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Polynomial approximation problems represent a class of specially structured problems which are frequently
encountered in empirical curve-fitting. Two generators for creating such problems have been developed,
implemented and used in the testing of discrete L, approximation codes. Both generators permit automatic
generation of problems with specified characteristics and (for one generator) having known, unique and

controllable solutions.
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1. Introduction

Recent years have seen increased interest in least absolute deviation (L,) data fitting, either as an
alternative to or in conjunction with the usual least squares approach [11, 19].! Estimation in the L; norm has
certain desirable statistical properties (such as “robustness” [14, 16] when the underlying error distribution is
long-tailed) and it can be carried out using reasonably efficient mathematical programming procedures.

While a number of algorithms for discrete L; approximation have recently been advanced [1, 3, 5, 6, 21,
22], computational comparisons of specific implementations (“codes”) for these approaches have not only
been limited [3, 6, 22] but have often produced conflicting evidence. Resolution of these conflicts awaits the
establishment of reliable and comprehensive methodology for testing such mathematical software.

As a first step in developing a sound evaluation methodology for comparing mathematical programming
codes, four L; codes (representing a range of solution techniques and implementation strategies) were
evaluated on particular classes of test problems [13]. The first group of test problems were “hand-picked”
problems [20]—those created with a specified structure in mind or arising from actual applications. The
second group consisted of pseudo-randomly generated problems, produced by means of a test problem
generator [17] and representative of a range of general L; data fitting problems; such problems could be
constructed with a number of controllable characteristics such as degeneracy, rank loss and optimal solution.

The two generators POLY1 and POLY2 described in this paper have subsequently been utilized to produce
other types of problem classes for which L; approximation is appropriate. In particular, these are problems in
which it is desired to obtain the best L; polynomial approximation to a specific function (POLY1) or to a set of
discrete observations (POLY2). Polynomial approximation problems are frequently encountered in practice
(e.g., among our hand-picked problems), and also enjoy an extensive theoretical basis [7, 18, 23]. Moreover,
such problems are known to admit a range of “ill-conditioning” and numerical difficulties [10], notably
evidenced in our previous testing efforts using 27 hand-picked problems [13] and in recent results obtained
using the first of these two generators [8].

The use of generated test problems in code evaluation offers several advantages. Generators provide a
virtually inexhaustible source of test problems, and a source that can be made relatively transportable from
one computer to another. Since generators are able to provide test problems with controllable characteristics
(such as size and structure), fairly well-defined classes of problems can be efficiently created. Moreover,
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through the invocation of pseudo-random number generators, test problems can be “randomly” selected from
such problem classes and valid statistical conclusions can be drawn about code performance with respect to
these classes. Another desirable property of test problem generators, and one that is useful in judging the
accuracy or correctness of a code, involves the ability to specify in advance the solution to a generated
problem.

Two generators are presented here for obtaining polynomial approximation test problems for L; curve-
fitting. Both generators permit automatic generation of test problems with stipulated characteristics, and one
of them (POLY2) allows the specification of known and unique solutions to the generated problems. The
theoretical design of both generators is discussed in section 2, and the following two sections describe
computer implementations of the theoretical design. The Appendices contain FORTRAN listings for both
generators, written to be machine-independent.?

2. Design of the Generators

The discrete linear L; approximation problem can be formulated as follows. Given a set of n observations on
a single dependent variable y and each of m + 1 independent variables zq, . . . , z,, find parameters 3,
. .., B, that minimize

The L, polynomial approximation problem, with which we will be concerned, is a restricted case of the above
formulation: namely, minimize by choice of 8 = (8o, . . . , Bn)

m

Yi — Bﬂz’
=0

j=

=98 =2

In the above, y; refers to the i-th observation on variable y and x; refers to the i-th observation on (the single
independent) variable x. Equivalently, it is required to find a polynomial of degree m which best fits the given
data, in the sense of minimizing the sum of absolute values of the residuals

A vector B* which yields the minimum value ¢* of ¢(B) is termed a solution vector, with optimum objective
Sfunction value ¢*. Unlike the case of L; polynomial approximation over a continuous interval [23, p. 38], the
optimum solution vector B* to a discrete L; polynomial approximation problem need not be unique. It is
known [2, 4, 12] that such a solution vector can always be found which interpolates at least m + 1 of the data
points; that is, at least m + 1 residuals e; are identically zero at the solution. A given problem exhibits
degeneracy if more than m + 1 residuals equal zero at the optimum.

A number of algorithms for solving discrete L, approximation problems make essential use of the above
“interpolation” or “extreme point” result. Namely, these algorithms examine only basic solutions, where
precisely m + 1 residuals are zero, and move in a systematic way from one basic solution to another. Any

such basic solution is defined by a set of m + 1 indices (or rows) i € {1, 2, . . ., n} where e; = 0. For
convenience, these indices are said to correspond to active constraints, while the remaining indices correspond
to inactive constraints. Thus, in the absence of degeneracy the set N = {1, 2, . . ., n} can for any basic

solution be partitioned as N = N° U N* U N-, where N° indicates the active constraints, N * the inactive
constraints with positive residuals, and N ~ the inactive constraints with negative residuals.

% All FORTRAN programs have been checked for portability using the PFORT verifier (B. G. Ryder, Software-Practice and Experience, Vol. 4, 1974, 359-
377) and conform to a subset of ANSI FORTRAN (X3.9-1966, Amer. Nat. Stand. Inst., New York, 1966).
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The two generators for polynomial approximation problems discussed here will, for specified n and m,
produce the following test problem data:

X=@)), i=1,...,n j=0,...,m? 1)
and
y=(), i=1,...,n. 2)

The basic difference between the generators resides in the type of problem structure they simulate.

The first generator, POLY1, is intended to model the situation where one wishes to approximate, over a
discrete set, a continuous function f(x) by a polynomial of specified degree. Accordingly, the values y; in (2)
are given by y; = f(x;). Controllable features of this generator include: the function f(x), the real interval /
over which f(x) is to be approximated, the number and distribution of observation points x; € I, and the
degree m of the approximating polynomial. A more detailed description of this generator is provided in
section 3. It should be noted that POLY1 does not produce a known solution to the test problem created;
therefore, other means are necessary in order to verify whether or not a given L; code has actually “solved” a
generated problem. For this reason, we have also devised a computer routine to check optimality of code-
produced solutions by examination of the Kuhn-Tucker conditions for an associated linear program [4, 17].

The second generator, POLY2, models the situation where an L, fit is required to a given discrete set of
data (y;, ), i= 1,.. ., n. Unlike the case for POLY1, the y; are not assumed to be generated via some
known functional relation. Controllable features of this second generator include: the real interval of
approximation /, the number and distribution of observation points x; € I, the degree of the approximating
polynomial, and the statistical distribution of the residuals e ;. Moreover, one is also able to specify in advance
a solution vector 8% which will be guaranteed to be the unique L; solution to the generated problem.

The approach used for generating a data set (X, y) with known optimal solution 8* will now be outlined.
The matrix X in (1) is partitioned as

X0
X=Xt
X~

corresponding to indices i € N°, N*, and N~ respectively. Note that X° is a square (m + 1) X (m + 1)
nonsingular matrix, with the proviso that the x’s fori e N° are distinct. By a result proved in [17], a sufficient
condition for the optimality and uniqueness of 8% in (X, y) is that

E’CI)ZE xl, j=0.....m, 3)

ieN+ ieN~
and that
y = XB* + e, (4a)
where
e;=0 if ieN°,
e; >0 if ieNt, (4b)
e <0 if ieN.

It will now be shown how values x; can be found that satisfy (3).

3 For the first generator POLY1, one may also specify whether the polynomial has a constant term (j= 0, ... ,m)ornot(;=1,.. ., m).
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First, we note that forj = 0, equation (3) requires |V *| = |V ~|. For notational convenience, let r = |V*|
= |V-| and redefine the x;s (i e N*) asvy, . . . , v,; similarly, let the x/s (i €/V") be denoted as wy, . . .,

w,. Also, write

[, ... oy =lwn, - - ., wyJg 5)

,
2 ol = 2 wh, for h=0,1,..., q.
p=1

D=1

Then, following the development in [15], it is straightforward to verify that for any d

[, ..., o]y = Lwr, - . ., wrlg => (v, o vy +d, e + dlyis
6)
=[w,...,w,m +d,..., vy + dlyiq-
Relation (6) can be used recursively to produce values x; that satisfy (3). For example, since
[0]o = [1]o.
equation (6) gives
[0.3]; =[1.2];. using d =2,
[0.3.5, 6], =[1,2.4, 7],. using d =4,

and so forth. Accordingly, the consecutive integers 0, 1, 2, . . ., 29%! — ] can be divided into two disjoint

subsets {v1, . . . ,v,}and {wy, . . . ,w,}, withr = 29 such that [vy, . . . , vrl, = w1, . . ., w,], The first

subset consists of all integers /, 0 =/ = 2%"! — 1 with an even number of ones in their binary expansion, and

the second subset consists of all such integers with an odd number of ones. Dividing each v, and w,, by 29*!
— 1 produces a set of numbers equally spaced on [0, 1], which in turn can be scaled and translated to yield
a set of numbers {4}, wyy p = 1, . . ., r} equally spaced on an arbitrary interval I = [a, b]. Moreover,
relation (5) still holds for the scaled and translated #),, w;,. Finally, these values can be used in (3) as the
required x;'s fori e Nt and i e N7, respectively.

More generally the recursive process based on (6) can be initiated, using any positive integer dy, by means

of

[0]o = [do]o

and propagated using any d;, ds, . . . , d,to produce 29*! numbers satisfying (5), and therefore (3). We have
chosen (see sect. 4) to generate the djs from a uniform probability distribution. The resulting (scaled and
translated) values for x ; are no longer equally-spaced on /, but tend to be approximately normally distributed
within the (finite) interval /. With probability one, all such x; values generated are distinct.

The above procedures form the theoretical basis for implementation of the second generator. Either
equidistant x; or nonequidistant x; (corresponding to inactive constraints) can thus be generated. To ensure
that (3) holds forj = 0, . . . , m, the number of observations n is required to be of the form

n=m+ 1+ 2mtkt1 (7)

where k is an integer, k& = 0. Further details of POLY2 are described in section 4.
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3. Computer Implementation of POLY1

This section describes a computerized version, in FORTRAN, for the first generator (POLY1) discussed in
section 2. We will indicate those problem design characteristics available as user-specified input options to
POLY1, and then discuss how these inputs are utilized in creating test problem data.

A variety of characteristics are available to the user as controllable options and are specified through input
parameters to POLY 1. These options include:

1. The number of observations n.
The degree m of the approximating polynomial.

3. The specific function f(x) to be approximated. Ten such functions,* representing a variety of shapes
likely to be encountered in practice, have been incorporated within the program (see table 1 and fig.
1).

4. The interval of approximation / = [a, b].

5. A switch ICOL to indicate whether the approximating polynomial includes a constant term or not.
(The latter case is useful in forcing the approximating polynomial to pass through the origin.)

6. The location of the n observation points x; within /: either drawn from a uniform probability
distribution or equally-spaced over/.

ol

A perturbation factor EPS, possibly zero, used in perturbing equally-spaced observation points x ;.
8. Two initial starting seeds, utilized internally by a pseudo-random number generator.

