
JOURNAL OF RESEARCH of the National Bureau of Standards 
Volume 85, No.4, July-August 1980 

The Polymer in a Cone-A Model for the Surface Free Energy 
of Polymer Crystal with Emergent Cilia 

C. M. Guttman*, E. A. DiMarzio*, and J. D. Hoffman* 

National Bureau of Standards. Washington. D.C. 20234 

March 12. 1980 

A model is proposed to estimate the surface free energy of a small polymer crystal with numerous emergent 
cilia. For such a model the partition function of a polymer constrained to remain in a cone is computed. The par· 
tition function of the polymer in a cone is found to behave similarly to the polymer in a wedge discussed by 
Lauritzen and DiMarzio [I].' The estimated end surface free energy per unit area for the small extended chain 
crystal is found to increase with increasing area, implying the presence of cumulative surface stress in such crys
tals. The forces between the cilia are reduced if folds are inserted in the surface. 
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1. Introduction 

The effect of surfaces on polymer configurations has long 
been studied. For example, DiMarzio and Rubin [2] and 
Gaylord [3] have studied the modification of the configura
tional partition function of polymers resulting from a poly
mer being attached to an adsorbing surface or enclosed by 
reflecting walls. Helfand [4] has studied the interface 
between two different polymers in a block copolymer system 
while Dolan and Edwards [5] have studied the effect of a 
surface on random coils as well as on excluded volume coils. 
All the above mentioned works show significant effects on 
the polymer chains as a result of the presence of a surface. 

Thus, when a polymer chain emanates from an ordered 
phase into a disordered phase-as in the case of a polymer 
chain partaking in both the crystalline and amorphous 
components of a semi-crystalline polymer-significant 
effects on the polymer configurations in the amorphous 
component are to be expected. 

Flory [6] proposed a model for a polymer system of lamel
lar morphology in which each amorphous polymer chain is 
never allowed to step back towards the crystal region it left. 
This model permits only one-half to one-third (depending 
on geometry) of the chains from the crystal to transverse the 
amorphous regime but requires an entropy defect of ap
proximately Ncln c/2 per chain, where c is the coordination 
number of the monomer unit and Nc is the number of 
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segments in the cilia, for each chain emanating from the 
surface. 

DiMarzio [7] developed a model in which the chains ema
nating from the surface were completely random coils and 
thus had no free energy defect. However this model allowed 
only lIVNc of the crystalline chains to emanate from the 
surface. More recently, Guttman and DiMarzio [8] have pro
posed models intermediate between the extreme of the 
DiMarzio and Flory models. 

The aforementioned models assumed infinite extent of 
the plane from which the cilia emanate. Recently, Hoffman 
[9] and Keller [10] modeled the finite sized polymer crystal 
produced by Pennings stir crystallization [11]. The model of 
the so called Penning "shish" is shown in figure lao Hoff
man has suggested that the chains emanating from the crys
tal end interfere with one another causing an increasing 
surface free energy per unit area as the crystal grows. This 
change in surface free energy is found to be large enough to 
cause the crystal to stop growing [9]. 

In this paper, we shall estimate the surface free energy of 
a finite size crystal with emanating cilia interfering with one 
another as a function of crystal size. Each crystal is assumed 
to be a right circular cylinder of known radius and length. 
As the diameter of the crystal grows, the chain portions 
emanating from the end of the cylinders interfere with one 
another more and more (see fig. Ib). We imagine the space 
allowed to all the fraying ends of the crystal to consist of a 
cone of angle Q. Each of the nc chain ends must stay within 
the angle Q and compete with all the other chains for space. 
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FIGURE 1. Model of Pennings shish proposed by Hoffman 
(a) after a few chains have been laid down (b) after many 
chains are laid down. Figure (b) shows the interference poss ible in the 

amorphous regime. 

12a) 

12b) 

FIG URE 2. A polymer crystal of length L and radius r. Five 

cilia emanate from the crystal. (a) A phantom cone, shown by a dotted line, sur· 

rounds the central chain to display the effect of interference from the remaining 
chains on thia central chams' configura tiona. (b) Each cilia in the amorphous 

regime surrounded bya cone ofQ/nc. 

This competItIOn for space of each chain with the rest 
causes a reduction in the allowed number of configurations 
the chain would have if it were free (random coil). We esti· 
mate this configurational reduction due to interference by 
viewing each chain as effectively confined to a smaller cone 
of angle Q/nc by the other chains (see fig. 2a). This assump
tion is made due to our inability to solve the nc chain prob
lem. A partial justification for such a procedure is given in a 
subsequent paper [12]. 

