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COLUMN CURVES AND STRESS-STRAIN DIAGRAMS

By William R. Osgood

ABSTRACT

The only important column formula which rests on a strictly theoretical basis
is the Considere-Engesser formula, which includes the Euler formula as a special
case. Attempts have been made to underpin by a general theoretical foundation
other essentially empirical formulas, notably the Rahkine formula; but these at-
tempts have not been successful. It would be very satisfying, however, if these
empirical formulas could be shown to be reasonable special forms of the Considere-
Engesser formula. Any column formula for centrally loaded columns is a special
case of the Considere-Engesser formula provided the compressive stress-strain

diagram has a certain definite shape. The present paper examines a few of the
commonest types of empirical formulas and determines the shape of the stress-

strain diagram in each case which makes them compatible with the Considere-
Engesser theory.

The only column formula which rests on a strictly theoretical basis

and which at the same time is of practical importance, in the sense
that tests confirm the theory, is the Considere-Engesser formula, 1

which includes the Euler formula as a special case. Attempts have
been made to underpin by a general theoretical foundation other
formulas, essentially empirical, notably the Rankine formula; but no
successful attempt has yet been made. It would be very satisfying,

however, if these empirical formulas could be shown to be reasonable
special forms of the Considere-Engesser formula. Any column for-

mula for centrally loaded columns is a special case of the Considere-
Engesser formula, provided the compressive stress-strain diagram of

the material has a certain definite shape. It is the purpose of the
present paper to examine a few of the commonest empirical formulas
and to determine the necessary shape of the stress-strain diagram in

order that these formulas may be compatible with the Considere-
Engesser theory. A somewhat similar investigation has been carried

out by P. M. Frandsen, 2 but he refers the empirical formulas back to

the Engesser formula. 3

1 Developed in 1889 and the years following by A. Considere, Fr. Engesser, and F. Jasinski; re-presented
independently by Theo. v. Karman, Mitteilungen iiber Forschungsarbeiten, Verein deutscher Ingenieure,
Heft 81, Berlin, Julius Springer, 1910, and by R. V. Southwell, Engineering, vol. 94, p. 249, London, Aug.
23 1912.

2 Den Teknisk Forenings Tidsskrift, Haefte 19, p. 139, Copenhagen, Sept. 15, 1920.
i Zeitschrift des hannoverischen Architekten- und Ingenieur-Verein, vol. 35, p. 455, 1889.
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The following notation will be used

:

P = the load on the column at failure by buckling.

A = the cross-sectional area of the column.
P

o-= -j=the average normal stress on the cross section at failure

Z = the "free length" of the column, the distance between two
successive points of inflection of the center line.

i = the least radius of inertia or radius of gyration of the cross

section of the column, measured parallel to the plane of

bending.
E=the modulus of elasticity of the material of the column.
£" = the "tangent modulus" at the stress a; that is, E' is the

slope of the compressive stress-strain diagram at the
stress a.

E= l

-j -> where 7i is the moment of inertia about the axis

of average stress of the part of the cross-sectional area
which suffers an increase of stress at the instant of failure

of the column, I2 is the moment of inertia about the axis

of average stress of the part of the cross-sectional area
which suffers a decrease of stress at the instant of failure of

the column, and I=Ai2
is the moment of inertia of the total

cross-sectional area of the column about the gravity axis

perpendicular to the plane of bending; the position of the
axis of average stress is defined by the relation E'Si
=ES2 , where Si and S2 are the statical moments about
the axis of average stress, respectively, of the two parts
of the cross-sectional area just mentioned in connection
with Ii and I2 .

e — the strain due to the stress o\

au — the short-column strength of the material, to be taken as

the yield point in the case of ductile materials. (See

Appendix II.)

Ee
e =— •

0"

5 =—

•

(TP = the stress above which Euler's formula ceases to apply,
strictly the proportional limit of the material, but prac-
tically likely to be considerably above the actual propor-
tional limit.

'1 I l<[u

ir'%\ E'
Cn , CR , constants.

