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By Edgar Buckingham.

ABSTRACT.

An equation is deduced for finding the number of strokes of a reciprocating air

pump required to exhaust a tank of large volume down to any given fraction of atmos-

pheric pressure, assuming that the piston and valves are tight. The resulting formula

shows how clearance and valve loading affect the speed of exhaustion and the final

minimum attainable pressure.
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1. INTRODUCTION.

A letter recently referred to the writer asked for a formula for

computing the rate at which a reciprocating air pump would ex-

haust an air-tight tank of known volume. After an unsuccessful

search through several books which might have been expected to

contain such a formula, an equation was developed for the pur-

pose; and since it may be of interest to some readers, the deduction

is given below.

Any attempt to allow for leakage past valves and piston would

require the use of special hypotheses, which might not correspond

at all closely to actual working conditions, or, if such hypotheses

were dispensed with, would lead to a result which was too general

and indefinite to be of any value. Hence it is postulated, from

the start, that valves and piston shall be in perfect condition and

the whole system free from leaks. The remaining conditions for

the validity of the result are stated in the next section.

2. CONDITIONS AND ASSUMPTIONS.

(a) The tank to be exhausted is large in comparison with the

piston displacement of the pump, so that each pump cycle reduces

the pressure in the tank by only a very small fraction of itself
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(b) The exhaustion is slow enough that the temperature in the

tank remains sensibly constant, the pressure in the tank being

then proportional to the amount of air remaining.

(c) The process starts with atmospheric pressure in the tank,

and the pump discharges to the atmosphere.

(d) There is a constant load on the suction valve and no throt-

tling except at the valve. This means that at the end of any
suction stroke the pressure in the pump cylinder is less than that

in the tank by a small constant amount which is determined by the

load on the valve but is independent of the degree of exhaustion

attained.

(e) The temperature of the air in the pump at the end of any

suction stroke is constant, regardless of the degree of exhaustion.

Usually it will, of course, be somewhat higher than the temperature

in the tank.

( / ) The compression line on the pump diagram follows the

usual equation p vn = constant, where i <n < 1.4.

(g) There is a constant load on the discharge valve, so that when
the valve closes at the end of any compression stroke, the pres-

sure in the clearance space is a small constant amount above the

outside atmospheric pressure to which the pump is discharging.

3. NOTATION.

Let V — the volume to be exhausted

;

v = the piston displacement of the pump

;

e = the fractional clearance, so that when the piston is full

out the cylinder volume is (1 +e)v;

6 = the absolute temperature of the air in the tank

;

6 = the absolute temperature of the air in the pump cylinder

at the end of a suction stroke;

P = the outside atmospheric pressure to which the air is

discharged

;

aP = the load on the discharge valve, so that the valve lifts

when the pressure in the pump has risen to (1 +a)P;

&P =the load on the suction valve;

p = the pressure in the tank at the end of any suction stroke,

the pressure in the pump being then p — fiP;

n — the exponent of the compression line—it is between 1

and 1.4;

x = pjP = the degree of exhaustion reached

;

N = the number of suction strokes since the start at x = 1

;

I = the lowest or limiting value of x, for iV = 00

.
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4. THE REDUCTION OF PRESSURE PER CYCLE OF THE PUMP.

We start at the end of a suction stroke, when the pressure is p
in the tank and (p — f$P) in the pump cylinder. If M = the mass
of air in the tank and m =the mass in the cylinder, we have

M=m (I)

and

»- »-*% <' + «>»
(2)

where R is the gas constant for unit mass.

