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I. INTRODUCTION

These experiments were undertaken for the purpose of finding

suitable formulas and constants for the design of spruce struts for

airplanes. Test specimens of rectangular cross section (approxi-

mately square) were used, as these sections are easy to prepare

and the necessary calculations are easily made. The constants

and formulas which have been obtained apply to stream-line or

3
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other sections, provided they are uniform throughout their

length. The constants apply to struts of tapering section, and the

formulas may also be applied, provided a moment of inertia is

used which is somewhat less than that of the maximum section.

Theoretical methods of computing the strength of tapered struts

are given in the last pages of the paper.

The experimental work was conducted under the general

direction of Prof. John H. Nelson, engineer physicist of the Bureau
of Standards, who decided upon many of the methods employed.

C. P. Hoffman and L. J. Larson assisted in making the measure-

ments. The curves and drawings were finished by Prof. C. L.

Svensen, of the Ohio State University. Prof. R. D. Bohannan
made some suggestions in connection with the theoretical work.

II. ARRANGEMENT OF COMPRESSION TESTS

1. TEST PIECES

In the preparation of the struts, one edge of the plank was
first straightened on a jointer. A strip a little over 1.75 inches

square was cut off with a saw and planed to size. Each plank

furnished five strips designated as A, B, C, D, and E, in order, and
also a narrow strip from which endurance test pieces were taken.

The planed strips were cut to length with a back saw and the

ends finished by grinding on an emery wheel mounted in a lathe.

The strut was held in position perpendicular to the plane of the

emery wheel by a pair of right-angled V guides mounted on the

bed. These guides were about 2 feet apart when used with the

longer struts, so that the end was perpendicular to the last 2 feet

of the strut and not perpendicular to its entire length in those

cases in which the strut was not perfectly straight.

2. COMPRESSION MEASUREMENTS

For the two shorter lengths the compression was measured

by means of a pair of Berry strain gages. For all other lengths

a pair of 30-inch Howard gages were used.

To support the gages, a pair of steel pins, each 0.237 inch in

diameter, were driven through holes drilled in the strut at the ends

of the gage length, these holes being slightly smaller than the pins

to give a driving fit. The struts were tested in a horizontal posi-

tion, with the steel pins also horizontal.

The conical points of the strain gages rested in small holes

drilled in the upper surface of the pin. The holes were 2.75

inches apart, which placed the gage points one-half inch from the
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vertical surface of the strut. The strain gages were held firmly

in place by means of 3-pound weights suspended from stirrups

which were attached to the gages directly above the points.

3. DEFLECTION MEASUREMENTS

The deflection of the two shorter lengths of the square-end

struts was measured by means of a pair of Ames dials mounted in

a metal yoke which was supported by the base of the testing

machine. The vertical deflection of the two shorter lengths of

round-end struts was measured by an Ames dial supported by a

wooden beam which rested on a pair of clamps attached to the strut

near the ends.

For all other lengths a pair of Johnson dials were used.

4. TESTING MACHINES

The two shorter lengths of square-end struts were tested on the

230 000-pound Emery machine, and all the others in the 2 300 000-

pound Emery machine.

Both these Emery machines at the Bureau of Standards are of

the horizontal type.

5. ADJUSTMENT IN THE MACHINE

One end of the strut was placed squarely against one head of

the Emery machine, and a light load applied, after which the

adjustable head was rotated until an even bearing was secured at

the other end. This position of best bearing was determined by
means of a Starrett gage of thin sheet metal inserted between the

strut and the head. It was also tested by observation of the load

on the strut as given by the reading of the balance beam of the

testing machine. The position of the head giving the least load

is the one required.

For the longer struts it was found advisable to fix the heads

nearly parallel, but slightly wider apart at the top than at the

bottom. In the case of a strut which was not initially straight, a

light load (200 to 300 pounds) was found sufficient to bring it to

full bearing and make it more nearly straight than it was before

loading.

6. COUNTERWEIGHTS

Each Howard gage with 30-inch rod weighs 3 pounds. With
a 3-pound weight on each end, the total weight of the two gages

is 18 pounds. This load caused considerable deflection of the

longer struts. Nine-pound weights, fastened to strings passing
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over light pulleys, were attached to the strut at each gage point

to counterbalance the weight of these instruments. Counter-

weights were not used with the two short lengths of round-end

struts, nor with the three short lengths of square-end struts. The
weight of the strut itself was not counterbalanced. Struts with

initial bend in the vertical plane were placed in the machine convex

upward, so that their weight tended to straighten them. For a

few struts with relatively large initial deflection upward the

counterweights were reduced.

III. SQUARE-END STRUTS
1. EXPERIMENTAL RESULTS

The struts for the square-end tests were taken from six 12-foot

planks. There were 10 lengths, from 12JH5 inches, for which —

is 25, to 10 feet 6% inches, for which — is 250. The planks were

numbered from 1 to 6. The schedule was so arranged that, with

a few exceptions (made necessary in order to reserve one piece of

each plank for a bending test) , one strut of each length was taken

from each plank. The complete schedule of struts is given in

Table 3.

Most of the struts of the two shorter lengths failed by compres-

sion at the transverse pins which supported the gages. This

seemed to indicate that a cylindrical pin with higher modulus of

elasticity than the material which surrounds it was a source of

weakness in a compression member. To investigate this question

two 12^-inch struts, C—5 and E-6, were tested with gages sup-

ported by clamps instead of pins. Each failed at a lower load

than the strut from the same plank which had been tested with

the pins. If any conclusion may be drawn from these few tests,

it is that the pins do not seriously weaken the strut.

The summary of the data for the eight struts of 12^5-inch

length is given in Table 3.

Table 1 gives the complete data of the test of square-end strut

B-4, 4 feet 2% inches in length, for which — is 100. Columns II

and V give the compression at the north and south gages, respec-

tively. The load was somewhat eccentric, so that the reading at

the north gage is considerably larger than at the south gage. The
gages were 2.75 inches apart, while the width of the strut was a

little under 1.75 inches. The actual difference of compression at

the faces of the strut is seven-elevenths of the difference of the
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gage readings. To get column III, subtract two-elevenths of the

difference of the readings of columns II and V from the reading

of column II. To get column VI, add the same amount to the

the readings of column V. Column IV gives the unit compression

in the north face of the strut, and column VII gives the same for

the south face. Column VIII gives the average unit compression.

OE/TLECTION IN O.OO/ INCH
/so soo sso 300 350 400

so 60 so too /SO t40 ,/60 ISO SOO SCO S<K>
COMPRESSION PER INCH LENGTH IN O.OOOOI INCH

Fig. i.—Deflection and. compression of square-end spruce strut

Fig. i shows the stress-strain diagrams for this strut, together

with the deflection in the horizontal plane. The greater com-
pression is in the north face, which is the concave side when the

deflection is south.
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Table 2 gives similar data for a second strut, C-4, of length 5

feet 3% inches, for which the slenderness ratio is approximately

125. In this case the horizontal eccentricity was small, so that

the readings of the two instruments are nearly equal. The read-

ings of the north gage are the larger until the last load is reached,

when that of the south gage becomes the larger. At the same
time the horizontal deflection changes from south to north.

DEFLECTION IN O.OOI INCH
SO IOO

O SO IOO

X
1

< >

1

\

-1

1
1

H /<T
<0

1 i
k
I/ 1?

K

l

r t/ A

\

L SPRUCE
IN

COMPRESSION
SQUARE END STRUT C-4

L£NSTH 5'-3s"
± = 125L

o. so 'to 60 00 too ieo 140 /so /go eoo
COMPRESSION PER INCH LENGTH IN O.OOOOI INCH

Fig. 2.

