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The consequences of limited scattering data are considered for the determination of radial distribution

functions. Such considerations are important, e.g., when substances are held at extreme pressure in a pressure
vessel like the diamond anvil cell. By means of formal relations, alternatives to the direct Fourier inversion of

the scattering data are considered, but it is found that they do not usefully circumvent the problems resulting
from the truncation of data. Using an ideal set of data, five numerical procedures for inverting the data are com-
pared as a function of the degree of data limitation. An extended-integral method is found to be the most

reliable.
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1. Introduction

The study of nonperiodic structures by means of radial
distribution functions is well developed in the literature
[1-4] for a variety of circumstances. However, the condi-
tions now being encountered in the rapidly developing field
of high pressure physics warrant a further investigation of
the commonly used numerical procedures and a discussion
of possible alternatives. These conditions occur in the study
of condensed systems at large pressures using the diamond
anvil pressure cell (DAC). To obtain large hydrostatic pres-
sures, the cell body (the press) and a containing gasket must
be made of materials (e.g. waspalloy or inconel) that are
usually opaque to x-rays. Typically, the x-ray scattering
angle (260) is < 15 degrees. As a result, there is a natural
preference for a fixed angle energy dispersive x-ray scatter-
ing technique. In this experimental method, a white beam
of x-ray radiation is used with an energy sensitive detector.
However, the useful energy range is typically [5,6] limited
to 10 keV < E < 40 keV. The lower limit is determined by
the strong absorption in the diamond windows, and the up-
per limit is determined by the diffraction efficiency which is
proportional to E2. The result for the DAC is a set of scat-
tering data that is more limited than is commonly found for
x-ray experiments at one atmosphere.

! Figures in brackets indicate literature references at the end of this paper.
*Center for Materials Science, National Measurement Laboratory.
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The calculation of a radial distribution function (RDF)
from xray scattering data requires the evaluation of a
Fourier sine transform. When a Fourier transform defined
on an infinite interval is evaluated by means of experimen-
tally determined values of the integrand, there are three
principal sources of error contributing to the computed
value of the transform: the uncertainty in the integrand’s
value at a point, the number of points at which the value of
the integrand is known (the information density), and the
actual interval over which the transform is computed (the
information range). The first two error sources are intimate-
ly related to the accuracy and resolution of the experimental
measurements. The third error, the termination error, oc-
curs whenever a finite interval is used instead of the infinite
interval.

Under the restrictions of the DAC, it is especially of in-
terest to know the relative effectiveness of various tech-
niques for minimizing the effects of limited data and to
have an indication of the circumstances under which the
methods fail to be reliable. Although various computational
techniques have been discussed individually in the litera-
ture, a direct comparison of their performances under con-
trolled conditions of variable difficulty has not been given.
It is the purpose of this work to present such a comparison
with a particular interest in the conditions of the DAC.

The RDF is of special interest in liquid and amorphous
systems which are lacking a long-ranged periodic structure.



For such systems, we consider the correlation of the occur-
rence of a particle at a distance r from a reference particle
which is assumed to be at the origin. The resolution of
structural information decreases as the distance from the
reference particle increases. Consequently, the likelihood of
finding another particle at large distance r is simply propor-
tional to the average sample density. Let o(r) be the correla-
tion density function and set o(r) = pg(r). The quantity g(r)
is the RDF and p is the average density. The normalization
of g(r) is such that lim,., g(r}=1. Since no other particle will
occur at the origin given that the reference particle is there,
we also have g(0)= 0.
The differential RDF which is defined as

D(r)= 4mr [o(r)— o] (1)

is a more convenient function for discussion. It is well
known that D(r) is related to the observable scattering inten-
sity data F{(s) by Fourier sine integrals of the forms

f: F(s) sin(rs) ds (2)

D(r)= —12?

Fis)= fiD(r) sin(rs) dr 3)

where s = 4m sinf/A is the scattering variable for scattering
angle 26 and x-ray wavelength A. In more common notation,
F(s) = s i(s) where i(s) is the reduced scattered intensity. Ex-
perimental observations are made for only a finite number
of values of s so that F(s) is known only for s, e
One result [7] of using the interval (s, s,.,,) instead of
(0,%) in eq (2) is that D(r) acquires a modulation with fre-
quency components in r-space of the order of 1/s ; and
1/s,.. Furthermore, the locations and widths of true ex-
trema are shifted by amounts that depend on the degree of

<s<s

truncation. Common smoothing techniques do not correct
these problems, as will be seen, e.g., in section 4.

