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The consequences of limited scattering data are considered for the determination of radial distribution 

functions. Such considerations are important, e.g., when substances are held at extreme pressure in a pressure 
vessel like the diamond anvil cell. By means of formal relations, alternatives to the direct Fourier inversion of 

the scattering data are considered, but it is found that th ey do not usefully circumvent the problems resulting 

from the truncation of data. Using an ideal set of data, five numerical procedures for inverting the data are com­

pared as a function of the degree of data limitation. An extended-integral method is found to be the most 

reliable. 
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1. Introduction 

The s~udy of non periodic structures by means of radial 
distribution functions is well developed in the literature 
[1-4] for a variety of ci rcumstances. However, the condi­
tions now being encountered in the rapidly developing field 
of high pressure physics warrant a further investigation of 
the commonly used numerical procedures and a discussion 
of possible alternatives. These conditions occur in the study 
of condensed systems at large pressures using the diamond 
anvil pressure cell (DAC). To obtain large hydrostatic pres· 
sures, the cell body (the press) and a containing gasket must 
be made of materials (e.g. wasp alloy or inconel) that are 
usually opaque to x-rays. Typically , the x-ray scattering 
angle (28) is < IS degrees. As a result, there is a natural 
preference for a fixed angle energy dispersive x-ray scatter­
ing technique. In this experimental method, a white beam 
of x-ray radiation is used with an energy sensitive detector. 
However, the useful energy range is typically [5,6] limited 
to 10 ke V ~ E ~ 40 ke V. The lower limit is determined by 
the strong absorption in the diamond windows, and the up­
per limit is determined by the diffraction efficiency which is 
proportional to E-2. The result for the DAC is a set of scat ­
tering data that is more limited than is commonly found for 
x-ray experiments at one atmosphere. 

I Figures in bracke ts indicate litera ture references a t the end of this paper. 
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The calculation of a radial distribution function (RDF) 
from x-ray scattering data requires the evaluation of a 
Fourier sine transform. When a Fourier transform defined 
on an infinite interval is evaluated by means of experimen­
tally determined values of the integrand, there are three 
principal sources of error contributing to the computed 
value of the transform: the uncertainty in the integrand's 
value at a point, the number of points at which the value of 
the integrand is known (the information density), and the 
actual interval over which the transform is computed (the 
information range). The first two error sources are intimate­
ly related to the accuracy and resolution of the experimental 
measurements. The third error, the termination error, oc­
curs whenever a finite interval is used instead of the infinite 
interval. 

Under the restrictions of the DAC, it is especially of in­
terest to know the relative effectiveness of various tech­
niques for minimizing the effects of limited data and to 
have an indication of the circumstances under which the 
methods fail to be reliable. Although various computational 
techniques have been discussed individually in the litera­
ture, a direct comparison of their performances under con­
trolled conditions of variable difficulty has not been given. 
It is the purpose of this work to present such a comparison 
with a particular interest in the conditions of the DAC. 

The RDF is of special interest in liquid and amorphous 
systems which are lacking a long-ranged periodic structure. 



For such systems, we consider the correlation of the occur­

rence of a particle at a distance r from a reference particle 
which is assumed to be at the origin. The resolution of 
structural information decreases as the distance from the 
reference particle increases. Consequently, the likelihood of 
finding another particle at large distance r is simply propor­
tional to the average sample density. Let Q(r) be the correla­
tion density function and set Q(r) = eg(r). The quantity g(r) 
is the RDF and 12 is the average density. The normalization 
of g(r) is such that limr_ oo g(r)= 1. Since no other particle will 

occur at the origin given that the reference particle is there, 
we also have g(O) = O. 

