
JOURNAL OF RESEARCH of the Notional Bureau of Standards

Vol. 84, No.6, November- December 1979

A Graph Coloring Algorithm for Large Scheduling
Problems*

Frank Thomson Leighton**

Center for Applied Mathematics, National Bureau of Standards Washington, DC 20234

June 6,1979

A ne w graph coloring algorit hm is prese nt ed and compared to a wide variety of known algorit hms. The

algorithm is shown to exhibit O(n 2) time be havior for most s parse graphs and thus is found to be parti cularl y well

suited for use wi th large-scale sc heduling problems. In addition, a procedure for ge nerating large random test

graphs with known chromatic number is present ed and is used to e valuate he uri sti call y the capabiliti es of the

a lgorithms discussed.

Key words: Algorithm; chromati c numbe r; color function; graph; graph coloring; heuri sti c; int erc hange; random

test graphs; scheduling; time compl e xity .

1. Introduction

Graph coloring has considerable appli cation to a large vari ety of complex problems involving optimization .
In particular conflict resolution, or the optimal partitioning of mutually exclusive events, can often be
accomplished by means of graph coloring. Examples of such problems include: the scheduling of exams in the
smallest number of time periods such that no individual is required to participate in two exams simultaneously
(see appendix A), the storage of chemi cals on the minimum number of shelves such that no two mutually
dangerous chemicals (i.e., dangerous when one is in the presence of the other) are stored on the same shelf,
and the pairing of individuals (as in a computer dating agency) such that the maximal numbe r of compatible
persons are paired togethe r.

In each of the above problems , the constraints are usually express ible in the form of pairs of incompatible
objects (e .g. , pairs of chemi cals that cannot be stored on the same shelf). Such incompatibilities are usefull y
embodied through the structure of a graph. Each object is represented by a node and each incompatibility is
represented by an edge joining the two nodes. A coloring of thi s graph is then simply a partitioning of the
objects into blocks (or colors) such that no two incompatible objects end up in the same block. Thus , optimal

solutions to such problems may be found by determining minimal colorings for the conesponding graphs.
Unfortunately, this may not always be accomplishable in a reasonable amount of time.

As the graph coloring problem is known to be NP-complete [1], 1 there is no known algorithm which, for
every graph, will optimally color the nodes of the graph in a time bounded by a polynomial in the number of
nodes. Since exponential time algorithms [5, 6, 7, 9, 18] are prohibitively expensive for use with large-scale
problems, much attention has been focused on the development of heuristi c algorithms which will usually
produce a good, though not necessarily optimal, coloring for any graph in a reasonable amou nt of time.

This paper describes a new graph coloring algorithm, the recursive largest first (RLF) coloring algorithm.
In addition, a vari e ty of existing coloring procedures are presented and their performan ce on a wide range of
test data is compared to that of the RLF algorithm.

Also described is a procedure for generating random graphs with known chromati c number. The exi stence
of such a procedure, heretofore lacking in the experimental literature , provides a standard method for testing
the accuracy of graph coloring algorithms.

AMS-MOS 1970 Subject Classification : 05Cl 5, 68AJO, 68A20, 90B35.
* Thi s work was done in part while the aut hor was a staff member of the Center for Applied Mathematics of the National Bureau of Standards during the

summer of 1976 and in part while the author was a n undergraduate majoring in Electrical Engineering and Computer Sciences at Princeton University
working under the supervision of Professor Forman S. Acton.

** Present Address: Department of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

I Numbers in brac kets indicate literature references at the end of this paper.

489

2. Preliminary Definitions

Throughout this paper, the graph C with nodes V and edges E , denoted by (V, E), is assumed to contain no
loops or multiple edges. The subgraph of C = (V, E) induced by a subse t U of the nodes V consists of those
nodes and all the edges that directly connect the m. This subgraph is represented by < U > or (U, E') where
E' = {(WI , W2) I (WI ' w2)E E, WI E U,W2 E U}. The degree of a nodewEC, denoted by dew) , is the number of
nodes adjacent to W in C . Define d u(w) to be the number of nodes in U adjacent to w in C. This is equivalent
to the degree of w in < U U {w} > .

A coloring of C is an assignment of colors to the nodes of C such that no two adjacent nodes share the same
color. More formally, a k-coloring of C is a mapping f: V ~ {I , 2, ... , k} such that feu) = f(v) only if (u,
v) i E. The chromatic number of C , denoted X(C), is the minimal number of colors necessary to color C. An
optimal coloring of C is one which uses exactly X(G) colors.

3. Sequential Coloring Algorithms

One of the simplest coloring algorithms is the randomly ordered sequential (RND) graph coloring algorithm
[14]. Given a graph G = (V, E), the algorithm randomly orders the nodes so that V = {VI, . . . , v,,} and then
assigns colors to the nodes in the following manner. The first node, VI , is assigned color number 1. Once the
first i nodes have been colored (1 :0; i :0; n - 1), Vi+ 1 is assigned the lowest possible color number such that
no prev iously colored node adjacent to Vi+ 1 has been assigned the same color number.

Though this algorithm is locally optimal in the sense that each node is assigned the smallest possible
number, the overall action is highly dependent on the initial ordering of the nodes. For any graph, there exists
an ordering for which this algorithm will produce an optimal coloring [14] , while a less fortuitous ordering
may lead to an extremely poor coloring. Thus the problem of finding a n optimal initial ordering of the nodes
is equivalent to the problem of optimally coloring the graph .

This fact has led to the development of a large number of algorithms, each differing from RND only in the
method of initially ordering the nodes [7 , 14]. Two such algorithms are the largest first (LF) and smallest last
(SL) sequential coloring algorithms.

The LF algorithm orders the nodes such that deVi l ::::: d(vi+ l) for 1 :0; i < n where V = {VI , ... , v,J The
SL algorithm is similar in strategy but recursively orders the smallest degree nodes last. An SL ordering is one
in which d(vn) = min dew) and for n - I ::::: i ::::: 1, du(vi) = min du(w) where U = V - {vn, . .. ,Vi+ I}'

lL'EV WfU

Note that both the LF and SL algorithms tend to order the high degree nodes before the low degree nodes.
Computational experience has shown that thi s is generally a good strategy, whereas algorithms which color the
higher degree nodes last have often been found to produce colorings worse than those produced by a random
ordering.

Each of the sequential coloring algorithms presented in this sec tion requires O(n 2) time and O(n2) space to
color a graph with n nodes . Quadratic time and space complexities are generally quite acceptable for use with
large-scale coloring problems. If only they gave guaranteed optimal colorings, we would look no further.