TABLE 1. Functions and Their Intervals of Approximation.

flx) 1= [a, b]
1. e Tsinx [0, 4]
2. e¥sinx [0, 4]
gl il [0, 7]
4. *%(2x [.05, 1]
5. 75x/[1 + (7.5x)%] [0, 2]
6. 10xe >* [0, 4]
7. 1/[1 + (x — 2.5)%] [0, 5]
8 xl3 [—1,1]
9. x12 [0, 1]
10. 1/[1 + «*] [5225%23%5]

Given these input parameters, generation of the data sets can begin. The first step involves selecting the n
observation points x; from the desired interval, according to the distributional form specified. The interval /
= [a. b] is determined by the user (if CSWTCH # 0) through input parameters ENDL = @ and ENDR = b,
or (if CSWTCH = 0) by means of the default interval settings shown in table 1. The observation points are
chosen according to a uniform probability distribution over I (if MSWTCH # 0) or equally-spaced over I (if
MSWTCH = 0). In the latter case, the user has the ability of perturbing the equally-spaced observation
points x ;: namely, if/ = [a, b] then

x; ~> x; + EPS-Aa;, i=2,....n—1,

b
where A =

n —

is the common subinterval length for equal spacing, the «; are independent uniform

random variates over [—1, 1], and EPS is a user-supplied input representing the (maximum) fraction of the
subinterval length A used for perturbation. If EPS = 0.0, no perturbation is performed; otherwise, a
reasonable range for EPS is 0 < EPS < 1/2.

Next, the values y; = f(x;) are calculated, as well as the successive powers . If the user has specified a
constant term in the approximating polynomial (ICOL = 1), then the above index; has rangej = 0, 1, . . . ,
m. Otherwise (ICOL # 1), a constant term is not included andj = 1, . . ., m. This stage of calculating
successive powers i is most sensitive to finite-precision arithmetic and to accumulated round-off error.
Accordingly, such quantities are calculated in double-precision, using the recursion x{™' = x;(xf).

* It will be noted that function 10 is simply a translation of function 7. It has been included as a separate entity to illustrate the effect of “scaling”: namely,
the successive powers x;’ produce more ill-conditioning when | x;| is larger (function 7) than smaller (function 10).
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Finally, the problem data are returned in a single matrix PRBMAT. The first column of PRBMAT contains
the vector y, and the remaining columns contain the design matrix X. In addition, the number of rows (NOBS)
and the number of columns (NPAR) in matrix PRBMAT are returned to the calling routine, as well as a
single-precision vector containing the observation points x;. The final seeds available from the random
number generator are also returned in ISEED and JSEED, thus allowing the creation of different test problems
(having the same input specifications) in successive calls of POLY1 from a main routine.

All error messages are written out using unit IOUT = 6. Changing this specific value of IOUT once at the
beginning of the program permits other print unit numbers to be accommodated. Appendix A gives a complete
listing of POLY1, together with the subroutine UNIRAN [9], a well-tested uniform random number generator
which it calls.

- X s .
1 Y = e " sin(x) o 2. Y = X sin(x)
/‘\ .
° | A
2.3 | /_\\\ N
"\ -10 - \
0.2 |- v
v 1 \\ Y 20 |-
4
0.1 | 1 \
1 -3e | \
i | |
.0 |- oy 1k \
—0.1 ! i -50 = 1 S| 1
(] 1 2 3 4 2 1 2 3 4
X x
i 2X
3. Y eX SH‘I(X) , 4 Y = e/ 2x
100 4
[ ]
80 |- 6 | \
:
60 L. S I
Y Al ]
o 4
20 L s J— v
o Ll ! : 2 | S
1 2 3 4 5 6 ? 0.0 0.2 0.4 0.6 0.8 1.0
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= 2 Y = 10xe "X
¢ 5. Y = 75x/(1 + (7.5x)%) .
44_
] 5
.
v ] v a |-
gl
Ir
4l
] . L
b
° | ! 1 0 1 1
0.0 8.5 1.0 1.5 2.0 ] 1 2 4
x X
FIGURE 1. Graphs of functions.
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Figure 2 illustrates the type of test problem that can be created by POLY1. The n = 50 data points (y;, x;)
are derived from function 7 of table 1 over/ = [0, 5] and are shown here by the symbol “x”; in this case, the
x{s were chosen to be equally-spaced (without perturbation) over /. By way of reference, the solid curve
indicates the best L, fitting polynomial of degree m = 5 to these generated data.

4. Computer Implementation of POLY2

This section describes a computer implementation of the second generator (POLY2) for polynomial
approximation problems. As indicated in section 2, an important feature of this generator is its ability to
create data sets whose optimal L; solution vector can be specified in advance. Consequently, the correctness
and accuracy of solutions produced by various L; codes can be readily assessed using the known solutions to
such problems. The fact that these solutions are guaranteed to be unique is also advantageous, since in the
case of nonunique solutions it becomes difficult to compare the efficiency and accuracy of codes that reach
correct, but different, solutions.

A number of problem characteristics can be controlled by the user through appropriate input specifications.

Options available in POLY2 include:

1. The degree m of the approximating polynomial.

2. The value k in (7), which together with m determines the number of observations n.

3. The (unique) solution vector BETA to the generated problem.

4. The interval of approximation/ = [a, b).

5. The location of the observation points x; corresponding to active constraints: either drawn from a

uniform probability distribution or equally-spaced over /.
6. The location of the observation points x; corresponding to inactive constraints: either equally-spaced
or unequally-spaced over /.

7. Y = 1.0/(1 + (x-2.5)*) o 8. Y = CBRT(x)

1.9 -

T |
0.4 / 1 ,(
| / ] /
—o.5 |-
e.ay \ ] /
] 1 2 3 4 5 -1.0 -0.5 0.0 0.5 1.0
x X
_ 4
9. Y = SQRT(x) 10. Y = 1.0/(1 + x)
1.0 1.0
0.8 - 0.8 -
v 0.6 [ v 0.6 |-
0.4 |- 0.4 -
0.2 - 0.2 -
j i
0.0 S E— L e 00 L - L L L=
0.0 0.2 0.4 0.6 9.8 1.0 -3 -2 =1 = 1 2 3
X X

FiGure 1. (cont.)
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FIGURE 2. Sample test problem created by POLY1 for function 7,m = 5, and n = 50.

7. A perturbation factor EPS, possibly zero, used in perturbing equally-spaced x ; associated with active
constraints.

8. The distribution of the residuals e; associated with inactive constraints.

9. Two initial starting seeds, utilized internally by pseudo-random number generators.

The first step in developing a test problem is to select the solution vector BETA, if the user has not chosen
to input a vector to POLY2. The solution vector is randomly selected, in this case, from a uniform probability
distribution over an interval specified by the user (BSW = 1) or defined within the program (BSW # 1).

Next, the observation points x; are generated from the interval I according to the desired distribution.
Interval [ is either specified on input (CSW = 1) or assigned a default setting within the program (CSW # 1).
The x /s corresponding to active constraints are derived from a uniform probability distribution over I (MSW
= 1) or are equally-spaced over I (MSW # 1). In this latter case, the x; can be perturbed using the factor
EPS, exactly as described for POLY1. The observation points x; corresponding to inactive constraints are
generated so that equation (3) is satisfied. Such x; are either equally-spaced (ISW = 1) or unequally-spaced
(ISW #1) over the interval I; see section 2 for details of how these two methods of generation are achieved.

Also, the entries ] of the design matrix are successively calculated forj = 0, . . . , m using appropriate
care to preserve numerical accuracy. At the same time, the residualse;, i e N*ori € V™, are generated from
either a uniform (RSW = 1) or a normal distribution (RSW #1), are given the appropriate sign, and are then
used to calculate y; from (4a) — (4b). The optimum objective function value SUMRES is calculated in double-
precision, based on these residuals. The input parameter RESID indirectly controls the magnitude of this
objective function value. Namely, RESID acts as a scale factor with respect to the size of the residuals, which
are either selected from a uniform distribution on [—RESID, RESID], whose standard deviation is thus
RESID/4/3, or from a normal distribution having mean 0 and standard deviation RESID.

Finally, the problem data are returned as before in a single matrix PRBMAT. The first column of PRBMAT
contains the y vector, and the remaining columns contain the design matrix X. The number of rows (KKM1)
and the number of columns (M2) are also returned, as well as BETA, SUMRES and LOC (a vector containing
the m + 1 row locations of the active constraints). The final seeds available from the last call to the random
number generator are returned in ISEED and JSEED.
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All error messages are written out using unit IOUT, which can be easily modified to accommodate differing
print unit assignments. Appendix B gives a complete listing of POLY2, together with the subroutines it calls:
SORTM, SET1, SET2, EQUAL, NORRAN, SORTP and UNIRAN. The call structure of these subroutines is
shown in figure 3; the latter three subroutines are fairly well-tested and are described further in [9].

Figures 4 and 5 illustrate the types of data sets that can be produced using POLY2. Both show as dots 134
data points (y;, x;) together with the best L, fitting polynomial of degree 5 (solid curve). In figure 4, the x ; are
generated via the equally-spaced option (ISW = 1), while in figure 5 they are generated via the unequally-

spaced option (ISW # 1).

POLY2

( SORTM ) ( SET1 ) SET2 EQUAL NORRAN

( SORTP ) UNIRAN

FIGURE 3.  Subroutine call structure for POLY2.

FIGURE 4. Sample test problem created by POLY2: n = 134, m = 5, equally-spaced x;.
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FIGURE 5. Sample test problem created by POLY2: n = 134, m = 5, unequally-spaced x;.
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6. Appendix A.
Listing of FORTRAN Subroutines for First Generator:
POLY1
UNIRAN

SUB-CJUTINE PCLY1(NFUNCsMsNsPFSMAT s CSWTCHsMSWTCHLZENDL »
ENDR » ICUL o NUBSsNPAF s ISEED s JSEED s X o NI OWHEPS)

e ak ok ok K sk ek ook K 3k kR 3k 3K % 3k 3 3 3k ok kR ok 3 ok 3okoOk kK Xk 3ok Rk ok 3k ok 3. koK ok 3k 3k Xk 3K ok ook Xk ak kK ok K OjOK K Rk k

DESCRIPTION:

THIS SU3XOUTINE GENERATES DISCRETE POLYNOMIAL APPRCXIMATION
PROBLEMS WHICH CAN BE USED IN THE TESTING AND EVALUATION CF
ALGOSITHMS FOR L1 (LEAST ABSCLUTE DEVIATICN) CUFVE FITTING.
THE USER CAN SPECIFY THE FOLLOWING CHARACTERISTICS CF THE
GENEZ ATED DATA SETS:

PROBLEM SIZt

THE SPECIFIC FUNCTION TO BE AFPIOXIMATED

THE REAL INTERVAL CVER WHICH THE FUNCTION IS APPROGXIMATED
THE DISTRIBUTION OF THE OBSERVATION POINTS IN THAT INTERVAL

* H H ¥

THE PCLYNCMIAL APFAOXIMATION PRCBLEM CONSIDERED HEFE IS TO
APPROXIMATE (IN THC L1 NORM) A GIVEN FUNCTION BY A POLYNOMIAL
OF SPECIFIED DEGFEEs GCVER A DISCRETE SET. FOX I=1sN X(I) IS
A SELECTED POINT FROM SCME INTERVAL AND Y(I) IS THE COF fES-
PONUING FUNCTIONAL VALUE AT X(1)e. IN THE PROBLEMS GENERATED
BY THIS SUBOUTINEs THE CONSTANT TEsM OF THE POLYNOMIAL CAN BE
INCLUDED OR EXCLUDED (IN THE LATTER CASE FORCING THE APPRCX-
IMATING POLYNOMIAL TO PASS THROUGH THE OXIGIN).