—

Deflection and compression of square-end spruce strut

Fig. 2 shows the stress-strain diagrams for the two vertical faces

of this strut, together with the deflections in the horizontal and

the vertical planes.

Tables i and 2 and Figs. 1 and 2 are representative cases of the

tests of square-end struts. Generally the longer struts were not

carried to compression failure. When the deflection reached about
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0.875 inch. so that the center of the section at the middle of the

length was in line with the edges of the sections at the ends, the

strut rotated on the edges at the ends and came into the condition

of a round-end column. The load for this condition was much

reduced, and with continued compression the load became still

smaller.

Fig. 3 shows the unit load and the average unit compression

for all the square-end struts of slenderness ratios 100, 150, and

200. The broken-line extensions of some of the curves are carried

up to the ultimate unit loads as found after the removal of the

gages which measured the compression. These extensions give

the true ultimate load, but not necessarily the real form of the

curves. The straight-line part of each curve is extended upward

to a convenient point for finding the modulus of elasticity.

Similar curves were drawn for all the struts tested. From these

the modulus of elasticity and the proportional elastic limit given in

Table 3 were obtained.

There were eight struts of length 3 feet 1% inches. The strut

C-6 was cross-grained and broke suddenly at a load which was

low for a strut from this plank. Strut A-4 had a curved grain

near one of the pins, evidently due to a knot in the log near plank

4 at this point. This strut failed by shear along the curved grain.

As these two results were evidently lower than the normal, two
additional struts, B-2 a and B-2 b , were cut from the long strut

B-2 after it had been tested to its maximum load; and a third

strut, C-3, was taken from the 10 foot 6>£ inch strut, C-3. The
results from these three struts were used with those from the origi-

nal five struts in calculating the average ultimate strength for this

length.

2. TEST OF FORMULAS

Curve I of Fig. 4 is plotted with slenderness ratios as abscissas

and the average ultimate strengths of each length as ordinates.

The figure also shows the maximum and minimum ultimate

strengths of each set. From Table 3 it is seen that all the struts

from plank 1 , except A-i
,
gave a low modulus of elasticity and a

low ultimate strength. For the slenderness ratio of 150, for in-

stance, E-i has an ultimate strength of only 1200 pounds per

square inch, while the next one has 1993 pounds per square inch.

If the results from plank 1 were omitted from Fig. 4, the range

from minimum to maximum would be greatly reduced.

148923°—20 2
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The average E from all these square-end struts is i 566 000

pounds per square inch. Curve II of Fig. 4 is plotted from

Euler's formula, with this value of the modulus of elasticity, under

the assumption that these struts had fixed ends.

3. RANKINE'S FORMULA FOR SQUARE-END STRUTS

Rankine's formula is

P Su

A
i+q&

P
in which -7- is the ultimate load in pounds per square inch, 5U is

the ultimate compressive strength of the material in the form of a

short block, L is the length of the column, r is its radius of gyra-

tion, and q is a constant.

Ritter's rational value of q, which makes Rankine's curve ap-

proach Euler's curve for large slenderness ratios, is

5U

* =^E .

From the extension of curve / of Fig. 4 back to the zero value

of — 1 it is evident that 5U is about 5200 pounds per square inch.

Using this with the value of E above,

a = = nearly.
* 2970 3000 J

Using this value of q (calculated from the E of the square-end

tests) , Rankine's formula for round-end spruce struts becomes

P 5200

A
,+

L
3000 r2

For square-end struts, if the ends are regarded as perfectly

fixed, q becomes , and Rankine's formula for square-end* 12 000 r2

spruce struts is

P 5200

A
,+

L
1 2 000 r2

Fig. 5 shows Rankine's curve plotted from this last formula,

the small circles of the figure being the average results of the test

(used in plotting curve / of Fig. 4). It is evident that the formula
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gives a fair approximation to the experiments except for the slen-

derness ratios from 75 to 150, within which range the error is on
the side of safety.

It must be remembered that the heads of the Emery testing ma-
chine were practically fixed planes for these struts of small section

and that the ends of the struts were carefully prepared. Where
the ends of a strut rest on a flexible support, such as the spars of

an airplane, this condition of approximately fixed ends does not

obtain, and such struts should be treated as approximating the

round-end condition.

A strut which is fastened to a rigid support by means of a pin

frequently behaves as a round-end member in the plane of the pin.

This was found to be true in the case of a stream-line strut which

was tested. If it is desired that such a strut should behave as a

fixed-end member, a stiffer connection and a longer and stiffer pin

must be used. Also, since the moment at the ends of a fixed-end

strut is as great as at the middle, the section should not be reduced

at the ends.

IV. CROSS-BEND TESTS

1. EXPERIMENTAL RESULTS

One cross-bend test piece taken from each plank was loaded at

the middle of a 24-inch span. The deflection was measured by

means of an Ames dial under the point of application of the load.

The dial was held by two rods which, in turn, rested on a pair of

transverse pins placed through the beam over the supports at the

neutral surface. For safety the dial was removed and the last

readings taken with a steel scale. This accounts for the irregu-

larity of the last points of the curves of Fig. 6.

The stress in the outer fibers has been plotted as ordinate and

the corresponding deflection at the middle as abscissa in the

curves of Fig. 6. The fiber stress, S, is calculated from the formula

5 = -^, in whichM is the bending moment at the middle of the

span, / is the moment of inertia of the cross-section, and c is the

distance of the extreme fibers from the neutral axis. The straight-

line part of each curve has been extended to the deflection 0.2 inch

in order to get the average slope from which to compute the

modulus of elasticity {E) . The deflection y at the middle of the

span, is given by
PL3

y '
48 EI
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from which

£ _ PL3

"
48 Iy

in which P is the load at the middle and L is the length of the

beam between supports. The moment at the middle is — , and
4

c for a rectangular section is -, if d is the depth of the section.

Substituting these values,

^ PL d

or

PL_S
8 I~d

Substituting this in the expression for the modulus of elasticity

gives

E =—

•

6yd
This reduces to

480 5E= -

d

for L = 24 inches and y = 0.2 inch.

Table 4 gives a summary of the results of these calculations.

2. DISCUSSION OF RESULTS

The average modulus of elasticity from the six tests is 1 513 000

as compared with 1 566 000 from the compression tests.

The moduli of rupture given in this table are considerably below

the average values found from tests of spruce specimens of this

size. A modulus of rupture of from 10 000 to 12 000 pounds

per square inch is frequently obtained. 1

On the contrary, the moduli of elasticity computed from these

data agree with average values obtained from other tests.

As the modulus of rupture does not appear in Euler's formula

for the strength of columns, and the usual values were found for

the modulus of elasticity, which does appear, it is believed that

the formula developed here applies to spruce having a greater

strength, as well as to the particular material used in this experi-

mental work.

> Bulletin 556—Mechanical Properties of Woods Grown in the United States, published by the Forest

Products Laboratory, Madison, Wis.
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Test piece E-6 was cross-grained, and failed diagonally. Its

modulus of elasticity was lower than that obtained from the other

specimens from plank 6. On the other hand, B-i gave a higher

modulus of elasticity than most of the struts from plank 1 . The
difference between the values of the mocfulus of elasticity by the

two methods is not large. Where it is not convenient to make
compression tests of long struts, the modulus of elasticity may be

determined from cross-bend tests; and this modulus may be used

in Euler's formula.

If short blocks are tested in compression, the ultimate com-

pressive strength thus obtained may be used with the modulus

of elasticity from the bending tests to compute Ritter's constant.

This constant, with the ultimate compressive strength, makes it

possible to write a formula of the Rankine type.

V. ROUND-END STRUTS

1. EXPERIMENTAL RESULTS

The struts for the round-end tests were taken from three 1 6-foot

planks numbered 7, 8, and 9. There were eight lengths from

— =25 to— = 200. The ends were finished in the same way as the
r r J

struts for the square-end tests.