The differential RDF which is defined as 

D(r) = 4nr [Q(r) - e] (1) 

IS a more convenient function for discussion. It is well 
known that D(r) is related to th e observable scattering inten­
sity data F(s) by Fourier sine integrals of the forms 

2 00 

D(r)=- f oF(s)sin(rs)ds 
n 

F(s) = f oD(r) sin(rs) dr 

(2) 

(3) 

where s = 4n sin8/ A is the scattering variable for scattering 
angle 28 and x-ray wavelength A. In more common notation, 
F(s) = s i(s) where i(s) is the reduced scattered intensity. Ex­
perimental observations are made for only a finite number 

of values of s so that F(s) is known only for Smin ~ S ~ Smax ' 

One result [7] of using the interval (Smin' smax) instead of 
(0,00) in eq (2) is that D(r) acquires a modulation with fre­

quency components in r-space of the order of 1Ismin and 
1Ismax ' Furthermore, the locations and widths of true ex­
trema are shifted by amounts that depend on the degree of 
truncation. Common smoothing techniques do not correct 
these problems, as will be seen, e.g., in section 4. 

A number of procedures have been used to treat termina­

tion problems. Some comments on the utility of these tech­
niques and also the problems generated by th em are made 
in the following sections. Let us summarize some of the pro­

cedures. For s < Smin when Smin is small , the use of a formula 
to extrapolate the intensity data to s = 0 has been suggested 
[8], and this is usually found to be adequate. For large s, a 
convergence factor of the form e-a,2 is often added to the in­

tegrand in eq (2) to act as a smoothing function. Other mod­
ification functions [2] have also been considered. Since 
spurious features are directly dependent on the integration 

cut off values, attempts have been made to identify the 
spurious features by considering a sequence [9,10] of limits. 

The thought is that the true peaks in the D(r) curve should 
be relatively stationary, so peaks showing significant shifts 
with limit changes can be deleted. Another possible ap­
proach is to smooth the computed curve by inspection and 
th en back-transform [11] using eq (3) to see the effect. Yet 
another approach [12] couples the smoothing operation to 
the data reduction stage of the problem where F(s) is deter­
mined from the raw data by applying several experimentally 
required corrections. The objective of each of these tech­
niques is to obtain a smooth curve with well defined peaks. 

However, dissatisfaction with th e treatment of the termi­
nation problems is still expressed in the literature for 
several reasons. If the scattering data are smoothed to meet 
th e expectations of th e observer, then the quantitative re­
sult for the RDF is coupled to the observer's qualitative 
acceptance of details in the scattering data. When smooth­
ing or modification functions are used, it is not clear how 
one can unambiguously demonstrate that th e procedures 
have introduced less error than they have removed. For ex­
ample, when a convergence factor e- a ,2 is added to the inte­
grand of eq (2), the number, locations, widths, and ampli­

tudes of th e peaks in th e resulting RDF are dependent on 
the strength of the convergence factor. Even in th e proce­
dure of back-transforming the RDF to show selfconsistency 
with the final scattering data, there is a limitation on the at­

tainable accuracy because the integration step size is con­
strained by the experimental resolution . Finally, there is th e 
problem of automating th e analysis which is re.!eva.ni not 
only to the convenience of the procedure but also to the 

reproducibility of the result. 
In addition to the location of the shells of neighboring 

particles, it should also be possible to determine the number 
of particles contained in each neighboring shell. This num­
ber should be determined by th e area under the peak of the 
RDF curve. However, termination error and th e actual or 
effective introduction of smoothing functions produce an 
r-dependent error which is rather significant in its effect on 
the area. Recognizing this problem, at least one method 
[12] of analysis uses th e number of particles in a shell as a 
parameter whose value can be fixed or treated as adjust­
able. 

In the following, we (1) formalize the statement of the 
problem of limited data, (2) use the formal results to ex­
amine the nature of the error, (3) indicate how some of the 
techniques mentioned above are relat ed to th e formal rela­
tions, (4) consider alternative methods of surmounting the 
truncation error, and (5) illustrate, compare, and discuss the 
applications and limitations of the various objective 
methods. 

