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THE RECIPROCAL SPHERICAL ABERRATION OF AN
OPTICAL SYSTEM INCLUDING HIGHER ORDERS

By Harold F. Bennett

ABSTRACT

The aberration present when an axial point is imaged by a centered system
of spherical optical surfaces may be expressed by any one of a number of power
series. In this paper the reciprocal of the distance between the intersection of a
ray with the axis and a fixed point on the axis is expressed as a series in h, where h
is the perpendicular distance from the ray to the fixed point.

Formulas are derived by which the constant coefficients of the series expressing
the aberration in the image space of a single spherical surface may be computed
if the corresponding coefficients for the object space are known, the fixed point
of reference being the center of curvature of the surface. These formulas can not
be used in the case of a Diane surface since there is no center of curvature. Ac-
cordingly, after developing transfer formulas by which the aberration may be
referred to a new point of reference, a second set of formulas is derived in which
the point of reference is taken as the vertex of the surface. A final set of formulas
expresses the longitudinal in terms of the leciprocal aberration.
As a numerical example, the computation of the aberration of the third,

fifth, and seventh orders of an ordinary photographic "landscape" lens is given
in full. Its results compare favorably with those of a trigonometric ^tracing of

rays in which seven place tables were used.
In conclusion the convergence of these series is briefly discussed and some rela-

tions to diffraction theory are pointed out.
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I. INTRODUCTION

1. SPHERICAL ABERRATION

Rays of monochromatic light proceeding from a luminous point
and passing through a lens are generally focussed not in a single image

h = 30 MjJkA!«-

^2 S^S^S^S^c.

N| N3 N4
Figuke 1 .

—

Spherical aberration of a single lens and of a doublet

The paths of three rays when the concave lens is not present are shown in full lines. The con-
cave lens and the paths of the rays if both lenses are present are shown in dotted lines. All parts
of this figure are drawn in proportion to values obtained by an actual calculation. (711,2=1. 54;

713,4 = 1.63.)

point, but at varying distances from the lens according to the zone of

the lens traversed. In the case of an object point on the axis of a
centered system of spherical surfaces (the plane being considered a
sphere of infinite radius) this defect in imagery is called " spherical

aberration." Points off the axis are affected by the same aberration,

but they are also affected by other aberrations, the presence of which
makes analysis more difficult. The term " spherical aberration" is

sometimes used more broadly to include these extra-axial aberrations
and sometimes rather loosely in referring to the axial aberration where
nonspherical surfaces are involved. In the present paper " spherical

aberration" in the stricter sense of the word is discussed and a method
is given for computing and expressing it quantitatively.

As an example of spherical aberration consider the portion of Figure
1 drawn in full lines. Light from an infinitely distant object point is
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incident upon the lens MiN1} and the three rays shown are refracted
at the two surfaces so as to intersect the axis at S'2A , S'^, and S'2c,

which are the foci for these respective zones. If perpendiculars to

the axis are drawn at these points, their intersections with lines par-
allel to the axis through the points of incidence on the first surface
form the locus of the curve S'2P f

2 which may be considered as repre-
senting both in direction and magnitude the spherical aberration in

the image. For example, the distance Q
f

2P f

2 is the measure of the
longitudinal spherical aberration of the ray at /*i

= 30. The dotted
lines illustrate the method of correcting the spherical aberration by
the insertion of a negative component, M3 . .2V4 , of suitable design.

2. SERIES EXPRESSIONS OF LONGITUDINAL SPHERICAL ABERRATION

The aberration of a lens may be expressed quantitatively by giving
the location of one or more points on the curve or by an equation for

the curve. Such an equation is customarily written as an infinite

series in which the terms beyond a certain order are neglected; thus
the aberration represented by the curve S\P' A (fig. 1) may be expressed
as follows:

Long, sphev. = S'-s' = A'h2 + B'h*+C'h6 + ... (1)

where S' — s' represents the abscissa and h the ordinate, and where
s

f

, A', B'
'

, C, . . . , are constants. The odd powers of h are absent
because of axial symmetry.
The number of terms of the series which it is necessary to retain

depends upon the conditions of the problem in hand. The, straight

line, S\Q f

4, given by the equation S' = s' is a first approximation which
is exact only for infinitesimal apertures. A value of the constant A'
may then be found such that the parabola S'' = s' +A'h2 gives a suffi-

ciently close approximation to the curve up to some aperture depending
upon the accuracy required. Each of the terms of higher order has
the property of remaining quite small for small apertures and then
beginning to increase rapidly at some finite value of h. Accordingly,
if the accuracy is not to diminish as larger and larger apertures are

considered, the fifth order l term and then the seventh order l term
must be taken into account, and so on.

In the present example A' is negative while B r and C are positive,

causing the upper portion of the curve to turn in the positive direction.

The same aberration, it is evident, could quite as legitimately be
represented by one of a number of other curves and its corresponding

1 The longitudinal spherical aberration which varies as the ith power of the aperture (i= 2, 4, 6 . . .) corre-

sponds to an angular aberration (see equation (3), p. 194) which varies as the (?+l)th power of the aperture and
also to a path difference which varies as the (i+2)th power of the aperture. The corresponding reciprocal

spherical aberration (see Sec. I, 4) varies also as the ith power of the aperture, but the lateral aberration
varies as the (i-fl)th power. These differences of order of the expressions which refer in different manners
to the same aberration give rise to a difficulty in nomenclature. To avoid this the use of the terms primary,
secondary, tertiary, etc., has been proposed. These designations not only become somewhat awkward for

the higher-order aberrations treated in this paper, but some confusion might occur because primary and
secondary already have special meanings in connection with astigmatism and curvature of field.

In the original papers of L. Seidel the aberrations are measured by their lateral value so that the terms for

spherical aberration assume the orders 3, 5, 7, etc. In view of this and the general acceptance of Seidel's

work it has been considered as desirable to designate a particular term of spherical aberration by the order
which the corresponding lateral geometric aberration assumes. The expression "the third order longitudinal
(or reciprocal) aberration" may then be interpreted as referring to "the longitudinal (or reciprocal)

aberration which corresponds to the third order lateral aberration," and similarly for the terms of higher
order.

It is to be noted that the constant coefficient /S(»'+0 of reciprocal aberration has the dimensions L~(f+1) and
thus corresponds exactly to the above designation of order (i-fl).
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equation, for instance by a curve the ordinates of which are equal to

the heights of incidence on the last surface instead of the first. For
any particular ray the total aberration would necessarily be the same
according to either equation but, since the two values of h are not
directly proportional, different portions of the total aberration would
be attributed to the different orders. It can be shown that the vari-

ous orders differ, even if only a single surface is considered, according
as the ordinate is defined as the height of incidence upon the surface,

as the height of intersection with a plane tangent at the vertex, as the

distance from the vertex or from the center of curvature of the surface

measured along a perpendicular to the ray, as the arc, tangent, or
sine of the angle of inclination of the ray with the axis, or as one of a
number of other functions of the aperture. Upon investigation it is

found that the third order coefficient, A'
f
is identical in each group in

which (as for the first three cases mentioned) the ordinate reduces to

the same infinitesimal for very small apertures. For large apertures,

however, the third order for a particular ray differs in the several

equations insofar as h 2
is slightly different. Thus it may be seen

that, if the expressions " third order," "fifth order," etc., are to have
exact significance, the exact definition of the aperture must be indi-

cated. Moreover, direct comparisons between different lenses can be
made only when the aberrations of both are expressed in exactly the

same manner.

3. METHODS OF EVALUATING THE CONSTANTS

It has been pointed out that successively closer approximations to

the aberration curve can be obtained by evaluating additional terms
of the series (equation (1)). The usual methods of evaluating these

coefficients are of three general types. First, if the lens has actually

been constructed, a number of narrow beams of light may be singled

out, as in the Hartmann test, by a diaphragm with several small holes,

and their positions after traversing the lens may be determined
photographically or otherwise. Second, from the specifications of the
lens system the theoretical position of several rays may be found by
trigonometric ray tracing. In either case an empirical curve or

equation is fitted to the discrete points thus obtained. Third,
trigonometric relations, such as those used in ray tracing, are expanded
as Taylor's or similar series in ascending powers of whatever function
of the aperture is chosen as the parameter. The aberration coeffi-

cients are thereby expressed as functions of the object distance and of

the constants of the lens system. The present investigation is of this

third type, which is usually called the algebraic or analytical method.
Ray tracing gives directly the total longitudinal aberration of one

or more individual rays for any given lens. The algebraic method,
however, is often more useful to the lens designer in that it reveals

more fully the portion of the final aberration which is contributed by
each surface of the lens and suggests in what manner the design should
be altered. Moreover, very often when the design is altered only a
small part of the computation need be repeated. The algebraic
method has been considered objectionable because the third order
equations are not sufficiently exact while if higher order terms are
included the computation becomes too laborious. It is believed,

however, that frequently the additional information is worth the labor
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involved, and, accordingly, formulas are given for enough orders so
that sufficient accuracy may be attained in practically all cases.

4. RECIPROCAL SPHERICAL ABERRATION

The frequent occurrence of reciprocal distances in optical equations
has suggested that the spherical aberration formulas might be simp-
lified in form if the aberration instead of being expressed as a differ-

ence between the focal lengths of different zones were expressed as
a difference between the powers of the reciprocals of the focal lengths.

