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It is shown by example that the predi cted temperature dependence of the elastic co nstants is a useful 

meas ur e of th e ability of an effective pair potential to estimate th e high temperatur e th ermal properti es of a 

me tal. Our example is based on a mode l pair potential constructed for aluminum. This potential predicts th e low 

temperature elastic co nstants and phonon di spers ion relations with good accuracy (± a few pe rcent). The high 

temperature elasti c co nstants for thi s mo de l potential are determined usi ng th e Mont e Carlo method and are 

found to be approximate ly independe nt of temperatur e . Since th e elas ti c co nstants of aluminum are s tr ongl y 

decreas ing functions of temperature, thi s potential is seen to be a poor o ne for de termining th e proper ti es of 

aluminum. We conclude that th e tempera tur e dependence of th e elastic co ns tants is a use ful further tes t of pair 

potenti als which satisfy th e low temperatur e tes ts currently employed . 
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1. Introduction 

Pseudopo tential th eo ry has made it possibl e to develop 

effective, vo lum e depend en t pair potential s for metals [1]' 

and th ereby to estimate th e high temp erature th ermal 

properties of metals usi ng th e methods of stati stical me

chanics [2-4]. When a ma.del pse udopoten tial is used, it is 
ne cessa ry to fit the mod el parameters to various ph ysical 

properties such as th e low temperature la ttice param eter 

and elasti c co nstants or di spersion curves in th e harmoni c 

approximation. [5] - Fitting an e ffective potentia l to low 

temp erature properties is no guarantee that th e high tem

perature properties of the so lid will also be sati sfa ctori ly 

predict ed . Coh en et al. [4] have suggested that th e ability of 

an effective potential to predict reliably th e high tempera

ture elastic constants of a metal is a good tes t of the poten

tial. In this paper we show by examp le that this is th e case 

and assert that the predicted temperature de pendence of 

the elasti c co nstants is a use ful measure of the ability of an 

effective potenti al to estimate high temp erature thermal 

properties of a metal. 
Our di sc ussion is in term s of a mod el potential for alumi

num whi ch produces good dispersion curves at low temper

atures but whi ch produces totally unacce ptable estimates 
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for the temperature depe nden ce of th e elas ti c co nstants at 

high temperatures. The elastic co nstants are determin ed at 
high temperatures, where anharmonic effec ts are impor

tant, using Monte Carlo techniques [2-4] to evaluate th e 

flu ctuation expressions of Squire, et al. [2]. Whil e th e stati c 

latti ce estimates for elas tic co nstants employ only a di scre te 

se t of valu es of th e deriva tiv es of th e potential, th e fu ll 

mi cro sco pic express ions [2] sample in principle th e entire 
range of th e potential wh en anharmonic effec ts ars impor

tant. Thus the predicted temperature variation of th e elastic 

co nstants for a fix ed volume depends on th e overall shape of 

th e potentia l. This is demonstrat ed by our exampl e . 

Thi s paper is organized as follows. Section 2 co ntains a 

discussion of th e pair potentia l we have devised for alumi

num . We show that it satisfies the compressibi lity sum ru le 

and state that it reliably predicts the low te rn perature elastic 

constants and dispersion curves for aluminum . Section 3 

describ es th e Monte Carlo calculation of th e temp erature 
dependence of the elastic constants at high temperatures 

and Section 4 summarizes our results. 

2. Pair potential 

Numerous effective pair potentials have been proposed 
for aluminum and the shape of the potential has been found 

to be quite sensitive the details of the electron screening 
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function. Duesbery and Taylor have shown that a necessary 

condition for a potential is that the screening fun ction 

satisfy the electron gas compressiblity th eo rem [6] . In th e 

same vein, Hafner and Schmuck [7] have stated that this 

compressib ility sum rule should be at leas t approximately 

sati sfied if the cu rrect relation between longitudinal and 

transverse branch es is to be realized . 
We have found empirically that if the co mbin ation of 

elastic constants 2C' - C = Cll - CI2 - C44 is correctly 

predicted th en the dispersion curves for th e tranve rse 

modes in th e (1,1,0) directi on are co rrectly ordered. Here 

C", CI2 and C44 are cubic elastic co nstants in the usual 
notation. [8] We examined th e model pse udopotential of 

Dagens, e t al [9] which satisfies th e compressibility sum 

rule and found that it predicts a crossing of the dispersion 

curves for the transverse mod es in th e (1 ,1,0) direction. We 

have also examined the firs t principl es pseudopotential of 
Harri so n [1]and found that it too predicts mode cro ss ing. 