4. More Sophisticated Algorithms

One successful variation of the sequential coloring algorithms involves what is known as an interchange.
Given any G = (V, E) and color functionf such that few) d i, j} for all wE V, and (i, j)-interchange on G is a
redefinition off such that if few) = i originally, few) is now assigned} and vice versa for all WE V.

Appropriate use of the interchange process has been found to yield particularly good results when used in
conjunction with the LF and SL algorithms [14]. The resulting procedures are referred to as the smallest last
with interchange (SLI) and largest first with interchange (LFI) coloring algorithms.

The SLI (LFI) algorithm operates just like the SL (LF) algorithm except when the latter requires the
introduction of a new color. Suppose that such a situation occurs when Vrn is the node to be colored and that
k = max f(vJ For 1 :0; i < j :0; k, define C jj to be the subgraph of C induced by the nodes of C previously

"i<m

colored i or j . If possible, choose i and j such that no connected component of Cij contains two differently
colored nodes both adjacent to Vrn • If such a Cij is found to exist, then perform an (i, j) - interchange on each
connected component of Cij which contains an i -colored node adjacent to Vrn in C . It is now possible to assign

490

color i to Vm and thus the addit ion of a new color has been avoid ed. If no such Cij exists, howe ver, th en
regardless of what interchange is performed , v'" must be assigned color k + 1.

This version of the SLI (LFI) algorithm initially appeared in [11] and is an extens ion of the ori ginal ve rsion
which is desc ribed in [14] . The original version allows an (i, j) - interchange only when v III is a djacent to
exactly one node c olored i and one node coloredj. There is little differe nce be tween the original and extended
versions of the SLl and LFI algorithms in terms of colorings produced or time required. Whi le the extended
versions may be able to perform a useful interchange impossible in th e original vers ion, they will likely take
slightly longer to do so. All four algorithms require 0(n3) time and 0(n2) space to color an n node graph.
Based on a limited amount of computational experience, the extended version of th e SLI algorithm (henceforth
to be referred to s imply as the SLI algorithm) was found to produce sl ightly bette r results than did the other
interchange procedures.

All of the algorithms thus far presented are capable of producing very bad colorings , in terms of number of
colors used , for certain graphs. Johnson [l0, 11] has given constructions of 3-colorable graphs on O(n)
verti ces wh ich eac h of the above algorithms requires n colors to color completely. Since no more than O(n)
colors may be used to color an O(n) node graph , such colorings are, up to a constant , the worst possible.

There is an algorithm, however, which will color any graph C with n nodes in 0 (_n_) x(C) or fewer
log n

colors. While thi s worst-case behavior is still unacceptable in prac ti ce, the approximate ly maximum
independent set (AM IS) algorithm is interesting because it is the only known algorithm which is kn own not to
exhibit the worst possible worst-case behavior [11]. The algorithm proceeds as follows. Given C = (V, E),
select the node with minimum degree in C , say VI , and color it 1. Once i nodes have been assigned color 1,
select, if possible v i+ 1 E V such that d U(VH I) is minimal for nod es in V where V is the set of uncolOTed nodes
not adjacent to any colored node. If no such selection is possible, i.e. , V is e mpty , the n repeat the entire
procedure on the subgraph of C induced by the uncolored nodes of C, using the next available color. This
process is then, in turn, repeated until all the nodes ofC have been colored.

Interestingly enough , whil e thi s algorithm exhibits better worst-case behav ior than the other algorithms
thus far discussed, computational experi ence has shown that , on the average, the colorings it produces are
substantially inferior to those produced by the LF, SL, and SLI algorithms.

S. The Recursive Largest First (RLF) Algorithm

The RLF algorithm combines the strategy of the LF algorithm with the structure of the AMIS algorithm.
Like the LF algorithm , at each step in the RLF procedure a nod e is selec ted for coloring which will , in some
sense , leave the re sulting un colored nodes colorable in as few colors as possible. As with the AMIS algorithm,
the RLF procedure completes the assignment of color i before commencing ass ignment of color i + l.

The RLF graph coloring algorithm proceeds as follows. Given C = (V, E), assign color 1 to the node with
maximal degree in G, say VI • Once i nodes have been assigned color 1, select, if possible, V i+ t E V , such that
dU2 (VHI) is maximal for nodes in Vt where VI is the set of uncolored nodes not adjacent to any col ored node
and V2 is the set of uncolored nodes adjacent to at least one colored node . Ties are, if poss ible , broken by
choosing the node that has minimal degree in < Vt >. If no such selection is poss ible, i. e . , Vt is empty ,
then repeat the entire process recursively on the subgraph of C induced by the uncolored nodes of C, us ing
the next available color. This recursion is then repeated until all of the nodes in C are colored . Several
examples of this procedure are worked out in appendix A.

As was true with the SLI algorithm , the RLF algorithm, in general, requires 0 (n3) time and 0(n 2) space to
color an n node graph. Unlike the SLI algorithm, howeve r, the RLF algorithm requires onl y 0 (n 2) time to
color graphs for whi ch k· e = n 2 where k is the numbe r of colors used to color the graph, e is the numbe r of
edges in the graph , and n is the number of nodes in the graph (see appendix B for proof). Such graphs, whic h
are usually sparse, quite commonly ari se in practical applications such as exam scheduling. For example, th e
graph assoc iated with the 1977- 8 Princeton University fall term course examinations schedule cons isted of
273 nodes, 6727 edges, and required 17 colors to be colored by the RLF algorithm. Thus , for practical
purposes, the RLF algorithm, if programmed properly, exhibits an 0(n 2) time depend ence for many
applications. Appe ndix B presents a PL-l listing of the RLF algorithm as well as a rigorous analys is of its
time complexity.

491

6. Generation of Test Graphs With Known Chromatic Number

A few papers have been published which compare the performance of various algorithms on large (usually
l00-node) randomly generated graphs [14, 21, 23]. Unfortunately, none of these empirical studies provide
the chromatic numbers of the test graphs used. Indeed, the task of closely approximating the chromatic
number of a graph is NP-complete [8] and thus virtually impossible to accomplish for large graphs.
Consequently, approximations of upper and lower bound results established for x(C) have generally been
crude and oflittle practical use [1, 7, 14, 19].

The lack of such information makes an accurate interpretation of the experimental data very difficult. For
instance, if algorithm A required 22 colors to color C while algorithm B required only 20, the conclusions
drawn about their relative effectiveness if x(C) = 20 might be quite different from those drawn if x(C) = 4.
Furthe r, without knowledge of x(C), no statement can be made at all about the accuracy or closeness to
optimality of either algorithm A or B. Thus there is a need for a standard procedure for generating random test
graphs with known chromatic numbers. Such a procedure will now be presented.

