the stress-strain relations of the fabric are

known, one-half this number—two observations—are sufficient.

Where, as in a three-ply fabric, the directions of principal stress

are not known, six readings are, in general, necessary, but eight

readings are more convenient. Here, also, if the change of 'stress

produced by the pressure applied is negligible or if the stress-strain

relations of the fabric are known, one-half this number—three (or

more conveniently four) observations—suffice to determine the

principal stresses, both in magnitude and direction.

II. PRINCIPLE OF THE INSTRUMENT

Fabric in tension may be regarded as a particular case of a deformed

thin shell in which all the nexural and torsional moments are negli-

gible. Hence, the derivation of the equilibrium condition of an

elementary rectangular portion of the fabric will involve only the

stresses exerted by the rest of the fabric on the edges of the rectangular

portion and the applied hydrostatic pressure, if any exists (see fig. 3)

.
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Let

d\ and dl
2
=lengths of the edges of an elementary and very

nearly rectangular portion of the fabric,

R
x
and R2

=radii of curvature of the fabric in the directions of

d\ and dl
2 , respectively,

dd
1
and dd

2
^angles subtended by d\ and dl2 , respectively,

S1
and S2 =stresses parallel to d

T
l
1
and dl

2 , respectively, and P =
hydrostatic pressure.

Fig. 3.

—

Stresses acting on an elementary rectangle

of a fabric

It is obvious that, for equilibrium.

Pd\dl
2 =2St

dl
2
sin ~k+ 2S2 d\ sin^

Now, assuming that sin
-^

i = -^> and remembering that RidOi=dli

for i=l and 2, there results

R
1
R

2

(D
:

Equation (1) suggests that in order to evaluate the stresses St
and

#2
in any two directions perpendicular to each other it will be sufficient

1 This relation is well known. An equivalent derivation may be found in N. A. C. A. Tech. Rep. No.

16, p. 207; 1917 Rudolf Haas and Alexander Dietzins: The Stretching of the Fabric and the Deformation

of the Envelope in Nonrigid Balloons.
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(a) to isolate a portion of the fabric of a given shape (that is, elliptical,

rectangular, etc.) from the rest of the fabric, apply to it a pressure

(in practice a suction), P/, and to determine the radii of curvature

R/ and R2 of the fabric at the center of the isolated portion in the

direction of S
±
and S2 , and (b) to repeat this process, using a differently

shaped (or differently oriented) portion of the fabric, but with the

same central point, for a pressure P" so as to obtain a second pair of

radii of curvature R^' and R2
" in the same directions as the first two.

The equations then are

R2
R^P' -=8

X
R

2 -\-SiRx /9 %

P //p rr-prr op// ! CT P // ^ '
ri

2
ri

1
r =o

1
xi2 -fto 2

it
1

In order that (2) shall have a solution, the determinant of the coef-

ficients of S
t
and S2

in (2) must not vanish. An especially simple

case where this determinant does not vanish is: R/ =R2
"

{ = R^ and
R2 =Ri" ( = R2). The most suitable way of fulfilling this condition

consists in using an elliptical portion of the fabric and in observing

the pressures P' and P" for a given fixed deflection with the minor

axis of the contour first along S
±
and then along S2 , or vice versa.

Equation (2) then simplifies into

R
1
R2
P /

=/S
r

1
i?

2
JrS2R1

, ,

R
t
R2
P = S^! -\-S

2
R2

In equations (2) and (3) it was tacitly assumed that the stresses

S
1
and #2

existing in the fabric before the tension meter was applied

are not changed by the deflection of the fabric into the chamber of

the instrument. The symmetrical form of equation (3) is a direct

consequence of this assumption. However, the stresses S
t
and S

2

are actually increased in the portion of the fabric lying within the

rim of the instrument, for when the suction rim grips the fabric

it isolates that portion of the fabric lying within the rim. Hence,

when suction is applied to the chamber of the meter, thus deflecting

the fabric inward, the stretching caused thereby occurs only in the

isolated portion of the fabric, increasing the stresses there. How-
ever, it will be shown that the increase in these stresses can be taken

into account by the method to be explained, and that a system of

equations essentially equivalent to (3) will result.

