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The five parameter double integral [ dy exp(—p?y?) sin(By + 6) times [¥ dx exp(—x*) cos(eBx + ¢) is
evaluated in terms of Fourier transforms of exp(—x?)erfc(ax). Some new expressions for these transforms are

obtained.
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1. Introduction

The five parameter definite double integral considered in this paper is a generalization of that encountered
in describing the radiation reaction effects on a charged particle swept over by a single plane laser pulse. The
electric field for such a pulse can be described by the function

E(«) = E° exp(—u?/D?) sin(u/\)

where u = ¢t — k'x, k being the direction normal to the plane wave.

The integral encountered is

oo f
M :J' (/fE(‘f)f E(n)-E(n) dn

which in the notation of this paper may be expressed as

M =12 D*E°-EE°[I(1/7V/2.V/2k. 0: 0, 0) — 1(1//2.V/ 2k, 0; 2. 0)]

and evaluated to yield’

M =1/2 D*(E° -E°)E°[exp(—Kz)erfi(\/ix/\/g) —1/2 exp(—.‘%KZ)erfi(Z\/iK/\/g)]

where k = D/(2\).
The five parameter definite double integral containing Gaussian and trigometric factors, discussed in this

paper is

v

I(p.B. 0; €. P) EJ dy exp(—p*y?)sin(By + ('))f dx exp(—x?) cos(eBx + ) (1)

0

where p > 0, 8 = 0, and € = 0. A somewhat related indefinite double integral, containing only Gaussian
factors, has previously been discussed by Rosser [3]. It will be shown that I(p, B, 0; €, ¢) may be evaluated
in terms of Fourier transforms of Gaussian weighted erfc functions. The relevant Fourier sine transforms are

* Invited paper.
' The normalization adopted for the erf, erfc, and erfi functions in this paper is the same as that employed in references [1] and [2]. Figures in brackets
indicate literature references at the end of this paper.
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available in closed form. Closed form expressions of such Fourier cosine transforms also exist for special
cases, and integral forms convenient for numerical evaluation may be developed for the general case. The
necessary Fourier transforms are discussed in the next section.

2. Fourier Transforms of exp(—x?)erfc(ax)

The Fourier sine transform, for &« = 0,

©

f sin(2Bx) exp(—a?) erfe(aex) dx (2)

0

Fy2B.a)

may be obtained from the formula given by Ng and Geller [4], p. 155, 3.5 (33), which may be put in the form

\/_
F28.a) = TWexp(—B ?erfi[8] = erfi[ Ba(a® + 1)-12}. 3)

For @ < 0, one may use the relation
erfe(—x) = 2 erfe(0) — erfe(x) (4)
to obtain the Fourier sine transform connection

F 2B, — |a|) = 2F(2B. 0) — F(2B. |a|). (5)

The analogous Fourier consine transform, for & = 0, is defined here as

F.2B.a) = f cos(2Bx) exp(—x?) erfc (ax) dx. (6)

0

Two closed form special cases of this are

F.(2B.0) = V7/2) exp(—B2) (7)
and

F.(0, &) = ()" "?arctan(a™"). (8)
This latter equation follows from reference [1], p. 7, 4.3(2). We shall demonstrate that for the general case,

the Fourier cosine transform may be written as

0

B(1+a®)~ 12
F.(2B.a) = exp(—B 2)[ (m)~"?arctan(@™!) + f exp(a®x?) erfi(x) dx:| (9)
or alternatively
1
F.(2B,a) = a(m) exp[—B*1 + a?)~'] times f [z22 + a?)lexp[B2%*1 + a?) ] dz. (10)
0

These forms may be convenient for numerical evaluation when closed form expressions are not feasible. For
a = 1, the integral in eq (9) may be evaluated (see reference [1], p. 7, 4.3(1)) to give the additional closed
form special case

F(2B. 1) = V7/4) exp(—B2){1 + 2[erfi(B/V/2)]2). (11)
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The general expressions given in eqs (9) and (10) may be established starting from the formula given by

Erdélyi [2], p. 307:

f x2" cos(2Bx) erfe(ax) dx

I'(n + 1 2
- \/_(2("+ ])) e 2F2(n + 1, n + Y25 n +3/2, Yy —%)
m(2n a"

©

I'k+ n+1)
2012"““l &k + n + Ya) T(k + Y2)k!