FCOGR CONVENIENCE THE Y VECTOR AND THE DESIGN MATRIXs WHICH
CCNTAINS SUCCESSIVE POWEARS CF THE OBSERVATION PCINTS X(1),
ARE BOTH RETURNED IN A SINGLE MATRIX *PRBMAT'. THE FIRST
CCLUMN COF PRBMAT CONTAINS THE Y VALUES AND THE FEMAINING
CCLUMNS CONTAIN THE DESIGN MATRIXe

NOTE:

* THE X(I) VALUES ARE ARRANGED TO BE IN INCREASING OUORDER
+OR I=1sNe IN PARTICULAR, X{1) IS ALWAYS THE LEFT—HAND
ENDPOINT CF THE INTEAVALs AND X(N) IS ALWAYS THE ARIGHT-
HAND ENDPCINT.

NCTE :

* SINCeE AN CPTIMAL SET CF (CEFFICIENTS FCR THE APPROXIMAT-
ING PCLYNOMIAL IS NOT PXODUCED BY THIS GENERATGCH s VERIFI-
CATICN OF AN UPTIMAL SCLUTICN SHOULD BE MADE BY SOME MEANS
{EeGes EXAMINING THE KUHN-TUCKER CCNDITIONS).

2k o ek ok ok Kok 3k dok ok k ok 3k ok ok ok ok kol ok Kok ok kK ok ok 3k ok ok kol ok ok 3k 3k ok 3k ik ok 3k ok ok sk ok kX ok ok ook Kok ok

INPUT AXGUMENT S

NFUNC - DETERMINES THE SPECIFIC FUNCTICN BEING APPRCXIMATED
M DEGREE OF THE AFPPIOXIMATING POLYNOMIAL
N NUMBER OF OBSERVATION POINTS X(I)
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CSWTCH= INPUT SWITCH USED FO0~n INTEAVAL SELECTION, IF

= 1 USES ENDPOINTS SUPPLIED BY THE USER TG DEFINE
THE INTEIVAL
= 0 SELLCTS THE INTERVAL USING OLCFAULT SETTINGS

MSWTCH-= INPUT SWITCH FOFR THE DISTRIBUTICN CF THE OBSERVATION

PCINTS, IF
= 1 PH0ODUCES PCINTS FFCOM A UNIFOR2M PFCBbABILITY DIS-
TEIBUTICN OVER THE INTERVAL
= ¢ PRODUCES PCINTS EQUALLY SPACED OVER THE INTERVAL
( THOUGH POSSIBLY PERTUTBED BY A XANDOM AMOUNT
IF EPS > 0 )

ENDL -- USER SPECIFIED LEFT ENOPOINT OF THE INTE&VAL
ENDR —= USEK SPECIFIED RIGHT ENOFCINT CF THE INTERVAL
ICCL =-= INPUT SWITCH, IF

= 1 FAOLUCES AN L1 PwRC3LEM WITH A CONSTANT COLUMN
= 0 PROODUCES AN L1 PRCBLEM w/C A CONSTANT COLUMN

I[SEED - FIRST CF TwC INITIAL SEEDS FOR THE ~ANDOM NUMBEFR

GENERATCK

JSLED - SECOND OF TwU INITIAL SEEDS FOF THE & ANDCM NUMBEFR
GENERATGHR

NROW -- MAXIMUM NUMBERX OF CBSEFVATION POINTS

EPS —-—-- FRACTION OF THE SUBINTERVAL LENGTH USED IN PER-

CuTPUT

TUSBING EQUALLY-SPACED OBSERVATICN PIJINTS, IF
MSWTCH=0

NHEN EPS = 03y NU PERTURBATICN IS PERFOCRMEDe CTHERWISE, A
SEASONABLE RANGE IS O0<KEPS<K0e5

THE DEFAULT VALUE FO” EACH OF THE SWITCHES ICOLs CSWTCH,
MSWTCH IS ZERC.

ATGUMENTS S

Pr.BMAT— THE GENEF.ATED PRUOBLEM MATAHIX, WITH NOBS ROW AND NFAR

COLUMNS
NOBS —-- NUMBE~ OF ACwWS IN PFBMAT
NPAR -- NUMBER GF CCOLUMNS IN PRBMAT

ISEED - FIAST OF TwO FINAL SEEDS AVAILABLE FFEOM THE 2RANDCM

NUMBER GENERATCRE

JSEED - SECGND OF 1T WO FINAL SEEDS AVAILABLE FACM THE RANOCM

X

ZRERZEZ

NUMBER GENERATOR
—-——-—— VECTOR OF OBSE=XVATICN FOINTSs, CF DIMENSICN NOBS

RESTRICTIONS:

MUST BE 6T 1
MUST BE LE NI0OW
MUST BE GT O
CANNCT BE LT M

NFUNC MUST BE BETWEEN 1 AND 10, INCLUSIVE

_ %k koK ok ook ok ok ok 3k ook ok k ek ok ok ok b ak Ol 3okok ok kR ko ko koK 40k ok ok bk % ook ke ok ol 3k ok ok ok 3 ko 3k koo ok ok ok Kk

A VARIETY Ct FUNCTICNAL FCIMS AND SHAFES ARE CURFENTLY AVAILABLE:
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NFUNC FUNCTION DEFAULT INTERVAL
1 EXP({=X)*SIN(X) L0e0s4.01]
2 EXP(X)*SIN(X) (De0+4.01]
3 EXP{X®SIN(X)) (CeCs7e01]
4 o SXEXP(20%X) /X L +0541.01
5! TS e¥X/ (1 o +(7 S %X) %x%x2) (0e0+2001
& 10 e X XXEXP(—0eS%*X) [Ge0s54.)]
7 16D/ (100+(X-205)%%*4) [060+501]
8 CBRT (X) [-1e0s1601]
9 SQRT(X) {Celsl1e0C]

10 163/ (1o 0+ ( X*%x%x4)) [-2e¢5+2451

SUBPROGRAMS USED:

SIN —-- FCORTRAN LIBRARY FUNCTICN
EXP —== FOETASAN LIBAAXY FUNCTION
CBRT —-- FORTRAN LIBRARY OR USER-SUPPL IED FUNCTICN
'TO CCMPUTE CUBE «.COTS
SQRT —-—- FORTRAN LIUSRARY FUNCTION
FLOAT - FORTEAN LIBRAIY FUNCTICN
SCRT —- SUBROUTINE USED TO SORT THE ELEMENTS CF A VECTOR CF
DIMENSION N INTO ASCENDING UFDER
UNIRAN == SUBROUTINE TO GENERATE P3EJDC-RANDCM NUMBERS FROM

A UNIFG3AM DISTRIBUTICN OVEX (0.1 1]
L ANGUAGE:Z ANSI FCITLAN (1966)
REFERENCES:
KelLoHOFFMAN & DoZeSHIET »*A TEST PRCBLEM GENEFATOFR FOF
DISCRETE LINEAR L1 APPROXIMATICN PROBLEMS®, TO APPEAR IN
TEANSe ON MATHe SCFTWARE
PoDeDOMICH & DoloeSHIEFR » *"GENEFATONS FUF DISCFETE FOLYNCMIAL
L1 AFPROXIMATICN PROJSLEMS?®
WRITTEN BY:
PAUL De DOMICH
CENTER FOX AFPLIED MATHEMATICS
NATIONAL BUREAU OF STANDAROS
WASHINGTCN DoeCo 20234
JANUAAXY, 197S

o 3 Aol o ok 3 R ok ko ok 3k Kk koK %k K ok Kok ok 3 dkokak & ok ok %k ok ok R ok Ak 3k ok ok 3k 3k 3k 3 kK ok Kk ok ok koR K 3k Yok ok X

DO HNOHOONDHODODODOHOHOHOOHAAOOOHODO

DCUBLE PRECISIGN UNIINC,EPSA,DA,DPRLD
REAL PRBMAT(NRGCW»1)sENDS(10,+2) oX{NRCW)
INTEGER CSWTCH
LCGICAL CONST
C
CHxx¥%% DEFAULT SETTINGS FOR THE INTERVAL SPECIFICATIONS
C
DATA ENDS(1s1)+ENDS{251)sENDS(35s1)sENDS(4,1)+ENDS(541),
+ ENDS(€ 91 )sENDS(791)sENDS({3s1)sENDS(9+1)s ENDS(IC 1)
+ ENDS(1+2)+ENDS(292)9ENDS(3+2)9ENIS(4+2)+ENDS(Ss2),
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+ ENDS(E€+2) sENOS(T92) vENDS(8+2) sENDS(992)eENDS(10+2)/
Deds Doy JoUs oU3s D00y 00Dy 000e —1e0s 000 =205,
Goevus GeCs Toels leUr Z2eCs 469 5S40y leCs 140, 2e5/

SAT

< 1 2 3 4 5 6 7 8 9 10 = NFUNC
<
Cxxkxkxkx CHECK INPUT DATA FOIL CCNSISTENCY
C
I0UT=6

IF(N oeLEe 1 «GRe N oLTe M) GO TC 2001

[F(N oEQe M oANDe ICOL oEQe 1) GUTO 2001

IF(M «LT. 1) GOTC 2C01

ITi{iN oGToe N-OW) GUTC 2002

IF(NFUNC oLTe 1 eCRe NFUNC oGTe 10) GOTO 2003

IF(NFUNC oEGe 4 oeANDe ENDL oLEse QOe0 «¢ANDe ENDR «GEe CeD) GCTC 20C4&

IF(NFUNC eEJo S eANDo(END/ olLTe D00 e0URe ENDL oLTe 0e0)) GCTC 200%
C
Cx%% %% CALCULATION OF THE INTEr VAL 3Y SPECIFICATIUN Ck DEFAULT
C

IF(CSWTCH oEQo 1) A=ENDL

IF(CSWTCH «EQe 1) B=ENDF

IF(CSWTCH oeNEe 1) A=ENDS(NFUNC,1)

[F(CSWTCH «NEe 1) B=ENDS(NFUNC,2)

IF(A «LEe B) GOTO 4

HOLD=A

A=DB

B=HOLD

4 XINT=8-A

S
Cxx%%x%x CALCULATE THE REQUIRED NUMBER CF COLUMNS IN THE DESIGN MATRIX
C

IF (ICOL «EQe 1) NVAR=M+1

IF (ICOL oEQe 1) CONST=o6T  Ute

IF (ICCL oNLe 1) NVAR=M

IF (ICOL oNEo 1) CUNST=oF ALSEo
©
Cx*k%x%x% CALCULATE THE CBSEFRVATICON POINTS WITHIN THE INTETVAL (A.B]
C

CALL UNITAN(Ns 1eXs ISEEDsJSELD)

