JOURNAL OF RESEARCH of the National Bureau of Standards Vol. 84, No. 6, November–December 1979

Molecular Dynamics Study of Liquid Rubidium and the Lennard-Jones Fluid

Raymond D. Mountain and Steven W. Haan*

Center for Thermodynamics and Molecular Science, National Bureau of Standards, Washington, DC 20234

July 11, 1979

Molecular dynamics calculations were made for three thermodynamic states of a model of liquid rubidium and for two states of the Lennard-Jones fluid in order to investigate the influence of density, temperature and interatomic potential on the spectra of density fluctuations in these fluids. Here the results for the intermediate scattering function, the radial distribution function, the velocity autocorrelation function and the transverse momentum autocorrelation function are presented in tabular form. The procedures employed in this study are discussed and the major features of these functions are described.

Key words: Intermediate scattering function; Lennard-Jones liquid; liquid rubidium; molecular dynamics; radial distribution function; transverse current correlation function; velocity autocorrelation function.

1. Introduction

One of the most important ways of studying collective effects in liquids is the observation of density fluctuations [1].¹ These can be observed experimentally using inelastic coherent neutron scattering. Molecular dynamics computer simulations also provide a way of studying density fluctuations, since the simulations allow one to calculate the fluctuations in model systems. Studies using these techniques have revealed a striking difference between the dynamical properties of liquid rubidium and the rare gas fluids: liquid rubidium has been found to support sound modes with wavelengths only $1^{1}/4$ times the interparticle separation, both experimentally [2] and in simulations [3], while the rare gas liquids [4] and the Lennard-Jones liquid [5] cannot support sound waves with wavelengths less than four times the interparticle separation.

We have used molecular dynamics to study the properties of these two systems — simulated rubidium and the Lennard-Jones fluid. The liquid states which we studied were chosen so that we could determine the relative importance of the density, the temperature, and the interatomic potential as the variables which could be responsible for the remarkable difference between these fluids. Our conclusion was that the interatomic potential is the main source of this difference. The analysis which led to this conclusion is presented in ref. [6].

In this article we present our results for various quantities describing the microscopic properties of these liquids, as well as tabulated values of the functions considered in ref. [6]. The quantities which we have evaluated are: $g_2(r)$, the

pair correlation function; F(Q,t), the intermediate scattering function; $\psi(t)$, the single particle velocity autocorrelation function; and $C_T(Q,t)$, the time autocorrelation of the transverse momentum current. An analysis of the relative motion of pairs of atoms, which is based on these molecular dynamics coordinates, is presented in ref. [7].

We studied a relatively small system of 250 atoms. This means that some details—for example the line shape of the sound modes—were not properly accessible in this study. On the other hand, using a smaller system made it feasible to perform more calculations, so that we could systematically vary the density and temperature.

The states which we examined can be specified by giving the reduced density and temperature. The reduced density is defined by

$$n^* = N\sigma^3 / V, \tag{1}$$

where N atoms are in volume V and the length σ corresponds to the smallest zero of the pair potential. The reduced temperature is defined by scaling the temperature with the potential well depth ϵ ,

$$T^* = k_B T/\epsilon, \qquad (2)$$

where k_B is Boltzmann's constant. The three states of rubidium which we simulated are listed in table 1. These were selected to complement Rahman's investigation of the state with $n^* = .905$ and $T^* = .793$. [3] The two Lennard-Jones states which we examined, listed in table 2, were selected to complement the rubidium simulation and the simulation of Levesque et al. [5], who studied the Lennard-Jones liquid with $n^* = .8442$ and $T^* = .722$.

We used the effective pair potential developed by Price et

^{*} NBS-NRC Postdoctoral Research Associate

¹ Figures in brackets refer to literature references at the end of this paper.

		TABLE 1.	Rubidium po	arameters	
State Label	<i>n</i> *	<i>T</i> *	$\epsilon/k_B(K)$	$\sigma(\text{\AA})$	Δt (s)
RB1	0.951	0.878	393	4.480	2.207×10^{-14}
RB2	.951	1.11	393	4.480	2.207×10^{-14}
RB3	.855	1.49	407	4.482	2.288×10^{-14}

TABLE 2. Lennard-Jones parameters. Δt assumes Argon mass and

parameters ($\sigma = 5.4A$ and $\epsilon = 120 \kappa_B$)										
State Label	<i>T</i> *	<i>n</i> *	Δt (s)							
LJ1	0.982	0.950	1.453×10^{-14}							
LJ2	1.31	.950	1.453×10^{-14}							

al. [8] to represent the interaction between the rubidium ions. Rahman [3] showed that this potential provides a faithful representation of density fluctuations in the liquid rubidium state which was studied by neutron scattering in ref. [2]. It is therefore likely that our results for the other states are also appropriate to the physical system. A brief description of how the potentials were constructed is in ref. [9]. In figure 1 we show the effective pair potential for rubidium at a reduced density $n^* = 0.855$. The potential used for rubidium at $n^* = .951$ would be almost indistinguishably different if it were plotted in figure 1. The other potential which we used, the Lennard-Jones 12-6, provides results which are generally taken to be typical of the rare gas liquids but are not those of any real liquid. The molecular dynamics calculations were performed on a collection of 250 particles with cubical periodic boundary conditions. The particles were assumed to interact through a pair-wise

additive potential truncated at about 2σ . The arrow in figure 1 indicates where the rubidium potential for density $n^* =$.855 was truncated. Newton's equations of motion for the 250 particles were solved using an iterative procedure developed by Tsai. [10] This scheme conserves the energy and the momentum of the system. The time steps used in the integration procedure are listed in tables 1 and 2. The time scale in table 2 is determined by assuming that the atoms have the atomic mass of Argon.

The input needed for a calculation includes the potential, the density, initial values for positions and velocities of the particles, and the energy. The energies were obtained from Monte Carlo calculations of the internal energy for the densities and temperatures of interest [11]. Initial values for the positions and velocities were obtained by taking values from an earlier liquid state simulation, rescaling the velocities, and integrating the equations of motion with the new potential until the kinetic energy stabilized around the desired value. We found this to be a good indication that equilibrium conditions have been achieved provided that spatially disordered initial positions were used. The positions and velocities resulting from this process were taken as initial conditions for our simulation. Each simulation consisted of 2000 time steps of length Δt . The coordinates and velocities were stored on magnetic tape for subsequent analysis.