The assumptions underlying the Considere-Engesser theory are

that the material is homogeneous, cross sections remain plane, the
stress-strain relation for increasing strain is the same as that given by
the stress-strain diagram, the stress-strain relation for decreasing
strain is given by a line parallel to the tangent to the stress-strain

diagram at the origin, the axis of the column is straight, the cross
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section of the column is uniform throughout the free length, and the
loading is axial.

The Considere-Engesser formula may be written

7T
2E

<j =
iy

In order that any empirical formula expressible as

l=IM (2)

give the same relation between a and -. as the Considere-Engesser
%

formula, we must have

*»$©

where -. is given by (2). The stress-strain diagram must satisfy this

equation.
E is a function not only of the slope of the stress-strain diagram at

(e, a) but also of the shape of the cross section, and no general reduc-
tion of equation (3) is possible. Fortunately,_however, the effect of

the shape of the cross section on the value of E does not vary greatly
for cross sections ordinarily used which have an axis of symmetry
perpendicular to the plane of bending. 4 It can be shown that E is

smaller for the idealized H section (negligible web, flanges thin com-
pared to distance between them) with the plane of bending normal to

the flanges than for any other section with the symmetry just men-
tioned. Consequently, if E for the H section is used, equation (1)

will give results on the safe side for all symmetrical sections, and
equation (3) may be reduced with the assurance that the results

obtained represent limiting values for such sections. The value of E
for the idealized H section is

6

E"ETE f (4)

which, substituted in equation (3), with E'=-t-i gives

7T
2 2

a =
dt, l (5)

da^E© ™
and this is the equation of the stress-strain curve if equation (2) is

to represent a theoretically possible column formula.

* See Appendix I.

* K&rm&n (see footnote 1, p. 571).



574 Bureau of Standards Journal oj Research [Voi.9

Instead of integrating equation (5) for various functions - =/ (a),
%

it is preferable for comparative purposes to introduce the nondi-
mensional variables 6

€ =^)S =-, X= HJ% (6)

In terms of these quantities equations (1) and (5) become

s==
1? E (7)

and

1 2
/fi^s =

x*- S+T (8)

(is

where in the latter equation X is a given function of s; (7) is the equa-
tion of a curve obtained from the column curve by dividing the aver-

lE
age stresses by uu and the slenderness ratios by t -./ — , and

V <ru

(8) is the equation of a curve obtained from the stress-strain curve

by dividing the stresses by <ru and the strains by -^-

In the Euler range, for which E = E, equation (7) reduces to

s = y* (9)

and equation (8) becomes, with the use of equations (6)

s = e (10)

For values of s above sp ; that is, above the Euler range, for a con-
tinuous stress-strain diagram the solution of (8) becomes

JSj

s ds

sX2 -s + 2sp (11)

The reduced stress-strain diagram represented by equations (10)

and (11) will now be considered for some empirical column formulas.
The parabolic or hyperbolic type of formula.—A common type of

formula is one of the form

a = a

If

n
the curve represented by (12) is tangent to the Euler curve at <r= —Xo ""*

* The first of these has been used by K. Hohenemser (Zeitschrift fur angewandte Mathematik und
Mechanik, vol. 11, p. 15, February, 1931), the second has been used several times before and is obvious, and
the third has been used by L. B. Tuckerman, the late S. N. Petrenko, and C. D. Johnson (National
Advisory Committee for Aeronautics, Technical Note No. 307, Washington, D. C).
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With this value of Cn , in terms of the variables defined by (6), equa-
tion (12) becomes

1 n\n+2j X (13)

which applies for
n

n + 2
< s ^ 1, Figure 1 shows the curves
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Reduced column curves of several types

represented by equation (9) (marked Euler) and equation (13) for
different values of n. Equation (13) solved for X gives
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and substitution of this expression in equation (11) gives finally

-o^-i: ds
n S "I ZiS p (15)

s(l — s)«

n
for values of s from —r-7> to 1, inclusive. For s less than or equal to

71 + 2 ' ^

6'

n
71+2

?.0

equation (10) applies.

