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A condition is given, under which subsets of the players of a noncooperative game can be combined into
““aggregate players’” without changing the set of equilibrium-point solutions of the game. The condition is that
an individual player’s payoff does not depend on the strategy choices of the other players forming the same
aggregate player. ‘‘Approximate’’ versions of this result are also formulated and proven.
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1. Introduction

In classroom discussions of game theory, the set of players is typically ““given.”” For applications, how-
ever, the number and identities of the players may well be matters for the judgement of the mathematical
modeler. The number of stakeholder groups with distinguishable interests in the situation under study, may
be so great that their treatment as individual groups would impose an unacceptable complexity of analysis
and/or a forbidding burden ‘of data-gathering. Even where this is not the case, the interests and likely
actions of the members of some subsets of the players may appear sufficiently parallel (though not perfectly
s0) as to warrant combining each such subset into a single ““aggregate player,”’ in the expectation that the
greater clarity of insights from analysis of the smaller (aggregated) game will more than compensate for the
concomitant loss of finer detail."

It seems natural, therefore, to investigate, from a mathematical viewpoint, the consequences of such
aggregation. The present paper constitutes one such investigation. It is restricted to noncooperative games
and to the equilibrium-point notion of “‘solution’’; for completeness, these concepts are defined in section 2
below, where the process of aggregation is also formalized. A closely related concept of aggregation (group
equilibrium) is investigated in [3].?

In section 3, we present a condition under which aggregation does not change a game’s set of solutions.
Stripped of its formal trappings, that condition is really rather transpareat. Under aggregation, individual
players of the original game become able to coordinate their choice of strategy with the choices of the
other individual players who make up the same aggregate player. The condition ensures that no advantage
can be gained from this new capability, by stipulating that each individugl player’s payoff (in the original
game) is independent of the strategy choices by the other individuals comprising the same aggregate player.

Clearly, the condition of section 3 is a fairly strong one, and it does not capture the notion of aggregating
players with parallel (rather than independent) interests. However, the present investigation constitutes, it is
hoped, a useful stimulus towards achieving a more realistic formulation and analysis of such aggregated
games.

The result in section 3 applies, in particular, to a recent inspector-inspectee game [1,2] in which the
inspectee decides whether or not to ““cheat’” at each of a number of sites which may be examined by the
inspector. The implication is that the results of that game’s analysis remain essentially unchanged if the
inspectee player is disaggregated, even ““all the way’’ to a set of individual “‘site managers.”’
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Section 4 extends the preceding material to ““approximate solutions,”” while section 5 takes up the case in
which the condition described above is satisfied only approximately. These topics reflect an expectation that
in applied contexts, many mathematical relationships will not(or cannot be known to) hold exactly.

2. Games, equilibria, aggregation

Letn > 1 be an integer, and N = {1,2,...,n}. An n-person noncooperative game G = (X,f) consists of an
n-tuple (Xy,...,X,) of nonempty sets X; with Cartesian product X, and an n-tuple f = (f,,...,f,) of functions
fi: X = R, where R, is a set equipped with an irreflexive binary relation o,. Here X, is interpreted as the set
of strategies or actions open to the i-th player, f; as that player’s ““payoff function’’, R; as the set of possible
payoffs or outcomes experienced by that player, and o, as the relation of (strict) preference by that player
among outcomes. The fact that the domain of f; is X, rather than X,, expresses the idea that each player’s
payoff depends not only on what strategy he chooses, but also on the choices made by other players.

For any xe X, and iV, and any x,£X;, we denote by (x,7,x;) the member of X obtained from x by changing
its i-th coordinate to x;. With this notation, a ““solution’’ concept can be defined: x% X is called an equilib-
rium point (EP) for game G if, for every ie NV and every x,eX,, the relation

f;(xo) irxi)Qif;‘ (xO) (1)

is false. That is, if one thinks of the coordinates of x° as the players’ ““current’” choices of strategies, then no
player has an incentive to deviate unilaterally from his current choice. Since the game is regarded as “‘non-
cooperative,’”” only unilateral shifts come into consideration, and so the falsity of all relations (1) is sufficient
to describe the ‘‘stability’” of x°. If n=1, an EP is simply a strategy that yields a preference-maximal out-
come for the (sole) player.