Suppose it is desired to construct an n-node graph C with e edges and chromatic number k. For the
purposes of the following argument , assume that kin. This is not a significant restriction since most test or
modeling uses of a large graph generator are likely to allow some flexibility in the choices of nand k. For such
a graph to exist under these restric tions, e must be such that

The first step in the procedure is to choose positive integers a, c and m such that:

1. m» n,
2. (n , m) = k,
3. (c, m) = 1,

4 . pi m ~ pi (a - 1) for all primes p, and

5. 41 m~ 41(a - 1).

Next generate a uniform sequence of random numbers {Xi} on the interval 0 to m - 1 by the linear
congruential method described in [12]. This is accomplished by fixing Xo and, then for each i > 0, setting Xi

= MOD(aXi_1 + c, m) where MOD(X , Y) = X - [~J * Y. Sequences generated in such a manner exhibit

two important properties [12]. First , for every i andj such that 0 :S j :S m -] and i 2: 0, there exists an r

such that i :S r :S i + m - 1 and X r = j. Second, for every i 2: 0 , Xi = XH m •

Next construct the sequence {Yi} on the interval 0 to n - 1 so that Yi = MOD (Xi, n). Note that unless k
= n, nj m and {Yi} is not a uniform random number sequence on the interval 0 to n - 1.

By defining V = {O, 1 , ... , n - 1}, it is possible to associate two consecutive values of {Y;} with edges
to be added to E. Similarly, it is possible to associate h consecutive values of {Yi} with h-cliques to
be implanted in C. For example, the subsequence {Y1 , Y2 , Y3 } corresponds to the subset

{(Vy, ' Vy,) , (Vy, ' VY3)' (Vy" VY3)}' By identifying certain subsequences of consecutive elements of {Yi } and
adding the corresponding edges to E, it is possible to construct the desired graph C.

More precisely, define the (k - l)-vector b = (b k , b k -1 , ... , b2) so that b k 2: 1 and b i 2: 0 for 2 :S i :S

k - 1. Each b i corresponds to the number of i-cliques to be implanted in C. Specifically, given the sequence
{YJ and vector b, proceed as follows . Select the first k values of {Yi } starting with Y1 and add the
corresponding edges to E. If b k > 1, select the next k values of { Yi } and add the corresponding edges to E.
Repeat this process until b k k-cliques have been implanted in C. Next add, in an identical fashion, b k - t

(k - I)-cliques to C. Continue the process until b2 2-cliques or edges have been added to E. Note that some
edges may be "added" several times and thus it may not be possible to precalculate a vector b such that there
are exactly e edges in the resulting graph. It is possible, however, to keep track of how many edges have been
added at any point and to eliminate the addition of i-cliques which might result in the addition of too many
edges to E. Since edges may be added one at a time, it is not difficult to show that graphs having exactly e

edges may be constructed in this manner for any e such that

492

k(k - J) n2(k - 1)
~----~ ~ e ~ .

2 2k

It now remains to be shown that x(G) = k for any G constructed in thi s manner. Since b k 2:: 1, G contains
a k-clique and thus X(G) 2:: k. Before establishing that X(G) ~ k, it is useful to examine the struc ture of the
sequence { Y;'} where Y;' = M 0 D(Y;, k). Since kin and kim,

Further ,

Y;+l = MOD(YHI , k)

= MOD(MOD(XH " n) , k)

= MOD(XH1 , k)

= MOD(MOD(aXj + c , m) , k)

= MOD(aXj + c, k)

= MOD(MOD (aX; + c, n) , k)

= MOD (aYj + c, k)

Y;+I = MOD (aY;' + c, k).

p l k~ p l m~ pl (a - I),

4 I k~4 I m~41 (a- l) , and

(c, m) =] ~ (c, k) = 1.

Thus { Yj '} is a uniform sequence of random numbers on the intel'Val 0 to k - 1.
This struc ture of the {YJ modulo k allows the following coloring of G. For each i, defin e f (v y) = MOD (i ,

k). Since for allj such that 0 ~ j < n, there exi sts an i 2:: 0 such that Y; = j , it is clear that every node is
assigned a color by thi s procedure. Since {YJ is a uniform sequence of random numbers on the inte rval from
o to k - 1, we know that if Yj = Yj , then Y/ = Y/ and MOD(i, k) = MOD(j, k) and thus that f(v y) =

f(vy). This means that f is well defin ed. Finally, it is easil y verified that vY;' V YH I ' •. • , V YH IH are all
colored diffe rentl y if h ~ k, for all i 2:: O. This means that edges occur only between differently colored nodes,
and thatf is a proper coloring of G. Thus X(G) = k.

It should be noted that the above result is a spec ial case of a more general result for arbitrary k and n. That
is , if k and n are such that k ~ d where d = (n , m), then k ~ X(G) ~ k + MOD (d, k) < 2k. The proof of the
general result is not given here but is similar to that of the special case when MOD(d, k) = O.

As will be demonstrated shortly, the range of graphs which can be generated by this procedure is quite

n .
large. The node degrees of such graphs may vary between 0 and n - Ie whIle the average node degree may

k(k -]) k -]
vary between and ----. n. The variety of distributions of node degrees is also quite large. Most

n k
importantly, however, the procedure generates graphs which are as diffi cult to color as are randomly generated
graphs (where the chromatic number is not known). Demonstration of thi s fact is provided in section 7.

Another advantage of thi s procedure is that the test graphs may be easil y characterized. For example, only

k + 5 values are required to generate an n-node graph with chromatic number k. These values are n, k, Xo,
a , c, m , bk , bk - I , ... , b3 and b2 • Whereas it would be infeasible to completely describe a large, randomly
generated graph by conventional means in a short paper, graphs generated by thi s procedure are easily
described. Thus, in future publications concerning the effectiveness of various graph coloring algorithms, it
will be possible to specify prec ise ly which graphs were used to test the various algorithms. There are several
conce ivable situations where such documentation could be valuable to the interested read er. For example ,
should the reader desire to compare the effectiveness of a new graph coloring algorithm to those in the
literature, he would need only to regenerate the graphs used in published tests and color them with the new

493

algorithm. This would eliminate the necessity of developing an entirely new set of test data and of having to
rerun all previous algorithms on such data. Pursuant to these goals, a complete characterization of the test
graphs referred to in tables 1 and 2 is provided in appendix C.