£ £

Fig. 7.

—

Steel headsfor round-end spruce struts

To secure the round-end condition, the head shown in Fig. 7
was attached to each end. The ends of the struts were secured

to steel half cylinders (diameter = 1% inches) , which rested against

the compression heads of the testing machine. They therefore

rolled with little friction when the strut deflected.

148923°—20 3
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The cylinders were attached to the struts by means of the plates

A and B held by the nuts D, D' , E, and E' . The strut was placed

in the machine with the axes of the cylinders horizontal. If the

strut showed considerable deflection in the vertical plane when a

load of several hundred, pounds was applied, the pressure was
released to about 300 pounds and the position of the cylindrical

bearing blocks shifted by turning the nuts. It was possible in

this way to change the line of application of the loads as much as

one-sixteenth of an inch on either side of the center. This insured

axial loading and compensated for any lack of straightness in

the strut.

Table 5 gives the results for one round-end strut. It will be

noticed that the vertical deflection was small up to one-half the

maximum load, and the horizontal deflection almost negligible

until a comparatively large load was reached. At the total load

of 3050 pounds the vertical deflection was 0.312 inch. Without

compressing the strut further the deflection continued to increase

and the load decreased. The load was again brought to 3050
pounds, and the deflection was found to be 0.482 inch. After

the Howard gages and counterweights had been removed, the

load was 2980 pounds. Further compression developed a max-
imum load of 3025 pounds, which under continued compression

decreased to 3015 pounds.

This was characteristic of the behavior of round-end struts

with small eccentricity. After the maximum load was reached

there was a slow decrease of load, with a large increase of deflec-

tion.

The zero of the large Emery machine shifts with change of tem-

perature, and, therefore, the beam was adjusted to zero at the

beginning of each test. At the end of this test it was found that

the zero had changed by an amount equivalent to a negative load

of 30 pounds, so that the actual maximum was about 3020 pounds,

and the maximum unit load was 990 pounds per square inch.

As this correction was known for the last values only, the stress-

strain diagrams have been plotted from the loads as read, but the

corrected values of the ultimate unit loads have been used in

drawing the curves of ultimate strength and slenderness ratios.

These corrections were not made in the case of the square-end

struts.
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Fig. 8 shows the stress-strain diagrams and the horizontal and

vertical deflections for the strut of Table 5. Diagrams were

DEfLECTION IN O.OOI INCH
100 ISO eoo S5Q 30O 3fO 4QO 450 SOO SSO 6QO 650 700

SPRUCE IN
COMPRESSION

ROUND END STRUT E~9
LENGTH 6-3g"

£ = 150

O ao 40 60 go 100 iso . 140 ieo /go soo
COMPRESSION PER INCH LENSTH IN Q.OOOOI INCH

Fig. 8.

—

Deflection and compression of round-end, spruce strut

plotted for each round-end strut similar to those of the square-end

struts shown in Fig. 3. From these the modulus of elasticity

and the proportional limit were determined for each strut. A
summary is given in Table 6.

J60C v9
SPRUCE STRUTS
/N COMPRESSION
ROUND ENDS

>
v*&OQ

1. -v% \
*<* V

'<

^
\

X

7^N \

14 \ \

? \\\
v

\

IP ^N \

1-

V

>̂^ N
>^\VN

"v v\$^\~--<

^x^
SL CHOCflNESS

Fig. 9.

—

Relation of ultimate strength of round-end spruce struts to slenderness ratio

The curve of slenderness ratio and ultimate load for the struts

from each plank, together with the average curve, is shown in

Fig. 9. The average modulus of elasticity from all the tests is
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i 910 000 pounds per square inch, which is large for spruce, and is

due to the exceptionally large values of the modulus for all the

struts from plank 9.

\

\SSOC SPRUCCSTRUTS
INCOMPRESSION
ROUND ENDS

I Experimental curve
AVERAGE FROM FLANKS 7'6'9

IIEULERS CURVE
AVERAGE £-/ 910 OOO

-^..
II

v

\\7
\X

\% 1

% V \

\
\

I X
(600

t#oo

800

aoo

^

V
^Xk^

Fig. 10.

—

Experimental curvefor round-end spruce struts compared with Euler's

In Fig. 10 the average curve is again shown, together with

Euler's curve plotted for the average modulus of elasticity.

These curves nearly coincide for values of — greater than 100
r

and their difference is small for values of — between 80 and 100.
r

It is evident that Euler's formula may be used in the design of

round-end timber struts if the slenderness ratio exceeds 100. In

the case of spruce it is not advisable to use a modulus of elasticity

as great as 1 900 000. Based on the results of these tests, the

modulus should be taken as about 1 600 000. A value of 1 622 000
makes ir

2 E equal the round number 16000000. It is recom-

mended that this value be used, and Euler's formula for round-

end spruce struts then becomes

P
A

1 6 000 000

&
This formula should be used for values of the slenderness ratio

greater than 100, and may be used, with small error, for values

between 80 and 100.
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Fig. ii gives the theoretical curve for round-end struts with

slightly eccentric loads. It is plotted from the formula

5-=z[I+^ sec

(V^'-)]
p

where Su is the ultimate compressive strength of a short block, j-

is the ultimate unit load on a given strut , c is the distance from the

SPRUCE STRUTS
/N COMPRESSION
ROUND ENDS

O EXPCRM*£WAt. POJNT3
THEORETICAL CURVE

£ = / 900 ooo

*
¥ ,
Vj

?
V °

1

o 39 S 47 S7 6° - 7o a sV 1

'l
*\? i. /M /SO. ' 7o /So i iO cOO O 220

5ii"Aaf*«f3S FIATIO =

Fig. ii.—Experimental results for round-end spruce struts compared with theoretical

curve for a perfectly straight and uniform strut with round ends and slightly eccentric

load

center of gravity of the section to the extreme fiber, e is the eccen-

tricity of the load, r is the radius of gyration, E is the modulus of

elasticity, and L is the length of the strut. In calculating the data

for this curve, Su was taken as 5200 pounds per square inch, E as

1 910000 pounds per square inch, and — assumed to be 0.1,

which corresponds to an average eccentricity of —— inch for a

section 1.75 inches square, free to turn about an axis parallel to

one face, but not to turn about a diagonal of the section.

The small circles in Fig. 11 represent the the average experi-

mental values of Table 6, from which curve / of Fig. 10 was drawn.

From the close agreement of these points with the theoretical

curve it is evident that it is only necessary to determine the ulti-

mate strength of short blocks in compression and the modulus of
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elasticity of the material in order to construct working curves for

struts of all lengths. The modulus of elasticity may be determined

from bending tests.

The amount of eccentricity is an uncertain element, and although

a considerable difference in eccentricity makes little difference in

the strength of long struts, it is always a questionable factor in

the strength of short struts, no matter what formula is used.

The tests of long pieces by bending or compression should be

carried to failure to determine the brashness of the material. The
maximum loads in an airplane strut are impact loads (lasting for

a brief time) . For such loads, a wood of large modulus of resilience

(as evidenced by a large deflection before rupture) should be pre-

ferred to a brasher material of even greater static strength.

)
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Comparative ultimate strength of square-end and round-end struts

Fig. 1 2 gives a comparison of round-end and square-end struts.

Curve / is the mean of all the square-end struts, for which the

average modulus of elasticity is i 566 000 pounds per square inch.

Curve // is the mean of the round-end struts from planks 7 and 8,

for which the average modulus of elasticity is 1 670 000 pounds

per square inch. The results from plank 9 are not included, as its

large modulus increases the average of the round-end struts so as

to vitiate the comparison.
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VI. CONCLUSIONS

Euler's formula gives accurate results in the design of round-end

spruce struts for values of— greater than 100 and may be used with

little error for values between 80 and 100.

