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A condition is given, under which subse ts of the playe rs of a noncooperat ive game ca n be combined into 

"aggregate players" without changing the set of equi librium-point so lutions of the game. The condition is that 
an individual player's payoff does not depend on the strategy cho ices of the other players forming the sa me 

aggregate player. "Approximate" versions of this resul t are also formulated and proven. 
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1. Introduction 

In classroom discussions of game theory, the set of players is typically "given." For app lica tions, how
ever, the number and id entities of the players may well be matters for the judgement of the mathematica l 
modeler. The number of stakeholder groups with distinguishable interests in the situation under study, may 
be so great that their trea tment as individual groups would impose an unacceptab le complexity of ana lysis 
and/ or a forbidding burden 'Of data-gathering. Even where this is not the case, the interests a nd likely 
actions of the memb ers of some subse ts of the players may appear sufficiently parallel (though not perfectly 
so) as to warrant combining each such subse t into a single "aggregate player," in the expec tation that the 
greater clarity of insights from analysis of the smaller (aggregated) game wi ll more than compensa te for the 
concomitan t loss offiner detail.\. 

It seems natural, therefore, to investigate, from a mathematical viewpoint, the consequences of such 
aggregation. The present paper consti tutes one such investigation. It is restricted to noncooperative games 
and to the equilibrium-point notion of" solution"; for completeness, these concep ts are defined in section 2 
below, where the process of aggregation is also formalized. A closely related concept of aggregation (group 
equilibrium) is investigated in [3).2 

In section 3, we present a condition under which aggregation does not change a game's se t of solutions. 
Stripped of its formal trappings, that condition is really rather transparent. Under aggregation, individual 
players of the original game become able to coordinate their choice of strategy with the choices of the 
other individual players who make up the same aggregate player. The condition ensures that no advantage 
can be gained from this new capability, by stipulating that each individtql player's payoff (in the origina l 
game) is independent of the strategy choices by the other individuals comprising the same aggregate player. 

Clearly, the condition of section 3 is a fairly strong one, and it does not capture the notion of aggrega ting 
players with parallel (rather than independent) interests_ However, the present investigation constitutes, it is 
hoped, a useful stimulus towards achieving a more realistic formulation and analysis of such aggregated 
games. 

The result in section 3 applies, in particular, to a recent inspector-inspectee game [1 ,2] in which the 
inspectee decides whether or not to "cheat" at each of a number of sites which may be examined by the 
inspector. The implication is that the results of that game's analysis remain essen tially unchanged if the 
inspectee player is disaggrega ted, even" all the way" to a set of individual" site managers." 
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Section 4 extends the preceding material to" approximate solu tions," while section 5 takes up the case in 
which the condition described above is satisfied only approximately. These topics refl ec t an expectation that 
in applied contexts, many mathematical relationships will not( or cannot be known to) hold exactly. 

2. Games, equilibria, aggregation 

Let n > 1 be an integer, and N = {1,2, ... ,n}. An n-person noncooperative game G = (X,J) consists of an 
n-tuple (X ..... ,Xn) of nonempty sets X, with Cartesian product X, and an n·tuple f = (j;, .. . ,J;.) of functions 
f, : X -+ R, where R, is a set equipped with an irreflexive binary relation Q,. Here X, is interpreted as the set 
of strategies or actions open to the i·th player,f, as that player's "payoff fun ction", R, as the set of possible 
payoffs or outcomes experienced by that player, and Q; as the relation of (strict) preference by that player 
among outcomes. The fact that the domain off, is X, rather than X" expresses the idea that each player' s 
payoff depends not only on what strategy he chooses, but also on the choices made by other players. 

For any XiX, and iE.N, and any x;EX" we denote by (x,i,x;) the member of X obtained from x by changing 
its i-th coordinate to x;. With this notation, a "solution" concept can be defined: XOEX is called an equilib· 
rium point (EP) for game G if, for every iE.N and every X;EX;, the relation 

(1) 

isfalse. That is, if one thinks of the coordinates of XO as the players' "current" choices of strategies, then no 
player has an incentive to deviate unilaterally from his current choice. Since the game is regarded as "non· 
coopera tive," only unila teral shifts come into consideration, and so the falsi ty of all rela tions (1) is sufficien t 
to describe the "stability" of xo. If n= 1, an EP is simply a strategy that yields a preference-maximal out· 
come for the (sole) player. 