X(1)=A

X{(N)=8B

K=N-1

IF(KoEQel) GCTO 8

IF (MSWTCH «EQ. 1) GOTO 6

G
CHk¥kx* CALCULATE THE SUBINTERVAL LENGTH FUR EQUALLY—SPACED PCINTS,
C POSSIBLY MCDIFIED OY A FEXTUIBATION FACTOR (EPSA).
C
UNIINC=XINT/FLOAT(N-1)
EPSA=EPS*UNIINC
DO 5 I=2,K
X(1)= A+FLCAT (I-1)%UNIINC+EPSA* (25 0%X(I)=160)
5 CONTINUC
GOTO 8
C
Cx¥*%%x CALCULATE THE CBSERVATION POINTS USING A UNIFORM DISTRIBUTICN
C AND SGALT THE PCINTS INTO ASCENDING O<DE?
C
€ DO 7 I=2,K
XCI)=XINT*X (1) +A
7 CONTINUE
CALL SO™T(XsNsX)
G
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Cxx%x%%x CALCULATICN OF THE Y VECTOR
c
8 DO 1030 I=1,sN
A=X(1)
GOTO(10+204+30+40+50+s60+70+30+s905100) ¢ NFUNC
10 PRBMAT(1I,+1)=EXP(—=A)*SIN(A)
GOTC 1003
20 PRBMAT(I,1)=EXP{(A)*SIN(A)
GOTO 1003
30 PROMAT(I+1)=EXP(A%XSIN(A))
GOTO‘1033
40 PRBMAT(I+1)=eS*EXP{2.0%A)/7A
GOTO 1003
S0 PRBMAT(I41)=7Se0*%A/{(1.0+(7 e5%A)%k%2)
GOTG 1003
60 PRBMAT(I,1)=10.0%A*EXP(—-e5%A)
GOTO 1003
7C PRBMAT(I+1)=1e0/(1C+(A-2.5)%%4)
GCTO 1003
80 PRBMAT(I,1)=CBRT(A)
GGCTC 1003
SO0 PRBMAT(I,1)=SQRT(A)
GOTO 1003
100 PRBMAT(I+1)=1e0/(1e60+(A%X%4))
1003 CONTINUE
C
Chx%x%%%x CALCULATION OF THE ENTRIES IN THE DESIGN MATRIX
€
DA=A
IF( CONST ) DPRCD=1e90
IF( «NCTe CONST ) CPROD=A
PRBMAT(I1,2)=DP%0D
IF(NVAK.EQel) GOTC 1230
DO 1004 J=2,NVAX
DPRCD=DPRCD*DA
FRBMAT(1,J+1)=DPROD
1004 CONTINUE
1030 CONTINUE
C
Chxx%¥%x DEFINE KROW AND COLUMN DIMENSICNS CF THE PROBLEM MATRIX (PRBMAT)
C
NOBS=N
NPAR=NVAR+1
GGCTO 3000
2001 WRITE(IQUT,9C1) NeM
901 FORMAT(1HO+21HTHE INPUT VALUES N =,15,10H AND M =915,
+ 18H ARE NOT FEASIBLE)
GOTC 30090
2002 WRITE(IOCUT+902) NsNREOW
902 FORMAT(1HU,17HTHE VALUE OF N =,15,21H EXCEEDS THE MAXIMUM,

+ 21H DIMENSICN OF NROwW =,15)
GOTC 3009
2003 WRITE(IOUT.S503) NFUNC
G003 FORMAT(1HD+22HTHE VALUE OF NFUNC =9 15,18H IS NOT IN ¥ANGE)

GOTC 3000

2CC4 WRITE(IQUT S04 )NFUNC

S04 FOFMAT(1Hd40+30H THE INTEAVAL SET FOR FUNCTION,I3,11H IS INVALIOD)

GCTC 3000

2005 WRITE(ICGUT,, S04 )NFUNC

3000 CONTINUE
RETURN
END
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SUBROUTINE UNIRAN(NsISTART+Xs ISEED»JSZED)

PURPOSE--THIS SUBROUTINE GINERATES A RANDOM SAMPLE OF SIZE N
FROM THE UNIFORM (RECTANGULAR)
DISTRIBUTION ON THE UNIT INTERVAL (0s+1).
THIS DISTRIBUTION HAS MEAN = 0.5
AND STANDARD DEVIATION = SQRT(1/12) = 0.288€7513.
THIS DISTRIBUTION HAS THE PROBABILITY
DENSITY FUNCTION F(X) = 1.

INPUT ARGUMENTS—-N = THE DESIRED INTEGEZR NUMBER
OF RANDOM NUMBERS TO BE
GENERATED.

—=ISTART = AN INTEGER FLAG CODE WHICH
(IF SET TO 0) wiILL START THZ
GENERATOR OVER AND HENCE
PRODUCE THE SAME RANDCM SAMPLE
OVER AND OVER AGAIN
UPON SUCCESSIVE CALLS TO
THIS SUBROUTINE WITHIN A RUN3 OR
(IF SET TO SOME INTEGER
VALUE NOT ZQUAL TO O,
LIKEs SAY, 1) WILL ALLOW
THZ GENERATOR TO CCNTINUZ
FROM WHERE IT STOPPED
AND HENCE PRODUCE DIFFZRENT
RANDOM SAMPLES UPON
SUCCESSIVE CALLS TO
THIS SUBROUTINE WITHIN A RUN.
OUTPUT ARGUMENTS—--X = A SINGLE PRECISION VECTOR
(CF DIMENSION AT LZAST N)
INTO WHICH THE GENERATED
RANDOM SAMPLE WILL BZ PLACED.
OUTPUT--A RANDCM SAMPLE OF SIZE N
FROM THE RECTANGULAR DISTRIBUTION ON (0+1).
PRINTING——NONE UNLESS AN INPUT ARGUMENT ERROR CONDITICN EXISTS.
RESTRICTIONS—--THERE IS NO RESTRICTION ON THE MAXIMUM VALUE
OF N FOR THIS SUBROUTINZ.
OTHER DATAPAC SUBROUTINES NEEDED——-NONEe
FORTRAN LIBRARY SUBROUTINES NEEDEO-—-NIJNZe
MODE OF INTERNAL OPERATIONS—-SINGLE PRECISICN.
LANGUAGE—--ANSI FORTRAN.
COMME NT— =3k %k ¥ Xk J % & 3 Xk 4 ok ok kK kkk
THE PARAMITERS OF THZT CONGRUINTI AL GENZIRATOR
USED HEREIN ARE OF NECESSITY STROUNGLY MACHINE-
DEPENDZINT IN TERMS OF THE QUALITY COF THZ
RANDOM NUMBZERS PRODUCZIDe. KNOWN GOOD RESULTS
HAVE BEEN OBTAINED ON THE UNIVAC 1108 (36 BIT)
COMPUTER., KNCWN POCR RESULTS HAVE BZEN OBTAINZD
ON THE CDC 3800 {48 BIT) COMPUTZR.
IT IS STRONGLY RECOMMENDED THAT UPON
IMPLEMENTATION OF UNIRAN, THE OUTPUT
FROM THIS SUBROUTINE SHOULD BE CHECKED FOR INDEPENDENCE
AND UNIFORMITY. DATAPAC SUBROUTINES PLCTX,
PLOTXXs PLOTUs RUNS, TIMESE, HIST, TAIL, LOC, AND
SCALZT MAY BE USEFULLY EMPLOYED TO DO SUCH
CHECKING « SUCH CHECKING IS ESPECIALLY IMPORTANT
IN LIGHT OF THE FACT THAT OTHZR DATAPAC RANDOM

NUMBER GENERATOR SUBROUTINES (NORRAN-—-NORMAL»
LOGRAN--LOGISTICs ZTCe) ALL MAKE USI OF INTERMEDIATE
OUTPUT FROM UNIRAN.
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c REFERENCES—-KRONMAL s *EVALUATION OF THE PSEUDO-RANDOM
c NORMAL NUMBER GENZRATOR', JOURNAL OF THT
c ASSOCIATION FOR COMPUT ING MACHINERY, 1964,
c PAGES 357-363.
c --HAMMERSLEY AND HANDSCOMB, MONTE CARLO METHODS,
o 1964, PAGE 36.
c ~-JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE
c DISTRIBUTIONS--2, 1970, PAGES S57-74.
c WRITTEN BY--JAMZIS Jo FILLIBEN
C STATISTICAL ENGINEERING LABORATORY (205.03)
C NATIONAL BURZAU OF STANDARDS
c WASHINGTON, De Ce 20234
C PHONE: 301-921-2315
c ORIGINAL VERSION——JUNE 1972,
C UPDATED --AUGUST 1974,
C UPDATSD --SEPTEMBER 1975,
c UPDATZD --NOVEMBER 197S.
C
C-——————--———-_—_---——--— —— e < ———— v —— T — T — —— - ——— ———— . -
C
DIMENSION X(1)
C
DATA DIVsK1,K2,K3,11+12/34359738368.0,4097,129,22182922491,2086735
10019,18575103187/
c
IPR=6
C
c CHECK THE INPUT ARGUMENTS FOR ERRORS
c
IF(NeLTo¢1)GOTOS0
GOTO090
50 WRITE(IPR, 5)
WRITE(IPRs47)N
RETURN
90 CONTINUE
5 FORMAT(1H , 91H¥**%* FATAL ZRROR--THZ FIRST INPUT ARGUMENT TO THE
1 UNIRAN SUBROUTINE IS NON-POSITIVE *%%%%)
47 FORMAT(1H , 3SH**%%k THE VALUE OF THE ARGUMINT IS I8  ,6H %*%%%)
C
C=====START POINT == = = = e e e e e e e e e e e
C
11=1SEED
1 2=JSEED
IF(ISTART«NZ+0)GOTO150
11=20867350019
12=18575103187
C
150 DO100E=1sN,2
I11=1ABS(I1%K1+1)
[2=1ABS({I2%K2+K3)*K2+K3)
U1=FLOAT(I1)/D1V
U2=FLOAT(I2)/DIV
X(1)=uU1
IF(1.EQ.N)GOTO100
X(1+1)=U2
100 CONTINUE
C

ISEED=11
JSEED=1I2
RETURN
END
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7. Appendix B.
Listing of FORTRAN Subroutines for Second Generator:

POLY?2

SET1

SET2

UNIRAN*

NORRAN

EQUAL

SORTM

SORTP
* For a listing of UNIRAN, refer to Appendix A.