7. Test Results

The procedure described above was used to generate 27 ISO-node graphs and 12 4S0-node graphs of
varying edge density and chromatic number. In addition, 27 completely random ISO-node graphs were
generated with varying edge density and unknown chromatic number. The RND, LF, SL, RLF and SLI
algorithms were tested on each of the 66 graphs. The resulting data are displayed in tables 1, 2, and 3,

respectively.
In each table, the graphs are subdivided into groups according to chromatic number, X' (or as in the case

with the completely random graphs, to a known lower bound for x) and average node degree, d. There are

TABLE I. Results/or ISO-node test graphs generated according to the procedure detailed in section 6.

number of colors used average number of excess colors used

X rl
RND LF 5L RLF SLI RND LF 5L RLF 5L1

5 11 (9, 9, 9) (7 , 8,7) (7,7 , 8) (6, 6 , 6) (6,6,6) 4 2'/3 2'/3 1 1
19 (11 , 11, 12) (10, 10, 9) (9,10, 9) (7,7,8) (9,5,8) 6'/3 42/3 4'13 2'/3 2'/3
24 (13, 12, 13) (10, 11 , 11) (10,9, 10) (7 , 6 , 7) (8,7, 6) 72/3 52/3 4213 12/3 2

--
42/9 37/9 16/. w.-Ave. lolal 6

10 11 (11, 11, 12) (10, 10, 10) (lO, 10, 10) (10, 10, 10) (10, 10, 10) 1'/3 0 0 0 0
21 (15 , 14, 16) (12, 12, 12) (12, 12, 12) (11 , ll, 11) (11 , 11, 11) 5 2 2 1 1
29 (17, 16, 18) (14, 14, 14) (14, 15, 15) (13, 13, 12) (13, 13, 12) ~ 4 42/3 22/3 22/3 -- -- -- --

Ave. lolal 4·/9 2 22/9 12/9 12/9

15 12 (15, 16, 15) (15, 15, 15) (15, 15, 15) (15, 15, 15) (15, 15, 15) ' /3 0 0 0 0
25 (19, 18, 18) (17, 16, 16) (16, 16, 15) (15, 15, 15) (15 , 15, is) 3'/3 1'/3 2/3 0 0
34 (19, 21 , 20) (17, 17, 18) (17,19,17) (16, 16, 16) (16, 16, 16) 5' 2'/3 22/3 1 1

~ -- -- - -
Ave. lolal 28/9 1 "/9 1'/9 '/3 '/3

Overall 4'2/27 2'3/27 2'°/27 12/27 13/27

average

lolal

Tolal 10.2 13.3 13.5 15.3 49.2
time

(seconds)

TABLE 2. Resultsfor4S0-node test graphs generated according to the procedure detailed in section 6.

number of colors used average number of excess colors used

X d
RND LF 5L RLF 5L1 RND LF 5L RLF 5L1

5 25 (14, 13) (11 , 12) (ll, 12) (8,8) (10,9) 8'/2 6'/2 6' /2 3 4'/2
43 (17, 18) (12,14) (11 , 15) (5, 5) (5,5) 12'/2 8 8 0 0 -- -- - - -

Ave. lolal 10'/2 7'/ . 7' /. 1'/2 2'/.

15 36 (22,22) (18, 18) (18, 18) (17, 16) (16, 16) 7 3 3 1'/2 1
74 (30,31) (26,26) (26, 26) (23, 23) (23,24) 15'/2 II 11 8 8'/2 -- -- -- -

Ave. lolal 11'/. 7 7 43/. 43/.

25 37 (29, 27) (26, 25) (25,25) (25,25) (25, 25) 3 ' /2 0 0 0
77 (37, 35) (29,30) (31,31) (28,28) (28, 29) 11 4'12 6 3 3'/2 -- -- -- - '- --

Ave. lolal 7 2'/2 3 1'/2 13/.

Overall 97;'2 57;'2 59/,2 27;'2 2"/12
average

lolal

Tolal 32.0 42.8 44.9 80.7 308.8
time

(seconds)

494

_ I

TA BLE 3. Results/or random I SO-node test graphs.

Lower
Bound d RND LF SL RLF SLI
on X

5 10 (9,9, 8) (7, 7,7) (7,7,7) (6,6, 6) (6,6,6)

18 (11 , 11 , 11) (10, 10, 10) (10, 10, 9) (8,8,8) (9,8,8)

24 (13 , 13, 12) (10, 12, 11) (11 , 11 , 11) (9, 9, 9) (10, 10, 10)

10 10 (16, 15, 16) (15, 15, 15) (15, 15, 15) (15, 15, 15) (15, I S, 15)
18 (16, 17, 16) (15, 15, 15) (15, 15, 15) (IS, IS, 15) (15, I S, 15)
24 (17, 18, 17) (15, 16, 16) (15, 15, 15) (15 , IS, 15) (IS, IS, 15)

15 8 (24, 22, 21) (24,22, 21) (24, 22 , 21) (24, 22, 21) (24, 22, 2 1)

16 (23, 23,24) (23, 23, 24) (23, 23,24) (23,23,24) (23,23,24)
24 (24, 24,24) (24, 24,24) (24,24,24) (24,24, 24) (24,24,24)

Total time 9 .8 12.9 12.9 19.0 384.3
(seconds)

three graphs in each I SO-node group and two graphs in each 4S0-node group . The numbers in parentheses
indicate the number of colors used by an algorithm to color the first, second, and poss ibly, third graph of tha t
category. For the graphs wh ere X was known , th e average number of excess colors used by the algorithm was
computed for each group and totaled. For example, the RLF algorithm optimall y colored each of the 10-
colorable I SO-node graphs with average degree 11 in table 1 but required, on the average , 43/ 4 extra colors to
color each of the four I S-colorable 4S0-node graphs in table 2.

The total run time for each algorithm is a lso includ ed in each table . This fi gure represents execution time
in seconds on an IBM 360-9 1. It should be noted tha t such fi gures are highly dependent on factors unrelated
to the inherent effi c iency of the algorithm , such as programmer skill a nd machine charac teri sti cs. The time
complexity estimates provided earli er a re much more rigorous measures of the algorithms' relati ve speeds.
Except for the SLI time in table 3, the run times are in accordance with these theoretical es ti mates. It is quite
possible that the graphs referenced in table 3 have chromatic numbers much higher than the minimum
estimate, and that the SLI algorithm was thus induced to attempt and possibly perform a large number of
time-consuming interchanges. This example points out the highly vari a ble amounts of time required by most
interchange algorithms to color vari ous graphs (a phenomenon also observable in the data of [14]).