An idea of the relation of the reciprocal aberration to the longi-

tudinal may be gained as follows: Take for a moment the back
image distance ViS\ = s\ (fig. 1) as the unit of length. Plot a curve
with the same ordinates as S'JP'^ but with abscissas equal to the
reciprocals of those of this curve when measured from the vertex, V4 ,

as the origin. Where the abscissa of the old curve is slightly less than
one that of the new is slightly more than one. Thus it is easily seen
that the new curve will be very similar to S\P\ but reversed with
with respect to S'^Q'*. Since the aberration is measured by the
departure from the vertical straight line, the reciprocal aberration
in any case is opposite in sign to the longitudinal aberration. The
statements regarding equations expressing aberration, which were
made in the two preceding sections (2 and 3), apply directly to the
new curve except that other symbols, to be introduced later (see

equations (2) and (2')) should replace the ones in equation (1). If

a different unit of length is used the reciprocal aberration curve
will merely be changed in scale in the horizontal direction. If,

however, a different origin be selected, the curve will also be, changed
in shape.

5. HISTORICAL SKETCH AND BIBLIOGRAPHY

The theory of third-order aberrations is treated in the majority of

books on geometrical optics. Among these Conrady 2
is unexcelled

from a practical standpoint, while Von Rohr 3 gives a more elegant
mathematical development and also includes an extensive bibli-

ography.
Fifth-order terms for rays in the axial plane were published by

Keller 4 and by Bauer.5 Their expressions are not strictly accurate,

however, in that h is not exactly defined. Kerber 6 derived the
fifth order reciprocal aberration of a single surface defining h as the

height of incidence. Schupmann 7 used a fifth order term which
he credited to Kerber. Von Rohr 8 and Konig derived the fifth

order term by Abbe ?

s method of invariants with the angle of inclina-

tion of the ray as the variable. ttisco 9 extended these equations to

apply to aspherical surfaces. Smart 10 published terms of the fifth

order, but unfortunately a number of his equations appear to be in

error.

•- * A. E. Conrady, Applied Optics and Optical Design, pt. 1, 518 pp., Oxford Univ. Press, 1929.
1 M. Von Rohr, editor, Die Bilderzeugung in optischen Instrumenten, J. Springer, Berlin, 1904. Also

translation by R. Kanthack, His Majesty's Stationery Office, London, 1920.
< G. A. Keller, Zur Dioptrik, Entwicklung der Glieder fiinfter Ordnung. 24 pp., O. R. Schurich, Munich,

1865.
« K. L. Bauer, Carl's Reportorium f. Phys. Tech., vol. 1, pp. 219-241, 1886.

« A. Kerber, Centr. Z. f. Opt. u. Mech., vol. 7, pp. 217-218, 1886.
7 L. Schupmann, Die Medial-Fernrohre. B. Q. Teubner, Leipzig, 1899.
s M. Von Rohr, pp. 238-244. See footnote 3.

9 M. Martinez Risco, Estudios Generales sobre A.berracion Esferica de Orden Superior, Anales Soc.

Espanola Fis. y Quim vol. 25 pt. 1, pp. 100-136, 1927.
io E. H. Smart, Phil. Mag., vol. 20, pp. 82-91, 1910.
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Early investigators, notably Petzval, may have been in possession
of formulas of higher orders than the fifth,

11 but it is not known that
any of these have been published. It is true, however, that investi-

gations of aberrations from somewhat different standpoints have
been extended to fifth and higher orders. Most of these are based
upon the eikonal function, which depends upon the variation of path
length through the lens.

6. NOTATION AND SIGN CONVENTION

A thoroughly consistent and complete system of notation for optical

equations is, unfortunately, not available. In the present paper the
aims have been to follow, in general, one of the systems already in

use and to use as small a number of symbols as is compatible with
clarity and brevity in presentation. In particular may be mentioned
the use of the Greek characters /3 and £ with superscripts (j8

(3)
, /3

(5)
,

etc.) as constant coefficients of the various orders of reciprocal spher-
ical aberration. (See equation (2) and footnote 1, p. 189.)

The original direction of the light is assumed to be from left to

right. The refracting and reflecting surfaces are numbered in the
order in which they are encountered by the light and are indicated

by numerical subscripts. The well-known idea of regarding reflec-

tion as a special case of refraction in which the index ratio is — 1 has
been extended to include absolute indices (and indices relative to air),

the index of any medium being considered as negative in sign if the
light travels through it in a negative direction. 12 Nevertheless, any
other self-consistent sign convention may be used if preferred.

A list of the characters with their meanings is given herewith.
Unprimed letters denote magnitudes in the object space, primed
letters the corresponding magnitude in the image space. If the two
are identical, as in the case of r or 0, the character is always written
unprimed. In the following summary the primed character is

omitted in most cases, it being assumed that its meaning is easily

deduced from the definition of the corresponding unprimed character.

ENGLISH LETTERS

A, B, C, . . . . =the third order, fifth order, seventh order, . . . ., coefficients

of longitudinal spherical aberration, positive if the aberra-
tion tends to make the rim ray cross the axis to the right
of the paraxial focus.

c=a subscript meaning "referred to the center of curvature" of

the appropriate surface.
d=the distance from the old point of reference to the new one to

which the transfer is made, positive if to the right.

h=(m Introduction) linear aperture, subject to a variety of
definitions.

11 See, for instance, Trans. Opt. Soc. London, vol. 22, p. 214; 1920-21. Also Berek, Grundlagen der prak-
tischen Optik, p. 43. Walter de Gruyter Co., Berlin, 1930.

12 This convention is also applicable in path length equations as may be seen from the following simple
example. Suppose a ray from some point A is reflected back to A from a mirror at B. The first distance,
A to B or AB, being positive, the distance B to A or BA, after reflection must be negative. Adding the
distances together would give zero for the path length. However, if the index be considered negative
after an odd number of reflections and, as is universally done, the distance in each medium be multiplied
by the index of refraction to get the equivalent path length in air the result is:

Equiv. path length=nAB+n'B

A

=7iAB+(-w)(-AB)
=2wAB

which is obviously correct.

An alternative sign convention in which some of the angles are considered as obtuse after reflection has
been proposed by T. Smith in Trans. Opt. Soc. London, vol. 27, pp. 312-316, 1925-26.
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iq A=the distance from the point of reference or origin of coordi-
nates to a ray, measured along a perpendicular to the ray
and positive if upward.

h 3— generalized integers.

n=the index of refraction of a medium, usually taken relacive

to air, to be given a negative sign if che light traverses it

from right to left.

r=the radius of curvature of a speherical surface, positive if the
surface is concave to the right.

s= the distance from the vertex of a surface to the paraxial object
point for that surface, positive if to the right.

t= s—r— the distance from the center of curvature of a surface to

the paraxial object point for that surface, positive if to the
right.

S— the distance from the vertex of a surface to the intersection
of a ray in the object pencil with the axis; reduces to s as

the aperture approaches zero.

T=S—r=the distance from the center of curvature of a surface
to the intersection of a ray in the object pencil with the
axis; reduces to t as the aperture approaches zero.

y=a subscript meaning "referred to the vertex" of the appro-
priate surface.

GREEK LETTERS

a=the acute angle between a ray and the axis, positive if the ray lies above
the axis to the left of the point of intersection.

/3(0=the coefficient of reciprocal spherical aberration of the ith order, in the
series referred to the center of curvature, usually of the sign opposite
that of the corresponding longitudinal aberration coefficient.

$"(*) = the coefficient of reciprocal spherical aberration of the ith order in the
series referred to the vertex of the lens surface, usually of the sign
opposite thac of the corresponding longitudinal aberration coefficient.

9=',he reciprocal of T (q. v.).

#, #'=the angle of incidence, the angle of emergence; that is, the.Ji.cute angle
between a ray and the normal to the surface at the point of incidence,
positive if the ray lies above the normal to the right of the surface.

/c=the constant of transfer to a new point of reference.
= the ratio of the new paraxial reciprocal object (or image) distance to the

old paraxial reciprocal image distance.
k, k' in Part IV take on the special meaning that the transfer is made from the

vertex to the center of curvature of a single surface, k applying to the
object pencil and k' to the image pencil.

At= relative index— njn'.

n'= relative index— n' In.

P, <r, r=the reciprocals of r, s, and t.

2= the reciprocal of S.
tf=the central angle or the angle between the radius drawn to the point of

incidence and the axis, positive if the radius lies above the axis to the
left of the center of curvature.

¥= reciprocal object distance from any point of reference on the axis.

II. THE RECIPROCAL ABERRATION OF A SINGLE SPHER-
ICAL SURFACE REFERRED TO THE CENTER OF CURVA-
TURE

1. PRELIMINARY STATEMENT OF PROBLEM

A set of formulas will first be derived which express the reciprocal
aberration coefficients of the refracted or image pencil of any spherical
surface when the corresponding constants of the incident or object
pencil for that surface are known, the point of reference being chosen
at the center of curvature of the surface.

127984—32 6
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In Figure 2, VS represents the axis of symmetry of a lens system
of which one surface, with vertex at V and center of curvature at C,

is shown in cross section. In a symmetrical pencil of rays incident

upon this surface, consider the ray QP, incident at the point P. Let
this ray (extended if necessary) intersect the axis at the point S

f
re-

moved from the center of curvature by a distance T, positive if to

the right. Let h e denote the perpendicular distance from the center
of curvature to the ray, positive if upward, and r the radius of curva-
ture of the surface, positive if the surface is concave toward the right.

Let /3
(3)

,
|S

(5)
, /3

(7)
, etc., be constants, such that if h c is given, Tis

determined to as close an approximation as may be desired by re-

taining enough terms of the series:

i=] + ^
(3)A c

2+ ^
(5>A c

4+ /3<
7
>A c

6+ ... (1)

Here t is the limiting value of T as h c approaches zero; that is, the
paraxial value of T, /3

(3)A C
2
is the third order term of reciprocal aberra-

Figure 2.

