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Th e te nsil e beh a vi or of a thin we b -lik e pape r network was s imulat ed b y two s impl e mathe ma tica l mod e ls. The 

mes h d is tortio n , drop in te ns il e force a nd e ne rgy loss resulting fro m brea kage of a net work jun c ti on we re 

ca lc ulat ed . These result s we re useclto formula le two pa ra me te rs for c harac te ri zin g interfibe r ad hesion: a pa ra me te r 

averagin g th e ne two rk energy losses inc urred in a seri es of bond break s whe n th e ne twork is e longated and a 

paramete r ave ragin g th e force drops . Th e e ffect of mesh s ize, loca l bo nd ad hes ive fo rce, a nd s ize and s ha pe of the 

s pec im e n ne twork we re ca lc ulat ed. These resuli s based on mod e l s tudies we re used to int e rp re t beha vior observed 

in a n actu a l pape r ne twork . 

Key worels: Ma th e mati ca l modeling, network ; ne twork , te ns il e prope rti es; pape r , int e rfibe r bo nding; pape r, low­

d e ns it y hands heets; pape r , pulp c ha rac te ri zation; pape r , te ns il e testing. 

1. Introduction 

There is a need to deve lop paramete rs that ca n be used to c harac te ri ze quantita ti vely the adhes ion between 

fibers in a sheet of pape r. Such para mete rs would be useful in selec ting, bl ending a nd treating batc hes of 
pulp to produce a paper with improved int e tfibe r ad hes ion. Thi s could fac ilitate the recycl ing of paper pulps, 

leading to important s avings in e nergy and materi a ls. 
As a res ult of some recent resea rch [1-3]1 a ne w tec hnique is evolving for obtaining these para meters. A 

handsheet in the f0l"l11 of a ve ry low-dens ity web is mad e from the pulp to be evalua ted . If a spec ime n from 

thi s handsheet is elonga ted to brea k in a se nsitive te nsil e tes te r, a force-e longati on curve conta ining I1ltm erous 
jags is obta ined. It is ass um ed th at each jag is ca used by the breakage of a bond between fibers co nstituting 

the hand sheet network. Thus if th e values of the change in force corresponding to eac h jag a re ave raged , a 
force drop parameter cha rac te ri s ti c of inte,{iber adhes ion mi ght be obtained. The energy lost by the network 

as th e result of a bond break can be found by integrating und er th e force-elongat ion curve in the vic inity of a 
jag. An average of th ese e nergy losses could also be used as a measure of bond adhes ion be twee n two fibe rs. 

The selection of these parameters was an intuiti ve process . Their a ppli cability mus t be judged on th e bas is 

of expe rimental ev ide nce . Moreover, what the paramete rs actually measure is not we ll und ers tood. Some 

ques ti ons that arise are : How is the strain e nergy distributed throughout the ne twork afte r a bond break? How 
are the energy loss and force drop related to the local force at the bond just before brea k? What is the effec t 

of mesh s ize? What is the optimum spec ime n size and shape for te ns ile tes ts to dete rmine the characteri s ti c 
e nergy? 

Tn the following, two crude mathemati cal models of a fibrou s network are described , and the ir be hav ior 

under elongation calculated. The concepts developed and the results obtained add to a n intuiti ve 

understanding of the force drop and ene rgy parameters. 

2. The Parallel-Spring Model 

The parallel-sprin g model is de pic ted sc he mati cally in figure 1. It consists of a number of springs in a 

seri es-parall el arrange me nt. The dots indi cate where the s prings are bondt'd to each (ltht'r and to a st'rit's of 

* This work was s ponsored b y the U. S. Department of Energy. 
I Figures in brac ke ts indi cate lite rature references at Ih~ end of this papt·r. 
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FIGURE 1. Schematic representation of parallel-spring model. 
Model has 2M - I parallel (~ol umIlS uf spri ngs allachcd to 2/11 - I rigid transverse bars. 

rigid bars. There are 2M - 1 junction points on each bar, and there are 2N - 1 bars. In the unstrained state 

each spring has a length I , called the mesh length. The spring constant is given by k /l. The model is 
elongated so that each spring is extended an amount Ifj , where fj is the strain. The bond B then breaks , and 

the two springs previously joined at that point are inactivated . 
The initial force sustained by the model before break is 

Fb = (2M - l)kfj (1.1) 

The initial elongation of the model is 

!:J.L = 2(N - l)/fj (1.2) 

The initial energy stored in the mod el is 

Eb = 1/2 (2M - l)kfj '2(N - l)/fj 
(1.3) 

= 2(N - 1)(2M - 1)/. 1/2 kfj 2 

After the break the elongation of the model is maintained constant , and the force drops to a value Fa. The 

horizontal bars to whi ch the springs are attached remain horizontal. In the two segments of the model on 
either side of the broken bond th e force Fa is sustained by 2M - 2 parallel s prings, so that 

Fa = (2M - 2)k (!:J.~) 1 

300 



or 

(6 ) F al 
L , = (2M - 2)k 

where (6 L ), is the e longati on of the segment. 
The elongati on in the other 2(N-2) segments is given by 

(6L) _ __ Fa=-I_ 
2 - (2M - I)k 

where (6Lh is the elongation of the segment. 
The total e longation of all the segments is 

Thus 

or 

Hence 

where 

( ) 2(N - 2)F,,1 2Fal 
2 N - 1 10 = + -----'''-----

(2M - I)k (2M - 2)k 

{ N - 2 2M - 1 1 2M - 1 ko = F = -- + F 
( ) 0 N - 1 2(M - I)(N - 1) a 

{ 2M - 1 1 1 F = 1 + - -- F 
b 2(M - I)(N - 1) N - 1 " 

