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The critical lines of binary mixtures of conformal fluids are calculated on the basis of the one-fluid Van

der Waals theory. The conditions for the existence of the gas/gas equilibrium of the first and second type are

shown and discussed. The analytical expressions for partial derivatives of Gibbs free energy with respect to

concentration, up to the third order, are given in the appendix.
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1. Introduction

In this work we study the binary mixture at the
gas/liquid critical line (the Plait point curve). Our emphasis
will be on locating the line rather than discussing the
behavior of the critical point itself [1]": it is felt that the
former problem is of scientific and practical interest which
has not yet been fully explored. Our procedure is based on
one fluid Van der Waals conformal solution model since it
is now well established [2-6] that phase equilibria in
general can be predicted successfully by this method.

The organization of the paper is as follows: the
corresponding states approach is recalled briefly in section
2 and the calculation of the critical lines is discussed in
section 3 with the lengthy working equations relegated to
the appendix. The phenomena of gas/gas equilibria are
next discussed. In particular, some variations of the critical
line over a range of pressure, P, temperature, 7, and mole
fraction, x, for various types of mixtures are described in
section 4. Brief comparisons with the more restricted
approach from simple equations of state [7,8] are given.

Throughout this discussion, argon is used as the
reference substance [9]; with other
equations will be published in a forthcoming paper [10].

results reference

2. Conformal Solution Theory

A basic postulate of the Van der Waals one fluid theory
is that if the components of a mixture—characterized by
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Figures in brackets refer to literature references at the end of this paper.
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the usual and o—separately

corresponding states, then their mixture will also

parameters, € obey
obey
This

some

corresponding states as if it were a single substance.
hypothetical equivalent substance is characterized by
suitable composition dependent average parameters, (€)
and (o). The statistical mechanical basis behind the
theory has been discussed by several authors, in particular
by Henderson and Leonard [11], Leland, et al. [12], Jacucci
and McDonald [13], and by Hanley and Evans [14]. The
valid but the
nevertheless appealing and often successful in practice.
that the
is a valid entity, its

concept cannot be strictly model is

Accepting single equivalent
properties then

determined from those of a known reference substance via

component
substance are
corresponding states. See, for example, references 3 and 5.
For the Gibbs free energy the expressions are

G (T\Px) = G(T,P) + RT2 x,¢nx, (1)
)

G(T.P) = f.G(T/f, Ph/f) - RTtnh, (2)

Here the subscript m refers to the mixture, x to the

equivalent substance and o to the reference substance;

are parameters of the equivalent substance with respect to
the reference fluid. The Van der Waals mixing rules which
express A, and f, are as follows:
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h, = 2 xixjhij (3a)
iy
fo = (Zxixjfijhi)/h, (3b)
ij
where
ol Vg € %
hi = G- = ve fi = e Te

The parameters referring to unlike pairs are usually
expressed in terms of a mixing rule:

(3c)

fi = &(fufi)

where 7, and &, are semi-empirical correction factors which
are close to unity; Vf is the critical volume and T7; is the
critical temperature of the component 7.

3. Critical Lines

Phase behavior of a mixiure can be characterized by the
course of the gas/liquid critical line in (P—7—x) space
joining (or not) the critical points of the pure components
[15]. The line depends on the interactions between unlike
(i) molecules and on the relationship between the critical
temperatures and critical volumes of the pure components.
Many investigations have examined this question both from
the theoretical and experimental viewpoint. See, for
example, references [16] and [17]. Of special interest, Van
der Waals [18] and Kamerlingh Onnes and Keesom [19]
predicted that a phase separation could occur in a binary
mixture at temperatures well above the critical temperature
of either component. Hence the term gas/gas equilibria.
[The effect was verified experimentally in 1940 for the
system NH,-H, [20] and one of the earlier theoretical
discussions is reported in reference [21] for the system Xe-
He.]

The wide range of possible phase behavior is covered by
the extensive work of Scott and Van Konynenburg
[7,22,23] who used the Van der Waals equation of state
with the mixing rules

_ 2 2
a4, = ap® + ¥ + 2 xxa,

n = bule) F bzzxé + 2 xwb,

where @, and b; are the Van der Waals constants, to
calculate critical lines as functions of 7€ V¢ or of a and b.
Further calculations of critical lines based on the Van der
Waals and Guggenheim reduced equations of state were
later reported and compared with experiment [8,24,25].

3.1. Equations

The critical point of a binary mixture at a given 7,P and
x is defined by the equations of diffusional or material
stability [26]:

(4a)
a:st
3 =t (4b)
ax TP
'Y,
3 > 0 (4c)
ox Jp P

where Y, =G,/RT, with G,, the Gibbs free energy of the
mixture: x(=w,) is the mole fraction of the second
component. The locus of the critical points is of course the
critical line. Note that there is no formal difference between
a liquid/liquid curve and a gas/liquid (plait point) curve.