The ra ndom graphs of table 3 were included only for the purpose of demonstrating that the graphs generated
by the technique discussed in section 6 are just as suitable for tes ting the relative capabilities of graph
coloring algorithm s as a re completely randoml y generated graphs. As was pointed out earlier, th e data in
table 3 cannot be used to draw conclus ions about the accuracy of the tested algorithms. From the da ta in
tables 1 and 2 , however, we observe that , for the graphs considered , the LF and SL algorithms required about
twice as many extra colors to color the graphs as did the RLF and SLI algorithms. Similarl y, the RND
algorithm required about twice as many extra colors as did the LF and SL algorithms. Signifi cantly, thi s
observation can be made for most of the graphs on an individual basis . The RND algorithm always used more
colors than the LF and SL algorithms which, in turn, always used more colors than the RLF or SLI algorithms.

There is not as clear a distinction between the performance of the LF and SL algorithms or the RLF and SLI
algorithms. The LF and SL algorithms required virtually the same number of colors on the average and
required nearly the same amount of time . While the colorings produced by both the RLF and SLI algorithms
for test graphs were, on the average, quite good, the RLF algorithm required substanti all y less time and used
approximately 12 percent fewer excess colors on the 4S0-node graphs a nd 3 percent fewer excess colors on
the I SO-node graphs than did the SLI algorithm. Of the e ight 4S0-node graphs which were not optimall y
colored by both the RLF a nd SLI algorithms, the RLF algorithm required the fewest colors for four of the
graphs and the mos t for only one graph.

d
As a fin al note, the edge density, - , of the test graphs did not exceed 1/ 4 . This results from the fac t tha t for

n

most large-scale prac tical applications, the edge dens ity of the graphs to be colored is generall y small. For
instance, the Princeton University exam scheduling graph mentioned in Section S had an edge density of
approximately 1/ 6 .

495

L __

8. Conclusions

From the data presented it is apparent that the RLF algorithm, when not optimal, colored large graphs with
substantially fewer colors than did any of the other algorithms that did not involve interchanges. When
compared with interchange algorithms, the RLF algorithm was found to produce slightly better colorings in
substantially less time. While the RLF and interchange algorithms in general each require O(n 3) time to
color an n-node graph, the RLF procedure is unique in that it exhibits O(n 2) time behavior for graphs with
low edge density. Thus the RLF algorithm is particularly well suited for use with large-scale practical
problems.

The method described in section 6, for generating random graphs with a known chromatic number, was
found to produce test data which can be used to determine heuristically a given algorithm's accuracy as well
as algorithms' relative capabilities. Previously, published comparison tests have been made only on graphs
with unknown chromatic numbers, which rendered impossible any evaluation of an individual algorithm's
accuracy and questionable any statement about two algorithms' relative capabilities. In addition, the
procedure provides a standard method of generating test data for coloring algorithms; by its use a large graph
with known chromatic number may be uniquely constructed from only a few parameters.

In addition to Professor Acton, the author would like to thank Dr. Charles Johnson, Dr. James Lawrence,
and Dr. Alan Goldman for their helpful remarks.

9. References

[1] Aho, A. V., Hopcroft, 1. E., and Ullman, J . D., The Design ami Analysis 0/ Computer Algorithms, (Addison-Wesley, Reading,
MA, 1974), pp. 364--404.

[2] Bondy, 1. A., Bounds for the chromatic number of a graph, Journal of Combinatorial Theory, 7 (1969), pp. 96-8.
[3] Broder, S., Final examination scheduling, Communications of the ACM, Vol. 7, No.8 (1964), pp. 494--8.
[4] Brooks, R. L. , On coloring the nodes of a network, Proceedings of the Cambridge Philosophical Society, 37 (1941), p. 194.
[5] Brown,1. R. , Chromatic scheduling and the chromatic number problem, Management Science, Vol. 19, No.4 (1972), pp. 456-

463.
[6] Christofides, N., An algorithm for the chromatic number of a graph, The Computer Journal, Vol. 14, No.1 (1971), pp. 38-9.
[7] Christofides, N., Graph Theory -An Algorithmic Approach , (Academic Press, New York, 1975), pp. 58-78.
[8] Garey, M. R., and Johnson, D. S., The Complexity of Near-optimal Graph Coloring, Journal of the ACM, Vol. 23, No.1 (Jan.

1976), pp. 43-9.
[9] Hall, A. D., and Acton, F. S., Scheduling University Course Examinations by Computer, Communications of the ACM, Vol. 10,

No.4 (April 1967), pp. 235-8.
[10] Johnson , D. S. , Approximation Algorithms for Combinatorial Problems, Journal of Computer and System Sciences 9 (1974) , pp.

256-78.
[11] Johnson, D. S. , Worst Case Behavior of Graph Coloring Algorithms, Proceedings of the 5th Southeast Conference on Combinatorics,

Graph Theory, and Computing (1974), pp. 513-27.
[12] Knuth, D. E., The Art a/Computer Programming, (Addison-Wesley, Reading, MA, 1969), Vol. 2, pp. 9-18.
[13] Leighton, F. T. , A New Solution to the Exam Scheduling Problem, unpublished paper.
[14] Matula, D. W., Marble, G., and Isaacson, J. D., Graph Coloring Algorithms, Graph Theory ami Computing , Ronald C. Read,

editor, (Academic Press, New York, 1972), pp. 109-122.
[15] Matula, D. W., Bounded Color Functions on Graphs, Networks 2 (1972), pp. 29- 44.
[16] Ore, Oystein, The Four Color Problem, (Academic Press, New York , London , 1967).
[17] Peck, J. E. L., and Williams, M. R., Examination Scheduling, Communications of the ACM, Vol. 9, No.6 (1966), pp. 433-4.
[18] Pershin, O. Y., An Algorithm for Determining the Minimum Coloring of a Finite Graph, Engineering Cybernetics, Vol. 11, No.6

(1973), pp. 980-5.
[19] Szekeres, G., and Wilf, H. S. , An Inequality for the Chromatic Number of a Graph, Journal of Combinatorial Theory, 4 (1968), pp.

1-3.
[20] Welsh, D. J. A., and Powell, M. B., An Upper Bound for the Chromatic Number of a Graph and its Applications to Timetabling

Problems, The Computer Journal, 10 (1967), pp. 85-6.
[21] Williams, M. R., The Coloring of Very Large Graphs, Combinatorial Structures and Their Applications-Proceedings of the

Calgary International Conference on Combinatorial Structures and Their Applications, Gordon and Breach, New York (June
1969), pp. 477-8.

[22] Wood, D. c., A System for Computing University Examination Timetables, The Computer Journal, Vol. 11, No.1 (May 1968),
p.41.

[23] Wood, D. c., A Technique for Coloring a Graph Applicable to Large Scale Timetabling Problems, The Computer Journal, 12
(1969), p. 317.