Next we describe an "aggregation" of game C. Let m be an integer with 1 ~ m ~ n, and let M = 
{l,2, ... ,m}. An m-player aggregation G[B,F] of G is specified by the following structure. B = {B ..... ,Brn } is 
a partition of N into nonempty sets; note that the relation iE.Bjul defines a function}: N -+ M. Let Sj be the 
Cartesian product of the sets {R, : iE.BJ; also let F = (F ... .. ,Frn) be an m.tuple of functions Fj : Sj -+ ~ 

where each set ~ is equipped with an irreflexive binary relation T j , and each function Fj is strictly monotone 
in each of its arguments. This last condition means that for any SjESj , for any iE.Bj with 'i the i-th coordinate 
of Sj , and for any r ;ER" 

(2) 

This structure defines an m·person game as follows. The "players" are {Bj : }EM} . The set of strategies of 
Bj is ~, the Cartesian product of {X, : iE.BJ. Note that the Cartesian product of the players' strategy sets, 
i.e. of{ ~ : jEM}, is the same set X as for the original game; this permits the symbols "x" and "y" to be used 
interchangeably, and corresponds to the idea that we are dealing with aggregation of players and payoffs, 
but not of strategies. (The same observation justifies the later unambiguous use of notation (x,j,Yj), as an 
extension of the previous symbol (x, i,x')') In the aggregated game, the payoff function for player Bj is g j : 

X -+ ~, defined by3 

(3) 

The definition of an EP for game G[B,Fj is directly analogous to that for G. 

3. The limited· dependence condition 

The game G will be said to satisfy the limited-dependence condition (LDC), relative to partition B of N, if 
for each iE.N the payoff functionf, is independent of the arguments {X.EX. : kEBj ('1 .{ i}}. 

J In th e followin g notation, the argum ent of ~ is th e member sjC.Sj whose i·th coordin ate, for i£. Bj • is{o{x). 
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THEOREM 1: If the LDC holds, and)(o is an EP for G[B,F1 then XO is an EP for G. 

PROOF: Suppose, to the contrary, that (1) holds for some iEN and some XiEX,. By the LDC, f,.(xO,i,x,) = f.(xO) 
for all kEBj( i)·{i}. We can now apply (2) withj = j(t), with Sj having coordinates ((.(XO) : kEBj(i )}, and with 
r; = f,{xO,i,x,). The result, using(3), is 

contradicting the hypothesis that XO is an EP of G[B,F]. 

THEOREM 2: Assume each Qi is complete and each Tj is a (strict) partial order. If the LDC holds, and XO is an 
EP for G, then XO is an EP for G[B,F]. 

PROOF: Suppose, to the contrary, that there exist jEM and YjE 1'; such that gj(XO,j;Y) TjgAxO). Denote the 
coordinates of Yj by {Xi: iEBJ; then it follows from the LnC thatf,(xO,j,y) = f,(xO,i,x,) for each iEBj, and so 

(4) 

Since Qi is complete and irreOexive for each iEBj, Bj has a tripartite partition Bj = BjUBjUBJ where 

Bj = {iEBj :f,(xO,i,xi)QJ;(xO)}. 
BJ~ = {iEBj :f,(xO)QJ;(xO,i,x,)}-Bj, 
BJ = Br Bj-B; = {iEBj :f,(xO,i,x,) = j;(XO)}. 

We will show that Bjis nonempty, implying a contradiction of the hypothesis thatxO is an EP for C. 
Suppose then that Bj is empty. Denote the coord inates of XO by x~x" and with an obvious extension of 

previous notation, define X'EX by 

It follows from th e LDC that 

(all iEBJ), (5) 

f,(x ') = f,(XO,j,y) (6) 

It is clear that if B; =~, then x' = XO and so 

(7) 

while if B; *' ~ it follows from the definition of Bi, the monotonicity of F'j and-the transitivity ohj , that 

(8) 

Also, it follows from (5) and the definition of BJ that 

(9) 

Combining (9) with whichever uf (7) or (8) applies yields a contradiction to the initial assumption that 
gixO ,j;yJTjg,{XO). Thus Bf is nonempty, as desired. This completes the proof of Theorem 2. 

We are indebted to colleague S. Haber for pointing out that Theorem 2's requirement of completeness for 
every Qi can be relaxed as follows. Recall that elements u and u', in the domain of binary relation Q, are 
called Q·incomparable if neither uQu' nor u'Qu holds. (For example, if Q is irreflexive then equaiity of 
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elements implies their incomparability.) Let us call the aggregation scheme [B,FJ incomparability-preserving 
if, for allj£M, whe~ever Sj = {Ui : i£BJ and s; = {u; : i£BJ are members of Sj such that Ui and u; are Qi
incomparable for all i£Bj, it follows that F,(s) and ~(s) are Trincomparable. Then Theorem 2, without the 
assumption of completeness for the Q:s, holds for incomparability-preserving aggregations. To adapt the 
preceding proof so as to establish this generalization, omit the last expression in the definition of BJ, so that 

BJ = {iE.Bj :f(xO,i,x,) andf(xO) are e;-incomparable}. 

Relations (7) and (8) are proved as before, and either of them together with the initial assumption g){XO J',y) 
Tjg){XO) implies that gixO J:y)tjgix'j. This however, together with (5), (6) and the definition of BJ, yields a con
tradiction to the hypothesis that the aggregation is incomparability-preserving. 

Taken together, Theorems 1 a~d 2 assert that under mild restrictions on the Q,'s and T/S, the LDe is a 
sufficient condition for th~ "aggregatioh" transition from G to G[B,FJ to leave the set of equilibril.itii'point 
"solu tions" unchanged. (11 is a condition on the pair (G,B), yielding the desired invariance for every choice 
of F.) 