Equation (4) can be solved in two ways, the first
graphically. The Gibbs free energy is plotted versus mole
fraction at 7" and P: the common tangent determines the
boundary of the phase separation and a critical point is the
T,Px point at which the common tangent vanishes. The
second way is to solve equations (4a) and (4b) directly, with
the constraint of equation (4c). This is the procedure used
here, coupled with the one fluid model.

Accordingly equations (1) and (2) are expressed in the
following form:

Y.(T.,Px) = Y(T,P)- ¢nh, + x¢ny + (1 - x)€n(l - %)

Y (T.,Px) = G(T,Px)/RT ()

Y(T,P) =

0

G(T

0

P)/RT, T,=T/f, P, = Phlf,

x? o

Equations (4a) and (4b), which are to be solved, are
obtained explicitly by differentiation of equation (5) with
respect to x—the mole fraction of the second component
resulting in,
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%Y,
— Yo_'r‘TT,;2 + 2Y0.P.TP{’, T‘; + Yo.pypéz + Yor Tg
o’
g0kl
+ Y, P - kA 4 (R/RY 4+ 1/ - x) (6a)
aiiym
= YorarTo® + 3Yor s p P T;? + 3YopprP,°T,
ax3

T.p

+ YorrpPo® + 3YorrToTs + 3Yorp(PoTs + PoTo)

+ 3Yor 2 PoPs + YorTo + YopPo' — hi''/he  (6b)

+ 3RAV/RE -2k /) - 1/x" 4 1/(1 - 2

where Y ,,, etc., are defined in the appendix, the prime
denotes the derivative with respect to x. The equations were
solved numerically using the Newton method.

3.2 Gas/Gas Equilibria

Equation (4) and the one-fluid modifications are quite
general and we have applied them to several systems of
interest; for example, to mixtures of the noble gases, to the
mixture N,/CH, and to the mixture N,/C,H,. These results
will be discussed in a later publication [2]. Here, however,
we report on the phenomenon of gas/gas equilibria for
model systems. We refer to the classification of Scott [7].
Type I: Equilibria are classified by the behavior of the
critical line in the P-7" projection. For type I behavior, the
line must begin from the critical point of the less volatile
component with a positive slope, i.e.,

dP
cont v (7)
dT

e

where subscript ¢ denotes differentiation along the critical
line.

Type II:  For this class, the P-T projection has a minimum
with respect to temperature as the pressure increases.
Therefore a condition is

Making use of equations (4a) and (4b) we obtain a
necessary condition to satisfy equation (8). Namely at the
critical point

d Ym.t.r =0 (93)

Ym,t,r,rdx + Ym,z-_r_TdT+ YmJJ,PdP - 0 (91))
ap ot

-1 =- 9c)
dT 4 Ym,x..i.l’

Equation (9¢) follows from equation (9b) because we are on
the critical line, equation (4b). There is no reason for Y,

muxx,T

to be infinite, thus to satisfy equation (8) we must have

ylll.l’,l‘l‘ - () (10)
It follows that if the system of equations:
myxx = O
y’".l.l.f = 0 (1 1)
Ym,x..x./' = 0
has a solution at a temperature below the critical

temperature of the less volatile component, then gas/gas
equilibrium of the second type occurs.
In order to calculate Y, . ,, we derive from the one-fluid

theory:
Veewr = YorarTohelfe + 2Yor 1. pPoT halfe
+ Yorr(2P,T,/P + Tohe/ fr) + Yo.pppPo’he/fr
(12)
+ Y, M2P/P + PlhIf) + Y, P /P
Mixed Type: A third possibility can easily occur from our

calculations, even though it has not been observed
experimentally; namely a mix of type I and type II is
permissible. For instance the derivative (dP/d7), can be
positive initially but then a maximum can occur with
respect to the temperature at a relatively low pressure, and
afterwards a temperature minimum is found at higher

pressures.
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4. Results

We calculated a critical point at a given state point via
equations (4)-(6)—using the mixing rules of equation (3)
with M7 and £¥ set equal to unity—so that equations (7)
and/or (8) were satisfied. In fact equation (6) was solved for
a given fixed ratio of the critical volume of the pure
components, and the ratio of the critical temperatures then
varied until the minimum value of this temperature ratio
was found which would satisfy equation (7) or (8). Table 1
lists the results, i.e., the appropriate value of 7'5,/7], for
fixed values of V'5,/ V¢, between 0.7 and 4.5. As a matter of
interest the overlapping results of Hicks and Young [24] are

included.
TABLE 1. Minimal value of T5,/7f; for gas/gas equilibrium.
V/VE, First kind Mixed kind Second kind
(Type 1) (Type 1I)

0.7 1.88

0.8 2.07

0.9 2425

1.0 7.06 4.8 2.42
[14.0 ' [25]
[81.0 [4.01

1.05 7.40

Holl 7.79

1.15 8.22

%2 8.73

1525 9.38

1.3 10.4

1.35 14.2

125 5.43

1.66 3.47

2.0 5.86 3.95

215 6.18 4.60

3.75 5.85

4.0 6573 6.06

4.2 6.23

4.5 6.87

“ Calculated [24] by means of the Guggenheim equation of state.

