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A program generator to manipulate automatically Poisson series over the field of rational numbers is applied
to develop the limit cycle of Van der Pol’s equation in the powers of the small parameter. The results indicate that

the recurrence relations in what Melvin calls the algorithm of the shifted phase are stable.
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In a recent note [1]', Melvin presented a new set of rules to expand the limit cycle of Van der Pol’s

equation
yty=e( -y
in power series of the small parameter €. He carried out the calculations in single precision floating point
arithmetic; he suggested that they be repeated in exact form, i.e. that the coefficients in the series be
produced as quotients of relatively prime integers. To achieve this result we applied to this problem a program
generator of our own, called MAO, to manipulate rational Poisson series by computer. In the present note we
show how this processor enables us to simplify drastically Melvin’s algorithm; then we present the actual
expansions for the limit cycle and its frequency to €®.
Melvin’s rules are expressed in terms of a new independent variable
T = wt
by means of which the original equation is transformed into

w?" +y=€eny'(1 — y?2).

The cycle and its frequency are expanded in formal power series

3
Il

1
E 1 In (T)ens (1)

n=0 -

1
w = E — wy€e" (2)
n=0 1 -
of the small parameter €. Melvin showed that the following parity rules are consistent:
(i) Forn even, the term y,, is an even function of 7;
(ii) For n odd, the coefficient w, is 0 and the term y,, is an odd function of 7.

The terms y,, and the coefficients w,, are to be determined recursively, starting with

Yo=2cosT and w,= 1.

* An invited paper.
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! Figures in brackets indicate literature references at the end of this paper.
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Let
F=evy'(1 —y?%— w"

be expanded as the power series

1
F= —€"F,.
n=0 n!
As we introduce the intermediate quantities
u=y? v=wy', w= w?

we observe that the coefficients in the power series

1 1 1
u = 2 I uy€", v= E *‘I‘ne", w = 2 _'u"nen
n

n=0 1. n=0 1 - n=0 1 -

are given by the expressions

n n ,
Uy = E (m) YmYn—m - Up = 2 <m> D) n—m

0=m=n

n . . -
where ( > stands for the binomial coefficient n!/m!(n — m)!. Therefore
m

_ E =1l E n o
Fp=n| v,y — UmUn—1-m | — WmY n—m -
0o=m=n—1 m o=m=n \M

We denote by F ¥ the value which F, takes when we set y, = 0. In view of the parity rules, F',, is an even or
odd function of 7 respectively when n is even or odd. Now it turns out that the term y,, in the limit cycle is a

solution of the non-homogeneous linear equation
ynt yn=F3 (3)
Hence
Yn = )’5 + oy
with the homogeneous general solution
Y = Cp COST + s, 8INT

and y ¥ a particular solution of eq (3). In application of the parity rules, we set s, = 0 when n is even and ¢,
= 0 when n is odd. For the particular solution y to be periodic in 7, the right hand member F'} must not
contain terms in sin 7 and cos 7. These critical terms will be removed from F} by following the periodicity

rules:

(i) When n is even, F ¥ contains a term in cos 7 whose coefficient is of the form a — bw,,. Therefore,
we continue determining the frequency in the limit cycle by setting w,, = a /b. The coefficient ¢,, in
the term y;, will be determined at the next order.

(i) When n is odd, F ¥ contains a term in sin 7 whose coefficient is of the form a — be,_;. The
determination of y,_; is completed by setting ¢,,_; = a/b. We also set s,, = 0 which implies that y;,

= 0 in all components of the limit cycle at odd orders.
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For our processor of Poisson series, the terms y,, are represented as pointers to list structures in which the
trigonometric components are chained dynamically. The parity rules and the periodicity rules are all we need
to know about the structures of the terms y, in order to construct the limit cycle. But, in Melvin’s
implementation, the Poisson series are represented by the static arrays of their numerical coefficients. Thus

one needs to know that the term y,, is a Fourier sum of the form

Yn = E Cnom cOs(2m + 1)71

O0=m=

when n is even, and of the form

Yn = 2 Spom SIN(2m + 1)1

l=m=n

when n is odd. Expressed in terms of the matrices ¢,,,, and s, ,,. the algorithm of Lindstedt-Poincaré gives
rise to a large set of intricate algebraic formulas.

The tables on the next page present the development of the limit cycle to order 8. We confirm that the
corresponding coefficients produced by Melvin in floating point format are exact to 6 digits with rounding for
the last digit. As the tables show, numerators and denominators in the coefficients of the cycle and of its
frequency are rapidly increasing in absolute value. Our programs written in PL/1 for the IBM Optimizing
Compiler (version 1. release 3.0) make use of the arithmetic hardware to operate on integers in decimal
notation with at most 15 digits. Hence, the program encountered a fixed point overflow in the course of the
operations at the 9-th order. A preliminary version in which the normalizing factorials were omitted in (1) and
(2) raised the fixed overflow condition at order 5.