(_B 2/a2)k.

i It then follows using the series expansion for exp(—x?) that

°° S Lk +j+ 1) ,
i 2 a2’“2: (k+j+ Y2)'(k + Y2) A' o)

Reversing the order of summation and employing the series representation of the hypergeometric function, it
follows that

_l (—B*/a®)t (o4 1) L el o480 —1 /w2
_Zakz()lA+3/),ﬁ1(A+/2.A+I,A+/2, 1 /a?)

Now, substituting the integral expression of reference [5] p. 114,

_ Tk +32)

Y (L L o Jh Gl — 2
oF(k+ Yo, k+ 1; k + 3/2; —1/a?) HT(2)

1
f th(1 — )71 + /o) V2 4,
0

and summing the geometric series, one obtains

1 e
F(.(ZB, o) = o BH@+D ‘“ _ ,)—1/2(] L ,z/az)-l/z di.

20/ J o

From this, the formula quoted in eq (10) follows immediately upon change of the integration variable from ¢ to
z (using the positive square root branch for z) via

1+t = (1 + a®)/(E* + a?).
The integral in eq (10), of the form

Ta(‘f) EJ’ (,52z2(1+a2r‘(zz + a?)~ ! dz
0

satisfies the differential equation

@l g e o e
7 g atad)! - £Xa+ad7! s 2)\—1/2
dg( 1) TET DI erfil£(1 + a?) V2.
Hence, integrating this equation with respect to ¢ over the range (0, ), recognizing that 7 (0) = a!

arctan(a '), and setting &€ = (1 + @®)'"?x, one finds that the expression given in eq (10) may be written in the
equivalent form displayed in eq (9).
For negative a, analogously to eq (5), the Fourier cosine transform connection is

F(2B, — la]) = 2F.(28, 0) — F (28,
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3. Evaluation of I(p, B, 6; €, ¢)

The five parameter definite double integral defined in eq (1) will now be evaluated in terms of the Fourier
transforms discussed in the previous section. Results are quoted in eqs (15), (17), and (18). The results for
the special case B = 0 are given in eq (19), while the results for the limiting case ¢8 — 7y as 8 — 0 are
presented in eqs (21-22).

We begin the derivation of the results by transforming the domain of the double integral using the general

®© © © Yy
J' d.fJ. dm h(€.m) :f dyf W Gy = & 2

which may easily be established using the variable changes ¢ + 1— y, 11— x. Consequently, it follows that

o ] © ©
f (lyf dx h(y, x) :J d}‘f dx h(y + x, x). (13)

Employing this relation, we may write /(p, 3, 6; €, ¢) in the form

relation

2(p,.B. O €, p) = ﬂm{f (lyf dx e PP (YD =28 IR (Ut T +e )+ +0)
0 0

o0 o0
— 2 2 _ i 5
o f d}.f e FIACHRDT J2‘,IIB(y+r—eJ)+o~¢]}.
0 0

At this point, B will be restricted to values greater than zero. [The special case 8 = 0 will be discussed later. |
In analogy with Jones and Klein [6, p. 3], we use a Dirac 8-function to write the double integrals as triple
integrals.

2l(p, B, B; ¢ ) =
ﬂm{ei‘o"'d’)f dt ()w'f dy ( dx e P A T y— (1 + €)x]

0

i3 ei‘e_d’)f dt ()iB’f (l_yj dx e P y+I)ze_’28[t =g = (1l = e)x]}
— 0 0

Doing the integration over y first and noting that y = 0 in the range of integration, we obtain

20(p, B, 6; € ¢) =

0

f,n{()i(GM)J'

—

dt ("B'f dx r'_"z”_”)z(’_"'z(')[1 = ({1l =F e)x]