" Calculated [24] by means of the Van der Waals equation of state.

The results are perhaps clearer when shown in figure 1.
Curve I is the plot of the temperature ratio in the second
column of table 1 versus V3,/V{ . It represents a limiting
critical point line above which and including which
unambiguous first kind, or type I, of gas/gas equilibria
occur. In other words if the temperature and volume ratios
of the components of a binary mixture are such that they
lie inside curve I, the Van der Waals one-fluid model will
predict gas/gas equilibria of type I. Curve II is the limiting
line above which and including which equilibria of type 11

20 T T T T

GAS/GAS EQUILIBRIA

C C
Ty /Ty 101 7]

I
0 | | | 1
1 2 3 4
(& c
V22 /Vﬂ

FIGURE 1. Ratios of the temperature at fixed ratios of the critical volumes
designating regions of different classes of behavior of the critical lines for
gas/gas equilibria.

Curve I—the lower limit of appearance of the gas/gas equilibrium of the first kind or type I [7].
Curve IA—the lower limit of appearance of the gas/gas equilibrium of the mixed kind.
Curve II—the lower limit of appearance of the gas/gas equilibrium of the second kind

or type Il [7].

will occur. Curve IA represents equilibria of the mixed
kind. This curve is somewhat arbitrary since we required
that equation (7) be satisfied at pressures between P, and
PS, + AP is arbitrary set at 7.5 MPa, and at temperatures
greater than the critical of the less volatile component. We
have determined, however, that curve IA with AP=7.5
MPa represents the upper boundary: Use of AP<7.5 MPa
simply tended to collapse IA towards II.

Figures 2 and 3 show sample plots of the critical lines in
the P-T projection. Curve I of figure 2 is typical of type I
behavior: in this case with V{,/V7,=1.3 and TICI/TZC2=
10.4. Curve IA is typical of a mixed kind result with the
volume and temperature ratio of 2.5 and 6.18, respectively.
Figure 3 gives type II results for the ratios (1 and 2.42)
and 1.25 and 2.59.

5. Discussion and Conclusions

Our first remark is that we have proposed a very
efficient general procedure to calculate the critical lines of a
mixture based on the one-fluid Van der Waals conformal
solution theory. Computational time is rapid. As an
example of the procedure we report results for the critical
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Ficure 2. P-T projection of type I. at V5/Vii=1.3 and T5,/T§;=10.4,
and of the mixed type, (la) at V5,/Vi;=2.5 and T 5/T§;=6.18.

300 -
TYPE II BEHAVIOR

200
P, MPa

100

100 10 120
T, K
Ficure 3. P-T projection for type Il behavior at V§/Vi=1.0 and
T5/T§=2.42 (curve a), and V§/V§;=1.25 and T5/T§;=2.59 (curve
b).
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lines in gas/gas equilibria, but we have used the method to

estimate gas/liquid and liquid/liquid lines for several

hydrocarbon systems with success [2,25].

We next remark on the relationship of our curves with
experiment. Unfortunately this is not clearcut for the
following reasons:

(a) Conformal solution theory is not strictly valid and

tends to break down for a mixture whose species differ

widely in size, mass, and interaction energy [13,14].
Unfortunately such mixtures are the more likely to show

gas/gas equilibria, especially mixtures with helium. Our
predictions of type I behavior for mixtures of He-C,H,, He-
CO; and He-Xe (for which V'

C
2/ VS =

11=30)
for the mixtures Ne-Kr, Ne-Xe and Ne-CH, were somewhat

4 and T3,/T¢
where not too satisfactory. Predictions of type 1l behavior
better. Also the model correctly gave the negative result
that mixtures whose components are not disparate, e.g., Ar-
Kr, Ar-Xe and Kr-Xe, do not show gas/gas equilibria.

