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A treatment of the formation of a basic core fibril (shish) of the type that is ge nerated by fl ow- induced 

crystallization of a polymer from solution is given that features the concept of cumulative strain. Multiple 

nucleation acts by flow-elongated molecules produce an embryonic fibril that is a connec ted set of bundlelike 

nucle i. Surface s tress resulting from repu ls ion of the quasi-random coil chains in the amorphous zone between the 

nucle i or c rystallit es builds up at the bundle e nds as the nucle i mature, lead ing ultimately to a high end surface 

free energy, and to volume strain in th e crysta llit es compri sing the core fibril. The theory leads to a s table (or 

meta stable) fibril diameter as and mean characteri sti c length i s with a fixed ax ial ratio, and pred icts why the 

diameter does not grow further even in a med ium that is supersaturated with polymer. The pred ic ted dependence 

of a s, ls, and the axia l ratio, on undercoo ling is ill approximate agreement with experiment. The lattice expansion 

in the crystal resulting from volume s tra in is a lso in fair accord with ex perim ent. The effect of a nn ea ling, including 

the commonl y e ncou ntered case where the volume strain relaxes to give normal la tti ce dimensions, but with a high 

end surface energy still remaining, is not ed. The effect of vo lume strain and the distribution of core fibril lengths 

about is on the melting behavior is calculated. The theory can reprod uce c rystallinity versus temperature data on 

polye thylene fibrils. This procedure yields an independent value of i8 • The ove rall treatment implies that the core 

fibril is a set of concatenated and substantially extended-chain crystallites with bundlelike ends and a somewhat 

expanded lattice when unannealed and under tension, the molecular connections between the crystallites 

consisting of short amorphous ci liary bridges. It is suggested that pro longed annealing at high temperatures can 

remove a substantial number of the amorphous zones . 

Key words: Core fibril ; cumulative stress; fl ow-induced c rystalli zalion; nucleation Iheory; polyethylene; polymer 

fiber ; shi sh; vo]um e strain. 

1. Introduction 

Some time ago, it was discovered that very long and thin 
fibrils of polyethylene could be formed by rapidly st irring a 
solution of the polymer in a subcooled state. This type of 
crystallization has been systematically investigated by Pen
nings and coworkers [1-6]. 1 These fibrils are typically a few 
hundred A in diameter (IA = 10 nm) and the overall length 
is essent ially unlimited. An interesting feature of these fibrils 
is that they are usually decorated at intervals by lamellar 
platelets. These platelet overgrowths are usually considered 
to be chain-folded. The combined structure is commonly 
called a "shish-kebab," the "shi sh" representing the thin 
central filam ent, and the "kebabs" the lamellar platelets that 
appear along th e filament. A variety of related techniques 
(e.g., Poiseuille flow [7], Couelle flow [8], and impinging 
jets [9, 10]) lead to the "shish-kebab" structures in subcooled 
solutions of polyethylene : The common feature of the various 

1 Figures in brac kets indicate the literature refe rences at the end of this paper. 

methods of preparation is that they all involve some mecha
nism , arising frulll a flow fi e ld, that has th e capaci ty to 
statistically elongate some of the polymer molec ules in th e 
solution wh ich then act as nucle i [or crystallization. 

Based on the ir work on the contrac tion of fibril s of 
polyethyl ene on warming, Grubb and Keller [11] have 
pictured the core fibril itself as a set of long thin crystallites 
interspersed by mu ch shorter disordered regions . In th e 
fibrils th ey studied, the melting phenomena suggested that 
the distribution of crystallite lengths was quite broad and 
asymmetric, but the mean length ~·f the crystallites was 
neverth eless a well-defined quantity. ~::'ubsequently, we shall 
refer to the mean length of the crystallites in th e core fibril as 
the "characteristic length"). Grubb and Keller estimated that 
the length of the crystallites in their specimens was 1500 to 
2000 A, [or fibrils having a diameter of about 300 A. 

No general treatment of the formation of these core fibrils 
appears to be available. The present paper represents an 
attempt in this direction, with emphasis on the prediction of 
certain properties that derive from the somewhat unusual 
conditions that prevail during the formation of these interest-

359 



ing systems. The treatment involves deductions from statis
tical mechanics, but its major elements arise from a combi
nation of continuum mechanics and nucleation theory. 

The author has for some time been intrigued by a curious 
feature of the central filament, namely, that it does not 
ordinarily seem to grow beyond a certain diameter even 
though it is immersed in a subcooled medium that is in effect 
supersaturated with polymer molecules capable of crystalli
zation. This statement holds no matter whether the flow field 
is present or not. What generally happens in a quiescent 
nutrient medium is that the chain-folded platelets grow or 
even rearrange, while the core fibril does not increase in 
diameter. Mackley has previously noted the apparent inca
pacity of the core filament in a given experiment to grow 
beyond a certain diameter during the formation process [10]. 
This situation concerning the central filament appeared to 
the author to suggest that the fibril diameter (and possibly 
the characteristic length of the crystallites forming the overall 
core fibril) is intrinsically limited in some fashion. In the 
present paper the hypothesis that this limitation is a result of 
cumulative stresses arising from mutual repulsion of chains 
in the amorphous regions is explored. 

In specimens prepared from solution, the lamellar platelets 
occur at intervals of varying regularity along the core fibril. 

The question then arises as to what connection there is if any 
between the mean interplatelet distance, and the mean length 
of the crystallite comprising the core fibril, i. e ., the charac
teristic length as previously defined. In our analysis of the 
data given by George and Tucker [12] on specially prepared 
specimens where excessive additional overgrowths were min
imized by appropriate techniques, we shall tentatively as
sume that these two quantities are approximately the same. 
George and Tucker assumed that the lamellar overgrowths 
actually occurred at the crystallite ends. This assumption 
was evidently based on the idea that cilia emanating from the 
discontinuities at the crystallite ends provided material that 
initiated the lamellar overgrowths. There is in fact a quite 
different assumption that also leads to a close connection 
between the mean value of the distance between the lamellar 

platelets and the characteristic length , and this will be noted 
later. The assumption that the mean value of the interplatelet 
distance is similar to the mean value of the crystallite length 
in suitable preparations is subject to some question, since 
Pennings and coworkers have recently shown that different 
interplatelet spacings can be produced on the same core 
fibril, and that after prolonged storage the spacing is a 
fun ction of this storage temperature [13]. However, this does 
not necessarily imply that th e mean distance between the 
lamellar overgrowths in a fresh preparation where care has 
been taken to minimize extra overgrowths is totally unrelated 
to the mean crys tallite length in the core fibril. This question 
will be dealt with further, and is mentioned here mainly for 
the purpose of indicating at the outset that there is some 

uncertainty in the estimates of the crystallite length in certain 
experiments that will be analyzed in terms of the theory. 

For polyethylene crystallized from n-octadecane um1er 
shear, it has been found by George and Tucker that both the 
diameter of the fibrils and the mean lamellar overgrowth 
spacing are dependent on the temperature of crystallization, 
the greater diameters and interlamellar spacings being asso
ciated with the higher crystallization temperature . The mean 
value of the interlamellar spacings is typically about seven to 
eight times larger than the fibril diameter. (Results obtained 
by other investigators to be noted subsequently suggest a 
ratio close to six.) George and Tucker also found by electron 

diffraction experi ments that the lateral spacings of the 
polyethylene molecules in the orthorhombic lattice of the ir 
specimens were decidedly larger than normal; the cross
sectional area occupied by the chains in fibrils 181 A in 
diameter was expanded by circa 4 .7 percent. This is consist
ent with the concept that, under certain circumstances, 
volume strain can exist in the fibrils. 

It will emerge that the application of the concept of 
cumulative volume strain originating at the bundle ends of a 
fringed-mi cellar type of crystallite can lead to a stable (or 
metastable) diameter for the fundamental units that comprise 
the core filament, and thus explain the limited radial growth 
of these entities. The fibril diameter is predicted to vary as 
the reciprocal of the undercooling. A similar limitation is 
found for the characteristic length, which is also predicted to 
vary as the reciprocal of the undercooling. The results are 
such that the crystallites making up the core fibril possess a 
constant mean axial ratio at various undercoolings, and a 
simple rational e is provided for the absolute value of the 
axial ratio. Insofar as the mean distance between the lamellar 
overgrowths in the particular data that we employed for 
comparison of theory and experiment is a reasonable measure 
of the actual value of the mean characteristic crystallite 
length, the predictions concerning the axial ratio and the 
variation of characteristic length with undercooling appear to 

be approximately verified. 
The theory allows the reduction in the dissolution temper

ature and heat of fusion resulting from cumulative volume 
strain to be calculated. The latter quantity can be utilized to 
estimate the expansion of the lattice in the crystallite caused 
by the volume strain in polyethylene fibrils formed in 
solution, and this is carried out and compared with experi

ment. 
Under certain annealing conditions, the volume strain in I 

the core fibrils can be relaxed, causing the reappearance of 
normal lattice spacings in the crystallites. The situations in 
which this is apt to occur are discussed, and the properties 

of the resultant fibrils outlined. 
The presence of volume strain can affect the melting 

behavior of the fibrils. The treatment of Grubb and Keller is 
modified to account for this effect. The shape of the melting 
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cUI-ves obtained by these authors from measurements of the 
contraction on heating of polyethylene fibrils can be repro
duced by the revised theory, as well as by a theory where the 
volume stra in is assumed to have been relaxed by annealing. 
This analysis leads to an independent determination of the 
characteristic length that is in fair accord with estimates 
based on th e distance in fresh preparations between the 
lamellar overgrowths that decorate the core fibrils . 

2. Model 

We assume that in a suitable experiment a very long 
polymer chain in a solution is statistically elongated by the 
flow field, forming a convenient site (or more correctly, a set 
of si tes) for nucleation (fig. lA). This elongati on will be most 
evident for the chains of greatest length. Spec ifi cally, we 
take these high molecular weight elongated chains as likely 
sites for the formation of a nucleus of the type shown in figure 
IB, which we ideali ze as a square parallelepiped of diameter 
a and length l , with the lateral surface free energy IT and th e 
bundle-end surface free energy ITe as shown . The value of IT 

will be taken as similar to that of a normal lateral surface for 
a polymer crystal (circa 14 erg/cm2 for polyeth ylene), but the 
bundle-end surface free energy ITe after some growth must be 
expected to be certainly not less than and more probably 
somewhat greater than that for a stri ctl y folded su rface, the 
latter being about 93 erg/cm2 for polyeth ylene. The bulk of 
the clystallite is taken to be largely bundlel ike or fringed
micellar in character, with numerous polymer chains emerg
ing from the end surfaces and entering other crystallites 
(ciliary bridges). The interior of th e crystallite (nucleus) will 
be partly of th e extended-chain type, but with some chain
end and chain fold defects. 

Nuclei leading to crystallites of a similar type will form 
downstream on the same long central molecul e (or on new 
and secondary polymer chains pendant downstream from the 
first nucleus or crystallite) giving rise after each nucleus 
grows to a connected set of long thin crystallites forming a 
very long core fibril (fig. Ie). These crystallites will nucleate 
on the pendant primary or secondary elongated chains at 
more or less random positions. It is important to see that new 
nuclei will also form between two nuclei that have already 
been established (see fi g. lA). Though the nuclei appear 
initially on the primary or secondary chains more or less at 
random, certa in th ermodynamic and kinetic considerations 
to be brought out subsequently mitigate in favor of something 
less than a totally random distribution of characteristic 
lengths und er certain conditions . In particular, the average 

diameter and length of the crystallites will prove to be limited 
to a specifi ed value even though a broad distribution about 
thi s mean value may still occur. 

A special feature of the model that will be dealt with in 
detail later relates to the cumulative build up of surface 

stress at the bundle ends anslllg from increasingly strong 
repulsion of the ciliary bridges emanating from the end 
surfaces as the crystallite grows. This induces volume strain 
(at least while the tens ion resulting from the flow field is 
exerted on the fibril ) and ultimately leads to a stable or 
metastable minimum in th e free energy at a spec ifi ed size of 
the crystallite. 

We shall now begin to focus our attention on th e formation 
of a specified nucl eus on a pri mary or pendant secondary 
elongated cha in . 
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FIGURE 1. Formation and structure of core fibril. 
(A) Bundlelike nuclei forming on polymer chains elongated by flow. (B) Geometry 

and surface free energies of nucleus or crystallite. (C) Schematic model of core fibril 
showing alternating crystalline and amorphous regions. the latter consisti ng largely of 
ci liary bridges. Note crossovers and other defects in the amorphous zones. The average 
value of the lengths La. la, I.." ... is de noted Ls. and is termed the "characteristic 
length" in the text. Lamellar overgrowths not shown. Annealing may cause the 
cumulative strain to decay, allowing normal lattice spac ings 10 appear (see text). (D) 
Lattice expansion effect caused by small lengt hwise translations 8 resulting from 
anisotropic te nsions caused by differences in nature of c iliary bridges (e .g., crossovers) 
and defects in amorphous zone at e ither e nd of each molecule in core fibril crystallite. 
Small horizontal arrows represent direction of chain translation relative 10 reference 
(central) molecule (schematic). 
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3. Nucleation and Growth of the Core Fibril 
Crystallite with Cumulative Strain 

3.1 Preliminary Considerations. 

It is convenient for future developments to consider first 
the conventional case of nucleation of an individual crystal
lite without cumulative strain. The free energy of formation 
of a crystallite of the shape shown in figure IB is 

(1) 

where the free energy difference between the subcooled 
liquid and a very large and strain-free crystal is to a first 
approximation 

T) 
(2) 

In these expressions, lief> is in erg/crystallite, a and l in cm, 
cr and cr e in erg/cm 2 (millijoules/m2), and the heat of 
dissolution (or fusion), !lh f, in erg/cm 3 unless otherwise 
noted. The free energy of fusion, lif, is also in erg/cm 3. The 
quantity liT is the undercooling T dO - T, and T dO is the 
equilibrium dissolution temperature, analogous to the equi
librium melting temperature T mO for a bulk polymer. The 
value of T dO is assumed to be corrected if necessary for the 
increase in this quantity that may result from the presence of 
the flow field. For the sake of simplicity, we have omitted a 
multiplying factor on the right-hand side of eq (2) off == 2T/ 
(T / + T) or f = TiT dO that approximately corrects for the 
decrease in the heat of fusion with falling temperature. 