—

Refraction of a ray at a single surface

tion, /3
(5)A C

4
is the fifth order, etc. For convenience in writing the

equation, let -m= 9 and 7 = r, then

G = r+ ^
(3^ c

2+
i
8 (5^ c

4 +
i
8 (7^ c

6 + /3(
9^ c

8+ ... (2)

The angles a, #, and <j> are shown in Figure 2. They are defined by
the following equations, apparent from the geometry of the figure

sm a=
7r
= Bh>e

= Th e+ p™h* + (3™h c
5 + ... (3)

sm#=^= Ph e (4)

where p is written for—^ r
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Let the ray pass from a medium of index n into one of index n'

n f

and write for convenience —= u'.
13 Denote the various functions

n
of the refracted ray, PS', by priming those symbols which when
unprimed represent the corresponding functions of the incident ray.

Then:
e' = T' + p'« )h' c

2 + (3'« )h'* + . . . (20

sina'==T'h' c+ P'« )h'
<? + (3'« )h' c

5+ . . . (3
r

)

sin &' = ph' c (40
and

a' + #' =
<f>
= a+ & (5)

2. DERIVATION OF THE FORMULAS

By Snell's law and equations (4) and (40

sin # = ph c
= \i ph' c (6)

From this h c
= p.'h' c ; then substituting in equation (3):

sina = M^^%+/3
j8

(3W c
3 + /^ (5)

/l
,

/ + M
/7

/3
(7)A ,

c
7 + M

/9
/3

(9)^c9 +^(in^n
(7)

The sines of a, #, and #' have now been expressed as functions of
the same variable, h' c . Of the possible methods of combining these
to give sin a', the unknown angle of equation (5), the following one
using trigonometrical addition formulas and series expansions has
been thought the most convenient:-14

cos # = 1 — -x sin2 # - Q sin4 &

by equation (6)

= 1 - - u'2n2h ' 2 — - u'4n4fi '
4—— i/V/> '

6

*> 7

128 M p c 256 M p c111
COS tf — 1 rtP"'* oP^cTgP^e*--

sin (# — ^0 = sin # cos #' — cos # sin#'

= (/-l)p^ c
-i(M / -M,2)pW c

3

128 v
r " " e 256

1 3 The sense of the index ratio and the direction of the ray are thus mutually denned. If the ray passes
through the refracting surface from left to right, then the index n pertains to the medium on the left and vice
versa. The sign convention for distances and angles is independent of the direction of propagation of
light along the ray. The index is considered as negative if the light travels from right to left. (See foot-
note 12, p. 192.

)

" It is to be remembered, of course, if one is interested only in the third order or the third and fifth orders,
that the higher orders may be ignored entirely. Moreover, it will doubtless be found that the method
of derivation of the formulas is more easily followed if only the first one 0? two, terms of each equation are
taken into consideration.



196 Bureau of Standards Journal of Research [Vol.8 &

Table 1.

—

Cos & cos &'

1 h'J AV m*« §f> AV°

1 4*v ^y -±w -4*'8'8
7

256 M P

~2pi +|mV +f6MV +
3̂
mV +25

L6^1 °

4" ,1 ,,.
+6^'^ +M"V»

-IpS
16

p

128
p

1-
128

M P

4--— u'2/)10^256 M p

—— nlO

256
P

cos ($— #') = cos # cos #' + sin # sin #'

= the expansion 15 in Table 1 + y!

p

2
h' c

2

-^(m ,2 -1) £
(m

,2 +1)p6^ c
6

-
j^g (m

/2 -1) 2
(5/x

,4 + 6m
,2 + 5) p

8^ c
8

-
^6^ ~ X )2^ /6 + 9^'4 + 9^

/2 + 7 )p
10^«

cos a = 1 — ^ sm2a— -^ sm4a— . . .

= the expansion 15 in Table 2

Table 2.

—

Expansion of cos a

[The coefficient of each power of h' e is the sum of all the quantities below it in the same column]

10

1 ftv h'S ft' fi
6 fcV ftV°

1
_JL„'2r2

2
M T -M,4

r/3(3) -A/5W-|(j'VW' -M/fT/3(7)-M'8/3(3)/3(5) —M'10T/3(9) -^100(3)0(7)

_1M'10
(8 ({)2

-h'* --n'WpM -|-M'8T3
/
8(5)_.

|

M
'8T2

/3C3)*2

_1M'10T3^(7)—|/10T2/3(3)^(5) _

l/10T/3(3)3

L„'6T6
16
M r —

|

M,10r5/3(»-jgM' 10r 4/5(3)J

7
i_u'10T10

256
M r

sin a' = sin [« + (#-#')]
= sin a cos (#— #') +cos a sin (#—#')
= the expansion 15 in Table 3
= r

,A ,

c +/3
,

/
3)A ,

c
3 +^ (5)A ,

c
5
+/5

,(7)A ,

c
7 + . . .

the last term being obtained from equation (30.

(8)

15 This member of the equation has been written in tabular form for clearness and convenience. In Tables
land 2 the quantities in a single column are to be considered as inclosed in brackets and multiplied by the
power of h at the top. In Tables 3 and 4 the quantity in each small rectangle in the body of the table is to

be multiplied by the power of h at the top of the column and also by the j8— coefficient at the left end of the
row. The quantity represented by the whole table is the sum of all these products. The products may be
grouped either by row or by column (in this case the latter is more convenient) and the common factors

taken out.
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Since, to the order of approximation attained, this is true for any
value of h' c , the coefficients of like powers of h' c may be equated and
are readily reduced to the following form:

t' =/t+(m'-1)p (9a)

0'W =M^(3)_ K/p[(/ _ 1)2pT+(/;)2+ /V) _ /(p2 + T3)] (96)

0/W = M'«^(«-}iM
'»

/

8<»)(M'-l)p[0.'-l)p + 2/r]
- Xm'pI (p' 2-

1 )Vr + (p
2 - p'V) 2- p'3

(p
2- r2

)
2
] (9c)

!»/(») =/'0<7
> - &/ 6

/5
(3)2 (p' - l)p- Km'

5
/3

(5)
(m' - DpKp' - Dp+2p't]

- Kp'
3
/3

l3)p[K(p
,!Kl )V - P'

2r (P
2 - p'V) + p'3r(p2- r2)]

- X6p'p[(p'
2- l)2

(p
>^M^f+ (p

2- p'V) 2
(p

2 + p'V)

-p'V-T*) 2
(p

2 + r2
)] («W)

^(9) = m^«)_p^(3)^«) (m
'_

1 )p_^7/
3(7, (/ _ 1)p[(/ _ 1)p+ 2/t]

+%^ * > 2
p[ (p

2- 3/V) - p' (p
2- 3r2

)]

-WPW*bn- 1)V -/MP2- p'V) + p'Mp2- r2)]

-KM,3
/3

(3,
p[K(M'

2 -l) 2
(M'

2+ l)p6
-M'

2r(p2 -p'2r2)(p
2 + 3p'V)

+/Mp2-r2
)(p

2 + 3r2 )]
- Knp'p[(p'

2-DW4 + 6p'2+ 5)p
7
r + (p

2- p'V) 2 -

• (5p
4+ 6p'2

pV + 5p'V) - p'7
(p

2- t
2
) (5p

4 + 6pV+ 5r4)] (9«)

0/ on =M'ii0<H) _ %p'io[^(»2+ 2/3
(3^ l7> + Tp"3' 3

](p/ - l)p

-Hp'^ (9) (p'-1)p[(p'-1)p + 2m't]

+ Km'
9
p
,(3)

/3
<6)

p[(p
2 -3p' 2

t
2)-p'(p2 -3t2

)]

- Mp'^ <7>p|W 2 - 1)V - p'Mp2- p'V) + p'3r(p2 - T2
)]

- K6M
,7

/3
C3)2

p[(p
4 + 6p'2pV- 15p'4

r
4
) - ^(p* + 6p

2r2- 15r4
)]

-W <5
>P$(p'

2- 1 )
2 (p'2 + 1 )P

6- P
,2r(p2- p'V) (p

2 + 3p'V)
+ p"V(p2 -T2

)(p
2 + 3T2

)]

-K6M'3
|3

(3>p[/8 (p'
2-l)(5p'4 + 6M'

2+ 5)p
7 -p'2T(p2-p'V)-

• (p
4+ 2p' 2pV+ 5p'4

r
4
) + ^r{(?- t

2
) (p

4+2pV + 5t4
)]

-}Wp[(p'2 -1) 2(7p" + 9p'4 +9p'2 + 7)p
8t

+ (p
2- p'V) 2

(7p
6 + 9p'2

p
4r2+ 9p'4pV+ 7p'V)

-p'V- T2
)
2
(7p

8 + 9pV + 9p2r4 + 7r6
)] (9/)

If, instead, the quantities in Table 3 be factored the following
equations (written only to the ninth order) result:

T' = p'(r+p)-p or (t' + p) = p'(t + p) (10a)

^c3> =/3
/
3(3 , + l

/(/_ 1) p (p + r) (p
_
p

/
T) (106)

^«) = M^«)_|M'3
j3

(3, (/ _ 1)p[(p
/_

1)p + 2pV] + ip'(p'-l)p(p+ r)

(p-p'r) [(p'
2 + p' + l) p

2 -p'(p-l) pr + p'V] (10c)

p ffi =Mm - Ip'«,3<3> 2(/ - l)p - L«j#* (p' - l)P[(p' - l)p + 2p'r]

-|m'2
)8«'(p'-Dp[(m' + D(p'

2 Dp3 + 4p'2r(p2 + p'r2)]

+f/0>'-l) p(p+ r)(p-p'T)[(p'4+ M'
3+ M'