0.9

08

OJ

0.6

<0 0.5

0.4

0.3

0.2

OJ

1

/

/
n*4

/
/ .

/ / /?' '21

fv/es-—
/

/?»/^S»?--

*.

^
s*

*

/ *
^>-

—

^

9 ~i ^

7

s<

s

4
nan.wne

/
/

/
/

/
/

/ /

/ /

'

1

//

V
/

//
1//

0.2 0.4 0.6

e
ae /.o /.2 /.4

Figuke 2.

—

Reduced compressive stress-strain diagrams corresponding to

the column curves of Figure 1

Figure 2 shows the curves represented by equation (10) (marked
Euler) and equation (15) for different values of n.

J
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The case n = -^ represents a column formula which experience has

shown to be suitable for brittle materials like cast iron. (See fig. 1.)

Equation (15) becomes

512 C s _ds ,2 , 1R .

e = 3125 JHsJV=Ty-
S+

5
(I6)

which reduces to

e= J638[3^+2IT^+f
l

i
+logT^-J^6:i877 (17)

applicable for -=-;gs:gl. (See fig. 2.)

The case n= 1 represents a column formula suitable for common
grade wood. (See fig. 1.) Equation (15) becomes

8 f
s ds 2

,1Q .

e==
27jH sii^-y-

S+
3

(18)

which reduces to

^(tV 10^)"^ -4276 (19)

applicable for- ^s^ 1. (See fig. 2.)

The case n = 2 represents a column formula suitable for ductile

materials like mild steel. (See fig. 1.) Equation (15) becomes

e^

which reduces to

\[* -TT-\-*+ X (2°)
2Jy2 s(l-s)

e^logj^-s+1 (21)

applicable for ~ ^ sS 1. (See fig. 2.)

The case n = 4: represents a column formula suitable for hard
materials like hard steel. (See fig. 1.) Equation (15) becomes

_4-y/3 f« ds
,
4

which reduces to

-TLir^-* +
i

(22)

4V3, 1-Vl-s , ,g=s
9 lQg

1 + ^1^ -^ + 2-347 (23)

2
applicable for ~ ^s^ 1. (See fig. 2.)
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The Rankine formula.—The Rankine formula

1 + C•0)
(24)

has been used for all values of -with CR = —o%» in which case the curve

represented by (24) approaches tangency to theEuler curve at infinity.

With this value of CR , in terms of the variables defined by (6),

equation (24) becomes

5 = 1 1 \ 2 (25)

which solved for X gives

/l — o

(26)

and substitution of this expression in equation (11) gives

Jo 1-s
or

e=-2 1og (l-s)-s (27)

for values of s from to 1, inclusive.

The curves represented by equations (25) and (27) are shown in

Figures 1 and 2, respectively.

Appendix III shows an American Bridge Co. reduced straight-line

column curve and the corresponding reduced stress-strain diagram.
All of the curves in Figure 2 except the curve marked n = 4 (equation

(23)) approach the horizontal line s = l asymptotically. The curve
marked n = 4 has a horizontal tangent at e — 1.347, 8= 1. A compari-
son of the curves of Figure 1 with the corresponding curves of Fig-

ure 2 shows the type of compressive stress-strain diagram which is

necessary in any particular case in order that a given column curve
may represent accurately the strength of columns. The shapes of the
reduced stress-strain diagrams are all reasonable except for high val-

ues of s and possibly in the case of the Rankine formula. The shape
of the diagram for high values of s is relatively unimportant, however,
since the corresponding portion of the column curve lies in the region
of

