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A treatment of the formation of a basic core fibril (shish) of the type that is generated by flow-induced
crystallization of a polymer from solution is given that features the concept of cumulative strain. Multiple
nucleation acts by flow-elongated molecules produce an embryonic fibril that is a connected set of bundlelike
nuclei. Surface stress resulting from repulsion of the quasi-random coil chains in the amorphous zone between the
nuclei or crystallites builds up at the bundle ends as the nuclei mature, leading ultimately to a high end surface
free energy, and to volume strain in the crystallites comprising the core fibril. The theory leads to a stable (or
metastable) fibril diameter a and mean characteristic length [ with a fixed axial ratio, and predicts why the
diameter does not grow further even in a medium that is supersaturated with polymer. The predicted dependence
of ag. I, and the axial ratio, on undercooling is in approximate agreement with experiment. The lattice expansion
in the crystal resulting from volume strain is also in fair accord with experiment. The effect of annealing, including
the commonly encountered case where the volume strain relaxes to give normal lattice dimensions, but with a high
end surface energy still remaining, is noted. The effect of volume strain and the distribution of core fibril lengths
about /; on the melting behavior is calculated. The theory can reproduce crystallinity versus temperature data on
polyethylene fibrils. This procedure yields an independent value of /;. The overall treatment implies that the core
fibril is a set of concatenated and substantially extended-chain crystallites with bundlelike ends and a somewhat
expanded lattice when unannealed and under tension, the molecular connections between the crystallites
consisting of short amorphous ciliary bridges. It is suggested that prolonged annealing at high temperatures can
remove a substantial number of the amorphous zones.
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1. Introduction

Some time ago, it was discovered that very long and thin
fibrils of polyethylene could be formed by rapidly stirring a
solution of the polymer in a subcooled state. This type of
crystallization has been systematically investigated by Pen-
nings and coworkers [1-6].* These fibrils are typically a few
hundred A in diameter (L& = 10 nm) and the overall length
is essentially unlimited. An interesting feature of these fibrils
is that they are usually decorated at intervals by lamellar
platelets. These platelet overgrowths are usually considered
to be chain-folded. The combined structure is commonly
called a “shish-kebab,” the “shish” representing the thin
central filament, and the “kebabs” the lamellar platelets that
appear along the filament. A variety of related techniques
(e.g., Poiseuille flow [7], Couette flow [8], and impinging
jets [9, 10]) lead to the “shish-kebab” structures in subcooled
solutions of polyethylene: The common feature of the various

! Figures in brackets indicate the literature references at the end of this paper.

methods of preparation is that they all involve some mecha-
nism, arising from a flow field, that has the capacity to
statistically elongate some of the polymer molecules in the
solution which then act as nuclei for crystallization.

Based on their work on the contraction of fibrils of
polyethylene on warming, Grubb and Keller [11] have
pictured the core fibril itself as a set of long thin crystallites
interspersed by much shorter disordered regions. In the
fibrils they studied, the melting phenomena suggested that
the distribution of crystallite lengths was quite broad and
asymmetric, but the mean length «f the crystallites was
nevertheless a well-defined quantity. (Subsequently, we shall
refer to the mean length of the crystallites in the core fibril as
the “characteristic length”). Grubb and Keller estimated that
the length of the crystallites in their specimens was 1500 to
2000 A, for fibrils having a diameter of about 300 A.

No general treatment of the formation of these core fibrils
appears to be available. The present paper represents an
attempt in this direction, with emphasis on the prediction of
certain properties that derive from the somewhat unusual
conditions that prevail during the formation of these interest-
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ing systems. The treatment involves deductions from statis-
tical mechanics, but its major elements arise from a combi-
nation of continuum mechanics and nucleation theory.

The author has for some time been intrigued by a curious
feature of the central filament, namely, that it does not
ordinarily seem to grow beyond a certain diameter even
though it is immersed in a subcooled medium that is in effect
supersaturated with polymer molecules capable of crystalli-
zation. This statement holds no matter whether the flow field
is present or not. What generally happens in a quiescent
nutrient medium is that the chain-folded platelets grow or
even rearrange, while the core fibril does not increase in
diameter. Mackley has previously noted the apparent inca-
pacity of the core filament in a given experiment to grow
beyond a certain diameter during the formation process [10].
This situation concerning the central filament appeared to
the author to suggest that the fibril diameter (and possibly
the characteristic length of the crystallites forming the overall
core fibril) is intrinsically limited in some fashion. In the
present paper the hypothesis that this limitation is a result of
cumulative stresses arising from mutual repulsion of chains
in the amorphous regions is explored.

In specimens prepared from solution, the lamellar platelets
occur at intervals of varying regularity along the core fibril.
The question then arises as to what connection there is if any
between the mean interplatelet distance, and the mean length
of the crystallite comprising the core fibril, i.e., the charac-
teristic length as previously defined. In our analysis of the
data given by George and Tucker [12] on specially prepared
specimens where excessive additional overgrowths were min-
imized by appropriate techniques, we shall tentatively as-
sume that these two quantities are approximately the same.
George and Tucker assumed that the lamellar overgrowths
actually occurred at the crystallite ends. This assumption
was evidently based on the idea that cilia emanating from the
discontinuities at the crystallite ends provided material that
initiated the lamellar overgrowths. There is in fact a quite
different assumption that also leads to a close connection
between the mean value of the distance between the lamellar
platelets and the characteristic length, and this will be noted
later. The assumption that the mean value of the interplatelet
distance is similar to the mean value of the crystallite length
in suitable preparations is subject to some question, since
Pennings and coworkers have recently shown that different
interplatelet spacings can be produced on the same core
fibril, and that after prolonged storage the spacing is a
function of this storage temperature [13]. However, this does
not necessarily imply that the mean distance between the
lamellar overgrowths in a fresh preparation where care has
been taken to minimize extra overgrowths is totally unrelated
to the mean crystallite length in the core fibril. This question
will be dealt with further, and is mentioned here mainly for
the purpose of indicating at the outset that there is some

uncertainty in the estimates of the crystallite length in certain
experiments that will be analyzed in terms of the theory.

For polyethylene crystallized from n-octadecane under
shear, it has been found by George and Tucker that both the
diameter of the fibrils and the mean lamellar overgrowth
spacing are dependent on the temperature of crystallization,
the greater diameters and interlamellar spacings being asso-
ciated with the higher crystallization temperature. The mean
value of the interlamellar spacings is typically about seven to
eight times larger than the fibril diameter. (Results obtained
by other investigators to be noted subsequently suggest a
ratio close to six.) George and Tucker also found by electron
diffraction experiments that the lateral spacings of the
polyethylene molecules in the orthorhombic lattice of their
specimens were decidedly larger than normal; the cross-
sectional area occupied by the chains in fibrils 181 A in
diameter was expanded by circa 4.7 percent. This is consist-
ent with the concept that, under certain circumstances,
volume strain can exist in the fibrils.

It will emerge that the application of the concept of
cumulative volume strain originating at the bundle ends of a
fringed-micellar type of crystallite can lead to a stable (or
metastable) diameter for the fundamental units that comprise
the core filament, and thus explain the limited radial growth
of these entities. The fibril diameter is predicted to vary as
the reciprocal of the undercooling. A similar limitation is
found for the characteristic length, which is also predicted to
vary as the reciprocal of the undercooling. The results are
such that the crystallites making up the core fibril possess a
constant mean axial ratio at various undercoolings, and a
simple rationale is provided for the absolute value of the
axial ratio. Insofar as the mean distance between the lamellar
overgrowths in the particular data that we employed for
comparison of theory and experiment is a reasonable measure
of the actual value of the mean characteristic crystallite
length, the predictions concerning the axial ratio and the
variation of characteristic length with undercooling appear to
be approximately verified.

The theory allows the reduction in the dissolution temper-
ature and heat of fusion resulting from cumulative volume
strain to be calculated. The latter quantity can be utilized to
estimate the expansion of the lattice in the crystallite caused
by the volume strain in polyethylene fibrils formed in
solution, and this is carried out and compared with experi-
ment.

Under certain annealing conditions, the volume strain in
the core fibrils can be relaxed, causing the reappearance of
normal lattice spacings in the crystallites. The situations in
which this is apt to occur are discussed, and the properties
of the resultant fibrils outlined.

The presence of volume strain can affect the melting
behavior of the fibrils. The treatment of Grubb and Keller is
modified to account for this effect. The shape of the melting
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curves obtained by these authors from measurements of the
contraction on heating of polyethylene fibrils can be repro-
duced by the revised theory, as well as by a theory where the
volume strain is assumed to have been relaxed by annealing.
This analysis leads to an independent determination of the
characteristic length that is in fair accord with estimates
based on the distance in fresh preparations between the
lamellar overgrowths that decorate the core fibrils.

2. Model

We assume that in a suitable experiment a very long
polymer chain in a solution is statistically elongated by the
flow field, forming a convenient site (or more correctly, a set
of sites) for nucleation (fig. 1A). This elongation will be most
evident for the chains of greatest length. Specifically, we
take these high molecular weight elongated chains as likely
sites for the formation of a nucleus of the type shown in figure
1B, which we idealize as a square parallelepiped of diameter
a and length [, with the lateral surface free energy o and the
bundle-end surface free energy o, as shown. The value of o
will be taken as similar to that of a normal lateral surface for
a polymer crystal (circa 14 erg/cm?® for polyethylene), but the
bundle-end surface free energy o, after some growth must be
expected to be certainly not less than and more probably
somewhat greater than that for a strictly folded surface, the
latter being about 93 erg/cm?® for polyethylene. The bulk of
the crystallite is taken to be largely bundlelike or fringed-
micellar in character, with numerous polymer chains emerg-
ing from the end surfaces and entering other crystallites
(ciliary bridges). The interior of the crystallite (nucleus) will
be partly of the extended-chain type, but with some chain-
end and chain fold defects.

Nuclei leading to crystallites of a similar type will form
downstream on the same long central molecule (or on new
and secondary polymer chains pendant downstream from the
first nucleus or crystallite) giving rise after each nucleus
grows to a connected set of long thin crystallites forming a
very long core fibril (fig. 1C). These crystallites will nucleate
on the pendant primary or secondary elongated chains at
more or less random positions. It is important to see that new
nuclei will also form between two nuclei that have already
been established (see fig. 1A). Though the nuclei appear
initially on the primary or secondary chains more or less at
random, certain thermodynamic and kinetic considerations
to be brought out subsequently mitigate in favor of something
less than a totally random distribution of characteristic
lengths under certain conditions. In particular, the average
diameter and length of the crystallites will prove to be limited
to a specified value even though a broad distribution about
this mean value may still occur.

A special feature of the model that will be dealt with in
detail later relates to the cumulative build up of surface

stress at the bundle ends arising from increasingly strong
repulsion of the ciliary bridges emanating from the end
surfaces as the crystallite grows. This induces volume strain
(at least while the tension resulting from the flow field is
exerted on the fibril) and ultimately leads to a stable or
metastable minimum in the free energy at a specified size of
the crystallite.

We shall now begin to focus our attention on the formation
of a specified nucleus on a primary or pendant secondary
elongated chain.
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FIGURE 1. Formation and structure of core fibril.

(A) Bundlelike nuclei forming on polymer chains elongated by flow. (B) Geometry
and surface free energies of nucleus or crystallite. (C) Schematic model of core fibril
showing alternating crystalline and amorphous regions, the latter consisting largely of
ciliary bridges. Note crossovers and other defects in the amorphous zones. The average
value of the lengths I, lg, [, . . . is denoted [, and is termed the “characteristic
length” in the text. Lamellar overgrowths not shown. Annealing may cause the
cumulative strain to decay, allowing normal lattice spacings to appear (see text). (D)
Lattice expansion effect caused by small lengthwise translations & resulting from
anisotropic tensions caused by differences in nature of ciliary bridges (e.g., crossovers)
and defects in amorphous zone at either end of each molecule in core fibril crystallite.
Small horizontal arrows represent direction of chain translation relative to reference
(central) molecule (schematic).
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3. Nucleation and Growth of the Core Fibril
Crystallite with Cumulative Strain

3.1 Preliminary Considerations.

It is convenient for future developments to consider first
the conventional case of nucleation of an individual crystal-
lite without cumulative strain. The free energy of formation
of a crystallite of the shape shown in figure 1B is

A = 2d*c, + dalo — PlAf) (1)

where the free energy difference between the subcooled
liquid and a very large and strain-free crystal is to a first
approximation

Ar)Tq —

T _ (Ah)AT)
Ty ’

T4

Af= 2

In these expressions, A is in erg/crystallite, @ and / in cm,
o and o, in erg/cm? (millijoules/m?), and the heat of
dissolution (or fusion), Ah,, in erg/cm?® unless otherwise
noted. The free energy of fusion, Af, is also in erg/cm®. The
quantity AT is the undercooling T'; — T, and T, is the
equilibrium dissolution temperature, analogous to the equi-
librium melting temperature T, for a bulk polymer. The
value of T'; is assumed to be corrected if necessary for the
increase in this quantity that may result from the presence of
the flow field. For the sake of simplicity, we have omitted a
multiplying factor on the right-hand side of eq (2) of f = 2T/
(Ty + T)orf =TT that approximately corrects for the
decrease in the heat of fusion with falling temperature.
By the customary procedure of setting

Be) (M)
(&), () -0

it is readily found that the values of /[ and a at the saddle
point in the Ap — a — [ surface (fig. 2A) described by eq (1)
are

3)

@ = 4a/Q)), (4)

and

*=40,/Af) (5)

and that when these are inserted into eq (1) that the free
energy at the saddle point is

Ad* = 320%0,/(A f)2. (6)

An investigation of eq (1) shows that the value of A falls
after reaching A¢* and reaches a value of zero again at
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FIGURE 2.  Alternative representations of barrier system (schematic).