In the next section we shall set up and solve the problem 
of a chain constrained to remain in a cone. In section 3 we 
shall use the results of section 2 to estimate the free energy 
reduction on the surface of the crystal as a function of 
crystal size. 

2. Solution to the problem of a polymer 
in a cone 

The problem of polymers constrained to remain in differ· 
ent geometries has been discussed before [1-3]. Recently, 
Lauritzen and DiMarzio [1] have discussed the problem of a 
polymer confined to a wedge. In this section we shall gener· 
ally follow their approach. 

Consider a polymer constrained to remain in a cone with 
absorbing boundary conditions (see fig. 3). The axis of the 
cone is placed along the z axis. In spherical coordinates the 
cone subtends an angle 80 , A chain is placed in the cone. 
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FIGURE 3. Polymer in a cone of angle ' 0; cone axis is along 
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The chain begins at r = r',8 = 0, ~ = O. Then following 
Lauritzen and DiMarzio [1] we can compute ~r,e,¢>,N), the 
probability density of a chain end being at (r,e ,~) in N steps 

from the equation 

~; = DV2 w (1) 

with the boundary conditions w 

(e=8 0 ) 

o on the cone surface 

w(N = 0) = d(r-r', e,~) 

where 

D = J.2 / 6 

l' is the expected square of the length of the individual 
step, J., and d is the three-dimensional Dirac Delta function. 
The above boundary condition on the cone surface means 
the cone surface annihilates any polymer which touches it 
Note that normalization is not preserved because the anni
hila ted chains are, after the fact of their annihilation, not 
counted in the integration over space. 

In the absence of the cone the partition function for a 
polymer of N segments is 

where y is the partition function per segment Then follow
ing Lauritzen and DiMarzio [1] the partition function in the 
presence of the cone is 

Q = I' L . wdv (2) 

where the integration is over the volume of the cone. Re
turning to eq (1) and writing it in spherical coordinates we 
have 

(3) 

where ~ = cos 8 

w = d(r-r', 8,~) at N = 0 

w = 0 at e = eo 

which is identical to the equation for heat flow in a cone 
with surface maintained at zero temperature. Such an equa
tion is solved by Carslaw and Jaeger [13]. Their solution is 

w = - 41TD~vrr' ~ (exp(-(r + (r')2)/4DN)) 

X (2v+ 1) X Iv'" 2 (2~~ ) Pv{Jl) X 

(4) 

where the sum ~ is taken over the roots of the equation 

(5) 

and where I v +1 I !.:x) is the Modified Bessel function of frac

tional order. 
Pv{Jl) is the Legendre function of non-integer order. In the 

equation in Carslaw and Jaeger [13] (their equation 6 page 

384) we have let 

w=v 
D=k 
N=T 

Notice that we have considered only the solution for a chain 
starting on the z axis at (r' ,0,0) and where the radial extent 
of the cone goes to infinity faster then N. Other cases have 
been considered by Carslaw and Jaeger but are not consid

ered here. 

Then 

(6) 

The integration on ~ is immediate; for the integration on j.l, 

we have 

-.!L - + 2Dl N ~ g(v) fa r~' Iv+l/2 (2~~) r2dr Qo -

(7) 

where 

I 

-(2v+ 1) J Pv {Jl) ~ 
"0 (8) g(v) = 

and v runs over the roots of the equation 
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Two other forms of g(v) shall be useful later. From Carslaw 
and Jaeger (page 243) [13], we obtain the first form 

1 

f~o p.ljl) t:4l 
g(v)=----- (9) 

By integration by parts on the differential equation for P. {JA) 
(see Carslaw and Jaeger, page 243), we obtain 

1 (dP) v(v + 1) J~o P. {JA) t:4l = (1-11~) t:4l. ~=~o (lOa) 

which when substituted into eq (8) gives the second form for 
g(v), 

-(2v+ 1) 
g(v) = -----

d 
v(v+ 1) dv p. ljlo) 

(lOb) 

For the integration on r we again follow Lauritzen and 
DiMarzio[I]. Ifwelet 

,-2 = t 

then the integral is a Laplace Transform and we have by 
[15] 

QQ = + ~g(v) 
o • 

1 
X e-%/2 -m M-3/4, Y/2+1I4 (z) 

Z 

(11) 

where Mk)z) is the Whittaker function with z = (r')2 / 4DN. 
By [16] 