III. EQUATION OF SURFACE WITH ELLIPTICAL CONTOUR

Consider a portion of the fabric (see fig. 4) which is isolated by the

elliptical contour of the tension meter and is deflected under a differ-

ential pressure, P. Assume that the fabric is uniformly stressed

initially; that is, along a straight line the stress normal to the line

is constant and varies only when the direction of the line is changed.
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Choose the coordinate axes OX and OY at the center of the ellipse so

as to have the equation of the inner rim of the tension meter in the

form

t+t-i (4)

where 2a and 2b are, respectively, the major and minor axes of the

ellipse. Let z be the deflection of any point of the isolated fabric

under the hydrostatic pressure P. Let B
x
and S

2
be the stresses in

the fabric along the directions OY and OX.
Now, according to the equation of equilibrium

Ri R2

where R
1
and R

2
are the radii of curvature of the deflected fabric in

the normal planes cutting the fabric in OY and OX.

<

i

ro m f

!

A'
\

"N-*
1

i -*

" -<
O Jk O

V
>

J \

ft

r

?«

>
<

1 *

1

<5?

Fig 4.

—

Axes of elliptical contours in the direction of the principal stresses

If the deflection z is small in comparison to the dimensions of the

hz
ellipse, then v- is small in comparison with unity, so that it suffices

to write for the curvature

instead of the exact expression

1^

R~W (5a)
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Similarly,

F, W (5b)

Assuming
S

1
=lc2S2 (6)

the equation of equilibrium becomes in this case

b 2z P-? P
bx2 ^ K

by2 S2

W;

This is a linear differential equation of the second order, with con-

stant coefficients whose general solution in standard form is

p

Since the stress was assumed to be initially uniform, z must be

an even function of both x and y. Furthermore, z has no singu-

larities within the elliptical boundary of the tension meter, and when
z=0 (8) will reduce to the boundary curve (4). Introducing these

conditions the solution 'of (7) becomes determinate and is

a2
b
2 P(x2 y2 \ (x2 y2 \

Z =
2(a2

Jc
2+b 2

)
' &2\a

2+ b~ 1)^Z\a2 +
b 2
~ 1

)
(9)

where Z , the maximum deflection of the isolated fabric at the center is

7 a2
b
2 P_ Jc

2a2b2 P
Z

° 2(a2l2 + b 2
)

' S2 2{a2l2+ b 2)' S,
{W)

The radii of curvature R1 and R2
in planes perpendicular to OX

and OY have the constant values

and

F=4 <M)'

*-.£ 03)'

Substituting in (1) these values for Rx and R2 , there results

P= 2-pS1+
2
-^S2 (13)

z z
Denoting ~ by a and -£ by

P =2aS, +2(3S2
(14)

'Accordingly, the sections of the deflected fabric made by planes normal to OX and OY are arcs of circles.
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Equation (13) or (14) is an expression connecting the tensions or

stresses of the deflected portion of the fabric in the directions of the

major and minor axes of the tension meter with the maximum deflec-

tion, the constants of the elliptical contour, and the pressure. In

what follows the deflection at the center of the isolated elliptical

portion will be referred to as the deflection of the fabric.

IV. DEVELOPMENT OF THEORY

1. NOTATION

In the tether development of the theory the equations will be very

much simplified by the adoption of the following notation for the

various quantities involved. First, assume as a reference line the

direction of initial maximum stress in the fabric.

The stresses in the fabric before the pressure is applied are repre-

sented by

^^=the stress at an angle 77 to the direction of the maximum
stress.

£M =SQ
° =maximum stress,

Sm =£so
° =minimum stress.

Also

Pe is the pressure required to produce a deflection Z when the

minor axis of the instrument makes an angle 6 with the

direction of the maximum stress.

When the differential pressure P is applied, the initial stresses are

changed by amounts depending upon the direction of the minor axis

of the instrument, so that it is necessary to make the following

distinction: When the differential pressure applied produces the

deflection ZG ,

SVl e is the stress in the direction 77 when the minor, axis of the

instrument is in the direction 6.

e
v , e is the corresponding extension of the fabric at the midsection

in the direction 77.

In the use of the instrument, only two directions 77 need be con-

sidered:

17=0, and 77=0+90° (15)

where 6 may take on successively the values 6 =0O , o +45°, dQ +90°

and O +135°.