(A) Conventional Agp — a — [ plot of barrier system without cumulative strain. (B)
y — n space plot of same system. (C)y — n space plot of system with cumulative strain
showing stable or metastable minimum at n .

a. = 60 /(Af) (7)
and
le = 60,/(Af). (8)

This suggests a coordinate system where

a =" (Af)
and
60,
l=n- 10
. =

These expressions allow A¢ as given in eq (1) to be
expressed as

_ 216070,

Ab = (Af)?

n2 = n)

(11)
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where we may define a reduced free energy of formation

function as
y = n® — n® (12)

By simply taking dy/dn = 0, it is found that n* = 2/3,
corresponding to A¢* = 320%0,/(Af)?, and it is seen by
inspection of eq (11) that A¢p = O when n = 1, giving a
crossover on the n coordinate at n. = 1 (see fig. 2B). This
convenient coordinate system will be used in the develop-
ments to follow.

Thus far, we have described a simple nucleation process
that, once accomplished, leads to crystallite growth without
limit in both the a and [ dimensions in the stable region (A¢
or y negative).

3.2 The Form and Origin of Cumulative Strain.

Crowding of the amorphous ciliary bridges at the bundle
ends may be pictured in general as inducing equal biaxial
stress on the ends of the crystallite (fig. 3C). (As will be
discussed subsequently, the build-up of biaxial stress is also
accompanied by a corresponding increase in inhomogeneous
tensions originating in the amorphous zone at the bundle
ends. These tensions tend to produce small lengthwise
translations of the chains in the crystallite relative to one
another; such translations have the important consequence of
being able to distribute forces originating in the bundle ends
long distances into the interior of the crystal.) Assuming an
infinitesimal deformation of the crystallite resulting from the
crowding phenomenon, Fong [14] proposed a continuum
mechanical model relating the crowding-induced energy at
the end surface to the dilatation-induced strain energy in an
idealized transversely isotropic elastic crystal such that the
end surface free energy takes the form

IV V' 23
Te =00+ C| — || — W ooc
ll) V(I

Here o, is the surface free energy in the absence of equal

(13)

biaxial end surface stress, C a material constant that we shall
identify in a subsequent development as the end surface free
energy associated with cumulative strain, [, and V, the
original (unstrained) length and volume, respectively, /", V'
the slightly larger length and volume that obtain upon the
application of equal biaxial stress on the end surfaces, and
the three dots denote higher order terms. The above expres-
sion applies to any material object of the type described, and
does not yet explicitly contain the concept of cumulative
strain.

It has been shown by Fong that classical formulations of
strain energy functions of a deformable body such as eq (13)
are not directly applicable to crystal growth problems since
the latter involve increases of mass. By introducing a
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FIGURE 3. Schematic representation of physical origin of cumulative

stress.

In small nucleus depicted in (A), presence of sufficient number of chain ends,
short cilia, or folds prevents repulsions leading to cumulative end-surface stress.
Larger crystallite shown in (B) exhibits nonresolvable repulsions because of excessive
number of emergent ciliary bridges and develops cumulative stress. Diagram (C) shows
continuum mechanical model used to treat cumulative end surface stress and volume
strain resulting from repulsion of cilia or ciliary bridges.

hypothetical intermediate state that is volume and shape
preserving, but at the same time mass increasing, this author
developed an argument using standard results of elasticity
theory that modifies eq (13). This argument provides the
required formula applicable to a crystallizing system, and at
the same time provides the framework for introducing the
cumulative strain approximation. This has a form similar to
eq (13), and will be given subsequently.

It will prove to be important in the theory developed here
that equal biaxial end stress can be associated with an
expansion of the entire volume of the crystallite. It is relevant
to note that Davis et al [15, 16] have clearly demonstrated by
careful x-ray measurements that the presence of an end
surface with its attendant surface free energy expands the
lateral lattice spacings in the case of polyethylene. Specifi-
cally, their work shows that thin chain-folded single crystals
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exhibit larger lattice spacings (i.e., larger effective molecular
cross-sectional areas) than do thick single crystals, and the
same applies to chain-folded lamellae formed from the melt.
The experimental constants describing the lattice expansion
at a specified temperature as a function of lamellar thickness
are nearly the same in these two cases [16]. A similar but
considerably smaller effect occurs in the n-paraffins [16]. In
all these instances, the expansion is essentially uniform in
the sense that the increase in cross-sectional area is the same
throughout the crystal, i.e., these systems behave as if they
undergo equally distributed volume strain resulting from the
presence of the end surfaces. It is also known that point
defects such as -CF3 branches in poly(tetrafluoroethylene)
have the general effect of expanding the entire lattice as has
been shown by Bolz and Eby [17]. The latter point in
particular shows that defects which are quite local in
character can lead to relatively uniform expansion effects
over considerable distances in systems consisting of chain
molecules.

In the case of bundlelike core fibril crystallites, the
postulated approximately uniform expansion effect (and a
molecular explanation of the presence of the factor involving
the length in the second term on the right-hand side of eq
(13)) can be traced to inhomogeneities in the strained
amorphous zone that cause small lengthwise translations of
the chains in the crystallite relative to one another. Some of
these inhomogeneities are of the type depicted in figure 1C.
It is readily seen how such translations along the chain axis,
even though much less than one chemical chain unit, can
cause an expansion of the entire crystal, and not just a
splaying near each end, if the chains are represented as
linear sets of interlocking beads. Observe in figure 1C that
the ciliary bridges at either end of a given molecule in a
crystallite are generally quite different —some go nearly
straight through to a corresponding position in an adjacent
crystallite, while others are longer and exhibit crossovers
bordering on entanglements in character. This anisotropy is
a direct result of the nature of the nucleation mechanism
illustrated in figure 1A. Thus, as the end surface free energy
builds up, a corresponding difference in tension builds up on
the chains in the crystallite which tends to increasingly
displace them lengthwise with respect to one another. (A
torque can also lead to some chain translation.) Then if each
chain is pictured as a set of beads, it is seen that a small
lengthwise displacement of a chain of much less than one
bead length relative to its neighbors will expand the mean
distance between the chains throughout the entire length of
the crystal.? This is shown schematically in figure 1D. In the
particular case of polyethylene, the direct cause of the
expansion is the repulsion of the hydrogen atoms on one

% The explanation given above for the overall lattice expansion effect does not
preclude the presence of some splaying near the crystallite ends resulting from the
crowding of ciliary bridges. This effect would tend to be minimized by the fact that
large separations require the loss of much of the heat of fusion in the affected regions.

chain with those on neighboring chains resulting from the
small translation.

The foregoing discussion provides a rationale showing how
forces at the bundle ends resulting from mutual repulsion of
the ciliary bridges can lead to an additional component of the
end surface free energy that depends, among other factors,
on the length of the crystallite and which is at the same time
associated with an expansion of the lattice i.e., volume
strain.® Comparatively large lattice expansion effects must be
anticipated in bundlelike crystallites because of the consid-
erable end surface stress in such systems. Mechanisms that
may relax the volume strain will be noted subsequently.

It has long been suspected that a bundlelike or fringed-
micellar crystal develops topological difficulties leading to
energetically unfavorable conditions as it attempts to grow in
size. Estimates concerning this question have previously
centered on the magnitude of the end surface free energy,
and it is now widely recognized that o .phundiey = Tetola
surfacey Lhe regularly folded surface for polyethylene exhibits
a surface free energy close to 93 erg/cm?, and in the present
work we estimate that o ,unaiey = 120.5 erg/cm?. (The lattes
figure refers only to the portion of O 4punaie) N0t subject to
cumulative strain, i.e., 0, 1in eq (13); a much higher figure
to be quoted subsequently is obtained when results deriving
from the second term in eq (13) are included.)

Some insight into the problem of the origin of the increased
end-surface free energy is afforded by a consideration of the
number of chains that can emanate from the end of a
bundlelike crystal and still maintain configurations that at
least roughly approximate random coil behavior. The number
of polymer chains that can project from a flat surface and
maintain liquid-like configurations is in fact quite limited.
We define f] as the fraction of surface sites on the plane that
can be occupied by long emergent chains with liquid-like
character of the same cross-sectional area as each of the
sites. DiMarzio [18] has commented that f; is probably less
than one-half. Here however it is sufficient to refer to a
calculation by Flory [19] who showed for one special case
that

fi=1/2 (14)

In this case an emergent molecule was not allowed to take
steps backward toward the plane of origin, so that the liquid

3 Some intuitive understanding of the form of the second term on the right-hand
side of eq (13) can be gained when it is seen that C is in the units of surface free
energy, and that / must be a factor according to the arguments given concerning chain
translation. For this second term to lead to a volume strain free energy effect when
inserted into eq (1), it is readily shown that the multiplying factor in it must have a
numerator with the dimensions of (length)?. The reasonable choices for this factor are A';
A,, where A" and A, are the strained and unstrained total end areas, and (V'/Vo)%. In
the case where one regards [, to change to [’ with increasing tensions, one then has
c(l'/L,) (A'JA,) or C(I'/1,) (V'/Vo)z/3 as correct choices for the second factor. With
even a very small lengthwise distension of the chains from [, to I’ being allowed, and
knowing that the end area must increase with chain translation, it may be surmised that
the latter choice is correct. The continuum mechanical treatment of Fong [14] clearly

decides in favor of C(I'/1,)(V'/V,)"3.
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state does not consist of random coils. The remaining fraction
of sites 1 — f; on the surface are presumably occupied by
chain folds or quite short cilia. Now if as in the model shown
in figure 1A and 1C, the fraction of chains emerging from an
end surface is caused by multiple nucleation acts to exceed
one-half, then the cilia (actually bridges between the nuclei
or crystallites) would tend to repel one another, and excess
surface stress would occur at the bundle ends as the
crystallite grew.

In the case of fibril formation induced by flow, we are
considering a situation where multiple nucleation essentially
forces a mostly bundlelike mode of crystal growth on the
system, so that a considerable fraction of the chains must
emanate from the ends. Some folds may occur on the end
surface, but turning a pendant molecule on the leeward end
of a crystal back against the flow field to form a fold must be
considered an improbable event except in the slow process of

building up the nucleus itself ton = 2/3 orn = 1 (see fig.
2B). Further, the unattached portion of a molecule that is at
points associated with one nucleus or crystallite on a flow-
aligned molecule will dangle as a secondary chain from this
entity in a bundlelike mode, and attach downstream to one or
more nuclei or crystallites in a similar manner (fig. 1A).
Recall also our earlier remark that new nuclei formed at a
later time between two previously established nuclei must
necessarily exhibit a bundlelike character. The overall situ-
ation described clearly commits the system to a substantially
bundlelike mode of crystallization where chain molecules
perform traverses, i.e., bridges, from one crystallite or
nucleus to another.

From the foregoing discussion, one must expect the
majority of the molecules to partake of more than one nucleus
or crystallite, such molecules passing through a highly
strained “amorphous” zone between each crystallite. The
overall result is that eq (14) is strongly violated, and
cumnulative stress must therefore be expected to develop at
the bundle ends as the diameter and volume of each
crystallite increases.

It is possible to indicate in physical terms, though still in
a schematic way, what is occurring at the bundle ends. In
the particular representation shown in figure 3, the cilia
(treated as one-half of a bridge between two nuclei or
crystallites) are depicted as restricted to the volume of a
cone, so that they are not random coils. The molecules in the
cones are allowed to interpenetrate somewhat, but repulsions
between them occur because the liquid density cannot be
exceeded in the end surface layer. The result is that the
effective cross-sectional area associated with each cone is
larger than the cross-sectional area of the same molecule in
the crystal proper. In figure 3A, the repulsion is reduced or
absent because of the presence of folds and chain end
defects, but in the larger crystal shown.in figure 3B, the
repulsion becomes more pronounced as the area of the crystal

end increases. Thus, in a strictly bundlelike crystallite, or
more correctly, a crystallite where the number of short cilia
or folds in the end surface is insufficient to prevent violation
of eq (14), cumulative stress must build up on that surface.
It is seen that the difficulty in packing the cones for a large
crystallite cannot be evaded by rounding the ends if it is
remembered that ciliary bridges are involved. The longer
ciliary bridges that would exist toward the edge would simply
correspond to a larger set of cones in this region, and
repulsions could not be avoided as the crystallite increased
in diameter.

In the model, cumulative strain is not allowed to occur to
a serious extent in the nucleus itself. We allow each nucleus
to grow without strong cumulative strain up to the dimensions

le = 60,/(Af) (15)

and

a. = 60 /(Af) (16)
that is, to a volume V. = a 2l,. This corresponds ton, = 1
in figure 2.