The next section contains a description of how the quantities were constructed, tables of the results and a discussion of the major features of each function.

2. Results

2.1 Radial distribution function

We evaluated the equilibrium radial distribution function [12] for each fluid by determining the distance between each pair of particles (minimized by considering replicas of the particles as generated by the periodic boundary conditions). These distances were then sorted into bins of length 0.01σ . The bin counts were accumulated over 600 sequential time steps and then appropriately normalized. The results are presented in table 3. The number of counts in one bin varied from 10^4 to 10^5 so that the statistical errors are on the order of 1 percent. The largest r for which we could sensibly evaluate the pair correlation function $g_2(r)$, is one-half the period of the spatial boundary condition; this maximum is approximately 3.2σ for these densities.

The radial distribution functions for these fluids do not differ strikingly from each other. The only readily apparent difference is that $g_2(r)$ for a Lennard-Jones fluid shows a more rapid initial increase from zero and a sharper first maximum than the $g_2(r)$ for any of the rubidium states. This is a natural result of the harder core of the Lennard-Jones potential.

TABLE	3. RADIAL DISTRIBUTION FUNCTIONS.	R IS IN UNITS OF SIGMA,	
	STATE	STATE	STATE
R	RB1 RB2 RB3 LJ1 LJ2	R RB1 RB2 RB3 LJ1 LJ2	R RB1 RB2 RB3 LJ1 LJ2
0,70	0.000 0.000 0.001 0.000 0.000	1.54 0.534 0.599 0.694 0.540 0.588	2.38 0.827 0.877 0.958 0.788 0.832
0,72	0.000 0.000 0.001 0.000 0.000	1.56 0.547 0.610 0.707 0.560 0.590	2.40 0.810 0.866 0.941 0.792 0.817
0,74	0.000 0.001 0.003 0.000 0.000	1.58 0.550 0.620 0.714 0.574 0.611	2.42 0.803 0.847 0.923 0.788 0.812
0,76	0.000 0.004 0.009 0.000 0.000	1.60 0.583 0.651 0.718 0.605 0.643	2.44 0.796 0.848 0.924 0.783 0.826
0.78	0.000 0.010 0.028 0.000 0.000	1.62 0.615 0.672 0.716 0.641 0.663	2.46 0.804 0.843 0.914 0.796 0.836
0,80	0.005 0.020 0.051 0.000 0.000	1.64 0.652 0.693 0.735 0.673 0.698	2,48 0,786 0,853 0,922 0,793 0,836
0,82	0.015 0.048 0.104 0.000 0.000	1.66 0.695 0.723 0.756 0.719 0.744	2.50 0.792 0.837 0.916 0.803 0.854
0,84	0.038 0.112 0.178 0.000 0.001	1,68 0,729 0,750 0,778 0,768 0,796	2.52 0.796 0.855 0.914 0.815 0.868
0.86	0.092 0.209 0.289 0.000 0.007	1.70 0.762 0.802 0.795 0.814 0.844	2.54 0.825 0.877 0.915 0.837 0.884
0,88	0.185 0.332 0.442 0.001 0.023	1.72 0.810 0.823 0.827 0.865 0.884	2.56 0.842 0.891 0.909 0.870 0.885
0,90	0.342 0.533 0.609 0.013 0.064	1.74 0.865 0.879 0.879 0.917 0.920	2,58 0,865 0,896 0,924 0,887 0,908
0.92	0.565 0.798 0.832 0.089 0.240	1.76 0.937 0.920 0.898 0.962 0.978	2.60 0.869 0.908 0.926 0.915 0.928
0.94	0.841 1.090 1.062 0.346 0.671	1.78 0.983 0.972 0.907 1.030 1.025	2.62 0.895 0.929 0.936 0.932 0.951
0.96	1.194 1.451 1.309 0.875 1.301	1,80 1,032 1,014 0,936 1,078 1,047	2.64 0.925 0.948 0.944 0.959 0.970
0,98	1.536 1.726 1.501 1.618 1.951	1.82 1.075 1.064 0.953 1.119 1.089	2.66 0.954 0.963 0.947 0.998 0.988
1.00	1,911 1,911 1,677 2,369 2,488	1.84 1.101 1.079 0.985 1.156 1.125	2.68 0.985 0.974 0.953 1.017 1.002
1,02	2.193 2.116 1.819 2.832 2.830	1.86 1.167 1.127 1.015 1.170 1.174	2.70 1.005 0.994 0.971 1.036 1.019
1.04	2.390 2.228 1.937 3.158 2.961	1.88 1.190 1.154 1.037 1.222 1.196	2.72 1.031 1.003 0.968 1.053 1.036
1.06	2.494 2.315 1.945 3.192 2.848	1.90 1.221 1.191 1.073 1.237 1.222	2.74 1.049 1.017 0.969 1.066 1.055
1.08	2.536 2.286 1.961 3.042 2.671	1.92 1.249 1.212 1.098 1.257 1.238	2.76 1.067 1.049 0.974 1.095 1.084
1.10	2.508 2.210 1.935 2.764 2.468	1.94 1.265 1.237 1.107 1.277 1.244	2.78 1.088 1.045 1.004 1.105 1.078
1.12	2.398 2.132 1.915 2.503 2.219	1,96 1,294 1,250 1,112 1,275 1,278	2.80 1.110 1.066 1.005 1.121 1.098
1.14	2.234 1.999 1.797 2.144 1.973	1,98 1,315 1,265 1,140 1,280 1,281	2.82 1.113 1.074 1.010 1.115 1.09/
1.16	2.056 1.815 1.715 1.917 1.753	2.00 1.317 1.269 1.169 1.292 1.274	2.84 1.123 1.091 1.025 1.132 1.104
1,18	1.870 1.689 1.645 1.644 1.584	2.02 1.303 1.255 1.164 1.300 1.267	2.86 1.134 1.088 1.027 1.135 1.114
1,20	1.677 1.547 1.552 1.454 1.411	2.04 1.304 1.250 1.170 1.290 1.243	2.88 1.141 1.099 1.031 1.130 1.108
1.22	1.503 1.418 1.478 1.289 1.225	2.06 1.288 1.238 1.171 1.291 1.241	2.90 1.136 1.102 1.033 1.138 1.099
1,24	1.311 1.283 1.339 1.137 1.132	2.08 1.261 1.209 1.165 1.253 1.237	2.92 1.138 1.097 1.042 1.133 1.104
1,26	1,182 1,148 1,286 0,973 1,019	2.10 1.240 1.191 1.175 1.251 1.203	2.94 1.128 1.084 1.043 1.122 1.105
1,28	1.058 1.054 1.190 0.881 0.911	2.12 1.222 1.164 1.154 1.224 1.191	2.96 1.126 1.084 1.042 1.115 1.091
1,30	0.939 0.968 1.08/ 0./90 0.850	2.14 1.202 1.140 1.130 1.190 1.13/	2,98 1,117 1,087 1,039 1,090 1,090
1.32	0.828 0.905 1.042 0.744 0.779	2.16 1.155 1.135 1.124 1.150 1.09/	3.00 1.113 1.087 1.048 1.084 1.078
1.34	0.768 0.838 0.974 0.686 0.715	2,18 1,120 1,088 1,114 1,095 1,066	3.02 1.09/ 1.080 1.044 1.061 1.066
1+36	0./20 0./68 0.933 0.645 0.67/	2,20 1,088 1,064 1,094 1,055 1,032	3.04 1.08/ 1.088 1.044 1.065 1.059
1,38	0.678 0.709 0.891 0.596 0.651	2,22 1,049 1,036 1,079 1,021 0,992	3.06 1.069 1.056 1.048 1.055 1.041
1.40	0.625 0.675 0.836 0.566 0.625	2.24 1.014 1.011 1.059 0.983 0.971	3.08 1.048 1.050 1.043 1.028 1.029
1.42		2,26 0,987 0,981 1,046 0,939 0,940	3.10 1.039 1.044 1.034 1.022 1.008
1.44	0.000 0.63/ 0.7/9 0.520 0.5/3	2,28 0,954 0,951 1,016 0,897 0,923	3+12 1+031 1+023 1+034 1+009 1+004
1,40	0.007 0.624 0.740 0.002 0.5/3	2,30 0,713 0,742 1,007 0,883 0,892	3 14 1 0 000 1 000 1 000 0 000 0 077
1+40	0+317 0+603 0+726 0+322 0+383		3+10 0+777 1+000 1+027 0+770 0+977
1,50	0.529 0.600 0.718 0.533 0.582	2.34 0.873 0.893 0.978 0.830 0.861	3.18 0.989 0.984 1.020 0.975 0.975
1.52	0+526 0+592 0+706 0+544 0+573	2+36 0+841 0+885 0+957 0+813 0+845	