2 + p' + Dp4

-p'(p,3-Dp3r+ p'2 (p'2+DpV-p'3(p'-DpT3 + p' 4T4] (lOd)
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^(9) =M/9^(9)_ M/8^(3^(5) (M
/_

1)p
_l

M^(7) (M
/_

1 )p[(M
/_

1)p + 2/T
]

•[(/ + l)(
/
u
,2 -l)p3 + 4 /x

,2
r(pi + MV)]-^^ (3)

( i
u

, -l)p- •

.[(M
, + l)(M

/4 -l)p5 + 2p2
(p

,2 +p , + l)p
;

r +Wr3 + 6p
,V]

+
I
^pV-l)p(p+r)(p-/r)[5(M ,6 +M ,5 + M

,4 + M
,3 + /2 + M

, + l)p6

- // (/ - 1 ) (5p
M + 6p/

3 + 7p/
2 + 6/x' + 5)p

5
r

+ p
,2
(5p

,4 + p
,3 + 3p

,2 + p
/ + 5)p

4
r
2 -p /3

(M
, -l)(5M ,2 + 4p

/ + 5)p
3
r
3

+ p' 4
(5p/

2 - / + 5)p
2
r
4 - 5/x'V - l)pr6 + 5M

/6
r
6
] (106)

If preferred, (r'^p/jr) may be substitued for [(/*' — l)p + 2p/r]
throughout these equations. In most numerical applications the com-
puting of the higher powers of p/ may be avoided by dividing each

equation by the appropriate power of n'', remembering that p/ =

—

Equations (9) then take the following form:

Z__r (\ 1\
n'~n +V WP (lla)

0'(3) 0(3) 1 r/i 1 \2
1 r/1 IVt ,1/p2

r2\ 1 /p2
r2 \l

^LU"^ » p+^+^-^U2+
<)J

(116)
7i'

3
ft

3 2

0/(5) ^(S) 10(3)

nn'* n> 2 ^ u -ftVi Vn"~7?7
p_r^ r

8

p
i Vn«-^; ^

p3

2 _2\2 1 / « 2\2

A^' 2
TlV fl/U2

7l
2na J ^K&"^) ( llc )

nn n1

P^ =P^__i^/i_i\ _i/3«>/i i\ r/i i\ T -i

2 n6
\n n') p 2l?\n~nO P\\n~rt) p + 2

n\

|_4V fl/
2
/

p wr^n'2 W n'ww nVJ2 n3 /!

1616
P
L(n> nV \n*

+n^)n
p5+ ifefS (S+5)

n'\n2 WW VjJ (11*

If parallel light is incident upon a lens surface, r = (3® ) =p
. . . -0. II also n= l then equations (11) are ereatlv simnlifiAi

(5) =

foilowT-

U
*

n alS° n==l thm equations (11) are greatly simplified, as

^l_l(, 1\ p
2

0/(5)

71'

0/(7)

_iA i\
3 p

2

^"sv 1 -^;^,? (i2c)

sO"^)^ (i2*ft'
7 16
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The higher-order equations in these last two sets may be written
in a similar manner.

3. DISCUSSION

(a) INHERENT AND PROPAGATED ABERRATION

If the incident pencil is free from aberration, as is the case when
it arises from a point on a material object, then /3

(3) = /3
(5) = . . . . =

and all terms in the aberration of the refracted pencil vanish ex-

cept those in the upper row of Table 3; that is, all except the last

term in each of the equations of (9), (10), or (11). This remaining
term in each order will be referred to as the inherent aberration of

that order, since it is independent of the aberration due to the other
surfaces of the system and is entirely due to the surface in question.

It is, of course, affected by a change of object distance.

If aberration is present in the incident pencil, then the terms of

the image aberration which have a (3 coefficient do not, in general,

vanish. These terms are to be considered as representing the aber-
ration due to the preceding surfaces of the system after its propaga-
tion through the surface under consideration, and will be desig-

nated in the following manner:
The term in the fifth order equation ((9c), (10c), or (lie)) which

contains the factor /3
(3) will be referred to as the third order term of

the fifth order or the /3' (5)
(/3

(3)
) term. Similarly, the third order

squared term of the seventh order denotes the ]8
/(7)

(/3
(3)2

) term, and
the third-fifth order term of the ninth order denotes the /3

/(9)
(|3

(3)

/3
(5)

) term, etc. These distinctions will apply directly to the system
of equations to be developed later (Pt. Ill) except that the symbol £
will replace /?.

(b) NOTES ON NUMERICAL APPLICATIONS

There are a number of similarities among different terms of these
equations which make the computation easier than would appear at

first sight. The j8' (<)
(0

W)
) term is identical with the / <*+2 >(

j

8U+a
>)

term, the
j
8

/ ( i+4
)(

j

3^+4
)) term, etc., except for factors in \s!

2
. More-

over, the /3
,(i)

(/3
(3)2

), /3'
(i+2)

(/3(
3
>/3

(6)
),

/3'
(i+4)

(/3
(3)

/3
(7)

), /3
,u

'

+4)
(/3

(5)2
), and

the j8'<*+*>(|8<3 > 3
) terms differ only by factors in n'

2
,
~> and in one

case r. (i and,; may be 3, 5, 7, or 9; i^j.)
It is, of course, optional which form of the equations is to be used

in computing. The third order of (10b) is doubtless simpler than
that of (9b). However, if orders higher than the third are also to be
computed, the equations (9) have their advantages, notably in the
marked similarities among the following bracketed quantities:

[(/-l)V+(p2 + M
,2
r
2)-/(p2 + r

2
)]

[ (p/
2 - 1 )

2
P*t + (p

3 - p' 2
r
2
)
2 - p/

3
(p

2 - r
2
)
2
]

[i(
M
,2 -l) 2

p
3 -M ,2

r(p2 -/i ,2
r
2
) + M

,3r(p2 -r2

)]

[(M
,2 -l) 2

(M
,2 +l)A+(p2-M ,2

T
2

)
2
(p

2 + M
,2
r
2)-At

/5
(p

2 -T2
)
2
(p

2 +r2
)]
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Each of these quantities is the sum of three terms. Each term in
the last bracket (seventh order) contains as factors the corresponding:
terms in the first two brackets, except for (ju

/2
-f- 1) instead of (/*' — l) 2

.

Also the terms in the third bracket contain factors of the terms in the
second bracket. All this reduces considerably the labor involved in

+2

t
e
o

\

\

I

\

-«2

-3

\

\
1 (3 + +'I +3

Figure 3.

—

Zero reciprocal spherical aberration contour

The point at /*'= — 1>
— =+1 pertains only to orders higher than the third.
p

computing. Either of these sets may be written in the reduced
form, as equations (11).

(c) ROOTS, ANOMALOUS POINTS, AND SPECIFIC EXAMPLES

It is interesting to note the conditions under which the aberration

of a surface vanishes; that is, to find the root of the inherent terms

i
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f the equations (9) or (10) when set equal to zero. In equations (10)

he factors common to all orders may be written thus

:
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Reciprocal aberration coefficients for surface of unit
radius, n'= 1.5

When p has a finite value not zero the roots of this are as follows

\i! = Physically impossible.

u' = l Same index on both sides; no refraction.

t/p =-1]
Object and image coincide at the vertex.or

or

T= -pj

T = p//*'.

The well-known aplanatic point.

These roots are shown in Figure 3. If p = 0, the surface is a plane
and there is no center of curvature from which to measure the dis-
tances. If the object coincides with the center of curvature then
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r=co and the series is nonconvergent. (See Part VII, sec. 1.)

Another set of formulas will be derived which may be used in these

cases.

The orders higher than the third have the additional roots given

by equating to zero the quantities in brackets in the inherent terms of

equations (10). The only root yet found for these is the isolated point
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Figure 5.—Reciprocal aberration coefficients for surface of unit

radius, y.'^l\1.5

\p
= +1

> M' = _1
)

in(iicated in Figure 3. Since the value /= -1
indicates a reflection, it may be noted that in the image formed by a

&vl^r°r^ vTWl^1 aberrati°n ^ all orders higher than the

tL IT^ l-r^
n

,
the °b]eC?

ls at a distance 2r from the vertex.

coeffiHp^fnr^ computing and tabulating the values of these

urefS ll^TKZ^ °f M and r is beinS considered. Fig-ures 4 and 5 show, for the values // = 1.5 and u' = i/1 5 thp form nf

multiXdW tt
iCh W°U1

^
r6SUlt

-
These values **& hav °to be

StnhhiiZT °/ P fo^Ponding to the order of the aber-ration to obtain the actual value of any particular coefficient.
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III. TRANSFER FORMULAS

1. DERIVATION

The refracted or image pencil from one surface is, of course, identical

with the incident or object pencil of the succeeding surface. How-
ever, when the point of reference is changed, the aberration coeffi-

cients are also altered. Formulas will now be developed for com-
puting the new coefficients.

Let the subscripts i and j refer, respectively, to a surface whose
aberration is known and to the succeeding surface, whose aberration

is to be computed. Then, as before, see (2') and (3') for the known
siiT*fjice

ew^+/3V3)^2 +/3V5)A7+ ... m ,

sma' i
= e' ih' i

= T
,

ih' i
+p'

i^h' i
*+ .... {l6)

and for the succeeding surface,

e,=r,+/V3)V+/V5)V+ • • • (14)

sin ^ =e^ = r^+/3 (3)^3
i+ • • • (15)

w
i 1

c
t

<•

/

i
s

ft

1

e-

IT'

Figure 6.