{ ] 1 = 1 + F 
. 2(M - I)(N - 1) a 

T = _ 2_(M_ - _I __ )(N_ - _I)_ 
2(M - I)(N - 1) + 1 

(1.4) 

(1. 5) 

(1.6) 

(1. 7) 

T is the fra ction of the force remaining after a bond break. The force drop resulting from the break is given by 

6F = Fo(I - T) (1.8) 

The energy in th e two segments of the model adjoining th e broken bond is 

and the energy in the other 2(N - 2) segments is 

F 21 
1/ 2 (6L) .F = 1/2 a 

2 a (2M - I)k 
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Thus the total energy is 

or 

F 21 F 21 
E = 2(N - 2)·1/2 a + 2. 1/2 a 

a (2M - l)k (2M - 2)k 

{ N - 2 1 1 Fa21 
= 2 + .1/2--

2M - 1 2M - 2 k 

2(N - 1) {N - 2 2M - 1 1 I -+ - ' T 2 '(2M - l)2k 2 15 2 

= 2M - 1 N - 1 2(M - 1)(N - 1) 2k 

1 -
= 2(N - 1)(2M - l)l'-=' T2 .1/2k15 2 

T 

Ea = 2(N - 1)(2M - l)tT· 1/2 ko 2 

(1. 9) 

In order to describe the way strain energy is distributed in a model it is useful to associate energy with each 
of the junc tion points in such a way th at the sum of the associated energies is equal to the total energy stored. 

At any given junction point the associated energy is equal to one-half the sum of the energies in the springs 
joined at that point. The factor of one-half is introduced because when the associated energies are summed 

over all the junction points , the energy of each spring is counted twi ce. At junction points on the top and 
bottom boundaries there is only one spring, but the factor of one-half is s till necessary. 

A dimensionless average associated energy E can be defined by means of the relation, 

(1.10) 

The factor (2M - 1)(2N - 1) gives the total number of points in the network. The factor 1/2 ko 2l is the 

energy stored in one spring before a bond break, and is introduced into the expression to make E 
dimensionless. By eq uating relations (1. 9) and (1.10) an alternative relation , 

is obtained . 

- 2N - 2 -
E= --T 

2N - 1 

The energy loss resulting from a bond break is, from eq (1. 9), 

An alternative form is obtained from eqs (1.3) and (1.10). 

2N - 1 -
!:J.E = 2(N - 1)(2M - 1)1(1 - --E)' 1/2 k8 2 

2N - 2 

3. The Square-Network Model 

(1.11) 

(1.12) 

(1.13) 

The sq uare-network model is depicted schematically in figure 2. It consists of springs forming a square 

network. There are 2M - 1 columns of junction points and 2N - 1 rows of junction points . The depicted 
network has 7 columns (M = 4) and 7 rows (N = 4) . The unstrained length of each spring is l , and the spring 
constant is given by kll . The model is elongated by an amount 2(N - l)l15. The bond at point B th en breaks , 
and the four springs previously joined at that point are inactivated. The resulting configuration is calculated 

by a computer program described below. 
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i= 0 

I = I 
FIGUR E 2. Schematic representation of square-network model. 
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Model has 2M - I parall e l columns of springs. Each colUllin has 2N - I junction points \\·hich, excepting the end I)oint s. arc 
/lu 8ched to transv erse spri ngs . 

In order to discuss the model it is conveni ent to identify junction points by the coordinates i = 0 , 1, ... m; 

j = 0 , 1, . . . n. The corresponding numbers J = 1, 2 , ... M; J = 1, 2 , . .. N, however, are retained for use in 
the formulas for force and energy, as they are more c·onvenient for counting purposes. Because of symmetry it 
is only necessary to calculate the configuration of the upper right-hand quadrant; i. e . , the juncti on points 
corresponding to positive values of i andj. 

When the model is strained each of the junction points moves from its original position by an amount ~ij L 
in the horizontal direction and 1)ij L in the vertical direction. Thus when the model is first extended and no 
bond break has occurred , 

~ij = 0 . 1 
1) ij = j 8 ( 

(2.1) 

After the bond break the values of ~ij, 1)ij readjust except for certain constraints at the boundary and th e 

i = O, j = ° axes of s ymmetry. These are 

~in = 0·1 
1) in = n8 

(2.2) 

1);0 = 0. (2.3) 

~i,- I : ~il 1 
1)i ,- 1 - 1)i1 

(2.4) 

~Oj = 0. (2.5) 
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(2.6) 

The values of g, YJ attained after bond break are found by solving a system of equations in which the 
horizontal and vertical forces at each junction point are balanced out, plus the boundary conditions (2.2-2.6). 
To formulate the equations applicable at the point i,), let 

(2.7) 

where IlA is a difference operator involving the indices (i , i-I), IlB the indices (j,) - 1), ~c the indices 

(j + 1,) and Il D the indices (i + 1, i). Thus, for instance , Il A g means gij - gi- I, j. The quantities Rl are the 
distances from a point i) to an adjacent point. The horizontal force balance equation is then 

k(RD - 1)(1 + Il~) + k(Rc - 1)1l~ = k(RB - l)IlBg + _k(,---R,-,--A _--_l--'--)(-'---l_+-----'IlA=g-'--) 

~ ~ ~ ~ 

or 

Similarly for the vertical components 

Equations (2.8) and (2.9) apply at the general junction point i) , but when i = 0, m or) = 0, n they must be 
modified to conform with boundary or symmetry conditions. 