In general, the results show that the more common pro­
cedures do not perform well when the data set is highly 
limited. The most reliable results appear to b~ obtained by 
the extended-integral method of Hansen[ 13-15] et al. 
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2. Formal relations 

In thi s section, a number of formal relations are exam­

ined in some detaiL From these, we obtain a clear indication 

of the problems associated with th e calculation of a radial 

distribution fun ction by means of a truncated Fourier sine 

transform, and we are given an opportunity to evaluate th e 

potential utility of alternative approaches to th e RDF_ 

2.1 Information properties 

The error in D(r} produced by truncating th e transform 

in tegral is a fun ction of r, and in fact, the nature of the error 

is also a function of r. We have devised a compact schematic 

means of illustrating the changing nature of the problem by 

converting th e transform integral on an infinite interval to 
an integral on th e co ntinuous interval (O,2rr)_ Defin e th e in­

tegration variabl e B by th e equation rs = tan (B / 4). Then, 

1 2 " 

D(r} = - 2-- 10 F[s(r,0)] sin[tan(0/ 4)] sec2 (0/ 4)d0 
rrr 

(4) 

If we interpret th e integration variable B as an angle, th en 

we can define a plane, which we shall call th e information 

plane, that is d escrib ed by th e polar coo rdinat es (r,B). In 

this plane, the transformed integral is a line integral on a 

closed curve (circle). 

Suppose that F(s) is known for s ~ 15 with a resolution of 

ds = 0.05. Then, for each fixed valve of r, there is a finite set 

of values of B at which th e integrand of eq (4) is kn own. By 

using a plane describ ed by polar coordinates (r,B), the 

distribution of the discrete values of B can be shown as 

points on circles of constant r. This is don e in figur e 1 for 

the case mentioned . It should be not ed that thi s construc­

tion does not dep end on th e particular substance describ ed 
by F(s}. It provides an investigation of information density 

and range. 
Examination of eq (4) reveals that th e integrand oscillates 

with a rapidly increasing frequency as B increases. Thus, it 

is most desirable to have a large information density in th e 

fourth quadrant of figure 1. For r = 0.1, there are no points 

in th e fourth quadrant, and it must be expected that D(r} for 

r""O.1 is not reliably calculated for Smax= 15, ds=0.05. For 
r= 1, there is a nearly uniform density over th e first three 

quadran ts with a somewhat larger densi ty in the fourth 

quadrant. In this case , th ere are information samplings 

from all regions of th e plane, but th ere is a terminal gap of 

about 15 degrees in th e fourth quadrant, and th e density of 

po in ts is not large an ywhere. Th us, r= 1 is a borderline case. 

For thos e appli cations requiring high accuracy, D(r} for r"" 1 

probably co ntains significan t error. The case r= 15 shows a 

problem of th e opposite extreme. Only three points are not 

8=90 

8=270 

Information 
Plane 

FI GU RE 1. The information plane showing the p oints in r, (J space at 

which the intensity function for F(s) is known when s ~ 15 and os = 0.05. 

The sol id bands represent close ly spaced poin ts. 

in th e fourth qu adrant, and th e termin al gap is only abo ut 1 

degree. However, int egration over th e fir st three quadrants 

is quite questionable, and th e d ensity of points in the fourth 

quadrant is rath er sparse ove r about 2 / 3 of the range. This 

problem is specifically related to th e reso lution ds. 
In general , th e most signifi cant co nsideratio n for small r 

(r"" I) is th e information r ange, while for larger r, th e infor­

mation density beco mes increas ingly importan t. Th e infor­

mation plane shows th ese features in a clear and co nve nient 

way. 

2.2 Eigenfunction expansion 

Another important characteri sti c of th e Fourier sine 

transform relat ed to th e forego ing disc ussion is that th e in­

tegral is illco nditi oned. For prese nt purposes, we can say 

rough ly that th e integral is ill co nditioned if an accurate 

e valuation of th e integral in any region of r-space requires 

information samplings from a ll reg ions of s-{or B-) space. 

The impact of thi s co nditi on ca n be seen by means of an 

e igenfunction expansio n in term s of th e eigenfun ctions of 
th e integral operator. 

Th e eigenfun ctions ~ of th e integral transform operator 
are defin ed by the equation 

(5) 
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For the present discussion, it is sufficient to know that a 

complete mutually orthogonal se t of fun ctions ttJl exists 

[16J . These functions are osci llatory and cannot be nor­

m ali ze d, but they can be cho se n such th~t 

(6) 

Conse que ntl y, we can write D(r} as an expansion in th e ttJl. 

D(r} = J oA(A)tpk)dA (7) 

where 

(8) 

W e see immediate ly that every coefficient in th e expansion 

suffers the effects of truncation error. Furth ermore , there is 

no natural cutoff fo r th e number of coefficients retained in 

th e expansion [16]. Conse quently th e e igenfun ction expan­

sion method cannot be used reliably unless th ere is a large 

information range with a high information density . 