2.2 Intermediate scattering function

The intermediate scattering function F(Q,t) is the time autocorrelation function of the spatial Fourier component of the density wavevector Q. It is constructed from molecular dynamics data by evaluating

$$F(Q, t) = \langle N_Q(\tau + t) N_{-Q}(\tau) \rangle \tag{3}$$

where

$$N_Q(t) = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \exp[i \underline{Q} \cdot \underline{r}_j(t)]$$
(4)

is the Q th Fourier component of the number density at time t and the angular brackets $\langle \cdots \rangle$ indicate an average over time origins τ . The wavevector Q must be consistent with the periodic boundary conditions. We took Q's parallel to the x,

y, and z axes of the cubical system. In each direction we considered 10 magnitudes,

$$Q_j = 2\pi j/L, \qquad j = 1, 2, \cdots, 10,$$
 (5)

where L is the size of the system. For given Q, we first evaluated $N_{\underline{q}}(t)$ for each of the 2000 available t values. These coefficients were then used to construct products $N_{\underline{q}}(t + \tau) N_{-\underline{q}}(\tau)$ for 180 time origins τ , with the origins separated by 10 time steps. The average of these products is our estimate for F(Q,t). The averages for a given Q_j involved products over 180 time origins and over the three Q's parallel to the cube axes, yielding a total of 540 samples. With this size sample, the statistical fluctuations about zero as $t \to \infty$ are expected to be on the order of 0.05. The maximum time interval considered was $100 \Delta t$, the approximate time for a sound wave to cross the cubical system. If longer times are considered, spurious correlations are introduced into F(Q,t). Our results are presented in tables 4–8. The first row of each table contains F(Q,O). The subsequent rows list F(Q,t)/F(Q,O) at intervals of $5 \Delta t$. This time resolution is sufficient to represent the main features of the functions. Intermediate values can be reliably estimated by three point interpolation procedures.

Coherent neutron scattering determines $S(Q, \omega)$ [1], the cosine transform of F(Q, t):

$$S(Q, \omega) = \int_0^\infty dt \, F(Q, t) \cos \, \omega t. \tag{6}$$

TABLE 4. INTERMEDIATE SCATTERING FUNCTIONS FOR RR1. VALUES FOR T > O ARE NORMALIZED TO F(0,0). THE TIME IS IN UNITS OF ΔT . WAVE VECTOR Q IN INVERSE ANGSTROM UNITS. .219 .438 +657 .876 1.095 1.314 1.533 1.752 1.971 2.190 TIME 0 .0236 .0266 +0358 +0567 .138 .515 3.69 1.20 .584 . 682 5 ,961 +869 .776 .750 +820 .942 ,988 .946 .865 .865 .955 10 .847 .538 .285 +213 .416 ,800 +822 .570 .591 15 +675 .160 -.106 -+175 +055 +632 .911 + 680 +293 .369 20 +468 -.192 -,111 -+167 .482 +866 .555 .124 -.110 ,266 25 .252 -.186 +041 +019 +079 .367 .825 .457 .051 .233 +292 30 +050 -,076 ,275 .196 .052 .788 .384 .033 . 213 35 .129 .336 -.116 +212 .169 .247 .757 .330 .033 .184 40 -.232 .313 .212 ,112 .211 ,225 .729 ,291 .026 .154 45 -,290 +392 .037 .018 +185 +219 .704 .261 .010 +145 .219 +117 50 -,292 .341 -.045 -,001 +681 .239 -.009 ,149 55 -.242 ,202 .003 .031 .043 +225 +659 .218 -.025 .167 60 -.154 .047 .110 .068 -.008 .231 +638 +198 -+025 .178 65 -+041 -.054 .179 +078 -.026 .233 +618 .180 -.019 .171 70 .080 -.065 .170 .064 -.013 +229 .599 +171 -+017 .156 75 .194 .001 .110 .048 +012 .217 .582 .169 -.016 .140 .199 80 ,289 ,099 ,058 .029 .034 +566 .174 -.003 .129 85 .354 .178 .047 .000 .040 .173 .552 .177 .023 .123 90 +385 ,203 .061 -.029 .029 .145 .538 .177 ,058 .115 95 .379 +168 .072 -.040 .011 .113 .523 .170 .085 .108 100 .341 .097 .062 -.022 -,004 +093 .084 +509 .161 .098

TABLE 5.	INTERMEDIATE SCATTERING FUNCTIONS FOR RB2. VALUES FOR
	T > 0 ARE NORMALIZED TO F(0,0). THE TIME IS IN UNITS
	OF AT.
	WAVE VECTOR Q IN INVERSE ANGSTROM UNITS.