I^et 70 = the volume under the piston at the instant when the

discharge valve lifts. Then we have, by hypothesis,

(P + aP)wn = (p- PP) [(i + e)v]n

whence

When the discharge valve closes at the end of the compression

stroke, the volume is ev'. The pressure, in the clearance space is

the same as when the valve opened, and we shall assume that the

temperature is sensibly the same ; hence the mass of air remaining

in the clearance space is mev/w or, by equations (2) and (3),

w S=^ ( -p+aP) " (^-^P) ^"'-
(4)

The piston now moves out, the suction valve opens, and more
air flows from the tank to the cylinder. If Ap = the resulting

decrease of the pressure in the tank, the pressure in the cylinder

at the end of this suction stroke is (p — @P-Ap), and the mass

contained in the cylinder is (see equation 2)

m ,JP -eP-AJ,)(1+ e)v
(5)

of which the mass mev/w given by equation (4) was already present

before the suction valve opened. The mass taken from the tank

during this suction stroke is therefore

AM =m' —m~w
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or, by equations (4) and (5),

AM^^^^p-pP-Ap-j^iP +aPnip-^P)^ (6)

But since, by hypothesis, the temperature in the tank is constant,

the pressure changes in the same ratio as the mass of air and we
have Ap/p=AM/M

y
or, by equations (1) and (6),

Let

^0mg- l±S(P +<xpy^h (8)

and equation (7) may be reduced to the form

Ap gv f h "1
.

where g and h are constants defined by equation (8).

5. APPROXIMATE SOLUTION WHEN v/V IS SMALL.

Equation (9) gives the reduction Ap of the pressure in the tank

during one complete cycle of the pump, starting with the pressure

p. By successive computations, the total reduction caused by any

number of cycles could be found, but such a process would be very

laborious. It must therefore be replaced, if possible, by a single

computation covering any desired number of strokes taken

together.

The actual process of exhaustion proceeds by finite steps, but

if we postulate that v/V shall be small, these steps will be small,

and after a certain number of suction strokes N, during which the

total piston displacement is Nv — <p, the pressure in the tank will

be very nearly the same as if this total displacement had been

divided into a much larger number of strokes of a correspondingly

smaller pump.
We may therefore get an approximately correct result by sup-

posing the pump volume v to be infinitesimal ; so we replace v by
d<p and Ap by ( — dp) , thus reducing equation (9) to a differential

equation

—

^BP = g
\

J 1
\

d(p
(10)
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which may be integrated by substituting (p — f}P)~^ = y.

Starting at </? = o when p — P, and integrating up to <p, p, we
obtain the equation

Jp=l0g£ ^ (II)

(P~PP)n-h

Equation (n) is the exact relation between the pressure £ and

the total piston displacement <p, when <p is composed of an infinite

number of infinitesimal steps. It will be nearly correct if <p con-

sists of a large number N of small steps of volume v. Hence we
get an approximate result by substituting Nv for <p; and upon
solving for N, we have the equation

N =
~^v

l°ge "
(l 2)

which tells us the number of pump cycles or suction strokes N
required to reduce the pressure in the tank from P to p.

If we introduce the degree of exhaustion x — pjP and change to

common logarithms, equation (12) may be written in the more con-

venient form

N = A log10 i /„)

where

_ 2.3026 n 6 V
(i+e)6 v

(14)

C=(l-P)n~B.

To find I, the lowest degree of exhaustion obtainable, we set
1

JV=» or (/-/3)»— £ = 0, whence

l = B» + p (15)

The values of v, e, a, and /3 are determined by the design of

the pump and the adjustment of the valves. The temperature

O of the air in the tank depends on the outside conditions. The
temperature 6 of the air in the cylinder at the end of a suction

stroke depends on the conditions that determine
O and also on

the running conditions; that is, on the speed and the amount of
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cooling. The value of n depends on the same circumstances as

determine O and 6.

When these are all given, together with the volume V which is

to be exhausted, A, B, and C are known constants, and equation

(13) may be used for computing N for a given x. It is rather labo-

rious to use equations (13) and (14) for a single computation, but

after the values of A, B, and C have been computed it is a very

simple matter to use equation (13) for obtaining a curve N = f(x),

which will obviate the need of further computations so long as

the conditions remain unaltered.

It may be noted that B
0f
.-6-% and V occur only in the coefficient

A, and that N is directly proportional to the value of 9V/d v.