<] o0
o ()i(a—mf dt Pimf ik (,—pztt+ef)2(,—.rz(.)[t -1 - e)x]}
—00 0

where the step function O)z) is defined as unity forz = 0 and zero for z < 0. The presence of the step function
restricts the relevant range of integration for the variables ¢ and x in the following fashion. In the first of the
preceding integrals, the step function requires that (1 + ex = ¢, so since x must be = 0, it follows thatt =
0. Consequently, in that integral the ranges are

0=t<% and 0=x=(1+e¢€) 't
In the second of the preceding integrals, the step function requires that (1 — €)x <¢. Thus:

(i) if e<1, then 0=x=(1—¢€ % and 0=t <o,
(i) if e=1, then 0=t<% and 0=x< o,
(i) if €>1, then o©>x=max{—(e— 1)7%, 0} and —o0<t<oo
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It is useful to define the positive quantity
P =(18-NeZp2)&2] (14)
For convenience, in the first of the preceding integrals we change variables from (¢, x) to (z, &) defined by
2= (p/wt,  E=px — ez

so that the appropriate range in the first integral becomes

1 — ep?
0=z<ox, —epz = ¢ < %
(1 +ep

Similarly, in the second of the preceding integrals, variables are changed from (. x) to (z, & now defined by
z= (p/wt. &= pux + epz

so that appropriate ranges for the second integral for the various cases becomes

1 + p?
(Jife<l,then0=:z<ox ez=¢= S = z,
i (1 —e€p

(i) if e=1, then 0 =z < %, epz = & < o,
—(1 + ¢p?)

(iii) if € > 1, then —o0 < z < %, max
(e — 1)p

z epz} = &<

Making these substitutions in the preceding integrals we find
2pl(p,B. 0; €, ) =

© I:Jiél'z].
; i 2 1+ep]” 2
fmf{("w “J’ dz lBHIPZ,—2 f (It dege**

0 €pz

© B(2)
. . 2 2
+ (,1(0—d>)f z oBRIPIZ,~2 J’ dge*"}
E y

A(2)
where

. 1 + ep?
(1) if €e<1,then E=0,A4(z) = epz, Blz) =| — |z
(1—e€p

(i) if €= 1, then E = 0, A(z) = €pz, B(z) = o,

—(1 + €p?)

€= p % epz} , B(z) = oo,

(iii) if €>1, then £ = —%, A(z) = ma{

From the definition of the erfe function and eq (4), it follows that

(i) forO=e<I, w=(1+ &?2
4 '2pl(p, B, 0; €, ¢)

) * . : 1l =GP
= fm{e"‘“d’)f dz e BrIP2 =2 2erfe(0) — erfc(epz) — erfc i—*ﬁz
(1+¢ep

0

) * ) I8=Fep?2
+ ‘,us—wf ik euBu/mz(,‘zzlieIfc (epz) — ot ((—Gp) z)] };
0 (1 - G)P
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(i) for e=1, w=(1+p2)yx

4= Ppl(p. B. 65 1. d)

= ‘gm{(,iw%)f

0

©

_ 2
dz P BHIPZ—2* [2erf0(0) — erfe(pz) — erfe ( : 2 . z):l
D

oo
+ (,i(o«mf dz e1BHIPIZ,—2 o fe (pz)};
0

(iii)) for e>1, w=(1+ ep?)2
Am"pl(p. B. 0: €. §)

) ) 2 1 — ep?
fm{e'“’*d’)f dz PPz 2erfe(0) — erfc (epz) — erfe (*ep) z
0 (1 ar 6)p

* 2
+ (»i“'—d’)f dz (,i(ﬂulll)z(;zzerf(:(“ + €p?) z)
0 (e — l)])

0

o
X . 9
+ (,:(0—¢)f dz o122 arfe (epz)}.
0

Using the definitions of the Fourier transforms F' . and F ; given in the previous section, these results may be
put in the form:

(i) for 0 =€e<1, w=(1+ ep?z;
4 "2pl(p. B. 0; €. )

= sin(f + ¢>)[ 2F (B /p. 0) — F((,B/.L/p. L= e )]

(1+ ep,
‘ ‘ 1 — ep? =
+cos(6 + )| 2F(Bu/p, 0) = F\ Bu/p. 7~ 1
(1+ep
2
— sin(f — ¢)Fp(Bu/p. ﬁ) ~cos(6 — d’)F'*(B“/p‘ H‘_*GP)
(1 —ep (1= e

+ 2sin(p)[— cos(O)F.(Bu/p. €p) + sin(0)F(Bu/p. €p)].