It should be noted that the horizontal forces acting at a point i , j are dependent mostly upon the values of 

gi- l,j, gij and gi+l ,j' Therefore eq (2.8) which has the form 

(2.10) 

was expressed as a Taylor's series expansion in terms of only these three most important variables to become 

( aj )(kl ( aj )(kl (aj )(kl 
j(kl + --- Ilgi- I,j + - Ilg ij + --- Ilgi+I,j = 0. 

agi- I,j agij agHl,j 
(2.11) 

where the Ilgij means gij(k+ll - girl and Ilgi- l,j and IlgHl,j have similar meanings.J!kl, (arJ (kl etc. are 

evaluated as functions of g(kl, YJ(kl. The values of g(k+1l are obtained by solving the system of eqs (2.11) 
corresponding to different values of). 

A set of five of these equations, for instance, would look like 

B IX I + C IX 2 = K I 
A 2X I + B 2X 2 + C 2X 3 = K 2 

A 3X 2 + B 3X 3 + C 3X 4 = K 3 

A 4X 3 + B 4X 4 + C 4X 5 = K 4 

A 5X 5 + B 5X 5 = K 5 
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This set of equa tions is eas il y solved by a Gauss-Jordan reduc tion. 
Equa tions (2. 11) are solved to obtain values of ~ (k+ O . Similarly eq (2. 9) can be expanded in terms of 

YJ i, j- l , 'YJ ij and 'YJ i .i+ I· The set of eq ua ti ons obtained for different values of i can be solved to obtain values of 

YJ(k+ O. The values of j , ( aj ) , ( aj ) in eq (2 . 11) for ~ and the corresponding equati on for TJ are then 
a~ij aYJ ij 

evalua ted us ing ~(k+ J), YJ (k+ l ) and the procedure iterated to obtain ~( k+ 2), YJ (k+2) . 

During the calculati on process solutions for ~ and TJ may be obta ined such that RA , RB , Rc , or Rv becomes 
less than 1 in value. This means that th ere is a spring in compress ion. This s itua tion is not permitted as it is 
more reali stic to assume that the spring would buckle rather than res ist a compress ive force . Therefore if there 
is a n R less than 1, modified equations in whi ch the influence of the spring is removed a re used in an 
alternate calculation. 

The configuration of the network can be calculated in other ways. For instance eqs (2.8) and (2. 9) could be 

expand ed in the variables ~ij , YJ ij ' Improved approx imations for~ , YJ could be obta ined by solving onl y two 
s imultaneous equa tions at each point , but a very large number of ite rations would be required to obta in very 
prec ise values of ~ , YJ . On th e other hand the equa ti ons coul d be expa nd ed in terms of all 10 vari ables. In this 
way a system of approx imately MN equations in MN unknowns would be obta ined . If these equati ons had a 
numeri call y stable solution a nd round-off errors were not too severe , onl y a few ite rati ons might be required. 

The method of solution tha t was used was a compromise be tween these two extremes. It appears to be 
stable but in most cases requi res 100 or 200 iterations to obtain sati sfac torily prec ise values . When s ituati ons 
are calcul ated in whi ch th e ini t ial strain 8 is of the orde r of one pe rcent, more than 200 iterations may be 
required. In this s ituati on the values of some Rs are very close to unity and very small values of R - 1 are 
obta ined. Thus it mi ght be better in this case to rewrite eqs (2.8) and (2.9) , express ing terms of the form 
(1 - I/R) as a truncated se ries , a lthough thi s was not done for the calc ul ations reported he re. 

After suffi ciently accurate values of ~ and YJ were obta ined , the tens il e force Tin at the top of each column 
of springs was calculated using the formula 

Tin = k(l + n8 - TJ i,n- I)( 1 - I / R B) } 

RB = a n- I + (l + n8 - TJi ,n_ I)2 

When i = 0 , the value of T on s implifi es to 

The force after break Fa then becomes 

Ton = k(n8 - TJo,n- l) 

n 

Fa = Ton + 2 ~ Tin 
i= l 

The fracti on of the force remaining after a bond break l' is given by the ra tio Fa /Fb ' 

(2.12) 

(2. 13) 

(2.14) 

The average associated ene rgy E is found from its definiti on , eq (1. 10), after calculating the associated 
energy for each junction po int and summ ing over all the juncti'on points to obtain the stored energy after break 

Ea· 
The value of E can be obtained by a different cal culation, if Fa is known as a fun cti on of 8 from a seri es of 

calcul ations on a given model. The energy after break Ea is found by integrating under the curve of Fa versus 
initi al elongati on ~ L = 2(N - 1)/8 . Thus, 

[
2(N- 0 10 

Ea = Fa ' d[2(N- l)l8] 
· 0 

(2.15) 

2(N - 1)(2M - 1)kl C 1'8 d8 
· 0 
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From the definition eq (1.10) E is then given by 

- 2N - 2 2 {,8 _ 
E = . - To d'O 

2N - 1 '02 • 0 
(2 . 16) 

In the square-network model t is not a constant independent of '0 as it is in the parallel-spring model. If t 
were constant, eq (2.16) would reduce to the relation eq (1.11) given for the parallel-spring model. 

It should be noted that the behavior of the square-network model is the same as that of the parallel-spring 
model before the central bond breaks. Therefore eqs (1.1), (1.2) and (1. 3) are the same for both models. The 
quantity t is defined by eq (1.6) and the quantity E by eq (1.10) in both models. Therefore eqs (1.8) and 
(1.13) are valid for both models. Relation (2.16) is a general definition valid for both models, but relations 
(1. 7) and (loll) apply to the parallel-spring model only. Therefore eqs (1. 9) and (1.12) also are valid only for 
the parallel-spring model. 