Hence if a curve has been constructed for given values of e, a, /3,

n and any value of 6Vj9 v, it may be used directly for any other

value of dV/6 v by merely multiplying the values of TV by a con-

stant factor.

6. APPROXIMATE FORMS OF THE EQUATION.

Since the clearance e and the load on the discharge valve a are

always small, the value of B is also small. Hence only a small

error can be caused by setting a = o, at all events until the denomi-

nator inequation (13) becomes very small ; that is, the number of

strokes very large. Thus the first part of the curve is very little

affected by the value of a.

The load /3 on the suction valve should, of course, be made as

small as practicable because it slows down the process and raises

the limiting degree of exhaustion attainable, as is seen from

equation (15). If the suction valve is operated mechanically and

the pump is not run too fast, the value of /3 may be made negligible.

If a=/3 = o, equation (13) reduces to the form

N^Alog,,-^— (16)

x n -B t

where

Bi-
(17)i+«

In this case, the limiting degree of exhaustion is given by the

equation

l-B^-^f 08)

and depends only on the clearance ratio e.
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The ideally perfect pump has no clearance as well as no load

on either valve, and is represented by the oil-sealed vacuum pump
with positively operated suction valve. For such a pump
e = a = (3=o and equation (13) reduces to the very simple form

N =A log 10
l*

( I9)

where

A = 2.3026^- (20)

The limit of exhaustion of such a pump is Z=o; but when a

sealing liquid is used to eliminate the clearance, the vapor pressure

of the liquid prevents absolutely perfect exhaustion.

7. NUMERICAL EXAMPLES.

To illustrate the use of the foregoing equations we may assume

the following data:

Ratio of tank volume to piston displacement V/t;=iooo

Temperature in tank 8o° F. ; in pump 105 F 0/^0=1.046

Exponent of the compression line n= 1 .3

Barometric pressure P=3o inches mercury

Load on discharge valve 1.5 inches mercury 01=0.05

Load on suction valve o. 5 inch mercury /3=o.oi67

Clearance, 3 per cent €=0.03

Using these data in equation (14) we have

A =3040, 5=0.03024, log10 C = 1.98087.

So that the particular form of equation (13) for this case is

1

^ = 3040 { 1.98087 -log10 [O-0.0167)
I3 -o.03024]} (21)

and the limit of exhaustion is / =0.02725 = 1/36.7. Values of N
computed from equation (21) are given in Table 1.

If both valves are operated positively or are so lightly loaded

that a and (5 are negligible, while all the other data remain un-

changed, we have by equation (17)

A =3040, £ x =0.02913, log10 Cx
= 1.98716

Equation (16) assumes the particular form

1

^=3040 [1.98716 -log10 (x^- 0.02913)] (22)
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and the limit of exhaustion is / =0.01008 = 1/99. Values of Nt

are given in Table 1

.

If the clearance also is zero, so that we have the ideal pump,
we have by equations (19) and (20)

NQ
= 2408 log1( (23)

the limit of exhaustion being /=o. Values of N are given in

Table 1.

It is evident from the table that valve loads such as here

assumed do not have much effect on the rate of exhaustion until

the process has gone rather far, although they increase the ulti-

mate pressure attainable in the ratio 2.7 to 1, in this case. The
effect of the 3 per cent clearance, shown by the difference of

Nx and N0i is much less than that of the valve loads shown by the

difference between N and Nv

TABLE 1.

p N
equation (21) equation (22)

No
equation (23)

Pp-x N
equation (21) equation(22)

No
equation (23)

0.9 112
239
383
551
752

1002
1333
1821
2191
2767

110
234
375
538
732

972
1284
1736
2064
2547

no
234
373
534
725

958
1259
1683
1984
2408

0.07 3369
4103
4799
6741
8475

10031
00

2999
3490
3792
4270
4396

4430
4447
5763

CO

2781
.8 .05 3132
.7 .04 3366
.6 .03 3667
.5 .028

.4 .0275
.02725
.02000

.3 3767

.2 4092

.15 .01008 4807

.10 .00000 OO

Washington, August 29, 1922.