TIME

.219 .438 .657 .876 1.095 1.314 1.533 1.752 1.971 2.190

+168 1.32 .0327 .0341 .0444 .0688 .612 2.14 .706 .725 0 ,959 .845 .759 .974 .949 .864 .842 5 .777 .821 ,925 +272 10 +836 ,462 .281 .423 .733 .905 +823 ,570 .520 +072 .515 +825 .309 .288 15 +661 .034 -.118 -.063 .681 .552 .157 .444 -.265 -.089 -.087 .741 .192 -.198 .313 25 .228 .051 .447 .155 -.345 -.018 .078 .164 .666 .100 .199 +150 30 +023 -.234 .148 .012 .067 .597 .364 .083 .303 .021 .535 .080 35 -.139 -.024.280 .109 .087 .161 .253 +084 40 -.252 ,160 .189 .002 .121 .006 .481 .149 45 -.303 .251 .018 -.064 .118 .016 .433 .220 .081 +128 -.042 .082 50 -.301 .226 -.104 .029 .391 .187 .083 .111 55 -.246 .124 -.131 .016 .036 .047 .355 .162 .088 .089 .049 .083 .084 60 -.158 .005 -.072 .044 -.002 .324 .138 .042 .299 +071 +081 -.044 -.078 .011 .025 -.015 .123 65 .021 +059 .086 70 .072 -.101 .053 -.023 .007 .281 .113 .045 -.005 +268 .111 +041 .083 75 .181 -.070 .046 -.064 .052 80 .268 -.016 .015 -.062 .063 -.021 .258 .117 .027 -.022 .129 .013 +025 85 .326 .031 -.012 .049 -.028 .248 90 .349 .049 -.016 ,015 .007 -.024 .237 +137 .012 .011 95 .017 .011 .033 -.009 -.031 -.007 .224 .142 .020 .340 .207 .144 100 .297 -.007 -.006 -.003 -.035 .010 .023 .016

Some features of $S(Q, \omega)$ for these states have been discussed elsewhere [6]. For the three rubidium states, the oscillations in F(Q, t) for $Q < 1.15 \text{ Å}^{-1}$ lead to maxima in $S(Q, \omega)$ for $\omega \neq 0$. This is evidence for sound modes with wavelengths as small as $1^{1/4}$ the interparticle separation. On the other hand, for the Lennard-Jones states, only the results at the smallest Q show evidence for a sound mode. Transforming the F(Q,t)'s was complicated by considerable noise for $t \geq 100 \Delta t$.

We have not attempted further line shape studies as the details are obscured by this noise.

TABLE 6. INTERMEDIATE SCATTERING FUNCTIONS FOR RB3. VALUES FOR T > 0 are normalized to F(0+0). The time is in units OF ΔT_{\pm}

WAVE VECTOR Q IN INVERSE ANGSTROM UNITS.

	* 4 4 4	+744	+004	+040	1+000	エキエレノ	1+4/0	1+070	14701	4+111
IME										
0	+0552	.0588	.0731	.118	.250	738	2.05	1.41	.836	.779
5	۰968	879ء	.830	.796	.843	+921	,964	.931	.857	.795
10	,877	.572	.448	,355	.496	+736	.873	.779	.552	.400
15	.740	.202	.099	.004	.179	•527	.764	.614	.297	+142
20	+570	101	-,056	106	-,001	.354	+658	.479	.162	+059
25	+386	254	022	046	048	+227	+562	+371	.106	.058
30	.205	247	.083	.048	024	.145	.481	.280	.075	.051
35	.041	-,126	.151	,099	.016	+093	.416	.208	+049	.026
40	092	.031	+141	.096	.035	.067	+365	.147	.015	001
45	189	.150	+082	.069	+029	.052	.324	.102	-,007	~.006
50	-+245	+188	+027	.038	,006	,043	+291	.071	023	+019
55	-,262	.142	.010	.010	022	/040	.261	.051	051	+029
60	245	.040	.024	.003	043	.038	.231	.040	088	.041
65	-,201	071	.039	.018	-,055	+037	+204	.037	121	.040
70	138	146	+038	+034	062	,034	.180	+041	134	.025
75	067	160	.025	.041	050	.026	.157	,045	120	+ 022
80	+003	115	,020	.037	016	.016	.140	+049	097	.019
85	۰065	035	.031	.024	.020	+006	+125	.036	074	.003
90	+114	.049	.054	,021	.045	003	.110	+016	-,063	011
95	+146	+105	,069	.022	+058	011	+097	008	063	012
00	+161	.124	.064	.016	.073	020	.084	-,025	070	+000

TABLE 7. INTERMEDIATE SCATTERING FUNCTIONS FOR LJ1. VALUES FOR T > 0 are normalized to F(0,0). The time is in units of ΔT_{\star}

WAVE VECTOR IN REDUCED UNITS (Q o).

.980 1.961 2.941 3.922 4.902 5.883 6.863 7.844 8.824 9.805 TIME

<u> </u>	+ 0230	+ 02 01	+0020	+0370	+100	+ 400	0+00	1+04	+7.00	* 1.17 G
5	،978	.917	.867	.870	.901	.969	.994	,981	+943	+913
10	.914	.707	.569	.584	,681	.885	,978	,926	.809	+723
15	.816	.460	.299	.341	.458	.780	+955	+857	.655	.531
20	696 ،	,260	.180	+236	.307	+678	,930	,786	.525	,399
25	+565	+153	,195	+229	.236	.590	+904	.721	+432	+324
30	.435	+137	+249	.253	.220	.521	,879	.664	,371	+277
35	,318	.175	+276	.251	,225	.466	856ء	+613	.333	.241
40	.219	.221	+259	.220	+232	+423	,834	,567	.307	.211
45	.145	+244	,219	.188	+236	+390	.813	.526	.284	.181
50	۰097	235ء	.181	+171	+228	.364	792ء	,489	.258	.154
55	.074	+203	154ء	.176	.207	+345	+773	+ 455	+231	+127
60	,074	.166	.137	.180	.176	.328	755ء	+424	,209	.106
65	.093	.139	+125	.170	.140	.312	.737	.397	+193	+097
70	+125	.130	+126	+142	,113	+297	+720	.373	.180	.099
75	.166	+133	+134	.110	.101	+281	+703	.353	+167	+106
80	.208	.143	.143	.090	.101	.263	.687	,336	.149	.108
85	+247	+151	.149	.093	+108	.243	+670	,324	+129	.104
90	+278	.154	.145	.109	+121	,221	+652	+313	.105	,098
95	+298	,149	.129	.127	.141	.197	+635	.303	.082	,089
100	+307	+133	.107	.135	+155	.174	+617	+ 292	+059	,078