By the customary procedure of setting 

A 

B 

c 

SADDLE POINT AT ll.4>*= 32CT 2 CTe 1 (1'.1)2 
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CU MULATI VE STRA IN) 

FIGURE 2 . Alternative representations of barrier system (schematic). 
(A) Conventional tlq, - a - I plot of barrier system without cumulative strain. (B) 

y - n space plot of same system. (C) y - n space plot of system with cumulative strain 
showing stable or metastable minimum at n s. 

(7) 

(a~t) = 0; (a~aef» = 0 (3) and 
a I 

it is readily found that the values of l and a at the saddle 
point in the lief> - a -l surface (fig. 2A) described by eq (1) 
are 

d' = 4cr/(lif) , (4) 

and 

(5) 

and that when these are inserted into eq (1) that the free 
energy at the saddle point is 

(6) 

An investigation of eq (1) shows that the value of lief> falls 
after reaching lief>* and reaches a value of zero again at 

This suggests a coordinate system where 

and 

These expressIOns allow lief> as given In 

expressed as 
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(9) 

(10) 
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where we may defin e a reduced free energy of formation 
function as 

(12) 

By simply taking dy / dn = 0 , it is found that n * = 2/3, 
corresponding to /lcf>* = 32a-2 a-el(/lJ)2, and it is seen by 
inspection of eq (11) that /lcf> = 0 when n = 1, giving a A 
crossover on the n coordinate at n c = 1 (see fig. 2B). This 
convenie nt coordinate system will be used in the develop
ments to follow. 

Thus far, we have described a simple nucleation process 
that, once accomplished, leads to crystallite growth without 
limit in both the a and I dimensions in the stable region (/lcf> 

I or y negati ve). 

3.2 The Form and Origin of Cumulative Strain. 

Crowding of the amorphous c ili ary bridges at the bundle 
ends may be pictured in general as inducing equal biaxial 
stress on the ends of the crystallite (fig. 3C). (As will be 
discussed subsequently, the build-up of biaxial stress is also 
accompanied by a corresponding increase in inhomogeneous 
tensions originating in th e amorphous zone at th e bundle 
ends. These tensions tend to produce small lengthwise 
translations of the chains in the crystallite relative to one 
another; such translations have the important consequence of 
being able to distribute forces originating in th e bundle ends 
long distances into the interior of the c rystal.) Assum ing an 
infinites imal deformatio n of th e crystallite resulting from the 
crowdin g phenomenon , Fong [14] proposed a continuum 
mechanical model relating th e crowding-induced energy at 
the end sutface to the dilatat ion-induced strain energy in an 
idealized transversely isotropi c elasti c crystal such that the 
end surface free energy takes th e form 

(I') (V') 2/3 a-=a-+C - - + 
e eo to Vo 

(J 3) 

Here a-eo is the surface free energy in the absence of equal 
biaxial end surface stress, C a material constant that we shall 
identify in a subsequent development as the end surface free 
energy associated with cumulative strain, 10 and V 0 the 
original (unstrained) length and volume, respectively , I' , V' 
the slightly larger length and volume that obtain upon the 
application of equal biaxial stress on the end surfaces, and 
the three dots denote hi gher order terms. The above expres
sion applies to any materi al object of th e type described, and 
does not yet ex plic itly contain the concept of cumulative 
strain. 

It has been shown by Fong that classical formulations of 
strain e nergy fun ctions of a deformable body such as eq (13) 
are not directly applicable to crystal growth problems since 
the latter involve increases of mass. By introducing a 

SMALL NUCLEUS 

( NEGLIGIBLE CUMULATIVE ) 
STRAIN 
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STRE SS 

~----, 

c 

CT 

- - 0 - -

LARGE CRYSTALLITE 

( WITH CUMULATIVE STRAIN) 
AN D EXPANDED VD LUM E 

l' v' 213 
CTo = CToo + C 0 (v ) 

"'0 0 

FIGURE 3. Schematic representation of physical origin of cumulative 

stress. 
In small nucleus depicted in (A), presence of sufficient number of chain ends, 

s hort cilia, or folds prevents repulsions lead ing to cumu lative end-surface stress. 
Larger cryst.a lli te shown in (8) exhibits nonresolvable repuls ions because of excessive 
num ber of eme rge nt c iliary bridges and develops c umulati ve s tress. Di agram (C) shows 
continuum mechanical model used to treat cumulative end surface stress and vol ume 
strain resulting from repu lsion of c il ia or ciliary bridges. 

hypothetical inte rmediate state that is volume and shape 
preserving, but at the same time mass increas ing, thi s author 
developed an argument using standard results of elasticity 
theory that modifi es eq (13). This argument provides th e 
required formula appl icable to a c rystallizing system, and at 
the same time provides th e framework for introducing the 
cumulative strain approx imation. This has a form similar to 
eq (13), and will be given subsequently. 

It will prove to be important in the theory developed here 
that equal biaxial end stress can be associated with an 
expansion of the entire volume of the crystallite . It is relevant 
to note that Davis et al [15, 16] have clearly demonstrated by 
careful x-ray measurements that the presence of an end 
surface with its attendant surface free energy expands the 
lateral lattice spacings in the case of polyethylene. Specifi
cally, their work shows that thin chain-folded single crystals 
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exhibit larger lattice spacings (i.e., larger effective molecular 

cross-sectional areas) than do thick single crystals, and the 
same applies to chain-folded lamellae formed from the melt. 
The experimental constants describing the lattice expansion 

at a specified temperature as a function of lamellar thickness 

are nearly the same in these two cases [16]. A similar but 
considerably smaller effect occurs in the n-paraffins [16]. In 
all these instances, the expansion is essentially uniform in 

the sense that the increase in cross-sectional area is the same 

throughout the crystal, i.e., these systems behave as if they 

undergo equally distributed volume strain resulting from the 
presence of the end surfaces. It is also known that point 
defects such as -CF3 branches in poly(tetrafluoroethylene) 

have the general effect of expanding the entire lattice as has 
been shown by Bolz and Eby [17]. The latter point in 
particular shows that defects which are quite local in 
character can lead to relatively uniform expansion effects 

over considerable distances in systems consisting of chain 
molecules. 

In the case of bundlelike core fibril crystallites, the 
postulated approximately uniform expansion effect {and a 

molecular explanation of the presence of the factor involving 

the length in the second term on the right-hand side of eq 

(13)) can be traced to inhomogeneities in the strained 
amorphous zone that cause small lengthwise translations of 

the chains in the crystallite relative to one another. Some of 
these inhomogeneities are of the type depicted in figure lC. 
It is readily seen how such translations along the chain axis, 

even though much less than one chemical chain unit, can 
cause an expansion of the entire crystal, and not just a 

splaying near each end, if the chains are represented as 
linear sets of interlocking beads. Observe in figure lC that 
the ciliary bridges at either end of a given molecule in a 

crystallite are generally quite different -some go nearly 

straight through to a corresponding position in an adjacent 

crystallite, while others are longer and exhibit crossovers 
bordering on entanglements in character. This anisotropy is 
a direct result of the nature of the nucleation mechanism 
illustrated in figure lA. Thus, as the end surface free energy 

builds up, a corresponding difference in tension builds up on 

the chains in the crystallite which tends to increasingly 
displace them lengthwise with respect to one another. (A 
torque can also lead to some chain translation.) Then if each 

chain is pictured as a set of beads, it is seen that a small 

lengthwise displacement of a chain of much less than one 
bead length relative to its neighbors will expand the mean 

distance between the chains throughout the entire length of 
the crystal. 2 This is shown schematically in figure ID. In the 

particular case of polyethylene, the direct cause of the 
expansion is the repulsion of the hydrogen atoms on one 

2 The explanation given above for the overall lattice expansion effect does not 
preclude the presence of some splaying near the crystallite ends resulting from the 
crowding of ciliary bridges. This effect would tend to be minimized by the fact that 
large separations require the loss of much of the heat of fusion in the affected regions. 

chain with those on neighboring chains resulting from the 
small translation. 

The foregoing discussion provides a rationale showing how 
forces at the bundle ends resulting from mutual repulsion of 

the ciliary bridges can lead to an additional component of the 
end surface free energy that depends, among other factors, 
on the length of the crystallite and which is at the same time • 

associated with an expansion of the lattice i.e., volume 

strain. 3 Comparatively large lattice expansion effects must be 
anticipated in bundlelike crystallites because of the consid

erable end surface stress in such systems. Mechanisms that 
may relax the volume strain will be noted subsequently. 

It has long been suspected that a bundlelike or fringed
micellar crystal develops topological difficulties leading to 

energetically unfavorable conditions as it attempts to grow in 
size. Estimates concerning this question have previously 
centered on the magnitude of the end surface free energy, 

and it is now widely recognized that (T e(bundle) > (T e(fold 

surface)' The regularly folded surface for polyethylene exhibits 
a surface free energy close to 93 erg/cm2, and in the present 

work we estimate that (Te(bundle) ~ 120.5 erg/cm 2• (The lattei 
figure refers only to the portion of (T e(bundle) not subject to 
cumulative strain, i.e., (Teo in eq (13); a much higher figure 
to be quoted subsequently is obtained when results deriving 
from the second term in eq (13) are included.) 

Some insight into the problem of the origin of the increased 
end-surface free energy is afforded by a consideration of the 

number of chains that can emanate from the end of a 
bundlelike crystal and still maintain configurations that at 
least roughly approximate random coil behavior. The number 

of polymer chains that can project from a flat surface and ' 

maintain liquid-like configurations is in fact quite limited. 

We define!! as the fraction of surface sites on the plane that 

can be occupied by long emergent chains with liquid-like 
character of the same cross-sectional area as each of the 

sites. DiMarzio [18] has commented that!! is probably less 
than one-half. Here however it is sufficient to refer to a 
calculation by Flory [19] who showed for one special case 
that 

(14 ) 

In this case an emergent molecule was not allowed to take 
steps backward toward the plane of origin, so that the liquid 

3 Some intuitive understanding of the fonn of the second tenn on the right-hand 
side of eq (13) can be gained when it is seen that C is in the units of surlace free 
energy, and that I must be a factor according to the arguments given concerning chain 
translation. For this second tenn to lead to a volume strain free energy effect when 
inserted into eq (1), it is readily shown that the multiplying factor in it must have a 
numerator with the dimensions of (length)2. The reasonable choices for this factor are A') 
Ao. where A' and Ao are the strained and unstrained total end areas, and (V' IV ot/3 . In 
the case where one regards 10 to change to I' with increasing tensions, one then has 
C(l'II,) (A'IA,) or C(l'II,) (V'IVil, as correct choices for the second factor. With 
even a very small lengthwise distension of the chains from 10 to l' being allowed, and 
knowing that the end area must increase with chain translation, it may be sunnised that 
the latter choice is correct. The continuum mechanical treatment of Fong [14] clearly 
decides in favor of C(l' I I o)(V' IV 0)'1,. 
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state does not consist of random coils . The remaining fraction 
of s ites 1 - 11 on the surface a re presumably occupied by 
chain folds or quite short c ilia . Now if as in the model shown 
in figure lA and l C, th e frac ti on of cha ins emerging from an 

end surface is caused by multi ple nucleation acts to exceed 
one-half, then the c ilia (actu all y bridges between the nuclei 
or crystallites) would tend to repel one another, a nd excess 
surface stress would occur at the bundle ends as the 
crystalli te grew. 

In th e case of fibril form ati on induced by now, we are 
considering a situation where multiple nucleation essen ti ally 
forces a mostly bundlelike mode of crystal growth on the 
sys tem, so that a cons iderable frac tion of the cha ins must 
emanate from the ends . So me folds may occur on the end 
surface, but turning a pendan t molecule on the leeward end 
of a crys tal bac k agains t the fl ow fi eld to form a fold must be 
considered an im probable event exce pt in the slow process of 
building up the nucleus itself to n = 2/3 or n = 1 (see fi g. 
2B). Further, the una ttached porti on of a molec ule th at is at 
points assoc iated with one nucleus or crys tallite on a now
aligned molecul e will dangle as a secondary cha in from thi s 
entity in a bundlelike mode , and attac h downstream to one or 
more nucle i or crystallites in a s imilar manner (fi g. lA). 
Recall also our earlier remark tha t new nucle i formed a t a 
later time between two previously establi shed nuclei must 
necessarily exhibit a bundlelike character. The ove rall situ 
ation described clearly commits the system to a substanti all y 

bundlelike mode of crys talliza tion where cha in molecul es 
perform traverses, i.e. , b ridges, from one crys tallite or 
nucleus to another. 

From th e forego ing di scuss ion, one must expec t the 
majority of th e molec ules to parta ke of more than one nu cleus 
or crys tallite, such molecu les pass ing through a highly 
strained "amorphous" zone between each crystallite . The 
overall result is that eq (14) is strongly violated, and 
cumulat ive stress must therefore be expected to develop at 
the bundle ends as the diameter and volume of each 
crystallite increases. 

It is possible to indicate in physical terms, though still in 
a schema tic way, what is occurring at the bundle ends. In 
the parti cular representation shown in fi gure 3 , the c ilia 
(treated as one-half of a bridge between two nuclei or 
crystallites) are depic ted as restri cted to the volu me of a 
cone, so that they are not ra ndo m coil s. The molecules in th e 
cones a re allowed to interpene trate somewhat, but repuls ions 
between th em occur because the liquid dens ity cannot be 
exceeded in the end surface layer. The result is that the 
effecti ve cross-sectional area assoc iated with each cone is 
larger than the cross-sec ti onal area of the same molec ule in 
the crystal proper. In fi gure 3A, th e repuls ion is reduced 0 1' 

absent because of the presence of folds and cha in e nd 
defects, but in the la rger crystal shown. in fi gure 3B, the 
repulsion becomes more pronounced as the area of the crystal 

end increases . Thus, in a s trictl y bundlelike crystallite, or 
more correctly, a crys tallite where the number of short c ili a 
or folds in th e end sUlface is insuffi cient to prevent violation 
of eq (14), cumulati ve stres must build up on th a t surface. 
It is seen tha t the d iffi culty in pack ing the cones for a large 
crystallite cannot be evaded by round ing the ends if it is 
remembered that c ili ary bri dge are in volved. The longe r 
ciliary bridges tha t would ex ist toward th e edge woul d s im ply 
correspond to a la rge r set of cones in thi s region, and 
repulsions could not be avo ided as th e crystallite increased 
in dia mete r. 