2.3 Direct correlation function 

In the distribution function formulation of the theory of 

liquids and amorphous m aterials , th e introduction of a 

direct correlation function e(r) has been useful [I7J . This 

function has a shorter range than does th e RDF, and it 

basically measures on ly th e correlation of a reference parti­

cl e with th e particles that are nearest to it. The definition o f 

err) is given in terms of the Ornstein-Zernike equation. 

(9) 

where we have momentarily written r'2 for rand R;j = R;-Rj. 

St arting from eq (9), we can obtain an expression for dr) in 

terms of th e scattering function F(s}. Usings the properties 

of the Fourier sine transform , we obtain 

4 - () -2 foo s F(s) si n (rs) ds 
ITer e r - Fi( ) 

IT 0 s+ s 
(10) 

F or large values of s, when F(s} ~s, and th e integrand in eq 

(10) is approximately F(s) sin(rs). Hence, th e evaluation of 

th e direct correlation fun ction by means of scattering data 

suffers trun cation error in the sam e manner as does the fu ll 

RDF. Th erefore, th e termination problem of the RDF can­

not be circumvented by this ap proach . The fact that the 

prob lem persists undiminished for th e fun ctio n dr}, even 

th ough it is s impler in structure th an th e RDF, is a furth er 

illu stration of the illco nditioned nature of th e sine trans­

form. Befor e leaving this point, we co n sider another prop­

osition that enco unters so me difficulty for essentially th e 

sa me reaso n. 

2.4 Iterative solutions 

The effects of termina tion error would be quite unimpor­

tant if th e scattering fun ction F(s} were negligibly small a t 

and b eyo nd the upp er limit of th e numerical integrat ion . A 

procedure th at is often used to simulate this co nditi on is to 

insert a co nvergence factor into the integrand. Then, in­

stead of computing D(r), a quantity Q(r} is obtained. Let 0(s) 
be the co nvergence factor. Then Q(r} is g iven by th e follow­

ing integral. 

2 00 

Q(r) = - f F(s)0(s) sin(rs) ds 
IT 0 

(11) 

In equ ation (11), 0(s) is any function which actually or effec­

tively restri cts the integ ration to th e interval on which F(s} is 

known . Equation (2) and (11) are Fourier transform rela­

tions th a t differ on ly by th e ad ditional factor 0(s) in eq (11), 

and h ence, Q(r} and D(r} are related by a convolution rela­

tion. Defining the cosine Fourier transfo rm B(x) by th e rela­

ti ons 

2 00 'V 

e(x) = n fo 0(s)cos(xs)ds (12) 

00 

0(s} = J oB(x)cos (sx}dx (13) 

We obtain th e eq uation expressin g Q(r) in term s of D(r}. 

Q(r)= Jo 1/2[ D(r-x)+D(r +x)JB(x)dx (14) 

A few remarks abo ut the functions 0(s) and B(x) are useful 

at th is point. If B(x) is ch osen to be a d elta function, B(x) = 

d(x), th en Q(r) =_ D(r}. This case corresp onds to knowing F(s) 

for all s so that 0(s) = 1. Given only a limited range for s, th e 

more cl osely B(x) can be chosen to resemble a delta fun cti on, 

th e more closely Q(r} approximates D(r}. Although the ideal 

case for 0(s) is th e co nstant unity, in practice 9(s) must fall 

to a sufficiently small value at s =sma, so that th e range s > 
Sma, makes a negligible contribution. One choice for B(x) 
which approximately produces both desired fea tures is the 

fun ction 

which yields th e often used fun ctio n 
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Fu thermore, it should be clear that a sequence of expres­

sions fore(x) which tends toward d(x) should generate a se­

quence of Q(r} which tends toward D(r}. For th e Gaussian 

e{x) m entioned above, let a = b2 ISmax2. Then, for a fix ed 

dimensionless parameter b, one way to obtain a sequence of 

Q(r} is to t ake a se quence of cutoff values Smax' Th e 'use of 

this procedure is mentioned in th e Introd uction . Here, we 

see that th e general approach is to consider a sequence of 

fun ctions e(x). 
Equation (14) can be used to obtain D(r} by iteration. Let 

W(x} be a measure of th e amount by which e(x) differs from 

d(x). 