Hafner and Schmuck [7] developed a co rrected Harri so n 

potential and used it to calculate th e elast ic co nstants of 

aluminum at zero temperature. Their results are in agree· 
ment with the experimental values of Kamm a nd Ahlers 

[10) . 
The model potential used in this calcula tion approxi

mately satisfies the compressibil ity sum rule and cor

rectly predicts 'the value of the co mbination of elastic 

constants 2C' - C = C 1 - C12 - C44 at zero temperature . 

Since errors which do not influence the co mpressibility rule 
may affect 2C' - C, we observe that a potential which satis

fies both condi tions at zero temp erature is more likely to 
fun ction ad equately at non zero temperatures th an one 

which do es not. As we shall demonstrate, thi s is not a suffi 

cien t condition. From pse udo poten tial theory we kn ow that 

given th e energy wave number ch aracteristic, F(q), we can 

obtain by Fourier transform a tion th e indirect (electron gas 

induced) interaction b etween th e ion cores. The full poten

tial is the sum of the couloumb and indirect interactions . 
For simplicity we have used a model F(q) as recently applied 

to the calculation of the structure factor of liquid aluminum 

[11] . This model F(q} introduced by Ashcroft and Langreth 

[12] is exp ressed as 

F(q) = 4~z:2e2 cos' (q Rion ) [((~) - 1] (2.1) 

where Ze is th e charge on the ion, Q is th e volume occupied 

by an ion, q is the wave vector, Rion is a parameter given a 
valu e of 1.12 atomic units for aluminum and ((q) is the 

di electri c function given by [1 3] 

2kr [R(q) ] ((q) = 1 + ~ 1 - 2kf lj.I(q) R(q ) 

rrq' 

(2.2) 

where kf is the Fermi wave vector for a free electron at the 
de nsi ty in question. The function R(q) is defin ed by 

_ 1 4k}-q2 1 2kf+q I 
R(q) - 2' + 8kfl In 2kr q (2.3) 

and lj.I(q) is th e exchange screening function. We have used 
th e Hubbard model for lj.I(q); 

with th e parameter assigned the valu e ~ = 1.699 so that the 
compressibi lity sum rule is satisfied. The full potential V(r) 
is given by 

This potential is di splaye d in figure 1 as a function of r . It 
adequately reproduces th e low temperature phonon disper

sio n relat ions in the harmonic approximation [14] and also 

avoids th e cro ssing of the nearly degen erate small k 
transverse mod es in the (1,1,0) direction. Thus it satisfies 

what we co nsider to be a minimum requirement for a 

"good" potential function . The local maximum located bet

ween the 1st a nd 2nd neighbor dis tances is a common 

feature of many effective potentials for aluminum [6,9) . 
The zero tem perature (static latti ce) values of 2C' -C and 

th e lattice compressibility {3T can be simply expressed as 

0.' 

0 .3 

> 

~ 0.2 
:; 

0.1 

- 0.1 L----'0.l..3- -----'0.-. ----0~.5:------:0~.6---

T, nm 

FIGURE 1. The effective pair potential for aluminum at a density of 
2.718 g / cm' (lattice parameters = .404 nm). 

The energy is in uni ts or electro n volts and the distance is in nano meters. The arrow indicates the 

place wh ere the potenti al was sello zero in the Montc Carlo Calculations. 
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and 

3/f3T = C, + 2C12 

:0 {/, + /2 + 3/3 +4{4 + 10/5+ ... } (2.6) 

where 

/,= ra2V(')_~ av(,)] 
n l a,2 , a, r=rn 

(2.7) 

with 'n th e dista nce to th e nth neighbor shell and ao is th e lat· 
tice parameter. These express ions are obtained by summing 

over shell s Squire et ai's [2] equations for th e elast ic co n· 

stants of th e static FCC lat ti ce. The values of the first five 

In's for the potential offigure 1 are li sted in tab le 1. 