In the model, cu mul ative stra in is not allowed to occu r to 
a serious extent in the nucleus itse lf. We allow eac h nu cleus 
to grow without strong cumulati ve stra in up to the dimens ions 

(I 5) 

and 

ae = 6a/(t:. /) (16) 

that is, to a volume V c = a/ l eo Thi s corresponds to n c = 1 
in fi gure 2 . 

The phys ical conce pt underlying thi s scaling process is 
tha t the growth of the nucleus in the t:. ¢ or y pos iti ve region 
(s haded region in fi g. 2B and 2C) is slow enough to allow 
some c ha in folds and short c ili a or othe r defects to insert 
th emselves into the bundle ends d ur ing the slow fo rma ti on of 
the nucleus, allowing th e longer c ili a to be mostl y free of 
cumula tive repulsions (fi g. 3A). When the volume exceeds 

Ve , growth becomes much more rap id and the crystallite is 
forced to acce pt the bundlelike end without recourse to 
processes that can mitigate the repuls ions be twee n the long 
cilia (fig. 3B). Thus, cumulative stra in begins to manifest its 
major effect near Ve' 

The results to be calcul a ted are not parti cularly sens iti ve 
to the choice of the scaling point where cumula ti ve s tra in 
becomes signifi cant ; we could have equally well chosen a c 

= 4a/(t:.1) andl c = 4a eo /(t:.f) as the phys ical di mens ions 
corresponding to the s itua tion where cumulati ve stra in begins 
to be prominent with no bas ic change in phys ical interpreta
tion and onl y tri vial changes in the mathematical formula ti on . 

We begin the ac tu al treatment of cumulati ve stra in by 
defi ning 

E = excess free energy of c ilium 

or c ili ary bridge (ergs/c ilium) (17) 

and 

v = number of c ilia or ciliary bridges 

per unit area (number /cm 2) (18) 
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so that VE is in the units of surface free energy. This defines leading to the general result that embodies the cumulative 
the constant C in eq (13) so we have strain approximation 

( l') ( V') 213 (Te = (Teo + VE = (Teo + VEe - -
le Ve 

(19) 

where VEe is the value of the excess end surface free energy 
VE at n = 1, i.e., at l = le' a = ae, and V = Ve. The 
assumption that VE has the form vEe(L' I le)(V' /VJ213 repre
sents the first stage of what we denote the cumulative strain 
approximation, which is seen to be an explicit statement of 
the nature of the accumulation of free energy resulting from 
the repulsion of the ciliary bridges. An increase in VE must 
be expected on physical grounds because of the crowding 
effect of the ciliary bridges as the end area and volume of the 
crystallite increases, as has been discussed. Equation (19) 
also exhibits the scaling hypothesis noted above, where we 
have set lo = le, Vo = Ve. At this stage, eq (19) has not been 
justified for the case where the crystallite has grown. Recall 
also thatl' /l e and V' / Ve are only slightly different from unity. 

We now wish to extend eq (19) to the case where the 
crystallite grows to a volume where the final volume V is 
much greater than Ve. The second stage in the cumulative 
strain approximation consists essentially of assuming that at 
any given stage i in the crystallite growth process the cilium 
surface free energy VE is proportional to the length and the 
volume in the powers appropriate to eq (13) or (19). This can 
be given an explicit formulation. 

Let us assume a stepwise growth process such that 

where V j is now the final volume of the grown crystallite. A 
similar expression holds for the progression l c ~ II ~ l2 ... 
Ij • Then, according to our hypothesis, we may write 

(20b) 

In going from VI to V2 , we get 

(20c) 

Now by substituting VE(V!. i1) from eq (20b) into eq (20c), 
one finds 

(20£) 

Hence , recognizing VE(V e, i e) is VEe' we arrive at [14] 

(I) ( V) 213 (Te = (Teo + VEe - -
Ie Ve 

(21) 

which is similar to eq (19), but with the additional justifica
tion through eqs (20) resulting from the cumulative strain 
approximation that it may be employed for a crystallite that 
has grown (with volume strain present) from Ve to V and Ie to 
i, where the final volume V (and length l) is now much larger 
than Ve. 

Note that at any stage i in the accretion process described 
by eqs (20) that the ratio 

V;' (crystal with volume strain)IVi(unstrained crystal) (22) 

is always only slightly greater than unity; the appearance of 
values of V IVe many times greater than unity in eqs (20) and 
(21) does not imply an expansion in the lattice spacings of 
the crystallite resulting from cumulative strain equal to V IVe 
or (V IVe)213. 

It is useful in understanding the nature of the cumulative 
strain approximation that is applicable to bundlelike crystals 
to indicate why it would not be employed in the case of n

paraffins and chain-folded crystals, the platelets of each of 
which grow without limit in the two "a" dimensions, but not 
in the i dimension. Even apart from the fact that I is fixed in 
these cases, and the ratio V~trainfV no strain in the analog of eq 
(13) is replaced by a factor involving the ratio of the strained 
and unstrained areas, the procedure implied by eqs (20) 
cannot be applied. Equations (20) state directly that the 
effective end surface free energy VE resulting from repulsion 
of cilia is a function of the length and volume of the crystal 
(see fig . 3), which is the essence of the cumulative strain 
approximation. This assumption cannot be made in cases 
where there are no physical grounds for deciding that the 
surface free energy depends on the dimensions of the system 
considered. 

(20d) 3.3 The Free Energy Function With Cumulative Strain. 

and in a similar way we obtain 
Given the free energy of formation in ergs/crystallite as 

(23) 

(20e) 
and inserting (T e from eq (21), there is obtained 
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(24) 

which beco mes, on noting from eq (15) that [c = 6a-eo /(I1f) 

11¢ = 2a2a-eo + 4ala- - a2[(tlf) 
+ a2[(tlf)a(V /Ve)2/3 (25) 

where the volume strain parameter a is defined as 

VEe 
a =-- . 

3a-eo 
(26) 

Observe in the foregoing formulation that the term 
vEc(L/[c)( V/ VJ 2/3 in a-e from eq (21) has become a volume 
strain term in th e free energy of formation (see last term in 
eqs (24) and (25)). The factor VEe may be regard ed as the 
excess surface free energy at n = 1 assignable to cumulative 
strain. Only th e term a-eo re mains as an end surface free 
energy in the customary sense. 

In order to obtain a simpler and more trac table express ion, 
we introduce th e numeri cal variables 

(27a) 

and 

(27b) 

i.e ., we have na = a/[6a-/(tlf)], nl = L/[6a-eo/(tlf)], V = a2[ 
= n~nl(216a-2a-eo)/(l1f)3, and V c = 216a-2a-eo/(l1f)3. With 
these introduced into eq (25), we obtain 

(28) 

The term - 1 has been subtracted from n ~nl in the last factor 
to account for the fact that cumulative strain occurs in the 
volume V - Vc = [216a-2(J"eo/(tlf)3](n~nl - 1). An alterna
tive derivation of eq (28) that gives rise to thi s term in a 
natural way is given in th e appendix (sec. 7). The te rm -1 
has a negligible effect on th e pos ition of the stable minimum 
in the free energy in the calculations to follow ; the advantage 
is that its use causes the red uced free energy function to be 
introduced below to be well-behaved near n = 0, n = 2/3, 
andn c = l. 

In the investigation of the properties of eq (28) to find 
maxima and minima in 11¢ as a function of na and n b we 
could proceed by calculating (atl¢lana)n, = 0 and (atl1>l 

antlna = 0, but a simpler approach is warranted by the fact 
that the term involving a contains only factors involving 
powers of the volume. (In the notation in eq (28), n~nl 
represents a reduced volume.) This means that the axial ratio 
of the crystallites is not affected by partial differentiation of 
the term involving a, and we may therefore drop the 
subscripts a and l in eq (28). The results are in any case 
identical to that found using the partial derivatives of tl¢ 
with respec t to n a and n 1 noted above. 

Dropping th e subscripts in eq (28) and co llec ting terms of 
like powers of n, we arrive at the working equation 

(29) 

Note that when a = 0, corresponding to no cumulative 
stra in, eq (ll) is recovered . 

It is now possible to calculate the sali ent properties of the 
model. These include : (1) th e position of the minimum n s 

and th e crossover at n / in y - n space (see fig . 2C); (2) the 
mean axial ratio of th e c rystallites ; (3) the mean diameter 
and mean characte ri sti c length of the individual crystallites 
making up th e core fibril ; (4) th e depression of the di ssolution 
te mperature and heat of fus ion; (5) an estimate of the latti ce 
expans ion incurred by th e cumulative strain and (6) melting 
and annealing behavior. In dealing with the latte r, we shall 
also address th e problem of the distribution in crys tallite 
lengths. 

4.1 

4. Properties of the Model 

Stable Minimum and Other Characteristics of the 

Reduced Free Energy Function. 

From eq (29), it is seen that th e reduced free energy 
function with cumulative volume strain is 

(30) 

We first examine eq (30) for crossovers at y = 0 with 
emphasis on those other than which occur at n c = O. The 
reason for investi gating yen, a) for cross ings of th e y 

coordinate is clear from figure 2C; a crossover at large n 
implies that a minimum exists between n c = 1 and the larger 
value of n, which we call n / . Though Ouctuations will 
occur, the system average will never actually attain the 
crossover at large n, but will seek instead the minimum in 
tl¢ that exists between n = 1 and n / . 

The crossover at n / is found by setting y = 0, correspond
ing to tl¢ = 0, taking two roots of n = 0, and another at n 

= 1, after which it is found that 

an2 + an + a-I = o. (31) 
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The relevant root is 

The approximation shown is quite acceptable smce a for 
polyethylene is close to 0.01 (see later). 

We now investigate eq (30) for the existence of the stable 
minimum. By calculating dy/ dn, setting the result equal to 
zero, and taking one root at n = 0, it is seen that 

y' = 5an3 - 3n + 2 - 2a = o. (33) 

Surmising a root very close to n - 2/3 = 0, one finds to a 

sufficient approximation that 

5an2 + (1O/3)an - 3 + 20a/9 = O. (34) 

The root n* = 2/3 represents a maximum in yen, a) at llcp* 
(fig. 2C). The stable minimum is represented by the following 

root of eq (34) 

n stable = ns = 1 ~5~4 - 3 -1 ~ 0~~;6 - ~. (35) 

For values of a in the vicinity of 0.01, i.e. , values of ns in 
the vicinity of roughly 7, the approximate expression for n s is 
correct to within 0.6 percent. 

A plot of y versus n for a = 0.015 and ex = 0.0118 is 
given in figure 4 using eq (30). It is seen that the plot for ex 
= 0.0118 gives a stable minimum at n s = 6.77. The 
minimum occurs at ys = -99.2. The crossover n/ occurs at 
8.70 for ex = 0.0118. We have emphasized the case giving 
n s = 6.77, since it will emerge later that this is the 
experimental value of n s for polyethylene fibrils. Note in 
figure 4 that the larger value of ex gives a less stable miminum 
at a smaller value of n s. Calculations for other values of ex 
show that this trend is general. The practical upper bound 
for ex is about 0.1- this gives n s - 2. 

A plot of the function given by eq (30) in the region of n 

= 0 and n c = 1 is shown in the inset of figure 4 for some ex 
values. It is seen that y is a well-behaved function in this 
region, and exhibits a maximum corresponding to a nuclea
tion barrier very close to n * = 2/3. The barrier height is 
however slightly lower for a > 0 than for ex = o. 

The overall picture deduced from eq (30) is that an embryo 
forms and slowly grows by fluctuations in the y or llcp 
positive region to the barrier maximum at n * = 2/3. After 
surmounting the nucleation barrier, the relatively more rapid 
growth process begins . Rapid accretion of new molecules 
commences at n c ~ 1, where the free energy turns negative. 
Rapid growth then proceeds, and the crystallite strives 
toward the minimum at n s (figs . 2C and 4). 
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FIGURE 4. Plot of reduced free energy function y against nfor various 

values of strain parameter a according to eq (30). 
Inset shows detail of behavior of y between n = 0 and n = 1. 

4.2 Stable Crystallite Dimensions and Dependence on 
Undercooling. 

Recalling that l = n[6<Teo/(llf)] and a = n[6<T/(llf)], 
we immediately find that the stable value of the mean 
characteristic length is 

The mean value of the core fibril diameter is 

astable = as = ns ( ~j) 
= (0.7746 _ .!.) 

a'l, 3 
(37) 

According to eq (36), we may write 

ls = Cd(ll T) (38) 
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where 

(39) 

and from eq (37), we get 

(40) 

~ where 

(4]) 

We observe from eqs (36) and (37) that the mean axial ra ti o 

" y of each c rystallite is given by 

Is (Ten 
y = - = - (42) 

as (T 

The express ions noted above represent some of the key 
predi ctions of the theory. In qualitative terms, the treatment 

implies th e following. At high und ercoolings, (111' large), th e 
basic core fibrils will be quite thin , and at lower und ercool

ings , they will have a larger diameter. FUIther, because (Teo 

> (T, and the rela tion (T eo l (T = Islas, the mean characteris ti c 
length I s will always be conside rably large r than the diame te r 
of the fibril ; for polyethylene, one must ex pec t y ~ -6.5 
((Teo ~ (T p = 93 erg/cm2 a nd (T = 14 erg/c m2). The 
characteri s ti c length (whi ch in spec ial cases we wi\] inte rpre t 
as the mean di stance be tween the lamellar plate lets or 
" kabobs" in a prope rl y prepared s pec imen) will increase with 

decreasing und ercooling in a manner closely parall el to th e 
increase of the diameter of th e fibril. Further, we mus t 

expect both I s and a s to be many times larger than the 

primary nucleus, mainly because of the factor n s - 0.77461 
a'I, in egs (36-41). The theory predicts that the mean value 

of the axial ratio should be approximately independent of the 
undercooling (or driving force 11/). 