Another way of determining the limit cycle uses complex coordinates (u, v). They are introduced by

u=y—1iy
v=y + iy
They transform van der Pol’s equation into
uw=iu — E;(“ —v)((uw+ v)%2 — 4) (4)

A conjugate complex equation holds for v. As the cycle in real form is a Fourier series with period 27/w we
introduce a new independent variable by

The solution is then found as a formal power series of the form

u= 2 e"u,,(f)

n=0

where the u,(£) are odd polynomials in &. The frequency @ will be found at the same time in the form of the
following series

w = 2 W, €"

n=0

The new independent variable gives rise to the differential operator

D_fi__l_i
dé i di
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TABLE 1. Frequency.

Wy

17
128

175

6144

4752293
884736

TABLE 1. Terms of even order: in the cycle.

Yo V2 Y4 Ve V8
5 1 23 258005
s W et i c
cosT 32 2048 1179648 s
3 101 120305 1958726609
cos 37' - — i rpaanpepsant
16 512 196608 141557760
. 5 1865 168175 3919930525
cos o7 48 4608 1769472 254803968
. 1379 10923199 147344494843
cosm 4608 4423630 31850496000
0 183 1769369 161113663733
cosoT 2560 819200 5898240000
409871 1359229760383
cos 117 — et S o
460800 46448640000
s 115247 2076538440769
€08 10T 5160960 130056192000
s 526426361
3 b} Essaegstaygt
€08 2T 115605504
e 392636471
cos T 743178240
TABLE ll1. Terms of odd order in the cycle.
Y1 Y3 143 Y7
) 1 45 3895 31766119
sin 371 = = — ——
4 256 49152 9437184
o 85 40475 43837325
SIn o7 - - e TR
384 55296 42467328
_ 7 99967 2911646591
sin 77 — el ndeptsi et
9% 110592 530841600
] 9791 820810021
sin 971 = == —_—
20480 98304000
, 5533 1657839733
sin 117 = e
61440 294912000
P 21731177
11468800
sin 157 boaads
2752512
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It allows us to rewrite eq (4) as
€ ;
Du=u+ g(u —v)((u+v)?—4) — (w — 1)Du (5)

From this equation the following parity rules can be read off immediately:
a) Forn even u, has purely real coefficients
b) Forn odd u, has purely imaginary coefficients and w, = 0
Starting with
uy = 2 &, u =i(M2 &€ +Ya¢3) and wo = 1

the coefficients w,, and the polynomials can be determined recursively by the following method:
For even n the terms of order €" in eq (5) give rise to the differential equation

Duy, = u, + ﬁn(f) - 2(“"{:

F, (&) is a known polynomial since it depends only on uy (€) and @y with k£ < n.

It will contain a linear term with a real coefficient a so that F,,(¢) = a + F #(£). Since & is a solution to the
homogeneous equation this is a critical term and we have to set @, = a/2. The general solution to the
remaining ecquation

Du, = u, + F ¥(§)

is then

u, = af + uf(é)

where u#(£) is a polynomial in &. The parameter a will be determined at the next order. The differential

equation for terms of odd order n + 1 reads

Dupyy = tpyy + Fpia(€) + ia(f + i‘fx & - ';f:i)-
2 2
F (&) denotes again a known polynomial which will contain a linear factor of the form ib¢. To avoid secular
terms we require « = —b. The remaining equation can then be integrated to give the polynomial u,,,,. The
solution to the homogeneous solution is set to zero this time out of convenience and to obtain the phase
shifting solutions of [1].

The second author used his algebraic processor POLYPAK to implement the above algorithm by computer
and to check the results in [1]. POLYPAK is a package of PL/I computer programs for the manipulation of
real or complex powerseries in several variables. It was derived from MAO. All computations were performed
on the Amdahl 470/V6 of the University of Cincinnati which runs under the IBM operating system VS2
release 1.7.

For the above problem our series had two variables € and ¢ and the coefficients were stored as complex
double precision floating point numbers. We determined the solution u and the series @ through terms of
order €* and confirmed the results given in [1].

Our computations took 57 seconds. This compares with 130 seconds for a FORTRAN program which
Melvin used to implement his formulas and which he ran on a CYBER 175. A comparison of the two times
may not mean very much as we compare different machines and different programs. Nevertheless, we believe
that it indicates that the use of POLYPAK did not generate any unreasonable overhead. The use of an
algebraic processor is already justified by the ease with which the above algorithm can be coded.
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