The physical concept underlying this scaling process is
that the growth of the nucleus in the A or y positive region
(shaded region in fig. 2B and 2C) is slow enough to allow
some chain folds and short cilia or other defects to insert
themselves into the bundle ends during the slow formation of
the nucleus, allowing the longer cilia to be mostly free of
cumulative repulsions (fig. 3A). When the volume exceeds
V., growth becomes much more rapid and the crystallite is
forced to accept the bundlelike end without recourse to
processes that can mitigate the repulsions between the long
cilia (fig. 3B). Thus, cumulative strain begins to manifest its
major effect near V.

The results to be calculated are not particularly sensitive
to the choice of the scaling point where cumulative strain
becomes significant; we could have equally well chosen a..
= 40/(Af) and l. = 40,,/(Af) as the physical dimensions
corresponding to the situation where cumulative strain begins
to be prominent with no basic change in physical interpreta-
tion and only trivial changes in the mathematical formulation.

We begin the actual treatment of cumulative strain by
defining

€ = excess free energy of cilium

or ciliary bridge (ergs /cilium) (17)
and
v = number of cilia or ciliary bridges
per unit area (number /cm?) (18)
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so that ve is in the units of surface free energy. This defines
the constant C in eq (13) so we have

AYAARE
Op = oy + vE = T, + Ve, TN\ (19)

where ve, is the value of the excess end surface free energy
veatn = 1, i.e., atl = [., a = a., and V = V.. The
assumption that ve has the form ve.(l' /I.)(V' /V.)*? repre-
sents the first stage of what we denote the cumulative strain
approximation, which is seen to be an explicit statement of
the nature of the accumulation of free energy resulting from
the repulsion of the ciliary bridges. An increase in ve must
be expected on physical grounds because of the crowding
effect of the ciliary bridges as the end area and volume of the
crystallite increases, as has been discussed. Equation (19)
also exhibits the scaling hypothesis noted above, where we
have set/, = I., V, = V.. At this stage, eq (19) has not been
justified for the case where the crystallite has grown. Recall
also that/'/l.and V'/V .are only slightly different from unity.

We now wish to extend eq (19) to the case where the
crystallite grows to a volume where the final volume V is
much greater than V.. The second stage in the cumulative
strain approximation consists essentially of assuming that at
any given stage i in the crystallite growth process the cilium
surface free energy ve is proportional to the length and the
volume in the powers appropriate to eq (13) or (19). This can
be given an explicit formulation.

Let us assume a stepwise growth process such that

Ve > Vi >V, >V >V (20a)
where V ; is now the final volume of the grown crystallite. A
similar expression holds for the progressionl. > [, > [, - --
[;. Then, according to our hypothesis, we may write

L\ (V)23
ve(Vi, l) = ve(Ve, I)| = )| = (20b)
le)\Ve
In going from V; to V,, we get
L\ [V, 23
ve(Vs, Io) = ve(Vy, L) | 2| =2 (20¢)
L)\ V,

Now by substituting ve(Vy, [;) from eq (20b) into eq (20c),

one finds
l v, 2/3
ve(Va, b) = ve(Ve, 1) | 2| = (20d)
le) \ Ve
and in a similar way we obtain
l v\ 2/3
ve(Vs, ly) = ve(V,, L)| 2| 2 (20e)
l)\V,

leading to the general result that embodies the cumulative
strain approximation

AVAARE
ve(V;, ;) = ve(Ve, )| 7 )\ ) - (20f)
le) \Ve
Hence, recognizing ve(V ., [.) is ve., we arrive at [14]
l v\ 23
e = €0 + C o T 2]
A ve le)\ V. 2

which is similar to eq (19), but with the additional justifica-
tion through eqs (20) resulting from the cumulative strain
approximation that it may be employed for a crystallite that
has grown (with volume strain present) from V. to V and [, to
1, where the final volume V (and length /) is now much larger
than V..

Note that at any stage i in the accretion process described
by eqs (20) that the ratio

Vi (crystal with volume strain)/V;(unstrained crystal) (22)

is always only slightly greater than unity; the appearance of
values of V/V,many times greater than unity in eqs (20) and
(21) does not imply an expansion in the lattice spacings of
the crystallite resulting from cumulative strain equal to V/V,.
or (V/V.)*3.

It is useful in understanding the nature of the cumulative
strain approximation that is applicable to bundlelike crystals
to indicate why it would not be employed in the case of n-
paraffins and chain-folded crystals, the platelets of each of

% 9

which grow without limit in the two “a” dimensions, but not
in the [ dimension. Even apart from the fact that [ is fixed in
these cases, and the ratio Vi ain/V no strain in the analog of eq
(13) is replaced by a factor involving the ratio of the strained
and unstrained areas, the procedure implied by eqs (20)
cannot be applied. Equations (20) state directly that the
effective end surface free energy ve resulting from repulsion
of cilia is a function of the length and volume of the crystal
(see fig. 3), which is the essence of the cumulative strain
approximation. This assumption cannot be made in cases
where there are no physical grounds for deciding that the
surface free energy depends on the dimensions of the system
considered.

3.3 The Free Energy Function With Cumulative Strain.

Given the free energy of formation in ergs/crystallite as
Ap = 2a%0, + dalo — a®lAf) (23)

and inserting o, from eq (21), there is obtained
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Adp = 2d%0,, + dalo — d*l(Af)

/ v\ 2/3
+ 2a? ([‘) VE, (i/—) (24)
(v C

which becomes, on noting from eq (15) that /. = 60,,/(Af)

Adp = 2d%0,, + dalo — a*(Af)

+ PAlAf)a(V/V)HE (25)
where the volume strain parameter « is defined as
VE,
= . 26
30¢ : )

Observe in the foregoing formulation that the term
ve (l/1.)(V/V.)*? in o, from eq (21) has become a volume
strain term in the free energy of formation (see last term in
eqs (24) and (25)). The factor ve. may be regarded as the
excess surface free energy atn = 1 assignable to cumulative
strain. Only the term o, remains as an end surface free
energy in the customary sense.

In order to obtain a simpler and more tractable expression,
we introduce the numerical variables

a= nu[()o-/(A‘/v)] (27a)

and

L= nf60.,/(Af)] (27b)
i.e., we have n, = a/[60/(Af)], n;, = l/[60,,/(Af)], V = a*l
= nZn(2160%0,,)/(Af)?, and V.= 2160°%0,,/(Af)%. With
these introduced into eq (25), we obtain

_2 16020,

A
="y

1 2
{; n? + ; ngny — nim + a(n?ng)**(nn, — 1)} . (28)

The term —1 has been subtracted from n?%n; in the last factor
to account for the fact that cumulative strain occurs in the
volume V — V. = [2160%0,,/(Af)*|(n%n, — 1). An alterna-
tive derivation of eq (28) that gives rise to this term in a
natural way is given in the appendix (sec. 7). The term —1
has a negligible effect on the position of the stable minimum
in the free energy in the calculations to follow; the advantage
is that its use causes the reduced free energy function to be
introduced below to be well-behaved nearn = 0, n = 2/3,
andn,= 1.

In the investigation of the properties of eq (28) to find
maxima and minima in A¢ as a function of n, and n,;, we

could proceed by calculating (JAd/dn,),, = 0 and (dAd/

on;),, = 0, but a simpler approach is warranted by the fact
that the term involving @ contains only factors involving
powers of the volume. (In the notation in eq (28), nim
represents a reduced volume.) This means that the axial ratio
of the crystallites is not affected by partial differentiation of
the term involving «, and we may therefore drop the
subscripts @ and [ in eq (28). The results are in any case
identical to that found using the partial derivatives of A¢
with respect to n , and n; noted above.

Dropping the subscripts in eq (28) and collecting terms of
like powers of n, we arrive at the working equation

_ 2160%0,,

Ap = W {n® — n® + an*(n® — 1)}. (29)

Note that when a = 0, corresponding to no cumulative
strain, eq (11) is recovered.

It is now possible to calculate the salient properties of the
model. These include: (1) the position of the minimum n
and the crossover at n .t in y — nspace (see fig. 2C); (2) the
mean axial ratio of the crystallites; (3) the mean diameter
and mean characteristic length of the individual crystallites
making up the core fibril; (4) the depression of the dissolution
temperature and heat of fusion; (5) an estimate of the lattice
expansion incurred by the cumulative strain and (6) melting
and annealing behavior. In dealing with the latter, we shall
also address the problem of the distribution in crystallite

lengths.
4. Properties of the Model

4.1 Stable Minimum and Other Characteristics of the

Reduced Free Energy Function.

From eq (29), it is seen that the reduced free energy
function with cumulative volume strain is

y = n? — n® + an?(n® — 1). (30)

We first examine eq (30) for crossovers at y = 0 with

emphasis on those other than which occur at n,. = 0. The

reason for investigating y(n. «) for crossings of the y

coordinate is clear from figure 2C; a crossover at large n
implies that a minimum exists between n. = 1 and the larger
value of n, which we call n .. Though fluctuations will
occur, the system average will never actually attain the
crossover at large n, but will seek instead the minimum in
A ¢ that exists betweenn =

The crossover at n .* is found by settingy = 0, correspond-
ing to A¢ = 0, taking two roots of n = 0, and another at n
= 1, after which it is found that

1 andn,*.

an2+an+a —1=0. (31)
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The relevant root is

EL—L. (32)

1 /4 — 3« 1
29 @l 2

n.t = -

% «

The approximation shown is quite acceptable since a for
polyethylene is close to 0.01 (see later).

We now investigate eq (30) for the existence of the stable
minimum. By calculating dy/dn, setting the result equal to
zero, and taking one root at n = 0, it is seen that

y = 5an® — 3n + 2 — 2a = 0. (33)

Surmising a root very close to n — 2/3 = 0, one finds to a
sufficient approximation that

San? + (10/3)an — 3 + 20a/9 = 0. (34)

The root n* = 2/3 represents a maximum in y(n, a) at A¢*

(fig. 2C). The stable minimum is represented by the following
root of eq (34)

5.4

1 0.7746 1
T a2z 3 (35)

n = o
s o 3

Ngtable —

For values of a in the vicinity of 0.01, i.e., values of n ¢ in
the vicinity of roughly 7, the approximate expression for n ¢ is
correct to within 0.6 percent.

A plot of ¥ versus n for @ = 0.015 and a = 0.0118 is
given in figure 4 using eq (30). It is seen that the plot for «
= 0.0118 gives a stable minimum at ny = 6.77. The

minimum occurs at y ¢ = —99.2. The crossover n " occurs at
8.70 for @ = 0.0118. We have emphasized the case giving
ng = 6.77, since it will emerge later that this is the

experimental value of n for polyethylene fibrils. Note in
figure 4 that the larger value of a gives a less stable miminum
at a smaller value of n . Calculations for other values of «
show that this trend is general. The practical upper bound
for ais about 0.1 —this gives n, ~ 2.

A plot of the function given by eq (30) in the region of n
= 0 and n, = 1 is shown in the inset of figure 4 for some «
values. It is seen that y is a well-behaved function in this
region, and exhibits a maximum corresponding to a nuclea-
2/3. The barrier height is
however slightly lower for & > 0 than for & = 0.

The overall picture deduced from eq (30) is that an embryo
forms and slowly grows by fluctuations in the y or A¢
positive region to the barrier maximum at n* = 2/3. After

tion barrier very close to n* =

surmounting the nucleation barrier, the relatively more rapid
growth process begins. Rapid accretion of new molecules
commences at n. = 1, where the free energy turns negative.
Rapid growth then proceeds, and the crystallite strives
toward the minimum at n; (figs. 2C and 4).

-25

-50

-75

-100

-125
(0]

FIGURE 4. Plot of reduced free energy function y against n for various

values of strain parameter o according to eq (30).
Inset shows detail of behavior of y betweenn = 0 andn = 1.

4.2 Stable Crystallite Dimensions and Dependence on
Undercooling.

Recalling that [ = n[60,,/(Af)] and a = n[60/(Af)],
we immediately find that the stable value of the mean
characteristic length is

1 ) (6%)
stable — ls = I
Af

0.7746 1\ 60,,T; .
= = = . (36)
o'l 3) (Ahy)(AT)
The mean value of the core fibril diameter is
60
Qstable — A5 — Ng A_f
_(0.7746 T 60Ty (37)
o'l 3/ (Ah)(AT) "
According to eq (36), we may write
ly=C/(AT) (38)
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where

(0776 1) 6T 0
E a3 (Ahy) ‘
and from eq (37), we get
a; = Cy/(AT) (40)
where
Co = 0.7746 _ l 60Ty (a1)
N a' 3/ Ahy

We observe from eqs (36) and (37) that the mean axial ratio
v of each crystallite is given by

(42)

The expressions noted above represent some of the key
predictions of the theory. In qualitative terms, the treatment
implies the following. At high undercoolings, (AT large), the
basic core fibrils will be quite thin, and at lower undercool-
ings, they will have a larger diameter. Further, because o,
> ¢, and the relation ,,/0 =,/ ay, the mean characteristic
length [ will always be considerably larger than the diameter
of the fibril; for polyethylene, one must expect y = ~6.5
(ep = 0, = 93 ergfem? and o = 14 erg/cm?). The
characteristic length (which in special cases we will interpret
as the mean distance between the lamellar platelets or
“kabobs” in a properly prepared specimen) will increase with
decreasing undercooling in a manner closely parallel to the
increase of the diameter of the fibril. Further, we must
expect both [ and a, to be many times larger than the
primary nucleus, mainly because of the factor n, ~ 0.7746/
o2 in egs (36—41). The theory predicts that the mean value
of the axial ratio should be approximately independent of the
undercooling (or driving force Af).