Fo rmally, we can write 

e(x) = d(x) + W(x} (15) 

Substituting (15) into (14), we find 

'" D(r) = Q(r} - J 0 (1 / 2)[D(r-x) + D(r+x)] W(x}dx. (16) 

Equation (16) provides a n exp ression for D(r} which ca n 

be used for D(r-x} a nd D(r+x}. Substitution of these latte r 

expressions into th e integrand of th e right hand side of eq 

(16) yields a new ex pression for D(r}. By successive substitu­

tions, one obtains from equation (16) th e result 

'" fo W(XI(}dXI( Q(r-X 1- ••• - XI(-L + XI(- L+l + ... + XI(). (17) 

wh ere C(K,L) = K!IL!(K-L)!. Equation (17) is an exact rela­

tion for D(r). However, from the form of eq (1 7) it would 

seem that the evaluation of D(r} by means o f this series 

would present so me diffi culty. One problem is th e exp li ci t 

de terminatio n of th e function W(x}. Another is th a t con ver ­

gence of the seri es a ppears to depend partly on a cancella­

tion effect among the terms in the summ ation o n L for each 

fix ed Kin eq (17). The problem can be made quite clear by 

co nsidering th e approximation obtained by terminating the 

series after the first iteration. This gives 

'" 
D(r}';;!, Q(r) - 1I2 J o [Q(r-x) + Q(r+x )]W(x }dx. (18) 

Thi s approximation is good if W(x} is similar to th e function 

Wlx} which would be req uired to make eq (18) an exact 

equality. The function Wlx} is eas ily shown to be 

W,(x) = d(x ) _2 fo cos(xs) ds. 
TC 8(s) 

(1 9) 

from which it is seen that W(x} does not readily produce 

co nvergence in eq (17). 

The problem of choosing th e function W(x} can be avoid­

e d by an alte rnative iterative procedure . The estimate Q(r} 
is obtained from eq (2) by inserting a convergence fac tor 

into th e integra nd of th e transform integral. The error of 

th e estimate is 

2 '" 
D(r) - Q(r}= - JoF(s)[I-8(s)] sin(rs)ds. (20) 

TC 

The integral in this eq uation cann ot be eva luated, but an 

estimate of th e erro r can again be obtained by in serting a 

fa cto r 8(5) into the integrand of eq (20). After eac h es ti­

mate, th e procedure can be repeated. Le t QK(r) be a gener­
aliz a tion of Q(r} such th a t we have 

2 '" QK(r) = - f 0 F(s)[ 1- 8(s}]K 8(s}sin(rs}ds 
TC 

(21) 

Then, it is easy to see th a t 

(22) 

It is a lso easy to see that th e se ries (22) does no t co n ve rge 

rapidl y. Th e product [1 - 8(sW 8(s) is never neg li g ible for 

a ll va lues of s for a function like 8(s) = e-u~ . Suppose 

however, th a t the prod uct is sha rpl y peaked so that o nl y a 

small range of s about s = s(K} is impor tant. Th en , Q~r) ';;!, 

co nstant xsin[rs(K}], and even in this case, a long ranged 

osci llatory con tribution would be ob tained. 

The problems here and in th e preceding subsections a re 

illustrations of th e illconditioning of th e si ne transfo rm and 

indicate the inportance of th e inform a tion distribution. In 

o ther word s, a ll of th e app roaches to the evaluation of D(r} 
enco un ter comparab le diffi culti es because the basic prob· 

le m is inherent to th e transfo rm . From th e di scussion in sec­

ti on 2, it is clearly d esirab le to co nsider th e evalu ati on o f 

th e integral in eq (2) direc tly rather th an proceeding indio 

rectly or iteratively. In th e following sect ion, so me of the 

methods used to redu ce th e effect of limited information are 

compared. 

3. Practical procedures 

A number o f techniques to minimize th e errors produced 

by a limited amount of inform ation are currently in use. 