Mk,~(Z) = ZI/2+~ e-%/ 2 i X M( -} + 11 - k, 1 + 211; z) (12) 

where M(a,b; z) is a confluent hypergeometric function. 
Thus 

3 v 
r(-+ -) 

Q 2 2 -- = + ~g(v) e-% X Q . 3 
• 0 r(- + v) 

2 

z>/2 M(3 / 2 + v/2; v + 3/ 2; z) 

(l3) 

As in [1] we check the normalization on Q. That is, we let 

cone. In this case we should find the chain is unaffected by 
the presence of the cone. Thus, we should obtain Q = Qo. 
By[16] for 

we have 

~ = + ~ It,v) (14) Qo • 

where the sum is taken over the roots of Pv{JAo) = O. We 
recall 

1 

tPv{JA)~ 
g(v) = 1 (9) 

I..o {(Pv{JAW t:4l} 

Now Carslaw and Jaeger [13] have shown that 

if the VK are the roots of PVk (JAo) = 0 and where ovv' is the 
Kronecker delta. Thus, summed over k, PVK is an orthogonal 
polynomial on the space 11 = 1 to 11 = #lo. Thus, we have for 
any function of 11 , h{;.l) 

where 

and 

a = ·K 

1 

N K =I..o (P.K (JAW t:4l 

Then if h{JA) = 0 (l-I1) 

since P.P) = 1. 

Thus, we have 

(16a) 

(16b) 

(l6c) 

(17) 

(18) 

the chain start a long distance away from the origin of the By eq (14) we have for z ~ 00 
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(19) 

which shows Q is correctly normalized. 
We now wish to consider the partition function for a long 

chain attached near the vertex of the cone. Consider 

(20) 

2.1. Evaluation of Q/Qo at 0 0 = n/2 

By [16] eq 8.6.1 

1 
P.(cosn / 2) = p.(O) = n-l12 cos(2nv) 

x r( ~ + 1/ 2)/ r( ~ + 1) 

(2S) 

Following Lauritzen and DiMarzio [1], we assume the poly- Therefore, the roots of p. (cos n/ 2) for positive vare 
mer is attached at r ' = 1. 

Then, v = (2i + 1), i = 0,1 . . . (26) 

3 
z = 2N (21) For g(v) we then have by reference [16] eq 8.14.13 and 

8.14.1S 

For N large we now calculate Q/ Qo. For z small and positive 
VK'S, we have 

M(3 / 2 + v/2; v + 3/ 2; v) = 1 + 

(3 + v) (3 + vXS + v) 
(2v+3) z + 2(2v+3X2v+S) 

Byeq(13) 

~ = e-Z :Lg(v) r(3/ 2+ v/ 2) x 
Qo • r(3/ 2 + v) 

( ;t'/2 + ~ ;t'/2+1 + 
2v+3 

(3 + vXS + V)ZT+2 

2(2v + 3X2v + S) 
+ .. . ) 

In the limit of very large N we have 

r ( 3 vo ) 
..!L = g() 2 + 2 ;t'0/2 

(22) 

(23a) 

g(1) = 3/ 2 
g(3) = -7/ 8 
g(S) = 11 / 16 

Then, by eq (23a) we have 

..!L - - z. ~ (i.) 1/2 
Qo - e r(S/ 2) 2 z 

-Z r(2) (3 4 ) --'/2 

+ e . r(S/ 2) 2'"5 z 

-Z ( 7/ 8) r(3) 3/2 + e - r(9/ 2) z 

to powers of ,il /2. Expanding e-Z we have 

Q 2 Z2/3 
- ZII2 - 2 / 3 To - 1{1/1 1[1/2 

(27) 

(28) 

which is identical to the Lauritzen and DiMarzio [1] result 
for a wedge with a = n as one would expect 

Q Vo (3 ) 
o r 2+ Vo (23b) 2.2. Evaluation of Q/Qo for 0 0 near n/2 

where Vo is the lowest root of the equation 

(24) 

Equati6ns (23a) and (23b) are the key results of this section. 
They hold as long as N is large and the smallest root of eq 
(24) is positive. (Notice by Carslaw and Jaeger [13] the roots 
of eq (24) must be greater than -112.) 

Before we can discuss Q/ Qo further, we need to evaluate 
the roots of eq (24) as well as g(v). The VK have been evaluat
ed for two limiting cases; (;0 nearn [17]. We may also easily 
evaluate VK atBo =n/2. 