TABLE 8. INTERMEDIATE SCATTERING FUNCTIONS FOR LJ2, VALUES FOR T > 0 are normalized to F(0,0). The time is in units of ΔT .

WAVE VECTOR IN REDUCED UNITS (0σ). .980 1.961 2.941 3.922 4.902 5.883 6.863 7.844 8.824 9.805

.0293	+0313	.0394	.0726	.164	,609	2.45	1.37	,768	+626
+973	,908	.842	.850	.891	.957	, 988	.969	,926	.863
,896	.681	.500	.540	+657	۰856	,956	.894	.761	.670
.779	.416	.207	.289	.435	,738	.914	•800	,590	.479
.637	+212	.088	.166	.303	.631	,870	+707	.462	.370
,485	.110	.113	+135	+256	+542	+826	.624	.371	.321
.339	.101	,175	+132	.249	.471	+786	,554	.300	,291
+212	,145	.195	.137	.249	.415	+749	.495	.241	+263
.114	.193	,175	.132	.238	.370	.716	.446	,190	.234
.049	.217	.139	.130	.215	.333	686 ،	+404	.150	+214
.020	.210	.115	.126	.188	.303	,659	,371	.123	.201
+023	,184	.105	.114	.163	.277	+633	.344	.109	.182
+052	.152	.101	.091	+140	.248	+612	,323	,110	.160
.100	.128	.100	.061	.124	+221	,591	.304	.120	.141
.156	+115	.104	.026	.111	.191	.573	.289	.125	.132
,212	.110	.113	.001	.103	.165	,555	.276	+123	+122
.260	,108	.119	011	.100	.141	.538	.266	.119	.113
+293	.108	.107	017	.101	+122	+521	+257	.112	.117
.309	.107	.073	019	.105	+105	+505	.249	.106	.110
,306	.106	.031	020	+108	+091	.488	.241	.098	.103
.286	.101	,009	-,021	,106	.080	.473	. 232	.087	+089
	.0293 .973 .896 .779 .637 .485 .339 .212 .114 .049 .020 .023 .052 .100 .156 .212 .260 .293 .309 .306 .286	.0293 .0313 .973 .908 .896 .681 .779 .416 .637 .212 .485 .110 .339 .101 .212 .145 .114 .193 .049 .217 .020 .210 .023 .184 .052 .152 .100 .128 .156 .115 .212 .110 .260 .108 .293 .108 .309 .107 .306 .100 .286 .101	.0293 .0313 .0394 .973 .908 .842 .896 .681 .500 .779 .416 .207 .637 .212 .088 .485 .110 .113 .339 .101 .175 .212 .145 .195 .114 .193 .175 .049 .217 .139 .020 .210 .115 .023 .184 .105 .052 .152 .101 .100 .128 .100 .156 .115 .104 .217 .110 .113 .260 .108 .119 .293 .108 .07 .309 .107 .073 .306 .106 .031	.0293 .0313 .0394 .0726 .973 .908 .842 .850 .896 .681 .500 .540 .779 .416 .207 .289 .637 .212 .088 .166 .485 .110 .113 .135 .339 .101 .175 .132 .212 .145 .195 .137 .114 .193 .175 .132 .049 .217 .139 .130 .020 .210 .115 .126 .023 .184 .105 .114 .052 .152 .101 .091 .100 .128 .100 .061 .156 .115 .104 .026 .212 .110 .113 .001 .260 .108 .119 -011 .293 .108 .107017 .309 .107 .073019 .306 .106 .031020	.0293 .0313 .0394 .0726 .164 .973 .908 .842 .850 .891 .896 .681 .500 .540 .657 .779 .416 .207 .289 .435 .637 .212 .088 .166 .303 .485 .110 .113 .135 .256 .339 .101 .175 .132 .249 .114 .193 .175 .132 .249 .114 .193 .175 .132 .249 .114 .193 .175 .132 .238 .049 .217 .139 .130 .215 .020 .210 .115 .126 .188 .023 .184 .105 .114 .163 .052 .152 .101 .091 .140 .100 .128 .100 .641 .124 .156 .115 .104 .026 .111 .212 .110 .113 .001 .103 .260 .108 .119017 .101 .309 .107 .073019 .105 .306 .106 .031020 .108 .286 .101 .009021 .106	.0293 .0313 .0394 .0726 .164 .609 .973 .908 .842 .850 .891 .957 .896 .681 .500 .540 .657 .856 .779 .416 .207 .289 .435 .738 .637 .212 .088 .166 .303 .631 .485 .110 .113 .135 .256 .542 .339 .101 .175 .132 .249 .471 .212 .145 .195 .137 .249 .415 .114 .193 .175 .132 .238 .370 .049 .217 .139 .130 .215 .333 .020 .210 .115 .126 .188 .303 .023 .184 .105 .114 .163 .277 .052 .152 .101 .091 .140 .248 .100 .128 .100 .641 .124 .221 .156 .115 .104 .026 .111 .191 .212 .108 .119 -011 .100 .141 .293 .108 .107 -017 .101 .122 .309 .107 .073 -019 .105 .105 .306 .106 .031 -020 .108 .091 .286 .101 .009 -021 .106 .080	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

2.3 Velocity autocorrelation function

The normalized velocity autocorrelation function is defined as

$$\psi(t) = \frac{\sum_{j=1}^{N} \left\langle v_{j}(0) \cdot v_{j}(t) \right\rangle}{\sum_{j=1}^{N} \left\langle |v_{j}|^{2} \right\rangle}$$
(7)

Our results for $\psi(t)$ are presented in table 9. These were obtained by averaging over the 750 velocity components and over 20 time origins separated by 100 time steps. For such an average, the expected fluctuations of $\psi(t)$ about zero as $t \rightarrow \infty$ are on the order of 0.01.