For the ultimate strength per square inch for round-end spruce

struts it is recommended that Euler's formula be written

P 16 000 000

A'

(^
which corresponds to a modulus of elasticity of 1 622 000 pounds

per square inch.

For short round-end spruce struts use the Rankine formula

P 5200

A 1 U
+

3C»oor 2

For square-end struts fitted accurately to rigid bodies, use the

Rankine formula

P _ 5200

A~F7 U~
1 2000^

If the ends are not well fixed, use values of the constant between

and
12 000 3000

These formulas give the ultimate unit loads in pounds per square

inch and must be divided by suitable factors of safety.

In the study of new materials a bending test may be made to

determine the modulus of elasticity and the resilience, and a com-
pression test of a short block to determine the ultimate compressive

strength. The results thus obtained may be used in Euler's

formula for round-end struts of uniform section having a slender-

ness ratio greater than 100 and in Rankine 's formula for struts of

all lengths. Instead of Rankine 's formula, the theoretical equa-

tion of a strut with slightly eccentric load may be employed. This

equation is more .accurate than Rankine's formula, but the labor

of computation is greater.

If long struts, having a slenderness ratio of 200 or more, be

provided with round ends similar to Fig. 7, the modulus of elas-

ticity may be determined quickly and accurately by means of
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Euler's formula. Where a long compression machine is not avail-

able, a small strut may be tested by placing the lower end on a plat-

form scale and applying pressure to the top by means of a lever

until the buckling load is reached.

All timber for use in airplanes might be tested in this way as a

part of the inspection. The pieces could be tested in the form of

long strips before they are cut into short lengths. Where long

strips are not available, a small test piece, not over 0.25 inch in

thickness and of any convenient width, may be taken from each

plank and tested to detruction as a round-end strut.

In all cases of square-end struts the amount of eccentricity is an

uncertain factor, and the ends may seldom be regarded as fixed.

Ordinary airplane-pin connections should be regarded as round

ends in the plane of the pins as well as in the plane perpendicular

thereto.

VII. THEORY OF CERTAIN TAPERED STRUTS 2

1. SHAPE OF STRUT

The results of the preceding experiments show that the load,

under which a slender wood strut of uniform cross section fails, is

determined primarily by the modulus of elasticity of the material

.

The following discussion develops the theory of the failure of a

certain kind of tapered strut by elastic bending.

In one form of tapered strut the moment of inertia of any section

between one end and the middle is proportional to the square of

its distance from a fixed point beyond that end of the strut. Also,

both halves of the strut are symmetrical with respect to a trans-

verse plane at the middle. This form approximates many of the

types used in practice. In Fig. 13, M is a point at a distance a

to the left of the left end of the strut. The moment of inertia of

any section in the left half, at a distance x from M, is given by

I= Cx\

where C is a constant depending upon the form of the strut. Like-

wise A7
"

is a point at a distance a to the right of the right end of the

strut. The moment of inertia of any section in the right half is

expressed by the same relation, with x measured to the left from N.

2 A number of papers have been published in recent years on tapered struts. Arthur Morley (Engi-

neering, 97, pp. 566-568, and 104, pp. 295-298), L. Bairstow and E. W. Stedman (Engineering, 98, pp.

403-404), and John Case (Engineering 106, pp. 295-298) have given methods of successive approximation,

either graphic or analytic, for struts of arbitrarily varying cross section. W. M. Wallace (Engineering,

94, pp. 831-832) has discussed by approximate methods columns whose moment of inertia varies according

to an assumed analytical law. Since the present paper was in print, Akimasa Ono (Memoirs of the College

of Engineering, Kyusha Imperial University, Fukuoka, Japan, 1, No. 5, pp. 395-406) has given exact

solutions for columns resembling those here discussed. In the latter two cases, however, the cross sections

of the columns vanish at the end, whereas the columns here discussed have a finite cross section at the end.
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Fig. 13.

—

Bent tapered strut

2. DERIVATION OF FORMULAS

The load on this strut is P pounds acting at a distance e from

the center of gravity of the end sections. Let y be the distance of

the center of gravity of any section of the bent strut from the line

of action of the load. The differential equation of the elastic curve

for this strut is

Substituting I = Cx2
, transposing and dividing by EC,

d>y Py
% dx^EC

This is a homogeneous linear differential equation of the second

order. Its solution is written in three standard forms depending

aP
on the value of -ft^-EC

4P
EC

ifg> I
, y^(fJ sin

j
s+1v/fI7 1„g 0)'} w

These solutions may be verified by differentiating and substi-

tuting in the original equation. A lt
Bu A 2 , B 2 , and A are integra-

tion constants having the dimensions of a length, and B is a

dimensionless integration constant.

The constant C is generally a small quantity and for loads which

aJ>
cause failure the fraction —^ is greater than unity, so that only the

third form of the solution need be used. To determine the con-

stants in equation (1) we have the boundary conditions: At the

end of the strut x = a, y=e, at the middle of the strut x = ka,

v _ v dy L
/—/max, ~f-=o, k = I-| •

ax 2a
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Substituting in equation (i)

e=A sin B

y max = Afe*sin( B +'Jec- 1 1oS k
J

= Ak i
sina (2)

Differentiating equation (1)

Substituting x = ka and equating to zero

^Ak-i^sma +^l^-i cos aj = °

Uptana =-\EC~ 1

Then

and

B=«-^/^-ilogk*

A=^*
sin 5

Substituting in equation (2)

_ eW- sin «
y max

sin 5

e&* sin a

sin a cos
[ -\ wj^ ~ 1 log k* 1 — cos a sin [ -\/i=y^ — i l°g &*

)

or

= e£_

cos
(Vi?~*

log **) +TT^ sin
(V^ ~

'

log **'

3. APPLICATION OF FORMULAS

This equation may be used to calculate the maximum fiber

stress in the strut under any known eccentric load.
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Use the formula,

c P Mc

where A is the area of the section, M is the bending moment
at the section, and c is the distance of the extreme fibers from the

center of gravity of the section. In the equations of a strutM =Py
if y is measured from the line of the load, as in Fig. 13. At the

ends of the strut M = Pe, at the middle M =Pyma.x , at the other

sections M=Py where ymax and y may be calculated from

equations (3) and (2) , respectively. Generally it is only necessary

to calculate the stress at the middle and at the ends of the strut.

In a strut for which I = Cx2 the maximum stress occurs a short

distance from the middle. The difference between the maximum
stress and the stress at the middle section is not great.

The maximum safe load—that is, the load which gives the max-

imum safe fiber stress—can thus be determined by a process of

trial and error.

For relatively slender struts a simpler method may be used.

If the load is assumed to be centrally applied (e = o) and P so

chosen as to make the denominator in equation (3)

,

cos \\ec
~ l log fei

)
+ Up

sin
(

V

ec
~ : log *y (4)

equal to zero, or in another form to make

tan a log kh = — a (5)

the deflection y become indeterminate as in a strut of uniform

cross section under Euler's load. Equation (5) is, in fact, a

generalization of Euler's formula for this type of tapered strut and,

as will be shown later, reduces to Euler's formula when fe = 1.

In practice the eccentricity is seldom known, but in slender

struts to which these equations are applicable the effect of eccen-

tricity is small and the ultimate load in practice is only slightly

less than that given by equation (5).

From inspection of the equation it is evident that the critical

load is that which makes the angle (\ wp— 1 log &*)= —tan a.

log fe* a little greater

and the sine positive.

log ¥ a little greater than -. The cosine will then be negative
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To determine whether a given load is safe, multiply the load

by a suitable factor of safety and substitute in expression

(4) . If the angle ( .. ^—— 1 log kh ) is less than - radians, the load

is a safe one. If the angle is greater than - radians, the load is

still safe provided expression (4) is positive. If it is negative, the

load is too large.