—

Diagram showing aperture, h, as measured from different points

on the axis

Let Ct and Ct
(fig. 6) be the respective centers of curvature, and

let the distance from Ct to C} be d, positive if to the right. Then,
for any ray, as PS, the adding of axial distances gives

:

1 1 mJ

Similarly, for a paraxial ray

then:

1
!_i_,7 1 ! A— =—Yd, or — =— — a

T i Tj Tj T i

~h = 1 + dTj
=

i

—

t~t
= K

(16)

(17)

(18)

where k is a new symbol introduced for convenience.
Manifestly

sin a/^sin at
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or, by equations (13) and (15):

1
h i^KrQjhj

Then, substituting in turn from equations (16), (14), and (18):

h't^iiA-'MjWj

= (l+dT
J
)h

j
+ dp

j
® )h?J + . . .

= Khj + dpf )h?j + dpj
Whs

j + . . .

This last expression for h't may be substituted in the right-hand
member of equation (13), and then since the latter is equal to equa-
tion (15)

sin a, = r^+ I3j
{z)hz

j+ 0/
5)^+ . . .

= the series expanded 16 in Table 4.

Since this equation is true for any value of hj the coefficients of like

powers of hj may then be equated.
The first order equation is

t;
= /ct', (18a)

»• See footnote 15, p. 196.
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The third order, after combining terms, is

(l-dT%)/V3) =K3
/373)

or, substituting from equation (18)

/3/
3) =k4

/3V
3)

(186)

The fifth order, likewise, is

Substituting for (1 — dr/) and /3/
3) from equations (18) and (186):

/V
5) =*6

(/3V
5) +3^V3)2

) (18c)

The higher orders may be reduced in a similar manner and the
transfer formulas summarized as follows

:

1
K (18)l-dr't
rj
= KT

/

i (18a)

/V
3) = k

4
/3V

3 >

(186)

/3/
5

> = k
6G3V5

> +3/ctf
7

/3V
3)2

) (18c)

/V
7) =*8

(/3V
7) + 8/^/3V3)

/3
,(5) +12K2d2

/3V
3)3

) (18(f)

/V
9) =k10

(/?7
9) + 1(W/3V3)

/3V
7) +5Kd(3' i

« )2 +55K2d2
p'i

{3)Y i
(5)

+55/cWi (3) -4
) (18c)

^(11)^12^(11) + 12/^(0V3)/379) +/3V5)/377)
) +78K

2d2
(/37

3)2
/3V

7)

+j8
/

.

(3
)/3

/ .(5) 2) _|_364 /c
3^'

i

(3 > 3
/3

,

,
(5) +273K4d4073)5

] (18/)

2. NOTES ON GENERALITY

These transfer formulas are more general than has been indicated
By definition, the series

e = T+/3 (3)A2
c +/3

(5)^+ . . •

refers exclusively to the center of curvature of a lens surface. It is

evident, however, that a similar series may be written referring to any
point on the axis and that the transfer formulas will apply in trans-

ferring to any other point on the axis if 0, r, /3, and h c are replaced by
the corresponding symbols from the new series. Moreover, these

formulas apply as well to some of the series with different definitions

of h mentioned in the introduction, the condition for their validity

being
¥h =/(<*)

where ^ corresponds to 9 above, but may refer to any point on the

axis and f(a) is any function of a the use of which results in a con-
vergent series throughout the required range of h for each case in

question.
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3. TRANSFER FORMULAS INVOLVING POWERS OF n

If the reduced form of the aberration equations (equations (11)

)r (12)) is used, then the transfer formulas must also be divided by
;he corresponding powers of n. They are then as follows

:

1
K= 7

Tit

Uj Ui

(V_ A'(3)

n°j

(5)

= K
Ui

'(5)
/3' (3)2

nh
i \rii

6

^=4 ^r + 8my z V + l2K2n?d2 -

n] \ rii rii

(19)

(19a)

(196)

(19c)

£(3>3N

(19d)

Other reduced forms of aberration equations are to be given later.

The various forms of the transfer formulas are collected here for

convenience in reference.

Center of curvature to vertex:

1
uk=

i-<^
(20)

n Ui

nJaj
= n(nK)

:
~

n^/5) = (n/e)
6

tf
'(3)2*

5+3(^)^4^-
Tliz _

(20a)

(206)

(20c)

nj^7)
F8/ (7:

(nKy^-pr +sMd
Vertex to center of curvature:

k 1

(7)
iQ'.

(3)^/(5) $'

n,
4- 12 (tuo

7

)
2 t_L_

71

(3)3—1

T^J
(20d)

?i n— driiUi

Ui nn n/a/

Rj^_

n?

P

n=[z)nit/*-/(»)

71 i

127984—32-

|r=©Tn/r/<5,+3^ (ni
'

ri,<3))2
]

J=(0[««'r/
(7)+8^(w/r/ (8,)(»/r/ (6)

)

(21)

(21a)

(216)

(21c)

+ 12(^J(n/r/ <3)
)
3

]
(21a

7

)
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Vertex to vertex:

«- ^ (22)

l--7liCTi

n^i^m/v/ (22a)

nst/'*>**K*n t'tf*> (226)

%f/5) = «
6
[^/r/ (5) + 3^(n/r/ (3)

)
2

]
(22c)

%r/7) = *
8
[n/r,'&> + 8k^ (n/f

/

(3)
) (n/f/

(6)
)

+ 12(^)W/«>)»] (22d)

Higher orders are derived from equations (18c) and (18/) in a simi-

lar manner.

IV. THE RECIPROCAL ABERRATION OF A SINGLE SURFACE
REFERRED TO THE VERTEX

A second set of formulas will now be investigated in which the point
of reference is chosen at the vertex of the surface. These are to be
used in the cases where the formulas referred to the center of curva-
ture are not applicable (see p. 203), although in many cases either set

may be used.

1. DERIVATION OF THE FORMULAS

As has been stated, aberration series of the form (2) or (2') may
be written referring to any point on the axis. Let the two which
refer to the vertex of a surface (as Vt) fig. 6) be

2J-«r.+r (8V+rwV+t cr)W+ • • • (23)

for the incident pencil and

S /
«<r

/ + f
/^V+f/(8)

Vf
4 +f>a)*V+ • • • (230

for the refracted pencil. Probably the easiest way to establish a

relation between these two series is to transfer the aberration to the

center of curvature by means of equations (18) so that the resulting

coefficients are identical with those of series (2) and (2') and then to

substitute these coefficients in equations (10).

Let k and k' be the constants of transfer in the object and image
spaces, respectively. Then substituting the appropriate values for
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the object space in the formulas (18), the following relations are

derived

:

1 - 1+rT=_e_=£±i (24)
1 — ra p—a

t = kct (24a)

/3
(3) =*Y (3) (24&)

^(5) ^^6(^(5) .^3^(3)2) (24c)

^(7) =K8
fr(

7) +8Krr
(3)

r
(5) +12/cV2

r
(3)3

) (24a
7

)

^(0) =JCio^ (9) + iO/crr (3)
r

(7) +5/crr (5)2 +55/c2
r
2
r

(3)2
r

(5) +55K3
r
3
r
(3H

) (24e)

By a similar substitution and also by reason of equations (10a)

and (24)

K
, =_^ = p±r= ^(p±r) =

p-ff. p p

in the case of the refracted pencil. Continuing the substitution

t' =kV =mW (25a)

j8
/(3)

=JU/4^/(3) (25o )

and similarly the higher orders differ in form from (24c to 24e) only
by the use of \lk instead of k.

Substituting these values throughout equations (10), dividing each
equation by the power of \ik appearing as a factor of the left member,

and writing —, =—-, = ab
p! n

*' =(v+{)-^ ^
(26a)

f <3
> = rf <" +i„(l -m)^ +<r)(M^- «•) (266)

(f'
<5) +3MVf'<3 > 2

)

= M(f«>+3Krf«>
2)-i

Mf
<3) (l-^-

.[(l-^+ 2f]+i,(l-^ +^^ f).

•[(l+M+M2)^-(l- M)^+ ff
2
] (26c)

K K

(f'
(7> +8M'Krf' (3

»f'
<6) + 12M'Wf' (3)3

)

= M (f
(7) +8Krr

(3
»f<

5
> + 12icV!

r
<3,s

) -\v$ (3)2
(1 - h)p

-i
M (f

(6> +3 Krf<
3 > 2)(l- M)^[(l- M)^+2<r]

-Lr (3'(l-M)7[(H-M+M2 +M3)4+ 4M 4<7+4o-
3

]O ft K K

+ 16#•(1 -M)£(*2 + *)(/»£- *)[(1 +M +P2 +M3 +M4
) ^

-(l- M
3)4 + (l4V)42-(l- M)%3 +<r1

] (26d)
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(r
,(9) + lO/iVf (3)

r
/ (7) + 5MVf

'

(5)2

+ 55M
,?

/c
2r2

r
(3)2

r'
(5) + 55/Wr' (3)4

)

= M (r
(9) + 10Krr (3)

r
(7) + 5Krr (5)2 + 55K2r

?
r

(3)2
r

(5)

+ 55/cV3
r

(3)4
) -M(r (3)

r
(5) + 3Krr (3)3)(i -M) -g^

(r
(7) + 8/crr

(3)
r

(5) + 12«2
r
2
r

(3)3)(l-M) ^["(1-^)^+20-1

4Mr (3)?(i-M)p[M^

(l + M -M2 -M3

)f3+4M
^+4cr3]-^ Mr

(3) (l-M)^

(1 + /x- m
4-m5)-5+2(m + m

2+M3)-^ + 4m^o-3 + 6(7
51

K AC K

frk M(1-M)K^ + 0(M^"0[5(1+M+M2+M3+M4+M5+M6) ?