4. Square-Network Model Calculations 

A number of calculations were carried out for different square-network models to determine the number of 
iterations required for accurate values of t and E. The model for which M = 11, N = 21, l = 1 was studied 
the most extensively. Results of calculations for this model are given in table 1. These resuI'ts indicate that for 

TABLE 1. Values ofT and E as Functions of Number of Iterations for a Square-Network 
MO<k1 M = 11, N = 21, 1= 1. 

Il No. of l' E 
Iterations 

0.Ql 100 0.95227 0.92923 
200 .95254 .92923 

.03 100 .95779 .93112 
200 .95714 .93100 

.05 20 .96738 .93606 
50 .96679 .93583 

100 .96614 .93567 
200 .96564 .93561 

.10 20 .97806 .94643 
50 .97829 .94638 

100 .97827 .94637 

.15 20 .98316 .95270 
50 .98330 .95263 

100 .98332 .95262 

.20 10 .93787 .97979 
20 .98371 .95679 
50 .98594 .95644 

100 .98595 .95641 
200 .98597 .95640 

TABLE 2. Values ofT and Efor Some Square-Network MO<kls 8 = 0.20, I = 1, 
200 Iterations. 

M N T E 
II II 0.97554 0.92306 
II 21 .98597 .95640 
21 21 .99311 .96639 
II 41 .99238 .97634 
21 41 .99626 .98221 
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values of 0 greater than O. as, 100 or 200 iterations are required to obtain values of T and E accurate to more 

than four significant digits. Wh en 0 is 0.05 or less, more than 200 ite rations are desirable. Check calculations 
were also carried out on th e othe r models studied, and 200 iterations were determined as sufficient. 

Calculations were carri ed out on fiv e different models. The initial strain 8 for these models was 0.20. A 

mesh length of l = 1 was assumed for th e calculations. Values of M and N were varied in order to s tudy how 
j' and E de pend ed on the sha pe and on the number of junctions in the mod el. Results of the calculations for 

these models are given in tabl e 2. 
The configuration of the model for whi ch M = 11, N = 21 is plotted in figure 3. Only the upper right-hand 

quadrant of the model is shown, as the complete model is symmetrical with respec t to this quadrant. The 
distortion due to the bond break is seen to be concentrated along the ce ntral column of s prings (I = 1). 

Buckling occurs (R < 1) in the regions whe re the springs are indicated by dotted lines . Although not easily 
discernable in the figure, the central width (J = 1) has been reduced to 0.956 times the original width, as a 

result of bond break . 

, , 

--~ --+ - +---1- -+- +---1- -1 

>- -- >- - -- >- - - - +--t-~r--;--i 

-- >------+--~~--~~--~-; 

\r-~~~~~~~~ 
\~~~~~~~~~ 

FIGURE 3. Configuration of the pos itive quadrant 
of a square-network rnodel for which M = 11 , 
N = 2 1, after a central bond break. 

The broken bond is designated by the open circle in the lower left 
corner. Springs in which buckling occurs are des ignated by dashed 
li nes. 
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FIGURE 4. Energy map 0/ positive quadrant oj a square-network model Jar which M = J 1, N = 2 J, after a central bond break. 
Vertical-axis scale gives ratio of associated energy at a junction point after bond break, divided by the associated energy before break. 

TABLE 3. Values oJT and E as Functions a/Initial Strain/or a Square-Network Model 
M=J1 N=21 1=1 . , , 

8 T E 

0.01 0.95254 0.92923 
.03 .95714 
.05 .96564 

.08 .97477 

. 10 .97827 

. 13 .98173 

. 15 .98332 

. 18 .98507 

.20 .98597 

Note: T for the parallel-spring model is 0.99751 
E for the parallel-spring model is 0.97318 

.93100 

.93561 

.94270 

.94637 

.95052 

.95262 

.95510 

.95640 

E 
eq (2 .16) 

0.92931 
.93230 
.93658 

.94328 

.94683 

.95078 

.95273 

.95503 

.95626 

Note: Values for 0= 0.01,0.03,0.05 and 0.20 were obtained after 200 iterations. All 
other values were obtained after 100 iterations. 

An energy map of the model for which M = 11, N = 21 is shown as an isometric plot in figure 4 . As before 

only the upper right-hand quadrant of the model is shown. The dimensionless value plotted at each junction 
point is the ratio of the associated energy after bond break to the associated energy before bond break. 

According to this map the associated energy remains constant at most of the junction points , it increases at 
points immediately to the right and left of the broken bond and decreases to a lower level at junction points 
above and below the broken bond. 

308 



FIGURE 5. Configuration of Ihe positive quadrant 

of a square-network model for which M = 21 , 

N = 41 , after a central bond break. 
The broken bond is designated by the open circle in the lower left 

corner. Springs in which buckling occurs are designated by dashed 
lines. 

Figure 5 shows the configuration after bond break , and figure 6 shows the energy map of the model for 
which M = 21 , N = 41. This model , of the same shape as the previous model, has approximately four times 

as many junction points. The corresponding figures for the two models are similar. 
Table 3 presents values of l' and E as fun ctions of initial strain 8 in the case of the model for which 