Before applying these equations it is necessary to express C
and k in terms of the dimensions of the strut. Let Ix be the

moment of inertia at the end (where x = a), and let I
2
be the moment

of inertia at the middle (where x = ka)

.

I,=C a2
; I 2

= C(ka) 2
;

Since

ka = a +—>
2

V^=VCa; V^=Vc(a+|);

2

If all sections of the strut are similar figures, so that / varies

as the fourth power of the transverse dimensions,

where D
2
and D 1 are homologous transverse dimensions at the

middle and ends of the strut, respectively.

The maximum load which a given strut will carry may be

found by the method of trial and error. This method of applying

the formula is shown in the example which follows. The expres-

sion (4) is used instead of equation (5) because the interpolation

is more nearly linear.

Example.—A wooden strut is 6 feet long, 2 inches square at

the middle, 1.6 inches square at the ends, and tapers according

to the law / = Cx2
. If the modulus of elasticity (E) = 1 600 000

pounds per square inch, find the ultimate load.

" A 1.6 4
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loge £* = 1.60944 -1.38629 =0.22315

r *- 6\ j
2\ Ir

22 ~ 1 -
62

. r ^(4-2-56) 2

1

12' 2
12' * Vi 2 ><36

' 12X362 7500

By Euler's formula the ultimate strength of a uniform strut 2

inches square and 72 inches long is

_, 7r
2 X 1 600 000 X 1

6

„ ,P = = 4061
. 5 pounds.

72X72X12 * a r

The load on the tapered strut must be considerably smaller.

First try 3000 pounds.

4P_ 30ooX4X75oo
6EC 1 600 000 5

"
5

yJc ~ * = V55-25 = 7-433

7.433 X 0.2231 5 = 1.6605 radians = 95° 8'

Cos 95 8' +
Sm

7

9

4

5

33
= - 0.0895+0.1338 =0.0443

The load of 3000 pounds is below the ultimate.

Next try 3200 pounds.

V
A.P /—
3_-i = V59 = 7-68iiEC

7.6811 X0.22315X 180 = 98.205° = 98° 12'

_. nn .sin 98 12'
Cos 98 i2'H ~e = -0.1426 + 0.1289= —0.0137

This load is too great. Interpolating

443X200P = 3000+ = 31 S3
443 + 137

Recalculating with P = 3i53 pounds,

V:
^-1 = 7.6236; = 97° 28'

_. 00/ sin 97 28 •

Cos 97 28 -] ^

—

2
— = — 0.1299+0. 1301 =0.0002

Interpolating again,

d 2X47 -,^ = 3153 +-^T- = 3i53-7 pounds
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The ratio of this load to Euler 's ultimate load on a uniform strut

2 inches square is ^
-/
=0.7765- We will call this the strength

ratio of the strut. It will be shown later that this ratio holds

for a strut of any length and material for which fe*=='i .25, provided

the slenderness ratio is such that Euler 's formula is applicable for

the strut of uniform section.

While it is not practicable to solve equation (5) for P when
k is given, except by the method of trial and error, it is easy

aP
to find the value of k corresponding to any given figure for ^~

and from a series of such values plot a curve which will simplify

the computations.

Solving equation (5) for (k)
, log e k =^^

where tan a = -» / -^-^ — 1 which determines %^=. as a function of k.

The first part of Table 7 gives the calculation for k by logarithms.

Strength Ratio.—The ratio between the ultimate load of this

type of tapered strut and Euler 's ultimate load of a strut of

uniform cross section whose length is the length of the tapered

strut and whose moment of inertia is the maximum moment of

inertia of the tapered strut, is independent of the length and

moment of inertia and depends for its value on k alone. This

ratio will be called the strength ratio of the tapered strut. To
calculate this ratio, it is necessary to express C in terms of I2 , L,

A P
and k and substitute in ^,, which is known from equation (6) or

Table 7 as a function of k.

V/>#

2 2

Substituting this value of C,

±p PL 2

EC
Eh (1

--0

PL?
EI,

"

EC\
-0'

from which,
PL? \P ( _i\»

(7)
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1

By Euler's formula the ultimate load of a strut of uniform sec-

tion of length L and moment of inertia I 2 is,

EU
P' =

from which

L 2

P'L 2

EI 2 (8)

Dividing (7) by (8), gives the strength ratio of the tapered strut

P
P

(±p\V_j)
' \EC) tt

2

which is seen to be a function of k alone, as stated above.

The second part of Table 7 gives most of the steps of the calcula-

A.P
tions of the strength ratios for the values of™, in the first part of

the table. It is to be noted that as k approaches unity the

strength ratio approaches unity showing that equation (5) re-

duces to Euler's formula for k = i. The last column of the

table gives yv

\K£)*
If all sections of the strut are similar figures,

v^
=L-Ei

k D'

D
x
and D 2 being homologous transverse dimensions at the ends

and middle of the strut, respectively.

The curve of Fig. 14 is plotted from Table 7, and gives the

strength ratio for values of % t above 0.2. Tower values are

omitted as such struts will generally fail by compression at the

ends. This curve affords an easy method of calculating the

ultimate strength of a slender tapered strut for which the equation

is / = Cx2
. Calculate the strength of a uniform strut of the same

length and of cross section equal to the maximum section of the

tapered strut and multiply this result by the strength ratio as

read from the curve.
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4. APPROXIMATE CALCULATIONS

The straight line of Fig. 14, at an angle of 45 , does not deviate

greatly from the strength-ratio curve. For approximate calcula-

tions the strength ratio may be taken as equal to •* j-r-

If all sections are similar figures, •*/T = -^i » and the strength of

the tapered strut is to the strength of the uniform strut as a

transverse dimension at the end is to the homologous transverse

dimension at the middle.

Another approximate solution is by means of the moment of

inertia at some point between the end and the middle. We will

consider the section at one-third the length from the end; for the

>V^
=o -'case, -i/fc
= °-5-

r = o.25; £ = 4; ka — a = ^a =—
fC 2

/ = Cx2 = gCa2
.

I 2
= C(ka) 2 = i6Ca2

.

1 9
-r =^ = °-5625.

The moment of inertia at one-third the length from the end is 56

per cent of that at the middle. If the moment of inertia at this

section be taken as the average / for use in Euler's formula, it

will give an apparent strength ratio of 0.56. Fig. 14 shows that

the real strength ratio is 0.49, an error of about 14 per cent in

this case.

The second column of Table 8 gives the ratio of the moment of

inertia at the third points to that at the middle for a series of

values of -* /-r A comparison of these values, with the strength

ratios in the last column, shows that the moment-of-inertia

method may be used with little error for struts of moderate taper.

Greater accuracy may be secured by taking, for any given value

of moment-of-inertia ratio, the corresponding strength ratio from

the last column of Table 8.
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The third column of Table 8 gives the ratio of the moment of

inertia at five-sixteenths of the length from the end, to the moment
of inertia at the middle. These agree more closely with the

strength ratios and err slightly on the side of safety in the case of

struts of small taper.

These figures apply strictly to struts for which I = Cx2
. Actual

struts taper less rapidly near the middle, so that the error in

using the moment of inertia at the one-third point may be a

little greater than indicated by Table 8.

5. RELATION OF THE STRENGTH OF A STRUT TO ITS STIFFNESS
AS A BEAM

The approximate methods already given apply strictly to

struts for which I = Cx2
, and with slight error, to other forms.

In general, the ultimate strength of a relatively slender strut

varies with its stiffness. In order to show how nearly the ulti-

mate strength of a strut is proportional to its stiffness as a beam,

we will calculate the deflection of some tapered struts, supported

at the ends and loaded at the middle.