A number of procedures have been used to treat termina-
tion problems. Some comments on the utility of these tech-
niques and also the problems generated by them are made
in the following sections. Let us summarize some of the pro-
cedures. For s <s_, when s, is small, the use of a formula
to extrapolate the intensity data to s = 0 has been suggested
[8], and this is usually found to be adequate. For large s, a
convergence factor of the form e is often added to the in-
tegrand in eq (2) to act as a smoothing function. Other mod-
ification functions [2] have also been considered. Since
spurious features are directly dependent on the integration
cut off values, attempts have been made to identify the
spurious features by considering a sequence [9,10] of limits.

The thought is that the true peaks in the D(r) curve should
be relatively stationary, so peaks showing significant shifts
with limit changes can be deleted. Another possible ap-
proach is to smooth the computed curve by inspection and
then back-transform [11] using eq (3) to see the effect. Yet
another approach [12] couples the smoothing operation to
the data reduction stage of the problem where F(s) is deter-
mined from the raw data by applying several experimentally
required corrections. The objective of each of these tech-
niques is to obtain a smooth curve with well defined peaks.

However, dissatisfaction with the treatment of the termi-
nation problems is still expressed in the literature for
several reasons. If the scattering data are smoothed to meet
the expectations of the observer, then the quantitative re-
sult for the RDF is coupled to the observer’s qualitative
acceptance of details in the scattering data. When smooth-
ing or modification functions are used, it is not clear how
one can unambiguously demonstrate that the procedures
have introduced less error than they have removed. For ex-
ample, when a convergence factor e=*” is added to the inte-
grand of eq (2), the number, locations, widths, and ampli-
tudes of the peaks in the resulting RDF are dependent on
the strength of the convergence factor. Even in the proce-
dure of back-transforming the RDF to show selfconsistency
with the final scattering data, there is a limitation on the at-
tainable accuracy because the integration step size is con-
strained by the experimental resolution. Finally, there is the
problem of automating the analysis which is relevani not
only to the convenience of the procedure but also to the
reproducibility of the result.

In addition to the location of the shells of neighboring
particles, it should also be possible to determine the number
of particles contained in each neighboring shell. This num-
ber should be determined by the area under the peak of the
RDF curve. However, termination error and the actual or
effective introduction of smoothing functions produce an
r-dependent error which is rather significant in its effect on
the area. Recognizing this problem, at least one method
[12] of analysis uses the number of particles in a shell as a
parameter whose value can be fixed or treated as adjust-
able.

In the following, we (1) formalize the statement of the
problem of limited data, (2) use the formal results to ex-
amine the nature of the error, (3) indicate how some of the
techniques mentioned above are related to the formal rela-
tions, (4) consider alternative methods of surmounting the
truncation error, and (5) illustrate, compare, and discuss the
applications and limitations of the various objective
methods.

In general, the results show that the more common pro-
cedures do not perform well when the data set is highly
limited. The most reliable results appear to be obtained by
the extended-integral method of Hansen[13-15] et al.
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2. Formal relations

In this section, a number of formal relations are exam-
ined in some detail. From these, we obtain a clear indication
of the problems associated with the calculation of a radial
distribution function by means of a truncated Fourier sine
transform, and we are given an opportunity to evaluate the
potential utility of alternative approaches to the RDF.

2.1 Information properties

The error in D(r) produced by truncating the transform
integral is a function of r, and in fact, the nature of the error
is also a function of . We have devised a compact schematic
means of illustrating the changing nature of the problem by
converting the transform integral on an infinite interval to
an integral on the continuous interval (0,2n). Define the in-
tegration variable 6 by the equation rs = tan (6/4). Then,

D(r)= —2IT }:F[s(r,@)] sin[tan(©/4)] sec? (0/4)dO®  (4)

If we interpret the integration variable 6 as an angle, then
we can define a plane, which we shall call the information
plane, that is described by the polar coordinates (r,6). In
this plane, the transformed integral is a line integral on a
closed curve (circle).