These methods can be classified into two types, those which 

assume a d ttta iled crystallin e-type mod el of the structure of 

the system and those whi ch do not. The present work is con­

ce rn e d with m ethods of the second type. These procedures 

involve reaso nabl e assumptions about the function D(r} or 

about th e behavior of F(s} at large valu es of S. 
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The use of a convergence factor and the method of back­

tr ansforming to selfconsistency have already been men­

tioned. Both of these techniques have desirab le features. 

The modulation of the RDF produced by an abrupt termi­

nation of the integration interval is reduced by the conver­

gence factor, and the requirement of selfconsistency is a 

means of increasing th e information content of the data. A 

vari-etion of these two techniques, is provided by an indirect 
selfconsistent method. If we let D(r} and Q(r} be given 

re spectively by eq (2) and (11), we can write in general 

D(r) = Q(r) + E(r) (23) 

wh ere E(r} is a function represen ting th e error. T he approx­

imation E(r} = 0 yields the convergence factor method. The 

function Q(r) is determined primari ly by the most accurate 

and reliable portion of th e scattering data because of the 
factor 8 (s) in expression (11). The correction term E(r} is 

th en determined primarily by the data at larger s values. 

Experimentally, the uncertainty in the scattering function 

F(s} increases as s increases, and hence it is the function E(r} 
that would benefit most significantly by th e ad ditional co n­

dition of selfconsis ten cy. However, when the condition of 
selfconsisten cy is applied directly to D(r}, the elements of 

the scattering data are treated equally. Conseque ntly, the 

suggestion is that Q(r} be taken as a first estimate of D(r} 
and that a se lfconsisten t correction term E(r} then be ob­

tained to complete the evaluation of D(r}. By sp litting the 

evaluation of D(r} into two parts, th e most reliable data can 

be em phasized preferentially . Al so, the correction term is 

expected to be a small er contribution to D(r} th an is Q(r}. As 

a result, small errors in E(r} might be expected to be of sec­

ond order smallness in D(r}. 
From eq (2), (11), and (23) we have 

2 00 

E(r}=- Jo F(s}[1-8(s)) sin(rs)ds 
Tl 

(24) 

As a first es timate of E(r} , we can use the quantity Q,(r) 
given by eq (21). T he well kn own numerical techniqu es or 

back-transforming can then be used to produce selfconsist­

ency. Furthermore, we can use the convo lution relation 

Q,(r) = 1/2 J 0 [E(r-x)+E(r+x)) 8(x)dx (25) 

to examine se lfco nsistency since eq (21) and (25) provide two 

different evaluations of the function Qt(r). 
Th e last technique that we co nsider is the extended­

integral method of Hansen [13-15) et al. This procedure 

uses the observation that th e quantity F(s) at large s is deter­

mined primarily by the structure at short distances. Hansen 

[13- 15) et al. have found it most useful to assume a Gaus­
sian model for th e di stribution of near-neighbor atoms and 

to assume a uniform co rrelation density at distances beyo nd 

the near-neighbors. This mod el is given by the following 

relations. 

Dc(r)+4TlrQ = LK NK(2Tlakt ' /2 (l / RK) exp [ -(r-RK)' l2ak ) 
(26) 

for r < R" and Dc(r) = 0 for r> R" where R, is a m eas ure of 
th e nea r-neighbor range. 

Correspondingly, the function Fc(s ) is 

sin( RKs) 
Fc(s)=LKNK R exp[-1I2aks2)+ 

K 

4~Q [sR,cos(R,s) - si n(R,s))exp[-1/2a~2). (27) 
s 

The number a, h as been introduced into eq (27) for th e pur­

pose of smoothing th e transition between the two different 

regions of th e model. For most cases, th e last term of eq (27) 

is negligible for large values of s. 
Next, the analytic model Fds) and th e observed F(s} are 

tran sfo rm ed num erically on th e obse rved set of s-values. 

This res ults in th e same truncation errors being produced in 
both tran sfo rm s_ The transformed model can then be fit to 

the transform of th e observed data by a least squared error 

method. Th e emphasis in th e fitting procedure is given to 

the features in the near -neighbor range, r<R,. Then , the as­
sumption th at F(s} at large s is determined by th e structure 

at short distances allows th e o bserved range of s to be ex­

tend ed by setting F(s} = Fc(s) for s>smax' In this manner, th e 
effective information content of th e data is significantly in­

creased, and D(r} is evaluated by an un trun cated integral. 