Using the method of internal work,

h'£*
in which U is the work and M is the bending moment. For

a beam supported at the ends and loaded at the middle, with
the origin at a distance a to the left of the left end,

M=- (x-a).
2

JP2 P2 C( ia a2
\

[*- 2alog(f)-f]**,
P2

8EC

for one-half the beam. For the entire beam

_. P2a ,, 1 , ,.

p
The external work is — ymax . Equating the two expressions for

work,

^rnax = ^=. {k ~ £ - 2 log k)

.
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P PL 2 L
Substituting 7^ = -, r-andc = -

EC / i\2 2 (fe-!)'
4ELH)

y^ =
i6EIAk-i)Ak ~i~ 2l0gk) -

The deflection at the middle of a beam of uniform section,

having moment of inertia I2 is

PL3

y* 48EI2

if the beam is supported at the ends and loaded at the middle.

Since stiffness is inversely proportional to the deflection due to

equal loads, the relative stiffness is given by

relative stiffness = •

3k2 (fe-^-2 log k)

For the case in which k =4 and % t =0.5,

27
relative stiffness = —p—. ——r =o.s77.

48(4-0.25-2X1.38629) 0//

The stiffness of a beam with this taper is 58 per cent of that

of a uniform beam of the same length and maximum moment
of inertia. From Table 8 it is seen that the strength ratio for

this value of k is 0.49.

The fourth column of Table 8 gives a series of stiffness ratios.

These are somewhat higher than the corresponding strength

ratios, and the difference is greater in the struts of large taper.

These computations are for struts for which I = Cx2
, which

approximates the form of actual struts, except that the surfaces

of the two halves meet at a slight angle at the middle, instead

of on a common tangent. A formula was derived for struts

having the equation I =I2
— Cx2

, in which x is the distance from

the middle. This strut has the desired form at the middle, but

converges more slowly near the middle and more rapidly near

the ends than the actual struts. The calculations show higher

strength ratios and stiffness ratios than those for the struts of

Table 8. The stiffness ratios exceed the strength ratios in about

the same proportion in both cases.
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To find approximately the strength of any tapered strut,

support it at the ends as a beam, apply a light load at the middle,

and measure the deflection ymax . From the equation of a uniform

beam,
PL3

ymax ~
A8El'

calculate the equivalent EI. Substitute this value of EI in

Euler's formula to get the ultimate strength. The result will

be somewhat too great, since the stiffness ratio exceeds the

strength ratio.

For greater accuracy test a uniform strut of the same material

of cross section equal to that at the middle of the tapered strut.

From the two deflections get the stiffness ratio and make the

corresponding relative correction in the value of EI. The loads

and deflections must be small so as not to injure the strut.

Example.—A tapered strut 5 feet long supported at the ends

is deflected 0.060 inch at the middle by a load of 10 pounds at

the middle.

„ T 10X603

EI =-5-7; f~ = 750 000
48x0.060 /0

Suppose a uniform beam of the same length is deflected 0.042

inch by the same load. The stiffness ratio is ^-=0.70. Inter-

polating from Table 8, the corresponding strength ratio is found

to be 0.62. The corrected value of the equivalent EI is

62 ^
750 000 X — = 660 000./0

70

Instead of measuring the deflection of a uniform strut, the

value oil — ) may be calculated from the dimensions of the strut

and used in Table 8 to find the relation of strength ratio to

stiffness ratio.
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Comparison of strength of tapered struts and struts of uniform section
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TABLE 1.—Compression Test Square-End Strut B-4, Tested Aug. 20, 1917, by

J. E. B.

[Length, 4 feet 2J4 inches; breadth, 1.738 inches; depth, 1.762 inches. Slenderness ratio, 100. Com-
pression with 30-inch Howard gages placed 2.75 inches apart. Counterweight of 9 pounds at each end

of gages. Deflection measurements taken with Johnson dials.]

Compression, inches

Average
unit
com-

pression,
inch
per
inch

Deflection,

Unit stress, pounds

North gage South gage
inches

per square inch

At gage

At surface

At gage

At surface

Up
In 30
inches

Per
inch

In 30
inches

Per
inch

South

I II III IV V VI vn VIII IX X

200 0. 0000

.0049

.0090

.0122

.0163

.0201

.0245

.0284

.0330

.0372

.0414

.0461

.0510

.0563

.0611

.0639

.0683

.0742

.0810

0. 00000

.00465

. 00873

.01189

.01595

.01961

. 02390

. 02767

.03215

. 03618

.04015

.04466

. 04927

. 05414

. 05897

. 06105

. 06495

. 07002

. 07560

0. 000000

. 000155

. 000291

. 000396

. 000632

. 000654

. 000797

. 000922

. 001072

. 001206

. 001338

0. 0000

.0036

.0075

.0105

.0144

.0174

.0212

.0244

.0283

.0316

. 0345

0. 00000

.00384

. 00777

. 01081

.01475

. 01789

.02180

.02513

.02915

. 03262

. 03475

. 03964

.04323

.04656

.04973

. 05105

. 05324

. 05538

. 05670

0. 000000

. 000128

. 000259

. 000360

. 000492

. 000596

. 000727

. 000838

. 000972

.001087

.001192

.001321

.001441

.001552

.001658

. 001702

.001775

. 001846

. 001890

0. 000000

. 000142

. 000275

. 000378

. 000512

. 000625

. 000762

. 000880

. 001022

.001147

. 001265

. 001405

.001541

. 001678

. 001805

. 001868

.001970

. 002090

. 002205

0.000

.004

.009

.009

.010

.012

.013

.013

.013

.013

.020

.021

.021

.022

.022

.024

.025

.029

.033

.045

.048

.055

0.000

400 .003

600 .003

800 .004

1000 .005

1200 .007

1400 .009

1600 .012

1800 .015

2000 .018

2200 .021

2400 .001489 .0382

.001642 .0415

.021

2600 .030

2800 . 001804

. 001952

. 002035

.002165

. 002334

. 002520

.0444

.0472

.0482

.0499

.0512

.0513

.036

3000 .043

3100 .048

3200 .056

3400 .071

3500a .089

3446 . 113

3560 .122

3634 .146

37256

3520c .120

.455

.275

3447<* .271

a Removed Howard gages and counterweights. Load dropped to 3446 pounds per square inch.

b Maximum load. Continued to deflect south with compression head stationary.

c Cracking noise. Strut bent up and south,

d Compression failure. 1.5 inches from middle.
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TABLE 2.—Compression Test Square-End Strut C-4, Tested Aug. 17, 1917, by
J. E. B.

[Length, 5 feet 3 1

s inches; breadth, 1.738 inches; depth, 1.763 inches. Slenderness ratio, 125. Tested
on large Emery machine. Compression measured with 30-inch Howard gages placed 2.75 inches apart.

Counterweights of 9 pounds at each end of gages. Deflection measurements taken with Johnson dials.