Next we describe an “‘aggregation’” of game G. Let m be an integer with 1 < m < n, and let M =
{1,2,..,m}. An m-player aggregation G[B,F] of G is specified by the following structure. B = {B,,...,B,.} is
a partition of N into nonempty sets; note that the relation ieB;;, defines a functionj: V= M. Let S; be the
Cartesian product of the sets {R, : ieB)}; also let F = (F,,...,F,) be an m-tuple of functions F; : S, > T,
where each set T is equipped with an irreflexive binary relation t;, and each function F; is strictly monotone
in each of its arguments. This last condition means that for any s;eS;, for any iB; with r; the i-th coordinate
of s;, and for any rieR,,

r:g.r; implies F; (s;,5,r:)T; Fi(s)). (2)

This structure defines an m-person game as follows. The “‘players’” are {B, : je M}. The set of strategies of
B; is Y,, the Cartesian product of {X; : ieB;}. Note that the Cartesian product of the players’ strategy sets,
i.e. of {Y;: jeM}, is the same set X as for the original game; this permits the symbols “x’” and ““y’’ to be used
interchangeably, and corresponds to the idea that we are dealing with aggregation of players and payoffs,
but not of strategies. (The same observation justifies the later unambiguous use of notation (x,j,y,), as an
extension of the previous symbol (x,i,x;).) In the aggregated game, the payoff function for player B, is g; :

X = T, defined by’
gx) = F[{f(x) : ieB}]. 3)
The definition of an EP for game G[B,F] is directly analogous to that for G.

3. The limited-dependence condition

The game G will be said to satisfy the limited-dependence condition (LDC), relative to partition B of N, if
for each ie NV the payoff function f; is independent of the arguments {x,e X, : keB; ,,-{i}}.

3 In the following notation, the argument of F; is the member 5,£S, whose i-th coordinate, for i B), is f(x).

392



THEOREM 1: If the LDC holds, and x° is an EP for G[B,F], then x° is an EP for G.
PROOF: Suppose, to the contrary, that(1) holds for some iV and some x,£X;. By the LDC, fi(x°i,x;) = fi(x°)

for all keB;;,-{i}. We can now apply (2) with j = f(i), with s; having coordinates {fi(x°) : keB, )}, and with
ri = f(x°,,x;). The result, using(3), is

8 (X%, Lx)T; ()8 (%),
contradicting the hypothesis that x° is an EP of G[B, F].

THEOREM 2: Assume each g; is complete and each t; is a (strict) partial order. If the LDC holds, and x° is an
EP for G, then x° is an EP for G[B,F].

PROOF: Suppose, to the contrary, that there exist jeM and y,eY; such that g;(x° ;) 1,8;(x°). Denote the
coordinates of y, by {x; : ieB;}; then it follows from the LDC that f;(x°,},y,) = fi(x°ix.) for each ieB;, and so

Fl{fi(x®ix) B} 1, F{{f{x°) : ieB;}]. (4)
Since g, is complete and irreflexive for each ieB;, B; has a tripartite partition B, = B{UBUB? where

B} = {ieB,; : fixi.x)e flx")},
B; = {ieB,; : f(x) filxizx)}—B;,
BY = B,—Bi—B; = {ieB; : fi(x*,i,x.) = fi=")}.

We will show that B} is nonempty, implying a contradiction of the hypothesis that x° is an EP for G.
Suppose then that B} is empty. Denote the coordinates of x° by x% X;, and with an obvious extension of
previous notation, define x'e X by

x' = (2% By {x e Br}) = (x°.) By, {«?: ieB}).
It follows from the LDC that
filx)) = filx”) (all &B)), ©)
fi(®) = fi(=°,.) (all e B)). (6)
Itis clear that if B; = ¢, then 2" = x° and so
(=) = g(x), @
while if B; # ¢ it follows from the definition of B;, the monotonicity of F; and the transitivity of r;, that
g(x)1,g,(x). ®)
Also, it follows from (5) and the definition of B? that
g/x) = glx’yy)- )
Combining (9) with whichever of (7) or (8) applies yields a contradiction to the initial assumption that
2/(x°),y;)t;8(x°). Thus B} is nonempty, as desired. This completes the proof of Theorem 2.
We are indebted to colleague S. Haber for pointing out that Theorem 2’s requirement of completeness for

every o, can be relaxed as follows. Recall that elements u and u’, in the domain of binary relation g, are
called g-incomparable if neither ugu’ nor u'ou holds. (For example, if g is irreflexive then equality of
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elements implies their incomparability.) Let us call the aggregation scheme [B, F] incomparability-preserving
if, for all jeM, whenever s, = {u, : ieB;} and s; = {u/ : ieB;} are members of S; such that u, and u, are o
incomparable for all ieB;, it follows that F|(s;) and F(s;) are 7,-incomparable. Then Theorem 2, without the
assumption of completeness for the g,’s, holds for incomparability-preserving aggregations. To adapt the
preceding proof so as to establish this generalization, omit the last expression in the definition of B, so that

B? = {ieB; : f(x°i,x;) and f(x°) are g,-incomparable}.

Relations (7) and (8) are proved as before, and either of them together with the initial assumption g(x°,,y;)
7,g(x°) implies that g{x°,y,)1;g{x’). This however, together with (5), (6) and the definition of B, yields a con-
tradiction to the hypothesis that the aggregation is incomparability-preserving.

Taken together, Theorems 1 and 2 assert that under mild restrictions on the ¢,’s and 7,’s, the LDC is a
sufficient condition for the “‘aggregation’’ transition from G to G[B,F] to leave the set of equilibriufi-point
““solutions’’ unchanged. (It is a condition on the pair (G, B), yielding the desired invariance for every choice
of F.)