P'gj S'ti,6 and e 'v,e are the corresponding values when the pressure

produces the deflection Z' (in practice Z f

=-^2 Z ).

90613°—26 2
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£0-$o°,e
=

*0+9O°,0
==
2Z 2

Sa2

When zv= V2Z by virtue of (17)

Now,
e
nyQ
= 2e

n ,e
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2. CASE I. DIRECTIONS OF THE MAXIMUM AND MINIMUM STRESSES
ARE KNOWN

Provided the change in strain is so small that it may be assumed

to be for practical purposes proportional to the change in stress

Sv ,e = Sv +Er] ,eev>8 (16a)

where E^e is the constant of proportionality (the "extensibility") of

the fabric under the given conditions. In view of equations (11)

and (12), the quantities ev ,e and €0+9o°,0 can be easily calculated:

(17)

(18)

(16b)

provided this increased strain is still within the limits of practical

proportionality of change of stress to change of strain.

From (18) this last equation then becomes

S\,e = Sv + 2Ev ,eev ,
e (16c)

In terms of the above notation, (14) can now be written

Pe = 2aSe,e+ 2(3Se+90°,e (19)

Substituting for S9,d and So+wo
,9 their values from (16a), equation

(19) becomes, for the minor axis of the instrument in the direction (9

Pdo =2a(Se +Edo,e ed ,9 ) +2/3 OS^+90 + Eoo+9o°,9o€0o+go°,eQ) (20a)

and similarly

—r== 2a (Se + 2Edo , e ee , e ) + 2/3 (#0O+9O° + 2 Edo+90°,doCdo+90o
,8o) (2 la)

Combining equations (20a) and (21a)

2Pdo-^1== tt9c
- 2aSdo +2|8&o+90° (22a)

Similarly when the minor axis of the instrument is placed in the

direction O +90°, (20a), (21a), and (22a) become, respectively,

Pdo+90° = 2a (Seo+90° + ^?o+9Oo
,0o+9Oo€0o+9O°,0o+9O

o
) +2/3 (Sg +

Eeo,do+9Qo£do,0o+wo
)

UUb;
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and
P' O+9O C

V2

and therefore

2a (iSflo+go -r22^o+9oo
( o+9o°e0o+9Oo,0o+9Oo

) + 2/3 ($0 O+

7T(?o+90 o = 2aSflo+90° +2/3$<?

(21b)

(22b)

since #00 =Se +iso° and q: and /3 are independent of 0.

Thus, by taking four pressure readings, Peo9 P'e , Pdo+Q0°, and
P /

9 +9o°j the effect of the stretching is eliminated, and hence a system
of simultaneous equations (22a) and (22b) results which is equivalent

to that of (3). Once the quantities ire and 7T0o-f9o° are obtained,

Se and 3eo+90° can be readily evaluated by means of a properly con-

structed nomogram.

Fig. 5.

—

Application to multiple-ply fabric

3. CASE II. DIRECTIONS OF THE MAXIMUM AND MINIMUM
STRESSES ARE NOT KNOWN

Let the maximum and minimum stresses be represented by SM
and Sm , respectively (see fig. 5). Then since the angle between the

directions of Su and Se is d

Sm sin 2d +£M cos 28 =Sdo (23)
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This last expression can be verified by cutting an infinitesimal right

prism from the fabric so that the face with the larger area is normal

to Se , the remaining two faces are normal to Su and Sm , while the

base is subjected to the hydrostatic pressure. Consider the equilib-

rium of the prism, remembering at the same time that the force

due to the hydrostatic pressure is of an order smaller than the forces

arising from Seoi £M , and Sm .

Equation (23) can be also written as

(SM +SJ + (£M- Sm) cos 20o =2S6o (24)

Increasing O by 90°

(£M +Sm) - (8M - SJ cos 20o =2^+90c (25)

Hence (22a) becomes, on substituting in the values of Se and #00+90°

from (24) and (25)

Tre = (a +0) 0SM +SJ + (a- j8) (SM - SJ cos 26 (26)

Now, replacing 6Q in (26) successively by the values (see fig. 5)

0o + 45°, O + 9O° and O+135°

the following set of equations results:

7r=7T0o
= (a + 0) (£M +£m) + (a- 0) (£¥- SJ COS 20c

7r2=7r, +45 ° = (a +/3) (^m +Sm) - (a- 0) (#M - £J sin 20<

ir
3
==ir flo +90° = (a +/3) (£M +£J - (a- 0) (SM - £m ) COS 20c

7r4=7r0o+i35»=(o:+/3)(SM +/S
r

m) + (a - 0) (£M - SJ sin 20OJ

Solving for o , SM and #m :

cot eo= -^^ or tan O= -^^-4
(28)

7T
2
— 7T

4
TTj — 7T

3

Q JL Q = ^1 + ^3 _ ^2 + ^4 /9Q\

^M+ ^m 2 (a + j8) 2(a + /3)
Uy;

(27)

and

^M-Sm= 2(a-jS)
{S0)

Equation (28) gives the direction of the maximum stress with

reference to the direction of the minor axis in measuring ire , while

(29) and (30) together determine the magnitudes of maximum and

minimum stresses.
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It should be observed that in the system of equations (28) there

are four equations but only three unknown quantities. Here the

use of the additional equation is to facilitate the calculation of the

unknown quantities.

V. APPLICATION OF THE THEORY

In the use of the fabric tension meter four cases may arise

:

1. Single-ply fabric, directions of principal stresses known,
stress-strain relation of fabric known (two readings)

.

2. Single-ply fabric, directions of principal stresses known, stress-

strain relation of fabric not known (four readings)

.

3. Multiple-ply fabric, directions of principal stresses not known,
stress-strain relation of fabric known (four readings)

.

4. Multiple-ply fabric, directions of principal stresses not known,
stress-strain relations of fabric not known (eight readings).

1. CASE I

This is the case which is most common in the practical use of the

instrument. For example, the tension meter has been used to

investigate the tensions in the outer cover fabric of the United States

Navy rigid airships Shenandoah and Los Angeles. The single-ply

fabric 3 on the Shenandoah has been studied in the laboratory, and a

characteristic value of its "extensibility" is known. Therefore, it is

merely necessary to make two applications of the instrument to the

fabric at the point where a knowledge of the stresses is desired,

placing the minor axis of the instrument successively in the direction

of each set of threads, and measuring the pressures P6o and Pe +9o

necessary to deflect the fabric by the amount ZQ . In this case 6Q is

equal either to or 90°.

Equations (20a) and (20b) apply to this case

:

Pe„ = (2aSdo + 2/3&o+90<0 + (2aEdo , 9o e9o , Bo + 2(3Edo+90°, do €0O+9O°, (20a)

and

Pe +9o° = 2aSe +e ° + 2pSe ) + (2a£
,

(90+9o°, O+9O° €0o+99°, O+9O° + (oriW\

2fiEo0> e +9o C0o, 0o4-9O°)

Now from (17)

and

•2Z 2

€0o, 6 = e^o+90 , O+9O° — ~op"

2Z 2

€00+90°, O
=

Gffo, 0o+9O° = "0T2"

and if, as is usually the case, an average value is taken for E
Vt o*.

3 This was grade " BB" cotton fabric treated first with acetate clear dope and finally with aluminum
acetate dope.

4 For the outer cover fabric of the Shenandoah the value of E was taken as 680 pounds per inch.
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2Z 2 2Z 2

Since -~p- and -~-y are independent of 6, it follows that

P6o = (2aSdo + 20S9o+*r) + \2aE (~^j + 2$E Qff)\

P,o+90o = (2aS9.+*r + 20&J + J2«E 0|f) + 28E (~fj

(31)

or

P,
o
=(2a& o + 2/3&o+90o) + C

P,o+90° = (2a&o+fl0 . + 2/5^J + C
(32)

The value of C can be computed from (31) and proves to be equal

to 3 inches head of water for the cover fabric of the Shenandoah.

Figure 6 represents the nomogram prepared on the basis of equation

(32) to use in measuring the tension of the outer cover fabric of the

Shenandoah.
2. CASE II

If no information is available as to the " extensibility" of the

fabric, equations (22a) and (22b) are applicable:

2P*„ -
1
-t=2-='ko = 2aS6o + 2{3Se +%° (22a)

-V 2,

pr
2Ao+90° 7h^-=7T0o+9o o = 2aSeQ+90° + 2(3S0o (22b)

Now, placing the instrument in the direction of one set of threads,

two readings are taken, in succession of the differential pressure

required to deflect the fabric by amounts Z Q and -yJ2Z . These

readings are called P6o and P\. The instrument is then rotated

through an angle of 90° and two more readings, Pe +9o° and P^ +9o°

are obtained for the deflections Z and ->J2ZQ . The computations

indicated by the left members of (22a) and (22b) are made and the

nomogram shown in Figure 6 is used to obtain Se and #004.90°.