SUBRCUTINL POLY2(MyKyNRCWsJISWsBETABSWeyBLLCFTyS3RIGHT,CSWeCLEFT,
+ CRIGHT s ISWasMSWsEPSesRKSWsRESIDs ISEED s JSEED s PRBMAT s SUMRE S s KKM1 ¢ M2,
+ LOC)

k3 ok kol ok ko o ok ok ko ook ok ke ko ok sk ok ok ot ok ok ok ok ok ok ook ok ok ok ak kok 3k ok 33k sk ok 30k kol ok ok 3k ok ok Ok o ok ok ok %
DESCHIFTION:

THIS SUBFQOUTINE GeNERATES DISCRETE PCLYNOMIAL AFPIOXIMATICN
PROBLEMS WHICH CAN Ot USED IN THE TESTING AND EVALUATION OF
ALGCRITHMS FCik L1 (LEAST ABSCLUTE DEVIATION) CUFVE FITTING.
THE USER CAN SPECIFY THLC FOLLOWING CHARACTERISTICS CF THE
GENEXATED DATA SETS:

FRCBLEM SIZE

THE UNIQUE SOLUTION VECTCR TO THE GENERATED L1 PRUBLEM
THE REAL INTERVAL CVEF WHICH THE APPROXIMATICN IS DEFINED
THE DISTAIBUTICN CF THE OBSERVATICN FOINTS WITHIN THE
INTERVAL

* THE DISTRIBUTICN GF THE RESIDUALS

LR

THE PCOLYNOMIAL AFPROXIMATICN PROBLEM CONSIDERED HEPE IS TO
APPRCXIMATE (IN THE L1 NG&M) A DISCRETE SETYT OF DATA VALUES Y
BY A PCLYNCMIAL OF SPECIFIED DEGHEL COVEA SOME INTERVALe FCR
I=1,KKM1 X(I) IS AN OBSEXVATIUN POINT IN THE INTEXVAL AND
Y{I) IS THE DATA VALUE CORRESPONDING TO X{(I)e THE VALUES FCR
X(I) AND Y(I) ARE SELECTED IN SUCH A MANNES TO GUAF ANTEE CPT-
IMALITY OF THE SCLUTION VECTOR BETA IN THE GENERATED PROBLEM,.

FCR CONVENIENCE, THE Y-VALUES AND THE DESIGN MATRIX CCNTAINING

THE APPZROPIIATE POWERS OF THE OBSERVATICN PUOINTS X(I) AZE BCTH
SETURNED IN A SINGLE MATRIX *PRBMAT'e THE FIRST COLUMN OF PEBMAT
CCNTAINS THE Y-VALUES AND THE REMAINING CCOLUMNS CCNTAIN THE DESIGN
MATE I X

NOTE
* A CONSTANT TERM IS INCLUDED IN THE APPROXIMATING POLYNOMIAL

 THE CBSERVATIUN PCINTS ARE ARRANGED IN INCREASING CRDER, BY
SR0OWs WITHIN THE GENET ATED PROBLEM MATAIX

* THE PRUOCEDURE GIVEN HERE GENLRATES AN L1 APPRCXIMATION
PRCBLEM HAVING A KNCWN AND UNIQUE SOLUTION VECTOX BETA.
TWO METHODS OF GUARANTEEING THESE PFCPEXRTIES ARE PEOVIDED
IN SUBRCUTINES SET1 AND SET2 WHICH GENEFRATE THE OBSERVA-
TICON POINTS FCA THE INACTIVE CONSTRAINTS. THE METHOD USED
IN SUBRCUTINE SET2 UTILIZES A RANDCM NUMBER GENERATCR AND
THUS CAN CREATE ODIFFERENT L1 PRUOBLEMS IN SUCCESSIVE XRUNS
HAVING THE SAME INFUT SETTINGS, WHEFEAS THE SAME PA0BLEM
WILL Bc REPROOLDUCzD WHEN USING SUBRCUTINE SET1e
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DEGREE OF THE APPROXIMATING POLYNOMIAL
INTEGER USED IN DETERMINING THE NUMBER OF INACTIVE
CONSTRAINTS TO THE PROBLEM
MAXIMUM NUMBER OF CBSERVATION PQOINTS
INPUT SWITCH USED IN THE SELECTICON CF TAE SOLUTION
VECTOR BETA, IF
= 1| PXRUDUCES A SCLUTION VECTOF WITH ELEMENTS DR AWN
FRCM A UNIFORM DISTXR ISUTION
= 0 USES THE SCLUTION VECTOT SPECIFIED EXPLICITLY BY
THE USER
USER SPECIFIED SUOLUTICN VECTCR TU THE GENERATED PROB-
LEM (IF JSw=0) OF DIMENSION M+1
INPUT SWITCH USED TO DEFINE THE INTEXVAL FSCM WHICH
ELEMENTS CF THE BETA VECTOR ARE SELECTED (WHEN JSw=1)
IF
= 1 USES ENDPUOINTS SUPPLIED BY USER TGO DEFINE THE
INTERVAL
= 0 SELECTS ENDPOUINTS 8Y DEFAULT SETTINGS
LEFT ENDPCINT OF THE INTERVAL USED IN SELECTING
ELEMENTS CF THE SOLUTION VECTCKR BETA (IF JUSw=3Sw=1)
RIGHT ENDPCINT OF THE INTERVAL USED IN SELECTING
ELEMENTS OF THE SOLUTICON VECTOF BETA (1IFf JUSW=BSwW=1)
INPUT SWITCH USED TG DEFINE THE INTERVAL FROM WHICH
OBSERVATICN FUINTS ARE SELECTED, IF
= 1 USES ENDPOINTS SUPPLIED BY USEZ TO DEFINE THE
INTERVAL
= 0 SELECTS ENDPQINTYS BY DEFAULT SETTINGS
LEFT eNOPCINT OF THL INTERVAL USED IN SELECTING (B-
SEXRVATION FPOINTS (IF CSw=1)
RIGHT ENDPCINT CF THeE INTERVAL USED IN SELECTING GB-
SEAVATION POUOINTS (IF CSw=1)
INPUT SWITCH WHICH DEFINES THE METHOUD OF GENERATING
OBSERVATION POINTS FOR THE INACTIVE CCONSTRAINTS, IF
= 1 PRODUCES EQUIDISTANT OBSERVATICON PCINTS 8Y
SET1
= 0 PFRODUCES NON-EQUIDISTANT OBSESVATION POINTS BY
SET2
INPUT SWITCH WHICH SPECTFIES DISTRIBUTION NF
OBSEFVATICH POGINTS Flyl THL ACTIVE CONSTRALNTS, LF
= 1 PRODUCES UUBSERVATICN PCINTS DRAWN FROM A
UNIFCxM DISTRIBUTICN
= 0 PRUODUCES OBSERVATION PCUINTS EQUALLY SPACED
CVER THE INTERVAL (THOUGH POSSIBLY PEFTURBED
BY A RANDCM AMOUNT IF EPS > 0)
FRACTIUON CF THE SUBINTERVAL LENGTH USED IN PEF -
TURBING EQUALLY SPACED GC3SERVATICN PCINTS FOFR
THE ACTIVE CONSTRAINTS (1F MSw=0)
INPUT SwWITCH WHICH SPECIFIES THE DISTRIBUTION
OF THE (NCNZERO) RESIDUALS ASSOCIATED WITH THE IN-
ACTIVE CONSTRAINTS, IF
= 1 PRODUCES HESIDUALS DRAWN FECGM A UNIFORM DIS-
TRIBUTIGN
= 0 PRUDULES RESILDUALS DRAWN FROM A NORMAL DIS-

C

€

C

C INPUT AT GUMENTS:
C

(€ M ————
& K =———-
G

C NRCW =—-—
C JOW ———
C

<

C

<

C

< BETA —-
C

C BSWEESSS
C

C

C

C

C

C BISE T
C

C BRIGHT -
C

C CE ===
C

C

C

C

C CLEF <=
<

C CRIGHT -
C

C S ===
C

C

C

C

C

C MSw ---
C

C

C

C

C

C

C ERPSE=—s
C

C

C RISW—=—
C

C

C

C

C
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NOTE:

Y
m
w
—
C

[

ISEED

JSEED

* THE NUMBER OF ACTIVE CONSTRAINTS IS EQUAL TO M+1;

TRIBUTION
STANDARD DEVIATICN OF THE
(WHEN RSW=0),
AND LOWER

RESIDUAL DISTRIBUTION
CR ABSCLUTE VALUE OF THE UPPER
LIMITS OF THE UNIFORM RESIDUAL DIS-

TRIBUTICN (WHEN RSW=1)

FISST OF TwO INITIAL SEEDS FOF THE RANDCM
NUMBER GENERATCRS

SECCND OF TwC INITIAL SEEDS FOV THE ZANDOM
NUMBER GENERATCRS

THE

NUMBEF, OF INACTIVE CCNSTRAINTS IS EQUAL TO 2*%%(M+K+1)
FOF M eGEe 1 AND K oGEe O
* THE DEFAULT VALUE FOr EACH OF THE SWITCHES BSwWsCSW,ISW,

JSWeMSW,ESW

* WHEN EPS=0.,
TICN POINTS

RANGE

IS ZEXC

NO FEXTURBATICON CF EQUALLY SPACED OBSEFRVA-
IS PERFORMED (MSw=0)e OTHERWISE, A REASONABLE

IS ©0 < EPS < 0.5

OUTPUT ARGUMENTS?

BETA -—-

PR3MAT-

SUMIES—

KKM1 ==

M2 ———-
LGC

BSEEDR=
JSEED =

SOLUTICN VECTOR TCU THE GENERATED PRCBLEM GF
DIMENSION M1

THE GENERATED PROBLEM MATRIX WITH KKM1 RCWS
AND M2 COLUMNS

SUM CF THE ABSOLJUTE VALUES OF THE
CPTIMAL L1 SCOLUTICN

RESIDUALS IN THE

NUMBEA OF 20WS IN PRBMAT

NUMBER OF CCLUMNS IN PRBMAT

VECTOX OF DIMENSION M1 CONTAINING THE FOW LOCATIONS
OF THE ACTIVE CONSTRAINTS IN PFRCBLEM MATREIX FRBMAT

FIRST GOF TwC RANDOM SEEDS AVAILABLE UPON RETUEN
SECCND OF TWO RANDOM SEEDS AVAILABLE UPCON RETURN

RESTRICTIONS:

M MUST BE
K MUST BE
M+K MUST BE
N&XCW MUST BE eGEoe

eGEe 1

oGEe 0O

eLEe 8

M+1+2%%k (M+K+1)

ok 3 3% ok ok ko ok kak ok ak ook dk %k ok ok 3k kK i ok ok Ak ok ok ok a ok ko %k ok ke dak koK a3k ok 3k ok ook ok ik ok ok K Kk 3 ok ok ok 3ok kK

SUBPROGRAMS USED:

ABS
UNT RAN

NOF.RAN

SORTM -

— FORTXAN LIBRARY FUNCTICN

- SUBFRGCGUTINE TO GENERATE PSEUDC-FKANDOM
A UNIFCFM DISTRAIBUTION OVEF [(0s11]

— SUBRCOUTINE TU GENERATE PSEUDOC-RANDCM
A NCRMAL DISTRIBUTION WITH MEAN ZEROC
DEVIATION EQUAL TO ONE

- SUBRCUTINE USED TO SCRT THE ELEMENTS OF A VECTOR
INTUC INCREASING CRDERe ALSG PRCUVIDES A MAPPING
(NPCS) F20M OLD POSITICN TO NEW (SORTED) POSITION

NUMBERS FRCM

NUMBERS FFOM
AND STANDARD
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SET1 —---- SUBKCOUTINE USED TO CALCULATE EQUIDISTANT OBSEA-
VATION PUINTS FO™ THE INACTIVE CONSTRAINTS