[Note: The Fourier transforms have been defined for non-negative values of their second arguments. When
(1 — ep? < 0, the above expressions may be used by replacing

1 — ep? 2— ]
2F(Bw/p. 0) — F<B;L/p. T +€€’)P> - F(Bu/p. (El”+ e),,>‘ (16)

where F represents either the cosine or the sine transform. This replacement follows from eqs (5) and (12).]
(i) for e=1, w=(1+p?)i2;
A7~ "2pl(p, B. 05 1, &)

= sin(f + d))[ 2F (Bu/p. 0) — Fr<,3lf-/1)~ : )]

—p
2p
1=p
)

3

+ 2sin(p)[—cos(O)F By /p. p) + sin()F(Bw/p. p)].

(17)

+ cos(6 + (b)[ 2F(Bu/p, 0) — FS<,3;L/1),
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Again, for 1 — p? < 0, the above expressions may be used if we make the replacement given in eq (16) with
e=1.

(i) for €>1, w=(1+ ep?2;
47 pl(p, B. 0: €. )

=sin(f + d))[ZP}-(BM//). 0) — (ﬁu/p — ))]

+ €);

e (0 ¢)[ 2F (B /p. 0) — (.BM//) T f’;})} (18)

€? 1 )
+ sin(f — ¢)F (BP«/P — ) — cos(6 ('BM/I} : 6]I)I’>

+ 2sin(cp) [— cos(O)F . (B /p. €p) + sin(O)F (B /p. €p)].

Here, when 1 — ep* < 0, the replacement given in eq (16) should be made.
The various results given for I(p, 3, 0; € ¢) are continuous for € = 1. Using the fact that F' .(8, x) = 0 and
F (B, x) = 0 as x — %, we may readily verify that

lim I(p, B, 0; €. ) =1p,B.0:; 1, )

€1

and

lim I(p,B.6; €. b)=1p. B.6;1, ).

e—>1t

For the special case B = 0, one obtains directly from the definition of the double integral under discussion,
0 v
I(p, 0. 6; €. P) =J (/_\'f dx exp(—p?y?) exp(—a?) sinf sing
= sinf cos¢ f dy exp(—p?y?)[erfc(0) — erfe(y)]

=V (2p)~'sinf coscp [F (0. 0) — F (0. 1/p)].
Thus, it follows using the specific values of the transforms,

I(p, 0, 0; €, p) = (4p)~'sinf cosh [ — 2arctan(p)] \
(19
= (2p)~!sinf cos arctan(1/p).

This result also follows by a limiting process 8 — 0 in the results quoted in eqs (15-18) upon application of
the relation for positive arguments

arctan(x) + arctan(l/x) = /2,
and the identities (for e =0, p > 0):

(1*ey

)
arctan(ep) * arctan(p) = = arctan[ :| for 1 —¢€?®>0,

1+ p?

and

1 1 (1 xep
arctan| —| *arctan| — | = *arctan| —— - for e?—1>0.
P €p ep” + 1
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[The inequivalent forms corresponding to the two upper signs are necessitated by the arctangent’s definition
which requires 77/2 < arctan(x) = 7/2.]
Finally, the particular double integral

® v
H(y, p, ) Ef d}'f dx exp(—p?y?) exp(—a?) cos(yx + ¢), y =0 (20)

may most easily be evaluated by integration by parts:

®© y/p
H(y.p. ¢) = —(1/p)f [derfc(y)]f dx exp(—a?) cos(yx + &)
y=0 =0 21)
=V (2p) [(cosd)Fo(y. p) = Gind)F(y. p)].
This result also follows directly from Eq (18) by the following limit process:
H(y. p. ¢) = hm I(p.B.7/2:y/B. ¢). (22)

The author would like to thank Professor N. Kemmer for his hospitality at the University of Edinburgh
where this work was initiated during a sabbatical leave.
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