(b) Real mixtures do not obey corresponding states,
although the method can be generalized to include the so-

[6].

called shape factors introduced by Leland and coworkers

(c) The procedure—common with all mixture procedures
available at this time—requires interaction parameters such
as the &, and 7m,, of equation (3) and the numerical
properties of a mixture are often, but not necessarily,
extremely sensitive to a particular choice of & and m. We
have set £ and 1) equal to unity but their influence on the
critical lines is quite pronounced, which is demonstrated in
figures 4 and 5. The general tendency is: lowering &,, shifts

the critical line towards a higher temperature, (the same
qualitative effect is obtained by increasing the critical

critical line.

temperatures ratio with the critical volumes ratio held
constant): increasing 1), increase the curvature of the

We would like to thank Professor J. Stecki for many

helpful comments and Dr. W. R. Smith and Dr. Howard

Hanley for discussions. We are also very grateful to Karen
Bowie for preparing the manusecript.
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FIGURE 4. Effect of €15 and My on the projected P-T curve of the mixed kind.

FIGURE 5.
All calculations at V35,/V§;=2.5 and T5/T§;=06.18 (see fig.2). Solid
Niz=1.0, £1,=0.8.

curve: E15=m15=1.0, dashed curve: &;5=1.0, M;5=1.08, dotted curve:
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Effect of €15 and M2 on the projected P-T curve of type I1.
All calculations at V3§3/V§=2.18 and T$/T§;=4.71. Solid curve.

Mi2=E&12=1.0, dashed curve: &=1, Mpp=1.1, dotted curve: Mp=1,
&12=0.9, dash-dotted curve: Mz =1.1, &;5=0.9.
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7. Appencdix

The partial derivatives of the function Y (7,P,) which
are necessary for calculations of the second and third
derivative of Y, (7,P,x) with respect to x are given in this
appendix. H is the enthalpy, /' the Helmholtz free energy
and S the entropy. We define Y, as the “derivative of ¥,
with respect to i, j and £,

YT:

0,

- H(T,P)/RT,

=

o,

V/IRT,

oV
Yopr = -V/RT* +| — | /RT,
aT |,
14
Ve = || =] 120,
oPf,
S
Y, or = 2H(T.P)/RT? - — 1 /RT,
aT),
2S %S
Y, ;rr = -6H(T,P)/RT* +3[— |/RT2- /RT,
ol |, T |,
oV F i 4
Y,rrp = 2V/RT3-2 { — | /RT% +|— | /RT,
or [, or* ),
14 PR 4
Yore= -1 — | /RT? + —— | /RT
P /, aPaT
%V
Ya.l’.l‘,l’ =N e / RTZ,
P,

where we have omitted subscript o on the right hand side
for brevity.
The equation of state of argon is:

P, = P(T,p)

17V (A1)

p" =

In this work P, and 7, are used as the independent
variables, thus for any given pair, equation (A1) is solved
for p,.

Calculation of H(T,P,).

C(T,P) = FrS(T,V) + RT(Z - 1) - RT¢nZ
z, = PV/IRT (A2)
F™TV) = [? [P(T,p)/p* - RT/p'] dp’
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After integration of equation (A1) accordingly to equation
(A2) we obtain Fées(T,V) as a polynomial in 7, and po. The
superscript “res” denotes the residual functions defined in

general by X =X(T,P)-X“(T,P):

BFres(T, V) (Ag)
STV = - |/
ol v
SNTP) = ST, V) + RT¢nZ
G(T,P) = G(T,P) + RT¢nP/kT
S(T,P) = S(T,P)- R({nP/kT - 1)
H(T,P) = G(T,P) + TS™(T,P) + RT (A4)
3aS(T,,P) 3’S(T.,P)
Calculations of —_— and —_—
o7, a7}

Vo Vo
oS(T,P) aS(T V) oS(T,)) oV
S + _

o7, ol oV oT
Po v T iy
(AS)
aS(T,V) oP oV
= + [ — —
ol oT oT
v v P
since
aS(T,.V) S, (T,V)
aT, oT,
Vo Vo

this quantity is obtained by direct differentiation of the
equation (A3) with respect to the temperature.

%S (T ,P) °S(T, V) 2P d
SRS — + 2| — —
aTé oT? aT? oT

Po \’4 \'d P

2
a’P 14 P Chl e
+(—) (=) +[-)[—) wo

oVeT oT oT oT?

P \% P

since

o*ST,V,) S, (T,V,)

oT¢ T3

this quantity is obtained by differentiation of equation (A3).

Calculation of other derivatives. All derivatives of the
pressure, P, are obtained by direct differentiation of the
equation of state (Al). The derivatives of the volume V,
with and pressure are

reexpressed by the derivatives of the pressure P

respect to the temperature

v,
— = (A7)
oP,
To
v, oP\ '
— = - — (A8)
aT, 14
Po T
oV, \'  /[o*P
= - — (A9)
P ar2
To T
3%V, o°P oP
— — __2 —_— —
oTs aTav] \ aT
Po 14 \7
P\’ P\ foP\'
—_ — — (A10)
oV oT t14
92! 14 T
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