Experiments where fibrils are formed are invariably car-
ried out under conditions where a flow field is present, and
it is well known that a large flow field can substantially
increase the driving force (Af) for crystallization [6]. In
practical but still qualitative terms, this may be taken as
equivalent to an increase in the dissolution temperature.
Thus, at a constant temperature, the effective undercooling
AT can be increased by increasing the flow field (e.g.,
increasing take-up speed or rotor velocity). In such an
example, increasing the take-up speed at a constant temper-
ature should at least at first tend to cause a decrease in
diameter and characteristic length of the fibrils. The real
situation is however quite complicated, especially for the
stirrer method, and it is not a simple matter to quantitatively
determine the value of the dissolution temperature and hence

the undercooling for this method. Complex hydrodynamic
effects can complicate matters further at high rotor velocities
[6]. The properties of fibrils formed in highly inhomogeneous
and strong flow fields could easily lie outside the range of
validity of the theory presented here. The present theoretical
developments are probably best tested where a low and
constant flow field is used, and where the undercooling is
changed by varying the crystallization temperature®. In this
case the trend of AT is definitely known, and the actual
value of AT can be estimated at least within broad limits. In
such experiments, the prediction is that an increase of
crystallization temperature will lower the undercooling, and
lead to an increase in fibril diameter and characteristic
length.

It is important to qualify any attempted identification of
the mean characteristic length [, of the crystallites with the
mean distance between the lamellar platelets that decorate
the core fibril. There are actually two simple hypotheses that
would lead to at least an approximate correspondence of
these two quantities. One which has already been cited is
that of George and Tucker, who assumed that cilia associated
with the
lamellar overgrowths. Another hypothesis that allows [ to be

the discontinuities in the core fibril nucleate
similar to the mean lamellar overgrowth distance is that the
overgrowth explicitly avoids the amorphous regions, and
preferentially nucleates on the core fibril proper, mostly on
the basis of one overgrowth per crystallite. Again, such
overgrowths might tend to be epitaxial in character. In either
case, the success of identifying [ with the mean distance
between lamellar overgrowths depends on the avoidance of
additional overgrowths as much as possible, since such extra
platelets would lead to an erroneously low estimate of /.
Depending on which of the above hypotheses is thought to
apply, the distribution functions describing the spacing of
the overgrowths and the amorphous regions may be nearly
the same or quite different, and still exhibit essentially the
same mean value.

In comparing theory and experiment, we would accord-
ingly prefer to deal with interlamellar platelet distance data
where the formation of the core fibrils and overgrowths was
quite rapid, and where fast quenching was then immediately
employed in such a manner as to freeze the solvent into the
solid state. Such a procedure should minimize any excessive
number of platelet overgrowths, and at the same time curtail
the type of rearrangements of the lamellar overgrowths that
have been described by Pennings, Lageveen, and Vries [13].
The experiments of George and Tucker meet these require-
ments. It will be shown in section 5 that the hypothesis that

*The filament take-up method, where the fibril is grown continuously, has
reasonable prospects for allowing analysis of the effects of variations of intensity of flow
field at constant temperature (see paper by Zwijnenburg et al [20]). At the present
writing it is still difficult to estimate the value of Af in such experiments, but they
would appear to involve a more uniform flow field than for example the stirrer method
at high rotor velocities. The techniques advanced by Andersen and Carr [21] may
prove useful in estimating Af in such systems.
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the average distance between the lamellar overgrowths is
associated with the mean distance between the amorphous
zones in the core fibril in suitable preparations is a reasona-
ble one.

Perhaps the most important observation concerning the
theory at this stage is that it provides a natural explanation
for the limited diameter exhibited by the basic core filament
even in a supersaturated solution. The fibril does not grow
radially for the lack of nutrient polymer, but actually exhibits
a stable (or metastable) diameter because of cumulative
strain originating ultimately from topological and energetic
considerations at the bundle ends.

Another point is that the theory leads in a natural way to
the type of structure shown in figure 1C where a significant
fraction of the long polymer chains go through many different
crystallites. This is generally consistent with the enormous
tensile strength exhibited by single fibrils. The treatment
allows some defects (e.g. folds) to concentrate at the crystal-
lite ends. Chain end defects can occur everywhere, though
the concentration is apt to be higher in or near the amorphous
regions, or just external to these regions (fig. 1C). The
molecular arrangement shown in figure 1C bears a strong
general resemblance to that proposed by Grubb and Keller
[11]. As pointed out earlier, the crossovers and entangle-
ments in the amorphous zone are a natural result of the
nucleation and growth process depicted in figure 1.

We observe that eq (42) is consistent with the crystal
shape that obtains by minimizing the total surface free energy
of a square parallelipiped crystal of any fixed volume V. that
has surface free energies o and o' ,. This arises as follows.

lakine
A rystar = 2a%0, + dalo — a?1(Af) (43)
and employing an arbitrary fixed volume V, = a?/, one
obtains
Adrystar = 2d%0", + AVia/a — Vi (Af). (44.)

By setting (d A rystar/d @) = O for fixed V., one gets ao”’, =
Vo /a2, which, with a? = V /I, leads directly to

(45)

Q I~

'
g e
g

Here [ and a, unlike [, and a in eq (42), are unrestricted
dimensions. Equation (45) is a simple embodiment of Wulff’s
theorem, but it is clear that this theorem cannot alone explain
the limited size, or the temperature-dependence of that size,
of the basic units of the polymer fibril.

Conversion of the results showing a stable minimum in the
y — nplot to the more conventional A¢p — @ — [ coordinate
system is easily carried out and the general result of
performing this transformation is shown schematically in

figure 5. The minimum in the y — n plot at n; becomes a
deep trench elongated in the / direction in the A¢p — a — [
representation where the minimum has the coordinates A ¢y,
as, l;. The value of A¢ at the minimum is {2160, /(Af )%}
* ys where it will be recalled that y is negative. Steep walls
rise everywhere from the bottom of the trench. The

A¢ — a — Irepresentation exhibits the conventional saddle
point at Ag*, a*, [ *.

ad(+)

SADDLE POINT , A¢* = 32072 Opp/ (Af)2

a
a
STABLE MINIMUM
AT L, a5 ,-Acbg
FIGURE 5. Plot of A — a — | space for models with cumulative strain

(schematic).

Finally, we concern ourselves with the range of validity of
eq (25) or (28). Because of the terms involving (V/V,) (or
nZn;) in these expressions, the free energy does not go
without limit to more negative values as the volume in-
creases, but instead exhibits a minimum in the negative free
energy regime at a certain value of n. It is believed that this
minimum is real in an ordinary time frame and exists for the
physical reasons stated. Nonetheless, it is necessary to
qualify the use of the term “stable” that we have often used
in connection with it. The term “metastable” is probably
more precise. The permanence of the minimum depends on
whether or not in sufficient time the cumulative strain can be
dissipated. Mechanisms for doing so can in fact be envi-
sioned. If such mechanisms exist, they may provide routes to
a more stable state where the volume strain is reduced and
one or more of the dimensions of the crystal is larger (see
dotted line in fig. 2C). In such a case, the minimum is a
metastable one. If such routes are not accessible to the
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system in a specified time frame, the minimum is “stable,”
and the continued rise in free energy at n > ngup ton ' is
real. For convenience, we have mostly used the term “stable”
to describe the minimum, but the provisos noted here should
be understood in connection with its use.

An entirely different sort of limitation should be noted.
Under a fixed set of external conditions, there will be a
practical upper limit to the temperature where core fibrils
can be formed in a reasonable time because the nucleation
rate will in effect fall off rather abruptly to an inconsiderable
value. Also, at sufficiently low temperatures the nucleation
rate will become very high, and probably lead to a lower
temperature bound below which fibrils cannot properly form;
at these low temperatures, competition with ordinary homo-
geneous nucleation could also occur and mask or prevent
fibril formation.

4.3 The Distribution of Crystallite Lengths.

Prior to discussing certain aspects of the melting behavior
of the assembly of crystallites that comprise the core fibril, it
is convenient to introduce the concept that some variation
will occur in the diameter and especially in the length of the
crystallites. We concentrate on the topic of the distribution
of lengths, since certain details of the melting behavior
depend on this function.

It was noted in the discussion of the basic model that the
nuclei were assumed to be first deposited more or less at
random on the primary elongated molecule, or on secondary
chains dangling from the first or any subsequent nucleus or
crystallite. If some process did not intervene, and this
distribution were frozen in, it would tend to give a quite
broad distribution of lengths for the matured crystallites.
Also one would expect a very large variation of the average
value of [ with temperature if it were solely controlled by
nucleation events. The nuclei would be widely spaced at low
undercoolings and much more densely spaced at high under-
cooling. But we have just shown in eqs (36) and (38) that [
will actually tend toward a stable or metastable value of
which implies that the system of crystallites (while quite
possibly still having a broad distribution as a result of a
memory of the original nucleation acts) should exhibit a
mean length that is related to ;. This implies that, whatever
the distribution, the mean value is bounded. At this stage of
the development of the theory, we have not calculated the
natural distribution of / about [ resulting from fluctuations,
but surmise that it can be considerably more narrow than
that laid down in the initial nucleation process, especially at
low undercoolings. Because of the elongated shape in the [
direction of the trench near the stable minimum in the A¢
— a — [ representation, fluctuations in [ will probably be
considerably larger than those in a. In any event, the original
distribution of lengths resulting from nucleation on primary

and secondary pendant chains is certainly very broad, but
there exists a natural driving force of thermodynamic origin
toward a more truncated distribution. More important, we
must expect the mean value of the distribution of lengths
(characteristic length) to be reasonably close to /.

Grubb and Keller [11] have suggested the distribution
function

(46)

where w(/) is the mass fraction of crystallities of length [ that
occurs in the distribution, and [ is a length parameter that
corresponds to the peak value of the distribution. This
distribution is very broad, and rather asymmetric, and may
be taken as a simple and practical representation of the
shape of the initial distribution resulting from more or less
random nucleation on the primary elongated chain. Pennings
has observed that the distribution of lamellar platelet dis-
tances in certain samples follows the logarithmic-normal
distribution, and remarks that there is some theoretical
justification for its choice [6]. The distribution function
suggested by Grubb and Keller is quite similar in general
shape (i.e., it is broad and has a similar type of asymmetry)
and its use is simplified by the presence of only one
parameter, L.

The average value of [ in the mass distribution employed

by Grubb and Keller is

(1) = f 'm lw(l) dl = 21 (47a)
and the average value of [ % is
W = f : 12w(l) dl = 612. (47b)
The coefficient of variation for this function is always
gy =200AE — Uk 10092 o (47c)

0

Grubb and Keller were able to reproduce the shape of
melting curves for fibrillar polyethylene with a broad [
distribution with a particular choice of [ and other parameters

[11].
4.4 Melting Behavior and Some Aspects of Annealing.

A fibril consisting of crystallites of the type depicted in
figure 1B, but with no cumulative strain, has the dissolution
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temperature

20,

_ 40’}
(Ah)l  (Ahga

Td = Tdo{ Il = (48)
as can be found be setting A¢p = 0 in eq (1). The dissolution
temperature for the case where cumulative strain exists can

be obtained by setting A¢ = O in eq (25) and noting that
(V/V.)*3 = n? = n2. The result is

. 20,,
(Ahf)ls(] - ansz)

Td = Tdo { 1
A o
Bhjatl —anp) 4

The quantity an ?is 0.541 for polyethylene, and o, is about
120.5 erg/cm?; estimates of o, in eq (48) range from ~1445
erg/cm? to ~550 erg/cm? for this polymer, depending on the
degree of annealing (see later).

Because of the condition o,,/0 = [,/a that obtains for
the crystallites with volume strain, T ; as given in eq (49)
may be written in the alternative and equivalent forms

r,=1pl1—— e
@ (Ah)l(1 — an?)

o 60
= Td 1

"~ (Ahpas(1 — ang)}‘ (50)

In writing eqs (49) and (50), it has been assumed that the
volume strain in the crystallites is not relaxed prior to

dissolution or melting. In all of the expressions quoted here,
the melting point of a dried specimen is given by replacing
T ;with the observed melting point T',,, and T' ;> with T ,,;”.