We now shall look at the region around n / 2 to see if we 
still obtain the Lauritzen and DiMarzio result Let 0 0 = 
n/2 - E: where E: is small Then 

p.( cos 0 0) = P J. cos n/2) -

E: siI(n/ 2) ( dP. ) (29) 
d cos 0 0 90 = n/2 

By [16] (8.6.1) and (8.6.3) we have 

p.(cos 0 0) = n-1 /2 cos ( ; v) r(; + 1/2)1r(; + 1) 

(30) 
-2£ n-1I2 sin (; v) r(; + 1)/ r( ~ + 1/2) 
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For the root we have p .(cos ( 0) = 0 and thus the roots Vi are 
determined by the implicit equation 

(31) 

N ow the roots for E = 0 are given by 

v? = (2i + 1) i = 0,1,2, ... (32) 

If we take each 

Vi = V? + T i (33) 

we may expand the right hand side of eq (31) and obtain to 

r(i + -) 
first order (3 )2 

Ti = E 2 4/ n (34) 

r(i + 1) 

and we obtain 

To = E 

(35) 

or 

Vo = 1 + E; v. = 3 + (9/ 4)£ 

Then by eq(23) we have 

(36) 

To compare this result to the formula of Lauritzen and 
DiMarzio for a wedge we replace a = n - 2E in the formula 
for Q/ Qo to obtain 

lex: z"/20 ex: Z('+2£/")/2 

Qo 
(37) 

Thus, for just a small deviation from n/2 the cone and the 
wedge differ to the first order. 

2.3. Evaluation of Q/Qo near 8 0 = 0 

MacDonald [17] has shown for 8 small the roots of P' i (cos 

8) are 

Vi = xJ 8 (38) 

Xi are the roots of Jc/..x), the Bessel function of zeroth order. 
These roots are by [16] page 409 

Xo = 2.4048 
X. = 5.2007 
X2 = 8.637 

Thus, by eq (23) for small 8 0 

r (3 xo) l=g(k-) 2+200 
Qo 80 (3 xo) r -+--2 8 0 

(39) 

(40) 

This is to be compared to Lauritzen and DiMarzio [1] eq 
(28) with a = 280 • Their result is 

(41) 

Here we see that there are differences between the wedge 
and the cone at small angles. However, as before, the 
general character of the partition function is similar. 

2.4. Evaluation for 8 near n 

MacDonald [17] has obtained the roots of p. (cos ( 0) near 
8 0 = n. He obtains 

1 
VK = k + 2Iog (2/(n-8 0» (42) 

where 

k = 0, 1,2, .. . . 

Thus, by eq (23) we obtain for first order in z 

r(~+ ~) 
Q 2 2 -- = g(vo) -----:('0 
Qo 3 

r(2 + vo) 
(43) 

where 

1 
Vo = -'2"'-'I=-o-g-:-:(2:-:/-:-( n----=8-:0)-

As 8 0 approaches n, Vo gets small but remains positive and 
/-Lo approaches -1. Thus 

+. 
L p()(/-L)~ = 1 
+~1 

(44) 

L ,PO(/-L)2 c4t 

and 
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(45) 

as one would expect for a infinite sphere. This result differs 
from the Lauritzen and DiMarzio [1] result at a = 2n. This 
too is expected since in the limit of a going to 2n a wedge is 
a half plane while an infinite sphere (an infinite cone at n) is 
equivalent to free space. 

2.5. Evaluation of Q/Qo roots of P, (cos 0) for any 
general angle between 0 and n 

The two lowest roots of the Legendre function were ob
tained by determining the roots of the polynomial 

'" (a) (b) t n 

o = P (cos 0 ) = ~ n n 
, 0 n=O (n!)2 (46) 

where 

(d)n = d(d + 1) .. . (d+n-l) 

(d)o = 1 

t = (I-cos 0 0}/2 
a =-v 

In figure 4 we plot v0 0 0 versus 0 0, It is seen from this that 
we may approximate vo as 

Bv 

Vo = A~o) (47 a) 

A(00 ) = 2.4048 - 0.5000 (00) - 0.025 (00)2 (47b) 

for 0 < 0 0 < 2ir / 3 

Bv VERSUS e 

1.4 

1.0 

0.6 L...-_----L-__ .l.-_---'-__ -'--_----"_---' 

o 0.5 1.0 1.5 
B 

2.0 2.5 3.0 

b = v + 1 FIGURE 4. Plot of Vo e o versus 9 0, PoinlS are calculated from eq (46) Curve is eq (47 b) 

C = 1 line. 