Compression, inches

Average
unit
com-

pression,
inch
per
inch

Defle
inc

ction,

Unit stress, pounds
North gage South gage

hes

per square inch

At gage

At surface

At gage

At surface

Up
In 30
inches

Per
inch

In 30
inches

Per
inch

South

I II III IV V VI VII VIII IX X

200 0. 0000

.0038

. 0075

.0114

.0146

.0186

.0222

.0252

.0296

.0333

.0379

.0412

.0456

.0471

.0494

.0510

.0524

.0520

0.00000

. 00380

. 00740

.01133

. 01449

.01845

.02211

. 02502

. 02935

. 03305

. 03754

. 04084

.04513

. 04668

. 04896

. 05067

. 05240

.05320

0. 00000

.00127

. 00247

. 00378

. 00483

.00615

. 00737

. 00834

. 00978

.01102

.01251

.01361

. 01504

.01556

. 01632

. 01689

. 01747

.01773

0. 0000

.0038

.0070

.0110

.0140

.0178

.0217

.0242

.0282

.0319

.0359

.0392

.0430

.0448

.0470

.0492

.0522

.0586

0. 00000

. 00380

. 00710

.01107

.01411

.01795

.02179

. 02438

. 02845

. 03215

. 03626

. 03954

. 04347

. 04522

. 04744

. 04953

. 05220

. 05740

0. 00000

.00127

. 00237

. 00369

. 00470

. 00598

. 00726

. 00813

. 00948

. 01072

. 01209

.01316

. 01449

. 01507

.01561

.01651

. 01740

.01913

0. 00000

.00127

. 00242

. 00373

. 00477

.00607

. 00732

. 00823

. 00963

. 01087

. 01230

.01340

.01477

.01532

. 01607

. 01670

.01743

.01843

0.000

.002

.005

.006

.006

.011

.011

.011

.012

.013

.013

.015

.016

.019

.020

.022

.024

.022

0.000

400 .000

600 .000

800 .000

1000 .000

1200 .000

1400 .000

1600 .000

1800 .003

2000 .005

2200 .005

2400 .005

2600 .004

2700 .004

2800 .004

2900 .004

3000 .004

3100 <J .028

a Removed gages and counterweights. Load dropped to 2840 pounds per square inch. Strut suddenly

bent upward and continued to bend with reduced load. Compression failure. 1 inch from middle at

bottom and one side.



Strength of Spruce Struts

TABLE 3.—Summary of Tests of Square-End Struts

39

Strut Length Breadth Depth Area
Modulus of

elasticity

Propor-
tional

limit

Ulti-

mate
unit
load

A-l.

E-2.

C-3..

D-4.

E-S..

A-6..

C-5..

E-6..

C-2..

D-3.

E-4..

A-5..

B-5..

Average.

Average.

C-l...

E-3...

A-4...

B-5...

C-6...

B-2a..

B-2b.

C-3...

Average.

D-l.

E-2..

A-3..

B-4..

D-6.

Average.

E-l..

A-2..

B-3..

C-4..

D-5.

E-l..

A-2..

B-3..

r>-5.

E-6..

Average.

Average.

Inches

12.625

12.625

12.625

12.625

12.625

12.625

12.625

12.625

25. 250

25.250

25.250

25. 250

25.250

37.875

37.875

37. 875

37. 875

37. 875

37.875

37. 875

37.875

50. 500

50. 500

50. 500

50. 500

50. 500

63. 125

63. 125

63. 125

63. 125

63. 125

75. 750

75. 750

75.750

75. 750

75. 750

Inches

1.745

1.736

1.745

1.742

1.742

1.746

1.757

1.750

25.1

25.2

25.1

25.1

25.1

25.0

24.9

25.0

Inches

1.765

1.745

1.765

1.762

1.775

1.735

1.733

1.753

24.8

25.1

24.8

24.8

24.6

25.2

25.3

25.0

Inches 2

3.08

3.03

3.08

3.07

3.09

3.03

3.04

3.07

Lbs./in.»

1 840 000

1 670 000

1 870 000

1 530 000

1 400 000

1 830 000

1 690 000

1 730 000

Lbs./in.'

2800

1400

2000

2200

2800

4000

1800

2800

1.726

1.745

1.744

1.737

1.753

50.7

50.1

50.2

50.4

49.9

1.731

1.756

1.764

1.765

1.755

50.5

49.8

49.6

49.6

49.8

2.99

3.06

3.08

3.07

3.08

1 650 000

1 700 000

1 760 000

1 600 000

1 350 000

1.750

1.745

1.740

1.737

1.747

1.723

1.761

1.755

75.0

75.2

75.4

75.8

75.1

76.1

74.6

74.8

1.732

1.766

1.758

1.772

1.743

1.722

1.732

1.738

75.8

74.3

74.7

74.0

75.1

76.2

75.8

75.5

3.03

3.08

3.06

3.08

3.05

2.97

3.05

3.05

1 140 000

1 500 000

1 390 000

1 860 000

1 400 000

1 770 000

1 480 000

1 680 000

1.732

1.735

1.763

1.738

1.745

101.0

100.6

98.7

100.7

100.2

1.746

1.729

1.744

1.762

1.765

100.2

101.2

100.3

99.3

99.1

3.02

3.00

3.08

3.06

3.08

1 180 000

1 600 000

1 600 000

1 560 000

1 540 000

1.734 126.0

1.736 126.0

1.770 123.6

1.738 125.8

1.733 125.8

1.754

1.752

1.743

1.763

1.763

124.7

124.8

125.5

124.0

124.0

3.04

3.04

3.09

3.06

3.06

1 140 000

1 770 000

1 650 000

1 640 000

1 820 000

1.735 151.2

1.738 151.0

1.762 148.9

1.738 151.0

1.750 150.0

1.746

1.758

1.746

1.748

1.754

150.3

149.2

150.3

150.1

149.6

3.03

3.06

3.03

3.03

3.07

800 000

1 720 000

1 720 000

1 520 000

1 710 000

Lb3./in.»

5000

4191

4026

4400

5227

5809

4375

5472

4812

2200

2000

2800

3200

2800

4047

4248

4383

4723

5032

4487

1600

1800

2200

2600

2400

2200

2600

2200

3163

3743

3400

4580

3734

4417

4764

4033

3979

1800

2100

2400

2600

26C0

2748

3300

3864

3725

3815

3490

1600

2000

2200

2600

1800

2801
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TABLE 3.—Summary of Tests of Square-End Struts—Continued

Strut Length Breadth L
r

Depth L
T

Aera
modulus of

elasticity

Propor-
tional
limit

Ulti-
mate
unit
load

D-i

Inches

88. 375

88. 375

88. 375

88. 375

88. 375

Inches

1.733

1.765

1.T41

1.729

1.739

176.6

175.5

175.8

177.1

176.0

Inches

1.743

1.742

1.762

1.758

1.746

175.5

175.7

173.7

174.1

175.3

Inches

3.02

3.07

3.07

3.04

3.04

Lbs./in.

940 000

1 600 000

1 740 000

1 870 000

1 360 000

Lbs./in.

900

1300

1200

1550

1100

Lbs./in 2

1109

E-2 1539

B-4 1750

C-5 1891

D-6 1530

1564

101.000

101.000

101.000

101.000

101.000

101.000

1.741

1.737

1.749

1.742

1.732

1.742

201.0

201.4

200.0

200.8

202.0

200.8

1.731

1.747

1.760

1.757

1.758

1.753

202.1

200.3

198.7

199.1

199.0

199.6

3.01

3.03

3.08

3.06

3.05

3.05

1 100 000

1 600 000

1 600 000

1 730 000

1 680 000

1 550 000

600

700

1150

1200

1200

1050

C-l 900

D-2 1155

E-3 1299

A-4 1454

B-5 1230

C-6 1210

1210

113.625

113.625

113.625

113.625

113.625

113.625

1.735

1.730

1.752

1.742

1.741

1.747

226.9

227.4

224.8

226.0

226.1

225.4

1.748

1.735

1.744

1.757

1.758

1.751

225.2

226.9

225.7

224.0

223.8

224.8

3.03

3.00

3.06

3.06

3.06

3.06

1 240 000

1 720 000

1 640 000

1 740 000

1 580 000

1 360 000

700

800

700

900

800

900

B-l 891

C-2 1100

D-3 1013

E-4 1003

A-5 1029

B-6 1000

Average 1006

126. 250

126. 250

126. 250

126. 250

126. 250

1.742

1.736

1.761

1.744

1.745

251.1

252.0

248.4

250.8

250.7

1.767

1.741

1.737

1.768

1.768

247.6

251.2

251.8

247.4

247.4

3.08

3.02

3.06

3.08

3.08

1 600 000

1 600 000

1 520 000

1 680 000

1 560 000

850

600

600

500

600

A-l 873

B-2 950

C-3 915

D-4 900

E-5 871

902
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TABLE 4.—Bending Tests of Spruce