SET2 —---- SUBROUTINE USED TC CALCULATE NON-EQUIDISTANT
OBSEXVATION PCINTS FOF THE INACTIVE CONSTRAINTS

EQUAL --- SUBRCGUTINE TGO PRCDUCE OBSERVATIGCN PUINTS EQUALLY

SPACED CON [0s11s THOUGH FOSSIBLY PERTURBED BY A
RANDCM AMCUNT IF EPS > 0

LANGUAGE: ANSI FORETRAN (1366)
FEFERENCES:

KeLe HOFFMAN £ DefleSHIEF »*A TEST PROBLEM GENEFATOS FO¥F
DISCRETE LINEAR L1 APPROXIMATICN PRCBLEMS®', TO APPEAR IN
TRANSoe ON MATHe SOFTWARE

PeDoDOMICH & DeReSHIER *GENERATORS FOR DISCRETE FCLYNOMIAL
L1 APPROXIMATICN FROBLEMS?®

WRITTEN BY:

PAUL DOMICH & DCUGLAS SHIER
CENTEF FOR AFPLIED MATHEMATICS
NATICNAL SBUREAU OF STANDARDS
WASHINGTON DeCo 20234

JANUARY, 1979

k3 3ok ok ok ok koK ok ok 3k Ok 3k ok ok ok 3ok 3ok 3k 3k kR ok kR 3k K kK 3 ok Rk 3k ok ok ok %k ok 3k 3 ok 3k 3k kR ok 3k 3k Kk ok ok Xk ok ok

* START OF SUBROUTINE POLYZ2 x*x

INTEGER BSW,CSW,RSW,LCC(1)

REAL PRBMAT(NEOWs1) sB8ETA(1)

DIMENSIGCN X(521)5A(256+2)+sUU(521,10)sNPCUS(521)

DOUBLE PRECISICN HCLDeHOLD1 o XPT s XPT1sR1sF2+sDXsDX1+sDSUM
DATA CLFTWCRIT/-1e0+s1.07

INITIALIZATICN: THE GENERATED PROSLEM WILL HAVE M1 ACTIVE
CCNSTRAINTS, KK INACTIVE CONSTRAINTS WITH POSITIVE RESIDUALS,
AND KK INACTIVE CONSTRAINTS WITH NEGATIVE RESIDUALS

IOUT=6
DSUM=0.300
M1l=M+1
M2=M+2
MK=M+K
KK=2%%MK
KK2=KK+KK
KM]l =KK+M1
KKM1=KK2+M1

CHECK THE CCNSISTENCY OF THE INPUT PA-SAMETEERS

IF(M oLToe 1 ¢0R0 K olLTe 0) GOTO 9990
IF(MK «GTe 9) GOTC 6591

IF(KKM1 oGTo NRGW) GOTO 9591

1F (BLEFT GTe. BRIGHT) GOTC 1001
IF(CLEFT oGTe CRIGHT) GUTO 1002
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19001

1002

1003

o000

[aN NN e}

2000
2001

(s aNalaie]

3390

3001

o000

000

GOTC 1903
XHOLD=BLEFT
BLEFT=RTIGHT
BRIGHT=XHOLD
GOTO 1000
XHOLOD=CLEFT
CLEFT=CRIGHT
CRIGHT=XHOLD
CONT INUE

DETERMINE INTERVALS USLD IN P=CULEM BY SPECIFICATION CR DEFAULT
VALUES

IF(3SW eNEe 1)BLEFT=8BLFT
IF(BSW eNEe 1)BRIGHT=4RIT
IF(CSW oNEo 1)CLEFT=CLFT
IF(CSW oNEs 1)CRIGHT=CKRIT
BINTE! =BRUIGHT-BLEFT
CINTER=CRIGHT-CLEFT

DETERMINE THE SCLUTION VECTCR BY USER SPECIFICATION OR BY
FANDCM GENEXATION

IF(JSW oNEe 1) GOTU 2001

CALL UNIRAN(M1 914X ISEED,JSEED)
DO 20C0 I=1,M1
BETA(I)=BLEFT+X(I)*BINTER
CONTINUE

CCNTINUE

CALCULATE THE M1 CBSCRVATICN POINTS CORRESPONDING TO THE
ACTIVE CONSTRAINTSe NOTE: ACTIVE CONSTRAINTS APE DEFINED
TO HAVE IDENTICALLY ZckO RESIDUALS

IF(MSW oEQe 1)CALL UNIRAN(M1 414X, ISEED,JSEED)
IF(MSW oNEo 1)CALL EQUAL(M14+XsEPSyISEEDsJSEED)
DO 3001 I=1,M1

HOLOG=BETA(M1)

UU(ILs2)=1e2

DX=16CDO

XPT=CLEFT+X(I)XCINTER

DO 300 J=1.M

N=M1-J

HOLO=8ETA(N) +XPT*HOCLD

DX=XPT*DX

UU(I,J42)=0X

CONT INUE

UU(TI+1)=HOLD

CONT INUC

CALCULATE THE OBSEARAVATICN PCINTS CORKXESPONDING TO THE INACTIVE
CONSTRAINTS BY *SET1®* (EQUIDISTANT) OR *SET2*' (NON-CQUIDISTANT)

IF(ISW «EQe 1)CALL SET1(KKsA)
IF(ISW oNEe 1)CALL SET2(KKsMK, Ay ISEED, JSEED)

CALL FANDCM NUMBET GENEVT ATOR FOF CALCULATION OF RESIDUALS
AND GENLRATE THE DESIGN MATRIX FOR THE INACTIVE CONSTRAINTS
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40C90

4001

aAo6n

5000

5901
5302

S¢C3

99990

$991

9969

+

+

IF (xSW oEQe 1)CALL UNIFAN(KK2,1sXsISEEDJSEED)
IF(RSW oNEe 1)CALL NORRAN{KKZ2, 19X, ISEED,JSEED)

DO 4001 [=M2,KM1
N=1[-M1

IKK=T1+KK
NKK=N+KK
HOLD=BETA(M1)
HOLD1=HCLD
UU(TI+2)=1e0
UU(IKKs2)=1.0
DX=1+00D00
DX1=160D0

XPT=CLEFT+A{N»s1)*CINTER
XPT1=CLEFT+A(N,2)*CINTEF.

DC 420G0 J=1.M
L=M1-J

HOLD=BETA(L) +XPT*HCLD
HOLD1=BETA(L) +XPT1%HOLD1

DX=XPT*DX
DX1=XPT1%DX1
UU(I,J+2)=DX
UU(IKK,J+2)=DX1
CONT INUE

CALCULATE THE RESIDUALS AND AULD TO Y-VALUES

R1=ABS(RESID*X(N))
R2=ABS(FPESID®*X{(NKK))

HOLD=HCLO+R1
HOLD1=HCLD1-R2
DSUM=DSUM+R1+R2
VUCTIs1)=HOLD
UU({ IKK+1)=HOLD1
CONT INUE
SUMRES=DSUM

SCORT THE OBSERVATION POINTS,

IN PEBMAT

DO S000 I=1,KKM1
X(I)=UuUl(l,3)
CONTINUE

CALL SCRTM(X,KKM1 4 NPGS)

DO £002 I=1ekKM1
KLGC=NFCS(1)
DG 5001 J=1,M2

PEBMAT(KLOC»J)=UU(I,5J)

CONTINUE
CONTINUE

DO SCC3 I=1,M1
LCOC(I)=NR0S(I)
CONTINUE

GOTO $9%9

WRITE(ICUTs1) MoK

GOTC 9699

WRITE(ICUT,2) MsK

REARRANGE UU AND STCRE THE RESULT

FCEMAT(10X»1SHINPUT VALUE OF M

THILLEGAL)

FORMAT (10X 20HINPUT VALUES GF ™M

218H AVAILABLE STCRAGE)

EETURN
END
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SUBROUTINE SET1{(KK»sA)

C
€ % 3 3k Jooke ok ok 3k ok akok kol ok ok ok ok %k o 3k ok B ok koK ok ok 3k 3k ok ok 30Ok sk 3k ook ok sk 3k ko ak 3k koakoak ok sk ok 4 ok ok 0k ok ok %k koakok ok kX
C
C THIS SUBROUTINE CREATES A SET OF 2%KK RZAL NUMBERS EQUALLY
C SPACED ON [0e1]e THIS SET IS OIVIDED INTO TWC SUBSETS OF KK
C ELEMENTS WHICH HAVE THE FOLLOWING PROPERTIZS: THEZ SUM DF THE
C P-TH POWERS OF ZLEMENTS IN THE FIRST SUBSET EQUALS THZ SUM OF
C THE P-TH POWERS OF ELEMENTS IN THE SECOND SUBSETs, FOR VALUES
C P = 0s 1y eees LOG2(KK)o
C
C THE VALUES OF THE ELEMENTS RANGE BETWZEN O AND 1, WITH THE
C SMALLEST VALUE IDENTICALLY ZERC AND THE LARGEST VALUE IDEN-
C TICALLY ONE,
C
C THE FIRST SUBSET 1S RETURNED IN THE FIRST CCOLUMN OF ARRAY A
C AND THE SECOND SUBSET IS RETURNED IN THZ SECOND COLUMNe
C
CER Rk Kk ko ke okk dok kokok Rk ok k kR kkk ok ks ok ok 3ok ok kok ok ok ok ok 3k ok Kk 3 ok gk ok ok ok ok ok sk okok kR kokok
C
DIMENSION A(256,2)
DOUBLE PRECISION XD
C

Chxx*%%x INITIALIZE THE FIRST TWO ELEMENTS OF EACH SUBSET
C
A(1+,1)=0.0
A(l1:2)=1.0
A(2+1)=3.0
A(2,2)=2.0
N=2
C
C*kx*kkx CALCULATE THE REMAINING ELEMENTS OF THE TWO SUBSETS
C
IF(KKeEQe2) GO TO 120
DO 100 I[=3sKK
M=I-(2%%x(N-1))
A(I,+1)=A(M;2)+FLOAT(2%%N)
A(I+2)=A(Ms1)+FLOAT(2%%*N)
IF ((2%%k(N-1)) <EQe M) N=N+1
100 CONTINUE
C
C*¥%x*k% STANCARDIZE THE VALUES TO LIE IN [0,1]
C
XD=2%KK-1
DO 110 I=1,KK
A{Is12)=A(L-1)/XD
A(I-2)=A(1,2)/XD
110 CONTINUE
120 RETURN
END
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SUBROUTINE SET2(KKsMKs Ay ISEED+» JSEED)

C
€ %k 3k koK e ko ok Rokak gk ko ok 3k ok ok ok ok ko 3ok akok ok ok ok ok 3k ak ok ok ok 3ok 3ok 3ok ok sk ok ok ok a0k kol ok 3 ok ok kol ok sk ok
C
C THIS SUBROUTINE CREATES A SET OF 2*%KK REAL NUMBERS UNEQUALLY
C SPACED ON [0s1]s THIS SET 1S DIVIDED INTO TWO SUBSETS OF KK
C ELEMENTS WHICH HAVE THE FOLLOWING PROPERTIES: THE SUM OF THE
C P-TH POWERS OF ELEMENTS IN THE FIRST SUBSET EQUALS THE SUM OF
C THE P-TH POWERS OF ELEMENTS IN THE SECOND SUBSEY, FOR VALUES
C P = 0s 19 eees LOG2(KK).
C
C THE VALUES OF THE ELEMENTS RANGE BETWEEN O AND 1, WITH THE
C SMALLEST VALUE IDENTICALLY ZERO AND THE LARGEST VALUEZ IDEN-
C TICALLY ONEe.
C
C THE FIRST SUBSET IS RETURNED IN THE FIRST COLUMN 0OF ARRAY A
C AND THE SECOND SUBSET IS RETURNED IN THE SECOND COLUMNe
C
C ok 2k sk ok ok 3k 3 3k 3k ok 3k ok 3Kk K o dk sk ko kok ok kol 2k ko ok ok ok sk dkook ok ok ok K sk sk 3ok koo ok ok ak 3k ok ok ok ok ok ok ok ok ko ok
C