-(5 + m + m
2-m3 -m4-m5)-

5 o-+(5 + m + 3m
2 + m

3 + 5m
4)-

4 o
2

-(5-M + M
2-V)-3 o

3 +(5-
i
u + 5/i

2)-
2 ^-(5-5M)-t75 + 5(7

£

(26e)

Equation (266) is used in eliminating £*,(3) from equations (26c) to

(26e). Following this step, the resulting form of equation (26c) is

used in eliminating £*/(5) from the higher order equations, and so on.

Remembering at the same time that, from equation (24) > - = (p— a)
K

and (
- + <r) = p. The equations may be brought into the following

form:

a' = p — p (p— a) = (xa—(ii — l)p

r (3) =Mf
(3)_l

/i(M
_

1)(p
_

(r)
2
[/x(p_ £r)

_
(7]

r (5) =Mr (5)
H
_l

Mr
(3)

(M
_

1)(p
_

(j)[(5M+1)(p
_

(7)
_

4(7]
_l

M(/x
_

1)

•(p-aY[n(p-<r)-a][(7i.2 -5p+l)(p-ay-(5p-5)
(p— cr)cr + a2

]

(27a)

(276)

(27c)

-'(7) =^(7) 1

Mr
(3)2 (M-l)[(7ju + 4)(p-c7)-3o-]

+^r (5) (M-l)(p-^)[(7M+D(p-o)-6cr]

+ ^r (3) (M-l)(p-^[(63/x3 -33/x2 -7M+l)(p-cr) 3

-(96
1
a
2 -68M-8)(p-o-) 2(7+(40

J
u-32)(p-(7)(72 -4 o

-3
]

-^p(M -l)(p-(7) 2
[M(p- (r)-a-(33][M

4 -47p3 + 25p2 -7p+l)(p+-cry

- (47p
3 - 80p2 + 40/i - 7) (p-cr)

3(7+ (25m
1 -40/x+ 17) (p-o-)V

2

-(7M -7)(p-o-)cr3 + (7
4
]

(27d)
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r (9)
=Jur

(9)_
jU
_J_

r
(3)3

(M
_ 1)[(411 +81)(p _ (7)

_ 330(7] _ Mf
(3)

r
(5).

p— a

.(At-l)[(9M +5)(p-cr)-4(r] + ^ Jur
(7) (M-I)(p-^[(9M+l)(p-c7)

-8
<
7]-i^ (3)2 (M-l)[(198M

3 -42M
2 -80

i
u-3)(p-c7) 3

-(240M
2 - il6M - 75)(p-o-)V + (70^- 51)(p-o-)(72 +41o-3

]

+ gMr (5) (M-l)(p-^)[(99p3 -61 M
2 -9

j
u+l)(p-^) 3 -(160At

2 -124
i
u

-10).

: .(p-c7)V + (70M -60)(p- <7)cr
2 -6c73]4-^ iur

(3) (M-l)(p-<7).

• [(429M
5 - 53 l/z

4 + 140m
3 + 20m

2 -9
At+l)(p-(7)

5

-(960m
4
-1,372m

3 + 428m
2 +38m-10)(p-o-) 4

(7

+ (770m
3- 1,190m

2 + 1,320m +20)(p -(t)
3
(7
2
-(280m

2 -394m + 130)-

1

.(p-(7)V + (50M-40)(p-.7) (7
4 -4a-5]- ^m(m-1)(p-^ 2 -

.[m(p-(7)-o-][(715m
6
-1,525m

5
+1,335m

4 -665m3
+215m

2
-35m+5).

• (p- o-)
6- (1,525m

5
-3,671m

4
+2,709m

3- 1,489m
2
+371m-35) (p-<r) 5a

+ (1,265m
4- 3,189m

3
+2,873m

2
-1,099m+165)(p -(7)V

- 575m
3 - 1,369m

2
+1,049m-275)(p -(7)

3
(7
3 + (215m

2 -371m +165)-
.(p-o-)V-(35M-35)(p-(r)o-5 +5(76

] (27«)

It may, at times, be preferable to multiply these equations by n'

and write them in the following reduced form

n'<r' = n(r—(ri— n')p (28a)

1
J

7,r (3) =7ir(3)_^ (/x
_

1)(p
_

(7)
2
[iu(p

_
(7)
_

(7] {2Sb)

^r (6) =^ (5)+^r (3) (M-l)(p-c7)[(5M+l)(p-o-)-4(r]

-|n(/*-l) (p-o-) 2
[m(p- <7)-(t][(7m

2 -5m
(28C)

+ 1)(p -o-)
2 -(5m-5)(p-(7)(7+o-2

]

and similarly for higher orders. In computations by means of these
equations it is not necessary to find the £ coefficients explicitly, but
only the "reduced coefficients," n^3)

, n^5)
, etc.

2. DISCUSSION

It is evident that these formulas are considerably more complex
in form than those which refer to the center of curvature. They are

included here as supplementary formulas to be applied where the

, other system is unsuitable. The eleventh order has not been included
partly because of its unwieldiness and partly because in the cases

where these equations will be most frequently applied, namely, sur-

faces of small or zero curvature or where the object is near the center
of curvature, the inherent aberration will be small and fewer orders
will, in general, be required than for the other surfaces of the system.
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m
The zero points common to all orders of inherent aberration are

given by

ju = 0, physically impossible,

(/x— 1) = 0, the same root as in the other system.

(— l) =0,a double root at the center of curvature.

(ju+l)f— 1 J=
— 1, the aplanatic point again.

+3

+2

l

1
/

H

*
*

/
/

<r

P

/ ,''"* V
\

-i

/ /
/ i

I *
/ t

/ 1

-3

1

|
1 () + +<;i +3
Figure 7.—Zero reciprocal spherical aberration contour

The solid lines indicate zero values of all orders. The dotted curve indicates an
additional root of the fifth order. Additional roots of higher orders are not shown.

These roots are shown for p = 1 in Figure 7, as is also an additional

root of the fifth order. The additional roots of the higher orders have
not been investigated.
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Figures 8 and 9, corresponding to Figures 4 and 5, show the values
of the inherent aberration coefficients for ju= 1/1.5 and ju— 1.5 when
1=1. It is to be remembered that /*= 1/1.5 corresponds to p! = 1.5 in

Figure 4.

RECIPROCAL OBJECT DISTANCE cr

Figtjre 8.

—

Reciprocal aberration coefficierts for single surface

of unit radius j n=lll.5

V. INVERSION TO LONGITUDINAL SPHERICAL
ABERRATION

Given the reciprocal aberration of a pencil of rays, the longitudinal
aberration may be derived by expanding the brackets in the following
equation

S_i_ 1
°~2

(7+r
(3)/^+r (6)^+ • . .

0" (7 /

according to the formula (l + x)~ 1 ==l— x + x2 — x? + ... If the
longitudinal aberration be expressed as before. (See Introduction.)

S=s +Ah2+ BhA+Ch(
> + Dh8 + Eh10

(1)
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the following formulas are found for converting reciprocal into longi-
tudinal aberration:

A=-s2^S)

B=-s2
(^5) -s{® )2

)

z>=-s2
[r

(9) -s(2r (3)
r

(7) +r (5)2)+3s2
r

(3)2
r

(6) -s3
r

(3)4
]

^=-s2
[f

(11) -2s(r (3)
r

(9) +r (5)
r

(7))+3s2
(r

(3)2
r

(7) +r (3)
r

(5)2
)— 4S3>- (3)3> (5) _|_ ^4 > (3)41

(29a)

(296)

(29c)

(29c?)

(29«)

+4

sn +3
i—z
LU
U

fa +2
o

+1

z
o

cz

UJ
CO

s! °
U
O
q:
a
u
UJ .1
cr

*h + +2

RECIPROCAL OBJECT DISTANCE

+ 5

Figure 9.

—

Reciprocal, aberration coefficients for single surface of
unit radius, n= 1.5

These formulas are quite general. If the aberration refers to some
point other than the vertex of a surface, it is necessary only to replace

these symbols by the corresponding ones in the new series. The
parameter may be taken as any function of the aperture and of any
constants (as, for instance, the constants of a surface of the lens) so

long as a convergent series result both for the reciprocal and for the
longitudinal aberrations.
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VI. NUMERICAL EXAMPLE
1. DETAILS OF CONSTRUCTION OF THE LENS

As an illustration of the application of the formulas derived in the
preceding parts of the paper, the reciprocal spherical aberration of the
third, fifth, and seventh orders has been computed for an ordinary
landscape lens such as is found in most low-priced cameras. The
details of construction of the lens as given by Conrady 17 and the
necessary reciprocals are as follows, except that the decimal point has
been changed in order to brin^ it near the first significant figure both
in the lengths and in their reciprocals:

n= -0.5556 Pl = -1.7999
nh 2 =1.63487 ^,2=0.01 n~\ 2 =0.61167

r2= +1.492 p2
= +0.67024

n2 ,
3=1.54712 d2 , 3 =0.03 n~\, 3=0.64636

r3
= -0.2506 p3

= -3.9904

The formulas (12), (11), and (28) will be used at the respective
surfaces. The final longitudinal aberration will then be derived and
compared with the results of trigonometric ray tracing.

2. FIRST SURFACE; INFINITE OBJECT DISTANCE

Since ^ = and rii= 1, the simplified formulas (12) may be used at
the first surface. The numerical work is conveniently arranged in

four columns, one for the paraxial values and one each for the three
orders of aberration computed, as follows:

Paraxial Third order Fifth order
Seventh
order

n'i

0-*)
P'2

P_

n'

0. 61167

. 38833

-1. 7999

0. 61167

. 38833

-1. 7999

1. 9816

0. 22885

.77115

-5. 8310

i. 9816

H

0. 08562

. 91438

-18. 890

1. 9816

He

t. /3'(0

n'' n'*
-0. 69896 -0. 69253 -1.11381 -2. 1392

where ,;
= 1, 1, 3, and 5 in the respective columns.