This computation can be simplified by the expedient of having

two concentric scales on the gauge which measures the reduction of

pressure in the chamber of the instrument. The first scale would be

graduated to give the value of P directly. The second scale would

be graduated, not to give directly the value of P' , but rather the

P'
value of —7=. In this way only a subtraction would be required to

V2
obtain the value of each t.

3. CASE III

This case is not important in practice and will not be discussed

here.
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4. CASE IV

When multiple-ply fabric is in use and when no information is

available as the value of the " extensibility " of the fabric, equations

(28), (29), and (30) are used to obtain the values of Su , Sm , and the

angle which Su makes with the initial position of the minor axis of

the tension meter.

The instrument is applied to the fabric with its minor axis in a

convenient direction which should be marked for the purpose of

9 "

8"

7 :;

6
'•

5

4

3

z :

i

I
2/

v/9

II

IS

13

\: II

:7

ZIt t

19 i

n

IS

II

* :

7

5-

0->—L3-

S, Pt

f 9

8

-7

-- 6

- 5

4

Z

P* $*

Fig. 6.

—

Nomograynjor computing stresses in the outer fabric of the Shenandoah

locating the direction of the maximum principal stress. Two
readings are taken as in case 2, and the value of x

1
= 7r^ is computed.

The instrument is then rotated through 45° and two more readings

are taken, giving 7r2
= 7r5o+45 o. By rotating the instrument through

45° again 7r
3
= 7re +9o° is obtained, and still another 45° rotation

serves to give x 4
= 7r6o+i35°. From equations (29) and (30) the values

of $M and #m are obtained. The value of 6 is determined when
cot 6 is found from (28).
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Adopting the convention that — 9O°<0O < +90°, if cot O proves

to be positive, this means that the instrument was rotated in the

direction of increasing positive values of
O . Since

O was denned as

the angle which the minor axis of the instrument made initially

with the direction of the maximum stress, 6 is measured from the

direction of the maximum stress to the initial direction of the minor
axis. However, in laying off on the fabric the direction of the maxi-
mum stress we are measuring from the original direction of the

minor axis of the instrument instead of from the direction of the

maximum stress. Hence, if 8 proves to be positive it should be
laid off in the opposite direction to that in which the fabric tension

meter was rotated. Figure 4 and equation (27) illustrate this case.

If 8Q proves to be negative, then it should be laid off from the initial

direction of the minor axis of the instrument in the same direction

in which the instrument was rotated. It should be remembered
that 6 is never greater than 90°.

VI. DESCRIPTION AND OPERATION OF INSTRUMENT

The fabric tension meter is shown in Figures 1 and 2. The body
of the instrument consists of an elliptical chamber open at the bottom
and having a hollow suction rirn extending around it. A large hollow

handle H is placed at the center of the instrument for the use of the

operator and small handles W are placed' at the ends for the use of an

assistant. The suction required to. operate the instrument is ob-

tained from a line connecting with a supply tank and pump. The
line is attached to the connection C, mounted on the handle H.

The suction passes to the combined rim and chamber valve F.

When the rim valve is opened, a partial vacuum is created in the suc-

tion rim and, if the instrument is placed against the fabric properly,

it will adhere there. The rim gauge RG indicates in inches of mercury

the suction existing in the rim. A safety valve RS prevents the suc-

tion from increasing beyond a predetermined point, and thus pro-

tects the fabric from injury due to its deflection into the small suction

holes of the rim.