TABLE I 

n In - dynes/ em 

20.5790 
2 2.0479 
3 -2.0199 
4 0.0872 
5 0.0515 

The pred icted low temperature value of 2C' -C IS ob· 

tained by using tab le 1 and eq (2.5) to obtain 

2C' - C= 2.31 X 10" dynes / cm 2 • 

Thi s is to be co mpared with the expe rimen tal value [15] of 
2.327 x 10" dynes / cm2 • The calculated value for th e co m· 

pressibili ty is 

3/ {3T = 1.694 X 10'2 dynes / cm2 

which is to be compared with the ex perime ntal value of 

1.612 x 1012 dynes/cm2 • The lattice compressibility sum rul e 

is satisfied to within 5 percen t and th e 2C' -C rul e to wi thin 

1 percent by this potential. 

3. Monte Carlo calculations 

The Monte Carlo method of Metropolis, et al [3] was used 
to calculate the thermal properti es of the crystalline model 

using the effec tive pair po tential of figur e 1. The system 

consisted of 256 particles located initially on the FCC sites 

of a 4 x 4 x 4 block of unit cells with lattice parameter a = 

0.404 nm. Periodic boundary conditions were used to mimic 

an infinite sys tem. A simulation started with an "ageing" 

period of 3xlOS trials. The data were extracted from th e 
Ixl()6 trials following the ageing sequence. The program ad· 

justed th e maximum step size allowed in a trial move so that 

approximately 112 of the proposed moves were accepted. 

Double precision arithmetic was used to accumulate th e 

data and all other calc ulations employed single preci sion 

arithmetic. The use of double precision is necessary if 1 ()6 

samples are to be averaged using 32·bit words. 

The temperature dependent part of the pressure was 
evaluated by averaging the viria\. The elastic constants were 

obtained by evaluating the expressions developed by 

Squire, et al. [2] and our program was checked by reproduc· 

ing th eir res ults for the Lennard·Jones solid. 

Estimates were obtained for the energy per particle (E), 
the pressure (P), the iso thermal elastic co nstants (C"T, C' 2T, 

C.41'), the difference between th e iso thermal and adiabatic 
elas tic constants (flC), th e spec ific heat at co nstant volume 

(C,) and th e derivative of the pressure with respect to tern· 
pe rature at constant volume ((a p / a 1)v). Fluctuation ex· 

pressions for Cv and (a p / a 1)v were used to estimate th ese 

quantities [4- 16]. 

The full ex pressions for the pressure, C,' and C12 as func· 

tions of volume and tempera ture contain electron gas terms 

which are functions of the volume, but are indep endent of 

configuration and temperature [4]. Since we are co ncerned 

only with the temperature variation of th ese quantities, we 

have not included these co ntributions in our results which 
are li sted in table 2. Th e quoted uncertainti es are based on 

the stability of th e es timates as the Monte Carlo process 

progresses. This is illustrated in figure 2 where the es ti· 

mates for P, (a p / a 1)v and C" l' at 500 K are shown as a 

function of the number of trials after the ageing process had 

been completed. Th e program provides th ese es timates 

eve ry 5xIO" trials. Only 8.5 x 105 trials were mad e for 

T=700K due to a computer malfunction which made con· 

tinuation of that run impossible . 

Temperature/ 
(Number of samples) 

Property 

E, 10· " erg / atom 
P, 1011 dyne /em' 

(a Pl aT), 
10' dyn e/em' . K . .. 

C" 10- 16 erg/ K . atom. 
CIIT, 1011 dyne/em" 

CI1 T , 1011 dyne/em' 
c4;r, 1011 dyne / em' 

AC, lOW dyne/em" 

III 

TABLE 2 

500 K 
(10") 

-6.004 ± .00 1 
1.643 ± .001 

5.0± .2 
4.2± .2 
6.4± .3 
0.97 ± .3 
1.2 ± .2 
4.9± .5 

600K 700 K 
(106 ) (8.5X IO') 

-5.602 ± .001 -5.188± .001 
1.689 ± .001 1.737 ± .001 

4.8+ .2 4.7±.2 
4.2± .2 4.1±.2 
6.6± .3 6.7±.3 
l.l ± .3 1.l±.3 
1.4 ±.2 1.4±.2 
5.6± .5 6.3±.5 
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FI GU RE 2. Running estimates for the pressure (P), the derivative of the 

pressure with respect to temperature at constant volum e ((api a TJv) and 

the isothermal elastic constant C" T for th e T = 500 K state. 
Values a re plo ued for int e rva ls of 5x ] 0" trial s. 