The first line in this computation need not be written down if the

computer so prefers. The next four lines contain the factors of the

coefficients of the respective orders. The reciprocal of the inter-

section distance measured from the center of curvature could now be
found for a ray at any height h'a from the center of curvature after

refraction at this surface, this quantity being given by the series

'-feWe'i = p\ (3)

,' 3

0'l
(5)

/ 5n\% f

cl
2+

n'i
1

/ \n'i
-0.69896 n'i -0.69253 n\zh f

cl
9

2.1392 n'fh'd*- • • •

nVAV + (^}i7A' cl
6-

1.11381 n'fh'cf

17 Conrady, Applied Optics, p. 316. See footnote 2, p. 191.



218 Bureau of Standards Journal of Research [VM. „

3. TRANSFER FROM CENTER OF CURVATURE TO PFivrrp-c ™CURVATURE; FIRST SURFACE! TOSBCOND °F

Formulas (19), Section III, 3, are used in transferrins- the nnmt „freference to the. center of curvature of the second Surface Th,numerical work is most conveniently carried out in t™ „.l i ?
computing the various terms and factors hi th fomul^ and secondcombining them to find the new coefficients, as follows?

1 d +2. 0576
1

K

2 n'd +3. 3639 K*

3 nn'd +1. 00379 K*

4
K»

6 (KU'd)* +1. 00759 «8

+0. 29840

. 089043

.79287-10-*

.70600-10-'

. 62864- 10~<

/3'(3)J

«'«

fl'(3)fl'(i)

n'8

ff (8) 3

+0. 47960

+. 77135

-. 33214

In this computation the value of d is found from the original data{dcu2-dtli --n + n), then* and its powers and multiples are computed, n'd being found incidentally to the computation of K L?n ^fi

tion
0P1

Thi
r

<<

m the
„
1?stv

line of the computation^ the preceding sec-

in brackets Se fSS.°^ UTerical
T
alues <^he qSite™„„„r *? tne formulas, which, when multiplied by the proper

See *
glVe ^ Coefficlents for «« object pencil at the Second

4. SECOND SURFACE AND TRANSFER TO THIRD- CENTER OFCURVATURE TO VERTEX
UU"BR OF

fJ^i Ration at the second surface is computed by means offormulas (11) As may be seen below, the computation faCreTdilvinto three parts In lines 1 to 10 the various monomial and binoS
pute Itm^r wMch apPear in tbe f™Z areZnputed. In hues 11 to 14 are computed the four bracketed quantities
which appear in the ^--inherent, the ^-inherent, the

cc— ~ ""' n'3 -mueieni, tne -—y-—

m

n' 7 \ n3 )'
and the

~rfT -inherent terms respectively. 18 In each
case the three products composing the quantity are written in the fWS 9°oTnS a°d thfr SUI? is™tte» in the lastXmn In£
lLt% l

hVfTs terms in the formulas are evaluated and addedtogether to find the constants of the refracted pencil The inherent
aberration appears in line 16, the terms containing the factor^ are
in line 17, and so on.

n

" These designations are explained in See. II, S; p. 201.
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In the transfer to the vertex of the third surface, the first part of
the computation, lines 25 to 29, has been written below the second
part, lines 20 to 24 in order to eliminate the recopying of line 20.
Moreover, the computation differs slightly from that in the preceding
section in the use of formulas (20) instead of (19).
The numerical work, then, is as follows

:

i P {
1

n* n'*

1

2
3
4

5

6

7

8

9

10

11

12
13

14

1

2
3

5

+0. 67024
+. 44922
+. 30109
+. 13525

0. 61167
. 37414

0. 64636
. 41778

-0. 03469
-. 04364

G)' (*)' 00' (jrn)^- 1^

1

2
3

-0. 20857

+. 043501
+0. 43322
+. 18768

+0. 40997
+. 16808

-0. 02325
-. 23182
-. 44039

\«' 2 W
/pi T»\

1

2
+0. 001203

+. 001904
+0. 14418

+. 020788
+0. 12458
+. 015520

V«2 tt'V

/pi t»\

1 +0. 79192 +0. 23118 +0. 21158 ^

0'O)

0'd)

/S'(-)(/3(3))

0'(')

Bracketed quantities Sum

-0. 00017
-. 000120
+. 000143
-. 0000425

+0. 14141

+. 012715
+. 018394
+. 0029395

-0. 13676
-. 010031
-. 016795
-. 0021225

+0. 00448
+. 002564
+. 001742
+. 0007745

Paraxial Third order Fifth order Seventh order

15

16
17

18
19

20

21
22

23

24

TJ . &2M
Til Tl2*

Inher.
05(3))

(0(»)
(0(3)3)

n't »V
00
(«2)

Sum

iia\\ nf

-0. 20857

-. 02325

-0. 54909-10-3

-. 1501 -10-J

+0. 23329-10-3

-. 2148 -10-3

+.0281 -10-3

+0. 0246- 10-*

-.3244-10-*

+. 0321-10-*

-. 0119-10-*

+. 0035-10-*

-.2761-10"*

+. 1239-10-*

-.9275-10"*

-. 23182 -. 6992 -10-» +. 0466 -10-3

-.6975 -10-3

-. 6509 -10-3 -1. 0797-10-*

-1. 16660 -. 7827 -. 7709 -1. 3529

25

26

27

28

29

d

1/n'

n'tcd

(n'«J)»

a

-1. 462

.64636

-4. 7554

+22. 614

-. 75404

flK

(71k) 2

(7U)<

(n*)»

+3. 2527

10. 5801

0(8)3

7l«

0(3)0(5)

+0. 48888-10"*

-. 03258-10-*

— . 3418 •!()-»

1.1

1.3

8433-103

•5303-10*

n8

0(3)3
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5. THIRD SURFACE AND INVERSION TO LONGITUDINAL ABERRATION
The aberration due to the third surface of the lens might also becomputed by the same method as was used at the second surface

however, it is desired to illustrate the use of formulas (28), and more-
over it is preferable to have the final aberration referred to the back
vertex without the additional transfer from the center of curvature
to the vertex. Since the image is in air, then n' is unitv a = n
equations (28) are identical with equations (27), and the "reduced"
coefficients, nV, n'$'®\ . . ., are equal to the actual coefficients,

In lines 1 to 4 of the computation the preliminary data are pre-
pared. I he bracketed quantities computed in lines 5 to 22 are
given the designation of the term in which they appear. The vari-
ous sums of the powers of n appear in the first column of numbers,
inese are multiplied by the appropriate powers of (p-a) and a
and the products are written in the next column. Finally these
products are added together to give the total value appearing 'in the
last; column.

m
The coefficients of longitudinal spherical aberration are computed

in lines 28 to 34 by formulas (29), Part V, in much the same manner
as a transfer is made to a new point of reference.
These computations are as follows

:

(1)

(2)

(3)

(4)

i 71* (p-o-)' a*

1

2
3
4

1. 54712
2. 39358
3. 70316
5. 7292

-3. 2364
+10. 4743
-33. 899

+109. 711

—0. 75404
+. 56858
-. 42873
+. 32328

Bracketed quantities Sum

(5)

(6)

r«!)(f(3>) (5n+l) 8. 7356 (p-<r)
-4<r

-28. 272
+3. 016 -25. 256

(7)

(8)

(9)

?W(Inh.) (7n*-. .)

~(5n-5)
10. 0195
-2. 7356

(p-a)2
(p)v

+104. 947
-6. 6759
+. 5686 +98. 840

(10)

(ID
f(7)(f(»)2) (7n+4) 14. 8298

-3<r
-47. 995
+2. 2621 -45. 733

(12)

(13)
r<")«-(5)) (7n+l) 11. 8298 •Cp-t)

-6(T
-38. 286
+4. 524 -33. 762

(14)

(15)

(16)

(17)

f'(7)(f(3)) (63W»-. .)

-(96n*-.)
(40n-32)

144. 481
-116.579

29. 8848

•<p~<r)3

•(p)V

•(pV2

-4o-3

-4, 897.

8

+920. 75
-54. 99
+1.71 -4, 030.

3
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(18)

(19)

(20)

(21)

(22)

f'«> (/Tift.)

•

(33n<-. .)

- (47713 -. .)

(25n»-. .)

-(7n-7)

65. 0247
-37. 446

14. 9547
• -3. 8298

.(p-aY
•(p)*<r

.(p)M
•GO <r 3

+P 4

+7, 133. 92
-957. 16

+89. 06
-5.31
+.32 +6, 260. 8

Paraxial Third order Fifth order Seventh order

(23)

(24)

(25)

(23)

(27)

(28)

(29)

(30)

(31)

(32)

n<r
3 ; rtf3

(,)

Inher.

cr<»)
(r (»)
({-(3)2)

s-term
s 2-term

Sum

s', A', B', C"

-1. 16660
+2. 1832

-0. 7827
+18. 854

-0. 7709
+465. 88
-27. 08

-1. 3529
+14, 755.