M = 11 , N = 21. A force-elongation curve [or this model after one central bond has been broken can be 
plotted us ing data from table 3. The force has the value (2M - 1)tk8, and elongation the value 2(N - 1)/8. 
The essential characteristi cs of the curve are shown by figure 7, which is a plot of 1'8 vs 8 for this model. 
Unfortunately the values of l' are so close to unity that this curve lies very close to the force-elongation curve, 
shown as a dashed line, o[ the model before the central bond was broken, and the nonlinear character of the 

curve is not readily apparent. 
The non-linear character of the force-elongation curve can be demonstrated by plotting the difference in 

force before and after break as a fun ction of 8. This is shown in figure 8, in which (1 - 1')8 is plotted vs 8. As 
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FIGURE 6. Energy map of positive qlHldrant of a square-network model fo r which M = 21, N = 41 , after a central bond break. 
Vert ica l-ax is scale gives ratio of associated energy at a junction point after bond break, div id ed by the associated energy before break . 
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. FIGURE 7. Force-elongation curve after central bond break in a square-network model fo r which M = 11 , N = 21. 
T 8 is plotted 'is 6. where S is the elongation per unit length. Dashed line shows force-elongation curve before bond break. 
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Figure 8. Cume oj Jorce drop due to bond break vs elongation oj a square-network model Jor IVhich M = II , N = 2 1. 
(1 - T)lI is plolted vs S. \\'hert~ 8 is the elongation per un it length . Dashed linc shows force drop for equival ent pa.rallel-spring mode l. 

a maller of interest (l - t) for the parall el-spring model (M = 11 , N = 21) was calculated. Its value was 

0.0024938. The linear fun ction 0.00249388 is shown as a dashed line on the plot. The value of t for the 
parallel-spring model exceeds the values of t calculated for the sq uare-network modeL Evide ntl y the force 
drop incurred by a bond break in the square-network model is greater than the force drop incurred in the 

parallel-spring model. 
The area under the t 8 curve in figure 7 is equal to Ig t 8 d 8, and according to eq (2.16) the average 

2N - 2 2 
associated E is equal to --- . - 2 times this quantity. Thus values of E can be calculated from t and 8 

2N - 1 8 
according to eq (2.16) and the result compared with the values of E in table 3, which were calculated from the 
associated energies present after break. This should provide a check on the accuracy of the computer 
calculations. The results of this calculation are given in the last column of table 3. The values of E obtained 
by the two methods are seen to be in fair agreement. 

S. Discussion of Results 

1. Configurational Distortions and the Redistribution of Associated Energies as the Result of a Bond Break . 

It has been a.ssum ed that in a low-density paper network of the type tested experimentally [1-3], in most 
cases a bond break results only in local distortions , and most of the energy loss is also concentrated locally. 
It would be desirable to demonstrate this with a mathematical model , but the square-network model is not 
suitabl e for this purpose. The di stortions and energy losses are concentrated along the column of springs 
directly in line with the broken bond. Possibly a better model would be one in which the meshes were of a 
different shape, such as a hexagon , and so arranged that load bearing fibers could not be easily aligned in the 
direction of stre tch. Such a model would require less stretching force, have a nonlinear force-elongation 
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curve, and probably have a greater tendency to buckle laterally. It would better simulate the behavior of a 

thin paper network, but at the price of greater mathematical complexity. 
In the energy maps, figures 4 and 6 , there is an increase in associated energy at the junctions to either side 

of the broken bond. These bonds therefore should break immediately after breakage of the central bond, and 

bonds farther out should break successively in a tearing action that proceeds across the model network. This 
tearing action is probably common to many models, and actually occurs in real paper networks. In the paper 
networks however it seldom goes to completion, because the density of fibers is not sufficiently uniform. 

2. The Effect o/Mesh Length. 

In experimental work specimens of standard dimensions (usually 2 X 1 cm) are elongated, and the applied 
force recorded as a function of the elongation. Whenever a bond breaks the force decreases sharply, and the 

energy loss resulting from the bond break can be determined by integrating under the force-elongation curve 
in the vicinity of the force drop. Certain of these energy losses are averaged to obtain a parameter 

characterizing bond strength. 
If it is assumed that all of the breaks occur at approximately the same local force level, and the specimens 

have uniform mesh size, this energy parameter might provide a reliable indication of the relative bond 
strength. For instance bonding could be studied in thin hand sheets of the same mass per unit area made from 
a pulp that had been subjected to various beating treatments. However if one attempts to compare bonding in 

standard hand sheets made from different pulps, a difficulty arises. One pulp may be coarser than the other. 
Thus a handsheet of a standard mass per unit area made from a coarse pulp would have fewer bonded 

junctions and larger meshes on the average than would a handsheet made from a finer pulp. In order to 
compare energy parameters for these different pulps it is necessary to know what is the effect of mesh size. 

To study this effect in models, consider two parallel-spring models: model A; M = 11, N = 21,1 = 1 and 
model B; M = 21, N = 41, 1 = 0.5. These models have the same external dimensions, but the mesh length 

of model B is half that of model A. Let the two models be extended the same amount, so that S and therefore 

the local force kS is the same in each. From egs (1.1) , (1. 7) and (1.8) the force drop in model A is 21kS/401 
~ O.OSkS, and in model B is 41kS/l60I ~ 0.026kS. From egs (1.3), (1. 7) and (1.12) the energy loss in 

840 1640 . 
model A is - .112 kS2 ~ 2.1·1/2 kS2, and in model B is -- .1/2 kS2 ~ 1.02.1/2 kS2. EVidently model B 

401 1601 
with half the mesh size of model A also has approximately half the force drop and half the energy loss. 