(see [16] eq 8.1.2 and 15.1.1). These roots are given in inter
vals of n/ 24 in table I. Also given are values of g(v) for the 
lowest root evaluated using eq (lOb) with a numerical differ- Similarly in figure 5 g(vo) is plotted versus 0 0 and we have 
en tiation for 

(48) 

o ~00~ 2n/3 

TABLE 1. For 90 = /n / 24 

J Vo VI g(vo) 

17.869 41.669 1.60 
2 8.681 20.583 1.60 1.6 
3 5.617 13.554 1.60 
4 4.084 10.039 1.59 

5 3.163 7.929 1.58 
1.5 6 2.548 6.522 1.58 

7 2.108 5.517 1.57 

8 1.777 4.763 1.56 9 (v) 
9 1.519 4.176 1.54 1.4 

10 1.312 3.706 1.53 

11 1.142 3.321 1.52 

12 1.000 3.000 1.50 1.3 
13 0.879 2.728 1.48 

14 .774 2.494 1.46 

15 .683 2.291 1.44 1.2 
16 .602 2.113 1.42 0 0.5 1.0 1.5 2.0 2.5 3.0 
17 .529 1.955 1.39 B 
18 .463 1.813 1.37 FIGURE 5. Plot of t£vcJ versus e ofrom eq (48). 
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Thus, by eq (23b) we have 

r ( ~ + A(80) )1 
ln Q/Qo = ln 8.80) + ln 2 280 

r (~+ A(80) \ 

2 8 0 -; 

+ ~~:) ln (3/2N) (49a) 

For eo small, we have 

or 

ln Q/Qo = b (.8) + ~o - ~ b ( V~N) (49b) 

bQ/Qo~-.22- 1.~02 In(.295~) (49c) 

3. A Model for the Calculation of 
Surface Free Energy 

We now wish to use the results of the previous section to 
estimate the surface free energy (or phase boundary free 
energy) when many cilia emerge from a surface of a polymer 
crystal. In figures 2a and 2b we show a model of the crystal· 
lite of the form we are considering. The chains of the crystal 
are extended along the L direction. The chains emanate 
from the end surface of the crystal and become random 
coils. However, one would expect interference in such a 
system. In order to estimate the free energy due to the inter· 
ference, we model space as in figure 2b where the space 
around the crystal is divided into equal cones, the number 
of cones being equal to the number of emanating chains. 
Thus, the interference is taken into account by requiring 
each chain to remain in its own cone. Models such as these 
would be expected to be useful for calculations of the sur· 
face free energy for a fringed micelle model or on a model 
of the shish· kebob crystal as proposed by Hoffman [9] and 
by Keller [10]. 

The estimation of the end surface free energy follows. Let 
us say I') cilia per unit area emanate from the crystal on the 
end surface. Then for a crystal of radius r, 2 rrr2r] cilia come 
from total crystal (two surfaces). The size of the crystal is 
small compared to the volume occupied by the cilia. Thus 
each cilia .cuts a cone of angle, e, where we assume a sphere 
surrounding the crystallite may be divided into 2rrrl') cones. 
We assume e"ach cilia " is constrained to remain in its own 
cone.Thus we have for e 

(50) 

-----" -- - --

The above formula disregards the interference from 
the crystal itself. But for the cilia length large and L 
small we may expect this assumption to be valid. The 
major approximation in the above is the assumption that 
the interference of one cilia with the rest of its neighbors 
may be estimated by containing it in the fraction of vol· 
ume available to it in the sphere (a cone of angle e). The 
justification for this assumption will be amplified in a 
later paper [12]. For now let us say this approach is simi· 
lar to van der Waals theory of the liquid state where the 
reduction in number of configurations available to a 
molecule is accounted for by the condition that the vol
ume available to that molecule of the liquid is very close
ly its molecular specific volume. 

By the results of the previous section the free energy 
difference between one polymer of length N in a cone 
and a random coil chain unconstrained of length N is 

(51) 

Thus, from eqs (49a), (50) and (51) we obtain the free 
energy reduction of a cilia in the above model. 

