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It is shown by example that the predicted temperature dependence of the elastic constants is a useful

measure of the ability of an effective pair potential to estimate the high temperature thermal properties of a
metal. Our example is based on a model pair potential constructed for aluminum. This potential predicts the low

temperature elastic constants and phonon dispersion relations with good accuracy (+ a few percent). The high
temperature elastic constants for this model potential are determined using the Monte Carlo method and are

found to be approximately independent of temperature. Since the elastic constants of aluminum are strongly

decreasing functions of temperature, this potential is seen to be a poor one for determining the properties of
aluminum. We conclude that the temperature dependence of the elastic constants is a useful further test of pair

potentials which satisfy the low temperature tests currently employed.
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1. Introduction

Pseudopotential theory has made it possible to develop
effective, volume dependent pair potentials for metals [1]'
and thereby to estimate the high temperature thermal
properties of metals using the methods of statistical me-
chanics [2-4]. When a miodel pseudopotential is used, it is
necessary to fit the model parameters to various physical
properties such as the low temperature lattice parameter
and elastic constants or dispersion curves in the harmonic
approximation. [5]. Fitting an effective potential to low
temperature properties is no guarantee that the high tem-
perature properties of the solid will also be satisfactorily
predicted. Cohen et al. [4] have suggested that the ability of
an effective potential to predict reliably the high tempera-
ture elastic constants of a metal is a good test of the poten-
tial. In this paper we show by example that this is the case
and assert that the predicted temperature dependence of
the elastic constants is a useful measure of the ability of an
effective potential to estimate high temperature thermal
properties of a metal.

Our discussion is in terms of a model potential for alumi-
num which produces good dispersion curves at low temper-
atures but which produces totally unacceptable estimates
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for the temperature dependence of the elastic constants at
high temperatures. The elastic constants are determined at
high temperatures, where anharmonic effects are impor-
tant, using Monte Carlo techniques [2—4] to evaluate the
fluctuation expressions of Squire, et al. [2]. While the static
lattice estimates for elastic constants employ only a discrete
set of values of the derivatives of the potential, the full
microscopic expressions [2] sample in principle the entire
range of the potential when anharmonic effects ars impor-
tant. Thus the predicted temperature variation of the elastic
constants for a fixed volume depends on the overall shape of
the potential. This is demonstrated by our example.

This paper is organized as follows. Section 2 contains a
discussion of the pair potential we have devised for alumi-
num. We show that it satisfies the compressibility sum rule
and state that it reliably predicts the low temperature elastic
constants and dispersion curves for aluminum. Section 3
describes the Monte Carlo calculation of the temperature
dependence of the elastic constants at high temperatures
and Section 4 summarizes our results.

2. Pair potential

Numerous effective pair potentials have been proposed
for aluminum and the shape of the potential has been found
to be quite sensitive the details of the electron screening
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function. Duesbery and Taylor have shown that a necessary
condition for a potential is that the screening function
satisfy the electron gas compressiblity theorem [6]. In the
same vein, Hafner and Schmuck [7] have stated that this
compressibility sum rule should be at least approximately
satisfied if the correct relation between longitudinal and
transverse branches is to be realized.

We have found empirically that if the combination of
elastic constants 2C" — C = Cy; — Cy; — Ca4 is correctly
predicted then the dispersion curves for the tranverse
modes in the (1,1,0) direction are correctly ordered. Here
Ci1, Ci, and C44 are cubic elastic constants in the usual
notation. [8] We examined the model pseudopotential of
Dagens, et al [9] which satisfies the compressibility sum
rule and found that it predicts a crossing of the dispersion
curves for the transverse modes in the (1,1,0) direction. We
have also examined the first principles pseudopotential of
Harrison [1]and found that it too predicts mode crossing.
Hafner and Schmuck [7] developed a corrected Harrison
potential and used it to calculate the elastic constants of
aluminum at zero temperature. Their results are in agree-
ment with the experimental values of Kamm and Ahlers
[10].