It is worth pointing out that if the strained amorphous
region were destroyed in some manner and converted to short
chain ends, the volume strain would be relaxed. Also o,
would fall, and become comparable to ¢. In this case the
dissolution temperature would closely approach

_ 4o <L+ L)
(Ahf) as 2l

=T741

Td:Tdo{l

_ i%os } 1)
(Ahf)as . ‘

Such a set of circumstances should thus cause a considerable
increase in the dissolution temperature (or melting point)
compared with that of the original untreated fibrils. Equation
(51) offers an opportunity to obtain an experimental estimate
of o from melting point measurements on suitably treated
specimens of different diameter. A plot of T'; or T',, versus
1/a has a slope close to 4T 4, o/Ah, and an intercept close
to T 4. - With Ah ;being known, then o is known to a good
approximation. This method of estimating o is altogether
analogous to the T ;or T, versus 1/l plot method of obtaining
T oto1a) for chain—folded single crystals [22, 23].

The foregoing expressions apply to melting or dissolution
temperatures that have been freed of the effects of superheat-
ing. Also, they do not explicitly take into account any
annealing effects that may occur that may lead to an increase
in crystallite size and perfection. Further, we have ignored
the melting of the chain—folded platelets, but the melting of
these objects can usually be distinguished from that of the
core fibril.

At this juncture, it is essential to note the probable effects
of annealing, since certain phenomena that are associated
with this process can alter the melting behavior and the
presence of volume strain. The most probable result of the
first stages of annealing is some relaxation of the repulsion of
the ciliary bridges that cause the high end surface free
energy and volume strain. In polyethylene, such behavior
could be caused by the advent of lengthwise translational
motions in the crystal associated with the a-relaxation
mechanism, wherein a molecule shifts one C-C repeat
distance and rotates 180° [24], which becomes active just
above ~100°C. An interesting situation can arise from this
which is best illustrated by the example of polyethylene
fibrils: on annealing, the volume strain may dissipate,
leaving only a large end surface free energy with the
amorphous zone essentially intact. An explanatory discussion
follows.

Consider first the free energy of formation of an unstrained
crystal, i.e., one in which the lattice is not expanded and
where the strain is concentrated in the bundle ends. This is
represented by eq (1) and is herewith labelled A¢, =
A¢( R T NG according to eq (21), o, in A¢u
may be written as o, + (ve.) nd usingl/l, = n and (V/
V.3 = n2. The quantity o, is 120.5 + 4.27 (6.77)3 =
1445 erg/cm?® for polyethylene (see later). Now for the
corresponding crystallite of the same dimensions exhibiting
volume strain we use eq (25), and denote the free energy of
formation in Ad; = A (sirained 1attice) for the purposes of this
discussion. The quantity a(V/V. )23 = a n? in eq (25) is
0.541 and o, is 120.5 erg/cm? for polyethylene. It is easily
shown either numerically or by using the relations a =
(ve./30,,) and [ = n60,,/(Af)] that Ap, = Ad,when o,
in Ag, is o, + (ve.) nd. Thus, a polyethylene crystallite
exhibiting volume strain with o,, = 120.5 erg/cm® has
exactly the same free energy of formation as an unstrained
crystal with no lattice expansion with an end surface free
energy of o, = 1445 erg/cm®. Now if some annealing takes
place and o, falls, then the unstrained crystallite will exhibit
the lower free energy. Thus, a certain degree of annealing,
which may occur concurrent with formation of the fibril
itself, especially in preparations of long duration or at high
growth temperatures, can readily lead to a collapse of the
expanded lattice in fibrillar specimens. We also observe that
even a small degree of mechanical tension colinear with the
core fibril axis will tend to stabilize the form with volume
strain, if prior to the application of tension o, and o, in eqs
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(21) and (1), respectively, are such that A¢p; = A,. (The
stabilization of the state with volume strain is apt to occur
during the formation process because of the tension on the
fibril caused by the flow field.) The tension has the physical
effect of increasing the forces that translate the chains and
increase the volume. The above observations imply that the
crystallites exhibiting volume strain may be ephemeral, with
the greatest chance of their being found residing in fibrils

- formed in brief periods at low temperatures, and probably in

a state of tension.
Further insight on annealing can be gained by extending
the discussion to certain simple aspects of melting behavior.

- If we substitute o, = o, + (ve)nd = 1445 erg/cm® in eq

(48), which represents a crystallite without volume strain, a
considerably lower melting point is obtained than is found
with eq (50) with o, = 120.5 erg/cm?® and an? = 0.541,
the latter applying to a crystallite with volume strain. Thus,
in the absence of annealing effects, the strained crystal
would be found in a melting run. However, it is easily shown
that when o, in eq (50) falls (presumably as a result of
annealing) to a value near 550 erg/cm? that the melting point
calculated for the unstrained state using eq (48) is higher
than that found with eq (50) for the strained state. Accord-
ingly, annealing can cause a collapse of the expanded lattice,
but with a large end surface free energy of o, ~ 550 erg/cm?
still being present that gives the same melting point as the
original strained crystallite. (Calculations for o = 14.4 erg/
cm?, ag, = 300 AP, L, = 2400 A.) In such a case, the
unstrained crystal phenomena would be found in melting
experiments. We infer from the foregoing discussion that o,
~ 550 erg/ecm? is a reasonable estimate for the end surface
free energy of a polyethylene fibril crystallite that has just
transformed from the volume-strained to the volume-un-
strained state in a melting run. A surface free energy of this
magnitude without volume strain can have significant effects
on melting behavior, as will be shown subsequently.

A discussion will be given later concerning the possible
ultimate effects of prolonged annealing near the melting
point.

We now address the subject of the shape of the melting
curves of the core fibril, especially as these are affected by
the distribution in £, and the presence of volume strain. Our
treatment parallels that given by Grubb and Keller and
utilizes their distribution function as displayed as eq (46);
the principal difference is that cumulative strain is included
in the present case. By employing the concepts given by
Grubb and Keller, but using the free energy function given
by eq (25) rather than eq (1) (which except for unimportant
geometrical considerations is the same as that used by them)
one finds

i D e
X(lo) = f ll'(l) dl = ( 1 + 7) e loll
l

0

(52)

as given by Grubb and Keller, but [, takes on the revised
form:

20,
- To)(Ahf)(] - a".\'z)/Tmo] - 4'0-/”,\' '

(volume strain present)

l, = (53a)

[( T"lo

This is the Grubb—Keller formulation with volume strain from
the present theory included. In these expressions, x(,) is
the fraction unmelted, and 7', is the melting point of a
crystallite of length [,,. The treatment ignores the effect of
any distribution in the fibril diameter. The above expressions
lead to a quite broad melting curve for reasonable choices of
[,. Recall that according to the present formulation [ is
restricted by eq (47a) to a value in the vicinity of one-half of
the mean characteristic length. Since o,,, o, T, and Ah
are known, one test of the theory is accomplished by
reproducing a melting curve using only [ as a fitting parame-
ter, and determining if that [ corresponds through eq (47a) to
a reasonable value of the mean characteristic length.

In view of the foregoing discussion concerning the effects
of annealing, we reproduce here for further use the expres-
sion for [, for the case where the volume strain has relaxed
and where the cumulative stress remains concentrated at the

bundle ends:
- 2()'7,,_7_ -
[(Tmo - T:I)Ah//Tmo] - 4‘()'/(1.\.

(volume strain absent)

l,= (53b)

This is essentially the formula of Grubb and Keller for the
parallelepiped geometry used here.” This expression will
prove useful where it is suspected that relaxation of the
volume strain has taken place. Such relaxation could take
place either in the process of a high temperature preparation,
or prolonged storage at a lower temperature, or during the
melting run itself. In the latter case, we expect o, ~ 550

erg/cm? as noted previously.

4.5 Depression of the Heat of Fusion Resulting from
Volume Strain.

In a calculation to follow concerning the amount of lattice
expansion in a core fibril crystallite caused by the presence
of cumulative strain, it is necessary to have an estimate of
the fractional depression of the heat of fusion attributable to
the volume strain. We assume that the volume strain is
principally enthalpic in character, and that the decrease in
enthalpy is proportional to that part of the decrease in
melting temperature caused by the strain. In this approxi-
mation, the fractional decrease in the heat of fusion is

5 A minor difference is caused by the fact that Grubb and Keller employ the
relation Af = [(Ah)AT)/T,’)T/T ) in deriving their analog of eq (53b). See remarks
concerning (Af ) in section 3.1.
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AHf — AHﬂstrain)

Sn=
AH,
_ AT(strain) - AT(nn strain)
Ty
(54)
60(’() 60(’0

Ah)l(1 — an?)  (Ahy)l,

60y, ang?
(Ahf)[s Il = Olnsz ’

Here AH,is the heat of fusion in Jg~' in the absence of

volume strain, and AH ggaip the corresponding quantity
3
and

with volume strain. The symbol (Ah;) is in erg/cm
refers to the case of no strain. Because of the relation given
in eq (42), the factor 60,,/(Ahj)l can be replaced by 60/
(Ahj)ag. The value of f} is typically about 0.01 to 0.04 for
normal values of the parameters, the larger depression being
associated with the thinner fibrils. Notice that f;, = 0 for
= 0, as must be the case.

4.6 Estimate of the Lattice Expansion Resulting from
Volume Strain in the Core Fibril.

Because a connection exists between the reduction in the
heat of fusion caused by surface effects and the concomitant
expansion of the lattice, it is possible to develop a scheme to
predict the lattice expansion in a fibril in terms of the strain
parameter a. For reasons that will become apparent, this
part of the development is aimed specifically at the case of
polyethylene, but is believed to have more general validity.

From their work on the x-ray spacings of lamellar bulk
polyethylene samples and single crystals, Davis, Eby, and
Colson [15] have shown that the thermodynamic properties
depend on the fold period /;. In particular, they have given
the heat of fusion in Jg ™! of polyethylene as

AHf(strain) = AIif - KI/IZ (55)

where [, isin A, AH ;is the heat of fusion in Jg ™! of a sample
of infinite lamellar thickness (i.e., with no strain) at the
temperature under consideration, and A Hgrain the heat of
fusion of a specimen with the finite lamellar thickness [, that
exhibits volume strain. (The volume strain in a chain—folded
single crystal or in folded melt-crystallized polymer is of
course non—cumulative.) Values of K;, which they report in
units of Jg~! A, at temperatures of interest can be obtained
directly from their figure 9, and A H;is known. At 23 °C, K,
is 160 Jg™! A. The value of K, is a bulk property of the
crystalline polyethylene substance itself, and is at any given
temperature independent of whether the orthorhombic crystal

involved is paraffinic, chain—folded, or bundlelike. In deriv-
ing the basis for eq (55), Davis and coworkers assumed
that the product (absolute temperature-coefficient of expan-
sion-isothermal bulk modulus) was ‘much greater than the
pressure; this is equivalent to the assumption AE = AH,
which is probably only a fair approximation in the present
application.

In a subsequent paper, Davis, Weeks, Martin, and Eby
[16] demonstrated experimentally that the cross-sectional
area A , occupied by each chain is given with high accuracy

by

Ao(strain) = Ao + Kz/lz- (56)
Here A, is the cross-sectional area of the chain in an
undisturbed lattice at a specified temperature in A2 for
polyethylene, and A ,(gain) the same quantity for a sample
with a finite lamellae of thickness [, that exhibits an
expanded lattice resulting from end surface stress.® The
value of K, in A® has been given by these authors for melt-
crystallized polymer, solution crystallized polymer, and n-
paraffins, and highly precise values of A, are available from
the same source [16]. The magnitude of K, for melt—crystal-
lized polymer and solution crystallized polymer centers
around 15.7 A3 at 23 °C, but K, for the n—paraffins is much
lower. The value of K is not known from direct experiment
for a bundlelike crystal, but a reasonable estimate can be
made beginning with the aforementioned data on chain-
folded systems. It is understood that K, in the formulae to
follow refers to a bundlelike crystal.

By eliminating /, from egs (55) and (56) and recalling that
{AH ; — AH ;(spaim}/AH ; = f3, it is found that

K
Amstrain) = Ao + ﬁ (AHf)fh (573)
1

which with AH ;/(Ah;) = 1077/p,., where p, is the crystal
density in g/cm?, gives

_ Ky 1077 60,,( an?
Apstraim = Ao + Z Pe ) Ly 1 — angd

K, 1077 60 an?
=4, + 22— :
K, p. as\1— ang

(57b)

With the above formula, it will prove possible to obtain a
rough estimate of the increase in volume (mostly cross-
sectional area) incurred by cumulative volume strain.

Both K; and K, depend on the temperature, and by
referring to the original references, it is possible to calculate
the lattice expansion at various temperatures.

5 One direct cause for the lattice expansion in chain—folded systems is probably the
torque exerted by the folds which then leads to small chain translations. Another
probable cause is non-cumulative repulsions of the folds that cause similar translations.
This expansion is naturally associated with a corresponding reduction in the heat of
fusion.
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The extrapolation from the small lattice expansions ac-
tually observed in single crystals and melt crystallized
polyethylene to the considerably larger one found in fibrillar
material is a long one. Also, the assumption AE ~ AH has
been employed in estimating K ;. Another difficulty is that K
is not known for fibrillar specimens, though it is certainly
somewhat larger than the Ky value quoted by Davis et al for
single crystals or melt—crystallized polyethylene. The value
of Ky can be corrected in an empirical manner so that it more
accurately represents a bundlelike crystallite by multiplying
it by the ratio 0,/ Tu(to10)- Given the approximations noted,
it would probably be fortuitous if eqs (57) quantitatively
predicted results that were within better than a factor of two
of the experimental data.