Representative results are plotted in figure 2a for rubidium (RB3) and in figure 2b for the Lennard-Jones fluid (LJ1). The functions for rubidium are much more oscillatory than those for the Lennard-Jones fluid. This is in accord with previous observations of other states of these fluids [12, 13] and with theoretical results suggesting a correspondence between oscillating velocity autocorrelation functions and propagating short wavelength sound modes [14].

2.4 Transverse current correlation function

One of the characteristics of a liquid is the inability to support a shear stress. However, it is possible to consider transverse momentum currents in liquids since these currents do not involve particle displacements. Rahman showed that,

TABLE 9. Normalized velocity autocorrelation functions. The time is in $main = f \Lambda t$

-

		unus o	<i>, .</i>		
Time	RB1	RB2	RB3	LJ1	LJ2
2	0.964	0.959	0.969	0.960	0.959
4	0.858	0.847	0.874	0.849	0.837
6	0.696	0.681	0.728	0.688	0.661
8	0.499	0.485	0.554	0.501	0.465
10	0.291	0.282	0.372	0.314	0.277
12	0.095	0.096	0.204	0.147	0.118
14	-0.072	-0.058	0.064	0.012	-0.001
16	-0.198	-0.167	-0.040	-0.087	-0.079
18	-0.277	-0.231	-0.107	-0.148	-0.121
20	-0.311	-0.253	-0.139	-0.178	-0.136
22	-0.305	-0.239	-0.143	-0.182	-0.132
24	-0.268	-0.201	-0.126	-0.170	-0.117
26	-0.213	-0.148	-0.097	-0.148	-0.097
28	-0.151	-0.093	-0.063	-0.122	-0.078
30	-0.092	-0.042	-0.030	-0.096	-0.063
32	-0.043	-0.002	-0.003	-0.073	-0.053
34	-0.010	0.024	0.017	-0.055	-0.048
36	0.008	0.036	0.029	-0.042	-0.046
38	0.010	0.037	0.034	-0.036	-0.045
40	0.009	0.028	0.032	-0.034	-0.042
42	-0.015	0.015	0.026	-0.034	-0.038
44	-0.033	-0.001	0.017	-0.035	-0.033
46	-0.048	-0.015	0.007	-0.037	-0.028
48	-0.058	-0.025	-0.002	-0.039	-0.024
50	-0.062	-0.029	-0.009	-0.041	-0.021
52	-0.058	-0.028	-0.014	-0.042	-0.019
54	-0.050	-0.023	-0.015	-0.041	-0.016
56	-0.039	-0.015	-0.013	-0.038	-0.015
58	-0.026	-0.006	-0.007	-0.034	-0.014
60	-0.013	0.004	-0.001	-0.031	-0.012
62	-0.001	0.013	0.006	-0.027	-0.011
64	0.008	0.019	0.011	-0.024	-0.010
66	0.015	0.022	0.015	-0.021	-0.011
68	0.018	0.022	0.018	-0.018	-0.014
70	0.018	0.021	0.018	-0.016	-0.018
72	0.017	0.019	0.017	-0.015	-0.022
74	0.013	0.016	0.014	-0.014	-0.025
76	0.010	0.013	0.010	-0.013	-0.025
78	0.006	0.009	0.005	-0.012	-0.023
80	0.005	0.006	0.002	-0.012	-0.019

for sufficiently large wavevectors, an appropriately defined transverse momentum current took on the character of a propagating mode. [15]. The transverse current variable is

$$J_T(\underline{Q}, t) = \frac{1}{\sqrt{N}} \sum_{j=1}^N m \underline{v}_j^T(t) \exp[i\underline{Q} \cdot r_j(\underline{t})]$$
(8)

where v_j^T is the projection of the velocity of particle *j* onto the plane perpendicular to *Q*. The transverse current correlation function is then

$$C_T(Q, t) = \frac{1}{2} \langle J_T(Q, 0) \cdot \underline{J}_T(-Q, t) \rangle.$$
(9)

FIGURE 2. Velocity autocorrelation functions for (a) RB3 and (b) LJ1. The rubidium functions contain damped oscillations about zero while the Lennard-Jones functions do not.

Our results for $C_T(Q, t)/C_T(Q, 0)$ are listed in tables 10–14. We evaluated them by the same procedure used to construct F(Q, t), as described above, except that the average includes two polarizations. The expected fluctuations about zero as $t \to \infty$ are on the order of 0.03.

The trend of these functions with increasing Q is shown in figure 3 for the states RB1 and RB3. For Q's much smaller than those available in present computer simulations, the longtime behavior of $C_T(Q, t)$ is expected to be

$$C_T(Q, t) \propto \exp\left[-\eta Q^2 t/mn\right] \tag{10}$$

where η is the shear viscosity of the liquid [1]. We have noted that the function displayed in figure 3e goes over to an

TABLE	E 10.	TRANS	VERSE (URRENT	T CORRE	ELATION	FUNC	FIONS F	FOR RB1	1.	
		THE T	IME IS	IN UN	ITS OF	ΔΤ.					
		WAVE	VECTOR	O IN	INVERS	SE ANGS	STROM (JNITS.			
	.219	.438	+657	.876	1.095	1.314	1.533	1.752	1.971	2,190	
TIME											
Ū	1.000	1,000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	
5	+976	.921	.852	.789	.745	+737	.715	.728	.718	.708	
10	.911	۰718	+495	.319	.230	.215	.186	+227	.246	.210	
15	+820	.457	.105	098	161	-+151	137	082	061	078	
20	.714	+197	182	-,297	-+275	229	181	151	156	-,133	
25	.603	020	316	-,291	186	132	078	082	127	087	
30	+493	-,179	317	178	045	008	.010	.003	064	015	
35	.389	-,274	239	055	.047	.043	+015	.018	019	.013	
40	+292	311	133	.017	۰057	.026	038	.011	001	.015	
45	+206	-,301	041	.032	.007	008	090	.009	006 ،	013	
50	+131	-,258	.023	.019	054	028	083	002	.005	016	
55	+066	196	۰054	001	085	020	057	012	+031	+008	
60	.011	-,128	,056	010	072	001	038	020	+042	.011	
65	035	060	+042	011	023	.015	027	024	.016	.023	
70	073	003	.024	013	+028	.024	028	017	000	+034	
75	103	+040	.010	014	.052	+021	009	001	010	.042	
80	125	.068	000	013	.035	.006	.009	.011	025	+021	
85	138	+082	006	009	-,000	-:006	.018	.005	025	.008	
90	-,144	,086	-,005	007	019	007	.029	020	010	+001	
95	143	+083	001	013	007	004	.017	030	018	.016	
100	136	.076	.011	028	.017	015	003	037	024	.034	