Experiments where fibrils are formed are invariably car

ried out und er conditions where a flow fi eld is present, and 
it is well known that a large flow fi eld can substantially 

increase the driving force (11./) for crystallization [6]. In 
practical but s till qualitative terms, this may be tak en as 

equivalent to an increase in th e di ssolution temperature. 
Thus, at a constant temperature, the e ffective undercoo ling 

11.1' can be increased by inc reasing th e fl ow fi eld (e.g., 
increasi ng tak e-up s peed or rotor veloc ity). In such an 

exa mple, inc reas in g the take-up speed at a co nstant temper
ature should a t least a t firs t tend to cause a decrease in 
diame ter and charac teri sti c length of th e fibrils. The real 

situation is however quite co mpli cated , espec ially for th e 
stirrer method, and it is not a s imple matter to quantitatively 

determine th e value of the dissolution temperature and hence 

the unde rcooling for this method. Com plex hydrodynamic 

e ffects can compli cate malle rs furth e r at hi gh rotor veloc ities 
[6]. The properties of fibril s form ed in hi ghly inhomogeneous 

and strong flow fi elds could easily li e outs ide th e range of 
validity of the theory presented he re. The present theoretical 

developments are probably best tested where a low and 
constant flow fi eld is used , and whe re the und e rcooling is 

changed by varying the clystalli za ti on temperature 4• In thi s 
case the trend of 111' is defin itely known, a nd th e ac tual 

value of 111' can be estimated at least within broad limits. In 

such experiments, the prediction is th at an increase of 
crystallization temperature will lower the und ercooling, and 

lead to an increase in fibril diameter and charac teri sti c 
length . 

It is important to qualify any attempted identifi cation of 

the mean cha racteri sti c length' s of the crys tallites with the 

mean distance be tween the lamellar platele ts tha t decorate 
the core fibril. There are actually two s imple hypotheses th at 
would lead to at least an approx ima te cotTespo ndence of 
these two quantities. One which has already been c ited is 

that of George and Tucker, who assumed that c ili a assoc iated 

with the di sco ntinuiti es in th e core fibril nu cleate the 

lamellar ove rgrowth s. Another hypothes is that allows ' s to be 
s imilar to the mean lamell a r overgrowth d istance is that th e 

overgrowth expli c itly avoids th e amorphous regions, and 

pre ferentiall y nucl eates on th e co re fibril proper , mostl y on 
the basis of one overgrowth per crys ta llite . Again , such 

overgrowths might tend to be epitaxial in charac te r. In eithe r 

case, the success of identifying I s with the mean distance 

between lamellar overgrowths depe nds on the avoidance of 
additional overgrowths as much as possible , s ince such extra 

platelets would lead to an erroneously low estimate of ' s. 
De pending on whi ch of the above hypotheses is thought to 

apply, the di stributi on fun cti ons describing the s pac ing of 
the overgrowths and the amorphou s regions may be nearl y 
the same or quite different, and still exhibit essentially th e 

same mean value. 
In comparing theory and ex pe riment, we would accord 

ingly prefer to deal with interlamellar pl atelet di s tance data 

where th e formation of th e core fibrils and overgrowth s was 

quite rapid , and whe re fa st quenc hing was the n immediately 

employed in such a manne r as to freeze the solvent into th e 
solid s tate. Such a procedure should minimize any excess ive 

number of platelet overgrowths, and a t the same time curta il 

th e type of rearrange ments of the lamellar overgrowth s that 
have bee n described by Pennings, Lageveen , a nd Vries [13]. 
The expe riments of George and Tucke r meet th ese require

ments . It will be shown in section 5 that th e hypothesis tha t 

4 The filame nt take -up method, where the fibril is grown continuous ly, has 
reasonable prospects for allowing analysis of the effects of variations of inte nsity of flow 
fi eld at constant temperature (see paper by Zwijnenburg et al [20]). At the present 
writing it is st ill diffic ult to estimate the value of t1f in s uch e xperiments , but they 
would appear to involve a more uniform flow fi e ld than for example the stirrer method 
at high rotor velocities. The techniques advanced by Andersen and Carr [21] may 
prove useful in estimating fl.! in such systems. 
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the average distance between the lamellar overgrowths is 
associated with the mean distance between the amorphous 

zones in the core fibril in suitable preparations is a reasona
ble one. 

Perhaps the most important observation concerning the 
theory at this stage is that it provides a natural explanation 

for the limited diameter exhibited by the basic core filament 
even in a supersaturated solution. The fibril does not grow 

radially for the lack of nutrient polymer, but actually exhibits 

a stable (or metastable) diameter because of cumulative 

strain originating ultimately from topological and energetic 
considerations at the bundle ends. 

Another point is that the theory leads in a natural way to 

the type of structure shown in figure 1 C where a significant 

fraction of the long polymer chains go through many different 

crystallites. This is generally consistent with the enormous 

tensile strength exhibited by single fibrils. The treatment 

allows some defects (e.g. folds) to concentrate at the crystal
lite ends. Chain end defects can occur everywhere, though 

the concentration is apt to be higher in or near the amorphous 
regions, or just external to these regions (fig. IC). The 

molecular arrangement shown in figure IC bears a strong 
general resemblance to that proposed by Grubb and Keller 

[11]. As pointed out earlier, the crossovers and entangle

ments in the amorphous zone are a natural result of the 
nucleation and growth process depicted in figure l. 

We observe that eq (42) is consistent with the crystal 
shape that obtains by minimizing the total surface free energy 

of a square parallelipiped crystal of any fixed volume V k that 

has surface free energies u and u' e- This arises as follows. 
Taking 

and employing an arbitrary fixed volume V k = a 2l, one 
obtains 

figure 5. The mInImum in the y - n plot at n s becomes a 
deep trench elongated in the l direction in the Il<t> - a - l 
representation where the minimum has the coordinates Il <t>s, 
as, Is· The value of Il<t> at the minimum is {2I6u 2u eo /(Ilf)2} 
. y s where it will be recalled that y s is negative. Steep walls 
rise everywhere from the bottom of the trench. The 

Il<t> - a - I representation exhibits the conventional saddle 

point at Il <t>*, a *, I *. 

t>'/>(+) 

SADDLE POINT. f).q,*; 320- 2 (Jeo/ (,.,1)2 

I 
I 

I 

I 
I 

I 

I 
I 

STABLE MINIMUM 
AT Is, as . -"CPs 

FIGURE 5. Plot of /1cp - a - l space for models with cumulative strain 

(schematic) . 

Finally, we concern ourselves with the range of validity of 

(44) eq (25) or (28). Because of the terms involving (V IV J (or 
n~nl) in these expressions, the free energy does not go 

By setting (dll<t>crystadd a) = 0 for fixed V k' one gets au'e = 
V kU I a2 , which, with a 2 = V kll, leads directly to 

, 
_ = U e 

a u 
(45) 

Here l and a, unlike I s and a s in eq (42), are unrestricted 
dimensions. Equation (45) is a simple embodiment of Wulff's 
theorem, but it is clear that this theorem cannot alone explain 
the limited size, or the temperature-dependence of that size, 

of the basic units of the polymer fibril. 
Conversion of the results showing a stable minimum in the 

y - n plot to the more conventional Il<t> - a - I coordinate 

system is easily carried out and the general result of 
performing this transformation is shown schematically In 

without limit to more negative values as the volume in
creases, but instead exhibits a minimum in the negative free 
energy regime at a certain value of n. It is believed that this 
minimum is real in an ordinary time frame and exists for the 

physical reasons stated. Nonetheless, it is necessary to 

qualify the use of the term "stable" that we have often used 
in connection with it. The term "metastable" is probably 

more precise. The permanence of the minimum depends on 
whether or not in sufficient time the cumulative strain can be 

dissipated. Mechanisms for doing so can in fact be envi
sioned. If such mechanisms exist, they may provide 'routes to 

a more stable state where the volume strain is reduced and 

one or more of the dimensions of the crystal is larger (see 
dotted line in fig. 2C). In such a case, the minimum is a 
metastable one . If such routes are not accessible to the 
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system in a specified time fram e, th e minimum is "stable," 
and the continued rise in free energy at n > n s up to n / is 
real. For conveni ence, we have mostly used th e term "stable" 
to describe the minimum, but the provisos noted here should 
be understood in connec tion with its use. 

An entirely different sort of limitation should be noted. 
Under a fixed set of external conditions, there will be a 
practical upper limit to the temperature where core fibrils 
can be formed in a reasonable time because the nucleation 
rate will in effect fall off rather abruptly to an inconsiderable 
value. Also, at sufficiently low temperatures the nucleation 
rate will become very high , and probably lead to a lower 
temperature bound below which fibrils cannot properly form; 
at these low temperatures, competition with ordinary homo
geneous nucleation could also occur and mask or prevent 
fibril formation . 

4.3 The Distribution of Crystallite Lengths. 

Prior to discuss ing certa in aspec ts of the melting behavior 
of the assembly of crystallites that compri se the co re fibril, it 
is convenient to introduce the concept that some variation 
will occur in the diameter and espec ially in the length of th e 
crystallites. We concentrate on th e top ic of the distribution 
of le ngths , since certain details of the melting behavior 
depend on this fun ction. 

It was noted in the discussion of the basic model tha t the 
nucle i were assumed to be first deposited more or less at 
random on the primary elongated molecule , or on secondary 
chains dangling from the first or any subsequent nucleus or 
crystallite. If some process did not intervene, and thi s 
di stributi on were frozen in , it would tend to give a quite 
broad distribution of lengths for th e matured crystallites . 
Also one would expect a very large variation of th e average 
value of l with temperature if it were solely controlled by 
nucleation events. The nuclei would be widely spaced at low 
undercoolings and much more densely spaced at high under
cooling. But we have just shown in eqs (36) and (38) that l 
will actually tend toward a stable or metastable value of Is, 
which implies that the system of crystallites (while quite 
possibly sti ll having a broad distribution as a result of a 
memory of th e original nucleation acts) should exhibit a 
mean length that is related to { s . This implies that, whatever 
the distribution, the mean value is bounded. At this stage of 
the development of the theory, we have not calculated the 
natural distribution of l about l s resulting from fluctuations, 
but surmise that it can be considerably more narrow than 
that laid down in the initial nucleation process, especially at 
low undercoolings. Because of th e elongated shape in the { 
direction of th e trench near the stable minimum in the dcfJ 
- a - {representation, fluctuations in { will probably be 
considerably larger than th ose in a. In any event, the original 
distribution of lengths resulting from nucleation on primary 

and secondary pendant chains is certainly very broad, but 
there exists a natural driving force of thermodynamic origin 
toward a more truncated distribution. More important, we 
must expect the mean value of the distribution of lengths 
(characteri s ti c length ) to be reasonably close to { s. 

Grubb and Keller [11] have suggested the distribution 
function 

{ -
w(l) = --- e- l l { 

(l )2 
(46) 

where w(l) is th e mass fraction of crystalliti es of length { that 
occurs in the distribution , and [ is a length parameter that 
corresponds to the peak value of the distribution. This 
distribution is very broad, and rath er asymmetric, and may 
be taken as a s imple and practical representat ion of the 
shape of th e initial distribution resulting from more or less 
random nucleation on the primary elongated chain. Pennings 
has observed that the distribution of lamellar platele t dis
tances in ce rtain samples follows the logarithmic-normal 
distribution, and re marks that there is some theoretical 
justifi cation for its choice [6]. The distribution fun ction 
suggested by Grubb and Keller is quite s imilar in general 
shape (i .e., it is broad and has a similar type of asy mmetl)') 
and its us~ is s implified by the presence of onl y one 
parameter, {. 

The average value of { in the mass distribution employed 
by Grubb and Keller is 

({) = f" {w(l) d{ = 2[ (47a) 

and the average value of {2 is 

(47b) 

The coeffi cient of variation for thi s function is always 

100 -/({2) - ({)2 100 -.12 
cv == ({) = - 2- = 70.7%. (47c) 

Grubb and Keller were able to reproduce the shape of 
melting curves for fibrillar polyethy!ene with a broad l 
distribution with a parti cular choice of { and other parameters 
[11]. 

4.4 Melting Behavior and Some Aspects of Annealing. 

A fibril consisting of crystallites of the type depicted in 
figure IB, but with no cumulative strain, has the dissolution 
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temperature 

(48) 

as can be found be setting Il¢ = 0 in eq (1). The dissolution 

temperature for the case where cumulative strain exists can 
be obtained by setting Il¢ = 0 in eq (25) and noting that 
(V /VJ2/3 = n2 = nr The result is 

4(T } (49) 
(Ilhf)as(l - ans2 ) • 

The quantity an / is 0.541 for polyethylene, and (Teo is about 
120.5 erg/cm 2; estimates of (Te in eq (48) range from ~ 1445 
erg/cm 2 to ~550 erg/cm 2 for this polymer, depending on the 
degree of annealing (see later). 

Because of the condition (T eol (T = l s/a s that obtains for 
the crystallites with volume strain, T d as given in eq (49) 
may be written in the alternative and equivalent forms 

(50) 

In writing eqs (49) and (50), it has been assumed that the 
volume strain in the crystallites is not relaxed prior to 
dissolution or melting. In all of the expressions quoted here, 
the melting point of a dried specimen is given by replacing 
T d with the observed melting point T In' and T dO with T mO. 

lt is worth pointing out that if the strained amorphous 
region were destroyed in some manner and converted to short 
chain ends, the volume strain would be relaxed. Also (Teo 
would fall, and become comparable to (T. In this case the 
dissolution temperature would closely approach 

a { 4(T (1 1 )} T -T 1--- - + -
d - d (Ilhf) as 2Ls 

o{ 4(T} 
:::= Td 1 - (Ilhf)as . (51) 

Such a set of circumstances should thus cause a considerable 
increase in the dissolution temperature (or melting point) 
compared with that of the original untreated fibrils. Equation 
(51) offers an opportunity to obtain an experimental estimate 
of (T from melting point measurements on suitably treated 
specimens of different diameter. A plot of T d or T m versus 

l/a has a slope close to 4T d,mo (T/ fl.h" and an intercept close 
to T d ,mo. With Ilh f being known, then (T is known to a good 
approximation. This method of estimating (T is altogether 

analogous to the T d or T m versus l/l plot method of obtaining 
(T e(fold) for chain-folded single crystals [22, 23]. 