The model potential used in this calculation approxi-
mately satisfies the compressibility sum rule and cor-
rectly predicts the value of the combination of elastic
constants 2C° — C = C,, — C,, — C.s4 at zero temperature.
Since errors which do not influence the compressibility rule
may affect 2C" — C, we observe that a potential which satis-
fies both conditions at zero temperature is more likely to
function adequately at non zero temperatures than one
which does not. As we shall demonstrate, this is not a suffi-
cient condition. From pseudopotential theory we know that
given the energy wave number characteristic, F(g), we can
obtain by Fourier transformation the indirect (electron gas
induced) interaction between the ion cores. The full poten-
tial is the sum of the couloumb and indirect interactions.
For simplicity we have used a model F(g) as recently applied
to the calculation of the structure factor of liquid aluminum
[11]. This model F(g) introduced by Ashcroft and Langreth
[12] is expressed as

2,2
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where Ze is the charge on the ion, Q is the volume occupied
by an ion, q is the wave vector, R,

Flg)=
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value of 1.12 atomic units for aluminum and &(g) is the
dielectric function given by [13]
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where & is the Fermi wave vector for a free electron at the
density in question. The function R(q)is defined by
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and y(q) is the exchange screening function. We have used
the Hubbard model for y(q);
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with the parameter assigned the value & = 1.699 so that the
compressibility sum rule is satisfied. The full potential V(r)
is given by

(Ze)

smqr
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This potential is displayed in figure 1 as a function of r. It
adequately reproduces the low temperature phonon disper-
sion relations in the harmonic approximation [14] and also
avoids the crossing of the nearly degenerate small &
transverse modes in the (1,1,0) direction. Thus it satisfies
what we consider to be a minimum requirement for a
“‘good’’ potential function. The local maximum located bet-
ween the lst and 2nd neighbor distances is a common
feature of many effective potentials for aluminum [6,9].

The zero temperature (static lattice) values of 2C"—C and
the lattice compressibility 3; can be simply expressed as
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FiGURE 1. The effective pair potential for aluminum at a density of
2.718 g/cm’ (lattice parameters = .404 nm).

The energy is in units of electron volts and the distance is in nanometers. The arrow indicates the
place where the potential was set to zero in the Monte Carlo Calculations.
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with r, the distance to the nth neighbor shell and q, is the lat-
tice parameter. These expressions are obtained by summing
over shells Squire et al’s [2] equations for the elastic con-
stants of the static FCC lattice. The values of the first five
f.’s for the potential of figure 1 are listed in table 1.

TaBLE I

n f, — dynes/cm

20.5790
2.0479
—2.0199
0.0872
0.0515

S N

The predicted low temperature value of 2C'—C is ob-
tained by using table 1 and eq (2.5) to obtain

2C' — C=2.31x 10" dynes/cm?.

This is to be compared with the experimental value [15] of
2.327 x 10" dynes/cm?*. The calculated value for the com-
pressibility is

3/B;=1.694% 10'* dynes/cm?

which is to be compared with the experimental value of
1.612 % 10'* dynes/cm*. The lattice compressibility sum rule
is satisfied to within 5 percent and the 2C"—C rule to within
1 percent by this potential.

3. Monte Carlo calculations

The Monte Carlo method of Metropolis, et al [3] was used
to calculate the thermal properties of the crystalline model
using the effective pair potential of figure 1. The system
consisted of 256 particles located initially on the FCC sites

of a 4 X 4 X 4 block of unit cells with lattice parameter a =
0.404 nm. Periodic boundary conditions were used to mimic
an infinite system. A simulation started with an “‘ageing”’
period of 3x10° trials. The data were extracted from the
1x10° trials following the ageing sequence. The program ad-
justed the maximum step size allowed in a trial move so that
approximately Y% of the proposed moves were accepted.
Double precision arithmetic was used to accumulate the
data and all other calculations employed single precision
arithmetic. The use of double precision is necessary if 10°
samples are to be averaged using 32-bit words.