DIMENSION A(256,2) s X(9)

DOUBLE PRECISION XHIGH

A{1+1)=0.0

MK1=MK+1

M=1

1=1
C
Cxx%x%% SELECT ELEMENT A(1+2) RANDOMLY
C

CALL UNIRAN(MK1:1+XsISEEDsJSEED)

A(l,2)= X(I)

XHIGH=X(1)

I=1+1
C

C*x%x%¥ CALCULATE THE REMAINING ELEMENTS OF THE TWO SUBSETS
C

DO 100 J=2,.KK

A{Js1)=A(M,2)#+X(I)

A{Js2)=A(Ms1)+X{1)

IF (XHIGH «LTe A{(J»2)) XHIGH=A(J,2)

IF (XHIGH oLTe A{Js1)) XHIGH=A{(J,1)

IF (FLOAT(J)/72.0-FLOAT(M) <GEe. 0.1) GOTO 90

M=0
I=1+1
90 CONTINUE
M=M+1
100 CONTINUE
C
C*%*%%% STANCARDIZE THE VALUES YO LIZ IN (0.1
C

DO 110 I=1,KK

A{ls+1)=A(I+1)/XHIGH

A(I+2)=A(1,2)/XHIGH
110 CONTINUE

RETURN

END
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SUBROUTINE NODRRAN(Ns ISTART ¢ X9 ISEED+JSEZ=D)

PURPOSE--THIS SUBROUTINE GENERATES A RANDOM SAMPLE OF SIZE N
FROM THE THE NORMAL (GAUSSIAN)
DISTRIBUTION WITH MEAN = 0 AND STANDARD DEVIATION = 1.
THIS DISTRIBUTION IS DEFINED FOR ALL X AND HAS
THE PROBABILITY DENSITY FUNCTION
FIX) = (1/SQRT(2*%PI))I*¥EXP{(—X*kX/2) »

INPUT ARGUMENTS--N = THE DESIRED INTZGER NUMBER
OF RANDOM NUMBERS TO BE
GENERATZDe

-—ISTART = AN INTEGER FLAG CODEZ WHICH
{IF SET TO 0) WILL START THE
GENERATOR OVER AND HENCE
PRDDUCE THE SAME RANDDOM SAMPLE
OVER AND OVER AGAIN
UPON SUCCESSIVE CALLS TO
THIS SUBROUTINEZE WITHIN A RUN; OR
(IF SET TO SOME INTEGER
VALUE NOT ZQUAL TO O»
LIKEs SAY, 1) WILL ALLOW
THZ GENERATOR TO CONTINUZ
FROM WHERE IT STOPPED
AND HENCE PRODUCE DIFFEREINT
RANDOM SAMPLES UPON
SUCCZESSIVEZ CALLS TOC
THIS SUBROUTINE WITHIN A RUN.
OUTPUT ARGUMENTS--X = A SINGLE PRECISION VECTOR
(CF DIMENSION AT LZAST N)
INTO WHICH THE GENERATED
RANDOM SAMPLE WwILL BE PLACED.
OUTPUT——-A RANDCM SAMPLE OF SIZE N
FROM THE NORMAL DISTRIBUTION
WITH MEAN = 0 AND STANDARD DEVIATION = 1.
PRINTING——-NONE UNLESS AN INPUT ARGUMENT ERROR CONDITEON ZXISTSe.
RESTRICTIONS--THEREZ IS NO RESTRICTION ON THE MAXIMUM VALUE
OF N FOR THIS SUBROUTINE.
OTHER DATAPAC SUBROUTINES NEEDED-—UNIRAN.
FORTRAN LIBRARY SUBROUTINES NEEDED——ALOG, SQRTs SIN, COS.
MODE OF INTZRNAL OPERATIONS-—-SINGLE PRZECISION.
LANGUAGE--ANSI FORTRAN.
METHOD--BOX-MULLER ALGORITHM,.
REFERENCES--BOX AND MULLFP *A NOTE ON THE GENERATION
OF RANDOM ! uxMAL DEVIATES's JDURNAL OF THE
ASSOCIATION FOR COMPUTING MACHINZIRY, 1958,
PAGES 610-611.
=-TOCHER+ THE ART OF SIMULATION,
1963, PAGES 33-34.
—-HAMMERSLEY AND HANDSCOMB, MONTE CARLO METHODS,
1964, PAGE 39.
—=JOHNSON AND KOTZ, CONTINUOUS UNIVARIATE
DISTRIBUTIONS—--1, 1970, PAG:ZS 40-111.
WRITTEN BY--JAMES Je. FILLIBEN
STATISTICAL ENGINEERING LABORATORY (205.03)
NATIONAL BUREAU OF STANDARDS
WASHINGTONs De Ceo 20234
PHONE: 301-921-2315
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C ORIGINAL VERSION--JUNE 1972,
C UPDATED -—-SEPTEMBER 1975,
C UPDATED —-—-NOVEMBER 167S5.
C UPDATED —-=-JuULYy 1976,
C
C - —— o s - ———— e > o
C
DIMENSION X(1)
DIMENSION Y({(2)
DATA PI/3.14159265358979/
C
IPR=6
C
C CHECK THE INPUT ARGUMENTS FOR ERRORS
C
IF(NeLTo1)GOTOS50
GOTO90
S50 WRITE(IPR, S)
WRITE(IPR»47)N
RETURN
90 CONTINUE
S FORMAT(1H », S1lH*%*%%x%x FATAL ERROR--THEZE FIRST INPUT ARGUMENT TO THE
1 NORRAN SUBROUTINE IS NON-POSITIVE *%xxXx*¥x)
47 FORMAT(1H , 35SH***x%%x THE VALUE OF THE ARGUMENTY IS ,I8 2 6H ¥ kkxk)
C
C—=—~=START POINT—————-——— = = = = S
C
C GENERATE N UNIFORM {(0,1) RANDOM NUMBZRS;
C THEN GENERATE 2 ADDITIONAL UNIFORM (0,1) RANDOM NUMBZRS
C (TO BE USED BELOW IN FORMING THE N-TH NORMAL
C RANDGCM NUMBER WHEN THE DESIRED SAMPLE SIZE N
C HAPPENS TO BE 0DD).
C
CALL UNIRAN(Nj; ISTART s Xs iISEED+ JSEED)
CALL UNIRAN(2,1+Y,ISEED,JSZEED)
C
< GENERATE N NORMAL RANDCM NUMBERS
C USING THE BOX-MULLER METHOCD.
C
D0O200I=1+N,2
IP1=1+1
ul=x(1)
IF(1.EQeN)GOTO210
u2=x(1IP1)
GOT0220

210 U2=Y(2)

220 ARG1=-2,0*AL0OG(U1)
ARG2=2.,0%PI*U2
SQRT1=SQRT{ARG1)
Z1=SQRT1*COS{ARG2)
Z2=SQRT1*SIN(ARG2)
X(1i)=21
IF(1EQeN)GOTO200
X{1pP1)=22

200 CONTINUE

RETURN
END
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C

SUBROUT INE EQUAL (M1+XeEPS ISEEDJSEED)

€ ¥k et d ok ook oKk ok koK dk ko ok ok ok ook ok ko ok ok ok koo 3ok kol ok ok ko ook ok ak ok ok 3ok ok ko ok 3k ok Kok ok ok ok koK

(sl aNeNaN s NaNaNaNalal

1000
2S5

THIS SUBROUTINE GENERATES EQUALLY SPACED OBSERVATION POINTS
THOUGH POSSIBLY PERTURBED BY A RANDOM AMOUNT (IF EPS oNEe 0.0).
THE VALUES OF THESE OBSERVATION POINTS RANGE BETWEEN 0 AND
1+ WITH THE SMALLEST VALUE IDENTICALLY ZERO AND THE LARGEST
VALUE IDENTICALLY CNEe THE PERTURBATION APPLIED (WHEN EPS
+«NEs 0.0) IS GENERATED FROM A UNIFORM PROBABILITY DISTRIBUTION.

ok 3k koK kK ok K K ok ko ok ok ok ok koo Kok skl ook ak ok ak 3 okok ok ok ok ok ok ook fok ok ko ok ok ok ook ook ok ok ok ok Ok ok ok X

REAL X(1)

DCUBLE PRECISION HEPSA

M=M1-1

CALL UNIRAN(M1,14XsISEED, JSEED)
X(1)=0.0

X(M1)=140

IF(M .LT. 2) GOTO 25
H=10/FLOAT(M)

EPSA=H*EPS

DO 1000 I=2.M
X{I)=H*FLOAT(I-1)+EPSA*{2,0%X([)-1.0)
CONTINUE

RETURN

END

SUBROUTINE SORTM(XsNesNPOS)

(€ ko ok o ok ok ok o kol ok ok ok kK e ok ok OOk kK ok ok ik ko ok ok ok kK ok ok ok ok ak 3k bk ook ok koK ok koK Ok ok Ok Kok ok % ok k

NnOHKOHAOOHOO

10

THIS SUBROUTINE SORTS THE INPUT SINGLE-PRECISON VECTOR X WITH

N ELEMENTS, AND RETURNS IN X THE ELEMEINTS SORTED INTG ASCENDING
ORDER. THE VECTGR NPOS GIVES THE MAPPING FROM THE ORIGINAL
POSITION IN X TO THE NEw SORTED POSITION. THAT ISe X(I) wILL
NOW CORRESPOND TO THE NPOS(I) - TH SMALLESY ELEMENY OF THE
VECTOR X

A K ok A &k ok ko koK kK ok K ok & k0K KOk 0Kk Ok 30K k3 ok 3ok ak 3okk ok ok ok ook ok ok ok ok K ok kaokok Kok ok

DIMENSION X(1)sNPDS(1),XPDLS(600)
CALL SORTP{XsNsXyXP0OS)

D0 10 [=1,N

NX=XP0OS(1)+0.00005

NPOS (NX)=1I

CONTINUE

RETURN

END
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SUBROUTINE SORTP(XsNeYs XPOS)

PURPOSE--THIS SUBROUTINE SORTS (IN ASCENDING DRDER)
THE N ELEMENTS OF THE SINGLE PRECISION VECTOR X,
PUTS THE RESULTING N SORTZD VALUZES INTO THE
SINGLE PRECISION VECTOR Y,
AND PUTS THE PODSITION (IN THZ ORIGINAL VECTOR X)
OF EACH OF THE SORTED VALUES.
INTO THE SINGLEZ PRECISION VECTOR XPOSe.
THIS SUBRCUTINE GIVES THE DATA ANALYST
NOT ONLY THE ABILITY TO DETZRMINZ
WHAT THE MIN AND MAX {FOR EXAMPLE)
OF THE DATA SET ARZEs BUT ALSOC
WHERE IN THE ORIGINAL DATA SET
THE MIN AND MAX OCCUR.
THIS IS ESPECIALLY USEFUL FOR
LARGE DATA SETSe