The foregoing expressions apply to melting or dissolution 
temperatures that have been freed of the effects of superheat
ing. Also, they do not explicitly take into account any 
annealing effects that may occur that may lead to an increase 
in crystallite size and perfection. Further, we have ignored 
the melting of the chain-folded platelets, but the melting of 
these objects can usually be distinguished from that of the 
core fibril. 

At this juncture, it is essential to note the probable effects 
of annealing, since certain phenomena that are associated 
with this process can alter the melting behavior and the 
presence of volume strain. The most probable result of the 
first stages of annealing is some relaxation of the repulsion of 
the ciliary bridges that cause the high end surface free 
energy and volume strain. In polyethylene, such behavior 
could be caused by the advent of lengthwise translational 
motions in the crystal associated with the a-relaxation 
mechanism, wherein a molecule shifts one C-C repeat 
distance and rotates 180° [24], which becomes active just 
above ~ 100°C. An interesting situation can arise from this 
which is best illustrated by the example of polyethylene 
fibrils: on annealing, the volume strain may dissipate, 
leaving only a large end surface free energy with the 
amorphous zone essentially intact. An explanatory discussion 
follows. 

Consider first the free energy of formation of an unstrained 
crystal, i.e., one in which the lattice is not expanded and 
where the strain is concentrated in the bundle ends. This is 
represented by eq (1) and is herewith labelled !l.¢u = 

!l.<Pc unstrained lattice)' Now according to eq (21), (Te in !l.¢u 
may be written as (Teo + (VEe) n s3 using l/le = n. and (V/ 
Vc )2/3 = nt The quantity (Te is 120.5 + 4.27 (6.77)3 = 
1445 erg/cm2 for polyethylene (see later). Now for the 
corresponding crystallite of the same dimensions exhibiting 
volume strain we use eq (25), and denote the free energy of 

fonnation in !l.¢. = !l.¢(strained latti ce ) for the purposes of this 
discussion. The quantity a(V /Vcl2/3 = a n.2 in eq (25) is 
0.541 and (Teo is 120.5 erg/cm2 for polyethylene. It is easily 
shown either numerically or by using the relations a == 
(vEc/3(Teo) and l = ns[6(Teo/(llf)] that !l.¢u = !l.¢s when (Te 
in !l.¢u is (Teo + (VEe) ns3. Thus, a polyethylene crystallite 
exhibiting volume strain with (Teo = 120.5 erg/cm2 has 
exactly the same free energy of formation as an unstrained 
crystal with no lattice expansion with an end surface free 
energy of (Te = 1445 erg/cm2 • Now if some annealing takes 
place and (T e falls, then the unstrained crystallite will exhibit 
the lower free energy. Thus, a certain degree of annealing, 
which may occur concurrent with formation of the fibril 
itself, especially in preparations of long duration or at high 
growth temperatures, can readily lead to a collapse of the 
expanded lattice in fibrillar specimens. We also observe that 
even a small degree of mechanical tension colinear with the 
core fibril axis will tend to stabilize the form with volume 
strain, if prior to the application of tension (Teo and (Te in eqs 
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(21) and (1), respectively, are such that 111>8 = l11>u. (fhe 
stabilization of the state with volume strain is apt to occur 

Ie during the formation process because of the tension on the 
fibril caused by the now field.) The tens ion has the physical 
effect of inc reasing the forces that translate th e chains and 
increase the volume. The above observa tions imply that the 
c rystallites exhibiting volume strain may be ephemeral , with 
the greatest chance of their being found residing in fibrils 

• formed in brief periods at low te mperatures, and probably in 
I a state of tension. 

Further insight on annealing can be gained by extending 
the discussion to certain simple aspects of melting behavior. 
Hwe substitute (Te = (Teo + (vEc)ns3 ~ 1445 e rg/cm2 in eq 
(48), which represents a crystallite without volume strain, a 
considerably lower melting point is obtained than is found 
with eq (50 ) with <Teo = 120.5 erg/cm2 and cxn / = 0. 541, 
the latter applying to a crystallite with volume strain. Thus, 
in the absence of ann ealing effects , th e strained crystal 
would be found in a melting run. However, it is easily shown 
that when (T e in e q (50) falls (presumably as a result of 
annealing) to a value near 550 erg/cm2 that the melting point 
calculated for the unstrained state us ing eq (48) is higher 
than that found with eq (50) for the strained state. Accord 
ingly, ann ealing can cause a collapse of the expanded lattice, 
but with a large end surface free energy of (T e - 550 erg/e m 2 

still being present that gives the same melting point as the 

ori~inal s~ained ~rystallite. (Calcul~tions for (T = 14.4 erg! 
cm , a s - 300 A P, i s = 2400 A.) In such a case , the 
unstrained crystal phenomena would be found in melting 
experiments . We infer from the foregoing discuss ion that (T e 
- 550 erg/cm2 is a reasonable estimate for th e end surface 
free energy of a polyethylene fibril crys tallite that has just 
transformed from the volume-strained to the volume-un
strained state in a melting run. A surface free energy of this 
magnitude without volume strain can have significant effects 
on melting behavior, as will be shown subsequently. 

A discussion will be given later concerning th e possible 
ultimate effects of prolonged annealing near the melting 
point. 

We now address the subject of the shape of the melting 
curves of the core fibril, espec ially as th ese are affected by 
the distribution in i, and th e presence of volume s train . Our 
treatment parall els that given by Grubb and Keller and 
utilizes th eir di stribution function as di splayed as eq (46); 
the princ ipal differ ence is that cumulative strain is included 
in the prese nt case. By employing th e concepts given by 
Grubb and Kell er, but using the free energy fun c tion given 
by eq (25) rath er than eq (I) (which except for unimportant 
geometri cal conside rati ons is th e same as that used by them) 
one find s 

(52) 

as given by Grubb and Keller, but io takes on the revised 

form: 

[ = 2(Teo 
o [(TmO - To)(l1h[)(1 - cxns2)/ T",O] - 4(T/a., 

(53a) 

(volume strain present ) 

This is the Grubb-Keller formulation with volume strain from 
the present theory included . In these express ions, X([ 0) is 
the fraction unm elted, and l' 0 is the melting point of a 
crystallite of length [ 0' The treatment ignores the effec t of 
any di stribution in the fibril diameter. The above express ions 
lead to a quite broad melting curve for reasonable choices of 
I e' Recall that according to the present formulation I is 
restricted by eq (47a) to a value in the vic inity of one-half of 
the mean characteri sti c length. Since (Teo' (T, 1'",0 and 1117, [ 
are known, one test of the theory is accomplished by 
reproducing a melting curve us ing only I as a fitting parame
ter, and determin ing if that I corresponds through eq (47a) to 

a reasonable value of th e mean characte ri s ti c length. 
In vi ew of the foregoing di scuss ion concerning the effects 

of annealing, we reproduce here for furth er use the expres
s ion for [ 0 for th e case wh ere th e volu me strai n has relaxed 
and where the cumulative stress re mains concentrated at th e 

bundle ends : 

[0= ___________ 2_(T~e ________ __ 
[(1'",0 - To)l1h[/ TmO] - 4(T /a s 

(volume strain absent ) 

(53b ) 

Thi s is esse ntially the formula of Grubb and Keller for the 
parallelepiped geometry used he re. 5 This express ion will 
prove useful where it is suspec ted that relaxation of th e 
volume strain has taken place . Such relaxation could take 
place e ither in the process of a high temperature preparati on, 
or prolonged storage at a lower tempe rature , or during the 
melting run itself. In th e latter case, we expect (Te - 550 

erg/cm 2 as noted previously. 

4.5 Depression of the Heat of Fusion Resulting from 
Volume Strain. 

In a calculatio n to follow concerning th e amount of lalti ce 
expansion in a core fibril crys tallite caused by the presence 
of cumulative strain, it is necessary to have an estimate of 
the frac tional depress ion of th e heat of fu sion attributable to 
the volume strain . We assum e tha t the volume strain is 
princ ipally enthalpi c in character, and that the decrease in 
enthalpy is proportional to that part of the decrease in 
melting temperature caused by the strain. In this approxi
mation, the fractional decrease in th e heat of fus ion is 

' A minor difference is caused by the fact that Grubb and Keller employ the 
relatIOn tJ.j = [(tJ.h ,)(tJ. T)f/' ",' J(/' f/' ",' ) in deriving the ir analog of eq (53b). See remarks 
concerning (tJ.j) in section 3.1. 
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~T(strain) - ~T(no strain) 
Tdo 

involved is paraffinic, chain-folded, or bundlelike. In deriv
ing the basis for eq (55), Davis and coworkers assumed 
that the product (absolute temperature· coefficient of expan
sion-isothennal bulk modulus) was ·much greater than the 
pressure; this is equivalent to the assumption ~E ~ ~H, 

6(J" eo 6(J" eo 
----=-- - --

(54) which is probably only a fair approximation in the present 
application. 

Here ~H [is the heat of fusion in Jg - 1 in the absence of 
volume strain, and ~H [(strain) the corresponding quantity 
with volume strain. The symbol (~h tl is in erg/cm3 and 
refers to the case of no strain. Because of the relation given 
in eq (42), the factor 6(J" eo/( ~h [)l s can be replaced by 6(J"/ 
(~h[)as. The value offh is typically about 0.01 to 0.04 for 
nonnal values of the parameters, the larger depression being 
associated with the thinner fibrils. Notice thatfh = 0 for a 
= 0, as must be the case. 

4.6 Estimate of the Lattice Expansion Resulting from 
Volume Strain in the Core Fibril. 

Because a connection exists between the reduction in the 
heat of fusion caused by surface effects and the concomitant 
expansion of the lattice, it is possible to develop a scheme to 
predict the lattice expansion in a fibril in terms of the strain 
parameter a. For reasons that will become apparent, this 
part of the development is aimed specifically at the case of 
polyethylene, but is believed to have more general validity. 

From their work on the x-ray spacings of lamellar bulk 
polyethylene samples and single crystals, Davis, Eby, and 
Colson [15] have shown that the thermodynamic properties 
depend on the fold period 12• In particular, they have given 
the heat of fusion in Jg - 1 of polyethylene as 

(55) 

where 12 is in A, ~H [is the heat of fusion in Jg- 1 of a sample 
of infinite lamellar thickness (i. e., with no strain) at the 
temperature under consideration, and ~ H f( strain) the heat of 
fusion of a specimen with the finite lamellar thickness 12 that 
exhibits volume strain. (The volume strain in a chain-folded 
single crystal or in folded melt-crystallized polymer is of 
course non-cumulative.) Values of K b which they report in 
units of ]g- l A, at temperatures of interest can be obtained 
directly from their figure 9, and ~H[is known. At 23°C, Kl 
is 160 Jg- 1 A. The value of Kl is a bulk property of the 
crystalline polyethylene substance itself, and is at any given 
temperature independent of whether the orthorhombic crystal 

In a subsequent paper, Davis, Weeks, Martin, and Eby 
[16] demonstrated experimentally that the cross-sectional 
area A 0 occupied by each chain is given with high accuracy 
by 

(56) 

Here A 0 is the cross-sectional area of the chain in an 
undisturbed lattice at a specified temperature in ,42 for 
polyethylene, and A o(strain) the same quantity for a sample 
with a finite lamellae of thickness 12 that exhibits an 
expanded lattice resulting from end surface stress. 6 The 
value of K2 in A3 has been given by these authors for melt
crystallized polymer, solution crystallized polymer, and n
paraffins, and highly precise values of Ao are available from 
the same source [16]. The magnitude of K2 for melt-crystal
lizea polymer and solution crystallized polymer centers 
around 15.7 A3 at 23°C, but K2 for the n-paraffins is much 
lower. The value of K2 is not known from direct experiment 
for a bundlelike crystal, but a reasonable estimate can be 
made beginning with the aforementioned data on chain- , 
folded systems. It is understood that K2 in the formulae to : 
follow refers to a bundlelike crystal. 

By eliminating 12 from eqs (55) and (56) and recalling that 
{~H [- ~H [(strain)}/~H [= fh' it is found that 

(57a) 

which with ~H[/(~h[) = 1O- 7/Pn where Pc is the crystal 
density in g/cm 3, gives 

K2 10- 7 6(J"eo ( ans2 ) 
Ao(strain) = Ao + -K ·--·- t - 1 _ 2 

I Pc sans 
(57b) I 

With the above formula, it will prove possible to obtain a 
rough estimate of the increase in volume (mostly cross
sectional area) incurred by cumulative volume strain. 

Both K 1 and K2 depend on the temperature, and by 
referring to the original references, it is possible to calculate 
the lattice expansion at various temperatures. 

6 One direct cause for the lattice expansion in chain-folded systems is probably the 
torque exerted by the folds which then leads to small chain translations. Another 
probable cause is non--cumulative repulsions of the folds that cause similar translations. 
This expansion is naturally associated with a corresponding reduction in the heat of 
fusion. 
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The extrapolation from the small lattice expansions ac
tually observed in single crystals and melt crystallized 
polyethylene to the considerably larger one found in fibrillar 
material is a long one. Also, the assumption dE - M! has 
been employed in estimating K j. Another diffi culty is that K2 
is not known for fibrillar specimens, though it is certainly 
somewhat larger than the K2 value quoted by Davis et at for 
single crystals or melt-crystallized polyethylene. The value 
of K2 can be corrected in an empirical manner so that it more 
accurately represents a bundlelike crystallite by multiplying 
it by the ratio (Jeo/(Je(fold). Given the approximations noted, 
it would probably be fortuitous if eqs (57) quantitatively 
predicted results that were within better than a factor of two 

I of the experimental data. 
Two qualitative features of eqs (57) are worth noting. First, 

the theory suggests that th e larger expans ions (i.e., effective 
cross-sectional areas) will occur in th e thinner fibrils. The 
second and more essential point is that a rath er marked 
expansion of the latti ce is expected; this may amount to 
several percent or more for thin fibrils. The expansion is 
large enough to consider th e poss ibility that the volume 
strain induced by the crowding of the c iliary bridges at the 
bundle ends may in some cases suffice to induce a phase 
transition to a more open lattice type of higher symmetry. 7 

Together with the previously given variation of clystallite 
dimensions with undercooling, the predi ction of considerably 
expanded lattice spacings in the body of the core fibril 
represents a major point of the present approach that can be 
tested experimentally. The observation of a considerably 
expanded latti ce in a thin fibril would support th e general 
approach and mod el given here. Recall, however, that 
annealing mechanisms may cause a disappearance of the 
lattice expansion effect while still leav ing th e other principal 
features of the fibril intact, as was noted in section 4.4. (We 
would judge from the temperature and duration of the 
preparations commonly used in forming polyethylene fibrils 
from solution that the expanded lattice effect would not 
ordinarily appear in the specimens after the flow field was 
removed because of annealing phenomena. ) We also remark 
that if the strained amorphous regions in the core fibril were 
somehow selectively destroyed, say by chemical attack, the 
strain in the crystal proper would be relieved, and relatively 
normal latti ce parameters should result. (See also remarks on 
melting behavior in connection with eq (53).) 