496

10. Appendix A: Application to Examination Scheduling

The examination scheduling problem is probably the best known of a large class of sched uling problems in
applied mathe matics and opera tions research. It consists of scheduling exams such that no individual is

required to participate in two or more exams simultaneously. It is usualJ y assumed des irable to schedule th e
exams such that the total number of time periods required for the examinations is minimized. Sometimes,
additional restraints are imposed . Req uiring that some examinations be given or not given in spec ifi ed time
periods a nd scheduling the exams so that a certain subset of the exams will be completed as earl y as is
possible are examples of such restraints.

Cons ider the following exam scheduling problem.

Exam Parti c ipants Exam Parti c ipants

AI , A2 , A3 , As 7 A4. A6

2 8 1 .82 , 83 8 83 , 86 , 8 7

3 82 , 84 , 9 8 5 . 8 7 , 88

4 A I , A4, 8 4]0 AI , 8 1 ,84

5 8 1 , 83 11 83 , 8 7

6 A2 , A3, 8 1]2 A3,A5

FIGURE 1

Exams tha t may not
Time Period be scheduled

1 4, 11, 12
3 3, 7
5 1, 10

FIGURE 2

In addi tion to the information contained in fi gures 1 and 2, assume that we also know that exam 2 must be
scheduled in time pe riod 1 and that the final schedul e must be such that the last exam involving a partic ipan t
of type A is scheduled as earl y as possible.

We will now proceed to solve the above scheduling problem utilizing the RLF graph coloring algorithm .
Since exam 2 must be scheduled in time pe ri od 1, we will do so and amend fi gure 2 so that exams

incompatible (i.e., may not be scheduled concurrently) with exam 2 will not be scheduled in time pe riod l.
This information is included in figure 3.

Time Period

1
3
5

Exams that may not
be scheduled

3, 4, 5, 6, 8, 10, 11, 12
3, 7
1,10

FIGURE 3

The restri c tion placed on exams involving type A parti cipants may be satisfied, as far as is possible by
heuri stic means, by scheduling the exams involving type A individuals firs t and then, using th is information,
scheduling the remaining exams . The graph in fi gure 4 contains the information necessary for the first step.

Node E; represents exam i and node Tj represe nts time period j for all i , j. There is an edge between every
pair of time period nodes to insure that no two time periods are assigned the same color. An edge is inserted
between node E; and node Ej if and onl y if exams i and j may not be sched uled simultaneously. Finally, an
edge is inserted between node E; and node Tj if and only if exam i may not be given during time period j.

497

To ob'a;o 'h, d" ;" d " h, d"l, we w;il 'oloe 'h, gcaph ;0 fig"" 4 " , ;og a , I;gh"y mod;fi, d "~;o" of 'h,
RU algori'hm, A, 'he beg;oo;og of ea,h ''"''~;'' " ' p, we w;U f;,,, colm' 'h, each" , uocolored ';00, peri" ,
ood, ;o"ead of 'he "ocol,,', d ood, adjae,o' '0 'he 0.0", "ncolo"d nod" , Th;, w;il gn""",,, 'ha' e"m, ac,
" ' ;g",d to 'h, " d;" , ,; m, p, riod, f; n;L W, w;U d, oot, 'h, '" of oneolored nod" ,dj", n' '0 " I, ,,,, 0",

,olo" d nod" U" by , n, ;wl;n, ,"eh nml" , Colon;, " ",0, 1, wdl b, d, not, d by , nomb,,- Uocol
o
,," nod"

not adjacent to any colored node, nodes in V
J

, will not be labeled.

Th, coloe;ng ,h' n pro,,,d, " foilow" Nud, T, ;, ' olo" d I and ood" 7" T" 7; , T" E" E" £ to , ,,,d EJ 2 are c ircled. This is illus tl"ated in figure 5 .

Only ood" £, aod £, <ema; 0 ;0 U" Nod, £" ;"d j,,,o"o fi" nod" ;n U, wh de nod, £, ;"dj"", '0

only 'wo ood" ;0 U" Th" "odd, i, col",d I a"d nod, £ "i~l,d, Thi, lea"""" nod,,;,h'",olo",d m
ei,ded (U, ;, , mp'Y) a"d 'h", we mo" delete 'he colo,," ood" (7', a"d E,) from 'h, gcaph 'od "pea, 'he
pro" dore 00 'he """it;ng gcaph "artiog wi,h 001" 2, Once T, h" be" "'ign, d colm 2 aod 'he appropri", nodes c ircled, we have the graph in figure 6.

498

------------- --- --

- -------- ----

FI GURE 6

Both nodes E7 and E l o are adjacent to one node in V2 while all other nodes in V I are not adjace nt to any

node in V2 • Since E7 is connected to only one node in V I whil e du,(E l o) = 2, E7 is colored 2 and E4 is
circled . This leaves the graph in fi gure 7.

FIGURE 7

Completing the assignment of color 2, E 10 is assigned color 2, node E 6 is circled and , fin ally, E 12 is colored
2 . Since V I is now empty , we delete the colored nodes and repeat the process on the graph in fi gure 8 us ing
color 3 .

E6
•

FIGURE 8

499

This graph is trivially colored by assigning color 3 to nodes T3 , E4 and E 6; color 4 to T4 ; and color 5 to T 5'

The schedule may now be constructed by assigning to each time period those exams which were assigned
the color of that time period. Should the number of colors used exceed the number of time period nodes used,
the additional colors may be arbitrarily associated with additional time periods (assuming they exist). In this
example, however, the number of time period nodes, 5, exceeded the number of colors used, 3, and no such
additional assignment of time periods was necessary. The resulting schedule is displayed in figure 9.

Time Period - - - --
1
2
3
4
5

Exams

1
7, 10, 12

4,6

FIGURE 9

This completes the scheduling of exams involving type A individuals. We must now schedule the remaining
exams taking into account the partial schedule in figure 9 and the information displayed in figure 3. This
information is summarized in figure 10.

Exams that may not
Time Period be scheduled

1 3, 5, 8, 11
2 3,5
3 3,5

FIGURE 10

Combining this information with that in figure 1, the graph in figure 11 is readily constructed.

T, Eg

FIGURE 11

500

!~

I

All that remains is to color the graph displayed in Figure 11. This is easily done using the RLF algorithm.

The final coloring is di splayed in fi gure 12.

1 T1 1

FIG UR E l2

Note that, depending on the order in which the nodes were considered, £ I I could have been assigned color
2 and £8 color 3 since the two nodes are identical as far as the RLF algorithm is concerned . This illustrates
the fact that the final colorings ass igned to a graph may, to a small extent , depend on the initial ordering of
the nodes (i.e., on the man ner in which nodes with identical characteristi cs are distingui shed). Finally, s ince
4 colors were necessary to color the graph, those exams colored 4 will be scheduled in the first available,
unused ti me period , the fourth time period.