However, this sufficient condition is not 4lso a necessary condition. An example which does not satisfy the
LDC, but for which the set of equilibrium points is unchanged by aggregation, can be based on the game G
shown in figure 1. Here n=2, X,={4,B}, X,={a,b}, 0. and o, are the numerical ‘>’ relation, and the
payoff functions f; and f; are identical (f, = f,=f) with

f4,00=2,f 4,b)=F (B,a)=1,f (B,b)=0.

The only EP of G is (4,a). Now consider any aggregation G[B,F] with B, ={1,2}, so that m=1. Since F, is
monotone, G[B,F] will also have (4,a) as its only equilibrium point. Thus the solution-set is unchanged by the
aggregation, although the LDC does not hold.

The idea of this example can readily be extended to examples with m>1. It seems doubtful that a “nice”’
necessary and sufficient condition, verifiable without having to solve the game G (which would defeat the
purpose of the aggregation), can be found.

2

a b
L 2 1
A 2 1
1 0
B 1 0

Figure 1: An Example.

4. Approximate equilibrium points
Since the topics of this section and section 5 deal with quantitative rather than qualitative relationships,
we now take all sets R; and T; to be the set R of real numbers, and think of the relations g, and 1, as the ordi-

nary numerical ‘‘greater than’’ relation. The payoff-aggregation functions F; will for simplicity be taken to
be summations, i.e. (3) becomes

glx) = Z{f(x): ieB} 8)
For each ie V and each xe X, the quantity
M{(x) = sup{fixix) : xe X}~ fi(x)
is nonnegative. If § = (d,...,d,) is an n-tuple of positive real numbers, and if 2% X satisfies
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M(x°) < 4, (all ieN), )
then x° will be called a d-EP of game G. Approximate EP’s of G[B, F] are defined analogously.

THEOREM 3: Assume n-tuple 8 and m-tuple &" satisfy &, = ;) > 0 for all ieN. If the LDC holds and x° is a
d’-EP of G[B,F], then x° is a 8-EP of G.

PROOF: Suppose, to the contrary, that some ie/V and x,eX; satisfy
Ji(x%ix;) = fi(x°) > ..
Define y; ;e Y, ;) to have coordinates x,e X, and xfe X, for all keB; ;, — {i}. Then by (8) and the LDC,

gj(i)(xo’j(i)vyj(i)) - gj(i)(xo) = Z{ﬂ(x°,i,x,-) -f;;(xo) : kij(,-,}
= fi(x%ix) — fi(x%) > 6. 2 6}y,

contradicting the hypothesis that 2° is a d-EP of G[B, F].

THEOREM 4: Assume positive n-tuple 8 and m-tuple &' satisfy d; > 2{d. : ieB;} for all jeM. If the LDC holds
and x° is a 8-EP of G, then x° is a 6"-EP of G[B,F].

PROOF: Choose any jeM and any y,e Y}; let the coordinates of y; be {x.e X, : ic B;}. By hypothesis,

S ix) — fi(x°) < 4, (all €B)),
which by the LDC can be rewritten

S, 1y) = filx) < s (all i£B)).
Summing over all ie B; and applying (8), we obtain

gAx%)y,) — A=) S 2{d. : ieB)} < 6
for all jeM and y,eY, establishing the desired result.
Assuming the LDC holds, Theorem 3 provides a ““degree of approximation’’ for %X as an (approximate)

EP of G, in terms of its ““degree of approximation’” as an EP of G[B,F]. Theorem 4 does the reverse. The two

theorems are not intended to apply simultaneously to the same pair (d,d’), and do not so apply except in the
trivial case (all | B;| = 1) of “*no aggregation”’.

5. The approximate LDC
In this section, the notation Z; will be used for the Cartesian product of the sets {X, : keB;,, — {i}}. Note
that for any jeM and ieB,, each y,cY, can be uniquely represented as y; = (x;,z)) with x,eX; and z,eZ..
Observe that the LDC is equivalent to the following condition: for each xe X, each jeM, each ie B;, and each
yj = (x,-,z,»)& Yja
JAxgyy) = flxix).

This suggests the following definition. Let A = (,,...,A,) be an n-tuple of positive numbers. Then we say that
the LDC A-holds if for each xe X, each jeM, each ieB;, and eachy; = (x,z)eY),

| fxjiy;) = filmix)| <A
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THEOREM 5: Assume n-tuple § and m-tuple & satisfy 0 < ;) < &; — Z{A, : keB,;, — {i} for all ieN. If the
LDC A-holds and x° is a §"-EP of G[B,F), then x° is a §-EP of G.

THEOREM 6: Assume positive n-tuple & and m-tuple 8" satisfy d; > 3{d; + A, : ieB} for all jeM. If the LDC
A-holds and %° is a 3-EP of G, then x° is a '-EP of G[B,F].

The proofs of Theorems 5 and 6 are straightforward extensions of those of Theorems 3 and 4, respective-
ly, and therefore are omitted.
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