7 As noted in Section 4.4, the applicat ion of mechanical tension on the core fibril 
~ay st~bili ze the ~xpanded lattice. It follows that the application of such tension may 
In speCial cases e ither return a collapsed la tti ce to the expanded and strained state. or 
induce a transition to a ne w lattice of hi gher sym metry. We observe further that the 
longer crystaJlities in a fibril clamped at a low temperature to constant length will be 
subjected to strong tension as the shorte r c rystaUites melt out on warming, this tension 
be ing a result of the contractile force due 10 randomization in the me lted regions. 
Fibrils treated in thi s manner may exhibit the expanded lattice or even a phase 
transition to a higher sym metry fonn . (See discussion of contractility in sec. 5.5). The 
occurrence of such phenomena in clamped fibers would provide strong support for the 
treatment proposed in this paper. 

S. Comparison of Theory with Experiment 

5.1 General 

Data are not available to test all aspects of the theory, but 
a number of the most important predic tions can be compared 
with experiment. In parti cular, it is possible to deal in a 
quantitative manner with th e variat ion of the diameter and 
mean characteristi c length with und el"Cooling, the predicted 
invariance of the mean axial ratio with temperature, and the 
expansion of the fibril latti ce resulting [rom the presence of 
cumulative strain. The general effec t of a change of the 
intensity of the flow fi eld at constant te mperature can also be 
dealt with qualitatively. We have already made the point that 
the presently available ev idence is consistent with the fact 
that th e fibril diameter has a definite limiting value indicative 
of the presence of a stabl e (or metastable) minimum in the 
free energy function as predic ted by the th eory. Melting 
phenomena, including th e shape of the melting curves are 
also di scussed, mainly with the objective of obtaining an 
independent estimate of the characteristi c length . Experi
ments that indicate that th e amorphous zones can be mostly 
removed by prolonged annealing at elevated temperatures 
are noted. 

5.2 Dependence of Fibril Diameter and Characteristic 
Length on Undercooling. 

George and Tuc ker [12] have measured the mean diameter 
a s of the fibrils that were produced by mild shear o[ a 31/2 

percent solution of polyeth ylene in n-octadecane at 84 O( 

and 101°C. They also measured the mean di stance be tween 
the lamellar platelets at these two temperatures, which we 
take to approximate the characte ri stic length L s (table 1). The 
crystallization technique employed involved shearing a thin 
film of the polymer solution between two mi ca strips on 
which carbon had been evaporated that were held at th e 
crystallization temperature, followed by quick quenching to 
room temperature. The shearing step was completed in less 
than about 1 s, and the quench effec ted in a few seconds. 
The solid n-octadecane was then selectively removed at room 
temperature by use of a suitable solvent , leaving the polyeth
ylene fibrils for examination . 

We chose these parti cular experiments for consideration 
for a number of reasons. Among these was that identical 
crystallization conditions were employed at the two tempera
tures cited, and the coeffi cient of variation of the measure
ments were given at both temperatures . Also, the technique 
that was employed evidently minimized adven titious epitaxial 
decoration of the core filament. (The assumptions under 
which the mean distance between the lamellar overgrowths 
can approximate the mean length o[ the crystallites have 
been noted previously. ) We also note that rather mild shear 
conditions were employed in the experiments, with the result 
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that we did not judge it necessary to apply a large correction 
for the increase in Tdo that might have been caused by the 
shear. The general effect on the results of making an upward 
correction to Tdo is given. 

We would propose that the formation of fibrils under the 
conditions of mild shear described above may be related to 
the fact that some portion of the longest molecules present 
will have some of their segments physically adsorbed on the 
glass surfaces. In such a case, the flow field would be very 
effective in statistically elongating those sections of the 
adsorbed molecules that were not so attached to these 

surfaces. 
The test of the theory is begun by determining if eqs (38) 

and (40) can be used to fit the data at the two undercoolings 
used by George and Tucker with reasonable values of the 
parameters. Using the value of Tdo given in table 1, which is 
that of Huseby and Bair [22], it is found with eq (40) that 

(58) 

closely reproduces the experimental data (see table 1). By 
using the standard values [23] of CTand .:lhflisted in table 1 
in conjunction with eqs (37) and (41), it is found that n s = 
6.77 and a = 0.0118. 

Attention is now directed to the [s data. A fair fit of the 
experimental data in table 1 can be obtained with eq (38) as 

[s(cm) = 7.04 X 1O- 4/(.:lT) = CI/(.:lT). (59) 

The datum [s = 2514 A for T = 101°C was weighted more 
heavily in calculating C 1 in eq (59) because of its smaller CV 
(see details in table 1), and the greater possibility of 
additional overgrowths in the sample formed at the lower 

crystallization temperature. With C 1 and a (or n s) known, it 
is a simple matter to calculate that CT eo is 120.5 erg/ cm2 

using eq (41). 
The fit of a sand [s shown in table 1 is sufficiently good to 

warrant the belief that each varies approximately as the 
reciprocal of the undercooling. The largest error occurs for [s 

at the highest undercooling (1550 A calc., 1293 obs.). This ( 
low value of [s may be a result of some extra overgrowths. 

The value CTeo = 120.5 erglcm2 may be regarded as 
reasonable for the cumulative strain-free component of the 
end surface free energy; it is somewhat larger than the fold 

surface free energy CT e(fold) == 93 erg/ cm2 • 

The theory predicts that the mean value of the axial ratio 
of the crystallites comprising the core fibril will be constant 
at different undercoolings, and that the axial ratio is CT eo/ CT. 
Using eq (42), we have for the mean axial ratio 

CTeo 120.5 
Y = - = -- = 8.37. 

CT 14.4 
(60a) 

where CT and CT eo are the surface free energies that lead to the 
correct absolute values of a s and [s at the two undercoolings 
using eqs (34) and (37). The result shown in eq (60a) is in 
reasonable agreement with the direct length and diameter 
measurements of y by George and Tucker, who determined 

y = (~:) 
av. 

7.5 at 84°C 
8.7 at 101 °C 

(60b) 

The value of y is approximately independent of temperature 
as predicted. It may be concluded that the relation y = CTeo/ 

CT = [s/a s, eq (42), is generally consistent with the observa-

TABLE 1. Input data alul results for dimensions of polyethylene core fibrils as a function of crystallization temperature and undercooting. 

Quantity 

Heat of fusion, 6h f 
Lateral surface free energy, (J 

Dissolution temperature of polyethylene in n-oetadee
ane, Tdo 

A. General 

Value 

2.80 X 10' e rg/em3 

14.4 erg/em' 
129.4 °c or 402.6 K 

B. Fibril Dimensions at Various Undereoolings 

Crystallization 
temperature, T(°C) 

101 
84 

(I) n s = 6.77 
(2) a = 0.0118 

Undercooling, 
~T(°C) 

28.4 
45.4 

(3) (J e 0 = 120. 5 erg/em' 

Fibril Oil/meter, 
aiA) 

Exptl. [12] 

303(290/0CV) 
181(510/0CV) 

C. Derived Results 

Charaeterisjie 
length, Is(A) 

Theor. Exptl. [12] 

296 2514{17%CV) a 

185 1293(580/0CV) 

(4) VEe = 4.27 erg/em' 
(5) an,' = 0.541 
(6) (vEc)n s3 = 1325 erg/em2 

a The I value of 2514 A was weighted (58/17)2 = 11.3 times more than I = 1293 A in fitting I s as a function of 1/ ~T. 
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tions, and the expectations of the theory concerning the 

magnitude of (T and (Teo ' 

It is of interest to indicate the sens iti vity of the results to 
). the estimate used for Tdo. If 5°C is arb itrari ly added to the 

value of T,t in table 1, the following results are obtained: C1 

= 8.245 X 10- 4 cm'deg, C2 = 9.62 X 10- 5 cm'deg, y = 
8.57, and (T eo = 123.4 erg/cm2• These estimates of yand 
a eo are still physicall y reasonable, but the fit of the data 
points for a s and I s is not as good . The th eory would remain 
tenable from the standpoint of general phys ical interpretation 
even if 10°C were arbitrarily added to the Tdo value given in 

table l. 
At this stage, the following conclusions are apparent. The 

variation of both the mean fibril diameter and mean charac
teristic length are in reasonable accord with theory, which 
states that th ey should vary as the rec iprocal of the und er
cooling, and bear a constant ratio between the mselves as 
they do so. This ratio is given by (T eo / a , which is large 
because of th e large natural difference between the bundle
end and lateral surface free energi es . The cumulative strain
free component of the bundle-end surface free energy is of 
the expected magni tude. 

5 .3 Dependence of Fibril Dimensions on Flow Field 
Intensity at Constant Growth Temperature. 

Zwijnenburg, van Hutten, Pennings and Chanzy [20] have 
measured by various techniques th e diameter and the mean 
distance between the la mellar overgrowths for polyethylene 
fibrils form ed continuously from a 0 .5 percent solution in 
p-xylene a t a temperature of 103 °C, but at two diffe rent 
fi lament take - up rates . The results are shown in table 2. 

The fibril diame ter data are reasonably consisten t with one 
another and have an unambiguous meaning. The length data 
denoted TEM in table 2 refers to the mean distance between 
the lamellar overgrowths. Our identification of these length 
data with the characteristic length I s involves the same 
assumption as was used by George and Tucker in analyzing 
their data. The lengths denoted SAXS in table 2 were 
obtained from a very intense small-angle reOection which 

the authors identifi ed with the distance between the over
growths. Some of thi s intense reOection may have been 
generated by the amorphous regions that presumably exist in 
the core fibril beneath the lamella r overgrowths. 

The theoretical pred iction is that the larger take-up rate 
should induce the larger value of D./, and through eqs (36) 
and (37), produce th e thinner and shorter core crystallites . 
This is borne out by th e data in table 2. 

The data in table 2 imply an ax ial ratio for each take-up 
speed of y ~ 6, in rough agreement with the findin gs of 
George and Tucker as well as with th e value y ~ ~6.5 
estimated on theoretical basis . The results noted in thi s 
section are in general co ns istent with the conclus ions drawn 
in section 5.2 . 

Although it has no direct bearing on compari son of the 
present th eory with expe riment, men tion should be made of 
the fac t that observations by dark field electron mi croscopy 
and the broadenin g of the 002 electron diffrac tion spots for 
polyethylene fibrils lead to the postulate of a dimens ion in 
the chain direc tion tha t is much smaller than Is. For 
instance, Zwijnenburg and coworkers [20] find for th e same 
spec imens li sted in table 2 the d imension 250 A for a take
up speed of 2 c m/min , and 340 to 350 A for a take-up speed 
of 8 cm/ min . They conclude that the elementary core fibril 
possesses orth orhomb ic " blocks" of thi s length. They indi
cate that thi s effect may be a result of crystal Oaws, or 
poss ibly twi st disclinat ions. There is no ev idence suggesting 
that there is an actual hi a tus in the crystal stru cture between 
these blocks, such as exists at either end of th e crystallite of 
length I s in th e form of s trained amorphous regions . Thus, we 
do not expect thi s " block" length to affec t the melt ing 
behav ior to any serious extent. The " block" length should 
not be confused with I s. 

5.4 The Apparent End Surface Free Energy. 

It is of interest to indicate the relationsh ip of th e bundJe
end surface free energy that we have found with theoretical 
estimates based on statistical mechan ical treatments given in 
the literature. The cumulative strain-free portion of the end 
surface free energy in our formulation is (Teo; thi s result is 

TABLE 2. Core crystallite dimensions as a function of flow field intensity: polyethylene in p-xylene. 

Crystall izati on Take-up Fibril diameter, a,(A)" Crystallite length, I,rA)" 

temperature speed Axial Rati o, (0C) (em/min) OF ED WAXD TEM SAXS 
l s/a s 

103 2 250 230 260 1500 1400 5.9 
103 8 200 210 210 1250 1300 6 .2 

(I OF = dark field electron microscopy; ED = broadening of electron diffraction spots; W AXD = broadening of wide-angle x-ray refl ections. (Data of 
Zwijnenburg, et al [20].) 

b TEM = transmiss ion e lectron microscopy; SAXS = small angle x-ray scattering. Data from ref. [20) on distances between lamellar overgrowths. It is 
assumed here that these data represent the characteristic length Is. 
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new, and no previous theoretical estimates are available. 
However, some interesting formulations have been given, (or 
instance by Zachmann [25, 26], for the bundle-end surface 
free energy using the assumption that none of the surface 
energy was transmitted to the lattice, i.e., the lattice dimen
sions were held fixed in the calculations. We refer to a 
bundle-end surface free energy calculated in this manner as 
(Te = (Te(apparenO. In the present formulation, it is found from 
eq (21) together with 1/1 c = n s and (V IV (")2/3 = n / that 

(T e(apparent) = (Teo + (VEJ ns 3 = 120.5 + 1325 

~ 1445 erg/cm 2. 