This results in the partial schedule in figure 13.

Time Period

1
2
3
4

FIGURE 13

Exam

9
8

11
3, 5

The co mpleted exam schedule for all exams is displayed in figure 14. In thi s particular case, the schedule

produced is optimal.

Time Period

1
2

3
4

Exam

1, 2, 9
7,8, 10, 12

4,6,11
3, 5

FIGURE 14

501

11. Appendix B: Computer Implementation of the RLF Algorithm

As was demonstrated in Appendix A, the RLF algorithm can be used to color small graphs easily by hand.
For large graphs, however, such a task can only be accomplished reliably by computer. In order to program
the RLF algorithm efficiently, the values of du, and dU2 must be stored for each node and updated whenever
V 1 or V 2 is modified. This is accomplished by defining two arrays, E and F :

1<0 if w is cOlOred]
E(w) IS <0 if WEV2 •

= du,(w) if WEV I

and 1 < 0 if w is colored]
F(w) IS = dU,uu2 (w) ~f WEV2 .

= dU,uu2 (w) If IVEV,

Initially VI consists of every node in G and thus E (w) = F (w) = d(w) for all IV E V. If node w' is selected

for coloring, then we must modify E and F so that:

E(w')~ - l ,

E(w) ~-l for IV adjacent to IV' ,

E(w) ~ E(w) - (the number of nodes in VI adjacent to both wand w')

for WEV I and nonadjacent to w',

F(w') ~-], and

F(w) ~ F(w) - 1 for w adjacent to w'.

The next node to be colored will, of the nodes in VI, then have the maximum value of F(w) - E(w) and,
if a tie exists, the minimum value of E(IV) among those nodes that tied. When VI is empty (this corresponds
to E (w) < 0 for all wE V), the values of E are modified so that E (w) ~ F (w) for all /V JE V. This corresponds
to a reinitialization of the values of E for the subgraph of G induced by the uncolored nodes.

The above operations on E and F can be easily performed by appropriate use of the following subroutine,
procedure DELETE. Given an array D and node w', DELETE performs the following operations on D:

D(w')~-l

D(/V) ~D(w) - 1 for wadjacentto Wi.

Thus whenever node w' is selected for coloring we may modify E and F by simply performing DELETE on
(F , Wi) and (E, w') as well as on (E , w) for all w in VI adjacent to w '. It is not difficult to verify that such a
procedure maintains the desired values of E and F.

A complete PL-l computer program listing of the RLF procedure is included at the end of this appendix.
The program is written in subroutine form and assumes that values for CI and CL are provided on input. Array
Cl serves as an index array to CL, the node adjacency list. For example, the nodes adjacent to the i th node

502

are sequentially stored in CL(C/ (i - 1) + 1), CL(CI(i - 1) + 2) , ... , CL(CI(i». The data are stored in
this compact form to minimize the amount of storage required, a very importan t consideration when working

with large graphs.
Each node w in the graph is processed by procedure DELETE, i.e. deleted , /(tv) times whe re /(IV) is the

color number assigned to w . Thi s claim is easily established by observin g th at for eac h new color i introduced,
i :S !(IV), IV is e ither colored i or adjacent to a node colored i. In e ither case w is deleted exac tly once . Once

w is colored, th en it may never subseq uentl y be deleted. Thus exactly

k k k

L ini :S L kni = k L ni = nk
i = 1 i = 1 k = !

deletions are performed on G, where k is the number of colors used to color G, ni is the number of nodes

colored i and n is the number of nodes in G. S ince eac h deleti on requires O(d) time where d is the average
degree of a node, all th e deletions may be accom pli shed in O(kdn) time. It is eas ily chec ked that all other

operati ons may be accompli shed in 0(n 2) tim e. Thus the algorithm requires O(n :) time and 0(n 2) space to

color an arbitrary n node graph . However, for those graphs whe re kd = O(n) or, equ ivalently, ke = 0(n 2),

the RLF algorithm consumes only 0(n 2) time and 0(n 2) space in coloring th e graph. As was pointed out in

the text, many large-scale practical problems involve graphs for which thi s property holds and thus may be

colored with the RLF algorithm in 0(n 2) time.

503

RLF: PROCEDURE (N,CI,CL,COL,C,E,F);
I i~

1* THIS SUBROUTINE COLORS THE N NODE GRAPH DEFINED BY Cl AND CL
1* USING THE RLF ALGORITHM.
1*
1* ON INPUT:
1.1/.-

1* N IS THE NUMBER OF NODES IN THE GRAPH.
1* C I IS THE INDEX VECTOR FO R CL.
1* CL IS THE NODE ADJACENCY LIST FO R THE INPUT GRAPH. FJR
1*
1*
1*

EXAMPLE, CL(CI(I-I)+I), CLCCI(I-l)+2), ••• , CL(Cl(I))
CONTAIN, IN SEQUENCE, THE Cl(I)-Cl(I-l) NODES ADJACENT
TO NODE I.

1* COL, C, S AND F ARE MEAN I NG LE SS.
1*
1''< 0 N ;\ETU Ri-J :
1*
1* N, CI AND CL ARE UNCHANGED.
1* COL IS THE NUMBER OF COLORS USED TO COLOR THE GRAPH.
1* C IS THE COLOR FUNCTION ASSIGNED TO THE GRAPH. FO R EXAMPLE,
1* C(I) IS THE COLO R ASSIGNED TO NODE I.
1* E AND F ARE MEANINGLESS.
1*

1''<

DECLARE (N,CI(*),COL,C(*),E(*),F(*),J,L,I,K) BINA RY FI~ED (31),
CL(*) BINARY FIXED (15);

1* INITIt:>.LIZE THE COLOR FUNCTION TO ZERO.
1*

1*

C=O;
COL=O;
J=O;
L= 1 ;

1* INITIALIZE THE F VECTOR TO THE NODE DEGREES.
1*

DO 1=1 TO N;
F(I)=CI(I)-CI(I-I);

END;

* 1
;c I

i'l
~< /

,; /
"c /
lc /

" I
*/
*/
-*1
;:-/

*/
l,C /

" /
"'-I
{.,'-./

*1
'~-I

';;-/

"f /

'''1

"c /
;:-1
i'i- /

*1
if 1
;;-1

1* * 1
1* IF THE RE ARE ANY UNCOLORED NODES, INITIATE THE ASSIGNMENT OF *1
1* THE NEXT COLO R. *1
1* *1

DO T,VHILE CJ<N);
COL=COL+ 1 ;