The temperature dependent part of the pressure was
evaluated by averaging the virial. The elastic constants were
obtained by evaluating the expressions developed by
Squire, et al. [2] and our program was checked by reproduc-
ing their results for the Lennard-Jones solid.

Estimates were obtained for the energy per particle (E),
the pressure (p), the isothermal elastic constants (C,,7, C,,7,
C447), the difference between the isothermal and adiabatic
elastic constants (AC), the specific heat at constant volume
(C,) and the derivative of the pressure with respect to tem-
perature at constant volume ((d P/ Tyw). Fluctuation ex-
pressions for C, and (9 P/3d T were used to estimate these
quantities [4-16].

The full expressions for the pressure, C,, and C,, as func-
tions of volume and temperature contain electron gas terms
which are functions of the volume, but are independent of
configuration and temperature [4]. Since we are concerned
only with the temperature variation of these quantities, we
have not included these contributions in our results which
are listed in table 2. The quoted uncertainties are based on
the stability of the estimates as the Monte Carlo process
progresses. This is illustrated in figure 2 where the esti-
mates for P, (A P/d Ty and C,,T at 500 K are shown as a
function of the number of trials after the ageing process had
been completed. The program provides these estimates
every 5x10* trials. Only 8.5 X 10° trials were made for
T=700K due to a computer malfunction which made con-
tinuation of that run impossible.

TABLE 2
Temperature/ 500 K 600 K 700 K
(Number of samples) (10°) (10°%) (8.5%10%)
Property

E, 10 erg/atom .... —6.004+ .001 -5.602+ .001 —5.188=+.001
P, 10" dyne/cm? 1.643 + .001 1.689 + .001 1.737 + .001
(oP/aT),

107 dyne/cm? - K. . . 5.0+ .2 48+ .2 4.7+.2
C,, 10" erg/K - atom . 42+ 2 42+ .2 4.1+.2
C,,", 10" dyne/cm? - - 64+.3 OIOEERS (17555
Cy,", 10" dyne/cm? 097+.3 1.1+.3 1.1+.3
C4", 10" dyne/cm? [W25ER2 14+ .2 1.4+.2
AC, 10'° dyne/cm? 49+ .5 5.6x.5 6.3+.5
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FIGURE 2. Running estimates for the pressure (P), the derivative of the
pressure with respect to temperature at constant volume (3 P/dT)y) and
the isothermal elastic constant C,,T for the T'=500 K state.

Values are plotted for intervals of 5}10° trials.

The estimates for the pressure and the energy are quite
stable while those for the other quantities, all of which in-
volve fluctuations, exhibit substantial variations with the
number of Monte Carlo trials. The variation shown here is
substantially larger than that found for the elastic constants
of sodium by Cohen et al. [4].

4. Conclusions

Our principal conclusion is that the temperature depend-
ence of the elastic constants, for fixed volume, is a useful
further test of pair potentials which satisfy low temperature
tests. By examining the temperature dependence under
fixed volume conditions, it is possible to sample the full
range of the effective potential without introducing the
complication of volume dependent changes in the potential
itself.

The calculated temperature dependence of the elastic
constants is zero within the uncertainties quoted in table 2.

This is certainly not the case for aluminum [17] where the
elastic constants are decreasing functions of temperature.
We see that the potential of figure 1, which works quite
nicely at low temperatures is not at all a suitable potential
function for aluminum. We also observe that a good deal of
care is needed to insure that the Monte Carlo averages are
stable. To achieve this, fairly long (in terms of the number
of trials) simulations may be necessary. Finally, we conjec-
ture that the local maximum shown in figure 1. between the
first and second neighbor distances is responsible for the
unphysical temperature dependence of the elastic con-
stants. This conjecture is based on the idea that the max-
imum inhibits anharmonic effects and thereby makes the
lattice “‘stiffer’’ than it should be.
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