exponentially decaying form for $t > 40\Delta t$. An apparent viscosity of 0.28 cp can be obtained by fitting this curve to an exponential for $t > 40\Delta t$. This value is consistent with reported values of the viscosity of liquid rubidium [16]. Before we could claim that this is the viscosity, it would be necessary to go to smaller Q's and show that η is independent of Q. This would require a significantly larger system. While we cannot say with certainty, even in this best case, that we observed the small Q regime, our results for intermediate Qunambiguously show a change from a monotonically decaying $C_T(Q, t)$ at small Q to damped oscillatory time dependence at larger Q. This transition is a gradual one and does not appear to depend strongly on the interatomic potential.

TABLE	E 11.	TRANS	VERSE (CURREN	T CORRI	ELATIO	N FUNC	TIONS	FOR RB:	2.
		THE T	IME IS	IN UN	ITS OF	ΔT .				
		WAVE	VECTOR	R Q IN	INVERS	SE ANG	STROM I	UNITS.		
	+219	+438	+657	.876	1,095	1.314	1.533	1,752	1,971	2,190
IME										
0	1,000	1.000	1.000	1.000	1.000	1,000	1,000	1,000	1.000	1.000
5	.979	.919	.853	.792	.749	,725	.712	.718	.707	.701
10	+923	.713	.507	+337	+231	,195	.214	+204	.192	.207
15	.845	.464	+142	058	150	147	079	093	073	049
20	,754	+232	114	239	-+252	-,199	124	125	095	-,098
25	+660	.049	230	242	163	-,101	~,066	055	049	084
30	+566	074	-,230	165	042	012	019	.013	004	036
35	.475	145	168	091	.015	.021	+002	.036	+029	-,006
40	+391	-+172	084	052	.013	.034	+005	+007	.026	-,000
45	.315	173	-,005	030	-,008	,017	001	028	002	~.028
50	+247	158	.052	012	011	-,010	.007	045	034	018
55	.191	131	+076	000	.007	019	+014	026	-+028	~+002
60	.144	102	.073	.009	+017	012	.010	+005	007	003
65	+107	~.076	.051	.015	,010	.000	.013	.011	.001	008
70	.078	058	.019	.025	009	+023	.018	.003	009	025
75	.057	049	013	.034	023	.041	.012	.009	.013	026
80	+043	045	035	+037	~.020	.033	.003	,018	.009	~.022
85	.033	045	040	.036	007	.013	008	+017	.021	012
90	+026	044	026	+030	002	-,005	015	,007	+023	005
95	.020	043	002	.018	001	003	010	.002	.012	005
00	.015	042	.019	+006	002	.011		012	~+01e	005

TABL	E 12.	TRANSVE	RSE C	URREN	T CORRI	ELATIO	N FUNC	TIONS	FOR RB	3.	TABLE	13.	TRANS	VERSE	CURREN	CORR	ELATIO	V FUNC	TIONS	FOR LU	1.
		THE TIM	E IS	IN UN	IS OF	ΔT .							THE T	IME IS	IN UNI	TS OF	Δ^{T} .				
		WAVE V	ECTOR	Q IN	INVER	SE ANG	TROM	UNITS,					WAVE	VECTO	R IN RE	EDUCED	UNITS	$(0\sigma)_{+}$			
	.211	.422	+634	.845	1,056	1,267	1.478	1,690	1,901	2+112		۰980	1,961	2,941	3,922	4,902	5.883	6.863	7.844	8,824	9,805
TIME											TIME										
0	1.000	1,000 1	,000	1,000	1,000	1.000	1.000	1,000	1,000	1.000	0	1,000	1.000	1,000	1,000	1.000	1.000	1,000	1.000	1.000	1.000
5	.980	.935	.873	.813	+762	+717	.722	+697	+709	.670	5	+980	,923	+855	.793	+762	,735	,721	,755	,756	+747
10	,930	+773	.579	.419	.292	,213	,253	+219	+233	,172	10	+927	,733	+528	.349	.271	+246	,229	,295	+316	+290
15	865ء	+578	.279	+082	038	090	.012	009	.015	046	15	،85 7	.503	+ 200	-,022	079	-+077	077	-,005	.016	+003
20	,795	,395	•070	082	133	-+137	026	072	031	072	20	•779	,282	-,033	-,197	-,187	-,158	-,152	-,098	090	-,096
25	+727	.243 -	.033	-,103	098	050	002	047	015	-,030	25	+699	.098	-,151	213	-+149	103	112	-+080	-+095	-,072
30	•660	.130 -	•066	057	039	.022	+032	002	-,013	-,009	30	٠618	-,040	-,180	161	-,066	037	036	-,052	087	-+017
35	+597	.054 -	.064	~,001	-,001	.037	.052	.017	-,032	005	35	+541	-,136	-,164	-,118	012	006	009	040	077	.024
40	+536	+008 -	,050	+035	+007	+050	,046	+023	029	.014	40	,467	-,194	-,138	-,085	.003	012	-,011	-,032	-,051	+036
45	•480	018 -	.036	.047	.003	012	.035	+ 029	024	.029	45	, 399	-,222	-,109	-,066	004	017	-,007	-,029	013	•026
50	•428	028 -	•027	.038	.011	014	.014	.019	-,028	+016	50	• 336	-,228	-,085	045	028	002	006ء	-,017	.018	.010
55	•382	032 -	.019	,023	.020	011	005	.011	-,030	004	55	+280	-,215	-,059	020	-+044	-,004	.014	.005	.033	-,015
60	.341	033 -	.022	•008	+029	020	031	004	030	025	60	.230	191	034	-,008	031	014	.036	٠013	-,007	-,027
65	.306	031 -	۰030	+000	.044	017	044	012	034	028	65	188ء	-,157	-,015	010	017	035	.050	+022	043	-,037
70	.275	027 -	•033	005	.048	014	023	010	-,023	031	70	.151	120	-,003	018	017	053	.030	•008	049	052
75	.248	022 -	.029	005	.031	013	.001	027	.000	-+022	75	+121	-,082	004	026	027	037	.012	007	036	-,050
80	+225	017 -	.015	.002	008	+004	.034	017	,005	-,002	80	.095	050	-,006	-,020	043	008	-,020	-,022	030	035
85	+203	015 -	.003	001	031	.024	.043	.005	-,008	001	85	.072	026	-,008	007	034	۰004	-,034	028	~.020	026
90	.183	017 -	.003	015	029	.044	.025	001	-,023	.005	90	.053	014	-,001	.010	.003	007	013	020	007	-,027
95	+166	022 -	.014	030	023	.034	.019	007	-,030	.008	95	+037	007	.012	+030	+036	022	.003	-,008	012	-,022
100	.149	029 -	.029	029	005	000	+004	015	008	.027	100	+025	003	.021	+041	.041	032	+017	004	-+004	024