Two qualitative features of eqs (57) are worth noting. First,
the theory suggests that the larger expansions (i.e., effective
cross—sectional areas) will occur in the thinner fibrils. The
second and more essential point is that a rather marked
expansion of the lattice is expected; this may amount to
several percent or more for thin fibrils. The expansion is
large enough to consider the possibility that the volume
strain induced by the crowding of the ciliary bridges at the
bundle ends may in some cases suffice to induce a phase
transition to a more open lattice type of higher symmetry.”

Together with the previously given variation of crystallite
dimensions with undercooling, the prediction of considerably
expanded lattice spacings in the body of the core fibril
represents a major point of the present approach that can be
tested experimentally. The observation of a considerably
expanded lattice in a thin fibril would support the general
approach and model given here. Recall, however, that
annealing mechanisms may cause a disappearance of the
lattice expansion effect while still leaving the other principal
features of the fibril intact, as was noted in section 4.4. (We
would judge from the temperature and duration of the
preparations commonly used in forming polyethylene fibrils
from solution that the expanded lattice effect would not
ordinarily appear in the specimens after the flow field was
removed because of annealing phenomena.) We also remark
that if the strained amorphous regions in the core fibril were
somehow selectively destroyed, say by chemical attack, the
strain in the crystal proper would be relieved, and relatively
normal lattice parameters should result. (See also remarks on
melting behavior in connection with eq (53).)

7 As noted in Section 4.4, the application of mechanical tension on the core fibril
may stabilize the expanded lattice. It follows that the application of such tension may
in special cases either return a collapsed lattice to the expanded and strained state, or
induce a transition to a new lattice of higher symmetry. We observe further that the
longer crystallities in a fibril clamped at a low temperature to constant length will be
subjected to strong tension as the shorter crystallites melt out on warming, this tension
being a result of the contractile force due to randomization in the melted regions.
Fibrils treated in this manner may exhibit the expanded lattice or even a phase
transition to a higher symmetry form. (See discussion of contractility in sec. 5.5). The
occurrence of such phenomena in clamped fibers would provide strong support for the
treatment proposed in this paper.

5. Comparison of Theory with Experiment

5.1 General

Data are not available to test all aspects of the theory, but
a number of the most important predictions can be compared
with experiment. In particular, it is possible to deal in a
quantitative manner with the variation of the diameter and
mean characteristic length with undercooling, the predicted
invariance of the mean axial ratio with temperature, and the
expansion of the fibril lattice resulting from the presence of
cumulative strain. The general effect of a change of the
intensity of the flow field at constant temperature can also be
dealt with qualitatively. We have already made the point that
the presently available evidence is consistent with the fact
that the fibril diameter has a definite limiting value indicative
of the presence of a stable (or metastable) minimum in the
free energy function as predicted by the theory. Melting
phenomena, including the shape of the melting curves are
also discussed, mainly with the objective of obtaining an
independent estimate of the characteristic length. Experi-
ments that indicate that the amorphous zones can be mostly
removed by prolonged annealing at elevated temperatures
are noted.

5.2 Dependence of Fibril Diameter and Characteristic
Length on Undercooling.

George and Tucker [12] have measured the mean diameter
a ¢ of the fibrils that were produced by mild shear of a 31/2
percent solution of polyethylene in n—octadecane at 84 °C
and 101 °C. They also measured the mean distance between
the lamellar platelets at these two temperatures, which we
take to approximate the characteristic length [ (table 1). The
crystallization technique employed involved shearing a thin
film of the polymer solution between two mica strips on
which carbon had been evaporated that were held at the
crystallization temperature, followed by quick quenching to
room temperature. The shearing step was completed in less
than about 1 s, and the quench effected in a few seconds.
The solid n-octadecane was then selectively removed at room
temperature by use of a suitable solvent, leaving the polyeth-
ylene fibrils for examination.

We chose these particular experiments for consideration
for a number of reasons. Among these was that identical
crystallization conditions were employed at the two tempera-
tures cited, and the coefficient of variation of the measure-
ments were given at both temperatures. Also, the technique
that was employed evidently minimized adventitious epitaxial
decoration of the core filament. (The assumptions under
which the mean distance between the lamellar overgrowths
can approximate the mean length of the crystallites have
been noted previously.) We also note that rather mild shear
conditions were employed in the experiments, with the result
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that we did not judge it necessary to apply a large correction
for the increase in T; that might have been caused by the
shear. The general effect on the results of making an upward
correction to Ty is given.

We would propose that the formation of fibrils under the
conditions of mild shear described above may be related to
the fact that some portion of the longest molecules present
will have some of their segments physically adsorbed on the
glass surfaces. In such a case, the flow field would be very
effective in statistically elongating those sections of the
adsorbed molecules that were not so attached to these
surfaces.

The test of the theory is begun by determining if eqs (38)
and (40) can be used to fit the data at the two undercoolings
used by George and Tucker with reasonable values of the
parameters. Using the value of T given in table 1, which is
that of Huseby and Bair [22], it is found with eq (40) that

as(cm) = 8.41 X 107%/(AT) = C,/(AT) (58)

closely reproduces the experimental data (see table 1). By
using the standard values [23] of o and Ah (listed in table 1
in conjunction with egs (37) and (41), it is found that n =
6.77 and a = 0.0118.

Attention is now directed to the [ data. A fair fit of the
experimental data in table 1 can be obtained with eq (38) as

l(cm) = 7.04 X 107*/(AT) = C,/(AT). (59)
The datum [ = 2514 A for T = 101 °C was weighted more
heavily in calculating C; in eq (59) because of its smaller CV
(see details in table 1), and the greater possibility of
additional overgrowths in the sample formed at the lower

crystallization temperature. With C; and « (or n ;) known, it
is a simple matter to calculate that o, is 120.5 erg/cm?
using eq (41).

The fit of a;and [ ; shown in table 1 is sufficiently good to
warrant the belief that each varies approximately as the
reciprocal of the undercooling. The largest error occurs for /
at the highest undercooling (1550 A calc., 1293 obs.). This
low value of [, may be a result of some extra overgrowths.

The value o,, = 120.5 erg/cm®> may be regarded as
reasonable for the cumulative strain—free component of the
end surface free energy; it is somewhat larger than the fold
surface free energy o) = 93 erg/cm?.

The theory predicts that the mean value of the axial ratio
of the crystallites comprising the core fibril will be constant
at different undercoolings, and that the axial ratio is o,,/0.
Using eq (42), we have for the mean axial ratio

120.5
— = —— = 8.37.
a 14.4

(60a)
where o-and o, are the surface free energies that lead to the
correct absolute values of a ; and [ at the two undercoolings
using eqs (34) and (37). The result shown in eq (60a) is in
reasonable agreement with the direct length and diameter
measurements of 7y by George and Tucker, who determined

_ 1.5at84°C
" 8.7at 101 °C

av.

(60b)

The value of 7y is approximately independent of temperature
as predicted. It may be concluded that the relation y = o,/
o =lia,, eq (42), is generally consistent with the observa-

TABLE 1. Input data and results for dimenstons of polyethylene core fibrils as a function of crystallization temperature and undercooling.

A. General
Quantity Value
Heat of fusion, Ah ; 2.80 X 10° erg/em?®
Lateral surface free energy, o 14.4 erg/cm?

Dissolution temperature of polyethylene in n-octadec-

129.4 °C or 402.6 K

ane, Ty
B. Fibril Dimensions at Various Undercoolings
Fibril Digmeter, Characteristic
Crystallization Undercooling, ag(A) length, [;(A)
temperature, T'(°C) AT (°C)
Exptl. [12] Theor. Exptl. [12] Theor.
101 28.4 303(29%CV) 296 2514(17%CV) @ 2478
84 45.4 181(51%CV) 185 1293(58%CV) 1550
C. Derived Results
Nn =6.77 (4) ve, = 4.27 erg/cm?®
(2) a = 0.0118 (5) an2 = 0.541

(3) 0 ¢, = 120.5 erg/cm?

(6) (ve)nd = 1325 erg/cm?

@ The [ value of 2514 A was weighted (58/17)> = 11.3 times more than [ = 1293 Ain fitting / ;as a function of 1/AT.
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tions, and the expectations of the theory concerning the
magnitude of o and o,.

It is of interest to indicate the sensitivity of the results to
the estimate used for T, . If 5 °C is arbitrarily added to the
value of T/ in table 1, the following results are obtained: C,
= 8.245 X 107* cm+deg, Cy = 9.62 X 1077 cm-deg, y =
8.57, and o, =
0, are still physically reasonable, but the fit of the data

123.4 erg/cm® These estimates of y and

points for @ and [ is not as good. The theory would remain
tenable from the standpoint of general physical interpretation
even if 10 °C were arbitrarily added to the T,;’ value given in
table 1.

At this stage, the following conclusions are apparent. The
variation of both the mean fibril diameter and mean charac-
teristic length are in reasonable accord with theory, which
states that they should vary as the reciprocal of the under-
cooling, and bear a constant ratio between themselves as
they do so. This ratio is given by o,,/0, which is large
because of the large natural difference between the bundle-
end and lateral surface free energies. The cumulative strain—
free component of the bundle-end surface free energy is of

the expected magnitude.

5.3 Dependence of Fibril Dimensions on Flow Field
Intensity at Constant Growth Temperature.

Zwijnenburg, van Hutten, Pennings and Chanzy [20] have
measured by various techniques the diameter and the mean
distance between the lamellar overgrowths for polyethylene
fibrils formed continuously from a 0.5 percent solution in
p—xylene at a temperature of 103 °C, but at two different
filament take-up rates. The results are shown in table 2.

The fibril diameter data are reasonably consistent with one
another and have an unambiguous meaning. The length data
denoted TEM in table 2 refers to the mean distance between
the lamellar overgrowths. Our identification of these length
data with the characteristic length [ involves the same
assumption as was used by George and Tucker in analyzing
their data. The lengths denoted SAXS in table 2 were
obtained from a very intense small-angle reflection which

the authors identified with the distance between the over-
growths. Some of this intense reflection may have been
generated by the amorphous regions that presumably exist in
the core fibril beneath the lamellar overgrowths.

The theoretical prediction is that the larger take—up rate
should induce the larger value of Af, and through eqs (36)
and (37), produce the thinner and shorter core crystallites.
This is borne out by the data in table 2.

The data in table 2 imply an axial ratio for each take-up
speed of y ~ 6, in rough agreement with the findings of
George and Tucker as well as with the value y = ~6.5
estimated on theoretical basis. The results noted in this
section are in general consistent with the conclusions drawn
in section 5.2.

Although it has no direct bearing on comparison of the
present theory with experiment, mention should be made of
the fact that observations by dark field electron microscopy
and the broadening of the 002 electron diffraction spots for
polyethylene fibrils lead to the postulate of a dimension in
the chain direction that is much smaller than [,. For
instance, Zwijnenburg and coworkers [20] find for the same
specimens listed in table 2 the dimension 250 A for a take-
up speed of 2 em/min, and 340 to 350 Afora take—up speed
of 8 em/min. They conclude that the elementary core fibril
possesses orthorhombic “blocks™ of this length. They indi-
cate that this effect may be a result of crystal flaws, or
possibly twist disclinations. There is no evidence suggesting
that there is an actual hiatus in the crystal structure between
these blocks, such as exists at either end of the crystallite of
length [ in the form of strained amorphous regions. Thus, we
do not expect this “block” length to affect the melting
behavior to any serious extent. The “block™ length should
not be confused with /.

5.4 The Apparent End Surface Free Energy.

It is of interest to indicate the relationship of the bundle-
end surface free energy that we have found with theoretical
estimates based on statistical mechanical treatments given in
the literature. The cumulative strain—free portion of the end
surface free energy in our formulation is o,,; this result is

TABLE 2. Core crystallite dimensions as a function of flow field intensity: polyethylene in p-xylene.

Crystallization Takenp Fibril diameter, (13(;\)" Crystallite length, l,(A)"
témperature speed Axial Rati
S@ (cm/min) DF ED WAXD TEM SAXS ) /a“ i
103 2 250 230 260 1500 1400 5.9
103 8 200 210 210 1250 1300 6.2

@ DF = dark field electron microscopy; ED = broadening of electron diffraction spots; WAXD = broadening of wide-angle x-ray reflections. (Data of

Zwijnenburg, et al[20].)

®TEM = transmission electron microscopy; SAXS = small angle x-ray scattering. Data from ref. [20] on distances between lamellar overgrowths. It is

assumed here that these data represent the characteristic length /.
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new, and no previous theoretical estimates are available.
However, some interesting formulations have been given, for
instance by Zachmann [25, 26], for the bundle-end surface
free energy using the assumption that none of the surface
energy was transmitted to the lattice, i.e., the lattice dimen-
sions were held fixed in the calculations. We refer to a
bundle-end surface free energy calculated in this manner as
O = Ouappareny- In the present formulation, it is found from
eq (21) together with [/l . = n and (V/V .)?3 = n 2 that

O eapparent) — Teo T (Ve(,)ns3 = 120.5 + 1325 (61)
= 1445 erg/cm?