Suppose that F(s) is known for s < 15 with a resolution of
ds = 0.05. Then, for each fixed valve of r, there is a finite set
of values of 6 at which the integrand of eq (4) is known. By
using a plane described by polar coordinates (r,0), the
distribution of the discrete values of 6 can be shown as
points on circles of constant r. This is done in figure 1 for
the case mentioned. It should be noted that this construc-
tion does not depend on the particular substance described
by F(s). It provides an investigation of information density
and range.

Examination of eq (4) reveals that the integrand oscillates
with a rapidly increasing frequency as 6 increases. Thus, it
is most desirable to have a large information density in the
fourth quadrant of figure 1. For r = 0.1, there are no points
in the fourth quadrant, and it must be expected that D(r) for
r~v0.1 is not reliably calculated for S, =15, ds=0.05. For
r=1, there is a nearly uniform density over the first three
quadrants with a somewhat larger density in the fourth
quadrant. In this case, there are information samplings
from all regions of the plane, but there is a terminal gap of
about 15 degrees in the fourth quadrant, and the density of
points is not large anywhere. Thus, r=1 is a borderline case.
For those applications requiring high accuracy, D(r) for r~v1
probably contains significant error. The case r=15 shows a
problem of the opposite extreme. Only three points are not

Information
Plane

6=180

0=270

FIGURE 1. The information plane showing the points in r, 6 space at
which the intensity function for F(s)is known when s < 15 and ds = 0.05.

The solid bands represent closely spaced points.

in the fourth quadrant, and the terminal gap is only about 1
degree. However, integration over the first three quadrants
is quite questionable, and the density of points in the fourth
quadrant is rather sparse over about 2/3 of the range. This
problem is specifically related to the resolution ds.

In general, the most significant consideration for small r
(r~v1) is the information range, while for larger r, the infor-
mation density becomes increasingly important. The infor-
mation plane shows these features in a clear and convenient
way.

2.2 Eigenfunction expansion

Another important characteristic of the Fourier sine
transform related to the foregoing discussion is that the in-
tegral is illconditioned. For present purposes, we can say
roughly that the integral is illconditioned if an accurate
evaluation of the integral in any region of r-space requires
information samplings from all regions of s-(or 6-) space.
The impact of this condition can be seen by means of an
eigenfunction expansion in terms of the eigenfunctions of
the integral operator.

The eigenfunctions  of the integral transform operator
are defined by the equation

J owi(s) sin(rs)ds = Ay, (r). (5)
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For the present discussion, it is sufficient to know that a
complete mutually orthogonal set of functions w, exists
[16]. These functions are oscillatory and cannot be nor-
malized, but they can be chosen such that

T o0, 00dx = 60=. ©)

Consequently, we can write D(r) as an expansion in the ,.

D)= J o AMpr)dA (7)

where

AN =1 [ Fls (6 )ds. ®)

We see immediately that every coefficient in the expansion
suffers the effects of truncation error. Furthermore, there is
no natural cutoff for the number of coefficients retained in
the expansion [16]. Consequently the eigenfunction expan-
sion method cannot be used reliably unless there is a large
information range with a high information density.

2.3 Direct correlation function

In the distribution function formulation of the theory of
liquids and amorphous materials, the introduction of a
direct correlation function ¢(r) has been useful [17]. This
function has a shorter range than does the RDF, and it
basically measures only the correlation of a reference parti-
cle with the particles that are nearest to it. The definition of
c(r) is given in terms of the Ornstein-Zernike equation.

DRi5)

D(riz)=4mgr; c(ri2) +0r12 f e s c(R23) dR; C)
where we have momentarily written ry; for r and R; = R—R,;.
Starting from eq (9), we can obtain an expression for c¢(r) in
terms of the scattering function F(s). Usings the properties
of the Fourier sine transform, we obtain
2 f s F(s) sin (rs) ds

4mor c(r)=—

By (10)

For large values of s, when F(s) <s, and the integrand in eq
(10) is approximately F(s) sin(rs). Hence, the evaluation of
the direct correlation function by means of scattering data
suffers truncation error in the same manner as does the full
RDF. Therefore, the termination problem of the RDF can-
not be circumvented by this approach. The fact that the
problem persists undiminished for the function ¢(r), even
though it is simpler in structure than the RDF, is a further

illustration of the illconditioned nature of the sine trans-
form. Before leaving this point, we consider another prop-
osition that encounters some difficulty for essentially the
same reason.