1*
1* REINITIALIZE THE E VECTO R.
I't.-

1*

DO 1 = 1 TO N;
ECI)=FCI);

END;

1* SELECT THE NODE IN Ul WITH MAXIMAL DEG REE IN UI.
1*

1*

DO I = I TO N;
IF F(I»F(L) THEN L=I;

END;

*1
*1
"I

*1
*1
~, I

-~-I

1* COLOR THE NODE JUST SELECTED AND CONTINUE TO COLOR NODES WITH *1

504

(

1-;:- C'JL Ui\l TIL Ul I S a~PTY . ;:-1

GJ WH IL S (S(L» =U) ;
I-;:- ~- I

1 * CO LOR NO DE AND MOD IFY Ul AND U2 ACCO RDI NG LY .
1 ""-

CALL DELETE (E,L);
CALL DE LETE (F,L);
CCU=COL;
J=J+l ;
I F C I C L) > C I C L - 1) THE N DO I = C I C L - 1) + 1 TO C I (L) ;

IF E(CLCI»>=O THEN CALL D~LETE CE , CLCI» ;
END ;

F I ND THE FI EST i\'O D::: I N Ul, I F _Q.;-J Y.

K=O;
DD 1= J TO N l/ j H I L~ (i(= 0) ;

I f:: (I) > = G 1". L:.: ;~ :':= I ;
Ef~ D ;

1* I F Ul I S NOT E~?TY, SELECT THE NE XT NODE FO R CO LORI NG.
1*

IF K> O THEN DO;
L= K;
DO I=K TO N ;

IF E(I»=O THEN DO ;
IF FCI)-ECI»F(L)-ECL) THEN L=I;
ELSE IF FCI)-ECI)=FCL)-ECL) & EC I)< ~ (L) THEN L=I;

END;
END;

END;
END ;

END ;
END RLF ;
1*
1-1:-
1 -':<

DELETE : PROCEDU RE (H,M);
1'.:-

1* THIS SUEROUTINE DEC RE~ENTS THE VA LUE OF H FOR M AND NO DES
1* ADJACENT TO M.
1 ;:-

1* ON INPUT:
1*
1* H I S E ITHE R THE E OR F VECTO R FOR THE GRAPH .
1* M IS THE NODE TO BE DE LETE D.
1 -~-

I-~- ON R2TU?tN :
1*
I-~-

1 *
H IS APP ROP RI ATE LY UP DAT ED .
1"1 I S UNC!-U=>,N GE: D.

l:- I
-;:-1

if I

~, I

" I
*1
i:- I

* 1

1-':< ":- 1

DECLARE (HC·), M, P) E I NA~Y F I XED (31);
H(X)=-J;
I F C I (M) > C Ie -- 1) T r i EN DO -:" = _, I (-: - 1) + I TO C I (~~) ;

;-i(CLC P »= :i CCLCO» -J;
END ;

Ei\iD D2 LSTE ;

505

12. Appendix C: Characterization of Test Graphs

The data provided in tables 4 and 5 of thi s appendix provide the necessary information to regenerate each
of the test graphs used in the preparation of the data included in tables 1 and 2, respectively. Each graph is
referenced by its chromati c number, average node degree, and order in which the colorings (or values of Xo)
are given. For example, the parameters for the third ISO-node graph with c hromatic number 5 and average
node degree 11 (i.e. , the graph that SL 8-colored) are: n = 150, k = 5, a = 8401 , (' = 6859, In = 84035,
b5 = 19, b4 = 60, b3 = 97, b2 = 210, and Xo = 22093. Using th ese parame ters, it is poss ible to regenerate

the graph by using the procedure described in section 6.

TABLE 4. Generation Param eters/or the Test Graph Used in Table I.

X d n k a c III b 3 values of X 0

5 II 150 5 840] 6859 84035 (19, 60, 97,210) 0,33289,22093
19]50 5 8401 6859 84035 (39, 120, 195, 420) 21047,55697,74912
24 150 5 840] 6859 84035 (58, 180, 292 , 630) 78692,83491,52870

LO 11 150 10 8401 6859 168070 (10, 0, 0, 12, 0, 0, 25, 0, 2, 4) 8879,64827,78005
2 1 150 10 8401 6859 168070 (2 1, 0, 0, 24, 0, 0, 51, 0, 48) 5293,59845, 102567
29 150 10 8401 6859 L68070 (31, 0, 0, 36, 0, 0, 76, 0, 72) 107489,118239,101759

15 12 150 15 840J 6859 252105 (4, 0, 0, 0, 0, 7, 0, 0, 0, 0, 12, 0, 0, 148) 80589,60363,94632
25 150 15 840J 6859 252105 (9, 0, 0, 0,0, 15, 0 , 0,0,0, 24,0,0, 297) 220881,67107, 198723
34 150 15 8401 6859 252105 (13, 0, 0, 0 , 0, 22, 0, 0, 0 , 0 , 36, 0, 0, 445) 66684,189309,9534

TABLE 5. Generation Parameters/or the Test Graphs Used in Table 2.

X d avg. n k a c rn b 2 values of X 0

5 25 450 5 8401 6859 84035 (175, 540,877, 1890) 0,41794
43 450 5 8401 6859 84035 (409, 1260, 2047, 4410) 35428,47927

15 36 450 15 8401 6859 252105 (40, 0, 0, 0, 0, 67, 0, 0, 0, 0, 108, 0, 0, 1336) 36276,213549
74 450 15 840 1 6859 252105 (94,0, 0, 0, 0, 157. 0, 0 , 0, 0, 252,0,0, 3118) 161712, 160056

25 37 450 2.5 840 1 6859 420175 (13, 0, 0, 0, 0, O. 0, 0, 0, 27, 0, 0, 0, 0, 0, 192625,358531
0, 0 , 0, 40, 0 , 0 , 0, 0, 1336)

77 450 25 8401 6859 420175 (31, 0, 0, 0, 0, 0, 0, 0, 0, 63, 0 , 0, 0, 0, 0 , 247337,274955
0, 0,0,94,0,0,0,0,3118)

506

	jresv84n6p_489
	jresv84n6p_490
	jresv84n6p_491
	jresv84n6p_492
	jresv84n6p_493
	jresv84n6p_494
	jresv84n6p_495
	jresv84n6p_496
	jresv84n6p_497
	jresv84n6p_498
	jresv84n6p_499
	jresv84n6p_500
	jresv84n6p_501
	jresv84n6p_502
	jresv84n6p_503
	jresv84n6p_504
	jresv84n6p_505
	jresv84n6p_506