" short columns, " and such columns do not usually fail by buckling.
It is doubtful whether any structural material would show a reduced
compressive stress-strain diagram like that required for the Rankine
formula.
Viewed in another way, any (reduced) compressive stress-strain

diagram in Figure 2 will yield the (reduced) column curve corresponding
to it in Figure 1. If, therefore, the short-column strength, <ru , of the
material is such that, or can be denned (Appendix III) so that, the
(reduced) compressive stress-strain diagram fits a curve of Figure 2,

the column strength of the material will be given by the corresponding
curve of Figure 1 . It will frequently be possible by a suitable choice
of <ru to obtain good agreement between the actual (reduced) com-
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pressive stress-strain diagram and one of the curves of Figure 2 up
to some limiting value of s, be3Tond which the agreement will not be
good. In that case the corresponding curve of Figure 1 will represent

the column strength up to the same value of s. Thus, if representa-

tive compressive stress-strain diagrams of a material are available,

it may be possible to draw the corresponding column curve without
tests. This method is not to be recommended to the exclusion of

tests, however, particularly not if the agreement between the actual

(reduced) compressive stress-strain diagram and a curve of Figure 2

is not extremely good.
The author wishes to express his indebtedness to Dr. Walter

Ramberg, of the engineering mechanics section, Bureau of Standards,
for checking the equations.

APPENDIX I

Figure 3 shows the variation of ^ with -=, for a number of different

cross sections, as listed on the figure. The curves for the thin cir-

cular-ring section (thickness negligible in comparison with the
diameter) and the solid circular section are plotted from formulas
by R. V. Southwell. 7

The formula for the rectangular section is given by T. v. Karman, 8

and the six points for the I section are taken from a graph by
W. Gehler. 9 The two curves for the thin T section (thickness of the
web and the flange negligible in comparison with their lengths) have
been worked out by the author.

It may be noted that the curve for an unsymmetrical section may
He considerably below the curve for the idealized H section, and the

lower limit for such sections is the curve -=,= r- . (Fig. 3.) Conse-

quently, Frandsen's treatment 10 may be considered as applying
unmodified to unsymmetrical sections.

APPENDIX II

In interpreting column tests of ductile materials it is of some
importance how au is defined. If <ju is defined as the stress determined
by the intersection of the stress-strain curve with a line through the
origin having a slope aE (0<a<l), the experimental points when
plotted as a X, s-diagram are likely to lie more nearly on a smooth
curve than otherwise. Under ideal conditions of test (perfectly

straight specimens, perfect centering, etc.) if different materials
having affine stress-strain diagrams are tested, and if au is determined
as outlined, all points \,s will lie on one and the same curve. In

5 2
tests made at the Bureau of Standards the values a= ~ and a = -x have

* Southwell (see footnote 1, p. 571.)
8 Karman (see footnote 1, p. 571.)
8 Proceedings of the Second International Congress for Applied Mechanics, p. 366, Zurich, Sept. 12-17,

1926.
w See foot note 2, p. 571.
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Variation of -^ with — for various shapes of cross section
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Reduced American Bridge Co. column curve and corresponding
reduced compressive stress-strain diagram
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been found to give satisfactory results for chromium-molybdenum
steel and duralumin columns, respectively.

By adjusting the value of a, it may be possible to fit the actual
(reduced) compressive stress-strain diagram rather closely to one of

the curves of Figure 2 up to a sufficiently high value of s to include
all except short columns.

APPENDIX III

It may be of interest to compare a specification column curve
with the stress-strain diagram which would make the curve a theo-

retically correct one. The American Bridge Co. curve given by the
following equations has been chosen for this purpose (units are in

pounds per square inch)

:

I

at
= 13,000 for 0^-^60,

V

1 = 19,000- 100 I for 60<-:<120,

1 7

<r, = 13,000-50 4 for 120<*^200,

(28)

where as is the allowable average stress. These equations become,

respectively, in terms of X and s, if we assume -^( = oT¥7r )
= 0.001 168,

s = l,

S
13 2

A lorlsss8s=
13

i V~2 . t
7

s = 1 — -V- X for ^o ;s^
13

(29)

The reduced stress-strain diagram is represented by the following

equations

:

e = -s + 0.0913 + <7 for l>s>
13

(30)

=t(V- +logT^)-s + C for^>s>
4\l — s

b
l — s/ 13

e = -r
13

where the constant of integration C is arbitrary.

Equations (29) and (30) are represented graphically in Figure 4.

Washington, July 14, 1932.

o