2.4 lterative solutions

The effects of termination error would be quite unimpor-
tant if the scattering function F(s) were negligibly small at
and beyond the upper limit of the numerical integration. A
procedure that is often used to simulate this condition is to
insert a convergence factor into the integrand. Then, in-
stead of computing D(r), a quantity Q(r) is obtained. Let O(s)
be the convergence factor. Then Q(r) is given by the follow-
ing integral.

2

Q(r)Z?f (s)©(s) sin(rs) ds (11)
In equation (11), ©(s) is any function which actually or effec-
tively restricts the integration to the interval on which F(s) is
known. Equation (2) and (11) are Fourier transform rela-
tions that differ only by the additional factor O(s) in eq (11),
and hence, Q(r) and D(r) are related by a convolution rela-
tion. Defining the cosine Fourier transform 6(x) by the rela-
tions

0x) = = . & (s)eos(xs)ds (12)

O@)= fOG(x)cos (sx)dx (13)

We obtain the equation expressing Q(r) in terms of D(r).

Q)= J, v4[ D(r—x)+ D(r +x)] 6(x)dx (14)

A few remarks about the functions é(s) and O(x) are useful
at this point. If 6(x) is chosen to be a delta function, 6(x) =
d(x), then Q(r) =~D(r). This case corresponds to knowing F(s)
for all s so that ©(s) = 1. Given only a limited range for s, the
more closely 6(x) can be chosen to resemble a delta function,
the more closely Q(r) approximates D(r). Although the ideal
case for O(s) is the constant unity, in practice ©(s) must fall
to a sufficiently small value at s =s_,, so that the range s >
Smax Makes a negligible contribution. One choice for 6(x)

which approximately produces both desired features is the
function

O(x) = (ma) “exp (—x*/4a)

which yields the often used function

Q)= e
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Furthermore, it should be clear that a sequence of expres-
sions tor B(x) which tends toward d(x) should generate a se-
quence of Q(r) which tends toward D(r). For the Gaussian
B(x) mentioned above, let @ = b%/s,,*. Then, for a fixed
dimensionless parameter b, one way to obtain a sequence of
Q(r) is to take a sequence of cutoff values s, . The use of
this procedure is mentioned in the Introduction. Here, we
see that the general approach is to consider a sequence of
functions B(x).

Equation (14) can be used to obtain D(r) by iteration. Let
W(x) be a measure of the amount by which 6(x) differs from
d(x).

Formally, we can write

O(x) = d(x) + W(x) (15)

Substituting (15) into (14), we find
D)= Q) — fo (1/2)[Dr—2x) + D(r+x)] Wx)dx.  (16)

Equation (16) provides an expression for D(r) which can
be used for D(r—x) and D(r+x). Substitution of these latter
expressions into the integrand of the right hand side of eq
(16) yields a new expression for D(r). By successive substitu-
tions, one obtains from equation (16) the result

D)= Q)+ X (—%F X CK.L) f, W(X,)dX,

£ WXk Q=K== Xt Xecror + ... +X0). (1)

where C(K,L)= K!/LIK—L)!. Equation (17) is an exact rela-
tion for D(r). However, from the form of eq (17) it would
seem that the evaluation of D(r) by means of this series
would present some difficulty. One problem is the explicit
determination of the function W(x). Another is that conver-
gence of the series appears to depend partly on a cancella-
tion effect among the terms in the summation on L for each
fixed K in eq (17). The problem can be made quite clear by
considering the approximation obtained by terminating the
series after the first iteration. This gives

DO Q) — 1/2 fo [Qr—x) + Qr+2)]| Wikdx.  (18)

This approximation is good if W(x)is similar to the function
W.(x) which would be required to make eq (18) an exact
equality. The function W,(x) is easily shown to be

W,(x)= dx)— ';2? foi‘:—;-((x)i)ds.
S

(19)

from which it is seen that W{(x) does not readily produce
convergence in eq (17).