The numerical value given refers to polyethylene, and was
calculated using the data given in table 1. It is this number
that is to be compared with the theoretical calculations
mentioned above that do not allow for lattice expansion and
for some conversion of end surface free energy to volume
strain. It would be of considerable interest to investigate
using statistical mechanics the properties of models where
volume strain is allowed, and where the bundle—end surface
free energy exhibits two components —one of these being free
of cumulative strain (o,,), and the other corresponding to
the term (ve,)n @ that derives from cumulative strain.

We have already noted the fact that annealing can cause
Tp = O pappareny to fall to lower values (~550 erg/em?® for
polyethylene) in such a manner as to cause the elimination of
the volume strain. This will prove useful in the ensuing
analysis of melting effects. For a case equivalent to no
volume strain, Zachmann has estimated that o, ~ 600 erg/
em? [25, 26].

5.5 Melting Phenomena: Independent Estimate of L, .

We consider first the shape of the melting curves. The
overall objective in this part of the discussion is to find if the
parameters that we have obtained are consistent with the
shape of the crystallinity versus temperature curves of poly-
ethylene fibrils with a reasonable value of /. We begin by
testing eqs (52) and (53a), which depend on o,, o, and
an?, to determine if these parameters give a reasonable
prediction of the shape of observed crystallinity vs tempera-
ture curves with a value of [ consistent with other estimates
of this quantity. This particular test assumes that the
crystallites are not annealed, so that the effect of volume
strain has its full effect. This will give one bound for .
However, it is reasonable to suspect from the method of
preparation and the duration of the melting experiments that
the volume strain in the fibrils may have relaxed. Therefore,
we shall use eq (52) coupled with eq (53b) with o, = 550
erg/cm? to fit the data to obtain another bound for /.

In a paper concerned with crimping and melting-induced
contraction of polyethylene fibrils that is of considerable
general interest, Grubb and Keller measured the degree of

crystallinity x of fibrils in the absence of solvent as a
function of temperature. It should be explicitly noted that the
fibrils used by these authors were prepared by a different
technique (solution stirring in xylene at 98 °C) than that
employed by George and Tucker. Grubb and Keller’s data
are depicted in figure 6. The points above about 138 °C were
stated to be subject to the effects of superheating (open
circles), and will not be included in the analysis to follow.
Their x values were obtained from measurements of the
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FIGURE 6. Degree of crystallinity from contraction measurements as a
function of temperature for polyethylene core fibrils (effect of volume strain

included). -

Solid lines calculated for various / with eqs (52) and (53a) using input data from eq
(62). Data of Grubb and Keller [11]: (O) points affected by superheating or annealing
(@) points used in analysis. The best fit is obtained with/ =900 A. This corresponds
to a characteristic length of ~1800 A.

overall length of the fibrils at various temperatures. Contrac-
tion occurs when an essentially extended—chain crystallite in
the core fibril melts, the molecules in this region then being
more random, thus shortening the fibril. The percentage of
the contraction is a direct measure of the fraction of the core
fibril that has melted. The shorter crystallites melt out first
on warming, so that the shape of the x versus T' plot reflects
the distribution of crystallite lengths. The “crystallinity”
calculated in this way does not deal with melting effects
caused by the lamellar overgrowths, and does not include the
small reduction in overall crystallinity caused by the amor-
phous regions. The reader is referred to Grubb and Keller’s
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paper for further details of the measurements. We shall use
the aforementioned xversus T data (other than those affected
by superheating) to obtain a reasonable range of values of the
characteristic length.

Attention is now drawn to the expression for [, eq (53a).
In this expression, we already have from the input data in
table 1 and the analysis of a¢ and [ given previously the
following values:

Ahy = 2.8 X 10°erg/em?; o 14.4 erg /cm?*
(62a)
an? = 0.541

oo = 120.5 erg /cm?

We consider that these numbers are accurate to within about
10 percent, and will not subject them to adjustment in the
ensuing analysis. Eq (53a) also requires values of the mean
diameter of the fibrils a,, and the equilibrium melting
temperature T,°.

a;= 300 X 108cm; T, = 146.5°C = 419.7°K (62b)

The value for a ;is that suggested by Grubb and Keller for
the fibrils used in their studies. No detailed statistics were
given for this diameter, so we infer that this is actually a
nominal value. The value of T, is taken from an analysis in
the literature [27] that is based at high molecular weights on
the experimental studies of Rijke and Mandelkern [28], who
found 7, = 146.0 = 0.5 °C for fibrillar material. The latter
experiments were of considerable time duration and designed
in part for the specific purpose of eliminating the effects of
superheating. Interesting long—term annealing effects were
observed very near the melting point that were attributed by
these authors to an increase of crystallite size and a possible
reduction in the surface free energy.

The distribution of lengths in the particular type of
samples studied by Grubb and Keller is evidently very broad,
and they therefore used the distribution given in eq (46),
which leads to eq (52) for x, in their analysis. We shall
accordingly use eq (52) for calculations of x. Recall,
however, that we utilize eq (53a), which contains an?, to
calculate [, in the present analysis. With these develop-
ments, the only parameter available for the fitting process is
[. In this process, the value of [ tends to determine the
general shape of the curve, while the ratio o/a; determines
the apparent intercept on the temperature coordinate as x
—> (0}

The results of the calculations with eqs (52) and (53a) with
the input data noted above, and [ values of 600, 900, and
1200 A are shown in figure 6. In the region where super-
heating does not interfere, a good fit is obtained with [ = 900
A. There is an interesting check on the validity of this
number, since it leads through eq (47a) to a mean value of [
of 1800 A. This value represents an independent estimate of

the magnitude of [, (calculated as (/) = 2/) that does not
depend on measurements of the lamellar overgrowth spacing.
Remembering that a ¢ = 300 A, this corresponds to a mean
axial ratio of y = 1800/300 =

agreement with that found from our analysis of the data of

6, which is in rough

George and Tucker, and quite close to that we estimate from
the data of Zwijnenburg et al [20] (see Sec. 4.3). Thus in the
case where volume strain is assumed to be present, the
melting data imply a reasonable value of [ and [ .

We now assume that the volume strain has relaxed in the
fibrils studied by Grubb and Keller, and utilize eq (52) with
eq (53b) to analyze the melting data. The value o, = 550
erg/cm? is used in eq (53a) for the reasons cited in section
4.4. The other input data are given in eqs (62). A reasonable
fit is obtained with/ = 1200 A (not shown). The degree of fit
is comparable to that achieved by Grubb and Keller, and
tends to confirm their original analysis with o, = 600 erg/
cm?, this surface free energy having been obtained from
Zachmann’s calculation. The present analysis gives [, = 21
= 2400 10\, which leads to a mean axial ratio of 2400/300 =
8, which is satisfactory.

While it is not possible to decide which of the two
estimates of [ given above is more nearly correct, since one
cannot be certain whether or not the volume strain in the
specimens was relaxed, the results are still highly significant
in a general way. They show that [ is very probably in the
range of 900 A to 1200 A. This implies that the average
distance between full “amorphous” interruptions of the core
fibrils studied was 1800 to 2400 A. Despite certain differ-
ences, we regard this analysis as generally confirmatory of
the model proposed by Grubb and Keller, as well as of our
contention based on the present theoretical development that
the core fibril is interrupted every few thousand A by an
amorphous region.

The present analysis tends to further verify that the
function, eq (46), suggested by Grubb and Keller to describe
the distribution of the spacing of the amorphous regions
along the core fibril is suitable for material produced in the
particular manner (stirrer technique) used by them. It would
be of considerable interest to determine if this distribution
function applied to the melting curves of fibrils produced by
the method employed by George and Tucker. The data of
these authors suggest that the distribution about /; may be
more narrow than that given in eq (46), and implies further
that the distribution is approximately Gaussian (compare CV
values in table 1 with eq (47c)). The theory given in this
paper implies that considerably more narrow distributions
than that displayed as eq (46) are possible in suitably
prepared specimens.

The mean distance between the amorphous regions as
determined from melting curve data seems to be limited as
required by the theory, and exhibit an absolute value of the
correct magnitude. The mean value of the lamellar over-
growth spacings obtained for a core fibril 300 A thick formed
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by the technique employed by George and Tucker is in at
least rough agreement with an independent estimate of the
mean crystallite length for a fibril formed by a rather different
technique, but with nominally the same diameter. As a
corollary, there appears to be no compelling reason to reject
the hypothesis that there exists an approximate correspon-
dence between the mean value of the characteristic crystallite
length [ ; and the mean value of the distance between lamellar
overgrowths when the latter is obtained from material pro-
duced according to the experimental scheme used by George
and Tucker. The converse is not necessarily true; solution
stirred fibrils could easily possess extra overgrowths that
might lead to low estimates of [ ;. One must also be aware of
the possibility that the distribution in / may depend on the
mode of preparation and annealing of the fibrils.

It is emphasized that the type of “defect” involved in the
discussion of melting phenomena is a fully developed
strained amorphous region that interrupts the crystalline part
of the core fibril. The distribution of such gross defects
determines the shape of the melting curves. “Partial” amor-
phous defects, where the body of the core fibril is not
interrupted, will have a considerably smaller effect. Defects
of the usual type (e.g., kinks, dislocations, and structural
anomalies associated with chain ends and folds) may occur
in the crystallites, but these, even though numerous, cannot
be expected to alter the melting behavior to anything like the
extent as do the presence of the amorphous regions and the
finite diameter of the fibrils. It is clear that the “blocks” of
length 250 to 300 A mentioned in section 5.3 are not the
principal cause of the melting phenomena treated here or by
Grubb and Keller.

We now note the connection that may exist between
certain aspects of the treatment given here, and processes
that may allow a close approach of the melting of a fibrillar
system to the equilibrium melting temperature, 7, .

The melting point depression of a polyethylene fibril 300
A thick with cumulative strain is readily calculated from eq
(50) to be 9.4 °C. If the amorphous zones were somehow
removed and the volume strain relaxed by some annealing
process, then the melting point depression for a 300 A fibril
calculated with eq (48) with { — % or eq (51) is only 2.9 °C.
It is reasonable to suppose that some such process took place
during the prolonged storage near T, in the experiments on
polyethylene fibrils carried out by Rijke and Mandelkern
[28], in which they closely approached T, . They attributed
the high melting point (146.0 °C) that they achieved after
prolonged storage at 142 °C to either an increase of crystal
size, or a reduction in surface free energy. We are in general
agreement with this statement, and suggest the following
more detailed interpretation. The attainment of a melting
point so close to the estimated value of 7, by these
investigators for fibrillar material by prolonged high temper-

ature annealing strongly implies that the amorphous zones in

the core fibril can be removed. Specifically, we view this
increase in melting point as mainly a result of an increase of
molecular mobility, which allows diffusive removal of the
amorphous zones that in turn eliminates the end surface free
energy and volume strain effects on the melting behavior.
(These results also imply that the minimum that we have
predicted at n should be regarded as metastable in charac-
ter.) Although Grubb and Keller attribute the high melting
points obtained at low crystallinities (open circles in fig. 6)
to the effects of superheating of the core fibrils, it seems
possible that some of this high melting effect may have been
a result of the annealing processes discussed above.

An increase in the mean value of the crystallite length,
and possibly in the shape of the distribution function, should
accompany the high temperature annealing process.. Also,
the corresponding reduction in volume strain will tend to
remove the thermodynamic restriction on an increase of a
(fig. 2C), and this may eventually allow mobile polymer
chains arising from melted out lamellar overgrowths or
adsorbed molecules to slowly increase the diameter of the
fibril. In any case, a sufficiently annealed core fibril may
have few overgrowths, and only a few amorphous regions,
but some adsorbed molecules would still be present.

5.6 Lattice Expansion in the Core Fibril Caused by
Cumulative Strain.

George and Tucker have given electron diffraction data
obtained at room temperature on the thinner (181 A) of the
two fibrils mentioned in table 1, i.e., that formed at 84 °C.
They were easily able to identify not only the (110) and (200)
spacings, but also many others such as (002), (004), (210),
(310), (311), and the (401) reflections. They make a definite
statement that the lattice is considerably expanded, and
quote the (110) and (200) spacings (table 3). The lattice is
orthorhombic. Further, they cite evidence that this expansion
was not the result of electron beam damage. The experiments
were repeatable, and non—fibrillar samples showed no large
lattice expansion [29]. The electron diffraction data appear
to give reflections that are consistent with an approximately
uniform expansion of the lattice, though some smearing of
some of the spots was apparent [29].% By using the precise x—
ray data of Davis et al as a base line for the cross-sectional
area of the infinite crystal, i.e., unstrained lattice, it is
readily determined that the lattice expansion for the 181 A
diameter core fibril was 0.86 A% or 4.7 percent (table 3).
There is undoubtedly a rather large experimental uncertainty
associated with this value because of the errors inherent in

8 The model we have suggested for the cause of the overall lattice expansion (small
chain translations resulting from fluctuations in the local tensions caused by ciliary
bridges of varying size and conditions) allows for some local inhomogeneity which
might contribute to smearing. Also, there may be some difference in the volume strain
in the central core as compared to the regions near the outer surface, as well as
differences in volume strain in the central part of the core crystallite as compared to
that near the amorphous zones.
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TABLE 3. Effect of cumulative volume strain on cross-sectional area of chains in polyethylene fibrils.