(61) 

The numerical value given refers to polyethylene, and was 
calculated using the data given in table 1. It is this number 
that is to be compared with the theoreti cal calculations 
mentioned above that do not allow for lattice expansion and 
for some conversion of end surface free energy to volume 
strain. It would be of considerable interest to investigate 
using statistical mechanics the properties of models where 
volume strain is allowed, and where the bundle-end surface 
free energy exhibits two components -one of these being free 
of cumulative strain ((Teo ); and the other corresponding to 
the term (vEc )n s3 that derives from cumulative strain. 

We have already noted the fact that annealing can cause 
(Te = (Te(apparent) to fall to lower values (-550 erg/cm2 for 
polyethylene) in such a manner as to cause the elimination of 
the volume strain. This will prove useful in the ensuing 
analysis of melting effects. For a case equivalent to no 
volume strain, Zachmann has estimated that (T e - 600 erg/ 
cm 2 [25, 26]. 

5.5 Melting Phenomena: Independent Estimate of I •. 

We consider first the shape of the melting curves. The 
overall objective in this part of the discussion is to find if the 
parameters that we have obtained are consistent with the 
shape of the crystallinity versus temperature curves of poly
ethylene fibrils with a reasonable value of i. We begin by 
testing eqs (52) and (53a), which depend on (Teo' (T, and 
anL to determine if these parameters give a reasonable 
prediction of the shape of o~served crystallinity vs tempera
ture curves with a value of I cons istent with other estimates 
of this quantity . This particular test assumes that the 
crystallites are not annealed, so that the effect of volum~ 
strain has its full effect. This will give one bound for I. 
However, it is reasonable to suspect from the method of 
preparation and the duration of the melting experiments that 
the volume strain in the fibrils may have relaxed. Therefore, 
we shall use eq (52) coupled with eq (53b ) with (Te = 550 
erg/cm 2 to fit the data to obtain another bound for [. 

In a paper concerned with crimping and melting-induced 
contraction of polyeth ylene fibrils that is of considerable 
general interest, Grubb and Keller measured the degree of 

crystallinity X of fibrils in the absence of solvent as a 
function of temperature. It should be explicitly noted that the 
fibrils used by these authors were prepared by a different 
technique (solution stirring in xylene at 98°C) than that 
employed by George and Tuc ker. Grubb and Keller's data 
are depicted in figure 6. The points above about 138°C were 
stated to be subject to the effects of superheating (open 
circles), and will not be included in the analysis to follow. 
Their X values were obtained from measurements of the 
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FIGURE 6. Degree oj crystallinity front contraction measurements as a 

Junction oj temperature Jor polyethylene core fibrils (iffect oj volume strain 

included). 
Solid lines calculated for various I with eqs (52) and (53a) using input data from eq 

(62). Data of Grubb and Kener [ll): (0) points affected ~y super~eating or annealing 
(e ) points used in analysis. The best fit is obtained with I == 900 A. This corresponds 
to a characteristic length of - 1800 A. 

overall length of the fibrils at various temperatures. Contrac
tion occurs when an essentially extended-chain crystallite in 
the core fibril melts, the molecules in this region then being 
more random, thus shortening the fibril. The percentage of 
the contraction is a direct measure of the fraction of the core 
fibril that has melted. The shorter crystallites melt out first 
on warming, so that the shape of the X versus T plot reflects 
the distribution of crystallite lengths. The "crystallinity" 
calculated in this way does not deal with melting effects 
caused by the lamellar overgrowths, and does not include the 
small reduction in overall crystallinity caused by the amor
phous regions. The reader is referred to Grubb and Keller's 
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paper for furth er details of th e measurements. We shall use 
the aforementioned xversus T data (o ther than those affected 
by superheating) to obtain a reasonable range of values of the 
characteri sti c length. 

Attention is now drawn to the expression for 10 , eq (53a). 
In this expression, we alread y have from the input data in 
tabl e 1 and the analys is of a s and I s given previously the 

~ . following val ues: 

(62a) 
an~ = 0. 541 lJeo = 120.5 erg/c m2 

We consider that these numbers are accurate to within abou t 
10 percent, and will not subjec t them to adjustment in the 
ensuing analys is. Eq (53a) also requires values of the mean 
diameter of the fibr ils a s, and the equilibrium melting 
temperature Tmo. 

(62b ) 

The value for a s is that suggested by Grubb and Kell er for 
the fibrils used in their studies. No detailed stati stics were 
given for thi s diameter, so we infer th at thi s is ac tually a 
nominal value. The value of Tmo is taken from an analysis in 
the literature [27] that is based at hi gh molecular we ights on 
the experimental s tudies of Rijke and Mandelkern [28], who 
found T",o = 146. 0 ± 0.5 °C for fibrillar material. The latter 
experiments were of considerable time duration and des igned 
in part for th e spec ifi c purpose of eliminating the effects of 
superheating. Inte resting long-term annealing effects were 
observed very near the melting point that were attributed by 
these authors to an increase of crys tallite s ize and a possible 
reduction in the surface free energy. 

The di stribution of lengths in the particular type of 
samples studied by Grubb and Keller is evidently very broad, 
and they therefore used the di stribution given in eq (46), 
which leads to eq (52) for X, in their analysis. We shall 
accordingly use eq (52) for calculations of X. Recall , 
however, that we utilize eq (53a), which contains ani, to 
calculate l o in the present analysis. With these develop
ments, th e only parame ter avai lable for the fitting process is 
i. In thi s process, the value of i tends to determine the 
general shape of the curve, while the ratio IJ/a s determines 
the apparen t inte rcept on the temperature coordinate as X 
~O. 

The results of the calculations with eqs (52) and (53a) with 
the input data noted above, and [ values of 600, 900, and 
1200 A are shown in figure 6. In the region where super
heating does not interfere, a good fit is obtained with i == 900 
A. There is an interesting chec k on the validity of this 
number, since it l eads through eq (47a) to a mean value of I 
of 1800 A. This value represents an independent estimate of 

the magnitude of I s (calculated as (I) = 21) that does not 
depend on measurements of th e lamellar overgrowth spacing. 
Remembering that a s == 300 A, thi s corresponds to a mean 
axial ratio of ')' = 1800/300 = 6, which is in rough 
agreement with that found from our analysis of the data of 
George and Tucker, and quite close to tha t we estimate from 
the data of Zwijnenburg et al [20] (see Sec . 4.3). Thus in the 
case where volume stra in is ass umed to be presen t, th e 
melting data imply a reasonable value of i and is. 

We now assume tha t th e volume stra in has relaxed in th e 
fibrils studi ed by Grubb and Kell er, and utilize eq (52) with 
eq (53b) to a nalyze th e melting data . The value IJ e = 550 
erg/c m2 is used in eq (53a) for th e reasons c ited in section 
4.4. The other inpu! data are ~iven in eqs (62). A reasonable 
fit is obta ined with I = 1200 A (not shown ). The degree of fit 
is comparable to that ac hi eved by Grubb a nd Keller, a nd 
tends to confirm their origi nal analysis with lJe = 600 e rg/ 
cm2, thi s surface free e nergy hav ing been obtained from 
Zachmann 's calculati on. The present analysis gives Is = 2i 
= 2400 A, whic h leads to a mean axial ratio of 2400/300 = 
8, which is sati sfactory. 

Whil e it is not poss ible to decide whi ch of the two 
estimates of I given above is more nearly cOlTec t, s ince one 
cannot be certain wheth er or not th e volume strain in th e 
spec imens was relaxed , the results a re still hi ghl y s ignifi cant 
in a general way. They show that i is very probably in the 
range of 900 A to 1200 A. This im pli es that th e average 
dis tance between full "amorphous" interruptions of the core 
fibrils stu d ied was 1800 to 2400 A. Despite certain differ
ences, we regard thi s analys is as ge nerally confirmatory of 
th e model proposed by Grubb and Keller, as well as of our 
contention based on the present theoretical development tha t 
th e core fibril is interrupted every few thousand A by an 
amorphous regio n. 

The present analysis tends to furth er verify that th e 
function , eq (46), suggested by Grubb and Keller to describe 
the di stribution of the spacing of the amorphous regions 
along the core fibril is suitable for material prod uced in th e 
particular manner (stirrer technique) used by them. It would 
be of considerable interest to determine if thi s distribution 
function applied to the melting curves of fibrils produced by 
the method employed by George and Tucker. The data of 
these authors suggest th at the di stribution about I s may be 
more narrow than that given in eq (46), and implies further 
that the distribution is approximately Gaussian (compare CV 
values in table 1 with eq (47c)). The theory given in this 
paper implies that considerably more narrow distributions 
than that displayed as eq (46) are possible in suitably 
prepared specimens. 

The mean distance between the amorphous regions as 
determined from melting curve data seems to be limited as 
required by the theory, and exhibit an absolute value of the 
correct magnitude. The mean value of the lamellar over
growth spacings obtained for a core fibril 300 A thick formed 
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by the technique employed by George and Tucker is in at 
least rough agreement with an independent estimate of the 
mean crystallite length for a fibril formed by a rather different 
technique, but with nominally the same diameter. As a 
corollary, there appears to be no compelling reason to reject 
the hypothesis that there exists an approximate correspon
dence between the mean value of the characteristic crystallite 
length I s and the mean value of the distance between lamellar 
overgrowths when the latter is obtained from material pro
duced according to the experimental scheme used by George 
and Tucker. The converse is not necessarily true; solution 
stirred fibrils could easily possess extra overgrowths that 
might lead to low estimates of I s' One must also be aware of 
the possibility that the distribution in l may depend on the 
mode of preparation and annealing of the fibrils. 

It is emphasized that the type of "defect" involved in the 
discussion of melting phenomena is a fully developed 
strained amorphous region that interrupts the crystalline part 
of the core fibril. The distribution of such gross defects 
determines the shape of the melting curves. "Partial" amor
phous defects, where the body of the core fibril is not 
interrupted, will have a considerably smaller effect. Defects 
of the usual type (e. g., kinks, dislocations, and structural 
anomalies associated with chain ends and folds) may occur 
in the crystallites, but these, even though numerous, cannot 
be expected to alter the melting behavior to anything like the 
extent as do the presence of the amorphous regions and the 
finite diameter of the fibrils. It is clear that the "blocks" of 
length 250 to 300 A mentioned in section 5.3 are not the 
principal cause of the melting phenomena treated here or by 
Grubb and Keller. 

We now note the connection that may exist between 

certain aspects of the treatment given here, and processes 
that may allow a close approach of the melting of a fibrillar 
system to the equilibrium melting temperature, Tmo. 

The melting point depression of a polyethylene fibril 300 
A thick with cumulative strain is readily calculated from eq 
(SO) to be 9.4 °C. If the amorphous zones were somehow 
removed and the volume strain relaxed by some annealing 
process , then the melting point depression for a 300 A fibril 
calculated with eq (48) with I ~ OCJ or eq (51) is only 2.9 °C. 
lt is reasonable to suppose that some such process took place 
during the prolonged storage near Tmo in the experiments on 
polyethylene fibrils carried out by Rijke and Mandelkern 
[28], in which they closely approached Tmo. They attributed 
the high melting point (146.0 °C) that they achieved after 
prolonged storage at 142°C to either an increase of crystal 
size, or a reduction in surface free energy . We are in general 
agreement with this statement, and suggest the following 
more detailed interpretation . The attainment of a melting 
point so close to the estimated value of Tmo by these 
investigators for fibrillar material by prolonged high temper

ature annealing strongly implies that the amorphous zones in 

the core fibril can be removed. Specifically, we view this 
increase in melting point as mainly a result of an increase of 
molecular mobility, which allows diffusive removal of the 
amorphous zones that in turn eliminates the end surface free 
energy and volume strain effects on the melting behavior. 
(fhese results also imply that the minimum that we have 
predicted at n s should be regarded as metastable in charac

ter.) Although Grubb and Keller attribute the high melting J 
" points obtained at low crystallinities (open circles in fig. 6) 

to the effects of superheating of the core fibrils, it seems 
possible that some of this high melting effect may have been 
a result of the annealing processes discussed above. 

An increase in the mean value of the crystallite length, 
and possibly in the shape of the distribution function, should 
accompany the high temperature annealing process .. Also, 
the corresponding reduction in volume strain will tend to 
remove the thermodynamic restriction on an increase of a s 

(fig. 2C), and this may eventually allow mobile polymer 
chains arising from melted out lamellar overgrowths or 
adsorbed molecules to slowly increase the diameter of the 
fibril. In any case, a sufficiently annealed core fibril may 
have few overgrowths, and only a few amorphous regions , 
but some adsorbed molecules would still be present. 

5.6 Lattice Expansion in the Core Fibril Caused by 
Cumulative Strain. 

George and Tucker have given electron diffraction data 
obtained at room temperature on the thinner (181 A) of the 
two fibrils mentioned in table 1, i.e., that formed at 84°C. 
They were easily able to identify not only the (110) and (200) 
spacings, but also many others such as (002), (004), (210), 
(310), (311), and the (401) reflections . They make a definite 
statement that the lattice is considerably expanded, and 
quote the (110) and (200) spacings (table 3). The lattice is 
orthorhombic. Further, they cite evidence that this expansion 
was not the result of electron beam damage. The experiments 
were repeatable, and non-fibrillar samples showed no large 
lattice expansion [29]. The electron diffraction data appear 
to give reflections that are consistent with an approximately 
uniform expansion of the lattice, though some smearing of 
some of the spots was apparent [29].8 By using the precise x
ray data of Davis et al as a base line for the cross-sectional 
area of the infinite crystal, i.e., unstrained lattice, it is 
readily determined that the lattice expansion for the 181 A 
diameter core fibril was 0.86 A 2 or 4.7 percent (table 3). 

There is undoubtedly a rather large experimental uncertainty 
associated with this value because of the errors inherent in 

8 The model we have suggested for the cause of the overall lattice expansion (small 
chain translations resulting from flu ctuat ions in the local tensions caused by ciliary 
bridges of varying size and conditions) allows for some local inhomogeneity which 
might contribute to smearing. Also, there may be some difference in the volume strain 
in the central core as compared to the regions near the outer surface, as we ll as 
differences in volume strain in the central part of the core crystallite as compared to 
that near the amorphous zones. 
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TABLE 3. Effect of cumulative volume strain on cross-sectional area of chains in polyethylene fibrils. 