4. Discussion 

The evaluation of the RDF by means of the unmodifi ed 

trun cated integ ral, th e convergence factor method, se lfco n­

sistency, indirect selfconsistency, and the ex tend ed-integral 

method represent the procedures which do not assume prior 

knowledge of th e structure of the system. To compare and 
determine the effectiveness and limitati ons of th ese tech­

niques, it is important that we use an example for whi ch th e 

source of error is known to be only that a finite set of scat­

tering data is used. Such an example is not attainable ex­

perimentally. However, since the procedures under discus­

sion are not dependent on a physical st ru cture, a suffi cient 

example is easily co nstructed. The foll owing equations pro­

vide the example used here. The exact differential RDF is 

assumed to be 

(28) 
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for which th e exact scattering fun ction [18] is 

(29) 

In fi gure 2, th e scattering fun ction F(s} is shown for the 
parti cula r set of parameters (A K, BK, CK) used for the exam· 
pie. For real systems, the differential RDF would be zero for 
all dist an ces small er than the breadth of an atom, and con· 
sequently th ere would be a greater ri chness in high frequen· 
cy Fourier components than in th e selected example. This 
aspect of th e problem has already been discussed in detail 
by Mountain [19] and need not be repeated here. Also in· 
dicated in the figure are three data ranges which are 
labeled minor, modest, and severe. These three ranges are 
used to examine the various procedures as a fun ction of th e 
degree of termin ation. In the minor case , very little informa· 
tio n is lost by th e trun cation because th e magnitude of F(s} 
is quite small fo r all s> 15 . Consequ ently, all meth ods are ex · 
pected t o be adequate for this case . In th e oth er extreme, 
the severe ran ge invo lves a very significant loss of inform a· 
tion . Co mmon experim ental situations fall between th ese 
cases and are represented by th e modest range, but experi· 
ments with diamond anvil pressure cell constraints can fall 
within the severe to modest ran ge. In each case , it is as· 
sum ed that th e data are known with a resolution ds = 0.05. 
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Two of th e calculation procedures use a requirement of 
selfconsisten cy. In these cases, th e computations co ntinue 
until selfconsistency is obtain ed in both of th e senses men· 
tion ed previ ously, i.e . by back·transforming and by means 
of the convolution relations. As an example, figure 3 shows 
th e selfco nsistency obtained by the convolution relation for 
the modest ran ge. 

For th e extended·integral method, the D(r} fit at short 
distances and th e smoothness of the extension of F(s} are of 

interest , and th ese results are illustrated by figures 4 and 5. 
The fun ctions D(r} computed by each of the procedures in 

each of th e s·ranges are shown in figures 6-8. In these fig· 
ures, th e solid curve is th e exact D(r} given by eq (28), and 
the plotted points are values calculated by the various 
methods. 

It is not surprising th at all of th e procedures perform well 
in th e case of minor truncation error as is shown in figur e 6. 
Only a very small amount of inform ati on is not contained in 
th e F(s} data, and even th e trun cated integral yields not 
more than a m ino r error at small r. 

The fid elity of the computed RDF valu es to th e exac t 
RDF curve d ecreases as th e da ta range is decreased. In fi g· 
ures 7 and 8, th e most obvious effect is the redu ction of th e 
pea k amplitud es of th e co mputed D(r} curves . This has se rio 

ous co nsequences for th e evalu ation of th e number of parti· 
cl es in a neighborin g shell since thi s number is de termin ed 
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FI CURE 2. The intensity function F(s)given by eq (29) with (A K, BK, CK) = (1.0, 0.2, 1.0), (2.0, 0.3, -1.0), (3.0, 
0. 4, 1.0), (4.0, 0. 5, -1.0). 