TABLE 14. TRANSVERSE CURRENT CORRELATION FUNCTIONS FOR LJ2. THE TIME IS IN UNITS OF Δ T. WAVE VECTOR IN REDUCED UNITS (0 σ). .980 1.961 2.941 3.922 4.902 5.883 6.863 7.844 8.824 9.805 TIME 0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 (0.000 0.000)

5	.973	+913	.841	,774	,735	+691	,703	+710	+723	.694
10	,906	.708	.497	+322	,222	+188	+197	+234	.262	+211
15	.819	.476	.174	014	-,089	082	078	031	025	030
20	+724	.267	039	169	-,145	-+119	-+134	090	121	-,069
25	+627	.103	148	183	-,091	082	112	047	-,116	038
30	+533	011	189	124	045	043	065	003	-,078	005
35	.443	-,087	180	051	035	028	045	019	058	001
40	,360	-,135	142	003	-,040	016	039	049	046	003
45	+282	-,160	082	+013	-,048	025	018	066	033	019
50	+211	-,163	029	.029	-,044	025	.011	068	019	036
55	.146	149	.001	.032	-,037	016	.012	029	.010	025
60	۰089	119	.018	+023	-,057	+009	006	-,004	+026	027
65	۰038	080	•022	.017	061	.025	-,029	025	028ء	013
70	005	046	.025	۰001	045	+034	009	045	.015	007
75	042	-,017	.012	014	-,027	۰038	.019	057	-,006	+008
80	-+072	003	004	014	.005	.027	016ء	050	019	+027
85	096	007ء	015	023	۰033	005ء	.013	026	030	.006
90	114	006ء	017	035	+039	021	.001	+002	032	020
95	126	+008	008	038	.034	030	006	+016	032	-,026
100	-+133	+007	000	037	+017	017	004	+020	-+024	017

3. Concluding Remarks

The dynamical properties of the two fluids considered here are quite different. The most obvious difference is the striking disparity in the spectra of density fluctuations. However, the results which we have obtained for the other functions, especially the velocity autocorrelation function, confirm previous suggestions that the difference is more pervasive. In general, liquid rubidium appears to be more resilient and elastic than the Lennard-Jones fluid. While it is plausible that this behavior would result from the softer core of the potential in rubidium, formulating a theory which quantifies this intuition remains as an outstanding problem in the theory of liquids.

FIGURE 3. Normalized transverse current correlation functions for RB1 (a - d)

and RB3 (e-h).

The Q values are (a) $.219 \text{\AA}^{-1}$; (b) $.438 \text{\AA}^{-1}$; (c) $.657 \text{\AA}^{-1}$; (d) $.876 \text{\AA}^{-1}$, (e) $.211 \text{\AA}^{-1}$; (f) $.422 \text{\AA}^{-1}$; (g) $.634 \text{\AA}^{-1}$; (h) $.845 \text{\AA}^{-1}$. These functions show the effect of increasing Q on the transverse current correlations. Similar results obtain for the Lennard-Jones fluids as is indicated in tables 13–14.

4. References

- Mountain, R. D. Dynamics of Solids and Liquids by Neutron Scattering, eds. S. W. Lovesey and T. Springer (Springer-Verlag, New York, 1977) Ch. 6.
- [2] Copley, J. R. D., and Rowe, J. M. Phys. Rev. Letters 32, 49 (1974), Phys. Rev. A9, 1656 (1974).
- [3] Rahman, A. Phys. Rev. Letters 32, 52 (A74), Phys. Rev. A9, 1667 (1974).
- [4] Bell, H., Moeller-Wenghoffer, H., Kollmar, A., Stockmeyer, R., Springer, T., and Stiller, H. Phys. Rev. A11, 316 (1975).
- [5] Levesque, D., Verlet, L., and Kurkijarvi, J. Phys. Rev. A7, 1690 (1973).
- [6] Mountain, R. D., and Haan, S. W. Phys. Rev. A.
- [7] Haan, S. W. Phys. Rev. A.

- [8] Price, D. L. Phys. Rev. A4, 353 (1971); Price, D. L., Singwi, K. S., and Tosi, M. P. Phys. Rev. B 2, 2983 (1976).
- [9] Mountain, R. D., J. Phys. F: Metal Physics 8, 1637 (1978).
- [10] Tsai, D. H. Accurate Characterization of the High Pressure Environment, ed. E. C. Lloyd, Nat. Bur. Stand. (U.S.) Spec. Publ. 326 p. 105, (March 1971). See Also Tsai, D. H., Bullough, R., and Perrin, R. C. J. Phys. C: Solid State Phys. **3**, 2022 (1970).
- [11] Streett, W. B., Raveché, H. J., and Mountain, R. D. J. Chem. Phys. 61, 1960 (1974). The rubidium energies were taken from our unpublished calculations.
- [12] Rahman, A., Phys. Rev. 136, A 405 (1964).
- [13] Schiff, D., Phys. Rev. 186, 151 (1969).
- [14] Gaskell, T., and Miller, S., Phys. Letters 66A, 307 (1978).
- [15] Rahman, A. Phys. Rev. Letters **19**, 240 (1967) and in *Neutron Inelastic Scattering*, Vol. **1** (IAEA, Vienna, 1968) p. 561.
- [16] Andrade, E. N. daC., and Dobbs, E. R. Proc. Roy. Soc. London 211, 12 (1952).