A. Input Data 

Quantity Value Remarks 

1. Cross-sect ional area of chains with no volume 
strain, AQ 

18.23 A2 (23°C) Davis et ai, ref. [16] 

2. Cross-sectional area of chains in core fibril 181 A 
in diameter, Ao (stra in) 

19.09 A2 (room temp.) George and Tucke r, ref. [12] Calc. from (1l0) spacing = 4.2 A, 
(200) spac ing = 3.78 A 

3. K, in eq (55) 
4. K2 in eq (56) 

160 Jg- 1 A (23°C) 
15.7 ± 3 A 3 (23°C) 

Davis et ai , ref. [1 5] (Interpolated from their fi gure 9.) 
Davis et ai, ref. [16]. Average for solution and melt-crystallized 

polymer. Valid for chain-folded systems. 
5. K2 in eq (57) 20.3 A3 (23°C) 

6. K2/K 1 in eq (57) 

K2 in (4) above corrected by factor U'eo/U'e <rold) = 120. 5/93 = 

1.30. Valid for bundlelike systems. 
Valid for bundlelike systems. 

B. Results 

Lattice Expansion in Core Fibril 
Fibril Description 

Expt!. [12] Theor. , eq (57) 

as = 181 A 
as = 303 A 

0. 86 A2 or 4.7% 0.71 A2 or 3.9% 
0.44 A2 or 2.4% 

the electron diffraction experiments, but there is little doubt 
from an experimental standpoint as regards th e existence of 
an expansion of at least a few percent. 

The th eoretical estimate of the latti ce expansion with eq 
(57) is straightforward. The details are given in table 3 . 
Observe that we have corrected K2 by the use of the factor 
(J eol (J(fold) = 1. 30 in order to more realistically represent 
this parameter for a bundlelike syste m. Even without this 
correction, a large expansion is predicted. A density of 1.00 
g/cm3 was used in the calculations. 

It is seen in tabl e 3 that th e predic ted increase in cross
sectional area for the 181 A fibril is 0.71 A 2 or 3 .9 percent. 
Considering the possible experimental elTors, and our earlier 
remarks concerning the assumptions inherent in th e th eory, 
the extent of agreement evident in tabl e 3 may be regarded 
as satisfactory. Note that the thicker fibril, as = 303 A, is 
predicted to have a smaller degree of expansion. No experi 
mental values for the degree of expansion are available for 
this spec imen. It is probably significant that the lattice 
expansion effect appears clearly in a specimen formed 
rapidly, and at a temperature well below that where thermally 
activated translational motions of the chains are present (see 
remarks in sec. 4.4). Under these circumstances, annealing 
of the volume s train is less likely to occur. There is no 
information on whether or not the fibrils exhibiting the 
expanded lattice were in a state of mechanical tension. If 
present, thi s may have played a role in stabilizing the state 
with the expanded lattice (sec. 4.4). From our understanding 
of the experimental technique utilized by George and Tucker, 
we consider that it is entirely possible that the individual 
fibrils were pinned at various points onto the evaporated 
carbon substrate, in which case it is probable that they were 
in a state of tension characteri sti c of their actual condition of 
formation . 

The remarkable character of th e latti ce expans ion ex
hibited by these unannealed polyeth ylene fibril s is afforded 
by a comparison with that found for thin chain fold ed 
crystals, wh ere cumulative strain does not occur. According 
to eq (56), a fold ed crystal 100 A thic k has an expans ion of 
only 0.86 percent, and for thi c ker single crys tals or lamellae 
it is even smalle r. 9 

The foregoing analysis shows that an un annealed polyeth
ylene core fibril can ex hibit considerable volume stra in, and 
supports our view that thi s s train is th e natural result of 
repuls ions originating at th e bundle ends. The agreement 
achieved by the theore tical analys is suggests that the parti c
ular cumulative strain approximation used here is adequate 
in the present application. 

S.7 Remarks Concerning Lamellar Overgrowths. 

Although the discussion must necessaril y be ra ther spec
ulative, the present theory of core fibril formation may 
provide a background for improved und ers tanding of the 
lamellar overgrowths ("kabobs") and th eir behavior. 

It is first emphasized that a direct connec tion between the 
amorphous regions in the core and the position of the 
lamellar overgrowths has not been demonstrated in the 
present analysis . However, it has been shown for certain 
preparations that thi s is a reasonable postulate, and we shall 
proceed on this basi s. Some conditions under which the 
lamellar overgrowths a re most likely to mark the amorphous 

9 It is of interest to note that the electron diffraction data of George and Tucker on 
non- fibrillar specimens exhibitecllattice expansions close to 1.0 percent [29], which is 
close to that predicted by eq (56). This adds further weight 10 Ihe validity of their 
results on fibrillar material, where larger lattice expansions were found, since it implies 
that beam damage or some other artifact did not seriously affect the experimental 
technique . 
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zones in the core fibril have been noted earlier. Below these 

concepts will be extended. 
In a fresh preparation where the volume strain still exists 

in the core fibril crystallites, the outer parts of the strained 
amorphous zones (and any cilia that may be present) may 

actually comprise the interior portion of the lamellar over
growth. In this sense, the interior part of the overgrowth may 

be an integral part of the core fibril. In brief, the bulge at 

one of the amorphous zones depicted in figure lC may 

actually constitute the inner zone of the corresponding 
lamellar overgrowth (not shown). Such a condition could 

persist even after the first stage of annealing where the 
crystallite lattice first reverts to its unexpanded state. 

As suggested earlier, the amorphous zones may diffuse out 
of the core fibril on full annealing (or preparation) at high 

temperatures. In such a case, the overgrowths would tend to 

disappear, leaving behind a smooth core fibril with only a 
few widely spaced amorphous interruptions. (It is well known 
that smooth fibrils can be formed at high crystallization 

temperatures.) Such a fibril should exhibit a higher melting 

point and considerably sharper melting behavior than an 
unannealed one with more numerous amorphous interrup

tions. The observation of such effects would support the view 
that there is a connection between overgrowths and the 

amorphous zones. 
Consider a fibril from which the amorphous zones (and 

hence the overgrowths) have been mostly removed by high 

temperature preparation or prolonged annealing. We would 
postulate that such a core fibril would have a considerable 

number of polymer molecules physically adsorbed on its 
surface.1O These would be exceedingly difficult to remove 

[23, 30], though transport across the lateral surfaces would 
readily occur. On cooling, the adsorbed molecules could 

form chain-folded overgrowths consistent with the presence 
of a constant mass of overgrowth material per unit length of 

core crystallite. These overgrowths should tend to peak at 
the few widely spaced amorphous zones, but other sites (e.g., 
"blocks") might well compete for the adsorbed molecules 
because of various factors, including the large distance 

between the amorphous regions, and the less well-defined 

character of the amorphous zones resulting from annealing. 
The concepts noted here may in part prove useful in 

interpreting some of the observations of Pennings, Lagaveen, 
and Vries [13] on annealed smooth core fibrils that were 
cooled in solution to form lamellar overgrowths whose spac

ings were highly dependent on the storage temperature. In 
the light of the foregoing discussion, it is seen that the 

interesting phenomena observed by these investigators need 
not necessarily be construed as being antithetical to the 

concept that the lamellar overgrowths denote the site of the 

amorphous zones in the core fibril in fresh preparations 

10 The author is indebted to Professor Andrew Keller for a very helpful discussion 
concerning this point. 

where suitable steps have been taken to minimize rearrange

ments and additional overgrowths. 
While no completely firm conclusions can be drawn, it is 

nevertheless evident that the concept that the lamellar 

overgrowths denote the position of the amorphous zones in 
the core fibril in certain reasonably well-defined situations 

is consistent with a considerable body of information that is 
presently available. Interlamellar spacing data that were '" 
believed to fall in this category were used to estimate I s in ' 

the present paper. Meanwhile, it is clear that quite different 
but also fairly well defined circumstances exist where addi
tional overgrowths can be caused to form on the fibrils, and 

still others where the overgrowths can change their spacings 
on storage. 

6. Overview 

We consider here some general points. The principal 

results and conclusions have been given earlier, and need 
not be repeated. 

It is of interest to contrast the cause of the limitation of 

crystallite dimensions that occurs in the case of crystalliza

tion with chain folding with that which occurs in the 
bundlelike core fibril. The discussion is confined to the case 

of solutions. 
Crystallization with chain folding occurs from more or less 

quiescent solutions where the polymer molecules possess 
little, if any, net orientation. An individual single crystal can 

grow to very large dimensions in the direction transverse to 
the chain axes. There is no evidence of any fundamental 
limitation to growth in this direction. The folds fit together in 
such a way as to obviate cumulative strain, though small 

non-cumulative volume strain effects do occur. The surface 

free energy of the fold surface, O'e(foldb is comprised princi
pally of the term q/2A o where q is the work of chain folding; 

0' e(fold) is independent of the size of the crystal. The fold 
period (before any thickening takes place) is determined by 
strictly kinetic factors; a thermodynamic theory of the initial 

fold period is inappropriate. The flux across the nucleation 
barrier system is a sensitive function of the thickness of a 

chain-folded embryo attempting a transit into the stable 

region. This flux is proportional to exp[ -4 bPO'e(fold)/(Af)kTJ, 
where bois the molecular layer thickness, and appropriate 
averages utilizing this function give both the growth rate and 
the initial fold period associated with a specified undercool

ing [23]. The fold period is given by Iy* = 20'e(fold)/(Af) + 
81, where 81 may be regarded as a constant for the purposes 

of this discussion. At any given undercooling, crystals that 
are significantly thicker or thinner than I g * cannot surmount 

the nucleation barrier system, but crystals with a thickness 
close to Iy* surmount the barrier, enter the stable region, and 
grow in the direction transverse to the chain axes without 
further restrictions; there is no minimum corresponding to n s 
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in the stable region. Thus, nucleation kinetics and the 
absence of cumulative strain dominate both the rate of growth 
and the crystal dimensions of chain-folded c rystals in dilute 
solutions [23]. 

Consider now the case of fibril formation in solution. This 
phenomenon only occurs in the case of polymer molecules 
that are statistically elongated by a flow fi eld. The system is 
committed at the outset to a basically fringed-micellar mode 
of c rystallization largely because of multiple nucleati on acts 
of elongated molecules on a central elongated molecule, or 

embryonic fibril core (fig. IA). This leads to a set of nuclei 
or crystallites of the extended-chain type connected toge ther 
by amorphous regions. The system must now bear th e 
consequences of the presence of these quasi-random coi l 
amorphous regions as th e nuclei attempt to grow. According 
to the present theory, the crys tallites in th e core fibril have a 
fundamen tal limitation on their dimensions of a thermody
namic charac ter. The primary cause of thi s limitation is th e 
mutual repuls ion between the excessive number of ciliary 
bridges that emanate from the bundle ends and then re- enter 
an adjacent crystallite. These repulsions are small as the 
embryo slowly forms, because time permits folds and short 
cilia and poss ibly other defects to enter the bundle end and 
mitigate these repulsions. The flow fi eld produces elongated 
molecules at or near the crystalli zation s ites. When very 
rapid growth begins at or near Ve , i. e . , in the stable region, 
these aligned molecules are forc ibly incorporated into the 
crys tallite, producing a bundlelike e nd surface with an 
excessive fracti on of ciliary bridges that exhibit increasingly 
strong repulsions, and cumul ative stra in begins to predomi
nate. (Observe th a t it is the size of a nucleus and th e rate at 
which it forms that determines where cumulative strain 
becomes important. The volume V c is defin ed as a c21 c where 
ae IX cr/(ll.T) and Ie IX creo/(ll.T) ; the final "stable" dimensions 
of the crystallite, as and Is, reflec t these relationships, 
though they are much larger. Thus, kine ti cs playa subtle but 
definite role, even though the final limitation that prevails is 
basically thermodynamic in character.) The situation just 
described leads directly to cumulative surface stress at the 
bundle ends as the area of the crystallite ends increase. This 
becomes so large that some of the energy is transmitted by 
the agency of chain translation to the body of the crystallite, 
which expands its lattice, and increases its free energy. 
These processes create a minimum in the total free energy of 
the crystallite, which leads to a definite limitation on each of 
its dimensions. (Annealing mechanisms evidently exist 
whereby the volume strain can be relaxed, and prolonged 
storage at high te mperatures can largely eliminate the amor
phous zo nes : acco rdingly thi s minimum is best described as 
being metastable. ) Both the metastable diameter a s and the 
metastable c rystallite length I s vary as the reciprocal of the 
undercooling. The ratio of th ese dimensions is I Ja s = cr eol 
cr, and the absolute value of a s and I s depends on a parameter 

a that is related to the rate the cumulative strain builds up as 
the volume and length of the core crystallites increase. Thus, 
the bundlelike crystallite in the core fibril begins its life 
slowly and essentially free of strain , but upon reaching a 
state of being just stable, begins a period of rapid and 
improvident growth that causes it to coll ect and reta in defects 
in the form of ciliary bridges emanating from th e bundle ends 
that in an ordinary time scale limit both its mean length and 
diameter. 
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comments on the draft manuscript. Special thanks are also 
due Professors Andrew Keller and David Grubb for making 
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to the author well in advance of its publicati on, and for th eir 
most useful comments. We also wish to th an k Professors R. 
J. Gaylord , S. H. Carr, G. Yeh, and Dr. R. L. Miller, for 
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7. Appendix 

7.1 Alternative derivation of eq (28). 

Write the free energy of formation as 

(A-I ) 

where V dEA. = volume strain free e nergy in e rgs, V d = 

volume in which cumulative strain takes place in cm3, E = 
erg/cilium or c iliary bridge as before , and A. = number of 
cilia or ciliary bridges per cm3 of crystallite. Now we let 

(A-2) 

Also, 

number of cilia on bundle ends 
A. = ---------- = -- = -

volume of crystal a2L 
(A-3) 

where v = number of cilia on bundle ends per cm2, so that 

(A-4) 

Then with VE = vEc(l/l c)(V/V cJ2/3, Ie = 6creo/( l1f) and a 
vEe/3creo , one gets 

I1cp = 2a2creo + 4alcr - a2L(l1f) 
+ a(l1f) (V/Vcl 2/3(V - Vel. (A-5) 

Substitution of eqs (27) into (A-5) gives eq (28). 
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