-1, 080. 2
-35.7
+11.9

+13, 650
-15,573
+5, 710

+1. 0166 +18. 071 +438. 03
-321.23

+116. 80 +3, 787

+. 98367 -17.486 -113.02 -3, 664

(33)

(34)

S2

f'(3)2

0. 96761
+326. 56

f'(3)
£-'(5)

f (3)3

+7, 915. 6

+5, 901. 3

It is more or less customary to change the dimensions of a lens

proportionately so that the focal length is 1,000 mm when plotting

the aberrations. This is done to a satisfactory approximation in the
present case by merely changing the decimal point. The intersection

distance measured from the back vertex for an image ray at height

h'z is then given by the series

S' z = s's + A'K'f + B'K'f + <7'A'3
6

= 983.67-0.017486 A'3
2 - 0.0001 1302 W£- 0.000003664 h,'£

6. COMPARISON WITH RAY TRACING

In comparing the results of algebraic and trigonometric computa-
tions it is well to keep in mind the following essential difference
between the two : In the trigonometric work the longitudinal spherical
aberration is found as the difference between the intersection lengths.

of a paraxial and another ray. If either length is determined with
an uncertainty of 0.01 mm, the uncertainty in the aberration thus.

determined is at least as large as that. In the algebraic series, on the
other hand, the spherical aberration is expressed as one or more
correction terms to be applied to the paraxial focal length, and accord-
ingly the aberration may sometimes be found with an uncertainty of

0.001 mm or less when the intersection lengths are not known to

within 0.1 mm.
For the lens in our example Conrady gives the following values

obtained by tracing a ray with the use of five place tables

:

M 30.0 «'
3 1.8253*

^3= +983.67 ^3 = 967.13,

Long. Spher. = —16.54
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the algebraic aberration must bedetermined for the same ray, that is

A'3 = £"
3 sin </3 = 967.13 sin 1.8253° = 30.805

This value substituted into the final series in section 5, above, gives-

i^Xl" 16 - 593 •'•-+983,67
i> fi 3 - —.1018 Long. Spher. = -16.698

<7'A7= -.0031 S'3 = +966.972

Total = -16. 698

These results are shown in Figure 10.

-20. _I5. JO. _5. O
L0N61TUDINAL SPHERICAL ABERRATION
Figure 10.—Spherical aberration of "landscape" lens

m
The curve shows the aberration of this lens as given by the accomnanv-ing calculation. The circle indicatesa value obtainedbytrigonameTSy

leSKSf& ta
Th\ T

-

he c?7e a
?
S\own corresponds to a back focallength of 983.6 mm. The horizontal scale, however, is twice the vertical.

In order to determine whether the discrepancy of 158 mm
between the two values of Long. Spher. is due more largely to the
trigonometric or to the algebraic computation, a seven-figure trigo-
nometric computation has been carried out. Its results are as follows

$'
3 = 983. 591

£'
3 = 966. 88S

^3 = 1. 82576°
= -16.703Long. Spher.

When this more precise value is taken as a standard of comparison
it may be seen that the algebraic computation, even if only the third
spherical order term be considered, gives a better value for the spheri-
cal aberration than does the five-figure trigonometric computation.
Moreover if the fifth order term is included the resulting aberration
aitters but little from that given by the seven-place work. The sev-
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enth order term is negligible in the present case, but with larger rela-

tive apertures it would become more prominent.
It is interesting to note that Conrady computes the third order

spherical aberration to be —16.702, which is virtually identical with
the total aberration given by the 7-place computation, and then
states that this value " agrees very well with the more exact trigo-

nometric amount, —16.54, showing that the higher spherical aberra-
tion is small." The difference between the two values of the third

order aberration may be considered as due to the causes mentioned
in Part I, section 2. On the other hand, the close agreement between
the first two paraxial image distances mentioned above appears to

be largely fortuitous.

Although a final appraisal of the values of algebraic v. trigonometric
computations should not be based upon one numerical example alone,

still the following estimate, based upon this computation along with
others which the author has made, may well be given here. The
algebraic method is believed to be capable of giving as dependable
results as the trigonometric in all practical cases. As a general rule,

an exactness comparable to that given by 5-figure ray tracing may
be obtained for apertures up to approximately//10 by computing the
third order only, and for apertures up to approximately //6 by com-
puting the third and fifth orders. These stated apertures will vary
widely, tending to be smaller for meniscus than for symmetrical
lenses. The labor involved in computing the paraxial and third
order quantities by the method described in this paper is about the
same as that of tracing one paraxial and one rim ray, that involved
in computing also the fifth order is about the same as that of tracing
one paraxial and two other rays. However, the possibility exists of

compiling tables of the series aberrations, for instance as^ functions
of the index of refraction and the reciprocal object distance, and thus
of reducing the work to a minimum.

VII. DISCUSSION

1. CONVERGENCE OF ABERRATION SERIES

The validity of series expressions of aberration has been questioned
on the ground that the magnitude of the terms which are neglected
is not known. In fact Baker and Filon 19 have pointed out two cases

in which these series actually become nonconvergent. There are

analogous cases in the system of equations developed in the foregoing
paragraphs, and these will be briefly discussed here.

In one case of nonconvergence the image distance for rays at some
finite distance from the axis is infinite and, accordingly, the longitu-

dinal aberration is infinite and can be expressed by no convergent
series. In reciprocal aberration this case can be seen merely to be
one of a zero value of the series. Nevertheless, analagous difficulty

arises in the reciprocal series when a ray passes through the point of

reference so that the reciprocal distance, and hence the reciprocal

aberration, becomes infinite. This difficulty, however, can easily be
avoided by a proper choice of the point of reference.

The second case mentioned by Baker and Filon concerns aberration
series which are written in terms of the inclination of the ray in the

19 Baker and Filon, On an Empirical Formula for the Longitudinal Spherical Aberration of a Thick
Lens; Trans. Opt. Soc. London, vol. 20, pp. 67-92, 1918-19. See particularly pp. 74-76.
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image space and involves longitudinal and reciprocal series alike. It
was shown that two rays in the image pencil may have equal inclina-
tions but unequal aberrations so that the aberration is a double-
valued function of the independent variable. Manifestly no series

can be convergent for both values.

In the present system of equations there is the following analagous
case: Let ST (fig. 11) be the caustic curve of a pencil of rays. If the
origin be chosen as at so that a normal, N, to the caustic curve
passes through it, then for every ray, RBSB , tangent to the curve
beyond N, there is another ray, RaSa , such that the normals, OQ and
OP, of the two rays are equal. There are, then two values of the
aberration for a single value of the variable, h, and consequently no
series can be convergent throughout this interval.

'fl ^A S
Figure 11.

—

Diagram illustrating nonconvergence of aberration series

However, by choosing a suitable point of reference, this difficulty is

avoided, or at least the interval of convergence may be sufficiently

extended for practical purposes.
Without stopping for the proof for other types of series, it may be

stated as a more or less general rule that, if any aberration series be
written using as a variable a length measured from a point on the axis

to a point on the ray in some specified manner, than an absolute limit

to the interval of convergence of the series is reached when the speci-

fied point on the ray coincides with the point of tangency of the ray
with the caustic curve. In practice, however, long before this limit

is reached the series will become so slowly convergent as to be of no
practical value. It is to be observed, however, that nonconvergence
can be avoided in the proposed system by a proper choice of the point
of reference, while Baker and Filon found it necessary to use a func-
tion of the incident ray rather than of the refracted ray as the variable.

This is objectionable on account of the indefiniteness inherent in

using a function of the incident ray. For example, if h is given in

$4P4 (fig. 1), S\ may be found from equation (1). However, this

determines only one point on the ray since the ray might traverse the
lens by a different path and still intersect the axis at the same point.

Even if the height of incidence on the last surface is used as the ordi-
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nate and the axial point determined as before, the exact direction of

the ray is not known unless the radius of the surface is given also.

On the other hand, in the proposed system when the axial point is

found by equation (1), the position of the ray is competely determined
by a simple geometrical construction. Moreover, the ratio (or in

the case of reciprocal aberration, the product) of these two quantities

equals the sine of the angle of inclination of the ray while in the two
systems just mentioned there is no direct relation.

2. RELATION TO PATH DIFFERENCE EQUATIONS

If it is desired to find the path difference between the two rays at

some point on the axis, in order to work out the diffraction effects

according to formulas such as those published by L. C. Martin, 20 a
further advantage is gained in measuring the aperture along a line

perpendicular to the ray rather than to the axis. In Martin's formula
the independent variable is the height of intersection of the ray with a
wave front through a fixed axial point. If ERaRb (fig. 11) is a wave
front, then RAG is such a height. Plainly an axial aberration series

could not easily be written using this variable since the shape of the
wave front is not usually known. If the wave front were exactly
spherical then it is evident that RAG would be exactly equal to EF
which is the variable used in the present paper. Now, since wave
fronts do not ordinarily depart from sphericity by more than one or
two wavelengths, or 0.001 mm, when A equals, say, 20 mm, the two
lengths could be considered equal in most cases without appreciable
error, so that the coefficients of the series derived in this paper could
be substituted directly into Martin's equations.

A further investigation of the relation between reciprocal aberration
and path length differences has been begun, and exact equations have
been derived. It is expected that these will be published soon.

3. CONCLUSION

Besides the theoretical interest which attaches to the equations
derived in this paper, there also is believed to be a considerable
possibility of their practical application. No optical computer to-day
questions the value of the third order aberrations developed by Seidel,

and yet Berek 21 states that "L. Seidel himself did not consider the
aberration formulas of the third order which he published between
1853-1856 suitable for practical purposes and, therefore, furnished
trigonometrical tracing formulas to the C A. Steinheil Optical Co.
(1866)." Further, it may be stated that the mathematical tools

furnished by Seidel lay idle for about 60 years, and only recently
their usefulness, in spite of their restrictions, has been recognized.
Although the fifth order, up to the present time, has been considered
too unwieldy to be useful, still it is not impossible that it, like the
third order, will in time be brought into a simpler form adaptable to

numerical work. In addition to this there is the possibility of the
compilation of tables of these aberrations which would shorten
considerably the work of computing.

Washington, June 16, 1932.

20 L. C. Martin, A Physical Study of Spherical Aberration, Trans. Opt. Soc, London, vol. 23, pp. 63-92
1921-22.

si Berek, p. 41, see footnote 11, p. 192.
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