The free energy of the total interface is simply the sum 
of the contributions from each cilia 

!J.F = 2rrr2r]Af (52) 

I t is interesting to look at the free energy when many 
chains emanate from the end surface, that is, when rrr2r] 
is large. In this case 8 is small and the equations for the free 
energy become particularly simple. Thus, we may use eq 
(49b) and obtain for!J.F 

!J.F ~ 2rrr2r] kBT{.6011') r b(.l471') rN)} (53) 

Taking the total interfacial free energy as the surface 
free energy, we have, for the end surface energy per unit 
area, ae 

ae ~ I') kBT(.601 I') r In(.l47 I') rN)) (54) 

Thus the surface free energy, a., increases faster than 
the surface area. In fact for fixed L, the surface free 
energy per unit area grows faster than the volume of the 
crystal, and the surface free energy will quickly exceed 
the bulk free energy. 

Some examples of this previous point would be 
instructive. We start by computing a.. Consider a crystal· 
lite of polyethylene (PE) of 100 A. radius at 300 K. Thus 
with 

I') = Lx 10+10 for PE [18] 
18.9 
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and 

ksT= 414 X 10-16 ergs 

'1r = 5291 

where I is the fraction of crystal stems which have emer
gent cilia attached (I-I is the fraction of crystal stems 
ending or having folds). We may now compute 0 , for 
these parameters and a cilia length of 5 statistical units 
and 50 statistical units (for PE 5 statistical units is about 
35 segments). We allow I to vary from I (case of no folds) 
to 0.02 (case of 98 % folds). 

Values of o. are given in table 2. For comparison the 
fold surface free energy in polyethylene is 90 ergs/ cm2 

[18] while the surface free energy of an alkane crystal is 
about 12 ergs/ cms2 [18,19]. We see the surface free 
energy varies as a function of both I and N and it can 
become very large. 

f== 

1 
0.1 

.067 

.05 

.04 

f== 

0.1 

.067 

.05 

.04 

.021 

TABLE 2. 

N==5 

o. calculated ergs! cm' 

N - 50 

41,374 
254 
101 

51 
30 

o. calculated ergs! cm' 

414 
173 
91 

56 
13.5 

Now let us show that the surface free energy may 
become so large that it may well overwhelm the bulk free 
energy. To see this, we consider a crystallite of PE of 
length 200 A (L = 200 A) at 40 degrees below its melting 
point of 420 K. We then ask, for this case, at what r will 
the surface free energy overwhelm the bulk free energy 
of crystallization. The bulk free energy of crystallization 
is given by [18] 

and 
A!c = Ah ~~ 4nrL 

A!c = 7 X 103 

r 

where we have assumed 

L = 200 A 
AT= 40 
T", = 420K 
!J.h = 2.8 X 109 ergs/ cm3 (see [18D 

Equation 53 gives the surface free energy, M . Consider the 
case of a chain of 50 statistical units (N = 50) and T = 380 
K (T = Tm -flT). Then 

Tables 3 gives M as a function of r for two values off; f = 1 
(no folding) andl = .33 (2/3 folding). 

For f = 1 at a radius of 15 A for the crystal the free 
energy of the surface becomes larger than that of the bulk 
and we would expect the crystal to change at this radius. 
For 1= .33 the bulk free energy is overwhelmed by the sur
face free energy at about a radius of 50 A. 

TABLE 3. 

AF . 

TinA f == 1 
--;:. In ergs! cm' 

f == .33 

10 2 x 103 1.5 X 10' 
20 11 X 103 1 x lO' 
30 '" 2.6 X 103 

40 '" 5.1 X 103 

50 '" 8.7 X 103 

100 '" 43 X 103 

Thus, we see that for highly ciliated surfaces the contri
bution to the free energy due to cilia interference, on the 
surface, as estimated from this model, can easily exceed the 
bulk free energy at crystallization and would thus be 
expected to playa dominate role in the crystal thermody
namics as well as the crystal kinetics [9,18]. 

The observation that total surface free energy can over
whelm the free energy of crystallization allows one to con
struct a theory of crystal growth in which there is an opti
mum crystal size due to the accumulation of surface strains 
(strain limited growth). This has been used by one of us [9] 
to explain the shish-kebob morphology of polymers crystal
lized by Pennings [11]. 

However, the existence of lamellar polymer crystals 
means that eq (54) must finally fail for large r. There are two 
ways this can happen. (1) Chain folding can occur while the 
crystal is small. This relieves the strains along the surface 
because now fewer amorphous chains per unit area compete 
for the space above the surface [7]. Then the crystal grows 
beyond a size where this model and eq (54) is appropriate to 
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calculate the interference effects. (2) From another point of 
view the amorphous chains may orient as the crystal grows. 
This would allow the crystal to .. eat" into the amorphous 
regime until the amorphous region disappears. 
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