However, this sufficient condition is liot I1lso a necessary condition. An example which does not satisfy the 
LDe, but for which the set of equilibrium points is unchanged by aggregation, can be based on the game G 
shown in figure 1. Here n=2, X.={A,B}, X2 ={a,b}, Q. and Q2 are the numerical ">" relation, and the 
payoff functions!. and!2 are identicallf. = !2= 1) with 

1(A,a)=2,f (A,b)= l(B,a)= l,f(B,b)= O. 

The only EP of Gis (A,a). Now consider any aggregation G[B,FJ with B. = {1,2}, so that m= 1. Sihce F. is 
monotone, G[B,FJ will also have (A,a) as its only equilibrium point Thus the solution-set is unchanged by the 
aggregation, although the LDe does not hold. , 

The idea of this example can readily be extended to examples with m> 1. It seems doubtful that a "nice" 
necessary and sufficient condition, verifiable without having to solve the game G (which would defeat the 
purpose of the aggregation), can be found. 

2 
a b 

1 

A 

B 

Figure 1: An Example. 

4. Approximate equilibrium points 

Since the topics of this section and section 5 deal with quantitative rather than qualitative relationships, 
we now take all sets R and ~ to be the set R of real numbers, and think of the relations Qi and Tj as the ordi
nary numerical" greater than" relation. The payoff-aggregation functions Fj will for simplicity be taken to 
be summations, i.e. (3) becomes 

gix) = :L{f;{x): iE.BJ (8) 

For each iE.N and each.u:X, the quantity 

M,{x) = sup{f(x,i,x,): Xi£Xi}- f(x) 

is nonnegative. If d = (d " ... ,d.) is an n-tuple of positive real numbers, and if xO£X satisfies 
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(all iEN), (9) 

then XO will be called a d-FP of game G_ Approximate EP' s of G[B,F] are defin ed analogously_ 

THEOREM 3.: Assume n-tuple d and m-tuple d ' satisfy 0; ~ d; (,) > 0 f or all iEN_ If the LDC holds and XO is a 
o '-EP ofG[B,Fl, then XO is a o-EP ofG-

PROOF: Suppose, to the contrary, that some iEN and X;EX; sa tisfy 

Define yj( qE 0 ( ; ) to have coordinates X;EX; and XZEX. for all kEBju ) - {i} _ Then by (8) ~nd the LDC, 

gj U)(xO,j(i),yj(q) - gjdxO) = I{j.(xO,i,x,) - j.(XO) : kEBj( q} 
= f(xO,i,x;) - f(xO) > 0; ~ d; (i), 

contradicting the hypothesis that XO is a o'-EP of G[B,Fl_ 

THEOREM 4: Assume positive n-tuple 0 and m-tuple d ' satisfy d; ~ I{o; : iEBJ for all jEM_ If the LDC holds 
and XO is a o-EP ofG, then XO is a d '-EP ofG[B,Fl-

PROOF: Choose any jEM and any yjE 0; let the coordinates of Yj be {xiEK : iEBJ- By hypothesis, 

(all iEB), 

which by the LDC can b e rewritten 

(all iEB). 

Summing over all iEBj and applying (8), we obtain 

for alljEM and YJE 0, establishing the desired result 
Assuming the LDC holds, Theo rem 3 provides a "degree of approximation" for XOEX as an (approximate) 

EP of G, in terms of its" degree of approximation" as an EP of G[B,F]- Theorem 4 does the reve rse_ The two 
theorems are pot intended to apply simultaneously to the same pair (o,d '), and do not so apply except in the 
trivial case(alllBjl = I) ofnno aggregation"_ . 

5. The approximate LOe 

In this s~ction, the notation Zi will be used for the Cartesian product of the sets {X. : kEBj(i) - {i}} _ Note 
that for any jEM and iEBj, e~ch YjE 1'; can be uniquely represen ted as Yj = (Xi'Z.) with X;EX; and Z;EZ;_ 

Observe that the LDC is equivalent to the following condition: for each XEX, each jEM, each iEBj, and each 

Yj = (Xi,Zi)E 0, 

f.{x,j'Yj) = f.{x,i,x,). 

This suggests the following definition. Let A = (A,, ___ ,A") be an n-tuple of positive numbers_ Then we say that 

the LDeA-holds if ~or each XEX, eachjEM, eac? iEBj, and each Yj = (Xi,Zi)E0, 

If(x,j,y) - f(x,i,x')l ~ Ai' 
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THEOREM 5: Assume n-tuple d and m-tuple d' satisfy 0 < d; u) ~ di - ~{A.k : h:BjU ) - {in for all iEN. If the 
LDC A.-holds qnd XO is a d' -EP ofG[B,F], then XO is a d-EP ofG. 

THEOREM 6: Assume positive n-tuple d and m-tupt!! d' satisfy d; ~ I{di + A, : iEBJ for all jEM. If the LDC 
A-holds and xd is a d-EP ofG, then XO is a d'-EP ofG[B,F]. 

The proofs of Theorems 5 and 6 are straightforward extensions of those of Theorems 3 and 4, respective
ly, and therefore are omitted. 
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