INPUT ARGUMENTS--X = THE SINGLE PRECISION VECTOR OF
OBSERVATIONS TO BE SORTED.
==y = THE INTEGER NUMBER OF OBSERVATIONS
IN THE VECTOR Xe
OUTPUT ARGUMENTS--Y = THE SINGLE PRECISION VECTOR

INTO WHICH THE SORTED DATA VALUES
FROM X WILL BE PLACED.
-=-XPOS = THE SINGLE PRECISION VECTOR
INTO WHICH THE POSITIONS
(IN THE ORIGINAL VECTOR X)
OF THE SORTED VALUES
WILL BE PLACED.
OUTPUT—--THE SINGLE PRECISION VECTOR XS
CONTAINING THE SORTED
(IN ASCENDING ORDER) VALUZS
OF THE SINGLE PRECISION VECTOR X, AND
THE SINGLE PRECISION VECTOR XPLS
CONTAINING THZ POSITIONS
(IN THE DORIGINAL VECTOR X)
OF THE SORTED VALUEZS.
PRINTING—-NONE UNLESS AN INPUT ARGUMENT ERROR CONDITION EXISTSe.
RESTRICTIONS—-THE DIMENSIONS OF THE VZCTORS IL AND 11U
(DEFINED AND USED INTERNALLY WITHIN
THIS SUBROUTINE) DICTATZE THE MAXIMUM
ALLOWABLE VALUE OF N FOR THIS SUBROUTINE.
IF IL AND IU EACH HAVE DIMENSION K,
THEN N MAY NOT EXCEED 2%*(K+1) ~ 1.
FOR THIS SUBROUTINE AS WRITTEN, THE DIMENSICNS
OF IL AND IU HAVE BZEN SET TO 36.
THUS THE MAXIMUM ALLOWABLE VALUE OF N IS
APPROXIMATELY 137 BILLIOGN.
SINCE THIS EXCEEDS THE MAXIMUM ALLOWABLE
VALUE FOR AN INTEGER VARIABLE IN MANY COMPUTERS,
AND SINCE A SORT OF 137 BILLION ZLEMENTS
IS PRESENTLY IMPRACTICAL AND UNLIKELY,
THEN THERE 1S NO PRACTICAL RESTRICTION
ON THE MAXIMUM VALUE OF N FOR THIS SUBROUTINE.
(IN LIGHT OF THE ABOVEs, ND CHECK OF THF
UPPER LIMIT OF N HAS BEEN INCORPORATED
INTO THIS SUBROUTINE.)
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OTHER DATAPAC SUBROUTINES NEEDED-—NONZ.
FORTRAN LIBRARY SUBROUTINES NEEDED——NONEe
MODE OF INTEZERNAL OPERATIONS—--SINGLE PREZCISION.
LANGUAGE——-ANSI FORTRAN.
COMMENT--THE SMALLEST ELEMENTY OF THE VECTOR X
WILL BE PLACED IN THE FIRST POSITICN
OF THE VECTOR Y,
THE SECOND SMALLEST ELEMENT IN THE VICTOR X
WILL BE PLACED IN THE SECOND POSITION
OF THE VECTOR Y,
ETC.
COMMENT--THE POSITION (1 THROUGH N) IN X
OF THE SMALLEST ELEMENT IN X
WILL BE PLACED IN THE FIRSYT POSITION
OF THE VECTOR XPOS»s
THE POSITION (1 THROUGH N) IN X
OF THE SECOND SMALLEST ELEMENT IN X
wiLL BE PLACED IN THZ SECOND POSITION
OF THE VECTOR XPOS,
ETCe
ALTHOUGH THESE POSITIONS ARE NECESSARILY
INTEGRAL VALUES FROM 1 TO N, IT IS TO BZ
NOTED THAY THEY ARE OUTPUTED AS SINGLE
PRECISION INTEGERS IN THE SINGLE PRECISION
VECTOR XPQOSe
XPOS IS SINGLE PRECISION SO AS TO BE
CONSISTENTY WITH THE FACT THAT ALL
VECTOR ARGUMENTS IN ALL OTHER
DATAPAC SUBROUTINES ARE SINGLZ PRECISION.
COMMENT--THE INPUT VECTOR X REMAINS UNALTERED.
COMMINT——-IF THE ANALYST DESIRES A SORT *IN PLACES®,
THIS IS DONE BY HAVING THE SAME
OUTPUT VECTOR AS INPUT VECTOR IN THE CALLING SZAUENCE.
THUS, FOR EXAMPLE, THE CALLING SEQUENCE
CALL SORTF{XsNsXsXPOS)
IS ALLOWABLE AND WILL RESULT IN
THE DESIRED *IN-PLACE®* SORTe.
COMMENT—-THE SORTING ALGORTHM USED HEREIN
IS THE BINARY SORTe.
THIS ALGORTHIM IS EXTREMELY FAST AS THE
FOLLOWING TIME TRIALS INDICATE,
THESE TIME TRIALS WERE CARRIED OUT ON THZ
UNIVAC 1108 EXEC 8 SYSTEM AT NBS
IN AUGUST OF 15974,
BY WAY OF COMPARISON, THE TIME TRIAL VALUES
FOR THE EASY-TO-PROGRAM BUT EXTREMELY
INEFFICIENT BUBBLE SORT ALGORITHM HAVE
ALSC BEEN INCLUDED--

NUMBER OF RANDOM BINARY SORT BUBBLE SORT
NUMBERS SORTED

N = 10 «002 SEC «002 SEC

N = 100 «011 SEC «045 SEC

N = 1000 «141 SEC 4,332 SEC

N = 3000 2476 SEC 37.683 SEC

N = 10000 1887 SEC NOT COMPUTED

REFERENCES—-—-CACM MARCH 1969, PAGE 186 (BINARY SORT ALGORITHM
BY RICHARD Ce SINGLETON).
—=CACM JANUARY 1970, PAGE S54.
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G ——CACM OCTOBER 1970s PAGE 624.
C —JACM JANUARY 1961, PAGE 41.
& WRITTEN BY--JAMES J. FILLIBEN
C STATISTICAL ENGINEERING LABORATORY (205.03)
C NATIONAL BUREAU OF STANDARDS
C WASHINGTONs D. Ceo 20234
C PHONE-—-301-921-2315
C ORIGINAL VERSION—-—JUNE 1972.
C UPDATED -——NOVEMBER 1975,
C
@ —— —
C
DIMENSION X{1).Y{(1).XPOS(1)
DIMENSION IU(36),1L(36)
C
C CHECK THE INPUT ARGUMENTS FOR ERRORS
G
IPR=6
IF{NeLTe1)GOTOS50
IF(Ne.EQe1)GOTOSS
HOLD=X(1)
DO601=2+N
IF(X(1)«NE.HOLD)GOTO90
60 CONTINUE
WRITE(IPRs 9)HOLD
D061 I=1N
Y{I)=X(I)
XPOS(I)=1
61 CONTINUE
RETURN
S50 WRITE(IPR,s15)
WRITE(IPRL,4TIN
RETURN
SS WRITZ(IPR,18)
Y{1)=x(1)
XP0OS(1)=1.0
RETURN
90 CONTINUE
9 FORMAT(1H +108H%*%%%% NON-FATAL DIAGNOSTIC--THE FIRST INPUT ARGUME
INT (A VECTOR) TO THE SORTP SUBROUTINE HAS ALL ELEMENTS = +E515.8,6
1H kkkkx%)
15 FORMAT(1H » SlH***%x FATAL ERROR——THE SECOND INPUT ARGUMENT TO THE
1 SORTP SUBRDUTINE IS NON-POSITIVE *xkk¥xx)
18 FORMAT(1H +100H***x%¥ NON-FATAL DIAGNOSTIC--THE SECOND INPUT ARGUME
INT TO THE SORTP SUBROUTINE HAS THE VALUE 1 *xXx¥%x¥%)
47 FORMAT(1H » 3SH*%x%%x THE VALUE OF THE ARGUMENT IS ,I8 s 6H **¥¥%%x%)
C
C-———=START POINT-—- e = e
C
C COPY THE VECTOR X INTO THE VECTOR Y
DO100I=1sN
Y{I1)=x(1)
100 CONTINUE
C
C DEFINE THE XPOS (POSITION) VECTOR. BEFORE SORTING, THIS wiLL
C BE A VECTOR WHOSE I-TH ELEMENT IS EQUAL TO 1.
C

DC150I=1.N
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(a2 N3]

150

200

250

305
310

320

330

340

350

XPOS{I)=1
CONTI NUE

CHECK TO SEE IF THE INPUT VECTOR

NM1=N-1

D02001I=1+NM1

IP1=1+1
IF(Y(I)eLEL.Y(IP1))GOTD200
GOTO0250

CONTINUE

RETURN

M=1

1=1
J=N
IF(I «GE+J)GOTO370

(e I T T}

=1

MID=(I+J)/2
AMZD=Y(MID)
BMED=XPOS(MID)
IF(Y(I)elLE«AMZD)GOTO320
Y(MIDI=Y(I)
XPOS(MID)=XPOS(I)
Y(I)=AMED

XPOS(I)=BMED
AMED=Y(MID)
BMED=XPOS(MID)

L=J

IF(Y(J) .GE.AMED)GOTD340
Y{MID)I=Y(J)
XPOS{MID)I=XPOS(J)
Y{J)=AMED

XPOS( J)=BMED
AMED=Y(MID)
BMED=XPOS(MID)
IF(Y(I)eLE.AMED)GOTO340
Y(MID)=Y(I)
XPOS(MID )=XPOS(I)
Y{I)=AMED

XPOS(I)=BMED
AMED=Y(MID)
BMED=XPOS{(MID)
GOT0340
Y(L)=Y(K)
XPOS(L)=XPOS(K)
Y(K)=TT

XPOS(K)=ITT
L=L-1
IF(Y(L).GT.AMED)GOTO340
TT=Y(L)

ITT=XPOS{L)
K=K+1
IF(Y(K)LT.AMED)GOTO350
IF(KeLESL)GOTO330
LMI=L~-1

JMK=J~-K
IF(LMI.LE.JMK)GOTO360
IL(M)=I
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360

370

380

390

395

IU(M)=L

I=K

M=M+1

GOTO0380

IL(M)=K

IU(MI=Y

J=L

M=M+1

GOTO0380

M=M-1
IF(MeEQ.O0)RETURN
I=IL{(M)

J=I1U(M)

JMI=0~-I
IF(JMI.GE.11)GOTO310
IF(I1.EQel1)GOTO305
i=1-1

I=1+1
IF(IEQ.J)GOTO370
AMED=Y(I+#1)
BMED=XPOS(1I+1)
IF(Y{I)eLEAMEDIGOTO390
K=I

Y(K+1)=Y(K)
XPOS(K+1)=XPOS(K)
K=K-1
IF(AMED.LT.Y{(K))GOTO395
Y (K+1 )=AMED
XPOS(K+1)=BMED
GOT0390

END
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