The th ree trun cation ra nges consid ered in this paper are indicated by the labels severe , modest, and minor. 
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by the area under the RDF peak. In any problem involving 
an unusually limited data range, there appears to be little 
expectation of finding reliably the number of particles in a 
neighboring shelL 

The location of the extrema are produced quite well by all 
methods in the minor and modest cases, and the spurious 
oscillations from the truncation are smoothed. However, in 
the severe data case, none of the methods is especially good . 
According to figure 8, the extended·integral method has the 
best performance, and it is the only method which removes 
the spurious extremum at r = 5.5. Significant errors are still 
found for the locations of the first peak (r = 0.82 computed 
versus r = 1.0 exact) and the second minimum (r = 4.26 co m· 
puted versus r = 4.0). 

In figure 2, it is seen that the severe data range involves 
the loss of a significant feature in the F(s) curve. The data 
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FIGURE 3. An illustration of the typical selfconsistency obtained in the 
selfconsistent calculation procedures. 

The solid curve is given by a direct calculation of the function Q(r). The plott ed po in ts are de ter­

mined by means of th e convolution relation eq (14). 
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FIGURE 4. An illustration of the fit (plotted points) to the truncated inte­
gral (solid curve) obtained in the first step of the extended-integral calcula­
tion . 

The co rre spond in g extension of the intens ity function is s hown in figu re 5 . 

2 • 
• 
• -o 

1 - • 
o • • • • -1 • 

2.9 3.0 3.1 3.2 3.3 

5 

FIGURE 5. An illustration of the smooth continuity of the extension (cir­
cular points) of the given F(s} data (square points) achieved by the 
extended-integral method. 

106 



I ~ I ~ ~ 
o 1 2 3 4 6 7 

FIGURE 6. Differential RDF for the minor 
truncation of data in figure 1. Solid curves are 
exact. 

Pl olted points are com puted by th e met hods: (A) s imple trun­

cation (B) convergence factor (el direct se lfconsis tency (D) in­

direct se lfco ns iSlency (E) extended-integraL 

lost by this truncation appears to be more structural than 
the data commonly found in this range of s for glasses and 
liquids. Often, the observed data nearly describe a damped 
sinusoid. Consequently, the severe data range of figure 2 
represents a worse case than will be found in experiments 
with the diamond anvil cell. Furthermore, since the extend­
ed-integral method yields a damped sinusoidal extension of 
F(s), the expected regularity of actual experimental data 
should make the extended-integral method even more effec­
tive. 

With the DAC it is possible to extend the range of the 
scattering variable s=4rrsine/ A by using special design 
feature s which permit access to angles 2e> 15 degrees. The 
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FIGURE 7. Differential RDF for the modest 
trun cation of data in figure 1. 

So lid curves are exact. Plotted points are computed by the 

methods: (A) simple truncatio n (8 ) conve rgence fac to r (e) d irect 

se lfcons is te ncy (D) indi rect sc lfco nsisten cy (E) ex tended-integ ral. 

chall enge to the experim entali st is to produce such designs 
that do not sacrifice the high pressure hydrostatic capabili­
ties of the cell. The results of the present work indicate that 
maximizing the s-range obtainable in a DAC should be con­
sidered a requirement for reliable RDF determinations. 

The extended-integral meth od appears to be the pre­
ferred method of analysis. In section 2, it is seen that alter­
native approaches such as th e direct correlation function or 
the iterative techniques do not alleviate the problems pro­
duced by limited data, and as a result, it is found to be bet­
ter to work directly with the Fourier inversion of the scatter­
ing intensity data , F(s). Whenever the data range has only a 
small degree of truncation, most of the common computa-
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FIG URE 8. Differential RDF for the severe 

truncation of data injigure 1. 

Solid curves a re exact. Plotte d po ints are comput ed by the 

meth od s: (A) simple truncati on (8) co nve rgence fa cto r (e) d irec t 

sel fco nsistency (D) indirect selfcOll sis tency (E) exte nd ed·in legra !. 

tional procedures wi ll determine th e locations of the neigh­

boring sh ells quite well. In such cases, th e errors introduced 
through data correction and reduction procedures will be 

much more significant than the termination erro r . As th e 

degree of trunca tion increases, th e accuracy of the extend ed 
integral method deteriorates the least, and for this reaso n, it 

is the method which should be used in th e RDF analysis 

wh en th e conditions of th e diamond anvil pressure cell 

prevail. 
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