41

Test piece

Fiber stress S
from curve at

deflection of

0.2 inch

Depth d
Modulus of elas-

ticity

Modulus of

rupture

B-l

Lbs./in.a

5900

5770

5600

5900

5400

4720

Inches

1.743

1.769

1.765

1.750

1.732

1.778

Lbs./in.2

1 625 000

1 544 000

1 523 000

1 625 000

1 496 000

1 274 000

Lbs./in.a

8600

D-2 8000

A-3 6300

C-4 8600

C-5 7600

E-6 7200

TABLE 5.—Compression Test of Round-End Strut E-9

[Tested Aug. 24, 1917, by J. E. B. and L. J. L. Length, 6 feet 3% Inches; breadth, 1.742 Inches; depth, 1.752

inches. Slenderness ratio, 150. Tested on large Emery machine. Compression measured with 30-inch

Howard gages. Counterweight of 9 pounds at each end of gages. Deflection measurements taken with

Johnson dials.]

Zero correction at end of test, 30 pounds. Ultimate load 3050—30=3020 pounds=990 pounds per square
inch.

Total load,
pounds

Unit load,
pounds per
square inch

Compression in 30 inches,
inches Average unit

compression,
inches per

inch

Deflection, inches

Worth gage South gage Down North

305 100 0. 0000 0. 0000 0. 000000 0.000 0.000

610 200 .0011 .0011 . 000037 .000 .000

915 300 .0020 .0027 . 000078 .001 .000

1220 400 .0034 .0041 . 000125 .004 .002

1525 500 .0049 .0050 .000165 .009 .003

1677 550 .0054 .0058 . 000187 .014 .004

1830 600 .0061 .0063 . 000207 .017 .004

2060 675 .0071 .0069 . 000233 .022 .004

2135 700 .0074 .0073 . 000245 .024 .004

2287 750 .0080 .0078 . 000263 .032 .004

2440 800 .0089 .0088 . 000295 .039 .003

2593 850 .0100 .0096 . 000327 .051 .002

2745 900 .0111 .0103 . 000357 .079 .001

2898 950 .0120 .0110 . 000383 .103 .011

3050 1000 .0140 .0131 . 000452 • .312 .015

3050 1000 .0156 .0147 . 000505 .482 .029

3300* .537

.612

.862

1.142

.039

2980* 974

992

989

.039

3025 069

3015

" Removed gages. Load stood at 3300 pounds total.

6 Removed counterweights. Load stood at 29S0 pounds.
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TABLE 6.—Summary of Tests of Round-End Struts

Strut Length Breadth Depth
r

Area Modulus of

elasticity

Propor-
tional
limit

Ulti-
mate
unit
load

C-7

Inches

12.625

12. 625

12. 625

Inches

1.774

1.765

1.741

Inches

1.748

1.748

1.745

25.0

25.0

25.0

Inches 2

3.10

3.08

3.04

Lbs./in.2

1 690 000

1 950 000

3 300 000

Lbs./in.2

2400

2500

2400

Lbs./in.s

4226

D-8 4314

E-9 5487

4676

25. 250

25. 250

25. 250

1. 783

1.760

1.746

1.751

1.750

1.752

50.0

50.0

50.0

3.12

3.08

3.06

1 560 000

1 750 000

2 100 000

2000

2800

2800

C-7 3630

D-8 3610

E-9 4908

4049

37.875

37.875

37.875

1.768

1.754

1.749

1.752

1.754

1.755

74.9

74.8

74.8

3.10

3.08

3.07

1 820 000

1 600 000

2 430 000

2400

2600

3800

C-7 2816

D-8 2607

E-9 3905

3109

50. 500

50. 500

50. 500

1.807

1.752

1.738

1.750

1.748

1.747

100.0

100.1

100.1

3.16

3.06

3.04

1 680 000

1 920 000

2 200 000

1200

1800

1400

A-7 1503

B-8 1938

C-9 2031

1824

63. 125

63. 125

63. 125

1.788

1.756

1.742

1.750

1.752

1.750

125.0

124.8

125.0

3.13

3.03

3.05

1 560 000

1 640 000

2 240 000

800

1000

1400

B-7 1065

C-8 1117

D-9 1437

1206

75. 750

75. 750

75. 750

1.786

1.773

1.742

1.756

1.755

1.752

149.4

149.5

149.8

3.13

3.11

3.05

1 760 000

1 380 000

2 380 000

770

500

800

C-7 772

D-8 592

E-9 990

785

88. 375

88. 375

88. 375

1.795

1.768

1.731

1.753

1.755

1.752

174.7

174.4

174.8

3.15

3.10

3.03

1 880 000

1 440 000

2 520 000

550

460

680

B-7 640

C-8 503

D-9 743

629

101.000

101.000

101.000

1.708

1.769

1.730

1.752

1.750

1.750

199.7

200.0

200.0

2.99

3.09

3.03

1 600 000

1 460 000

2 100 000

360

320

360

A-7 441

E-8

C-9

354

521

439

1
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TABLE 7.—Computations for Determining the Value of k for Use in Plotting the

Curve of Fig. 14

adeg Logioa
deg

Logio 2a
radians

Logio
tana

Logio
lOgefc

Logio
logio k

4P
EC

I4P
\EC- 1= -tana Logio k

2 1 135. 00 2. 13033 0. 67324 0. 00000 0. 67324 0.31102 2.04650

5 2 116.57 2. 06659 . 60950 . 30103 . 30847 I. 94625 . 88359

10 3 108. 43 2.03515 . 57806 .47712 . 10094 I. 73872 .54793

26 5 101.31 2. 00565 . 54856 . 69897 1. 84959 I. 48737 .30717

101 10 95.71 1.98096 . 52387 1.00000 1. 52387 1. 16165 .14510

626 25 92.29 1.96515 . 50806 1.39794 1. 11012 2. 74790 .05596

10001 100 90.57 1.95700 . 49990 2. 00000 2. 49990 2. 13769 .01373

1

R H) Log(l--i)
2

T 4^
Log £C «-£(*-» Log

strength
ratio

Strength
ratio

Log!
R ^

3.95350 0. 0090 0.9910 I. 99215 0. 30103 0. 29318 I. 29888 0. 1990 0. 0948

I. 11641 .1307 .8693 1. 87834 . 69897 . 57731 I. 58301 .3828 .3616

1.45207 .2832 .7168 J. 71080 1.00000 . 71080 I. 71650 .5206 .5322

I. 69283 .4930 .5070 I. 41002 1.41497 . 82499 I. 83069 .6772 .7021

I. 85490 .7160 .2840 2. 90664 2. 00432 . 91096 1.91666 .8254 .8462

I. 94404 .8791 .1209 2. 16485 2. 79657 . 96142 I. 96712 .9271 .9376

1.98627 .9689 .0311 4. 98552 4. 00004 . 98556 I. 99126 .9801 .9843

TABLE 8.—Ratios of Moment of Inertia and Strength Ratios

Vi
Ratio of / at L

3

to/2

Ratio of / at 5L
16

to/2

Ratio of stiffness
of tapered beam
to that of uni-
form beam

Strength
ratio

0.2 0.46 0.41 0.40 0.27

.3 .48 .44 .44 .34

.4 .52 .47 .51 .41

.5 .56 .52 .58 .49

.6 .62 .58 .65 .58

.7 .69 .65 .73 .67

.8 .77 .75 .81 .77

.9 .88 .86 .90 .88

Washington, April 19, 1919.