When the instrument is placed against the fabric, the ball B on

the deflection gauge DG is just in contact with the fabric. If the

pointer of the deflection gauge then does not read zero, the scale is

adjusted by means of the thumbscrew AS. The rim valve is opened,

causing the fabic to adhere to the face of the instrument; then the

chamber needle valve is opened, gradually producing a decrease in

pressure in the chamber. This causes the fabric to deflect inward,

carrying the ball B with it, thus operating the pointer of the deflec-

tion gauge DG. When the indicated deflection is one-eighth inch,

the chamber valve is adjusted to maintain this reading constant while
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the operator reads the suction gauge SG, which measures the pressure

reduction in the chamber. After the reading has been taken the

operator releases the suction in the rim by turning the. rim valve,

and the instrument can be detached from the fabric. In order to

prevent the fabric from being deflected too far into the chamber, a

second safety valve OS is provided which is tripped by the fabric

after the latter has deflected a little more than one-eighth inch.

The deflection gauge is operated by the aluminum ball B, which is

mounted on the end of a lever. This lever operates the pointer by
means of two pulleys and a nichrome strip. It is planned to redesign

this gauge in order to eliminate the use of the strip, which is likely to

break occasionally.

The suction gauge SG, used to measure the suction in the chamber,

is a specially designed gauge having a slack leather diaphragm pres-

sure element. The gauge was so designed as to have an open scale

for low suctions and a more compressed scale for the higher suctions.

This was done to meet the requirement of the Bureau of Aeronautics

that the instrument should be capable of measuring with comparative

accuracy tensions from zero to approximately 8 pounds per inch

(this latter tension being a little less than that at which the dope
film breaks) and indicating with fair accuracy tensions from 8 to

20 pounds per inch, these tensions being, of course, excessive. This

gradual compressing of the graduations with increase in suction was
accomplished by designing properly the slack diaphragm pressure

element by a method recently developed at the Bureau of Standards. 5

A helical spring was used to restrain the motion of the diaphragm in

the gauge. This spring proved very satisfactory, although less

capable of adjustment than flat or U-shaped springs. The position

of this spring could be varied by means of the thumbscrew T. A
hole was drilled through the bezel of this gauge, so that atmospheric

pressure exists in the instrument above the diaphragm. The scale

shown on the suction gauge is not the one at present in use on the

tension meter, since the range of the suction gauge was increased to

20 inches of water after the photograph was taken.

The two safety valves are of different types. The rim safety valve

RS contains a ball forced against a seat by a helical spring. When
the suction in the rim decreases below a certain amount, the excess

of the atmospheric pressure over the pressure in the rim exerts a

sufficient force on the ball to overcome the force of the spring and the

ball is unseated, allowing air to flow into the chamber. The force

exerted by the spring is adjustable, so that the safety valve can be
set for any desired suction over a wide range. The adjustment at the

time when the instrument was delivered to the Bureau of Aeronautics

1 H. N. Eaton and C. T. Buckingham, " Nonmetallic diaphragms for instruments." National Advisory-

Committee for Aeronautics Technical Report No. 206; 1925.
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was such that the safety valve operated at suction of approximately

15 inches of mercury. When the suction was applied to the rim,

the pointer of the rim gauge RG would creep up to a point approxi-

mately at the graduation " 15" and would remain at that point, the

ball in the suction valve vibrating rapidly back and forth, thus

allowing air to flow into the rim at a sufficient rate to maintain the

suction constant. The valve was so designed as to be affected but

slightly by changes in the position of the instrument.

The chamber safety valve CS was constructed differently, owing

to the fact that the suction in the chamber was not sufficient to oper-

ate a ball valve in a satisfactory manner. A small plunger is set a

little more than one-eighth inch above the plane of the rim so that

the fabric, if deflected more than one-eighth inch, trips the plunger

and opens a small valve connecting to the outer air through the line

L''. This valve operates very well, but would be more of a safeguard

if it had greater capacity.

VII. ACCURACY OF INSTRUMENT

Laboratory tests have shown the fabric-tension meter to give

very satisfactory results when used on single-ply fabric for which an

average value of the " modulus " was known; that is, when the instru-

ment was used under the conditions described for Case I under
" Application of the theory." The results given below may be

taken as characteristic of the performance of the instrument when
used under these conditions:

Error

Tension (pounds per inch of width)

:

(per cent)

0.5-1 60-15

1-3 15-10

3-5 10- 5

5-8 5-

As would be expected, local variations in the " modulus" of the

fabric cause relatively large errors at the lowest tensions. The
tensions which have actually been measured in practice with this

instrument have usually ranged from 2J^ to 7 pounds per inch; so

it will be seen that the accuracy obtained is quite satisfactory.

Washington, January 19, 1926.