In any parallel-spring model, from egs (1.1), (1. 7) and (1.8) 

tlF = (2M - l)kS 
2(M - 1)(N - 1) + 1 

__ 2..c..(M_ - _ I--,-)_+_I_M 
2(M - 1)(N - 1) + 1 

which for large M becomes 

1 
tlF~ -- kS 

N-I 

Substituting the initial length L = 2(N - 1)1 into this expression gives 

From egs (1.3), (1. 7) and (1.12) 

21 
tlF ~ - kS 

L 

A 2(N - 1)(2M - 1)1 1 2 
~E = . -kS 

2(M - I)(N - 1) + 1 2 

2(N - 1)(2M - 2) + 2(N - 1) 1 2 
= I· -kS 

2(M - I)(N - 1) + 1 2 
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which for large M becomes 

(4.2) 

According to eqs (4.1) and (4.2), if any two parallel-spring models for which M is large are extended so that 
the local force k8 is the same in each model , th e ratio of the energy losses Il E ,I Il E 2 in the two models will be 
th e same as the rati os of the res pective mesh lengths 1, /12 , If in addition the initial lengths of the two models 
are the same, i. e. , 2(N 1 - 1)1, = 2(N2 - 1)12, the ratios of the force drops will be equal to 1, /12, 

Table 4 gives the results of calculati ons for a number of parallel-spring models, all of which have the same 
initial length. According to these res ults the force drops and energy losses are almost linearly proportional to 
the mesh length I , despite the relatively low value of M in some of these models. lt is interesting to observe 
that values of total force before break Fo and the total energy before break Eo do not influence these results 
signifi cantly. The values of Fb and Eb are proportional to 2M - 1 however, so thi s is just a manifestation of 
the near independence of the values of IlF and IlE on the values of M, for M sufficientl y large 
(e.g., M = ll). 

Table 5 gives results of calcul ations for some sq uare-ne twork model s having the same init ial length . The 
M, N and I parameters for these models a re th e same as those in table 4. The force drops and energy losses for 
these models decrease as the mesh length l decreases, but are not linearly proportional to the mesh length. 
For instance the three models for whic h M = 11 have I ratios of 1.0:0.50:0.25, IlF rati os of 1.0:0.57:0.31 
and Il E ratios of 1.0:0.64:0.3 7. The two models for which M = 21 have 1 ratios of 1.0:0. 50, IlF ra ti os of 1.0: 
0. 54 and IlE ratios of 1.0:0. 58. Apparently the dependence of IlF and Il E upon l becomes more linear as M 
IIlcreases. 

Results for the parallel-spring and square-network models suggest that the force drops and energy losses 
observed in a paper fiber network have an approximately linear dependence on a characteristi c mesh length. 
The actual depe ndence, however, must be determined experimentall y. 

The effect of mesh length can also be deduced by a different argument as follows: Select a model (M , N) for 
which calculations have been made so that T and jj; are known/or a given x; i.e., T = 1'(8) , £ = £(8). Select 
a mesh length I. The initial length of the model then is 2(N - 1)1 . For each mesh length selected the model is 
elongated an amount Il L = 2(N - 1)10. This assures that the local tension at the bond break is always the 
same (k8). From eqs (1.1), (1.8) and (1.13) 

IlF = (2M - 1)(1 - T)k8 (4.3) 

IlE = 2(N - 1)(2M - 1)1 1 - --£ . - k8 2 ( 2N - 1 -) 1 
2N - 2 2 

(4.4) 

TABLE 4 Force Drops !IF awl Energy Losses !lEfor Some Parallel·Spring Models." 

M N I Fb/ k5 Eb/0 .5k52 tJ.F /k5 !lE/0. 5k(j 

11 11 l.0 21. 420. 0 .1045 2.090 
11 21 0.5 21. 420. .0524 l.047 
21 

I 

21 0.5 41. 820. .0512 1.024 

11 41 . 25 21. 420 . .0262 0.524 
21 41 .25 41. 820. .0256 .5 t2 

" Initia l le ngth L = 2(N - 1)1 = 20. for all models. 

T ABLE 5. Force Drops !IF awl Energy Losses !lEfor Some Square-Network Models." 

M N I F b/k5 Eb/0.5k(j l:!.F /k I) !lE/0 .5k(j 

11 ]l l.0 21. 420. 0.5137 12.931 

II 21 0.5 21. 420. .2946 8.270 
21 21 0.5 4l. 820. .2825 7.749 
11 41 0.25 21. 420. .1600 4.811 
21 41 0.25 21. 820. . 1533 4.520 

" Initi a l le ngt h L = 2(N - 1)1 = 20. for all models. 
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As j' and E are fun ctions of 0 which is kept constant , t!.F is a constant independent of mesh length and t!.E 
is directly proportional to the mesh length. This conclusion is valid for e ither th e parallel-spring or square­

network type of model. 
The conclusion just obtained seems to conflic t with that found by the analysis presented above . Howe ver in 

that analysis a number of mod els of different mesh length but having the same initial length wel'e elongated , 
whereas in the present analysis th e initial length of the model depe nds on the mesh length. 

This latter dedu ction may be useful in experime ntal work , as illustrated in the following situation: Suppose 
that two handsheets have been manufac tured from the same pulp stock. Let the first handsheet have twi ce the 

areal density as the second , so that its charac teristic mesh length , is one-half as large . According to the 

analysis above, bond breaks in both hand sheets should occur at the same force level , but a spec ime n from the 
second handsheet must be exte nded twi ce as much as one from the first in order to attain this force. Thus the 

average e nergy loss per bond break in the second hand sheet should be twi ce that in the first. This suggests 
that energy parameters found by tests on hand sheets of different areal density can be scal ed to fi nd the value 
corresponding to a standard mesh length . 

3. The Effect o/Sample Size and Shape" 

If several models, each with the same mesh length l, are elongated to the same te nsion , the force drops and 

energy losses are given by eqs (4.3) and (4.4). For square-network models it is necessary to know the 
appropriate values of j' and E before the effects of sampl e size can be predi cted. For parallel-spring models 

however, simple expressions for t and E are known, so that for large values of M eqs (4.1) and (4.2) apply. 