A. Input Data

Quantity Value

Remarks

1. Cross-sectional area of chains with no volume
strain, A,

2. Cross-sectional area of chains in core fibril 181 A
in diameter, A, (strain)

3. Ky ineq(55)

4. K, in eq (56)

5. Ky ineq (57)

6. Ky/K, in eq (57)

18.23 A% (23 °C)
19.09 A2 (room temp.)

160 Jg~ ' A (23°C)
15.7 + 3 A% (23 °C)

20.3 A% (23 °C)

0.127 Jg~' A2

Davis et al, ref. [16]

George and Tucker, ref. [12] Calc. from (110) spacing = 4.2 A,
(200) spacing = 3.78 A

Davis et al, ref. [15] (Interpolated from their figure 9.)

Davis et al, ref. [16]. Average for solution and melt-crystallized
polymer. Valid for chain-folded systems.

K, in (4) above corrected by factor a,,/0p(gaa = 120.5/93 =
1.30. Valid for bundlelike systems.

Valid for bundlelike systems.

B. Results

Fibril Description

Lattice Expansion in Core Fibril

Exptl. [12]

Theor., eq (57)

ay = 181 A

0.86 A2 or 4.7%
a;= 303 A =

0.71 A2 or 3.9%
0.44 A? or 2.4%

the electron diffraction experiments, but there is little doubt
from an experimental standpoint as regards the existence of
an expansion of at least a few percent.

The theoretical estimate of the lattice expansion with eq
(57) is straightforward. The details are given in table 3.
Observe that we have corrected Ky by the use of the factor
Teol Ttoiy = 1.30 in order to more realistically represent
this parameter for a bundlelike system. Even without this
correction, a large expansion is predicted. A density of 1.00
g/em® was used in the calculations.

It is seen in table 3 that the predicted increase in cross—
sectional area for the 181 A fibril is 0.71 A% or 3.9 percent.
Considering the possible experimental errors, and our earlier
remarks concerning the assumptions inherent in the theory,
the extent of agreement evident in table 3 may be regarded
as satisfactory. Note that the thicker fibril, a; = 303 ;K, is
predicted to have a smaller degree of expansion. No experi-
mental values for the degree of expansion are available for
this specimen. It is probably significant that the lattice
expansion effect appears clearly in a specimen formed
rapidly, and at a temperature well below that where thermally
activated translational motions of the chains are present (see
remarks in sec. 4.4). Under these circumstances, annealing
of the volume strain is less likely to occur. There is no
information on whether or not the fibrils exhibiting the
expanded lattice were in a state of mechanical tension. If
present, this may have played a role in stabilizing the state
with the expanded lattice (sec. 4.4). From our understanding
of the experimental technique utilized by George and Tucker,
we consider that it is entirely possible that the individual
fibrils were pinned at various points onto the evaporated
carbon substrate, in which case it is probable that they were
in a state of tension characteristic of their actual condition of
formation.

The remarkable character of the lattice expansion ex-
hibited by these unannealed polyethylene fibrils is afforded
by a comparison with that found for thin chain folded
crystals, where cumulative strain does not occur. According
to eq (56), a folded crystal 100 A thick has an expansion of
only 0.86 percent, and for thicker single crystals or lamellae
it is even smaller.®

The foregoing analysis shows that an unannealed polyeth-
ylene core fibril can exhibit considerable volume strain, and
supports our view that this strain is the natural result of
repulsions originating at the bundle ends. The agreement
achieved by the theoretical analysis suggests that the partic-
ular cumulative strain approximation used here is adequate
in the present application.

5.7 Remarks Concerning Lamellar Overgrowths.

Although the discussion must necessarily be rather spec-
ulative, the present theory of core fibril formation may
provide a background for improved understanding of the
lamellar overgrowths (“kabobs”) and their behavior.

It is first emphasized that a direct connection between the
amorphous regions in the core and the position of the
lamellar overgrowths has not been demonstrated in the
present analysis. However, it has been shown for certain
preparations that this is a reasonable postulate, and we shall
proceed on this basis. Some conditions under which the
lamellar overgrowths are most likely to mark the amorphous

? Tt is of interest to note that the electron diffraction data of George and Tucker on
non-fibrillar specimens exhibited lattice expansions close to 1.0 percent [29], which is
close to that predicted by eq (56). This adds further weight to the validity of their
results on fibrillar material, where larger lattice expansions were found, since it implies
that beam damage or some other artifact did not seriously affect the experimental
technique.
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zones in the core fibril have been noted earlier. Below these
concepts will be extended.

In a fresh preparation where the volume strain still exists
in the core fibril crystallites, the outer parts of the strained
amorphous zones (and any cilia that may be present) may
actually comprise the interior portion of the lamellar over-
growth. In this sense, the interior part of the overgrowth may
be an integral part of the core fibril. In brief, the bulge at
one of the amorphous zones depicted in figure 1C may
actually constitute the inner zone of the corresponding
lamellar overgrowth (not shown). Such a condition could
persist even after the first stage of annealing where the
crystallite lattice first reverts to its unexpanded state.

As suggested earlier, the amorphous zones may diffuse out
of the core fibril on full annealing (or preparation) at high
temperatures. In such a case, the overgrowths would tend to
disappear, leaving behind a smooth core fibril with only a
few widely spaced amorphous interruptions. (It is well known
that smooth fibrils can be formed at high crystallization
temperatures. ) Such a fibril should exhibit a higher melting
point and considerably sharper melting behavior than an
unannealed one with more numerous amorphous interrup-
tions. The observation of such effects would support the view
that there is a connection between overgrowths and the
amorphous zones.

Consider a fibril from which the amorphous zones (and
hence the overgrowths) have been mostly removed by high
temperature preparation or prolonged annealing. We would
postulate that such a core fibril would have a considerable
number of polymer molecules physically adsorbed on its
surface.'® These would be exceedingly difficult to remove
[23, 30], though transport across the lateral surfaces would
readily occur. On cooling, the adsorbed molecules could
form chain-folded overgrowths consistent with the presence
of a constant mass of overgrowth material per unit length of
core crystallite. These overgrowths should tend to peak at
the few widely spaced amorphous zones, but other sites (e.g.,
“blocks”) might well compete for the adsorbed molecules
because of various factors, including the large distance
between the amorphous regions, and the less well-defined
character of the amorphous zones resulting from annealing.
The concepts noted here may in part prove useful in
interpreting some of the observations of Pennings, Lagaveen,
and Vries [13] on annealed smooth core fibrils that were
cooled in solution to form lamellar overgrowths whose spac-
ings were highly dependent on the storage temperature. In
the light of the foregoing discussion, it is seen that the
interesting phenomena observed by these investigators need
not necessarily be construed as being antithetical to the
concept that the lamellar overgrowths denote the site of the
amorphous zones in the core fibril in fresh preparations

19 The author is indebted to Professor Andrew Keller for a very helpful discussion
concerning this point.

where suitable steps have been taken to minimize rearrange-
ments and additional overgrowths.

While no completely firm conclusions can be drawn, it is
nevertheless evident that the concept that the lamellar
overgrowths denote the position of the amorphous zones in
the core fibril in certain reasonably well-defined situations
is consistent with a considerable body of information that is
presently available. Interlamellar spacing data that were
believed to fall in this category were used to estimate [ in
the present paper. Meanwhile, it is clear that quite different
but also fairly well defined circumstances exist where addi-
tional overgrowths can be caused to form on the fibrils, and
still others where the overgrowths can change their spacings
on storage.

6. Overview

We consider here some general points. The principal
results and conclusions have been given earlier, and need
not be repeated.

It is of interest to contrast the cause of the limitation of
crystallite dimensions that occurs in the case of crystalliza-
tion with chain folding with that which occurs in the
bundlelike core fibril. The discussion is confined to the case
of solutions.

Crystallization with chain folding occurs from more or less
quiescent solutions where the polymer molecules possess
little, if any, net orientation. An individual single crystal can
grow to very large dimensions in the direction transverse to
the chain axes. There is no evidence of any fundamental
limitation to growth in this direction. The folds fit together in
such a way as to obviate cumulative strain, though small
non—cumulative volume strain effects do occur. The surface
free energy of the fold surface, @ ,soq), 18 comprised princi-
pally of the term ¢/2A4,where ¢ is the work of chain folding;
OTetorqy 18 independent of the size of the crystal. The fold
period (before any thickening takes place) is determined by
strictly kinetic factors; a thermodynamic theory of the initial
fold period is inappropriate. The flux across the nucleation
barrier system is a sensitive function of the thickness of a
chain—folded embryo attempting a transit into the stable
region. This flux is proportional to exp[—4 b,00, ¢a)/(Af)ET],
where b, is the molecular layer thickness, and appropriate
averages utilizing this function give both the growth rate and
the initial fold period associated with a specified undercool-
ing [23]. The fold period is given by [ * = 20 ,¢qa)/(Af) +
81, where 8/ may be regarded as a constant for the purposes
of this discussion. At any given undercooling, crystals that
are significantly thicker or thinner than / * cannot surmount
the nucleation barrier system, but crystals with a thickness
close to [;* surmount the barrier, enter the stable region, and
grow in the direction transverse to the chain axes without
further restrictions; there is no minimum corresponding to n g
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in the stable region. Thus, nucleation kinetics and the
absence of cumulative strain dominate both the rate of growth
and the crystal dimensions of chain—folded crystals in dilute
solutions [23].

Consider now the case of fibril formation in solution. This
phenomenon only occurs in the case of polymer molecules
that are statistically elongated by a flow field. The system is
committed at the outset to a basically fringed—micellar mode
of crystallization largely because of multiple nucleation acts
of elongated molecules on a central elongated molecule, or
embryonic fibril core (fig. 1A). This leads to a set of nuclei
or crystallites of the extended-chain type connected together
by amorphous regions. The system must now bear the
consequences of the presence of these quasi-random coil
amorphous regions as the nuclei attempt to grow. According
to the present theory, the crystallites in the core fibril have a
fundamental limitation on their dimensions of a thermody-
namic character. The primary cause of this limitation is the
mutual repulsion between the excessive number of ciliary
bridges that emanate from the bundle ends and then re-enter
an adjacent crystallite. These repulsions are small as the
embryo slowly forms, because time permits folds and short
cilia and possibly other defects to enter the bundle end and
mitigate these repulsions. The flow field produces elongated
molecules at or near the crystallization sites. When very
rapid growth begins at or near V., i.e., in the stable region,
these aligned molecules are forcibly incorporated into the
crystallite, producing a bundlelike end surface with an
excessive fraction of ciliary bridges that exhibit increasingly
strong repulsions, and cumulative strain begins to predomi-
nate. (Observe that it is the size of a nucleus and the rate at
which it forms that determines where cumulative strain
becomes important. The volume V. is defined as a2l where
a. > o/(AT) and [, * o,,/(AT); the final “stable” dimensions
of the crystallite, a; and [, reflect these relationships,
though they are much larger. Thus, kinetics play a subtle but
definite role, even though the final limitation that prevails is
basically thermodynamic in character.) The situation just
described leads directly to cumulative surface stress at the
bundle ends as the area of the crystallite ends increase. This
becomes so large that some of the energy is transmitted by
the agency of chain translation to the body of the crystallite,
which expands its lattice, and increases its free energy.
These processes create a minimum in the total free energy of
the crystallite, which leads to a definite limitation on each of
its dimensions. (Annealing mechanisms evidently exist
whereby the volume strain can be relaxed, and prolonged
storage at high temperatures can largely eliminate the amor-
phous zones: accordingly this minimum is best described as
being metastable.) Both the metastable diameter a ¢ and the
metastable crystallite length [ vary as the reciprocal of the
T ool

a, and the absolute value of a jand [ ;depends on a parameter

undercooling. The ratio of these dimensions is [ Ja; =

athat is related to the rate the cumulative strain builds up as
the volume and length of the core crystallites increase. Thus,
the bundlelike crystallite in the core fibril begins its life
slowly and essentially free of strain, but upon reaching a
state of being just stable, begins a period of rapid and
improvident growth that causes it to collect and retain defects
in the form of ciliary bridges emanating from the bundle ends
that in an ordinary time scale limit both its mean length and
diameter.
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7. Appendix

7.1 Alternative derivation of eq (28).

Write the free energy of formation as

Ap = 2d%0,, + dalo — *L(Af) + Vaeh  (A-1)

where V ;eX = volume strain free energy in ergs, V, =
volume in which cumulative strain takes place in cm®, € =
erg/cilium or ciliary bridge as before, and X = number of

cilia or ciliary bridges per cm® of crystallite. Now we let
Va=V —=1V,. (A-2)
Also,

\ = number of cilia on bundle ends _ 2va? _ ZTV (A-3)

volume of crystal a’l

where v = number of cilia on bundle ends per cm? so that

Vieh = 2ve(V — V,)/L. (A-4)

Then with ve = ve (I/l VIV )3 .= 60,.,/(Af) and a =
Ve /30,,, one gets

Ad = 2d*0,, + dalo — a*L(Af)

+ a@HV/V RV = V). (A-5)

Substitution of eqs (27) into (A-5) gives eq (28).
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