The problem of choosing the function W(x) can be avoid-
ed by an alternative iterative procedure. The estimate Q(r)
is obtained from eq (2) by inserting a convergence factor
into the integrand of the transform integral. The error of
the estimate is

D(r)— Q(r)= % Jo F(s) [1=0(s)]sin(rs)ds. (20)
The integral in this equation cannot be evaluated, but an
estimate of the error can again be obtained by inserting a
factor O(S) into the integrand of eq (20). After each esti-
mate, the procedure can be repeated. Let Q(r) be a gener-
alization of Q(r) such that we have

o % foF6)[1-06)k O6)ins)ds  (21)
Then, it is easy to see that
D)= Q). (22)

It is also easy to see that the series (22) does not converge
rapidly. The product [1-0(s)|* ©(s) is never negligible for
all values of s for a function like ©(s) = e=*’. Suppose
however, that the product is sharply peaked so that only a
small range of s about s = s(K) is important. Then, Qx(r) =
constant Xsin[rs(K)], and even in this case, a long ranged
oscillatory contribution would be obtained.

The problems here and in the preceding subsections are
illustrations of the illconditioning of the sine transform and
indicate the inportance of the information distribution. In
other words, all of the approaches to the evaluation of D(r)
encounter comparable difficulties because the basic prob-
lem is inherent to the transform. From the discussion in sec-
tion 2, it is clearly desirable to consider the evaluation of
the integral in eq (2) directly rather than proceeding indi-
rectly or iteratively. In the following section, some of the
methods used to reduce the effect of limited information are
compared.

3. Practical procedures

A number of techniques to minimize the errors produced
by a limited amount of information are currently in use.
These methods can be classified into two types, those which
assume a detailed crystalline-type model of the structure of
the system and those which do not. The present work is con-
cerned with methods of the second type. These procedures
involve reasonable assumptions about the function D(r) or
about the behavior of F(s) at large values of s.
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The use of a convergence factor and the method of back-
transforming to selfconsistency have already been men-
tioned. Both of these techniques have desirable features.
The modulation of the RDF produced by an abrupt termi-
nation of the integration interval is reduced by the conver-
gence factor, and the requirement of selfconsistency is a
means of increasing the information content of the data. A
variation of these two techniques, is provided by an indirect
selfconsistent method. If we let D(r) and Q(r) be given
respectively by eq (2) and (11), we can write in general

D(r)= Q(r) + E(r) (23)
where E(r) is a function representing the error. The approx-
imation E(r) = 0 yields the convergence factor method. The
function Q(r) is determined primarily by the most accurate
and reliable portion of the scattering data because of the
factor © (s) in expression (11). The correction term E(r) is
then determined primarily by the data at larger s values.
Experimentally, the uncertainty in the scattering function
F(s) increases as s increases, and hence it is the function E(r)
that would benefit most significantly by the additional con-
dition of selfconsistency. However, when the condition of
selfconsistency is applied directly to D(r), the elements of
the scattering data are treated equally. Consequently, the
suggestion is that Q(r) be taken as a first estimate of D(r)
and that a selfconsistent correction term E(r) then be ob-
tained to complete the evaluation of D(r). By splitting the
evaluation of D(r) into two parts, the most reliable data can
be emphasized preferentially. Also, the correction term is
expected to be a smaller contribution to D(r) than is Q(r). As
a result, small errors in E(r) might be expected to be of sec-

ond order smallness in D(r) .
From eq (2), (11), and (23) we have

}00 F(s)[1-0O(s)]sin(rs)ds

E()= —121—

(24)

As a first estimate of E(r) , we can use the quantity Q,(r)
given by eq (21). The well known numerical techniques or
back-transforming can then be used to produce selfconsist-
ency. Furthermore, we can use the convolution relation

Q:(r) = 1/2 [ [E(r—2+E(r+x)] O(x)dx (25)
to examine selfconsistency since eq (21) and (25) provide two
different evaluations of the function Q;(r).

The last technique that we consider is the extended-
integral method of Hansen [13-15] et al. This procedure
uses the observation that the quantity F(s) at large s is deter-
mined primarily by the structure at short distances. Hansen
[13-15] et al. have found it most useful to assume a Gaus-
sian model for the distribution of near-neighbor atoms and

to assume a uniform correlation density at distances beyond
the near-neighbors. This model is given by the following
relations.