Equation (4.1) predicts that the product of the force drop by the le ngth of the specimen, Lt!.F, is a constant 

for all mod els having the same mesh length I , and eq (4.2) the n s tates that the energy losses are constant. 
Table 6 gives values of the force drop and energy loss for some parallel-spring models. Note that the 

quantiti es Lt!.F / kol and t!.E/0.5ko21 have the same valu e in thi s tabl e because of the choice of units . It is 

apparent that t!.F and t!.E for parallel-spring models are closely predi cted by eqs (4.1) and (4.2). The three 
models for which M = 11 (and width W = 2(M - l)l = 201) have values for Lt!.F and t!.E of approximately 

2.095, and the two mod els for which M = 21 (W = 401) have valu es of approximately 2.048. Evidently Lt!.F 
and t!.E approach a value of 2.0 with increasing M, as they should according to eqs (4.1) and (4.2). 

Table 7 gives values of the force drop and energy loss for some square-network models. The values of Lt!.F 
and t!.E for these models are roughly constant , but there seems to be some depe ndence upon both M and N. 
For instance the three mod els for which M = 11 (W = 201) have lengths that inc rease in th e ratio 20:40:80. 

The Lt!.F values for these mod els are 10.27:11. 79:12.80. The two mod els for which M = 21 (W = 401) have 

le ngth ratios of 40:80 and Lt!.F values of 11.30:12.27. Similar results are obtained for the t!.E values. 

TABLE 6. Values afForce Drop flF and Energy Loss flE f or Some Parallel-Spring Models. 

M N L/l M /kB LflF/k8l flE/0.5k8 2l 

11 11 20 0.1045 2.090 2.090 
11 21 40 .0524 2.095 2.095 
21 21 40 .0512 2.047 2.047 
11 41 80 .0262 2.097 2.097 
21 41 80 .0256 2.049 2.049 

TABLE 7. Values afForce Drop flF and Energy Loss flE fur Some Square-Network Models. 

M N L/l M /ko LflF/k8l flE/0.5k8'l 

11 11 20 0.5137 10.27 12.93 
II 21 40 .2946 11. 79 16.54 
21 21 40 .2825 11.30 15.50 
11 41 80 . 1600 12.80 19.25 
21 41 80 .1533 12.27 18.08 
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TABLE 8. Values of t.EI!:>F for Some Square-Network Models . 

M N LII 
I !:>E 2 !:>E --

18 !:>F L8!:>F 

11 11 20 12.59 1.259 
11 2 1 4·0 28.07 1.403 
2 1 2 1 4·0 27.43 1.372 
11 4 1 80 60.14 1.503 
21 4 1 80 58.96 1.474 

The results for the square-network models suggest that various values of LtlF and !:J. E obtained by tests un 

spec imens of the same characteristi c mesh length but of d ifferen t s ize and shape, are roughly comparable. For 
most accurate results however all tes t spec imens s hould have the same stand ardi zed dimensions. 

For th e parallel-spring mod els, from eqs (1.1), (1.3), (1.8) and (1.12) 

6.E = Eb = 2{N - l)l8 

!:J.F Fb 2 

L8 

2 
(4.5) 

Thi s equation sta tes that for the parallel-spring models the rati o !:J. E/!:J.F is proportional to the average 
elongation at which bond breaks occur, regardless of th e va lue of M . Experimentall y it is desi rable to have 

signifi ca ntly large force drops for a given e nergy loss, so the rat io !:J.E /!:J.F should be ke pt small by making L 
as small as feasible. 

For the sq uare-network models, frum eqs (4.3) and (4 .4) 

tl E _ [( 2N - J -) / ;)] L8 -- 1 - E (l-T -
tlF 2N - 2 2 

(4.6) 

Tabl e 8 gives values for th e rat io !:J. E/tlF for so me squ a re-network mude ls. Parall el-spring models have 

values of tl E/tlF that a re proportional to the initi al length L in acco rdance with eq (4.5), but for th e sq uare­

network model s th e de pend ence of tl E/tlF upon L is not qu ite linear, and there also seems to be a small 

dependence upon M. This is best s how n by co mparing values of the quantity ~ (!:J.E) , which for parallel-
L8 !:J.F 

spring mod els is equal to unity but for th e square-network mod els in table 8 vari es be tween 1.2 and 1. 5 

depending upon the model. 
Of most importance, however, is th e confirmation that th e quantity !:J.E /!:J.F can be kept low by choosing a 

small value of L. This situation is limited somewhat in experimental tes ts. A spec imen length at leas t twice 
th e specimen width is preferred , in order to avoid excessive stress distortion near the clamps. 

Although th e results of tables 7 and 8 indicate that th e values of LtlF, !:J.E and !:J. E/L!:J.F are inse nsiti ve to 
the value of M , there are circumstances where it is advantageous to vary the width of the s pec imen, as in the 
following experimental situation: Suppose that tes ts are bei ng conducted on a given specimen, but the force 

drops observed are small , so that they cannot be meas ured with much certainty. The calculation of energy loss 
requires that the force drop be known as ascurately as possible . Thus the ex perim ental length should be s mall 

in order that th e force drop be large . Further improvement is then achieved by decreas ing the s pec imen 
width. Thi s decreases the value of force at break Fb without s ignificantl y affecting the value of the force drop. 

The amplifi cation of th e recording instrume nt can then be increased and the force drop be ller resolved. 