The estimates for the pressure and the energy are quite 
stable while those for the other quantities, all of which in
volve fluctuations, exhibit substantial variations with th e 
number of Monte Carlo trials . The variation shown here is 
substantially larger than that found for the elastic constants 

of sodium by Cohen et al. [4] . 

4. ConehJsions 

Our principal conclusion is that the temp erature depend
ence of the elastic constants, for fixed volume, is a useful 
further test of pair potentials which satisfy low temperature 
tes ts. By examining the temperature dependence under 
fixed volume co nditions , it is possible to sample th e full 
range of the effective potential without introducing th e 
complication of volume dependent changes in the potential 
itself. 

The calculated temperature dependence of the elastic 
constants is zero within the uncertainties quoted in table 2. 

This is certainly not the case for aluminum [17] where th e 
elast ic constants are decreasing functions of temperature. 
We see that th e potential of figure 1, which works quite 
nicely at low temperatures is not at all a suitable potential 
function for aluminum. We also observe that a good deal of 
care is needed to insure that the Monte Carlo ave rages are 
stable. T o achieve this, fairly long (in terms of th e number 
of trials) simulations may be necessary. Finally , we co nj ec· 
ture that the local maximum sh own in figure 1. between the 

first and second neighbor dis tances is responsi ble for the 
unphysical temperature dependence of the elastic con
stants. This conj ecture is based on the idea that the max
imum inhibits anharmonic effects and thereby makes th e 
lattice "stiffer" than it should be. 

5. Refe renees 

[I] Harrison, W. A., Pseudopotent ials in the Theory of Metals , (W. A. 
Benjamin , New York, 1965). 

[2] Squire, D. R., Holt , A. C. and Hoover , W. G., Physica 42, 388 (1969). 

[3] Metropolis, N. , Rosenbluth, A. W., Rosenbluth, M. N. , Teller, A. H. 
and Teller, E., J. Chern. Phys. 21 , 1087 (1953). 

[4] Cohen , S. S., Klein , M. L. , Duesberg, M. S. and Taylor , R., J . Phys. F: 
Metal Phys. 6, 337, L271 (1976). 

[5] Cohen, M. L. and Heine , V., Solid State Physics Va!. 24, 

H. Ehrenreich, F. Seitz and D. Turnbull, eds (Academic Press, New 
York,1979) pp .37-248. 

[6] Duesbery, M. S. and Taylor , R., Phys. Rev. B 7, 2870 (1973). 
[7] Hafner, J. and Schmuck, P. , Phys . Rev. B 9, 4 138 (1973). 

[8] Kittel C., introduction to Solid State Phys ics 2nd editi on (John Wiley 
and Sons, Inc., New York , 1956)p. 9 1. 

[9] Dage ns, L., Raso lt , M. and Taylor, R., Phys . Rev. BII , 2726(1975). 

[10] Kamm, G. N. and Aiers, G. A. , J . App!. Phys. 35, 327 (1964). 
[II] Ebbsjo, I., Kinell, T. and Waller, I., J. Ph ys. C: Solid State II , L501 

(1978). 

[12] Ashcroft , N. W. and Langreth , D. C., Phys. Rev. 155,682 (1967). 

[13] Geldart, D. J . W. and Vosko, S. H., Can. J. Phys. 44 , 2137 (1966). 
[14] Stedman, R. and Nil sson, G., Phys. Rev. 145, 492 (1966). 

[IS] Trap peniers, N. J., Biswas, S. N., Van ' t Klooster, P. and tenSandam , 

C. A. , Physica B 85, 33 (1977). 
[16] Cheung, P. Y., Molec. Phys. 13,S I9(1977). 

[l7] Gerlich, D. and Fisher, E. 5., J. Phys. Ch em. Solids 30, 1197 (1969). 

[18] Binder, K. in Monte Carlo Melhods in Statistical Physics, K. Binder, 
ed. (Springer-Verlag, New York , 1979) p. 42. 

112 


	jresv85n2p_109
	jresv85n2p_110
	jresv85n2p_111
	jresv85n2p_112