D (rHanrg = 3 Ng(2no2) /2 (1/Ry) exp[—(r—Rg) /20%]
(26)

for r <R, and D.(r) = 0 for r> R,, where R, is a measure of
the near-neighbor range.
Correspondingly, the function F(s) is

sin( Rgs)
—p—e

Folo)= 2 Ne—p

xp[—1/20% s*]+

4mo

[sR,cos(R,s) — sin(R,s)]exp[—1/20%?]. (27)

32

The number o, has been introduced into eq (27) for the pur-
pose of smoothing the transition between the two different
regions of the model. For most cases, the last term of eq (27)
is negligible for large values of s.

Next, the analytic model F(s) and the observed F(s) are
transformed numerically on the observed set of s-values.
This results in the same truncation errors being produced in
both transforms. The transformed model can then be fit to
the transform of the observed data by a least squared error
method. The emphasis in the fitting procedure is given to
the features in the near-neighbor range, r<R,. Then, the as-
sumption that F(s) at large s is determined by the structure
at short distances allows the observed range of s to be ex-
tended by setting F(s) = F(s) for s>s,, . In this manner, the
effective information content of the data is significantly in-

max*®

creased, and D(r) is evaluated by an untruncated integral.

4. Discussion

The evaluation of the RDF by means of the unmodified
truncated integral, the convergence factor method, selfcon-
sistency, indirect selfconsistency, and the extended-integral
method represent the procedures which do not assume prior
knowledge of the structure of the system. To compare and
determine the effectiveness and limitations of these tech-
niques, it is important that we use an example for which the
source of error is known to be only that a finite set of scat-
tering data is used. Such an example is not attainable ex-
perimentally. However, since the procedures under discus-
sion are not dependent on a physical structure, a sufficient
example is easily constructed. The following equations pro-
vide the example used here. The exact differential RDF is
assumed to be

By By

D)= 2Cx Bi+ (—rP B+ Atr)

(28)
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for which the exact scattering function [18] is

F(s) = n2Cy e7%%* sin(Ays). (29)

In figure 2, the scattering function F(s) is shown for the
particular set of parameters (4g, By, Cg) used for the exam-
ple. For real systems, the differential RDF would be zero for
all distances smaller than the breadth of an atom, and con-
sequently there would be a greater richness in high frequen-
cy Fourier components than in the selected example. This
aspect of the problem has already been discussed in detail
by Mountain [19] and need not be repeated here. Also in-
dicated in the figure are three data ranges which are
labeled minor, modest, and severe. These three ranges are
used to examine the various procedures as a function of the
degree of termination. In the minor case, very little informa-
tion is lost by the truncation because the magnitude of F(s)
is quite small for all s>15. Consequently, all methods are ex-
pected to be adequate for this case. In the other extreme,
the severe range involves a very significant loss of informa-
tion. Common experimental situations fall between these
cases and are represented by the modest range, but experi-
ments with diamond anvil pressure cell constraints can fall
within the severe to modest range. In each case, it is as-
sumed that the data are known with a resolution ds = 0.05.

Two of the calculation procedures use a requirement of
selfconsistency. In these cases, the computations continue
until selfconsistency is obtained in both of the senses men-
tioned previously, i.e. by back-transforming and by means
of the convolution relations. As an example, figure 3 shows
the selfconsistency obtained by the convolution relation for
the modest range.

For the extended-integral method, the D(r) fit at short
distances and the smoothness of the extension of F(s) are of
interest, and these results are illustrated by figures 4 and 5.

The functions D(r) computed by each of the procedures in
each of the s-ranges are shown in figures 6-8. In these fig-
ures, the solid curve is the exact D(r) given by eq (28), and
the plotted points are values calculated by the various
methods.

It is not surprising that all of the procedures perform well
in the case of minor truncation error as is shown in figure 6.
Only a very small amount of information is not contained in
the F(s) data, and even the truncated integral yields not
more than a minor error at small r.