4. Dependence of Energy Loss Upon the Local Breaking Force . 

( 2N - 1 -) 
According to eq (4.4) the energy loss !:J.E is proportional to the product of the quantity 1 - E 

2N - 2 

by the sq uare of the local breaking force k8 . For parallel-spring mod els E and therefore the quantity 

( 1 - 2N - 1 E) is independ ent of the value of thi s force. Thus for these models e nergy loss is proportional 
2N - 2 
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FIGURE 9. Cume of energy loss due to bond break vs breaking force for a square-network lIlodel 

for which M = 11 . N = 2 I . 
2N - I _ 

( I - 2N _ 2 £)8 2 is plotted vs elongati on per unit le ngth 8. whic h is proporti onal to bond breaking force. Dashed line is plot 

of K8 'l vs 8, and dolted line a plot of K ' 81.5 VS 8. The consta nts K a ll(1 K ' are adjusted so thai ordinates of the plots are equal at 
8 = 0.10. 

to the square of the local force at break. For square-network models however the value of E depends upon the 
value of 8 , so this simple quadratic relationship no longer applies. 

Figure 9 is a plot of the quantity (1 - 2N - 1 E)?? as a fun ction of 8. The ordinate in this case is 
2N - 2 

proportional to the energy loss in a square-network model for whi ch M = 11 and N = 21. This relationship, 
calculated from the data of table 3, is shown by the solid line . A relation ship having the same value for 

8 = 0. 10, but for which the ordinate is of the form K?> 2, where K is a cons tant , is shown by the dashed line . 
A corresponding relationship of the form K'?> 1.5 is given by the dotted line . This latter relationship provides a 

better fit to the data than does the quadratic relationship . 
The relationship between energy loss and loca l breaking force in an experimental tes t specimen is not 

known, and it does not seem feasible to determine it experimentally. It is possible that further studies with 
other more realistic mathematical models may provide more information on this relationship. 

5 . Interpretation of the Energy Parameter. 

In the introduction an energy parameter E for characterizing the adhesion between pulp fib ers was 
described . This energy parame ter is obtained experimentally by elongating thin web-like specime ns in a 
sensitive tensile tes ter , and measuring the energy loss incurred each tim e a bond breaks, as denoted by a 

sharp drop in the force-elongation curve. The energy losses for a selected number of bond breaks are then 
averaged . 
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The parameter E is supposed to provide a measure of the adhes ive force be tween fibers , but the previous 
discuss ion shows that E depends on th e structure of the specimen network as well. The meshes in a specimen 
ne twork range over a vari ety of s izes, and the energy loss incurred by a break depends upon the size of the 
hole that opens up . If all the bonds in th e ne ighborhood were of the same strength the parameter E would 
roughly measure that strength , but could still tak e on a range of values depending on the size distribution of 
th e meshes in the spec imen network . 

The force of adhesion be tween fibers in the network varies from bond to bonel. It has just been shown th at 

the energy loss incurred as the result of a bond break is not linearly related to the local breaking force at the 
bond . Therefore the average of a number of energy losses does not refl ect a s imple average of the loca l 
breaking forces. 

Results of calculations with square-network models suggest that the energy loss has onl y an app rox imate 
linear relationship to the mesh length. This introduces a slight additional complica ti on in the interpretati on of 
what the E parameter actually measures. 

The interpretati on of the E parameter may pe rhaps be beller expressed by the following formulati on: Le t the 
energy losses be measured for each of a seri es of n breaks, and le t the energy loss !l Ei for the ith break be 
given by 

!lEi = K;/;'Jlg(x;) 

K; is a consta nt of the ne twork tha t may vary from break to break if th e ne twork is signifi cantly altered by the 
breaks. Ii is the local force on th e bond at break , and a is a consta nt having a value probably between 1 and 
2. For a square-network model a has a value close to 1. 5. g(x;l represents the fun cti onal depend ence of !l Ei 
upon a charac te ri s ti c mesh length Xj, assoc iated with the bond i. This rela tionship is probably almost a linear 
one. 

Under these assumptions the characteris ti c ene rgy E is given by 

1 i = 1I 

E = - L K;j;Olg(Xi) (4.7) 
n i= l 

This formula gives an approx imate idea of the nature of the paramete r E. However one should remember tha t 
this formula is based on the res ults of square-n etwork mod el calculati ons, and that the square-network model 

is only a crud e representation of the paper ne tworks that are tested experimentally . It is likely that work with 
more appropriate models will provide a n improved understandi ng of the nature of E. 

6. An Alternative Force Drop Parameter. 

Adhesion between pulp fibers could be charac terized alternatively by means of a force drop parameter F. 
This parameter could be obtained by averaging force drops incurred in a series of bond breaks when a test 
specimen is elongated. The parameter F has not been tested experimentally, but its use as a parameter to 
characterize adhesion seems feasible. 

In ord er to calculate an e nergy parameter E it is necessary to know the slope of the force-elongation curve 
in the vic inity of a force drop. The force drop parameter F could be calculated more s imply, as only the force 
drops are used. 

In order that the force drop parameters be comparable, th e tes t spec imens must all have the same initial 
length . In other res pec ts the force drop parameter F is similar to the energy parameter E. Both parameters are 
sens itive to mesh s ize and mes h size distributi on in th e test specimen network. Nei ther parameter is linearly 
related to the average of the local bond breaking force . However the fun ctional dependence of F upon the 

average bond breaking force is different from that of E. 
According to eq (4 .3) the local force drop resulting from a bond break is proportional to the quantity 

(1 - 1' )8. A plot of (1 - 1' )8 vs 8, which is proportional to the bond breaking force, is depicted in figure 8 for 
a square-network model with M = 11 , N = 21. This curve can be fitted approximately by the curve 
(1 - 1')8 - 0.00687168°·5. It can be inferred from this result that the parameter F might not increase as 
rapidly with increase of local adhesion force as would be desired. Parameter E with its possible 11.5 
dependence may be superior in this respect. 
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The dependence of parameter F upon local adhesive forces and upon mesh sIze is somewhat like that of 

parameter E. A suggested formula to express this dependence would be similar to eq (4.7) with different 
values for K and a , and a slightly different quasilinear function g. 
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