The fidelity of the computed RDF values to the exact
RDF curve decreases as the data range is decreased. In fig-
ures 7 and 8, the most obvious effect is the reduction of the
peak amplitudes of the computed D(r) curves. This has seri-
ous consequences for the evaluation of the number of parti-
cles in a neighboring shell since this number is determined

I I I
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FIGURE 2. The intensity function F(s) given by eq (29) with (A, BK’ CK) = (1.0, 0.2, 1.0), (2.0, 0.3, —1.0), (3.0,

0.4, 1.0), (4.0, 0.5, —1.0).

The three truncation ranges considered in this paper are indicated by the labels severe, modest, and minor.
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by the area under the RDF peak. In any problem involving
an unusually limited data range, there appears to be little
expectation of finding reliably the number of particles in a
neighboring shell,

The location of the extrema are produced quite well by all
methods in the minor and modest cases, and the spurious
oscillations from the truncation are smoothed. However, in
the severe data case, none of the methods is especially good.
According to figure 8, the extended-integral method has the
best performance, and it is the only method which removes
the spurious extremum at r =>5.5. Significant errors are still
found for the locations of the first peak (r=0.82 computed
versus r = 1.0 exact) and the second minimum (r =4.26 com-
puted versus r =4.0).

In figure 2, it is seen that the severe data range involves
the loss of a significant feature in the F(s) curve. The data

Q (r)
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FIGURE 3. 4n illustration of the typical selfconsistency obtained in the
selfconsistent calculation procedures.

The solid curve is given by a direct calculation of the function Q(r). The plotted points are deter-
mined by means of the convolution relation eq (14).

Truncated D (r)

FIGURE 4. An illustration of the fit (plotted points) to the truncated inte-
gral (solid curve) obtained in the first step of the extended-integral calcula-
tion.

The corresponding extension of the intensity function is shown in figure 5.
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FIGURE 5. An illustration of the smooth continuity of the extension (cir-
cular points) of the given F(s) data (square points) achieved by the
extended-integral method.
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Differential RDF
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FIGURE 6. Differential RDF for the minor
truncation of data in figure 1. Solid curves are
exact.

Plotted points are computed by the methods: (A) simple trun-
cation (B) convergence factor (C) direct selfconsistency (D) in-
direct selfconsistency (E) extended-integral.

lost by this truncation appears to be more structural than
the data commonly found in this range of s for glasses and
liquids. Often, the observed data nearly describe a damped
sinusoid. Consequently, the severe data range of figure 2
represents a worse case than will be found in experiments
with the diamond anvil cell. Furthermore, since the extend-
ed-integral method yields a damped sinusoidal extension of
F(s), the expected regularity of actual experimental data
should make the extended-integral method even more effec-
tive.

With the DAC it is possible to extend the range of the
scattering variable s=4mnsin6/A by using special design
features which permit access to angles 26>15 degrees. The

Differential RDF

FIGURE 7. Differential RDF for the modest
truncation of data in figure 1.

Solid curves are exact. Plotted points are computed by the
methods: (A) simple truncation (B) convergence factor (C) direct

selfconsistency (D) indirect selfconsistency (E) extended-integral.

challenge to the experimentalist is to produce such designs
that do not sacrifice the high pressure hydrostatic capabili-
ties of the cell. The results of the present work indicate that
maximizing the s-range obtainable in a DAC should be con-
sidered a requirement for reliable RDF determinations.

The extended-integral method appears to be the pre-
ferred method of analysis. In section 2, it is seen that alter-
native approaches such as the direct correlation function or
the iterative techniques do not alleviate the problems pro-
duced by limited data, and as a result, it is found to be bet-
ter to work directly with the Fourier inversion of the scatter-
ing intensity data, F(s). Whenever the data range has only a
small degree of truncation, most of the common computa-
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Differential RDF

FIGURE 8. Differential RDF for the severe
truncation of data in figure 1.

Solid curves are exact. Plotted points are computed by the
methods: (A) simple truncation (B) convergence factor (C) direct

selfconsistency (D) indirect selfconsistency (E) extended-integral.

tional procedures will determine the locations of the neigh-
boring shells quite well. In such cases, the errors introduced
through data correction and reduction procedures will be
much more significant than the termination error. As the
degree of truncation increases, the accuracy of the extended
integral method deteriorates the least, and for this reason, it
is the method which should be used in the RDF analysis
when the conditions of the diamond anvil pressure cell
prevail.
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